code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ = { '''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''], '''tokenization_convbert''': ['''ConvBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''ConvBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvBertForMaskedLM''', '''ConvBertForMultipleChoice''', '''ConvBertForQuestionAnswering''', '''ConvBertForSequenceClassification''', '''ConvBertForTokenClassification''', '''ConvBertLayer''', '''ConvBertModel''', '''ConvBertPreTrainedModel''', '''load_tf_weights_in_convbert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFConvBertForMaskedLM''', '''TFConvBertForMultipleChoice''', '''TFConvBertForQuestionAnswering''', '''TFConvBertForSequenceClassification''', '''TFConvBertForTokenClassification''', '''TFConvBertLayer''', '''TFConvBertModel''', '''TFConvBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
707
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml A_ = logging.get_logger(__name__) def UpperCAmelCase__ (snake_case__ : bool , snake_case__ : bool ): """simple docstring""" def run_func(snake_case__ : Tuple ): @wraps(snake_case__ ) def run_in_eager_mode(*snake_case__ : str , **snake_case__ : Any ): return func(*snake_case__ , **snake_case__ ) @wraps(snake_case__ ) @tf.function(experimental_compile=snake_case__ ) def run_in_graph_mode(*snake_case__ : Any , **snake_case__ : Optional[int] ): return func(*snake_case__ , **snake_case__ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : List[str] = random.Random() _snake_case : Optional[int] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case__ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class lowercase( __a ): '''simple docstring''' lowercase__ = 42 lowercase__ = 42 lowercase__ = "TensorFlow" @property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' return tf.__version__ def UpperCamelCase_ ( self: List[str], a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : List[str] = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : Optional[int] = self._prepare_inference_func(a_, a_, a_ ) return self._measure_speed(_inference ) def UpperCamelCase_ ( self: int, a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : Tuple = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : Optional[Any] = self._prepare_train_func(a_, a_, a_ ) return self._measure_speed(_train ) def UpperCamelCase_ ( self: Dict, a_: str, a_: int, a_: int ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], a_ ) _snake_case : str = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : List[str] = self._prepare_inference_func(a_, a_, a_ ) return self._measure_memory(_inference ) def UpperCamelCase_ ( self: Tuple, a_: str, a_: int, a_: int ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], a_ ) _snake_case : Dict = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : Optional[int] = self._prepare_train_func(a_, a_, a_ ) return self._measure_memory(_train ) def UpperCamelCase_ ( self: Optional[Any], a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : List[Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _snake_case : List[Any] = ( hasattr(a_, """architectures""" ) and isinstance(config.architectures, a_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _snake_case : str = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _snake_case : List[Any] = __import__("""transformers""", fromlist=[model_class] ) _snake_case : Dict = getattr(a_, a_ ) _snake_case : Any = model_cls(a_ ) except ImportError: raise ImportError( f"{model_class} does not exist. If you just want to test the pretrained model, you might want to" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _snake_case : Any = TF_MODEL_MAPPING[config.__class__](a_ ) # encoder-decoder has vocab size saved differently _snake_case : List[Any] = config.vocab_size if hasattr(a_, """vocab_size""" ) else config.encoder.vocab_size _snake_case : List[str] = random_input_ids(a_, a_, a_ ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_decoder_forward(): return model(a_, decoder_input_ids=a_, training=a_ ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_forward(): return model(a_, training=a_ ) _snake_case : Optional[int] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def UpperCamelCase_ ( self: Optional[int], a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : str = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _snake_case : Tuple = ( hasattr(a_, """architectures""" ) and isinstance(config.architectures, a_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _snake_case : List[str] = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _snake_case : str = __import__("""transformers""", fromlist=[model_class] ) _snake_case : Tuple = getattr(a_, a_ ) _snake_case : Any = model_cls(a_ ) except ImportError: raise ImportError( f"{model_class} does not exist. If you just want to test the pretrained model, you might want to" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _snake_case : Optional[Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](a_ ) # encoder-decoder has vocab size saved differently _snake_case : List[Any] = config.vocab_size if hasattr(a_, """vocab_size""" ) else config.encoder.vocab_size _snake_case : int = random_input_ids(a_, a_, a_ ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_decoder_train(): _snake_case : Dict = model(a_, decoder_input_ids=a_, labels=a_, training=a_ )[0] _snake_case : str = tf.gradients(a_, model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_train(): _snake_case : Optional[Any] = model(a_, labels=a_, training=a_ )[0] _snake_case : Optional[Any] = tf.gradients(a_, model.trainable_variables ) return gradients _snake_case : int = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def UpperCamelCase_ ( self: Union[str, Any], a_: str ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(a_, repeat=1, number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _snake_case : Dict = timeit.repeat( a_, repeat=self.args.repeat, number=10, ) return min(a_ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"Doesn't fit on GPU. {e}" ) def UpperCamelCase_ ( self: Optional[Any], a_: Callable[[], None] ): '''simple docstring''' logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) _snake_case : List[Any] = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) _snake_case : Optional[Any] = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() _snake_case : List[str] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _snake_case : Tuple = nvml.nvmlDeviceGetMemoryInfo(a_ ) _snake_case : List[str] = meminfo.used _snake_case : Any = Memory(a_ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) _snake_case : List[Any] = None else: _snake_case : int = measure_peak_memory_cpu(a_ ) _snake_case : List[str] = Memory(a_ ) if isinstance(a_, a_ ) else memory_bytes if self.args.trace_memory_line_by_line: _snake_case : Tuple = stop_memory_tracing(a_ ) if memory is None: _snake_case : int = summary.total else: _snake_case : int = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"Doesn't fit on GPU. {e}" ) return "N/A", None
28
0
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": A_ = argparse.ArgumentParser( description=( '''Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''bert''', choices=['''bert''']) parser.add_argument('''--model_name''', default='''bert-base-uncased''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_bert-base-uncased_0247911.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') A_ = parser.parse_args() if args.model_type == "bert": A_ = BertForMaskedLM.from_pretrained(args.model_name) A_ = '''bert''' else: raise ValueError('''args.model_type should be "bert".''') A_ = model.state_dict() A_ = {} for w in ["word_embeddings", "position_embeddings"]: A_ = state_dict[F'''{prefix}.embeddings.{w}.weight'''] for w in ["weight", "bias"]: A_ = state_dict[F'''{prefix}.embeddings.LayerNorm.{w}'''] A_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: A_ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}''' ] A_ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}''' ] A_ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}''' ] A_ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}''' ] A_ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}''' ] A_ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}''' ] A_ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}''' ] A_ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}''' ] std_idx += 1 A_ = state_dict['''cls.predictions.decoder.weight'''] A_ = state_dict['''cls.predictions.bias'''] if args.vocab_transform: for w in ["weight", "bias"]: A_ = state_dict[F'''cls.predictions.transform.dense.{w}'''] A_ = state_dict[F'''cls.predictions.transform.LayerNorm.{w}'''] print(F'''N layers selected for distillation: {std_idx}''') print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
708
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : str ): """simple docstring""" _snake_case : str = int(snake_case__ ) # Initialize Result _snake_case : str = [] # Traverse through all denomination for denomination in reversed(snake_case__ ): # Find denominations while int(snake_case__ ) >= int(snake_case__ ): total_value -= int(snake_case__ ) answer.append(snake_case__ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": A_ = [] A_ = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): A_ = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) A_ = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter A_ = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] A_ = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F'''Following is minimal change for {value}: ''') A_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
28
0
"""simple docstring""" from timeit import timeit def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if number < 0: raise ValueError("""the value of input must not be negative""" ) _snake_case : int = 0 while number: number &= number - 1 result += 1 return result def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if number < 0: raise ValueError("""the value of input must not be negative""" ) _snake_case : Tuple = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def UpperCAmelCase__ (): """simple docstring""" def do_benchmark(snake_case__ : int ) -> None: _snake_case : int = """import __main__ as z""" print(F"Benchmark when {number = }:" ) print(F"{get_set_bits_count_using_modulo_operator(snake_case__ ) = }" ) _snake_case : Any = timeit("""z.get_set_bits_count_using_modulo_operator(25)""" , setup=snake_case__ ) print(F"timeit() runs in {timing} seconds" ) print(F"{get_set_bits_count_using_brian_kernighans_algorithm(snake_case__ ) = }" ) _snake_case : Optional[int] = timeit( """z.get_set_bits_count_using_brian_kernighans_algorithm(25)""" , setup=snake_case__ , ) print(F"timeit() runs in {timing} seconds" ) for number in (25, 37, 58, 0): do_benchmark(snake_case__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
709
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowercase: '''simple docstring''' def __init__( self: Optional[Any], a_: Union[str, Any], a_: int=100, a_: int=13, a_: List[Any]=30, a_: str=2, a_: Optional[Any]=3, a_: Optional[int]=True, a_: Any=True, a_: Optional[Any]=32, a_: Tuple=4, a_: str=4, a_: List[Any]=37, a_: List[str]="gelu", a_: str=0.1, a_: Optional[int]=0.1, a_: Any=10, a_: List[str]=0.02, a_: Dict=3, a_: str=None, a_: Optional[int]=[0, 1, 2, 3], ): '''simple docstring''' _snake_case : Optional[int] = parent _snake_case : Optional[Any] = 100 _snake_case : Any = batch_size _snake_case : List[Any] = image_size _snake_case : Optional[Any] = patch_size _snake_case : str = num_channels _snake_case : Tuple = is_training _snake_case : Tuple = use_labels _snake_case : Any = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : List[str] = num_attention_heads _snake_case : Union[str, Any] = intermediate_size _snake_case : Dict = hidden_act _snake_case : str = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Optional[Any] = type_sequence_label_size _snake_case : Any = initializer_range _snake_case : List[str] = scope _snake_case : int = out_indices _snake_case : Optional[Any] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _snake_case : Dict = (image_size // patch_size) ** 2 _snake_case : str = num_patches + 1 def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : List[Any] = None _snake_case : Tuple = None if self.use_labels: _snake_case : str = ids_tensor([self.batch_size], self.type_sequence_label_size ) _snake_case : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) _snake_case : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=a_, initializer_range=self.initializer_range, out_indices=self.out_indices, ) def UpperCamelCase_ ( self: List[Any], a_: List[Any], a_: Any, a_: Optional[Any], a_: List[str] ): '''simple docstring''' _snake_case : str = BeitModel(config=a_ ) model.to(a_ ) model.eval() _snake_case : Dict = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self: str, a_: List[Any], a_: Optional[Any], a_: Optional[int], a_: List[Any] ): '''simple docstring''' _snake_case : List[str] = BeitForMaskedImageModeling(config=a_ ) model.to(a_ ) model.eval() _snake_case : Union[str, Any] = model(a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCamelCase_ ( self: Any, a_: List[str], a_: Any, a_: List[Any], a_: Optional[Any] ): '''simple docstring''' _snake_case : Any = self.type_sequence_label_size _snake_case : Any = BeitForImageClassification(a_ ) model.to(a_ ) model.eval() _snake_case : List[Any] = model(a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case : Any = 1 _snake_case : str = BeitForImageClassification(a_ ) model.to(a_ ) model.eval() _snake_case : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case : Optional[Any] = model(a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self: List[Any], a_: Optional[int], a_: List[Any], a_: str, a_: int ): '''simple docstring''' _snake_case : List[str] = self.num_labels _snake_case : List[Any] = BeitForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() _snake_case : List[str] = model(a_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) _snake_case : str = model(a_, labels=a_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Tuple = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case , _snake_case : Any = config_and_inputs _snake_case : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase__ = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Dict = BeitModelTester(self ) _snake_case : int = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def UpperCamelCase_ ( self: str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""BEiT does not use inputs_embeds""" ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCamelCase_ ( self: str ): '''simple docstring''' pass def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : List[str] = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) _snake_case : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_, nn.Linear ) ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Any = model_class(a_ ) _snake_case : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : List[Any] = [*signature.parameters.keys()] _snake_case : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1], a_ ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' if not self.model_tester.is_training: return _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Any = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(a_ ), BeitForMaskedImageModeling]: continue _snake_case : List[Any] = model_class(a_ ) model.to(a_ ) model.train() _snake_case : Dict = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : List[Any] = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _snake_case : Dict = False _snake_case : Optional[Any] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(a_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue _snake_case : Any = model_class(a_ ) model.gradient_checkpointing_enable() model.to(a_ ) model.train() _snake_case : Any = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : int = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : int = _config_zero_init(a_ ) for model_class in self.all_model_classes: _snake_case : Tuple = model_class(config=a_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @slow def UpperCamelCase_ ( self: int ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Optional[int] = BeitModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self: Dict ): '''simple docstring''' return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : str = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(a_ ) _snake_case : Dict = self.default_image_processor _snake_case : Dict = prepare_img() _snake_case : List[str] = image_processor(images=a_, return_tensors="""pt""" ).pixel_values.to(a_ ) # prepare bool_masked_pos _snake_case : Optional[int] = torch.ones((1, 196), dtype=torch.bool ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : int = model(pixel_values=a_, bool_masked_pos=a_ ) _snake_case : Dict = outputs.logits # verify the logits _snake_case : Optional[int] = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape, a_ ) _snake_case : Optional[Any] = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(a_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], a_, atol=1E-2 ) ) @slow def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Dict = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(a_ ) _snake_case : List[Any] = self.default_image_processor _snake_case : Any = prepare_img() _snake_case : Any = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : int = model(**a_ ) _snake_case : Optional[int] = outputs.logits # verify the logits _snake_case : Tuple = torch.Size((1, 1_000) ) self.assertEqual(logits.shape, a_ ) _snake_case : Any = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(a_ ) self.assertTrue(torch.allclose(logits[0, :3], a_, atol=1E-4 ) ) _snake_case : str = 281 self.assertEqual(logits.argmax(-1 ).item(), a_ ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : int = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to( a_ ) _snake_case : int = self.default_image_processor _snake_case : Optional[Any] = prepare_img() _snake_case : Union[str, Any] = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Union[str, Any] = model(**a_ ) _snake_case : Dict = outputs.logits # verify the logits _snake_case : Tuple = torch.Size((1, 21_841) ) self.assertEqual(logits.shape, a_ ) _snake_case : Optional[int] = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(a_ ) self.assertTrue(torch.allclose(logits[0, :3], a_, atol=1E-4 ) ) _snake_case : List[str] = 2_396 self.assertEqual(logits.argmax(-1 ).item(), a_ ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[str] = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) _snake_case : int = model.to(a_ ) _snake_case : List[str] = BeitImageProcessor(do_resize=a_, size=640, do_center_crop=a_ ) _snake_case : Optional[int] = load_dataset("""hf-internal-testing/fixtures_ade20k""", split="""test""" ) _snake_case : Union[str, Any] = Image.open(ds[0]["""file"""] ) _snake_case : List[Any] = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Optional[int] = model(**a_ ) _snake_case : Union[str, Any] = outputs.logits # verify the logits _snake_case : List[str] = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape, a_ ) _snake_case : Optional[int] = version.parse(PIL.__version__ ) < version.parse("""9.0.0""" ) if is_pillow_less_than_a: _snake_case : Any = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ], device=a_, ) else: _snake_case : Optional[Any] = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ], device=a_, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], a_, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : int = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) _snake_case : List[Any] = model.to(a_ ) _snake_case : Tuple = BeitImageProcessor(do_resize=a_, size=640, do_center_crop=a_ ) _snake_case : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_ade20k""", split="""test""" ) _snake_case : str = Image.open(ds[0]["""file"""] ) _snake_case : Tuple = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Optional[int] = model(**a_ ) _snake_case : Union[str, Any] = outputs.logits.detach().cpu() _snake_case : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=a_, target_sizes=[(500, 300)] ) _snake_case : Optional[int] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape, a_ ) _snake_case : List[str] = image_processor.post_process_semantic_segmentation(outputs=a_ ) _snake_case : List[str] = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape, a_ )
28
0
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def UpperCAmelCase__ (snake_case__ : List[Any] ): """simple docstring""" return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def UpperCAmelCase__ (snake_case__ : Union[str, Any] , snake_case__ : Optional[int] ): """simple docstring""" _snake_case : List[Any] = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue _snake_case : Dict = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" ) _snake_case : List[str] = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" ) _snake_case : List[str] = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" ) _snake_case : Union[str, Any] = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" ) _snake_case : Optional[Any] = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" ) _snake_case : List[str] = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" ) _snake_case : Optional[int] = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" ) _snake_case : str = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" ) _snake_case : str = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" ) _snake_case : str = key.replace("""image_encoder.module""" , """flava.image_model""" ) _snake_case : Dict = key.replace("""text_encoder.module""" , """flava.text_model""" ) _snake_case : List[str] = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" ) _snake_case : Any = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" ) _snake_case : List[Any] = key.replace("""text_projection""" , """flava.text_projection""" ) _snake_case : Dict = key.replace("""image_projection""" , """flava.image_projection""" ) _snake_case : Tuple = value.float() for key, value in codebook_state_dict.items(): _snake_case : Optional[Any] = value return upgrade @torch.no_grad() def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any]=None ): """simple docstring""" if config_path is not None: _snake_case : str = FlavaConfig.from_pretrained(snake_case__ ) else: _snake_case : int = FlavaConfig() _snake_case : int = FlavaForPreTraining(snake_case__ ).eval() _snake_case : Tuple = convert_dalle_checkpoint(snake_case__ , snake_case__ , save_checkpoint=snake_case__ ) if os.path.exists(snake_case__ ): _snake_case : int = torch.load(snake_case__ , map_location="""cpu""" ) else: _snake_case : List[Any] = torch.hub.load_state_dict_from_url(snake_case__ , map_location="""cpu""" ) _snake_case : Any = upgrade_state_dict(snake_case__ , snake_case__ ) hf_model.load_state_dict(snake_case__ ) _snake_case : List[Any] = hf_model.state_dict() _snake_case : Union[str, Any] = count_parameters(snake_case__ ) _snake_case : Optional[Any] = count_parameters(snake_case__ ) + count_parameters(snake_case__ ) assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) hf_model.save_pretrained(snake_case__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--codebook_path''', default=None, type=str, help='''Path to flava codebook checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') A_ = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
710
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase( __a ): '''simple docstring''' lowercase__ = (IPNDMScheduler,) lowercase__ = (("num_inference_steps", 50),) def UpperCamelCase_ ( self: Union[str, Any], **a_: Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = {"""num_train_timesteps""": 1_000} config.update(**a_ ) return config def UpperCamelCase_ ( self: Tuple, a_: Optional[int]=0, **a_: int ): '''simple docstring''' _snake_case : Optional[int] = dict(self.forward_default_kwargs ) _snake_case : Optional[Any] = kwargs.pop("""num_inference_steps""", a_ ) _snake_case : Optional[Any] = self.dummy_sample _snake_case : Dict = 0.1 * sample _snake_case : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _snake_case : int = self.get_scheduler_config(**a_ ) _snake_case : Dict = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals _snake_case : int = dummy_past_residuals[:] if time_step is None: _snake_case : Union[str, Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) _snake_case : Tuple = scheduler_class.from_pretrained(a_ ) new_scheduler.set_timesteps(a_ ) # copy over dummy past residuals _snake_case : Optional[Any] = dummy_past_residuals[:] _snake_case : List[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : str = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _snake_case : Optional[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : Optional[int] = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self: str, a_: Any=0, **a_: Tuple ): '''simple docstring''' _snake_case : str = dict(self.forward_default_kwargs ) _snake_case : List[Any] = kwargs.pop("""num_inference_steps""", a_ ) _snake_case : Optional[int] = self.dummy_sample _snake_case : Tuple = 0.1 * sample _snake_case : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _snake_case : Any = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals (must be after setting timesteps) _snake_case : Union[str, Any] = dummy_past_residuals[:] if time_step is None: _snake_case : Tuple = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) _snake_case : List[str] = scheduler_class.from_pretrained(a_ ) # copy over dummy past residuals new_scheduler.set_timesteps(a_ ) # copy over dummy past residual (must be after setting timesteps) _snake_case : List[str] = dummy_past_residuals[:] _snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : Any = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : int = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self: List[Any], **a_: Optional[int] ): '''simple docstring''' _snake_case : Union[str, Any] = self.scheduler_classes[0] _snake_case : Any = self.get_scheduler_config(**a_ ) _snake_case : List[Any] = scheduler_class(**a_ ) _snake_case : Union[str, Any] = 10 _snake_case : Union[str, Any] = self.dummy_model() _snake_case : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(a_ ) for i, t in enumerate(scheduler.timesteps ): _snake_case : Optional[Any] = model(a_, a_ ) _snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample for i, t in enumerate(scheduler.timesteps ): _snake_case : Union[str, Any] = model(a_, a_ ) _snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample return sample def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : str = dict(self.forward_default_kwargs ) _snake_case : int = kwargs.pop("""num_inference_steps""", a_ ) for scheduler_class in self.scheduler_classes: _snake_case : Union[str, Any] = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**a_ ) _snake_case : Dict = self.dummy_sample _snake_case : List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(a_, """set_timesteps""" ): scheduler.set_timesteps(a_ ) elif num_inference_steps is not None and not hasattr(a_, """set_timesteps""" ): _snake_case : Dict = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _snake_case : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _snake_case : List[str] = dummy_past_residuals[:] _snake_case : Optional[int] = scheduler.timesteps[5] _snake_case : Optional[Any] = scheduler.timesteps[6] _snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : List[str] = scheduler.step(a_, a_, a_, **a_ ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) _snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=a_, time_step=a_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=a_, time_step=a_ ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.full_loop() _snake_case : Optional[int] = torch.mean(torch.abs(a_ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
28
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''OwlViTFeatureExtractor'''] A_ = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
711
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True A_ = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) _snake_case : Any = [] for num in range(len(snake_case__ ) ): _snake_case : Optional[int] = 0 while 2 * i * i <= odd_composites[num]: _snake_case : Optional[int] = odd_composites[num] - 2 * i * i if is_prime(snake_case__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(snake_case__ ) == n: return list_nums return [] def UpperCAmelCase__ (): """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(F'''{solution() = }''')
28
0
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Dict ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Dict ): """simple docstring""" _snake_case : str = tmp_path / """cache""" _snake_case : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _snake_case : str = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : int , snake_case__ : List[Any] ): """simple docstring""" _snake_case : str = tmp_path / """cache""" _snake_case : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : List[Any] = features.copy() if features else default_expected_features _snake_case : List[Any] = ( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) _snake_case : Optional[Any] = ParquetDatasetReader(snake_case__ , features=snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : List[str] = tmp_path / """cache""" _snake_case : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : int = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ , split=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : str , snake_case__ : str ): """simple docstring""" if issubclass(snake_case__ , snake_case__ ): _snake_case : Optional[Any] = parquet_path elif issubclass(snake_case__ , snake_case__ ): _snake_case : int = [parquet_path] _snake_case : Union[str, Any] = tmp_path / """cache""" _snake_case : Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : List[str] = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : str=("train",) ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ) for split in splits: _snake_case : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str , snake_case__ : List[Any] ): """simple docstring""" _snake_case : Tuple = tmp_path / """cache""" _snake_case : Optional[int] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _snake_case : Tuple = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] ): """simple docstring""" _snake_case : Optional[int] = tmp_path / """cache""" _snake_case : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : Optional[Any] = features.copy() if features else default_expected_features _snake_case : Dict = ( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) _snake_case : Optional[int] = ParquetDatasetReader({"""train""": parquet_path} , features=snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Tuple ): """simple docstring""" if split: _snake_case : int = {split: parquet_path} else: _snake_case : Optional[Any] = """train""" _snake_case : int = {"""train""": parquet_path, """test""": parquet_path} _snake_case : Dict = tmp_path / """cache""" _snake_case : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : Union[str, Any] = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : Tuple ): """simple docstring""" _snake_case : List[Any] = ParquetDatasetWriter(snake_case__ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _snake_case : str = pq.ParquetFile(tmp_path / """foo.parquet""" ) _snake_case : int = pf.read() assert dataset.data.table == output_table def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : Optional[Any] = str(shared_datadir / """test_image_rgb.jpg""" ) _snake_case : Tuple = {"""image""": [image_path]} _snake_case : Optional[int] = Features({"""image""": Image()} ) _snake_case : int = Dataset.from_dict(snake_case__ , features=snake_case__ ) _snake_case : Optional[Any] = ParquetDatasetWriter(snake_case__ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _snake_case : List[str] = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features _snake_case : Optional[Any] = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=snake_case__ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : str ): """simple docstring""" assert get_writer_batch_size(snake_case__ ) == expected
712
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class lowercase: '''simple docstring''' def __init__( self: List[Any], a_: str = "cpu", a_: str = "openai/clip-vit-large-patch14" ): '''simple docstring''' _snake_case : Optional[int] = device _snake_case : str = CLIPTokenizerFast.from_pretrained(a_ ) _snake_case : Union[str, Any] = [0.48_145_466, 0.4_578_275, 0.40_821_073] _snake_case : Optional[int] = [0.26_862_954, 0.26_130_258, 0.27_577_711] _snake_case : str = torchvision.transforms.Normalize(self.image_mean, self.image_std ) _snake_case : Optional[int] = torchvision.transforms.Resize(224 ) _snake_case : str = torchvision.transforms.CenterCrop(224 ) def UpperCamelCase_ ( self: List[str], a_: str ): '''simple docstring''' _snake_case : Optional[int] = self.resize(a_ ) _snake_case : List[Any] = self.center_crop(a_ ) _snake_case : Optional[Any] = self.normalize(a_ ) return images def __call__( self: Any, a_: Optional[int]=None, a_: str=None, **a_: str ): '''simple docstring''' _snake_case : Optional[int] = self.tokenizer(text=a_, **a_ ) _snake_case : Any = self.preprocess_img(a_ ) _snake_case : Union[str, Any] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class lowercase( nn.Module ): '''simple docstring''' def __init__( self: List[Any], a_: List[Any]=10, a_: Optional[Any]=0.01, a_: List[str]=None, a_: str=None, a_: Any=None, a_: Tuple=None, a_: List[str]=None, a_: List[str]=None, a_: str=False, a_: List[str]=True, a_: Any="image", a_: Optional[Any]=True, a_: Dict=False, a_: List[str]=False, a_: Optional[int]=False, ): '''simple docstring''' super().__init__() _snake_case : int = None _snake_case : List[str] = device if device else get_device() if vqgan: _snake_case : Any = vqgan else: _snake_case : Optional[Any] = load_vqgan(self.device, conf_path=a_, ckpt_path=a_ ) self.vqgan.eval() if clip: _snake_case : Tuple = clip else: _snake_case : Optional[Any] = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) _snake_case : List[str] = ProcessorGradientFlow(device=self.device ) _snake_case : Union[str, Any] = iterations _snake_case : Dict = lr _snake_case : Optional[int] = log _snake_case : List[str] = make_grid _snake_case : Union[str, Any] = return_val _snake_case : List[str] = quantize _snake_case : List[str] = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self: Tuple, a_: str=None, a_: Dict=None, a_: Dict=5, a_: Dict=True ): '''simple docstring''' _snake_case : Dict = [] if output_path is None: _snake_case : Tuple = """./animation.gif""" if input_path is None: _snake_case : Any = self.save_path _snake_case : Optional[int] = sorted(glob(input_path + """/*""" ) ) if not len(a_ ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(a_ ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) _snake_case : List[Any] = total_duration / len(a_ ) _snake_case : Optional[Any] = [frame_duration] * len(a_ ) if extend_frames: _snake_case : Optional[int] = 1.5 _snake_case : int = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(a_ ) ) imageio.mimsave(a_, a_, duration=a_ ) print(f"gif saved to {output_path}" ) def UpperCamelCase_ ( self: str, a_: Tuple=None, a_: Optional[Any]=None ): '''simple docstring''' if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError _snake_case : int = preprocess(Image.open(a_ ), target_image_size=256 ).to(self.device ) _snake_case : int = preprocess_vqgan(a_ ) _snake_case , *_snake_case : List[Any] = self.vqgan.encode(a_ ) return z def UpperCamelCase_ ( self: Union[str, Any], a_: Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.latent.detach().requires_grad_() _snake_case : Tuple = base_latent + transform_vector if self.quantize: _snake_case , *_snake_case : Any = self.vqgan.quantize(a_ ) else: _snake_case : List[Any] = trans_latent return self.vqgan.decode(a_ ) def UpperCamelCase_ ( self: List[Any], a_: Any, a_: Union[str, Any], a_: Dict=None ): '''simple docstring''' _snake_case : Tuple = self.clip_preprocessor(text=a_, images=a_, return_tensors="""pt""", padding=a_ ) _snake_case : Any = self.clip(**a_ ) _snake_case : str = clip_outputs.logits_per_image if weights is not None: _snake_case : Any = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self: Any, a_: Any, a_: List[str], a_: Dict ): '''simple docstring''' _snake_case : List[Any] = self._get_clip_similarity(pos_prompts["""prompts"""], a_, weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: _snake_case : List[str] = self._get_clip_similarity(neg_prompts["""prompts"""], a_, weights=neg_prompts["""weights"""] ) else: _snake_case : Tuple = torch.tensor([1], device=self.device ) _snake_case : int = -torch.log(a_ ) + torch.log(a_ ) return loss def UpperCamelCase_ ( self: Optional[Any], a_: Tuple, a_: Union[str, Any], a_: List[str] ): '''simple docstring''' _snake_case : Tuple = torch.randn_like(self.latent, requires_grad=a_, device=self.device ) _snake_case : Dict = torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _snake_case : str = self._add_vector(a_ ) _snake_case : List[Any] = loop_post_process(a_ ) _snake_case : List[Any] = self._get_CLIP_loss(a_, a_, a_ ) print("""CLIP loss""", a_ ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=a_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self: int, a_: Any, a_: Union[str, Any], a_: Optional[int] ): '''simple docstring''' wandb.init(reinit=a_, project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: _snake_case : Any = Image.open(a_ ) _snake_case : str = image.resize((256, 256) ) wandb.log("""Original Image""", wandb.Image(a_ ) ) def UpperCamelCase_ ( self: str, a_: List[Any] ): '''simple docstring''' if not prompts: return [] _snake_case : List[str] = [] _snake_case : Tuple = [] if isinstance(a_, a_ ): _snake_case : Union[str, Any] = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(a_, (tuple, list) ): _snake_case : List[Any] = prompt[0] _snake_case : Optional[Any] = float(prompt[1] ) elif ":" in prompt: _snake_case , _snake_case : List[Any] = prompt.split(""":""" ) _snake_case : str = float(a_ ) else: _snake_case : int = prompt _snake_case : Union[str, Any] = 1.0 processed_prompts.append(a_ ) weights.append(a_ ) return { "prompts": processed_prompts, "weights": torch.tensor(a_, device=self.device ), } def UpperCamelCase_ ( self: Dict, a_: List[Any], a_: List[Any]=None, a_: Optional[Any]=None, a_: Optional[Any]=True, a_: Dict=False, a_: Optional[Any]=True, a_: Optional[Any]=True, a_: Any=None, ): '''simple docstring''' if image_path: _snake_case : Union[str, Any] = self._get_latent(a_ ) else: _snake_case : Any = torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(a_, a_, a_ ) assert pos_prompts, "You must provide at least one positive prompt." _snake_case : str = self.process_prompts(a_ ) _snake_case : Dict = self.process_prompts(a_ ) if save_final and save_path is None: _snake_case : Any = os.path.join("""./outputs/""", """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(a_ ): os.makedirs(a_ ) else: _snake_case : List[Any] = save_path + """_""" + get_timestamp() os.makedirs(a_ ) _snake_case : Optional[Any] = save_path _snake_case : List[Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(a_ ) ) _snake_case : List[Any] = loop_post_process(a_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(a_, a_, a_ ) ): if show_intermediate: show_pil(a_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}.png" ) ) if self.log: wandb.log({"""Image""": wandb.Image(a_ )} ) if show_final: show_pil(a_ ) if save_final: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}_final.png" ) )
28
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
713
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _snake_case : Dict = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
28
0
"""simple docstring""" from collections import deque def UpperCAmelCase__ (snake_case__ : Optional[int] ): """simple docstring""" _snake_case : Dict = len(snake_case__ ) _snake_case : List[Any] = deque() _snake_case : List[str] = [False for _ in range(snake_case__ )] _snake_case : List[str] = [-1 for _ in range(snake_case__ )] _snake_case : Optional[int] = index_of[:] def strong_connect(snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[int] ): _snake_case : Dict = index # the number when this node is seen _snake_case : Tuple = index # lowest rank node reachable from here index += 1 stack.append(snake_case__ ) _snake_case : Tuple = True for w in g[v]: if index_of[w] == -1: _snake_case : int = strong_connect(snake_case__ , snake_case__ , snake_case__ ) _snake_case : Dict = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: _snake_case : Dict = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: _snake_case : int = [] _snake_case : List[str] = stack.pop() _snake_case : int = False component.append(snake_case__ ) while w != v: _snake_case : Optional[int] = stack.pop() _snake_case : str = False component.append(snake_case__ ) components.append(snake_case__ ) return index _snake_case : Any = [] for v in range(snake_case__ ): if index_of[v] == -1: strong_connect(snake_case__ , 0 , snake_case__ ) return components def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : Union[str, Any] ): """simple docstring""" _snake_case : Dict = [[] for _ in range(snake_case__ )] for u, v in edges: g[u].append(snake_case__ ) return g if __name__ == "__main__": # Test A_ = 7 A_ = [0, 0, 1, 2, 3, 3, 4, 4, 6] A_ = [1, 3, 2, 0, 1, 4, 5, 6, 5] A_ = [(u, v) for u, v in zip(source, target)] A_ = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
714
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase: '''simple docstring''' def __init__( self: List[str], a_: List[Any], a_: str=13, a_: Dict=32, a_: Union[str, Any]=3, a_: Union[str, Any]=4, a_: Tuple=[10, 20, 30, 40], a_: Dict=[2, 2, 3, 2], a_: Tuple=True, a_: Optional[Any]=True, a_: Any=37, a_: Any="gelu", a_: int=10, a_: Tuple=0.02, a_: str=["stage2", "stage3", "stage4"], a_: List[str]=[2, 3, 4], a_: List[str]=None, ): '''simple docstring''' _snake_case : int = parent _snake_case : int = batch_size _snake_case : List[Any] = image_size _snake_case : List[str] = num_channels _snake_case : Tuple = num_stages _snake_case : Union[str, Any] = hidden_sizes _snake_case : List[Any] = depths _snake_case : Tuple = is_training _snake_case : List[str] = use_labels _snake_case : Tuple = intermediate_size _snake_case : List[str] = hidden_act _snake_case : Optional[Any] = num_labels _snake_case : Tuple = initializer_range _snake_case : Tuple = out_features _snake_case : Tuple = out_indices _snake_case : Dict = scope def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Any = None if self.use_labels: _snake_case : Dict = ids_tensor([self.batch_size], self.num_labels ) _snake_case : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=a_, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, ) def UpperCamelCase_ ( self: int, a_: Tuple, a_: Any, a_: Dict ): '''simple docstring''' _snake_case : int = ConvNextVaModel(config=a_ ) model.to(a_ ) model.eval() _snake_case : Any = model(a_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def UpperCamelCase_ ( self: Optional[int], a_: List[str], a_: Tuple, a_: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = ConvNextVaForImageClassification(a_ ) model.to(a_ ) model.eval() _snake_case : Optional[int] = model(a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self: Union[str, Any], a_: Tuple, a_: Tuple, a_: Tuple ): '''simple docstring''' _snake_case : List[str] = ConvNextVaBackbone(config=a_ ) model.to(a_ ) model.eval() _snake_case : int = model(a_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] ) # verify backbone works with out_features=None _snake_case : Tuple = None _snake_case : Tuple = ConvNextVaBackbone(config=a_ ) model.to(a_ ) model.eval() _snake_case : List[Any] = model(a_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ), 1 ) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Dict = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : Any = config_and_inputs _snake_case : str = {"""pixel_values""": pixel_values} return config, inputs_dict def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[Any] = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : List[str] = config_and_inputs _snake_case : Any = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase__ = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Tuple = ConvNextVaModelTester(self ) _snake_case : int = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def UpperCamelCase_ ( self: str ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _snake_case , _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_with_labels() _snake_case : List[Any] = True if model_class.__name__ in [ *get_values(a_ ), *get_values(a_ ), ]: continue _snake_case : Tuple = model_class(a_ ) model.to(a_ ) model.train() _snake_case : Optional[Any] = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : Any = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_with_labels() _snake_case : Any = False _snake_case : List[Any] = True if ( model_class.__name__ in [*get_values(a_ ), *get_values(a_ )] or not model_class.supports_gradient_checkpointing ): continue _snake_case : Dict = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() _snake_case : str = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : Optional[int] = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : List[str] = model_class(a_ ) _snake_case : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : int = [*signature.parameters.keys()] _snake_case : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1], a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(a_: str, a_: Tuple, a_: Tuple ): _snake_case : Optional[Any] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): _snake_case : Any = model(**self._prepare_for_class(a_, a_ ) ) _snake_case : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case : Optional[int] = self.model_tester.num_stages self.assertEqual(len(a_ ), expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) _snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Optional[Any] = True check_hidden_states_output(a_, a_, a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : List[str] = True check_hidden_states_output(a_, a_, a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : str = ConvNextVaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(a_ ) _snake_case : Union[str, Any] = self.default_image_processor _snake_case : List[Any] = prepare_img() _snake_case : Optional[int] = preprocessor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Optional[int] = model(**a_ ) # verify the logits _snake_case : Optional[int] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, a_ ) _snake_case : Optional[int] = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], a_, atol=1E-4 ) )
28
0
from typing import TYPE_CHECKING from ...utils import _LazyModule A_ = {'''tokenization_wav2vec2_phoneme''': ['''Wav2Vec2PhonemeCTCTokenizer''']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
715
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Dict ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Dict ): """simple docstring""" _snake_case : str = tmp_path / """cache""" _snake_case : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _snake_case : str = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : int , snake_case__ : List[Any] ): """simple docstring""" _snake_case : str = tmp_path / """cache""" _snake_case : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : List[Any] = features.copy() if features else default_expected_features _snake_case : List[Any] = ( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) _snake_case : Optional[Any] = ParquetDatasetReader(snake_case__ , features=snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : List[str] = tmp_path / """cache""" _snake_case : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : int = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ , split=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : str , snake_case__ : str ): """simple docstring""" if issubclass(snake_case__ , snake_case__ ): _snake_case : Optional[Any] = parquet_path elif issubclass(snake_case__ , snake_case__ ): _snake_case : int = [parquet_path] _snake_case : Union[str, Any] = tmp_path / """cache""" _snake_case : Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : List[str] = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : str=("train",) ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ) for split in splits: _snake_case : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str , snake_case__ : List[Any] ): """simple docstring""" _snake_case : Tuple = tmp_path / """cache""" _snake_case : Optional[int] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _snake_case : Tuple = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] ): """simple docstring""" _snake_case : Optional[int] = tmp_path / """cache""" _snake_case : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : Optional[Any] = features.copy() if features else default_expected_features _snake_case : Dict = ( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) _snake_case : Optional[int] = ParquetDatasetReader({"""train""": parquet_path} , features=snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Tuple ): """simple docstring""" if split: _snake_case : int = {split: parquet_path} else: _snake_case : Optional[Any] = """train""" _snake_case : int = {"""train""": parquet_path, """test""": parquet_path} _snake_case : Dict = tmp_path / """cache""" _snake_case : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : Union[str, Any] = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : Tuple ): """simple docstring""" _snake_case : List[Any] = ParquetDatasetWriter(snake_case__ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _snake_case : str = pq.ParquetFile(tmp_path / """foo.parquet""" ) _snake_case : int = pf.read() assert dataset.data.table == output_table def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : Optional[Any] = str(shared_datadir / """test_image_rgb.jpg""" ) _snake_case : Tuple = {"""image""": [image_path]} _snake_case : Optional[int] = Features({"""image""": Image()} ) _snake_case : int = Dataset.from_dict(snake_case__ , features=snake_case__ ) _snake_case : Optional[Any] = ParquetDatasetWriter(snake_case__ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _snake_case : List[str] = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features _snake_case : Optional[Any] = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=snake_case__ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : str ): """simple docstring""" assert get_writer_batch_size(snake_case__ ) == expected
28
0
"""simple docstring""" from collections.abc import Callable def UpperCAmelCase__ (snake_case__ : Callable[[float], float] , snake_case__ : float , snake_case__ : float ): """simple docstring""" _snake_case : float = a _snake_case : float = b if function(snake_case__ ) == 0: # one of the a or b is a root for the function return a elif function(snake_case__ ) == 0: return b elif ( function(snake_case__ ) * function(snake_case__ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("""could not find root in given interval.""" ) else: _snake_case : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(snake_case__ ) == 0: return mid elif function(snake_case__ ) * function(snake_case__ ) < 0: _snake_case : Tuple = mid else: _snake_case : List[str] = mid _snake_case : Any = start + (end - start) / 2.0 return mid def UpperCAmelCase__ (snake_case__ : float ): """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 10_00)) import doctest doctest.testmod()
716
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase: '''simple docstring''' def __init__( self: Dict, a_: Union[str, Any], a_: Tuple=13, a_: Dict=32, a_: Optional[Any]=3, a_: Optional[Any]=4, a_: Optional[int]=[10, 20, 30, 40], a_: Any=[2, 2, 3, 2], a_: Dict=True, a_: Dict=True, a_: List[str]=37, a_: Dict="gelu", a_: List[str]=10, a_: Union[str, Any]=0.02, a_: Any=["stage2", "stage3", "stage4"], a_: Optional[int]=3, a_: Tuple=None, ): '''simple docstring''' _snake_case : Dict = parent _snake_case : Dict = batch_size _snake_case : Optional[Any] = image_size _snake_case : int = num_channels _snake_case : Tuple = num_stages _snake_case : int = hidden_sizes _snake_case : List[str] = depths _snake_case : str = is_training _snake_case : Dict = use_labels _snake_case : List[str] = intermediate_size _snake_case : Optional[int] = hidden_act _snake_case : Any = type_sequence_label_size _snake_case : List[str] = initializer_range _snake_case : Union[str, Any] = out_features _snake_case : Dict = num_labels _snake_case : int = scope _snake_case : Dict = num_stages def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Optional[int] = None if self.use_labels: _snake_case : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) _snake_case : Tuple = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels, num_stages=self.num_stages, hidden_sizes=self.hidden_sizes, depths=self.depths, is_training=self.is_training, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, out_features=self.out_features, ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config(), hidden_size=512, pool_scales=[1, 2, 3, 6], use_auxiliary_head=a_, auxiliary_loss_weight=0.4, auxiliary_in_channels=40, auxiliary_channels=256, auxiliary_num_convs=1, auxiliary_concat_input=a_, loss_ignore_index=255, num_labels=self.num_labels, ) def UpperCamelCase_ ( self: Tuple, a_: List[Any], a_: Dict, a_: Tuple ): '''simple docstring''' _snake_case : List[Any] = UperNetForSemanticSegmentation(config=a_ ) model.to(a_ ) model.eval() _snake_case : Tuple = model(a_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Any = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : List[Any] = config_and_inputs _snake_case : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase__ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = UperNetModelTester(self ) _snake_case : Dict = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Dict = model_class(a_ ) _snake_case : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Tuple = [*signature.parameters.keys()] _snake_case : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1], a_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not have a base model""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not have a base model""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' pass def UpperCamelCase_ ( self: str ): '''simple docstring''' def check_hidden_states_output(a_: Dict, a_: List[str], a_: Optional[int] ): _snake_case : Optional[Any] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): _snake_case : Any = model(**self._prepare_for_class(a_, a_ ) ) _snake_case : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case : List[str] = self.model_tester.num_stages self.assertEqual(len(a_ ), expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) _snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : int = True check_hidden_states_output(a_, a_, a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : Optional[int] = True check_hidden_states_output(a_, a_, a_ ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Tuple = _config_zero_init(a_ ) _snake_case : Dict = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _snake_case : Optional[int] = model_class(config=a_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' pass @slow def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : int = UperNetForSemanticSegmentation.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Union[str, Any] = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) _snake_case : List[Any] = Image.open(snake_case__ ).convert("""RGB""" ) return image @require_torch @require_vision @slow class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : str = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) _snake_case : Any = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(a_ ) _snake_case : Dict = prepare_img() _snake_case : str = processor(images=a_, return_tensors="""pt""" ).to(a_ ) with torch.no_grad(): _snake_case : Tuple = model(**a_ ) _snake_case : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape, a_ ) _snake_case : int = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], a_, atol=1E-4 ) ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) _snake_case : Optional[int] = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(a_ ) _snake_case : List[str] = prepare_img() _snake_case : Tuple = processor(images=a_, return_tensors="""pt""" ).to(a_ ) with torch.no_grad(): _snake_case : Optional[Any] = model(**a_ ) _snake_case : Union[str, Any] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape, a_ ) _snake_case : Optional[Any] = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], a_, atol=1E-4 ) )
28
0
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str ): """simple docstring""" assert x is not None assert y is not None _snake_case : List[str] = len(snake_case__ ) _snake_case : Any = len(snake_case__ ) # declaring the array for storing the dp values _snake_case : int = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): _snake_case : int = 1 if x[i - 1] == y[j - 1] else 0 _snake_case : List[Any] = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) _snake_case : str = """""" _snake_case : Any = m, n while i > 0 and j > 0: _snake_case : List[Any] = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: _snake_case : List[str] = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": A_ = '''AGGTAB''' A_ = '''GXTXAYB''' A_ = 4 A_ = '''GTAB''' A_ , A_ = longest_common_subsequence(a, b) print('''len =''', ln, ''', sub-sequence =''', subseq) import doctest doctest.testmod()
717
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path A_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) A_ = [ord(letter) for letter in string.ascii_lowercase] A_ = {ord(char) for char in VALID_CHARS} A_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : tuple[int, ...] ): """simple docstring""" _snake_case : str = "" _snake_case : int _snake_case : int _snake_case : int for keychar, cipherchar in zip(cycle(snake_case__ ) , snake_case__ ): _snake_case : List[str] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case__ ) return decoded def UpperCAmelCase__ (snake_case__ : list[int] ): """simple docstring""" _snake_case : list[str] = [] for key in product(snake_case__ , repeat=3 ): _snake_case : List[Any] = try_key(snake_case__ , snake_case__ ) if encoded is not None: possibles.append(snake_case__ ) return possibles def UpperCAmelCase__ (snake_case__ : list[str] , snake_case__ : str ): """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def UpperCAmelCase__ (snake_case__ : str = "p059_cipher.txt" ): """simple docstring""" _snake_case : list[int] _snake_case : list[str] _snake_case : str _snake_case : str _snake_case : str = Path(snake_case__ ).parent.joinpath(snake_case__ ).read_text(encoding="""utf-8""" ) _snake_case : List[Any] = [int(snake_case__ ) for number in data.strip().split(""",""" )] _snake_case : Optional[Any] = filter_valid_chars(snake_case__ ) for common_word in COMMON_WORDS: _snake_case : Union[str, Any] = filter_common_word(snake_case__ , snake_case__ ) if len(snake_case__ ) == 1: break _snake_case : Optional[int] = possibles[0] return sum(ord(snake_case__ ) for char in decoded_text ) if __name__ == "__main__": print(F'''{solution() = }''')
28
0
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowercase( unittest.TestCase ): '''simple docstring''' def __init__( self: Union[str, Any], a_: int, a_: Optional[int]=7, a_: Any=3, a_: Any=18, a_: Union[str, Any]=30, a_: Union[str, Any]=400, a_: Any=True, a_: Tuple=None, a_: Tuple=True, ): '''simple docstring''' _snake_case : Tuple = size if size is not None else {"""height""": 18, """width""": 18} _snake_case : Dict = parent _snake_case : int = batch_size _snake_case : Tuple = num_channels _snake_case : Optional[int] = image_size _snake_case : Dict = min_resolution _snake_case : Optional[int] = max_resolution _snake_case : Any = do_resize _snake_case : Optional[int] = size _snake_case : Tuple = do_normalize def UpperCamelCase_ ( self: Dict ): '''simple docstring''' return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804], [-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ImageGPTImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : str = ImageGPTImageProcessingTester(self ) @property def UpperCamelCase_ ( self: Dict ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_, """clusters""" ) ) self.assertTrue(hasattr(a_, """do_resize""" ) ) self.assertTrue(hasattr(a_, """size""" ) ) self.assertTrue(hasattr(a_, """do_normalize""" ) ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {"""height""": 18, """width""": 18} ) _snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict, size=42 ) self.assertEqual(image_processor.size, {"""height""": 42, """width""": 42} ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) _snake_case : str = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(a_, obj[key] ) ) else: self.assertEqual(obj[key], a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case : List[str] = os.path.join(a_, """image_processor.json""" ) image_processor_first.to_json_file(a_ ) _snake_case : Tuple = self.image_processing_class.from_json_file(a_ ).to_dict() _snake_case : List[str] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(a_, image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key], a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Any = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(a_ ) _snake_case : Any = self.image_processing_class.from_pretrained(a_ ).to_dict() _snake_case : Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(a_, image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key], a_ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' pass def UpperCAmelCase__ (): """simple docstring""" _snake_case : Optional[int] = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) _snake_case : Dict = Image.open(dataset[4]["""file"""] ) _snake_case : Union[str, Any] = Image.open(dataset[5]["""file"""] ) _snake_case : Optional[Any] = [imagea, imagea] return images @require_vision @require_torch class lowercase( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : str = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) _snake_case : List[str] = prepare_images() # test non-batched _snake_case : Tuple = image_processing(images[0], return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids, torch.LongTensor ) self.assertEqual(encoding.input_ids.shape, (1, 1_024) ) _snake_case : Any = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist(), a_ ) # test batched _snake_case : Union[str, Any] = image_processing(a_, return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids, torch.LongTensor ) self.assertEqual(encoding.input_ids.shape, (2, 1_024) ) _snake_case : Tuple = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist(), a_ )
718
"""simple docstring""" from ...processing_utils import ProcessorMixin class lowercase( __a ): '''simple docstring''' lowercase__ = ["image_processor", "feature_extractor"] lowercase__ = "TvltImageProcessor" lowercase__ = "TvltFeatureExtractor" def __init__( self: Dict, a_: Union[str, Any], a_: Union[str, Any] ): '''simple docstring''' super().__init__(image_processor=a_, feature_extractor=a_ ) _snake_case : Any = image_processor _snake_case : Dict = feature_extractor def __call__( self: int, a_: str=None, a_: Tuple=None, a_: Dict=None, a_: str=None, a_: Optional[int]=False, a_: Tuple=False, *a_: List[str], **a_: int, ): '''simple docstring''' if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) _snake_case : Optional[int] = None if images is not None: _snake_case : Tuple = self.image_processor(a_, mask_pixel=a_, *a_, **a_ ) if images_mixed is not None: _snake_case : Optional[int] = self.image_processor(a_, is_mixed=a_, *a_, **a_ ) if audio is not None: _snake_case : Any = self.feature_extractor( a_, *a_, sampling_rate=a_, mask_audio=a_, **a_ ) _snake_case : List[str] = {} if audio is not None: output_dict.update(a_ ) if images is not None: output_dict.update(a_ ) if images_mixed_dict is not None: output_dict.update(a_ ) return output_dict @property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Dict = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
28
0
"""simple docstring""" import sys from collections import defaultdict class lowercase: '''simple docstring''' def __init__( self: Optional[Any] ): '''simple docstring''' _snake_case : Any = [] def UpperCamelCase_ ( self: List[Any], a_: Any ): '''simple docstring''' return self.node_position[vertex] def UpperCamelCase_ ( self: Any, a_: List[Any], a_: str ): '''simple docstring''' _snake_case : Optional[Any] = pos def UpperCamelCase_ ( self: List[Any], a_: int, a_: Dict, a_: int, a_: Optional[Any] ): '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _snake_case : Dict = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _snake_case : int = 2 * start + 1 else: _snake_case : Optional[Any] = 2 * start + 2 if heap[smallest_child] < heap[start]: _snake_case : Any = heap[smallest_child], positions[smallest_child] _snake_case : Tuple = ( heap[start], positions[start], ) _snake_case : Optional[Any] = temp, tempa _snake_case : Dict = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child], self.get_position(positions[start] ) ) self.set_position(positions[start], a_ ) self.top_to_bottom(a_, a_, a_, a_ ) def UpperCamelCase_ ( self: Union[str, Any], a_: List[Any], a_: Optional[Any], a_: Optional[int], a_: Dict ): '''simple docstring''' _snake_case : str = position[index] while index != 0: _snake_case : Tuple = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _snake_case : Union[str, Any] = heap[parent] _snake_case : int = position[parent] self.set_position(position[parent], a_ ) else: _snake_case : List[Any] = val _snake_case : Any = temp self.set_position(a_, a_ ) break _snake_case : int = parent else: _snake_case : Tuple = val _snake_case : List[Any] = temp self.set_position(a_, 0 ) def UpperCamelCase_ ( self: Optional[Any], a_: Optional[int], a_: int ): '''simple docstring''' _snake_case : Any = len(a_ ) // 2 - 1 for i in range(a_, -1, -1 ): self.top_to_bottom(a_, a_, len(a_ ), a_ ) def UpperCamelCase_ ( self: Optional[Any], a_: List[str], a_: Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = positions[0] _snake_case : str = sys.maxsize self.top_to_bottom(a_, 0, len(a_ ), a_ ) return temp def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" _snake_case : Optional[Any] = Heap() _snake_case : Optional[Any] = [0] * len(snake_case__ ) _snake_case : Dict = [-1] * len(snake_case__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _snake_case : List[str] = [] # Heap of Distance of vertices from their neighboring vertex _snake_case : Dict = [] for vertex in range(len(snake_case__ ) ): distance_tv.append(sys.maxsize ) positions.append(snake_case__ ) heap.node_position.append(snake_case__ ) _snake_case : Any = [] _snake_case : Tuple = 1 _snake_case : List[str] = sys.maxsize for neighbor, distance in adjacency_list[0]: _snake_case : List[Any] = 0 _snake_case : Dict = distance heap.heapify(snake_case__ , snake_case__ ) for _ in range(1 , len(snake_case__ ) ): _snake_case : Dict = heap.delete_minimum(snake_case__ , snake_case__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _snake_case : List[Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(snake_case__ )] ): _snake_case : Any = distance heap.bottom_to_top( snake_case__ , heap.get_position(snake_case__ ) , snake_case__ , snake_case__ ) _snake_case : Tuple = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A_ = int(input('''Enter number of edges: ''').strip()) A_ = defaultdict(list) for _ in range(edges_number): A_ = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
719
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A_ = '''pt''' elif is_tf_available(): A_ = '''tf''' else: A_ = '''jax''' class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ByTaTokenizer lowercase__ = False def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' super().setUp() _snake_case : List[str] = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def UpperCamelCase_ ( self: List[Any], **a_: int ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **a_ ) def UpperCamelCase_ ( self: Optional[Any], a_: Optional[Any], a_: List[Any]=False, a_: int=20, a_: Union[str, Any]=5 ): '''simple docstring''' _snake_case : List[Any] = [] for i in range(len(a_ ) ): try: _snake_case : Optional[Any] = tokenizer.decode([i], clean_up_tokenization_spaces=a_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _snake_case : str = list(filter(lambda a_ : re.match(r"""^[ a-zA-Z]+$""", t[1] ), a_ ) ) _snake_case : List[Any] = list(filter(lambda a_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=a_ ), a_ ) ) if max_length is not None and len(a_ ) > max_length: _snake_case : Tuple = toks[:max_length] if min_length is not None and len(a_ ) < min_length and len(a_ ) > 0: while len(a_ ) < min_length: _snake_case : List[str] = toks + toks # toks_str = [t[1] for t in toks] _snake_case : Tuple = [t[0] for t in toks] # Ensure consistency _snake_case : Optional[Any] = tokenizer.decode(a_, clean_up_tokenization_spaces=a_ ) if " " not in output_txt and len(a_ ) > 1: _snake_case : Dict = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=a_ ) + """ """ + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=a_ ) ) if with_prefix_space: _snake_case : Union[str, Any] = """ """ + output_txt _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) return output_txt, output_ids def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[int] = self.ta_base_tokenizer _snake_case : Optional[Any] = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) _snake_case : int = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""], batch_without_eos_added["""input_ids"""] ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[str] = self.ta_base_tokenizer _snake_case : Tuple = """Unicode €.""" _snake_case : List[Any] = tokenizer(a_ ) _snake_case : Tuple = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["""input_ids"""], a_ ) # decoding _snake_case : Tuple = tokenizer.decode(a_ ) self.assertEqual(a_, """Unicode €.</s>""" ) _snake_case : Tuple = tokenizer("""e è é ê ë""" ) _snake_case : List[Any] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["""input_ids"""], a_ ) # decoding _snake_case : int = tokenizer.decode(a_ ) self.assertEqual(a_, """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ), """e è é ê ë</s>""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Dict = self.ta_base_tokenizer _snake_case : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off _snake_case : Union[str, Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on _snake_case : int = tokenizer(a_, padding=a_, return_tensors=a_ ) self.assertIsInstance(a_, a_ ) if FRAMEWORK != "jax": _snake_case : List[str] = list(batch.input_ids.numpy()[0] ) else: _snake_case : Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(a_, a_ ) self.assertEqual((2, 37), batch.input_ids.shape ) self.assertEqual((2, 37), batch.attention_mask.shape ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : List[Any] = self.ta_base_tokenizer _snake_case : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _snake_case : Tuple = tokenizer(a_, padding=a_, return_tensors=a_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""", a_ ) self.assertIn("""attention_mask""", a_ ) self.assertNotIn("""decoder_input_ids""", a_ ) self.assertNotIn("""decoder_attention_mask""", a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Union[str, Any] = self.ta_base_tokenizer _snake_case : Dict = [ """Summary of the text.""", """Another summary.""", ] _snake_case : Optional[int] = tokenizer( text_target=a_, max_length=32, padding="""max_length""", truncation=a_, return_tensors=a_ ) self.assertEqual(32, targets["""input_ids"""].shape[1] ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : int = self.ta_base_tokenizer _snake_case : Optional[int] = ["""A long paragraph for summarization. </s>"""] _snake_case : Dict = ["""Summary of the text. </s>"""] # fmt: off _snake_case : Optional[int] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] _snake_case : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on _snake_case : Optional[Any] = tokenizer(a_, text_target=a_ ) self.assertEqual(a_, batch["""input_ids"""][0] ) self.assertEqual(a_, batch["""labels"""][0] ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test _snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _snake_case : List[str] = tempfile.mkdtemp() _snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running""" _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) _snake_case : List[Any] = tokenizer.__class__.from_pretrained(a_ ) _snake_case : Dict = after_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) shutil.rmtree(a_ ) _snake_case : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _snake_case : Union[str, Any] = tempfile.mkdtemp() _snake_case : List[Any] = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) _snake_case : Optional[Any] = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) _snake_case : Optional[Any] = tokenizer.__class__.from_pretrained(a_ ) _snake_case : str = after_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) self.assertIn("""new_additional_special_token""", after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) _snake_case : Optional[int] = tokenizer.__class__.from_pretrained(a_, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(a_ ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a_ ) with open(os.path.join(a_, """special_tokens_map.json""" ), encoding="""utf-8""" ) as json_file: _snake_case : Union[str, Any] = json.load(a_ ) with open(os.path.join(a_, """tokenizer_config.json""" ), encoding="""utf-8""" ) as json_file: _snake_case : List[Any] = json.load(a_ ) _snake_case : int = [f"<extra_id_{i}>" for i in range(125 )] _snake_case : Optional[int] = added_tokens_extra_ids + [ """an_additional_special_token""" ] _snake_case : Dict = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(a_, """special_tokens_map.json""" ), """w""", encoding="""utf-8""" ) as outfile: json.dump(a_, a_ ) with open(os.path.join(a_, """tokenizer_config.json""" ), """w""", encoding="""utf-8""" ) as outfile: json.dump(a_, a_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case : Optional[int] = tokenizer_class.from_pretrained( a_, ) self.assertIn( """an_additional_special_token""", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case : Union[str, Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""", lstrip=a_ )] _snake_case : List[Any] = tokenizer_class.from_pretrained( a_, additional_special_tokens=a_, ) self.assertIn("""a_new_additional_special_token""", tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ), ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a_ ) _snake_case : Optional[Any] = tokenizer_class.from_pretrained(a_ ) self.assertTrue(tokenizer.decode([255] ) == """""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.get_tokenizers(fast=a_, do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : Dict = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] _snake_case : List[Any] = tokenizer.convert_tokens_to_string(a_ ) self.assertIsInstance(a_, a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : Optional[int] = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] _snake_case : Any = 0 _snake_case : Union[str, Any] = tokenizer.convert_ids_to_tokens( a_, skip_special_tokens=a_ ) for attr in attributes_list: setattr(a_, attr + """_id""", a_ ) self.assertEqual(getattr(a_, a_ ), a_ ) self.assertEqual(getattr(a_, attr + """_id""" ), a_ ) setattr(a_, attr + """_id""", a_ ) self.assertEqual(getattr(a_, a_ ), a_ ) self.assertEqual(getattr(a_, attr + """_id""" ), a_ ) setattr(a_, """additional_special_tokens_ids""", [] ) self.assertListEqual(getattr(a_, """additional_special_tokens""" ), [] ) self.assertListEqual(getattr(a_, """additional_special_tokens_ids""" ), [] ) setattr(a_, """additional_special_tokens_ids""", [token_id_to_test_setters] ) self.assertListEqual(getattr(a_, """additional_special_tokens""" ), [token_to_test_setters] ) self.assertListEqual(getattr(a_, """additional_special_tokens_ids""" ), [token_id_to_test_setters] )
28
0
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva A_ = '''''' A_ = '''''' A_ = '''''' A_ = 1 # (0 is vertical, 1 is horizontal) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Any = get_dataset(snake_case__ , snake_case__ ) print("""Processing...""" ) _snake_case : List[Any] = update_image_and_anno(snake_case__ , snake_case__ , snake_case__ ) for index, image in enumerate(snake_case__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _snake_case : Optional[Any] = random_chars(32 ) _snake_case : Tuple = paths[index].split(os.sep )[-1].rsplit(""".""" , 1 )[0] _snake_case : Dict = F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}" cva.imwrite(F"/{file_root}.jpg" , snake_case__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"Success {index+1}/{len(snake_case__ )} with {file_name}" ) _snake_case : Optional[int] = [] for anno in new_annos[index]: _snake_case : str = F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}" annos_list.append(snake_case__ ) with open(F"/{file_root}.txt" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str ): """simple docstring""" _snake_case : List[str] = [] _snake_case : List[str] = [] for label_file in glob.glob(os.path.join(snake_case__ , """*.txt""" ) ): _snake_case : int = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(snake_case__ ) as in_file: _snake_case : Union[str, Any] = in_file.readlines() _snake_case : int = os.path.join(snake_case__ , F"{label_name}.jpg" ) _snake_case : str = [] for obj_list in obj_lists: _snake_case : Dict = obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(snake_case__ ) labels.append(snake_case__ ) return img_paths, labels def UpperCAmelCase__ (snake_case__ : list , snake_case__ : list , snake_case__ : int = 1 ): """simple docstring""" _snake_case : Dict = [] _snake_case : Any = [] _snake_case : List[Any] = [] for idx in range(len(snake_case__ ) ): _snake_case : Optional[int] = [] _snake_case : Any = img_list[idx] path_list.append(snake_case__ ) _snake_case : Tuple = anno_list[idx] _snake_case : Any = cva.imread(snake_case__ ) if flip_type == 1: _snake_case : Optional[int] = cva.flip(snake_case__ , snake_case__ ) for bbox in img_annos: _snake_case : List[str] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _snake_case : List[Any] = cva.flip(snake_case__ , snake_case__ ) for bbox in img_annos: _snake_case : int = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(snake_case__ ) new_imgs_list.append(snake_case__ ) return new_imgs_list, new_annos_lists, path_list def UpperCAmelCase__ (snake_case__ : int = 32 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _snake_case : Dict = ascii_lowercase + digits return "".join(random.choice(snake_case__ ) for _ in range(snake_case__ ) ) if __name__ == "__main__": main() print('''DONE ✅''')
720
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class lowercase( __a ): '''simple docstring''' @staticmethod @abstractmethod def UpperCamelCase_ ( a_: ArgumentParser ): '''simple docstring''' raise NotImplementedError() @abstractmethod def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' raise NotImplementedError()
28
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] _snake_case : int = DisjunctiveConstraint(a_ ) self.assertTrue(isinstance(dc.token_ids, a_ ) ) with self.assertRaises(a_ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(a_ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : str = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(a_ ): DisjunctiveConstraint(a_ ) # fails here def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : int = [[1, 2, 3], [1, 2, 4]] _snake_case : Union[str, Any] = DisjunctiveConstraint(a_ ) _snake_case : Optional[Any] = dc.update(1 ) _snake_case : List[Any] = stepped is True and completed is False and reset is False self.assertTrue(a_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _snake_case : Union[str, Any] = dc.update(2 ) _snake_case : Union[str, Any] = stepped is True and completed is False and reset is False self.assertTrue(a_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _snake_case : Dict = dc.update(3 ) _snake_case : Optional[Any] = stepped is True and completed is True and reset is False self.assertTrue(a_ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] _snake_case : Union[str, Any] = DisjunctiveConstraint(a_ ) _snake_case : Any = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _snake_case : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _snake_case : Union[str, Any] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) _snake_case : str = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() _snake_case : Optional[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) _snake_case : Optional[int] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) _snake_case : Optional[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
721
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase( __a ): '''simple docstring''' lowercase__ = "roformer" def __init__( self: List[str], a_: Tuple=50_000, a_: Optional[Any]=None, a_: List[str]=768, a_: Union[str, Any]=12, a_: Optional[int]=12, a_: Optional[Any]=3_072, a_: List[str]="gelu", a_: List[str]=0.1, a_: Tuple=0.1, a_: Optional[int]=1_536, a_: Any=2, a_: Optional[int]=0.02, a_: Tuple=1E-12, a_: Dict=0, a_: str=False, a_: Dict=True, **a_: Dict, ): '''simple docstring''' super().__init__(pad_token_id=a_, **a_ ) _snake_case : int = vocab_size _snake_case : int = hidden_size if embedding_size is None else embedding_size _snake_case : Dict = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : Any = num_attention_heads _snake_case : Dict = hidden_act _snake_case : Optional[int] = intermediate_size _snake_case : List[Any] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = max_position_embeddings _snake_case : Tuple = type_vocab_size _snake_case : List[Any] = initializer_range _snake_case : List[Any] = layer_norm_eps _snake_case : Optional[Any] = rotary_value _snake_case : List[str] = use_cache class lowercase( __a ): '''simple docstring''' @property def UpperCamelCase_ ( self: Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : str = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : List[str] = {0: """batch""", 1: """sequence"""} _snake_case : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
28
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" _snake_case : Optional[Any] = 2 _snake_case : List[str] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(snake_case__ ) if n > 1: factors.append(snake_case__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
700
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Union[str, Any]=1 ): """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : List[Any]=0 ): """simple docstring""" _snake_case : Optional[Any] = [] for old_item in old_list: _snake_case : Union[str, Any] = old_item.replace("""in_layers.0""" , """norm1""" ) _snake_case : List[Any] = new_item.replace("""in_layers.2""" , """conv1""" ) _snake_case : Tuple = new_item.replace("""out_layers.0""" , """norm2""" ) _snake_case : Dict = new_item.replace("""out_layers.3""" , """conv2""" ) _snake_case : int = new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) _snake_case : Optional[Any] = new_item.replace("""skip_connection""" , """conv_shortcut""" ) _snake_case : str = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : Dict=0 ): """simple docstring""" _snake_case : Dict = [] for old_item in old_list: _snake_case : Dict = old_item _snake_case : int = new_item.replace("""norm.weight""" , """group_norm.weight""" ) _snake_case : str = new_item.replace("""norm.bias""" , """group_norm.bias""" ) _snake_case : Optional[Any] = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) _snake_case : Optional[Any] = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) _snake_case : Optional[Any] = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : str=None , snake_case__ : str=None , snake_case__ : List[str]=None ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _snake_case : Union[str, Any] = old_checkpoint[path] _snake_case : Optional[int] = old_tensor.shape[0] // 3 _snake_case : List[Any] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) _snake_case : Union[str, Any] = old_tensor.shape[0] // config["""num_head_channels"""] // 3 _snake_case : Any = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _snake_case , _snake_case , _snake_case : List[str] = old_tensor.split(channels // num_heads , dim=1 ) _snake_case : Union[str, Any] = query.reshape(snake_case__ ) _snake_case : Tuple = key.reshape(snake_case__ ) _snake_case : Any = value.reshape(snake_case__ ) for path in paths: _snake_case : List[Any] = path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _snake_case : Union[str, Any] = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) _snake_case : str = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) _snake_case : Any = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: _snake_case : int = new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _snake_case : Dict = old_checkpoint[path["""old"""]][:, :, 0] else: _snake_case : Optional[Any] = old_checkpoint[path["""old"""]] def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : List[str] ): """simple docstring""" _snake_case : int = {} _snake_case : Tuple = checkpoint["""time_embed.0.weight"""] _snake_case : List[str] = checkpoint["""time_embed.0.bias"""] _snake_case : List[str] = checkpoint["""time_embed.2.weight"""] _snake_case : Tuple = checkpoint["""time_embed.2.bias"""] _snake_case : Dict = checkpoint["""input_blocks.0.0.weight"""] _snake_case : List[Any] = checkpoint["""input_blocks.0.0.bias"""] _snake_case : List[Any] = checkpoint["""out.0.weight"""] _snake_case : Any = checkpoint["""out.0.bias"""] _snake_case : Any = checkpoint["""out.2.weight"""] _snake_case : List[str] = checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only _snake_case : List[str] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) _snake_case : Any = { layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key] for layer_id in range(snake_case__ ) } # Retrieves the keys for the middle blocks only _snake_case : Optional[int] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) _snake_case : Optional[int] = { layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key] for layer_id in range(snake_case__ ) } # Retrieves the keys for the output blocks only _snake_case : str = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) _snake_case : List[Any] = { layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key] for layer_id in range(snake_case__ ) } for i in range(1 , snake_case__ ): _snake_case : Union[str, Any] = (i - 1) // (config["""num_res_blocks"""] + 1) _snake_case : int = (i - 1) % (config["""num_res_blocks"""] + 1) _snake_case : List[str] = [key for key in input_blocks[i] if F"input_blocks.{i}.0" in key] _snake_case : str = [key for key in input_blocks[i] if F"input_blocks.{i}.1" in key] if F"input_blocks.{i}.0.op.weight" in checkpoint: _snake_case : Union[str, Any] = checkpoint[ F"input_blocks.{i}.0.op.weight" ] _snake_case : Dict = checkpoint[ F"input_blocks.{i}.0.op.bias" ] continue _snake_case : Optional[int] = renew_resnet_paths(snake_case__ ) _snake_case : int = {"""old""": F"input_blocks.{i}.0", """new""": F"down_blocks.{block_id}.resnets.{layer_in_block_id}"} _snake_case : Tuple = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path, resnet_op] , config=snake_case__ ) if len(snake_case__ ): _snake_case : str = renew_attention_paths(snake_case__ ) _snake_case : List[str] = { """old""": F"input_blocks.{i}.1", """new""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}", } _snake_case : Optional[int] = { F"input_blocks.{i}.1.qkv.bias": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"input_blocks.{i}.1.qkv.weight": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=snake_case__ , config=snake_case__ , ) _snake_case : int = middle_blocks[0] _snake_case : List[str] = middle_blocks[1] _snake_case : Any = middle_blocks[2] _snake_case : Dict = renew_resnet_paths(snake_case__ ) assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ ) _snake_case : Any = renew_resnet_paths(snake_case__ ) assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ ) _snake_case : Dict = renew_attention_paths(snake_case__ ) _snake_case : Tuple = { """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , attention_paths_to_split=snake_case__ , config=snake_case__ ) for i in range(snake_case__ ): _snake_case : Optional[Any] = i // (config["""num_res_blocks"""] + 1) _snake_case : Dict = i % (config["""num_res_blocks"""] + 1) _snake_case : List[str] = [shave_segments(snake_case__ , 2 ) for name in output_blocks[i]] _snake_case : Any = {} for layer in output_block_layers: _snake_case , _snake_case : Any = layer.split(""".""" )[0], shave_segments(snake_case__ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(snake_case__ ) else: _snake_case : str = [layer_name] if len(snake_case__ ) > 1: _snake_case : Dict = [key for key in output_blocks[i] if F"output_blocks.{i}.0" in key] _snake_case : List[str] = [key for key in output_blocks[i] if F"output_blocks.{i}.1" in key] _snake_case : List[Any] = renew_resnet_paths(snake_case__ ) _snake_case : int = renew_resnet_paths(snake_case__ ) _snake_case : Optional[Any] = {"""old""": F"output_blocks.{i}.0", """new""": F"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _snake_case : str = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) _snake_case : Any = checkpoint[ F"output_blocks.{i}.{index}.conv.weight" ] _snake_case : Optional[int] = checkpoint[ F"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(snake_case__ ) == 2: _snake_case : Any = [] if len(snake_case__ ): _snake_case : str = renew_attention_paths(snake_case__ ) _snake_case : str = { """old""": F"output_blocks.{i}.1", """new""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}", } _snake_case : int = { F"output_blocks.{i}.1.qkv.bias": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"output_blocks.{i}.1.qkv.weight": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=snake_case__ , ) else: _snake_case : Optional[Any] = renew_resnet_paths(snake_case__ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: _snake_case : Optional[Any] = """.""".join(["""output_blocks""", str(snake_case__ ), path["""old"""]] ) _snake_case : Optional[int] = """.""".join(["""up_blocks""", str(snake_case__ ), """resnets""", str(snake_case__ ), path["""new"""]] ) _snake_case : Any = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') A_ = parser.parse_args() A_ = torch.load(args.checkpoint_path) with open(args.config_file) as f: A_ = json.loads(f.read()) A_ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] A_ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: A_ = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) A_ = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) A_ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
28
0
"""simple docstring""" import numpy as np def UpperCAmelCase__ (snake_case__ : np.array ): """simple docstring""" return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
701
"""simple docstring""" from typing import Any def UpperCAmelCase__ (snake_case__ : list ): """simple docstring""" if not input_list: return [] _snake_case : List[Any] = [input_list.count(snake_case__ ) for value in input_list] _snake_case : Optional[int] = max(snake_case__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(snake_case__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
28
0
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ): raise ValueError("""iterations must be defined as integers""" ) if not isinstance(snake_case__ , snake_case__ ) or not number >= 1: raise ValueError( """starting number must be and integer and be more than 0""" ) if not iterations >= 1: raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" ) _snake_case : Optional[int] = """""" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(snake_case__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
702
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''', '''BridgeTower/bridgetower-base-itm-mlm''': ( '''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json''' ), } class lowercase( __a ): '''simple docstring''' lowercase__ = "bridgetower_vision_model" def __init__( self: Tuple, a_: str=768, a_: Union[str, Any]=12, a_: List[str]=3, a_: Optional[int]=16, a_: List[Any]=288, a_: Optional[Any]=1, a_: Any=1E-05, a_: Dict=False, a_: Any=True, a_: int=False, **a_: int, ): '''simple docstring''' super().__init__(**a_ ) _snake_case : str = hidden_size _snake_case : int = num_hidden_layers _snake_case : Any = num_channels _snake_case : Union[str, Any] = patch_size _snake_case : Dict = image_size _snake_case : Optional[Any] = initializer_factor _snake_case : Any = layer_norm_eps _snake_case : int = stop_gradient _snake_case : Any = share_layernorm _snake_case : List[Any] = remove_last_layer @classmethod def UpperCamelCase_ ( cls: Union[str, Any], a_: Union[str, os.PathLike], **a_: Optional[Any] ): '''simple docstring''' _snake_case , _snake_case : List[Any] = cls.get_config_dict(a_, **a_ ) if config_dict.get("""model_type""" ) == "bridgetower": _snake_case : str = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a_, **a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "bridgetower_text_model" def __init__( self: str, a_: Dict=50_265, a_: List[Any]=768, a_: Union[str, Any]=12, a_: List[str]=12, a_: str=1, a_: Optional[Any]=3_072, a_: int="gelu", a_: int=0.1, a_: int=0.1, a_: Optional[int]=514, a_: Tuple=1, a_: Tuple=1E-05, a_: Optional[int]=1, a_: Union[str, Any]=0, a_: str=2, a_: Any="absolute", a_: List[Any]=True, **a_: Union[str, Any], ): '''simple docstring''' super().__init__(**a_ ) _snake_case : str = vocab_size _snake_case : Optional[int] = hidden_size _snake_case : Dict = num_hidden_layers _snake_case : Optional[int] = num_attention_heads _snake_case : Optional[int] = hidden_act _snake_case : List[Any] = initializer_factor _snake_case : Optional[int] = intermediate_size _snake_case : int = hidden_dropout_prob _snake_case : Tuple = attention_probs_dropout_prob _snake_case : List[str] = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : List[Any] = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Dict = use_cache _snake_case : int = pad_token_id _snake_case : Union[str, Any] = bos_token_id _snake_case : Union[str, Any] = eos_token_id @classmethod def UpperCamelCase_ ( cls: str, a_: Union[str, os.PathLike], **a_: int ): '''simple docstring''' _snake_case , _snake_case : Optional[int] = cls.get_config_dict(a_, **a_ ) if config_dict.get("""model_type""" ) == "bridgetower": _snake_case : Union[str, Any] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a_, **a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "bridgetower" def __init__( self: int, a_: List[str]=True, a_: Any="gelu", a_: List[Any]=768, a_: int=1, a_: Optional[int]=1E-05, a_: Tuple=False, a_: Optional[Any]="add", a_: List[str]=12, a_: Union[str, Any]=6, a_: int=False, a_: Any=False, a_: Dict=None, a_: Any=None, **a_: str, ): '''simple docstring''' _snake_case : str = kwargs.pop("""text_config_dict""", a_ ) _snake_case : Optional[Any] = kwargs.pop("""vision_config_dict""", a_ ) super().__init__(**a_ ) _snake_case : str = share_cross_modal_transformer_layers _snake_case : Any = hidden_act _snake_case : Union[str, Any] = hidden_size _snake_case : Union[str, Any] = initializer_factor _snake_case : Dict = layer_norm_eps _snake_case : Dict = share_link_tower_layers _snake_case : Optional[int] = link_tower_type _snake_case : Any = num_attention_heads _snake_case : int = num_hidden_layers _snake_case : int = tie_word_embeddings _snake_case : Optional[Any] = init_layernorm_from_vision_encoder if text_config is None: _snake_case : Optional[Any] = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: _snake_case : str = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) _snake_case : Any = BridgeTowerTextConfig(**a_ ) _snake_case : List[Any] = BridgeTowerVisionConfig(**a_ ) @classmethod def UpperCamelCase_ ( cls: Union[str, Any], a_: BridgeTowerTextConfig, a_: BridgeTowerVisionConfig, **a_: Optional[Any] ): '''simple docstring''' return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[int] = copy.deepcopy(self.__dict__ ) _snake_case : str = self.text_config.to_dict() _snake_case : List[str] = self.vision_config.to_dict() _snake_case : Tuple = self.__class__.model_type return output
28
0
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 A_ = get_tests_dir('''fixtures''') class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = mock.Mock() _snake_case : List[Any] = 500 _snake_case : List[str] = {} _snake_case : List[Any] = HTTPError _snake_case : Optional[int] = {} # Download this model to make sure it's in the cache. _snake_case : Optional[int] = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""", return_value=a_ ) as mock_head: _snake_case : str = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Optional[int] = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' with self.assertRaises(a_ ): # config is in subfolder, the following should not work without specifying the subfolder _snake_case : Union[str, Any] = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) _snake_case : Optional[Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""", subfolder="""feature_extractor""" ) self.assertIsNotNone(a_ ) @is_staging_test class lowercase( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCamelCase_ ( cls: Dict ): '''simple docstring''' _snake_case : Union[str, Any] = TOKEN HfFolder.save_token(a_ ) @classmethod def UpperCamelCase_ ( cls: Optional[int] ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Union[str, Any] = ViTImageProcessor.from_pretrained(a_ ) image_processor.push_to_hub("""test-image-processor""", use_auth_token=self._token ) _snake_case : Tuple = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(a_, getattr(a_, a_ ) ) # Reset repo delete_repo(token=self._token, repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( a_, repo_id="""test-image-processor""", push_to_hub=a_, use_auth_token=self._token ) _snake_case : Optional[Any] = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(a_, getattr(a_, a_ ) ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Optional[int] = ViTImageProcessor.from_pretrained(a_ ) image_processor.push_to_hub("""valid_org/test-image-processor""", use_auth_token=self._token ) _snake_case : Union[str, Any] = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(a_, getattr(a_, a_ ) ) # Reset repo delete_repo(token=self._token, repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( a_, repo_id="""valid_org/test-image-processor-org""", push_to_hub=a_, use_auth_token=self._token ) _snake_case : List[Any] = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(a_, getattr(a_, a_ ) ) def UpperCamelCase_ ( self: str ): '''simple docstring''' CustomImageProcessor.register_for_auto_class() _snake_case : List[str] = CustomImageProcessor.from_pretrained(a_ ) image_processor.push_to_hub("""test-dynamic-image-processor""", use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map, {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""}, ) _snake_case : Optional[int] = AutoImageProcessor.from_pretrained( f"{USER}/test-dynamic-image-processor", trust_remote_code=a_ ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__, """CustomImageProcessor""" )
703
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCAmelCase__ (): """simple docstring""" _snake_case : Optional[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" _snake_case : Union[str, Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("""RGB""" ) return image def UpperCAmelCase__ (snake_case__ : Any ): """simple docstring""" _snake_case : str = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"visual_encoder.blocks.{i}.norm1.weight", F"vision_model.encoder.layers.{i}.layer_norm1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm1.bias", F"vision_model.encoder.layers.{i}.layer_norm1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.weight", F"vision_model.encoder.layers.{i}.layer_norm2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.bias", F"vision_model.encoder.layers.{i}.layer_norm2.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.qkv.weight", F"vision_model.encoder.layers.{i}.self_attn.qkv.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.weight", F"vision_model.encoder.layers.{i}.self_attn.projection.weight",) ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.bias", F"vision_model.encoder.layers.{i}.self_attn.projection.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.weight", F"vision_model.encoder.layers.{i}.mlp.fc1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.bias", F"vision_model.encoder.layers.{i}.mlp.fc1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.weight", F"vision_model.encoder.layers.{i}.mlp.fc2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.bias", F"vision_model.encoder.layers.{i}.mlp.fc2.bias") ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : Tuple ): """simple docstring""" _snake_case : Optional[Any] = dct.pop(snake_case__ ) _snake_case : Optional[int] = val def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : str ): """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _snake_case : Optional[int] = state_dict.pop(F"visual_encoder.blocks.{i}.attn.q_bias" ) _snake_case : Tuple = state_dict.pop(F"visual_encoder.blocks.{i}.attn.v_bias" ) # next, set bias in the state dict _snake_case : List[str] = torch.cat((q_bias, torch.zeros_like(snake_case__ , requires_grad=snake_case__ ), v_bias) ) _snake_case : Dict = qkv_bias def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Union[str, Any] ): """simple docstring""" _snake_case : List[Any] = 3_64 if """coco""" in model_name else 2_24 _snake_case : List[str] = BlipaVisionConfig(image_size=snake_case__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _snake_case : List[str] = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=snake_case__ ).to_dict() elif "opt-6.7b" in model_name: _snake_case : List[str] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=snake_case__ ).to_dict() elif "t5-xl" in model_name: _snake_case : Tuple = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _snake_case : List[Any] = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() _snake_case : int = BlipaConfig(vision_config=snake_case__ , text_config=snake_case__ ) return config, image_size @torch.no_grad() def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int=None , snake_case__ : str=False ): """simple docstring""" _snake_case : List[str] = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) _snake_case : str = tokenizer("""\n""" , add_special_tokens=snake_case__ ).input_ids[0] _snake_case , _snake_case : Dict = get_blipa_config(snake_case__ , eos_token_id=snake_case__ ) _snake_case : str = BlipaForConditionalGeneration(snake_case__ ).eval() _snake_case : int = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } _snake_case , _snake_case : List[Any] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) _snake_case : int = """cuda""" if torch.cuda.is_available() else """cpu""" _snake_case , _snake_case , _snake_case : Any = load_model_and_preprocess( name=snake_case__ , model_type=snake_case__ , is_eval=snake_case__ , device=snake_case__ ) original_model.eval() print("""Done!""" ) # update state dict keys _snake_case : Any = original_model.state_dict() _snake_case : Dict = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _snake_case : str = state_dict.pop(snake_case__ ) if key.startswith("""Qformer.bert""" ): _snake_case : str = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: _snake_case : Any = key.replace("""self""" , """attention""" ) if "opt_proj" in key: _snake_case : List[str] = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: _snake_case : Optional[Any] = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): _snake_case : List[Any] = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): _snake_case : List[Any] = key.replace("""t5""" , """language""" ) _snake_case : str = val # read in qv biases read_in_q_v_bias(snake_case__ , snake_case__ ) _snake_case , _snake_case : List[str] = hf_model.load_state_dict(snake_case__ , strict=snake_case__ ) assert len(snake_case__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _snake_case : Any = load_demo_image() _snake_case : str = vis_processors["""eval"""](snake_case__ ).unsqueeze(0 ).to(snake_case__ ) _snake_case : List[Any] = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(snake_case__ ) # create processor _snake_case : Any = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=snake_case__ , image_std=snake_case__ ) _snake_case : int = BlipaProcessor(image_processor=snake_case__ , tokenizer=snake_case__ ) _snake_case : Any = processor(images=snake_case__ , return_tensors="""pt""" ).pixel_values.to(snake_case__ ) # make sure processor creates exact same pixel values assert torch.allclose(snake_case__ , snake_case__ ) original_model.to(snake_case__ ) hf_model.to(snake_case__ ) with torch.no_grad(): if "opt" in model_name: _snake_case : str = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits _snake_case : int = hf_model(snake_case__ , snake_case__ ).logits else: _snake_case : str = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits _snake_case : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) _snake_case : Union[str, Any] = hf_model(snake_case__ , snake_case__ , labels=snake_case__ ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _snake_case : List[str] = torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=snake_case__ ) assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _snake_case : Union[str, Any] = torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=snake_case__ ) else: # cast to same type _snake_case : int = logits.dtype assert torch.allclose(original_logits.to(snake_case__ ) , snake_case__ , atol=1e-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) _snake_case : Any = """""" _snake_case : str = tokenizer(snake_case__ , return_tensors="""pt""" ).input_ids.to(snake_case__ ) _snake_case : Union[str, Any] = original_model.generate({"""image""": original_pixel_values} ) _snake_case : Tuple = hf_model.generate( snake_case__ , snake_case__ , do_sample=snake_case__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , snake_case__ ) _snake_case : Optional[Any] = input_ids.shape[1] _snake_case : int = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=snake_case__ ) _snake_case : Optional[Any] = [text.strip() for text in output_text] print("""HF generation:""" , snake_case__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(snake_case__ ) hf_model.save_pretrained(snake_case__ ) if push_to_hub: processor.push_to_hub(F"nielsr/{model_name}" ) hf_model.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() A_ = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) A_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
28
0
import itertools import math def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase__ (): """simple docstring""" _snake_case : int = 2 while True: if is_prime(snake_case__ ): yield num num += 1 def UpperCAmelCase__ (snake_case__ : int = 1_00_01 ): """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , snake_case__ ) ) if __name__ == "__main__": print(F'''{solution() = }''')
704
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def UpperCAmelCase__ (snake_case__ : Optional[int] ): """simple docstring""" print("""Loading config file...""" ) def flatten_yaml_as_dict(snake_case__ : List[Any] , snake_case__ : Optional[Any]="" , snake_case__ : Tuple="." ): _snake_case : Union[str, Any] = [] for k, v in d.items(): _snake_case : List[str] = parent_key + sep + k if parent_key else k if isinstance(snake_case__ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(snake_case__ , snake_case__ , sep=snake_case__ ).items() ) else: items.append((new_key, v) ) return dict(snake_case__ ) _snake_case : Dict = argparse.Namespace() with open(snake_case__ , """r""" ) as yaml_file: try: _snake_case : List[Any] = yaml.load(snake_case__ , Loader=yaml.FullLoader ) _snake_case : Any = flatten_yaml_as_dict(snake_case__ ) for k, v in flat_cfg.items(): setattr(snake_case__ , snake_case__ , snake_case__ ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(snake_case__ , str(snake_case__ ) ) ) return config def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : Dict = MobileViTVaConfig() _snake_case : Optional[int] = False # dataset if task_name.startswith("""imagenet1k_""" ): _snake_case : Dict = 10_00 if int(task_name.strip().split("""_""" )[-1] ) == 3_84: _snake_case : Union[str, Any] = 3_84 else: _snake_case : Optional[Any] = 2_56 _snake_case : str = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): _snake_case : str = 2_10_00 if int(task_name.strip().split("""_""" )[-1] ) == 3_84: _snake_case : Dict = 3_84 else: _snake_case : Union[str, Any] = 2_56 _snake_case : Tuple = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): _snake_case : Tuple = 1_51 _snake_case : str = 5_12 _snake_case : List[Any] = """ade20k-id2label.json""" _snake_case : Union[str, Any] = True elif task_name.startswith("""voc_""" ): _snake_case : List[Any] = 21 _snake_case : List[str] = 5_12 _snake_case : int = """pascal-voc-id2label.json""" _snake_case : int = True # orig_config _snake_case : int = load_orig_config_file(snake_case__ ) assert getattr(snake_case__ , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model" _snake_case : str = getattr(snake_case__ , """model.classification.mitv2.width_multiplier""" , 1.0 ) assert ( getattr(snake_case__ , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _snake_case : int = getattr(snake_case__ , """model.classification.activation.name""" , """swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _snake_case : Tuple = getattr(snake_case__ , """model.segmentation.output_stride""" , 16 ) if "_deeplabv3" in task_name: _snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] ) _snake_case : Tuple = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_out_channels""" , 5_12 ) _snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 ) # id2label _snake_case : Union[str, Any] = """huggingface/label-files""" _snake_case : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) ) _snake_case : List[Any] = {int(snake_case__ ): v for k, v in idalabel.items()} _snake_case : Tuple = idalabel _snake_case : Any = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[Any] ): """simple docstring""" _snake_case : List[str] = dct.pop(snake_case__ ) _snake_case : List[Any] = val def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : int=False ): """simple docstring""" if base_model: _snake_case : Any = """""" else: _snake_case : Union[str, Any] = """mobilevitv2.""" _snake_case : Dict = [] for k in state_dict.keys(): if k[:8] == "encoder.": _snake_case : List[str] = k[8:] else: _snake_case : str = k if ".block." in k: _snake_case : Optional[int] = k_new.replace(""".block.""" , """.""" ) if ".conv." in k: _snake_case : Union[str, Any] = k_new.replace(""".conv.""" , """.convolution.""" ) if ".norm." in k: _snake_case : str = k_new.replace(""".norm.""" , """.normalization.""" ) if "conv_1." in k: _snake_case : int = k_new.replace("""conv_1.""" , F"{model_prefix}conv_stem." ) for i in [1, 2]: if F"layer_{i}." in k: _snake_case : Tuple = k_new.replace(F"layer_{i}." , F"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: _snake_case : Optional[Any] = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" ) if ".red_1x1." in k: _snake_case : Optional[Any] = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" ) for i in [3, 4, 5]: if F"layer_{i}.0." in k: _snake_case : Tuple = k_new.replace(F"layer_{i}.0." , F"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if F"layer_{i}.1.local_rep.0." in k: _snake_case : Any = k_new.replace(F"layer_{i}.1.local_rep.0." , F"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if F"layer_{i}.1.local_rep.1." in k: _snake_case : str = k_new.replace(F"layer_{i}.1.local_rep.1." , F"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: _snake_case : Optional[Any] = [0, 1] elif i == 4: _snake_case : Any = [0, 1, 2, 3] elif i == 5: _snake_case : List[Any] = [0, 1, 2] for j in j_in: if F"layer_{i}.1.global_rep.{j}." in k: _snake_case : Any = k_new.replace( F"layer_{i}.1.global_rep.{j}." , F"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if F"layer_{i}.1.global_rep.{j+1}." in k: _snake_case : List[Any] = k_new.replace( F"layer_{i}.1.global_rep.{j+1}." , F"{model_prefix}encoder.layer.{i-1}.layernorm." ) if F"layer_{i}.1.conv_proj." in k: _snake_case : Union[str, Any] = k_new.replace(F"layer_{i}.1.conv_proj." , F"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: _snake_case : List[Any] = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" ) if "pre_norm_attn.1." in k: _snake_case : Optional[int] = k_new.replace("""pre_norm_attn.1.""" , """attention.""" ) if "pre_norm_ffn.0." in k: _snake_case : List[Any] = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" ) if "pre_norm_ffn.1." in k: _snake_case : Tuple = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" ) if "pre_norm_ffn.3." in k: _snake_case : Any = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" ) if "classifier.1." in k: _snake_case : List[str] = k_new.replace("""classifier.1.""" , """classifier.""" ) if "seg_head." in k: _snake_case : str = k_new.replace("""seg_head.""" , """segmentation_head.""" ) if ".aspp_layer." in k: _snake_case : Optional[int] = k_new.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in k: _snake_case : int = k_new.replace(""".aspp_pool.""" , """.""" ) rename_keys.append((k, k_new) ) return rename_keys def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" _snake_case : List[str] = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(snake_case__ ) for k in keys_to_ignore: state_dict.pop(snake_case__ , snake_case__ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _snake_case : Any = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Tuple ): """simple docstring""" _snake_case : int = get_mobilevitva_config(snake_case__ , snake_case__ ) # load original state_dict _snake_case : Optional[int] = torch.load(snake_case__ , map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): _snake_case : Any = MobileViTVaForSemanticSegmentation(snake_case__ ).eval() _snake_case : List[Any] = False else: _snake_case : List[Any] = MobileViTVaForImageClassification(snake_case__ ).eval() _snake_case : Optional[Any] = False # remove and rename some keys of load the original model _snake_case : Union[str, Any] = checkpoint remove_unused_keys(snake_case__ ) _snake_case : List[str] = create_rename_keys(snake_case__ , base_model=snake_case__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # load modified state_dict model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by MobileViTImageProcessor _snake_case : Optional[int] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _snake_case : List[str] = image_processor(images=prepare_img() , return_tensors="""pt""" ) _snake_case : Optional[Any] = model(**snake_case__ ) # verify classification model if task_name.startswith("""imagenet""" ): _snake_case : List[str] = outputs.logits _snake_case : Any = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant _snake_case : List[str] = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] ) assert torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) A_ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
28
0
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration A_ = pytest.mark.integration A_ = {'''comet'''} A_ = importlib.util.find_spec('''fairseq''') is not None A_ = {'''code_eval'''} A_ = os.name == '''nt''' A_ = {'''bertscore''', '''frugalscore''', '''perplexity'''} A_ = importlib.util.find_spec('''transformers''') is not None def UpperCAmelCase__ (snake_case__ : List[Any] ): """simple docstring""" @wraps(snake_case__ ) def wrapper(self : Dict , snake_case__ : Optional[Any] ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("""\"test requires Fairseq\"""" ) else: test_case(self , snake_case__ ) return wrapper def UpperCAmelCase__ (snake_case__ : Any ): """simple docstring""" @wraps(snake_case__ ) def wrapper(self : Optional[Any] , snake_case__ : str ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("""\"test requires transformers\"""" ) else: test_case(self , snake_case__ ) return wrapper def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" @wraps(snake_case__ ) def wrapper(self : Dict , snake_case__ : Optional[Any] ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("""\"test not supported on Windows\"""" ) else: test_case(self , snake_case__ ) return wrapper def UpperCAmelCase__ (): """simple docstring""" _snake_case : Optional[Any] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( __a , __a , __a ) @local class lowercase( parameterized.TestCase ): '''simple docstring''' lowercase__ = {} lowercase__ = None @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""" ) def UpperCamelCase_ ( self: List[str], a_: List[str] ): '''simple docstring''' _snake_case : Any = """[...]""" _snake_case : str = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""", a_ ) ).module_path ) _snake_case : List[str] = datasets.load.import_main_class(metric_module.__name__, dataset=a_ ) # check parameters _snake_case : str = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(a_, metric_module.__name__ ): with self.use_local_metrics(): try: _snake_case : int = doctest.testmod(a_, verbose=a_, raise_on_error=a_ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed, 0 ) self.assertGreater(results.attempted, 1 ) @slow def UpperCamelCase_ ( self: Optional[int], a_: List[Any] ): '''simple docstring''' _snake_case : Tuple = """[...]""" _snake_case : str = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""", a_ ) ).module_path ) # run doctest with self.use_local_metrics(): _snake_case : int = doctest.testmod(a_, verbose=a_, raise_on_error=a_ ) self.assertEqual(results.failed, 0 ) self.assertGreater(results.attempted, 1 ) @contextmanager def UpperCamelCase_ ( self: List[Any], a_: Tuple, a_: Dict ): '''simple docstring''' if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](a_ ): yield else: yield @contextmanager def UpperCamelCase_ ( self: str ): '''simple docstring''' def load_local_metric(a_: Any, *a_: List[Any], **a_: Optional[Any] ): return load_metric(os.path.join("""metrics""", a_ ), *a_, **a_ ) with patch("""datasets.load_metric""" ) as mock_load_metric: _snake_case : str = load_local_metric yield @classmethod def UpperCamelCase_ ( cls: List[str], a_: Union[str, Any] ): '''simple docstring''' def wrapper(a_: int ): _snake_case : str = contextmanager(a_ ) _snake_case : Union[str, Any] = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("""bleurt""" ) def UpperCAmelCase__ (snake_case__ : Any ): """simple docstring""" import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("""sv""" , """""" , """""" ) # handle pytest cli flags class lowercase( __a ): '''simple docstring''' def UpperCamelCase_ ( self: int, a_: Union[str, Any] ): '''simple docstring''' assert len(input_dict["""input_ids"""] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor: _snake_case : Union[str, Any] = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("""bertscore""" ) def UpperCAmelCase__ (snake_case__ : Optional[Any] ): """simple docstring""" import torch def bert_cos_score_idf(snake_case__ : Optional[Any] , snake_case__ : List[Any] , *snake_case__ : List[str] , **snake_case__ : int ): return torch.tensor([[1.0, 1.0, 1.0]] * len(snake_case__ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("""bert_score.scorer.get_model""" ), patch( """bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf: _snake_case : Union[str, Any] = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("""comet""" ) def UpperCAmelCase__ (snake_case__ : Optional[int] ): """simple docstring""" def load_from_checkpoint(snake_case__ : Dict ): class lowercase: '''simple docstring''' def UpperCamelCase_ ( self: Optional[int], a_: Union[str, Any], *a_: Optional[Any], **a_: Dict ): '''simple docstring''' assert len(a_ ) == 2 _snake_case : Optional[int] = [0.19, 0.92] return scores, sum(a_ ) / len(a_ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("""comet.download_model""" ) as mock_download_model: _snake_case : Any = None with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint: _snake_case : Union[str, Any] = load_from_checkpoint yield def UpperCAmelCase__ (): """simple docstring""" _snake_case : Dict = load_metric(os.path.join("""metrics""" , """seqeval""" ) ) _snake_case : List[str] = """ERROR""" _snake_case : int = F"Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}" with pytest.raises(snake_case__ , match=re.escape(snake_case__ ) ): metric.compute(predictions=[] , references=[] , scheme=snake_case__ )
705
"""simple docstring""" import os import sys import unittest A_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path A_ = os.path.join(git_repo_path, '''src''', '''diffusers''') class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Optional[int] = find_backend(""" if not is_torch_available():""" ) self.assertEqual(a_, """torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") _snake_case : Any = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(a_, """torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") _snake_case : Union[str, Any] = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(a_, """torch_and_transformers_and_onnx""" ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Dict = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""", a_ ) self.assertIn("""torch_and_transformers""", a_ ) self.assertIn("""flax_and_transformers""", a_ ) self.assertIn("""torch_and_transformers_and_onnx""", a_ ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""", objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""", objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""", objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""", objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""", objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""", objects["""torch_and_transformers_and_onnx"""] ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[Any] = create_dummy_object("""CONSTANT""", """'torch'""" ) self.assertEqual(a_, """\nCONSTANT = None\n""" ) _snake_case : Optional[int] = create_dummy_object("""function""", """'torch'""" ) self.assertEqual( a_, """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) _snake_case : List[Any] = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ _snake_case : Union[str, Any] = create_dummy_object("""FakeClass""", """'torch'""" ) self.assertEqual(a_, a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ _snake_case : List[Any] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""], a_ )
28
0
"""simple docstring""" from math import ceil def UpperCAmelCase__ (snake_case__ : int = 10_01 ): """simple docstring""" _snake_case : Any = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): _snake_case : int = 2 * i + 1 _snake_case : List[str] = 2 * i _snake_case : List[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: A_ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
706
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''OwlViTFeatureExtractor'''] A_ = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
28
0
"""simple docstring""" from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool A_ = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class lowercase( __a ): '''simple docstring''' lowercase__ = "facebook/nllb-200-distilled-600M" lowercase__ = ( "This is a tool that translates text from a language to another. It takes three inputs: `text`, which should " "be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, " "which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in " "plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`." ) lowercase__ = "translator" lowercase__ = AutoTokenizer lowercase__ = AutoModelForSeqaSeqLM lowercase__ = LANGUAGE_CODES lowercase__ = ["text", "text", "text"] lowercase__ = ["text"] def UpperCamelCase_ ( self: str, a_: int, a_: Any, a_: Dict ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f"{src_lang} is not a supported language." ) if tgt_lang not in self.lang_to_code: raise ValueError(f"{tgt_lang} is not a supported language." ) _snake_case : List[Any] = self.lang_to_code[src_lang] _snake_case : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( a_, return_tensors="""pt""", src_lang=a_, tgt_lang=a_ ) def UpperCamelCase_ ( self: List[str], a_: Optional[Any] ): '''simple docstring''' return self.model.generate(**a_ ) def UpperCamelCase_ ( self: Union[str, Any], a_: Optional[Any] ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist(), skip_special_tokens=a_ )
707
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml A_ = logging.get_logger(__name__) def UpperCAmelCase__ (snake_case__ : bool , snake_case__ : bool ): """simple docstring""" def run_func(snake_case__ : Tuple ): @wraps(snake_case__ ) def run_in_eager_mode(*snake_case__ : str , **snake_case__ : Any ): return func(*snake_case__ , **snake_case__ ) @wraps(snake_case__ ) @tf.function(experimental_compile=snake_case__ ) def run_in_graph_mode(*snake_case__ : Any , **snake_case__ : Optional[int] ): return func(*snake_case__ , **snake_case__ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : List[str] = random.Random() _snake_case : Optional[int] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case__ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class lowercase( __a ): '''simple docstring''' lowercase__ = 42 lowercase__ = 42 lowercase__ = "TensorFlow" @property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' return tf.__version__ def UpperCamelCase_ ( self: List[str], a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : List[str] = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : Optional[int] = self._prepare_inference_func(a_, a_, a_ ) return self._measure_speed(_inference ) def UpperCamelCase_ ( self: int, a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : Tuple = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : Optional[Any] = self._prepare_train_func(a_, a_, a_ ) return self._measure_speed(_train ) def UpperCamelCase_ ( self: Dict, a_: str, a_: int, a_: int ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], a_ ) _snake_case : str = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : List[str] = self._prepare_inference_func(a_, a_, a_ ) return self._measure_memory(_inference ) def UpperCamelCase_ ( self: Tuple, a_: str, a_: int, a_: int ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], a_ ) _snake_case : Dict = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : Optional[int] = self._prepare_train_func(a_, a_, a_ ) return self._measure_memory(_train ) def UpperCamelCase_ ( self: Optional[Any], a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : List[Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _snake_case : List[Any] = ( hasattr(a_, """architectures""" ) and isinstance(config.architectures, a_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _snake_case : str = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _snake_case : List[Any] = __import__("""transformers""", fromlist=[model_class] ) _snake_case : Dict = getattr(a_, a_ ) _snake_case : Any = model_cls(a_ ) except ImportError: raise ImportError( f"{model_class} does not exist. If you just want to test the pretrained model, you might want to" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _snake_case : Any = TF_MODEL_MAPPING[config.__class__](a_ ) # encoder-decoder has vocab size saved differently _snake_case : List[Any] = config.vocab_size if hasattr(a_, """vocab_size""" ) else config.encoder.vocab_size _snake_case : List[str] = random_input_ids(a_, a_, a_ ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_decoder_forward(): return model(a_, decoder_input_ids=a_, training=a_ ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_forward(): return model(a_, training=a_ ) _snake_case : Optional[int] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def UpperCamelCase_ ( self: Optional[int], a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : str = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _snake_case : Tuple = ( hasattr(a_, """architectures""" ) and isinstance(config.architectures, a_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _snake_case : List[str] = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _snake_case : str = __import__("""transformers""", fromlist=[model_class] ) _snake_case : Tuple = getattr(a_, a_ ) _snake_case : Any = model_cls(a_ ) except ImportError: raise ImportError( f"{model_class} does not exist. If you just want to test the pretrained model, you might want to" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _snake_case : Optional[Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](a_ ) # encoder-decoder has vocab size saved differently _snake_case : List[Any] = config.vocab_size if hasattr(a_, """vocab_size""" ) else config.encoder.vocab_size _snake_case : int = random_input_ids(a_, a_, a_ ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_decoder_train(): _snake_case : Dict = model(a_, decoder_input_ids=a_, labels=a_, training=a_ )[0] _snake_case : str = tf.gradients(a_, model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_train(): _snake_case : Optional[Any] = model(a_, labels=a_, training=a_ )[0] _snake_case : Optional[Any] = tf.gradients(a_, model.trainable_variables ) return gradients _snake_case : int = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def UpperCamelCase_ ( self: Union[str, Any], a_: str ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(a_, repeat=1, number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _snake_case : Dict = timeit.repeat( a_, repeat=self.args.repeat, number=10, ) return min(a_ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"Doesn't fit on GPU. {e}" ) def UpperCamelCase_ ( self: Optional[Any], a_: Callable[[], None] ): '''simple docstring''' logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) _snake_case : List[Any] = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) _snake_case : Optional[Any] = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() _snake_case : List[str] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _snake_case : Tuple = nvml.nvmlDeviceGetMemoryInfo(a_ ) _snake_case : List[str] = meminfo.used _snake_case : Any = Memory(a_ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) _snake_case : List[Any] = None else: _snake_case : int = measure_peak_memory_cpu(a_ ) _snake_case : List[str] = Memory(a_ ) if isinstance(a_, a_ ) else memory_bytes if self.args.trace_memory_line_by_line: _snake_case : Tuple = stop_memory_tracing(a_ ) if memory is None: _snake_case : int = summary.total else: _snake_case : int = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"Doesn't fit on GPU. {e}" ) return "N/A", None
28
0
"""simple docstring""" A_ = [ '''Audio''', '''Array2D''', '''Array3D''', '''Array4D''', '''Array5D''', '''ClassLabel''', '''Features''', '''Sequence''', '''Value''', '''Image''', '''Translation''', '''TranslationVariableLanguages''', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
708
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : str ): """simple docstring""" _snake_case : str = int(snake_case__ ) # Initialize Result _snake_case : str = [] # Traverse through all denomination for denomination in reversed(snake_case__ ): # Find denominations while int(snake_case__ ) >= int(snake_case__ ): total_value -= int(snake_case__ ) answer.append(snake_case__ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": A_ = [] A_ = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): A_ = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) A_ = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter A_ = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] A_ = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F'''Following is minimal change for {value}: ''') A_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
28
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class lowercase( __a ): '''simple docstring''' lowercase__ = 42 class lowercase( __a , __a ): '''simple docstring''' @register_to_config def __init__( self: List[Any], a_: int = 16, a_: int = 88, a_: Optional[int] = None, a_: Optional[int] = None, a_: int = 1, a_: float = 0.0, a_: int = 32, a_: Optional[int] = None, a_: bool = False, a_: Optional[int] = None, a_: str = "geglu", a_: bool = True, a_: bool = True, ): '''simple docstring''' super().__init__() _snake_case : List[str] = num_attention_heads _snake_case : int = attention_head_dim _snake_case : Optional[int] = num_attention_heads * attention_head_dim _snake_case : Any = in_channels _snake_case : List[str] = torch.nn.GroupNorm(num_groups=a_, num_channels=a_, eps=1E-6, affine=a_ ) _snake_case : Dict = nn.Linear(a_, a_ ) # 3. Define transformers blocks _snake_case : List[Any] = nn.ModuleList( [ BasicTransformerBlock( a_, a_, a_, dropout=a_, cross_attention_dim=a_, activation_fn=a_, attention_bias=a_, double_self_attention=a_, norm_elementwise_affine=a_, ) for d in range(a_ ) ] ) _snake_case : Tuple = nn.Linear(a_, a_ ) def UpperCamelCase_ ( self: Any, a_: List[str], a_: List[str]=None, a_: Union[str, Any]=None, a_: Tuple=None, a_: Any=1, a_: int=None, a_: bool = True, ): '''simple docstring''' _snake_case : Any = hidden_states.shape _snake_case : List[str] = batch_frames // num_frames _snake_case : Tuple = hidden_states _snake_case : List[str] = hidden_states[None, :].reshape(a_, a_, a_, a_, a_ ) _snake_case : Dict = hidden_states.permute(0, 2, 1, 3, 4 ) _snake_case : Tuple = self.norm(a_ ) _snake_case : Optional[int] = hidden_states.permute(0, 3, 4, 2, 1 ).reshape(batch_size * height * width, a_, a_ ) _snake_case : Any = self.proj_in(a_ ) # 2. Blocks for block in self.transformer_blocks: _snake_case : List[str] = block( a_, encoder_hidden_states=a_, timestep=a_, cross_attention_kwargs=a_, class_labels=a_, ) # 3. Output _snake_case : Tuple = self.proj_out(a_ ) _snake_case : List[str] = ( hidden_states[None, None, :] .reshape(a_, a_, a_, a_, a_ ) .permute(0, 3, 4, 1, 2 ) .contiguous() ) _snake_case : List[Any] = hidden_states.reshape(a_, a_, a_, a_ ) _snake_case : List[str] = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=a_ )
709
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowercase: '''simple docstring''' def __init__( self: Optional[Any], a_: Union[str, Any], a_: int=100, a_: int=13, a_: List[Any]=30, a_: str=2, a_: Optional[Any]=3, a_: Optional[int]=True, a_: Any=True, a_: Optional[Any]=32, a_: Tuple=4, a_: str=4, a_: List[Any]=37, a_: List[str]="gelu", a_: str=0.1, a_: Optional[int]=0.1, a_: Any=10, a_: List[str]=0.02, a_: Dict=3, a_: str=None, a_: Optional[int]=[0, 1, 2, 3], ): '''simple docstring''' _snake_case : Optional[int] = parent _snake_case : Optional[Any] = 100 _snake_case : Any = batch_size _snake_case : List[Any] = image_size _snake_case : Optional[Any] = patch_size _snake_case : str = num_channels _snake_case : Tuple = is_training _snake_case : Tuple = use_labels _snake_case : Any = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : List[str] = num_attention_heads _snake_case : Union[str, Any] = intermediate_size _snake_case : Dict = hidden_act _snake_case : str = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Optional[Any] = type_sequence_label_size _snake_case : Any = initializer_range _snake_case : List[str] = scope _snake_case : int = out_indices _snake_case : Optional[Any] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _snake_case : Dict = (image_size // patch_size) ** 2 _snake_case : str = num_patches + 1 def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : List[Any] = None _snake_case : Tuple = None if self.use_labels: _snake_case : str = ids_tensor([self.batch_size], self.type_sequence_label_size ) _snake_case : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) _snake_case : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=a_, initializer_range=self.initializer_range, out_indices=self.out_indices, ) def UpperCamelCase_ ( self: List[Any], a_: List[Any], a_: Any, a_: Optional[Any], a_: List[str] ): '''simple docstring''' _snake_case : str = BeitModel(config=a_ ) model.to(a_ ) model.eval() _snake_case : Dict = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self: str, a_: List[Any], a_: Optional[Any], a_: Optional[int], a_: List[Any] ): '''simple docstring''' _snake_case : List[str] = BeitForMaskedImageModeling(config=a_ ) model.to(a_ ) model.eval() _snake_case : Union[str, Any] = model(a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCamelCase_ ( self: Any, a_: List[str], a_: Any, a_: List[Any], a_: Optional[Any] ): '''simple docstring''' _snake_case : Any = self.type_sequence_label_size _snake_case : Any = BeitForImageClassification(a_ ) model.to(a_ ) model.eval() _snake_case : List[Any] = model(a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case : Any = 1 _snake_case : str = BeitForImageClassification(a_ ) model.to(a_ ) model.eval() _snake_case : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case : Optional[Any] = model(a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self: List[Any], a_: Optional[int], a_: List[Any], a_: str, a_: int ): '''simple docstring''' _snake_case : List[str] = self.num_labels _snake_case : List[Any] = BeitForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() _snake_case : List[str] = model(a_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) _snake_case : str = model(a_, labels=a_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Tuple = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case , _snake_case : Any = config_and_inputs _snake_case : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase__ = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Dict = BeitModelTester(self ) _snake_case : int = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def UpperCamelCase_ ( self: str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""BEiT does not use inputs_embeds""" ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCamelCase_ ( self: str ): '''simple docstring''' pass def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : List[str] = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) _snake_case : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_, nn.Linear ) ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Any = model_class(a_ ) _snake_case : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : List[Any] = [*signature.parameters.keys()] _snake_case : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1], a_ ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' if not self.model_tester.is_training: return _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Any = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(a_ ), BeitForMaskedImageModeling]: continue _snake_case : List[Any] = model_class(a_ ) model.to(a_ ) model.train() _snake_case : Dict = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : List[Any] = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _snake_case : Dict = False _snake_case : Optional[Any] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(a_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue _snake_case : Any = model_class(a_ ) model.gradient_checkpointing_enable() model.to(a_ ) model.train() _snake_case : Any = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : int = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : int = _config_zero_init(a_ ) for model_class in self.all_model_classes: _snake_case : Tuple = model_class(config=a_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @slow def UpperCamelCase_ ( self: int ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Optional[int] = BeitModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self: Dict ): '''simple docstring''' return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : str = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(a_ ) _snake_case : Dict = self.default_image_processor _snake_case : Dict = prepare_img() _snake_case : List[str] = image_processor(images=a_, return_tensors="""pt""" ).pixel_values.to(a_ ) # prepare bool_masked_pos _snake_case : Optional[int] = torch.ones((1, 196), dtype=torch.bool ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : int = model(pixel_values=a_, bool_masked_pos=a_ ) _snake_case : Dict = outputs.logits # verify the logits _snake_case : Optional[int] = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape, a_ ) _snake_case : Optional[Any] = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(a_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], a_, atol=1E-2 ) ) @slow def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Dict = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(a_ ) _snake_case : List[Any] = self.default_image_processor _snake_case : Any = prepare_img() _snake_case : Any = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : int = model(**a_ ) _snake_case : Optional[int] = outputs.logits # verify the logits _snake_case : Tuple = torch.Size((1, 1_000) ) self.assertEqual(logits.shape, a_ ) _snake_case : Any = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(a_ ) self.assertTrue(torch.allclose(logits[0, :3], a_, atol=1E-4 ) ) _snake_case : str = 281 self.assertEqual(logits.argmax(-1 ).item(), a_ ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : int = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to( a_ ) _snake_case : int = self.default_image_processor _snake_case : Optional[Any] = prepare_img() _snake_case : Union[str, Any] = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Union[str, Any] = model(**a_ ) _snake_case : Dict = outputs.logits # verify the logits _snake_case : Tuple = torch.Size((1, 21_841) ) self.assertEqual(logits.shape, a_ ) _snake_case : Optional[int] = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(a_ ) self.assertTrue(torch.allclose(logits[0, :3], a_, atol=1E-4 ) ) _snake_case : List[str] = 2_396 self.assertEqual(logits.argmax(-1 ).item(), a_ ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[str] = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) _snake_case : int = model.to(a_ ) _snake_case : List[str] = BeitImageProcessor(do_resize=a_, size=640, do_center_crop=a_ ) _snake_case : Optional[int] = load_dataset("""hf-internal-testing/fixtures_ade20k""", split="""test""" ) _snake_case : Union[str, Any] = Image.open(ds[0]["""file"""] ) _snake_case : List[Any] = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Optional[int] = model(**a_ ) _snake_case : Union[str, Any] = outputs.logits # verify the logits _snake_case : List[str] = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape, a_ ) _snake_case : Optional[int] = version.parse(PIL.__version__ ) < version.parse("""9.0.0""" ) if is_pillow_less_than_a: _snake_case : Any = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ], device=a_, ) else: _snake_case : Optional[Any] = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ], device=a_, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], a_, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : int = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) _snake_case : List[Any] = model.to(a_ ) _snake_case : Tuple = BeitImageProcessor(do_resize=a_, size=640, do_center_crop=a_ ) _snake_case : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_ade20k""", split="""test""" ) _snake_case : str = Image.open(ds[0]["""file"""] ) _snake_case : Tuple = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Optional[int] = model(**a_ ) _snake_case : Union[str, Any] = outputs.logits.detach().cpu() _snake_case : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=a_, target_sizes=[(500, 300)] ) _snake_case : Optional[int] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape, a_ ) _snake_case : List[str] = image_processor.post_process_semantic_segmentation(outputs=a_ ) _snake_case : List[str] = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape, a_ )
28
0
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A_ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = XLMProphetNetTokenizer lowercase__ = False lowercase__ = True def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _snake_case : Tuple = XLMProphetNetTokenizer(a_, keep_accents=a_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Tuple = """[PAD]""" _snake_case : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ), a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ), a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], """[PAD]""" ) self.assertEqual(vocab_keys[1], """[CLS]""" ) self.assertEqual(vocab_keys[-1], """j""" ) self.assertEqual(len(a_ ), 1_012 ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 1_012 ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = XLMProphetNetTokenizer(a_, keep_accents=a_ ) _snake_case : Optional[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(a_, ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a_ ), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], ) _snake_case : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( a_, [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ], ) _snake_case : int = tokenizer.convert_tokens_to_ids(a_ ) self.assertListEqual( a_, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ], ) _snake_case : str = tokenizer.convert_ids_to_tokens(a_ ) self.assertListEqual( a_, [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """[UNK]""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """[UNK]""", """.""", ], ) @cached_property def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return XLMProphetNetTokenizer.from_pretrained("""microsoft/xprophetnet-large-wiki100-cased""" ) @slow def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : int = """Hello World!""" _snake_case : Optional[int] = [35_389, 6_672, 49, 2] self.assertListEqual(a_, self.big_tokenizer.encode(a_ ) ) @slow def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Tuple = {"""input_ids""": [[11_073, 82_783, 18, 26, 82_783, 549, 51_540, 248, 17_209, 1_301, 217, 20, 215_186, 1_325, 147, 17_209, 1_301, 217, 20, 56_370, 53, 122_020, 20, 16_477, 27, 87_355, 4_548, 20, 4_728, 78_392, 17, 159_969, 18, 26, 24_491, 629, 15, 538, 22_704, 5_439, 15, 2_788, 24_491, 9_885, 15, 43_534, 605, 15, 814, 18_403, 33_200, 29, 15, 43_534, 24_458, 12_410, 111, 24_966, 83_669, 9_637, 144_068, 26, 850, 22_346, 27, 147, 24_966, 83_669, 83_490, 26, 39_113, 735, 27, 689, 656, 2_800, 1_339, 4_600, 53, 122_020, 115_785, 34, 816, 1_339, 46_887, 18, 147, 53_905, 1_951, 42_238, 41_170, 17_732, 834, 436, 15, 27_523, 98_733, 217, 147, 5_542, 4_981, 930, 17_347, 16, 2], [20_091, 629, 94, 82_786, 58, 490, 20, 1_528, 84, 53_905, 344, 80_592, 110_128, 18_822, 5_267, 1_306, 62, 152_537, 308, 7_997, 401, 124_427, 549, 35_442, 225, 109, 15_055, 25_748, 147, 7_119, 43_712, 34, 767, 135_366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63_784, 119_466, 17, 147_808, 88_214, 18, 656, 81, 32, 3_296, 10_280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a_, model_name="""microsoft/xprophetnet-large-wiki100-cased""", revision="""1acad1643ddd54a44df6a1b797ada8373685d90e""", )
710
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase( __a ): '''simple docstring''' lowercase__ = (IPNDMScheduler,) lowercase__ = (("num_inference_steps", 50),) def UpperCamelCase_ ( self: Union[str, Any], **a_: Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = {"""num_train_timesteps""": 1_000} config.update(**a_ ) return config def UpperCamelCase_ ( self: Tuple, a_: Optional[int]=0, **a_: int ): '''simple docstring''' _snake_case : Optional[int] = dict(self.forward_default_kwargs ) _snake_case : Optional[Any] = kwargs.pop("""num_inference_steps""", a_ ) _snake_case : Optional[Any] = self.dummy_sample _snake_case : Dict = 0.1 * sample _snake_case : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _snake_case : int = self.get_scheduler_config(**a_ ) _snake_case : Dict = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals _snake_case : int = dummy_past_residuals[:] if time_step is None: _snake_case : Union[str, Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) _snake_case : Tuple = scheduler_class.from_pretrained(a_ ) new_scheduler.set_timesteps(a_ ) # copy over dummy past residuals _snake_case : Optional[Any] = dummy_past_residuals[:] _snake_case : List[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : str = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _snake_case : Optional[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : Optional[int] = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self: str, a_: Any=0, **a_: Tuple ): '''simple docstring''' _snake_case : str = dict(self.forward_default_kwargs ) _snake_case : List[Any] = kwargs.pop("""num_inference_steps""", a_ ) _snake_case : Optional[int] = self.dummy_sample _snake_case : Tuple = 0.1 * sample _snake_case : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _snake_case : Any = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals (must be after setting timesteps) _snake_case : Union[str, Any] = dummy_past_residuals[:] if time_step is None: _snake_case : Tuple = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) _snake_case : List[str] = scheduler_class.from_pretrained(a_ ) # copy over dummy past residuals new_scheduler.set_timesteps(a_ ) # copy over dummy past residual (must be after setting timesteps) _snake_case : List[str] = dummy_past_residuals[:] _snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : Any = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : int = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self: List[Any], **a_: Optional[int] ): '''simple docstring''' _snake_case : Union[str, Any] = self.scheduler_classes[0] _snake_case : Any = self.get_scheduler_config(**a_ ) _snake_case : List[Any] = scheduler_class(**a_ ) _snake_case : Union[str, Any] = 10 _snake_case : Union[str, Any] = self.dummy_model() _snake_case : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(a_ ) for i, t in enumerate(scheduler.timesteps ): _snake_case : Optional[Any] = model(a_, a_ ) _snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample for i, t in enumerate(scheduler.timesteps ): _snake_case : Union[str, Any] = model(a_, a_ ) _snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample return sample def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : str = dict(self.forward_default_kwargs ) _snake_case : int = kwargs.pop("""num_inference_steps""", a_ ) for scheduler_class in self.scheduler_classes: _snake_case : Union[str, Any] = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**a_ ) _snake_case : Dict = self.dummy_sample _snake_case : List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(a_, """set_timesteps""" ): scheduler.set_timesteps(a_ ) elif num_inference_steps is not None and not hasattr(a_, """set_timesteps""" ): _snake_case : Dict = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _snake_case : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _snake_case : List[str] = dummy_past_residuals[:] _snake_case : Optional[int] = scheduler.timesteps[5] _snake_case : Optional[Any] = scheduler.timesteps[6] _snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : List[str] = scheduler.step(a_, a_, a_, **a_ ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) _snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=a_, time_step=a_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=a_, time_step=a_ ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.full_loop() _snake_case : Optional[int] = torch.mean(torch.abs(a_ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
28
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ = { '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
711
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True A_ = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) _snake_case : Any = [] for num in range(len(snake_case__ ) ): _snake_case : Optional[int] = 0 while 2 * i * i <= odd_composites[num]: _snake_case : Optional[int] = odd_composites[num] - 2 * i * i if is_prime(snake_case__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(snake_case__ ) == n: return list_nums return [] def UpperCAmelCase__ (): """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(F'''{solution() = }''')
28
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class lowercase( unittest.TestCase ): '''simple docstring''' def __init__( self: List[Any], a_: Union[str, Any], a_: Tuple=7, a_: List[Any]=3, a_: int=30, a_: Dict=400, a_: str=True, a_: Optional[int]=None, a_: int=True, a_: Optional[Any]=[0.5, 0.5, 0.5], a_: Any=[0.5, 0.5, 0.5], a_: List[Any]=True, a_: Union[str, Any]=1 / 255, a_: List[Any]=True, ): '''simple docstring''' _snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1_333} _snake_case : Dict = parent _snake_case : Any = batch_size _snake_case : str = num_channels _snake_case : List[Any] = min_resolution _snake_case : Tuple = max_resolution _snake_case : Union[str, Any] = do_resize _snake_case : List[str] = size _snake_case : Union[str, Any] = do_normalize _snake_case : List[Any] = image_mean _snake_case : List[str] = image_std _snake_case : Optional[int] = do_rescale _snake_case : List[str] = rescale_factor _snake_case : List[Any] = do_pad def UpperCamelCase_ ( self: int ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self: Any, a_: Any, a_: Tuple=False ): '''simple docstring''' if not batched: _snake_case : int = image_inputs[0] if isinstance(a_, Image.Image ): _snake_case : Optional[int] = image.size else: _snake_case : Dict = image.shape[1], image.shape[2] if w < h: _snake_case : List[Any] = int(self.size["""shortest_edge"""] * h / w ) _snake_case : str = self.size["""shortest_edge"""] elif w > h: _snake_case : Any = self.size["""shortest_edge"""] _snake_case : Dict = int(self.size["""shortest_edge"""] * w / h ) else: _snake_case : Dict = self.size["""shortest_edge"""] _snake_case : Dict = self.size["""shortest_edge"""] else: _snake_case : Union[str, Any] = [] for image in image_inputs: _snake_case : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case : List[Any] = max(a_, key=lambda a_ : item[0] )[0] _snake_case : Union[str, Any] = max(a_, key=lambda a_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = YolosImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Optional[int] = YolosImageProcessingTester(self ) @property def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_, """image_mean""" ) ) self.assertTrue(hasattr(a_, """image_std""" ) ) self.assertTrue(hasattr(a_, """do_normalize""" ) ) self.assertTrue(hasattr(a_, """do_resize""" ) ) self.assertTrue(hasattr(a_, """size""" ) ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {"""shortest_edge""": 18, """longest_edge""": 1_333} ) self.assertEqual(image_processor.do_pad, a_ ) _snake_case : Dict = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=a_ ) self.assertEqual(image_processor.size, {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad, a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' pass def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_, Image.Image ) # Test not batched input _snake_case : Optional[Any] = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values _snake_case : Dict = self.image_processor_tester.get_expected_values(a_ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched _snake_case : Dict = self.image_processor_tester.get_expected_values(a_, batched=a_ ) _snake_case : Any = image_processing(a_, return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=a_, numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_, np.ndarray ) # Test not batched input _snake_case : Any = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values _snake_case : List[Any] = self.image_processor_tester.get_expected_values(a_ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched _snake_case : Tuple = image_processing(a_, return_tensors="""pt""" ).pixel_values _snake_case : Optional[Any] = self.image_processor_tester.get_expected_values(a_, batched=a_ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=a_, torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_, torch.Tensor ) # Test not batched input _snake_case : Dict = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values _snake_case : str = self.image_processor_tester.get_expected_values(a_ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched _snake_case : List[str] = image_processing(a_, return_tensors="""pt""" ).pixel_values _snake_case : List[str] = self.image_processor_tester.get_expected_values(a_, batched=a_ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) _snake_case : Dict = self.image_processing_class(do_resize=a_, do_normalize=a_, do_rescale=a_ ) # create random PyTorch tensors _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=a_, torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_, torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors _snake_case : int = image_processing_a.pad(a_, return_tensors="""pt""" ) _snake_case : int = image_processing_a(a_, return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""], encoded_images["""pixel_values"""], atol=1E-4 ) ) @slow def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""", """r""" ) as f: _snake_case : int = json.loads(f.read() ) _snake_case : int = {"""image_id""": 39_769, """annotations""": target} # encode them _snake_case : Optional[Any] = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) _snake_case : int = image_processing(images=a_, annotations=a_, return_tensors="""pt""" ) # verify pixel values _snake_case : Any = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["""pixel_values"""].shape, a_ ) _snake_case : int = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3], a_, atol=1E-4 ) ) # verify area _snake_case : List[str] = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""], a_ ) ) # verify boxes _snake_case : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape, a_ ) _snake_case : Union[str, Any] = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0], a_, atol=1E-3 ) ) # verify image_id _snake_case : Dict = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""], a_ ) ) # verify is_crowd _snake_case : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""], a_ ) ) # verify class_labels _snake_case : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""], a_ ) ) # verify orig_size _snake_case : Union[str, Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""], a_ ) ) # verify size _snake_case : Tuple = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""], a_ ) ) @slow def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""", """r""" ) as f: _snake_case : Any = json.loads(f.read() ) _snake_case : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39_769, """segments_info""": target} _snake_case : List[Any] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them _snake_case : List[Any] = YolosImageProcessor(format="""coco_panoptic""" ) _snake_case : str = image_processing(images=a_, annotations=a_, masks_path=a_, return_tensors="""pt""" ) # verify pixel values _snake_case : Union[str, Any] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["""pixel_values"""].shape, a_ ) _snake_case : Union[str, Any] = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3], a_, atol=1E-4 ) ) # verify area _snake_case : Any = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""], a_ ) ) # verify boxes _snake_case : int = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape, a_ ) _snake_case : str = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0], a_, atol=1E-3 ) ) # verify image_id _snake_case : int = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""], a_ ) ) # verify is_crowd _snake_case : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""], a_ ) ) # verify class_labels _snake_case : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""], a_ ) ) # verify masks _snake_case : Tuple = 822_873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item(), a_ ) # verify orig_size _snake_case : Optional[int] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""], a_ ) ) # verify size _snake_case : List[Any] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""], a_ ) )
712
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class lowercase: '''simple docstring''' def __init__( self: List[Any], a_: str = "cpu", a_: str = "openai/clip-vit-large-patch14" ): '''simple docstring''' _snake_case : Optional[int] = device _snake_case : str = CLIPTokenizerFast.from_pretrained(a_ ) _snake_case : Union[str, Any] = [0.48_145_466, 0.4_578_275, 0.40_821_073] _snake_case : Optional[int] = [0.26_862_954, 0.26_130_258, 0.27_577_711] _snake_case : str = torchvision.transforms.Normalize(self.image_mean, self.image_std ) _snake_case : Optional[int] = torchvision.transforms.Resize(224 ) _snake_case : str = torchvision.transforms.CenterCrop(224 ) def UpperCamelCase_ ( self: List[str], a_: str ): '''simple docstring''' _snake_case : Optional[int] = self.resize(a_ ) _snake_case : List[Any] = self.center_crop(a_ ) _snake_case : Optional[Any] = self.normalize(a_ ) return images def __call__( self: Any, a_: Optional[int]=None, a_: str=None, **a_: str ): '''simple docstring''' _snake_case : Optional[int] = self.tokenizer(text=a_, **a_ ) _snake_case : Any = self.preprocess_img(a_ ) _snake_case : Union[str, Any] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class lowercase( nn.Module ): '''simple docstring''' def __init__( self: List[Any], a_: List[Any]=10, a_: Optional[Any]=0.01, a_: List[str]=None, a_: str=None, a_: Any=None, a_: Tuple=None, a_: List[str]=None, a_: List[str]=None, a_: str=False, a_: List[str]=True, a_: Any="image", a_: Optional[Any]=True, a_: Dict=False, a_: List[str]=False, a_: Optional[int]=False, ): '''simple docstring''' super().__init__() _snake_case : int = None _snake_case : List[str] = device if device else get_device() if vqgan: _snake_case : Any = vqgan else: _snake_case : Optional[Any] = load_vqgan(self.device, conf_path=a_, ckpt_path=a_ ) self.vqgan.eval() if clip: _snake_case : Tuple = clip else: _snake_case : Optional[Any] = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) _snake_case : List[str] = ProcessorGradientFlow(device=self.device ) _snake_case : Union[str, Any] = iterations _snake_case : Dict = lr _snake_case : Optional[int] = log _snake_case : List[str] = make_grid _snake_case : Union[str, Any] = return_val _snake_case : List[str] = quantize _snake_case : List[str] = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self: Tuple, a_: str=None, a_: Dict=None, a_: Dict=5, a_: Dict=True ): '''simple docstring''' _snake_case : Dict = [] if output_path is None: _snake_case : Tuple = """./animation.gif""" if input_path is None: _snake_case : Any = self.save_path _snake_case : Optional[int] = sorted(glob(input_path + """/*""" ) ) if not len(a_ ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(a_ ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) _snake_case : List[Any] = total_duration / len(a_ ) _snake_case : Optional[Any] = [frame_duration] * len(a_ ) if extend_frames: _snake_case : Optional[int] = 1.5 _snake_case : int = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(a_ ) ) imageio.mimsave(a_, a_, duration=a_ ) print(f"gif saved to {output_path}" ) def UpperCamelCase_ ( self: str, a_: Tuple=None, a_: Optional[Any]=None ): '''simple docstring''' if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError _snake_case : int = preprocess(Image.open(a_ ), target_image_size=256 ).to(self.device ) _snake_case : int = preprocess_vqgan(a_ ) _snake_case , *_snake_case : List[Any] = self.vqgan.encode(a_ ) return z def UpperCamelCase_ ( self: Union[str, Any], a_: Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.latent.detach().requires_grad_() _snake_case : Tuple = base_latent + transform_vector if self.quantize: _snake_case , *_snake_case : Any = self.vqgan.quantize(a_ ) else: _snake_case : List[Any] = trans_latent return self.vqgan.decode(a_ ) def UpperCamelCase_ ( self: List[Any], a_: Any, a_: Union[str, Any], a_: Dict=None ): '''simple docstring''' _snake_case : Tuple = self.clip_preprocessor(text=a_, images=a_, return_tensors="""pt""", padding=a_ ) _snake_case : Any = self.clip(**a_ ) _snake_case : str = clip_outputs.logits_per_image if weights is not None: _snake_case : Any = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self: Any, a_: Any, a_: List[str], a_: Dict ): '''simple docstring''' _snake_case : List[Any] = self._get_clip_similarity(pos_prompts["""prompts"""], a_, weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: _snake_case : List[str] = self._get_clip_similarity(neg_prompts["""prompts"""], a_, weights=neg_prompts["""weights"""] ) else: _snake_case : Tuple = torch.tensor([1], device=self.device ) _snake_case : int = -torch.log(a_ ) + torch.log(a_ ) return loss def UpperCamelCase_ ( self: Optional[Any], a_: Tuple, a_: Union[str, Any], a_: List[str] ): '''simple docstring''' _snake_case : Tuple = torch.randn_like(self.latent, requires_grad=a_, device=self.device ) _snake_case : Dict = torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _snake_case : str = self._add_vector(a_ ) _snake_case : List[Any] = loop_post_process(a_ ) _snake_case : List[Any] = self._get_CLIP_loss(a_, a_, a_ ) print("""CLIP loss""", a_ ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=a_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self: int, a_: Any, a_: Union[str, Any], a_: Optional[int] ): '''simple docstring''' wandb.init(reinit=a_, project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: _snake_case : Any = Image.open(a_ ) _snake_case : str = image.resize((256, 256) ) wandb.log("""Original Image""", wandb.Image(a_ ) ) def UpperCamelCase_ ( self: str, a_: List[Any] ): '''simple docstring''' if not prompts: return [] _snake_case : List[str] = [] _snake_case : Tuple = [] if isinstance(a_, a_ ): _snake_case : Union[str, Any] = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(a_, (tuple, list) ): _snake_case : List[Any] = prompt[0] _snake_case : Optional[Any] = float(prompt[1] ) elif ":" in prompt: _snake_case , _snake_case : List[Any] = prompt.split(""":""" ) _snake_case : str = float(a_ ) else: _snake_case : int = prompt _snake_case : Union[str, Any] = 1.0 processed_prompts.append(a_ ) weights.append(a_ ) return { "prompts": processed_prompts, "weights": torch.tensor(a_, device=self.device ), } def UpperCamelCase_ ( self: Dict, a_: List[Any], a_: List[Any]=None, a_: Optional[Any]=None, a_: Optional[Any]=True, a_: Dict=False, a_: Optional[Any]=True, a_: Optional[Any]=True, a_: Any=None, ): '''simple docstring''' if image_path: _snake_case : Union[str, Any] = self._get_latent(a_ ) else: _snake_case : Any = torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(a_, a_, a_ ) assert pos_prompts, "You must provide at least one positive prompt." _snake_case : str = self.process_prompts(a_ ) _snake_case : Dict = self.process_prompts(a_ ) if save_final and save_path is None: _snake_case : Any = os.path.join("""./outputs/""", """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(a_ ): os.makedirs(a_ ) else: _snake_case : List[Any] = save_path + """_""" + get_timestamp() os.makedirs(a_ ) _snake_case : Optional[Any] = save_path _snake_case : List[Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(a_ ) ) _snake_case : List[Any] = loop_post_process(a_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(a_, a_, a_ ) ): if show_intermediate: show_pil(a_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}.png" ) ) if self.log: wandb.log({"""Image""": wandb.Image(a_ )} ) if show_final: show_pil(a_ ) if save_final: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}_final.png" ) )
28
0
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging A_ = logging.get_logger(__name__) class lowercase( __a ): '''simple docstring''' lowercase__ = ["audio_values", "audio_mask"] def __init__( self: Dict, a_: Tuple=2_048, a_: str=1, a_: Any=[16, 16], a_: str=128, a_: int=44_100, a_: Optional[Any]=86, a_: int=2_048, a_: Optional[Any]=0.0, **a_: Union[str, Any], ): '''simple docstring''' super().__init__( feature_size=a_, sampling_rate=a_, padding_value=a_, **a_, ) _snake_case : Optional[int] = spectrogram_length _snake_case : Dict = num_channels _snake_case : int = patch_size _snake_case : Any = feature_size // self.patch_size[1] _snake_case : List[Any] = n_fft _snake_case : List[str] = sampling_rate // hop_length_to_sampling_rate _snake_case : int = sampling_rate _snake_case : Dict = padding_value _snake_case : Optional[int] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=a_, min_frequency=0.0, max_frequency=22_050.0, sampling_rate=a_, norm="""slaney""", mel_scale="""slaney""", ).T def UpperCamelCase_ ( self: Optional[int], a_: np.array ): '''simple docstring''' _snake_case : List[Any] = spectrogram( a_, window_function(self.n_fft, """hann""" ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel="""dB""", db_range=80.0, ) _snake_case : Dict = log_spec[:, :-1] _snake_case : Union[str, Any] = log_spec - 20.0 _snake_case : int = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self: Any, a_: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], a_: Optional[Union[str, TensorType]] = None, a_: Optional[bool] = True, a_: Optional[int] = None, a_: bool = False, a_: bool = False, **a_: str, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" f" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" f" with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) _snake_case : str = isinstance(a_, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) _snake_case : Optional[Any] = is_batched_numpy or ( isinstance(a_, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: _snake_case : List[str] = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(a_, np.ndarray ): _snake_case : int = np.asarray(a_, dtype=np.floataa ) elif isinstance(a_, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _snake_case : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _snake_case : List[str] = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis _snake_case : Dict = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], a_ ): _snake_case : str = [np.asarray(a_, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask _snake_case : Any = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: _snake_case : Any = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] _snake_case : Optional[int] = np.array(a_ ).astype(np.floataa ) # convert into correct format for padding _snake_case : Optional[int] = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch _snake_case : Optional[Any] = np.ones([len(a_ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) _snake_case : Any = padded_audio_features * self.padding_value for i in range(len(a_ ) ): _snake_case : Optional[Any] = audio_features[i] _snake_case : Optional[int] = feature # return as BatchFeature if return_attention_mask: _snake_case : Dict = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: _snake_case : Optional[Any] = {"""audio_values""": padded_audio_features} _snake_case : int = BatchFeature(data=a_, tensor_type=a_ ) return encoded_inputs
713
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _snake_case : Dict = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
28
0
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class lowercase( __a ): '''simple docstring''' def __init__( self: Optional[int], *a_: Optional[Any], **a_: Dict ): '''simple docstring''' super().__init__(*a_, **a_ ) _snake_case : int = {} def UpperCamelCase_ ( self: Union[str, Any], a_: Dict, *a_: Any, **a_: List[Any] ): '''simple docstring''' _snake_case : Dict = super().add_tokens(a_, *a_, **a_ ) if num_added_tokens == 0: raise ValueError( f"The tokenizer already contains the token {placeholder_token}. Please pass a different" """ `placeholder_token` that is not already in the tokenizer.""" ) def UpperCamelCase_ ( self: Optional[int], a_: Tuple, *a_: Dict, a_: int=1, **a_: Any ): '''simple docstring''' _snake_case : str = [] if num_vec_per_token == 1: self.try_adding_tokens(a_, *a_, **a_ ) output.append(a_ ) else: _snake_case : int = [] for i in range(a_ ): _snake_case : Union[str, Any] = placeholder_token + f"_{i}" self.try_adding_tokens(a_, *a_, **a_ ) output.append(a_ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"The tokenizer already has placeholder token {token} that can get confused with" f" {placeholder_token}keep placeholder tokens independent" ) _snake_case : Tuple = output def UpperCamelCase_ ( self: Tuple, a_: Optional[Any], a_: Dict=False, a_: Dict=1.0 ): '''simple docstring''' if isinstance(a_, a_ ): _snake_case : Tuple = [] for i in range(len(a_ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i], vector_shuffle=a_ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: _snake_case : str = self.token_map[placeholder_token] _snake_case : Optional[int] = tokens[: 1 + int(len(a_ ) * prop_tokens_to_load )] if vector_shuffle: _snake_case : Any = copy.copy(a_ ) random.shuffle(a_ ) _snake_case : str = text.replace(a_, """ """.join(a_ ) ) return text def __call__( self: Union[str, Any], a_: str, *a_: Union[str, Any], a_: int=False, a_: Dict=1.0, **a_: int ): '''simple docstring''' return super().__call__( self.replace_placeholder_tokens_in_text( a_, vector_shuffle=a_, prop_tokens_to_load=a_ ), *a_, **a_, ) def UpperCamelCase_ ( self: Optional[int], a_: Optional[Any], *a_: Dict, a_: Optional[Any]=False, a_: Optional[Any]=1.0, **a_: Union[str, Any] ): '''simple docstring''' return super().encode( self.replace_placeholder_tokens_in_text( a_, vector_shuffle=a_, prop_tokens_to_load=a_ ), *a_, **a_, )
714
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase: '''simple docstring''' def __init__( self: List[str], a_: List[Any], a_: str=13, a_: Dict=32, a_: Union[str, Any]=3, a_: Union[str, Any]=4, a_: Tuple=[10, 20, 30, 40], a_: Dict=[2, 2, 3, 2], a_: Tuple=True, a_: Optional[Any]=True, a_: Any=37, a_: Any="gelu", a_: int=10, a_: Tuple=0.02, a_: str=["stage2", "stage3", "stage4"], a_: List[str]=[2, 3, 4], a_: List[str]=None, ): '''simple docstring''' _snake_case : int = parent _snake_case : int = batch_size _snake_case : List[Any] = image_size _snake_case : List[str] = num_channels _snake_case : Tuple = num_stages _snake_case : Union[str, Any] = hidden_sizes _snake_case : List[Any] = depths _snake_case : Tuple = is_training _snake_case : List[str] = use_labels _snake_case : Tuple = intermediate_size _snake_case : List[str] = hidden_act _snake_case : Optional[Any] = num_labels _snake_case : Tuple = initializer_range _snake_case : Tuple = out_features _snake_case : Tuple = out_indices _snake_case : Dict = scope def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Any = None if self.use_labels: _snake_case : Dict = ids_tensor([self.batch_size], self.num_labels ) _snake_case : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=a_, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, ) def UpperCamelCase_ ( self: int, a_: Tuple, a_: Any, a_: Dict ): '''simple docstring''' _snake_case : int = ConvNextVaModel(config=a_ ) model.to(a_ ) model.eval() _snake_case : Any = model(a_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def UpperCamelCase_ ( self: Optional[int], a_: List[str], a_: Tuple, a_: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = ConvNextVaForImageClassification(a_ ) model.to(a_ ) model.eval() _snake_case : Optional[int] = model(a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self: Union[str, Any], a_: Tuple, a_: Tuple, a_: Tuple ): '''simple docstring''' _snake_case : List[str] = ConvNextVaBackbone(config=a_ ) model.to(a_ ) model.eval() _snake_case : int = model(a_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] ) # verify backbone works with out_features=None _snake_case : Tuple = None _snake_case : Tuple = ConvNextVaBackbone(config=a_ ) model.to(a_ ) model.eval() _snake_case : List[Any] = model(a_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ), 1 ) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Dict = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : Any = config_and_inputs _snake_case : str = {"""pixel_values""": pixel_values} return config, inputs_dict def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[Any] = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : List[str] = config_and_inputs _snake_case : Any = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase__ = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Tuple = ConvNextVaModelTester(self ) _snake_case : int = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def UpperCamelCase_ ( self: str ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _snake_case , _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_with_labels() _snake_case : List[Any] = True if model_class.__name__ in [ *get_values(a_ ), *get_values(a_ ), ]: continue _snake_case : Tuple = model_class(a_ ) model.to(a_ ) model.train() _snake_case : Optional[Any] = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : Any = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_with_labels() _snake_case : Any = False _snake_case : List[Any] = True if ( model_class.__name__ in [*get_values(a_ ), *get_values(a_ )] or not model_class.supports_gradient_checkpointing ): continue _snake_case : Dict = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() _snake_case : str = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : Optional[int] = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : List[str] = model_class(a_ ) _snake_case : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : int = [*signature.parameters.keys()] _snake_case : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1], a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(a_: str, a_: Tuple, a_: Tuple ): _snake_case : Optional[Any] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): _snake_case : Any = model(**self._prepare_for_class(a_, a_ ) ) _snake_case : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case : Optional[int] = self.model_tester.num_stages self.assertEqual(len(a_ ), expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) _snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Optional[Any] = True check_hidden_states_output(a_, a_, a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : List[str] = True check_hidden_states_output(a_, a_, a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : str = ConvNextVaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(a_ ) _snake_case : Union[str, Any] = self.default_image_processor _snake_case : List[Any] = prepare_img() _snake_case : Optional[int] = preprocessor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Optional[int] = model(**a_ ) # verify the logits _snake_case : Optional[int] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, a_ ) _snake_case : Optional[int] = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], a_, atol=1E-4 ) )
28
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A_ = logging.getLogger(__name__) def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : List[Any] ): """simple docstring""" return (preds == labels).mean() @dataclass class lowercase: '''simple docstring''' lowercase__ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowercase__ = field( default=__a , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowercase__ = field( default=__a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowercase__ = field( default=__a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class lowercase: '''simple docstring''' lowercase__ = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) lowercase__ = field(metadata={"help": "Should contain the data files for the task."} ) lowercase__ = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowercase__ = field( default=__a , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _snake_case : List[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , snake_case__ ) # Set seed set_seed(training_args.seed ) try: _snake_case : int = processors[data_args.task_name]() _snake_case : Any = processor.get_labels() _snake_case : int = len(snake_case__ ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _snake_case : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=snake_case__ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _snake_case : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _snake_case : Optional[int] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=snake_case__ , cache_dir=model_args.cache_dir , ) # Get datasets _snake_case : List[str] = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=snake_case__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _snake_case : Dict = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=snake_case__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(snake_case__ : EvalPrediction ) -> Dict: _snake_case : List[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(snake_case__ , p.label_ids )} # Data collator _snake_case : Any = DataCollatorWithPadding(snake_case__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _snake_case : int = Trainer( model=snake_case__ , args=snake_case__ , train_dataset=snake_case__ , eval_dataset=snake_case__ , compute_metrics=snake_case__ , data_collator=snake_case__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _snake_case : Optional[int] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _snake_case : Optional[int] = trainer.evaluate() _snake_case : int = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(snake_case__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , snake_case__ , snake_case__ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(snake_case__ ) return results def UpperCAmelCase__ (snake_case__ : List[Any] ): """simple docstring""" main() if __name__ == "__main__": main()
715
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Dict ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Dict ): """simple docstring""" _snake_case : str = tmp_path / """cache""" _snake_case : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _snake_case : str = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : int , snake_case__ : List[Any] ): """simple docstring""" _snake_case : str = tmp_path / """cache""" _snake_case : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : List[Any] = features.copy() if features else default_expected_features _snake_case : List[Any] = ( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) _snake_case : Optional[Any] = ParquetDatasetReader(snake_case__ , features=snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : List[str] = tmp_path / """cache""" _snake_case : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : int = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ , split=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : str , snake_case__ : str ): """simple docstring""" if issubclass(snake_case__ , snake_case__ ): _snake_case : Optional[Any] = parquet_path elif issubclass(snake_case__ , snake_case__ ): _snake_case : int = [parquet_path] _snake_case : Union[str, Any] = tmp_path / """cache""" _snake_case : Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : List[str] = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : str=("train",) ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ) for split in splits: _snake_case : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str , snake_case__ : List[Any] ): """simple docstring""" _snake_case : Tuple = tmp_path / """cache""" _snake_case : Optional[int] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _snake_case : Tuple = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] ): """simple docstring""" _snake_case : Optional[int] = tmp_path / """cache""" _snake_case : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : Optional[Any] = features.copy() if features else default_expected_features _snake_case : Dict = ( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) _snake_case : Optional[int] = ParquetDatasetReader({"""train""": parquet_path} , features=snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Tuple ): """simple docstring""" if split: _snake_case : int = {split: parquet_path} else: _snake_case : Optional[Any] = """train""" _snake_case : int = {"""train""": parquet_path, """test""": parquet_path} _snake_case : Dict = tmp_path / """cache""" _snake_case : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : Union[str, Any] = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : Tuple ): """simple docstring""" _snake_case : List[Any] = ParquetDatasetWriter(snake_case__ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _snake_case : str = pq.ParquetFile(tmp_path / """foo.parquet""" ) _snake_case : int = pf.read() assert dataset.data.table == output_table def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : Optional[Any] = str(shared_datadir / """test_image_rgb.jpg""" ) _snake_case : Tuple = {"""image""": [image_path]} _snake_case : Optional[int] = Features({"""image""": Image()} ) _snake_case : int = Dataset.from_dict(snake_case__ , features=snake_case__ ) _snake_case : Optional[Any] = ParquetDatasetWriter(snake_case__ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _snake_case : List[str] = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features _snake_case : Optional[Any] = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=snake_case__ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : str ): """simple docstring""" assert get_writer_batch_size(snake_case__ ) == expected
28
0
"""simple docstring""" from jiwer import compute_measures import datasets A_ = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' A_ = '''\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. ''' A_ = ''' Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> wer = datasets.load_metric("wer") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self: Any ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { """predictions""": datasets.Value("""string""", id="""sequence""" ), """references""": datasets.Value("""string""", id="""sequence""" ), } ), codebase_urls=["""https://github.com/jitsi/jiwer/"""], reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ], ) def UpperCamelCase_ ( self: Optional[int], a_: Any=None, a_: int=None, a_: str=False ): '''simple docstring''' if concatenate_texts: return compute_measures(a_, a_ )["wer"] else: _snake_case : int = 0 _snake_case : int = 0 for prediction, reference in zip(a_, a_ ): _snake_case : Optional[int] = compute_measures(a_, a_ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
716
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase: '''simple docstring''' def __init__( self: Dict, a_: Union[str, Any], a_: Tuple=13, a_: Dict=32, a_: Optional[Any]=3, a_: Optional[Any]=4, a_: Optional[int]=[10, 20, 30, 40], a_: Any=[2, 2, 3, 2], a_: Dict=True, a_: Dict=True, a_: List[str]=37, a_: Dict="gelu", a_: List[str]=10, a_: Union[str, Any]=0.02, a_: Any=["stage2", "stage3", "stage4"], a_: Optional[int]=3, a_: Tuple=None, ): '''simple docstring''' _snake_case : Dict = parent _snake_case : Dict = batch_size _snake_case : Optional[Any] = image_size _snake_case : int = num_channels _snake_case : Tuple = num_stages _snake_case : int = hidden_sizes _snake_case : List[str] = depths _snake_case : str = is_training _snake_case : Dict = use_labels _snake_case : List[str] = intermediate_size _snake_case : Optional[int] = hidden_act _snake_case : Any = type_sequence_label_size _snake_case : List[str] = initializer_range _snake_case : Union[str, Any] = out_features _snake_case : Dict = num_labels _snake_case : int = scope _snake_case : Dict = num_stages def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Optional[int] = None if self.use_labels: _snake_case : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) _snake_case : Tuple = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels, num_stages=self.num_stages, hidden_sizes=self.hidden_sizes, depths=self.depths, is_training=self.is_training, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, out_features=self.out_features, ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config(), hidden_size=512, pool_scales=[1, 2, 3, 6], use_auxiliary_head=a_, auxiliary_loss_weight=0.4, auxiliary_in_channels=40, auxiliary_channels=256, auxiliary_num_convs=1, auxiliary_concat_input=a_, loss_ignore_index=255, num_labels=self.num_labels, ) def UpperCamelCase_ ( self: Tuple, a_: List[Any], a_: Dict, a_: Tuple ): '''simple docstring''' _snake_case : List[Any] = UperNetForSemanticSegmentation(config=a_ ) model.to(a_ ) model.eval() _snake_case : Tuple = model(a_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Any = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : List[Any] = config_and_inputs _snake_case : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase__ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = UperNetModelTester(self ) _snake_case : Dict = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Dict = model_class(a_ ) _snake_case : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Tuple = [*signature.parameters.keys()] _snake_case : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1], a_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not have a base model""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not have a base model""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' pass def UpperCamelCase_ ( self: str ): '''simple docstring''' def check_hidden_states_output(a_: Dict, a_: List[str], a_: Optional[int] ): _snake_case : Optional[Any] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): _snake_case : Any = model(**self._prepare_for_class(a_, a_ ) ) _snake_case : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case : List[str] = self.model_tester.num_stages self.assertEqual(len(a_ ), expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) _snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : int = True check_hidden_states_output(a_, a_, a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : Optional[int] = True check_hidden_states_output(a_, a_, a_ ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Tuple = _config_zero_init(a_ ) _snake_case : Dict = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _snake_case : Optional[int] = model_class(config=a_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' pass @slow def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : int = UperNetForSemanticSegmentation.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Union[str, Any] = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) _snake_case : List[Any] = Image.open(snake_case__ ).convert("""RGB""" ) return image @require_torch @require_vision @slow class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : str = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) _snake_case : Any = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(a_ ) _snake_case : Dict = prepare_img() _snake_case : str = processor(images=a_, return_tensors="""pt""" ).to(a_ ) with torch.no_grad(): _snake_case : Tuple = model(**a_ ) _snake_case : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape, a_ ) _snake_case : int = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], a_, atol=1E-4 ) ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) _snake_case : Optional[int] = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(a_ ) _snake_case : List[str] = prepare_img() _snake_case : Tuple = processor(images=a_, return_tensors="""pt""" ).to(a_ ) with torch.no_grad(): _snake_case : Optional[Any] = model(**a_ ) _snake_case : Union[str, Any] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape, a_ ) _snake_case : Optional[Any] = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], a_, atol=1E-4 ) )
28
0
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" while a != 0: _snake_case : Tuple = b % a, a return b def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" if gcd(snake_case__ , snake_case__ ) != 1: _snake_case : Union[str, Any] = F"mod inverse of {a!r} and {m!r} does not exist" raise ValueError(snake_case__ ) _snake_case : str = 1, 0, a _snake_case : List[str] = 0, 1, m while va != 0: _snake_case : Union[str, Any] = ua // va _snake_case : List[Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
717
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path A_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) A_ = [ord(letter) for letter in string.ascii_lowercase] A_ = {ord(char) for char in VALID_CHARS} A_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : tuple[int, ...] ): """simple docstring""" _snake_case : str = "" _snake_case : int _snake_case : int _snake_case : int for keychar, cipherchar in zip(cycle(snake_case__ ) , snake_case__ ): _snake_case : List[str] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case__ ) return decoded def UpperCAmelCase__ (snake_case__ : list[int] ): """simple docstring""" _snake_case : list[str] = [] for key in product(snake_case__ , repeat=3 ): _snake_case : List[Any] = try_key(snake_case__ , snake_case__ ) if encoded is not None: possibles.append(snake_case__ ) return possibles def UpperCAmelCase__ (snake_case__ : list[str] , snake_case__ : str ): """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def UpperCAmelCase__ (snake_case__ : str = "p059_cipher.txt" ): """simple docstring""" _snake_case : list[int] _snake_case : list[str] _snake_case : str _snake_case : str _snake_case : str = Path(snake_case__ ).parent.joinpath(snake_case__ ).read_text(encoding="""utf-8""" ) _snake_case : List[Any] = [int(snake_case__ ) for number in data.strip().split(""",""" )] _snake_case : Optional[Any] = filter_valid_chars(snake_case__ ) for common_word in COMMON_WORDS: _snake_case : Union[str, Any] = filter_common_word(snake_case__ , snake_case__ ) if len(snake_case__ ) == 1: break _snake_case : Optional[int] = possibles[0] return sum(ord(snake_case__ ) for char in decoded_text ) if __name__ == "__main__": print(F'''{solution() = }''')
28
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCAmelCase__ (): """simple docstring""" _snake_case : Union[str, Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=snake_case__ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=snake_case__ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=snake_case__ ) return parser.parse_args() def UpperCAmelCase__ (): """simple docstring""" _snake_case : int = parse_args() # Import training_script as a module. _snake_case : int = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _snake_case : List[str] = script_fpath.stem _snake_case : Any = importlib.import_module(snake_case__ ) # Patch sys.argv _snake_case : int = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
718
"""simple docstring""" from ...processing_utils import ProcessorMixin class lowercase( __a ): '''simple docstring''' lowercase__ = ["image_processor", "feature_extractor"] lowercase__ = "TvltImageProcessor" lowercase__ = "TvltFeatureExtractor" def __init__( self: Dict, a_: Union[str, Any], a_: Union[str, Any] ): '''simple docstring''' super().__init__(image_processor=a_, feature_extractor=a_ ) _snake_case : Any = image_processor _snake_case : Dict = feature_extractor def __call__( self: int, a_: str=None, a_: Tuple=None, a_: Dict=None, a_: str=None, a_: Optional[int]=False, a_: Tuple=False, *a_: List[str], **a_: int, ): '''simple docstring''' if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) _snake_case : Optional[int] = None if images is not None: _snake_case : Tuple = self.image_processor(a_, mask_pixel=a_, *a_, **a_ ) if images_mixed is not None: _snake_case : Optional[int] = self.image_processor(a_, is_mixed=a_, *a_, **a_ ) if audio is not None: _snake_case : Any = self.feature_extractor( a_, *a_, sampling_rate=a_, mask_audio=a_, **a_ ) _snake_case : List[str] = {} if audio is not None: output_dict.update(a_ ) if images is not None: output_dict.update(a_ ) if images_mixed_dict is not None: output_dict.update(a_ ) return output_dict @property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Dict = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
28
0
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : str=0.9_99 , snake_case__ : Dict="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case__ : Optional[Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case__ : Optional[int] ): return math.exp(t * -12.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) _snake_case : List[Any] = [] for i in range(snake_case__ ): _snake_case : Tuple = i / num_diffusion_timesteps _snake_case : Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case__ ) / alpha_bar_fn(snake_case__ ) , snake_case__ ) ) return torch.tensor(snake_case__ , dtype=torch.floataa ) class lowercase( __a , __a ): '''simple docstring''' lowercase__ = [e.name for e in KarrasDiffusionSchedulers] lowercase__ = 2 @register_to_config def __init__( self: Tuple, a_: int = 1_000, a_: float = 0.00_085, a_: float = 0.012, a_: str = "linear", a_: Optional[Union[np.ndarray, List[float]]] = None, a_: str = "epsilon", a_: str = "linspace", a_: int = 0, ): '''simple docstring''' if trained_betas is not None: _snake_case : Tuple = torch.tensor(a_, dtype=torch.floataa ) elif beta_schedule == "linear": _snake_case : Dict = torch.linspace(a_, a_, a_, dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _snake_case : List[str] = ( torch.linspace(beta_start**0.5, beta_end**0.5, a_, dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _snake_case : str = betas_for_alpha_bar(a_ ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) _snake_case : int = 1.0 - self.betas _snake_case : Optional[Any] = torch.cumprod(self.alphas, dim=0 ) # set all values self.set_timesteps(a_, a_, a_ ) def UpperCamelCase_ ( self: Tuple, a_: List[str], a_: Dict=None ): '''simple docstring''' if schedule_timesteps is None: _snake_case : List[Any] = self.timesteps _snake_case : Any = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _snake_case : List[Any] = 1 if len(a_ ) > 1 else 0 else: _snake_case : int = timestep.cpu().item() if torch.is_tensor(a_ ) else timestep _snake_case : Tuple = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCamelCase_ ( self: Optional[Any], a_: torch.FloatTensor, a_: Union[float, torch.FloatTensor], ): '''simple docstring''' _snake_case : Union[str, Any] = self.index_for_timestep(a_ ) if self.state_in_first_order: _snake_case : List[str] = self.sigmas[step_index] else: _snake_case : Any = self.sigmas_interpol[step_index] _snake_case : List[str] = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCamelCase_ ( self: List[str], a_: int, a_: Union[str, torch.device] = None, a_: Optional[int] = None, ): '''simple docstring''' _snake_case : Union[str, Any] = num_inference_steps _snake_case : Optional[int] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _snake_case : Optional[int] = np.linspace(0, num_train_timesteps - 1, a_, dtype=a_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _snake_case : int = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _snake_case : int = (np.arange(0, a_ ) * step_ratio).round()[::-1].copy().astype(a_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _snake_case : Optional[int] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _snake_case : Tuple = (np.arange(a_, 0, -step_ratio )).round().copy().astype(a_ ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) _snake_case : Dict = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _snake_case : Dict = torch.from_numpy(np.log(a_ ) ).to(a_ ) _snake_case : int = np.interp(a_, np.arange(0, len(a_ ) ), a_ ) _snake_case : Tuple = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _snake_case : str = torch.from_numpy(a_ ).to(device=a_ ) # interpolate sigmas _snake_case : int = sigmas.log().lerp(sigmas.roll(1 ).log(), 0.5 ).exp() _snake_case : Optional[int] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _snake_case : Optional[Any] = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(a_ ).startswith("""mps""" ): # mps does not support float64 _snake_case : Dict = torch.from_numpy(a_ ).to(a_, dtype=torch.floataa ) else: _snake_case : Optional[Any] = torch.from_numpy(a_ ).to(a_ ) # interpolate timesteps _snake_case : Tuple = self.sigma_to_t(a_ ).to(a_, dtype=timesteps.dtype ) _snake_case : List[Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]), dim=-1 ).flatten() _snake_case : List[str] = torch.cat([timesteps[:1], interleaved_timesteps] ) _snake_case : Optional[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _snake_case : List[str] = defaultdict(a_ ) def UpperCamelCase_ ( self: Optional[Any], a_: Tuple ): '''simple docstring''' _snake_case : Tuple = sigma.log() # get distribution _snake_case : Any = log_sigma - self.log_sigmas[:, None] # get sigmas range _snake_case : int = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _snake_case : Dict = low_idx + 1 _snake_case : List[str] = self.log_sigmas[low_idx] _snake_case : int = self.log_sigmas[high_idx] # interpolate sigmas _snake_case : Any = (low - log_sigma) / (low - high) _snake_case : Dict = w.clamp(0, 1 ) # transform interpolation to time range _snake_case : Tuple = (1 - w) * low_idx + w * high_idx _snake_case : List[Any] = t.view(sigma.shape ) return t @property def UpperCamelCase_ ( self: Any ): '''simple docstring''' return self.sample is None def UpperCamelCase_ ( self: Any, a_: Union[torch.FloatTensor, np.ndarray], a_: Union[float, torch.FloatTensor], a_: Union[torch.FloatTensor, np.ndarray], a_: bool = True, ): '''simple docstring''' _snake_case : Any = self.index_for_timestep(a_ ) # advance index counter by 1 _snake_case : List[str] = timestep.cpu().item() if torch.is_tensor(a_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _snake_case : Union[str, Any] = self.sigmas[step_index] _snake_case : Optional[Any] = self.sigmas_interpol[step_index + 1] _snake_case : Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _snake_case : int = self.sigmas[step_index - 1] _snake_case : Any = self.sigmas_interpol[step_index] _snake_case : Tuple = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _snake_case : Optional[int] = 0 _snake_case : List[str] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _snake_case : str = sigma_hat if self.state_in_first_order else sigma_interpol _snake_case : Optional[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _snake_case : Dict = sigma_hat if self.state_in_first_order else sigma_interpol _snake_case : Optional[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _snake_case : int = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _snake_case : Tuple = sigma_interpol - sigma_hat # store for 2nd order step _snake_case : str = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _snake_case : Optional[Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _snake_case : Any = sigma_next - sigma_hat _snake_case : Optional[int] = self.sample _snake_case : Optional[Any] = None _snake_case : Union[str, Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a_ ) def UpperCamelCase_ ( self: Optional[Any], a_: torch.FloatTensor, a_: torch.FloatTensor, a_: torch.FloatTensor, ): '''simple docstring''' _snake_case : Union[str, Any] = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(a_ ): # mps does not support float64 _snake_case : Dict = self.timesteps.to(original_samples.device, dtype=torch.floataa ) _snake_case : List[Any] = timesteps.to(original_samples.device, dtype=torch.floataa ) else: _snake_case : Optional[Any] = self.timesteps.to(original_samples.device ) _snake_case : Any = timesteps.to(original_samples.device ) _snake_case : List[str] = [self.index_for_timestep(a_, a_ ) for t in timesteps] _snake_case : Tuple = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _snake_case : List[Any] = sigma.unsqueeze(-1 ) _snake_case : Any = original_samples + noise * sigma return noisy_samples def __len__( self: Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
719
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A_ = '''pt''' elif is_tf_available(): A_ = '''tf''' else: A_ = '''jax''' class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ByTaTokenizer lowercase__ = False def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' super().setUp() _snake_case : List[str] = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def UpperCamelCase_ ( self: List[Any], **a_: int ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **a_ ) def UpperCamelCase_ ( self: Optional[Any], a_: Optional[Any], a_: List[Any]=False, a_: int=20, a_: Union[str, Any]=5 ): '''simple docstring''' _snake_case : List[Any] = [] for i in range(len(a_ ) ): try: _snake_case : Optional[Any] = tokenizer.decode([i], clean_up_tokenization_spaces=a_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _snake_case : str = list(filter(lambda a_ : re.match(r"""^[ a-zA-Z]+$""", t[1] ), a_ ) ) _snake_case : List[Any] = list(filter(lambda a_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=a_ ), a_ ) ) if max_length is not None and len(a_ ) > max_length: _snake_case : Tuple = toks[:max_length] if min_length is not None and len(a_ ) < min_length and len(a_ ) > 0: while len(a_ ) < min_length: _snake_case : List[str] = toks + toks # toks_str = [t[1] for t in toks] _snake_case : Tuple = [t[0] for t in toks] # Ensure consistency _snake_case : Optional[Any] = tokenizer.decode(a_, clean_up_tokenization_spaces=a_ ) if " " not in output_txt and len(a_ ) > 1: _snake_case : Dict = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=a_ ) + """ """ + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=a_ ) ) if with_prefix_space: _snake_case : Union[str, Any] = """ """ + output_txt _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) return output_txt, output_ids def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[int] = self.ta_base_tokenizer _snake_case : Optional[Any] = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) _snake_case : int = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""], batch_without_eos_added["""input_ids"""] ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[str] = self.ta_base_tokenizer _snake_case : Tuple = """Unicode €.""" _snake_case : List[Any] = tokenizer(a_ ) _snake_case : Tuple = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["""input_ids"""], a_ ) # decoding _snake_case : Tuple = tokenizer.decode(a_ ) self.assertEqual(a_, """Unicode €.</s>""" ) _snake_case : Tuple = tokenizer("""e è é ê ë""" ) _snake_case : List[Any] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["""input_ids"""], a_ ) # decoding _snake_case : int = tokenizer.decode(a_ ) self.assertEqual(a_, """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ), """e è é ê ë</s>""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Dict = self.ta_base_tokenizer _snake_case : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off _snake_case : Union[str, Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on _snake_case : int = tokenizer(a_, padding=a_, return_tensors=a_ ) self.assertIsInstance(a_, a_ ) if FRAMEWORK != "jax": _snake_case : List[str] = list(batch.input_ids.numpy()[0] ) else: _snake_case : Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(a_, a_ ) self.assertEqual((2, 37), batch.input_ids.shape ) self.assertEqual((2, 37), batch.attention_mask.shape ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : List[Any] = self.ta_base_tokenizer _snake_case : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _snake_case : Tuple = tokenizer(a_, padding=a_, return_tensors=a_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""", a_ ) self.assertIn("""attention_mask""", a_ ) self.assertNotIn("""decoder_input_ids""", a_ ) self.assertNotIn("""decoder_attention_mask""", a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Union[str, Any] = self.ta_base_tokenizer _snake_case : Dict = [ """Summary of the text.""", """Another summary.""", ] _snake_case : Optional[int] = tokenizer( text_target=a_, max_length=32, padding="""max_length""", truncation=a_, return_tensors=a_ ) self.assertEqual(32, targets["""input_ids"""].shape[1] ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : int = self.ta_base_tokenizer _snake_case : Optional[int] = ["""A long paragraph for summarization. </s>"""] _snake_case : Dict = ["""Summary of the text. </s>"""] # fmt: off _snake_case : Optional[int] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] _snake_case : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on _snake_case : Optional[Any] = tokenizer(a_, text_target=a_ ) self.assertEqual(a_, batch["""input_ids"""][0] ) self.assertEqual(a_, batch["""labels"""][0] ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test _snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _snake_case : List[str] = tempfile.mkdtemp() _snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running""" _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) _snake_case : List[Any] = tokenizer.__class__.from_pretrained(a_ ) _snake_case : Dict = after_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) shutil.rmtree(a_ ) _snake_case : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _snake_case : Union[str, Any] = tempfile.mkdtemp() _snake_case : List[Any] = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) _snake_case : Optional[Any] = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) _snake_case : Optional[Any] = tokenizer.__class__.from_pretrained(a_ ) _snake_case : str = after_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) self.assertIn("""new_additional_special_token""", after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) _snake_case : Optional[int] = tokenizer.__class__.from_pretrained(a_, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(a_ ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a_ ) with open(os.path.join(a_, """special_tokens_map.json""" ), encoding="""utf-8""" ) as json_file: _snake_case : Union[str, Any] = json.load(a_ ) with open(os.path.join(a_, """tokenizer_config.json""" ), encoding="""utf-8""" ) as json_file: _snake_case : List[Any] = json.load(a_ ) _snake_case : int = [f"<extra_id_{i}>" for i in range(125 )] _snake_case : Optional[int] = added_tokens_extra_ids + [ """an_additional_special_token""" ] _snake_case : Dict = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(a_, """special_tokens_map.json""" ), """w""", encoding="""utf-8""" ) as outfile: json.dump(a_, a_ ) with open(os.path.join(a_, """tokenizer_config.json""" ), """w""", encoding="""utf-8""" ) as outfile: json.dump(a_, a_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case : Optional[int] = tokenizer_class.from_pretrained( a_, ) self.assertIn( """an_additional_special_token""", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case : Union[str, Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""", lstrip=a_ )] _snake_case : List[Any] = tokenizer_class.from_pretrained( a_, additional_special_tokens=a_, ) self.assertIn("""a_new_additional_special_token""", tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ), ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a_ ) _snake_case : Optional[Any] = tokenizer_class.from_pretrained(a_ ) self.assertTrue(tokenizer.decode([255] ) == """""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.get_tokenizers(fast=a_, do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : Dict = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] _snake_case : List[Any] = tokenizer.convert_tokens_to_string(a_ ) self.assertIsInstance(a_, a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : Optional[int] = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] _snake_case : Any = 0 _snake_case : Union[str, Any] = tokenizer.convert_ids_to_tokens( a_, skip_special_tokens=a_ ) for attr in attributes_list: setattr(a_, attr + """_id""", a_ ) self.assertEqual(getattr(a_, a_ ), a_ ) self.assertEqual(getattr(a_, attr + """_id""" ), a_ ) setattr(a_, attr + """_id""", a_ ) self.assertEqual(getattr(a_, a_ ), a_ ) self.assertEqual(getattr(a_, attr + """_id""" ), a_ ) setattr(a_, """additional_special_tokens_ids""", [] ) self.assertListEqual(getattr(a_, """additional_special_tokens""" ), [] ) self.assertListEqual(getattr(a_, """additional_special_tokens_ids""" ), [] ) setattr(a_, """additional_special_tokens_ids""", [token_id_to_test_setters] ) self.assertListEqual(getattr(a_, """additional_special_tokens""" ), [token_to_test_setters] ) self.assertListEqual(getattr(a_, """additional_special_tokens_ids""" ), [token_id_to_test_setters] )
28
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer A_ = logging.get_logger(__name__) A_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} A_ = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } A_ = { '''distilbert-base-uncased''': 5_12, '''distilbert-base-uncased-distilled-squad''': 5_12, '''distilbert-base-cased''': 5_12, '''distilbert-base-cased-distilled-squad''': 5_12, '''distilbert-base-german-cased''': 5_12, '''distilbert-base-multilingual-cased''': 5_12, } A_ = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class lowercase( __a ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = ["input_ids", "attention_mask"] lowercase__ = DistilBertTokenizer def __init__( self: int, a_: Union[str, Any]=None, a_: int=None, a_: str=True, a_: Dict="[UNK]", a_: List[str]="[SEP]", a_: Dict="[PAD]", a_: Union[str, Any]="[CLS]", a_: Dict="[MASK]", a_: Optional[Any]=True, a_: List[Any]=None, **a_: Optional[int], ): '''simple docstring''' super().__init__( a_, tokenizer_file=a_, do_lower_case=a_, unk_token=a_, sep_token=a_, pad_token=a_, cls_token=a_, mask_token=a_, tokenize_chinese_chars=a_, strip_accents=a_, **a_, ) _snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""", a_ ) != do_lower_case or normalizer_state.get("""strip_accents""", a_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""", a_ ) != tokenize_chinese_chars ): _snake_case : Optional[Any] = getattr(a_, normalizer_state.pop("""type""" ) ) _snake_case : List[Any] = do_lower_case _snake_case : Optional[Any] = strip_accents _snake_case : Optional[int] = tokenize_chinese_chars _snake_case : Dict = normalizer_class(**a_ ) _snake_case : int = do_lower_case def UpperCamelCase_ ( self: Tuple, a_: Union[str, Any], a_: str=None ): '''simple docstring''' _snake_case : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self: Optional[int], a_: List[int], a_: Optional[List[int]] = None ): '''simple docstring''' _snake_case : List[Any] = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self: Optional[Any], a_: str, a_: Optional[str] = None ): '''simple docstring''' _snake_case : Optional[Any] = self._tokenizer.model.save(a_, name=a_ ) return tuple(a_ )
720
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class lowercase( __a ): '''simple docstring''' @staticmethod @abstractmethod def UpperCamelCase_ ( a_: ArgumentParser ): '''simple docstring''' raise NotImplementedError() @abstractmethod def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' raise NotImplementedError()
28
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (snake_case__ : list[int | str] ): """simple docstring""" create_state_space_tree(snake_case__ , [] , 0 , [0 for i in range(len(snake_case__ ) )] ) def UpperCAmelCase__ (snake_case__ : list[int | str] , snake_case__ : list[int | str] , snake_case__ : int , snake_case__ : list[int] , ): """simple docstring""" if index == len(snake_case__ ): print(snake_case__ ) return for i in range(len(snake_case__ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _snake_case : Optional[Any] = True create_state_space_tree(snake_case__ , snake_case__ , index + 1 , snake_case__ ) current_sequence.pop() _snake_case : Optional[int] = False A_ = [3, 1, 2, 4] generate_all_permutations(sequence) A_ = ['''A''', '''B''', '''C'''] generate_all_permutations(sequence_a)
721
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase( __a ): '''simple docstring''' lowercase__ = "roformer" def __init__( self: List[str], a_: Tuple=50_000, a_: Optional[Any]=None, a_: List[str]=768, a_: Union[str, Any]=12, a_: Optional[int]=12, a_: Optional[Any]=3_072, a_: List[str]="gelu", a_: List[str]=0.1, a_: Tuple=0.1, a_: Optional[int]=1_536, a_: Any=2, a_: Optional[int]=0.02, a_: Tuple=1E-12, a_: Dict=0, a_: str=False, a_: Dict=True, **a_: Dict, ): '''simple docstring''' super().__init__(pad_token_id=a_, **a_ ) _snake_case : int = vocab_size _snake_case : int = hidden_size if embedding_size is None else embedding_size _snake_case : Dict = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : Any = num_attention_heads _snake_case : Dict = hidden_act _snake_case : Optional[int] = intermediate_size _snake_case : List[Any] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = max_position_embeddings _snake_case : Tuple = type_vocab_size _snake_case : List[Any] = initializer_range _snake_case : List[Any] = layer_norm_eps _snake_case : Optional[Any] = rotary_value _snake_case : List[str] = use_cache class lowercase( __a ): '''simple docstring''' @property def UpperCamelCase_ ( self: Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : str = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : List[str] = {0: """batch""", 1: """sequence"""} _snake_case : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
28
0
"""simple docstring""" import warnings from functools import wraps from typing import Callable def UpperCAmelCase__ (snake_case__ : Callable ): """simple docstring""" @wraps(snake_case__ ) def _inner_fn(*snake_case__ : Any , **snake_case__ : Tuple ): warnings.warn( (F"'{fn.__name__}' is experimental and might be subject to breaking changes in the future.") , snake_case__ , ) return fn(*snake_case__ , **snake_case__ ) return _inner_fn
700
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Union[str, Any]=1 ): """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : List[Any]=0 ): """simple docstring""" _snake_case : Optional[Any] = [] for old_item in old_list: _snake_case : Union[str, Any] = old_item.replace("""in_layers.0""" , """norm1""" ) _snake_case : List[Any] = new_item.replace("""in_layers.2""" , """conv1""" ) _snake_case : Tuple = new_item.replace("""out_layers.0""" , """norm2""" ) _snake_case : Dict = new_item.replace("""out_layers.3""" , """conv2""" ) _snake_case : int = new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) _snake_case : Optional[Any] = new_item.replace("""skip_connection""" , """conv_shortcut""" ) _snake_case : str = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : Dict=0 ): """simple docstring""" _snake_case : Dict = [] for old_item in old_list: _snake_case : Dict = old_item _snake_case : int = new_item.replace("""norm.weight""" , """group_norm.weight""" ) _snake_case : str = new_item.replace("""norm.bias""" , """group_norm.bias""" ) _snake_case : Optional[Any] = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) _snake_case : Optional[Any] = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) _snake_case : Optional[Any] = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : str=None , snake_case__ : str=None , snake_case__ : List[str]=None ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _snake_case : Union[str, Any] = old_checkpoint[path] _snake_case : Optional[int] = old_tensor.shape[0] // 3 _snake_case : List[Any] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) _snake_case : Union[str, Any] = old_tensor.shape[0] // config["""num_head_channels"""] // 3 _snake_case : Any = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _snake_case , _snake_case , _snake_case : List[str] = old_tensor.split(channels // num_heads , dim=1 ) _snake_case : Union[str, Any] = query.reshape(snake_case__ ) _snake_case : Tuple = key.reshape(snake_case__ ) _snake_case : Any = value.reshape(snake_case__ ) for path in paths: _snake_case : List[Any] = path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _snake_case : Union[str, Any] = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) _snake_case : str = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) _snake_case : Any = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: _snake_case : int = new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _snake_case : Dict = old_checkpoint[path["""old"""]][:, :, 0] else: _snake_case : Optional[Any] = old_checkpoint[path["""old"""]] def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : List[str] ): """simple docstring""" _snake_case : int = {} _snake_case : Tuple = checkpoint["""time_embed.0.weight"""] _snake_case : List[str] = checkpoint["""time_embed.0.bias"""] _snake_case : List[str] = checkpoint["""time_embed.2.weight"""] _snake_case : Tuple = checkpoint["""time_embed.2.bias"""] _snake_case : Dict = checkpoint["""input_blocks.0.0.weight"""] _snake_case : List[Any] = checkpoint["""input_blocks.0.0.bias"""] _snake_case : List[Any] = checkpoint["""out.0.weight"""] _snake_case : Any = checkpoint["""out.0.bias"""] _snake_case : Any = checkpoint["""out.2.weight"""] _snake_case : List[str] = checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only _snake_case : List[str] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) _snake_case : Any = { layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key] for layer_id in range(snake_case__ ) } # Retrieves the keys for the middle blocks only _snake_case : Optional[int] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) _snake_case : Optional[int] = { layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key] for layer_id in range(snake_case__ ) } # Retrieves the keys for the output blocks only _snake_case : str = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) _snake_case : List[Any] = { layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key] for layer_id in range(snake_case__ ) } for i in range(1 , snake_case__ ): _snake_case : Union[str, Any] = (i - 1) // (config["""num_res_blocks"""] + 1) _snake_case : int = (i - 1) % (config["""num_res_blocks"""] + 1) _snake_case : List[str] = [key for key in input_blocks[i] if F"input_blocks.{i}.0" in key] _snake_case : str = [key for key in input_blocks[i] if F"input_blocks.{i}.1" in key] if F"input_blocks.{i}.0.op.weight" in checkpoint: _snake_case : Union[str, Any] = checkpoint[ F"input_blocks.{i}.0.op.weight" ] _snake_case : Dict = checkpoint[ F"input_blocks.{i}.0.op.bias" ] continue _snake_case : Optional[int] = renew_resnet_paths(snake_case__ ) _snake_case : int = {"""old""": F"input_blocks.{i}.0", """new""": F"down_blocks.{block_id}.resnets.{layer_in_block_id}"} _snake_case : Tuple = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path, resnet_op] , config=snake_case__ ) if len(snake_case__ ): _snake_case : str = renew_attention_paths(snake_case__ ) _snake_case : List[str] = { """old""": F"input_blocks.{i}.1", """new""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}", } _snake_case : Optional[int] = { F"input_blocks.{i}.1.qkv.bias": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"input_blocks.{i}.1.qkv.weight": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=snake_case__ , config=snake_case__ , ) _snake_case : int = middle_blocks[0] _snake_case : List[str] = middle_blocks[1] _snake_case : Any = middle_blocks[2] _snake_case : Dict = renew_resnet_paths(snake_case__ ) assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ ) _snake_case : Any = renew_resnet_paths(snake_case__ ) assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ ) _snake_case : Dict = renew_attention_paths(snake_case__ ) _snake_case : Tuple = { """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , attention_paths_to_split=snake_case__ , config=snake_case__ ) for i in range(snake_case__ ): _snake_case : Optional[Any] = i // (config["""num_res_blocks"""] + 1) _snake_case : Dict = i % (config["""num_res_blocks"""] + 1) _snake_case : List[str] = [shave_segments(snake_case__ , 2 ) for name in output_blocks[i]] _snake_case : Any = {} for layer in output_block_layers: _snake_case , _snake_case : Any = layer.split(""".""" )[0], shave_segments(snake_case__ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(snake_case__ ) else: _snake_case : str = [layer_name] if len(snake_case__ ) > 1: _snake_case : Dict = [key for key in output_blocks[i] if F"output_blocks.{i}.0" in key] _snake_case : List[str] = [key for key in output_blocks[i] if F"output_blocks.{i}.1" in key] _snake_case : List[Any] = renew_resnet_paths(snake_case__ ) _snake_case : int = renew_resnet_paths(snake_case__ ) _snake_case : Optional[Any] = {"""old""": F"output_blocks.{i}.0", """new""": F"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _snake_case : str = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) _snake_case : Any = checkpoint[ F"output_blocks.{i}.{index}.conv.weight" ] _snake_case : Optional[int] = checkpoint[ F"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(snake_case__ ) == 2: _snake_case : Any = [] if len(snake_case__ ): _snake_case : str = renew_attention_paths(snake_case__ ) _snake_case : str = { """old""": F"output_blocks.{i}.1", """new""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}", } _snake_case : int = { F"output_blocks.{i}.1.qkv.bias": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"output_blocks.{i}.1.qkv.weight": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=snake_case__ , ) else: _snake_case : Optional[Any] = renew_resnet_paths(snake_case__ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: _snake_case : Optional[Any] = """.""".join(["""output_blocks""", str(snake_case__ ), path["""old"""]] ) _snake_case : Optional[int] = """.""".join(["""up_blocks""", str(snake_case__ ), """resnets""", str(snake_case__ ), path["""new"""]] ) _snake_case : Any = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') A_ = parser.parse_args() A_ = torch.load(args.checkpoint_path) with open(args.config_file) as f: A_ = json.loads(f.read()) A_ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] A_ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: A_ = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) A_ = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) A_ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
28
0
"""simple docstring""" import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class lowercase( __a ): '''simple docstring''' def __init__( self: int, a_: int, a_: int, a_: Any=1_024, a_: List[Any]=1_024, a_: Optional[Any]=3.6 ): '''simple docstring''' _snake_case : Union[str, Any] = tokenizer _snake_case : int = tokenizer.bos_token_id _snake_case : Any = dataset _snake_case : str = seq_length _snake_case : List[Any] = seq_length * chars_per_token * num_of_sequences def __iter__( self: Optional[int] ): '''simple docstring''' _snake_case : Optional[int] = iter(self.dataset ) _snake_case : Optional[int] = True while more_examples: _snake_case : Optional[Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(a_ )["""content"""] ) buffer_len += len(buffer[-1] ) except StopIteration: _snake_case : Any = False break _snake_case : List[str] = tokenizer(a_, truncation=a_ )["""input_ids"""] _snake_case : Any = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0, len(a_ ), self.seq_length ): _snake_case : Union[str, Any] = all_token_ids[i : i + self.seq_length] if len(a_ ) == self.seq_length: yield torch.tensor(a_ ) def UpperCAmelCase__ (snake_case__ : Tuple ): """simple docstring""" _snake_case : Tuple = {"""streaming""": True} _snake_case : Dict = load_dataset(args.dataset_name , split="""train""" , **snake_case__ ) _snake_case : Union[str, Any] = ConstantLengthDataset(snake_case__ , snake_case__ , seq_length=args.seq_length ) _snake_case : str = DataLoader(snake_case__ , batch_size=args.batch_size ) return eval_dataloader def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" model.eval() _snake_case : int = [] for step, batch in enumerate(snake_case__ ): with torch.no_grad(): _snake_case : int = model(snake_case__ , labels=snake_case__ ) _snake_case : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(snake_case__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break _snake_case : List[str] = torch.mean(torch.cat(snake_case__ ) ) try: _snake_case : Tuple = torch.exp(snake_case__ ) except OverflowError: _snake_case : Dict = float("""inf""" ) return loss.item(), perplexity.item() # Setup Accelerator A_ = Accelerator() # Parse configuration A_ = HfArgumentParser(EvaluationArguments) A_ = parser.parse_args() set_seed(args.seed) # Logging A_ = logging.getLogger(__name__) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) # Load model and tokenizer A_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) A_ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader A_ = create_dataloader(args) # Prepare everything with our `accelerator`. A_ , A_ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('''Evaluating and saving model after training''') A_ , A_ = evaluate(args) logger.info(F'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
701
"""simple docstring""" from typing import Any def UpperCAmelCase__ (snake_case__ : list ): """simple docstring""" if not input_list: return [] _snake_case : List[Any] = [input_list.count(snake_case__ ) for value in input_list] _snake_case : Optional[int] = max(snake_case__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(snake_case__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
28
0
"""simple docstring""" import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput A_ = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase( __a ): '''simple docstring''' def __init__( self: Optional[Any], *a_: str, a_: int=None, a_: Optional[Any]=None, a_: List[str]=None, **a_: str ): '''simple docstring''' super().__init__(*a_, **a_ ) _snake_case : int = eval_examples _snake_case : Optional[int] = post_process_function _snake_case : Dict = quant_trainer_args _snake_case : Optional[int] = 128 # default number of calibration samples def UpperCamelCase_ ( self: Tuple, a_: Any=None ): '''simple docstring''' if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""" ) _snake_case : List[str] = calib_dataset if calib_dataset is not None else self.calib_dataset _snake_case : List[Any] = self._remove_unused_columns(a_, description="""Calibration""" ) return DataLoader( a_, batch_size=self.args.eval_batch_size, collate_fn=self.data_collator, drop_last=self.args.dataloader_drop_last, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.dataloader_pin_memory, shuffle=a_, ) def UpperCamelCase_ ( self: List[str], a_: Any=None ): '''simple docstring''' _snake_case : List[Any] = self.train_dataset if calib_dataset is None else calib_dataset _snake_case : Optional[int] = self.get_calib_dataloader(a_ ) _snake_case : int = self.model quant_trainer.configure_model(a_, self.quant_trainer_args, calib=a_ ) model.eval() quant_trainer.enable_calibration(a_ ) logger.info("""***** Running calibration *****""" ) logger.info(f" Num examples = {self.calib_num}" ) logger.info(f" Batch size = {calib_dataloader.batch_size}" ) for step, inputs in enumerate(a_ ): # Prediction step _snake_case : str = self.prediction_step(a_, a_, prediction_loss_only=a_ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(a_, self.quant_trainer_args ) _snake_case : str = model def UpperCamelCase_ ( self: List[Any], a_: Optional[int]=None, a_: str=None, a_: Optional[int]=None, a_: str = "eval" ): '''simple docstring''' _snake_case : Optional[int] = self.eval_dataset if eval_dataset is None else eval_dataset _snake_case : int = self.get_eval_dataloader(a_ ) _snake_case : Union[str, Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _snake_case : int = self.compute_metrics _snake_case : str = None _snake_case : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _snake_case : str = eval_loop( a_, description="""Evaluation""", prediction_loss_only=True if compute_metrics is None else None, ignore_keys=a_, ) finally: _snake_case : Any = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: _snake_case : Any = self.post_process_function(a_, a_, output.predictions ) _snake_case : Union[str, Any] = self.compute_metrics(a_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): _snake_case : Dict = metrics.pop(a_ ) self.log(a_ ) else: _snake_case : Union[str, Any] = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _snake_case : List[Any] = self.callback_handler.on_evaluate(self.args, self.state, self.control, a_ ) return metrics def UpperCamelCase_ ( self: Optional[Any], a_: int, a_: int, a_: Optional[Any]=None, a_: str = "test" ): '''simple docstring''' _snake_case : Dict = self.get_test_dataloader(a_ ) # Temporarily disable metric computation, we will do it in the loop here. _snake_case : Dict = self.compute_metrics _snake_case : Optional[int] = None _snake_case : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _snake_case : List[str] = eval_loop( a_, description="""Prediction""", prediction_loss_only=True if compute_metrics is None else None, ignore_keys=a_, ) finally: _snake_case : List[str] = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output _snake_case : List[Any] = self.post_process_function(a_, a_, output.predictions, """predict""" ) _snake_case : int = self.compute_metrics(a_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): _snake_case : List[str] = metrics.pop(a_ ) return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=a_ ) def UpperCamelCase_ ( self: Optional[int], a_: int="./" ): '''simple docstring''' _snake_case : Optional[int] = self.eval_dataset _snake_case : Union[str, Any] = self.get_eval_dataloader(a_ ) _snake_case : str = next(iter(a_ ) ) # saving device - to make it consistent _snake_case : List[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) # convert to tuple _snake_case : List[Any] = tuple(v.to(a_ ) for k, v in batch.items() ) logger.info("""Converting model to be onnx compatible""" ) from pytorch_quantization.nn import TensorQuantizer _snake_case : Dict = True _snake_case : str = self.model.to(a_ ) model.eval() model.float() _snake_case : List[Any] = model.module if hasattr(a_, """module""" ) else model quant_trainer.configure_model(a_, self.quant_trainer_args ) _snake_case : Dict = os.path.join(a_, """model.onnx""" ) logger.info(f"exporting model to {output_model_file}" ) _snake_case : List[Any] = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( a_, a_, a_, export_params=a_, opset_version=13, do_constant_folding=a_, input_names=["""input_ids""", """attention_mask""", """token_type_ids"""], output_names=["""output_start_logits""", """output_end_logits"""], dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, }, verbose=a_, ) logger.info("""onnx export finished""" )
702
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''', '''BridgeTower/bridgetower-base-itm-mlm''': ( '''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json''' ), } class lowercase( __a ): '''simple docstring''' lowercase__ = "bridgetower_vision_model" def __init__( self: Tuple, a_: str=768, a_: Union[str, Any]=12, a_: List[str]=3, a_: Optional[int]=16, a_: List[Any]=288, a_: Optional[Any]=1, a_: Any=1E-05, a_: Dict=False, a_: Any=True, a_: int=False, **a_: int, ): '''simple docstring''' super().__init__(**a_ ) _snake_case : str = hidden_size _snake_case : int = num_hidden_layers _snake_case : Any = num_channels _snake_case : Union[str, Any] = patch_size _snake_case : Dict = image_size _snake_case : Optional[Any] = initializer_factor _snake_case : Any = layer_norm_eps _snake_case : int = stop_gradient _snake_case : Any = share_layernorm _snake_case : List[Any] = remove_last_layer @classmethod def UpperCamelCase_ ( cls: Union[str, Any], a_: Union[str, os.PathLike], **a_: Optional[Any] ): '''simple docstring''' _snake_case , _snake_case : List[Any] = cls.get_config_dict(a_, **a_ ) if config_dict.get("""model_type""" ) == "bridgetower": _snake_case : str = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a_, **a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "bridgetower_text_model" def __init__( self: str, a_: Dict=50_265, a_: List[Any]=768, a_: Union[str, Any]=12, a_: List[str]=12, a_: str=1, a_: Optional[Any]=3_072, a_: int="gelu", a_: int=0.1, a_: int=0.1, a_: Optional[int]=514, a_: Tuple=1, a_: Tuple=1E-05, a_: Optional[int]=1, a_: Union[str, Any]=0, a_: str=2, a_: Any="absolute", a_: List[Any]=True, **a_: Union[str, Any], ): '''simple docstring''' super().__init__(**a_ ) _snake_case : str = vocab_size _snake_case : Optional[int] = hidden_size _snake_case : Dict = num_hidden_layers _snake_case : Optional[int] = num_attention_heads _snake_case : Optional[int] = hidden_act _snake_case : List[Any] = initializer_factor _snake_case : Optional[int] = intermediate_size _snake_case : int = hidden_dropout_prob _snake_case : Tuple = attention_probs_dropout_prob _snake_case : List[str] = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : List[Any] = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Dict = use_cache _snake_case : int = pad_token_id _snake_case : Union[str, Any] = bos_token_id _snake_case : Union[str, Any] = eos_token_id @classmethod def UpperCamelCase_ ( cls: str, a_: Union[str, os.PathLike], **a_: int ): '''simple docstring''' _snake_case , _snake_case : Optional[int] = cls.get_config_dict(a_, **a_ ) if config_dict.get("""model_type""" ) == "bridgetower": _snake_case : Union[str, Any] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a_, **a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "bridgetower" def __init__( self: int, a_: List[str]=True, a_: Any="gelu", a_: List[Any]=768, a_: int=1, a_: Optional[int]=1E-05, a_: Tuple=False, a_: Optional[Any]="add", a_: List[str]=12, a_: Union[str, Any]=6, a_: int=False, a_: Any=False, a_: Dict=None, a_: Any=None, **a_: str, ): '''simple docstring''' _snake_case : str = kwargs.pop("""text_config_dict""", a_ ) _snake_case : Optional[Any] = kwargs.pop("""vision_config_dict""", a_ ) super().__init__(**a_ ) _snake_case : str = share_cross_modal_transformer_layers _snake_case : Any = hidden_act _snake_case : Union[str, Any] = hidden_size _snake_case : Union[str, Any] = initializer_factor _snake_case : Dict = layer_norm_eps _snake_case : Dict = share_link_tower_layers _snake_case : Optional[int] = link_tower_type _snake_case : Any = num_attention_heads _snake_case : int = num_hidden_layers _snake_case : int = tie_word_embeddings _snake_case : Optional[Any] = init_layernorm_from_vision_encoder if text_config is None: _snake_case : Optional[Any] = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: _snake_case : str = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) _snake_case : Any = BridgeTowerTextConfig(**a_ ) _snake_case : List[Any] = BridgeTowerVisionConfig(**a_ ) @classmethod def UpperCamelCase_ ( cls: Union[str, Any], a_: BridgeTowerTextConfig, a_: BridgeTowerVisionConfig, **a_: Optional[Any] ): '''simple docstring''' return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[int] = copy.deepcopy(self.__dict__ ) _snake_case : str = self.text_config.to_dict() _snake_case : List[str] = self.vision_config.to_dict() _snake_case : Tuple = self.__class__.model_type return output
28
0
"""simple docstring""" from __future__ import annotations import queue class lowercase: '''simple docstring''' def __init__( self: List[str], a_: Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = data _snake_case : List[Any] = None _snake_case : int = None def UpperCAmelCase__ (): print("""\n********Press N to stop entering at any point of time********\n""" ) _snake_case : Union[str, Any] = input("""Enter the value of the root node: """ ).strip().lower() _snake_case : queue.Queue = queue.Queue() _snake_case : List[str] = TreeNode(int(snake_case__ ) ) q.put(snake_case__ ) while not q.empty(): _snake_case : Union[str, Any] = q.get() _snake_case : str = F"Enter the left node of {node_found.data}: " _snake_case : int = input(snake_case__ ).strip().lower() or """n""" if check == "n": return tree_node _snake_case : Optional[Any] = TreeNode(int(snake_case__ ) ) _snake_case : List[Any] = left_node q.put(snake_case__ ) _snake_case : List[str] = F"Enter the right node of {node_found.data}: " _snake_case : Optional[Any] = input(snake_case__ ).strip().lower() or """n""" if check == "n": return tree_node _snake_case : List[Any] = TreeNode(int(snake_case__ ) ) _snake_case : Union[str, Any] = right_node q.put(snake_case__ ) raise def UpperCAmelCase__ (snake_case__ : TreeNode ): if not isinstance(snake_case__ , snake_case__ ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def UpperCAmelCase__ (snake_case__ : TreeNode ): if not isinstance(snake_case__ , snake_case__ ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def UpperCAmelCase__ (snake_case__ : TreeNode ): if not isinstance(snake_case__ , snake_case__ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def UpperCAmelCase__ (snake_case__ : TreeNode ): if not isinstance(snake_case__ , snake_case__ ) or not node: return _snake_case : queue.Queue = queue.Queue() q.put(snake_case__ ) while not q.empty(): _snake_case : int = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def UpperCAmelCase__ (snake_case__ : TreeNode ): if not isinstance(snake_case__ , snake_case__ ) or not node: return _snake_case : queue.Queue = queue.Queue() q.put(snake_case__ ) while not q.empty(): _snake_case : Any = [] while not q.empty(): _snake_case : Dict = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case__ ) def UpperCAmelCase__ (snake_case__ : TreeNode ): if not isinstance(snake_case__ , snake_case__ ) or not node: return _snake_case : list[TreeNode] = [] _snake_case : List[str] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(snake_case__ ) _snake_case : List[Any] = n.left # end of while means current node doesn't have left child _snake_case : Optional[int] = stack.pop() # start to traverse its right child _snake_case : Optional[int] = n.right def UpperCAmelCase__ (snake_case__ : TreeNode ): if not isinstance(snake_case__ , snake_case__ ) or not node: return _snake_case : list[TreeNode] = [] _snake_case : Dict = node while n or stack: while n: stack.append(snake_case__ ) _snake_case : Tuple = n.left _snake_case : List[str] = stack.pop() print(n.data , end=""",""" ) _snake_case : Dict = n.right def UpperCAmelCase__ (snake_case__ : TreeNode ): if not isinstance(snake_case__ , snake_case__ ) or not node: return _snake_case : Union[str, Any] = [], [] _snake_case : List[Any] = node stacka.append(snake_case__ ) while stacka: # to find the reversed order of post order, store it in stack2 _snake_case : List[Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case__ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def UpperCAmelCase__ (snake_case__ : str = "" , snake_case__ : List[str]=50 , snake_case__ : str="*" ): if not s: return "\n" + width * char _snake_case : Any = divmod(width - len(snake_case__ ) - 2 , 2 ) return F"{left * char} {s} {(left + extra) * char}" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('''Binary Tree Traversals''')) A_ = build_tree() print(prompt('''Pre Order Traversal''')) pre_order(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal''')) in_order(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal''')) post_order(node) print(prompt() + '''\n''') print(prompt('''Level Order Traversal''')) level_order(node) print(prompt() + '''\n''') print(prompt('''Actual Level Order Traversal''')) level_order_actual(node) print('''*''' * 50 + '''\n''') print(prompt('''Pre Order Traversal - Iteration Version''')) pre_order_iter(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal - Iteration Version''')) in_order_iter(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal - Iteration Version''')) post_order_iter(node) print(prompt())
703
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCAmelCase__ (): """simple docstring""" _snake_case : Optional[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" _snake_case : Union[str, Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("""RGB""" ) return image def UpperCAmelCase__ (snake_case__ : Any ): """simple docstring""" _snake_case : str = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"visual_encoder.blocks.{i}.norm1.weight", F"vision_model.encoder.layers.{i}.layer_norm1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm1.bias", F"vision_model.encoder.layers.{i}.layer_norm1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.weight", F"vision_model.encoder.layers.{i}.layer_norm2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.bias", F"vision_model.encoder.layers.{i}.layer_norm2.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.qkv.weight", F"vision_model.encoder.layers.{i}.self_attn.qkv.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.weight", F"vision_model.encoder.layers.{i}.self_attn.projection.weight",) ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.bias", F"vision_model.encoder.layers.{i}.self_attn.projection.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.weight", F"vision_model.encoder.layers.{i}.mlp.fc1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.bias", F"vision_model.encoder.layers.{i}.mlp.fc1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.weight", F"vision_model.encoder.layers.{i}.mlp.fc2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.bias", F"vision_model.encoder.layers.{i}.mlp.fc2.bias") ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : Tuple ): """simple docstring""" _snake_case : Optional[Any] = dct.pop(snake_case__ ) _snake_case : Optional[int] = val def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : str ): """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _snake_case : Optional[int] = state_dict.pop(F"visual_encoder.blocks.{i}.attn.q_bias" ) _snake_case : Tuple = state_dict.pop(F"visual_encoder.blocks.{i}.attn.v_bias" ) # next, set bias in the state dict _snake_case : List[str] = torch.cat((q_bias, torch.zeros_like(snake_case__ , requires_grad=snake_case__ ), v_bias) ) _snake_case : Dict = qkv_bias def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Union[str, Any] ): """simple docstring""" _snake_case : List[Any] = 3_64 if """coco""" in model_name else 2_24 _snake_case : List[str] = BlipaVisionConfig(image_size=snake_case__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _snake_case : List[str] = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=snake_case__ ).to_dict() elif "opt-6.7b" in model_name: _snake_case : List[str] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=snake_case__ ).to_dict() elif "t5-xl" in model_name: _snake_case : Tuple = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _snake_case : List[Any] = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() _snake_case : int = BlipaConfig(vision_config=snake_case__ , text_config=snake_case__ ) return config, image_size @torch.no_grad() def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int=None , snake_case__ : str=False ): """simple docstring""" _snake_case : List[str] = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) _snake_case : str = tokenizer("""\n""" , add_special_tokens=snake_case__ ).input_ids[0] _snake_case , _snake_case : Dict = get_blipa_config(snake_case__ , eos_token_id=snake_case__ ) _snake_case : str = BlipaForConditionalGeneration(snake_case__ ).eval() _snake_case : int = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } _snake_case , _snake_case : List[Any] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) _snake_case : int = """cuda""" if torch.cuda.is_available() else """cpu""" _snake_case , _snake_case , _snake_case : Any = load_model_and_preprocess( name=snake_case__ , model_type=snake_case__ , is_eval=snake_case__ , device=snake_case__ ) original_model.eval() print("""Done!""" ) # update state dict keys _snake_case : Any = original_model.state_dict() _snake_case : Dict = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _snake_case : str = state_dict.pop(snake_case__ ) if key.startswith("""Qformer.bert""" ): _snake_case : str = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: _snake_case : Any = key.replace("""self""" , """attention""" ) if "opt_proj" in key: _snake_case : List[str] = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: _snake_case : Optional[Any] = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): _snake_case : List[Any] = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): _snake_case : List[Any] = key.replace("""t5""" , """language""" ) _snake_case : str = val # read in qv biases read_in_q_v_bias(snake_case__ , snake_case__ ) _snake_case , _snake_case : List[str] = hf_model.load_state_dict(snake_case__ , strict=snake_case__ ) assert len(snake_case__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _snake_case : Any = load_demo_image() _snake_case : str = vis_processors["""eval"""](snake_case__ ).unsqueeze(0 ).to(snake_case__ ) _snake_case : List[Any] = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(snake_case__ ) # create processor _snake_case : Any = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=snake_case__ , image_std=snake_case__ ) _snake_case : int = BlipaProcessor(image_processor=snake_case__ , tokenizer=snake_case__ ) _snake_case : Any = processor(images=snake_case__ , return_tensors="""pt""" ).pixel_values.to(snake_case__ ) # make sure processor creates exact same pixel values assert torch.allclose(snake_case__ , snake_case__ ) original_model.to(snake_case__ ) hf_model.to(snake_case__ ) with torch.no_grad(): if "opt" in model_name: _snake_case : str = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits _snake_case : int = hf_model(snake_case__ , snake_case__ ).logits else: _snake_case : str = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits _snake_case : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) _snake_case : Union[str, Any] = hf_model(snake_case__ , snake_case__ , labels=snake_case__ ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _snake_case : List[str] = torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=snake_case__ ) assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _snake_case : Union[str, Any] = torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=snake_case__ ) else: # cast to same type _snake_case : int = logits.dtype assert torch.allclose(original_logits.to(snake_case__ ) , snake_case__ , atol=1e-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) _snake_case : Any = """""" _snake_case : str = tokenizer(snake_case__ , return_tensors="""pt""" ).input_ids.to(snake_case__ ) _snake_case : Union[str, Any] = original_model.generate({"""image""": original_pixel_values} ) _snake_case : Tuple = hf_model.generate( snake_case__ , snake_case__ , do_sample=snake_case__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , snake_case__ ) _snake_case : Optional[Any] = input_ids.shape[1] _snake_case : int = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=snake_case__ ) _snake_case : Optional[Any] = [text.strip() for text in output_text] print("""HF generation:""" , snake_case__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(snake_case__ ) hf_model.save_pretrained(snake_case__ ) if push_to_hub: processor.push_to_hub(F"nielsr/{model_name}" ) hf_model.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() A_ = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) A_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
28
0
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ = logging.get_logger(__name__) A_ = {'''vocab_file''': '''spiece.model'''} A_ = { '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } A_ = { '''AI-Sweden/gpt-sw3-126m''': 20_48, '''AI-Sweden/gpt-sw3-350m''': 20_48, '''AI-Sweden/gpt-sw3-1.6b''': 20_48, '''AI-Sweden/gpt-sw3-6.7b''': 20_48, '''AI-Sweden/gpt-sw3-20b''': 20_48, } class lowercase( __a ): '''simple docstring''' lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["input_ids", "attention_mask"] def __init__( self: Dict, a_: str, a_: Union[str, Any]=False, a_: Any=False, a_: Tuple=False, a_: Tuple=None, a_: str=None, a_: List[Any]=None, a_: Optional[Any]=None, a_: Optional[Dict[str, Any]] = None, **a_: Union[str, Any], ): '''simple docstring''' _snake_case : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs _snake_case : Tuple = kwargs.get("""name_or_path""" ) if name_or_path is None: logger.warning( """name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,""" """ you are testing the model, this can safely be ignored""" ) _snake_case : str = """None""" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _snake_case : Tuple = """<|endoftext|>""" if eos_token is None else eos_token _snake_case : str = """<unk>""" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _snake_case : List[Any] = unk_token if pad_token is None else pad_token _snake_case : Union[str, Any] = eos_token if bos_token is None else bos_token else: _snake_case : str = """<pad>""" if pad_token is None else pad_token _snake_case : List[str] = """<s>""" if bos_token is None else bos_token super().__init__( do_lower_case=a_, remove_space=a_, keep_accents=a_, bos_token=a_, eos_token=a_, unk_token=a_, pad_token=a_, sp_model_kwargs=self.sp_model_kwargs, **a_, ) _snake_case : Dict = do_lower_case _snake_case : Any = remove_space _snake_case : Optional[int] = keep_accents _snake_case : Optional[int] = vocab_file _snake_case : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a_ ) # Used for whitespace normalization in input texts # fmt : off _snake_case : str = {""" """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """""", """„"""} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _snake_case : Union[str, Any] = re.compile( f"[{''.join(map(a_, list(range(0, 9 ) ) + list(range(11, 32 ) ) + list(range(127, 160 ) ) + [160, 173, 8_203] ) )}]" ) def __getstate__( self: Any ): '''simple docstring''' _snake_case : Tuple = self.__dict__.copy() _snake_case : int = None return state def __setstate__( self: Any, a_: Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = d # for backward compatibility if not hasattr(self, """sp_model_kwargs""" ): _snake_case : Union[str, Any] = {} _snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' return len(self.sp_model ) def UpperCamelCase_ ( self: Dict, a_: str ): '''simple docstring''' _snake_case : Dict = self.non_printing_characters_re.sub("""""", a_ ) # Normalize whitespaces _snake_case : Any = """""".join([char if char not in self.whitespaces else """ """ for char in text] ) # NFC Unicode normalization _snake_case : Optional[Any] = unicodedata.normalize("""NFC""", a_ ) return text def UpperCamelCase_ ( self: str, a_: str, **a_: Union[str, Any] ): '''simple docstring''' _snake_case : Any = self.preprocess_text(a_ ) return self.sp_model.encode(a_, out_type=a_ ) def UpperCamelCase_ ( self: List[Any], a_: str ): '''simple docstring''' return self.sp_model.PieceToId(a_ ) def UpperCamelCase_ ( self: Tuple, a_: int ): '''simple docstring''' return self.sp_model.IdToPiece(a_ ) @staticmethod def UpperCamelCase_ ( a_: str ): '''simple docstring''' return out_string def UpperCamelCase_ ( self: Tuple, a_: List[str] ): '''simple docstring''' _snake_case : List[str] = [] _snake_case : Optional[Any] = """""" _snake_case : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a_ ) + token _snake_case : int = True _snake_case : int = [] else: current_sub_tokens.append(a_ ) _snake_case : Union[str, Any] = False out_string += self.sp_model.decode(a_ ) return out_string def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : str = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self: Optional[Any], a_: str, a_: Optional[str] = None ): '''simple docstring''' if not os.path.isdir(a_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _snake_case : Optional[Any] = os.path.join( a_, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_, """wb""" ) as fi: _snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,) def UpperCamelCase_ ( self: Any, a_: Union[str, List[str]], a_: Union[str, bool] = False ): '''simple docstring''' if isinstance(a_, a_ ): _snake_case : str = self.preprocess_text(a_ ) _snake_case : Optional[Any] = self.sp_model.encode(a_ ) else: _snake_case : int = [self.preprocess_text(a_ ) for t in text] _snake_case : List[Any] = self.sp_model.encode(a_ ) if return_tensors is True or return_tensors == "pt": _snake_case : List[str] = torch.tensor(a_ ) return token_ids def UpperCamelCase_ ( self: Optional[int], a_: Union[int, List[int]] ): '''simple docstring''' return self.sp_model.decode(a_ ) def UpperCamelCase_ ( self: Tuple, a_: "Conversation" ): '''simple docstring''' _snake_case : Union[str, Any] = [f"User: {text}" if is_user else f"Bot: {text}" for is_user, text in conversation.iter_texts()] _snake_case : List[str] = ( f"{self.eos_token}{self.bos_token}" + f"{self.bos_token}".join(a_ ) + f"{self.bos_token}Bot:" ) return self.encode(text=a_ )
704
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def UpperCAmelCase__ (snake_case__ : Optional[int] ): """simple docstring""" print("""Loading config file...""" ) def flatten_yaml_as_dict(snake_case__ : List[Any] , snake_case__ : Optional[Any]="" , snake_case__ : Tuple="." ): _snake_case : Union[str, Any] = [] for k, v in d.items(): _snake_case : List[str] = parent_key + sep + k if parent_key else k if isinstance(snake_case__ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(snake_case__ , snake_case__ , sep=snake_case__ ).items() ) else: items.append((new_key, v) ) return dict(snake_case__ ) _snake_case : Dict = argparse.Namespace() with open(snake_case__ , """r""" ) as yaml_file: try: _snake_case : List[Any] = yaml.load(snake_case__ , Loader=yaml.FullLoader ) _snake_case : Any = flatten_yaml_as_dict(snake_case__ ) for k, v in flat_cfg.items(): setattr(snake_case__ , snake_case__ , snake_case__ ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(snake_case__ , str(snake_case__ ) ) ) return config def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : Dict = MobileViTVaConfig() _snake_case : Optional[int] = False # dataset if task_name.startswith("""imagenet1k_""" ): _snake_case : Dict = 10_00 if int(task_name.strip().split("""_""" )[-1] ) == 3_84: _snake_case : Union[str, Any] = 3_84 else: _snake_case : Optional[Any] = 2_56 _snake_case : str = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): _snake_case : str = 2_10_00 if int(task_name.strip().split("""_""" )[-1] ) == 3_84: _snake_case : Dict = 3_84 else: _snake_case : Union[str, Any] = 2_56 _snake_case : Tuple = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): _snake_case : Tuple = 1_51 _snake_case : str = 5_12 _snake_case : List[Any] = """ade20k-id2label.json""" _snake_case : Union[str, Any] = True elif task_name.startswith("""voc_""" ): _snake_case : List[Any] = 21 _snake_case : List[str] = 5_12 _snake_case : int = """pascal-voc-id2label.json""" _snake_case : int = True # orig_config _snake_case : int = load_orig_config_file(snake_case__ ) assert getattr(snake_case__ , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model" _snake_case : str = getattr(snake_case__ , """model.classification.mitv2.width_multiplier""" , 1.0 ) assert ( getattr(snake_case__ , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _snake_case : int = getattr(snake_case__ , """model.classification.activation.name""" , """swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _snake_case : Tuple = getattr(snake_case__ , """model.segmentation.output_stride""" , 16 ) if "_deeplabv3" in task_name: _snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] ) _snake_case : Tuple = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_out_channels""" , 5_12 ) _snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 ) # id2label _snake_case : Union[str, Any] = """huggingface/label-files""" _snake_case : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) ) _snake_case : List[Any] = {int(snake_case__ ): v for k, v in idalabel.items()} _snake_case : Tuple = idalabel _snake_case : Any = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[Any] ): """simple docstring""" _snake_case : List[str] = dct.pop(snake_case__ ) _snake_case : List[Any] = val def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : int=False ): """simple docstring""" if base_model: _snake_case : Any = """""" else: _snake_case : Union[str, Any] = """mobilevitv2.""" _snake_case : Dict = [] for k in state_dict.keys(): if k[:8] == "encoder.": _snake_case : List[str] = k[8:] else: _snake_case : str = k if ".block." in k: _snake_case : Optional[int] = k_new.replace(""".block.""" , """.""" ) if ".conv." in k: _snake_case : Union[str, Any] = k_new.replace(""".conv.""" , """.convolution.""" ) if ".norm." in k: _snake_case : str = k_new.replace(""".norm.""" , """.normalization.""" ) if "conv_1." in k: _snake_case : int = k_new.replace("""conv_1.""" , F"{model_prefix}conv_stem." ) for i in [1, 2]: if F"layer_{i}." in k: _snake_case : Tuple = k_new.replace(F"layer_{i}." , F"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: _snake_case : Optional[Any] = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" ) if ".red_1x1." in k: _snake_case : Optional[Any] = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" ) for i in [3, 4, 5]: if F"layer_{i}.0." in k: _snake_case : Tuple = k_new.replace(F"layer_{i}.0." , F"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if F"layer_{i}.1.local_rep.0." in k: _snake_case : Any = k_new.replace(F"layer_{i}.1.local_rep.0." , F"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if F"layer_{i}.1.local_rep.1." in k: _snake_case : str = k_new.replace(F"layer_{i}.1.local_rep.1." , F"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: _snake_case : Optional[Any] = [0, 1] elif i == 4: _snake_case : Any = [0, 1, 2, 3] elif i == 5: _snake_case : List[Any] = [0, 1, 2] for j in j_in: if F"layer_{i}.1.global_rep.{j}." in k: _snake_case : Any = k_new.replace( F"layer_{i}.1.global_rep.{j}." , F"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if F"layer_{i}.1.global_rep.{j+1}." in k: _snake_case : List[Any] = k_new.replace( F"layer_{i}.1.global_rep.{j+1}." , F"{model_prefix}encoder.layer.{i-1}.layernorm." ) if F"layer_{i}.1.conv_proj." in k: _snake_case : Union[str, Any] = k_new.replace(F"layer_{i}.1.conv_proj." , F"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: _snake_case : List[Any] = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" ) if "pre_norm_attn.1." in k: _snake_case : Optional[int] = k_new.replace("""pre_norm_attn.1.""" , """attention.""" ) if "pre_norm_ffn.0." in k: _snake_case : List[Any] = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" ) if "pre_norm_ffn.1." in k: _snake_case : Tuple = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" ) if "pre_norm_ffn.3." in k: _snake_case : Any = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" ) if "classifier.1." in k: _snake_case : List[str] = k_new.replace("""classifier.1.""" , """classifier.""" ) if "seg_head." in k: _snake_case : str = k_new.replace("""seg_head.""" , """segmentation_head.""" ) if ".aspp_layer." in k: _snake_case : Optional[int] = k_new.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in k: _snake_case : int = k_new.replace(""".aspp_pool.""" , """.""" ) rename_keys.append((k, k_new) ) return rename_keys def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" _snake_case : List[str] = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(snake_case__ ) for k in keys_to_ignore: state_dict.pop(snake_case__ , snake_case__ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _snake_case : Any = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Tuple ): """simple docstring""" _snake_case : int = get_mobilevitva_config(snake_case__ , snake_case__ ) # load original state_dict _snake_case : Optional[int] = torch.load(snake_case__ , map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): _snake_case : Any = MobileViTVaForSemanticSegmentation(snake_case__ ).eval() _snake_case : List[Any] = False else: _snake_case : List[Any] = MobileViTVaForImageClassification(snake_case__ ).eval() _snake_case : Optional[Any] = False # remove and rename some keys of load the original model _snake_case : Union[str, Any] = checkpoint remove_unused_keys(snake_case__ ) _snake_case : List[str] = create_rename_keys(snake_case__ , base_model=snake_case__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # load modified state_dict model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by MobileViTImageProcessor _snake_case : Optional[int] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _snake_case : List[str] = image_processor(images=prepare_img() , return_tensors="""pt""" ) _snake_case : Optional[Any] = model(**snake_case__ ) # verify classification model if task_name.startswith("""imagenet""" ): _snake_case : List[str] = outputs.logits _snake_case : Any = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant _snake_case : List[str] = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] ) assert torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) A_ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
28
0
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device A_ = False class lowercase( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[Any] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""", torch_dtype=torch.floataa ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) _snake_case : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) _snake_case : Tuple = torch.manual_seed(0 ) _snake_case : Dict = pipe.dual_guided( prompt="""first prompt""", image=a_, text_to_image_strength=0.75, generator=a_, guidance_scale=7.5, num_inference_steps=2, output_type="""numpy""", ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) _snake_case : str = VersatileDiffusionPipeline.from_pretrained(a_, torch_dtype=torch.floataa ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) _snake_case : int = generator.manual_seed(0 ) _snake_case : int = pipe.dual_guided( prompt="""first prompt""", image=a_, text_to_image_strength=0.75, generator=a_, guidance_scale=7.5, num_inference_steps=2, output_type="""numpy""", ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : List[str] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""", torch_dtype=torch.floataa ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) _snake_case : Optional[Any] = """cyberpunk 2077""" _snake_case : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) _snake_case : str = torch.manual_seed(0 ) _snake_case : Tuple = pipe.dual_guided( prompt=a_, image=a_, text_to_image_strength=0.75, generator=a_, guidance_scale=7.5, num_inference_steps=50, output_type="""numpy""", ).images _snake_case : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _snake_case : Dict = np.array([0.1_448, 0.1_619, 0.1_741, 0.1_086, 0.1_147, 0.1_128, 0.1_199, 0.1_165, 0.1_001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 _snake_case : Optional[int] = """A painting of a squirrel eating a burger """ _snake_case : Tuple = torch.manual_seed(0 ) _snake_case : Dict = pipe.text_to_image( prompt=a_, generator=a_, guidance_scale=7.5, num_inference_steps=50, output_type="""numpy""" ).images _snake_case : Dict = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _snake_case : str = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 _snake_case : List[Any] = pipe.image_variation(a_, generator=a_, output_type="""numpy""" ).images _snake_case : Optional[int] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _snake_case : Any = np.array([0.3_076, 0.3_123, 0.3_284, 0.3_782, 0.3_770, 0.3_894, 0.4_297, 0.4_331, 0.4_456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
705
"""simple docstring""" import os import sys import unittest A_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path A_ = os.path.join(git_repo_path, '''src''', '''diffusers''') class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Optional[int] = find_backend(""" if not is_torch_available():""" ) self.assertEqual(a_, """torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") _snake_case : Any = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(a_, """torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") _snake_case : Union[str, Any] = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(a_, """torch_and_transformers_and_onnx""" ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Dict = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""", a_ ) self.assertIn("""torch_and_transformers""", a_ ) self.assertIn("""flax_and_transformers""", a_ ) self.assertIn("""torch_and_transformers_and_onnx""", a_ ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""", objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""", objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""", objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""", objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""", objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""", objects["""torch_and_transformers_and_onnx"""] ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[Any] = create_dummy_object("""CONSTANT""", """'torch'""" ) self.assertEqual(a_, """\nCONSTANT = None\n""" ) _snake_case : Optional[int] = create_dummy_object("""function""", """'torch'""" ) self.assertEqual( a_, """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) _snake_case : List[Any] = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ _snake_case : Union[str, Any] = create_dummy_object("""FakeClass""", """'torch'""" ) self.assertEqual(a_, a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ _snake_case : List[Any] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""], a_ )
28
0
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Union[str, Any]=1 ): """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : List[Any]=0 ): """simple docstring""" _snake_case : Optional[Any] = [] for old_item in old_list: _snake_case : Union[str, Any] = old_item.replace("""in_layers.0""" , """norm1""" ) _snake_case : List[Any] = new_item.replace("""in_layers.2""" , """conv1""" ) _snake_case : Tuple = new_item.replace("""out_layers.0""" , """norm2""" ) _snake_case : Dict = new_item.replace("""out_layers.3""" , """conv2""" ) _snake_case : int = new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) _snake_case : Optional[Any] = new_item.replace("""skip_connection""" , """conv_shortcut""" ) _snake_case : str = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : Dict=0 ): """simple docstring""" _snake_case : Dict = [] for old_item in old_list: _snake_case : Dict = old_item _snake_case : int = new_item.replace("""norm.weight""" , """group_norm.weight""" ) _snake_case : str = new_item.replace("""norm.bias""" , """group_norm.bias""" ) _snake_case : Optional[Any] = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) _snake_case : Optional[Any] = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) _snake_case : Optional[Any] = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : str=None , snake_case__ : str=None , snake_case__ : List[str]=None ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _snake_case : Union[str, Any] = old_checkpoint[path] _snake_case : Optional[int] = old_tensor.shape[0] // 3 _snake_case : List[Any] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) _snake_case : Union[str, Any] = old_tensor.shape[0] // config["""num_head_channels"""] // 3 _snake_case : Any = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _snake_case : List[str] = old_tensor.split(channels // num_heads , dim=1 ) _snake_case : Union[str, Any] = query.reshape(snake_case__ ) _snake_case : Tuple = key.reshape(snake_case__ ) _snake_case : Any = value.reshape(snake_case__ ) for path in paths: _snake_case : List[Any] = path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _snake_case : Union[str, Any] = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) _snake_case : str = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) _snake_case : Any = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: _snake_case : int = new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _snake_case : Dict = old_checkpoint[path["""old"""]][:, :, 0] else: _snake_case : Optional[Any] = old_checkpoint[path["""old"""]] def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : List[str] ): """simple docstring""" _snake_case : int = {} _snake_case : Tuple = checkpoint["""time_embed.0.weight"""] _snake_case : List[str] = checkpoint["""time_embed.0.bias"""] _snake_case : List[str] = checkpoint["""time_embed.2.weight"""] _snake_case : Tuple = checkpoint["""time_embed.2.bias"""] _snake_case : Dict = checkpoint["""input_blocks.0.0.weight"""] _snake_case : List[Any] = checkpoint["""input_blocks.0.0.bias"""] _snake_case : List[Any] = checkpoint["""out.0.weight"""] _snake_case : Any = checkpoint["""out.0.bias"""] _snake_case : Any = checkpoint["""out.2.weight"""] _snake_case : List[str] = checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only _snake_case : List[str] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) _snake_case : Any = { layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key] for layer_id in range(snake_case__ ) } # Retrieves the keys for the middle blocks only _snake_case : Optional[int] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) _snake_case : Optional[int] = { layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key] for layer_id in range(snake_case__ ) } # Retrieves the keys for the output blocks only _snake_case : str = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) _snake_case : List[Any] = { layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key] for layer_id in range(snake_case__ ) } for i in range(1 , snake_case__ ): _snake_case : Union[str, Any] = (i - 1) // (config["""num_res_blocks"""] + 1) _snake_case : int = (i - 1) % (config["""num_res_blocks"""] + 1) _snake_case : List[str] = [key for key in input_blocks[i] if F"input_blocks.{i}.0" in key] _snake_case : str = [key for key in input_blocks[i] if F"input_blocks.{i}.1" in key] if F"input_blocks.{i}.0.op.weight" in checkpoint: _snake_case : Union[str, Any] = checkpoint[ F"input_blocks.{i}.0.op.weight" ] _snake_case : Dict = checkpoint[ F"input_blocks.{i}.0.op.bias" ] continue _snake_case : Optional[int] = renew_resnet_paths(snake_case__ ) _snake_case : int = {"""old""": F"input_blocks.{i}.0", """new""": F"down_blocks.{block_id}.resnets.{layer_in_block_id}"} _snake_case : Tuple = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path, resnet_op] , config=snake_case__ ) if len(snake_case__ ): _snake_case : str = renew_attention_paths(snake_case__ ) _snake_case : List[str] = { """old""": F"input_blocks.{i}.1", """new""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}", } _snake_case : Optional[int] = { F"input_blocks.{i}.1.qkv.bias": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"input_blocks.{i}.1.qkv.weight": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=snake_case__ , config=snake_case__ , ) _snake_case : int = middle_blocks[0] _snake_case : List[str] = middle_blocks[1] _snake_case : Any = middle_blocks[2] _snake_case : Dict = renew_resnet_paths(snake_case__ ) assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ ) _snake_case : Any = renew_resnet_paths(snake_case__ ) assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ ) _snake_case : Dict = renew_attention_paths(snake_case__ ) _snake_case : Tuple = { """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , attention_paths_to_split=snake_case__ , config=snake_case__ ) for i in range(snake_case__ ): _snake_case : Optional[Any] = i // (config["""num_res_blocks"""] + 1) _snake_case : Dict = i % (config["""num_res_blocks"""] + 1) _snake_case : List[str] = [shave_segments(snake_case__ , 2 ) for name in output_blocks[i]] _snake_case : Any = {} for layer in output_block_layers: _snake_case : Any = layer.split(""".""" )[0], shave_segments(snake_case__ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(snake_case__ ) else: _snake_case : str = [layer_name] if len(snake_case__ ) > 1: _snake_case : Dict = [key for key in output_blocks[i] if F"output_blocks.{i}.0" in key] _snake_case : List[str] = [key for key in output_blocks[i] if F"output_blocks.{i}.1" in key] _snake_case : List[Any] = renew_resnet_paths(snake_case__ ) _snake_case : int = renew_resnet_paths(snake_case__ ) _snake_case : Optional[Any] = {"""old""": F"output_blocks.{i}.0", """new""": F"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _snake_case : str = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) _snake_case : Any = checkpoint[ F"output_blocks.{i}.{index}.conv.weight" ] _snake_case : Optional[int] = checkpoint[ F"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(snake_case__ ) == 2: _snake_case : Any = [] if len(snake_case__ ): _snake_case : str = renew_attention_paths(snake_case__ ) _snake_case : str = { """old""": F"output_blocks.{i}.1", """new""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}", } _snake_case : int = { F"output_blocks.{i}.1.qkv.bias": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"output_blocks.{i}.1.qkv.weight": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=snake_case__ , ) else: _snake_case : Optional[Any] = renew_resnet_paths(snake_case__ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: _snake_case : Optional[Any] = """.""".join(["""output_blocks""", str(snake_case__ ), path["""old"""]] ) _snake_case : Optional[int] = """.""".join(["""up_blocks""", str(snake_case__ ), """resnets""", str(snake_case__ ), path["""new"""]] ) _snake_case : Any = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') A_ = parser.parse_args() A_ = torch.load(args.checkpoint_path) with open(args.config_file) as f: A_ = json.loads(f.read()) A_ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] A_ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: A_ = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) A_ = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) A_ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
706
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''OwlViTFeatureExtractor'''] A_ = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
28
0
"""simple docstring""" from typing import Any class lowercase: '''simple docstring''' def __init__( self: Union[str, Any], a_: Any ): '''simple docstring''' _snake_case : int = data _snake_case : List[str] = None class lowercase: '''simple docstring''' def __init__( self: Dict ): '''simple docstring''' _snake_case : str = None def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : str = self.head while temp is not None: print(temp.data, end=""" """ ) _snake_case : List[Any] = temp.next print() def UpperCamelCase_ ( self: Optional[int], a_: Any ): '''simple docstring''' _snake_case : Dict = Node(a_ ) _snake_case : str = self.head _snake_case : List[Any] = new_node def UpperCamelCase_ ( self: Optional[Any], a_: Any, a_: Union[str, Any] ): '''simple docstring''' if node_data_a == node_data_a: return else: _snake_case : List[Any] = self.head while node_a is not None and node_a.data != node_data_a: _snake_case : Optional[Any] = node_a.next _snake_case : str = self.head while node_a is not None and node_a.data != node_data_a: _snake_case : Union[str, Any] = node_a.next if node_a is None or node_a is None: return _snake_case : Dict = node_a.data, node_a.data if __name__ == "__main__": A_ = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
707
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml A_ = logging.get_logger(__name__) def UpperCAmelCase__ (snake_case__ : bool , snake_case__ : bool ): """simple docstring""" def run_func(snake_case__ : Tuple ): @wraps(snake_case__ ) def run_in_eager_mode(*snake_case__ : str , **snake_case__ : Any ): return func(*snake_case__ , **snake_case__ ) @wraps(snake_case__ ) @tf.function(experimental_compile=snake_case__ ) def run_in_graph_mode(*snake_case__ : Any , **snake_case__ : Optional[int] ): return func(*snake_case__ , **snake_case__ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : List[str] = random.Random() _snake_case : Optional[int] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case__ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class lowercase( __a ): '''simple docstring''' lowercase__ = 42 lowercase__ = 42 lowercase__ = "TensorFlow" @property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' return tf.__version__ def UpperCamelCase_ ( self: List[str], a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : List[str] = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : Optional[int] = self._prepare_inference_func(a_, a_, a_ ) return self._measure_speed(_inference ) def UpperCamelCase_ ( self: int, a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : Tuple = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : Optional[Any] = self._prepare_train_func(a_, a_, a_ ) return self._measure_speed(_train ) def UpperCamelCase_ ( self: Dict, a_: str, a_: int, a_: int ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], a_ ) _snake_case : str = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : List[str] = self._prepare_inference_func(a_, a_, a_ ) return self._measure_memory(_inference ) def UpperCamelCase_ ( self: Tuple, a_: str, a_: int, a_: int ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], a_ ) _snake_case : Dict = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : Optional[int] = self._prepare_train_func(a_, a_, a_ ) return self._measure_memory(_train ) def UpperCamelCase_ ( self: Optional[Any], a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : List[Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _snake_case : List[Any] = ( hasattr(a_, """architectures""" ) and isinstance(config.architectures, a_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _snake_case : str = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _snake_case : List[Any] = __import__("""transformers""", fromlist=[model_class] ) _snake_case : Dict = getattr(a_, a_ ) _snake_case : Any = model_cls(a_ ) except ImportError: raise ImportError( f"{model_class} does not exist. If you just want to test the pretrained model, you might want to" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _snake_case : Any = TF_MODEL_MAPPING[config.__class__](a_ ) # encoder-decoder has vocab size saved differently _snake_case : List[Any] = config.vocab_size if hasattr(a_, """vocab_size""" ) else config.encoder.vocab_size _snake_case : List[str] = random_input_ids(a_, a_, a_ ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_decoder_forward(): return model(a_, decoder_input_ids=a_, training=a_ ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_forward(): return model(a_, training=a_ ) _snake_case : Optional[int] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def UpperCamelCase_ ( self: Optional[int], a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : str = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _snake_case : Tuple = ( hasattr(a_, """architectures""" ) and isinstance(config.architectures, a_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _snake_case : List[str] = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _snake_case : str = __import__("""transformers""", fromlist=[model_class] ) _snake_case : Tuple = getattr(a_, a_ ) _snake_case : Any = model_cls(a_ ) except ImportError: raise ImportError( f"{model_class} does not exist. If you just want to test the pretrained model, you might want to" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _snake_case : Optional[Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](a_ ) # encoder-decoder has vocab size saved differently _snake_case : List[Any] = config.vocab_size if hasattr(a_, """vocab_size""" ) else config.encoder.vocab_size _snake_case : int = random_input_ids(a_, a_, a_ ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_decoder_train(): _snake_case : Dict = model(a_, decoder_input_ids=a_, labels=a_, training=a_ )[0] _snake_case : str = tf.gradients(a_, model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_train(): _snake_case : Optional[Any] = model(a_, labels=a_, training=a_ )[0] _snake_case : Optional[Any] = tf.gradients(a_, model.trainable_variables ) return gradients _snake_case : int = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def UpperCamelCase_ ( self: Union[str, Any], a_: str ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(a_, repeat=1, number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _snake_case : Dict = timeit.repeat( a_, repeat=self.args.repeat, number=10, ) return min(a_ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"Doesn't fit on GPU. {e}" ) def UpperCamelCase_ ( self: Optional[Any], a_: Callable[[], None] ): '''simple docstring''' logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) _snake_case : List[Any] = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) _snake_case : Optional[Any] = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() _snake_case : List[str] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _snake_case : Tuple = nvml.nvmlDeviceGetMemoryInfo(a_ ) _snake_case : List[str] = meminfo.used _snake_case : Any = Memory(a_ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) _snake_case : List[Any] = None else: _snake_case : int = measure_peak_memory_cpu(a_ ) _snake_case : List[str] = Memory(a_ ) if isinstance(a_, a_ ) else memory_bytes if self.args.trace_memory_line_by_line: _snake_case : Tuple = stop_memory_tracing(a_ ) if memory is None: _snake_case : int = summary.total else: _snake_case : int = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"Doesn't fit on GPU. {e}" ) return "N/A", None
28
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ = logging.get_logger(__name__) A_ = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowercase( __a ): '''simple docstring''' lowercase__ = "deformable_detr" lowercase__ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self: Tuple, a_: List[str]=True, a_: str=None, a_: Tuple=3, a_: Optional[int]=300, a_: List[Any]=1_024, a_: Union[str, Any]=6, a_: int=1_024, a_: Optional[int]=8, a_: Tuple=6, a_: List[str]=1_024, a_: Dict=8, a_: str=0.0, a_: Dict=True, a_: Any="relu", a_: List[str]=256, a_: List[Any]=0.1, a_: List[Any]=0.0, a_: Optional[int]=0.0, a_: Tuple=0.02, a_: List[Any]=1.0, a_: Union[str, Any]=True, a_: Dict=False, a_: List[str]="sine", a_: Optional[int]="resnet50", a_: List[str]=True, a_: Optional[Any]=False, a_: Tuple=4, a_: List[str]=4, a_: Tuple=4, a_: List[Any]=False, a_: List[Any]=300, a_: Dict=False, a_: Optional[int]=1, a_: int=5, a_: Union[str, Any]=2, a_: Optional[int]=1, a_: Tuple=1, a_: Tuple=5, a_: int=2, a_: Tuple=0.1, a_: Dict=0.25, a_: str=False, **a_: Dict, ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _snake_case : str = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(a_, a_ ): _snake_case : List[Any] = backbone_config.get("""model_type""" ) _snake_case : int = CONFIG_MAPPING[backbone_model_type] _snake_case : Optional[Any] = config_class.from_dict(a_ ) _snake_case : Any = use_timm_backbone _snake_case : List[str] = backbone_config _snake_case : int = num_channels _snake_case : Any = num_queries _snake_case : str = max_position_embeddings _snake_case : int = d_model _snake_case : Optional[int] = encoder_ffn_dim _snake_case : List[str] = encoder_layers _snake_case : int = encoder_attention_heads _snake_case : str = decoder_ffn_dim _snake_case : int = decoder_layers _snake_case : List[Any] = decoder_attention_heads _snake_case : int = dropout _snake_case : Tuple = attention_dropout _snake_case : int = activation_dropout _snake_case : List[str] = activation_function _snake_case : List[Any] = init_std _snake_case : int = init_xavier_std _snake_case : Optional[int] = encoder_layerdrop _snake_case : int = auxiliary_loss _snake_case : Any = position_embedding_type _snake_case : Optional[Any] = backbone _snake_case : Tuple = use_pretrained_backbone _snake_case : int = dilation # deformable attributes _snake_case : str = num_feature_levels _snake_case : str = encoder_n_points _snake_case : Optional[int] = decoder_n_points _snake_case : str = two_stage _snake_case : Optional[int] = two_stage_num_proposals _snake_case : Dict = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher _snake_case : Tuple = class_cost _snake_case : List[Any] = bbox_cost _snake_case : List[str] = giou_cost # Loss coefficients _snake_case : List[Any] = mask_loss_coefficient _snake_case : List[str] = dice_loss_coefficient _snake_case : Any = bbox_loss_coefficient _snake_case : Dict = giou_loss_coefficient _snake_case : Any = eos_coefficient _snake_case : str = focal_alpha _snake_case : int = disable_custom_kernels super().__init__(is_encoder_decoder=a_, **a_ ) @property def UpperCamelCase_ ( self: Any ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCamelCase_ ( self: int ): '''simple docstring''' return self.d_model def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Any = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _snake_case : Dict = self.backbone_config.to_dict() _snake_case : int = self.__class__.model_type return output
708
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : str ): """simple docstring""" _snake_case : str = int(snake_case__ ) # Initialize Result _snake_case : str = [] # Traverse through all denomination for denomination in reversed(snake_case__ ): # Find denominations while int(snake_case__ ) >= int(snake_case__ ): total_value -= int(snake_case__ ) answer.append(snake_case__ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": A_ = [] A_ = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): A_ = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) A_ = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter A_ = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] A_ = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F'''Following is minimal change for {value}: ''') A_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
28
0
"""simple docstring""" import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors A_ = logging.getLogger(__name__) class lowercase( __a ): '''simple docstring''' lowercase__ = "sequence-classification" def __init__( self: Union[str, Any], a_: Any ): '''simple docstring''' if type(a_ ) == dict: _snake_case : Dict = Namespace(**a_ ) _snake_case : List[Any] = glue_output_modes[hparams.task] _snake_case : Optional[Any] = glue_tasks_num_labels[hparams.task] super().__init__(a_, a_, self.mode ) def UpperCamelCase_ ( self: List[Any], **a_: Optional[Any] ): '''simple docstring''' return self.model(**a_ ) def UpperCamelCase_ ( self: Optional[int], a_: List[Any], a_: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case : Optional[int] = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _snake_case : Union[str, Any] = self(**a_ ) _snake_case : List[str] = outputs[0] _snake_case : Tuple = self.trainer.lr_schedulers[0]["""scheduler"""] _snake_case : List[Any] = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Dict = self.hparams _snake_case : List[str] = processors[args.task]() _snake_case : Optional[Any] = processor.get_labels() for mode in ["train", "dev"]: _snake_case : Union[str, Any] = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""", a_ ) else: logger.info("""Creating features from dataset file at %s""", args.data_dir ) _snake_case : Any = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) _snake_case : str = convert_examples_to_features( a_, self.tokenizer, max_length=args.max_seq_length, label_list=self.labels, output_mode=args.glue_output_mode, ) logger.info("""Saving features into cached file %s""", a_ ) torch.save(a_, a_ ) def UpperCamelCase_ ( self: str, a_: str, a_: int, a_: bool = False ): '''simple docstring''' _snake_case : Optional[int] = """dev""" if mode == """test""" else mode _snake_case : str = self._feature_file(a_ ) logger.info("""Loading features from cached file %s""", a_ ) _snake_case : int = torch.load(a_ ) _snake_case : Optional[int] = torch.tensor([f.input_ids for f in features], dtype=torch.long ) _snake_case : List[str] = torch.tensor([f.attention_mask for f in features], dtype=torch.long ) _snake_case : str = torch.tensor([f.token_type_ids for f in features], dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _snake_case : Optional[int] = torch.tensor([f.label for f in features], dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _snake_case : List[Any] = torch.tensor([f.label for f in features], dtype=torch.float ) return DataLoader( TensorDataset(a_, a_, a_, a_ ), batch_size=a_, shuffle=a_, ) def UpperCamelCase_ ( self: Tuple, a_: Dict, a_: List[str] ): '''simple docstring''' _snake_case : List[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case : Union[str, Any] = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _snake_case : Optional[int] = self(**a_ ) _snake_case : Union[str, Any] = outputs[:2] _snake_case : List[str] = logits.detach().cpu().numpy() _snake_case : Union[str, Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase_ ( self: Tuple, a_: int ): '''simple docstring''' _snake_case : Optional[Any] = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() _snake_case : Tuple = np.concatenate([x["""pred"""] for x in outputs], axis=0 ) if self.hparams.glue_output_mode == "classification": _snake_case : Tuple = np.argmax(a_, axis=1 ) elif self.hparams.glue_output_mode == "regression": _snake_case : Optional[int] = np.squeeze(a_ ) _snake_case : Optional[Any] = np.concatenate([x["""target"""] for x in outputs], axis=0 ) _snake_case : Optional[Any] = [[] for _ in range(out_label_ids.shape[0] )] _snake_case : Tuple = [[] for _ in range(out_label_ids.shape[0] )] _snake_case : Tuple = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task, a_, a_ )} _snake_case : Optional[int] = dict(results.items() ) _snake_case : str = results return ret, preds_list, out_label_list def UpperCamelCase_ ( self: str, a_: list ): '''simple docstring''' _snake_case : Tuple = self._eval_end(a_ ) _snake_case : int = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase_ ( self: str, a_: Any ): '''simple docstring''' _snake_case : str = self._eval_end(a_ ) _snake_case : List[str] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase_ ( a_: Optional[Any], a_: Tuple ): '''simple docstring''' BaseTransformer.add_model_specific_args(a_, a_ ) parser.add_argument( """--max_seq_length""", default=128, type=a_, help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ), ) parser.add_argument( """--task""", default="""""", type=a_, required=a_, help="""The GLUE task to run""", ) parser.add_argument( """--gpus""", default=0, type=a_, help="""The number of GPUs allocated for this, it is by default 0 meaning none""", ) parser.add_argument( """--overwrite_cache""", action="""store_true""", help="""Overwrite the cached training and evaluation sets""" ) return parser def UpperCAmelCase__ (): """simple docstring""" _snake_case : Dict = argparse.ArgumentParser() add_generic_args(snake_case__ , os.getcwd() ) _snake_case : Optional[Any] = GLUETransformer.add_model_specific_args(snake_case__ , os.getcwd() ) _snake_case : Tuple = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _snake_case : int = os.path.join( """./results""" , F"{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}" , ) os.makedirs(args.output_dir ) _snake_case : Optional[Any] = GLUETransformer(snake_case__ ) _snake_case : Union[str, Any] = generic_train(snake_case__ , snake_case__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _snake_case : List[Any] = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=snake_case__ ) ) _snake_case : Any = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(snake_case__ ) if __name__ == "__main__": main()
709
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowercase: '''simple docstring''' def __init__( self: Optional[Any], a_: Union[str, Any], a_: int=100, a_: int=13, a_: List[Any]=30, a_: str=2, a_: Optional[Any]=3, a_: Optional[int]=True, a_: Any=True, a_: Optional[Any]=32, a_: Tuple=4, a_: str=4, a_: List[Any]=37, a_: List[str]="gelu", a_: str=0.1, a_: Optional[int]=0.1, a_: Any=10, a_: List[str]=0.02, a_: Dict=3, a_: str=None, a_: Optional[int]=[0, 1, 2, 3], ): '''simple docstring''' _snake_case : Optional[int] = parent _snake_case : Optional[Any] = 100 _snake_case : Any = batch_size _snake_case : List[Any] = image_size _snake_case : Optional[Any] = patch_size _snake_case : str = num_channels _snake_case : Tuple = is_training _snake_case : Tuple = use_labels _snake_case : Any = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : List[str] = num_attention_heads _snake_case : Union[str, Any] = intermediate_size _snake_case : Dict = hidden_act _snake_case : str = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Optional[Any] = type_sequence_label_size _snake_case : Any = initializer_range _snake_case : List[str] = scope _snake_case : int = out_indices _snake_case : Optional[Any] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _snake_case : Dict = (image_size // patch_size) ** 2 _snake_case : str = num_patches + 1 def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : List[Any] = None _snake_case : Tuple = None if self.use_labels: _snake_case : str = ids_tensor([self.batch_size], self.type_sequence_label_size ) _snake_case : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) _snake_case : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=a_, initializer_range=self.initializer_range, out_indices=self.out_indices, ) def UpperCamelCase_ ( self: List[Any], a_: List[Any], a_: Any, a_: Optional[Any], a_: List[str] ): '''simple docstring''' _snake_case : str = BeitModel(config=a_ ) model.to(a_ ) model.eval() _snake_case : Dict = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self: str, a_: List[Any], a_: Optional[Any], a_: Optional[int], a_: List[Any] ): '''simple docstring''' _snake_case : List[str] = BeitForMaskedImageModeling(config=a_ ) model.to(a_ ) model.eval() _snake_case : Union[str, Any] = model(a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCamelCase_ ( self: Any, a_: List[str], a_: Any, a_: List[Any], a_: Optional[Any] ): '''simple docstring''' _snake_case : Any = self.type_sequence_label_size _snake_case : Any = BeitForImageClassification(a_ ) model.to(a_ ) model.eval() _snake_case : List[Any] = model(a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case : Any = 1 _snake_case : str = BeitForImageClassification(a_ ) model.to(a_ ) model.eval() _snake_case : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case : Optional[Any] = model(a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self: List[Any], a_: Optional[int], a_: List[Any], a_: str, a_: int ): '''simple docstring''' _snake_case : List[str] = self.num_labels _snake_case : List[Any] = BeitForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() _snake_case : List[str] = model(a_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) _snake_case : str = model(a_, labels=a_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Tuple = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case , _snake_case : Any = config_and_inputs _snake_case : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase__ = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Dict = BeitModelTester(self ) _snake_case : int = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def UpperCamelCase_ ( self: str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""BEiT does not use inputs_embeds""" ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCamelCase_ ( self: str ): '''simple docstring''' pass def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : List[str] = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) _snake_case : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_, nn.Linear ) ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Any = model_class(a_ ) _snake_case : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : List[Any] = [*signature.parameters.keys()] _snake_case : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1], a_ ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' if not self.model_tester.is_training: return _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Any = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(a_ ), BeitForMaskedImageModeling]: continue _snake_case : List[Any] = model_class(a_ ) model.to(a_ ) model.train() _snake_case : Dict = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : List[Any] = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _snake_case : Dict = False _snake_case : Optional[Any] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(a_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue _snake_case : Any = model_class(a_ ) model.gradient_checkpointing_enable() model.to(a_ ) model.train() _snake_case : Any = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : int = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : int = _config_zero_init(a_ ) for model_class in self.all_model_classes: _snake_case : Tuple = model_class(config=a_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @slow def UpperCamelCase_ ( self: int ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Optional[int] = BeitModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self: Dict ): '''simple docstring''' return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : str = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(a_ ) _snake_case : Dict = self.default_image_processor _snake_case : Dict = prepare_img() _snake_case : List[str] = image_processor(images=a_, return_tensors="""pt""" ).pixel_values.to(a_ ) # prepare bool_masked_pos _snake_case : Optional[int] = torch.ones((1, 196), dtype=torch.bool ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : int = model(pixel_values=a_, bool_masked_pos=a_ ) _snake_case : Dict = outputs.logits # verify the logits _snake_case : Optional[int] = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape, a_ ) _snake_case : Optional[Any] = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(a_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], a_, atol=1E-2 ) ) @slow def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Dict = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(a_ ) _snake_case : List[Any] = self.default_image_processor _snake_case : Any = prepare_img() _snake_case : Any = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : int = model(**a_ ) _snake_case : Optional[int] = outputs.logits # verify the logits _snake_case : Tuple = torch.Size((1, 1_000) ) self.assertEqual(logits.shape, a_ ) _snake_case : Any = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(a_ ) self.assertTrue(torch.allclose(logits[0, :3], a_, atol=1E-4 ) ) _snake_case : str = 281 self.assertEqual(logits.argmax(-1 ).item(), a_ ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : int = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to( a_ ) _snake_case : int = self.default_image_processor _snake_case : Optional[Any] = prepare_img() _snake_case : Union[str, Any] = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Union[str, Any] = model(**a_ ) _snake_case : Dict = outputs.logits # verify the logits _snake_case : Tuple = torch.Size((1, 21_841) ) self.assertEqual(logits.shape, a_ ) _snake_case : Optional[int] = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(a_ ) self.assertTrue(torch.allclose(logits[0, :3], a_, atol=1E-4 ) ) _snake_case : List[str] = 2_396 self.assertEqual(logits.argmax(-1 ).item(), a_ ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[str] = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) _snake_case : int = model.to(a_ ) _snake_case : List[str] = BeitImageProcessor(do_resize=a_, size=640, do_center_crop=a_ ) _snake_case : Optional[int] = load_dataset("""hf-internal-testing/fixtures_ade20k""", split="""test""" ) _snake_case : Union[str, Any] = Image.open(ds[0]["""file"""] ) _snake_case : List[Any] = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Optional[int] = model(**a_ ) _snake_case : Union[str, Any] = outputs.logits # verify the logits _snake_case : List[str] = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape, a_ ) _snake_case : Optional[int] = version.parse(PIL.__version__ ) < version.parse("""9.0.0""" ) if is_pillow_less_than_a: _snake_case : Any = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ], device=a_, ) else: _snake_case : Optional[Any] = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ], device=a_, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], a_, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : int = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) _snake_case : List[Any] = model.to(a_ ) _snake_case : Tuple = BeitImageProcessor(do_resize=a_, size=640, do_center_crop=a_ ) _snake_case : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_ade20k""", split="""test""" ) _snake_case : str = Image.open(ds[0]["""file"""] ) _snake_case : Tuple = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Optional[int] = model(**a_ ) _snake_case : Union[str, Any] = outputs.logits.detach().cpu() _snake_case : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=a_, target_sizes=[(500, 300)] ) _snake_case : Optional[int] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape, a_ ) _snake_case : List[str] = image_processor.post_process_semantic_segmentation(outputs=a_ ) _snake_case : List[str] = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape, a_ )
28
0
"""simple docstring""" import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. A_ = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" config.addinivalue_line( """markers""" , """is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested""" ) config.addinivalue_line( """markers""" , """is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested""" ) config.addinivalue_line("""markers""" , """is_pipeline_test: mark test to run only when pipelines are tested""" ) config.addinivalue_line("""markers""" , """is_staging_test: mark test to run only in the staging environment""" ) config.addinivalue_line("""markers""" , """accelerate_tests: mark test that require accelerate""" ) config.addinivalue_line("""markers""" , """tool_tests: mark the tool tests that are run on their specific schedule""" ) def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__ ) def UpperCAmelCase__ (snake_case__ : List[Any] ): """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main _snake_case : Union[str, Any] = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(snake_case__ , id=snake_case__ ) def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : Dict ): """simple docstring""" if exitstatus == 5: _snake_case : Tuple = 0 # Doctest custom flag to ignore output. A_ = doctest.register_optionflag('''IGNORE_RESULT''') A_ = doctest.OutputChecker class lowercase( __a ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple, a_: Dict, a_: Any, a_: Tuple ): '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self, a_, a_, a_ ) A_ = CustomOutputChecker A_ = HfDoctestModule A_ = HfDocTestParser
710
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase( __a ): '''simple docstring''' lowercase__ = (IPNDMScheduler,) lowercase__ = (("num_inference_steps", 50),) def UpperCamelCase_ ( self: Union[str, Any], **a_: Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = {"""num_train_timesteps""": 1_000} config.update(**a_ ) return config def UpperCamelCase_ ( self: Tuple, a_: Optional[int]=0, **a_: int ): '''simple docstring''' _snake_case : Optional[int] = dict(self.forward_default_kwargs ) _snake_case : Optional[Any] = kwargs.pop("""num_inference_steps""", a_ ) _snake_case : Optional[Any] = self.dummy_sample _snake_case : Dict = 0.1 * sample _snake_case : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _snake_case : int = self.get_scheduler_config(**a_ ) _snake_case : Dict = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals _snake_case : int = dummy_past_residuals[:] if time_step is None: _snake_case : Union[str, Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) _snake_case : Tuple = scheduler_class.from_pretrained(a_ ) new_scheduler.set_timesteps(a_ ) # copy over dummy past residuals _snake_case : Optional[Any] = dummy_past_residuals[:] _snake_case : List[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : str = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _snake_case : Optional[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : Optional[int] = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self: str, a_: Any=0, **a_: Tuple ): '''simple docstring''' _snake_case : str = dict(self.forward_default_kwargs ) _snake_case : List[Any] = kwargs.pop("""num_inference_steps""", a_ ) _snake_case : Optional[int] = self.dummy_sample _snake_case : Tuple = 0.1 * sample _snake_case : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _snake_case : Any = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals (must be after setting timesteps) _snake_case : Union[str, Any] = dummy_past_residuals[:] if time_step is None: _snake_case : Tuple = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) _snake_case : List[str] = scheduler_class.from_pretrained(a_ ) # copy over dummy past residuals new_scheduler.set_timesteps(a_ ) # copy over dummy past residual (must be after setting timesteps) _snake_case : List[str] = dummy_past_residuals[:] _snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : Any = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : int = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self: List[Any], **a_: Optional[int] ): '''simple docstring''' _snake_case : Union[str, Any] = self.scheduler_classes[0] _snake_case : Any = self.get_scheduler_config(**a_ ) _snake_case : List[Any] = scheduler_class(**a_ ) _snake_case : Union[str, Any] = 10 _snake_case : Union[str, Any] = self.dummy_model() _snake_case : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(a_ ) for i, t in enumerate(scheduler.timesteps ): _snake_case : Optional[Any] = model(a_, a_ ) _snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample for i, t in enumerate(scheduler.timesteps ): _snake_case : Union[str, Any] = model(a_, a_ ) _snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample return sample def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : str = dict(self.forward_default_kwargs ) _snake_case : int = kwargs.pop("""num_inference_steps""", a_ ) for scheduler_class in self.scheduler_classes: _snake_case : Union[str, Any] = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**a_ ) _snake_case : Dict = self.dummy_sample _snake_case : List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(a_, """set_timesteps""" ): scheduler.set_timesteps(a_ ) elif num_inference_steps is not None and not hasattr(a_, """set_timesteps""" ): _snake_case : Dict = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _snake_case : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _snake_case : List[str] = dummy_past_residuals[:] _snake_case : Optional[int] = scheduler.timesteps[5] _snake_case : Optional[Any] = scheduler.timesteps[6] _snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : List[str] = scheduler.step(a_, a_, a_, **a_ ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) _snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=a_, time_step=a_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=a_, time_step=a_ ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.full_loop() _snake_case : Optional[int] = torch.mean(torch.abs(a_ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
28
0
"""simple docstring""" import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase: '''simple docstring''' def __init__( self: Tuple, a_: Any, a_: Optional[Any]=13, a_: List[str]=7, a_: str=True, a_: Union[str, Any]=True, a_: Optional[Any]=True, a_: int=True, a_: str=99, a_: List[Any]=32, a_: Optional[Any]=5, a_: int=4, a_: Optional[int]=37, a_: Dict="gelu", a_: List[Any]=0.1, a_: Dict=0.1, a_: List[str]=128, a_: str=32, a_: Optional[int]=16, a_: Optional[Any]=2, a_: int=0.02, a_: Tuple=3, a_: Any=4, a_: Dict=None, ): '''simple docstring''' _snake_case : str = parent _snake_case : Dict = batch_size _snake_case : List[Any] = seq_length _snake_case : List[Any] = is_training _snake_case : Union[str, Any] = use_input_mask _snake_case : Optional[int] = use_token_type_ids _snake_case : int = use_labels _snake_case : Any = vocab_size _snake_case : Dict = hidden_size _snake_case : Union[str, Any] = num_hidden_layers _snake_case : List[str] = num_attention_heads _snake_case : List[Any] = intermediate_size _snake_case : Union[str, Any] = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Tuple = max_position_embeddings _snake_case : Union[str, Any] = type_vocab_size _snake_case : Optional[int] = type_sequence_label_size _snake_case : Optional[Any] = initializer_range _snake_case : List[str] = num_labels _snake_case : List[Any] = num_choices _snake_case : Optional[int] = scope def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) _snake_case : List[str] = None if self.use_input_mask: _snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case : List[str] = None if self.use_token_type_ids: _snake_case : int = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) _snake_case : Optional[int] = None _snake_case : int = None _snake_case : Dict = None if self.use_labels: _snake_case : List[str] = ids_tensor([self.batch_size], self.type_sequence_label_size ) _snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) _snake_case : Tuple = ids_tensor([self.batch_size], self.num_choices ) _snake_case : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self: Dict ): '''simple docstring''' return NezhaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=a_, initializer_range=self.initializer_range, ) def UpperCamelCase_ ( self: int ): '''simple docstring''' ( _snake_case ) : Union[str, Any] = self.prepare_config_and_inputs() _snake_case : int = True _snake_case : Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _snake_case : int = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase_ ( self: Tuple, a_: str, a_: Optional[int], a_: int, a_: Dict, a_: int, a_: Any, a_: str ): '''simple docstring''' _snake_case : Dict = NezhaModel(config=a_ ) model.to(a_ ) model.eval() _snake_case : Any = model(a_, attention_mask=a_, token_type_ids=a_ ) _snake_case : Union[str, Any] = model(a_, token_type_ids=a_ ) _snake_case : List[str] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self: List[str], a_: Optional[Any], a_: List[str], a_: str, a_: Any, a_: Any, a_: Tuple, a_: Any, a_: Tuple, a_: Any, ): '''simple docstring''' _snake_case : str = True _snake_case : Dict = NezhaModel(a_ ) model.to(a_ ) model.eval() _snake_case : Optional[Any] = model( a_, attention_mask=a_, token_type_ids=a_, encoder_hidden_states=a_, encoder_attention_mask=a_, ) _snake_case : Dict = model( a_, attention_mask=a_, token_type_ids=a_, encoder_hidden_states=a_, ) _snake_case : Tuple = model(a_, attention_mask=a_, token_type_ids=a_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self: Optional[Any], a_: Union[str, Any], a_: int, a_: Optional[Any], a_: str, a_: Dict, a_: Optional[int], a_: Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = NezhaForMaskedLM(config=a_ ) model.to(a_ ) model.eval() _snake_case : Dict = model(a_, attention_mask=a_, token_type_ids=a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self: Tuple, a_: int, a_: Optional[Any], a_: Any, a_: int, a_: Union[str, Any], a_: Optional[int], a_: List[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = NezhaForNextSentencePrediction(config=a_ ) model.to(a_ ) model.eval() _snake_case : Optional[int] = model( a_, attention_mask=a_, token_type_ids=a_, labels=a_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2) ) def UpperCamelCase_ ( self: Any, a_: List[str], a_: Union[str, Any], a_: List[str], a_: Optional[Any], a_: int, a_: int, a_: Dict ): '''simple docstring''' _snake_case : Tuple = NezhaForPreTraining(config=a_ ) model.to(a_ ) model.eval() _snake_case : int = model( a_, attention_mask=a_, token_type_ids=a_, labels=a_, next_sentence_label=a_, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2) ) def UpperCamelCase_ ( self: Union[str, Any], a_: Optional[Any], a_: int, a_: List[Any], a_: List[str], a_: str, a_: Any, a_: Dict ): '''simple docstring''' _snake_case : List[Any] = NezhaForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() _snake_case : int = model( a_, attention_mask=a_, token_type_ids=a_, start_positions=a_, end_positions=a_, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self: int, a_: Union[str, Any], a_: str, a_: Optional[Any], a_: str, a_: List[str], a_: List[str], a_: Dict ): '''simple docstring''' _snake_case : Any = self.num_labels _snake_case : Union[str, Any] = NezhaForSequenceClassification(a_ ) model.to(a_ ) model.eval() _snake_case : int = model(a_, attention_mask=a_, token_type_ids=a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self: Dict, a_: Any, a_: Dict, a_: Tuple, a_: List[Any], a_: int, a_: str, a_: Dict ): '''simple docstring''' _snake_case : int = self.num_labels _snake_case : List[Any] = NezhaForTokenClassification(config=a_ ) model.to(a_ ) model.eval() _snake_case : List[Any] = model(a_, attention_mask=a_, token_type_ids=a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self: Any, a_: Dict, a_: Union[str, Any], a_: str, a_: int, a_: int, a_: Tuple, a_: Dict ): '''simple docstring''' _snake_case : Union[str, Any] = self.num_choices _snake_case : Optional[Any] = NezhaForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() _snake_case : int = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() _snake_case : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() _snake_case : List[str] = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() _snake_case : int = model( a_, attention_mask=a_, token_type_ids=a_, labels=a_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Any = self.prepare_config_and_inputs() ( _snake_case ) : Tuple = config_and_inputs _snake_case : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowercase( __a , __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) lowercase__ = ( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = True def UpperCamelCase_ ( self: Union[str, Any], a_: int, a_: List[Any], a_: List[str]=False ): '''simple docstring''' _snake_case : Any = super()._prepare_for_class(a_, a_, return_labels=a_ ) if return_labels: if model_class in get_values(a_ ): _snake_case : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=a_ ) _snake_case : str = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=a_ ) return inputs_dict def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : int = NezhaModelTester(self ) _snake_case : List[Any] = ConfigTester(self, config_class=a_, hidden_size=37 ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*a_ ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' ( _snake_case ) : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() _snake_case : List[Any] = None self.model_tester.create_and_check_model_as_decoder( a_, a_, a_, a_, a_, a_, a_, a_, a_, ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a_ ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*a_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a_ ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) @slow def UpperCamelCase_ ( self: Any ): '''simple docstring''' for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[Any] = NezhaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @slow @require_torch_gpu def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return _snake_case : str = True _snake_case : Tuple = model_class(config=a_ ) _snake_case : Optional[int] = self._prepare_for_class(a_, a_ ) _snake_case : Optional[Any] = torch.jit.trace( a_, (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a_, os.path.join(a_, """bert.pt""" ) ) _snake_case : List[str] = torch.jit.load(os.path.join(a_, """bert.pt""" ), map_location=a_ ) loaded(inputs_dict["""input_ids"""].to(a_ ), inputs_dict["""attention_mask"""].to(a_ ) ) @require_torch class lowercase( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : int = NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""" ) _snake_case : int = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _snake_case : Tuple = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _snake_case : List[Any] = model(a_, attention_mask=a_ )[0] _snake_case : str = torch.Size((1, 6, 768) ) self.assertEqual(output.shape, a_ ) _snake_case : List[Any] = torch.tensor([[[0.0_685, 0.2_441, 0.1_102], [0.0_600, 0.1_906, 0.1_349], [0.0_221, 0.0_819, 0.0_586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], a_, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Tuple = NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""" ) _snake_case : Any = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _snake_case : int = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _snake_case : Any = model(a_, attention_mask=a_ )[0] _snake_case : Optional[int] = torch.Size((1, 6, 21_128) ) self.assertEqual(output.shape, a_ ) _snake_case : int = torch.tensor( [[-2.7_939, -1.7_902, -2.2_189], [-2.8_585, -1.8_908, -2.3_723], [-2.6_499, -1.7_750, -2.2_558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], a_, atol=1E-4 ) )
711
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True A_ = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) _snake_case : Any = [] for num in range(len(snake_case__ ) ): _snake_case : Optional[int] = 0 while 2 * i * i <= odd_composites[num]: _snake_case : Optional[int] = odd_composites[num] - 2 * i * i if is_prime(snake_case__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(snake_case__ ) == n: return list_nums return [] def UpperCAmelCase__ (): """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(F'''{solution() = }''')
28
0
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = MgpstrTokenizer lowercase__ = False lowercase__ = {} lowercase__ = False def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' super().setUp() # fmt: off _snake_case : int = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on _snake_case : Tuple = dict(zip(a_, range(len(a_ ) ) ) ) _snake_case : List[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as fp: fp.write(json.dumps(a_ ) + """\n""" ) def UpperCamelCase_ ( self: Optional[Any], **a_: int ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **a_ ) def UpperCamelCase_ ( self: str, a_: Dict ): '''simple docstring''' _snake_case : Dict = """tester""" _snake_case : List[str] = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Union[str, Any] = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : Optional[Any] = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) _snake_case : str = tokenizer.encode([special_token], add_special_tokens=a_ ) self.assertEqual(len(a_ ), 1 ) _snake_case : Any = tokenizer.decode(a_, skip_special_tokens=a_ ) self.assertTrue(special_token not in decoded ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : int = self.get_input_output_texts(a_ ) _snake_case : Any = tokenizer.tokenize(a_ ) _snake_case : Dict = tokenizer.convert_tokens_to_ids(a_ ) _snake_case : Tuple = tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) _snake_case : Any = tokenizer.convert_ids_to_tokens(a_ ) self.assertNotEqual(len(a_ ), 0 ) _snake_case : Optional[Any] = tokenizer.decode(a_ ) self.assertIsInstance(a_, a_ ) self.assertEqual(text_a.replace(""" """, """""" ), a_ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def UpperCamelCase_ ( self: str ): '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' pass
712
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class lowercase: '''simple docstring''' def __init__( self: List[Any], a_: str = "cpu", a_: str = "openai/clip-vit-large-patch14" ): '''simple docstring''' _snake_case : Optional[int] = device _snake_case : str = CLIPTokenizerFast.from_pretrained(a_ ) _snake_case : Union[str, Any] = [0.48_145_466, 0.4_578_275, 0.40_821_073] _snake_case : Optional[int] = [0.26_862_954, 0.26_130_258, 0.27_577_711] _snake_case : str = torchvision.transforms.Normalize(self.image_mean, self.image_std ) _snake_case : Optional[int] = torchvision.transforms.Resize(224 ) _snake_case : str = torchvision.transforms.CenterCrop(224 ) def UpperCamelCase_ ( self: List[str], a_: str ): '''simple docstring''' _snake_case : Optional[int] = self.resize(a_ ) _snake_case : List[Any] = self.center_crop(a_ ) _snake_case : Optional[Any] = self.normalize(a_ ) return images def __call__( self: Any, a_: Optional[int]=None, a_: str=None, **a_: str ): '''simple docstring''' _snake_case : Optional[int] = self.tokenizer(text=a_, **a_ ) _snake_case : Any = self.preprocess_img(a_ ) _snake_case : Union[str, Any] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class lowercase( nn.Module ): '''simple docstring''' def __init__( self: List[Any], a_: List[Any]=10, a_: Optional[Any]=0.01, a_: List[str]=None, a_: str=None, a_: Any=None, a_: Tuple=None, a_: List[str]=None, a_: List[str]=None, a_: str=False, a_: List[str]=True, a_: Any="image", a_: Optional[Any]=True, a_: Dict=False, a_: List[str]=False, a_: Optional[int]=False, ): '''simple docstring''' super().__init__() _snake_case : int = None _snake_case : List[str] = device if device else get_device() if vqgan: _snake_case : Any = vqgan else: _snake_case : Optional[Any] = load_vqgan(self.device, conf_path=a_, ckpt_path=a_ ) self.vqgan.eval() if clip: _snake_case : Tuple = clip else: _snake_case : Optional[Any] = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) _snake_case : List[str] = ProcessorGradientFlow(device=self.device ) _snake_case : Union[str, Any] = iterations _snake_case : Dict = lr _snake_case : Optional[int] = log _snake_case : List[str] = make_grid _snake_case : Union[str, Any] = return_val _snake_case : List[str] = quantize _snake_case : List[str] = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self: Tuple, a_: str=None, a_: Dict=None, a_: Dict=5, a_: Dict=True ): '''simple docstring''' _snake_case : Dict = [] if output_path is None: _snake_case : Tuple = """./animation.gif""" if input_path is None: _snake_case : Any = self.save_path _snake_case : Optional[int] = sorted(glob(input_path + """/*""" ) ) if not len(a_ ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(a_ ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) _snake_case : List[Any] = total_duration / len(a_ ) _snake_case : Optional[Any] = [frame_duration] * len(a_ ) if extend_frames: _snake_case : Optional[int] = 1.5 _snake_case : int = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(a_ ) ) imageio.mimsave(a_, a_, duration=a_ ) print(f"gif saved to {output_path}" ) def UpperCamelCase_ ( self: str, a_: Tuple=None, a_: Optional[Any]=None ): '''simple docstring''' if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError _snake_case : int = preprocess(Image.open(a_ ), target_image_size=256 ).to(self.device ) _snake_case : int = preprocess_vqgan(a_ ) _snake_case , *_snake_case : List[Any] = self.vqgan.encode(a_ ) return z def UpperCamelCase_ ( self: Union[str, Any], a_: Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.latent.detach().requires_grad_() _snake_case : Tuple = base_latent + transform_vector if self.quantize: _snake_case , *_snake_case : Any = self.vqgan.quantize(a_ ) else: _snake_case : List[Any] = trans_latent return self.vqgan.decode(a_ ) def UpperCamelCase_ ( self: List[Any], a_: Any, a_: Union[str, Any], a_: Dict=None ): '''simple docstring''' _snake_case : Tuple = self.clip_preprocessor(text=a_, images=a_, return_tensors="""pt""", padding=a_ ) _snake_case : Any = self.clip(**a_ ) _snake_case : str = clip_outputs.logits_per_image if weights is not None: _snake_case : Any = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self: Any, a_: Any, a_: List[str], a_: Dict ): '''simple docstring''' _snake_case : List[Any] = self._get_clip_similarity(pos_prompts["""prompts"""], a_, weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: _snake_case : List[str] = self._get_clip_similarity(neg_prompts["""prompts"""], a_, weights=neg_prompts["""weights"""] ) else: _snake_case : Tuple = torch.tensor([1], device=self.device ) _snake_case : int = -torch.log(a_ ) + torch.log(a_ ) return loss def UpperCamelCase_ ( self: Optional[Any], a_: Tuple, a_: Union[str, Any], a_: List[str] ): '''simple docstring''' _snake_case : Tuple = torch.randn_like(self.latent, requires_grad=a_, device=self.device ) _snake_case : Dict = torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _snake_case : str = self._add_vector(a_ ) _snake_case : List[Any] = loop_post_process(a_ ) _snake_case : List[Any] = self._get_CLIP_loss(a_, a_, a_ ) print("""CLIP loss""", a_ ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=a_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self: int, a_: Any, a_: Union[str, Any], a_: Optional[int] ): '''simple docstring''' wandb.init(reinit=a_, project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: _snake_case : Any = Image.open(a_ ) _snake_case : str = image.resize((256, 256) ) wandb.log("""Original Image""", wandb.Image(a_ ) ) def UpperCamelCase_ ( self: str, a_: List[Any] ): '''simple docstring''' if not prompts: return [] _snake_case : List[str] = [] _snake_case : Tuple = [] if isinstance(a_, a_ ): _snake_case : Union[str, Any] = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(a_, (tuple, list) ): _snake_case : List[Any] = prompt[0] _snake_case : Optional[Any] = float(prompt[1] ) elif ":" in prompt: _snake_case , _snake_case : List[Any] = prompt.split(""":""" ) _snake_case : str = float(a_ ) else: _snake_case : int = prompt _snake_case : Union[str, Any] = 1.0 processed_prompts.append(a_ ) weights.append(a_ ) return { "prompts": processed_prompts, "weights": torch.tensor(a_, device=self.device ), } def UpperCamelCase_ ( self: Dict, a_: List[Any], a_: List[Any]=None, a_: Optional[Any]=None, a_: Optional[Any]=True, a_: Dict=False, a_: Optional[Any]=True, a_: Optional[Any]=True, a_: Any=None, ): '''simple docstring''' if image_path: _snake_case : Union[str, Any] = self._get_latent(a_ ) else: _snake_case : Any = torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(a_, a_, a_ ) assert pos_prompts, "You must provide at least one positive prompt." _snake_case : str = self.process_prompts(a_ ) _snake_case : Dict = self.process_prompts(a_ ) if save_final and save_path is None: _snake_case : Any = os.path.join("""./outputs/""", """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(a_ ): os.makedirs(a_ ) else: _snake_case : List[Any] = save_path + """_""" + get_timestamp() os.makedirs(a_ ) _snake_case : Optional[Any] = save_path _snake_case : List[Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(a_ ) ) _snake_case : List[Any] = loop_post_process(a_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(a_, a_, a_ ) ): if show_intermediate: show_pil(a_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}.png" ) ) if self.log: wandb.log({"""Image""": wandb.Image(a_ )} ) if show_final: show_pil(a_ ) if save_final: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}_final.png" ) )
28
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ = {'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
713
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _snake_case : Dict = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
28
0
"""simple docstring""" import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def UpperCAmelCase__ (*snake_case__ : List[Any] , snake_case__ : Optional[Union[Dict, Any]] = None , snake_case__ : str=True , snake_case__ : Dict=2 ): """simple docstring""" from .. import __version__ _snake_case : Tuple = take_from _snake_case : Tuple = () if not isinstance(args[0] , snake_case__ ): _snake_case : Optional[int] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(snake_case__ ).base_version ) >= version.parse(snake_case__ ): raise ValueError( F"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" F" version {__version__} is >= {version_name}" ) _snake_case : Optional[Any] = None if isinstance(snake_case__ , snake_case__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(snake_case__ ),) _snake_case : List[Any] = F"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(snake_case__ , snake_case__ ): values += (getattr(snake_case__ , snake_case__ ),) _snake_case : Union[str, Any] = F"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: _snake_case : List[Any] = F"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: _snake_case : Any = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , snake_case__ , stacklevel=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) > 0: _snake_case : Dict = inspect.getouterframes(inspect.currentframe() )[1] _snake_case : str = call_frame.filename _snake_case : int = call_frame.lineno _snake_case : Any = call_frame.function _snake_case : List[Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(snake_case__ ) == 0: return elif len(snake_case__ ) == 1: return values[0] return values
714
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase: '''simple docstring''' def __init__( self: List[str], a_: List[Any], a_: str=13, a_: Dict=32, a_: Union[str, Any]=3, a_: Union[str, Any]=4, a_: Tuple=[10, 20, 30, 40], a_: Dict=[2, 2, 3, 2], a_: Tuple=True, a_: Optional[Any]=True, a_: Any=37, a_: Any="gelu", a_: int=10, a_: Tuple=0.02, a_: str=["stage2", "stage3", "stage4"], a_: List[str]=[2, 3, 4], a_: List[str]=None, ): '''simple docstring''' _snake_case : int = parent _snake_case : int = batch_size _snake_case : List[Any] = image_size _snake_case : List[str] = num_channels _snake_case : Tuple = num_stages _snake_case : Union[str, Any] = hidden_sizes _snake_case : List[Any] = depths _snake_case : Tuple = is_training _snake_case : List[str] = use_labels _snake_case : Tuple = intermediate_size _snake_case : List[str] = hidden_act _snake_case : Optional[Any] = num_labels _snake_case : Tuple = initializer_range _snake_case : Tuple = out_features _snake_case : Tuple = out_indices _snake_case : Dict = scope def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Any = None if self.use_labels: _snake_case : Dict = ids_tensor([self.batch_size], self.num_labels ) _snake_case : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=a_, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, ) def UpperCamelCase_ ( self: int, a_: Tuple, a_: Any, a_: Dict ): '''simple docstring''' _snake_case : int = ConvNextVaModel(config=a_ ) model.to(a_ ) model.eval() _snake_case : Any = model(a_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def UpperCamelCase_ ( self: Optional[int], a_: List[str], a_: Tuple, a_: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = ConvNextVaForImageClassification(a_ ) model.to(a_ ) model.eval() _snake_case : Optional[int] = model(a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self: Union[str, Any], a_: Tuple, a_: Tuple, a_: Tuple ): '''simple docstring''' _snake_case : List[str] = ConvNextVaBackbone(config=a_ ) model.to(a_ ) model.eval() _snake_case : int = model(a_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] ) # verify backbone works with out_features=None _snake_case : Tuple = None _snake_case : Tuple = ConvNextVaBackbone(config=a_ ) model.to(a_ ) model.eval() _snake_case : List[Any] = model(a_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ), 1 ) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Dict = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : Any = config_and_inputs _snake_case : str = {"""pixel_values""": pixel_values} return config, inputs_dict def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[Any] = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : List[str] = config_and_inputs _snake_case : Any = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase__ = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Tuple = ConvNextVaModelTester(self ) _snake_case : int = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def UpperCamelCase_ ( self: str ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _snake_case , _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_with_labels() _snake_case : List[Any] = True if model_class.__name__ in [ *get_values(a_ ), *get_values(a_ ), ]: continue _snake_case : Tuple = model_class(a_ ) model.to(a_ ) model.train() _snake_case : Optional[Any] = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : Any = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_with_labels() _snake_case : Any = False _snake_case : List[Any] = True if ( model_class.__name__ in [*get_values(a_ ), *get_values(a_ )] or not model_class.supports_gradient_checkpointing ): continue _snake_case : Dict = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() _snake_case : str = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : Optional[int] = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : List[str] = model_class(a_ ) _snake_case : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : int = [*signature.parameters.keys()] _snake_case : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1], a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(a_: str, a_: Tuple, a_: Tuple ): _snake_case : Optional[Any] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): _snake_case : Any = model(**self._prepare_for_class(a_, a_ ) ) _snake_case : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case : Optional[int] = self.model_tester.num_stages self.assertEqual(len(a_ ), expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) _snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Optional[Any] = True check_hidden_states_output(a_, a_, a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : List[str] = True check_hidden_states_output(a_, a_, a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : str = ConvNextVaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(a_ ) _snake_case : Union[str, Any] = self.default_image_processor _snake_case : List[Any] = prepare_img() _snake_case : Optional[int] = preprocessor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Optional[int] = model(**a_ ) # verify the logits _snake_case : Optional[int] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, a_ ) _snake_case : Optional[int] = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], a_, atol=1E-4 ) )
28
0
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def UpperCAmelCase__ (): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _snake_case : Dict = """__test_patch_submodule_mock__""" with patch_submodule(_test_patching , """os.path.join""" , snake_case__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def UpperCAmelCase__ (): """simple docstring""" assert _test_patching.open is open _snake_case : Any = """__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , """open""" , snake_case__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def UpperCAmelCase__ (): """simple docstring""" _snake_case : Union[str, Any] = """__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching , """pandas.read_csv""" , snake_case__ ): pass def UpperCAmelCase__ (): """simple docstring""" _snake_case : Any = """__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , """len""" , snake_case__ ) is None with patch_submodule(_test_patching , """len""" , snake_case__ ): assert _test_patching.len is mock assert _test_patching.len is len def UpperCAmelCase__ (): """simple docstring""" _snake_case : Optional[int] = """__test_patch_submodule_start_and_stop_mock__""" _snake_case : Dict = patch_submodule(_test_patching , """open""" , snake_case__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def UpperCAmelCase__ (): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _snake_case : Any = """__test_patch_submodule_successive_join__""" _snake_case : Union[str, Any] = """__test_patch_submodule_successive_dirname__""" _snake_case : Tuple = """__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , """os.path.join""" , snake_case__ ): with patch_submodule(_test_patching , """os.rename""" , snake_case__ ): with patch_submodule(_test_patching , """os.path.dirname""" , snake_case__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , """os.rename""" , snake_case__ ): with patch_submodule(_test_patching , """os.path.join""" , snake_case__ ): with patch_submodule(_test_patching , """os.path.dirname""" , snake_case__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def UpperCAmelCase__ (): """simple docstring""" _snake_case : str = """__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , snake_case__ ): pass with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , snake_case__ ): pass
715
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Dict ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Dict ): """simple docstring""" _snake_case : str = tmp_path / """cache""" _snake_case : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _snake_case : str = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : int , snake_case__ : List[Any] ): """simple docstring""" _snake_case : str = tmp_path / """cache""" _snake_case : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : List[Any] = features.copy() if features else default_expected_features _snake_case : List[Any] = ( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) _snake_case : Optional[Any] = ParquetDatasetReader(snake_case__ , features=snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : List[str] = tmp_path / """cache""" _snake_case : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : int = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ , split=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : str , snake_case__ : str ): """simple docstring""" if issubclass(snake_case__ , snake_case__ ): _snake_case : Optional[Any] = parquet_path elif issubclass(snake_case__ , snake_case__ ): _snake_case : int = [parquet_path] _snake_case : Union[str, Any] = tmp_path / """cache""" _snake_case : Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : List[str] = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : str=("train",) ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ) for split in splits: _snake_case : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str , snake_case__ : List[Any] ): """simple docstring""" _snake_case : Tuple = tmp_path / """cache""" _snake_case : Optional[int] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _snake_case : Tuple = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] ): """simple docstring""" _snake_case : Optional[int] = tmp_path / """cache""" _snake_case : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : Optional[Any] = features.copy() if features else default_expected_features _snake_case : Dict = ( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) _snake_case : Optional[int] = ParquetDatasetReader({"""train""": parquet_path} , features=snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Tuple ): """simple docstring""" if split: _snake_case : int = {split: parquet_path} else: _snake_case : Optional[Any] = """train""" _snake_case : int = {"""train""": parquet_path, """test""": parquet_path} _snake_case : Dict = tmp_path / """cache""" _snake_case : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : Union[str, Any] = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : Tuple ): """simple docstring""" _snake_case : List[Any] = ParquetDatasetWriter(snake_case__ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _snake_case : str = pq.ParquetFile(tmp_path / """foo.parquet""" ) _snake_case : int = pf.read() assert dataset.data.table == output_table def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : Optional[Any] = str(shared_datadir / """test_image_rgb.jpg""" ) _snake_case : Tuple = {"""image""": [image_path]} _snake_case : Optional[int] = Features({"""image""": Image()} ) _snake_case : int = Dataset.from_dict(snake_case__ , features=snake_case__ ) _snake_case : Optional[Any] = ParquetDatasetWriter(snake_case__ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _snake_case : List[str] = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features _snake_case : Optional[Any] = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=snake_case__ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : str ): """simple docstring""" assert get_writer_batch_size(snake_case__ ) == expected
28
0
"""simple docstring""" from __future__ import annotations from typing import Any class lowercase: '''simple docstring''' def __init__( self: Union[str, Any], a_: int = 6 ): '''simple docstring''' _snake_case : Node | None = None _snake_case : Node | None = None self.create_linked_list(a_ ) def UpperCamelCase_ ( self: int, a_: int ): '''simple docstring''' _snake_case : List[Any] = Node() _snake_case : Any = current_node _snake_case : int = current_node _snake_case : Union[str, Any] = current_node for _ in range(1, a_ ): _snake_case : Optional[Any] = Node() _snake_case : str = current_node _snake_case : str = previous_node _snake_case : int = current_node _snake_case : Tuple = self.front _snake_case : str = previous_node def UpperCamelCase_ ( self: int ): '''simple docstring''' return ( self.front == self.rear and self.front is not None and self.front.data is None ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' self.check_can_perform_operation() return self.front.data if self.front else None def UpperCamelCase_ ( self: int, a_: Any ): '''simple docstring''' if self.rear is None: return self.check_is_full() if not self.is_empty(): _snake_case : Tuple = self.rear.next if self.rear: _snake_case : int = data def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: _snake_case : Tuple = self.front.data _snake_case : Optional[Any] = None return data _snake_case : Optional[Any] = self.front _snake_case : List[Any] = old_front.next _snake_case : Optional[Any] = old_front.data _snake_case : Optional[int] = None return data def UpperCamelCase_ ( self: Any ): '''simple docstring''' if self.is_empty(): raise Exception("""Empty Queue""" ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class lowercase: '''simple docstring''' def __init__( self: Tuple ): '''simple docstring''' _snake_case : Any | None = None _snake_case : Node | None = None _snake_case : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
716
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase: '''simple docstring''' def __init__( self: Dict, a_: Union[str, Any], a_: Tuple=13, a_: Dict=32, a_: Optional[Any]=3, a_: Optional[Any]=4, a_: Optional[int]=[10, 20, 30, 40], a_: Any=[2, 2, 3, 2], a_: Dict=True, a_: Dict=True, a_: List[str]=37, a_: Dict="gelu", a_: List[str]=10, a_: Union[str, Any]=0.02, a_: Any=["stage2", "stage3", "stage4"], a_: Optional[int]=3, a_: Tuple=None, ): '''simple docstring''' _snake_case : Dict = parent _snake_case : Dict = batch_size _snake_case : Optional[Any] = image_size _snake_case : int = num_channels _snake_case : Tuple = num_stages _snake_case : int = hidden_sizes _snake_case : List[str] = depths _snake_case : str = is_training _snake_case : Dict = use_labels _snake_case : List[str] = intermediate_size _snake_case : Optional[int] = hidden_act _snake_case : Any = type_sequence_label_size _snake_case : List[str] = initializer_range _snake_case : Union[str, Any] = out_features _snake_case : Dict = num_labels _snake_case : int = scope _snake_case : Dict = num_stages def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Optional[int] = None if self.use_labels: _snake_case : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) _snake_case : Tuple = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels, num_stages=self.num_stages, hidden_sizes=self.hidden_sizes, depths=self.depths, is_training=self.is_training, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, out_features=self.out_features, ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config(), hidden_size=512, pool_scales=[1, 2, 3, 6], use_auxiliary_head=a_, auxiliary_loss_weight=0.4, auxiliary_in_channels=40, auxiliary_channels=256, auxiliary_num_convs=1, auxiliary_concat_input=a_, loss_ignore_index=255, num_labels=self.num_labels, ) def UpperCamelCase_ ( self: Tuple, a_: List[Any], a_: Dict, a_: Tuple ): '''simple docstring''' _snake_case : List[Any] = UperNetForSemanticSegmentation(config=a_ ) model.to(a_ ) model.eval() _snake_case : Tuple = model(a_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Any = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : List[Any] = config_and_inputs _snake_case : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase__ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = UperNetModelTester(self ) _snake_case : Dict = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Dict = model_class(a_ ) _snake_case : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Tuple = [*signature.parameters.keys()] _snake_case : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1], a_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not have a base model""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not have a base model""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' pass def UpperCamelCase_ ( self: str ): '''simple docstring''' def check_hidden_states_output(a_: Dict, a_: List[str], a_: Optional[int] ): _snake_case : Optional[Any] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): _snake_case : Any = model(**self._prepare_for_class(a_, a_ ) ) _snake_case : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case : List[str] = self.model_tester.num_stages self.assertEqual(len(a_ ), expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) _snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : int = True check_hidden_states_output(a_, a_, a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : Optional[int] = True check_hidden_states_output(a_, a_, a_ ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Tuple = _config_zero_init(a_ ) _snake_case : Dict = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _snake_case : Optional[int] = model_class(config=a_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' pass @slow def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : int = UperNetForSemanticSegmentation.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Union[str, Any] = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) _snake_case : List[Any] = Image.open(snake_case__ ).convert("""RGB""" ) return image @require_torch @require_vision @slow class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : str = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) _snake_case : Any = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(a_ ) _snake_case : Dict = prepare_img() _snake_case : str = processor(images=a_, return_tensors="""pt""" ).to(a_ ) with torch.no_grad(): _snake_case : Tuple = model(**a_ ) _snake_case : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape, a_ ) _snake_case : int = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], a_, atol=1E-4 ) ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) _snake_case : Optional[int] = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(a_ ) _snake_case : List[str] = prepare_img() _snake_case : Tuple = processor(images=a_, return_tensors="""pt""" ).to(a_ ) with torch.no_grad(): _snake_case : Optional[Any] = model(**a_ ) _snake_case : Union[str, Any] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape, a_ ) _snake_case : Optional[Any] = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], a_, atol=1E-4 ) )
28
0
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = GPTSanJapaneseTokenizer lowercase__ = False lowercase__ = {"do_clean_text": False, "add_prefix_space": False} def UpperCamelCase_ ( self: Dict ): '''simple docstring''' super().setUp() # fmt: off _snake_case : Optional[int] = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on _snake_case : Tuple = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 _snake_case : Tuple = {"""unk_token""": """<unk>"""} _snake_case : Optional[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) _snake_case : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file, """w""" ) as emoji_writer: emoji_writer.write(json.dumps(a_ ) ) def UpperCamelCase_ ( self: Dict, **a_: List[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname, **a_ ) def UpperCamelCase_ ( self: int, a_: Any ): '''simple docstring''' _snake_case : Optional[Any] = """こんにちは、世界。 \nこんばんは、㔺界。😀""" _snake_case : Optional[int] = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def UpperCamelCase_ ( self: Any, a_: Optional[Any] ): '''simple docstring''' _snake_case : Any = self.get_input_output_texts(a_ ) _snake_case : Tuple = tokenizer.encode(a_, add_special_tokens=a_ ) _snake_case : str = tokenizer.decode(a_, clean_up_tokenization_spaces=a_ ) return text, ids def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase_ ( self: str ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Tuple = self.get_tokenizer() # Testing tokenization _snake_case : Tuple = """こんにちは、世界。 こんばんは、㔺界。""" _snake_case : Union[str, Any] = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] _snake_case : List[Any] = tokenizer.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Testing conversion to ids without special tokens _snake_case : Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _snake_case : Union[str, Any] = tokenizer.convert_tokens_to_ids(a_ ) self.assertListEqual(a_, a_ ) # Testing conversion to ids with special tokens _snake_case : Any = tokens + [tokenizer.unk_token] _snake_case : List[str] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] _snake_case : List[Any] = tokenizer.convert_tokens_to_ids(a_ ) self.assertListEqual(a_, a_ ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Tuple = self.get_tokenizer() # Testing tokenization _snake_case : Optional[int] = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" _snake_case : List[str] = """こんにちは、、、、世界。こんばんは、、、、世界。""" _snake_case : Optional[Any] = tokenizer.encode(a_ ) _snake_case : Tuple = tokenizer.decode(a_ ) self.assertEqual(a_, a_ ) @slow def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Dict = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization _snake_case : Optional[Any] = """こんにちは、世界。""" _snake_case : List[Any] = """こんばんは、㔺界。😀""" _snake_case : Tuple = """こんにちは、世界。こんばんは、世界。😀""" _snake_case : str = tokenizer.encode(prefix_text + input_text ) _snake_case : Optional[Any] = tokenizer.encode("""""", prefix_text=prefix_text + input_text ) _snake_case : Optional[int] = tokenizer.encode(a_, prefix_text=a_ ) _snake_case : List[Any] = tokenizer.decode(a_ ) _snake_case : str = tokenizer.decode(a_ ) _snake_case : Union[str, Any] = tokenizer.decode(a_ ) self.assertEqual(a_, a_ ) self.assertEqual(a_, a_ ) self.assertEqual(a_, a_ ) @slow def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : str = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization _snake_case : Union[str, Any] = """こんにちは、世界。""" _snake_case : Optional[Any] = """こんばんは、㔺界。😀""" _snake_case : Dict = len(tokenizer.encode(a_ ) ) - 2 _snake_case : List[Any] = len(tokenizer.encode(a_ ) ) - 2 _snake_case : Tuple = [1] + [0] * (len_prefix + len_text + 1) _snake_case : Dict = [1] * (len_prefix + len_text + 1) + [0] _snake_case : List[Any] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _snake_case : List[Any] = tokenizer(prefix_text + input_text ).token_type_ids _snake_case : Optional[int] = tokenizer("""""", prefix_text=prefix_text + input_text ).token_type_ids _snake_case : Optional[Any] = tokenizer(a_, prefix_text=a_ ).token_type_ids self.assertListEqual(a_, a_ ) self.assertListEqual(a_, a_ ) self.assertListEqual(a_, a_ ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : int = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) _snake_case : int = tokenizer.encode("""あンいワ""" ) _snake_case : Optional[int] = tokenizer.encode("""""", prefix_text="""あンいワ""" ) _snake_case : Union[str, Any] = tokenizer.encode("""いワ""", prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(a_ ), tokenizer.decode(a_ ) ) self.assertEqual(tokenizer.decode(a_ ), tokenizer.decode(a_ ) ) self.assertNotEqual(a_, a_ ) self.assertNotEqual(a_, a_ ) self.assertEqual(x_token_a[1], x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1], x_token_a[3] ) # SEG token @slow def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Dict = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) _snake_case : List[str] = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] _snake_case : Dict = tokenizer(a_, padding=a_ ) _snake_case : List[Any] = tokenizer.batch_encode_plus(a_, padding=a_ ) # fmt: off _snake_case : Any = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]] _snake_case : Union[str, Any] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _snake_case : Tuple = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids, a_ ) self.assertListEqual(x_token.token_type_ids, a_ ) self.assertListEqual(x_token.attention_mask, a_ ) self.assertListEqual(x_token_a.input_ids, a_ ) self.assertListEqual(x_token_a.token_type_ids, a_ ) self.assertListEqual(x_token_a.attention_mask, a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' pass def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass
717
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path A_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) A_ = [ord(letter) for letter in string.ascii_lowercase] A_ = {ord(char) for char in VALID_CHARS} A_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : tuple[int, ...] ): """simple docstring""" _snake_case : str = "" _snake_case : int _snake_case : int _snake_case : int for keychar, cipherchar in zip(cycle(snake_case__ ) , snake_case__ ): _snake_case : List[str] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case__ ) return decoded def UpperCAmelCase__ (snake_case__ : list[int] ): """simple docstring""" _snake_case : list[str] = [] for key in product(snake_case__ , repeat=3 ): _snake_case : List[Any] = try_key(snake_case__ , snake_case__ ) if encoded is not None: possibles.append(snake_case__ ) return possibles def UpperCAmelCase__ (snake_case__ : list[str] , snake_case__ : str ): """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def UpperCAmelCase__ (snake_case__ : str = "p059_cipher.txt" ): """simple docstring""" _snake_case : list[int] _snake_case : list[str] _snake_case : str _snake_case : str _snake_case : str = Path(snake_case__ ).parent.joinpath(snake_case__ ).read_text(encoding="""utf-8""" ) _snake_case : List[Any] = [int(snake_case__ ) for number in data.strip().split(""",""" )] _snake_case : Optional[Any] = filter_valid_chars(snake_case__ ) for common_word in COMMON_WORDS: _snake_case : Union[str, Any] = filter_common_word(snake_case__ , snake_case__ ) if len(snake_case__ ) == 1: break _snake_case : Optional[int] = possibles[0] return sum(ord(snake_case__ ) for char in decoded_text ) if __name__ == "__main__": print(F'''{solution() = }''')
28
0
def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str ): """simple docstring""" def get_matched_characters(snake_case__ : str , snake_case__ : str ) -> str: _snake_case : str = [] _snake_case : Any = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): _snake_case : Optional[int] = int(max(0 , i - limit ) ) _snake_case : Any = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(snake_case__ ) _snake_case : List[str] = F"{_stra[0:_stra.index(snake_case__ )]} {_stra[_stra.index(snake_case__ ) + 1:]}" return "".join(snake_case__ ) # matching characters _snake_case : Optional[Any] = get_matched_characters(snake_case__ , snake_case__ ) _snake_case : Optional[Any] = get_matched_characters(snake_case__ , snake_case__ ) _snake_case : int = len(snake_case__ ) # transposition _snake_case : List[str] = ( len([(ca, ca) for ca, ca in zip(snake_case__ , snake_case__ ) if ca != ca] ) // 2 ) if not match_count: _snake_case : Tuple = 0.0 else: _snake_case : str = ( 1 / 3 * ( match_count / len(snake_case__ ) + match_count / len(snake_case__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _snake_case : int = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('''hello''', '''world'''))
718
"""simple docstring""" from ...processing_utils import ProcessorMixin class lowercase( __a ): '''simple docstring''' lowercase__ = ["image_processor", "feature_extractor"] lowercase__ = "TvltImageProcessor" lowercase__ = "TvltFeatureExtractor" def __init__( self: Dict, a_: Union[str, Any], a_: Union[str, Any] ): '''simple docstring''' super().__init__(image_processor=a_, feature_extractor=a_ ) _snake_case : Any = image_processor _snake_case : Dict = feature_extractor def __call__( self: int, a_: str=None, a_: Tuple=None, a_: Dict=None, a_: str=None, a_: Optional[int]=False, a_: Tuple=False, *a_: List[str], **a_: int, ): '''simple docstring''' if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) _snake_case : Optional[int] = None if images is not None: _snake_case : Tuple = self.image_processor(a_, mask_pixel=a_, *a_, **a_ ) if images_mixed is not None: _snake_case : Optional[int] = self.image_processor(a_, is_mixed=a_, *a_, **a_ ) if audio is not None: _snake_case : Any = self.feature_extractor( a_, *a_, sampling_rate=a_, mask_audio=a_, **a_ ) _snake_case : List[str] = {} if audio is not None: output_dict.update(a_ ) if images is not None: output_dict.update(a_ ) if images_mixed_dict is not None: output_dict.update(a_ ) return output_dict @property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Dict = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
28
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowercase: '''simple docstring''' def __init__( self: Optional[Any], a_: Optional[Any], a_: Optional[int]=13, a_: Dict=7, a_: Optional[Any]=True, a_: Any=True, a_: Any=True, a_: Any=99, a_: List[str]=32, a_: Any=5, a_: Optional[Any]=4, a_: Dict=37, a_: List[str]="gelu", a_: Any=0.1, a_: List[Any]=0.1, a_: Any=512, a_: int=16, a_: Dict=2, a_: Dict=0.02, a_: Any=3, a_: Optional[int]=4, a_: Tuple=None, ): '''simple docstring''' _snake_case : str = parent _snake_case : Dict = batch_size _snake_case : Tuple = seq_length _snake_case : Any = is_training _snake_case : Union[str, Any] = use_token_type_ids _snake_case : Tuple = use_labels _snake_case : str = vocab_size _snake_case : Any = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Tuple = num_attention_heads _snake_case : List[str] = intermediate_size _snake_case : Union[str, Any] = hidden_act _snake_case : Optional[int] = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : int = max_position_embeddings _snake_case : str = type_vocab_size _snake_case : Tuple = type_sequence_label_size _snake_case : Dict = initializer_range _snake_case : Dict = num_labels _snake_case : int = num_choices _snake_case : str = scope _snake_case : Tuple = self.vocab_size - 1 def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) _snake_case : Any = None if self.use_token_type_ids: _snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) _snake_case : Dict = None _snake_case : Dict = None _snake_case : int = None if self.use_labels: _snake_case : List[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) _snake_case : str = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) _snake_case : Tuple = ids_tensor([self.batch_size], self.num_choices ) _snake_case : List[Any] = OpenAIGPTConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, pad_token_id=self.pad_token_id, ) _snake_case : List[Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def UpperCamelCase_ ( self: Optional[Any], a_: Tuple, a_: str, a_: Optional[int], a_: List[Any], *a_: str ): '''simple docstring''' _snake_case : List[str] = OpenAIGPTModel(config=a_ ) model.to(a_ ) model.eval() _snake_case : Tuple = model(a_, token_type_ids=a_, head_mask=a_ ) _snake_case : Union[str, Any] = model(a_, token_type_ids=a_ ) _snake_case : List[str] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self: List[Any], a_: str, a_: Tuple, a_: List[Any], a_: Tuple, *a_: Union[str, Any] ): '''simple docstring''' _snake_case : Dict = OpenAIGPTLMHeadModel(a_ ) model.to(a_ ) model.eval() _snake_case : Optional[Any] = model(a_, token_type_ids=a_, labels=a_ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self: str, a_: Any, a_: int, a_: Dict, a_: List[str], *a_: Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = OpenAIGPTDoubleHeadsModel(a_ ) model.to(a_ ) model.eval() _snake_case : Dict = model(a_, token_type_ids=a_, labels=a_ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self: List[Any], a_: int, a_: str, a_: Optional[Any], a_: Dict, *a_: Optional[int] ): '''simple docstring''' _snake_case : int = self.num_labels _snake_case : Union[str, Any] = OpenAIGPTForSequenceClassification(a_ ) model.to(a_ ) model.eval() _snake_case : Union[str, Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) _snake_case : str = model(a_, token_type_ids=a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Union[str, Any] = self.prepare_config_and_inputs() ( _snake_case ) : List[str] = config_and_inputs _snake_case : List[str] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class lowercase( __a , __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowercase__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowercase__ = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase_ ( self: str, a_: str, a_: Dict, a_: List[str], a_: str, a_: Tuple ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def UpperCamelCase_ ( self: Any, a_: str, a_: Optional[int], a_: Optional[int]=False ): '''simple docstring''' _snake_case : Tuple = super()._prepare_for_class(a_, a_, return_labels=a_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": _snake_case : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length), dtype=torch.long, device=a_, ) _snake_case : int = inputs_dict["""labels"""] _snake_case : str = inputs_dict["""labels"""] _snake_case : List[str] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices), dtype=torch.long, device=a_, ) _snake_case : Optional[int] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=a_ ) return inputs_dict def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : List[str] = OpenAIGPTModelTester(self ) _snake_case : str = ConfigTester(self, config_class=a_, n_embd=37 ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*a_ ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*a_ ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*a_ ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*a_ ) @slow def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : str = OpenAIGPTModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch class lowercase( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[Any] = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(a_ ) _snake_case : Optional[Any] = torch.tensor([[481, 4_735, 544]], dtype=torch.long, device=a_ ) # the president is _snake_case : List[Any] = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the _snake_case : str = model.generate(a_, do_sample=a_ ) self.assertListEqual(output_ids[0].tolist(), a_ )
719
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A_ = '''pt''' elif is_tf_available(): A_ = '''tf''' else: A_ = '''jax''' class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ByTaTokenizer lowercase__ = False def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' super().setUp() _snake_case : List[str] = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def UpperCamelCase_ ( self: List[Any], **a_: int ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **a_ ) def UpperCamelCase_ ( self: Optional[Any], a_: Optional[Any], a_: List[Any]=False, a_: int=20, a_: Union[str, Any]=5 ): '''simple docstring''' _snake_case : List[Any] = [] for i in range(len(a_ ) ): try: _snake_case : Optional[Any] = tokenizer.decode([i], clean_up_tokenization_spaces=a_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _snake_case : str = list(filter(lambda a_ : re.match(r"""^[ a-zA-Z]+$""", t[1] ), a_ ) ) _snake_case : List[Any] = list(filter(lambda a_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=a_ ), a_ ) ) if max_length is not None and len(a_ ) > max_length: _snake_case : Tuple = toks[:max_length] if min_length is not None and len(a_ ) < min_length and len(a_ ) > 0: while len(a_ ) < min_length: _snake_case : List[str] = toks + toks # toks_str = [t[1] for t in toks] _snake_case : Tuple = [t[0] for t in toks] # Ensure consistency _snake_case : Optional[Any] = tokenizer.decode(a_, clean_up_tokenization_spaces=a_ ) if " " not in output_txt and len(a_ ) > 1: _snake_case : Dict = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=a_ ) + """ """ + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=a_ ) ) if with_prefix_space: _snake_case : Union[str, Any] = """ """ + output_txt _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) return output_txt, output_ids def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[int] = self.ta_base_tokenizer _snake_case : Optional[Any] = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) _snake_case : int = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""], batch_without_eos_added["""input_ids"""] ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[str] = self.ta_base_tokenizer _snake_case : Tuple = """Unicode €.""" _snake_case : List[Any] = tokenizer(a_ ) _snake_case : Tuple = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["""input_ids"""], a_ ) # decoding _snake_case : Tuple = tokenizer.decode(a_ ) self.assertEqual(a_, """Unicode €.</s>""" ) _snake_case : Tuple = tokenizer("""e è é ê ë""" ) _snake_case : List[Any] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["""input_ids"""], a_ ) # decoding _snake_case : int = tokenizer.decode(a_ ) self.assertEqual(a_, """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ), """e è é ê ë</s>""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Dict = self.ta_base_tokenizer _snake_case : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off _snake_case : Union[str, Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on _snake_case : int = tokenizer(a_, padding=a_, return_tensors=a_ ) self.assertIsInstance(a_, a_ ) if FRAMEWORK != "jax": _snake_case : List[str] = list(batch.input_ids.numpy()[0] ) else: _snake_case : Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(a_, a_ ) self.assertEqual((2, 37), batch.input_ids.shape ) self.assertEqual((2, 37), batch.attention_mask.shape ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : List[Any] = self.ta_base_tokenizer _snake_case : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _snake_case : Tuple = tokenizer(a_, padding=a_, return_tensors=a_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""", a_ ) self.assertIn("""attention_mask""", a_ ) self.assertNotIn("""decoder_input_ids""", a_ ) self.assertNotIn("""decoder_attention_mask""", a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Union[str, Any] = self.ta_base_tokenizer _snake_case : Dict = [ """Summary of the text.""", """Another summary.""", ] _snake_case : Optional[int] = tokenizer( text_target=a_, max_length=32, padding="""max_length""", truncation=a_, return_tensors=a_ ) self.assertEqual(32, targets["""input_ids"""].shape[1] ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : int = self.ta_base_tokenizer _snake_case : Optional[int] = ["""A long paragraph for summarization. </s>"""] _snake_case : Dict = ["""Summary of the text. </s>"""] # fmt: off _snake_case : Optional[int] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] _snake_case : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on _snake_case : Optional[Any] = tokenizer(a_, text_target=a_ ) self.assertEqual(a_, batch["""input_ids"""][0] ) self.assertEqual(a_, batch["""labels"""][0] ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test _snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _snake_case : List[str] = tempfile.mkdtemp() _snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running""" _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) _snake_case : List[Any] = tokenizer.__class__.from_pretrained(a_ ) _snake_case : Dict = after_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) shutil.rmtree(a_ ) _snake_case : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _snake_case : Union[str, Any] = tempfile.mkdtemp() _snake_case : List[Any] = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) _snake_case : Optional[Any] = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) _snake_case : Optional[Any] = tokenizer.__class__.from_pretrained(a_ ) _snake_case : str = after_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) self.assertIn("""new_additional_special_token""", after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) _snake_case : Optional[int] = tokenizer.__class__.from_pretrained(a_, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(a_ ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a_ ) with open(os.path.join(a_, """special_tokens_map.json""" ), encoding="""utf-8""" ) as json_file: _snake_case : Union[str, Any] = json.load(a_ ) with open(os.path.join(a_, """tokenizer_config.json""" ), encoding="""utf-8""" ) as json_file: _snake_case : List[Any] = json.load(a_ ) _snake_case : int = [f"<extra_id_{i}>" for i in range(125 )] _snake_case : Optional[int] = added_tokens_extra_ids + [ """an_additional_special_token""" ] _snake_case : Dict = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(a_, """special_tokens_map.json""" ), """w""", encoding="""utf-8""" ) as outfile: json.dump(a_, a_ ) with open(os.path.join(a_, """tokenizer_config.json""" ), """w""", encoding="""utf-8""" ) as outfile: json.dump(a_, a_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case : Optional[int] = tokenizer_class.from_pretrained( a_, ) self.assertIn( """an_additional_special_token""", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case : Union[str, Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""", lstrip=a_ )] _snake_case : List[Any] = tokenizer_class.from_pretrained( a_, additional_special_tokens=a_, ) self.assertIn("""a_new_additional_special_token""", tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ), ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a_ ) _snake_case : Optional[Any] = tokenizer_class.from_pretrained(a_ ) self.assertTrue(tokenizer.decode([255] ) == """""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.get_tokenizers(fast=a_, do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : Dict = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] _snake_case : List[Any] = tokenizer.convert_tokens_to_string(a_ ) self.assertIsInstance(a_, a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : Optional[int] = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] _snake_case : Any = 0 _snake_case : Union[str, Any] = tokenizer.convert_ids_to_tokens( a_, skip_special_tokens=a_ ) for attr in attributes_list: setattr(a_, attr + """_id""", a_ ) self.assertEqual(getattr(a_, a_ ), a_ ) self.assertEqual(getattr(a_, attr + """_id""" ), a_ ) setattr(a_, attr + """_id""", a_ ) self.assertEqual(getattr(a_, a_ ), a_ ) self.assertEqual(getattr(a_, attr + """_id""" ), a_ ) setattr(a_, """additional_special_tokens_ids""", [] ) self.assertListEqual(getattr(a_, """additional_special_tokens""" ), [] ) self.assertListEqual(getattr(a_, """additional_special_tokens_ids""" ), [] ) setattr(a_, """additional_special_tokens_ids""", [token_id_to_test_setters] ) self.assertListEqual(getattr(a_, """additional_special_tokens""" ), [token_to_test_setters] ) self.assertListEqual(getattr(a_, """additional_special_tokens_ids""" ), [token_id_to_test_setters] )
28
0
"""simple docstring""" from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration A_ = HfArgumentParser(InitializationArguments) A_ = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization A_ = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks A_ = { '''vocab_size''': len(tokenizer), '''scale_attn_by_inverse_layer_idx''': True, '''reorder_and_upcast_attn''': True, } # Load model config (GPT-2 large in this case) A_ = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config A_ = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
720
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class lowercase( __a ): '''simple docstring''' @staticmethod @abstractmethod def UpperCamelCase_ ( a_: ArgumentParser ): '''simple docstring''' raise NotImplementedError() @abstractmethod def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' raise NotImplementedError()
28
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional @dataclass class lowercase: '''simple docstring''' lowercase__ = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be trained."} ) lowercase__ = field( default="./" , metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} ) lowercase__ = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path of training dataset."} ) lowercase__ = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) lowercase__ = field(default=2 , metadata={"help": "Batch size for training."} ) lowercase__ = field(default=2 , metadata={"help": "Batch size for evaluation."} ) lowercase__ = field(default=0.1 , metadata={"help": "Value of weight decay."} ) lowercase__ = field( default=1_00_00 , metadata={"help": "Size of buffer used to shuffle streaming dataset."} ) lowercase__ = field(default=2e-4 , metadata={"help": "Learning rate fo training."} ) lowercase__ = field(default="cosine" , metadata={"help": "Learning rate."} ) lowercase__ = field( default=7_50 , metadata={"help": "Number of warmup steps in the learning rate schedule."} ) lowercase__ = field( default=16 , metadata={"help": "Number of gradient accumulation steps."} ) lowercase__ = field( default=__a , metadata={"help": "Use gradient checkpointing to reduce memory footprint."} ) lowercase__ = field(default=5_00_00 , metadata={"help": "Maximum number of training steps."} ) lowercase__ = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) lowercase__ = field(default=10_24 , metadata={"help": "Sequence lengths used for training."} ) lowercase__ = field(default=1 , metadata={"help": "Training seed."} ) lowercase__ = field( default=10_24 , metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."} , ) lowercase__ = field( default=__a , metadata={"help": "States path if the training should continue from a checkpoint folder."} ) lowercase__ = field(default=__a , metadata={"help": "If True the data is pretokenized."} ) @dataclass class lowercase: '''simple docstring''' lowercase__ = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) lowercase__ = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) lowercase__ = field(default=2 , metadata={"help": "Batch size used for evaluation."} ) lowercase__ = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) lowercase__ = field(default=10_24 , metadata={"help": "Length of sequences to be evaluated."} ) lowercase__ = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) @dataclass class lowercase: '''simple docstring''' lowercase__ = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) lowercase__ = field(default=__a , metadata={"help": "Number of workers used for code evaluation."} ) lowercase__ = field( default=__a , metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."} , ) lowercase__ = field( default=__a , metadata={"help": "Sample from the language model's output distribution."} ) lowercase__ = field(default=0.2 , metadata={"help": "Sampling temperature used for generation."} ) lowercase__ = field(default=2_56 , metadata={"help": "Maximum number of newly generated tokens."} ) lowercase__ = field(default=0 , metadata={"help": "Top-k parameter used for generation."} ) lowercase__ = field(default=0.95 , metadata={"help": "Top-p parameter used for nucleus sampling."} ) lowercase__ = field(default=10 , metadata={"help": "Number of generations to run in parallel."} ) lowercase__ = field( default=2_00 , metadata={"help": "Number of completions to generate for each sample."} ) lowercase__ = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) lowercase__ = field( default="eval_results.json" , metadata={"help": "Random seed used for evaluation."} ) lowercase__ = field( default="0" , metadata={"help": "Allow `code_eval` to execute Python code on machine"} ) lowercase__ = field( default=-1 , metadata={ "help": ( "Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" " number corresponds to which GPU device id to run on." ) } , ) @dataclass class lowercase: '''simple docstring''' lowercase__ = field( default=__a , metadata={ "help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." } , ) lowercase__ = field( default="transformersbook/codeparrot" , metadata={"help": "Folder or name of dataset to process."} ) lowercase__ = field( default="codeparrot-clean" , metadata={"help": "Folder to save processed processed dataset."} ) lowercase__ = field( default=10_00_00 , metadata={"help": "Number of files to save per JSON output file."} ) lowercase__ = field(default="content" , metadata={"help": "Column containing text data to process."} ) lowercase__ = field( default=10_00 , metadata={"help": "Maximum line length in file, otherwise file is filtered."} ) lowercase__ = field( default=1_00 , metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} ) lowercase__ = field( default=0.25 , metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} ) lowercase__ = field( default=1.5 , metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} ) lowercase__ = field( default=0.7 , metadata={"help": "Probability for filtering config, test and uncommon files."} ) lowercase__ = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} , ) lowercase__ = field( default=__a , metadata={"help": "If True, near-duplicate samples are removed."} ) lowercase__ = field( default=0.85 , metadata={"help": "Jaccard threshold for near-duplicate samples."} ) @dataclass class lowercase: '''simple docstring''' lowercase__ = field( default="gpt2" , metadata={"help": "Base tokenizer to build new tokenizer from."} ) lowercase__ = field( default="transformersbook/codeparrot-train" , metadata={"help": "Dataset to train tokenizer on."} ) lowercase__ = field(default="content" , metadata={"help": "Column containing text data to process."} ) lowercase__ = field(default=20_00_00 , metadata={"help": "Number of examples to train tokenizer on."} ) lowercase__ = field( default=3_27_68 , metadata={"help": "Number of examples to train the tokenizer on."} ) lowercase__ = field(default="codeparrot" , metadata={"help": "Name of new tokenizer."} ) lowercase__ = field(default=__a , metadata={"help": "Push saved tokenizer to the hub."} ) @dataclass class lowercase: '''simple docstring''' lowercase__ = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} ) lowercase__ = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path to the dataset to pretokenize."} ) lowercase__ = field( default="tokenized-codeparrot-train" , metadata={"help": "Repo name of the pretokenized data."} ) lowercase__ = field(default=__a , metadata={"help": "Number of workers used for code evaluation."} ) @dataclass class lowercase: '''simple docstring''' lowercase__ = field( default="gpt2-large" , metadata={"help": "Configuration to use for model initialization."} ) lowercase__ = field( default="codeparrot/codeparrot" , metadata={"help": "Tokenizer attached to model."} ) lowercase__ = field(default="codeparrot" , metadata={"help": "Name of the created model."} ) lowercase__ = field(default=__a , metadata={"help": "Push saved tokenizer to the hub."} )
721
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase( __a ): '''simple docstring''' lowercase__ = "roformer" def __init__( self: List[str], a_: Tuple=50_000, a_: Optional[Any]=None, a_: List[str]=768, a_: Union[str, Any]=12, a_: Optional[int]=12, a_: Optional[Any]=3_072, a_: List[str]="gelu", a_: List[str]=0.1, a_: Tuple=0.1, a_: Optional[int]=1_536, a_: Any=2, a_: Optional[int]=0.02, a_: Tuple=1E-12, a_: Dict=0, a_: str=False, a_: Dict=True, **a_: Dict, ): '''simple docstring''' super().__init__(pad_token_id=a_, **a_ ) _snake_case : int = vocab_size _snake_case : int = hidden_size if embedding_size is None else embedding_size _snake_case : Dict = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : Any = num_attention_heads _snake_case : Dict = hidden_act _snake_case : Optional[int] = intermediate_size _snake_case : List[Any] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = max_position_embeddings _snake_case : Tuple = type_vocab_size _snake_case : List[Any] = initializer_range _snake_case : List[Any] = layer_norm_eps _snake_case : Optional[Any] = rotary_value _snake_case : List[str] = use_cache class lowercase( __a ): '''simple docstring''' @property def UpperCamelCase_ ( self: Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : str = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : List[str] = {0: """batch""", 1: """sequence"""} _snake_case : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
28
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { "xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json", "xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json", "xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json", "xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json", "xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json", "xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json", "xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json", "xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json", "xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json", "xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json", } class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """xlm""" lowerCAmelCase_ = { """hidden_size""": """emb_dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", """n_words""": """vocab_size""", # For backward compatibility } def __init__( self , __lowerCAmelCase=3_0_1_4_5 , __lowerCAmelCase=2_0_4_8 , __lowerCAmelCase=1_2 , __lowerCAmelCase=1_6 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=1 , __lowerCAmelCase=True , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=2_0_4_8**-0.5 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=0.02 , __lowerCAmelCase=0 , __lowerCAmelCase=1 , __lowerCAmelCase=2 , __lowerCAmelCase=3 , __lowerCAmelCase=5 , __lowerCAmelCase=True , __lowerCAmelCase="first" , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=0.1 , __lowerCAmelCase=5 , __lowerCAmelCase=5 , __lowerCAmelCase=0 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , __lowerCAmelCase=0 , **__lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = vocab_size lowerCamelCase__ = emb_dim lowerCamelCase__ = n_layers lowerCamelCase__ = n_heads lowerCamelCase__ = dropout lowerCamelCase__ = attention_dropout lowerCamelCase__ = gelu_activation lowerCamelCase__ = sinusoidal_embeddings lowerCamelCase__ = causal lowerCamelCase__ = asm lowerCamelCase__ = n_langs lowerCamelCase__ = use_lang_emb lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = bos_index lowerCamelCase__ = eos_index lowerCamelCase__ = pad_index lowerCamelCase__ = unk_index lowerCamelCase__ = mask_index lowerCamelCase__ = is_encoder lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = embed_init_std lowerCamelCase__ = init_std lowerCamelCase__ = summary_type lowerCamelCase__ = summary_use_proj lowerCamelCase__ = summary_activation lowerCamelCase__ = summary_proj_to_labels lowerCamelCase__ = summary_first_dropout lowerCamelCase__ = start_n_top lowerCamelCase__ = end_n_top lowerCamelCase__ = mask_token_id lowerCamelCase__ = lang_id if "n_words" in kwargs: lowerCamelCase__ = kwargs['''n_words'''] super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) class __A ( lowerCAmelCase ): '''simple docstring''' @property def __lowerCamelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
29
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """ClapFeatureExtractor""" lowerCAmelCase_ = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' super().__init__(__lowerCAmelCase , __lowerCAmelCase ) def __call__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = kwargs.pop('''sampling_rate''' , __lowerCAmelCase ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: lowerCamelCase__ = self.tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if audios is not None: lowerCamelCase__ = self.feature_extractor( __lowerCAmelCase , sampling_rate=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if text is not None and audios is not None: lowerCamelCase__ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCAmelCase ) , tensor_type=__lowerCAmelCase ) def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.tokenizer.model_input_names lowerCamelCase__ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
29
1
from math import ceil def lowerCAmelCase__(__snake_case = 1001 ) -> int: '''simple docstring''' lowerCamelCase__ = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): lowerCamelCase__ = 2 * i + 1 lowerCamelCase__ = 2 * i lowerCamelCase__ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: _a = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number")
29
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __A : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=1_3 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=9_9 , __lowerCAmelCase=3_2 , __lowerCAmelCase=2 , __lowerCAmelCase=4 , __lowerCAmelCase=3_7 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=1_6 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , __lowerCAmelCase=0 , ): '''simple docstring''' lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_token_type_ids lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = num_labels lowerCamelCase__ = num_choices lowerCamelCase__ = scope lowerCamelCase__ = projection_dim def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ = None if self.use_token_type_ids: lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , ) lowerCamelCase__ = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = TFDPRContextEncoder(config=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = TFDPRQuestionEncoder(config=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = TFDPRReader(config=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = config_and_inputs lowerCamelCase__ = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowerCAmelCase_ = {"""feature-extraction""": TFDPRQuestionEncoder} if is_tf_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = TFDPRModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=3_7 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__lowerCAmelCase ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFDPRContextEncoder.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFDPRContextEncoder.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFDPRQuestionEncoder.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFDPRReader.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_tf class __A ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''' ) lowerCamelCase__ = tf.constant( [[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_0_3, 2_0_2_6, 3_8_9_9, 1_0_1_4_0, 1_0_2_9, 1_0_2]] ) # [CLS] hello, is my dog cute? [SEP] lowerCamelCase__ = model(__lowerCAmelCase )[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowerCamelCase__ = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ] ) self.assertTrue(numpy.allclose(output[:, :1_0].numpy() , expected_slice.numpy() , atol=1E-4 ) )
29
1
import numpy # List of input, output pairs _a = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) _a = (((515, 22, 13), 555), ((61, 35, 49), 150)) _a = [2, 4, 1, 5] _a = len(train_data) _a = 0.009 def lowerCAmelCase__(__snake_case ,__snake_case="train" ) -> Optional[int]: '''simple docstring''' return calculate_hypothesis_value(__snake_case ,__snake_case ) - output( __snake_case ,__snake_case ) def lowerCAmelCase__(__snake_case ) -> List[Any]: '''simple docstring''' lowerCamelCase__ = 0 for i in range(len(__snake_case ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowerCAmelCase__(__snake_case ,__snake_case ) -> List[Any]: '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowerCAmelCase__(__snake_case ,__snake_case ) -> Tuple: '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowerCAmelCase__(__snake_case ,__snake_case=m ) -> List[str]: '''simple docstring''' lowerCamelCase__ = 0 for i in range(__snake_case ): if index == -1: summation_value += _error(__snake_case ) else: summation_value += _error(__snake_case ) * train_data[i][0][index] return summation_value def lowerCAmelCase__(__snake_case ) -> List[Any]: '''simple docstring''' lowerCamelCase__ = summation_of_cost_derivative(__snake_case ,__snake_case ) / m return cost_derivative_value def lowerCAmelCase__() -> List[str]: '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output lowerCamelCase__ = 0.0_0_0_0_0_2 lowerCamelCase__ = 0 lowerCamelCase__ = 0 while True: j += 1 lowerCamelCase__ = [0, 0, 0, 0] for i in range(0 ,len(__snake_case ) ): lowerCamelCase__ = get_cost_derivative(i - 1 ) lowerCamelCase__ = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __snake_case ,__snake_case ,atol=__snake_case ,rtol=__snake_case ,): break lowerCamelCase__ = temp_parameter_vector print(('''Number of iterations:''', j) ) def lowerCAmelCase__() -> Tuple: '''simple docstring''' for i in range(len(__snake_case ) ): print(('''Actual output value:''', output(__snake_case ,'''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(__snake_case ,'''test''' )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
29
import string from math import logaa def lowerCAmelCase__(__snake_case ,__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = document.translate( str.maketrans('''''' ,'''''' ,string.punctuation ) ).replace('''\n''' ,'''''' ) lowerCamelCase__ = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def lowerCAmelCase__(__snake_case ,__snake_case ) -> tuple[int, int]: '''simple docstring''' lowerCamelCase__ = corpus.lower().translate( str.maketrans('''''' ,'''''' ,string.punctuation ) ) # strip all punctuation and replace it with '' lowerCamelCase__ = corpus_without_punctuation.split('''\n''' ) lowerCamelCase__ = term.lower() return (len([doc for doc in docs if term in doc] ), len(__snake_case )) def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case=False ) -> float: '''simple docstring''' if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) ,3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) ,3 ) def lowerCAmelCase__(__snake_case ,__snake_case ) -> float: '''simple docstring''' return round(tf * idf ,3 )
29
1
def lowerCAmelCase__(__snake_case = 50000000 ) -> int: '''simple docstring''' lowerCamelCase__ = set() lowerCamelCase__ = int((limit - 24) ** (1 / 2) ) lowerCamelCase__ = set(range(3 ,prime_square_limit + 1 ,2 ) ) primes.add(2 ) for p in range(3 ,prime_square_limit + 1 ,2 ): if p not in primes: continue primes.difference_update(set(range(p * p ,prime_square_limit + 1 ,__snake_case ) ) ) for primea in primes: lowerCamelCase__ = primea * primea for primea in primes: lowerCamelCase__ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowerCamelCase__ = primea * primea * primea * primea lowerCamelCase__ = square + cube + tetr if total >= limit: break ret.add(__snake_case ) return len(__snake_case ) if __name__ == "__main__": print(f"""{solution() = }""")
29
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _a = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
29
1
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _a = 4 _a = 3 class __A ( lowerCAmelCase ): '''simple docstring''' pass def lowerCAmelCase__(__snake_case ) -> Any: '''simple docstring''' for shard in shards: for i in range(__snake_case ): yield {"i": i, "shard": shard} def lowerCAmelCase__() -> List[str]: '''simple docstring''' lowerCamelCase__ = int(os.environ['''RANK'''] ) lowerCamelCase__ = int(os.environ['''WORLD_SIZE'''] ) lowerCamelCase__ = ArgumentParser() parser.add_argument('''--streaming''' ,type=__snake_case ) parser.add_argument('''--local_rank''' ,type=__snake_case ) parser.add_argument('''--num_workers''' ,type=__snake_case ,default=0 ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = args.streaming lowerCamelCase__ = args.num_workers lowerCamelCase__ = {'''shards''': [F'shard_{shard_idx}' for shard_idx in range(__snake_case )]} lowerCamelCase__ = IterableDataset.from_generator(__snake_case ,gen_kwargs=__snake_case ) if not streaming: lowerCamelCase__ = Dataset.from_list(list(__snake_case ) ) lowerCamelCase__ = split_dataset_by_node(__snake_case ,rank=__snake_case ,world_size=__snake_case ) lowerCamelCase__ = torch.utils.data.DataLoader(__snake_case ,num_workers=__snake_case ) lowerCamelCase__ = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowerCamelCase__ = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowerCamelCase__ = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
29
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict _a = namedtuple( "_TestCommandArgs", [ "dataset", "name", "cache_dir", "data_dir", "all_configs", "save_infos", "ignore_verifications", "force_redownload", "clear_cache", ], defaults=[None, None, None, False, False, False, False, False], ) def lowerCAmelCase__(__snake_case ,__snake_case ) -> List[str]: '''simple docstring''' return (abs(source - target ) / target) < 0.0_1 @pytest.mark.integration def lowerCAmelCase__(__snake_case ) -> Tuple: '''simple docstring''' lowerCamelCase__ = _TestCommandArgs(dataset=__snake_case ,all_configs=__snake_case ,save_infos=__snake_case ) lowerCamelCase__ = TestCommand(*__snake_case ) test_command.run() lowerCamelCase__ = os.path.join(__snake_case ,'''README.md''' ) assert os.path.exists(__snake_case ) lowerCamelCase__ = DatasetInfosDict.from_directory(__snake_case ) lowerCamelCase__ = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) ,splits=[ { '''name''': '''train''', '''num_bytes''': 2351563, '''num_examples''': 10000, }, { '''name''': '''validation''', '''num_bytes''': 238418, '''num_examples''': 1000, }, ] ,download_size=3940680 ,dataset_size=2589981 ,) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowerCamelCase__ , lowerCamelCase__ = getattr(dataset_infos['''default'''] ,__snake_case ), getattr(expected_dataset_infos['''default'''] ,__snake_case ) if key == "num_bytes": assert is_apercent_close(__snake_case ,__snake_case ) elif key == "splits": assert list(__snake_case ) == list(__snake_case ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes ,expected[split].num_bytes ) else: result == expected
29
1
from manim import * class __A ( lowerCAmelCase ): '''simple docstring''' def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowerCamelCase__ = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowerCamelCase__ = VGroup(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowerCamelCase__ = Text('''CPU''' , font_size=2_4 ) lowerCamelCase__ = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCAmelCase ) lowerCamelCase__ = [mem.copy() for i in range(4 )] lowerCamelCase__ = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowerCamelCase__ = Text('''GPU''' , font_size=2_4 ) lowerCamelCase__ = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(__lowerCAmelCase ) lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowerCamelCase__ = Text('''Model''' , font_size=2_4 ) lowerCamelCase__ = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(__lowerCAmelCase ) lowerCamelCase__ = [] for i, rect in enumerate(__lowerCAmelCase ): rect.set_stroke(__lowerCAmelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) lowerCamelCase__ = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCAmelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__lowerCAmelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__lowerCAmelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__lowerCAmelCase , buff=0.0 ) self.add(__lowerCAmelCase ) cpu_targs.append(__lowerCAmelCase ) lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowerCamelCase__ = Text('''Loaded Checkpoint''' , font_size=2_4 ) lowerCamelCase__ = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , aligned_edge=__lowerCAmelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) lowerCamelCase__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase__ = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=1_8 , ) blue_text.next_to(__lowerCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) lowerCamelCase__ = MarkupText( F'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCAmelCase ) , Write(__lowerCAmelCase ) ) self.play(Write(__lowerCAmelCase , run_time=1 ) , Create(__lowerCAmelCase , run_time=1 ) ) lowerCamelCase__ = [] lowerCamelCase__ = [] for i, rect in enumerate(__lowerCAmelCase ): lowerCamelCase__ = fill.copy().set_fill(__lowerCAmelCase , opacity=0.7 ) target.move_to(__lowerCAmelCase ) first_animations.append(GrowFromCenter(__lowerCAmelCase , run_time=1 ) ) lowerCamelCase__ = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__lowerCAmelCase , run_time=1.5 ) ) self.play(*__lowerCAmelCase ) self.play(*__lowerCAmelCase ) self.wait()
29
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __A : '''simple docstring''' def __init__( self , __lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = parent lowerCamelCase__ = 1_3 lowerCamelCase__ = 7 lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = 9_9 lowerCamelCase__ = 3_2 lowerCamelCase__ = 2 lowerCamelCase__ = 4 lowerCamelCase__ = 3_7 lowerCamelCase__ = '''gelu''' lowerCamelCase__ = 0.1 lowerCamelCase__ = 0.1 lowerCamelCase__ = 5_1_2 lowerCamelCase__ = 1_6 lowerCamelCase__ = 2 lowerCamelCase__ = 0.02 lowerCamelCase__ = 3 lowerCamelCase__ = 4 lowerCamelCase__ = None def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self ): '''simple docstring''' ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = self.prepare_config_and_inputs() lowerCamelCase__ = True lowerCamelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = TFEsmModel(config=__lowerCAmelCase ) lowerCamelCase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowerCamelCase__ = model(__lowerCAmelCase ) lowerCamelCase__ = [input_ids, input_mask] lowerCamelCase__ = model(__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = True lowerCamelCase__ = TFEsmModel(config=__lowerCAmelCase ) lowerCamelCase__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''encoder_hidden_states''': encoder_hidden_states, '''encoder_attention_mask''': encoder_attention_mask, } lowerCamelCase__ = model(__lowerCAmelCase ) lowerCamelCase__ = [input_ids, input_mask] lowerCamelCase__ = model(__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase ) # Also check the case where encoder outputs are not passed lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = TFEsmForMaskedLM(config=__lowerCAmelCase ) lowerCamelCase__ = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.num_labels lowerCamelCase__ = TFEsmForTokenClassification(config=__lowerCAmelCase ) lowerCamelCase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowerCamelCase__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = config_and_inputs lowerCamelCase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase_ = ( { """feature-extraction""": TFEsmModel, """fill-mask""": TFEsmForMaskedLM, """text-classification""": TFEsmForSequenceClassification, """token-classification""": TFEsmForTokenClassification, """zero-shot""": TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = TFEsmModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=3_7 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFEsmModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @unittest.skip('''Protein models do not support embedding resizing.''' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip('''Protein models do not support embedding resizing.''' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(__lowerCAmelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCamelCase__ = model.get_bias() assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) for k, v in name.items(): assert isinstance(__lowerCAmelCase , tf.Variable ) else: lowerCamelCase__ = model.get_output_embeddings() assert x is None lowerCamelCase__ = model.get_bias() assert name is None @require_tf class __A ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = TFEsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) lowerCamelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase__ = model(__lowerCAmelCase )[0] lowerCamelCase__ = [1, 6, 3_3] self.assertEqual(list(output.numpy().shape ) , __lowerCAmelCase ) # compare the actual values for a slice. lowerCamelCase__ = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = TFEsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) lowerCamelCase__ = tf.constant([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) lowerCamelCase__ = model(__lowerCAmelCase )[0] # compare the actual values for a slice. lowerCamelCase__ = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
29
1
from PIL import Image def lowerCAmelCase__(__snake_case ,__snake_case ) -> Image: '''simple docstring''' def brightness(__snake_case ) -> float: return 128 + level + (c - 128) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__snake_case ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 _a = change_brightness(img, 100) brigt_img.save("image_data/lena_brightness.png", format="png")
29
from math import sqrt def lowerCAmelCase__(__snake_case ) -> bool: '''simple docstring''' assert isinstance(__snake_case ,__snake_case ) and ( number >= 0 ), "'number' must been an int and positive" lowerCamelCase__ = True # 0 and 1 are none primes. if number <= 1: lowerCamelCase__ = False for divisor in range(2 ,int(round(sqrt(__snake_case ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCamelCase__ = False break # precondition assert isinstance(__snake_case ,__snake_case ), "'status' must been from type bool" return status def lowerCAmelCase__(__snake_case ) -> Any: '''simple docstring''' assert isinstance(__snake_case ,__snake_case ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCamelCase__ = list(range(2 ,n + 1 ) ) lowerCamelCase__ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(__snake_case ) ): for j in range(i + 1 ,len(__snake_case ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCamelCase__ = 0 # filters actual prime numbers. lowerCamelCase__ = [x for x in begin_list if x != 0] # precondition assert isinstance(__snake_case ,__snake_case ), "'ans' must been from type list" return ans def lowerCAmelCase__(__snake_case ) -> Optional[Any]: '''simple docstring''' assert isinstance(__snake_case ,__snake_case ) and (n > 2), "'N' must been an int and > 2" lowerCamelCase__ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 ,n + 1 ): if is_prime(__snake_case ): ans.append(__snake_case ) # precondition assert isinstance(__snake_case ,__snake_case ), "'ans' must been from type list" return ans def lowerCAmelCase__(__snake_case ) -> List[str]: '''simple docstring''' assert isinstance(__snake_case ,__snake_case ) and number >= 0, "'number' must been an int and >= 0" lowerCamelCase__ = [] # this list will be returns of the function. # potential prime number factors. lowerCamelCase__ = 2 lowerCamelCase__ = number if number == 0 or number == 1: ans.append(__snake_case ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(__snake_case ): while quotient != 1: if is_prime(__snake_case ) and (quotient % factor == 0): ans.append(__snake_case ) quotient /= factor else: factor += 1 else: ans.append(__snake_case ) # precondition assert isinstance(__snake_case ,__snake_case ), "'ans' must been from type list" return ans def lowerCAmelCase__(__snake_case ) -> List[Any]: '''simple docstring''' assert isinstance(__snake_case ,__snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCamelCase__ = 0 # prime factorization of 'number' lowerCamelCase__ = prime_factorization(__snake_case ) lowerCamelCase__ = max(__snake_case ) # precondition assert isinstance(__snake_case ,__snake_case ), "'ans' must been from type int" return ans def lowerCAmelCase__(__snake_case ) -> Dict: '''simple docstring''' assert isinstance(__snake_case ,__snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCamelCase__ = 0 # prime factorization of 'number' lowerCamelCase__ = prime_factorization(__snake_case ) lowerCamelCase__ = min(__snake_case ) # precondition assert isinstance(__snake_case ,__snake_case ), "'ans' must been from type int" return ans def lowerCAmelCase__(__snake_case ) -> List[Any]: '''simple docstring''' assert isinstance(__snake_case ,__snake_case ), "'number' must been an int" assert isinstance(number % 2 == 0 ,__snake_case ), "compare bust been from type bool" return number % 2 == 0 def lowerCAmelCase__(__snake_case ) -> List[str]: '''simple docstring''' assert isinstance(__snake_case ,__snake_case ), "'number' must been an int" assert isinstance(number % 2 != 0 ,__snake_case ), "compare bust been from type bool" return number % 2 != 0 def lowerCAmelCase__(__snake_case ) -> List[Any]: '''simple docstring''' assert ( isinstance(__snake_case ,__snake_case ) and (number > 2) and is_even(__snake_case ) ), "'number' must been an int, even and > 2" lowerCamelCase__ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCamelCase__ = get_prime_numbers(__snake_case ) lowerCamelCase__ = len(__snake_case ) # run variable for while-loops. lowerCamelCase__ = 0 lowerCamelCase__ = None # exit variable. for break up the loops lowerCamelCase__ = True while i < len_pn and loop: lowerCamelCase__ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCamelCase__ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(__snake_case ,__snake_case ) and (len(__snake_case ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowerCAmelCase__(__snake_case ,__snake_case ) -> str: '''simple docstring''' assert ( isinstance(__snake_case ,__snake_case ) and isinstance(__snake_case ,__snake_case ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCamelCase__ = 0 while numbera != 0: lowerCamelCase__ = numbera % numbera lowerCamelCase__ = numbera lowerCamelCase__ = rest # precondition assert isinstance(__snake_case ,__snake_case ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowerCAmelCase__(__snake_case ,__snake_case ) -> Any: '''simple docstring''' assert ( isinstance(__snake_case ,__snake_case ) and isinstance(__snake_case ,__snake_case ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCamelCase__ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCamelCase__ = prime_factorization(__snake_case ) lowerCamelCase__ = prime_factorization(__snake_case ) elif numbera == 1 or numbera == 1: lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = max(__snake_case ,__snake_case ) lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCamelCase__ = prime_fac_a.count(__snake_case ) lowerCamelCase__ = prime_fac_a.count(__snake_case ) for _ in range(max(__snake_case ,__snake_case ) ): ans *= n else: lowerCamelCase__ = prime_fac_a.count(__snake_case ) for _ in range(__snake_case ): ans *= n done.append(__snake_case ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCamelCase__ = prime_fac_a.count(__snake_case ) for _ in range(__snake_case ): ans *= n done.append(__snake_case ) # precondition assert isinstance(__snake_case ,__snake_case ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowerCAmelCase__(__snake_case ) -> Union[str, Any]: '''simple docstring''' assert isinstance(__snake_case ,__snake_case ) and (n >= 0), "'number' must been a positive int" lowerCamelCase__ = 0 lowerCamelCase__ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(__snake_case ): ans += 1 # precondition assert isinstance(__snake_case ,__snake_case ) and is_prime( __snake_case ), "'ans' must been a prime number and from type int" return ans def lowerCAmelCase__(__snake_case ,__snake_case ) -> Dict: '''simple docstring''' assert ( is_prime(__snake_case ) and is_prime(__snake_case ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCamelCase__ = p_number_a + 1 # jump to the next number lowerCamelCase__ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(__snake_case ): number += 1 while number < p_number_a: ans.append(__snake_case ) number += 1 # fetch the next prime number. while not is_prime(__snake_case ): number += 1 # precondition assert ( isinstance(__snake_case ,__snake_case ) and ans[0] != p_number_a and ans[len(__snake_case ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowerCAmelCase__(__snake_case ) -> Tuple: '''simple docstring''' assert isinstance(__snake_case ,__snake_case ) and (n >= 1), "'n' must been int and >= 1" lowerCamelCase__ = [] # will be returned. for divisor in range(1 ,n + 1 ): if n % divisor == 0: ans.append(__snake_case ) # precondition assert ans[0] == 1 and ans[len(__snake_case ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowerCAmelCase__(__snake_case ) -> Optional[Any]: '''simple docstring''' assert isinstance(__snake_case ,__snake_case ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCamelCase__ = get_divisors(__snake_case ) # precondition assert ( isinstance(__snake_case ,__snake_case ) and (divisors[0] == 1) and (divisors[len(__snake_case ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowerCAmelCase__(__snake_case ,__snake_case ) -> Tuple: '''simple docstring''' assert ( isinstance(__snake_case ,__snake_case ) and isinstance(__snake_case ,__snake_case ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCamelCase__ = gcd(abs(__snake_case ) ,abs(__snake_case ) ) # precondition assert ( isinstance(__snake_case ,__snake_case ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowerCAmelCase__(__snake_case ) -> Optional[int]: '''simple docstring''' assert isinstance(__snake_case ,__snake_case ) and (n >= 0), "'n' must been a int and >= 0" lowerCamelCase__ = 1 # this will be return. for factor in range(1 ,n + 1 ): ans *= factor return ans def lowerCAmelCase__(__snake_case ) -> Optional[Any]: '''simple docstring''' assert isinstance(__snake_case ,__snake_case ) and (n >= 0), "'n' must been an int and >= 0" lowerCamelCase__ = 0 lowerCamelCase__ = 1 lowerCamelCase__ = 1 # this will be return for _ in range(n - 1 ): lowerCamelCase__ = ans ans += fiba lowerCamelCase__ = tmp return ans
29
1
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor _a = logging.get_logger(__name__) class __A ( lowerCAmelCase ): '''simple docstring''' def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
29
from __future__ import annotations def lowerCAmelCase__(__snake_case ,__snake_case = None ,__snake_case = None ) -> None: '''simple docstring''' if start is None: lowerCamelCase__ = 0 if end is None: lowerCamelCase__ = len(__snake_case ) - 1 if start >= end: return lowerCamelCase__ = (start + end) // 2 slowsort(__snake_case ,__snake_case ,__snake_case ) slowsort(__snake_case ,mid + 1 ,__snake_case ) if sequence[end] < sequence[mid]: lowerCamelCase__ , lowerCamelCase__ = sequence[mid], sequence[end] slowsort(__snake_case ,__snake_case ,end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
29
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """blip_2_vision_model""" def __init__( self , __lowerCAmelCase=1_4_0_8 , __lowerCAmelCase=6_1_4_4 , __lowerCAmelCase=3_9 , __lowerCAmelCase=1_6 , __lowerCAmelCase=2_2_4 , __lowerCAmelCase=1_4 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.0_0001 , __lowerCAmelCase=0.0 , __lowerCAmelCase=1E-10 , __lowerCAmelCase=True , **__lowerCAmelCase , ): '''simple docstring''' super().__init__(**__lowerCAmelCase ) lowerCamelCase__ = hidden_size lowerCamelCase__ = intermediate_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = patch_size lowerCamelCase__ = image_size lowerCamelCase__ = initializer_range lowerCamelCase__ = attention_dropout lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = hidden_act lowerCamelCase__ = qkv_bias @classmethod def __lowerCamelCase ( cls , __lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' cls._set_token_in_kwargs(__lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ = cls.get_config_dict(__lowerCAmelCase , **__lowerCAmelCase ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": lowerCamelCase__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__lowerCAmelCase , **__lowerCAmelCase ) class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """blip_2_qformer""" def __init__( self , __lowerCAmelCase=3_0_5_2_2 , __lowerCAmelCase=7_6_8 , __lowerCAmelCase=1_2 , __lowerCAmelCase=1_2 , __lowerCAmelCase=3_0_7_2 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=0 , __lowerCAmelCase="absolute" , __lowerCAmelCase=2 , __lowerCAmelCase=1_4_0_8 , **__lowerCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase ) lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = hidden_act lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = position_embedding_type lowerCamelCase__ = cross_attention_frequency lowerCamelCase__ = encoder_hidden_size @classmethod def __lowerCamelCase ( cls , __lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' cls._set_token_in_kwargs(__lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ = cls.get_config_dict(__lowerCAmelCase , **__lowerCAmelCase ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": lowerCamelCase__ = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__lowerCAmelCase , **__lowerCAmelCase ) class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """blip-2""" lowerCAmelCase_ = True def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=3_2 , **__lowerCAmelCase ): '''simple docstring''' super().__init__(**__lowerCAmelCase ) if vision_config is None: lowerCamelCase__ = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: lowerCamelCase__ = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: lowerCamelCase__ = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) lowerCamelCase__ = BlipaVisionConfig(**__lowerCAmelCase ) lowerCamelCase__ = BlipaQFormerConfig(**__lowerCAmelCase ) lowerCamelCase__ = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' lowerCamelCase__ = CONFIG_MAPPING[text_model_type](**__lowerCAmelCase ) lowerCamelCase__ = self.text_config.tie_word_embeddings lowerCamelCase__ = self.text_config.is_encoder_decoder lowerCamelCase__ = num_query_tokens lowerCamelCase__ = self.vision_config.hidden_size lowerCamelCase__ = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowerCamelCase__ = 1.0 lowerCamelCase__ = 0.02 @classmethod def __lowerCamelCase ( cls , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase , ): '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__lowerCAmelCase , ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = copy.deepcopy(self.__dict__ ) lowerCamelCase__ = self.vision_config.to_dict() lowerCamelCase__ = self.qformer_config.to_dict() lowerCamelCase__ = self.text_config.to_dict() lowerCamelCase__ = self.__class__.model_type return output
29
from __future__ import annotations def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ) -> float: '''simple docstring''' if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,) -> float: '''simple docstring''' if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,) -> float: '''simple docstring''' if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( __snake_case ,nominal_annual_percentage_rate / 365 ,number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
29
1
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _a = re.compile(r"\s+") def lowerCAmelCase__(__snake_case ) -> List[str]: '''simple docstring''' return {"hash": hashlib.mda(re.sub(__snake_case ,'''''' ,example['''content'''] ).encode('''utf-8''' ) ).hexdigest()} def lowerCAmelCase__(__snake_case ) -> List[Any]: '''simple docstring''' lowerCamelCase__ = [len(__snake_case ) for line in example['''content'''].splitlines()] return {"line_mean": np.mean(__snake_case ), "line_max": max(__snake_case )} def lowerCAmelCase__(__snake_case ) -> Dict: '''simple docstring''' lowerCamelCase__ = np.mean([c.isalnum() for c in example['''content''']] ) return {"alpha_frac": alpha_frac} def lowerCAmelCase__(__snake_case ,__snake_case ) -> Dict: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['''hash'''] ) return True else: return False def lowerCAmelCase__(__snake_case ,__snake_case=5 ) -> int: '''simple docstring''' lowerCamelCase__ = ['''auto-generated''', '''autogenerated''', '''automatically generated'''] lowerCamelCase__ = example['''content'''].splitlines() for _, line in zip(range(__snake_case ) ,__snake_case ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowerCAmelCase__(__snake_case ,__snake_case=5 ,__snake_case=0.0_5 ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = ['''unit tests''', '''test file''', '''configuration file'''] lowerCamelCase__ = example['''content'''].splitlines() lowerCamelCase__ = 0 lowerCamelCase__ = 0 # first test for _, line in zip(range(__snake_case ) ,__snake_case ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test lowerCamelCase__ = example['''content'''].count('''\n''' ) lowerCamelCase__ = int(coeff * nlines ) for line in lines: count_config += line.lower().count('''config''' ) count_test += line.lower().count('''test''' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowerCAmelCase__(__snake_case ) -> Any: '''simple docstring''' lowerCamelCase__ = ['''def ''', '''class ''', '''for ''', '''while '''] lowerCamelCase__ = example['''content'''].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowerCAmelCase__(__snake_case ,__snake_case=4 ) -> Optional[int]: '''simple docstring''' lowerCamelCase__ = example['''content'''].splitlines() lowerCamelCase__ = 0 for line in lines: counter += line.lower().count('''=''' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowerCAmelCase__(__snake_case ) -> Any: '''simple docstring''' lowerCamelCase__ = tokenizer(example['''content'''] ,truncation=__snake_case )['''input_ids'''] lowerCamelCase__ = len(example['''content'''] ) / len(__snake_case ) return {"ratio": ratio} def lowerCAmelCase__(__snake_case ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = {} results.update(get_hash(__snake_case ) ) results.update(line_stats(__snake_case ) ) results.update(alpha_stats(__snake_case ) ) results.update(char_token_ratio(__snake_case ) ) results.update(is_autogenerated(__snake_case ) ) results.update(is_config_or_test(__snake_case ) ) results.update(has_no_keywords(__snake_case ) ) results.update(has_few_assignments(__snake_case ) ) return results def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ) -> List[Any]: '''simple docstring''' if not check_uniques(__snake_case ,__snake_case ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowerCAmelCase__(__snake_case ) -> Union[str, Any]: '''simple docstring''' with open(__snake_case ,'''rb''' ) as f_in: with gzip.open(str(__snake_case ) + '''.gz''' ,'''wb''' ,compresslevel=6 ) as f_out: shutil.copyfileobj(__snake_case ,__snake_case ) os.unlink(__snake_case ) # Settings _a = HfArgumentParser(PreprocessingArguments) _a = parser.parse_args() if args.num_workers is None: _a = multiprocessing.cpu_count() _a = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _a = time.time() _a = load_dataset(args.dataset_name, split="train") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing _a = time.time() _a = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes _a = set(ds.unique("hash")) _a = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics _a = time.time() _a = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _a = time.time() _a , _a = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file _a = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) _a = output_dir / "data" data_dir.mkdir(exist_ok=True) _a = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _a = str(data_dir / f"""file-{file_number+1:012}.json""") _a = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
29
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCAmelCase__(__snake_case ) -> Union[str, Any]: '''simple docstring''' def wrapper(*__snake_case ,**__snake_case ): lowerCamelCase__ = timeit.default_timer() lowerCamelCase__ = func(*__snake_case ,**__snake_case ) lowerCamelCase__ = timeit.default_timer() - starttime return delta lowerCamelCase__ = func.__name__ return wrapper def lowerCAmelCase__(__snake_case ,__snake_case=100 ,__snake_case=None ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = seq_shapes or {} for i in range(__snake_case ): lowerCamelCase__ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__snake_case ,_ArrayXD ): lowerCamelCase__ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__snake_case ,datasets.Value ): if v.dtype == "string": lowerCamelCase__ = '''The small grey turtle was surprisingly fast when challenged.''' else: lowerCamelCase__ = np.random.randint(10 ,size=1 ).astype(v.dtype ).item() elif isinstance(__snake_case ,datasets.Sequence ): while isinstance(__snake_case ,datasets.Sequence ): lowerCamelCase__ = v.feature lowerCamelCase__ = seq_shapes[k] lowerCamelCase__ = np.random.rand(*__snake_case ).astype(v.dtype ) lowerCamelCase__ = data dummy_data.append((i, example) ) return dummy_data def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case=100 ,__snake_case=None ) -> str: '''simple docstring''' lowerCamelCase__ = generate_examples(__snake_case ,num_examples=__snake_case ,seq_shapes=__snake_case ) with ArrowWriter(features=__snake_case ,path=__snake_case ) as writer: for key, record in dummy_data: lowerCamelCase__ = features.encode_example(__snake_case ) writer.write(__snake_case ) lowerCamelCase__ , lowerCamelCase__ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' ) lowerCamelCase__ = datasets.Dataset.from_file(filename=__snake_case ,info=datasets.DatasetInfo(features=__snake_case ) ) return dataset
29
1
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( lowerCAmelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = RobertaTokenizer lowerCAmelCase_ = RobertaTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = {"""cls_token""": """<s>"""} def __lowerCamelCase ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase__ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCamelCase__ = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) lowerCamelCase__ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase__ = {'''unk_token''': '''<unk>'''} lowerCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) def __lowerCamelCase ( self , **__lowerCAmelCase ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def __lowerCamelCase ( self , **__lowerCAmelCase ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = '''lower newer''' lowerCamelCase__ = '''lower newer''' return input_text, output_text def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase__ = '''lower newer''' lowerCamelCase__ = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowerCamelCase__ = tokenizer.tokenize(__lowerCAmelCase ) # , add_prefix_space=True) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = tokens + [tokenizer.unk_token] lowerCamelCase__ = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__lowerCAmelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__lowerCAmelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.tokenizer_class.from_pretrained('''roberta-base''' ) lowerCamelCase__ = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowerCAmelCase ) lowerCamelCase__ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowerCAmelCase ) lowerCamelCase__ = tokenizer.encode( '''sequence builders''' , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) lowerCamelCase__ = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) lowerCamelCase__ = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase ) lowerCamelCase__ = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase , __lowerCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = '''Encode this sequence.''' lowerCamelCase__ = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments lowerCamelCase__ = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) lowerCamelCase__ = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing spaces after special tokens lowerCamelCase__ = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase )} ) # mask token has a left space lowerCamelCase__ = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) lowerCamelCase__ = '''Encode <mask> sequence''' lowerCamelCase__ = '''Encode <mask>sequence''' lowerCamelCase__ = tokenizer.encode(__lowerCAmelCase ) lowerCamelCase__ = encoded.index(__lowerCAmelCase ) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = tokenizer.encode(__lowerCAmelCase ) lowerCamelCase__ = encoded.index(__lowerCAmelCase ) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) lowerCamelCase__ = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) lowerCamelCase__ = '''A, <mask> AllenNLP sentence.''' lowerCamelCase__ = tokenizer_r.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase ) lowerCamelCase__ = tokenizer_p.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowerCamelCase__ = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowerCamelCase__ = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( __lowerCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __lowerCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def __lowerCamelCase ( self ): '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowerCamelCase__ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowerCamelCase__ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __lowerCAmelCase ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __lowerCAmelCase ) self.assertEqual(post_processor_state['''trim_offsets'''] , __lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCamelCase__ = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` lowerCamelCase__ = F'{text_of_1_token} {text_of_1_token}' lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowerCamelCase__ = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ) + 1, len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowerCamelCase__ = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ) + 1, len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowerCamelCase__ = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ), len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowerCamelCase__ = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ), len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) lowerCamelCase__ = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowerCamelCase__ = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ) + 1, 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowerCamelCase__ = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ), 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowerCamelCase__ = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ), 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , )
29
def lowerCAmelCase__(__snake_case ) -> int: '''simple docstring''' if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 ,len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] lowerCamelCase__ = grid[0] for row_n in range(1 ,len(__snake_case ) ): lowerCamelCase__ = grid[row_n] lowerCamelCase__ = fill_row(__snake_case ,__snake_case ) lowerCamelCase__ = grid[row_n] return grid[-1][-1] def lowerCAmelCase__(__snake_case ,__snake_case ) -> list: '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 ,len(__snake_case ) ): current_row[cell_n] += min(current_row[cell_n - 1] ,row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
29
1
from __future__ import annotations import os from collections.abc import Mapping _a = tuple[int, int] class __A : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = vertices lowerCamelCase__ = { (min(__lowerCAmelCase ), max(__lowerCAmelCase )): weight for edge, weight in edges.items() } def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCamelCase__ = weight def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = Graph({min(self.vertices )} , {} ) lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCamelCase__ = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCamelCase__ = edge lowerCamelCase__ = weight subgraph.add_edge(__lowerCAmelCase , __lowerCAmelCase ) return subgraph def lowerCAmelCase__(__snake_case = "p107_network.txt" ) -> int: '''simple docstring''' lowerCamelCase__ = os.path.abspath(os.path.dirname(__snake_case ) ) lowerCamelCase__ = os.path.join(__snake_case ,__snake_case ) lowerCamelCase__ = {} lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 with open(__snake_case ) as f: lowerCamelCase__ = f.read().strip().split('''\n''' ) lowerCamelCase__ = [line.split(''',''' ) for line in data] for edgea in range(1 ,len(__snake_case ) ): for edgea in range(__snake_case ): if adjaceny_matrix[edgea][edgea] != "-": lowerCamelCase__ = int(adjaceny_matrix[edgea][edgea] ) lowerCamelCase__ = Graph(set(range(len(__snake_case ) ) ) ,__snake_case ) lowerCamelCase__ = graph.prims_algorithm() lowerCamelCase__ = sum(graph.edges.values() ) lowerCamelCase__ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f"""{solution() = }""")
29
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures _a = logging.get_logger(__name__) @dataclass class __A : '''simple docstring''' lowerCAmelCase_ = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) lowerCAmelCase_ = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) lowerCAmelCase_ = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.task_name.lower() class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """train""" lowerCAmelCase_ = """dev""" lowerCAmelCase_ = """test""" class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = Split.train , __lowerCAmelCase = None , ): '''simple docstring''' warnings.warn( '''This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' , __lowerCAmelCase , ) lowerCamelCase__ = args lowerCamelCase__ = glue_processors[args.task_name]() lowerCamelCase__ = glue_output_modes[args.task_name] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): try: lowerCamelCase__ = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) # Load data features from cache or dataset file lowerCamelCase__ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) lowerCamelCase__ = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ = label_list[2], label_list[1] lowerCamelCase__ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ = cached_features_file + '''.lock''' with FileLock(__lowerCAmelCase ): if os.path.exists(__lowerCAmelCase ) and not args.overwrite_cache: lowerCamelCase__ = time.time() lowerCamelCase__ = torch.load(__lowerCAmelCase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: lowerCamelCase__ = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowerCamelCase__ = self.processor.get_test_examples(args.data_dir ) else: lowerCamelCase__ = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowerCamelCase__ = examples[:limit_length] lowerCamelCase__ = glue_convert_examples_to_features( __lowerCAmelCase , __lowerCAmelCase , max_length=args.max_seq_length , label_list=__lowerCAmelCase , output_mode=self.output_mode , ) lowerCamelCase__ = time.time() torch.save(self.features , __lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self , __lowerCAmelCase ): '''simple docstring''' return self.features[i] def __lowerCamelCase ( self ): '''simple docstring''' return self.label_list
29
1
_a = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" _a = [{"type": "code", "content": INSTALL_CONTENT}] _a = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
29
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets _a = datasets.logging.get_logger(__name__) _a = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" _a = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" _a = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case=False ,__snake_case=False ,__snake_case=True ,__snake_case=False ,__snake_case="dummy_doc" ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = {doc: key_lines} lowerCamelCase__ = {doc: sys_lines} lowerCamelCase__ = {} lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ , lowerCamelCase__ = reader.get_doc_mentions(__snake_case ,key_doc_lines[doc] ,__snake_case ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase__ = reader.set_annotated_parse_trees(__snake_case ,key_doc_lines[doc] ,__snake_case ,__snake_case ) lowerCamelCase__ , lowerCamelCase__ = reader.get_doc_mentions(__snake_case ,sys_doc_lines[doc] ,__snake_case ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase__ = reader.set_annotated_parse_trees(__snake_case ,key_doc_lines[doc] ,__snake_case ,__snake_case ) if remove_nested: lowerCamelCase__ , lowerCamelCase__ = reader.remove_nested_coref_mentions(__snake_case ,__snake_case ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase__ , lowerCamelCase__ = reader.remove_nested_coref_mentions(__snake_case ,__snake_case ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase__ = reader.get_mention_assignments(__snake_case ,__snake_case ) lowerCamelCase__ = reader.get_mention_assignments(__snake_case ,__snake_case ) lowerCamelCase__ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( '''Number of resulting singleton clusters in the key ''' F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' '''files, respectively''' ) return doc_coref_infos def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> str: '''simple docstring''' lowerCamelCase__ = get_coref_infos(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) lowerCamelCase__ = {} lowerCamelCase__ = 0 lowerCamelCase__ = 0 for name, metric in metrics: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = evaluator.evaluate_documents(__snake_case ,__snake_case ,beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(10 ) ,F'Recall: {recall * 100:.2f}' ,F' Precision: {precision * 100:.2f}' ,F' F1: {fa * 100:.2f}' ,) if conll_subparts_num == 3: lowerCamelCase__ = (conll / 3) * 100 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({'''conll_score''': conll} ) return output_scores def lowerCAmelCase__(__snake_case ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: lowerCamelCase__ = line.split()[5] if not parse_col == "-": lowerCamelCase__ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def __lowerCamelCase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False ): '''simple docstring''' lowerCamelCase__ = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: lowerCamelCase__ = util.check_gold_parse_annotation(__lowerCAmelCase ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase__ = evaluate( key_lines=__lowerCAmelCase , sys_lines=__lowerCAmelCase , metrics=__lowerCAmelCase , NP_only=__lowerCAmelCase , remove_nested=__lowerCAmelCase , keep_singletons=__lowerCAmelCase , min_span=__lowerCAmelCase , ) return score
29
1
def lowerCAmelCase__(__snake_case = 1000000 ) -> int: '''simple docstring''' lowerCamelCase__ = set(range(3 ,__snake_case ,2 ) ) primes.add(2 ) for p in range(3 ,__snake_case ,2 ): if p not in primes: continue primes.difference_update(set(range(p * p ,__snake_case ,__snake_case ) ) ) lowerCamelCase__ = [float(__snake_case ) for n in range(limit + 1 )] for p in primes: for n in range(__snake_case ,limit + 1 ,__snake_case ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"""{solution() = }""")
29
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests _a = open # noqa: we just need to have a builtin inside this module to test it properly
29
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { "andreasmadsen/efficient_mlm_m0.40": ( "https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json" ), } class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """roberta-prelayernorm""" def __init__( self , __lowerCAmelCase=5_0_2_6_5 , __lowerCAmelCase=7_6_8 , __lowerCAmelCase=1_2 , __lowerCAmelCase=1_2 , __lowerCAmelCase=3_0_7_2 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=1 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , __lowerCAmelCase="absolute" , __lowerCAmelCase=True , __lowerCAmelCase=None , **__lowerCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = hidden_act lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = position_embedding_type lowerCamelCase__ = use_cache lowerCamelCase__ = classifier_dropout class __A ( lowerCAmelCase ): '''simple docstring''' @property def __lowerCamelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
29
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging _a = logging.get_logger(__name__) class __A : '''simple docstring''' lowerCAmelCase_ = None @experimental def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> Tuple: '''simple docstring''' if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) return _map_with_joblib(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = num_proc if num_proc <= len(__snake_case ) else len(__snake_case ) lowerCamelCase__ = [] # We organize the splits ourselve (contiguous splits) for index in range(__snake_case ): lowerCamelCase__ = len(__snake_case ) // num_proc lowerCamelCase__ = len(__snake_case ) % num_proc lowerCamelCase__ = div * index + min(__snake_case ,__snake_case ) lowerCamelCase__ = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(__snake_case ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F'Error dividing inputs iterable among processes. ' F'Total number of objects {len(__snake_case )}, ' F'length: {sum(len(i[1] ) for i in split_kwds )}' ) logger.info( F'Spawning {num_proc} processes for {len(__snake_case )} objects in slices of {[len(i[1] ) for i in split_kwds]}' ) lowerCamelCase__ , lowerCamelCase__ = None, None if not disable_tqdm: lowerCamelCase__ , lowerCamelCase__ = (RLock(),), tqdm.set_lock with Pool(__snake_case ,initargs=__snake_case ,initializer=__snake_case ) as pool: lowerCamelCase__ = pool.map(__snake_case ,__snake_case ) logger.info(F'Finished {num_proc} processes' ) lowerCamelCase__ = [obj for proc_res in mapped for obj in proc_res] logger.info(F'Unpacked {len(__snake_case )} objects' ) return mapped def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> List[str]: '''simple docstring''' import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name ,n_jobs=__snake_case ): return joblib.Parallel()( joblib.delayed(__snake_case )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def lowerCAmelCase__(__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: lowerCamelCase__ = None
29
1
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position _a = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _a = concatenate_datasets _a = DownloadConfig _a = DownloadManager _a = DownloadMode _a = DownloadConfig _a = DownloadMode _a = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
29
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = 42 class __A ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' @register_to_config def __init__( self , __lowerCAmelCase = 1_6 , __lowerCAmelCase = 8_8 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 1 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 3_2 , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = "geglu" , __lowerCAmelCase = True , __lowerCAmelCase = True , ): '''simple docstring''' super().__init__() lowerCamelCase__ = num_attention_heads lowerCamelCase__ = attention_head_dim lowerCamelCase__ = num_attention_heads * attention_head_dim lowerCamelCase__ = in_channels lowerCamelCase__ = torch.nn.GroupNorm(num_groups=__lowerCAmelCase , num_channels=__lowerCAmelCase , eps=1E-6 , affine=__lowerCAmelCase ) lowerCamelCase__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) # 3. Define transformers blocks lowerCamelCase__ = nn.ModuleList( [ BasicTransformerBlock( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , dropout=__lowerCAmelCase , cross_attention_dim=__lowerCAmelCase , activation_fn=__lowerCAmelCase , attention_bias=__lowerCAmelCase , double_self_attention=__lowerCAmelCase , norm_elementwise_affine=__lowerCAmelCase , ) for d in range(__lowerCAmelCase ) ] ) lowerCamelCase__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=1 , __lowerCAmelCase=None , __lowerCAmelCase = True , ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = hidden_states.shape lowerCamelCase__ = batch_frames // num_frames lowerCamelCase__ = hidden_states lowerCamelCase__ = hidden_states[None, :].reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowerCamelCase__ = self.norm(__lowerCAmelCase ) lowerCamelCase__ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = self.proj_in(__lowerCAmelCase ) # 2. Blocks for block in self.transformer_blocks: lowerCamelCase__ = block( __lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , timestep=__lowerCAmelCase , cross_attention_kwargs=__lowerCAmelCase , class_labels=__lowerCAmelCase , ) # 3. Output lowerCamelCase__ = self.proj_out(__lowerCAmelCase ) lowerCamelCase__ = ( hidden_states[None, None, :] .reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowerCamelCase__ = hidden_states.reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=__lowerCAmelCase )
29
1
def lowerCAmelCase__(__snake_case ) -> str: '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
29
_a = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" _a = [{"type": "code", "content": INSTALL_CONTENT}] _a = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
29
1
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _a = logging.getLogger(__name__) class __A : '''simple docstring''' def __init__( self ): '''simple docstring''' lowerCamelCase__ = False def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' if not self.initialized: lowerCamelCase__ = RagRetriever( __lowerCAmelCase , question_encoder_tokenizer=__lowerCAmelCase , generator_tokenizer=__lowerCAmelCase , index=__lowerCAmelCase , init_retrieval=__lowerCAmelCase , ) lowerCamelCase__ = True def __lowerCamelCase ( self ): '''simple docstring''' self.retriever.index.init_index() def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = self.retriever._main_retrieve(__lowerCAmelCase , __lowerCAmelCase ) return doc_ids, retrieved_doc_embeds class __A ( lowerCAmelCase ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ): '''simple docstring''' if index is not None and index.is_initialized() and len(__lowerCAmelCase ) > 0: raise ValueError( '''When using Ray for distributed fine-tuning, ''' '''you\'ll need to provide the paths instead, ''' '''as the dataset and the index are loaded ''' '''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' ) super().__init__( __lowerCAmelCase , question_encoder_tokenizer=__lowerCAmelCase , generator_tokenizer=__lowerCAmelCase , index=__lowerCAmelCase , init_retrieval=__lowerCAmelCase , ) lowerCamelCase__ = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for worker in self.retrieval_workers ] ) def __lowerCamelCase ( self ): '''simple docstring''' logger.info('''initializing retrieval''' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. lowerCamelCase__ = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] lowerCamelCase__ , lowerCamelCase__ = ray.get(random_worker.retrieve.remote(__lowerCAmelCase , __lowerCAmelCase ) ) else: lowerCamelCase__ , lowerCamelCase__ = self._main_retrieve(__lowerCAmelCase , __lowerCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__lowerCAmelCase ) @classmethod def __lowerCamelCase ( cls , __lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase ): '''simple docstring''' return super(__lowerCAmelCase , cls ).get_tokenizers(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) @classmethod def __lowerCamelCase ( cls , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = kwargs.pop('''config''' , __lowerCAmelCase ) or RagConfig.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) lowerCamelCase__ = RagTokenizer.from_pretrained(__lowerCAmelCase , config=__lowerCAmelCase ) lowerCamelCase__ = rag_tokenizer.question_encoder lowerCamelCase__ = rag_tokenizer.generator if indexed_dataset is not None: lowerCamelCase__ = '''custom''' lowerCamelCase__ = CustomHFIndex(config.retrieval_vector_size , __lowerCAmelCase ) else: lowerCamelCase__ = cls._build_index(__lowerCAmelCase ) return cls( __lowerCAmelCase , question_encoder_tokenizer=__lowerCAmelCase , generator_tokenizer=__lowerCAmelCase , retrieval_workers=__lowerCAmelCase , index=__lowerCAmelCase , )
29
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _a = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
29
1
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _a = logging.get_logger(__name__) class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = ["""input_features""", """attention_mask"""] def __init__( self , __lowerCAmelCase=8_0 , __lowerCAmelCase=1_6_0_0_0 , __lowerCAmelCase=8_0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , **__lowerCAmelCase , ): '''simple docstring''' super().__init__(feature_size=__lowerCAmelCase , sampling_rate=__lowerCAmelCase , padding_value=__lowerCAmelCase , **__lowerCAmelCase ) lowerCamelCase__ = num_mel_bins lowerCamelCase__ = do_ceptral_normalize lowerCamelCase__ = normalize_means lowerCamelCase__ = normalize_vars lowerCamelCase__ = True def __lowerCamelCase ( self , __lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = waveform * (2**1_5) # Kaldi compliance: 16-bit signed integers lowerCamelCase__ = torch.from_numpy(__lowerCAmelCase ).unsqueeze(0 ) lowerCamelCase__ = ta_kaldi.fbank(__lowerCAmelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def __lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = True , __lowerCAmelCase = True , __lowerCAmelCase = 0.0 , ): '''simple docstring''' if normalize_means: lowerCamelCase__ = x[:input_length].mean(axis=0 ) lowerCamelCase__ = np.subtract(__lowerCAmelCase , __lowerCAmelCase ) if normalize_vars: lowerCamelCase__ = x[:input_length].std(axis=0 ) lowerCamelCase__ = np.divide(__lowerCAmelCase , __lowerCAmelCase ) if input_length < x.shape[0]: lowerCamelCase__ = padding_value # make sure array is in float32 lowerCamelCase__ = x.astype(np.floataa ) return x def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' lowerCamelCase__ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(__lowerCAmelCase , __lowerCAmelCase , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(__lowerCAmelCase , __lowerCAmelCase ) ] def __call__( self , __lowerCAmelCase , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowerCamelCase__ = isinstance(__lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) lowerCamelCase__ = is_batched_numpy or ( isinstance(__lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase__ = [np.asarray(__lowerCAmelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__lowerCAmelCase , np.ndarray ): lowerCamelCase__ = np.asarray(__lowerCAmelCase , dtype=np.floataa ) elif isinstance(__lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase__ = [raw_speech] # extract fbank features lowerCamelCase__ = [self._extract_fbank_features(__lowerCAmelCase ) for waveform in raw_speech] # convert into correct format for padding lowerCamelCase__ = BatchFeature({'''input_features''': features} ) lowerCamelCase__ = self.pad( __lowerCAmelCase , padding=__lowerCAmelCase , max_length=__lowerCAmelCase , truncation=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , **__lowerCAmelCase , ) # make sure list is in array format lowerCamelCase__ = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , __lowerCAmelCase ): lowerCamelCase__ = [np.asarray(__lowerCAmelCase , dtype=np.floataa ) for feature in input_features] lowerCamelCase__ = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: lowerCamelCase__ = [np.asarray(__lowerCAmelCase , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: lowerCamelCase__ = ( np.array(__lowerCAmelCase , dtype=np.intaa ) if self._get_padding_strategies(__lowerCAmelCase , max_length=__lowerCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) lowerCamelCase__ = self.normalize( padded_inputs['''input_features'''] , attention_mask=__lowerCAmelCase ) if return_tensors is not None: lowerCamelCase__ = padded_inputs.convert_to_tensors(__lowerCAmelCase ) return padded_inputs
29
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor _a = logging.get_logger(__name__) class __A ( lowerCAmelCase ): '''simple docstring''' def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
29
1
from queue import PriorityQueue from typing import Any import numpy as np def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,) -> float | int: '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue lowerCamelCase__ = cst_fwd.get(__snake_case ,np.inf ) lowerCamelCase__ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) lowerCamelCase__ = new_cost_f lowerCamelCase__ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: lowerCamelCase__ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = -1 lowerCamelCase__ = set() lowerCamelCase__ = set() lowerCamelCase__ = {source: 0} lowerCamelCase__ = {destination: 0} lowerCamelCase__ = {source: None} lowerCamelCase__ = {destination: None} lowerCamelCase__ = PriorityQueue() lowerCamelCase__ = PriorityQueue() lowerCamelCase__ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): lowerCamelCase__ , lowerCamelCase__ = queue_forward.get() visited_forward.add(__snake_case ) lowerCamelCase__ , lowerCamelCase__ = queue_backward.get() visited_backward.add(__snake_case ) lowerCamelCase__ = pass_and_relaxation( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,) lowerCamelCase__ = pass_and_relaxation( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: lowerCamelCase__ = shortest_distance return shortest_path_distance _a = { "B": [["C", 1]], "C": [["D", 1]], "D": [["F", 1]], "E": [["B", 1], ["G", 2]], "F": [], "G": [["F", 1]], } _a = { "B": [["E", 1]], "C": [["B", 1]], "D": [["C", 1]], "F": [["D", 1], ["G", 1]], "E": [[None, np.inf]], "G": [["E", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
29
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> Any: '''simple docstring''' lowerCamelCase__ = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCamelCase__ = { '''wmt16-en-de-dist-12-1''': [2_8.3, 2_7.5_2], '''wmt16-en-de-dist-6-1''': [2_7.4, 2_7.1_1], '''wmt16-en-de-12-1''': [2_6.9, 2_5.7_5], } lowerCamelCase__ = F'{src_lang}-{tgt_lang}' lowerCamelCase__ = F'\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "allenai/{model_name}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n' model_card_dir.mkdir(parents=__snake_case ,exist_ok=__snake_case ) lowerCamelCase__ = os.path.join(__snake_case ,'''README.md''' ) print(F'Generating {path}' ) with open(__snake_case ,'''w''' ,encoding='''utf-8''' ) as f: f.write(__snake_case ) # make sure we are under the root of the project _a = Path(__file__).resolve().parent.parent.parent _a = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: _a = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
29
1
import torch from transformers import AutoModel class __A ( torch.nn.Module ): '''simple docstring''' def __init__( self , __lowerCAmelCase="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(__lowerCAmelCase , self ).__init__() lowerCamelCase__ = AutoModel.from_pretrained(__lowerCAmelCase , return_dict=__lowerCAmelCase ) lowerCamelCase__ = torch.nn.CosineSimilarity(3 , 1E-08 ) lowerCamelCase__ = torch.nn.Softmax(dim=1 ) def __lowerCamelCase ( self , **__lowerCAmelCase ): '''simple docstring''' return self.bert(**__lowerCAmelCase ).last_hidden_state def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return token_embeddings.sum(2 , keepdim=__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1 ): '''simple docstring''' return self.softmax(T * self.cos(__lowerCAmelCase , __lowerCAmelCase ) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = W_supports['''sizes'''].tolist() lowerCamelCase__ = W_supports['''start_token_id'''].item() lowerCamelCase__ = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowerCamelCase__ = self.BERT(**__lowerCAmelCase ) lowerCamelCase__ = self.BERT(**__lowerCAmelCase ) lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = W_supports['''input_ids'''] == start_token_id lowerCamelCase__ = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__lowerCAmelCase ): if i == 0: lowerCamelCase__ = 0 else: lowerCamelCase__ = support_sizes[i - 1] lowerCamelCase__ = S[s : s + size][start_token_masks[s : s + size]] lowerCamelCase__ = S[s : s + size][end_token_masks[s : s + size]] lowerCamelCase__ = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) lowerCamelCase__ = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowerCamelCase__ = torch.vstack((p_starts, p_start) ) lowerCamelCase__ = torch.vstack((p_ends, p_end) ) else: lowerCamelCase__ = p_start lowerCamelCase__ = p_end return p_starts, p_ends
29
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _a = logging.get_logger(__name__) class __A ( lowerCAmelCase ): '''simple docstring''' def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
29
1
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def lowerCAmelCase__(__snake_case ) -> List[Any]: '''simple docstring''' if "model" in orig_key: lowerCamelCase__ = orig_key.replace('''model.''' ,'''''' ) if "norm1" in orig_key: lowerCamelCase__ = orig_key.replace('''norm1''' ,'''attention.output.LayerNorm''' ) if "norm2" in orig_key: lowerCamelCase__ = orig_key.replace('''norm2''' ,'''output.LayerNorm''' ) if "norm" in orig_key: lowerCamelCase__ = orig_key.replace('''norm''' ,'''LayerNorm''' ) if "transformer" in orig_key: lowerCamelCase__ = orig_key.split('''.''' )[0].split('''_''' )[-1] lowerCamelCase__ = orig_key.replace(F'transformer_{layer_num}' ,F'encoder.layer.{layer_num}' ) if "mha.attn" in orig_key: lowerCamelCase__ = orig_key.replace('''mha.attn''' ,'''attention.self''' ) if "mha" in orig_key: lowerCamelCase__ = orig_key.replace('''mha''' ,'''attention''' ) if "W_q" in orig_key: lowerCamelCase__ = orig_key.replace('''W_q''' ,'''self.query''' ) if "W_k" in orig_key: lowerCamelCase__ = orig_key.replace('''W_k''' ,'''self.key''' ) if "W_v" in orig_key: lowerCamelCase__ = orig_key.replace('''W_v''' ,'''self.value''' ) if "ff1" in orig_key: lowerCamelCase__ = orig_key.replace('''ff1''' ,'''intermediate.dense''' ) if "ff2" in orig_key: lowerCamelCase__ = orig_key.replace('''ff2''' ,'''output.dense''' ) if "ff" in orig_key: lowerCamelCase__ = orig_key.replace('''ff''' ,'''output.dense''' ) if "mlm_class" in orig_key: lowerCamelCase__ = orig_key.replace('''mlm.mlm_class''' ,'''cls.predictions.decoder''' ) if "mlm" in orig_key: lowerCamelCase__ = orig_key.replace('''mlm''' ,'''cls.predictions.transform''' ) if "cls" not in orig_key: lowerCamelCase__ = '''yoso.''' + orig_key return orig_key def lowerCAmelCase__(__snake_case ,__snake_case ) -> List[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCamelCase__ = orig_state_dict.pop(__snake_case ) if ("pooler" in key) or ("sen_class" in key): continue else: lowerCamelCase__ = val lowerCamelCase__ = orig_state_dict['''cls.predictions.decoder.bias'''] lowerCamelCase__ = torch.arange(__snake_case ).expand((1, -1) ) + 2 return orig_state_dict def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = torch.load(__snake_case ,map_location='''cpu''' )['''model_state_dict'''] lowerCamelCase__ = YosoConfig.from_json_file(__snake_case ) lowerCamelCase__ = YosoForMaskedLM(__snake_case ) lowerCamelCase__ = convert_checkpoint_helper(config.max_position_embeddings ,__snake_case ) print(model.load_state_dict(__snake_case ) ) model.eval() model.save_pretrained(__snake_case ) print(F'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for YOSO model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _a = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
29
from queue import PriorityQueue from typing import Any import numpy as np def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,) -> float | int: '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue lowerCamelCase__ = cst_fwd.get(__snake_case ,np.inf ) lowerCamelCase__ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) lowerCamelCase__ = new_cost_f lowerCamelCase__ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: lowerCamelCase__ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = -1 lowerCamelCase__ = set() lowerCamelCase__ = set() lowerCamelCase__ = {source: 0} lowerCamelCase__ = {destination: 0} lowerCamelCase__ = {source: None} lowerCamelCase__ = {destination: None} lowerCamelCase__ = PriorityQueue() lowerCamelCase__ = PriorityQueue() lowerCamelCase__ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): lowerCamelCase__ , lowerCamelCase__ = queue_forward.get() visited_forward.add(__snake_case ) lowerCamelCase__ , lowerCamelCase__ = queue_backward.get() visited_backward.add(__snake_case ) lowerCamelCase__ = pass_and_relaxation( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,) lowerCamelCase__ = pass_and_relaxation( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: lowerCamelCase__ = shortest_distance return shortest_path_distance _a = { "B": [["C", 1]], "C": [["D", 1]], "D": [["F", 1]], "E": [["B", 1], ["G", 2]], "F": [], "G": [["F", 1]], } _a = { "B": [["E", 1]], "C": [["B", 1]], "D": [["C", 1]], "F": [["D", 1], ["G", 1]], "E": [[None, np.inf]], "G": [["E", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
29
1
from math import log from scipy.constants import Boltzmann, physical_constants _a = 300 # TEMPERATURE (unit = K) def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,) -> float: '''simple docstring''' if donor_conc <= 0: raise ValueError('''Donor concentration should be positive''' ) elif acceptor_conc <= 0: raise ValueError('''Acceptor concentration should be positive''' ) elif intrinsic_conc <= 0: raise ValueError('''Intrinsic concentration should be positive''' ) elif donor_conc <= intrinsic_conc: raise ValueError( '''Donor concentration should be greater than intrinsic concentration''' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( '''Acceptor concentration should be greater than intrinsic concentration''' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
29
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """ClapFeatureExtractor""" lowerCAmelCase_ = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' super().__init__(__lowerCAmelCase , __lowerCAmelCase ) def __call__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = kwargs.pop('''sampling_rate''' , __lowerCAmelCase ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: lowerCamelCase__ = self.tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if audios is not None: lowerCamelCase__ = self.feature_extractor( __lowerCAmelCase , sampling_rate=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if text is not None and audios is not None: lowerCamelCase__ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCAmelCase ) , tensor_type=__lowerCAmelCase ) def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.tokenizer.model_input_names lowerCamelCase__ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
29
1
from ....configuration_utils import PretrainedConfig from ....utils import logging _a = logging.get_logger(__name__) # TODO: upload to AWS _a = { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json" ), } class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """retribert""" def __init__( self , __lowerCAmelCase=3_0_5_2_2 , __lowerCAmelCase=7_6_8 , __lowerCAmelCase=8 , __lowerCAmelCase=1_2 , __lowerCAmelCase=3_0_7_2 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=True , __lowerCAmelCase=1_2_8 , __lowerCAmelCase=0 , **__lowerCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase ) lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = hidden_act lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = share_encoders lowerCamelCase__ = projection_dim
29
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __A : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=1_3 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=9_9 , __lowerCAmelCase=3_2 , __lowerCAmelCase=2 , __lowerCAmelCase=4 , __lowerCAmelCase=3_7 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=1_6 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , __lowerCAmelCase=0 , ): '''simple docstring''' lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_token_type_ids lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = num_labels lowerCamelCase__ = num_choices lowerCamelCase__ = scope lowerCamelCase__ = projection_dim def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ = None if self.use_token_type_ids: lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , ) lowerCamelCase__ = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = TFDPRContextEncoder(config=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = TFDPRQuestionEncoder(config=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = TFDPRReader(config=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = config_and_inputs lowerCamelCase__ = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowerCAmelCase_ = {"""feature-extraction""": TFDPRQuestionEncoder} if is_tf_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = TFDPRModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=3_7 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__lowerCAmelCase ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFDPRContextEncoder.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFDPRContextEncoder.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFDPRQuestionEncoder.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFDPRReader.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_tf class __A ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''' ) lowerCamelCase__ = tf.constant( [[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_0_3, 2_0_2_6, 3_8_9_9, 1_0_1_4_0, 1_0_2_9, 1_0_2]] ) # [CLS] hello, is my dog cute? [SEP] lowerCamelCase__ = model(__lowerCAmelCase )[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowerCamelCase__ = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ] ) self.assertTrue(numpy.allclose(output[:, :1_0].numpy() , expected_slice.numpy() , atol=1E-4 ) )
29
1
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ) -> str: '''simple docstring''' lowerCamelCase__ = BertConfig.from_json_file(__snake_case ) print(F'Building PyTorch model from configuration: {config}' ) lowerCamelCase__ = BertForPreTraining(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_bert(__snake_case ,__snake_case ,__snake_case ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() ,__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _a = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
29
import string from math import logaa def lowerCAmelCase__(__snake_case ,__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = document.translate( str.maketrans('''''' ,'''''' ,string.punctuation ) ).replace('''\n''' ,'''''' ) lowerCamelCase__ = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def lowerCAmelCase__(__snake_case ,__snake_case ) -> tuple[int, int]: '''simple docstring''' lowerCamelCase__ = corpus.lower().translate( str.maketrans('''''' ,'''''' ,string.punctuation ) ) # strip all punctuation and replace it with '' lowerCamelCase__ = corpus_without_punctuation.split('''\n''' ) lowerCamelCase__ = term.lower() return (len([doc for doc in docs if term in doc] ), len(__snake_case )) def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case=False ) -> float: '''simple docstring''' if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) ,3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) ,3 ) def lowerCAmelCase__(__snake_case ,__snake_case ) -> float: '''simple docstring''' return round(tf * idf ,3 )
29
1
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class __A ( lowerCAmelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = CanineTokenizer lowerCAmelCase_ = False def __lowerCamelCase ( self ): '''simple docstring''' super().setUp() lowerCamelCase__ = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return CanineTokenizer.from_pretrained('''google/canine-s''' ) def __lowerCamelCase ( self , **__lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) lowerCamelCase__ = 1_0_2_4 return tokenizer @require_torch def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.canine_tokenizer lowerCamelCase__ = ['''Life is like a box of chocolates.''', '''You never know what you\'re gonna get.'''] # fmt: off lowerCamelCase__ = [5_7_3_4_4, 7_6, 1_0_5, 1_0_2, 1_0_1, 3_2, 1_0_5, 1_1_5, 3_2, 1_0_8, 1_0_5, 1_0_7, 1_0_1, 3_2, 9_7, 3_2, 9_8, 1_1_1, 1_2_0, 3_2, 1_1_1, 1_0_2, 3_2, 9_9, 1_0_4, 1_1_1, 9_9, 1_1_1, 1_0_8, 9_7, 1_1_6, 1_0_1, 1_1_5, 4_6, 5_7_3_4_5, 0, 0, 0, 0] # fmt: on lowerCamelCase__ = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual((2, 3_9) , batch.input_ids.shape ) self.assertEqual((2, 3_9) , batch.attention_mask.shape ) @require_torch def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.canine_tokenizer lowerCamelCase__ = ['''Once there was a man.''', '''He wrote a test in HuggingFace Tranformers.'''] lowerCamelCase__ = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors='''pt''' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('''input_ids''' , __lowerCAmelCase ) self.assertIn('''attention_mask''' , __lowerCAmelCase ) self.assertIn('''token_type_ids''' , __lowerCAmelCase ) @require_torch def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.canine_tokenizer lowerCamelCase__ = [ '''What\'s the weater?''', '''It\'s about 25 degrees.''', ] lowerCamelCase__ = tokenizer( text_target=__lowerCAmelCase , max_length=3_2 , padding='''max_length''' , truncation=__lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual(3_2 , targets['''input_ids'''].shape[1] ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test lowerCamelCase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ = tempfile.mkdtemp() lowerCamelCase__ = ''' He is very happy, UNwant\u00E9d,running''' lowerCamelCase__ = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) tokenizer.save_pretrained(__lowerCAmelCase ) lowerCamelCase__ = tokenizer.__class__.from_pretrained(__lowerCAmelCase ) lowerCamelCase__ = after_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) shutil.rmtree(__lowerCAmelCase ) lowerCamelCase__ = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ = tempfile.mkdtemp() lowerCamelCase__ = ''' He is very happy, UNwant\u00E9d,running''' lowerCamelCase__ = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: lowerCamelCase__ = chr(0xE_0_0_7 ) additional_special_tokens.append(__lowerCAmelCase ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) lowerCamelCase__ = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) tokenizer.save_pretrained(__lowerCAmelCase ) lowerCamelCase__ = tokenizer.__class__.from_pretrained(__lowerCAmelCase ) lowerCamelCase__ = after_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertIn(__lowerCAmelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) lowerCamelCase__ = tokenizer.__class__.from_pretrained(__lowerCAmelCase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): lowerCamelCase__ , lowerCamelCase__ = self.get_clean_sequence(__lowerCAmelCase ) # a special token for Canine can be defined as follows: lowerCamelCase__ = 0xE_0_0_5 lowerCamelCase__ = chr(__lowerCAmelCase ) tokenizer.add_special_tokens({'''cls_token''': special_token} ) lowerCamelCase__ = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(len(__lowerCAmelCase ) , 1 ) lowerCamelCase__ = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowerCAmelCase ) lowerCamelCase__ = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) lowerCamelCase__ = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) lowerCamelCase__ = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , input_encoded + special_token_id ) lowerCamelCase__ = tokenizer.decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): lowerCamelCase__ = chr(0xE_0_0_5 ) lowerCamelCase__ = chr(0xE_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowerCAmelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'''additional_special_tokens''': [SPECIAL_TOKEN_2]} ) lowerCamelCase__ = tokenizer.tokenize(__lowerCAmelCase ) lowerCamelCase__ = tokenizer.tokenize(__lowerCAmelCase ) self.assertEqual(len(__lowerCAmelCase ) , 1 ) self.assertEqual(len(__lowerCAmelCase ) , 1 ) self.assertEqual(token_a[0] , __lowerCAmelCase ) self.assertEqual(token_a[0] , __lowerCAmelCase ) @require_tokenizers def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: lowerCamelCase__ = 0xE_0_0_6 lowerCamelCase__ = chr(__lowerCAmelCase ) lowerCamelCase__ = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase ) tokenizer.add_special_tokens({'''additional_special_tokens''': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__lowerCAmelCase ) tokenizer.from_pretrained(__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: lowerCamelCase__ = json.load(__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: lowerCamelCase__ = json.load(__lowerCAmelCase ) # a special token for Canine can be defined as follows: lowerCamelCase__ = 0xE_0_0_6 lowerCamelCase__ = chr(__lowerCAmelCase ) lowerCamelCase__ = [new_token_a] lowerCamelCase__ = [new_token_a] with open(os.path.join(__lowerCAmelCase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowerCAmelCase , __lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowerCAmelCase , __lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase__ = tokenizer_class.from_pretrained(__lowerCAmelCase , extra_ids=0 ) self.assertIn(__lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) lowerCamelCase__ = 0xE_0_0_7 lowerCamelCase__ = chr(__lowerCAmelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase__ = [AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase )] lowerCamelCase__ = tokenizer_class.from_pretrained( __lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , extra_ids=0 ) self.assertIn(__lowerCAmelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): lowerCamelCase__ = '''hello world''' if self.space_between_special_tokens: lowerCamelCase__ = '''[CLS] hello world [SEP]''' else: lowerCamelCase__ = input lowerCamelCase__ = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) lowerCamelCase__ = tokenizer.decode(__lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__lowerCAmelCase , [output, output.lower()] ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): lowerCamelCase__ = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] lowerCamelCase__ = '''a''' lowerCamelCase__ = ord(__lowerCAmelCase ) for attr in attributes_list: setattr(__lowerCAmelCase , attr + '''_id''' , __lowerCAmelCase ) self.assertEqual(getattr(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(getattr(__lowerCAmelCase , attr + '''_id''' ) , __lowerCAmelCase ) setattr(__lowerCAmelCase , attr + '''_id''' , __lowerCAmelCase ) self.assertEqual(getattr(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(getattr(__lowerCAmelCase , attr + '''_id''' ) , __lowerCAmelCase ) setattr(__lowerCAmelCase , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(__lowerCAmelCase , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(__lowerCAmelCase , '''additional_special_tokens_ids''' ) , [] ) lowerCamelCase__ = 0xE_0_0_6 lowerCamelCase__ = chr(__lowerCAmelCase ) setattr(__lowerCAmelCase , '''additional_special_tokens_ids''' , [additional_special_token_id] ) self.assertListEqual(getattr(__lowerCAmelCase , '''additional_special_tokens''' ) , [additional_special_token] ) self.assertListEqual(getattr(__lowerCAmelCase , '''additional_special_tokens_ids''' ) , [additional_special_token_id] ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass
29
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _a = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
29
1
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCAmelCase__(__snake_case ) -> Union[str, Any]: '''simple docstring''' def wrapper(*__snake_case ,**__snake_case ): lowerCamelCase__ = timeit.default_timer() lowerCamelCase__ = func(*__snake_case ,**__snake_case ) lowerCamelCase__ = timeit.default_timer() - starttime return delta lowerCamelCase__ = func.__name__ return wrapper def lowerCAmelCase__(__snake_case ,__snake_case=100 ,__snake_case=None ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = seq_shapes or {} for i in range(__snake_case ): lowerCamelCase__ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__snake_case ,_ArrayXD ): lowerCamelCase__ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__snake_case ,datasets.Value ): if v.dtype == "string": lowerCamelCase__ = '''The small grey turtle was surprisingly fast when challenged.''' else: lowerCamelCase__ = np.random.randint(10 ,size=1 ).astype(v.dtype ).item() elif isinstance(__snake_case ,datasets.Sequence ): while isinstance(__snake_case ,datasets.Sequence ): lowerCamelCase__ = v.feature lowerCamelCase__ = seq_shapes[k] lowerCamelCase__ = np.random.rand(*__snake_case ).astype(v.dtype ) lowerCamelCase__ = data dummy_data.append((i, example) ) return dummy_data def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case=100 ,__snake_case=None ) -> str: '''simple docstring''' lowerCamelCase__ = generate_examples(__snake_case ,num_examples=__snake_case ,seq_shapes=__snake_case ) with ArrowWriter(features=__snake_case ,path=__snake_case ) as writer: for key, record in dummy_data: lowerCamelCase__ = features.encode_example(__snake_case ) writer.write(__snake_case ) lowerCamelCase__ , lowerCamelCase__ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' ) lowerCamelCase__ = datasets.Dataset.from_file(filename=__snake_case ,info=datasets.DatasetInfo(features=__snake_case ) ) return dataset
29
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict _a = namedtuple( "_TestCommandArgs", [ "dataset", "name", "cache_dir", "data_dir", "all_configs", "save_infos", "ignore_verifications", "force_redownload", "clear_cache", ], defaults=[None, None, None, False, False, False, False, False], ) def lowerCAmelCase__(__snake_case ,__snake_case ) -> List[str]: '''simple docstring''' return (abs(source - target ) / target) < 0.0_1 @pytest.mark.integration def lowerCAmelCase__(__snake_case ) -> Tuple: '''simple docstring''' lowerCamelCase__ = _TestCommandArgs(dataset=__snake_case ,all_configs=__snake_case ,save_infos=__snake_case ) lowerCamelCase__ = TestCommand(*__snake_case ) test_command.run() lowerCamelCase__ = os.path.join(__snake_case ,'''README.md''' ) assert os.path.exists(__snake_case ) lowerCamelCase__ = DatasetInfosDict.from_directory(__snake_case ) lowerCamelCase__ = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) ,splits=[ { '''name''': '''train''', '''num_bytes''': 2351563, '''num_examples''': 10000, }, { '''name''': '''validation''', '''num_bytes''': 238418, '''num_examples''': 1000, }, ] ,download_size=3940680 ,dataset_size=2589981 ,) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowerCamelCase__ , lowerCamelCase__ = getattr(dataset_infos['''default'''] ,__snake_case ), getattr(expected_dataset_infos['''default'''] ,__snake_case ) if key == "num_bytes": assert is_apercent_close(__snake_case ,__snake_case ) elif key == "splits": assert list(__snake_case ) == list(__snake_case ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes ,expected[split].num_bytes ) else: result == expected
29
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """decision_transformer""" lowerCAmelCase_ = ["""past_key_values"""] lowerCAmelCase_ = { """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __lowerCAmelCase=1_7 , __lowerCAmelCase=4 , __lowerCAmelCase=1_2_8 , __lowerCAmelCase=4_0_9_6 , __lowerCAmelCase=True , __lowerCAmelCase=1 , __lowerCAmelCase=1_0_2_4 , __lowerCAmelCase=3 , __lowerCAmelCase=1 , __lowerCAmelCase=None , __lowerCAmelCase="relu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=1E-5 , __lowerCAmelCase=0.02 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=5_0_2_5_6 , __lowerCAmelCase=5_0_2_5_6 , __lowerCAmelCase=False , __lowerCAmelCase=False , **__lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = state_dim lowerCamelCase__ = act_dim lowerCamelCase__ = hidden_size lowerCamelCase__ = max_ep_len lowerCamelCase__ = action_tanh lowerCamelCase__ = vocab_size lowerCamelCase__ = n_positions lowerCamelCase__ = n_layer lowerCamelCase__ = n_head lowerCamelCase__ = n_inner lowerCamelCase__ = activation_function lowerCamelCase__ = resid_pdrop lowerCamelCase__ = embd_pdrop lowerCamelCase__ = attn_pdrop lowerCamelCase__ = layer_norm_epsilon lowerCamelCase__ = initializer_range lowerCamelCase__ = scale_attn_weights lowerCamelCase__ = use_cache lowerCamelCase__ = scale_attn_by_inverse_layer_idx lowerCamelCase__ = reorder_and_upcast_attn lowerCamelCase__ = bos_token_id lowerCamelCase__ = eos_token_id super().__init__(bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase )
29
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __A : '''simple docstring''' def __init__( self , __lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = parent lowerCamelCase__ = 1_3 lowerCamelCase__ = 7 lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = 9_9 lowerCamelCase__ = 3_2 lowerCamelCase__ = 2 lowerCamelCase__ = 4 lowerCamelCase__ = 3_7 lowerCamelCase__ = '''gelu''' lowerCamelCase__ = 0.1 lowerCamelCase__ = 0.1 lowerCamelCase__ = 5_1_2 lowerCamelCase__ = 1_6 lowerCamelCase__ = 2 lowerCamelCase__ = 0.02 lowerCamelCase__ = 3 lowerCamelCase__ = 4 lowerCamelCase__ = None def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self ): '''simple docstring''' ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = self.prepare_config_and_inputs() lowerCamelCase__ = True lowerCamelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = TFEsmModel(config=__lowerCAmelCase ) lowerCamelCase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowerCamelCase__ = model(__lowerCAmelCase ) lowerCamelCase__ = [input_ids, input_mask] lowerCamelCase__ = model(__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = True lowerCamelCase__ = TFEsmModel(config=__lowerCAmelCase ) lowerCamelCase__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''encoder_hidden_states''': encoder_hidden_states, '''encoder_attention_mask''': encoder_attention_mask, } lowerCamelCase__ = model(__lowerCAmelCase ) lowerCamelCase__ = [input_ids, input_mask] lowerCamelCase__ = model(__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase ) # Also check the case where encoder outputs are not passed lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = TFEsmForMaskedLM(config=__lowerCAmelCase ) lowerCamelCase__ = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.num_labels lowerCamelCase__ = TFEsmForTokenClassification(config=__lowerCAmelCase ) lowerCamelCase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowerCamelCase__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = config_and_inputs lowerCamelCase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase_ = ( { """feature-extraction""": TFEsmModel, """fill-mask""": TFEsmForMaskedLM, """text-classification""": TFEsmForSequenceClassification, """token-classification""": TFEsmForTokenClassification, """zero-shot""": TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = TFEsmModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=3_7 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFEsmModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @unittest.skip('''Protein models do not support embedding resizing.''' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip('''Protein models do not support embedding resizing.''' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(__lowerCAmelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCamelCase__ = model.get_bias() assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) for k, v in name.items(): assert isinstance(__lowerCAmelCase , tf.Variable ) else: lowerCamelCase__ = model.get_output_embeddings() assert x is None lowerCamelCase__ = model.get_bias() assert name is None @require_tf class __A ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = TFEsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) lowerCamelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase__ = model(__lowerCAmelCase )[0] lowerCamelCase__ = [1, 6, 3_3] self.assertEqual(list(output.numpy().shape ) , __lowerCAmelCase ) # compare the actual values for a slice. lowerCamelCase__ = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = TFEsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) lowerCamelCase__ = tf.constant([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) lowerCamelCase__ = model(__lowerCAmelCase )[0] # compare the actual values for a slice. lowerCamelCase__ = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
29
1
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor _a = logging.get_logger(__name__) class __A ( lowerCAmelCase ): '''simple docstring''' def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
29
from math import sqrt def lowerCAmelCase__(__snake_case ) -> bool: '''simple docstring''' assert isinstance(__snake_case ,__snake_case ) and ( number >= 0 ), "'number' must been an int and positive" lowerCamelCase__ = True # 0 and 1 are none primes. if number <= 1: lowerCamelCase__ = False for divisor in range(2 ,int(round(sqrt(__snake_case ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCamelCase__ = False break # precondition assert isinstance(__snake_case ,__snake_case ), "'status' must been from type bool" return status def lowerCAmelCase__(__snake_case ) -> Any: '''simple docstring''' assert isinstance(__snake_case ,__snake_case ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCamelCase__ = list(range(2 ,n + 1 ) ) lowerCamelCase__ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(__snake_case ) ): for j in range(i + 1 ,len(__snake_case ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCamelCase__ = 0 # filters actual prime numbers. lowerCamelCase__ = [x for x in begin_list if x != 0] # precondition assert isinstance(__snake_case ,__snake_case ), "'ans' must been from type list" return ans def lowerCAmelCase__(__snake_case ) -> Optional[Any]: '''simple docstring''' assert isinstance(__snake_case ,__snake_case ) and (n > 2), "'N' must been an int and > 2" lowerCamelCase__ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 ,n + 1 ): if is_prime(__snake_case ): ans.append(__snake_case ) # precondition assert isinstance(__snake_case ,__snake_case ), "'ans' must been from type list" return ans def lowerCAmelCase__(__snake_case ) -> List[str]: '''simple docstring''' assert isinstance(__snake_case ,__snake_case ) and number >= 0, "'number' must been an int and >= 0" lowerCamelCase__ = [] # this list will be returns of the function. # potential prime number factors. lowerCamelCase__ = 2 lowerCamelCase__ = number if number == 0 or number == 1: ans.append(__snake_case ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(__snake_case ): while quotient != 1: if is_prime(__snake_case ) and (quotient % factor == 0): ans.append(__snake_case ) quotient /= factor else: factor += 1 else: ans.append(__snake_case ) # precondition assert isinstance(__snake_case ,__snake_case ), "'ans' must been from type list" return ans def lowerCAmelCase__(__snake_case ) -> List[Any]: '''simple docstring''' assert isinstance(__snake_case ,__snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCamelCase__ = 0 # prime factorization of 'number' lowerCamelCase__ = prime_factorization(__snake_case ) lowerCamelCase__ = max(__snake_case ) # precondition assert isinstance(__snake_case ,__snake_case ), "'ans' must been from type int" return ans def lowerCAmelCase__(__snake_case ) -> Dict: '''simple docstring''' assert isinstance(__snake_case ,__snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCamelCase__ = 0 # prime factorization of 'number' lowerCamelCase__ = prime_factorization(__snake_case ) lowerCamelCase__ = min(__snake_case ) # precondition assert isinstance(__snake_case ,__snake_case ), "'ans' must been from type int" return ans def lowerCAmelCase__(__snake_case ) -> List[Any]: '''simple docstring''' assert isinstance(__snake_case ,__snake_case ), "'number' must been an int" assert isinstance(number % 2 == 0 ,__snake_case ), "compare bust been from type bool" return number % 2 == 0 def lowerCAmelCase__(__snake_case ) -> List[str]: '''simple docstring''' assert isinstance(__snake_case ,__snake_case ), "'number' must been an int" assert isinstance(number % 2 != 0 ,__snake_case ), "compare bust been from type bool" return number % 2 != 0 def lowerCAmelCase__(__snake_case ) -> List[Any]: '''simple docstring''' assert ( isinstance(__snake_case ,__snake_case ) and (number > 2) and is_even(__snake_case ) ), "'number' must been an int, even and > 2" lowerCamelCase__ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCamelCase__ = get_prime_numbers(__snake_case ) lowerCamelCase__ = len(__snake_case ) # run variable for while-loops. lowerCamelCase__ = 0 lowerCamelCase__ = None # exit variable. for break up the loops lowerCamelCase__ = True while i < len_pn and loop: lowerCamelCase__ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCamelCase__ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(__snake_case ,__snake_case ) and (len(__snake_case ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowerCAmelCase__(__snake_case ,__snake_case ) -> str: '''simple docstring''' assert ( isinstance(__snake_case ,__snake_case ) and isinstance(__snake_case ,__snake_case ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCamelCase__ = 0 while numbera != 0: lowerCamelCase__ = numbera % numbera lowerCamelCase__ = numbera lowerCamelCase__ = rest # precondition assert isinstance(__snake_case ,__snake_case ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowerCAmelCase__(__snake_case ,__snake_case ) -> Any: '''simple docstring''' assert ( isinstance(__snake_case ,__snake_case ) and isinstance(__snake_case ,__snake_case ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCamelCase__ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCamelCase__ = prime_factorization(__snake_case ) lowerCamelCase__ = prime_factorization(__snake_case ) elif numbera == 1 or numbera == 1: lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = max(__snake_case ,__snake_case ) lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCamelCase__ = prime_fac_a.count(__snake_case ) lowerCamelCase__ = prime_fac_a.count(__snake_case ) for _ in range(max(__snake_case ,__snake_case ) ): ans *= n else: lowerCamelCase__ = prime_fac_a.count(__snake_case ) for _ in range(__snake_case ): ans *= n done.append(__snake_case ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCamelCase__ = prime_fac_a.count(__snake_case ) for _ in range(__snake_case ): ans *= n done.append(__snake_case ) # precondition assert isinstance(__snake_case ,__snake_case ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowerCAmelCase__(__snake_case ) -> Union[str, Any]: '''simple docstring''' assert isinstance(__snake_case ,__snake_case ) and (n >= 0), "'number' must been a positive int" lowerCamelCase__ = 0 lowerCamelCase__ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(__snake_case ): ans += 1 # precondition assert isinstance(__snake_case ,__snake_case ) and is_prime( __snake_case ), "'ans' must been a prime number and from type int" return ans def lowerCAmelCase__(__snake_case ,__snake_case ) -> Dict: '''simple docstring''' assert ( is_prime(__snake_case ) and is_prime(__snake_case ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCamelCase__ = p_number_a + 1 # jump to the next number lowerCamelCase__ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(__snake_case ): number += 1 while number < p_number_a: ans.append(__snake_case ) number += 1 # fetch the next prime number. while not is_prime(__snake_case ): number += 1 # precondition assert ( isinstance(__snake_case ,__snake_case ) and ans[0] != p_number_a and ans[len(__snake_case ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowerCAmelCase__(__snake_case ) -> Tuple: '''simple docstring''' assert isinstance(__snake_case ,__snake_case ) and (n >= 1), "'n' must been int and >= 1" lowerCamelCase__ = [] # will be returned. for divisor in range(1 ,n + 1 ): if n % divisor == 0: ans.append(__snake_case ) # precondition assert ans[0] == 1 and ans[len(__snake_case ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowerCAmelCase__(__snake_case ) -> Optional[Any]: '''simple docstring''' assert isinstance(__snake_case ,__snake_case ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCamelCase__ = get_divisors(__snake_case ) # precondition assert ( isinstance(__snake_case ,__snake_case ) and (divisors[0] == 1) and (divisors[len(__snake_case ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowerCAmelCase__(__snake_case ,__snake_case ) -> Tuple: '''simple docstring''' assert ( isinstance(__snake_case ,__snake_case ) and isinstance(__snake_case ,__snake_case ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCamelCase__ = gcd(abs(__snake_case ) ,abs(__snake_case ) ) # precondition assert ( isinstance(__snake_case ,__snake_case ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowerCAmelCase__(__snake_case ) -> Optional[int]: '''simple docstring''' assert isinstance(__snake_case ,__snake_case ) and (n >= 0), "'n' must been a int and >= 0" lowerCamelCase__ = 1 # this will be return. for factor in range(1 ,n + 1 ): ans *= factor return ans def lowerCAmelCase__(__snake_case ) -> Optional[Any]: '''simple docstring''' assert isinstance(__snake_case ,__snake_case ) and (n >= 0), "'n' must been an int and >= 0" lowerCamelCase__ = 0 lowerCamelCase__ = 1 lowerCamelCase__ = 1 # this will be return for _ in range(n - 1 ): lowerCamelCase__ = ans ans += fiba lowerCamelCase__ = tmp return ans
29
1
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _a = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n" _a = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n" _a = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def __lowerCamelCase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=False ): '''simple docstring''' if rouge_types is None: lowerCamelCase__ = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] lowerCamelCase__ = rouge_scorer.RougeScorer(rouge_types=__lowerCAmelCase , use_stemmer=__lowerCAmelCase ) if use_aggregator: lowerCamelCase__ = scoring.BootstrapAggregator() else: lowerCamelCase__ = [] for ref, pred in zip(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = scorer.score(__lowerCAmelCase , __lowerCAmelCase ) if use_aggregator: aggregator.add_scores(__lowerCAmelCase ) else: scores.append(__lowerCAmelCase ) if use_aggregator: lowerCamelCase__ = aggregator.aggregate() else: lowerCamelCase__ = {} for key in scores[0]: lowerCamelCase__ = [score[key] for score in scores] return result
29
from __future__ import annotations def lowerCAmelCase__(__snake_case ,__snake_case = None ,__snake_case = None ) -> None: '''simple docstring''' if start is None: lowerCamelCase__ = 0 if end is None: lowerCamelCase__ = len(__snake_case ) - 1 if start >= end: return lowerCamelCase__ = (start + end) // 2 slowsort(__snake_case ,__snake_case ,__snake_case ) slowsort(__snake_case ,mid + 1 ,__snake_case ) if sequence[end] < sequence[mid]: lowerCamelCase__ , lowerCamelCase__ = sequence[mid], sequence[end] slowsort(__snake_case ,__snake_case ,end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
29
1
from __future__ import annotations import math def lowerCAmelCase__(__snake_case ,__snake_case ) -> list: '''simple docstring''' if len(__snake_case ) != 2 or len(a[0] ) != 2 or len(__snake_case ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) lowerCamelCase__ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def lowerCAmelCase__(__snake_case ,__snake_case ) -> List[str]: '''simple docstring''' return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__snake_case ) ) ] def lowerCAmelCase__(__snake_case ,__snake_case ) -> str: '''simple docstring''' return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__snake_case ) ) ] def lowerCAmelCase__(__snake_case ) -> tuple[list, list, list, list]: '''simple docstring''' if len(__snake_case ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) lowerCamelCase__ = len(__snake_case ) lowerCamelCase__ = matrix_length // 2 lowerCamelCase__ = [[a[i][j] for j in range(__snake_case ,__snake_case )] for i in range(__snake_case )] lowerCamelCase__ = [ [a[i][j] for j in range(__snake_case ,__snake_case )] for i in range(__snake_case ,__snake_case ) ] lowerCamelCase__ = [[a[i][j] for j in range(__snake_case )] for i in range(__snake_case )] lowerCamelCase__ = [[a[i][j] for j in range(__snake_case )] for i in range(__snake_case ,__snake_case )] return top_left, top_right, bot_left, bot_right def lowerCAmelCase__(__snake_case ) -> tuple[int, int]: '''simple docstring''' return len(__snake_case ), len(matrix[0] ) def lowerCAmelCase__(__snake_case ) -> None: '''simple docstring''' print('''\n'''.join(str(__snake_case ) for line in matrix ) ) def lowerCAmelCase__(__snake_case ,__snake_case ) -> list: '''simple docstring''' if matrix_dimensions(__snake_case ) == (2, 2): return default_matrix_multiplication(__snake_case ,__snake_case ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = split_matrix(__snake_case ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = split_matrix(__snake_case ) lowerCamelCase__ = actual_strassen(__snake_case ,matrix_subtraction(__snake_case ,__snake_case ) ) lowerCamelCase__ = actual_strassen(matrix_addition(__snake_case ,__snake_case ) ,__snake_case ) lowerCamelCase__ = actual_strassen(matrix_addition(__snake_case ,__snake_case ) ,__snake_case ) lowerCamelCase__ = actual_strassen(__snake_case ,matrix_subtraction(__snake_case ,__snake_case ) ) lowerCamelCase__ = actual_strassen(matrix_addition(__snake_case ,__snake_case ) ,matrix_addition(__snake_case ,__snake_case ) ) lowerCamelCase__ = actual_strassen(matrix_subtraction(__snake_case ,__snake_case ) ,matrix_addition(__snake_case ,__snake_case ) ) lowerCamelCase__ = actual_strassen(matrix_subtraction(__snake_case ,__snake_case ) ,matrix_addition(__snake_case ,__snake_case ) ) lowerCamelCase__ = matrix_addition(matrix_subtraction(matrix_addition(__snake_case ,__snake_case ) ,__snake_case ) ,__snake_case ) lowerCamelCase__ = matrix_addition(__snake_case ,__snake_case ) lowerCamelCase__ = matrix_addition(__snake_case ,__snake_case ) lowerCamelCase__ = matrix_subtraction(matrix_subtraction(matrix_addition(__snake_case ,__snake_case ) ,__snake_case ) ,__snake_case ) # construct the new matrix from our 4 quadrants lowerCamelCase__ = [] for i in range(len(__snake_case ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__snake_case ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def lowerCAmelCase__(__snake_case ,__snake_case ) -> list: '''simple docstring''' if matrix_dimensions(__snake_case )[1] != matrix_dimensions(__snake_case )[0]: lowerCamelCase__ = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F'Matrix A: {matrixa}\n' F'Matrix B: {matrixa}' ) raise Exception(__snake_case ) lowerCamelCase__ = matrix_dimensions(__snake_case ) lowerCamelCase__ = matrix_dimensions(__snake_case ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowerCamelCase__ = max(*__snake_case ,*__snake_case ) lowerCamelCase__ = int(math.pow(2 ,math.ceil(math.loga(__snake_case ) ) ) ) lowerCamelCase__ = matrixa lowerCamelCase__ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 ,__snake_case ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,__snake_case ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] ,__snake_case ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowerCamelCase__ = actual_strassen(__snake_case ,__snake_case ) # Removing the additional zeros for i in range(0 ,__snake_case ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,__snake_case ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _a = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _a = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
29
from __future__ import annotations def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ) -> float: '''simple docstring''' if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,) -> float: '''simple docstring''' if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,) -> float: '''simple docstring''' if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( __snake_case ,nominal_annual_percentage_rate / 365 ,number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
29
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __A : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=1_3 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=9_9 , __lowerCAmelCase=3_2 , __lowerCAmelCase=2 , __lowerCAmelCase=4 , __lowerCAmelCase=3_7 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=1_6 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , __lowerCAmelCase=0 , ): '''simple docstring''' lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_token_type_ids lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = num_labels lowerCamelCase__ = num_choices lowerCamelCase__ = scope lowerCamelCase__ = projection_dim def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ = None if self.use_token_type_ids: lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , ) lowerCamelCase__ = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = TFDPRContextEncoder(config=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = TFDPRQuestionEncoder(config=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = TFDPRReader(config=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = config_and_inputs lowerCamelCase__ = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowerCAmelCase_ = {"""feature-extraction""": TFDPRQuestionEncoder} if is_tf_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = TFDPRModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=3_7 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__lowerCAmelCase ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFDPRContextEncoder.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFDPRContextEncoder.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFDPRQuestionEncoder.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFDPRReader.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_tf class __A ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''' ) lowerCamelCase__ = tf.constant( [[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_0_3, 2_0_2_6, 3_8_9_9, 1_0_1_4_0, 1_0_2_9, 1_0_2]] ) # [CLS] hello, is my dog cute? [SEP] lowerCamelCase__ = model(__lowerCAmelCase )[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowerCamelCase__ = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ] ) self.assertTrue(numpy.allclose(output[:, :1_0].numpy() , expected_slice.numpy() , atol=1E-4 ) )
29
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCAmelCase__(__snake_case ) -> Union[str, Any]: '''simple docstring''' def wrapper(*__snake_case ,**__snake_case ): lowerCamelCase__ = timeit.default_timer() lowerCamelCase__ = func(*__snake_case ,**__snake_case ) lowerCamelCase__ = timeit.default_timer() - starttime return delta lowerCamelCase__ = func.__name__ return wrapper def lowerCAmelCase__(__snake_case ,__snake_case=100 ,__snake_case=None ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = seq_shapes or {} for i in range(__snake_case ): lowerCamelCase__ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__snake_case ,_ArrayXD ): lowerCamelCase__ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__snake_case ,datasets.Value ): if v.dtype == "string": lowerCamelCase__ = '''The small grey turtle was surprisingly fast when challenged.''' else: lowerCamelCase__ = np.random.randint(10 ,size=1 ).astype(v.dtype ).item() elif isinstance(__snake_case ,datasets.Sequence ): while isinstance(__snake_case ,datasets.Sequence ): lowerCamelCase__ = v.feature lowerCamelCase__ = seq_shapes[k] lowerCamelCase__ = np.random.rand(*__snake_case ).astype(v.dtype ) lowerCamelCase__ = data dummy_data.append((i, example) ) return dummy_data def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case=100 ,__snake_case=None ) -> str: '''simple docstring''' lowerCamelCase__ = generate_examples(__snake_case ,num_examples=__snake_case ,seq_shapes=__snake_case ) with ArrowWriter(features=__snake_case ,path=__snake_case ) as writer: for key, record in dummy_data: lowerCamelCase__ = features.encode_example(__snake_case ) writer.write(__snake_case ) lowerCamelCase__ , lowerCamelCase__ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' ) lowerCamelCase__ = datasets.Dataset.from_file(filename=__snake_case ,info=datasets.DatasetInfo(features=__snake_case ) ) return dataset
29
1
def lowerCAmelCase__(__snake_case ,__snake_case ) -> list: '''simple docstring''' lowerCamelCase__ = word.split() def justify(__snake_case ,__snake_case ,__snake_case ) -> str: lowerCamelCase__ = max_width - width lowerCamelCase__ = len(__snake_case ) if len(__snake_case ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: lowerCamelCase__ = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] lowerCamelCase__ = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] lowerCamelCase__ = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(__snake_case ): num_spaces_between_words_list[i] += 1 lowerCamelCase__ = [] for i in range(__snake_case ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ''' ''' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(__snake_case ) lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = 0 for word in words: if width + len(__snake_case ) + len(__snake_case ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(__snake_case ) width += len(__snake_case ) else: # justify the line and add it to result answer.append(justify(__snake_case ,__snake_case ,__snake_case ) ) # reset new line and new width lowerCamelCase__ , lowerCamelCase__ = [word], len(__snake_case ) lowerCamelCase__ = max_width - width - len(__snake_case ) answer.append(''' '''.join(__snake_case ) + (remaining_spaces + 1) * ''' ''' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
29
def lowerCAmelCase__(__snake_case ) -> int: '''simple docstring''' if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 ,len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] lowerCamelCase__ = grid[0] for row_n in range(1 ,len(__snake_case ) ): lowerCamelCase__ = grid[row_n] lowerCamelCase__ = fill_row(__snake_case ,__snake_case ) lowerCamelCase__ = grid[row_n] return grid[-1][-1] def lowerCAmelCase__(__snake_case ,__snake_case ) -> list: '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 ,len(__snake_case ) ): current_row[cell_n] += min(current_row[cell_n - 1] ,row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
29
1
from __future__ import annotations def lowerCAmelCase__(__snake_case ,__snake_case = None ,__snake_case = None ) -> None: '''simple docstring''' if start is None: lowerCamelCase__ = 0 if end is None: lowerCamelCase__ = len(__snake_case ) - 1 if start >= end: return lowerCamelCase__ = (start + end) // 2 slowsort(__snake_case ,__snake_case ,__snake_case ) slowsort(__snake_case ,mid + 1 ,__snake_case ) if sequence[end] < sequence[mid]: lowerCamelCase__ , lowerCamelCase__ = sequence[mid], sequence[end] slowsort(__snake_case ,__snake_case ,end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
29
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures _a = logging.get_logger(__name__) @dataclass class __A : '''simple docstring''' lowerCAmelCase_ = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) lowerCAmelCase_ = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) lowerCAmelCase_ = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.task_name.lower() class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """train""" lowerCAmelCase_ = """dev""" lowerCAmelCase_ = """test""" class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = Split.train , __lowerCAmelCase = None , ): '''simple docstring''' warnings.warn( '''This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' , __lowerCAmelCase , ) lowerCamelCase__ = args lowerCamelCase__ = glue_processors[args.task_name]() lowerCamelCase__ = glue_output_modes[args.task_name] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): try: lowerCamelCase__ = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) # Load data features from cache or dataset file lowerCamelCase__ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) lowerCamelCase__ = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ = label_list[2], label_list[1] lowerCamelCase__ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ = cached_features_file + '''.lock''' with FileLock(__lowerCAmelCase ): if os.path.exists(__lowerCAmelCase ) and not args.overwrite_cache: lowerCamelCase__ = time.time() lowerCamelCase__ = torch.load(__lowerCAmelCase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: lowerCamelCase__ = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowerCamelCase__ = self.processor.get_test_examples(args.data_dir ) else: lowerCamelCase__ = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowerCamelCase__ = examples[:limit_length] lowerCamelCase__ = glue_convert_examples_to_features( __lowerCAmelCase , __lowerCAmelCase , max_length=args.max_seq_length , label_list=__lowerCAmelCase , output_mode=self.output_mode , ) lowerCamelCase__ = time.time() torch.save(self.features , __lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self , __lowerCAmelCase ): '''simple docstring''' return self.features[i] def __lowerCamelCase ( self ): '''simple docstring''' return self.label_list
29
1
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging _a = logging.get_logger(__name__) class __A : '''simple docstring''' lowerCAmelCase_ = None @experimental def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> Tuple: '''simple docstring''' if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) return _map_with_joblib(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = num_proc if num_proc <= len(__snake_case ) else len(__snake_case ) lowerCamelCase__ = [] # We organize the splits ourselve (contiguous splits) for index in range(__snake_case ): lowerCamelCase__ = len(__snake_case ) // num_proc lowerCamelCase__ = len(__snake_case ) % num_proc lowerCamelCase__ = div * index + min(__snake_case ,__snake_case ) lowerCamelCase__ = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(__snake_case ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F'Error dividing inputs iterable among processes. ' F'Total number of objects {len(__snake_case )}, ' F'length: {sum(len(i[1] ) for i in split_kwds )}' ) logger.info( F'Spawning {num_proc} processes for {len(__snake_case )} objects in slices of {[len(i[1] ) for i in split_kwds]}' ) lowerCamelCase__ , lowerCamelCase__ = None, None if not disable_tqdm: lowerCamelCase__ , lowerCamelCase__ = (RLock(),), tqdm.set_lock with Pool(__snake_case ,initargs=__snake_case ,initializer=__snake_case ) as pool: lowerCamelCase__ = pool.map(__snake_case ,__snake_case ) logger.info(F'Finished {num_proc} processes' ) lowerCamelCase__ = [obj for proc_res in mapped for obj in proc_res] logger.info(F'Unpacked {len(__snake_case )} objects' ) return mapped def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> List[str]: '''simple docstring''' import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name ,n_jobs=__snake_case ): return joblib.Parallel()( joblib.delayed(__snake_case )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def lowerCAmelCase__(__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: lowerCamelCase__ = None
29
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets _a = datasets.logging.get_logger(__name__) _a = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" _a = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" _a = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case=False ,__snake_case=False ,__snake_case=True ,__snake_case=False ,__snake_case="dummy_doc" ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = {doc: key_lines} lowerCamelCase__ = {doc: sys_lines} lowerCamelCase__ = {} lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ , lowerCamelCase__ = reader.get_doc_mentions(__snake_case ,key_doc_lines[doc] ,__snake_case ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase__ = reader.set_annotated_parse_trees(__snake_case ,key_doc_lines[doc] ,__snake_case ,__snake_case ) lowerCamelCase__ , lowerCamelCase__ = reader.get_doc_mentions(__snake_case ,sys_doc_lines[doc] ,__snake_case ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase__ = reader.set_annotated_parse_trees(__snake_case ,key_doc_lines[doc] ,__snake_case ,__snake_case ) if remove_nested: lowerCamelCase__ , lowerCamelCase__ = reader.remove_nested_coref_mentions(__snake_case ,__snake_case ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase__ , lowerCamelCase__ = reader.remove_nested_coref_mentions(__snake_case ,__snake_case ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase__ = reader.get_mention_assignments(__snake_case ,__snake_case ) lowerCamelCase__ = reader.get_mention_assignments(__snake_case ,__snake_case ) lowerCamelCase__ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( '''Number of resulting singleton clusters in the key ''' F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' '''files, respectively''' ) return doc_coref_infos def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> str: '''simple docstring''' lowerCamelCase__ = get_coref_infos(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) lowerCamelCase__ = {} lowerCamelCase__ = 0 lowerCamelCase__ = 0 for name, metric in metrics: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = evaluator.evaluate_documents(__snake_case ,__snake_case ,beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(10 ) ,F'Recall: {recall * 100:.2f}' ,F' Precision: {precision * 100:.2f}' ,F' F1: {fa * 100:.2f}' ,) if conll_subparts_num == 3: lowerCamelCase__ = (conll / 3) * 100 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({'''conll_score''': conll} ) return output_scores def lowerCAmelCase__(__snake_case ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: lowerCamelCase__ = line.split()[5] if not parse_col == "-": lowerCamelCase__ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def __lowerCamelCase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False ): '''simple docstring''' lowerCamelCase__ = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: lowerCamelCase__ = util.check_gold_parse_annotation(__lowerCAmelCase ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase__ = evaluate( key_lines=__lowerCAmelCase , sys_lines=__lowerCAmelCase , metrics=__lowerCAmelCase , NP_only=__lowerCAmelCase , remove_nested=__lowerCAmelCase , keep_singletons=__lowerCAmelCase , min_span=__lowerCAmelCase , ) return score
29
1
import string from math import logaa def lowerCAmelCase__(__snake_case ,__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = document.translate( str.maketrans('''''' ,'''''' ,string.punctuation ) ).replace('''\n''' ,'''''' ) lowerCamelCase__ = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def lowerCAmelCase__(__snake_case ,__snake_case ) -> tuple[int, int]: '''simple docstring''' lowerCamelCase__ = corpus.lower().translate( str.maketrans('''''' ,'''''' ,string.punctuation ) ) # strip all punctuation and replace it with '' lowerCamelCase__ = corpus_without_punctuation.split('''\n''' ) lowerCamelCase__ = term.lower() return (len([doc for doc in docs if term in doc] ), len(__snake_case )) def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case=False ) -> float: '''simple docstring''' if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) ,3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) ,3 ) def lowerCAmelCase__(__snake_case ,__snake_case ) -> float: '''simple docstring''' return round(tf * idf ,3 )
29
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests _a = open # noqa: we just need to have a builtin inside this module to test it properly
29
1
from __future__ import annotations import math def lowerCAmelCase__(__snake_case ,__snake_case ) -> float: '''simple docstring''' lowerCamelCase__ = u for i in range(1 ,__snake_case ): lowerCamelCase__ = temp * (u - i) return temp def lowerCAmelCase__() -> None: '''simple docstring''' lowerCamelCase__ = int(input('''enter the numbers of values: ''' ) ) lowerCamelCase__ = [] for _ in range(__snake_case ): y.append([] ) for i in range(__snake_case ): for j in range(__snake_case ): y[i].append(__snake_case ) lowerCamelCase__ = 0 print('''enter the values of parameters in a list: ''' ) lowerCamelCase__ = list(map(__snake_case ,input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(__snake_case ): lowerCamelCase__ = float(input() ) lowerCamelCase__ = int(input('''enter the value to interpolate: ''' ) ) lowerCamelCase__ = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 ,__snake_case ): for j in range(n - i ): lowerCamelCase__ = y[j + 1][i - 1] - y[j][i - 1] lowerCamelCase__ = y[0][0] for i in range(1 ,__snake_case ): summ += (ucal(__snake_case ,__snake_case ) * y[0][i]) / math.factorial(__snake_case ) print(F'the value at {value} is {summ}' ) if __name__ == "__main__": main()
29
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging _a = logging.get_logger(__name__) class __A : '''simple docstring''' lowerCAmelCase_ = None @experimental def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> Tuple: '''simple docstring''' if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) return _map_with_joblib(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = num_proc if num_proc <= len(__snake_case ) else len(__snake_case ) lowerCamelCase__ = [] # We organize the splits ourselve (contiguous splits) for index in range(__snake_case ): lowerCamelCase__ = len(__snake_case ) // num_proc lowerCamelCase__ = len(__snake_case ) % num_proc lowerCamelCase__ = div * index + min(__snake_case ,__snake_case ) lowerCamelCase__ = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(__snake_case ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F'Error dividing inputs iterable among processes. ' F'Total number of objects {len(__snake_case )}, ' F'length: {sum(len(i[1] ) for i in split_kwds )}' ) logger.info( F'Spawning {num_proc} processes for {len(__snake_case )} objects in slices of {[len(i[1] ) for i in split_kwds]}' ) lowerCamelCase__ , lowerCamelCase__ = None, None if not disable_tqdm: lowerCamelCase__ , lowerCamelCase__ = (RLock(),), tqdm.set_lock with Pool(__snake_case ,initargs=__snake_case ,initializer=__snake_case ) as pool: lowerCamelCase__ = pool.map(__snake_case ,__snake_case ) logger.info(F'Finished {num_proc} processes' ) lowerCamelCase__ = [obj for proc_res in mapped for obj in proc_res] logger.info(F'Unpacked {len(__snake_case )} objects' ) return mapped def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> List[str]: '''simple docstring''' import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name ,n_jobs=__snake_case ): return joblib.Parallel()( joblib.delayed(__snake_case )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def lowerCAmelCase__(__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: lowerCamelCase__ = None
29
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _a = { "configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ "FALCON_PRETRAINED_MODEL_ARCHIVE_LIST", "FalconForCausalLM", "FalconModel", "FalconPreTrainedModel", "FalconForSequenceClassification", "FalconForTokenClassification", "FalconForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
29
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = 42 class __A ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' @register_to_config def __init__( self , __lowerCAmelCase = 1_6 , __lowerCAmelCase = 8_8 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 1 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 3_2 , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = "geglu" , __lowerCAmelCase = True , __lowerCAmelCase = True , ): '''simple docstring''' super().__init__() lowerCamelCase__ = num_attention_heads lowerCamelCase__ = attention_head_dim lowerCamelCase__ = num_attention_heads * attention_head_dim lowerCamelCase__ = in_channels lowerCamelCase__ = torch.nn.GroupNorm(num_groups=__lowerCAmelCase , num_channels=__lowerCAmelCase , eps=1E-6 , affine=__lowerCAmelCase ) lowerCamelCase__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) # 3. Define transformers blocks lowerCamelCase__ = nn.ModuleList( [ BasicTransformerBlock( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , dropout=__lowerCAmelCase , cross_attention_dim=__lowerCAmelCase , activation_fn=__lowerCAmelCase , attention_bias=__lowerCAmelCase , double_self_attention=__lowerCAmelCase , norm_elementwise_affine=__lowerCAmelCase , ) for d in range(__lowerCAmelCase ) ] ) lowerCamelCase__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=1 , __lowerCAmelCase=None , __lowerCAmelCase = True , ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = hidden_states.shape lowerCamelCase__ = batch_frames // num_frames lowerCamelCase__ = hidden_states lowerCamelCase__ = hidden_states[None, :].reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowerCamelCase__ = self.norm(__lowerCAmelCase ) lowerCamelCase__ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = self.proj_in(__lowerCAmelCase ) # 2. Blocks for block in self.transformer_blocks: lowerCamelCase__ = block( __lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , timestep=__lowerCAmelCase , cross_attention_kwargs=__lowerCAmelCase , class_labels=__lowerCAmelCase , ) # 3. Output lowerCamelCase__ = self.proj_out(__lowerCAmelCase ) lowerCamelCase__ = ( hidden_states[None, None, :] .reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowerCamelCase__ = hidden_states.reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=__lowerCAmelCase )
29
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _a = { "configuration_vivit": ["VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VivitConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ["VivitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ "VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "VivitModel", "VivitPreTrainedModel", "VivitForVideoClassification", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
29
_a = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" _a = [{"type": "code", "content": INSTALL_CONTENT}] _a = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
29
1
import json import os import torch from diffusers import UNetaDModel os.makedirs("hub/hopper-medium-v2/unet/hor32", exist_ok=True) os.makedirs("hub/hopper-medium-v2/unet/hor128", exist_ok=True) os.makedirs("hub/hopper-medium-v2/value_function", exist_ok=True) def lowerCAmelCase__(__snake_case ) -> Optional[Any]: '''simple docstring''' if hor == 128: lowerCamelCase__ = ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''') lowerCamelCase__ = (32, 128, 256) lowerCamelCase__ = ('''UpResnetBlock1D''', '''UpResnetBlock1D''') elif hor == 32: lowerCamelCase__ = ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''') lowerCamelCase__ = (32, 64, 128, 256) lowerCamelCase__ = ('''UpResnetBlock1D''', '''UpResnetBlock1D''', '''UpResnetBlock1D''') lowerCamelCase__ = torch.load(F'/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch' ) lowerCamelCase__ = model.state_dict() lowerCamelCase__ = { '''down_block_types''': down_block_types, '''block_out_channels''': block_out_channels, '''up_block_types''': up_block_types, '''layers_per_block''': 1, '''use_timestep_embedding''': True, '''out_block_type''': '''OutConv1DBlock''', '''norm_num_groups''': 8, '''downsample_each_block''': False, '''in_channels''': 14, '''out_channels''': 14, '''extra_in_channels''': 0, '''time_embedding_type''': '''positional''', '''flip_sin_to_cos''': False, '''freq_shift''': 1, '''sample_size''': 65536, '''mid_block_type''': '''MidResTemporalBlock1D''', '''act_fn''': '''mish''', } lowerCamelCase__ = UNetaDModel(**__snake_case ) print(F'length of state dict: {len(state_dict.keys() )}' ) print(F'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) lowerCamelCase__ = dict(zip(model.state_dict().keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase__ = state_dict.pop(__snake_case ) hf_value_function.load_state_dict(__snake_case ) torch.save(hf_value_function.state_dict() ,F'hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin' ) with open(F'hub/hopper-medium-v2/unet/hor{hor}/config.json' ,'''w''' ) as f: json.dump(__snake_case ,__snake_case ) def lowerCAmelCase__() -> Optional[int]: '''simple docstring''' lowerCamelCase__ = { '''in_channels''': 14, '''down_block_types''': ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D'''), '''up_block_types''': (), '''out_block_type''': '''ValueFunction''', '''mid_block_type''': '''ValueFunctionMidBlock1D''', '''block_out_channels''': (32, 64, 128, 256), '''layers_per_block''': 1, '''downsample_each_block''': True, '''sample_size''': 65536, '''out_channels''': 14, '''extra_in_channels''': 0, '''time_embedding_type''': '''positional''', '''use_timestep_embedding''': True, '''flip_sin_to_cos''': False, '''freq_shift''': 1, '''norm_num_groups''': 8, '''act_fn''': '''mish''', } lowerCamelCase__ = torch.load('''/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch''' ) lowerCamelCase__ = model lowerCamelCase__ = UNetaDModel(**__snake_case ) print(F'length of state dict: {len(state_dict.keys() )}' ) print(F'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) lowerCamelCase__ = dict(zip(state_dict.keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase__ = state_dict.pop(__snake_case ) hf_value_function.load_state_dict(__snake_case ) torch.save(hf_value_function.state_dict() ,'''hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin''' ) with open('''hub/hopper-medium-v2/value_function/config.json''' ,'''w''' ) as f: json.dump(__snake_case ,__snake_case ) if __name__ == "__main__": unet(32) # unet(128) value_function()
29
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _a = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
29
1
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case = None ,__snake_case = None ,__snake_case = None ,) -> Tuple: '''simple docstring''' if config_name_or_path is None: lowerCamelCase__ = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: lowerCamelCase__ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: lowerCamelCase__ = question_encoder_name_or_path lowerCamelCase__ = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. lowerCamelCase__ = RagConfig.from_pretrained(__snake_case ) lowerCamelCase__ = AutoConfig.from_pretrained(__snake_case ) lowerCamelCase__ = AutoConfig.from_pretrained(__snake_case ) lowerCamelCase__ = gen_config lowerCamelCase__ = question_encoder_config lowerCamelCase__ = model_class.from_pretrained_question_encoder_generator( __snake_case ,__snake_case ,config=__snake_case ) rag_model.save_pretrained(__snake_case ) # Sanity check. model_class.from_pretrained(__snake_case ) # Save tokenizers. lowerCamelCase__ = AutoTokenizer.from_pretrained(__snake_case ) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' ) lowerCamelCase__ = AutoTokenizer.from_pretrained(__snake_case ) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) _a = parser.parse_args() _a = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
29
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor _a = logging.get_logger(__name__) class __A ( lowerCAmelCase ): '''simple docstring''' def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
29
1