code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : int = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() _snake_case : Any = dict(zip(__A, range(len(__A ) ) ) ) _snake_case : Optional[int] = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } _snake_case : Optional[int] = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 16_000, """return_attention_mask""": False, """do_normalize""": True, } _snake_case : str = tempfile.mkdtemp() _snake_case : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) _snake_case : List[str] = os.path.join(self.tmpdirname, __A ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as fp: fp.write(json.dumps(__A ) + """\n""" ) with open(self.feature_extraction_file, """w""", encoding="""utf-8""" ) as fp: fp.write(json.dumps(__A ) + """\n""" ) # load decoder from hub _snake_case : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def UpperCamelCase_ ( self: Any, **a_: str ): '''simple docstring''' _snake_case : Any = self.add_kwargs_tokens_map.copy() kwargs.update(__A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname, **__A ) def UpperCamelCase_ ( self: List[str], **a_: Optional[Any] ): '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname, **__A ) def UpperCamelCase_ ( self: Optional[Any], **a_: str ): '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name, **__A ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Dict = self.get_tokenizer() _snake_case : List[Any] = self.get_feature_extractor() _snake_case : int = self.get_decoder() _snake_case : Optional[int] = WavaVecaProcessorWithLM(tokenizer=__A, feature_extractor=__A, decoder=__A ) processor.save_pretrained(self.tmpdirname ) _snake_case : str = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer, __A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor, __A ) # decoder self.assertEqual(processor.decoder._alphabet.labels, decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set, decoder.model_container[decoder._model_key]._unigram_set, ) self.assertIsInstance(processor.decoder, __A ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : List[Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor(), decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _snake_case : List[str] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname, alpha=5.0, beta=3.0, score_boundary=-7.0, unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha, 5.0 ) self.assertEqual(processor.language_model.beta, 3.0 ) self.assertEqual(processor.language_model.score_boundary, -7.0 ) self.assertEqual(processor.language_model.unk_score_offset, 3 ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : List[Any] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__A, """include""" ): WavaVecaProcessorWithLM( tokenizer=__A, feature_extractor=self.get_feature_extractor(), decoder=self.get_decoder() ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Any = self.get_feature_extractor() _snake_case : List[str] = self.get_tokenizer() _snake_case : Union[str, Any] = self.get_decoder() _snake_case : Any = WavaVecaProcessorWithLM(tokenizer=__A, feature_extractor=__A, decoder=__A ) _snake_case : Union[str, Any] = floats_list((3, 1_000) ) _snake_case : str = feature_extractor(__A, return_tensors="""np""" ) _snake_case : Optional[Any] = processor(__A, return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2 ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : str = self.get_feature_extractor() _snake_case : List[Any] = self.get_tokenizer() _snake_case : Dict = self.get_decoder() _snake_case : Any = WavaVecaProcessorWithLM(tokenizer=__A, feature_extractor=__A, decoder=__A ) _snake_case : Union[str, Any] = """This is a test string""" _snake_case : Any = processor(text=__A ) _snake_case : Tuple = tokenizer(__A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def UpperCamelCase_ ( self: List[Any], a_: int=(2, 10, 16), a_: List[Any]=77 ): '''simple docstring''' np.random.seed(__A ) return np.random.rand(*__A ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : int = self.get_feature_extractor() _snake_case : Union[str, Any] = self.get_tokenizer() _snake_case : Union[str, Any] = self.get_decoder() _snake_case : List[Any] = WavaVecaProcessorWithLM(tokenizer=__A, feature_extractor=__A, decoder=__A ) _snake_case : str = self._get_dummy_logits(shape=(10, 16), seed=13 ) _snake_case : int = processor.decode(__A ) _snake_case : Tuple = decoder.decode_beams(__A )[0] self.assertEqual(decoded_decoder[0], decoded_processor.text ) self.assertEqual("""</s> <s> </s>""", decoded_processor.text ) self.assertEqual(decoded_decoder[-2], decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1], decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def UpperCamelCase_ ( self: List[Any], a_: Any ): '''simple docstring''' _snake_case : Optional[Any] = self.get_feature_extractor() _snake_case : int = self.get_tokenizer() _snake_case : Any = self.get_decoder() _snake_case : List[Any] = WavaVecaProcessorWithLM(tokenizer=__A, feature_extractor=__A, decoder=__A ) _snake_case : Optional[int] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _snake_case : Tuple = processor.batch_decode(__A ) else: with get_context(__A ).Pool() as pool: _snake_case : Optional[int] = processor.batch_decode(__A, __A ) _snake_case : Optional[Any] = list(__A ) with get_context("""fork""" ).Pool() as p: _snake_case : Optional[Any] = decoder.decode_beams_batch(__A, __A ) _snake_case , _snake_case , _snake_case : int = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__A, decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""], decoded_processor.text ) self.assertListEqual(__A, decoded_processor.logit_score ) self.assertListEqual(__A, decoded_processor.lm_score ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.get_feature_extractor() _snake_case : Union[str, Any] = self.get_tokenizer() _snake_case : Optional[int] = self.get_decoder() _snake_case : Tuple = WavaVecaProcessorWithLM(tokenizer=__A, feature_extractor=__A, decoder=__A ) _snake_case : str = self._get_dummy_logits() _snake_case : int = 15 _snake_case : List[str] = -20.0 _snake_case : Union[str, Any] = -4.0 _snake_case : str = processor.batch_decode( __A, beam_width=__A, beam_prune_logp=__A, token_min_logp=__A, ) _snake_case : List[Any] = decoded_processor_out.text _snake_case : Union[str, Any] = list(__A ) with get_context("""fork""" ).Pool() as pool: _snake_case : Union[str, Any] = decoder.decode_beams_batch( __A, __A, beam_width=__A, beam_prune_logp=__A, token_min_logp=__A, ) _snake_case : Union[str, Any] = [d[0][0] for d in decoded_decoder_out] _snake_case : List[Any] = [d[0][2] for d in decoded_decoder_out] _snake_case : Dict = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__A, __A ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""], __A ) self.assertTrue(np.array_equal(__A, decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447], __A, atol=1E-3 ) ) self.assertTrue(np.array_equal(__A, decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9_474], __A, atol=1E-3 ) ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Any = self.get_feature_extractor() _snake_case : Union[str, Any] = self.get_tokenizer() _snake_case : Optional[int] = self.get_decoder() _snake_case : str = WavaVecaProcessorWithLM(tokenizer=__A, feature_extractor=__A, decoder=__A ) _snake_case : int = self._get_dummy_logits() _snake_case : Optional[int] = 2.0 _snake_case : str = 5.0 _snake_case : List[str] = -20.0 _snake_case : Optional[Any] = True _snake_case : Optional[int] = processor.batch_decode( __A, alpha=__A, beta=__A, unk_score_offset=__A, lm_score_boundary=__A, ) _snake_case : Union[str, Any] = decoded_processor_out.text _snake_case : List[str] = list(__A ) decoder.reset_params( alpha=__A, beta=__A, unk_score_offset=__A, lm_score_boundary=__A, ) with get_context("""fork""" ).Pool() as pool: _snake_case : Optional[int] = decoder.decode_beams_batch( __A, __A, ) _snake_case : List[str] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__A, __A ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""], __A ) _snake_case : str = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha, 2.0 ) self.assertEqual(lm_model.beta, 5.0 ) self.assertEqual(lm_model.unk_score_offset, -20.0 ) self.assertEqual(lm_model.score_boundary, __A ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Any = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _snake_case : Optional[int] = processor.decoder.model_container[processor.decoder._model_key] _snake_case : Union[str, Any] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() _snake_case : Dict = os.listdir(__A ) _snake_case : Optional[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__A, __A ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) _snake_case : List[Any] = WavaVecaProcessorWithLM.from_pretrained(__A ) _snake_case : Optional[int] = processor.decoder.model_container[processor.decoder._model_key] _snake_case : Any = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() _snake_case : Union[str, Any] = os.listdir(__A ) _snake_case : Tuple = os.listdir(__A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__A, __A ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Optional[int] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _snake_case : Dict = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _snake_case : Union[str, Any] = floats_list((3, 1_000) ) _snake_case : Optional[int] = processor_wavaveca(__A, return_tensors="""np""" ) _snake_case : Optional[int] = processor_auto(__A, return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum(), input_auto[key].sum(), delta=1E-2 ) _snake_case : int = self._get_dummy_logits() _snake_case : Optional[int] = processor_wavaveca.batch_decode(__A ) _snake_case : Optional[Any] = processor_auto.batch_decode(__A ) self.assertListEqual(decoded_wavaveca.text, decoded_auto.text ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.get_feature_extractor() _snake_case : int = self.get_tokenizer() _snake_case : Any = self.get_decoder() _snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__A, feature_extractor=__A, decoder=__A ) self.assertListEqual( processor.model_input_names, feature_extractor.model_input_names, msg="""`processor` and `feature_extractor` model input names do not match""", ) @staticmethod def UpperCamelCase_ ( a_: Any, a_: Tuple ): '''simple docstring''' _snake_case : Optional[int] = [d[key] for d in offsets] return retrieved_list def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Any = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _snake_case : List[str] = self._get_dummy_logits()[0] _snake_case : int = processor.decode(__A, output_word_offsets=__A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ), 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__A, __A ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""], """word""" ) ), outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""], """word""" ), ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""], """start_offset""" ), [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""], """end_offset""" ), [1, 3, 5] ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Tuple = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _snake_case : Tuple = self._get_dummy_logits() _snake_case : Dict = processor.batch_decode(__A, output_word_offsets=__A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ), 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__A, __A ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__A, """word""" ) ) for o in outputs["""word_offsets"""]], outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0], """word""" ), ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0], """start_offset""" ), [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0], """end_offset""" ), [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' import torch _snake_case : Tuple = load_dataset("""common_voice""", """en""", split="""train""", streaming=__A ) _snake_case : Optional[Any] = ds.cast_column("""audio""", datasets.Audio(sampling_rate=16_000 ) ) _snake_case : int = iter(__A ) _snake_case : Union[str, Any] = next(__A ) _snake_case : Union[str, Any] = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) _snake_case : str = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _snake_case : Union[str, Any] = processor(sample["""audio"""]["""array"""], return_tensors="""pt""" ).input_values with torch.no_grad(): _snake_case : Any = model(__A ).logits.cpu().numpy() _snake_case : Tuple = processor.decode(logits[0], output_word_offsets=__A ) _snake_case : str = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _snake_case : List[Any] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] _snake_case : List[Any] = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__A, """word""" ) ), __A ) self.assertEqual(""" """.join(self.get_from_offsets(__A, """word""" ) ), output.text ) # output times _snake_case : List[str] = torch.tensor(self.get_from_offsets(__A, """start_time""" ) ) _snake_case : str = torch.tensor(self.get_from_offsets(__A, """end_time""" ) ) # fmt: off _snake_case : List[Any] = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] ) _snake_case : Dict = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__A, __A, atol=0.01 ) ) self.assertTrue(torch.allclose(__A, __A, atol=0.01 ) )
717
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path A_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) A_ = [ord(letter) for letter in string.ascii_lowercase] A_ = {ord(char) for char in VALID_CHARS} A_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : tuple[int, ...] ): """simple docstring""" _snake_case : str = "" _snake_case : int _snake_case : int _snake_case : int for keychar, cipherchar in zip(cycle(snake_case__ ) , snake_case__ ): _snake_case : List[str] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case__ ) return decoded def UpperCAmelCase__ (snake_case__ : list[int] ): """simple docstring""" _snake_case : list[str] = [] for key in product(snake_case__ , repeat=3 ): _snake_case : List[Any] = try_key(snake_case__ , snake_case__ ) if encoded is not None: possibles.append(snake_case__ ) return possibles def UpperCAmelCase__ (snake_case__ : list[str] , snake_case__ : str ): """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def UpperCAmelCase__ (snake_case__ : str = "p059_cipher.txt" ): """simple docstring""" _snake_case : list[int] _snake_case : list[str] _snake_case : str _snake_case : str _snake_case : str = Path(snake_case__ ).parent.joinpath(snake_case__ ).read_text(encoding="""utf-8""" ) _snake_case : List[Any] = [int(snake_case__ ) for number in data.strip().split(""",""" )] _snake_case : Optional[Any] = filter_valid_chars(snake_case__ ) for common_word in COMMON_WORDS: _snake_case : Union[str, Any] = filter_common_word(snake_case__ , snake_case__ ) if len(snake_case__ ) == 1: break _snake_case : Optional[int] = possibles[0] return sum(ord(snake_case__ ) for char in decoded_text ) if __name__ == "__main__": print(F'''{solution() = }''')
28
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowercase( __snake_case , unittest.TestCase ): '''simple docstring''' lowercase__ = BarthezTokenizer lowercase__ = BarthezTokenizerFast lowercase__ = True lowercase__ = True def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' super().setUp() _snake_case : Tuple = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname, legacy_format=_lowercase ) _snake_case : List[str] = tokenizer def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Tuple = """<pad>""" _snake_case : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ), _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ), _lowercase ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], """<s>""" ) self.assertEqual(vocab_keys[1], """<pad>""" ) self.assertEqual(vocab_keys[-1], """<mask>""" ) self.assertEqual(len(_lowercase ), 101_122 ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 101_122 ) @require_torch def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _snake_case : str = [0, 57, 3_018, 70_307, 91, 2] _snake_case : Any = self.tokenizer( _lowercase, max_length=len(_lowercase ), padding=_lowercase, truncation=_lowercase, return_tensors="""pt""" ) self.assertIsInstance(_lowercase, _lowercase ) self.assertEqual((2, 6), batch.input_ids.shape ) self.assertEqual((2, 6), batch.attention_mask.shape ) _snake_case : Optional[int] = batch.input_ids.tolist()[0] self.assertListEqual(_lowercase, _lowercase ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' if not self.test_rust_tokenizer: return _snake_case : Optional[Any] = self.get_tokenizer() _snake_case : List[str] = self.get_rust_tokenizer() _snake_case : List[str] = """I was born in 92000, and this is falsé.""" _snake_case : Optional[Any] = tokenizer.tokenize(_lowercase ) _snake_case : Tuple = rust_tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase, _lowercase ) _snake_case : Any = tokenizer.encode(_lowercase, add_special_tokens=_lowercase ) _snake_case : List[Any] = rust_tokenizer.encode(_lowercase, add_special_tokens=_lowercase ) self.assertListEqual(_lowercase, _lowercase ) _snake_case : Dict = self.get_rust_tokenizer() _snake_case : Optional[Any] = tokenizer.encode(_lowercase ) _snake_case : Tuple = rust_tokenizer.encode(_lowercase ) self.assertListEqual(_lowercase, _lowercase ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[Any] = {"""input_ids""": [[0, 490, 14_328, 4_507, 354, 47, 43_669, 95, 25, 78_117, 20_215, 19_779, 190, 22, 400, 4, 35_343, 80_310, 603, 86, 24_937, 105, 33_438, 94_762, 196, 39_642, 7, 15, 15_933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10_534, 87, 25, 66, 3_358, 196, 55_289, 8, 82_961, 81, 2_204, 75_203, 7, 15, 763, 12_956, 216, 178, 14_328, 9_595, 1_377, 69_693, 7, 448, 71_021, 196, 18_106, 1_437, 13_974, 108, 9_083, 4, 49_315, 7, 39, 86, 1_326, 2_793, 46_333, 4, 448, 196, 74_588, 7, 49_315, 7, 39, 21, 822, 38_470, 74, 21, 66_723, 62_480, 8, 22_050, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _snake_case : Union[str, Any] = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=_lowercase, model_name="""moussaKam/mbarthez""", revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""", sequences=_lowercase, )
718
"""simple docstring""" from ...processing_utils import ProcessorMixin class lowercase( __a ): '''simple docstring''' lowercase__ = ["image_processor", "feature_extractor"] lowercase__ = "TvltImageProcessor" lowercase__ = "TvltFeatureExtractor" def __init__( self: Dict, a_: Union[str, Any], a_: Union[str, Any] ): '''simple docstring''' super().__init__(image_processor=a_, feature_extractor=a_ ) _snake_case : Any = image_processor _snake_case : Dict = feature_extractor def __call__( self: int, a_: str=None, a_: Tuple=None, a_: Dict=None, a_: str=None, a_: Optional[int]=False, a_: Tuple=False, *a_: List[str], **a_: int, ): '''simple docstring''' if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) _snake_case : Optional[int] = None if images is not None: _snake_case : Tuple = self.image_processor(a_, mask_pixel=a_, *a_, **a_ ) if images_mixed is not None: _snake_case : Optional[int] = self.image_processor(a_, is_mixed=a_, *a_, **a_ ) if audio is not None: _snake_case : Any = self.feature_extractor( a_, *a_, sampling_rate=a_, mask_audio=a_, **a_ ) _snake_case : List[str] = {} if audio is not None: output_dict.update(a_ ) if images is not None: output_dict.update(a_ ) if images_mixed_dict is not None: output_dict.update(a_ ) return output_dict @property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Dict = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
28
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ = logging.get_logger(__name__) A_ = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class lowercase( __a ): '''simple docstring''' lowercase__ = '''table-transformer''' lowercase__ = ['''past_key_values'''] lowercase__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self: int, a_: str=True, a_: List[Any]=None, a_: List[str]=3, a_: Optional[Any]=100, a_: Optional[int]=6, a_: Optional[Any]=2_048, a_: str=8, a_: Any=6, a_: Dict=2_048, a_: Any=8, a_: Union[str, Any]=0.0, a_: Optional[Any]=0.0, a_: List[str]=True, a_: Union[str, Any]="relu", a_: Union[str, Any]=256, a_: Union[str, Any]=0.1, a_: str=0.0, a_: Optional[Any]=0.0, a_: Tuple=0.02, a_: str=1.0, a_: Dict=False, a_: Dict="sine", a_: Tuple="resnet50", a_: int=True, a_: Dict=False, a_: Tuple=1, a_: Union[str, Any]=5, a_: int=2, a_: Optional[int]=1, a_: Tuple=1, a_: str=5, a_: str=2, a_: Optional[Any]=0.1, **a_: Any, ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _snake_case : Dict = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A__, A__ ): _snake_case : Any = backbone_config.get("""model_type""" ) _snake_case : int = CONFIG_MAPPING[backbone_model_type] _snake_case : str = config_class.from_dict(A__ ) # set timm attributes to None _snake_case : Any = None, None, None _snake_case : Optional[int] = use_timm_backbone _snake_case : List[str] = backbone_config _snake_case : Any = num_channels _snake_case : Union[str, Any] = num_queries _snake_case : Optional[int] = d_model _snake_case : Union[str, Any] = encoder_ffn_dim _snake_case : str = encoder_layers _snake_case : List[Any] = encoder_attention_heads _snake_case : str = decoder_ffn_dim _snake_case : Any = decoder_layers _snake_case : Tuple = decoder_attention_heads _snake_case : List[Any] = dropout _snake_case : int = attention_dropout _snake_case : Any = activation_dropout _snake_case : Tuple = activation_function _snake_case : Tuple = init_std _snake_case : Union[str, Any] = init_xavier_std _snake_case : int = encoder_layerdrop _snake_case : List[str] = decoder_layerdrop _snake_case : Any = encoder_layers _snake_case : List[str] = auxiliary_loss _snake_case : List[str] = position_embedding_type _snake_case : Tuple = backbone _snake_case : List[Any] = use_pretrained_backbone _snake_case : List[Any] = dilation # Hungarian matcher _snake_case : Tuple = class_cost _snake_case : Union[str, Any] = bbox_cost _snake_case : List[Any] = giou_cost # Loss coefficients _snake_case : Any = mask_loss_coefficient _snake_case : int = dice_loss_coefficient _snake_case : Union[str, Any] = bbox_loss_coefficient _snake_case : str = giou_loss_coefficient _snake_case : int = eos_coefficient super().__init__(is_encoder_decoder=A__, **A__ ) @property def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' return self.d_model class lowercase( __a ): '''simple docstring''' lowercase__ = version.parse("1.11" ) @property def UpperCamelCase_ ( self: str ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' return 1E-5 @property def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' return 12
719
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A_ = '''pt''' elif is_tf_available(): A_ = '''tf''' else: A_ = '''jax''' class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ByTaTokenizer lowercase__ = False def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' super().setUp() _snake_case : List[str] = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def UpperCamelCase_ ( self: List[Any], **a_: int ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **a_ ) def UpperCamelCase_ ( self: Optional[Any], a_: Optional[Any], a_: List[Any]=False, a_: int=20, a_: Union[str, Any]=5 ): '''simple docstring''' _snake_case : List[Any] = [] for i in range(len(a_ ) ): try: _snake_case : Optional[Any] = tokenizer.decode([i], clean_up_tokenization_spaces=a_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _snake_case : str = list(filter(lambda a_ : re.match(r"""^[ a-zA-Z]+$""", t[1] ), a_ ) ) _snake_case : List[Any] = list(filter(lambda a_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=a_ ), a_ ) ) if max_length is not None and len(a_ ) > max_length: _snake_case : Tuple = toks[:max_length] if min_length is not None and len(a_ ) < min_length and len(a_ ) > 0: while len(a_ ) < min_length: _snake_case : List[str] = toks + toks # toks_str = [t[1] for t in toks] _snake_case : Tuple = [t[0] for t in toks] # Ensure consistency _snake_case : Optional[Any] = tokenizer.decode(a_, clean_up_tokenization_spaces=a_ ) if " " not in output_txt and len(a_ ) > 1: _snake_case : Dict = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=a_ ) + """ """ + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=a_ ) ) if with_prefix_space: _snake_case : Union[str, Any] = """ """ + output_txt _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) return output_txt, output_ids def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[int] = self.ta_base_tokenizer _snake_case : Optional[Any] = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) _snake_case : int = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""], batch_without_eos_added["""input_ids"""] ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[str] = self.ta_base_tokenizer _snake_case : Tuple = """Unicode €.""" _snake_case : List[Any] = tokenizer(a_ ) _snake_case : Tuple = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["""input_ids"""], a_ ) # decoding _snake_case : Tuple = tokenizer.decode(a_ ) self.assertEqual(a_, """Unicode €.</s>""" ) _snake_case : Tuple = tokenizer("""e è é ê ë""" ) _snake_case : List[Any] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["""input_ids"""], a_ ) # decoding _snake_case : int = tokenizer.decode(a_ ) self.assertEqual(a_, """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ), """e è é ê ë</s>""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Dict = self.ta_base_tokenizer _snake_case : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off _snake_case : Union[str, Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on _snake_case : int = tokenizer(a_, padding=a_, return_tensors=a_ ) self.assertIsInstance(a_, a_ ) if FRAMEWORK != "jax": _snake_case : List[str] = list(batch.input_ids.numpy()[0] ) else: _snake_case : Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(a_, a_ ) self.assertEqual((2, 37), batch.input_ids.shape ) self.assertEqual((2, 37), batch.attention_mask.shape ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : List[Any] = self.ta_base_tokenizer _snake_case : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _snake_case : Tuple = tokenizer(a_, padding=a_, return_tensors=a_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""", a_ ) self.assertIn("""attention_mask""", a_ ) self.assertNotIn("""decoder_input_ids""", a_ ) self.assertNotIn("""decoder_attention_mask""", a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Union[str, Any] = self.ta_base_tokenizer _snake_case : Dict = [ """Summary of the text.""", """Another summary.""", ] _snake_case : Optional[int] = tokenizer( text_target=a_, max_length=32, padding="""max_length""", truncation=a_, return_tensors=a_ ) self.assertEqual(32, targets["""input_ids"""].shape[1] ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : int = self.ta_base_tokenizer _snake_case : Optional[int] = ["""A long paragraph for summarization. </s>"""] _snake_case : Dict = ["""Summary of the text. </s>"""] # fmt: off _snake_case : Optional[int] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] _snake_case : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on _snake_case : Optional[Any] = tokenizer(a_, text_target=a_ ) self.assertEqual(a_, batch["""input_ids"""][0] ) self.assertEqual(a_, batch["""labels"""][0] ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test _snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _snake_case : List[str] = tempfile.mkdtemp() _snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running""" _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) _snake_case : List[Any] = tokenizer.__class__.from_pretrained(a_ ) _snake_case : Dict = after_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) shutil.rmtree(a_ ) _snake_case : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _snake_case : Union[str, Any] = tempfile.mkdtemp() _snake_case : List[Any] = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) _snake_case : Optional[Any] = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) _snake_case : Optional[Any] = tokenizer.__class__.from_pretrained(a_ ) _snake_case : str = after_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) self.assertIn("""new_additional_special_token""", after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) _snake_case : Optional[int] = tokenizer.__class__.from_pretrained(a_, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(a_ ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a_ ) with open(os.path.join(a_, """special_tokens_map.json""" ), encoding="""utf-8""" ) as json_file: _snake_case : Union[str, Any] = json.load(a_ ) with open(os.path.join(a_, """tokenizer_config.json""" ), encoding="""utf-8""" ) as json_file: _snake_case : List[Any] = json.load(a_ ) _snake_case : int = [f"<extra_id_{i}>" for i in range(125 )] _snake_case : Optional[int] = added_tokens_extra_ids + [ """an_additional_special_token""" ] _snake_case : Dict = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(a_, """special_tokens_map.json""" ), """w""", encoding="""utf-8""" ) as outfile: json.dump(a_, a_ ) with open(os.path.join(a_, """tokenizer_config.json""" ), """w""", encoding="""utf-8""" ) as outfile: json.dump(a_, a_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case : Optional[int] = tokenizer_class.from_pretrained( a_, ) self.assertIn( """an_additional_special_token""", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case : Union[str, Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""", lstrip=a_ )] _snake_case : List[Any] = tokenizer_class.from_pretrained( a_, additional_special_tokens=a_, ) self.assertIn("""a_new_additional_special_token""", tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ), ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a_ ) _snake_case : Optional[Any] = tokenizer_class.from_pretrained(a_ ) self.assertTrue(tokenizer.decode([255] ) == """""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.get_tokenizers(fast=a_, do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : Dict = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] _snake_case : List[Any] = tokenizer.convert_tokens_to_string(a_ ) self.assertIsInstance(a_, a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : Optional[int] = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] _snake_case : Any = 0 _snake_case : Union[str, Any] = tokenizer.convert_ids_to_tokens( a_, skip_special_tokens=a_ ) for attr in attributes_list: setattr(a_, attr + """_id""", a_ ) self.assertEqual(getattr(a_, a_ ), a_ ) self.assertEqual(getattr(a_, attr + """_id""" ), a_ ) setattr(a_, attr + """_id""", a_ ) self.assertEqual(getattr(a_, a_ ), a_ ) self.assertEqual(getattr(a_, attr + """_id""" ), a_ ) setattr(a_, """additional_special_tokens_ids""", [] ) self.assertListEqual(getattr(a_, """additional_special_tokens""" ), [] ) self.assertListEqual(getattr(a_, """additional_special_tokens_ids""" ), [] ) setattr(a_, """additional_special_tokens_ids""", [token_id_to_test_setters] ) self.assertListEqual(getattr(a_, """additional_special_tokens""" ), [token_to_test_setters] ) self.assertListEqual(getattr(a_, """additional_special_tokens_ids""" ), [token_id_to_test_setters] )
28
0
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase: lowercase__ = 42 lowercase__ = 42 class lowercase: def __init__( self: str, a_: Optional[int] ): '''simple docstring''' _snake_case : str = [[] for _ in range(_a )] _snake_case : Dict = size def __getitem__( self: str, a_: Tuple ): '''simple docstring''' return iter(self._graph[vertex] ) @property def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' return self._size def UpperCamelCase_ ( self: Optional[Any], a_: Dict, a_: Dict, a_: List[Any] ): '''simple docstring''' if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(_a, _a ) ) def UpperCamelCase_ ( self: str, a_: Optional[int], a_: Dict ): '''simple docstring''' _snake_case : List[str] = deque([start_vertex] ) _snake_case : int = [None] * self.size _snake_case : Optional[int] = 0 while queue: _snake_case : Union[str, Any] = queue.popleft() _snake_case : Optional[Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _snake_case : str = current_distance + edge.weight _snake_case : List[Any] = distances[edge.destination_vertex] if ( isinstance(_a, _a ) and new_distance >= dest_vertex_distance ): continue _snake_case : Union[str, Any] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
720
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class lowercase( __a ): '''simple docstring''' @staticmethod @abstractmethod def UpperCamelCase_ ( a_: ArgumentParser ): '''simple docstring''' raise NotImplementedError() @abstractmethod def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' raise NotImplementedError()
28
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A_ = logging.getLogger(__name__) def UpperCAmelCase__ (snake_case__ : Union[str, Any] , snake_case__ : str ): """simple docstring""" return (preds == labels).mean() @dataclass class lowercase: '''simple docstring''' lowercase__ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowercase__ = field( default=__a , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowercase__ = field( default=__a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowercase__ = field( default=__a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class lowercase: '''simple docstring''' lowercase__ = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) lowercase__ = field(metadata={"help": "Should contain the data files for the task."} ) lowercase__ = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowercase__ = field( default=__a , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _snake_case , _snake_case , _snake_case : Dict = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , _lowerCamelCase ) # Set seed set_seed(training_args.seed ) try: _snake_case : Any = processors[data_args.task_name]() _snake_case : int = processor.get_labels() _snake_case : str = len(_lowerCamelCase ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _snake_case : Dict = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowerCamelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _snake_case : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _snake_case : Dict = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets _snake_case : Dict = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowerCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _snake_case : Optional[Any] = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowerCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(snake_case__ : EvalPrediction ) -> Dict: _snake_case : Union[str, Any] = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_lowerCamelCase , p.label_ids )} # Data collator _snake_case : Tuple = DataCollatorWithPadding(_lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _snake_case : Tuple = Trainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , compute_metrics=_lowerCamelCase , data_collator=_lowerCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _snake_case : Tuple = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _snake_case : Dict = trainer.evaluate() _snake_case : List[Any] = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(_lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , _lowerCamelCase , _lowerCamelCase ) writer.write("""%s = %s\n""" % (key, value) ) results.update(_lowerCamelCase ) return results def UpperCAmelCase__ (snake_case__ : Tuple ): """simple docstring""" main() if __name__ == "__main__": main()
721
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase( __a ): '''simple docstring''' lowercase__ = "roformer" def __init__( self: List[str], a_: Tuple=50_000, a_: Optional[Any]=None, a_: List[str]=768, a_: Union[str, Any]=12, a_: Optional[int]=12, a_: Optional[Any]=3_072, a_: List[str]="gelu", a_: List[str]=0.1, a_: Tuple=0.1, a_: Optional[int]=1_536, a_: Any=2, a_: Optional[int]=0.02, a_: Tuple=1E-12, a_: Dict=0, a_: str=False, a_: Dict=True, **a_: Dict, ): '''simple docstring''' super().__init__(pad_token_id=a_, **a_ ) _snake_case : int = vocab_size _snake_case : int = hidden_size if embedding_size is None else embedding_size _snake_case : Dict = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : Any = num_attention_heads _snake_case : Dict = hidden_act _snake_case : Optional[int] = intermediate_size _snake_case : List[Any] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = max_position_embeddings _snake_case : Tuple = type_vocab_size _snake_case : List[Any] = initializer_range _snake_case : List[Any] = layer_norm_eps _snake_case : Optional[Any] = rotary_value _snake_case : List[str] = use_cache class lowercase( __a ): '''simple docstring''' @property def UpperCamelCase_ ( self: Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : str = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : List[str] = {0: """batch""", 1: """sequence"""} _snake_case : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
28
0
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class lowercase( snake_case_ ): '''simple docstring''' lowercase__ = field(default=snake_case_ , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase__ = field( default=snake_case_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase__ = field( default=snake_case_ , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase__ = field( default=snake_case_ , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase__ = field( default=snake_case_ , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[str] = super().to_dict() for k, v in d.items(): if isinstance(a_, a_ ): _snake_case : str = v.to_dict() return d
700
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Union[str, Any]=1 ): """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : List[Any]=0 ): """simple docstring""" _snake_case : Optional[Any] = [] for old_item in old_list: _snake_case : Union[str, Any] = old_item.replace("""in_layers.0""" , """norm1""" ) _snake_case : List[Any] = new_item.replace("""in_layers.2""" , """conv1""" ) _snake_case : Tuple = new_item.replace("""out_layers.0""" , """norm2""" ) _snake_case : Dict = new_item.replace("""out_layers.3""" , """conv2""" ) _snake_case : int = new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) _snake_case : Optional[Any] = new_item.replace("""skip_connection""" , """conv_shortcut""" ) _snake_case : str = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : Dict=0 ): """simple docstring""" _snake_case : Dict = [] for old_item in old_list: _snake_case : Dict = old_item _snake_case : int = new_item.replace("""norm.weight""" , """group_norm.weight""" ) _snake_case : str = new_item.replace("""norm.bias""" , """group_norm.bias""" ) _snake_case : Optional[Any] = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) _snake_case : Optional[Any] = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) _snake_case : Optional[Any] = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : str=None , snake_case__ : str=None , snake_case__ : List[str]=None ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _snake_case : Union[str, Any] = old_checkpoint[path] _snake_case : Optional[int] = old_tensor.shape[0] // 3 _snake_case : List[Any] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) _snake_case : Union[str, Any] = old_tensor.shape[0] // config["""num_head_channels"""] // 3 _snake_case : Any = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _snake_case , _snake_case , _snake_case : List[str] = old_tensor.split(channels // num_heads , dim=1 ) _snake_case : Union[str, Any] = query.reshape(snake_case__ ) _snake_case : Tuple = key.reshape(snake_case__ ) _snake_case : Any = value.reshape(snake_case__ ) for path in paths: _snake_case : List[Any] = path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _snake_case : Union[str, Any] = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) _snake_case : str = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) _snake_case : Any = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: _snake_case : int = new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _snake_case : Dict = old_checkpoint[path["""old"""]][:, :, 0] else: _snake_case : Optional[Any] = old_checkpoint[path["""old"""]] def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : List[str] ): """simple docstring""" _snake_case : int = {} _snake_case : Tuple = checkpoint["""time_embed.0.weight"""] _snake_case : List[str] = checkpoint["""time_embed.0.bias"""] _snake_case : List[str] = checkpoint["""time_embed.2.weight"""] _snake_case : Tuple = checkpoint["""time_embed.2.bias"""] _snake_case : Dict = checkpoint["""input_blocks.0.0.weight"""] _snake_case : List[Any] = checkpoint["""input_blocks.0.0.bias"""] _snake_case : List[Any] = checkpoint["""out.0.weight"""] _snake_case : Any = checkpoint["""out.0.bias"""] _snake_case : Any = checkpoint["""out.2.weight"""] _snake_case : List[str] = checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only _snake_case : List[str] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) _snake_case : Any = { layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key] for layer_id in range(snake_case__ ) } # Retrieves the keys for the middle blocks only _snake_case : Optional[int] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) _snake_case : Optional[int] = { layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key] for layer_id in range(snake_case__ ) } # Retrieves the keys for the output blocks only _snake_case : str = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) _snake_case : List[Any] = { layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key] for layer_id in range(snake_case__ ) } for i in range(1 , snake_case__ ): _snake_case : Union[str, Any] = (i - 1) // (config["""num_res_blocks"""] + 1) _snake_case : int = (i - 1) % (config["""num_res_blocks"""] + 1) _snake_case : List[str] = [key for key in input_blocks[i] if F"input_blocks.{i}.0" in key] _snake_case : str = [key for key in input_blocks[i] if F"input_blocks.{i}.1" in key] if F"input_blocks.{i}.0.op.weight" in checkpoint: _snake_case : Union[str, Any] = checkpoint[ F"input_blocks.{i}.0.op.weight" ] _snake_case : Dict = checkpoint[ F"input_blocks.{i}.0.op.bias" ] continue _snake_case : Optional[int] = renew_resnet_paths(snake_case__ ) _snake_case : int = {"""old""": F"input_blocks.{i}.0", """new""": F"down_blocks.{block_id}.resnets.{layer_in_block_id}"} _snake_case : Tuple = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path, resnet_op] , config=snake_case__ ) if len(snake_case__ ): _snake_case : str = renew_attention_paths(snake_case__ ) _snake_case : List[str] = { """old""": F"input_blocks.{i}.1", """new""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}", } _snake_case : Optional[int] = { F"input_blocks.{i}.1.qkv.bias": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"input_blocks.{i}.1.qkv.weight": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=snake_case__ , config=snake_case__ , ) _snake_case : int = middle_blocks[0] _snake_case : List[str] = middle_blocks[1] _snake_case : Any = middle_blocks[2] _snake_case : Dict = renew_resnet_paths(snake_case__ ) assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ ) _snake_case : Any = renew_resnet_paths(snake_case__ ) assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ ) _snake_case : Dict = renew_attention_paths(snake_case__ ) _snake_case : Tuple = { """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , attention_paths_to_split=snake_case__ , config=snake_case__ ) for i in range(snake_case__ ): _snake_case : Optional[Any] = i // (config["""num_res_blocks"""] + 1) _snake_case : Dict = i % (config["""num_res_blocks"""] + 1) _snake_case : List[str] = [shave_segments(snake_case__ , 2 ) for name in output_blocks[i]] _snake_case : Any = {} for layer in output_block_layers: _snake_case , _snake_case : Any = layer.split(""".""" )[0], shave_segments(snake_case__ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(snake_case__ ) else: _snake_case : str = [layer_name] if len(snake_case__ ) > 1: _snake_case : Dict = [key for key in output_blocks[i] if F"output_blocks.{i}.0" in key] _snake_case : List[str] = [key for key in output_blocks[i] if F"output_blocks.{i}.1" in key] _snake_case : List[Any] = renew_resnet_paths(snake_case__ ) _snake_case : int = renew_resnet_paths(snake_case__ ) _snake_case : Optional[Any] = {"""old""": F"output_blocks.{i}.0", """new""": F"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _snake_case : str = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) _snake_case : Any = checkpoint[ F"output_blocks.{i}.{index}.conv.weight" ] _snake_case : Optional[int] = checkpoint[ F"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(snake_case__ ) == 2: _snake_case : Any = [] if len(snake_case__ ): _snake_case : str = renew_attention_paths(snake_case__ ) _snake_case : str = { """old""": F"output_blocks.{i}.1", """new""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}", } _snake_case : int = { F"output_blocks.{i}.1.qkv.bias": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"output_blocks.{i}.1.qkv.weight": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=snake_case__ , ) else: _snake_case : Optional[Any] = renew_resnet_paths(snake_case__ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: _snake_case : Optional[Any] = """.""".join(["""output_blocks""", str(snake_case__ ), path["""old"""]] ) _snake_case : Optional[int] = """.""".join(["""up_blocks""", str(snake_case__ ), """resnets""", str(snake_case__ ), path["""new"""]] ) _snake_case : Any = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') A_ = parser.parse_args() A_ = torch.load(args.checkpoint_path) with open(args.config_file) as f: A_ = json.loads(f.read()) A_ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] A_ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: A_ = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) A_ = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) A_ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
28
0
"""simple docstring""" import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=5_12, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def UpperCAmelCase__ (snake_case__ : Optional[int] ): """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(F"could not parse string as bool {string}" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) A_ = parser.parse_args() A_ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
701
"""simple docstring""" from typing import Any def UpperCAmelCase__ (snake_case__ : list ): """simple docstring""" if not input_list: return [] _snake_case : List[Any] = [input_list.count(snake_case__ ) for value in input_list] _snake_case : Optional[int] = max(snake_case__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(snake_case__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
28
0
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests A_ = open # noqa: we just need to have a builtin inside this module to test it properly
702
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''', '''BridgeTower/bridgetower-base-itm-mlm''': ( '''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json''' ), } class lowercase( __a ): '''simple docstring''' lowercase__ = "bridgetower_vision_model" def __init__( self: Tuple, a_: str=768, a_: Union[str, Any]=12, a_: List[str]=3, a_: Optional[int]=16, a_: List[Any]=288, a_: Optional[Any]=1, a_: Any=1E-05, a_: Dict=False, a_: Any=True, a_: int=False, **a_: int, ): '''simple docstring''' super().__init__(**a_ ) _snake_case : str = hidden_size _snake_case : int = num_hidden_layers _snake_case : Any = num_channels _snake_case : Union[str, Any] = patch_size _snake_case : Dict = image_size _snake_case : Optional[Any] = initializer_factor _snake_case : Any = layer_norm_eps _snake_case : int = stop_gradient _snake_case : Any = share_layernorm _snake_case : List[Any] = remove_last_layer @classmethod def UpperCamelCase_ ( cls: Union[str, Any], a_: Union[str, os.PathLike], **a_: Optional[Any] ): '''simple docstring''' _snake_case , _snake_case : List[Any] = cls.get_config_dict(a_, **a_ ) if config_dict.get("""model_type""" ) == "bridgetower": _snake_case : str = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a_, **a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "bridgetower_text_model" def __init__( self: str, a_: Dict=50_265, a_: List[Any]=768, a_: Union[str, Any]=12, a_: List[str]=12, a_: str=1, a_: Optional[Any]=3_072, a_: int="gelu", a_: int=0.1, a_: int=0.1, a_: Optional[int]=514, a_: Tuple=1, a_: Tuple=1E-05, a_: Optional[int]=1, a_: Union[str, Any]=0, a_: str=2, a_: Any="absolute", a_: List[Any]=True, **a_: Union[str, Any], ): '''simple docstring''' super().__init__(**a_ ) _snake_case : str = vocab_size _snake_case : Optional[int] = hidden_size _snake_case : Dict = num_hidden_layers _snake_case : Optional[int] = num_attention_heads _snake_case : Optional[int] = hidden_act _snake_case : List[Any] = initializer_factor _snake_case : Optional[int] = intermediate_size _snake_case : int = hidden_dropout_prob _snake_case : Tuple = attention_probs_dropout_prob _snake_case : List[str] = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : List[Any] = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Dict = use_cache _snake_case : int = pad_token_id _snake_case : Union[str, Any] = bos_token_id _snake_case : Union[str, Any] = eos_token_id @classmethod def UpperCamelCase_ ( cls: str, a_: Union[str, os.PathLike], **a_: int ): '''simple docstring''' _snake_case , _snake_case : Optional[int] = cls.get_config_dict(a_, **a_ ) if config_dict.get("""model_type""" ) == "bridgetower": _snake_case : Union[str, Any] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a_, **a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "bridgetower" def __init__( self: int, a_: List[str]=True, a_: Any="gelu", a_: List[Any]=768, a_: int=1, a_: Optional[int]=1E-05, a_: Tuple=False, a_: Optional[Any]="add", a_: List[str]=12, a_: Union[str, Any]=6, a_: int=False, a_: Any=False, a_: Dict=None, a_: Any=None, **a_: str, ): '''simple docstring''' _snake_case : str = kwargs.pop("""text_config_dict""", a_ ) _snake_case : Optional[Any] = kwargs.pop("""vision_config_dict""", a_ ) super().__init__(**a_ ) _snake_case : str = share_cross_modal_transformer_layers _snake_case : Any = hidden_act _snake_case : Union[str, Any] = hidden_size _snake_case : Union[str, Any] = initializer_factor _snake_case : Dict = layer_norm_eps _snake_case : Dict = share_link_tower_layers _snake_case : Optional[int] = link_tower_type _snake_case : Any = num_attention_heads _snake_case : int = num_hidden_layers _snake_case : int = tie_word_embeddings _snake_case : Optional[Any] = init_layernorm_from_vision_encoder if text_config is None: _snake_case : Optional[Any] = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: _snake_case : str = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) _snake_case : Any = BridgeTowerTextConfig(**a_ ) _snake_case : List[Any] = BridgeTowerVisionConfig(**a_ ) @classmethod def UpperCamelCase_ ( cls: Union[str, Any], a_: BridgeTowerTextConfig, a_: BridgeTowerVisionConfig, **a_: Optional[Any] ): '''simple docstring''' return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[int] = copy.deepcopy(self.__dict__ ) _snake_case : str = self.text_config.to_dict() _snake_case : List[str] = self.vision_config.to_dict() _snake_case : Tuple = self.__class__.model_type return output
28
0
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase__ (snake_case__ : float , snake_case__ : int ): _snake_case : int = u for i in range(1 , __lowercase ): _snake_case : Any = temp * (u - i) return temp def UpperCAmelCase__ (): _snake_case : List[Any] = int(input("""enter the numbers of values: """ ) ) _snake_case : list[list[float]] = [] for _ in range(__lowercase ): y.append([] ) for i in range(__lowercase ): for j in range(__lowercase ): y[i].append(__lowercase ) _snake_case : Dict = 0 print("""enter the values of parameters in a list: """ ) _snake_case : Optional[int] = list(map(__lowercase , input().split() ) ) print("""enter the values of corresponding parameters: """ ) for i in range(__lowercase ): _snake_case : Union[str, Any] = float(input() ) _snake_case : List[Any] = int(input("""enter the value to interpolate: """ ) ) _snake_case : List[str] = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __lowercase ): for j in range(n - i ): _snake_case : Optional[Any] = y[j + 1][i - 1] - y[j][i - 1] _snake_case : List[str] = y[0][0] for i in range(1 , __lowercase ): summ += (ucal(__lowercase , __lowercase ) * y[0][i]) / math.factorial(__lowercase ) print(F"the value at {value} is {summ}" ) if __name__ == "__main__": main()
703
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCAmelCase__ (): """simple docstring""" _snake_case : Optional[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" _snake_case : Union[str, Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("""RGB""" ) return image def UpperCAmelCase__ (snake_case__ : Any ): """simple docstring""" _snake_case : str = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"visual_encoder.blocks.{i}.norm1.weight", F"vision_model.encoder.layers.{i}.layer_norm1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm1.bias", F"vision_model.encoder.layers.{i}.layer_norm1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.weight", F"vision_model.encoder.layers.{i}.layer_norm2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.bias", F"vision_model.encoder.layers.{i}.layer_norm2.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.qkv.weight", F"vision_model.encoder.layers.{i}.self_attn.qkv.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.weight", F"vision_model.encoder.layers.{i}.self_attn.projection.weight",) ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.bias", F"vision_model.encoder.layers.{i}.self_attn.projection.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.weight", F"vision_model.encoder.layers.{i}.mlp.fc1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.bias", F"vision_model.encoder.layers.{i}.mlp.fc1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.weight", F"vision_model.encoder.layers.{i}.mlp.fc2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.bias", F"vision_model.encoder.layers.{i}.mlp.fc2.bias") ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : Tuple ): """simple docstring""" _snake_case : Optional[Any] = dct.pop(snake_case__ ) _snake_case : Optional[int] = val def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : str ): """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _snake_case : Optional[int] = state_dict.pop(F"visual_encoder.blocks.{i}.attn.q_bias" ) _snake_case : Tuple = state_dict.pop(F"visual_encoder.blocks.{i}.attn.v_bias" ) # next, set bias in the state dict _snake_case : List[str] = torch.cat((q_bias, torch.zeros_like(snake_case__ , requires_grad=snake_case__ ), v_bias) ) _snake_case : Dict = qkv_bias def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Union[str, Any] ): """simple docstring""" _snake_case : List[Any] = 3_64 if """coco""" in model_name else 2_24 _snake_case : List[str] = BlipaVisionConfig(image_size=snake_case__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _snake_case : List[str] = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=snake_case__ ).to_dict() elif "opt-6.7b" in model_name: _snake_case : List[str] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=snake_case__ ).to_dict() elif "t5-xl" in model_name: _snake_case : Tuple = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _snake_case : List[Any] = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() _snake_case : int = BlipaConfig(vision_config=snake_case__ , text_config=snake_case__ ) return config, image_size @torch.no_grad() def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int=None , snake_case__ : str=False ): """simple docstring""" _snake_case : List[str] = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) _snake_case : str = tokenizer("""\n""" , add_special_tokens=snake_case__ ).input_ids[0] _snake_case , _snake_case : Dict = get_blipa_config(snake_case__ , eos_token_id=snake_case__ ) _snake_case : str = BlipaForConditionalGeneration(snake_case__ ).eval() _snake_case : int = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } _snake_case , _snake_case : List[Any] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) _snake_case : int = """cuda""" if torch.cuda.is_available() else """cpu""" _snake_case , _snake_case , _snake_case : Any = load_model_and_preprocess( name=snake_case__ , model_type=snake_case__ , is_eval=snake_case__ , device=snake_case__ ) original_model.eval() print("""Done!""" ) # update state dict keys _snake_case : Any = original_model.state_dict() _snake_case : Dict = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _snake_case : str = state_dict.pop(snake_case__ ) if key.startswith("""Qformer.bert""" ): _snake_case : str = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: _snake_case : Any = key.replace("""self""" , """attention""" ) if "opt_proj" in key: _snake_case : List[str] = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: _snake_case : Optional[Any] = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): _snake_case : List[Any] = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): _snake_case : List[Any] = key.replace("""t5""" , """language""" ) _snake_case : str = val # read in qv biases read_in_q_v_bias(snake_case__ , snake_case__ ) _snake_case , _snake_case : List[str] = hf_model.load_state_dict(snake_case__ , strict=snake_case__ ) assert len(snake_case__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _snake_case : Any = load_demo_image() _snake_case : str = vis_processors["""eval"""](snake_case__ ).unsqueeze(0 ).to(snake_case__ ) _snake_case : List[Any] = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(snake_case__ ) # create processor _snake_case : Any = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=snake_case__ , image_std=snake_case__ ) _snake_case : int = BlipaProcessor(image_processor=snake_case__ , tokenizer=snake_case__ ) _snake_case : Any = processor(images=snake_case__ , return_tensors="""pt""" ).pixel_values.to(snake_case__ ) # make sure processor creates exact same pixel values assert torch.allclose(snake_case__ , snake_case__ ) original_model.to(snake_case__ ) hf_model.to(snake_case__ ) with torch.no_grad(): if "opt" in model_name: _snake_case : str = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits _snake_case : int = hf_model(snake_case__ , snake_case__ ).logits else: _snake_case : str = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits _snake_case : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) _snake_case : Union[str, Any] = hf_model(snake_case__ , snake_case__ , labels=snake_case__ ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _snake_case : List[str] = torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=snake_case__ ) assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _snake_case : Union[str, Any] = torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=snake_case__ ) else: # cast to same type _snake_case : int = logits.dtype assert torch.allclose(original_logits.to(snake_case__ ) , snake_case__ , atol=1e-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) _snake_case : Any = """""" _snake_case : str = tokenizer(snake_case__ , return_tensors="""pt""" ).input_ids.to(snake_case__ ) _snake_case : Union[str, Any] = original_model.generate({"""image""": original_pixel_values} ) _snake_case : Tuple = hf_model.generate( snake_case__ , snake_case__ , do_sample=snake_case__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , snake_case__ ) _snake_case : Optional[Any] = input_ids.shape[1] _snake_case : int = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=snake_case__ ) _snake_case : Optional[Any] = [text.strip() for text in output_text] print("""HF generation:""" , snake_case__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(snake_case__ ) hf_model.save_pretrained(snake_case__ ) if push_to_hub: processor.push_to_hub(F"nielsr/{model_name}" ) hf_model.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() A_ = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) A_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
28
0
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Tuple ): """simple docstring""" _snake_case : List[Any] = [] for part_id in partition_order: _snake_case : str = df.where(F"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(__snake_case ): expected_row_ids_and_row_dicts.append((F"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase__ (): """simple docstring""" _snake_case : Union[str, Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() _snake_case : Tuple = spark.range(1_00 ).repartition(1 ) _snake_case : Tuple = Spark(__snake_case ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase__ (): """simple docstring""" _snake_case : Optional[int] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() _snake_case : List[str] = spark.range(10 ).repartition(2 ) _snake_case : int = [1, 0] _snake_case : Any = _generate_iterable_examples(__snake_case , __snake_case ) # Reverse the partitions. _snake_case : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case , __snake_case ) for i, (row_id, row_dict) in enumerate(generate_fn() ): _snake_case , _snake_case : Union[str, Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase__ (): """simple docstring""" _snake_case : Union[str, Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() _snake_case : Tuple = spark.range(10 ).repartition(1 ) _snake_case : Any = SparkExamplesIterable(__snake_case ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__snake_case ): assert row_id == F"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase__ (): """simple docstring""" _snake_case : int = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() _snake_case : Optional[Any] = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: _snake_case : Union[str, Any] = lambda snake_case__ : x.reverse() _snake_case : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case , [2, 1, 0] ) _snake_case : Dict = SparkExamplesIterable(__snake_case ).shuffle_data_sources(__snake_case ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__snake_case ): _snake_case , _snake_case : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase__ (): """simple docstring""" _snake_case : Dict = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() _snake_case : int = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 _snake_case : Union[str, Any] = SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 _snake_case : Dict = _get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case , [0, 2] ) for i, (row_id, row_dict) in enumerate(__snake_case ): _snake_case , _snake_case : Dict = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 _snake_case : Tuple = SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 _snake_case : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case , [1, 3] ) for i, (row_id, row_dict) in enumerate(__snake_case ): _snake_case , _snake_case : Tuple = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase__ (): """simple docstring""" _snake_case : Dict = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() _snake_case : Any = spark.range(1_00 ).repartition(1 ) _snake_case : Optional[Any] = Spark(__snake_case ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
704
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def UpperCAmelCase__ (snake_case__ : Optional[int] ): """simple docstring""" print("""Loading config file...""" ) def flatten_yaml_as_dict(snake_case__ : List[Any] , snake_case__ : Optional[Any]="" , snake_case__ : Tuple="." ): _snake_case : Union[str, Any] = [] for k, v in d.items(): _snake_case : List[str] = parent_key + sep + k if parent_key else k if isinstance(snake_case__ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(snake_case__ , snake_case__ , sep=snake_case__ ).items() ) else: items.append((new_key, v) ) return dict(snake_case__ ) _snake_case : Dict = argparse.Namespace() with open(snake_case__ , """r""" ) as yaml_file: try: _snake_case : List[Any] = yaml.load(snake_case__ , Loader=yaml.FullLoader ) _snake_case : Any = flatten_yaml_as_dict(snake_case__ ) for k, v in flat_cfg.items(): setattr(snake_case__ , snake_case__ , snake_case__ ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(snake_case__ , str(snake_case__ ) ) ) return config def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : Dict = MobileViTVaConfig() _snake_case : Optional[int] = False # dataset if task_name.startswith("""imagenet1k_""" ): _snake_case : Dict = 10_00 if int(task_name.strip().split("""_""" )[-1] ) == 3_84: _snake_case : Union[str, Any] = 3_84 else: _snake_case : Optional[Any] = 2_56 _snake_case : str = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): _snake_case : str = 2_10_00 if int(task_name.strip().split("""_""" )[-1] ) == 3_84: _snake_case : Dict = 3_84 else: _snake_case : Union[str, Any] = 2_56 _snake_case : Tuple = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): _snake_case : Tuple = 1_51 _snake_case : str = 5_12 _snake_case : List[Any] = """ade20k-id2label.json""" _snake_case : Union[str, Any] = True elif task_name.startswith("""voc_""" ): _snake_case : List[Any] = 21 _snake_case : List[str] = 5_12 _snake_case : int = """pascal-voc-id2label.json""" _snake_case : int = True # orig_config _snake_case : int = load_orig_config_file(snake_case__ ) assert getattr(snake_case__ , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model" _snake_case : str = getattr(snake_case__ , """model.classification.mitv2.width_multiplier""" , 1.0 ) assert ( getattr(snake_case__ , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _snake_case : int = getattr(snake_case__ , """model.classification.activation.name""" , """swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _snake_case : Tuple = getattr(snake_case__ , """model.segmentation.output_stride""" , 16 ) if "_deeplabv3" in task_name: _snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] ) _snake_case : Tuple = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_out_channels""" , 5_12 ) _snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 ) # id2label _snake_case : Union[str, Any] = """huggingface/label-files""" _snake_case : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) ) _snake_case : List[Any] = {int(snake_case__ ): v for k, v in idalabel.items()} _snake_case : Tuple = idalabel _snake_case : Any = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[Any] ): """simple docstring""" _snake_case : List[str] = dct.pop(snake_case__ ) _snake_case : List[Any] = val def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : int=False ): """simple docstring""" if base_model: _snake_case : Any = """""" else: _snake_case : Union[str, Any] = """mobilevitv2.""" _snake_case : Dict = [] for k in state_dict.keys(): if k[:8] == "encoder.": _snake_case : List[str] = k[8:] else: _snake_case : str = k if ".block." in k: _snake_case : Optional[int] = k_new.replace(""".block.""" , """.""" ) if ".conv." in k: _snake_case : Union[str, Any] = k_new.replace(""".conv.""" , """.convolution.""" ) if ".norm." in k: _snake_case : str = k_new.replace(""".norm.""" , """.normalization.""" ) if "conv_1." in k: _snake_case : int = k_new.replace("""conv_1.""" , F"{model_prefix}conv_stem." ) for i in [1, 2]: if F"layer_{i}." in k: _snake_case : Tuple = k_new.replace(F"layer_{i}." , F"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: _snake_case : Optional[Any] = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" ) if ".red_1x1." in k: _snake_case : Optional[Any] = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" ) for i in [3, 4, 5]: if F"layer_{i}.0." in k: _snake_case : Tuple = k_new.replace(F"layer_{i}.0." , F"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if F"layer_{i}.1.local_rep.0." in k: _snake_case : Any = k_new.replace(F"layer_{i}.1.local_rep.0." , F"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if F"layer_{i}.1.local_rep.1." in k: _snake_case : str = k_new.replace(F"layer_{i}.1.local_rep.1." , F"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: _snake_case : Optional[Any] = [0, 1] elif i == 4: _snake_case : Any = [0, 1, 2, 3] elif i == 5: _snake_case : List[Any] = [0, 1, 2] for j in j_in: if F"layer_{i}.1.global_rep.{j}." in k: _snake_case : Any = k_new.replace( F"layer_{i}.1.global_rep.{j}." , F"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if F"layer_{i}.1.global_rep.{j+1}." in k: _snake_case : List[Any] = k_new.replace( F"layer_{i}.1.global_rep.{j+1}." , F"{model_prefix}encoder.layer.{i-1}.layernorm." ) if F"layer_{i}.1.conv_proj." in k: _snake_case : Union[str, Any] = k_new.replace(F"layer_{i}.1.conv_proj." , F"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: _snake_case : List[Any] = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" ) if "pre_norm_attn.1." in k: _snake_case : Optional[int] = k_new.replace("""pre_norm_attn.1.""" , """attention.""" ) if "pre_norm_ffn.0." in k: _snake_case : List[Any] = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" ) if "pre_norm_ffn.1." in k: _snake_case : Tuple = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" ) if "pre_norm_ffn.3." in k: _snake_case : Any = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" ) if "classifier.1." in k: _snake_case : List[str] = k_new.replace("""classifier.1.""" , """classifier.""" ) if "seg_head." in k: _snake_case : str = k_new.replace("""seg_head.""" , """segmentation_head.""" ) if ".aspp_layer." in k: _snake_case : Optional[int] = k_new.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in k: _snake_case : int = k_new.replace(""".aspp_pool.""" , """.""" ) rename_keys.append((k, k_new) ) return rename_keys def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" _snake_case : List[str] = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(snake_case__ ) for k in keys_to_ignore: state_dict.pop(snake_case__ , snake_case__ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _snake_case : Any = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Tuple ): """simple docstring""" _snake_case : int = get_mobilevitva_config(snake_case__ , snake_case__ ) # load original state_dict _snake_case : Optional[int] = torch.load(snake_case__ , map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): _snake_case : Any = MobileViTVaForSemanticSegmentation(snake_case__ ).eval() _snake_case : List[Any] = False else: _snake_case : List[Any] = MobileViTVaForImageClassification(snake_case__ ).eval() _snake_case : Optional[Any] = False # remove and rename some keys of load the original model _snake_case : Union[str, Any] = checkpoint remove_unused_keys(snake_case__ ) _snake_case : List[str] = create_rename_keys(snake_case__ , base_model=snake_case__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # load modified state_dict model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by MobileViTImageProcessor _snake_case : Optional[int] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _snake_case : List[str] = image_processor(images=prepare_img() , return_tensors="""pt""" ) _snake_case : Optional[Any] = model(**snake_case__ ) # verify classification model if task_name.startswith("""imagenet""" ): _snake_case : List[str] = outputs.logits _snake_case : Any = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant _snake_case : List[str] = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] ) assert torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) A_ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
28
0
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : Any ): """simple docstring""" _snake_case : int = Mock() _snake_case : int = conn, Mock() _snake_case : Any = iter([1, None] ) _snake_case : Any = lambda snake_case__ : next(lowerCAmelCase__ ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=lowerCAmelCase__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
705
"""simple docstring""" import os import sys import unittest A_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path A_ = os.path.join(git_repo_path, '''src''', '''diffusers''') class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Optional[int] = find_backend(""" if not is_torch_available():""" ) self.assertEqual(a_, """torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") _snake_case : Any = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(a_, """torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") _snake_case : Union[str, Any] = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(a_, """torch_and_transformers_and_onnx""" ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Dict = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""", a_ ) self.assertIn("""torch_and_transformers""", a_ ) self.assertIn("""flax_and_transformers""", a_ ) self.assertIn("""torch_and_transformers_and_onnx""", a_ ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""", objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""", objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""", objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""", objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""", objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""", objects["""torch_and_transformers_and_onnx"""] ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[Any] = create_dummy_object("""CONSTANT""", """'torch'""" ) self.assertEqual(a_, """\nCONSTANT = None\n""" ) _snake_case : Optional[int] = create_dummy_object("""function""", """'torch'""" ) self.assertEqual( a_, """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) _snake_case : List[Any] = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ _snake_case : Union[str, Any] = create_dummy_object("""FakeClass""", """'torch'""" ) self.assertEqual(a_, a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ _snake_case : List[Any] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""], a_ )
28
0
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging A_ = logging.get_logger(__name__) A_ = {'''vocab_file''': '''spiece.model'''} A_ = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } A_ = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) A_ = 0 A_ = 1 A_ = 2 A_ = 3 A_ = 4 class lowercase( __lowerCamelCase ): '''simple docstring''' lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = '''left''' def __init__( self: int, a_: List[Any], a_: int=False, a_: Tuple=True, a_: Dict=False, a_: Any="<s>", a_: int="</s>", a_: List[str]="<unk>", a_: str="<sep>", a_: Tuple="<pad>", a_: int="<cls>", a_: Any="<mask>", a_: Tuple=["<eop>", "<eod>"], a_: List[str] = None, **a_: int, ): '''simple docstring''' _snake_case : str = AddedToken(a_, lstrip=a_, rstrip=a_ ) if isinstance(a_, a_ ) else mask_token _snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=a_, remove_space=a_, keep_accents=a_, bos_token=a_, eos_token=a_, unk_token=a_, sep_token=a_, pad_token=a_, cls_token=a_, mask_token=a_, additional_special_tokens=a_, sp_model_kwargs=self.sp_model_kwargs, **a_, ) _snake_case : str = 3 _snake_case : Dict = do_lower_case _snake_case : str = remove_space _snake_case : Tuple = keep_accents _snake_case : Dict = vocab_file _snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a_ ) @property def UpperCamelCase_ ( self: int ): '''simple docstring''' return len(self.sp_model ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Any ): '''simple docstring''' _snake_case : Any = self.__dict__.copy() _snake_case : Optional[int] = None return state def __setstate__( self: Union[str, Any], a_: Dict ): '''simple docstring''' _snake_case : Union[str, Any] = d # for backward compatibility if not hasattr(self, """sp_model_kwargs""" ): _snake_case : int = {} _snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self: int, a_: Tuple ): '''simple docstring''' if self.remove_space: _snake_case : Optional[int] = " ".join(inputs.strip().split() ) else: _snake_case : str = inputs _snake_case : Any = outputs.replace("""``""", """\"""" ).replace("""''""", """\"""" ) if not self.keep_accents: _snake_case : Dict = unicodedata.normalize("""NFKD""", a_ ) _snake_case : int = "".join([c for c in outputs if not unicodedata.combining(a_ )] ) if self.do_lower_case: _snake_case : Any = outputs.lower() return outputs def UpperCamelCase_ ( self: Dict, a_: Optional[int] ): '''simple docstring''' _snake_case : List[Any] = self.preprocess_text(a_ ) _snake_case : Optional[int] = self.sp_model.encode(a_, out_type=a_ ) _snake_case : List[str] = [] for piece in pieces: if len(a_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): _snake_case : Tuple = self.sp_model.EncodeAsPieces(piece[:-1].replace(a_, """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _snake_case : int = cur_pieces[1:] else: _snake_case : Union[str, Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(a_ ) else: new_pieces.append(a_ ) return new_pieces def UpperCamelCase_ ( self: List[str], a_: Union[str, Any] ): '''simple docstring''' return self.sp_model.PieceToId(a_ ) def UpperCamelCase_ ( self: Optional[int], a_: Tuple ): '''simple docstring''' return self.sp_model.IdToPiece(a_ ) def UpperCamelCase_ ( self: str, a_: List[Any] ): '''simple docstring''' _snake_case : Dict = "".join(a_ ).replace(a_, """ """ ).strip() return out_string def UpperCamelCase_ ( self: Dict, a_: int, a_: Dict = False, a_: Optional[Any] = None, a_: List[Any] = True, **a_: Dict, ): '''simple docstring''' _snake_case : int = kwargs.pop("""use_source_tokenizer""", a_ ) _snake_case : List[str] = self.convert_ids_to_tokens(a_, skip_special_tokens=a_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _snake_case : Optional[int] = [] _snake_case : List[str] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a_ ) ) _snake_case : Union[str, Any] = [] sub_texts.append(a_ ) else: current_sub_text.append(a_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a_ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _snake_case : Union[str, Any] = "".join(a_ ) _snake_case : Optional[Any] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _snake_case : List[Any] = self.clean_up_tokenization(a_ ) return clean_text else: return text def UpperCamelCase_ ( self: Any, a_: List[Any], a_: List[str] = None ): '''simple docstring''' _snake_case : Optional[Any] = [self.sep_token_id] _snake_case : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCamelCase_ ( self: Union[str, Any], a_: str, a_: Tuple = None, a_: Optional[Any] = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_, token_ids_a=a_, already_has_special_tokens=a_ ) if token_ids_a is not None: return ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1, 1] return ([0] * len(a_ )) + [1, 1] def UpperCamelCase_ ( self: Union[str, Any], a_: Any, a_: Optional[Any] = None ): '''simple docstring''' _snake_case : Optional[Any] = [self.sep_token_id] _snake_case : Union[str, Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCamelCase_ ( self: List[Any], a_: str, a_: Optional[Any] = None ): '''simple docstring''' if not os.path.isdir(a_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _snake_case : Any = os.path.join( a_, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_, """wb""" ) as fi: _snake_case : Dict = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,)
706
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''OwlViTFeatureExtractor'''] A_ = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
28
0
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Optional[Any]=0.9_99 , snake_case__ : int="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case__ : Union[str, Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case__ : Any ): return math.exp(t * -12.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) _snake_case : Optional[int] = [] for i in range(_snake_case ): _snake_case : str = i / num_diffusion_timesteps _snake_case : Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_snake_case ) / alpha_bar_fn(_snake_case ) , _snake_case ) ) return torch.tensor(_snake_case , dtype=torch.floataa ) class lowercase( __a , __a ): '''simple docstring''' lowercase__ = [e.name for e in KarrasDiffusionSchedulers] lowercase__ = 2 @register_to_config def __init__( self: Any, a_: List[Any] = 1_000, a_: Union[str, Any] = 0.00_085, a_: str = 0.012, a_: List[Any] = "linear", a_: str = None, a_: Union[str, Any] = "epsilon", a_: int = "linspace", a_: Dict = 0, ): '''simple docstring''' if trained_betas is not None: _snake_case : Optional[int] = torch.tensor(a_, dtype=torch.floataa ) elif beta_schedule == "linear": _snake_case : Optional[int] = torch.linspace(a_, a_, a_, dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _snake_case : str = ( torch.linspace(beta_start**0.5, beta_end**0.5, a_, dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _snake_case : Dict = betas_for_alpha_bar(a_ ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) _snake_case : Union[str, Any] = 1.0 - self.betas _snake_case : Any = torch.cumprod(self.alphas, dim=0 ) # set all values self.set_timesteps(a_, a_, a_ ) def UpperCamelCase_ ( self: List[str], a_: Optional[Any], a_: List[str]=None ): '''simple docstring''' if schedule_timesteps is None: _snake_case : int = self.timesteps _snake_case : Union[str, Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _snake_case : Optional[int] = 1 if len(a_ ) > 1 else 0 else: _snake_case : List[str] = timestep.cpu().item() if torch.is_tensor(a_ ) else timestep _snake_case : Any = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCamelCase_ ( self: Any, a_: Dict, a_: Union[str, Any], ): '''simple docstring''' _snake_case : List[Any] = self.index_for_timestep(a_ ) if self.state_in_first_order: _snake_case : Tuple = self.sigmas[step_index] else: _snake_case : Any = self.sigmas_interpol[step_index] _snake_case : Dict = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCamelCase_ ( self: int, a_: str, a_: List[str] = None, a_: Optional[int] = None, ): '''simple docstring''' _snake_case : List[Any] = num_inference_steps _snake_case : Union[str, Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _snake_case : Union[str, Any] = np.linspace(0, num_train_timesteps - 1, a_, dtype=a_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _snake_case : Union[str, Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _snake_case : Tuple = (np.arange(0, a_ ) * step_ratio).round()[::-1].copy().astype(a_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _snake_case : Tuple = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _snake_case : Optional[Any] = (np.arange(a_, 0, -step_ratio )).round().copy().astype(a_ ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'." ) _snake_case : Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _snake_case : Optional[int] = torch.from_numpy(np.log(a_ ) ).to(a_ ) _snake_case : Optional[Any] = np.interp(a_, np.arange(0, len(a_ ) ), a_ ) _snake_case : Dict = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _snake_case : int = torch.from_numpy(a_ ).to(device=a_ ) # interpolate sigmas _snake_case : Optional[int] = sigmas.log().lerp(sigmas.roll(1 ).log(), 0.5 ).exp() _snake_case : List[Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _snake_case : Optional[int] = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(a_ ).startswith("""mps""" ): # mps does not support float64 _snake_case : Optional[Any] = torch.from_numpy(a_ ).to(a_, dtype=torch.floataa ) else: _snake_case : Tuple = torch.from_numpy(a_ ).to(a_ ) # interpolate timesteps _snake_case : Optional[int] = self.sigma_to_t(a_ ).to(a_, dtype=timesteps.dtype ) _snake_case : List[Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]), dim=-1 ).flatten() _snake_case : Tuple = torch.cat([timesteps[:1], interleaved_timesteps] ) _snake_case : List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _snake_case : Any = defaultdict(a_ ) def UpperCamelCase_ ( self: List[str], a_: Tuple ): '''simple docstring''' _snake_case : List[Any] = sigma.log() # get distribution _snake_case : Dict = log_sigma - self.log_sigmas[:, None] # get sigmas range _snake_case : Dict = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _snake_case : Dict = low_idx + 1 _snake_case : List[str] = self.log_sigmas[low_idx] _snake_case : int = self.log_sigmas[high_idx] # interpolate sigmas _snake_case : str = (low - log_sigma) / (low - high) _snake_case : str = w.clamp(0, 1 ) # transform interpolation to time range _snake_case : int = (1 - w) * low_idx + w * high_idx _snake_case : List[Any] = t.view(sigma.shape ) return t @property def UpperCamelCase_ ( self: int ): '''simple docstring''' return self.sample is None def UpperCamelCase_ ( self: Optional[int], a_: List[str], a_: Union[str, Any], a_: str, a_: Union[str, Any] = True, ): '''simple docstring''' _snake_case : int = self.index_for_timestep(a_ ) # advance index counter by 1 _snake_case : List[str] = timestep.cpu().item() if torch.is_tensor(a_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _snake_case : Optional[Any] = self.sigmas[step_index] _snake_case : Optional[int] = self.sigmas_interpol[step_index + 1] _snake_case : List[Any] = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _snake_case : List[str] = self.sigmas[step_index - 1] _snake_case : str = self.sigmas_interpol[step_index] _snake_case : Any = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _snake_case : Union[str, Any] = 0 _snake_case : Any = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _snake_case : Optional[Any] = sigma_hat if self.state_in_first_order else sigma_interpol _snake_case : int = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _snake_case : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol _snake_case : Optional[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _snake_case : int = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _snake_case : List[Any] = sigma_interpol - sigma_hat # store for 2nd order step _snake_case : Union[str, Any] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _snake_case : Union[str, Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _snake_case : List[str] = sigma_next - sigma_hat _snake_case : Tuple = self.sample _snake_case : Any = None _snake_case : Any = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a_ ) def UpperCamelCase_ ( self: List[str], a_: Optional[int], a_: List[str], a_: Dict, ): '''simple docstring''' _snake_case : Optional[Any] = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(a_ ): # mps does not support float64 _snake_case : Dict = self.timesteps.to(original_samples.device, dtype=torch.floataa ) _snake_case : Tuple = timesteps.to(original_samples.device, dtype=torch.floataa ) else: _snake_case : int = self.timesteps.to(original_samples.device ) _snake_case : Dict = timesteps.to(original_samples.device ) _snake_case : Union[str, Any] = [self.index_for_timestep(a_, a_ ) for t in timesteps] _snake_case : Tuple = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _snake_case : Optional[int] = sigma.unsqueeze(-1 ) _snake_case : str = original_samples + noise * sigma return noisy_samples def __len__( self: Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
707
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml A_ = logging.get_logger(__name__) def UpperCAmelCase__ (snake_case__ : bool , snake_case__ : bool ): """simple docstring""" def run_func(snake_case__ : Tuple ): @wraps(snake_case__ ) def run_in_eager_mode(*snake_case__ : str , **snake_case__ : Any ): return func(*snake_case__ , **snake_case__ ) @wraps(snake_case__ ) @tf.function(experimental_compile=snake_case__ ) def run_in_graph_mode(*snake_case__ : Any , **snake_case__ : Optional[int] ): return func(*snake_case__ , **snake_case__ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : List[str] = random.Random() _snake_case : Optional[int] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case__ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class lowercase( __a ): '''simple docstring''' lowercase__ = 42 lowercase__ = 42 lowercase__ = "TensorFlow" @property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' return tf.__version__ def UpperCamelCase_ ( self: List[str], a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : List[str] = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : Optional[int] = self._prepare_inference_func(a_, a_, a_ ) return self._measure_speed(_inference ) def UpperCamelCase_ ( self: int, a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : Tuple = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : Optional[Any] = self._prepare_train_func(a_, a_, a_ ) return self._measure_speed(_train ) def UpperCamelCase_ ( self: Dict, a_: str, a_: int, a_: int ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], a_ ) _snake_case : str = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : List[str] = self._prepare_inference_func(a_, a_, a_ ) return self._measure_memory(_inference ) def UpperCamelCase_ ( self: Tuple, a_: str, a_: int, a_: int ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], a_ ) _snake_case : Dict = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : Optional[int] = self._prepare_train_func(a_, a_, a_ ) return self._measure_memory(_train ) def UpperCamelCase_ ( self: Optional[Any], a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : List[Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _snake_case : List[Any] = ( hasattr(a_, """architectures""" ) and isinstance(config.architectures, a_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _snake_case : str = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _snake_case : List[Any] = __import__("""transformers""", fromlist=[model_class] ) _snake_case : Dict = getattr(a_, a_ ) _snake_case : Any = model_cls(a_ ) except ImportError: raise ImportError( f"{model_class} does not exist. If you just want to test the pretrained model, you might want to" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _snake_case : Any = TF_MODEL_MAPPING[config.__class__](a_ ) # encoder-decoder has vocab size saved differently _snake_case : List[Any] = config.vocab_size if hasattr(a_, """vocab_size""" ) else config.encoder.vocab_size _snake_case : List[str] = random_input_ids(a_, a_, a_ ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_decoder_forward(): return model(a_, decoder_input_ids=a_, training=a_ ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_forward(): return model(a_, training=a_ ) _snake_case : Optional[int] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def UpperCamelCase_ ( self: Optional[int], a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : str = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _snake_case : Tuple = ( hasattr(a_, """architectures""" ) and isinstance(config.architectures, a_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _snake_case : List[str] = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _snake_case : str = __import__("""transformers""", fromlist=[model_class] ) _snake_case : Tuple = getattr(a_, a_ ) _snake_case : Any = model_cls(a_ ) except ImportError: raise ImportError( f"{model_class} does not exist. If you just want to test the pretrained model, you might want to" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _snake_case : Optional[Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](a_ ) # encoder-decoder has vocab size saved differently _snake_case : List[Any] = config.vocab_size if hasattr(a_, """vocab_size""" ) else config.encoder.vocab_size _snake_case : int = random_input_ids(a_, a_, a_ ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_decoder_train(): _snake_case : Dict = model(a_, decoder_input_ids=a_, labels=a_, training=a_ )[0] _snake_case : str = tf.gradients(a_, model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_train(): _snake_case : Optional[Any] = model(a_, labels=a_, training=a_ )[0] _snake_case : Optional[Any] = tf.gradients(a_, model.trainable_variables ) return gradients _snake_case : int = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def UpperCamelCase_ ( self: Union[str, Any], a_: str ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(a_, repeat=1, number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _snake_case : Dict = timeit.repeat( a_, repeat=self.args.repeat, number=10, ) return min(a_ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"Doesn't fit on GPU. {e}" ) def UpperCamelCase_ ( self: Optional[Any], a_: Callable[[], None] ): '''simple docstring''' logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) _snake_case : List[Any] = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) _snake_case : Optional[Any] = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() _snake_case : List[str] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _snake_case : Tuple = nvml.nvmlDeviceGetMemoryInfo(a_ ) _snake_case : List[str] = meminfo.used _snake_case : Any = Memory(a_ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) _snake_case : List[Any] = None else: _snake_case : int = measure_peak_memory_cpu(a_ ) _snake_case : List[str] = Memory(a_ ) if isinstance(a_, a_ ) else memory_bytes if self.args.trace_memory_line_by_line: _snake_case : Tuple = stop_memory_tracing(a_ ) if memory is None: _snake_case : int = summary.total else: _snake_case : int = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"Doesn't fit on GPU. {e}" ) return "N/A", None
28
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class lowercase: '''simple docstring''' lowercase__ = None lowercase__ = None lowercase__ = None # sigma(t_i) @classmethod def UpperCamelCase_ ( cls: Optional[Any] ): '''simple docstring''' return cls() @dataclass class lowercase( lowerCAmelCase__ ): '''simple docstring''' lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 class lowercase( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' @property def UpperCamelCase_ ( self: str ): '''simple docstring''' return True @register_to_config def __init__( self: int, a_: Dict = 0.02, a_: List[Any] = 100, a_: Any = 1.007, a_: List[Any] = 80, a_: str = 0.05, a_: Dict = 50, ): '''simple docstring''' pass def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return KarrasVeSchedulerState.create() def UpperCamelCase_ ( self: List[str], a_: List[Any], a_: str, a_: int = () ): '''simple docstring''' _snake_case : Dict = jnp.arange(0, _SCREAMING_SNAKE_CASE )[::-1].copy() _snake_case : Optional[Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=_SCREAMING_SNAKE_CASE, schedule=jnp.array(_SCREAMING_SNAKE_CASE, dtype=jnp.floataa ), timesteps=_SCREAMING_SNAKE_CASE, ) def UpperCamelCase_ ( self: Union[str, Any], a_: Any, a_: Any, a_: Union[str, Any], a_: Dict, ): '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: _snake_case : Optional[Any] = min(self.config.s_churn / state.num_inference_steps, 2**0.5 - 1 ) else: _snake_case : List[Any] = 0 # sample eps ~ N(0, S_noise^2 * I) _snake_case : str = random.split(_SCREAMING_SNAKE_CASE, num=1 ) _snake_case : Optional[Any] = self.config.s_noise * random.normal(key=_SCREAMING_SNAKE_CASE, shape=sample.shape ) _snake_case : Tuple = sigma + gamma * sigma _snake_case : Optional[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCamelCase_ ( self: Any, a_: Optional[int], a_: int, a_: Tuple, a_: List[Any], a_: int, a_: Optional[int] = True, ): '''simple docstring''' _snake_case : Dict = sample_hat + sigma_hat * model_output _snake_case : Dict = (sample_hat - pred_original_sample) / sigma_hat _snake_case : Optional[int] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_SCREAMING_SNAKE_CASE, derivative=_SCREAMING_SNAKE_CASE, state=_SCREAMING_SNAKE_CASE ) def UpperCamelCase_ ( self: Union[str, Any], a_: Optional[Any], a_: Union[str, Any], a_: str, a_: List[Any], a_: Union[str, Any], a_: Optional[int], a_: Optional[int], a_: List[Any] = True, ): '''simple docstring''' _snake_case : str = sample_prev + sigma_prev * model_output _snake_case : Optional[Any] = (sample_prev - pred_original_sample) / sigma_prev _snake_case : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_SCREAMING_SNAKE_CASE, derivative=_SCREAMING_SNAKE_CASE, state=_SCREAMING_SNAKE_CASE ) def UpperCamelCase_ ( self: Optional[Any], a_: List[str], a_: int, a_: Tuple, a_: Union[str, Any] ): '''simple docstring''' raise NotImplementedError()
708
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : str ): """simple docstring""" _snake_case : str = int(snake_case__ ) # Initialize Result _snake_case : str = [] # Traverse through all denomination for denomination in reversed(snake_case__ ): # Find denominations while int(snake_case__ ) >= int(snake_case__ ): total_value -= int(snake_case__ ) answer.append(snake_case__ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": A_ = [] A_ = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): A_ = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) A_ = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter A_ = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] A_ = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F'''Following is minimal change for {value}: ''') A_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
28
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : List[Any] ): # noqa: E741 """simple docstring""" while r - l > 1: _snake_case : List[Any] = (l + r) // 2 if v[m] >= key: _snake_case : Tuple = m else: _snake_case : str = m # noqa: E741 return r def UpperCAmelCase__ (snake_case__ : Optional[Any] ): """simple docstring""" if len(A_ ) == 0: return 0 _snake_case : int = [0] * len(A_ ) _snake_case : Dict = 1 _snake_case : List[Any] = v[0] for i in range(1 , len(A_ ) ): if v[i] < tail[0]: _snake_case : str = v[i] elif v[i] > tail[length - 1]: _snake_case : int = v[i] length += 1 else: _snake_case : Union[str, Any] = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
709
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowercase: '''simple docstring''' def __init__( self: Optional[Any], a_: Union[str, Any], a_: int=100, a_: int=13, a_: List[Any]=30, a_: str=2, a_: Optional[Any]=3, a_: Optional[int]=True, a_: Any=True, a_: Optional[Any]=32, a_: Tuple=4, a_: str=4, a_: List[Any]=37, a_: List[str]="gelu", a_: str=0.1, a_: Optional[int]=0.1, a_: Any=10, a_: List[str]=0.02, a_: Dict=3, a_: str=None, a_: Optional[int]=[0, 1, 2, 3], ): '''simple docstring''' _snake_case : Optional[int] = parent _snake_case : Optional[Any] = 100 _snake_case : Any = batch_size _snake_case : List[Any] = image_size _snake_case : Optional[Any] = patch_size _snake_case : str = num_channels _snake_case : Tuple = is_training _snake_case : Tuple = use_labels _snake_case : Any = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : List[str] = num_attention_heads _snake_case : Union[str, Any] = intermediate_size _snake_case : Dict = hidden_act _snake_case : str = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Optional[Any] = type_sequence_label_size _snake_case : Any = initializer_range _snake_case : List[str] = scope _snake_case : int = out_indices _snake_case : Optional[Any] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _snake_case : Dict = (image_size // patch_size) ** 2 _snake_case : str = num_patches + 1 def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : List[Any] = None _snake_case : Tuple = None if self.use_labels: _snake_case : str = ids_tensor([self.batch_size], self.type_sequence_label_size ) _snake_case : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) _snake_case : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=a_, initializer_range=self.initializer_range, out_indices=self.out_indices, ) def UpperCamelCase_ ( self: List[Any], a_: List[Any], a_: Any, a_: Optional[Any], a_: List[str] ): '''simple docstring''' _snake_case : str = BeitModel(config=a_ ) model.to(a_ ) model.eval() _snake_case : Dict = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self: str, a_: List[Any], a_: Optional[Any], a_: Optional[int], a_: List[Any] ): '''simple docstring''' _snake_case : List[str] = BeitForMaskedImageModeling(config=a_ ) model.to(a_ ) model.eval() _snake_case : Union[str, Any] = model(a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCamelCase_ ( self: Any, a_: List[str], a_: Any, a_: List[Any], a_: Optional[Any] ): '''simple docstring''' _snake_case : Any = self.type_sequence_label_size _snake_case : Any = BeitForImageClassification(a_ ) model.to(a_ ) model.eval() _snake_case : List[Any] = model(a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case : Any = 1 _snake_case : str = BeitForImageClassification(a_ ) model.to(a_ ) model.eval() _snake_case : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case : Optional[Any] = model(a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self: List[Any], a_: Optional[int], a_: List[Any], a_: str, a_: int ): '''simple docstring''' _snake_case : List[str] = self.num_labels _snake_case : List[Any] = BeitForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() _snake_case : List[str] = model(a_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) _snake_case : str = model(a_, labels=a_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Tuple = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case , _snake_case : Any = config_and_inputs _snake_case : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase__ = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Dict = BeitModelTester(self ) _snake_case : int = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def UpperCamelCase_ ( self: str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""BEiT does not use inputs_embeds""" ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCamelCase_ ( self: str ): '''simple docstring''' pass def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : List[str] = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) _snake_case : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_, nn.Linear ) ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Any = model_class(a_ ) _snake_case : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : List[Any] = [*signature.parameters.keys()] _snake_case : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1], a_ ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' if not self.model_tester.is_training: return _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Any = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(a_ ), BeitForMaskedImageModeling]: continue _snake_case : List[Any] = model_class(a_ ) model.to(a_ ) model.train() _snake_case : Dict = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : List[Any] = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _snake_case : Dict = False _snake_case : Optional[Any] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(a_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue _snake_case : Any = model_class(a_ ) model.gradient_checkpointing_enable() model.to(a_ ) model.train() _snake_case : Any = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : int = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : int = _config_zero_init(a_ ) for model_class in self.all_model_classes: _snake_case : Tuple = model_class(config=a_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @slow def UpperCamelCase_ ( self: int ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Optional[int] = BeitModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self: Dict ): '''simple docstring''' return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : str = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(a_ ) _snake_case : Dict = self.default_image_processor _snake_case : Dict = prepare_img() _snake_case : List[str] = image_processor(images=a_, return_tensors="""pt""" ).pixel_values.to(a_ ) # prepare bool_masked_pos _snake_case : Optional[int] = torch.ones((1, 196), dtype=torch.bool ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : int = model(pixel_values=a_, bool_masked_pos=a_ ) _snake_case : Dict = outputs.logits # verify the logits _snake_case : Optional[int] = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape, a_ ) _snake_case : Optional[Any] = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(a_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], a_, atol=1E-2 ) ) @slow def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Dict = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(a_ ) _snake_case : List[Any] = self.default_image_processor _snake_case : Any = prepare_img() _snake_case : Any = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : int = model(**a_ ) _snake_case : Optional[int] = outputs.logits # verify the logits _snake_case : Tuple = torch.Size((1, 1_000) ) self.assertEqual(logits.shape, a_ ) _snake_case : Any = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(a_ ) self.assertTrue(torch.allclose(logits[0, :3], a_, atol=1E-4 ) ) _snake_case : str = 281 self.assertEqual(logits.argmax(-1 ).item(), a_ ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : int = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to( a_ ) _snake_case : int = self.default_image_processor _snake_case : Optional[Any] = prepare_img() _snake_case : Union[str, Any] = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Union[str, Any] = model(**a_ ) _snake_case : Dict = outputs.logits # verify the logits _snake_case : Tuple = torch.Size((1, 21_841) ) self.assertEqual(logits.shape, a_ ) _snake_case : Optional[int] = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(a_ ) self.assertTrue(torch.allclose(logits[0, :3], a_, atol=1E-4 ) ) _snake_case : List[str] = 2_396 self.assertEqual(logits.argmax(-1 ).item(), a_ ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[str] = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) _snake_case : int = model.to(a_ ) _snake_case : List[str] = BeitImageProcessor(do_resize=a_, size=640, do_center_crop=a_ ) _snake_case : Optional[int] = load_dataset("""hf-internal-testing/fixtures_ade20k""", split="""test""" ) _snake_case : Union[str, Any] = Image.open(ds[0]["""file"""] ) _snake_case : List[Any] = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Optional[int] = model(**a_ ) _snake_case : Union[str, Any] = outputs.logits # verify the logits _snake_case : List[str] = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape, a_ ) _snake_case : Optional[int] = version.parse(PIL.__version__ ) < version.parse("""9.0.0""" ) if is_pillow_less_than_a: _snake_case : Any = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ], device=a_, ) else: _snake_case : Optional[Any] = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ], device=a_, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], a_, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : int = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) _snake_case : List[Any] = model.to(a_ ) _snake_case : Tuple = BeitImageProcessor(do_resize=a_, size=640, do_center_crop=a_ ) _snake_case : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_ade20k""", split="""test""" ) _snake_case : str = Image.open(ds[0]["""file"""] ) _snake_case : Tuple = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Optional[int] = model(**a_ ) _snake_case : Union[str, Any] = outputs.logits.detach().cpu() _snake_case : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=a_, target_sizes=[(500, 300)] ) _snake_case : Optional[int] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape, a_ ) _snake_case : List[str] = image_processor.post_process_semantic_segmentation(outputs=a_ ) _snake_case : List[str] = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape, a_ )
28
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''uw-madison/mra-base-512-4''': '''https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json''', } class lowercase( snake_case__ ): '''simple docstring''' lowercase__ = '''mra''' def __init__( self: Any, a_: List[str]=50_265, a_: Any=768, a_: Tuple=12, a_: Optional[Any]=12, a_: Optional[Any]=3_072, a_: Union[str, Any]="gelu", a_: int=0.1, a_: Dict=0.1, a_: List[str]=512, a_: Optional[int]=1, a_: Dict=0.02, a_: int=1E-5, a_: List[str]="absolute", a_: Optional[int]=4, a_: Dict="full", a_: str=0, a_: List[str]=0, a_: Optional[Any]=1, a_: List[str]=0, a_: Any=2, **a_: List[str], ): '''simple docstring''' super().__init__(pad_token_id=_A, bos_token_id=_A, eos_token_id=_A, **_A ) _snake_case : List[str] = vocab_size _snake_case : str = max_position_embeddings _snake_case : Optional[Any] = hidden_size _snake_case : List[Any] = num_hidden_layers _snake_case : str = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : List[str] = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Dict = initializer_range _snake_case : List[str] = type_vocab_size _snake_case : Dict = layer_norm_eps _snake_case : int = position_embedding_type _snake_case : Optional[Any] = block_per_row _snake_case : int = approx_mode _snake_case : str = initial_prior_first_n_blocks _snake_case : Tuple = initial_prior_diagonal_n_blocks
710
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase( __a ): '''simple docstring''' lowercase__ = (IPNDMScheduler,) lowercase__ = (("num_inference_steps", 50),) def UpperCamelCase_ ( self: Union[str, Any], **a_: Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = {"""num_train_timesteps""": 1_000} config.update(**a_ ) return config def UpperCamelCase_ ( self: Tuple, a_: Optional[int]=0, **a_: int ): '''simple docstring''' _snake_case : Optional[int] = dict(self.forward_default_kwargs ) _snake_case : Optional[Any] = kwargs.pop("""num_inference_steps""", a_ ) _snake_case : Optional[Any] = self.dummy_sample _snake_case : Dict = 0.1 * sample _snake_case : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _snake_case : int = self.get_scheduler_config(**a_ ) _snake_case : Dict = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals _snake_case : int = dummy_past_residuals[:] if time_step is None: _snake_case : Union[str, Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) _snake_case : Tuple = scheduler_class.from_pretrained(a_ ) new_scheduler.set_timesteps(a_ ) # copy over dummy past residuals _snake_case : Optional[Any] = dummy_past_residuals[:] _snake_case : List[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : str = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _snake_case : Optional[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : Optional[int] = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self: str, a_: Any=0, **a_: Tuple ): '''simple docstring''' _snake_case : str = dict(self.forward_default_kwargs ) _snake_case : List[Any] = kwargs.pop("""num_inference_steps""", a_ ) _snake_case : Optional[int] = self.dummy_sample _snake_case : Tuple = 0.1 * sample _snake_case : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _snake_case : Any = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals (must be after setting timesteps) _snake_case : Union[str, Any] = dummy_past_residuals[:] if time_step is None: _snake_case : Tuple = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) _snake_case : List[str] = scheduler_class.from_pretrained(a_ ) # copy over dummy past residuals new_scheduler.set_timesteps(a_ ) # copy over dummy past residual (must be after setting timesteps) _snake_case : List[str] = dummy_past_residuals[:] _snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : Any = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : int = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self: List[Any], **a_: Optional[int] ): '''simple docstring''' _snake_case : Union[str, Any] = self.scheduler_classes[0] _snake_case : Any = self.get_scheduler_config(**a_ ) _snake_case : List[Any] = scheduler_class(**a_ ) _snake_case : Union[str, Any] = 10 _snake_case : Union[str, Any] = self.dummy_model() _snake_case : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(a_ ) for i, t in enumerate(scheduler.timesteps ): _snake_case : Optional[Any] = model(a_, a_ ) _snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample for i, t in enumerate(scheduler.timesteps ): _snake_case : Union[str, Any] = model(a_, a_ ) _snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample return sample def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : str = dict(self.forward_default_kwargs ) _snake_case : int = kwargs.pop("""num_inference_steps""", a_ ) for scheduler_class in self.scheduler_classes: _snake_case : Union[str, Any] = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**a_ ) _snake_case : Dict = self.dummy_sample _snake_case : List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(a_, """set_timesteps""" ): scheduler.set_timesteps(a_ ) elif num_inference_steps is not None and not hasattr(a_, """set_timesteps""" ): _snake_case : Dict = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _snake_case : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _snake_case : List[str] = dummy_past_residuals[:] _snake_case : Optional[int] = scheduler.timesteps[5] _snake_case : Optional[Any] = scheduler.timesteps[6] _snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : List[str] = scheduler.step(a_, a_, a_, **a_ ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) _snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=a_, time_step=a_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=a_, time_step=a_ ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.full_loop() _snake_case : Optional[int] = torch.mean(torch.abs(a_ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
28
0
"""simple docstring""" import json import sys def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Any ): """simple docstring""" with open(__snake_case , encoding="""utf-8""" ) as f: _snake_case : Tuple = json.load(__snake_case ) _snake_case : Any = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(__snake_case ): _snake_case : int = results[benchmark_name] _snake_case : int = benchmark_name.split("""/""" )[-1] output_md.append(F"### Benchmark: {benchmark_file_name}" ) _snake_case : Optional[Any] = """| metric |""" _snake_case : str = """|--------|""" _snake_case : int = """| new / old (diff) |""" for metric_name in sorted(__snake_case ): _snake_case : Dict = benchmark_res[metric_name] _snake_case : Tuple = metric_vals["""new"""] _snake_case : Optional[int] = metric_vals.get("""old""" , __snake_case ) _snake_case : Optional[int] = metric_vals.get("""diff""" , __snake_case ) _snake_case : List[str] = F" {new_val:f}" if isinstance(__snake_case , (int, float) ) else """None""" if old_val is not None: val_str += F" / {old_val:f}" if isinstance(__snake_case , (int, float) ) else "None" if dif_val is not None: val_str += F" ({dif_val:f})" if isinstance(__snake_case , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("""</details>""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as f: f.writelines("""\n""".join(__snake_case ) ) if __name__ == "__main__": A_ = sys.argv[1] A_ = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
711
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True A_ = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) _snake_case : Any = [] for num in range(len(snake_case__ ) ): _snake_case : Optional[int] = 0 while 2 * i * i <= odd_composites[num]: _snake_case : Optional[int] = odd_composites[num] - 2 * i * i if is_prime(snake_case__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(snake_case__ ) == n: return list_nums return [] def UpperCAmelCase__ (): """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(F'''{solution() = }''')
28
0
"""simple docstring""" import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) A_ = logging.getLogger(__name__) A_ = '''Hello world! cécé herlolip''' A_ = namedtuple( '''BertAbsConfig''', [ '''temp_dir''', '''large''', '''use_bert_emb''', '''finetune_bert''', '''encoder''', '''share_emb''', '''max_pos''', '''enc_layers''', '''enc_hidden_size''', '''enc_heads''', '''enc_ff_size''', '''enc_dropout''', '''dec_layers''', '''dec_hidden_size''', '''dec_heads''', '''dec_ff_size''', '''dec_dropout''', ], ) def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : List[Any] ): """simple docstring""" _snake_case : Tuple = BertAbsConfig( temp_dir=""".""" , finetune_bert=lowerCamelCase_ , large=lowerCamelCase_ , share_emb=lowerCamelCase_ , use_bert_emb=lowerCamelCase_ , encoder="""bert""" , max_pos=5_12 , enc_layers=6 , enc_hidden_size=5_12 , enc_heads=8 , enc_ff_size=5_12 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_68 , dec_heads=8 , dec_ff_size=20_48 , dec_dropout=0.2 , ) _snake_case : int = torch.load(lowerCamelCase_ , lambda snake_case__ , snake_case__ : storage ) _snake_case : List[str] = AbsSummarizer(lowerCamelCase_ , torch.device("""cpu""" ) , lowerCamelCase_ ) original.eval() _snake_case : Optional[int] = BertAbsSummarizer(lowerCamelCase_ , torch.device("""cpu""" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("""convert the model""" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("""Make sure that the models' outputs are identical""" ) _snake_case : int = BertTokenizer.from_pretrained("""bert-base-uncased""" ) # prepare the model inputs _snake_case : Optional[Any] = tokenizer.encode("""This is sample éàalj'-.""" ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_12 - len(lowerCamelCase_ )) ) _snake_case : List[str] = torch.tensor(lowerCamelCase_ ).unsqueeze(0 ) _snake_case : Optional[int] = tokenizer.encode("""This is sample 3 éàalj'-.""" ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_12 - len(lowerCamelCase_ )) ) _snake_case : Optional[Any] = torch.tensor(lowerCamelCase_ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass _snake_case : Optional[int] = encoder_input_ids _snake_case : Optional[Any] = decoder_input_ids _snake_case : List[str] = None _snake_case : Tuple = None _snake_case : int = None _snake_case : List[Any] = None _snake_case : Optional[int] = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical _snake_case : str = original(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )[0] _snake_case : Optional[Any] = original.generator(lowerCamelCase_ ) _snake_case : List[Any] = new_model( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )[0] _snake_case : str = new_model.generator(lowerCamelCase_ ) _snake_case : int = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(lowerCamelCase_ ) ) _snake_case : Optional[int] = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(lowerCamelCase_ ) ) _snake_case : Any = torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) if are_identical: logging.info("""all weights are equal up to 1e-3""" ) else: raise ValueError("""the weights are different. The new model is likely different from the original one.""" ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("""saving the model's state dictionary""" ) torch.save( new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( '''--bertabs_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''', ) A_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
712
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class lowercase: '''simple docstring''' def __init__( self: List[Any], a_: str = "cpu", a_: str = "openai/clip-vit-large-patch14" ): '''simple docstring''' _snake_case : Optional[int] = device _snake_case : str = CLIPTokenizerFast.from_pretrained(a_ ) _snake_case : Union[str, Any] = [0.48_145_466, 0.4_578_275, 0.40_821_073] _snake_case : Optional[int] = [0.26_862_954, 0.26_130_258, 0.27_577_711] _snake_case : str = torchvision.transforms.Normalize(self.image_mean, self.image_std ) _snake_case : Optional[int] = torchvision.transforms.Resize(224 ) _snake_case : str = torchvision.transforms.CenterCrop(224 ) def UpperCamelCase_ ( self: List[str], a_: str ): '''simple docstring''' _snake_case : Optional[int] = self.resize(a_ ) _snake_case : List[Any] = self.center_crop(a_ ) _snake_case : Optional[Any] = self.normalize(a_ ) return images def __call__( self: Any, a_: Optional[int]=None, a_: str=None, **a_: str ): '''simple docstring''' _snake_case : Optional[int] = self.tokenizer(text=a_, **a_ ) _snake_case : Any = self.preprocess_img(a_ ) _snake_case : Union[str, Any] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class lowercase( nn.Module ): '''simple docstring''' def __init__( self: List[Any], a_: List[Any]=10, a_: Optional[Any]=0.01, a_: List[str]=None, a_: str=None, a_: Any=None, a_: Tuple=None, a_: List[str]=None, a_: List[str]=None, a_: str=False, a_: List[str]=True, a_: Any="image", a_: Optional[Any]=True, a_: Dict=False, a_: List[str]=False, a_: Optional[int]=False, ): '''simple docstring''' super().__init__() _snake_case : int = None _snake_case : List[str] = device if device else get_device() if vqgan: _snake_case : Any = vqgan else: _snake_case : Optional[Any] = load_vqgan(self.device, conf_path=a_, ckpt_path=a_ ) self.vqgan.eval() if clip: _snake_case : Tuple = clip else: _snake_case : Optional[Any] = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) _snake_case : List[str] = ProcessorGradientFlow(device=self.device ) _snake_case : Union[str, Any] = iterations _snake_case : Dict = lr _snake_case : Optional[int] = log _snake_case : List[str] = make_grid _snake_case : Union[str, Any] = return_val _snake_case : List[str] = quantize _snake_case : List[str] = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self: Tuple, a_: str=None, a_: Dict=None, a_: Dict=5, a_: Dict=True ): '''simple docstring''' _snake_case : Dict = [] if output_path is None: _snake_case : Tuple = """./animation.gif""" if input_path is None: _snake_case : Any = self.save_path _snake_case : Optional[int] = sorted(glob(input_path + """/*""" ) ) if not len(a_ ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(a_ ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) _snake_case : List[Any] = total_duration / len(a_ ) _snake_case : Optional[Any] = [frame_duration] * len(a_ ) if extend_frames: _snake_case : Optional[int] = 1.5 _snake_case : int = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(a_ ) ) imageio.mimsave(a_, a_, duration=a_ ) print(f"gif saved to {output_path}" ) def UpperCamelCase_ ( self: str, a_: Tuple=None, a_: Optional[Any]=None ): '''simple docstring''' if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError _snake_case : int = preprocess(Image.open(a_ ), target_image_size=256 ).to(self.device ) _snake_case : int = preprocess_vqgan(a_ ) _snake_case , *_snake_case : List[Any] = self.vqgan.encode(a_ ) return z def UpperCamelCase_ ( self: Union[str, Any], a_: Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.latent.detach().requires_grad_() _snake_case : Tuple = base_latent + transform_vector if self.quantize: _snake_case , *_snake_case : Any = self.vqgan.quantize(a_ ) else: _snake_case : List[Any] = trans_latent return self.vqgan.decode(a_ ) def UpperCamelCase_ ( self: List[Any], a_: Any, a_: Union[str, Any], a_: Dict=None ): '''simple docstring''' _snake_case : Tuple = self.clip_preprocessor(text=a_, images=a_, return_tensors="""pt""", padding=a_ ) _snake_case : Any = self.clip(**a_ ) _snake_case : str = clip_outputs.logits_per_image if weights is not None: _snake_case : Any = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self: Any, a_: Any, a_: List[str], a_: Dict ): '''simple docstring''' _snake_case : List[Any] = self._get_clip_similarity(pos_prompts["""prompts"""], a_, weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: _snake_case : List[str] = self._get_clip_similarity(neg_prompts["""prompts"""], a_, weights=neg_prompts["""weights"""] ) else: _snake_case : Tuple = torch.tensor([1], device=self.device ) _snake_case : int = -torch.log(a_ ) + torch.log(a_ ) return loss def UpperCamelCase_ ( self: Optional[Any], a_: Tuple, a_: Union[str, Any], a_: List[str] ): '''simple docstring''' _snake_case : Tuple = torch.randn_like(self.latent, requires_grad=a_, device=self.device ) _snake_case : Dict = torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _snake_case : str = self._add_vector(a_ ) _snake_case : List[Any] = loop_post_process(a_ ) _snake_case : List[Any] = self._get_CLIP_loss(a_, a_, a_ ) print("""CLIP loss""", a_ ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=a_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self: int, a_: Any, a_: Union[str, Any], a_: Optional[int] ): '''simple docstring''' wandb.init(reinit=a_, project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: _snake_case : Any = Image.open(a_ ) _snake_case : str = image.resize((256, 256) ) wandb.log("""Original Image""", wandb.Image(a_ ) ) def UpperCamelCase_ ( self: str, a_: List[Any] ): '''simple docstring''' if not prompts: return [] _snake_case : List[str] = [] _snake_case : Tuple = [] if isinstance(a_, a_ ): _snake_case : Union[str, Any] = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(a_, (tuple, list) ): _snake_case : List[Any] = prompt[0] _snake_case : Optional[Any] = float(prompt[1] ) elif ":" in prompt: _snake_case , _snake_case : List[Any] = prompt.split(""":""" ) _snake_case : str = float(a_ ) else: _snake_case : int = prompt _snake_case : Union[str, Any] = 1.0 processed_prompts.append(a_ ) weights.append(a_ ) return { "prompts": processed_prompts, "weights": torch.tensor(a_, device=self.device ), } def UpperCamelCase_ ( self: Dict, a_: List[Any], a_: List[Any]=None, a_: Optional[Any]=None, a_: Optional[Any]=True, a_: Dict=False, a_: Optional[Any]=True, a_: Optional[Any]=True, a_: Any=None, ): '''simple docstring''' if image_path: _snake_case : Union[str, Any] = self._get_latent(a_ ) else: _snake_case : Any = torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(a_, a_, a_ ) assert pos_prompts, "You must provide at least one positive prompt." _snake_case : str = self.process_prompts(a_ ) _snake_case : Dict = self.process_prompts(a_ ) if save_final and save_path is None: _snake_case : Any = os.path.join("""./outputs/""", """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(a_ ): os.makedirs(a_ ) else: _snake_case : List[Any] = save_path + """_""" + get_timestamp() os.makedirs(a_ ) _snake_case : Optional[Any] = save_path _snake_case : List[Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(a_ ) ) _snake_case : List[Any] = loop_post_process(a_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(a_, a_, a_ ) ): if show_intermediate: show_pil(a_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}.png" ) ) if self.log: wandb.log({"""Image""": wandb.Image(a_ )} ) if show_final: show_pil(a_ ) if save_final: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}_final.png" ) )
28
0
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class lowercase( __lowerCamelCase ): '''simple docstring''' def __init__( self: Union[str, Any], a_: Any, a_: List[Any]=13, a_: Union[str, Any]=7, a_: List[Any]=True, a_: List[str]=True, a_: Tuple=False, a_: Optional[int]=True, a_: int=99, a_: Dict=32, a_: Dict=5, a_: Union[str, Any]=4, a_: str=37, a_: Optional[int]="gelu", a_: Tuple=0.1, a_: Optional[Any]=0.1, a_: Tuple=512, a_: List[Any]=16, a_: Dict=2, a_: int=0.02, a_: List[Any]=3, a_: Optional[int]=4, a_: str=None, ): '''simple docstring''' _snake_case : str = parent _snake_case : int = batch_size _snake_case : int = seq_length _snake_case : Dict = is_training _snake_case : Tuple = use_input_mask _snake_case : Optional[Any] = use_token_type_ids _snake_case : Optional[Any] = use_labels _snake_case : Optional[Any] = vocab_size _snake_case : Union[str, Any] = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Dict = intermediate_size _snake_case : Dict = hidden_act _snake_case : Any = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[int] = max_position_embeddings _snake_case : Union[str, Any] = type_vocab_size _snake_case : List[str] = type_sequence_label_size _snake_case : Dict = initializer_range _snake_case : List[str] = num_labels _snake_case : Any = num_choices _snake_case : Dict = scope def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) _snake_case : Union[str, Any] = None if self.use_input_mask: _snake_case : str = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case : List[Any] = None _snake_case : Optional[Any] = None _snake_case : Tuple = None if self.use_labels: _snake_case : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) _snake_case : str = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) _snake_case : Any = ids_tensor([self.batch_size], self.num_choices ) _snake_case : Optional[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self: int ): '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size, dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, hidden_dim=self.intermediate_size, hidden_act=self.hidden_act, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, ) def UpperCamelCase_ ( self: Tuple, a_: Optional[Any], a_: List[Any], a_: int, a_: Optional[Any], a_: Any, a_: Tuple ): '''simple docstring''' _snake_case : Dict = DistilBertModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() _snake_case : Optional[Any] = model(UpperCamelCase_, UpperCamelCase_ ) _snake_case : Optional[Any] = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self: Any, a_: Optional[Any], a_: List[Any], a_: str, a_: Optional[int], a_: Any, a_: Optional[int] ): '''simple docstring''' _snake_case : Tuple = DistilBertForMaskedLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() _snake_case : List[str] = model(UpperCamelCase_, attention_mask=UpperCamelCase_, labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self: List[Any], a_: Optional[int], a_: Dict, a_: Any, a_: Any, a_: Optional[Any], a_: str ): '''simple docstring''' _snake_case : int = DistilBertForQuestionAnswering(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() _snake_case : Tuple = model( UpperCamelCase_, attention_mask=UpperCamelCase_, start_positions=UpperCamelCase_, end_positions=UpperCamelCase_ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self: Optional[Any], a_: Union[str, Any], a_: Tuple, a_: List[Any], a_: Any, a_: Tuple, a_: Optional[int] ): '''simple docstring''' _snake_case : int = self.num_labels _snake_case : Optional[int] = DistilBertForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() _snake_case : str = model(UpperCamelCase_, attention_mask=UpperCamelCase_, labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self: str, a_: Optional[int], a_: Union[str, Any], a_: Optional[int], a_: Dict, a_: Union[str, Any], a_: Optional[Any] ): '''simple docstring''' _snake_case : List[Any] = self.num_labels _snake_case : Optional[Any] = DistilBertForTokenClassification(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() _snake_case : int = model(UpperCamelCase_, attention_mask=UpperCamelCase_, labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self: List[str], a_: Optional[Any], a_: str, a_: Optional[int], a_: Union[str, Any], a_: List[str], a_: Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.num_choices _snake_case : Any = DistilBertForMultipleChoice(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() _snake_case : int = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() _snake_case : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() _snake_case : str = model( UpperCamelCase_, attention_mask=UpperCamelCase_, labels=UpperCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Union[str, Any] = self.prepare_config_and_inputs() ((_snake_case) , (_snake_case) , (_snake_case) , (_snake_case) , (_snake_case) , (_snake_case)) : Union[str, Any] = config_and_inputs _snake_case : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowercase( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowercase__ = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowercase__ = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = True lowercase__ = True lowercase__ = True lowercase__ = True def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = DistilBertModelTester(self ) _snake_case : Any = ConfigTester(self, config_class=UpperCamelCase_, dim=37 ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCamelCase_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCamelCase_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCamelCase_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCamelCase_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCamelCase_ ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCamelCase_ ) @slow def UpperCamelCase_ ( self: int ): '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = DistilBertModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @slow @require_torch_gpu def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return _snake_case : List[Any] = True _snake_case : Optional[Any] = model_class(config=UpperCamelCase_ ) _snake_case : Union[str, Any] = self._prepare_for_class(UpperCamelCase_, UpperCamelCase_ ) _snake_case : Any = torch.jit.trace( UpperCamelCase_, (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCamelCase_, os.path.join(UpperCamelCase_, """traced_model.pt""" ) ) _snake_case : Union[str, Any] = torch.jit.load(os.path.join(UpperCamelCase_, """traced_model.pt""" ), map_location=UpperCamelCase_ ) loaded(inputs_dict["""input_ids"""].to(UpperCamelCase_ ), inputs_dict["""attention_mask"""].to(UpperCamelCase_ ) ) @require_torch class lowercase( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Optional[int] = DistilBertModel.from_pretrained("""distilbert-base-uncased""" ) _snake_case : Dict = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _snake_case : Tuple = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _snake_case : Optional[int] = model(UpperCamelCase_, attention_mask=UpperCamelCase_ )[0] _snake_case : Optional[Any] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape, UpperCamelCase_ ) _snake_case : str = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], UpperCamelCase_, atol=1E-4 ) )
713
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _snake_case : Dict = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
28
0
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A_ = logging.get_logger(__name__) class lowercase( _UpperCamelCase ): '''simple docstring''' lowercase__ = ["input_features"] def __init__( self: Dict, a_: int=80, a_: Union[str, Any]=16_000, a_: Optional[int]=160, a_: Optional[Any]=30, a_: Dict=400, a_: Optional[Any]=0.0, a_: int=False, **a_: Tuple, ): '''simple docstring''' super().__init__( feature_size=a_, sampling_rate=a_, padding_value=a_, return_attention_mask=a_, **a_, ) _snake_case : List[str] = n_fft _snake_case : Any = hop_length _snake_case : Dict = chunk_length _snake_case : Union[str, Any] = chunk_length * sampling_rate _snake_case : Any = self.n_samples // hop_length _snake_case : List[Any] = sampling_rate _snake_case : List[str] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=a_, min_frequency=0.0, max_frequency=8_000.0, sampling_rate=a_, norm="""slaney""", mel_scale="""slaney""", ) def UpperCamelCase_ ( self: Optional[Any], a_: np.array ): '''simple docstring''' _snake_case : Tuple = spectrogram( a_, window_function(self.n_fft, """hann""" ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters, log_mel="""log10""", ) _snake_case : Tuple = log_spec[:, :-1] _snake_case : Any = np.maximum(a_, log_spec.max() - 8.0 ) _snake_case : Optional[Any] = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def UpperCamelCase_ ( a_: List[np.ndarray], a_: List[np.ndarray], a_: float = 0.0 ): '''simple docstring''' if attention_mask is not None: _snake_case : List[str] = np.array(a_, np.intaa ) _snake_case : List[str] = [] for vector, length in zip(a_, attention_mask.sum(-1 ) ): _snake_case : List[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: _snake_case : List[Any] = padding_value normed_input_values.append(a_ ) else: _snake_case : Any = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self: str, a_: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], a_: bool = True, a_: Optional[int] = None, a_: Optional[Union[str, TensorType]] = None, a_: Optional[bool] = None, a_: Optional[str] = "max_length", a_: Optional[int] = None, a_: Optional[int] = None, a_: Optional[bool] = None, **a_: List[Any], ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" f" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) _snake_case : str = isinstance(a_, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) _snake_case : Any = is_batched_numpy or ( isinstance(a_, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: _snake_case : Union[str, Any] = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(a_, np.ndarray ): _snake_case : Tuple = np.asarray(a_, dtype=np.floataa ) elif isinstance(a_, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _snake_case : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _snake_case : Optional[Any] = [np.asarray([raw_speech] ).T] _snake_case : List[str] = BatchFeature({"""input_features""": raw_speech} ) # convert into correct format for padding _snake_case : List[Any] = self.pad( a_, padding=a_, max_length=max_length if max_length else self.n_samples, truncation=a_, pad_to_multiple_of=a_, return_attention_mask=return_attention_mask or do_normalize, ) # zero-mean and unit-variance normalization if do_normalize: _snake_case : Dict = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""], attention_mask=padded_inputs["""attention_mask"""], padding_value=self.padding_value, ) _snake_case : Dict = np.stack(padded_inputs["""input_features"""], axis=0 ) # make sure list is in array format _snake_case : Tuple = padded_inputs.get("""input_features""" ).transpose(2, 0, 1 ) _snake_case : str = [self._np_extract_fbank_features(a_ ) for waveform in input_features[0]] if isinstance(input_features[0], a_ ): _snake_case : Optional[int] = [np.asarray(a_, dtype=np.floataa ) for feature in input_features] else: _snake_case : List[Any] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) _snake_case : Optional[int] = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: _snake_case : str = padded_inputs.convert_to_tensors(a_ ) return padded_inputs def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Dict = copy.deepcopy(self.__dict__ ) _snake_case : int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
714
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase: '''simple docstring''' def __init__( self: List[str], a_: List[Any], a_: str=13, a_: Dict=32, a_: Union[str, Any]=3, a_: Union[str, Any]=4, a_: Tuple=[10, 20, 30, 40], a_: Dict=[2, 2, 3, 2], a_: Tuple=True, a_: Optional[Any]=True, a_: Any=37, a_: Any="gelu", a_: int=10, a_: Tuple=0.02, a_: str=["stage2", "stage3", "stage4"], a_: List[str]=[2, 3, 4], a_: List[str]=None, ): '''simple docstring''' _snake_case : int = parent _snake_case : int = batch_size _snake_case : List[Any] = image_size _snake_case : List[str] = num_channels _snake_case : Tuple = num_stages _snake_case : Union[str, Any] = hidden_sizes _snake_case : List[Any] = depths _snake_case : Tuple = is_training _snake_case : List[str] = use_labels _snake_case : Tuple = intermediate_size _snake_case : List[str] = hidden_act _snake_case : Optional[Any] = num_labels _snake_case : Tuple = initializer_range _snake_case : Tuple = out_features _snake_case : Tuple = out_indices _snake_case : Dict = scope def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Any = None if self.use_labels: _snake_case : Dict = ids_tensor([self.batch_size], self.num_labels ) _snake_case : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=a_, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, ) def UpperCamelCase_ ( self: int, a_: Tuple, a_: Any, a_: Dict ): '''simple docstring''' _snake_case : int = ConvNextVaModel(config=a_ ) model.to(a_ ) model.eval() _snake_case : Any = model(a_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def UpperCamelCase_ ( self: Optional[int], a_: List[str], a_: Tuple, a_: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = ConvNextVaForImageClassification(a_ ) model.to(a_ ) model.eval() _snake_case : Optional[int] = model(a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self: Union[str, Any], a_: Tuple, a_: Tuple, a_: Tuple ): '''simple docstring''' _snake_case : List[str] = ConvNextVaBackbone(config=a_ ) model.to(a_ ) model.eval() _snake_case : int = model(a_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] ) # verify backbone works with out_features=None _snake_case : Tuple = None _snake_case : Tuple = ConvNextVaBackbone(config=a_ ) model.to(a_ ) model.eval() _snake_case : List[Any] = model(a_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ), 1 ) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Dict = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : Any = config_and_inputs _snake_case : str = {"""pixel_values""": pixel_values} return config, inputs_dict def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[Any] = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : List[str] = config_and_inputs _snake_case : Any = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase__ = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Tuple = ConvNextVaModelTester(self ) _snake_case : int = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def UpperCamelCase_ ( self: str ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _snake_case , _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_with_labels() _snake_case : List[Any] = True if model_class.__name__ in [ *get_values(a_ ), *get_values(a_ ), ]: continue _snake_case : Tuple = model_class(a_ ) model.to(a_ ) model.train() _snake_case : Optional[Any] = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : Any = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_with_labels() _snake_case : Any = False _snake_case : List[Any] = True if ( model_class.__name__ in [*get_values(a_ ), *get_values(a_ )] or not model_class.supports_gradient_checkpointing ): continue _snake_case : Dict = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() _snake_case : str = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : Optional[int] = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : List[str] = model_class(a_ ) _snake_case : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : int = [*signature.parameters.keys()] _snake_case : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1], a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(a_: str, a_: Tuple, a_: Tuple ): _snake_case : Optional[Any] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): _snake_case : Any = model(**self._prepare_for_class(a_, a_ ) ) _snake_case : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case : Optional[int] = self.model_tester.num_stages self.assertEqual(len(a_ ), expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) _snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Optional[Any] = True check_hidden_states_output(a_, a_, a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : List[str] = True check_hidden_states_output(a_, a_, a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : str = ConvNextVaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(a_ ) _snake_case : Union[str, Any] = self.default_image_processor _snake_case : List[Any] = prepare_img() _snake_case : Optional[int] = preprocessor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Optional[int] = model(**a_ ) # verify the logits _snake_case : Optional[int] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, a_ ) _snake_case : Optional[int] = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], a_, atol=1E-4 ) )
28
0
def UpperCAmelCase__ (snake_case__ : Union[str, Any] = 50 ): """simple docstring""" _snake_case : List[str] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
715
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Dict ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Dict ): """simple docstring""" _snake_case : str = tmp_path / """cache""" _snake_case : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _snake_case : str = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : int , snake_case__ : List[Any] ): """simple docstring""" _snake_case : str = tmp_path / """cache""" _snake_case : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : List[Any] = features.copy() if features else default_expected_features _snake_case : List[Any] = ( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) _snake_case : Optional[Any] = ParquetDatasetReader(snake_case__ , features=snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : List[str] = tmp_path / """cache""" _snake_case : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : int = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ , split=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : str , snake_case__ : str ): """simple docstring""" if issubclass(snake_case__ , snake_case__ ): _snake_case : Optional[Any] = parquet_path elif issubclass(snake_case__ , snake_case__ ): _snake_case : int = [parquet_path] _snake_case : Union[str, Any] = tmp_path / """cache""" _snake_case : Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : List[str] = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : str=("train",) ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ) for split in splits: _snake_case : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str , snake_case__ : List[Any] ): """simple docstring""" _snake_case : Tuple = tmp_path / """cache""" _snake_case : Optional[int] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _snake_case : Tuple = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] ): """simple docstring""" _snake_case : Optional[int] = tmp_path / """cache""" _snake_case : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : Optional[Any] = features.copy() if features else default_expected_features _snake_case : Dict = ( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) _snake_case : Optional[int] = ParquetDatasetReader({"""train""": parquet_path} , features=snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Tuple ): """simple docstring""" if split: _snake_case : int = {split: parquet_path} else: _snake_case : Optional[Any] = """train""" _snake_case : int = {"""train""": parquet_path, """test""": parquet_path} _snake_case : Dict = tmp_path / """cache""" _snake_case : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : Union[str, Any] = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : Tuple ): """simple docstring""" _snake_case : List[Any] = ParquetDatasetWriter(snake_case__ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _snake_case : str = pq.ParquetFile(tmp_path / """foo.parquet""" ) _snake_case : int = pf.read() assert dataset.data.table == output_table def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : Optional[Any] = str(shared_datadir / """test_image_rgb.jpg""" ) _snake_case : Tuple = {"""image""": [image_path]} _snake_case : Optional[int] = Features({"""image""": Image()} ) _snake_case : int = Dataset.from_dict(snake_case__ , features=snake_case__ ) _snake_case : Optional[Any] = ParquetDatasetWriter(snake_case__ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _snake_case : List[str] = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features _snake_case : Optional[Any] = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=snake_case__ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : str ): """simple docstring""" assert get_writer_batch_size(snake_case__ ) == expected
28
0
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class lowercase( tf.keras.optimizers.schedules.LearningRateSchedule ): '''simple docstring''' def __init__( self: int, a_: Optional[int], a_: Optional[Any], a_: Union[str, Any], a_: List[Any] = 1.0, a_: Union[str, Any] = None, ): '''simple docstring''' super().__init__() _snake_case : List[str] = initial_learning_rate _snake_case : Any = warmup_steps _snake_case : List[Any] = power _snake_case : List[str] = decay_schedule_fn _snake_case : Optional[int] = name def __call__( self: Any, a_: Union[str, Any] ): '''simple docstring''' with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. _snake_case : List[Any] = tf.cast(lowerCAmelCase_, tf.floataa ) _snake_case : Optional[int] = tf.cast(self.warmup_steps, tf.floataa ) _snake_case : str = global_step_float / warmup_steps_float _snake_case : Tuple = self.initial_learning_rate * tf.math.pow(lowerCAmelCase_, self.power ) return tf.cond( global_step_float < warmup_steps_float, lambda: warmup_learning_rate, lambda: self.decay_schedule_fn(step - self.warmup_steps ), name=lowerCAmelCase_, ) def UpperCamelCase_ ( self: str ): '''simple docstring''' return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def UpperCAmelCase__ (snake_case__ : float , snake_case__ : int , snake_case__ : int , snake_case__ : float = 0.0 , snake_case__ : float = 0.9 , snake_case__ : float = 0.9_99 , snake_case__ : float = 1e-8 , snake_case__ : Optional[float] = None , snake_case__ : Optional[float] = None , snake_case__ : float = 0.0 , snake_case__ : float = 1.0 , snake_case__ : Optional[List[str]] = None , ): """simple docstring""" _snake_case : str = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=snake_case__ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=snake_case__ , ) if num_warmup_steps: _snake_case : Tuple = WarmUp( initial_learning_rate=snake_case__ , decay_schedule_fn=snake_case__ , warmup_steps=snake_case__ , ) if weight_decay_rate > 0.0: _snake_case : Tuple = AdamWeightDecay( learning_rate=snake_case__ , weight_decay_rate=snake_case__ , beta_a=snake_case__ , beta_a=snake_case__ , epsilon=snake_case__ , clipnorm=snake_case__ , global_clipnorm=snake_case__ , exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] , include_in_weight_decay=snake_case__ , ) else: _snake_case : List[str] = tf.keras.optimizers.Adam( learning_rate=snake_case__ , beta_a=snake_case__ , beta_a=snake_case__ , epsilon=snake_case__ , clipnorm=snake_case__ , global_clipnorm=snake_case__ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class lowercase( __lowerCAmelCase ): '''simple docstring''' def __init__( self: Optional[int], a_: Optional[Any] = 0.001, a_: Optional[int] = 0.9, a_: Dict = 0.999, a_: Union[str, Any] = 1E-7, a_: Tuple = False, a_: Dict = 0.0, a_: str = None, a_: Dict = None, a_: Optional[int] = "AdamWeightDecay", **a_: int, ): '''simple docstring''' super().__init__(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, **lowerCAmelCase_ ) _snake_case : List[str] = weight_decay_rate _snake_case : int = include_in_weight_decay _snake_case : Optional[int] = exclude_from_weight_decay @classmethod def UpperCamelCase_ ( cls: int, a_: List[str] ): '''simple docstring''' _snake_case : Union[str, Any] = {"""WarmUp""": WarmUp} return super(lowerCAmelCase_, cls ).from_config(lowerCAmelCase_, custom_objects=lowerCAmelCase_ ) def UpperCamelCase_ ( self: Optional[Any], a_: List[Any], a_: int, a_: str ): '''simple docstring''' super(lowerCAmelCase_, self )._prepare_local(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) _snake_case : Optional[int] = tf.constant( self.weight_decay_rate, name="""adam_weight_decay_rate""" ) def UpperCamelCase_ ( self: str, a_: Optional[Any], a_: int, a_: str ): '''simple docstring''' _snake_case : str = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""], use_locking=self._use_locking, ) return tf.no_op() def UpperCamelCase_ ( self: int, a_: Optional[int], a_: Union[str, Any]=None, **a_: int ): '''simple docstring''' _snake_case , _snake_case : str = list(zip(*lowerCAmelCase_ ) ) return super(lowerCAmelCase_, self ).apply_gradients(zip(lowerCAmelCase_, lowerCAmelCase_ ), name=lowerCAmelCase_, **lowerCAmelCase_ ) def UpperCamelCase_ ( self: Dict, a_: int, a_: List[Any], a_: List[str] ): '''simple docstring''' if apply_state is None: return self._decayed_lr_t[var_dtype], {} _snake_case : Optional[Any] = apply_state or {} _snake_case : str = apply_state.get((var_device, var_dtype) ) if coefficients is None: _snake_case : List[str] = self._fallback_apply_state(lowerCAmelCase_, lowerCAmelCase_ ) _snake_case : Tuple = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCamelCase_ ( self: Dict, a_: Tuple, a_: Union[str, Any], a_: Optional[Any]=None ): '''simple docstring''' _snake_case , _snake_case : Optional[Any] = self._get_lr(var.device, var.dtype.base_dtype, lowerCAmelCase_ ) _snake_case : Dict = self._decay_weights_op(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) with tf.control_dependencies([decay] ): return super(lowerCAmelCase_, self )._resource_apply_dense(lowerCAmelCase_, lowerCAmelCase_, **lowerCAmelCase_ ) def UpperCamelCase_ ( self: List[str], a_: Optional[int], a_: Optional[Any], a_: Any, a_: int=None ): '''simple docstring''' _snake_case , _snake_case : Tuple = self._get_lr(var.device, var.dtype.base_dtype, lowerCAmelCase_ ) _snake_case : int = self._decay_weights_op(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) with tf.control_dependencies([decay] ): return super(lowerCAmelCase_, self )._resource_apply_sparse(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, **lowerCAmelCase_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : List[str] = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def UpperCamelCase_ ( self: Union[str, Any], a_: List[str] ): '''simple docstring''' if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(lowerCAmelCase_, lowerCAmelCase_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(lowerCAmelCase_, lowerCAmelCase_ ) is not None: return False return True class lowercase( __lowerCAmelCase ): '''simple docstring''' def __init__( self: Any ): '''simple docstring''' _snake_case : List[str] = [] _snake_case : Tuple = None @property def UpperCamelCase_ ( self: int ): '''simple docstring''' if self._accum_steps is None: _snake_case : Any = tf.Variable( tf.constant(0, dtype=tf.intaa ), trainable=lowerCAmelCase_, synchronization=tf.VariableSynchronization.ON_READ, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, ) return self._accum_steps.value() @property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self: Any, a_: Optional[Any] ): '''simple docstring''' if not self._gradients: _snake_case : Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(lowerCAmelCase_ ), trainable=lowerCAmelCase_, synchronization=tf.VariableSynchronization.ON_READ, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, ) if gradient is not None else gradient for gradient in gradients ] ) if len(lowerCAmelCase_ ) != len(self._gradients ): raise ValueError(f"Expected {len(self._gradients )} gradients, but got {len(lowerCAmelCase_ )}" ) for accum_gradient, gradient in zip(self._gradients, lowerCAmelCase_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(lowerCAmelCase_ ) self._accum_steps.assign_add(1 ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(lowerCAmelCase_ ) )
716
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase: '''simple docstring''' def __init__( self: Dict, a_: Union[str, Any], a_: Tuple=13, a_: Dict=32, a_: Optional[Any]=3, a_: Optional[Any]=4, a_: Optional[int]=[10, 20, 30, 40], a_: Any=[2, 2, 3, 2], a_: Dict=True, a_: Dict=True, a_: List[str]=37, a_: Dict="gelu", a_: List[str]=10, a_: Union[str, Any]=0.02, a_: Any=["stage2", "stage3", "stage4"], a_: Optional[int]=3, a_: Tuple=None, ): '''simple docstring''' _snake_case : Dict = parent _snake_case : Dict = batch_size _snake_case : Optional[Any] = image_size _snake_case : int = num_channels _snake_case : Tuple = num_stages _snake_case : int = hidden_sizes _snake_case : List[str] = depths _snake_case : str = is_training _snake_case : Dict = use_labels _snake_case : List[str] = intermediate_size _snake_case : Optional[int] = hidden_act _snake_case : Any = type_sequence_label_size _snake_case : List[str] = initializer_range _snake_case : Union[str, Any] = out_features _snake_case : Dict = num_labels _snake_case : int = scope _snake_case : Dict = num_stages def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Optional[int] = None if self.use_labels: _snake_case : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) _snake_case : Tuple = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels, num_stages=self.num_stages, hidden_sizes=self.hidden_sizes, depths=self.depths, is_training=self.is_training, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, out_features=self.out_features, ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config(), hidden_size=512, pool_scales=[1, 2, 3, 6], use_auxiliary_head=a_, auxiliary_loss_weight=0.4, auxiliary_in_channels=40, auxiliary_channels=256, auxiliary_num_convs=1, auxiliary_concat_input=a_, loss_ignore_index=255, num_labels=self.num_labels, ) def UpperCamelCase_ ( self: Tuple, a_: List[Any], a_: Dict, a_: Tuple ): '''simple docstring''' _snake_case : List[Any] = UperNetForSemanticSegmentation(config=a_ ) model.to(a_ ) model.eval() _snake_case : Tuple = model(a_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Any = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : List[Any] = config_and_inputs _snake_case : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase__ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = UperNetModelTester(self ) _snake_case : Dict = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Dict = model_class(a_ ) _snake_case : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Tuple = [*signature.parameters.keys()] _snake_case : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1], a_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not have a base model""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not have a base model""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' pass def UpperCamelCase_ ( self: str ): '''simple docstring''' def check_hidden_states_output(a_: Dict, a_: List[str], a_: Optional[int] ): _snake_case : Optional[Any] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): _snake_case : Any = model(**self._prepare_for_class(a_, a_ ) ) _snake_case : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case : List[str] = self.model_tester.num_stages self.assertEqual(len(a_ ), expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) _snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : int = True check_hidden_states_output(a_, a_, a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : Optional[int] = True check_hidden_states_output(a_, a_, a_ ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Tuple = _config_zero_init(a_ ) _snake_case : Dict = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _snake_case : Optional[int] = model_class(config=a_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' pass @slow def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : int = UperNetForSemanticSegmentation.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Union[str, Any] = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) _snake_case : List[Any] = Image.open(snake_case__ ).convert("""RGB""" ) return image @require_torch @require_vision @slow class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : str = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) _snake_case : Any = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(a_ ) _snake_case : Dict = prepare_img() _snake_case : str = processor(images=a_, return_tensors="""pt""" ).to(a_ ) with torch.no_grad(): _snake_case : Tuple = model(**a_ ) _snake_case : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape, a_ ) _snake_case : int = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], a_, atol=1E-4 ) ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) _snake_case : Optional[int] = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(a_ ) _snake_case : List[str] = prepare_img() _snake_case : Tuple = processor(images=a_, return_tensors="""pt""" ).to(a_ ) with torch.no_grad(): _snake_case : Optional[Any] = model(**a_ ) _snake_case : Union[str, Any] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape, a_ ) _snake_case : Optional[Any] = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], a_, atol=1E-4 ) )
28
0
"""simple docstring""" from sklearn.metrics import mean_squared_error import datasets A_ = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' A_ = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n' A_ = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(self._get_feature_types() ), reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ], ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def UpperCamelCase_ ( self: Optional[int], a_: List[Any], a_: List[str], a_: List[Any]=None, a_: str="uniform_average", a_: int=True ): '''simple docstring''' _snake_case : List[str] = mean_squared_error( UpperCAmelCase__, UpperCAmelCase__, sample_weight=UpperCAmelCase__, multioutput=UpperCAmelCase__, squared=UpperCAmelCase__ ) return {"mse": mse}
717
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path A_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) A_ = [ord(letter) for letter in string.ascii_lowercase] A_ = {ord(char) for char in VALID_CHARS} A_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : tuple[int, ...] ): """simple docstring""" _snake_case : str = "" _snake_case : int _snake_case : int _snake_case : int for keychar, cipherchar in zip(cycle(snake_case__ ) , snake_case__ ): _snake_case : List[str] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case__ ) return decoded def UpperCAmelCase__ (snake_case__ : list[int] ): """simple docstring""" _snake_case : list[str] = [] for key in product(snake_case__ , repeat=3 ): _snake_case : List[Any] = try_key(snake_case__ , snake_case__ ) if encoded is not None: possibles.append(snake_case__ ) return possibles def UpperCAmelCase__ (snake_case__ : list[str] , snake_case__ : str ): """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def UpperCAmelCase__ (snake_case__ : str = "p059_cipher.txt" ): """simple docstring""" _snake_case : list[int] _snake_case : list[str] _snake_case : str _snake_case : str _snake_case : str = Path(snake_case__ ).parent.joinpath(snake_case__ ).read_text(encoding="""utf-8""" ) _snake_case : List[Any] = [int(snake_case__ ) for number in data.strip().split(""",""" )] _snake_case : Optional[Any] = filter_valid_chars(snake_case__ ) for common_word in COMMON_WORDS: _snake_case : Union[str, Any] = filter_common_word(snake_case__ , snake_case__ ) if len(snake_case__ ) == 1: break _snake_case : Optional[int] = possibles[0] return sum(ord(snake_case__ ) for char in decoded_text ) if __name__ == "__main__": print(F'''{solution() = }''')
28
0
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets A_ = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ A_ = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ A_ = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self: Any ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage="""https://github.com/krishnap25/mauve""", inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { """predictions""": datasets.Value("""string""", id="""sequence""" ), """references""": datasets.Value("""string""", id="""sequence""" ), } ), codebase_urls=["""https://github.com/krishnap25/mauve"""], reference_urls=[ """https://arxiv.org/abs/2102.01454""", """https://github.com/krishnap25/mauve""", ], ) def UpperCamelCase_ ( self: Optional[Any], a_: str, a_: List[Any], a_: List[Any]=None, a_: Union[str, Any]=None, a_: List[str]=None, a_: Any=None, a_: Any="auto", a_: Optional[Any]=-1, a_: Any=0.9, a_: Optional[Any]=5, a_: List[str]=500, a_: Optional[Any]="gpt2-large", a_: Tuple=-1, a_: Optional[Any]=1_024, a_: Optional[Any]=25, a_: Optional[Any]=5, a_: Optional[int]=True, a_: Optional[int]=25, ): '''simple docstring''' _snake_case : str = compute_mauve( p_text=snake_case__, q_text=snake_case__, p_features=snake_case__, q_features=snake_case__, p_tokens=snake_case__, q_tokens=snake_case__, num_buckets=snake_case__, pca_max_data=snake_case__, kmeans_explained_var=snake_case__, kmeans_num_redo=snake_case__, kmeans_max_iter=snake_case__, featurize_model_name=snake_case__, device_id=snake_case__, max_text_length=snake_case__, divergence_curve_discretization_size=snake_case__, mauve_scaling_factor=snake_case__, verbose=snake_case__, seed=snake_case__, ) return out
718
"""simple docstring""" from ...processing_utils import ProcessorMixin class lowercase( __a ): '''simple docstring''' lowercase__ = ["image_processor", "feature_extractor"] lowercase__ = "TvltImageProcessor" lowercase__ = "TvltFeatureExtractor" def __init__( self: Dict, a_: Union[str, Any], a_: Union[str, Any] ): '''simple docstring''' super().__init__(image_processor=a_, feature_extractor=a_ ) _snake_case : Any = image_processor _snake_case : Dict = feature_extractor def __call__( self: int, a_: str=None, a_: Tuple=None, a_: Dict=None, a_: str=None, a_: Optional[int]=False, a_: Tuple=False, *a_: List[str], **a_: int, ): '''simple docstring''' if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) _snake_case : Optional[int] = None if images is not None: _snake_case : Tuple = self.image_processor(a_, mask_pixel=a_, *a_, **a_ ) if images_mixed is not None: _snake_case : Optional[int] = self.image_processor(a_, is_mixed=a_, *a_, **a_ ) if audio is not None: _snake_case : Any = self.feature_extractor( a_, *a_, sampling_rate=a_, mask_audio=a_, **a_ ) _snake_case : List[str] = {} if audio is not None: output_dict.update(a_ ) if images is not None: output_dict.update(a_ ) if images_mixed_dict is not None: output_dict.update(a_ ) return output_dict @property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Dict = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
28
0
"""simple docstring""" import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration A_ = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def UpperCAmelCase__ (snake_case__ : List[str] ): """simple docstring""" _snake_case : List[str] = ["""layers""", """blocks"""] for k in ignore_keys: state_dict.pop(__a , __a ) A_ = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def UpperCAmelCase__ (snake_case__ : Dict ): """simple docstring""" _snake_case : Optional[Any] = list(s_dict.keys() ) for key in keys: _snake_case : Optional[Any] = key for k, v in WHISPER_MAPPING.items(): if k in key: _snake_case : str = new_key.replace(__a , __a ) print(F"{key} -> {new_key}" ) _snake_case : List[Any] = s_dict.pop(__a ) return s_dict def UpperCAmelCase__ (snake_case__ : Optional[Any] ): """simple docstring""" _snake_case , _snake_case : int = emb.weight.shape _snake_case : Any = nn.Linear(__a , __a , bias=__a ) _snake_case : List[Any] = emb.weight.data return lin_layer def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str ): """simple docstring""" os.makedirs(__a , exist_ok=__a ) _snake_case : Any = os.path.basename(__a ) _snake_case : str = url.split("""/""" )[-2] _snake_case : Any = os.path.join(__a , __a ) if os.path.exists(__a ) and not os.path.isfile(__a ): raise RuntimeError(F"{download_target} exists and is not a regular file" ) if os.path.isfile(__a ): _snake_case : Union[str, Any] = open(__a , """rb""" ).read() if hashlib.shaaaa(__a ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" ) with urllib.request.urlopen(__a ) as source, open(__a , """wb""" ) as output: with tqdm( total=int(source.info().get("""Content-Length""" ) ) , ncols=80 , unit="""iB""" , unit_scale=__a , unit_divisor=10_24 ) as loop: while True: _snake_case : List[Any] = source.read(81_92 ) if not buffer: break output.write(__a ) loop.update(len(__a ) ) _snake_case : Optional[Any] = open(__a , """rb""" ).read() if hashlib.shaaaa(__a ).hexdigest() != expected_shaaaa: raise RuntimeError( """Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.""" ) return model_bytes def UpperCAmelCase__ (snake_case__ : Union[str, Any] , snake_case__ : Optional[int] ): """simple docstring""" if ".pt" not in checkpoint_path: _snake_case : int = _download(_MODELS[checkpoint_path] ) else: _snake_case : int = torch.load(__a , map_location="""cpu""" ) _snake_case : Dict = original_checkpoint["""dims"""] _snake_case : str = original_checkpoint["""model_state_dict"""] _snake_case : List[str] = state_dict["""decoder.token_embedding.weight"""] remove_ignore_keys_(__a ) rename_keys(__a ) _snake_case : Any = True _snake_case : List[str] = state_dict["""decoder.layers.0.fc1.weight"""].shape[0] _snake_case : Any = WhisperConfig( vocab_size=dimensions["""n_vocab"""] , encoder_ffn_dim=__a , decoder_ffn_dim=__a , num_mel_bins=dimensions["""n_mels"""] , d_model=dimensions["""n_audio_state"""] , max_target_positions=dimensions["""n_text_ctx"""] , encoder_layers=dimensions["""n_audio_layer"""] , encoder_attention_heads=dimensions["""n_audio_head"""] , decoder_layers=dimensions["""n_text_layer"""] , decoder_attention_heads=dimensions["""n_text_state"""] , max_source_positions=dimensions["""n_audio_ctx"""] , ) _snake_case : int = WhisperForConditionalGeneration(__a ) _snake_case , _snake_case : List[str] = model.model.load_state_dict(__a , strict=__a ) if len(__a ) > 0 and not set(__a ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" F" but all the following weights are missing {missing}" ) if tie_embeds: _snake_case : List[str] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _snake_case : int = proj_out_weights model.save_pretrained(__a ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') A_ = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
719
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A_ = '''pt''' elif is_tf_available(): A_ = '''tf''' else: A_ = '''jax''' class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ByTaTokenizer lowercase__ = False def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' super().setUp() _snake_case : List[str] = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def UpperCamelCase_ ( self: List[Any], **a_: int ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **a_ ) def UpperCamelCase_ ( self: Optional[Any], a_: Optional[Any], a_: List[Any]=False, a_: int=20, a_: Union[str, Any]=5 ): '''simple docstring''' _snake_case : List[Any] = [] for i in range(len(a_ ) ): try: _snake_case : Optional[Any] = tokenizer.decode([i], clean_up_tokenization_spaces=a_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _snake_case : str = list(filter(lambda a_ : re.match(r"""^[ a-zA-Z]+$""", t[1] ), a_ ) ) _snake_case : List[Any] = list(filter(lambda a_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=a_ ), a_ ) ) if max_length is not None and len(a_ ) > max_length: _snake_case : Tuple = toks[:max_length] if min_length is not None and len(a_ ) < min_length and len(a_ ) > 0: while len(a_ ) < min_length: _snake_case : List[str] = toks + toks # toks_str = [t[1] for t in toks] _snake_case : Tuple = [t[0] for t in toks] # Ensure consistency _snake_case : Optional[Any] = tokenizer.decode(a_, clean_up_tokenization_spaces=a_ ) if " " not in output_txt and len(a_ ) > 1: _snake_case : Dict = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=a_ ) + """ """ + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=a_ ) ) if with_prefix_space: _snake_case : Union[str, Any] = """ """ + output_txt _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) return output_txt, output_ids def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[int] = self.ta_base_tokenizer _snake_case : Optional[Any] = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) _snake_case : int = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""], batch_without_eos_added["""input_ids"""] ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[str] = self.ta_base_tokenizer _snake_case : Tuple = """Unicode €.""" _snake_case : List[Any] = tokenizer(a_ ) _snake_case : Tuple = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["""input_ids"""], a_ ) # decoding _snake_case : Tuple = tokenizer.decode(a_ ) self.assertEqual(a_, """Unicode €.</s>""" ) _snake_case : Tuple = tokenizer("""e è é ê ë""" ) _snake_case : List[Any] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["""input_ids"""], a_ ) # decoding _snake_case : int = tokenizer.decode(a_ ) self.assertEqual(a_, """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ), """e è é ê ë</s>""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Dict = self.ta_base_tokenizer _snake_case : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off _snake_case : Union[str, Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on _snake_case : int = tokenizer(a_, padding=a_, return_tensors=a_ ) self.assertIsInstance(a_, a_ ) if FRAMEWORK != "jax": _snake_case : List[str] = list(batch.input_ids.numpy()[0] ) else: _snake_case : Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(a_, a_ ) self.assertEqual((2, 37), batch.input_ids.shape ) self.assertEqual((2, 37), batch.attention_mask.shape ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : List[Any] = self.ta_base_tokenizer _snake_case : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _snake_case : Tuple = tokenizer(a_, padding=a_, return_tensors=a_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""", a_ ) self.assertIn("""attention_mask""", a_ ) self.assertNotIn("""decoder_input_ids""", a_ ) self.assertNotIn("""decoder_attention_mask""", a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Union[str, Any] = self.ta_base_tokenizer _snake_case : Dict = [ """Summary of the text.""", """Another summary.""", ] _snake_case : Optional[int] = tokenizer( text_target=a_, max_length=32, padding="""max_length""", truncation=a_, return_tensors=a_ ) self.assertEqual(32, targets["""input_ids"""].shape[1] ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : int = self.ta_base_tokenizer _snake_case : Optional[int] = ["""A long paragraph for summarization. </s>"""] _snake_case : Dict = ["""Summary of the text. </s>"""] # fmt: off _snake_case : Optional[int] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] _snake_case : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on _snake_case : Optional[Any] = tokenizer(a_, text_target=a_ ) self.assertEqual(a_, batch["""input_ids"""][0] ) self.assertEqual(a_, batch["""labels"""][0] ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test _snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _snake_case : List[str] = tempfile.mkdtemp() _snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running""" _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) _snake_case : List[Any] = tokenizer.__class__.from_pretrained(a_ ) _snake_case : Dict = after_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) shutil.rmtree(a_ ) _snake_case : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _snake_case : Union[str, Any] = tempfile.mkdtemp() _snake_case : List[Any] = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) _snake_case : Optional[Any] = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) _snake_case : Optional[Any] = tokenizer.__class__.from_pretrained(a_ ) _snake_case : str = after_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) self.assertIn("""new_additional_special_token""", after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) _snake_case : Optional[int] = tokenizer.__class__.from_pretrained(a_, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(a_ ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a_ ) with open(os.path.join(a_, """special_tokens_map.json""" ), encoding="""utf-8""" ) as json_file: _snake_case : Union[str, Any] = json.load(a_ ) with open(os.path.join(a_, """tokenizer_config.json""" ), encoding="""utf-8""" ) as json_file: _snake_case : List[Any] = json.load(a_ ) _snake_case : int = [f"<extra_id_{i}>" for i in range(125 )] _snake_case : Optional[int] = added_tokens_extra_ids + [ """an_additional_special_token""" ] _snake_case : Dict = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(a_, """special_tokens_map.json""" ), """w""", encoding="""utf-8""" ) as outfile: json.dump(a_, a_ ) with open(os.path.join(a_, """tokenizer_config.json""" ), """w""", encoding="""utf-8""" ) as outfile: json.dump(a_, a_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case : Optional[int] = tokenizer_class.from_pretrained( a_, ) self.assertIn( """an_additional_special_token""", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case : Union[str, Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""", lstrip=a_ )] _snake_case : List[Any] = tokenizer_class.from_pretrained( a_, additional_special_tokens=a_, ) self.assertIn("""a_new_additional_special_token""", tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ), ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a_ ) _snake_case : Optional[Any] = tokenizer_class.from_pretrained(a_ ) self.assertTrue(tokenizer.decode([255] ) == """""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.get_tokenizers(fast=a_, do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : Dict = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] _snake_case : List[Any] = tokenizer.convert_tokens_to_string(a_ ) self.assertIsInstance(a_, a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : Optional[int] = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] _snake_case : Any = 0 _snake_case : Union[str, Any] = tokenizer.convert_ids_to_tokens( a_, skip_special_tokens=a_ ) for attr in attributes_list: setattr(a_, attr + """_id""", a_ ) self.assertEqual(getattr(a_, a_ ), a_ ) self.assertEqual(getattr(a_, attr + """_id""" ), a_ ) setattr(a_, attr + """_id""", a_ ) self.assertEqual(getattr(a_, a_ ), a_ ) self.assertEqual(getattr(a_, attr + """_id""" ), a_ ) setattr(a_, """additional_special_tokens_ids""", [] ) self.assertListEqual(getattr(a_, """additional_special_tokens""" ), [] ) self.assertListEqual(getattr(a_, """additional_special_tokens_ids""" ), [] ) setattr(a_, """additional_special_tokens_ids""", [token_id_to_test_setters] ) self.assertListEqual(getattr(a_, """additional_special_tokens""" ), [token_to_test_setters] ) self.assertListEqual(getattr(a_, """additional_special_tokens_ids""" ), [token_id_to_test_setters] )
28
0
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase: def __init__( self: Tuple, a_: Any, a_: Tuple=13, a_: Union[str, Any]=7, a_: Union[str, Any]=True, a_: List[str]=True, a_: str=True, a_: List[str]=True, a_: str=True, a_: Dict=False, a_: int=False, a_: int=False, a_: List[Any]=2, a_: Optional[int]=99, a_: List[str]=0, a_: List[str]=32, a_: Tuple=5, a_: str=4, a_: int=0.1, a_: Union[str, Any]=0.1, a_: Optional[int]=512, a_: List[str]=2, a_: Optional[int]=0.02, a_: str=2, a_: List[str]=4, a_: int="last", a_: Optional[Any]=True, a_: Optional[int]=None, a_: List[str]=0, ): '''simple docstring''' _snake_case : List[str] = parent _snake_case : Tuple = batch_size _snake_case : Union[str, Any] = seq_length _snake_case : Dict = is_training _snake_case : Dict = use_input_lengths _snake_case : List[str] = use_token_type_ids _snake_case : Dict = use_labels _snake_case : int = gelu_activation _snake_case : List[str] = sinusoidal_embeddings _snake_case : Tuple = causal _snake_case : Tuple = asm _snake_case : List[Any] = n_langs _snake_case : List[Any] = vocab_size _snake_case : List[Any] = n_special _snake_case : Dict = hidden_size _snake_case : str = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Dict = hidden_dropout_prob _snake_case : Optional[Any] = attention_probs_dropout_prob _snake_case : str = max_position_embeddings _snake_case : List[Any] = type_sequence_label_size _snake_case : Optional[int] = initializer_range _snake_case : Optional[Any] = num_labels _snake_case : str = num_choices _snake_case : Tuple = summary_type _snake_case : Tuple = use_proj _snake_case : List[Any] = scope _snake_case : int = bos_token_id def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) _snake_case : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case : Union[str, Any] = None if self.use_input_lengths: _snake_case : int = ( ids_tensor([self.batch_size], vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _snake_case : Optional[int] = None if self.use_token_type_ids: _snake_case : int = ids_tensor([self.batch_size, self.seq_length], self.n_langs ) _snake_case : Optional[int] = None _snake_case : str = None _snake_case : Optional[Any] = None if self.use_labels: _snake_case : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) _snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) _snake_case : Optional[Any] = ids_tensor([self.batch_size], 2 ).float() _snake_case : Optional[int] = ids_tensor([self.batch_size], self.num_choices ) _snake_case : Optional[int] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase_ ( self: str ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size, n_special=self.n_special, emb_dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, gelu_activation=self.gelu_activation, sinusoidal_embeddings=self.sinusoidal_embeddings, asm=self.asm, causal=self.causal, n_langs=self.n_langs, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, summary_type=self.summary_type, use_proj=self.use_proj, num_labels=self.num_labels, bos_token_id=self.bos_token_id, ) def UpperCamelCase_ ( self: str, a_: Any, a_: Any, a_: Tuple, a_: Dict, a_: Optional[int], a_: Union[str, Any], a_: Dict, a_: Tuple, a_: Any, ): '''simple docstring''' _snake_case : Tuple = XLMModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _snake_case : List[str] = model(snake_case_, lengths=snake_case_, langs=snake_case_ ) _snake_case : Optional[Any] = model(snake_case_, langs=snake_case_ ) _snake_case : str = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self: Union[str, Any], a_: str, a_: List[Any], a_: Any, a_: Union[str, Any], a_: Tuple, a_: int, a_: List[Any], a_: Union[str, Any], a_: Any, ): '''simple docstring''' _snake_case : Optional[Any] = XLMWithLMHeadModel(snake_case_ ) model.to(snake_case_ ) model.eval() _snake_case : int = model(snake_case_, token_type_ids=snake_case_, labels=snake_case_ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self: Dict, a_: Any, a_: str, a_: Union[str, Any], a_: int, a_: List[Any], a_: Tuple, a_: Union[str, Any], a_: Any, a_: Optional[int], ): '''simple docstring''' _snake_case : List[Any] = XLMForQuestionAnsweringSimple(snake_case_ ) model.to(snake_case_ ) model.eval() _snake_case : Optional[int] = model(snake_case_ ) _snake_case : Tuple = model(snake_case_, start_positions=snake_case_, end_positions=snake_case_ ) _snake_case : Union[str, Any] = outputs self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self: List[str], a_: List[str], a_: Dict, a_: str, a_: str, a_: Tuple, a_: str, a_: List[Any], a_: int, a_: Any, ): '''simple docstring''' _snake_case : Union[str, Any] = XLMForQuestionAnswering(snake_case_ ) model.to(snake_case_ ) model.eval() _snake_case : int = model(snake_case_ ) _snake_case : List[Any] = model( snake_case_, start_positions=snake_case_, end_positions=snake_case_, cls_index=snake_case_, is_impossible=snake_case_, p_mask=snake_case_, ) _snake_case : Optional[Any] = model( snake_case_, start_positions=snake_case_, end_positions=snake_case_, cls_index=snake_case_, is_impossible=snake_case_, ) (_snake_case ) : Dict = result_with_labels.to_tuple() _snake_case : Optional[Any] = model(snake_case_, start_positions=snake_case_, end_positions=snake_case_ ) (_snake_case ) : List[str] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape, () ) self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,) ) def UpperCamelCase_ ( self: List[str], a_: List[Any], a_: Tuple, a_: Dict, a_: Optional[Any], a_: int, a_: Any, a_: List[str], a_: List[str], a_: Optional[int], ): '''simple docstring''' _snake_case : Union[str, Any] = XLMForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _snake_case : Optional[int] = model(snake_case_ ) _snake_case : Union[str, Any] = model(snake_case_, labels=snake_case_ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self: Dict, a_: str, a_: Dict, a_: List[str], a_: Union[str, Any], a_: Dict, a_: Tuple, a_: Dict, a_: Optional[Any], a_: List[Any], ): '''simple docstring''' _snake_case : List[str] = self.num_labels _snake_case : Union[str, Any] = XLMForTokenClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _snake_case : Optional[Any] = model(snake_case_, attention_mask=snake_case_, labels=snake_case_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self: Optional[int], a_: Tuple, a_: Any, a_: int, a_: int, a_: Optional[Any], a_: Union[str, Any], a_: Optional[Any], a_: List[str], a_: Union[str, Any], ): '''simple docstring''' _snake_case : List[str] = self.num_choices _snake_case : Union[str, Any] = XLMForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _snake_case : int = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() _snake_case : int = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() _snake_case : List[str] = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() _snake_case : List[Any] = model( snake_case_, attention_mask=snake_case_, token_type_ids=snake_case_, labels=snake_case_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Dict = self.prepare_config_and_inputs() ( _snake_case ) : Any = config_and_inputs _snake_case : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class lowercase( _snake_case , _snake_case , _snake_case , unittest.TestCase ): lowercase__ = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) lowercase__ = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase__ = ( { """feature-extraction""": XLMModel, """fill-mask""": XLMWithLMHeadModel, """question-answering""": XLMForQuestionAnsweringSimple, """text-classification""": XLMForSequenceClassification, """text-generation""": XLMWithLMHeadModel, """token-classification""": XLMForTokenClassification, """zero-shot""": XLMForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase_ ( self: List[Any], a_: Optional[int], a_: str, a_: Optional[Any], a_: Optional[int], a_: str ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase_ ( self: Dict, a_: Optional[int], a_: List[str], a_: Tuple=False ): '''simple docstring''' _snake_case : Optional[Any] = super()._prepare_for_class(snake_case_, snake_case_, return_labels=snake_case_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": _snake_case : Any = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=snake_case_ ) _snake_case : Union[str, Any] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=snake_case_ ) return inputs_dict def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : int = XLMModelTester(self ) _snake_case : Any = ConfigTester(self, config_class=snake_case_, emb_dim=37 ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*snake_case_ ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*snake_case_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*snake_case_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*snake_case_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*snake_case_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*snake_case_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*snake_case_ ) def UpperCamelCase_ ( self: Optional[Any], a_: Tuple, a_: List[Any], a_: Any, a_: int, a_: List[str], a_: Dict=False, a_: Optional[int]=1 ): '''simple docstring''' self.assertIsInstance(snake_case_, snake_case_ ) self.assertListEqual( [isinstance(snake_case_, snake_case_ ) for iter_attentions in attentions], [True] * len(snake_case_ ) ) self.assertEqual(len(snake_case_ ), (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(snake_case_ ): # adds PAD dummy token _snake_case : Optional[Any] = min_length + idx + 1 _snake_case : Optional[Any] = min_length + idx + 1 _snake_case : Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(snake_case_ ) ) def UpperCamelCase_ ( self: List[Any], a_: Tuple, a_: Dict, a_: str, a_: int, a_: str, a_: List[Any]=False, a_: Any=1 ): '''simple docstring''' self.assertIsInstance(snake_case_, snake_case_ ) self.assertListEqual( [isinstance(snake_case_, snake_case_ ) for iter_hidden_states in hidden_states], [True] * len(snake_case_ ), ) self.assertEqual(len(snake_case_ ), (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(snake_case_ ): # adds PAD dummy token _snake_case : Dict = min_length + idx + 1 _snake_case : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states], [expected_shape] * len(snake_case_ ), ) pass @slow def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Any = XLMModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class lowercase( unittest.TestCase ): @slow def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[Any] = XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(snake_case_ ) _snake_case : List[Any] = torch.tensor([[14, 447]], dtype=torch.long, device=snake_case_ ) # the president _snake_case : List[Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference _snake_case : Any = model.generate(snake_case_, do_sample=snake_case_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist(), snake_case_ )
720
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class lowercase( __a ): '''simple docstring''' @staticmethod @abstractmethod def UpperCamelCase_ ( a_: ArgumentParser ): '''simple docstring''' raise NotImplementedError() @abstractmethod def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' raise NotImplementedError()
28
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ = { '''configuration_graphormer''': ['''GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GraphormerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GraphormerForGraphClassification''', '''GraphormerModel''', '''GraphormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
721
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase( __a ): '''simple docstring''' lowercase__ = "roformer" def __init__( self: List[str], a_: Tuple=50_000, a_: Optional[Any]=None, a_: List[str]=768, a_: Union[str, Any]=12, a_: Optional[int]=12, a_: Optional[Any]=3_072, a_: List[str]="gelu", a_: List[str]=0.1, a_: Tuple=0.1, a_: Optional[int]=1_536, a_: Any=2, a_: Optional[int]=0.02, a_: Tuple=1E-12, a_: Dict=0, a_: str=False, a_: Dict=True, **a_: Dict, ): '''simple docstring''' super().__init__(pad_token_id=a_, **a_ ) _snake_case : int = vocab_size _snake_case : int = hidden_size if embedding_size is None else embedding_size _snake_case : Dict = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : Any = num_attention_heads _snake_case : Dict = hidden_act _snake_case : Optional[int] = intermediate_size _snake_case : List[Any] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = max_position_embeddings _snake_case : Tuple = type_vocab_size _snake_case : List[Any] = initializer_range _snake_case : List[Any] = layer_norm_eps _snake_case : Optional[Any] = rotary_value _snake_case : List[str] = use_cache class lowercase( __a ): '''simple docstring''' @property def UpperCamelCase_ ( self: Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : str = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : List[str] = {0: """batch""", 1: """sequence"""} _snake_case : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
28
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ = { '''configuration_conditional_detr''': [ '''CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConditionalDetrConfig''', '''ConditionalDetrOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''ConditionalDetrFeatureExtractor'''] A_ = ['''ConditionalDetrImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConditionalDetrForObjectDetection''', '''ConditionalDetrForSegmentation''', '''ConditionalDetrModel''', '''ConditionalDetrPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
700
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Union[str, Any]=1 ): """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : List[Any]=0 ): """simple docstring""" _snake_case : Optional[Any] = [] for old_item in old_list: _snake_case : Union[str, Any] = old_item.replace("""in_layers.0""" , """norm1""" ) _snake_case : List[Any] = new_item.replace("""in_layers.2""" , """conv1""" ) _snake_case : Tuple = new_item.replace("""out_layers.0""" , """norm2""" ) _snake_case : Dict = new_item.replace("""out_layers.3""" , """conv2""" ) _snake_case : int = new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) _snake_case : Optional[Any] = new_item.replace("""skip_connection""" , """conv_shortcut""" ) _snake_case : str = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : Dict=0 ): """simple docstring""" _snake_case : Dict = [] for old_item in old_list: _snake_case : Dict = old_item _snake_case : int = new_item.replace("""norm.weight""" , """group_norm.weight""" ) _snake_case : str = new_item.replace("""norm.bias""" , """group_norm.bias""" ) _snake_case : Optional[Any] = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) _snake_case : Optional[Any] = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) _snake_case : Optional[Any] = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : str=None , snake_case__ : str=None , snake_case__ : List[str]=None ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _snake_case : Union[str, Any] = old_checkpoint[path] _snake_case : Optional[int] = old_tensor.shape[0] // 3 _snake_case : List[Any] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) _snake_case : Union[str, Any] = old_tensor.shape[0] // config["""num_head_channels"""] // 3 _snake_case : Any = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _snake_case , _snake_case , _snake_case : List[str] = old_tensor.split(channels // num_heads , dim=1 ) _snake_case : Union[str, Any] = query.reshape(snake_case__ ) _snake_case : Tuple = key.reshape(snake_case__ ) _snake_case : Any = value.reshape(snake_case__ ) for path in paths: _snake_case : List[Any] = path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _snake_case : Union[str, Any] = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) _snake_case : str = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) _snake_case : Any = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: _snake_case : int = new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _snake_case : Dict = old_checkpoint[path["""old"""]][:, :, 0] else: _snake_case : Optional[Any] = old_checkpoint[path["""old"""]] def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : List[str] ): """simple docstring""" _snake_case : int = {} _snake_case : Tuple = checkpoint["""time_embed.0.weight"""] _snake_case : List[str] = checkpoint["""time_embed.0.bias"""] _snake_case : List[str] = checkpoint["""time_embed.2.weight"""] _snake_case : Tuple = checkpoint["""time_embed.2.bias"""] _snake_case : Dict = checkpoint["""input_blocks.0.0.weight"""] _snake_case : List[Any] = checkpoint["""input_blocks.0.0.bias"""] _snake_case : List[Any] = checkpoint["""out.0.weight"""] _snake_case : Any = checkpoint["""out.0.bias"""] _snake_case : Any = checkpoint["""out.2.weight"""] _snake_case : List[str] = checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only _snake_case : List[str] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) _snake_case : Any = { layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key] for layer_id in range(snake_case__ ) } # Retrieves the keys for the middle blocks only _snake_case : Optional[int] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) _snake_case : Optional[int] = { layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key] for layer_id in range(snake_case__ ) } # Retrieves the keys for the output blocks only _snake_case : str = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) _snake_case : List[Any] = { layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key] for layer_id in range(snake_case__ ) } for i in range(1 , snake_case__ ): _snake_case : Union[str, Any] = (i - 1) // (config["""num_res_blocks"""] + 1) _snake_case : int = (i - 1) % (config["""num_res_blocks"""] + 1) _snake_case : List[str] = [key for key in input_blocks[i] if F"input_blocks.{i}.0" in key] _snake_case : str = [key for key in input_blocks[i] if F"input_blocks.{i}.1" in key] if F"input_blocks.{i}.0.op.weight" in checkpoint: _snake_case : Union[str, Any] = checkpoint[ F"input_blocks.{i}.0.op.weight" ] _snake_case : Dict = checkpoint[ F"input_blocks.{i}.0.op.bias" ] continue _snake_case : Optional[int] = renew_resnet_paths(snake_case__ ) _snake_case : int = {"""old""": F"input_blocks.{i}.0", """new""": F"down_blocks.{block_id}.resnets.{layer_in_block_id}"} _snake_case : Tuple = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path, resnet_op] , config=snake_case__ ) if len(snake_case__ ): _snake_case : str = renew_attention_paths(snake_case__ ) _snake_case : List[str] = { """old""": F"input_blocks.{i}.1", """new""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}", } _snake_case : Optional[int] = { F"input_blocks.{i}.1.qkv.bias": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"input_blocks.{i}.1.qkv.weight": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=snake_case__ , config=snake_case__ , ) _snake_case : int = middle_blocks[0] _snake_case : List[str] = middle_blocks[1] _snake_case : Any = middle_blocks[2] _snake_case : Dict = renew_resnet_paths(snake_case__ ) assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ ) _snake_case : Any = renew_resnet_paths(snake_case__ ) assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ ) _snake_case : Dict = renew_attention_paths(snake_case__ ) _snake_case : Tuple = { """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , attention_paths_to_split=snake_case__ , config=snake_case__ ) for i in range(snake_case__ ): _snake_case : Optional[Any] = i // (config["""num_res_blocks"""] + 1) _snake_case : Dict = i % (config["""num_res_blocks"""] + 1) _snake_case : List[str] = [shave_segments(snake_case__ , 2 ) for name in output_blocks[i]] _snake_case : Any = {} for layer in output_block_layers: _snake_case , _snake_case : Any = layer.split(""".""" )[0], shave_segments(snake_case__ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(snake_case__ ) else: _snake_case : str = [layer_name] if len(snake_case__ ) > 1: _snake_case : Dict = [key for key in output_blocks[i] if F"output_blocks.{i}.0" in key] _snake_case : List[str] = [key for key in output_blocks[i] if F"output_blocks.{i}.1" in key] _snake_case : List[Any] = renew_resnet_paths(snake_case__ ) _snake_case : int = renew_resnet_paths(snake_case__ ) _snake_case : Optional[Any] = {"""old""": F"output_blocks.{i}.0", """new""": F"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _snake_case : str = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) _snake_case : Any = checkpoint[ F"output_blocks.{i}.{index}.conv.weight" ] _snake_case : Optional[int] = checkpoint[ F"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(snake_case__ ) == 2: _snake_case : Any = [] if len(snake_case__ ): _snake_case : str = renew_attention_paths(snake_case__ ) _snake_case : str = { """old""": F"output_blocks.{i}.1", """new""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}", } _snake_case : int = { F"output_blocks.{i}.1.qkv.bias": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"output_blocks.{i}.1.qkv.weight": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=snake_case__ , ) else: _snake_case : Optional[Any] = renew_resnet_paths(snake_case__ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: _snake_case : Optional[Any] = """.""".join(["""output_blocks""", str(snake_case__ ), path["""old"""]] ) _snake_case : Optional[int] = """.""".join(["""up_blocks""", str(snake_case__ ), """resnets""", str(snake_case__ ), path["""new"""]] ) _snake_case : Any = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') A_ = parser.parse_args() A_ = torch.load(args.checkpoint_path) with open(args.config_file) as f: A_ = json.loads(f.read()) A_ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] A_ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: A_ = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) A_ = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) A_ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
28
0
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) A_ = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Optional[int], a_: Tuple, a_: Dict, a_: Any = None, a_: List[Any] = None ): '''simple docstring''' _snake_case : List[str] = None _snake_case : List[str] = os.path.abspath(os.path.join("""examples""", """by_feature""" ) ) _snake_case : Tuple = os.path.abspath("""examples""" ) for item in os.listdir(__lowerCamelCase ): if item not in EXCLUDE_EXAMPLES: _snake_case : Optional[int] = os.path.join(__lowerCamelCase, __lowerCamelCase ) if os.path.isfile(__lowerCamelCase ) and ".py" in item_path: with self.subTest( tested_script=__lowerCamelCase, feature_script=__lowerCamelCase, tested_section="""main()""" if parser_only else """training_function()""", ): _snake_case : Optional[int] = compare_against_test( os.path.join(__lowerCamelCase, __lowerCamelCase ), __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) _snake_case : Tuple = '''\n'''.join(__lowerCamelCase ) if special_strings is not None: for string in special_strings: _snake_case : int = diff.replace(__lowerCamelCase, """""" ) self.assertEqual(__lowerCamelCase, """""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' self.one_complete_example("""complete_nlp_example.py""", __lowerCamelCase ) self.one_complete_example("""complete_nlp_example.py""", __lowerCamelCase ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Union[str, Any] = os.path.abspath(os.path.join("""examples""", """cv_example.py""" ) ) _snake_case : Tuple = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example("""complete_cv_example.py""", __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) self.one_complete_example("""complete_cv_example.py""", __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class lowercase( lowerCamelCase__ ): '''simple docstring''' lowercase__ = False @classmethod def UpperCamelCase_ ( cls: Union[str, Any] ): '''simple docstring''' super().setUpClass() _snake_case : List[Any] = tempfile.mkdtemp() _snake_case : str = os.path.join(cls._tmpdir, """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) _snake_case : Optional[int] = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def UpperCamelCase_ ( cls: List[str] ): '''simple docstring''' super().tearDownClass() shutil.rmtree(cls._tmpdir ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : List[str] = f"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir, """epoch_0""" ) ) ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Optional[Any] = f"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() _snake_case : str = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir, """step_2""" ) ) ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Optional[int] = f"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir, 'epoch_0' )}\n ".split() _snake_case : Optional[int] = run_command(self._launch_args + testargs, return_stdout=__lowerCamelCase ) self.assertNotIn("""epoch 0:""", __lowerCamelCase ) self.assertIn("""epoch 1:""", __lowerCamelCase ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Any = f"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir, 'step_2' )}\n ".split() _snake_case : Any = run_command(self._launch_args + testargs, return_stdout=__lowerCamelCase ) if torch.cuda.is_available(): _snake_case : Union[str, Any] = torch.cuda.device_count() else: _snake_case : int = 1 if num_processes > 1: self.assertNotIn("""epoch 0:""", __lowerCamelCase ) self.assertIn("""epoch 1:""", __lowerCamelCase ) else: self.assertIn("""epoch 0:""", __lowerCamelCase ) self.assertIn("""epoch 1:""", __lowerCamelCase ) @slow def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Dict = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ, {"""TESTING_MOCKED_DATALOADERS""": """0"""} ): _snake_case : Union[str, Any] = run_command(self._launch_args + testargs, return_stdout=__lowerCamelCase ) _snake_case : List[Any] = re.findall("""({.+})""", __lowerCamelCase ) _snake_case : Union[str, Any] = [r for r in results if '''accuracy''' in r][-1] _snake_case : List[str] = ast.literal_eval(__lowerCamelCase ) self.assertGreaterEqual(results["""accuracy"""], 0.75 ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : List[str] = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ, {"""WANDB_MODE""": """offline"""} ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: _snake_case : Any = f"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__lowerCamelCase, """tracking""" ) ) ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Dict = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Any = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
701
"""simple docstring""" from typing import Any def UpperCAmelCase__ (snake_case__ : list ): """simple docstring""" if not input_list: return [] _snake_case : List[Any] = [input_list.count(snake_case__ ) for value in input_list] _snake_case : Optional[int] = max(snake_case__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(snake_case__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
28
0
"""simple docstring""" from torch import nn def UpperCAmelCase__ (snake_case__ : Optional[int] ): """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F"Unsupported activation function: {act_fn}" )
702
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''', '''BridgeTower/bridgetower-base-itm-mlm''': ( '''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json''' ), } class lowercase( __a ): '''simple docstring''' lowercase__ = "bridgetower_vision_model" def __init__( self: Tuple, a_: str=768, a_: Union[str, Any]=12, a_: List[str]=3, a_: Optional[int]=16, a_: List[Any]=288, a_: Optional[Any]=1, a_: Any=1E-05, a_: Dict=False, a_: Any=True, a_: int=False, **a_: int, ): '''simple docstring''' super().__init__(**a_ ) _snake_case : str = hidden_size _snake_case : int = num_hidden_layers _snake_case : Any = num_channels _snake_case : Union[str, Any] = patch_size _snake_case : Dict = image_size _snake_case : Optional[Any] = initializer_factor _snake_case : Any = layer_norm_eps _snake_case : int = stop_gradient _snake_case : Any = share_layernorm _snake_case : List[Any] = remove_last_layer @classmethod def UpperCamelCase_ ( cls: Union[str, Any], a_: Union[str, os.PathLike], **a_: Optional[Any] ): '''simple docstring''' _snake_case , _snake_case : List[Any] = cls.get_config_dict(a_, **a_ ) if config_dict.get("""model_type""" ) == "bridgetower": _snake_case : str = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a_, **a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "bridgetower_text_model" def __init__( self: str, a_: Dict=50_265, a_: List[Any]=768, a_: Union[str, Any]=12, a_: List[str]=12, a_: str=1, a_: Optional[Any]=3_072, a_: int="gelu", a_: int=0.1, a_: int=0.1, a_: Optional[int]=514, a_: Tuple=1, a_: Tuple=1E-05, a_: Optional[int]=1, a_: Union[str, Any]=0, a_: str=2, a_: Any="absolute", a_: List[Any]=True, **a_: Union[str, Any], ): '''simple docstring''' super().__init__(**a_ ) _snake_case : str = vocab_size _snake_case : Optional[int] = hidden_size _snake_case : Dict = num_hidden_layers _snake_case : Optional[int] = num_attention_heads _snake_case : Optional[int] = hidden_act _snake_case : List[Any] = initializer_factor _snake_case : Optional[int] = intermediate_size _snake_case : int = hidden_dropout_prob _snake_case : Tuple = attention_probs_dropout_prob _snake_case : List[str] = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : List[Any] = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Dict = use_cache _snake_case : int = pad_token_id _snake_case : Union[str, Any] = bos_token_id _snake_case : Union[str, Any] = eos_token_id @classmethod def UpperCamelCase_ ( cls: str, a_: Union[str, os.PathLike], **a_: int ): '''simple docstring''' _snake_case , _snake_case : Optional[int] = cls.get_config_dict(a_, **a_ ) if config_dict.get("""model_type""" ) == "bridgetower": _snake_case : Union[str, Any] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a_, **a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "bridgetower" def __init__( self: int, a_: List[str]=True, a_: Any="gelu", a_: List[Any]=768, a_: int=1, a_: Optional[int]=1E-05, a_: Tuple=False, a_: Optional[Any]="add", a_: List[str]=12, a_: Union[str, Any]=6, a_: int=False, a_: Any=False, a_: Dict=None, a_: Any=None, **a_: str, ): '''simple docstring''' _snake_case : str = kwargs.pop("""text_config_dict""", a_ ) _snake_case : Optional[Any] = kwargs.pop("""vision_config_dict""", a_ ) super().__init__(**a_ ) _snake_case : str = share_cross_modal_transformer_layers _snake_case : Any = hidden_act _snake_case : Union[str, Any] = hidden_size _snake_case : Union[str, Any] = initializer_factor _snake_case : Dict = layer_norm_eps _snake_case : Dict = share_link_tower_layers _snake_case : Optional[int] = link_tower_type _snake_case : Any = num_attention_heads _snake_case : int = num_hidden_layers _snake_case : int = tie_word_embeddings _snake_case : Optional[Any] = init_layernorm_from_vision_encoder if text_config is None: _snake_case : Optional[Any] = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: _snake_case : str = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) _snake_case : Any = BridgeTowerTextConfig(**a_ ) _snake_case : List[Any] = BridgeTowerVisionConfig(**a_ ) @classmethod def UpperCamelCase_ ( cls: Union[str, Any], a_: BridgeTowerTextConfig, a_: BridgeTowerVisionConfig, **a_: Optional[Any] ): '''simple docstring''' return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[int] = copy.deepcopy(self.__dict__ ) _snake_case : str = self.text_config.to_dict() _snake_case : List[str] = self.vision_config.to_dict() _snake_case : Tuple = self.__class__.model_type return output
28
0
"""simple docstring""" from typing import Dict, Optional import numpy as np import datasets A_ = '''\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n''' A_ = '''\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n''' A_ = '''\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}''' def UpperCAmelCase__ (snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : Dict , snake_case__ : Any , snake_case__ : Union[str, Any] = None , snake_case__ : Tuple = False , ): if label_map is not None: for old_id, new_id in label_map.items(): _snake_case : int = new_id # turn into Numpy arrays _snake_case : int = np.array(__SCREAMING_SNAKE_CASE ) _snake_case : Any = np.array(__SCREAMING_SNAKE_CASE ) if reduce_labels: _snake_case : str = 2_55 _snake_case : str = label - 1 _snake_case : List[Any] = 2_55 _snake_case : Union[str, Any] = label != ignore_index _snake_case : Dict = np.not_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) _snake_case : Tuple = pred_label[mask] _snake_case : Any = np.array(__SCREAMING_SNAKE_CASE )[mask] _snake_case : List[str] = pred_label[pred_label == label] _snake_case : int = np.histogram(__SCREAMING_SNAKE_CASE , bins=__SCREAMING_SNAKE_CASE , range=(0, num_labels - 1) )[0] _snake_case : Tuple = np.histogram(__SCREAMING_SNAKE_CASE , bins=__SCREAMING_SNAKE_CASE , range=(0, num_labels - 1) )[0] _snake_case : List[Any] = np.histogram(__SCREAMING_SNAKE_CASE , bins=__SCREAMING_SNAKE_CASE , range=(0, num_labels - 1) )[0] _snake_case : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : int = None , snake_case__ : Any = False , ): _snake_case : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) _snake_case : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) _snake_case : int = np.zeros((num_labels,) , dtype=np.floataa ) _snake_case : int = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _snake_case : int = intersect_and_union( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : Dict , snake_case__ : str , snake_case__ : Tuple , snake_case__ : int = None , snake_case__ : int = None , snake_case__ : Union[str, Any] = False , ): _snake_case : Tuple = total_intersect_and_union( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # compute metrics _snake_case : Union[str, Any] = {} _snake_case : int = total_area_intersect.sum() / total_area_label.sum() _snake_case : str = total_area_intersect / total_area_union _snake_case : Union[str, Any] = total_area_intersect / total_area_label _snake_case : List[str] = np.nanmean(__SCREAMING_SNAKE_CASE ) _snake_case : str = np.nanmean(__SCREAMING_SNAKE_CASE ) _snake_case : Any = all_acc _snake_case : Union[str, Any] = iou _snake_case : Tuple = acc if nan_to_num is not None: _snake_case : str = {metric: np.nan_to_num(__SCREAMING_SNAKE_CASE , nan=__SCREAMING_SNAKE_CASE ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { """predictions""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ), """references""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ), } ), reference_urls=[ """https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py""" ], ) def UpperCamelCase_ ( self: Optional[int], a_: str, a_: Any, a_: List[Any], a_: str, a_: Optional[int] = None, a_: int = None, a_: Optional[int] = False, ): '''simple docstring''' _snake_case : Optional[Any] = mean_iou( results=lowercase_, gt_seg_maps=lowercase_, num_labels=lowercase_, ignore_index=lowercase_, nan_to_num=lowercase_, label_map=lowercase_, reduce_labels=lowercase_, ) return iou_result
703
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCAmelCase__ (): """simple docstring""" _snake_case : Optional[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" _snake_case : Union[str, Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("""RGB""" ) return image def UpperCAmelCase__ (snake_case__ : Any ): """simple docstring""" _snake_case : str = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"visual_encoder.blocks.{i}.norm1.weight", F"vision_model.encoder.layers.{i}.layer_norm1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm1.bias", F"vision_model.encoder.layers.{i}.layer_norm1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.weight", F"vision_model.encoder.layers.{i}.layer_norm2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.bias", F"vision_model.encoder.layers.{i}.layer_norm2.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.qkv.weight", F"vision_model.encoder.layers.{i}.self_attn.qkv.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.weight", F"vision_model.encoder.layers.{i}.self_attn.projection.weight",) ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.bias", F"vision_model.encoder.layers.{i}.self_attn.projection.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.weight", F"vision_model.encoder.layers.{i}.mlp.fc1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.bias", F"vision_model.encoder.layers.{i}.mlp.fc1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.weight", F"vision_model.encoder.layers.{i}.mlp.fc2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.bias", F"vision_model.encoder.layers.{i}.mlp.fc2.bias") ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : Tuple ): """simple docstring""" _snake_case : Optional[Any] = dct.pop(snake_case__ ) _snake_case : Optional[int] = val def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : str ): """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _snake_case : Optional[int] = state_dict.pop(F"visual_encoder.blocks.{i}.attn.q_bias" ) _snake_case : Tuple = state_dict.pop(F"visual_encoder.blocks.{i}.attn.v_bias" ) # next, set bias in the state dict _snake_case : List[str] = torch.cat((q_bias, torch.zeros_like(snake_case__ , requires_grad=snake_case__ ), v_bias) ) _snake_case : Dict = qkv_bias def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Union[str, Any] ): """simple docstring""" _snake_case : List[Any] = 3_64 if """coco""" in model_name else 2_24 _snake_case : List[str] = BlipaVisionConfig(image_size=snake_case__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _snake_case : List[str] = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=snake_case__ ).to_dict() elif "opt-6.7b" in model_name: _snake_case : List[str] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=snake_case__ ).to_dict() elif "t5-xl" in model_name: _snake_case : Tuple = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _snake_case : List[Any] = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() _snake_case : int = BlipaConfig(vision_config=snake_case__ , text_config=snake_case__ ) return config, image_size @torch.no_grad() def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int=None , snake_case__ : str=False ): """simple docstring""" _snake_case : List[str] = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) _snake_case : str = tokenizer("""\n""" , add_special_tokens=snake_case__ ).input_ids[0] _snake_case , _snake_case : Dict = get_blipa_config(snake_case__ , eos_token_id=snake_case__ ) _snake_case : str = BlipaForConditionalGeneration(snake_case__ ).eval() _snake_case : int = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } _snake_case , _snake_case : List[Any] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) _snake_case : int = """cuda""" if torch.cuda.is_available() else """cpu""" _snake_case , _snake_case , _snake_case : Any = load_model_and_preprocess( name=snake_case__ , model_type=snake_case__ , is_eval=snake_case__ , device=snake_case__ ) original_model.eval() print("""Done!""" ) # update state dict keys _snake_case : Any = original_model.state_dict() _snake_case : Dict = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _snake_case : str = state_dict.pop(snake_case__ ) if key.startswith("""Qformer.bert""" ): _snake_case : str = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: _snake_case : Any = key.replace("""self""" , """attention""" ) if "opt_proj" in key: _snake_case : List[str] = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: _snake_case : Optional[Any] = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): _snake_case : List[Any] = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): _snake_case : List[Any] = key.replace("""t5""" , """language""" ) _snake_case : str = val # read in qv biases read_in_q_v_bias(snake_case__ , snake_case__ ) _snake_case , _snake_case : List[str] = hf_model.load_state_dict(snake_case__ , strict=snake_case__ ) assert len(snake_case__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _snake_case : Any = load_demo_image() _snake_case : str = vis_processors["""eval"""](snake_case__ ).unsqueeze(0 ).to(snake_case__ ) _snake_case : List[Any] = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(snake_case__ ) # create processor _snake_case : Any = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=snake_case__ , image_std=snake_case__ ) _snake_case : int = BlipaProcessor(image_processor=snake_case__ , tokenizer=snake_case__ ) _snake_case : Any = processor(images=snake_case__ , return_tensors="""pt""" ).pixel_values.to(snake_case__ ) # make sure processor creates exact same pixel values assert torch.allclose(snake_case__ , snake_case__ ) original_model.to(snake_case__ ) hf_model.to(snake_case__ ) with torch.no_grad(): if "opt" in model_name: _snake_case : str = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits _snake_case : int = hf_model(snake_case__ , snake_case__ ).logits else: _snake_case : str = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits _snake_case : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) _snake_case : Union[str, Any] = hf_model(snake_case__ , snake_case__ , labels=snake_case__ ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _snake_case : List[str] = torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=snake_case__ ) assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _snake_case : Union[str, Any] = torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=snake_case__ ) else: # cast to same type _snake_case : int = logits.dtype assert torch.allclose(original_logits.to(snake_case__ ) , snake_case__ , atol=1e-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) _snake_case : Any = """""" _snake_case : str = tokenizer(snake_case__ , return_tensors="""pt""" ).input_ids.to(snake_case__ ) _snake_case : Union[str, Any] = original_model.generate({"""image""": original_pixel_values} ) _snake_case : Tuple = hf_model.generate( snake_case__ , snake_case__ , do_sample=snake_case__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , snake_case__ ) _snake_case : Optional[Any] = input_ids.shape[1] _snake_case : int = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=snake_case__ ) _snake_case : Optional[Any] = [text.strip() for text in output_text] print("""HF generation:""" , snake_case__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(snake_case__ ) hf_model.save_pretrained(snake_case__ ) if push_to_hub: processor.push_to_hub(F"nielsr/{model_name}" ) hf_model.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() A_ = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) A_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
28
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' lowercase__ = TextToVideoSDPipeline lowercase__ = TEXT_TO_IMAGE_PARAMS lowercase__ = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. lowercase__ = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Tuple = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D"""), up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D"""), cross_attention_dim=32, attention_head_dim=4, ) _snake_case : int = DDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule="""scaled_linear""", clip_sample=A_, set_alpha_to_one=A_, ) torch.manual_seed(0 ) _snake_case : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) _snake_case : Union[str, Any] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act="""gelu""", projection_dim=512, ) _snake_case : List[Any] = CLIPTextModel(A_ ) _snake_case : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _snake_case : Tuple = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCamelCase_ ( self: Dict, a_: int, a_: List[Any]=0 ): '''simple docstring''' if str(A_ ).startswith("""mps""" ): _snake_case : int = torch.manual_seed(A_ ) else: _snake_case : Optional[Any] = torch.Generator(device=A_ ).manual_seed(A_ ) _snake_case : List[str] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : int = """cpu""" # ensure determinism for the device-dependent torch.Generator _snake_case : Tuple = self.get_dummy_components() _snake_case : Any = TextToVideoSDPipeline(**A_ ) _snake_case : Optional[int] = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) _snake_case : Tuple = self.get_dummy_inputs(A_ ) _snake_case : Any = """np""" _snake_case : List[Any] = sd_pipe(**A_ ).frames _snake_case : Union[str, Any] = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _snake_case : Tuple = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=A_, expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(), reason="""XFormers attention is only available with CUDA and `xformers` installed""", ) def UpperCamelCase_ ( self: str ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A_, expected_max_diff=1E-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' pass def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) _snake_case : Dict = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _snake_case : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _snake_case : str = pipe.to("""cuda""" ) _snake_case : Any = """Spiderman is surfing""" _snake_case : Optional[int] = torch.Generator(device="""cpu""" ).manual_seed(0 ) _snake_case : Any = pipe(A_, generator=A_, num_inference_steps=25, output_type="""pt""" ).frames _snake_case : Union[str, Any] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) _snake_case : List[Any] = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _snake_case : Any = pipe.to("""cuda""" ) _snake_case : Dict = """Spiderman is surfing""" _snake_case : int = torch.Generator(device="""cpu""" ).manual_seed(0 ) _snake_case : Any = pipe(A_, generator=A_, num_inference_steps=2, output_type="""pt""" ).frames _snake_case : Tuple = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
704
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def UpperCAmelCase__ (snake_case__ : Optional[int] ): """simple docstring""" print("""Loading config file...""" ) def flatten_yaml_as_dict(snake_case__ : List[Any] , snake_case__ : Optional[Any]="" , snake_case__ : Tuple="." ): _snake_case : Union[str, Any] = [] for k, v in d.items(): _snake_case : List[str] = parent_key + sep + k if parent_key else k if isinstance(snake_case__ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(snake_case__ , snake_case__ , sep=snake_case__ ).items() ) else: items.append((new_key, v) ) return dict(snake_case__ ) _snake_case : Dict = argparse.Namespace() with open(snake_case__ , """r""" ) as yaml_file: try: _snake_case : List[Any] = yaml.load(snake_case__ , Loader=yaml.FullLoader ) _snake_case : Any = flatten_yaml_as_dict(snake_case__ ) for k, v in flat_cfg.items(): setattr(snake_case__ , snake_case__ , snake_case__ ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(snake_case__ , str(snake_case__ ) ) ) return config def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : Dict = MobileViTVaConfig() _snake_case : Optional[int] = False # dataset if task_name.startswith("""imagenet1k_""" ): _snake_case : Dict = 10_00 if int(task_name.strip().split("""_""" )[-1] ) == 3_84: _snake_case : Union[str, Any] = 3_84 else: _snake_case : Optional[Any] = 2_56 _snake_case : str = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): _snake_case : str = 2_10_00 if int(task_name.strip().split("""_""" )[-1] ) == 3_84: _snake_case : Dict = 3_84 else: _snake_case : Union[str, Any] = 2_56 _snake_case : Tuple = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): _snake_case : Tuple = 1_51 _snake_case : str = 5_12 _snake_case : List[Any] = """ade20k-id2label.json""" _snake_case : Union[str, Any] = True elif task_name.startswith("""voc_""" ): _snake_case : List[Any] = 21 _snake_case : List[str] = 5_12 _snake_case : int = """pascal-voc-id2label.json""" _snake_case : int = True # orig_config _snake_case : int = load_orig_config_file(snake_case__ ) assert getattr(snake_case__ , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model" _snake_case : str = getattr(snake_case__ , """model.classification.mitv2.width_multiplier""" , 1.0 ) assert ( getattr(snake_case__ , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _snake_case : int = getattr(snake_case__ , """model.classification.activation.name""" , """swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _snake_case : Tuple = getattr(snake_case__ , """model.segmentation.output_stride""" , 16 ) if "_deeplabv3" in task_name: _snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] ) _snake_case : Tuple = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_out_channels""" , 5_12 ) _snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 ) # id2label _snake_case : Union[str, Any] = """huggingface/label-files""" _snake_case : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) ) _snake_case : List[Any] = {int(snake_case__ ): v for k, v in idalabel.items()} _snake_case : Tuple = idalabel _snake_case : Any = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[Any] ): """simple docstring""" _snake_case : List[str] = dct.pop(snake_case__ ) _snake_case : List[Any] = val def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : int=False ): """simple docstring""" if base_model: _snake_case : Any = """""" else: _snake_case : Union[str, Any] = """mobilevitv2.""" _snake_case : Dict = [] for k in state_dict.keys(): if k[:8] == "encoder.": _snake_case : List[str] = k[8:] else: _snake_case : str = k if ".block." in k: _snake_case : Optional[int] = k_new.replace(""".block.""" , """.""" ) if ".conv." in k: _snake_case : Union[str, Any] = k_new.replace(""".conv.""" , """.convolution.""" ) if ".norm." in k: _snake_case : str = k_new.replace(""".norm.""" , """.normalization.""" ) if "conv_1." in k: _snake_case : int = k_new.replace("""conv_1.""" , F"{model_prefix}conv_stem." ) for i in [1, 2]: if F"layer_{i}." in k: _snake_case : Tuple = k_new.replace(F"layer_{i}." , F"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: _snake_case : Optional[Any] = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" ) if ".red_1x1." in k: _snake_case : Optional[Any] = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" ) for i in [3, 4, 5]: if F"layer_{i}.0." in k: _snake_case : Tuple = k_new.replace(F"layer_{i}.0." , F"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if F"layer_{i}.1.local_rep.0." in k: _snake_case : Any = k_new.replace(F"layer_{i}.1.local_rep.0." , F"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if F"layer_{i}.1.local_rep.1." in k: _snake_case : str = k_new.replace(F"layer_{i}.1.local_rep.1." , F"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: _snake_case : Optional[Any] = [0, 1] elif i == 4: _snake_case : Any = [0, 1, 2, 3] elif i == 5: _snake_case : List[Any] = [0, 1, 2] for j in j_in: if F"layer_{i}.1.global_rep.{j}." in k: _snake_case : Any = k_new.replace( F"layer_{i}.1.global_rep.{j}." , F"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if F"layer_{i}.1.global_rep.{j+1}." in k: _snake_case : List[Any] = k_new.replace( F"layer_{i}.1.global_rep.{j+1}." , F"{model_prefix}encoder.layer.{i-1}.layernorm." ) if F"layer_{i}.1.conv_proj." in k: _snake_case : Union[str, Any] = k_new.replace(F"layer_{i}.1.conv_proj." , F"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: _snake_case : List[Any] = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" ) if "pre_norm_attn.1." in k: _snake_case : Optional[int] = k_new.replace("""pre_norm_attn.1.""" , """attention.""" ) if "pre_norm_ffn.0." in k: _snake_case : List[Any] = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" ) if "pre_norm_ffn.1." in k: _snake_case : Tuple = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" ) if "pre_norm_ffn.3." in k: _snake_case : Any = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" ) if "classifier.1." in k: _snake_case : List[str] = k_new.replace("""classifier.1.""" , """classifier.""" ) if "seg_head." in k: _snake_case : str = k_new.replace("""seg_head.""" , """segmentation_head.""" ) if ".aspp_layer." in k: _snake_case : Optional[int] = k_new.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in k: _snake_case : int = k_new.replace(""".aspp_pool.""" , """.""" ) rename_keys.append((k, k_new) ) return rename_keys def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" _snake_case : List[str] = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(snake_case__ ) for k in keys_to_ignore: state_dict.pop(snake_case__ , snake_case__ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _snake_case : Any = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Tuple ): """simple docstring""" _snake_case : int = get_mobilevitva_config(snake_case__ , snake_case__ ) # load original state_dict _snake_case : Optional[int] = torch.load(snake_case__ , map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): _snake_case : Any = MobileViTVaForSemanticSegmentation(snake_case__ ).eval() _snake_case : List[Any] = False else: _snake_case : List[Any] = MobileViTVaForImageClassification(snake_case__ ).eval() _snake_case : Optional[Any] = False # remove and rename some keys of load the original model _snake_case : Union[str, Any] = checkpoint remove_unused_keys(snake_case__ ) _snake_case : List[str] = create_rename_keys(snake_case__ , base_model=snake_case__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # load modified state_dict model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by MobileViTImageProcessor _snake_case : Optional[int] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _snake_case : List[str] = image_processor(images=prepare_img() , return_tensors="""pt""" ) _snake_case : Optional[Any] = model(**snake_case__ ) # verify classification model if task_name.startswith("""imagenet""" ): _snake_case : List[str] = outputs.logits _snake_case : Any = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant _snake_case : List[str] = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] ) assert torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) A_ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
28
0
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : list[list] ): """simple docstring""" _snake_case : Optional[int] = current_set.copy() for row_index, row in enumerate(_lowerCamelCase ): _snake_case : Any = row[0] for column_index, column in enumerate(_lowerCamelCase ): if magnitude == 0: _snake_case : str = column continue _snake_case : List[Any] = column / magnitude # Subtract to cancel term _snake_case : List[Any] = current_set[0] _snake_case : int = [first_row] _snake_case : Optional[int] = current_set[1::] for row in current_set: _snake_case : List[Any] = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(_lowerCamelCase ) continue for column_index in range(len(_lowerCamelCase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(_lowerCamelCase ) # Create next recursion iteration set if len(final_set[0] ) != 3: _snake_case : str = final_set[0] _snake_case : Any = [] _snake_case : int = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _snake_case : Dict = simplify(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , _lowerCamelCase ) _snake_case : Dict = resultant return final_set def UpperCAmelCase__ (snake_case__ : list[list] ): """simple docstring""" if len(_lowerCamelCase ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) _snake_case : Dict = len(_lowerCamelCase ) + 1 if any(len(_lowerCamelCase ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(_lowerCamelCase , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(_lowerCamelCase ) == 1: return [equations[0][-1] / equations[0][0]] _snake_case : Any = equations.copy() if any(0 in row for row in data_set ): _snake_case : Optional[int] = data_set.copy() _snake_case : Union[str, Any] = [] for row_index, row in enumerate(_lowerCamelCase ): if 0 not in row: _snake_case : List[Any] = data_set.pop(_lowerCamelCase ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , _lowerCamelCase ) _snake_case : int = data_set.copy() _snake_case : List[str] = simplify(_lowerCamelCase ) _snake_case : List[Any] = simplified[::-1] _snake_case : list = [] for row in simplified: _snake_case : int = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _snake_case : Optional[Any] = row.copy()[: len(_lowerCamelCase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(_lowerCamelCase ) == 0: solutions.append(0 ) continue _snake_case : int = temp_row[1::] _snake_case : Tuple = temp_row[::-1] for column_index, column in enumerate(_lowerCamelCase ): current_solution -= column * solutions[column_index] solutions.append(_lowerCamelCase ) _snake_case : str = [] for item in solutions: final.append(float(round(_lowerCamelCase , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() A_ = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
705
"""simple docstring""" import os import sys import unittest A_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path A_ = os.path.join(git_repo_path, '''src''', '''diffusers''') class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Optional[int] = find_backend(""" if not is_torch_available():""" ) self.assertEqual(a_, """torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") _snake_case : Any = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(a_, """torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") _snake_case : Union[str, Any] = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(a_, """torch_and_transformers_and_onnx""" ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Dict = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""", a_ ) self.assertIn("""torch_and_transformers""", a_ ) self.assertIn("""flax_and_transformers""", a_ ) self.assertIn("""torch_and_transformers_and_onnx""", a_ ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""", objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""", objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""", objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""", objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""", objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""", objects["""torch_and_transformers_and_onnx"""] ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[Any] = create_dummy_object("""CONSTANT""", """'torch'""" ) self.assertEqual(a_, """\nCONSTANT = None\n""" ) _snake_case : Optional[int] = create_dummy_object("""function""", """'torch'""" ) self.assertEqual( a_, """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) _snake_case : List[Any] = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ _snake_case : Union[str, Any] = create_dummy_object("""FakeClass""", """'torch'""" ) self.assertEqual(a_, a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ _snake_case : List[Any] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""], a_ )
28
0
"""simple docstring""" import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def UpperCAmelCase__ (snake_case__ : List[Any] ): """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , collections.abc.Iterable ): return x return (x, x) @require_flax class lowercase: '''simple docstring''' def UpperCamelCase_ ( self: List[str], a_: List[Any], a_: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self: Dict, a_: np.ndarray, a_: np.ndarray, a_: float ): '''simple docstring''' _snake_case : Union[str, Any] = np.abs((a - b) ).max() self.assertLessEqual(__UpperCamelCase, __UpperCamelCase, f"Difference between torch and flax is {diff} (>= {tol})." ) def UpperCamelCase_ ( self: Optional[int], a_: Dict, a_: List[str], a_: List[Any], a_: Tuple, a_: Union[str, Any]=None, **a_: Optional[int] ): '''simple docstring''' _snake_case : str = VisionTextDualEncoderConfig.from_vision_text_configs(__UpperCamelCase, __UpperCamelCase ) _snake_case : List[Any] = FlaxVisionTextDualEncoderModel(__UpperCamelCase ) _snake_case : List[str] = model(input_ids=__UpperCamelCase, pixel_values=__UpperCamelCase, attention_mask=__UpperCamelCase ) self.assertEqual(output["""text_embeds"""].shape, (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape, (pixel_values.shape[0], config.projection_dim) ) def UpperCamelCase_ ( self: str, a_: List[str], a_: str, a_: Dict, a_: Dict, a_: List[str]=None, **a_: str ): '''simple docstring''' _snake_case , _snake_case : str = self.get_vision_text_model(__UpperCamelCase, __UpperCamelCase ) _snake_case : str = {"""vision_model""": vision_model, """text_model""": text_model} _snake_case : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__UpperCamelCase ) _snake_case : int = model(input_ids=__UpperCamelCase, pixel_values=__UpperCamelCase, attention_mask=__UpperCamelCase ) self.assertEqual(output["""text_embeds"""].shape, (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape, (pixel_values.shape[0], model.config.projection_dim) ) def UpperCamelCase_ ( self: str, a_: str, a_: Optional[int], a_: Union[str, Any], a_: Optional[int], a_: List[str]=None, **a_: List[Any] ): '''simple docstring''' _snake_case , _snake_case : Tuple = self.get_vision_text_model(__UpperCamelCase, __UpperCamelCase ) _snake_case : Optional[int] = {"""vision_model""": vision_model, """text_model""": text_model} _snake_case : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__UpperCamelCase ) _snake_case : Dict = model(input_ids=__UpperCamelCase, pixel_values=__UpperCamelCase, attention_mask=__UpperCamelCase ) _snake_case : List[Any] = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCamelCase ) _snake_case : List[Any] = FlaxVisionTextDualEncoderModel.from_pretrained(__UpperCamelCase ) _snake_case : Union[str, Any] = model(input_ids=__UpperCamelCase, pixel_values=__UpperCamelCase, attention_mask=__UpperCamelCase ) _snake_case : Tuple = after_output[0] _snake_case : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__UpperCamelCase, 1E-3 ) def UpperCamelCase_ ( self: Any, a_: List[Any], a_: Tuple, a_: Dict, a_: str, a_: List[str]=None, **a_: int ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.get_vision_text_model(__UpperCamelCase, __UpperCamelCase ) _snake_case : Any = {"""vision_model""": vision_model, """text_model""": text_model} _snake_case : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__UpperCamelCase ) _snake_case : List[Any] = model( input_ids=__UpperCamelCase, pixel_values=__UpperCamelCase, attention_mask=__UpperCamelCase, output_attentions=__UpperCamelCase ) _snake_case : Tuple = output.vision_model_output.attentions self.assertEqual(len(__UpperCamelCase ), vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _snake_case : Any = to_atuple(vision_model.config.image_size ) _snake_case : Any = to_atuple(vision_model.config.patch_size ) _snake_case : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _snake_case : List[Any] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:], (vision_config.num_attention_heads, seq_len, seq_len) ) _snake_case : Dict = output.text_model_output.attentions self.assertEqual(len(__UpperCamelCase ), text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:], (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]), ) def UpperCamelCase_ ( self: int, a_: Dict, a_: Dict, a_: List[str] ): '''simple docstring''' pt_model.to(__UpperCamelCase ) pt_model.eval() # prepare inputs _snake_case : List[str] = inputs_dict _snake_case : Optional[int] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): _snake_case : Tuple = pt_model(**__UpperCamelCase ).to_tuple() _snake_case : str = fx_model(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ), len(__UpperCamelCase ), """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4] ): self.assert_almost_equals(__UpperCamelCase, pt_output.numpy(), 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__UpperCamelCase ) _snake_case : int = FlaxVisionTextDualEncoderModel.from_pretrained(__UpperCamelCase, from_pt=__UpperCamelCase ) _snake_case : List[Any] = fx_model_loaded(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ), len(__UpperCamelCase ), """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4] ): self.assert_almost_equals(__UpperCamelCase, pt_output.numpy(), 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__UpperCamelCase ) _snake_case : Optional[Any] = VisionTextDualEncoderModel.from_pretrained(__UpperCamelCase, from_flax=__UpperCamelCase ) pt_model_loaded.to(__UpperCamelCase ) pt_model_loaded.eval() with torch.no_grad(): _snake_case : str = pt_model_loaded(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ), len(__UpperCamelCase ), """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4], pt_outputs_loaded[:4] ): self.assert_almost_equals(__UpperCamelCase, pt_output_loaded.numpy(), 4E-2 ) def UpperCamelCase_ ( self: List[Any], a_: Tuple, a_: Optional[int], a_: Any ): '''simple docstring''' _snake_case : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(__UpperCamelCase, __UpperCamelCase ) _snake_case : List[str] = VisionTextDualEncoderModel(__UpperCamelCase ) _snake_case : Any = FlaxVisionTextDualEncoderModel(__UpperCamelCase ) _snake_case : Union[str, Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), __UpperCamelCase ) _snake_case : int = fx_state self.check_pt_flax_equivalence(__UpperCamelCase, __UpperCamelCase, __UpperCamelCase ) def UpperCamelCase_ ( self: str, a_: List[str], a_: List[str], a_: Optional[int] ): '''simple docstring''' _snake_case : List[str] = VisionTextDualEncoderConfig.from_vision_text_configs(__UpperCamelCase, __UpperCamelCase ) _snake_case : List[Any] = VisionTextDualEncoderModel(__UpperCamelCase ) _snake_case : int = FlaxVisionTextDualEncoderModel(__UpperCamelCase ) _snake_case : List[str] = load_flax_weights_in_pytorch_model(__UpperCamelCase, fx_model.params ) self.check_pt_flax_equivalence(__UpperCamelCase, __UpperCamelCase, __UpperCamelCase ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : int = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__UpperCamelCase ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__UpperCamelCase ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : List[str] = self.prepare_config_and_inputs() self.check_save_load(**__UpperCamelCase ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[str] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__UpperCamelCase ) @is_pt_flax_cross_test def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : str = self.prepare_config_and_inputs() _snake_case : Dict = config_inputs_dict.pop("""vision_config""" ) _snake_case : Union[str, Any] = config_inputs_dict.pop("""text_config""" ) _snake_case : Optional[Any] = config_inputs_dict self.check_equivalence_pt_to_flax(__UpperCamelCase, __UpperCamelCase, __UpperCamelCase ) self.check_equivalence_flax_to_pt(__UpperCamelCase, __UpperCamelCase, __UpperCamelCase ) @slow def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case , _snake_case : Tuple = self.get_pretrained_model_and_inputs() _snake_case : Tuple = model_a(**__UpperCamelCase ) _snake_case : List[Any] = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__UpperCamelCase ) _snake_case : str = FlaxVisionTextDualEncoderModel.from_pretrained(__UpperCamelCase ) _snake_case : str = model_a(**__UpperCamelCase ) _snake_case : int = after_outputs[0] _snake_case : List[str] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__UpperCamelCase, 1E-5 ) @require_flax class lowercase( __a , unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""", """hf-internal-testing/tiny-bert""", vision_from_pt=__UpperCamelCase, text_from_pt=__UpperCamelCase, ) _snake_case : Union[str, Any] = 13 _snake_case : Any = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _snake_case : Tuple = ids_tensor([batch_size, 4], model.config.text_config.vocab_size ) _snake_case : Union[str, Any] = random_attention_mask([batch_size, 4] ) _snake_case : Any = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def UpperCamelCase_ ( self: List[Any], a_: str, a_: Any ): '''simple docstring''' _snake_case : int = FlaxViTModel(__UpperCamelCase ) _snake_case : Tuple = FlaxBertModel(__UpperCamelCase ) return vision_model, text_model def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : List[Any] = FlaxViTModelTester(self ) _snake_case : Tuple = FlaxBertModelTester(self ) _snake_case : Tuple = vit_model_tester.prepare_config_and_inputs() _snake_case : List[Any] = bert_model_tester.prepare_config_and_inputs() _snake_case , _snake_case : Optional[Any] = vision_config_and_inputs _snake_case , _snake_case , _snake_case , _snake_case : int = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class lowercase( __a , unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Tuple = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""", """hf-internal-testing/tiny-bert""", vision_from_pt=__UpperCamelCase, text_from_pt=__UpperCamelCase, ) _snake_case : str = 13 _snake_case : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _snake_case : Any = ids_tensor([batch_size, 4], model.config.text_config.vocab_size ) _snake_case : Any = random_attention_mask([batch_size, 4] ) _snake_case : str = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def UpperCamelCase_ ( self: List[Any], a_: int, a_: List[Any] ): '''simple docstring''' _snake_case : Tuple = FlaxCLIPVisionModel(__UpperCamelCase ) _snake_case : str = FlaxBertModel(__UpperCamelCase ) return vision_model, text_model def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[Any] = FlaxCLIPVisionModelTester(self ) _snake_case : Any = FlaxBertModelTester(self ) _snake_case : str = clip_model_tester.prepare_config_and_inputs() _snake_case : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() _snake_case , _snake_case : Dict = vision_config_and_inputs _snake_case , _snake_case , _snake_case , _snake_case : Tuple = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class lowercase( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : str = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""", logit_scale_init_value=1.0 ) _snake_case : Union[str, Any] = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) _snake_case : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _snake_case : int = processor( text=["""una foto di un gatto""", """una foto di un cane"""], images=__UpperCamelCase, padding=__UpperCamelCase, return_tensors="""np""" ) _snake_case : List[str] = model(**__UpperCamelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape, (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape, (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]), ) _snake_case : Any = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image, __UpperCamelCase, atol=1E-3 ) )
706
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''OwlViTFeatureExtractor'''] A_ = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
28
0
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING A_ = logging.get_logger(__name__) @add_end_docstrings(A_ ) class lowercase( A_ ): '''simple docstring''' def __init__( self: str, **a_: Tuple ): '''simple docstring''' super().__init__(**a_ ) requires_backends(self, """vision""" ) requires_backends(self, """torch""" ) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) self.check_model_type(a_ ) def UpperCamelCase_ ( self: Union[str, Any], **a_: List[Any] ): '''simple docstring''' _snake_case : Optional[Any] = {} _snake_case : Tuple = {} _snake_case : Dict = {} # preprocess args if "points_per_batch" in kwargs: _snake_case : str = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: _snake_case : int = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: _snake_case : Optional[Any] = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: _snake_case : Dict = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: _snake_case : Dict = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: _snake_case : List[Any] = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: _snake_case : Optional[int] = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: _snake_case : Optional[int] = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: _snake_case : List[str] = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: _snake_case : List[Any] = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: _snake_case : int = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: _snake_case : Tuple = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self: Dict, a_: Dict, *a_: Union[str, Any], a_: Tuple=None, a_: List[Any]=None, **a_: Union[str, Any] ): '''simple docstring''' return super().__call__(a_, *a_, num_workers=a_, batch_size=a_, **a_ ) def UpperCamelCase_ ( self: Optional[int], a_: Union[str, Any], a_: Dict=64, a_: Union[str, Any] = 0, a_: Tuple = 512 / 1_500, a_: Dict = 32, a_: Union[str, Any] = 1, ): '''simple docstring''' _snake_case : str = load_image(a_ ) _snake_case : Optional[int] = self.image_processor.size["""longest_edge"""] _snake_case : List[str] = self.image_processor.generate_crop_boxes( a_, a_, a_, a_, a_, a_ ) _snake_case : List[str] = self.image_processor(images=a_, return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": _snake_case : str = self.get_inference_context() with inference_context(): _snake_case : int = self._ensure_tensor_on_device(a_, device=self.device ) _snake_case : List[str] = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) _snake_case : int = image_embeddings _snake_case : str = grid_points.shape[1] _snake_case : Optional[int] = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0, a_, a_ ): _snake_case : Any = grid_points[:, i : i + points_per_batch, :, :] _snake_case : List[str] = input_labels[:, i : i + points_per_batch] _snake_case : Any = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase_ ( self: List[Any], a_: List[str], a_: Optional[Any]=0.88, a_: Union[str, Any]=0.95, a_: Tuple=0, a_: Dict=1, ): '''simple docstring''' _snake_case : Tuple = model_inputs.pop("""input_boxes""" ) _snake_case : List[str] = model_inputs.pop("""is_last""" ) _snake_case : Union[str, Any] = model_inputs.pop("""original_sizes""" ).tolist() _snake_case : List[str] = model_inputs.pop("""reshaped_input_sizes""" ).tolist() _snake_case : Any = self.model(**a_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _snake_case : Optional[int] = model_outputs["""pred_masks"""] _snake_case : int = self.image_processor.post_process_masks( a_, a_, a_, a_, binarize=a_ ) _snake_case : Dict = model_outputs["""iou_scores"""] _snake_case : List[str] = self.image_processor.filter_masks( masks[0], iou_scores[0], original_sizes[0], input_boxes[0], a_, a_, a_, a_, ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase_ ( self: Tuple, a_: str, a_: List[str]=False, a_: List[str]=False, a_: Optional[int]=0.7, ): '''simple docstring''' _snake_case : int = [] _snake_case : Optional[int] = [] _snake_case : List[Any] = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) _snake_case : Union[str, Any] = torch.cat(a_ ) _snake_case : Any = torch.cat(a_ ) _snake_case : Dict = self.image_processor.post_process_for_mask_generation( a_, a_, a_, a_ ) _snake_case : Optional[int] = defaultdict(a_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(a_ ) _snake_case : Optional[Any] = {} if output_rle_mask: _snake_case : Dict = rle_mask if output_bboxes_mask: _snake_case : str = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
707
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml A_ = logging.get_logger(__name__) def UpperCAmelCase__ (snake_case__ : bool , snake_case__ : bool ): """simple docstring""" def run_func(snake_case__ : Tuple ): @wraps(snake_case__ ) def run_in_eager_mode(*snake_case__ : str , **snake_case__ : Any ): return func(*snake_case__ , **snake_case__ ) @wraps(snake_case__ ) @tf.function(experimental_compile=snake_case__ ) def run_in_graph_mode(*snake_case__ : Any , **snake_case__ : Optional[int] ): return func(*snake_case__ , **snake_case__ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : List[str] = random.Random() _snake_case : Optional[int] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case__ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class lowercase( __a ): '''simple docstring''' lowercase__ = 42 lowercase__ = 42 lowercase__ = "TensorFlow" @property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' return tf.__version__ def UpperCamelCase_ ( self: List[str], a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : List[str] = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : Optional[int] = self._prepare_inference_func(a_, a_, a_ ) return self._measure_speed(_inference ) def UpperCamelCase_ ( self: int, a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : Tuple = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : Optional[Any] = self._prepare_train_func(a_, a_, a_ ) return self._measure_speed(_train ) def UpperCamelCase_ ( self: Dict, a_: str, a_: int, a_: int ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], a_ ) _snake_case : str = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : List[str] = self._prepare_inference_func(a_, a_, a_ ) return self._measure_memory(_inference ) def UpperCamelCase_ ( self: Tuple, a_: str, a_: int, a_: int ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], a_ ) _snake_case : Dict = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : Optional[int] = self._prepare_train_func(a_, a_, a_ ) return self._measure_memory(_train ) def UpperCamelCase_ ( self: Optional[Any], a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : List[Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _snake_case : List[Any] = ( hasattr(a_, """architectures""" ) and isinstance(config.architectures, a_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _snake_case : str = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _snake_case : List[Any] = __import__("""transformers""", fromlist=[model_class] ) _snake_case : Dict = getattr(a_, a_ ) _snake_case : Any = model_cls(a_ ) except ImportError: raise ImportError( f"{model_class} does not exist. If you just want to test the pretrained model, you might want to" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _snake_case : Any = TF_MODEL_MAPPING[config.__class__](a_ ) # encoder-decoder has vocab size saved differently _snake_case : List[Any] = config.vocab_size if hasattr(a_, """vocab_size""" ) else config.encoder.vocab_size _snake_case : List[str] = random_input_ids(a_, a_, a_ ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_decoder_forward(): return model(a_, decoder_input_ids=a_, training=a_ ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_forward(): return model(a_, training=a_ ) _snake_case : Optional[int] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def UpperCamelCase_ ( self: Optional[int], a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : str = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _snake_case : Tuple = ( hasattr(a_, """architectures""" ) and isinstance(config.architectures, a_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _snake_case : List[str] = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _snake_case : str = __import__("""transformers""", fromlist=[model_class] ) _snake_case : Tuple = getattr(a_, a_ ) _snake_case : Any = model_cls(a_ ) except ImportError: raise ImportError( f"{model_class} does not exist. If you just want to test the pretrained model, you might want to" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _snake_case : Optional[Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](a_ ) # encoder-decoder has vocab size saved differently _snake_case : List[Any] = config.vocab_size if hasattr(a_, """vocab_size""" ) else config.encoder.vocab_size _snake_case : int = random_input_ids(a_, a_, a_ ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_decoder_train(): _snake_case : Dict = model(a_, decoder_input_ids=a_, labels=a_, training=a_ )[0] _snake_case : str = tf.gradients(a_, model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_train(): _snake_case : Optional[Any] = model(a_, labels=a_, training=a_ )[0] _snake_case : Optional[Any] = tf.gradients(a_, model.trainable_variables ) return gradients _snake_case : int = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def UpperCamelCase_ ( self: Union[str, Any], a_: str ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(a_, repeat=1, number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _snake_case : Dict = timeit.repeat( a_, repeat=self.args.repeat, number=10, ) return min(a_ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"Doesn't fit on GPU. {e}" ) def UpperCamelCase_ ( self: Optional[Any], a_: Callable[[], None] ): '''simple docstring''' logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) _snake_case : List[Any] = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) _snake_case : Optional[Any] = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() _snake_case : List[str] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _snake_case : Tuple = nvml.nvmlDeviceGetMemoryInfo(a_ ) _snake_case : List[str] = meminfo.used _snake_case : Any = Memory(a_ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) _snake_case : List[Any] = None else: _snake_case : int = measure_peak_memory_cpu(a_ ) _snake_case : List[str] = Memory(a_ ) if isinstance(a_, a_ ) else memory_bytes if self.args.trace_memory_line_by_line: _snake_case : Tuple = stop_memory_tracing(a_ ) if memory is None: _snake_case : int = summary.total else: _snake_case : int = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"Doesn't fit on GPU. {e}" ) return "N/A", None
28
0
"""simple docstring""" import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple=10_24 ): """simple docstring""" _snake_case : List[Any] = [], [] _snake_case : Optional[int] = list(zip(lowerCAmelCase__ , lowerCAmelCase__ ) ) _snake_case : List[str] = sorted_examples[0] def is_too_big(snake_case__ : List[str] ): return tok(lowerCAmelCase__ , return_tensors="""pt""" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): _snake_case : Dict = new_src + ' ' + src _snake_case : Optional[int] = new_tgt + ' ' + tgt if is_too_big(lowerCAmelCase__ ) or is_too_big(lowerCAmelCase__ ): # cant fit, finalize example finished_src.append(lowerCAmelCase__ ) finished_tgt.append(lowerCAmelCase__ ) _snake_case : int = src, tgt else: # can fit, keep adding _snake_case : Any = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(lowerCAmelCase__ ) finished_tgt.append(lowerCAmelCase__ ) return finished_src, finished_tgt def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : Path , snake_case__ : List[Any] , snake_case__ : Optional[int] ): """simple docstring""" _snake_case : int = Path(lowerCAmelCase__ ) save_path.mkdir(exist_ok=lowerCAmelCase__ ) for split in ["train"]: _snake_case : Dict = data_dir / F"{split}.source", data_dir / F"{split}.target" _snake_case : List[Any] = [x.rstrip() for x in Path(lowerCAmelCase__ ).open().readlines()] _snake_case : Optional[Any] = [x.rstrip() for x in Path(lowerCAmelCase__ ).open().readlines()] _snake_case : List[Any] = pack_examples(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) print(F"packed {split} split from {len(lowerCAmelCase__ )} examples -> {len(lowerCAmelCase__ )}." ) Path(save_path / F"{split}.source" ).open("""w""" ).write("""\n""".join(lowerCAmelCase__ ) ) Path(save_path / F"{split}.target" ).open("""w""" ).write("""\n""".join(lowerCAmelCase__ ) ) for split in ["val", "test"]: _snake_case : str = data_dir / F"{split}.source", data_dir / F"{split}.target" shutil.copyfile(lowerCAmelCase__ , save_path / F"{split}.source" ) shutil.copyfile(lowerCAmelCase__ , save_path / F"{split}.target" ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Dict = argparse.ArgumentParser() parser.add_argument("""--tok_name""" , type=lowerCAmelCase__ , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""--max_seq_len""" , type=lowerCAmelCase__ , default=1_28 ) parser.add_argument("""--data_dir""" , type=lowerCAmelCase__ ) parser.add_argument("""--save_path""" , type=lowerCAmelCase__ ) _snake_case : List[str] = parser.parse_args() _snake_case : List[Any] = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(lowerCAmelCase__ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
708
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : str ): """simple docstring""" _snake_case : str = int(snake_case__ ) # Initialize Result _snake_case : str = [] # Traverse through all denomination for denomination in reversed(snake_case__ ): # Find denominations while int(snake_case__ ) >= int(snake_case__ ): total_value -= int(snake_case__ ) answer.append(snake_case__ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": A_ = [] A_ = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): A_ = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) A_ = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter A_ = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] A_ = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F'''Following is minimal change for {value}: ''') A_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
28
0
"""simple docstring""" import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase( a__ ): '''simple docstring''' def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase_, """embed_dim""" ) ) self.parent.assertTrue(hasattr(lowerCamelCase_, """num_heads""" ) ) class lowercase: '''simple docstring''' def __init__( self: str, a_: int, a_: str=13, a_: List[str]=64, a_: Optional[int]=3, a_: Dict=[16, 48, 96], a_: Optional[int]=[1, 3, 6], a_: Dict=[1, 2, 10], a_: int=[7, 3, 3], a_: Dict=[4, 2, 2], a_: List[str]=[2, 1, 1], a_: Optional[int]=[2, 2, 2], a_: Any=[False, False, True], a_: List[str]=[0.0, 0.0, 0.0], a_: Dict=0.02, a_: Tuple=1E-12, a_: Any=True, a_: str=True, a_: Optional[Any]=2, ): '''simple docstring''' _snake_case : str = parent _snake_case : Dict = batch_size _snake_case : Optional[Any] = image_size _snake_case : Any = patch_sizes _snake_case : List[str] = patch_stride _snake_case : Tuple = patch_padding _snake_case : Dict = is_training _snake_case : List[Any] = use_labels _snake_case : Optional[int] = num_labels _snake_case : List[Any] = num_channels _snake_case : Optional[int] = embed_dim _snake_case : str = num_heads _snake_case : List[str] = stride_kv _snake_case : Any = depth _snake_case : List[Any] = cls_token _snake_case : Optional[int] = attention_drop_rate _snake_case : Tuple = initializer_range _snake_case : Union[str, Any] = layer_norm_eps def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Any = None if self.use_labels: _snake_case : List[Any] = ids_tensor([self.batch_size], self.num_labels ) _snake_case : List[Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self: Dict ): '''simple docstring''' return CvtConfig( image_size=self.image_size, num_labels=self.num_labels, num_channels=self.num_channels, embed_dim=self.embed_dim, num_heads=self.num_heads, patch_sizes=self.patch_sizes, patch_padding=self.patch_padding, patch_stride=self.patch_stride, stride_kv=self.stride_kv, depth=self.depth, cls_token=self.cls_token, attention_drop_rate=self.attention_drop_rate, initializer_range=self.initializer_range, ) def UpperCamelCase_ ( self: List[str], a_: Tuple, a_: List[Any], a_: str ): '''simple docstring''' _snake_case : Dict = CvtModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _snake_case : Union[str, Any] = model(lowerCamelCase_ ) _snake_case : Optional[int] = (self.image_size, self.image_size) _snake_case , _snake_case : Any = image_size[0], image_size[1] for i in range(len(self.depth ) ): _snake_case : List[Any] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _snake_case : Optional[int] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.embed_dim[-1], height, width) ) def UpperCamelCase_ ( self: Union[str, Any], a_: Tuple, a_: Union[str, Any], a_: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = self.num_labels _snake_case : Union[str, Any] = CvtForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _snake_case : Optional[Any] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Any = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : Dict = config_and_inputs _snake_case : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase( a__ , a__ , unittest.TestCase ): '''simple docstring''' lowercase__ = (CvtModel, CvtForImageClassification) if is_torch_available() else () lowercase__ = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Any = CvtModelTester(self ) _snake_case : List[Any] = ConfigTester(self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=37 ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self: Any ): '''simple docstring''' return @unittest.skip(reason="""Cvt does not output attentions""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case , _snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : int = model_class(lowerCamelCase_ ) _snake_case : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Optional[int] = [*signature.parameters.keys()] _snake_case : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' def check_hidden_states_output(a_: int, a_: Union[str, Any], a_: int ): _snake_case : Optional[Any] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): _snake_case : List[Any] = model(**self._prepare_for_class(lowerCamelCase_, lowerCamelCase_ ) ) _snake_case : Tuple = outputs.hidden_states _snake_case : int = len(self.model_tester.depth ) self.assertEqual(len(lowerCamelCase_ ), lowerCamelCase_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ), [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ], ) _snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Tuple = True check_hidden_states_output(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : Any = True check_hidden_states_output(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass @slow def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : str = CvtModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Optional[int] = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase_ ) _snake_case : int = self.default_image_processor _snake_case : List[str] = prepare_img() _snake_case : str = image_processor(images=lowerCamelCase_, return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): _snake_case : Tuple = model(**lowerCamelCase_ ) # verify the logits _snake_case : Optional[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) _snake_case : Any = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1E-4 ) )
709
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowercase: '''simple docstring''' def __init__( self: Optional[Any], a_: Union[str, Any], a_: int=100, a_: int=13, a_: List[Any]=30, a_: str=2, a_: Optional[Any]=3, a_: Optional[int]=True, a_: Any=True, a_: Optional[Any]=32, a_: Tuple=4, a_: str=4, a_: List[Any]=37, a_: List[str]="gelu", a_: str=0.1, a_: Optional[int]=0.1, a_: Any=10, a_: List[str]=0.02, a_: Dict=3, a_: str=None, a_: Optional[int]=[0, 1, 2, 3], ): '''simple docstring''' _snake_case : Optional[int] = parent _snake_case : Optional[Any] = 100 _snake_case : Any = batch_size _snake_case : List[Any] = image_size _snake_case : Optional[Any] = patch_size _snake_case : str = num_channels _snake_case : Tuple = is_training _snake_case : Tuple = use_labels _snake_case : Any = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : List[str] = num_attention_heads _snake_case : Union[str, Any] = intermediate_size _snake_case : Dict = hidden_act _snake_case : str = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Optional[Any] = type_sequence_label_size _snake_case : Any = initializer_range _snake_case : List[str] = scope _snake_case : int = out_indices _snake_case : Optional[Any] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _snake_case : Dict = (image_size // patch_size) ** 2 _snake_case : str = num_patches + 1 def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : List[Any] = None _snake_case : Tuple = None if self.use_labels: _snake_case : str = ids_tensor([self.batch_size], self.type_sequence_label_size ) _snake_case : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) _snake_case : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=a_, initializer_range=self.initializer_range, out_indices=self.out_indices, ) def UpperCamelCase_ ( self: List[Any], a_: List[Any], a_: Any, a_: Optional[Any], a_: List[str] ): '''simple docstring''' _snake_case : str = BeitModel(config=a_ ) model.to(a_ ) model.eval() _snake_case : Dict = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self: str, a_: List[Any], a_: Optional[Any], a_: Optional[int], a_: List[Any] ): '''simple docstring''' _snake_case : List[str] = BeitForMaskedImageModeling(config=a_ ) model.to(a_ ) model.eval() _snake_case : Union[str, Any] = model(a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCamelCase_ ( self: Any, a_: List[str], a_: Any, a_: List[Any], a_: Optional[Any] ): '''simple docstring''' _snake_case : Any = self.type_sequence_label_size _snake_case : Any = BeitForImageClassification(a_ ) model.to(a_ ) model.eval() _snake_case : List[Any] = model(a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case : Any = 1 _snake_case : str = BeitForImageClassification(a_ ) model.to(a_ ) model.eval() _snake_case : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case : Optional[Any] = model(a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self: List[Any], a_: Optional[int], a_: List[Any], a_: str, a_: int ): '''simple docstring''' _snake_case : List[str] = self.num_labels _snake_case : List[Any] = BeitForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() _snake_case : List[str] = model(a_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) _snake_case : str = model(a_, labels=a_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Tuple = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case , _snake_case : Any = config_and_inputs _snake_case : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase__ = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Dict = BeitModelTester(self ) _snake_case : int = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def UpperCamelCase_ ( self: str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""BEiT does not use inputs_embeds""" ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCamelCase_ ( self: str ): '''simple docstring''' pass def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : List[str] = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) _snake_case : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_, nn.Linear ) ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Any = model_class(a_ ) _snake_case : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : List[Any] = [*signature.parameters.keys()] _snake_case : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1], a_ ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' if not self.model_tester.is_training: return _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Any = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(a_ ), BeitForMaskedImageModeling]: continue _snake_case : List[Any] = model_class(a_ ) model.to(a_ ) model.train() _snake_case : Dict = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : List[Any] = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _snake_case : Dict = False _snake_case : Optional[Any] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(a_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue _snake_case : Any = model_class(a_ ) model.gradient_checkpointing_enable() model.to(a_ ) model.train() _snake_case : Any = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : int = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : int = _config_zero_init(a_ ) for model_class in self.all_model_classes: _snake_case : Tuple = model_class(config=a_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @slow def UpperCamelCase_ ( self: int ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Optional[int] = BeitModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self: Dict ): '''simple docstring''' return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : str = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(a_ ) _snake_case : Dict = self.default_image_processor _snake_case : Dict = prepare_img() _snake_case : List[str] = image_processor(images=a_, return_tensors="""pt""" ).pixel_values.to(a_ ) # prepare bool_masked_pos _snake_case : Optional[int] = torch.ones((1, 196), dtype=torch.bool ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : int = model(pixel_values=a_, bool_masked_pos=a_ ) _snake_case : Dict = outputs.logits # verify the logits _snake_case : Optional[int] = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape, a_ ) _snake_case : Optional[Any] = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(a_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], a_, atol=1E-2 ) ) @slow def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Dict = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(a_ ) _snake_case : List[Any] = self.default_image_processor _snake_case : Any = prepare_img() _snake_case : Any = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : int = model(**a_ ) _snake_case : Optional[int] = outputs.logits # verify the logits _snake_case : Tuple = torch.Size((1, 1_000) ) self.assertEqual(logits.shape, a_ ) _snake_case : Any = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(a_ ) self.assertTrue(torch.allclose(logits[0, :3], a_, atol=1E-4 ) ) _snake_case : str = 281 self.assertEqual(logits.argmax(-1 ).item(), a_ ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : int = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to( a_ ) _snake_case : int = self.default_image_processor _snake_case : Optional[Any] = prepare_img() _snake_case : Union[str, Any] = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Union[str, Any] = model(**a_ ) _snake_case : Dict = outputs.logits # verify the logits _snake_case : Tuple = torch.Size((1, 21_841) ) self.assertEqual(logits.shape, a_ ) _snake_case : Optional[int] = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(a_ ) self.assertTrue(torch.allclose(logits[0, :3], a_, atol=1E-4 ) ) _snake_case : List[str] = 2_396 self.assertEqual(logits.argmax(-1 ).item(), a_ ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[str] = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) _snake_case : int = model.to(a_ ) _snake_case : List[str] = BeitImageProcessor(do_resize=a_, size=640, do_center_crop=a_ ) _snake_case : Optional[int] = load_dataset("""hf-internal-testing/fixtures_ade20k""", split="""test""" ) _snake_case : Union[str, Any] = Image.open(ds[0]["""file"""] ) _snake_case : List[Any] = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Optional[int] = model(**a_ ) _snake_case : Union[str, Any] = outputs.logits # verify the logits _snake_case : List[str] = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape, a_ ) _snake_case : Optional[int] = version.parse(PIL.__version__ ) < version.parse("""9.0.0""" ) if is_pillow_less_than_a: _snake_case : Any = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ], device=a_, ) else: _snake_case : Optional[Any] = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ], device=a_, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], a_, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : int = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) _snake_case : List[Any] = model.to(a_ ) _snake_case : Tuple = BeitImageProcessor(do_resize=a_, size=640, do_center_crop=a_ ) _snake_case : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_ade20k""", split="""test""" ) _snake_case : str = Image.open(ds[0]["""file"""] ) _snake_case : Tuple = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Optional[int] = model(**a_ ) _snake_case : Union[str, Any] = outputs.logits.detach().cpu() _snake_case : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=a_, target_sizes=[(500, 300)] ) _snake_case : Optional[int] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape, a_ ) _snake_case : List[str] = image_processor.post_process_semantic_segmentation(outputs=a_ ) _snake_case : List[str] = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape, a_ )
28
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A_ = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''DeiTFeatureExtractor'''] A_ = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
710
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase( __a ): '''simple docstring''' lowercase__ = (IPNDMScheduler,) lowercase__ = (("num_inference_steps", 50),) def UpperCamelCase_ ( self: Union[str, Any], **a_: Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = {"""num_train_timesteps""": 1_000} config.update(**a_ ) return config def UpperCamelCase_ ( self: Tuple, a_: Optional[int]=0, **a_: int ): '''simple docstring''' _snake_case : Optional[int] = dict(self.forward_default_kwargs ) _snake_case : Optional[Any] = kwargs.pop("""num_inference_steps""", a_ ) _snake_case : Optional[Any] = self.dummy_sample _snake_case : Dict = 0.1 * sample _snake_case : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _snake_case : int = self.get_scheduler_config(**a_ ) _snake_case : Dict = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals _snake_case : int = dummy_past_residuals[:] if time_step is None: _snake_case : Union[str, Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) _snake_case : Tuple = scheduler_class.from_pretrained(a_ ) new_scheduler.set_timesteps(a_ ) # copy over dummy past residuals _snake_case : Optional[Any] = dummy_past_residuals[:] _snake_case : List[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : str = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _snake_case : Optional[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : Optional[int] = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self: str, a_: Any=0, **a_: Tuple ): '''simple docstring''' _snake_case : str = dict(self.forward_default_kwargs ) _snake_case : List[Any] = kwargs.pop("""num_inference_steps""", a_ ) _snake_case : Optional[int] = self.dummy_sample _snake_case : Tuple = 0.1 * sample _snake_case : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _snake_case : Any = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals (must be after setting timesteps) _snake_case : Union[str, Any] = dummy_past_residuals[:] if time_step is None: _snake_case : Tuple = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) _snake_case : List[str] = scheduler_class.from_pretrained(a_ ) # copy over dummy past residuals new_scheduler.set_timesteps(a_ ) # copy over dummy past residual (must be after setting timesteps) _snake_case : List[str] = dummy_past_residuals[:] _snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : Any = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : int = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self: List[Any], **a_: Optional[int] ): '''simple docstring''' _snake_case : Union[str, Any] = self.scheduler_classes[0] _snake_case : Any = self.get_scheduler_config(**a_ ) _snake_case : List[Any] = scheduler_class(**a_ ) _snake_case : Union[str, Any] = 10 _snake_case : Union[str, Any] = self.dummy_model() _snake_case : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(a_ ) for i, t in enumerate(scheduler.timesteps ): _snake_case : Optional[Any] = model(a_, a_ ) _snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample for i, t in enumerate(scheduler.timesteps ): _snake_case : Union[str, Any] = model(a_, a_ ) _snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample return sample def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : str = dict(self.forward_default_kwargs ) _snake_case : int = kwargs.pop("""num_inference_steps""", a_ ) for scheduler_class in self.scheduler_classes: _snake_case : Union[str, Any] = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**a_ ) _snake_case : Dict = self.dummy_sample _snake_case : List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(a_, """set_timesteps""" ): scheduler.set_timesteps(a_ ) elif num_inference_steps is not None and not hasattr(a_, """set_timesteps""" ): _snake_case : Dict = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _snake_case : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _snake_case : List[str] = dummy_past_residuals[:] _snake_case : Optional[int] = scheduler.timesteps[5] _snake_case : Optional[Any] = scheduler.timesteps[6] _snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : List[str] = scheduler.step(a_, a_, a_, **a_ ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) _snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=a_, time_step=a_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=a_, time_step=a_ ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.full_loop() _snake_case : Optional[int] = torch.mean(torch.abs(a_ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
28
0
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' lowercase__ = StableDiffusionDiffEditPipeline lowercase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} lowercase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} lowercase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase__ = frozenset([] ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : int = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D"""), up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D"""), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=lowerCAmelCase_, ) _snake_case : str = DDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule="""scaled_linear""", clip_sample=lowerCAmelCase_, set_alpha_to_one=lowerCAmelCase_, ) _snake_case : Union[str, Any] = DDIMInverseScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule="""scaled_linear""", clip_sample=lowerCAmelCase_, set_alpha_to_zero=lowerCAmelCase_, ) torch.manual_seed(0 ) _snake_case : List[str] = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) _snake_case : int = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act="""gelu""", projection_dim=512, ) _snake_case : Any = CLIPTextModel(lowerCAmelCase_ ) _snake_case : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _snake_case : Tuple = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCamelCase_ ( self: int, a_: List[Any], a_: Dict=0 ): '''simple docstring''' _snake_case : Union[str, Any] = floats_tensor((1, 16, 16), rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _snake_case : List[Any] = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) if str(lowerCAmelCase_ ).startswith("""mps""" ): _snake_case : int = torch.manual_seed(lowerCAmelCase_ ) else: _snake_case : Any = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _snake_case : Optional[int] = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCamelCase_ ( self: List[str], a_: List[Any], a_: str=0 ): '''simple docstring''' _snake_case : Any = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _snake_case : List[str] = image.cpu().permute(0, 2, 3, 1 )[0] _snake_case : List[str] = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert("""RGB""" ) if str(lowerCAmelCase_ ).startswith("""mps""" ): _snake_case : List[Any] = torch.manual_seed(lowerCAmelCase_ ) else: _snake_case : Tuple = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _snake_case : str = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCamelCase_ ( self: int, a_: Tuple, a_: Optional[Any]=0 ): '''simple docstring''' _snake_case : int = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _snake_case : Optional[Any] = image.cpu().permute(0, 2, 3, 1 )[0] _snake_case : str = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert("""RGB""" ) if str(lowerCAmelCase_ ).startswith("""mps""" ): _snake_case : Dict = torch.manual_seed(lowerCAmelCase_ ) else: _snake_case : Union[str, Any] = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _snake_case : Optional[int] = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def UpperCamelCase_ ( self: Dict ): '''simple docstring''' if not hasattr(self.pipeline_class, """_optional_components""" ): return _snake_case : Dict = self.get_dummy_components() _snake_case : Optional[Any] = self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) _snake_case : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case : Optional[int] = pipe(**lowerCAmelCase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase_ ) _snake_case : Dict = self.pipeline_class.from_pretrained(lowerCAmelCase_ ) pipe_loaded.to(lowerCAmelCase_ ) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase_ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCAmelCase_, lowerCAmelCase_ ) is None, f"`{optional_component}` did not stay set to None after loading.", ) _snake_case : Optional[Any] = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case : Any = pipe_loaded(**lowerCAmelCase_ )[0] _snake_case : int = np.abs(output - output_loaded ).max() self.assertLess(lowerCAmelCase_, 1E-4 ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : List[Any] = """cpu""" _snake_case : Tuple = self.get_dummy_components() _snake_case : int = self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case : Optional[Any] = self.get_dummy_mask_inputs(lowerCAmelCase_ ) _snake_case : Union[str, Any] = pipe.generate_mask(**lowerCAmelCase_ ) _snake_case : Any = mask[0, -3:, -3:] self.assertEqual(mask.shape, (1, 16, 16) ) _snake_case : Optional[Any] = np.array([0] * 9 ) _snake_case : str = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase_, 1E-3 ) self.assertEqual(mask[0, -3, -4], 0 ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : List[str] = """cpu""" _snake_case : Union[str, Any] = self.get_dummy_components() _snake_case : Dict = self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case : Optional[int] = self.get_dummy_inversion_inputs(lowerCAmelCase_ ) _snake_case : Optional[int] = pipe.invert(**lowerCAmelCase_ ).images _snake_case : Dict = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) _snake_case : Optional[Any] = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799], ) _snake_case : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase_, 1E-3 ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Optional[int] = """cpu""" _snake_case : List[str] = self.get_dummy_components() _snake_case : Optional[int] = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} _snake_case : int = DPMSolverMultistepScheduler(**lowerCAmelCase_ ) _snake_case : str = DPMSolverMultistepInverseScheduler(**lowerCAmelCase_ ) _snake_case : List[str] = self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case : Any = self.get_dummy_inversion_inputs(lowerCAmelCase_ ) _snake_case : List[str] = pipe.invert(**lowerCAmelCase_ ).images _snake_case : List[str] = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) _snake_case : int = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799], ) _snake_case : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase_, 1E-3 ) @require_torch_gpu @slow class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Any ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCamelCase_ ( cls: int ): '''simple docstring''' _snake_case : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) _snake_case : Dict = raw_image.convert("""RGB""" ).resize((768, 768) ) _snake_case : Any = raw_image def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : str = torch.manual_seed(0 ) _snake_case : Optional[int] = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""", safety_checker=lowerCAmelCase_, torch_dtype=torch.floataa ) _snake_case : Tuple = DDIMScheduler.from_config(pipe.scheduler.config ) _snake_case : List[Any] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case : Optional[int] = """a bowl of fruit""" _snake_case : List[str] = """a bowl of pears""" _snake_case : Optional[Any] = pipe.generate_mask( image=self.raw_image, source_prompt=lowerCAmelCase_, target_prompt=lowerCAmelCase_, generator=lowerCAmelCase_, ) _snake_case : Any = pipe.invert( prompt=lowerCAmelCase_, image=self.raw_image, inpaint_strength=0.7, generator=lowerCAmelCase_ ).latents _snake_case : List[str] = pipe( prompt=lowerCAmelCase_, mask_image=lowerCAmelCase_, image_latents=lowerCAmelCase_, generator=lowerCAmelCase_, negative_prompt=lowerCAmelCase_, inpaint_strength=0.7, output_type="""numpy""", ).images[0] _snake_case : Tuple = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Tuple = torch.manual_seed(0 ) _snake_case : Any = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""", safety_checker=lowerCAmelCase_, torch_dtype=torch.floataa ) _snake_case : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _snake_case : Tuple = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case : List[str] = """a bowl of fruit""" _snake_case : Optional[Any] = """a bowl of pears""" _snake_case : int = pipe.generate_mask( image=self.raw_image, source_prompt=lowerCAmelCase_, target_prompt=lowerCAmelCase_, generator=lowerCAmelCase_, ) _snake_case : Optional[Any] = pipe.invert( prompt=lowerCAmelCase_, image=self.raw_image, inpaint_strength=0.7, generator=lowerCAmelCase_, num_inference_steps=25, ).latents _snake_case : Optional[int] = pipe( prompt=lowerCAmelCase_, mask_image=lowerCAmelCase_, image_latents=lowerCAmelCase_, generator=lowerCAmelCase_, negative_prompt=lowerCAmelCase_, inpaint_strength=0.7, num_inference_steps=25, output_type="""numpy""", ).images[0] _snake_case : str = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
711
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True A_ = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) _snake_case : Any = [] for num in range(len(snake_case__ ) ): _snake_case : Optional[int] = 0 while 2 * i * i <= odd_composites[num]: _snake_case : Optional[int] = odd_composites[num] - 2 * i * i if is_prime(snake_case__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(snake_case__ ) == n: return list_nums return [] def UpperCAmelCase__ (): """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(F'''{solution() = }''')
28
0
"""simple docstring""" import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( '''The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion''' ) A_ = None A_ = { '''7B''': 1_10_08, '''13B''': 1_38_24, '''30B''': 1_79_20, '''65B''': 2_20_16, '''70B''': 2_86_72, } A_ = { '''7B''': 1, '''7Bf''': 1, '''13B''': 2, '''13Bf''': 2, '''30B''': 4, '''65B''': 8, '''70B''': 8, '''70Bf''': 8, } def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : str=1 , snake_case__ : List[str]=2_56 ): """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def UpperCAmelCase__ (snake_case__ : List[str] ): """simple docstring""" with open(a_ , """r""" ) as f: return json.load(a_ ) def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : List[Any] ): """simple docstring""" with open(a_ , """w""" ) as f: json.dump(a_ , a_ ) def UpperCAmelCase__ (snake_case__ : int , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : Any=True ): """simple docstring""" os.makedirs(a_ , exist_ok=a_ ) _snake_case : Any = os.path.join(a_ , """tmp""" ) os.makedirs(a_ , exist_ok=a_ ) _snake_case : Union[str, Any] = read_json(os.path.join(a_ , """params.json""" ) ) _snake_case : List[str] = NUM_SHARDS[model_size] _snake_case : Union[str, Any] = params['''n_layers'''] _snake_case : List[Any] = params['''n_heads'''] _snake_case : Any = n_heads // num_shards _snake_case : Tuple = params['''dim'''] _snake_case : List[Any] = dim // n_heads _snake_case : List[Any] = 1_00_00.0 _snake_case : List[Any] = 1.0 / (base ** (torch.arange(0 , a_ , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _snake_case : int = params['''n_kv_heads'''] # for GQA / MQA _snake_case : Optional[Any] = n_heads_per_shard // num_key_value_heads _snake_case : Any = dim // num_key_value_heads else: # compatibility with other checkpoints _snake_case : List[Any] = n_heads _snake_case : int = n_heads_per_shard _snake_case : Union[str, Any] = dim # permute for sliced rotary def permute(snake_case__ : Any , snake_case__ : Optional[int]=n_heads , snake_case__ : Any=dim , snake_case__ : int=dim ): return w.view(a_ , dima // n_heads // 2 , 2 , a_ ).transpose(1 , 2 ).reshape(a_ , a_ ) print(F"Fetching all parameters from the checkpoint at {input_base_path}." ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _snake_case : Any = torch.load(os.path.join(a_ , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded _snake_case : Dict = [ torch.load(os.path.join(a_ , F"consolidated.{i:02d}.pth" ) , map_location="""cpu""" ) for i in range(a_ ) ] _snake_case : Tuple = 0 _snake_case : Any = {'''weight_map''': {}} for layer_i in range(a_ ): _snake_case : Optional[int] = F"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded _snake_case : Tuple = { F"model.layers.{layer_i}.self_attn.q_proj.weight": permute( loaded[F"layers.{layer_i}.attention.wq.weight"] ), F"model.layers.{layer_i}.self_attn.k_proj.weight": permute( loaded[F"layers.{layer_i}.attention.wk.weight"] ), F"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[F"layers.{layer_i}.attention.wv.weight"], F"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[F"layers.{layer_i}.attention.wo.weight"], F"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[F"layers.{layer_i}.feed_forward.w1.weight"], F"model.layers.{layer_i}.mlp.down_proj.weight": loaded[F"layers.{layer_i}.feed_forward.w2.weight"], F"model.layers.{layer_i}.mlp.up_proj.weight": loaded[F"layers.{layer_i}.feed_forward.w3.weight"], F"model.layers.{layer_i}.input_layernorm.weight": loaded[F"layers.{layer_i}.attention_norm.weight"], F"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[F"layers.{layer_i}.ffn_norm.weight"], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _snake_case : int = { F"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ F"layers.{layer_i}.attention_norm.weight" ].clone(), F"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ F"layers.{layer_i}.ffn_norm.weight" ].clone(), } _snake_case : Union[str, Any] = permute( torch.cat( [ loaded[i][F"layers.{layer_i}.attention.wq.weight"].view(a_ , a_ , a_ ) for i in range(a_ ) ] , dim=0 , ).reshape(a_ , a_ ) ) _snake_case : Optional[Any] = permute( torch.cat( [ loaded[i][F"layers.{layer_i}.attention.wk.weight"].view( a_ , a_ , a_ ) for i in range(a_ ) ] , dim=0 , ).reshape(a_ , a_ ) , a_ , a_ , a_ , ) _snake_case : Dict = torch.cat( [ loaded[i][F"layers.{layer_i}.attention.wv.weight"].view( a_ , a_ , a_ ) for i in range(a_ ) ] , dim=0 , ).reshape(a_ , a_ ) _snake_case : Dict = torch.cat( [loaded[i][F"layers.{layer_i}.attention.wo.weight"] for i in range(a_ )] , dim=1 ) _snake_case : List[Any] = torch.cat( [loaded[i][F"layers.{layer_i}.feed_forward.w1.weight"] for i in range(a_ )] , dim=0 ) _snake_case : List[Any] = torch.cat( [loaded[i][F"layers.{layer_i}.feed_forward.w2.weight"] for i in range(a_ )] , dim=1 ) _snake_case : List[str] = torch.cat( [loaded[i][F"layers.{layer_i}.feed_forward.w3.weight"] for i in range(a_ )] , dim=0 ) _snake_case : Union[str, Any] = inv_freq for k, v in state_dict.items(): _snake_case : List[Any] = filename param_count += v.numel() torch.save(a_ , os.path.join(a_ , a_ ) ) _snake_case : List[Any] = F"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded _snake_case : Optional[int] = { '''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''], '''model.norm.weight''': loaded['''norm.weight'''], '''lm_head.weight''': loaded['''output.weight'''], } else: _snake_case : List[Any] = { '''model.norm.weight''': loaded[0]['''norm.weight'''], '''model.embed_tokens.weight''': torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(a_ )] , dim=1 ), '''lm_head.weight''': torch.cat([loaded[i]["""output.weight"""] for i in range(a_ )] , dim=0 ), } for k, v in state_dict.items(): _snake_case : Any = filename param_count += v.numel() torch.save(a_ , os.path.join(a_ , a_ ) ) # Write configs _snake_case : Optional[int] = {'''total_size''': param_count * 2} write_json(a_ , os.path.join(a_ , """pytorch_model.bin.index.json""" ) ) _snake_case : Union[str, Any] = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1 _snake_case : Any = params['''multiple_of'''] if '''multiple_of''' in params else 2_56 _snake_case : Optional[int] = LlamaConfig( hidden_size=a_ , intermediate_size=compute_intermediate_size(a_ , a_ , a_ ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=a_ , ) config.save_pretrained(a_ ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) _snake_case : str = LlamaForCausalLM.from_pretrained(a_ , torch_dtype=torch.floataa , low_cpu_mem_usage=a_ ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(a_ , safe_serialization=a_ ) shutil.rmtree(a_ ) def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : str ): """simple docstring""" _snake_case : Optional[int] = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F"Saving a {tokenizer_class.__name__} to {tokenizer_path}." ) _snake_case : str = tokenizer_class(a_ ) tokenizer.save_pretrained(a_ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Optional[int] = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=a_ , help="""Whether or not to save using `safetensors`.""" ) _snake_case : Optional[Any] = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _snake_case : Optional[Any] = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , a_ ) if __name__ == "__main__": main()
712
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class lowercase: '''simple docstring''' def __init__( self: List[Any], a_: str = "cpu", a_: str = "openai/clip-vit-large-patch14" ): '''simple docstring''' _snake_case : Optional[int] = device _snake_case : str = CLIPTokenizerFast.from_pretrained(a_ ) _snake_case : Union[str, Any] = [0.48_145_466, 0.4_578_275, 0.40_821_073] _snake_case : Optional[int] = [0.26_862_954, 0.26_130_258, 0.27_577_711] _snake_case : str = torchvision.transforms.Normalize(self.image_mean, self.image_std ) _snake_case : Optional[int] = torchvision.transforms.Resize(224 ) _snake_case : str = torchvision.transforms.CenterCrop(224 ) def UpperCamelCase_ ( self: List[str], a_: str ): '''simple docstring''' _snake_case : Optional[int] = self.resize(a_ ) _snake_case : List[Any] = self.center_crop(a_ ) _snake_case : Optional[Any] = self.normalize(a_ ) return images def __call__( self: Any, a_: Optional[int]=None, a_: str=None, **a_: str ): '''simple docstring''' _snake_case : Optional[int] = self.tokenizer(text=a_, **a_ ) _snake_case : Any = self.preprocess_img(a_ ) _snake_case : Union[str, Any] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class lowercase( nn.Module ): '''simple docstring''' def __init__( self: List[Any], a_: List[Any]=10, a_: Optional[Any]=0.01, a_: List[str]=None, a_: str=None, a_: Any=None, a_: Tuple=None, a_: List[str]=None, a_: List[str]=None, a_: str=False, a_: List[str]=True, a_: Any="image", a_: Optional[Any]=True, a_: Dict=False, a_: List[str]=False, a_: Optional[int]=False, ): '''simple docstring''' super().__init__() _snake_case : int = None _snake_case : List[str] = device if device else get_device() if vqgan: _snake_case : Any = vqgan else: _snake_case : Optional[Any] = load_vqgan(self.device, conf_path=a_, ckpt_path=a_ ) self.vqgan.eval() if clip: _snake_case : Tuple = clip else: _snake_case : Optional[Any] = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) _snake_case : List[str] = ProcessorGradientFlow(device=self.device ) _snake_case : Union[str, Any] = iterations _snake_case : Dict = lr _snake_case : Optional[int] = log _snake_case : List[str] = make_grid _snake_case : Union[str, Any] = return_val _snake_case : List[str] = quantize _snake_case : List[str] = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self: Tuple, a_: str=None, a_: Dict=None, a_: Dict=5, a_: Dict=True ): '''simple docstring''' _snake_case : Dict = [] if output_path is None: _snake_case : Tuple = """./animation.gif""" if input_path is None: _snake_case : Any = self.save_path _snake_case : Optional[int] = sorted(glob(input_path + """/*""" ) ) if not len(a_ ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(a_ ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) _snake_case : List[Any] = total_duration / len(a_ ) _snake_case : Optional[Any] = [frame_duration] * len(a_ ) if extend_frames: _snake_case : Optional[int] = 1.5 _snake_case : int = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(a_ ) ) imageio.mimsave(a_, a_, duration=a_ ) print(f"gif saved to {output_path}" ) def UpperCamelCase_ ( self: str, a_: Tuple=None, a_: Optional[Any]=None ): '''simple docstring''' if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError _snake_case : int = preprocess(Image.open(a_ ), target_image_size=256 ).to(self.device ) _snake_case : int = preprocess_vqgan(a_ ) _snake_case , *_snake_case : List[Any] = self.vqgan.encode(a_ ) return z def UpperCamelCase_ ( self: Union[str, Any], a_: Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.latent.detach().requires_grad_() _snake_case : Tuple = base_latent + transform_vector if self.quantize: _snake_case , *_snake_case : Any = self.vqgan.quantize(a_ ) else: _snake_case : List[Any] = trans_latent return self.vqgan.decode(a_ ) def UpperCamelCase_ ( self: List[Any], a_: Any, a_: Union[str, Any], a_: Dict=None ): '''simple docstring''' _snake_case : Tuple = self.clip_preprocessor(text=a_, images=a_, return_tensors="""pt""", padding=a_ ) _snake_case : Any = self.clip(**a_ ) _snake_case : str = clip_outputs.logits_per_image if weights is not None: _snake_case : Any = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self: Any, a_: Any, a_: List[str], a_: Dict ): '''simple docstring''' _snake_case : List[Any] = self._get_clip_similarity(pos_prompts["""prompts"""], a_, weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: _snake_case : List[str] = self._get_clip_similarity(neg_prompts["""prompts"""], a_, weights=neg_prompts["""weights"""] ) else: _snake_case : Tuple = torch.tensor([1], device=self.device ) _snake_case : int = -torch.log(a_ ) + torch.log(a_ ) return loss def UpperCamelCase_ ( self: Optional[Any], a_: Tuple, a_: Union[str, Any], a_: List[str] ): '''simple docstring''' _snake_case : Tuple = torch.randn_like(self.latent, requires_grad=a_, device=self.device ) _snake_case : Dict = torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _snake_case : str = self._add_vector(a_ ) _snake_case : List[Any] = loop_post_process(a_ ) _snake_case : List[Any] = self._get_CLIP_loss(a_, a_, a_ ) print("""CLIP loss""", a_ ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=a_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self: int, a_: Any, a_: Union[str, Any], a_: Optional[int] ): '''simple docstring''' wandb.init(reinit=a_, project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: _snake_case : Any = Image.open(a_ ) _snake_case : str = image.resize((256, 256) ) wandb.log("""Original Image""", wandb.Image(a_ ) ) def UpperCamelCase_ ( self: str, a_: List[Any] ): '''simple docstring''' if not prompts: return [] _snake_case : List[str] = [] _snake_case : Tuple = [] if isinstance(a_, a_ ): _snake_case : Union[str, Any] = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(a_, (tuple, list) ): _snake_case : List[Any] = prompt[0] _snake_case : Optional[Any] = float(prompt[1] ) elif ":" in prompt: _snake_case , _snake_case : List[Any] = prompt.split(""":""" ) _snake_case : str = float(a_ ) else: _snake_case : int = prompt _snake_case : Union[str, Any] = 1.0 processed_prompts.append(a_ ) weights.append(a_ ) return { "prompts": processed_prompts, "weights": torch.tensor(a_, device=self.device ), } def UpperCamelCase_ ( self: Dict, a_: List[Any], a_: List[Any]=None, a_: Optional[Any]=None, a_: Optional[Any]=True, a_: Dict=False, a_: Optional[Any]=True, a_: Optional[Any]=True, a_: Any=None, ): '''simple docstring''' if image_path: _snake_case : Union[str, Any] = self._get_latent(a_ ) else: _snake_case : Any = torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(a_, a_, a_ ) assert pos_prompts, "You must provide at least one positive prompt." _snake_case : str = self.process_prompts(a_ ) _snake_case : Dict = self.process_prompts(a_ ) if save_final and save_path is None: _snake_case : Any = os.path.join("""./outputs/""", """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(a_ ): os.makedirs(a_ ) else: _snake_case : List[Any] = save_path + """_""" + get_timestamp() os.makedirs(a_ ) _snake_case : Optional[Any] = save_path _snake_case : List[Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(a_ ) ) _snake_case : List[Any] = loop_post_process(a_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(a_, a_, a_ ) ): if show_intermediate: show_pil(a_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}.png" ) ) if self.log: wandb.log({"""Image""": wandb.Image(a_ )} ) if show_final: show_pil(a_ ) if save_final: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}_final.png" ) )
28
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : List[Any] ): """simple docstring""" if len(UpperCAmelCase__ ) <= 1 or n <= 1: return insert_next(UpperCAmelCase__ , n - 1 ) rec_insertion_sort(UpperCAmelCase__ , n - 1 ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : List[str] ): """simple docstring""" if index >= len(UpperCAmelCase__ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order _snake_case , _snake_case : Union[str, Any] = ( collection[index], collection[index - 1], ) insert_next(UpperCAmelCase__ , index + 1 ) if __name__ == "__main__": A_ = input('''Enter integers separated by spaces: ''') A_ = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
713
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _snake_case : Dict = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
28
0
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase( __a ): '''simple docstring''' lowercase__ = ["image_processor", "tokenizer"] lowercase__ = "BlipImageProcessor" lowercase__ = ("BertTokenizer", "BertTokenizerFast") def __init__( self: List[Any], a_: int, a_: Tuple ): '''simple docstring''' _snake_case : Tuple = False super().__init__(__UpperCamelCase, __UpperCamelCase ) _snake_case : str = self.image_processor def __call__( self: Tuple, a_: ImageInput = None, a_: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, a_: bool = True, a_: Union[bool, str, PaddingStrategy] = False, a_: Union[bool, str, TruncationStrategy] = None, a_: Optional[int] = None, a_: int = 0, a_: Optional[int] = None, a_: Optional[bool] = None, a_: bool = False, a_: bool = False, a_: bool = False, a_: bool = False, a_: bool = False, a_: bool = True, a_: Optional[Union[str, TensorType]] = None, **a_: str, ): '''simple docstring''' if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: _snake_case : Dict = self.tokenizer _snake_case : List[str] = self.tokenizer( text=__UpperCamelCase, add_special_tokens=__UpperCamelCase, padding=__UpperCamelCase, truncation=__UpperCamelCase, max_length=__UpperCamelCase, stride=__UpperCamelCase, pad_to_multiple_of=__UpperCamelCase, return_attention_mask=__UpperCamelCase, return_overflowing_tokens=__UpperCamelCase, return_special_tokens_mask=__UpperCamelCase, return_offsets_mapping=__UpperCamelCase, return_token_type_ids=__UpperCamelCase, return_length=__UpperCamelCase, verbose=__UpperCamelCase, return_tensors=__UpperCamelCase, **__UpperCamelCase, ) return text_encoding # add pixel_values _snake_case : Dict = self.image_processor(__UpperCamelCase, return_tensors=__UpperCamelCase ) if text is not None: _snake_case : List[Any] = self.tokenizer( text=__UpperCamelCase, add_special_tokens=__UpperCamelCase, padding=__UpperCamelCase, truncation=__UpperCamelCase, max_length=__UpperCamelCase, stride=__UpperCamelCase, pad_to_multiple_of=__UpperCamelCase, return_attention_mask=__UpperCamelCase, return_overflowing_tokens=__UpperCamelCase, return_special_tokens_mask=__UpperCamelCase, return_offsets_mapping=__UpperCamelCase, return_token_type_ids=__UpperCamelCase, return_length=__UpperCamelCase, verbose=__UpperCamelCase, return_tensors=__UpperCamelCase, **__UpperCamelCase, ) else: _snake_case : Optional[Any] = None if text_encoding is not None: encoding_image_processor.update(__UpperCamelCase ) return encoding_image_processor def UpperCamelCase_ ( self: int, *a_: List[str], **a_: List[str] ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCamelCase, **__UpperCamelCase ) def UpperCamelCase_ ( self: Dict, *a_: Optional[Any], **a_: Dict ): '''simple docstring''' return self.tokenizer.decode(*__UpperCamelCase, **__UpperCamelCase ) @property def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : str = self.tokenizer.model_input_names _snake_case : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
714
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase: '''simple docstring''' def __init__( self: List[str], a_: List[Any], a_: str=13, a_: Dict=32, a_: Union[str, Any]=3, a_: Union[str, Any]=4, a_: Tuple=[10, 20, 30, 40], a_: Dict=[2, 2, 3, 2], a_: Tuple=True, a_: Optional[Any]=True, a_: Any=37, a_: Any="gelu", a_: int=10, a_: Tuple=0.02, a_: str=["stage2", "stage3", "stage4"], a_: List[str]=[2, 3, 4], a_: List[str]=None, ): '''simple docstring''' _snake_case : int = parent _snake_case : int = batch_size _snake_case : List[Any] = image_size _snake_case : List[str] = num_channels _snake_case : Tuple = num_stages _snake_case : Union[str, Any] = hidden_sizes _snake_case : List[Any] = depths _snake_case : Tuple = is_training _snake_case : List[str] = use_labels _snake_case : Tuple = intermediate_size _snake_case : List[str] = hidden_act _snake_case : Optional[Any] = num_labels _snake_case : Tuple = initializer_range _snake_case : Tuple = out_features _snake_case : Tuple = out_indices _snake_case : Dict = scope def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Any = None if self.use_labels: _snake_case : Dict = ids_tensor([self.batch_size], self.num_labels ) _snake_case : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=a_, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, ) def UpperCamelCase_ ( self: int, a_: Tuple, a_: Any, a_: Dict ): '''simple docstring''' _snake_case : int = ConvNextVaModel(config=a_ ) model.to(a_ ) model.eval() _snake_case : Any = model(a_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def UpperCamelCase_ ( self: Optional[int], a_: List[str], a_: Tuple, a_: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = ConvNextVaForImageClassification(a_ ) model.to(a_ ) model.eval() _snake_case : Optional[int] = model(a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self: Union[str, Any], a_: Tuple, a_: Tuple, a_: Tuple ): '''simple docstring''' _snake_case : List[str] = ConvNextVaBackbone(config=a_ ) model.to(a_ ) model.eval() _snake_case : int = model(a_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] ) # verify backbone works with out_features=None _snake_case : Tuple = None _snake_case : Tuple = ConvNextVaBackbone(config=a_ ) model.to(a_ ) model.eval() _snake_case : List[Any] = model(a_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ), 1 ) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Dict = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : Any = config_and_inputs _snake_case : str = {"""pixel_values""": pixel_values} return config, inputs_dict def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[Any] = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : List[str] = config_and_inputs _snake_case : Any = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase__ = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Tuple = ConvNextVaModelTester(self ) _snake_case : int = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def UpperCamelCase_ ( self: str ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _snake_case , _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_with_labels() _snake_case : List[Any] = True if model_class.__name__ in [ *get_values(a_ ), *get_values(a_ ), ]: continue _snake_case : Tuple = model_class(a_ ) model.to(a_ ) model.train() _snake_case : Optional[Any] = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : Any = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_with_labels() _snake_case : Any = False _snake_case : List[Any] = True if ( model_class.__name__ in [*get_values(a_ ), *get_values(a_ )] or not model_class.supports_gradient_checkpointing ): continue _snake_case : Dict = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() _snake_case : str = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : Optional[int] = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : List[str] = model_class(a_ ) _snake_case : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : int = [*signature.parameters.keys()] _snake_case : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1], a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(a_: str, a_: Tuple, a_: Tuple ): _snake_case : Optional[Any] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): _snake_case : Any = model(**self._prepare_for_class(a_, a_ ) ) _snake_case : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case : Optional[int] = self.model_tester.num_stages self.assertEqual(len(a_ ), expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) _snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Optional[Any] = True check_hidden_states_output(a_, a_, a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : List[str] = True check_hidden_states_output(a_, a_, a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : str = ConvNextVaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(a_ ) _snake_case : Union[str, Any] = self.default_image_processor _snake_case : List[Any] = prepare_img() _snake_case : Optional[int] = preprocessor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Optional[int] = model(**a_ ) # verify the logits _snake_case : Optional[int] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, a_ ) _snake_case : Optional[int] = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], a_, atol=1E-4 ) )
28
0
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration A_ = '''facebook/wmt19-en-de''' A_ = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model A_ = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) A_ = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test A_ = tokenizer(['''Making tiny model'''], return_tensors='''pt''') A_ = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save A_ = '''tiny-wmt19-en-de''' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
715
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Dict ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Dict ): """simple docstring""" _snake_case : str = tmp_path / """cache""" _snake_case : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _snake_case : str = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : int , snake_case__ : List[Any] ): """simple docstring""" _snake_case : str = tmp_path / """cache""" _snake_case : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : List[Any] = features.copy() if features else default_expected_features _snake_case : List[Any] = ( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) _snake_case : Optional[Any] = ParquetDatasetReader(snake_case__ , features=snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : List[str] = tmp_path / """cache""" _snake_case : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : int = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ , split=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : str , snake_case__ : str ): """simple docstring""" if issubclass(snake_case__ , snake_case__ ): _snake_case : Optional[Any] = parquet_path elif issubclass(snake_case__ , snake_case__ ): _snake_case : int = [parquet_path] _snake_case : Union[str, Any] = tmp_path / """cache""" _snake_case : Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : List[str] = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : str=("train",) ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ) for split in splits: _snake_case : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str , snake_case__ : List[Any] ): """simple docstring""" _snake_case : Tuple = tmp_path / """cache""" _snake_case : Optional[int] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _snake_case : Tuple = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] ): """simple docstring""" _snake_case : Optional[int] = tmp_path / """cache""" _snake_case : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : Optional[Any] = features.copy() if features else default_expected_features _snake_case : Dict = ( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) _snake_case : Optional[int] = ParquetDatasetReader({"""train""": parquet_path} , features=snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Tuple ): """simple docstring""" if split: _snake_case : int = {split: parquet_path} else: _snake_case : Optional[Any] = """train""" _snake_case : int = {"""train""": parquet_path, """test""": parquet_path} _snake_case : Dict = tmp_path / """cache""" _snake_case : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : Union[str, Any] = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : Tuple ): """simple docstring""" _snake_case : List[Any] = ParquetDatasetWriter(snake_case__ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _snake_case : str = pq.ParquetFile(tmp_path / """foo.parquet""" ) _snake_case : int = pf.read() assert dataset.data.table == output_table def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : Optional[Any] = str(shared_datadir / """test_image_rgb.jpg""" ) _snake_case : Tuple = {"""image""": [image_path]} _snake_case : Optional[int] = Features({"""image""": Image()} ) _snake_case : int = Dataset.from_dict(snake_case__ , features=snake_case__ ) _snake_case : Optional[Any] = ParquetDatasetWriter(snake_case__ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _snake_case : List[str] = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features _snake_case : Optional[Any] = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=snake_case__ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : str ): """simple docstring""" assert get_writer_batch_size(snake_case__ ) == expected
28
0
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() A_ = logging.get_logger('''transformers.models.speecht5''') A_ = { """speech_encoder_prenet.layer_norm""": """speecht5.encoder.prenet.feature_projection.layer_norm""", """speech_encoder_prenet.post_extract_proj""": """speecht5.encoder.prenet.feature_projection.projection""", """speech_encoder_prenet.pos_conv.0""": """speecht5.encoder.prenet.pos_conv_embed.conv""", """speech_encoder_prenet.mask_emb""": """speecht5.encoder.prenet.masked_spec_embed""", } A_ = { """text_encoder_prenet.encoder_prenet.0""": """speecht5.encoder.prenet.embed_tokens""", """text_encoder_prenet.encoder_prenet.1.alpha""": """speecht5.encoder.prenet.encode_positions.alpha""", } A_ = { """speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0""": """speecht5.decoder.prenet.layers.0""", """speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0""": """speecht5.decoder.prenet.layers.1""", """speech_decoder_prenet.decoder_prenet.0.1""": """speecht5.decoder.prenet.final_layer""", """speech_decoder_prenet.decoder_prenet.1.alpha""": """speecht5.decoder.prenet.encode_positions.alpha""", """speech_decoder_prenet.spkembs_layer.0""": """speecht5.decoder.prenet.speaker_embeds_layer""", } A_ = { """speech_decoder_postnet.feat_out""": """speech_decoder_postnet.feat_out""", """speech_decoder_postnet.prob_out""": """speech_decoder_postnet.prob_out""", """speech_decoder_postnet.postnet.postnet.0.0""": """speech_decoder_postnet.layers.0.conv""", """speech_decoder_postnet.postnet.postnet.0.1""": """speech_decoder_postnet.layers.0.batch_norm""", """speech_decoder_postnet.postnet.postnet.1.0""": """speech_decoder_postnet.layers.1.conv""", """speech_decoder_postnet.postnet.postnet.1.1""": """speech_decoder_postnet.layers.1.batch_norm""", """speech_decoder_postnet.postnet.postnet.2.0""": """speech_decoder_postnet.layers.2.conv""", """speech_decoder_postnet.postnet.postnet.2.1""": """speech_decoder_postnet.layers.2.batch_norm""", """speech_decoder_postnet.postnet.postnet.3.0""": """speech_decoder_postnet.layers.3.conv""", """speech_decoder_postnet.postnet.postnet.3.1""": """speech_decoder_postnet.layers.3.batch_norm""", """speech_decoder_postnet.postnet.postnet.4.0""": """speech_decoder_postnet.layers.4.conv""", """speech_decoder_postnet.postnet.postnet.4.1""": """speech_decoder_postnet.layers.4.batch_norm""", } A_ = { """text_decoder_prenet.embed_tokens""": """speecht5.decoder.prenet.embed_tokens""", } A_ = { """text_decoder_postnet.output_projection""": """text_decoder_postnet.lm_head""", } A_ = { """encoder.layers.*.self_attn.k_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj""", """encoder.layers.*.self_attn.v_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj""", """encoder.layers.*.self_attn.q_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj""", """encoder.layers.*.self_attn.out_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj""", """encoder.layers.*.self_attn_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.layer_norm""", """encoder.layers.*.fc1""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense""", """encoder.layers.*.fc2""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense""", """encoder.layers.*.final_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """speecht5.encoder.wrapped_encoder.layer_norm""", """encoder.pos_emb.pe_k""": """speecht5.encoder.wrapped_encoder.embed_positions.pe_k""", } A_ = { """decoder.layers.*.self_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj""", """decoder.layers.*.self_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj""", """decoder.layers.*.self_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj""", """decoder.layers.*.self_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj""", """decoder.layers.*.self_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm""", """decoder.layers.*.encoder_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj""", """decoder.layers.*.encoder_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj""", """decoder.layers.*.encoder_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj""", """decoder.layers.*.encoder_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj""", """decoder.layers.*.encoder_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm""", """decoder.layers.*.fc1""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense""", """decoder.layers.*.fc2""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense""", """decoder.layers.*.final_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm""", } A_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } A_ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } A_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } A_ = [] A_ = [ """encoder.version""", """encoder.layers.*.norm_k.weight""", """encoder.layers.*.norm_k.bias""", """decoder.version""", """decoder.layers.*.norm_k.weight""", """decoder.layers.*.norm_k.bias""", """decoder.pos_emb.pe_k""", """speech_encoder_prenet.embed_positions._float_tensor""", """text_decoder_prenet.embed_positions._float_tensor""", ] A_ = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """speech_decoder_prenet.*""", """speech_decoder_postnet.*""", ] A_ = IGNORE_KEYS + [ """encoder.proj""", """speech_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] A_ = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] def UpperCAmelCase__ (snake_case__ : str , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] ): """simple docstring""" for attribute in key.split(""".""" ): _snake_case : Tuple = getattr(snake_case__ , snake_case__ ) if weight_type is not None: _snake_case : int = getattr(snake_case__ , snake_case__ ).shape else: _snake_case : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": _snake_case : List[str] = value elif weight_type == "weight_g": _snake_case : Tuple = value elif weight_type == "weight_v": _snake_case : Tuple = value elif weight_type == "bias": _snake_case : Any = value elif weight_type == "running_mean": _snake_case : int = value elif weight_type == "running_var": _snake_case : Tuple = value elif weight_type == "num_batches_tracked": _snake_case : int = value else: _snake_case : Union[str, Any] = value logger.info(F"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Any ): """simple docstring""" for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _snake_case , _snake_case : List[Any] = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def UpperCAmelCase__ (snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] ): """simple docstring""" _snake_case : List[Any] = [] if task == "s2t": _snake_case : List[str] = hf_model.speechta.encoder.prenet.feature_encoder _snake_case : List[Any] = MAPPING_S2T _snake_case : str = IGNORE_KEYS_S2T elif task == "t2s": _snake_case : int = None _snake_case : Optional[Any] = MAPPING_T2S _snake_case : List[Any] = IGNORE_KEYS_T2S elif task == "s2s": _snake_case : str = hf_model.speechta.encoder.prenet.feature_encoder _snake_case : List[Any] = MAPPING_S2S _snake_case : str = IGNORE_KEYS_S2S else: raise ValueError(F"Unsupported task: {task}" ) for name, value in fairseq_dict.items(): if should_ignore(snake_case__ , snake_case__ ): logger.info(F"{name} was ignored" ) continue _snake_case : str = False if "conv_layers" in name: load_conv_layer( snake_case__ , snake_case__ , snake_case__ , snake_case__ , hf_model.config.feat_extract_norm == """group""" , ) _snake_case : List[str] = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _snake_case , _snake_case : List[str] = key.split(""".*.""" ) if prefix in name and suffix in name: _snake_case : Optional[Any] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _snake_case : Union[str, Any] = True if "*" in mapped_key: _snake_case : Optional[Any] = name.split(snake_case__ )[0].split(""".""" )[-2] _snake_case : int = mapped_key.replace("""*""" , snake_case__ ) if "weight_g" in name: _snake_case : Dict = """weight_g""" elif "weight_v" in name: _snake_case : str = """weight_v""" elif "bias" in name: _snake_case : Optional[int] = """bias""" elif "weight" in name: _snake_case : Optional[int] = """weight""" elif "running_mean" in name: _snake_case : List[Any] = """running_mean""" elif "running_var" in name: _snake_case : Optional[int] = """running_var""" elif "num_batches_tracked" in name: _snake_case : str = """num_batches_tracked""" else: _snake_case : int = None set_recursively(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) continue if not is_used: unused_weights.append(snake_case__ ) logger.warning(F"Unused weights: {unused_weights}" ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Any ): """simple docstring""" _snake_case : Any = full_name.split("""conv_layers.""" )[-1] _snake_case : Tuple = name.split(""".""" ) _snake_case : Optional[Any] = int(items[0] ) _snake_case : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _snake_case : str = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _snake_case : List[str] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) _snake_case : Optional[Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) _snake_case : List[str] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(snake_case__ ) @torch.no_grad() def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : Dict=None , snake_case__ : List[str]=None , snake_case__ : Tuple=None , ): """simple docstring""" if config_path is not None: _snake_case : Tuple = SpeechTaConfig.from_pretrained(snake_case__ ) else: _snake_case : str = SpeechTaConfig() if task == "s2t": _snake_case : Union[str, Any] = config.max_text_positions _snake_case : Optional[int] = SpeechTaForSpeechToText(snake_case__ ) elif task == "t2s": _snake_case : Any = 18_76 _snake_case : str = 6_00 _snake_case : List[Any] = config.max_speech_positions _snake_case : Dict = SpeechTaForTextToSpeech(snake_case__ ) elif task == "s2s": _snake_case : Any = 18_76 _snake_case : str = config.max_speech_positions _snake_case : Tuple = SpeechTaForSpeechToSpeech(snake_case__ ) else: raise ValueError(F"Unknown task name: {task}" ) if vocab_path: _snake_case : str = SpeechTaTokenizer(snake_case__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _snake_case : Optional[int] = AddedToken("""<mask>""" , lstrip=snake_case__ , rstrip=snake_case__ ) _snake_case : List[Any] = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) _snake_case : Dict = SpeechTaFeatureExtractor() _snake_case : Any = SpeechTaProcessor(tokenizer=snake_case__ , feature_extractor=snake_case__ ) processor.save_pretrained(snake_case__ ) _snake_case : List[Any] = torch.load(snake_case__ ) recursively_load_weights(fairseq_checkpoint["""model"""] , snake_case__ , snake_case__ ) model.save_pretrained(snake_case__ ) if repo_id: print("""Pushing to the hub...""" ) processor.push_to_hub(snake_case__ ) model.push_to_hub(snake_case__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) A_ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
716
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase: '''simple docstring''' def __init__( self: Dict, a_: Union[str, Any], a_: Tuple=13, a_: Dict=32, a_: Optional[Any]=3, a_: Optional[Any]=4, a_: Optional[int]=[10, 20, 30, 40], a_: Any=[2, 2, 3, 2], a_: Dict=True, a_: Dict=True, a_: List[str]=37, a_: Dict="gelu", a_: List[str]=10, a_: Union[str, Any]=0.02, a_: Any=["stage2", "stage3", "stage4"], a_: Optional[int]=3, a_: Tuple=None, ): '''simple docstring''' _snake_case : Dict = parent _snake_case : Dict = batch_size _snake_case : Optional[Any] = image_size _snake_case : int = num_channels _snake_case : Tuple = num_stages _snake_case : int = hidden_sizes _snake_case : List[str] = depths _snake_case : str = is_training _snake_case : Dict = use_labels _snake_case : List[str] = intermediate_size _snake_case : Optional[int] = hidden_act _snake_case : Any = type_sequence_label_size _snake_case : List[str] = initializer_range _snake_case : Union[str, Any] = out_features _snake_case : Dict = num_labels _snake_case : int = scope _snake_case : Dict = num_stages def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Optional[int] = None if self.use_labels: _snake_case : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) _snake_case : Tuple = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels, num_stages=self.num_stages, hidden_sizes=self.hidden_sizes, depths=self.depths, is_training=self.is_training, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, out_features=self.out_features, ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config(), hidden_size=512, pool_scales=[1, 2, 3, 6], use_auxiliary_head=a_, auxiliary_loss_weight=0.4, auxiliary_in_channels=40, auxiliary_channels=256, auxiliary_num_convs=1, auxiliary_concat_input=a_, loss_ignore_index=255, num_labels=self.num_labels, ) def UpperCamelCase_ ( self: Tuple, a_: List[Any], a_: Dict, a_: Tuple ): '''simple docstring''' _snake_case : List[Any] = UperNetForSemanticSegmentation(config=a_ ) model.to(a_ ) model.eval() _snake_case : Tuple = model(a_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Any = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : List[Any] = config_and_inputs _snake_case : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase__ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = UperNetModelTester(self ) _snake_case : Dict = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Dict = model_class(a_ ) _snake_case : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Tuple = [*signature.parameters.keys()] _snake_case : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1], a_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not have a base model""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not have a base model""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' pass def UpperCamelCase_ ( self: str ): '''simple docstring''' def check_hidden_states_output(a_: Dict, a_: List[str], a_: Optional[int] ): _snake_case : Optional[Any] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): _snake_case : Any = model(**self._prepare_for_class(a_, a_ ) ) _snake_case : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case : List[str] = self.model_tester.num_stages self.assertEqual(len(a_ ), expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) _snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : int = True check_hidden_states_output(a_, a_, a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : Optional[int] = True check_hidden_states_output(a_, a_, a_ ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Tuple = _config_zero_init(a_ ) _snake_case : Dict = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _snake_case : Optional[int] = model_class(config=a_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' pass @slow def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : int = UperNetForSemanticSegmentation.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Union[str, Any] = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) _snake_case : List[Any] = Image.open(snake_case__ ).convert("""RGB""" ) return image @require_torch @require_vision @slow class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : str = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) _snake_case : Any = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(a_ ) _snake_case : Dict = prepare_img() _snake_case : str = processor(images=a_, return_tensors="""pt""" ).to(a_ ) with torch.no_grad(): _snake_case : Tuple = model(**a_ ) _snake_case : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape, a_ ) _snake_case : int = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], a_, atol=1E-4 ) ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) _snake_case : Optional[int] = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(a_ ) _snake_case : List[str] = prepare_img() _snake_case : Tuple = processor(images=a_, return_tensors="""pt""" ).to(a_ ) with torch.no_grad(): _snake_case : Optional[Any] = model(**a_ ) _snake_case : Union[str, Any] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape, a_ ) _snake_case : Optional[Any] = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], a_, atol=1E-4 ) )
28
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor A_ = logging.get_logger(__name__) class lowercase( __lowerCAmelCase ): '''simple docstring''' def __init__( self: Dict, *a_: Union[str, Any], **a_: Optional[Any] ): '''simple docstring''' warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""", lowerCamelCase__, ) super().__init__(*lowerCamelCase__, **lowerCamelCase__ )
717
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path A_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) A_ = [ord(letter) for letter in string.ascii_lowercase] A_ = {ord(char) for char in VALID_CHARS} A_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : tuple[int, ...] ): """simple docstring""" _snake_case : str = "" _snake_case : int _snake_case : int _snake_case : int for keychar, cipherchar in zip(cycle(snake_case__ ) , snake_case__ ): _snake_case : List[str] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case__ ) return decoded def UpperCAmelCase__ (snake_case__ : list[int] ): """simple docstring""" _snake_case : list[str] = [] for key in product(snake_case__ , repeat=3 ): _snake_case : List[Any] = try_key(snake_case__ , snake_case__ ) if encoded is not None: possibles.append(snake_case__ ) return possibles def UpperCAmelCase__ (snake_case__ : list[str] , snake_case__ : str ): """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def UpperCAmelCase__ (snake_case__ : str = "p059_cipher.txt" ): """simple docstring""" _snake_case : list[int] _snake_case : list[str] _snake_case : str _snake_case : str _snake_case : str = Path(snake_case__ ).parent.joinpath(snake_case__ ).read_text(encoding="""utf-8""" ) _snake_case : List[Any] = [int(snake_case__ ) for number in data.strip().split(""",""" )] _snake_case : Optional[Any] = filter_valid_chars(snake_case__ ) for common_word in COMMON_WORDS: _snake_case : Union[str, Any] = filter_common_word(snake_case__ , snake_case__ ) if len(snake_case__ ) == 1: break _snake_case : Optional[int] = possibles[0] return sum(ord(snake_case__ ) for char in decoded_text ) if __name__ == "__main__": print(F'''{solution() = }''')
28
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-classification/requirements.txt''') A_ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) A_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" with open(snake_case_ , """rb""" ) as f: _snake_case : List[Any] = Image.open(snake_case_ ) return im.convert("""RGB""" ) @dataclass class lowercase: '''simple docstring''' lowercase__ = field( default=UpperCamelCase_ , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) lowercase__ = field( default=UpperCamelCase_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowercase__ = field(default=UpperCamelCase_ , metadata={"help": "A folder containing the training data."} ) lowercase__ = field(default=UpperCamelCase_ , metadata={"help": "A folder containing the validation data."} ) lowercase__ = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) lowercase__ = field( default=UpperCamelCase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowercase__ = field( default=UpperCamelCase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( """You must specify either a dataset name from the hub or a train and/or validation directory.""" ) @dataclass class lowercase: '''simple docstring''' lowercase__ = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) lowercase__ = field( default=UpperCamelCase_ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase_ )} , ) lowercase__ = field( default=UpperCamelCase_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowercase__ = field( default=UpperCamelCase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) lowercase__ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowercase__ = field(default=UpperCamelCase_ , metadata={"help": "Name or path of preprocessor config."} ) lowercase__ = field( default=UpperCamelCase_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowercase__ = field( default=UpperCamelCase_ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def UpperCAmelCase__ (snake_case__ : Any ): """simple docstring""" _snake_case : List[str] = torch.stack([example["""pixel_values"""] for example in examples] ) _snake_case : List[Any] = torch.tensor([example["""labels"""] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def UpperCAmelCase__ (): """simple docstring""" _snake_case : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _snake_case : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _snake_case : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_image_classification""" , snake_case_ , snake_case_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _snake_case : Tuple = training_args.get_process_log_level() logger.setLevel(snake_case_ ) transformers.utils.logging.set_verbosity(snake_case_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. _snake_case : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _snake_case : int = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: _snake_case : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="""image-classification""" , use_auth_token=True if model_args.use_auth_token else None , ) else: _snake_case : Any = {} if data_args.train_dir is not None: _snake_case : str = os.path.join(data_args.train_dir , """**""" ) if data_args.validation_dir is not None: _snake_case : Tuple = os.path.join(data_args.validation_dir , """**""" ) _snake_case : int = load_dataset( """imagefolder""" , data_files=snake_case_ , cache_dir=model_args.cache_dir , task="""image-classification""" , ) # If we don't have a validation split, split off a percentage of train as validation. _snake_case : Tuple = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , snake_case_ ) and data_args.train_val_split > 0.0: _snake_case : Optional[int] = dataset['''train'''].train_test_split(data_args.train_val_split ) _snake_case : List[Any] = split['''train'''] _snake_case : List[Any] = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _snake_case : int = dataset['''train'''].features['''labels'''].names _snake_case : List[str] = {}, {} for i, label in enumerate(snake_case_ ): _snake_case : Optional[Any] = str(snake_case_ ) _snake_case : Optional[int] = label # Load the accuracy metric from the datasets package _snake_case : List[Any] = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(snake_case__ : Tuple ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) _snake_case : int = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(snake_case_ ) , labelaid=snake_case_ , idalabel=snake_case_ , finetuning_task="""image-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _snake_case : int = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=snake_case_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) _snake_case : Optional[int] = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: _snake_case : Optional[Any] = image_processor.size['''shortest_edge'''] else: _snake_case : Optional[Any] = (image_processor.size['''height'''], image_processor.size['''width''']) _snake_case : int = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) _snake_case : Tuple = Compose( [ RandomResizedCrop(snake_case_ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) _snake_case : Union[str, Any] = Compose( [ Resize(snake_case_ ), CenterCrop(snake_case_ ), ToTensor(), normalize, ] ) def train_transforms(snake_case__ : Any ): _snake_case : Any = [ _train_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(snake_case__ : int ): _snake_case : int = [_val_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: _snake_case : Optional[Any] = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(snake_case_ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: _snake_case : List[str] = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(snake_case_ ) # Initalize our trainer _snake_case : Optional[Any] = Trainer( model=snake_case_ , args=snake_case_ , train_dataset=dataset["""train"""] if training_args.do_train else None , eval_dataset=dataset["""validation"""] if training_args.do_eval else None , compute_metrics=snake_case_ , tokenizer=snake_case_ , data_collator=snake_case_ , ) # Training if training_args.do_train: _snake_case : List[str] = None if training_args.resume_from_checkpoint is not None: _snake_case : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: _snake_case : List[Any] = last_checkpoint _snake_case : str = trainer.train(resume_from_checkpoint=snake_case_ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _snake_case : Optional[int] = trainer.evaluate() trainer.log_metrics("""eval""" , snake_case_ ) trainer.save_metrics("""eval""" , snake_case_ ) # Write model card and (optionally) push to hub _snake_case : List[Any] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case_ ) else: trainer.create_model_card(**snake_case_ ) if __name__ == "__main__": main()
718
"""simple docstring""" from ...processing_utils import ProcessorMixin class lowercase( __a ): '''simple docstring''' lowercase__ = ["image_processor", "feature_extractor"] lowercase__ = "TvltImageProcessor" lowercase__ = "TvltFeatureExtractor" def __init__( self: Dict, a_: Union[str, Any], a_: Union[str, Any] ): '''simple docstring''' super().__init__(image_processor=a_, feature_extractor=a_ ) _snake_case : Any = image_processor _snake_case : Dict = feature_extractor def __call__( self: int, a_: str=None, a_: Tuple=None, a_: Dict=None, a_: str=None, a_: Optional[int]=False, a_: Tuple=False, *a_: List[str], **a_: int, ): '''simple docstring''' if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) _snake_case : Optional[int] = None if images is not None: _snake_case : Tuple = self.image_processor(a_, mask_pixel=a_, *a_, **a_ ) if images_mixed is not None: _snake_case : Optional[int] = self.image_processor(a_, is_mixed=a_, *a_, **a_ ) if audio is not None: _snake_case : Any = self.feature_extractor( a_, *a_, sampling_rate=a_, mask_audio=a_, **a_ ) _snake_case : List[str] = {} if audio is not None: output_dict.update(a_ ) if images is not None: output_dict.update(a_ ) if images_mixed_dict is not None: output_dict.update(a_ ) return output_dict @property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Dict = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
28
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["""NllbTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["""NllbTokenizerFast"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
719
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A_ = '''pt''' elif is_tf_available(): A_ = '''tf''' else: A_ = '''jax''' class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ByTaTokenizer lowercase__ = False def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' super().setUp() _snake_case : List[str] = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def UpperCamelCase_ ( self: List[Any], **a_: int ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **a_ ) def UpperCamelCase_ ( self: Optional[Any], a_: Optional[Any], a_: List[Any]=False, a_: int=20, a_: Union[str, Any]=5 ): '''simple docstring''' _snake_case : List[Any] = [] for i in range(len(a_ ) ): try: _snake_case : Optional[Any] = tokenizer.decode([i], clean_up_tokenization_spaces=a_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _snake_case : str = list(filter(lambda a_ : re.match(r"""^[ a-zA-Z]+$""", t[1] ), a_ ) ) _snake_case : List[Any] = list(filter(lambda a_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=a_ ), a_ ) ) if max_length is not None and len(a_ ) > max_length: _snake_case : Tuple = toks[:max_length] if min_length is not None and len(a_ ) < min_length and len(a_ ) > 0: while len(a_ ) < min_length: _snake_case : List[str] = toks + toks # toks_str = [t[1] for t in toks] _snake_case : Tuple = [t[0] for t in toks] # Ensure consistency _snake_case : Optional[Any] = tokenizer.decode(a_, clean_up_tokenization_spaces=a_ ) if " " not in output_txt and len(a_ ) > 1: _snake_case : Dict = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=a_ ) + """ """ + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=a_ ) ) if with_prefix_space: _snake_case : Union[str, Any] = """ """ + output_txt _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) return output_txt, output_ids def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[int] = self.ta_base_tokenizer _snake_case : Optional[Any] = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) _snake_case : int = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""], batch_without_eos_added["""input_ids"""] ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[str] = self.ta_base_tokenizer _snake_case : Tuple = """Unicode €.""" _snake_case : List[Any] = tokenizer(a_ ) _snake_case : Tuple = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["""input_ids"""], a_ ) # decoding _snake_case : Tuple = tokenizer.decode(a_ ) self.assertEqual(a_, """Unicode €.</s>""" ) _snake_case : Tuple = tokenizer("""e è é ê ë""" ) _snake_case : List[Any] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["""input_ids"""], a_ ) # decoding _snake_case : int = tokenizer.decode(a_ ) self.assertEqual(a_, """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ), """e è é ê ë</s>""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Dict = self.ta_base_tokenizer _snake_case : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off _snake_case : Union[str, Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on _snake_case : int = tokenizer(a_, padding=a_, return_tensors=a_ ) self.assertIsInstance(a_, a_ ) if FRAMEWORK != "jax": _snake_case : List[str] = list(batch.input_ids.numpy()[0] ) else: _snake_case : Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(a_, a_ ) self.assertEqual((2, 37), batch.input_ids.shape ) self.assertEqual((2, 37), batch.attention_mask.shape ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : List[Any] = self.ta_base_tokenizer _snake_case : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _snake_case : Tuple = tokenizer(a_, padding=a_, return_tensors=a_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""", a_ ) self.assertIn("""attention_mask""", a_ ) self.assertNotIn("""decoder_input_ids""", a_ ) self.assertNotIn("""decoder_attention_mask""", a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Union[str, Any] = self.ta_base_tokenizer _snake_case : Dict = [ """Summary of the text.""", """Another summary.""", ] _snake_case : Optional[int] = tokenizer( text_target=a_, max_length=32, padding="""max_length""", truncation=a_, return_tensors=a_ ) self.assertEqual(32, targets["""input_ids"""].shape[1] ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : int = self.ta_base_tokenizer _snake_case : Optional[int] = ["""A long paragraph for summarization. </s>"""] _snake_case : Dict = ["""Summary of the text. </s>"""] # fmt: off _snake_case : Optional[int] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] _snake_case : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on _snake_case : Optional[Any] = tokenizer(a_, text_target=a_ ) self.assertEqual(a_, batch["""input_ids"""][0] ) self.assertEqual(a_, batch["""labels"""][0] ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test _snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _snake_case : List[str] = tempfile.mkdtemp() _snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running""" _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) _snake_case : List[Any] = tokenizer.__class__.from_pretrained(a_ ) _snake_case : Dict = after_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) shutil.rmtree(a_ ) _snake_case : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _snake_case : Union[str, Any] = tempfile.mkdtemp() _snake_case : List[Any] = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) _snake_case : Optional[Any] = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) _snake_case : Optional[Any] = tokenizer.__class__.from_pretrained(a_ ) _snake_case : str = after_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) self.assertIn("""new_additional_special_token""", after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) _snake_case : Optional[int] = tokenizer.__class__.from_pretrained(a_, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(a_ ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a_ ) with open(os.path.join(a_, """special_tokens_map.json""" ), encoding="""utf-8""" ) as json_file: _snake_case : Union[str, Any] = json.load(a_ ) with open(os.path.join(a_, """tokenizer_config.json""" ), encoding="""utf-8""" ) as json_file: _snake_case : List[Any] = json.load(a_ ) _snake_case : int = [f"<extra_id_{i}>" for i in range(125 )] _snake_case : Optional[int] = added_tokens_extra_ids + [ """an_additional_special_token""" ] _snake_case : Dict = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(a_, """special_tokens_map.json""" ), """w""", encoding="""utf-8""" ) as outfile: json.dump(a_, a_ ) with open(os.path.join(a_, """tokenizer_config.json""" ), """w""", encoding="""utf-8""" ) as outfile: json.dump(a_, a_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case : Optional[int] = tokenizer_class.from_pretrained( a_, ) self.assertIn( """an_additional_special_token""", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case : Union[str, Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""", lstrip=a_ )] _snake_case : List[Any] = tokenizer_class.from_pretrained( a_, additional_special_tokens=a_, ) self.assertIn("""a_new_additional_special_token""", tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ), ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a_ ) _snake_case : Optional[Any] = tokenizer_class.from_pretrained(a_ ) self.assertTrue(tokenizer.decode([255] ) == """""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.get_tokenizers(fast=a_, do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : Dict = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] _snake_case : List[Any] = tokenizer.convert_tokens_to_string(a_ ) self.assertIsInstance(a_, a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : Optional[int] = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] _snake_case : Any = 0 _snake_case : Union[str, Any] = tokenizer.convert_ids_to_tokens( a_, skip_special_tokens=a_ ) for attr in attributes_list: setattr(a_, attr + """_id""", a_ ) self.assertEqual(getattr(a_, a_ ), a_ ) self.assertEqual(getattr(a_, attr + """_id""" ), a_ ) setattr(a_, attr + """_id""", a_ ) self.assertEqual(getattr(a_, a_ ), a_ ) self.assertEqual(getattr(a_, attr + """_id""" ), a_ ) setattr(a_, """additional_special_tokens_ids""", [] ) self.assertListEqual(getattr(a_, """additional_special_tokens""" ), [] ) self.assertListEqual(getattr(a_, """additional_special_tokens_ids""" ), [] ) setattr(a_, """additional_special_tokens_ids""", [token_id_to_test_setters] ) self.assertListEqual(getattr(a_, """additional_special_tokens""" ), [token_to_test_setters] ) self.assertListEqual(getattr(a_, """additional_special_tokens_ids""" ), [token_id_to_test_setters] )
28
0
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''Salesforce/codegen-350M-nl''': '''https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json''', '''Salesforce/codegen-350M-multi''': '''https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json''', '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json''', '''Salesforce/codegen-2B-nl''': '''https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json''', '''Salesforce/codegen-2B-multi''': '''https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json''', '''Salesforce/codegen-2B-mono''': '''https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json''', '''Salesforce/codegen-6B-nl''': '''https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json''', '''Salesforce/codegen-6B-multi''': '''https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json''', '''Salesforce/codegen-6B-mono''': '''https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json''', '''Salesforce/codegen-16B-nl''': '''https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json''', '''Salesforce/codegen-16B-multi''': '''https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json''', '''Salesforce/codegen-16B-mono''': '''https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json''', } class lowercase( __a ): lowercase__ = """codegen""" lowercase__ = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self: int, a_: Dict=50_400, a_: Dict=2_048, a_: str=2_048, a_: int=4_096, a_: Union[str, Any]=28, a_: Optional[Any]=16, a_: str=64, a_: Tuple=None, a_: Any="gelu_new", a_: Optional[Any]=0.0, a_: Optional[Any]=0.0, a_: Any=0.0, a_: Any=1E-5, a_: Dict=0.02, a_: List[Any]=True, a_: Optional[Any]=50_256, a_: List[Any]=50_256, a_: Dict=False, **a_: int, ): '''simple docstring''' _snake_case : int = vocab_size _snake_case : Optional[Any] = n_ctx _snake_case : Optional[int] = n_positions _snake_case : Optional[Any] = n_embd _snake_case : Optional[int] = n_layer _snake_case : Tuple = n_head _snake_case : int = n_inner _snake_case : Tuple = rotary_dim _snake_case : Optional[Any] = activation_function _snake_case : Dict = resid_pdrop _snake_case : Optional[Any] = embd_pdrop _snake_case : Tuple = attn_pdrop _snake_case : Union[str, Any] = layer_norm_epsilon _snake_case : int = initializer_range _snake_case : List[str] = use_cache _snake_case : str = bos_token_id _snake_case : Union[str, Any] = eos_token_id super().__init__( bos_token_id=a_, eos_token_id=a_, tie_word_embeddings=a_, **a_ ) class lowercase( __a ): def __init__( self: Tuple, a_: PretrainedConfig, a_: str = "default", a_: List[PatchingSpec] = None, a_: bool = False, ): '''simple docstring''' super().__init__(a_, task=a_, patching_specs=a_, use_past=a_ ) if not getattr(self._config, """pad_token_id""", a_ ): # TODO: how to do that better? _snake_case : Tuple = 0 @property def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : List[str] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(a_, direction="""inputs""" ) _snake_case : int = {0: """batch""", 1: """past_sequence + sequence"""} else: _snake_case : List[str] = {0: """batch""", 1: """sequence"""} return common_inputs @property def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return self._config.n_layer @property def UpperCamelCase_ ( self: int ): '''simple docstring''' return self._config.n_head def UpperCamelCase_ ( self: Optional[int], a_: PreTrainedTokenizer, a_: int = -1, a_: int = -1, a_: bool = False, a_: Optional[TensorType] = None, ): '''simple docstring''' _snake_case : str = super(a_, self ).generate_dummy_inputs( a_, batch_size=a_, seq_length=a_, is_pair=a_, framework=a_ ) # We need to order the input in the way they appears in the forward() _snake_case : Optional[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _snake_case , _snake_case : Optional[int] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values _snake_case : int = seqlen + 2 _snake_case : Dict = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _snake_case : List[Any] = [ (torch.zeros(a_ ), torch.zeros(a_ )) for _ in range(self.num_layers ) ] _snake_case : Optional[Any] = common_inputs["""attention_mask"""] if self.use_past: _snake_case : Optional[Any] = ordered_inputs["""attention_mask"""].dtype _snake_case : Dict = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(a_, a_, dtype=a_ )], dim=1 ) return ordered_inputs @property def UpperCamelCase_ ( self: Any ): '''simple docstring''' return 13
720
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class lowercase( __a ): '''simple docstring''' @staticmethod @abstractmethod def UpperCamelCase_ ( a_: ArgumentParser ): '''simple docstring''' raise NotImplementedError() @abstractmethod def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' raise NotImplementedError()
28
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = { '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] A_ = ['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
721
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase( __a ): '''simple docstring''' lowercase__ = "roformer" def __init__( self: List[str], a_: Tuple=50_000, a_: Optional[Any]=None, a_: List[str]=768, a_: Union[str, Any]=12, a_: Optional[int]=12, a_: Optional[Any]=3_072, a_: List[str]="gelu", a_: List[str]=0.1, a_: Tuple=0.1, a_: Optional[int]=1_536, a_: Any=2, a_: Optional[int]=0.02, a_: Tuple=1E-12, a_: Dict=0, a_: str=False, a_: Dict=True, **a_: Dict, ): '''simple docstring''' super().__init__(pad_token_id=a_, **a_ ) _snake_case : int = vocab_size _snake_case : int = hidden_size if embedding_size is None else embedding_size _snake_case : Dict = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : Any = num_attention_heads _snake_case : Dict = hidden_act _snake_case : Optional[int] = intermediate_size _snake_case : List[Any] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = max_position_embeddings _snake_case : Tuple = type_vocab_size _snake_case : List[Any] = initializer_range _snake_case : List[Any] = layer_norm_eps _snake_case : Optional[Any] = rotary_value _snake_case : List[str] = use_cache class lowercase( __a ): '''simple docstring''' @property def UpperCamelCase_ ( self: Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : str = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : List[str] = {0: """batch""", 1: """sequence"""} _snake_case : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
28
0
"""simple docstring""" import os import sys import unittest A_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path A_ = os.path.join(git_repo_path, '''src''', '''diffusers''') class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Optional[int] = find_backend(""" if not is_torch_available():""" ) self.assertEqual(a_, """torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") _snake_case : Any = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(a_, """torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") _snake_case : Union[str, Any] = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(a_, """torch_and_transformers_and_onnx""" ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Dict = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""", a_ ) self.assertIn("""torch_and_transformers""", a_ ) self.assertIn("""flax_and_transformers""", a_ ) self.assertIn("""torch_and_transformers_and_onnx""", a_ ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""", objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""", objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""", objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""", objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""", objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""", objects["""torch_and_transformers_and_onnx"""] ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[Any] = create_dummy_object("""CONSTANT""", """'torch'""" ) self.assertEqual(a_, """\nCONSTANT = None\n""" ) _snake_case : Optional[int] = create_dummy_object("""function""", """'torch'""" ) self.assertEqual( a_, """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) _snake_case : List[Any] = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ _snake_case : Union[str, Any] = create_dummy_object("""FakeClass""", """'torch'""" ) self.assertEqual(a_, a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ _snake_case : List[Any] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""], a_ )
700
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Union[str, Any]=1 ): """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : List[Any]=0 ): """simple docstring""" _snake_case : Optional[Any] = [] for old_item in old_list: _snake_case : Union[str, Any] = old_item.replace("""in_layers.0""" , """norm1""" ) _snake_case : List[Any] = new_item.replace("""in_layers.2""" , """conv1""" ) _snake_case : Tuple = new_item.replace("""out_layers.0""" , """norm2""" ) _snake_case : Dict = new_item.replace("""out_layers.3""" , """conv2""" ) _snake_case : int = new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) _snake_case : Optional[Any] = new_item.replace("""skip_connection""" , """conv_shortcut""" ) _snake_case : str = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : Dict=0 ): """simple docstring""" _snake_case : Dict = [] for old_item in old_list: _snake_case : Dict = old_item _snake_case : int = new_item.replace("""norm.weight""" , """group_norm.weight""" ) _snake_case : str = new_item.replace("""norm.bias""" , """group_norm.bias""" ) _snake_case : Optional[Any] = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) _snake_case : Optional[Any] = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) _snake_case : Optional[Any] = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : str=None , snake_case__ : str=None , snake_case__ : List[str]=None ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _snake_case : Union[str, Any] = old_checkpoint[path] _snake_case : Optional[int] = old_tensor.shape[0] // 3 _snake_case : List[Any] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) _snake_case : Union[str, Any] = old_tensor.shape[0] // config["""num_head_channels"""] // 3 _snake_case : Any = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _snake_case , _snake_case , _snake_case : List[str] = old_tensor.split(channels // num_heads , dim=1 ) _snake_case : Union[str, Any] = query.reshape(snake_case__ ) _snake_case : Tuple = key.reshape(snake_case__ ) _snake_case : Any = value.reshape(snake_case__ ) for path in paths: _snake_case : List[Any] = path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _snake_case : Union[str, Any] = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) _snake_case : str = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) _snake_case : Any = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: _snake_case : int = new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _snake_case : Dict = old_checkpoint[path["""old"""]][:, :, 0] else: _snake_case : Optional[Any] = old_checkpoint[path["""old"""]] def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : List[str] ): """simple docstring""" _snake_case : int = {} _snake_case : Tuple = checkpoint["""time_embed.0.weight"""] _snake_case : List[str] = checkpoint["""time_embed.0.bias"""] _snake_case : List[str] = checkpoint["""time_embed.2.weight"""] _snake_case : Tuple = checkpoint["""time_embed.2.bias"""] _snake_case : Dict = checkpoint["""input_blocks.0.0.weight"""] _snake_case : List[Any] = checkpoint["""input_blocks.0.0.bias"""] _snake_case : List[Any] = checkpoint["""out.0.weight"""] _snake_case : Any = checkpoint["""out.0.bias"""] _snake_case : Any = checkpoint["""out.2.weight"""] _snake_case : List[str] = checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only _snake_case : List[str] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) _snake_case : Any = { layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key] for layer_id in range(snake_case__ ) } # Retrieves the keys for the middle blocks only _snake_case : Optional[int] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) _snake_case : Optional[int] = { layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key] for layer_id in range(snake_case__ ) } # Retrieves the keys for the output blocks only _snake_case : str = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) _snake_case : List[Any] = { layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key] for layer_id in range(snake_case__ ) } for i in range(1 , snake_case__ ): _snake_case : Union[str, Any] = (i - 1) // (config["""num_res_blocks"""] + 1) _snake_case : int = (i - 1) % (config["""num_res_blocks"""] + 1) _snake_case : List[str] = [key for key in input_blocks[i] if F"input_blocks.{i}.0" in key] _snake_case : str = [key for key in input_blocks[i] if F"input_blocks.{i}.1" in key] if F"input_blocks.{i}.0.op.weight" in checkpoint: _snake_case : Union[str, Any] = checkpoint[ F"input_blocks.{i}.0.op.weight" ] _snake_case : Dict = checkpoint[ F"input_blocks.{i}.0.op.bias" ] continue _snake_case : Optional[int] = renew_resnet_paths(snake_case__ ) _snake_case : int = {"""old""": F"input_blocks.{i}.0", """new""": F"down_blocks.{block_id}.resnets.{layer_in_block_id}"} _snake_case : Tuple = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path, resnet_op] , config=snake_case__ ) if len(snake_case__ ): _snake_case : str = renew_attention_paths(snake_case__ ) _snake_case : List[str] = { """old""": F"input_blocks.{i}.1", """new""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}", } _snake_case : Optional[int] = { F"input_blocks.{i}.1.qkv.bias": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"input_blocks.{i}.1.qkv.weight": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=snake_case__ , config=snake_case__ , ) _snake_case : int = middle_blocks[0] _snake_case : List[str] = middle_blocks[1] _snake_case : Any = middle_blocks[2] _snake_case : Dict = renew_resnet_paths(snake_case__ ) assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ ) _snake_case : Any = renew_resnet_paths(snake_case__ ) assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ ) _snake_case : Dict = renew_attention_paths(snake_case__ ) _snake_case : Tuple = { """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , attention_paths_to_split=snake_case__ , config=snake_case__ ) for i in range(snake_case__ ): _snake_case : Optional[Any] = i // (config["""num_res_blocks"""] + 1) _snake_case : Dict = i % (config["""num_res_blocks"""] + 1) _snake_case : List[str] = [shave_segments(snake_case__ , 2 ) for name in output_blocks[i]] _snake_case : Any = {} for layer in output_block_layers: _snake_case , _snake_case : Any = layer.split(""".""" )[0], shave_segments(snake_case__ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(snake_case__ ) else: _snake_case : str = [layer_name] if len(snake_case__ ) > 1: _snake_case : Dict = [key for key in output_blocks[i] if F"output_blocks.{i}.0" in key] _snake_case : List[str] = [key for key in output_blocks[i] if F"output_blocks.{i}.1" in key] _snake_case : List[Any] = renew_resnet_paths(snake_case__ ) _snake_case : int = renew_resnet_paths(snake_case__ ) _snake_case : Optional[Any] = {"""old""": F"output_blocks.{i}.0", """new""": F"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _snake_case : str = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) _snake_case : Any = checkpoint[ F"output_blocks.{i}.{index}.conv.weight" ] _snake_case : Optional[int] = checkpoint[ F"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(snake_case__ ) == 2: _snake_case : Any = [] if len(snake_case__ ): _snake_case : str = renew_attention_paths(snake_case__ ) _snake_case : str = { """old""": F"output_blocks.{i}.1", """new""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}", } _snake_case : int = { F"output_blocks.{i}.1.qkv.bias": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"output_blocks.{i}.1.qkv.weight": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=snake_case__ , ) else: _snake_case : Optional[Any] = renew_resnet_paths(snake_case__ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: _snake_case : Optional[Any] = """.""".join(["""output_blocks""", str(snake_case__ ), path["""old"""]] ) _snake_case : Optional[int] = """.""".join(["""up_blocks""", str(snake_case__ ), """resnets""", str(snake_case__ ), path["""new"""]] ) _snake_case : Any = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') A_ = parser.parse_args() A_ = torch.load(args.checkpoint_path) with open(args.config_file) as f: A_ = json.loads(f.read()) A_ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] A_ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: A_ = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) A_ = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) A_ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
28
0
"""simple docstring""" import numpy as np def UpperCAmelCase__ (snake_case__ : np.array ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
701
"""simple docstring""" from typing import Any def UpperCAmelCase__ (snake_case__ : list ): """simple docstring""" if not input_list: return [] _snake_case : List[Any] = [input_list.count(snake_case__ ) for value in input_list] _snake_case : Optional[int] = max(snake_case__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(snake_case__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
28
0
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str , snake_case__ : Union[str, Any] ): """simple docstring""" _snake_case : List[str] = 0 if start < end: _snake_case : Tuple = randint(snake_case__ , snake_case__ ) _snake_case : Tuple = a[end] _snake_case : Optional[Any] = a[pivot] _snake_case : Optional[Any] = temp _snake_case : Dict = _in_place_partition(snake_case__ , snake_case__ , snake_case__ ) count += _in_place_quick_sort(snake_case__ , snake_case__ , p - 1 ) count += _in_place_quick_sort(snake_case__ , p + 1 , snake_case__ ) return count def UpperCAmelCase__ (snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : int ): """simple docstring""" _snake_case : Any = 0 _snake_case : List[Any] = randint(snake_case__ , snake_case__ ) _snake_case : Union[str, Any] = a[end] _snake_case : Optional[Any] = a[pivot] _snake_case : Tuple = temp _snake_case : List[Any] = start - 1 for index in range(snake_case__ , snake_case__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _snake_case : Tuple = new_pivot_index + 1 _snake_case : List[str] = a[new_pivot_index] _snake_case : List[Any] = a[index] _snake_case : List[Any] = temp _snake_case : str = a[new_pivot_index + 1] _snake_case : Dict = a[end] _snake_case : Dict = temp return new_pivot_index + 1, count A_ = TemporaryFile() A_ = 1_00 # 1000 elements are to be sorted A_ , A_ = 0, 1 # mean and standard deviation A_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array A_ = np.load(outfile) A_ = len(M) - 1 A_ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
702
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''', '''BridgeTower/bridgetower-base-itm-mlm''': ( '''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json''' ), } class lowercase( __a ): '''simple docstring''' lowercase__ = "bridgetower_vision_model" def __init__( self: Tuple, a_: str=768, a_: Union[str, Any]=12, a_: List[str]=3, a_: Optional[int]=16, a_: List[Any]=288, a_: Optional[Any]=1, a_: Any=1E-05, a_: Dict=False, a_: Any=True, a_: int=False, **a_: int, ): '''simple docstring''' super().__init__(**a_ ) _snake_case : str = hidden_size _snake_case : int = num_hidden_layers _snake_case : Any = num_channels _snake_case : Union[str, Any] = patch_size _snake_case : Dict = image_size _snake_case : Optional[Any] = initializer_factor _snake_case : Any = layer_norm_eps _snake_case : int = stop_gradient _snake_case : Any = share_layernorm _snake_case : List[Any] = remove_last_layer @classmethod def UpperCamelCase_ ( cls: Union[str, Any], a_: Union[str, os.PathLike], **a_: Optional[Any] ): '''simple docstring''' _snake_case , _snake_case : List[Any] = cls.get_config_dict(a_, **a_ ) if config_dict.get("""model_type""" ) == "bridgetower": _snake_case : str = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a_, **a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "bridgetower_text_model" def __init__( self: str, a_: Dict=50_265, a_: List[Any]=768, a_: Union[str, Any]=12, a_: List[str]=12, a_: str=1, a_: Optional[Any]=3_072, a_: int="gelu", a_: int=0.1, a_: int=0.1, a_: Optional[int]=514, a_: Tuple=1, a_: Tuple=1E-05, a_: Optional[int]=1, a_: Union[str, Any]=0, a_: str=2, a_: Any="absolute", a_: List[Any]=True, **a_: Union[str, Any], ): '''simple docstring''' super().__init__(**a_ ) _snake_case : str = vocab_size _snake_case : Optional[int] = hidden_size _snake_case : Dict = num_hidden_layers _snake_case : Optional[int] = num_attention_heads _snake_case : Optional[int] = hidden_act _snake_case : List[Any] = initializer_factor _snake_case : Optional[int] = intermediate_size _snake_case : int = hidden_dropout_prob _snake_case : Tuple = attention_probs_dropout_prob _snake_case : List[str] = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : List[Any] = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Dict = use_cache _snake_case : int = pad_token_id _snake_case : Union[str, Any] = bos_token_id _snake_case : Union[str, Any] = eos_token_id @classmethod def UpperCamelCase_ ( cls: str, a_: Union[str, os.PathLike], **a_: int ): '''simple docstring''' _snake_case , _snake_case : Optional[int] = cls.get_config_dict(a_, **a_ ) if config_dict.get("""model_type""" ) == "bridgetower": _snake_case : Union[str, Any] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a_, **a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "bridgetower" def __init__( self: int, a_: List[str]=True, a_: Any="gelu", a_: List[Any]=768, a_: int=1, a_: Optional[int]=1E-05, a_: Tuple=False, a_: Optional[Any]="add", a_: List[str]=12, a_: Union[str, Any]=6, a_: int=False, a_: Any=False, a_: Dict=None, a_: Any=None, **a_: str, ): '''simple docstring''' _snake_case : str = kwargs.pop("""text_config_dict""", a_ ) _snake_case : Optional[Any] = kwargs.pop("""vision_config_dict""", a_ ) super().__init__(**a_ ) _snake_case : str = share_cross_modal_transformer_layers _snake_case : Any = hidden_act _snake_case : Union[str, Any] = hidden_size _snake_case : Union[str, Any] = initializer_factor _snake_case : Dict = layer_norm_eps _snake_case : Dict = share_link_tower_layers _snake_case : Optional[int] = link_tower_type _snake_case : Any = num_attention_heads _snake_case : int = num_hidden_layers _snake_case : int = tie_word_embeddings _snake_case : Optional[Any] = init_layernorm_from_vision_encoder if text_config is None: _snake_case : Optional[Any] = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: _snake_case : str = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) _snake_case : Any = BridgeTowerTextConfig(**a_ ) _snake_case : List[Any] = BridgeTowerVisionConfig(**a_ ) @classmethod def UpperCamelCase_ ( cls: Union[str, Any], a_: BridgeTowerTextConfig, a_: BridgeTowerVisionConfig, **a_: Optional[Any] ): '''simple docstring''' return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[int] = copy.deepcopy(self.__dict__ ) _snake_case : str = self.text_config.to_dict() _snake_case : List[str] = self.vision_config.to_dict() _snake_case : Tuple = self.__class__.model_type return output
28
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class lowercase( unittest.TestCase ): '''simple docstring''' def __init__( self: Tuple, a_: Optional[Any], a_: Optional[Any]=7, a_: Any=3, a_: Tuple=18, a_: int=30, a_: Union[str, Any]=400, a_: List[Any]=True, a_: int=None, a_: Optional[Any]=True, a_: List[str]=None, a_: Optional[Any]=True, a_: Tuple=[0.48_145_466, 0.4_578_275, 0.40_821_073], a_: Optional[int]=[0.26_862_954, 0.26_130_258, 0.27_577_711], a_: Union[str, Any]=True, ): '''simple docstring''' _snake_case : str = size if size is not None else {"""height""": 224, """width""": 224} _snake_case : str = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _snake_case : Tuple = parent _snake_case : List[str] = batch_size _snake_case : Tuple = num_channels _snake_case : int = image_size _snake_case : Dict = min_resolution _snake_case : Optional[Any] = max_resolution _snake_case : Any = do_resize _snake_case : Tuple = size _snake_case : int = do_center_crop _snake_case : List[Any] = crop_size _snake_case : Optional[Any] = do_normalize _snake_case : Optional[Any] = image_mean _snake_case : Dict = image_std _snake_case : str = do_convert_rgb def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def UpperCamelCase_ ( self: Union[str, Any], a_: Any=False, a_: List[str]=False, a_: Union[str, Any]=False ): '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: _snake_case : List[Any] = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255, size=(self.num_channels, self.max_resolution, self.max_resolution), dtype=np.uinta ) ) else: _snake_case : Any = [] for i in range(self.batch_size ): _snake_case : Union[str, Any] = np.random.choice(np.arange(self.min_resolution, self.max_resolution ), 2 ) image_inputs.append(np.random.randint(255, size=(self.num_channels, width, height), dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension _snake_case : str = [Image.fromarray(np.moveaxis(a_, 0, -1 ) ) for x in image_inputs] if torchify: _snake_case : Dict = [torch.from_numpy(a_ ) for x in image_inputs] return image_inputs @require_torch @require_vision class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Tuple = ChineseCLIPImageProcessingTester(self, do_center_crop=a_ ) @property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_, """do_resize""" ) ) self.assertTrue(hasattr(a_, """size""" ) ) self.assertTrue(hasattr(a_, """do_center_crop""" ) ) self.assertTrue(hasattr(a_, """center_crop""" ) ) self.assertTrue(hasattr(a_, """do_normalize""" ) ) self.assertTrue(hasattr(a_, """image_mean""" ) ) self.assertTrue(hasattr(a_, """image_std""" ) ) self.assertTrue(hasattr(a_, """do_convert_rgb""" ) ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {"""height""": 224, """width""": 224} ) self.assertEqual(image_processor.crop_size, {"""height""": 18, """width""": 18} ) _snake_case : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size, {"""height""": 84, """width""": 84} ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' pass def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : Any = self.image_processor_tester.prepare_inputs(equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_, Image.Image ) # Test not batched input _snake_case : int = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ), ) # Test batched _snake_case : Union[str, Any] = image_processing(a_, return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ), ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : Any = self.image_processor_tester.prepare_inputs(equal_resolution=a_, numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_, np.ndarray ) # Test not batched input _snake_case : str = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ), ) # Test batched _snake_case : Optional[int] = image_processing(a_, return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ), ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : str = self.image_processor_tester.prepare_inputs(equal_resolution=a_, torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_, torch.Tensor ) # Test not batched input _snake_case : Tuple = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ), ) # Test batched _snake_case : str = image_processing(a_, return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ), ) @require_torch @require_vision class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : List[str] = ChineseCLIPImageProcessingTester(self, num_channels=4, do_center_crop=a_ ) _snake_case : Optional[int] = 3 @property def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_, """do_resize""" ) ) self.assertTrue(hasattr(a_, """size""" ) ) self.assertTrue(hasattr(a_, """do_center_crop""" ) ) self.assertTrue(hasattr(a_, """center_crop""" ) ) self.assertTrue(hasattr(a_, """do_normalize""" ) ) self.assertTrue(hasattr(a_, """image_mean""" ) ) self.assertTrue(hasattr(a_, """image_std""" ) ) self.assertTrue(hasattr(a_, """do_convert_rgb""" ) ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : List[str] = self.image_processor_tester.prepare_inputs(equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_, Image.Image ) # Test not batched input _snake_case : Dict = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ), ) # Test batched _snake_case : List[str] = image_processing(a_, return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ), )
703
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCAmelCase__ (): """simple docstring""" _snake_case : Optional[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" _snake_case : Union[str, Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("""RGB""" ) return image def UpperCAmelCase__ (snake_case__ : Any ): """simple docstring""" _snake_case : str = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"visual_encoder.blocks.{i}.norm1.weight", F"vision_model.encoder.layers.{i}.layer_norm1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm1.bias", F"vision_model.encoder.layers.{i}.layer_norm1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.weight", F"vision_model.encoder.layers.{i}.layer_norm2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.bias", F"vision_model.encoder.layers.{i}.layer_norm2.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.qkv.weight", F"vision_model.encoder.layers.{i}.self_attn.qkv.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.weight", F"vision_model.encoder.layers.{i}.self_attn.projection.weight",) ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.bias", F"vision_model.encoder.layers.{i}.self_attn.projection.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.weight", F"vision_model.encoder.layers.{i}.mlp.fc1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.bias", F"vision_model.encoder.layers.{i}.mlp.fc1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.weight", F"vision_model.encoder.layers.{i}.mlp.fc2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.bias", F"vision_model.encoder.layers.{i}.mlp.fc2.bias") ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : Tuple ): """simple docstring""" _snake_case : Optional[Any] = dct.pop(snake_case__ ) _snake_case : Optional[int] = val def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : str ): """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _snake_case : Optional[int] = state_dict.pop(F"visual_encoder.blocks.{i}.attn.q_bias" ) _snake_case : Tuple = state_dict.pop(F"visual_encoder.blocks.{i}.attn.v_bias" ) # next, set bias in the state dict _snake_case : List[str] = torch.cat((q_bias, torch.zeros_like(snake_case__ , requires_grad=snake_case__ ), v_bias) ) _snake_case : Dict = qkv_bias def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Union[str, Any] ): """simple docstring""" _snake_case : List[Any] = 3_64 if """coco""" in model_name else 2_24 _snake_case : List[str] = BlipaVisionConfig(image_size=snake_case__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _snake_case : List[str] = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=snake_case__ ).to_dict() elif "opt-6.7b" in model_name: _snake_case : List[str] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=snake_case__ ).to_dict() elif "t5-xl" in model_name: _snake_case : Tuple = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _snake_case : List[Any] = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() _snake_case : int = BlipaConfig(vision_config=snake_case__ , text_config=snake_case__ ) return config, image_size @torch.no_grad() def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int=None , snake_case__ : str=False ): """simple docstring""" _snake_case : List[str] = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) _snake_case : str = tokenizer("""\n""" , add_special_tokens=snake_case__ ).input_ids[0] _snake_case , _snake_case : Dict = get_blipa_config(snake_case__ , eos_token_id=snake_case__ ) _snake_case : str = BlipaForConditionalGeneration(snake_case__ ).eval() _snake_case : int = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } _snake_case , _snake_case : List[Any] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) _snake_case : int = """cuda""" if torch.cuda.is_available() else """cpu""" _snake_case , _snake_case , _snake_case : Any = load_model_and_preprocess( name=snake_case__ , model_type=snake_case__ , is_eval=snake_case__ , device=snake_case__ ) original_model.eval() print("""Done!""" ) # update state dict keys _snake_case : Any = original_model.state_dict() _snake_case : Dict = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _snake_case : str = state_dict.pop(snake_case__ ) if key.startswith("""Qformer.bert""" ): _snake_case : str = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: _snake_case : Any = key.replace("""self""" , """attention""" ) if "opt_proj" in key: _snake_case : List[str] = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: _snake_case : Optional[Any] = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): _snake_case : List[Any] = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): _snake_case : List[Any] = key.replace("""t5""" , """language""" ) _snake_case : str = val # read in qv biases read_in_q_v_bias(snake_case__ , snake_case__ ) _snake_case , _snake_case : List[str] = hf_model.load_state_dict(snake_case__ , strict=snake_case__ ) assert len(snake_case__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _snake_case : Any = load_demo_image() _snake_case : str = vis_processors["""eval"""](snake_case__ ).unsqueeze(0 ).to(snake_case__ ) _snake_case : List[Any] = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(snake_case__ ) # create processor _snake_case : Any = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=snake_case__ , image_std=snake_case__ ) _snake_case : int = BlipaProcessor(image_processor=snake_case__ , tokenizer=snake_case__ ) _snake_case : Any = processor(images=snake_case__ , return_tensors="""pt""" ).pixel_values.to(snake_case__ ) # make sure processor creates exact same pixel values assert torch.allclose(snake_case__ , snake_case__ ) original_model.to(snake_case__ ) hf_model.to(snake_case__ ) with torch.no_grad(): if "opt" in model_name: _snake_case : str = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits _snake_case : int = hf_model(snake_case__ , snake_case__ ).logits else: _snake_case : str = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits _snake_case : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) _snake_case : Union[str, Any] = hf_model(snake_case__ , snake_case__ , labels=snake_case__ ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _snake_case : List[str] = torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=snake_case__ ) assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _snake_case : Union[str, Any] = torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=snake_case__ ) else: # cast to same type _snake_case : int = logits.dtype assert torch.allclose(original_logits.to(snake_case__ ) , snake_case__ , atol=1e-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) _snake_case : Any = """""" _snake_case : str = tokenizer(snake_case__ , return_tensors="""pt""" ).input_ids.to(snake_case__ ) _snake_case : Union[str, Any] = original_model.generate({"""image""": original_pixel_values} ) _snake_case : Tuple = hf_model.generate( snake_case__ , snake_case__ , do_sample=snake_case__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , snake_case__ ) _snake_case : Optional[Any] = input_ids.shape[1] _snake_case : int = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=snake_case__ ) _snake_case : Optional[Any] = [text.strip() for text in output_text] print("""HF generation:""" , snake_case__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(snake_case__ ) hf_model.save_pretrained(snake_case__ ) if push_to_hub: processor.push_to_hub(F"nielsr/{model_name}" ) hf_model.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() A_ = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) A_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
28
0
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = MvpTokenizer lowercase__ = MvpTokenizerFast lowercase__ = True lowercase__ = filter_roberta_detectors def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' super().setUp() _snake_case : str = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _snake_case : Optional[int] = dict(zip(a_, range(len(a_ ) ) ) ) _snake_case : Tuple = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _snake_case : Optional[int] = {"""unk_token""": """<unk>"""} _snake_case : Tuple = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) _snake_case : Dict = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as fp: fp.write(json.dumps(a_ ) + """\n""" ) with open(self.merges_file, """w""", encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a_ ) ) def UpperCamelCase_ ( self: Union[str, Any], **a_: Dict ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname, **a_ ) def UpperCamelCase_ ( self: Optional[Any], **a_: List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **a_ ) def UpperCamelCase_ ( self: List[Any], a_: int ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" ) @cached_property def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" ) @require_torch def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Any = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _snake_case : List[str] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case : List[Any] = tokenizer(a_, max_length=len(a_ ), padding=a_, return_tensors="""pt""" ) self.assertIsInstance(a_, a_ ) self.assertEqual((2, 9), batch.input_ids.shape ) self.assertEqual((2, 9), batch.attention_mask.shape ) _snake_case : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(a_, a_ ) # Test that special tokens are reset @require_torch def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : str = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case : Dict = tokenizer(a_, padding=a_, return_tensors="""pt""" ) # check if input_ids are returned and no labels self.assertIn("""input_ids""", a_ ) self.assertIn("""attention_mask""", a_ ) self.assertNotIn("""labels""", a_ ) self.assertNotIn("""decoder_attention_mask""", a_ ) @require_torch def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : str = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case : int = tokenizer(text_target=a_, max_length=32, padding="""max_length""", return_tensors="""pt""" ) self.assertEqual(32, targets["""input_ids"""].shape[1] ) @require_torch def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case : Optional[Any] = tokenizer( ["""I am a small frog""" * 1_024, """I am a small frog"""], padding=a_, truncation=a_, return_tensors="""pt""" ) self.assertIsInstance(a_, a_ ) self.assertEqual(batch.input_ids.shape, (2, 1_024) ) @require_torch def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Union[str, Any] = ["""A long paragraph for summarization."""] _snake_case : Tuple = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case : Dict = tokenizer(a_, text_target=a_, return_tensors="""pt""" ) _snake_case : List[str] = inputs["""input_ids"""] _snake_case : List[str] = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): _snake_case : Any = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) _snake_case : Any = self.tokenizer_class.from_pretrained(a_, **a_ ) _snake_case : int = """A, <mask> AllenNLP sentence.""" _snake_case : List[Any] = tokenizer_r.encode_plus(a_, add_special_tokens=a_, return_token_type_ids=a_ ) _snake_case : List[str] = tokenizer_p.encode_plus(a_, add_special_tokens=a_, return_token_type_ids=a_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ), sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ), sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ), ) _snake_case : List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) _snake_case : int = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( a_, ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( a_, ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
704
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def UpperCAmelCase__ (snake_case__ : Optional[int] ): """simple docstring""" print("""Loading config file...""" ) def flatten_yaml_as_dict(snake_case__ : List[Any] , snake_case__ : Optional[Any]="" , snake_case__ : Tuple="." ): _snake_case : Union[str, Any] = [] for k, v in d.items(): _snake_case : List[str] = parent_key + sep + k if parent_key else k if isinstance(snake_case__ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(snake_case__ , snake_case__ , sep=snake_case__ ).items() ) else: items.append((new_key, v) ) return dict(snake_case__ ) _snake_case : Dict = argparse.Namespace() with open(snake_case__ , """r""" ) as yaml_file: try: _snake_case : List[Any] = yaml.load(snake_case__ , Loader=yaml.FullLoader ) _snake_case : Any = flatten_yaml_as_dict(snake_case__ ) for k, v in flat_cfg.items(): setattr(snake_case__ , snake_case__ , snake_case__ ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(snake_case__ , str(snake_case__ ) ) ) return config def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : Dict = MobileViTVaConfig() _snake_case : Optional[int] = False # dataset if task_name.startswith("""imagenet1k_""" ): _snake_case : Dict = 10_00 if int(task_name.strip().split("""_""" )[-1] ) == 3_84: _snake_case : Union[str, Any] = 3_84 else: _snake_case : Optional[Any] = 2_56 _snake_case : str = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): _snake_case : str = 2_10_00 if int(task_name.strip().split("""_""" )[-1] ) == 3_84: _snake_case : Dict = 3_84 else: _snake_case : Union[str, Any] = 2_56 _snake_case : Tuple = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): _snake_case : Tuple = 1_51 _snake_case : str = 5_12 _snake_case : List[Any] = """ade20k-id2label.json""" _snake_case : Union[str, Any] = True elif task_name.startswith("""voc_""" ): _snake_case : List[Any] = 21 _snake_case : List[str] = 5_12 _snake_case : int = """pascal-voc-id2label.json""" _snake_case : int = True # orig_config _snake_case : int = load_orig_config_file(snake_case__ ) assert getattr(snake_case__ , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model" _snake_case : str = getattr(snake_case__ , """model.classification.mitv2.width_multiplier""" , 1.0 ) assert ( getattr(snake_case__ , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _snake_case : int = getattr(snake_case__ , """model.classification.activation.name""" , """swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _snake_case : Tuple = getattr(snake_case__ , """model.segmentation.output_stride""" , 16 ) if "_deeplabv3" in task_name: _snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] ) _snake_case : Tuple = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_out_channels""" , 5_12 ) _snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 ) # id2label _snake_case : Union[str, Any] = """huggingface/label-files""" _snake_case : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) ) _snake_case : List[Any] = {int(snake_case__ ): v for k, v in idalabel.items()} _snake_case : Tuple = idalabel _snake_case : Any = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[Any] ): """simple docstring""" _snake_case : List[str] = dct.pop(snake_case__ ) _snake_case : List[Any] = val def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : int=False ): """simple docstring""" if base_model: _snake_case : Any = """""" else: _snake_case : Union[str, Any] = """mobilevitv2.""" _snake_case : Dict = [] for k in state_dict.keys(): if k[:8] == "encoder.": _snake_case : List[str] = k[8:] else: _snake_case : str = k if ".block." in k: _snake_case : Optional[int] = k_new.replace(""".block.""" , """.""" ) if ".conv." in k: _snake_case : Union[str, Any] = k_new.replace(""".conv.""" , """.convolution.""" ) if ".norm." in k: _snake_case : str = k_new.replace(""".norm.""" , """.normalization.""" ) if "conv_1." in k: _snake_case : int = k_new.replace("""conv_1.""" , F"{model_prefix}conv_stem." ) for i in [1, 2]: if F"layer_{i}." in k: _snake_case : Tuple = k_new.replace(F"layer_{i}." , F"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: _snake_case : Optional[Any] = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" ) if ".red_1x1." in k: _snake_case : Optional[Any] = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" ) for i in [3, 4, 5]: if F"layer_{i}.0." in k: _snake_case : Tuple = k_new.replace(F"layer_{i}.0." , F"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if F"layer_{i}.1.local_rep.0." in k: _snake_case : Any = k_new.replace(F"layer_{i}.1.local_rep.0." , F"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if F"layer_{i}.1.local_rep.1." in k: _snake_case : str = k_new.replace(F"layer_{i}.1.local_rep.1." , F"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: _snake_case : Optional[Any] = [0, 1] elif i == 4: _snake_case : Any = [0, 1, 2, 3] elif i == 5: _snake_case : List[Any] = [0, 1, 2] for j in j_in: if F"layer_{i}.1.global_rep.{j}." in k: _snake_case : Any = k_new.replace( F"layer_{i}.1.global_rep.{j}." , F"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if F"layer_{i}.1.global_rep.{j+1}." in k: _snake_case : List[Any] = k_new.replace( F"layer_{i}.1.global_rep.{j+1}." , F"{model_prefix}encoder.layer.{i-1}.layernorm." ) if F"layer_{i}.1.conv_proj." in k: _snake_case : Union[str, Any] = k_new.replace(F"layer_{i}.1.conv_proj." , F"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: _snake_case : List[Any] = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" ) if "pre_norm_attn.1." in k: _snake_case : Optional[int] = k_new.replace("""pre_norm_attn.1.""" , """attention.""" ) if "pre_norm_ffn.0." in k: _snake_case : List[Any] = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" ) if "pre_norm_ffn.1." in k: _snake_case : Tuple = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" ) if "pre_norm_ffn.3." in k: _snake_case : Any = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" ) if "classifier.1." in k: _snake_case : List[str] = k_new.replace("""classifier.1.""" , """classifier.""" ) if "seg_head." in k: _snake_case : str = k_new.replace("""seg_head.""" , """segmentation_head.""" ) if ".aspp_layer." in k: _snake_case : Optional[int] = k_new.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in k: _snake_case : int = k_new.replace(""".aspp_pool.""" , """.""" ) rename_keys.append((k, k_new) ) return rename_keys def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" _snake_case : List[str] = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(snake_case__ ) for k in keys_to_ignore: state_dict.pop(snake_case__ , snake_case__ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _snake_case : Any = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Tuple ): """simple docstring""" _snake_case : int = get_mobilevitva_config(snake_case__ , snake_case__ ) # load original state_dict _snake_case : Optional[int] = torch.load(snake_case__ , map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): _snake_case : Any = MobileViTVaForSemanticSegmentation(snake_case__ ).eval() _snake_case : List[Any] = False else: _snake_case : List[Any] = MobileViTVaForImageClassification(snake_case__ ).eval() _snake_case : Optional[Any] = False # remove and rename some keys of load the original model _snake_case : Union[str, Any] = checkpoint remove_unused_keys(snake_case__ ) _snake_case : List[str] = create_rename_keys(snake_case__ , base_model=snake_case__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # load modified state_dict model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by MobileViTImageProcessor _snake_case : Optional[int] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _snake_case : List[str] = image_processor(images=prepare_img() , return_tensors="""pt""" ) _snake_case : Optional[Any] = model(**snake_case__ ) # verify classification model if task_name.startswith("""imagenet""" ): _snake_case : List[str] = outputs.logits _snake_case : Any = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant _snake_case : List[str] = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] ) assert torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) A_ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
28
0
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() A_ = logging.get_logger('''transformers.models.speecht5''') A_ = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } A_ = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } A_ = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } A_ = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } A_ = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } A_ = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } A_ = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } A_ = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } A_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } A_ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } A_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } A_ = [] A_ = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] A_ = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] A_ = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] A_ = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Tuple ): """simple docstring""" for attribute in key.split(""".""" ): _snake_case : List[Any] = getattr(snake_case__ , snake_case__ ) if weight_type is not None: _snake_case : Optional[Any] = getattr(snake_case__ , snake_case__ ).shape else: _snake_case : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": _snake_case : Optional[Any] = value elif weight_type == "weight_g": _snake_case : List[str] = value elif weight_type == "weight_v": _snake_case : int = value elif weight_type == "bias": _snake_case : Tuple = value elif weight_type == "running_mean": _snake_case : Optional[Any] = value elif weight_type == "running_var": _snake_case : Optional[Any] = value elif weight_type == "num_batches_tracked": _snake_case : Optional[Any] = value else: _snake_case : int = value logger.info(F"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : int ): """simple docstring""" for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _snake_case : int = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : int , snake_case__ : Any ): """simple docstring""" _snake_case : Tuple = [] if task == "s2t": _snake_case : int = hf_model.speechta.encoder.prenet.feature_encoder _snake_case : Tuple = MAPPING_S2T _snake_case : Union[str, Any] = IGNORE_KEYS_S2T elif task == "t2s": _snake_case : int = None _snake_case : Union[str, Any] = MAPPING_T2S _snake_case : List[str] = IGNORE_KEYS_T2S elif task == "s2s": _snake_case : List[Any] = hf_model.speechta.encoder.prenet.feature_encoder _snake_case : Tuple = MAPPING_S2S _snake_case : Tuple = IGNORE_KEYS_S2S else: raise ValueError(F"Unsupported task: {task}" ) for name, value in fairseq_dict.items(): if should_ignore(snake_case__ , snake_case__ ): logger.info(F"{name} was ignored" ) continue _snake_case : Optional[Any] = False if "conv_layers" in name: load_conv_layer( snake_case__ , snake_case__ , snake_case__ , snake_case__ , hf_model.config.feat_extract_norm == """group""" , ) _snake_case : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _snake_case : Union[str, Any] = key.split(""".*.""" ) if prefix in name and suffix in name: _snake_case : Optional[int] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _snake_case : Union[str, Any] = True if "*" in mapped_key: _snake_case : int = name.split(snake_case__ )[0].split(""".""" )[-2] _snake_case : str = mapped_key.replace("""*""" , snake_case__ ) if "weight_g" in name: _snake_case : str = """weight_g""" elif "weight_v" in name: _snake_case : Dict = """weight_v""" elif "bias" in name: _snake_case : List[str] = """bias""" elif "weight" in name: _snake_case : Optional[int] = """weight""" elif "running_mean" in name: _snake_case : int = """running_mean""" elif "running_var" in name: _snake_case : int = """running_var""" elif "num_batches_tracked" in name: _snake_case : Union[str, Any] = """num_batches_tracked""" else: _snake_case : Dict = None set_recursively(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) continue if not is_used: unused_weights.append(snake_case__ ) logger.warning(F"Unused weights: {unused_weights}" ) def UpperCAmelCase__ (snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Dict ): """simple docstring""" _snake_case : Dict = full_name.split("""conv_layers.""" )[-1] _snake_case : Dict = name.split(""".""" ) _snake_case : Union[str, Any] = int(items[0] ) _snake_case : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _snake_case : Optional[int] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _snake_case : str = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) _snake_case : List[str] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) _snake_case : Optional[Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(snake_case__ ) @torch.no_grad() def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : int , snake_case__ : Any , snake_case__ : List[Any]=None , snake_case__ : Tuple=None , snake_case__ : Dict=None , ): """simple docstring""" if config_path is not None: _snake_case : List[Any] = SpeechTaConfig.from_pretrained(snake_case__ ) else: _snake_case : List[Any] = SpeechTaConfig() if task == "s2t": _snake_case : Union[str, Any] = config.max_text_positions _snake_case : Optional[Any] = SpeechTaForSpeechToText(snake_case__ ) elif task == "t2s": _snake_case : List[Any] = 18_76 _snake_case : Tuple = 6_00 _snake_case : Union[str, Any] = config.max_speech_positions _snake_case : Dict = SpeechTaForTextToSpeech(snake_case__ ) elif task == "s2s": _snake_case : List[str] = 18_76 _snake_case : List[str] = config.max_speech_positions _snake_case : Dict = SpeechTaForSpeechToSpeech(snake_case__ ) else: raise ValueError(F"Unknown task name: {task}" ) if vocab_path: _snake_case : str = SpeechTaTokenizer(snake_case__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _snake_case : Tuple = AddedToken("""<mask>""" , lstrip=snake_case__ , rstrip=snake_case__ ) _snake_case : Tuple = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) _snake_case : List[Any] = SpeechTaFeatureExtractor() _snake_case : Optional[Any] = SpeechTaProcessor(tokenizer=snake_case__ , feature_extractor=snake_case__ ) processor.save_pretrained(snake_case__ ) _snake_case : Optional[Any] = torch.load(snake_case__ ) recursively_load_weights(fairseq_checkpoint["""model"""] , snake_case__ , snake_case__ ) model.save_pretrained(snake_case__ ) if repo_id: print("""Pushing to the hub...""" ) processor.push_to_hub(snake_case__ ) model.push_to_hub(snake_case__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) A_ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
705
"""simple docstring""" import os import sys import unittest A_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path A_ = os.path.join(git_repo_path, '''src''', '''diffusers''') class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Optional[int] = find_backend(""" if not is_torch_available():""" ) self.assertEqual(a_, """torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") _snake_case : Any = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(a_, """torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") _snake_case : Union[str, Any] = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(a_, """torch_and_transformers_and_onnx""" ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Dict = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""", a_ ) self.assertIn("""torch_and_transformers""", a_ ) self.assertIn("""flax_and_transformers""", a_ ) self.assertIn("""torch_and_transformers_and_onnx""", a_ ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""", objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""", objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""", objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""", objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""", objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""", objects["""torch_and_transformers_and_onnx"""] ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[Any] = create_dummy_object("""CONSTANT""", """'torch'""" ) self.assertEqual(a_, """\nCONSTANT = None\n""" ) _snake_case : Optional[int] = create_dummy_object("""function""", """'torch'""" ) self.assertEqual( a_, """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) _snake_case : List[Any] = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ _snake_case : Union[str, Any] = create_dummy_object("""FakeClass""", """'torch'""" ) self.assertEqual(a_, a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ _snake_case : List[Any] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""], a_ )
28
0
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def UpperCAmelCase__ (snake_case__ : Dict ): """simple docstring""" _snake_case : Any = image.size _snake_case : Tuple = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _snake_case : int = image.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) _snake_case : Tuple = np.array(snake_case__ ).astype(np.floataa ) / 2_55.0 _snake_case : str = image[None].transpose(0 , 3 , 1 , 2 ) _snake_case : str = torch.from_numpy(snake_case__ ) return 2.0 * image - 1.0 class lowercase( __a ): '''simple docstring''' def __init__( self: Any, a_: VQModel, a_: UNetaDModel, a_: Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ], ): '''simple docstring''' super().__init__() self.register_modules(vqvae=a_, unet=a_, scheduler=a_ ) @torch.no_grad() def __call__( self: Dict, a_: Union[torch.Tensor, PIL.Image.Image] = None, a_: Optional[int] = 1, a_: Optional[int] = 100, a_: Optional[float] = 0.0, a_: Optional[Union[torch.Generator, List[torch.Generator]]] = None, a_: Optional[str] = "pil", a_: bool = True, ): '''simple docstring''' if isinstance(a_, PIL.Image.Image ): _snake_case : List[Any] = 1 elif isinstance(a_, torch.Tensor ): _snake_case : int = image.shape[0] else: raise ValueError(f"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(a_ )}" ) if isinstance(a_, PIL.Image.Image ): _snake_case : Optional[int] = preprocess(a_ ) _snake_case : Any = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _snake_case : str = (batch_size, self.unet.config.in_channels // 2, height, width) _snake_case : Any = next(self.unet.parameters() ).dtype _snake_case : int = randn_tensor(a_, generator=a_, device=self.device, dtype=a_ ) _snake_case : List[str] = image.to(device=self.device, dtype=a_ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(a_, device=self.device ) _snake_case : Optional[int] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _snake_case : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _snake_case : Tuple = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _snake_case : Optional[int] = {} if accepts_eta: _snake_case : Optional[Any] = eta for t in self.progress_bar(a_ ): # concat latents and low resolution image in the channel dimension. _snake_case : List[str] = torch.cat([latents, image], dim=1 ) _snake_case : int = self.scheduler.scale_model_input(a_, a_ ) # predict the noise residual _snake_case : Any = self.unet(a_, a_ ).sample # compute the previous noisy sample x_t -> x_t-1 _snake_case : Dict = self.scheduler.step(a_, a_, a_, **a_ ).prev_sample # decode the image latents with the VQVAE _snake_case : Tuple = self.vqvae.decode(a_ ).sample _snake_case : Dict = torch.clamp(a_, -1.0, 1.0 ) _snake_case : Optional[Any] = image / 2 + 0.5 _snake_case : List[Any] = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": _snake_case : List[str] = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ )
706
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''OwlViTFeatureExtractor'''] A_ = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
28
0
"""simple docstring""" import argparse from collections import defaultdict import yaml A_ = '''docs/source/en/_toctree.yml''' def UpperCAmelCase__ (snake_case__ : Any ): """simple docstring""" _snake_case : Any = defaultdict(snake_case__ ) for doc in model_doc: counts[doc["local"]] += 1 _snake_case : Any = [key for key, value in counts.items() if value > 1] _snake_case : Optional[Any] = [] for duplicate_key in duplicates: _snake_case : Dict = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} ) if len(snake_case__ ) > 1: raise ValueError( F"{duplicate_key} is present several times in the documentation table of content at " """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] ) # Sort return sorted(snake_case__ , key=lambda snake_case__ : s["title"].lower() ) def UpperCAmelCase__ (snake_case__ : Optional[int]=False ): """simple docstring""" with open(snake_case__ , encoding="""utf-8""" ) as f: _snake_case : Union[str, Any] = yaml.safe_load(f.read() ) # Get to the API doc _snake_case : int = 0 while content[api_idx]["title"] != "API": api_idx += 1 _snake_case : List[Any] = content[api_idx]["""sections"""] # Then to the model doc _snake_case : Optional[int] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _snake_case : List[str] = api_doc[model_idx]["""sections"""] _snake_case : List[str] = [(idx, section) for idx, section in enumerate(snake_case__ ) if """sections""" in section] _snake_case : Optional[Any] = False for idx, modality_doc in modalities_docs: _snake_case : int = modality_doc["""sections"""] _snake_case : Tuple = clean_model_doc_toc(snake_case__ ) if old_modality_doc != new_modality_doc: _snake_case : Optional[Any] = True if overwrite: _snake_case : Optional[int] = new_modality_doc if diff: if overwrite: _snake_case : Optional[int] = model_doc _snake_case : Union[str, Any] = api_doc with open(snake_case__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(snake_case__ , allow_unicode=snake_case__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') A_ = parser.parse_args() check_model_doc(args.fix_and_overwrite)
707
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml A_ = logging.get_logger(__name__) def UpperCAmelCase__ (snake_case__ : bool , snake_case__ : bool ): """simple docstring""" def run_func(snake_case__ : Tuple ): @wraps(snake_case__ ) def run_in_eager_mode(*snake_case__ : str , **snake_case__ : Any ): return func(*snake_case__ , **snake_case__ ) @wraps(snake_case__ ) @tf.function(experimental_compile=snake_case__ ) def run_in_graph_mode(*snake_case__ : Any , **snake_case__ : Optional[int] ): return func(*snake_case__ , **snake_case__ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : List[str] = random.Random() _snake_case : Optional[int] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case__ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class lowercase( __a ): '''simple docstring''' lowercase__ = 42 lowercase__ = 42 lowercase__ = "TensorFlow" @property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' return tf.__version__ def UpperCamelCase_ ( self: List[str], a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : List[str] = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : Optional[int] = self._prepare_inference_func(a_, a_, a_ ) return self._measure_speed(_inference ) def UpperCamelCase_ ( self: int, a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : Tuple = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : Optional[Any] = self._prepare_train_func(a_, a_, a_ ) return self._measure_speed(_train ) def UpperCamelCase_ ( self: Dict, a_: str, a_: int, a_: int ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], a_ ) _snake_case : str = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : List[str] = self._prepare_inference_func(a_, a_, a_ ) return self._measure_memory(_inference ) def UpperCamelCase_ ( self: Tuple, a_: str, a_: int, a_: int ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], a_ ) _snake_case : Dict = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : Optional[int] = self._prepare_train_func(a_, a_, a_ ) return self._measure_memory(_train ) def UpperCamelCase_ ( self: Optional[Any], a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : List[Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _snake_case : List[Any] = ( hasattr(a_, """architectures""" ) and isinstance(config.architectures, a_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _snake_case : str = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _snake_case : List[Any] = __import__("""transformers""", fromlist=[model_class] ) _snake_case : Dict = getattr(a_, a_ ) _snake_case : Any = model_cls(a_ ) except ImportError: raise ImportError( f"{model_class} does not exist. If you just want to test the pretrained model, you might want to" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _snake_case : Any = TF_MODEL_MAPPING[config.__class__](a_ ) # encoder-decoder has vocab size saved differently _snake_case : List[Any] = config.vocab_size if hasattr(a_, """vocab_size""" ) else config.encoder.vocab_size _snake_case : List[str] = random_input_ids(a_, a_, a_ ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_decoder_forward(): return model(a_, decoder_input_ids=a_, training=a_ ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_forward(): return model(a_, training=a_ ) _snake_case : Optional[int] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def UpperCamelCase_ ( self: Optional[int], a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : str = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _snake_case : Tuple = ( hasattr(a_, """architectures""" ) and isinstance(config.architectures, a_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _snake_case : List[str] = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _snake_case : str = __import__("""transformers""", fromlist=[model_class] ) _snake_case : Tuple = getattr(a_, a_ ) _snake_case : Any = model_cls(a_ ) except ImportError: raise ImportError( f"{model_class} does not exist. If you just want to test the pretrained model, you might want to" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _snake_case : Optional[Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](a_ ) # encoder-decoder has vocab size saved differently _snake_case : List[Any] = config.vocab_size if hasattr(a_, """vocab_size""" ) else config.encoder.vocab_size _snake_case : int = random_input_ids(a_, a_, a_ ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_decoder_train(): _snake_case : Dict = model(a_, decoder_input_ids=a_, labels=a_, training=a_ )[0] _snake_case : str = tf.gradients(a_, model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_train(): _snake_case : Optional[Any] = model(a_, labels=a_, training=a_ )[0] _snake_case : Optional[Any] = tf.gradients(a_, model.trainable_variables ) return gradients _snake_case : int = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def UpperCamelCase_ ( self: Union[str, Any], a_: str ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(a_, repeat=1, number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _snake_case : Dict = timeit.repeat( a_, repeat=self.args.repeat, number=10, ) return min(a_ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"Doesn't fit on GPU. {e}" ) def UpperCamelCase_ ( self: Optional[Any], a_: Callable[[], None] ): '''simple docstring''' logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) _snake_case : List[Any] = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) _snake_case : Optional[Any] = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() _snake_case : List[str] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _snake_case : Tuple = nvml.nvmlDeviceGetMemoryInfo(a_ ) _snake_case : List[str] = meminfo.used _snake_case : Any = Memory(a_ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) _snake_case : List[Any] = None else: _snake_case : int = measure_peak_memory_cpu(a_ ) _snake_case : List[str] = Memory(a_ ) if isinstance(a_, a_ ) else memory_bytes if self.args.trace_memory_line_by_line: _snake_case : Tuple = stop_memory_tracing(a_ ) if memory is None: _snake_case : int = summary.total else: _snake_case : int = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"Doesn't fit on GPU. {e}" ) return "N/A", None
28
0
"""simple docstring""" import operator as op A_ = '''scaler.pt''' A_ = '''pytorch_model''' A_ = '''random_states''' A_ = '''optimizer''' A_ = '''scheduler''' A_ = '''pytorch_model.bin''' A_ = '''pytorch_model.bin.index.json''' A_ = '''model.safetensors''' A_ = '''model.safetensors.index.json''' A_ = '''1.10.2''' A_ = '''py38''' A_ = '''4.17.0''' A_ = ['''ml.p3.16xlarge''', '''ml.p3dn.24xlarge''', '''ml.p4dn.24xlarge'''] A_ = ['''FULL_SHARD''', '''SHARD_GRAD_OP''', '''NO_SHARD''', '''HYBRID_SHARD''', '''HYBRID_SHARD_ZERO2'''] A_ = ['''TRANSFORMER_BASED_WRAP''', '''SIZE_BASED_WRAP''', '''NO_WRAP'''] A_ = ['''BACKWARD_PRE''', '''BACKWARD_POST''', '''NO_PREFETCH'''] A_ = ['''FULL_STATE_DICT''', '''LOCAL_STATE_DICT''', '''SHARDED_STATE_DICT'''] A_ = '''2.0.1''' A_ = ['''pdsh''', '''standard''', '''openmpi''', '''mvapich'''] A_ = ['''default''', '''reduce-overhead''', '''max-autotune'''] A_ = {'''>''': op.gt, '''>=''': op.ge, '''==''': op.eq, '''!=''': op.ne, '''<=''': op.le, '''<''': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 A_ = [ '''nnodes''', '''nproc_per_node''', '''rdzv_backend''', '''rdzv_endpoint''', '''rdzv_id''', '''rdzv_conf''', '''standalone''', '''max_restarts''', '''monitor_interval''', '''start_method''', '''role''', '''module''', '''m''', '''no_python''', '''run_path''', '''log_dir''', '''r''', '''redirects''', '''t''', '''tee''', '''node_rank''', '''master_addr''', '''master_port''', ] A_ = ['''DEEPSPEED''', '''MULTI_GPU''', '''FSDP''', '''MEGATRON_LM'''] A_ = ['''DEEPSPEED''', '''MULTI_XPU''', '''FSDP''']
708
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : str ): """simple docstring""" _snake_case : str = int(snake_case__ ) # Initialize Result _snake_case : str = [] # Traverse through all denomination for denomination in reversed(snake_case__ ): # Find denominations while int(snake_case__ ) >= int(snake_case__ ): total_value -= int(snake_case__ ) answer.append(snake_case__ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": A_ = [] A_ = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): A_ = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) A_ = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter A_ = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] A_ = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F'''Following is minimal change for {value}: ''') A_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
28
0
"""simple docstring""" import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class lowercase( nn.Module ): '''simple docstring''' def __init__( self: str ): '''simple docstring''' super().__init__() _snake_case : Dict = nn.Linear(3, 4 ) _snake_case : int = nn.BatchNormad(4 ) _snake_case : Tuple = nn.Linear(4, 5 ) def UpperCamelCase_ ( self: Dict, a_: int ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(a_ ) ) ) class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Tuple = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(a_, model.state_dict() ) _snake_case : str = os.path.join(a_, """index.json""" ) self.assertTrue(os.path.isfile(a_ ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: _snake_case : int = os.path.join(a_, f"{key}.dat" ) self.assertTrue(os.path.isfile(a_ ) ) # TODO: add tests on the fact weights are properly loaded def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : List[Any] = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: _snake_case : Any = torch.randn(2, 3, dtype=a_ ) with TemporaryDirectory() as tmp_dir: _snake_case : List[Any] = offload_weight(a_, """weight""", a_, {} ) _snake_case : str = os.path.join(a_, """weight.dat""" ) self.assertTrue(os.path.isfile(a_ ) ) self.assertDictEqual(a_, {"""weight""": {"""shape""": [2, 3], """dtype""": str(a_ ).split(""".""" )[1]}} ) _snake_case : List[str] = load_offloaded_weight(a_, index["""weight"""] ) self.assertTrue(torch.equal(a_, a_ ) ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = ModelForTest() _snake_case : int = model.state_dict() _snake_case : str = {k: v for k, v in state_dict.items() if """linear2""" not in k} _snake_case : Optional[int] = {k: v for k, v in state_dict.items() if """linear2""" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(a_, a_ ) _snake_case : Tuple = OffloadedWeightsLoader(state_dict=a_, save_folder=a_ ) # Every key is there with the right value self.assertEqual(sorted(a_ ), sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(a_, weight_map[key] ) ) _snake_case : Dict = {k: v for k, v in state_dict.items() if """weight""" in k} _snake_case : str = {k: v for k, v in state_dict.items() if """weight""" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(a_, a_ ) _snake_case : Optional[int] = OffloadedWeightsLoader(state_dict=a_, save_folder=a_ ) # Every key is there with the right value self.assertEqual(sorted(a_ ), sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(a_, weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(a_, a_ ) # Duplicates are removed _snake_case : Union[str, Any] = OffloadedWeightsLoader(state_dict=a_, save_folder=a_ ) # Every key is there with the right value self.assertEqual(sorted(a_ ), sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(a_, weight_map[key] ) ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Tuple = {"""a.1""": 0, """a.10""": 1, """a.2""": 2} _snake_case : Optional[Any] = extract_submodules_state_dict(a_, ["""a.1""", """a.2"""] ) self.assertDictEqual(a_, {"""a.1""": 0, """a.2""": 2} ) _snake_case : List[Any] = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2} _snake_case : Tuple = extract_submodules_state_dict(a_, ["""a.1""", """a.2"""] ) self.assertDictEqual(a_, {"""a.1.a""": 0, """a.2.a""": 2} )
709
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowercase: '''simple docstring''' def __init__( self: Optional[Any], a_: Union[str, Any], a_: int=100, a_: int=13, a_: List[Any]=30, a_: str=2, a_: Optional[Any]=3, a_: Optional[int]=True, a_: Any=True, a_: Optional[Any]=32, a_: Tuple=4, a_: str=4, a_: List[Any]=37, a_: List[str]="gelu", a_: str=0.1, a_: Optional[int]=0.1, a_: Any=10, a_: List[str]=0.02, a_: Dict=3, a_: str=None, a_: Optional[int]=[0, 1, 2, 3], ): '''simple docstring''' _snake_case : Optional[int] = parent _snake_case : Optional[Any] = 100 _snake_case : Any = batch_size _snake_case : List[Any] = image_size _snake_case : Optional[Any] = patch_size _snake_case : str = num_channels _snake_case : Tuple = is_training _snake_case : Tuple = use_labels _snake_case : Any = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : List[str] = num_attention_heads _snake_case : Union[str, Any] = intermediate_size _snake_case : Dict = hidden_act _snake_case : str = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Optional[Any] = type_sequence_label_size _snake_case : Any = initializer_range _snake_case : List[str] = scope _snake_case : int = out_indices _snake_case : Optional[Any] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _snake_case : Dict = (image_size // patch_size) ** 2 _snake_case : str = num_patches + 1 def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : List[Any] = None _snake_case : Tuple = None if self.use_labels: _snake_case : str = ids_tensor([self.batch_size], self.type_sequence_label_size ) _snake_case : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) _snake_case : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=a_, initializer_range=self.initializer_range, out_indices=self.out_indices, ) def UpperCamelCase_ ( self: List[Any], a_: List[Any], a_: Any, a_: Optional[Any], a_: List[str] ): '''simple docstring''' _snake_case : str = BeitModel(config=a_ ) model.to(a_ ) model.eval() _snake_case : Dict = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self: str, a_: List[Any], a_: Optional[Any], a_: Optional[int], a_: List[Any] ): '''simple docstring''' _snake_case : List[str] = BeitForMaskedImageModeling(config=a_ ) model.to(a_ ) model.eval() _snake_case : Union[str, Any] = model(a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCamelCase_ ( self: Any, a_: List[str], a_: Any, a_: List[Any], a_: Optional[Any] ): '''simple docstring''' _snake_case : Any = self.type_sequence_label_size _snake_case : Any = BeitForImageClassification(a_ ) model.to(a_ ) model.eval() _snake_case : List[Any] = model(a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case : Any = 1 _snake_case : str = BeitForImageClassification(a_ ) model.to(a_ ) model.eval() _snake_case : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case : Optional[Any] = model(a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self: List[Any], a_: Optional[int], a_: List[Any], a_: str, a_: int ): '''simple docstring''' _snake_case : List[str] = self.num_labels _snake_case : List[Any] = BeitForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() _snake_case : List[str] = model(a_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) _snake_case : str = model(a_, labels=a_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Tuple = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case , _snake_case : Any = config_and_inputs _snake_case : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase__ = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Dict = BeitModelTester(self ) _snake_case : int = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def UpperCamelCase_ ( self: str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""BEiT does not use inputs_embeds""" ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCamelCase_ ( self: str ): '''simple docstring''' pass def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : List[str] = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) _snake_case : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_, nn.Linear ) ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Any = model_class(a_ ) _snake_case : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : List[Any] = [*signature.parameters.keys()] _snake_case : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1], a_ ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' if not self.model_tester.is_training: return _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Any = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(a_ ), BeitForMaskedImageModeling]: continue _snake_case : List[Any] = model_class(a_ ) model.to(a_ ) model.train() _snake_case : Dict = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : List[Any] = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _snake_case : Dict = False _snake_case : Optional[Any] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(a_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue _snake_case : Any = model_class(a_ ) model.gradient_checkpointing_enable() model.to(a_ ) model.train() _snake_case : Any = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : int = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : int = _config_zero_init(a_ ) for model_class in self.all_model_classes: _snake_case : Tuple = model_class(config=a_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @slow def UpperCamelCase_ ( self: int ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Optional[int] = BeitModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self: Dict ): '''simple docstring''' return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : str = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(a_ ) _snake_case : Dict = self.default_image_processor _snake_case : Dict = prepare_img() _snake_case : List[str] = image_processor(images=a_, return_tensors="""pt""" ).pixel_values.to(a_ ) # prepare bool_masked_pos _snake_case : Optional[int] = torch.ones((1, 196), dtype=torch.bool ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : int = model(pixel_values=a_, bool_masked_pos=a_ ) _snake_case : Dict = outputs.logits # verify the logits _snake_case : Optional[int] = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape, a_ ) _snake_case : Optional[Any] = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(a_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], a_, atol=1E-2 ) ) @slow def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Dict = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(a_ ) _snake_case : List[Any] = self.default_image_processor _snake_case : Any = prepare_img() _snake_case : Any = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : int = model(**a_ ) _snake_case : Optional[int] = outputs.logits # verify the logits _snake_case : Tuple = torch.Size((1, 1_000) ) self.assertEqual(logits.shape, a_ ) _snake_case : Any = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(a_ ) self.assertTrue(torch.allclose(logits[0, :3], a_, atol=1E-4 ) ) _snake_case : str = 281 self.assertEqual(logits.argmax(-1 ).item(), a_ ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : int = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to( a_ ) _snake_case : int = self.default_image_processor _snake_case : Optional[Any] = prepare_img() _snake_case : Union[str, Any] = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Union[str, Any] = model(**a_ ) _snake_case : Dict = outputs.logits # verify the logits _snake_case : Tuple = torch.Size((1, 21_841) ) self.assertEqual(logits.shape, a_ ) _snake_case : Optional[int] = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(a_ ) self.assertTrue(torch.allclose(logits[0, :3], a_, atol=1E-4 ) ) _snake_case : List[str] = 2_396 self.assertEqual(logits.argmax(-1 ).item(), a_ ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[str] = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) _snake_case : int = model.to(a_ ) _snake_case : List[str] = BeitImageProcessor(do_resize=a_, size=640, do_center_crop=a_ ) _snake_case : Optional[int] = load_dataset("""hf-internal-testing/fixtures_ade20k""", split="""test""" ) _snake_case : Union[str, Any] = Image.open(ds[0]["""file"""] ) _snake_case : List[Any] = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Optional[int] = model(**a_ ) _snake_case : Union[str, Any] = outputs.logits # verify the logits _snake_case : List[str] = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape, a_ ) _snake_case : Optional[int] = version.parse(PIL.__version__ ) < version.parse("""9.0.0""" ) if is_pillow_less_than_a: _snake_case : Any = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ], device=a_, ) else: _snake_case : Optional[Any] = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ], device=a_, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], a_, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : int = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) _snake_case : List[Any] = model.to(a_ ) _snake_case : Tuple = BeitImageProcessor(do_resize=a_, size=640, do_center_crop=a_ ) _snake_case : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_ade20k""", split="""test""" ) _snake_case : str = Image.open(ds[0]["""file"""] ) _snake_case : Tuple = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Optional[int] = model(**a_ ) _snake_case : Union[str, Any] = outputs.logits.detach().cpu() _snake_case : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=a_, target_sizes=[(500, 300)] ) _snake_case : Optional[int] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape, a_ ) _snake_case : List[str] = image_processor.post_process_semantic_segmentation(outputs=a_ ) _snake_case : List[str] = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape, a_ )
28
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : list[list[str]] , snake_case__ : int , ): """simple docstring""" _snake_case : List[str] = len(snake_case__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(snake_case__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , snake_case__ , snake_case__ , ) def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" _snake_case : list[list[str]] = [] depth_first_search([] , [] , [] , snake_case__ , snake_case__ ) # Print all the boards for board in boards: for column in board: print(snake_case__ ) print("""""" ) print(len(snake_case__ ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
710
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase( __a ): '''simple docstring''' lowercase__ = (IPNDMScheduler,) lowercase__ = (("num_inference_steps", 50),) def UpperCamelCase_ ( self: Union[str, Any], **a_: Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = {"""num_train_timesteps""": 1_000} config.update(**a_ ) return config def UpperCamelCase_ ( self: Tuple, a_: Optional[int]=0, **a_: int ): '''simple docstring''' _snake_case : Optional[int] = dict(self.forward_default_kwargs ) _snake_case : Optional[Any] = kwargs.pop("""num_inference_steps""", a_ ) _snake_case : Optional[Any] = self.dummy_sample _snake_case : Dict = 0.1 * sample _snake_case : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _snake_case : int = self.get_scheduler_config(**a_ ) _snake_case : Dict = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals _snake_case : int = dummy_past_residuals[:] if time_step is None: _snake_case : Union[str, Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) _snake_case : Tuple = scheduler_class.from_pretrained(a_ ) new_scheduler.set_timesteps(a_ ) # copy over dummy past residuals _snake_case : Optional[Any] = dummy_past_residuals[:] _snake_case : List[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : str = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _snake_case : Optional[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : Optional[int] = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self: str, a_: Any=0, **a_: Tuple ): '''simple docstring''' _snake_case : str = dict(self.forward_default_kwargs ) _snake_case : List[Any] = kwargs.pop("""num_inference_steps""", a_ ) _snake_case : Optional[int] = self.dummy_sample _snake_case : Tuple = 0.1 * sample _snake_case : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _snake_case : Any = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals (must be after setting timesteps) _snake_case : Union[str, Any] = dummy_past_residuals[:] if time_step is None: _snake_case : Tuple = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) _snake_case : List[str] = scheduler_class.from_pretrained(a_ ) # copy over dummy past residuals new_scheduler.set_timesteps(a_ ) # copy over dummy past residual (must be after setting timesteps) _snake_case : List[str] = dummy_past_residuals[:] _snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : Any = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : int = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self: List[Any], **a_: Optional[int] ): '''simple docstring''' _snake_case : Union[str, Any] = self.scheduler_classes[0] _snake_case : Any = self.get_scheduler_config(**a_ ) _snake_case : List[Any] = scheduler_class(**a_ ) _snake_case : Union[str, Any] = 10 _snake_case : Union[str, Any] = self.dummy_model() _snake_case : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(a_ ) for i, t in enumerate(scheduler.timesteps ): _snake_case : Optional[Any] = model(a_, a_ ) _snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample for i, t in enumerate(scheduler.timesteps ): _snake_case : Union[str, Any] = model(a_, a_ ) _snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample return sample def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : str = dict(self.forward_default_kwargs ) _snake_case : int = kwargs.pop("""num_inference_steps""", a_ ) for scheduler_class in self.scheduler_classes: _snake_case : Union[str, Any] = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**a_ ) _snake_case : Dict = self.dummy_sample _snake_case : List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(a_, """set_timesteps""" ): scheduler.set_timesteps(a_ ) elif num_inference_steps is not None and not hasattr(a_, """set_timesteps""" ): _snake_case : Dict = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _snake_case : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _snake_case : List[str] = dummy_past_residuals[:] _snake_case : Optional[int] = scheduler.timesteps[5] _snake_case : Optional[Any] = scheduler.timesteps[6] _snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : List[str] = scheduler.step(a_, a_, a_, **a_ ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) _snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=a_, time_step=a_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=a_, time_step=a_ ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.full_loop() _snake_case : Optional[int] = torch.mean(torch.abs(a_ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
28
0
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" _snake_case : Any = 1 for i in range(1 , num + 1 ): fact *= i return fact def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" _snake_case : List[Any] = 0 while number > 0: _snake_case : Optional[Any] = number % 10 sum_of_digits += last_digit _snake_case : str = number // 10 # Removing the last_digit from the given number return sum_of_digits def UpperCAmelCase__ (snake_case__ : int = 1_00 ): """simple docstring""" _snake_case : Optional[int] = factorial(snake_case__ ) _snake_case : List[str] = split_and_add(snake_case__ ) return result if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
711
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True A_ = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) _snake_case : Any = [] for num in range(len(snake_case__ ) ): _snake_case : Optional[int] = 0 while 2 * i * i <= odd_composites[num]: _snake_case : Optional[int] = odd_composites[num] - 2 * i * i if is_prime(snake_case__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(snake_case__ ) == n: return list_nums return [] def UpperCAmelCase__ (): """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(F'''{solution() = }''')
28
0
"""simple docstring""" import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration A_ = 5_00_00 A_ = 50_00 A_ , A_ = os.path.split(__file__) A_ = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def UpperCAmelCase__ (snake_case__ : datasets.Dataset , snake_case__ : Dict ): """simple docstring""" for i in range(snake_case__ ): _snake_case : Dict = dataset[i] @get_duration def UpperCAmelCase__ (snake_case__ : datasets.Dataset , snake_case__ : Optional[Any] , snake_case__ : str ): """simple docstring""" for i in range(0 , len(snake_case__ ) , snake_case__ ): _snake_case : Tuple = dataset[i : i + batch_size] @get_duration def UpperCAmelCase__ (snake_case__ : datasets.Dataset , snake_case__ : str , snake_case__ : int ): """simple docstring""" with dataset.formatted_as(type=snake_case__ ): for i in range(snake_case__ ): _snake_case : Union[str, Any] = dataset[i] @get_duration def UpperCAmelCase__ (snake_case__ : datasets.Dataset , snake_case__ : Any , snake_case__ : int , snake_case__ : Union[str, Any] ): """simple docstring""" with dataset.formatted_as(type=snake_case__ ): for i in range(0 , snake_case__ , snake_case__ ): _snake_case : Optional[Any] = dataset[i : i + batch_size] def UpperCAmelCase__ (): """simple docstring""" _snake_case : Dict = {"""num examples""": SPEED_TEST_N_EXAMPLES} _snake_case : int = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_00}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10_00}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10_00}), ] _snake_case : Optional[Any] = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_00}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10_00}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10_00}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("""generating dataset""" ) _snake_case : Optional[int] = datasets.Features( {"""list""": datasets.Sequence(datasets.Value("""float32""" ) ), """numbers""": datasets.Value("""float32""" )} ) _snake_case : Optional[int] = generate_example_dataset( os.path.join(snake_case__ , """dataset.arrow""" ) , snake_case__ , num_examples=snake_case__ , seq_shapes={"""list""": (1_00,)} , ) print("""first set of iterations""" ) for func, kwargs in functions: print(func.__name__ , str(snake_case__ ) ) _snake_case : List[Any] = func(snake_case__ , **snake_case__ ) print("""shuffling dataset""" ) _snake_case : Tuple = dataset.shuffle() print("""Second set of iterations (after shuffling""" ) for func, kwargs in functions_shuffled: print("""shuffled """ , func.__name__ , str(snake_case__ ) ) _snake_case : List[Any] = func( snake_case__ , **snake_case__ ) with open(snake_case__ , """wb""" ) as f: f.write(json.dumps(snake_case__ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
712
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class lowercase: '''simple docstring''' def __init__( self: List[Any], a_: str = "cpu", a_: str = "openai/clip-vit-large-patch14" ): '''simple docstring''' _snake_case : Optional[int] = device _snake_case : str = CLIPTokenizerFast.from_pretrained(a_ ) _snake_case : Union[str, Any] = [0.48_145_466, 0.4_578_275, 0.40_821_073] _snake_case : Optional[int] = [0.26_862_954, 0.26_130_258, 0.27_577_711] _snake_case : str = torchvision.transforms.Normalize(self.image_mean, self.image_std ) _snake_case : Optional[int] = torchvision.transforms.Resize(224 ) _snake_case : str = torchvision.transforms.CenterCrop(224 ) def UpperCamelCase_ ( self: List[str], a_: str ): '''simple docstring''' _snake_case : Optional[int] = self.resize(a_ ) _snake_case : List[Any] = self.center_crop(a_ ) _snake_case : Optional[Any] = self.normalize(a_ ) return images def __call__( self: Any, a_: Optional[int]=None, a_: str=None, **a_: str ): '''simple docstring''' _snake_case : Optional[int] = self.tokenizer(text=a_, **a_ ) _snake_case : Any = self.preprocess_img(a_ ) _snake_case : Union[str, Any] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class lowercase( nn.Module ): '''simple docstring''' def __init__( self: List[Any], a_: List[Any]=10, a_: Optional[Any]=0.01, a_: List[str]=None, a_: str=None, a_: Any=None, a_: Tuple=None, a_: List[str]=None, a_: List[str]=None, a_: str=False, a_: List[str]=True, a_: Any="image", a_: Optional[Any]=True, a_: Dict=False, a_: List[str]=False, a_: Optional[int]=False, ): '''simple docstring''' super().__init__() _snake_case : int = None _snake_case : List[str] = device if device else get_device() if vqgan: _snake_case : Any = vqgan else: _snake_case : Optional[Any] = load_vqgan(self.device, conf_path=a_, ckpt_path=a_ ) self.vqgan.eval() if clip: _snake_case : Tuple = clip else: _snake_case : Optional[Any] = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) _snake_case : List[str] = ProcessorGradientFlow(device=self.device ) _snake_case : Union[str, Any] = iterations _snake_case : Dict = lr _snake_case : Optional[int] = log _snake_case : List[str] = make_grid _snake_case : Union[str, Any] = return_val _snake_case : List[str] = quantize _snake_case : List[str] = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self: Tuple, a_: str=None, a_: Dict=None, a_: Dict=5, a_: Dict=True ): '''simple docstring''' _snake_case : Dict = [] if output_path is None: _snake_case : Tuple = """./animation.gif""" if input_path is None: _snake_case : Any = self.save_path _snake_case : Optional[int] = sorted(glob(input_path + """/*""" ) ) if not len(a_ ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(a_ ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) _snake_case : List[Any] = total_duration / len(a_ ) _snake_case : Optional[Any] = [frame_duration] * len(a_ ) if extend_frames: _snake_case : Optional[int] = 1.5 _snake_case : int = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(a_ ) ) imageio.mimsave(a_, a_, duration=a_ ) print(f"gif saved to {output_path}" ) def UpperCamelCase_ ( self: str, a_: Tuple=None, a_: Optional[Any]=None ): '''simple docstring''' if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError _snake_case : int = preprocess(Image.open(a_ ), target_image_size=256 ).to(self.device ) _snake_case : int = preprocess_vqgan(a_ ) _snake_case , *_snake_case : List[Any] = self.vqgan.encode(a_ ) return z def UpperCamelCase_ ( self: Union[str, Any], a_: Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.latent.detach().requires_grad_() _snake_case : Tuple = base_latent + transform_vector if self.quantize: _snake_case , *_snake_case : Any = self.vqgan.quantize(a_ ) else: _snake_case : List[Any] = trans_latent return self.vqgan.decode(a_ ) def UpperCamelCase_ ( self: List[Any], a_: Any, a_: Union[str, Any], a_: Dict=None ): '''simple docstring''' _snake_case : Tuple = self.clip_preprocessor(text=a_, images=a_, return_tensors="""pt""", padding=a_ ) _snake_case : Any = self.clip(**a_ ) _snake_case : str = clip_outputs.logits_per_image if weights is not None: _snake_case : Any = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self: Any, a_: Any, a_: List[str], a_: Dict ): '''simple docstring''' _snake_case : List[Any] = self._get_clip_similarity(pos_prompts["""prompts"""], a_, weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: _snake_case : List[str] = self._get_clip_similarity(neg_prompts["""prompts"""], a_, weights=neg_prompts["""weights"""] ) else: _snake_case : Tuple = torch.tensor([1], device=self.device ) _snake_case : int = -torch.log(a_ ) + torch.log(a_ ) return loss def UpperCamelCase_ ( self: Optional[Any], a_: Tuple, a_: Union[str, Any], a_: List[str] ): '''simple docstring''' _snake_case : Tuple = torch.randn_like(self.latent, requires_grad=a_, device=self.device ) _snake_case : Dict = torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _snake_case : str = self._add_vector(a_ ) _snake_case : List[Any] = loop_post_process(a_ ) _snake_case : List[Any] = self._get_CLIP_loss(a_, a_, a_ ) print("""CLIP loss""", a_ ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=a_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self: int, a_: Any, a_: Union[str, Any], a_: Optional[int] ): '''simple docstring''' wandb.init(reinit=a_, project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: _snake_case : Any = Image.open(a_ ) _snake_case : str = image.resize((256, 256) ) wandb.log("""Original Image""", wandb.Image(a_ ) ) def UpperCamelCase_ ( self: str, a_: List[Any] ): '''simple docstring''' if not prompts: return [] _snake_case : List[str] = [] _snake_case : Tuple = [] if isinstance(a_, a_ ): _snake_case : Union[str, Any] = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(a_, (tuple, list) ): _snake_case : List[Any] = prompt[0] _snake_case : Optional[Any] = float(prompt[1] ) elif ":" in prompt: _snake_case , _snake_case : List[Any] = prompt.split(""":""" ) _snake_case : str = float(a_ ) else: _snake_case : int = prompt _snake_case : Union[str, Any] = 1.0 processed_prompts.append(a_ ) weights.append(a_ ) return { "prompts": processed_prompts, "weights": torch.tensor(a_, device=self.device ), } def UpperCamelCase_ ( self: Dict, a_: List[Any], a_: List[Any]=None, a_: Optional[Any]=None, a_: Optional[Any]=True, a_: Dict=False, a_: Optional[Any]=True, a_: Optional[Any]=True, a_: Any=None, ): '''simple docstring''' if image_path: _snake_case : Union[str, Any] = self._get_latent(a_ ) else: _snake_case : Any = torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(a_, a_, a_ ) assert pos_prompts, "You must provide at least one positive prompt." _snake_case : str = self.process_prompts(a_ ) _snake_case : Dict = self.process_prompts(a_ ) if save_final and save_path is None: _snake_case : Any = os.path.join("""./outputs/""", """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(a_ ): os.makedirs(a_ ) else: _snake_case : List[Any] = save_path + """_""" + get_timestamp() os.makedirs(a_ ) _snake_case : Optional[Any] = save_path _snake_case : List[Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(a_ ) ) _snake_case : List[Any] = loop_post_process(a_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(a_, a_, a_ ) ): if show_intermediate: show_pil(a_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}.png" ) ) if self.log: wandb.log({"""Image""": wandb.Image(a_ )} ) if show_final: show_pil(a_ ) if save_final: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}_final.png" ) )
28
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''', '''BridgeTower/bridgetower-base-itm-mlm''': ( '''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json''' ), } class lowercase( __a ): '''simple docstring''' lowercase__ = "bridgetower_vision_model" def __init__( self: Tuple, a_: str=768, a_: Union[str, Any]=12, a_: List[str]=3, a_: Optional[int]=16, a_: List[Any]=288, a_: Optional[Any]=1, a_: Any=1E-05, a_: Dict=False, a_: Any=True, a_: int=False, **a_: int, ): '''simple docstring''' super().__init__(**a_ ) _snake_case : str = hidden_size _snake_case : int = num_hidden_layers _snake_case : Any = num_channels _snake_case : Union[str, Any] = patch_size _snake_case : Dict = image_size _snake_case : Optional[Any] = initializer_factor _snake_case : Any = layer_norm_eps _snake_case : int = stop_gradient _snake_case : Any = share_layernorm _snake_case : List[Any] = remove_last_layer @classmethod def UpperCamelCase_ ( cls: Union[str, Any], a_: Union[str, os.PathLike], **a_: Optional[Any] ): '''simple docstring''' _snake_case : List[Any] = cls.get_config_dict(a_, **a_ ) if config_dict.get("""model_type""" ) == "bridgetower": _snake_case : str = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a_, **a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "bridgetower_text_model" def __init__( self: str, a_: Dict=50_265, a_: List[Any]=768, a_: Union[str, Any]=12, a_: List[str]=12, a_: str=1, a_: Optional[Any]=3_072, a_: int="gelu", a_: int=0.1, a_: int=0.1, a_: Optional[int]=514, a_: Tuple=1, a_: Tuple=1E-05, a_: Optional[int]=1, a_: Union[str, Any]=0, a_: str=2, a_: Any="absolute", a_: List[Any]=True, **a_: Union[str, Any], ): '''simple docstring''' super().__init__(**a_ ) _snake_case : str = vocab_size _snake_case : Optional[int] = hidden_size _snake_case : Dict = num_hidden_layers _snake_case : Optional[int] = num_attention_heads _snake_case : Optional[int] = hidden_act _snake_case : List[Any] = initializer_factor _snake_case : Optional[int] = intermediate_size _snake_case : int = hidden_dropout_prob _snake_case : Tuple = attention_probs_dropout_prob _snake_case : List[str] = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : List[Any] = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Dict = use_cache _snake_case : int = pad_token_id _snake_case : Union[str, Any] = bos_token_id _snake_case : Union[str, Any] = eos_token_id @classmethod def UpperCamelCase_ ( cls: str, a_: Union[str, os.PathLike], **a_: int ): '''simple docstring''' _snake_case : Optional[int] = cls.get_config_dict(a_, **a_ ) if config_dict.get("""model_type""" ) == "bridgetower": _snake_case : Union[str, Any] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a_, **a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "bridgetower" def __init__( self: int, a_: List[str]=True, a_: Any="gelu", a_: List[Any]=768, a_: int=1, a_: Optional[int]=1E-05, a_: Tuple=False, a_: Optional[Any]="add", a_: List[str]=12, a_: Union[str, Any]=6, a_: int=False, a_: Any=False, a_: Dict=None, a_: Any=None, **a_: str, ): '''simple docstring''' _snake_case : str = kwargs.pop("""text_config_dict""", a_ ) _snake_case : Optional[Any] = kwargs.pop("""vision_config_dict""", a_ ) super().__init__(**a_ ) _snake_case : str = share_cross_modal_transformer_layers _snake_case : Any = hidden_act _snake_case : Union[str, Any] = hidden_size _snake_case : Union[str, Any] = initializer_factor _snake_case : Dict = layer_norm_eps _snake_case : Dict = share_link_tower_layers _snake_case : Optional[int] = link_tower_type _snake_case : Any = num_attention_heads _snake_case : int = num_hidden_layers _snake_case : int = tie_word_embeddings _snake_case : Optional[Any] = init_layernorm_from_vision_encoder if text_config is None: _snake_case : Optional[Any] = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: _snake_case : str = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) _snake_case : Any = BridgeTowerTextConfig(**a_ ) _snake_case : List[Any] = BridgeTowerVisionConfig(**a_ ) @classmethod def UpperCamelCase_ ( cls: Union[str, Any], a_: BridgeTowerTextConfig, a_: BridgeTowerVisionConfig, **a_: Optional[Any] ): '''simple docstring''' return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[int] = copy.deepcopy(self.__dict__ ) _snake_case : str = self.text_config.to_dict() _snake_case : List[str] = self.vision_config.to_dict() _snake_case : Tuple = self.__class__.model_type return output
713
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _snake_case : Dict = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
28
0
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = CpmAntTokenizer lowercase__ = False def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' super().setUp() _snake_case : List[Any] = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] _snake_case : Tuple = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Any = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) _snake_case : Optional[Any] = """今天天气真好!""" _snake_case : List[Any] = ["""今天""", """天气""", """真""", """好""", """!"""] _snake_case : Tuple = tokenizer.tokenize(a_ ) self.assertListEqual(a_, a_ ) _snake_case : List[Any] = """今天天气真好!""" _snake_case : Union[str, Any] = [tokenizer.bos_token] + tokens _snake_case : Dict = [6, 9_802, 14_962, 2_082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ), a_ ) _snake_case : Dict = tokenizer.decode(a_ ) self.assertEqual(a_, a_ )
714
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase: '''simple docstring''' def __init__( self: List[str], a_: List[Any], a_: str=13, a_: Dict=32, a_: Union[str, Any]=3, a_: Union[str, Any]=4, a_: Tuple=[10, 20, 30, 40], a_: Dict=[2, 2, 3, 2], a_: Tuple=True, a_: Optional[Any]=True, a_: Any=37, a_: Any="gelu", a_: int=10, a_: Tuple=0.02, a_: str=["stage2", "stage3", "stage4"], a_: List[str]=[2, 3, 4], a_: List[str]=None, ): '''simple docstring''' _snake_case : int = parent _snake_case : int = batch_size _snake_case : List[Any] = image_size _snake_case : List[str] = num_channels _snake_case : Tuple = num_stages _snake_case : Union[str, Any] = hidden_sizes _snake_case : List[Any] = depths _snake_case : Tuple = is_training _snake_case : List[str] = use_labels _snake_case : Tuple = intermediate_size _snake_case : List[str] = hidden_act _snake_case : Optional[Any] = num_labels _snake_case : Tuple = initializer_range _snake_case : Tuple = out_features _snake_case : Tuple = out_indices _snake_case : Dict = scope def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Any = None if self.use_labels: _snake_case : Dict = ids_tensor([self.batch_size], self.num_labels ) _snake_case : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=a_, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, ) def UpperCamelCase_ ( self: int, a_: Tuple, a_: Any, a_: Dict ): '''simple docstring''' _snake_case : int = ConvNextVaModel(config=a_ ) model.to(a_ ) model.eval() _snake_case : Any = model(a_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def UpperCamelCase_ ( self: Optional[int], a_: List[str], a_: Tuple, a_: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = ConvNextVaForImageClassification(a_ ) model.to(a_ ) model.eval() _snake_case : Optional[int] = model(a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self: Union[str, Any], a_: Tuple, a_: Tuple, a_: Tuple ): '''simple docstring''' _snake_case : List[str] = ConvNextVaBackbone(config=a_ ) model.to(a_ ) model.eval() _snake_case : int = model(a_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] ) # verify backbone works with out_features=None _snake_case : Tuple = None _snake_case : Tuple = ConvNextVaBackbone(config=a_ ) model.to(a_ ) model.eval() _snake_case : List[Any] = model(a_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ), 1 ) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Dict = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : Any = config_and_inputs _snake_case : str = {"""pixel_values""": pixel_values} return config, inputs_dict def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[Any] = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : List[str] = config_and_inputs _snake_case : Any = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase__ = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Tuple = ConvNextVaModelTester(self ) _snake_case : int = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def UpperCamelCase_ ( self: str ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _snake_case , _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_with_labels() _snake_case : List[Any] = True if model_class.__name__ in [ *get_values(a_ ), *get_values(a_ ), ]: continue _snake_case : Tuple = model_class(a_ ) model.to(a_ ) model.train() _snake_case : Optional[Any] = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : Any = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_with_labels() _snake_case : Any = False _snake_case : List[Any] = True if ( model_class.__name__ in [*get_values(a_ ), *get_values(a_ )] or not model_class.supports_gradient_checkpointing ): continue _snake_case : Dict = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() _snake_case : str = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : Optional[int] = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : List[str] = model_class(a_ ) _snake_case : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : int = [*signature.parameters.keys()] _snake_case : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1], a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(a_: str, a_: Tuple, a_: Tuple ): _snake_case : Optional[Any] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): _snake_case : Any = model(**self._prepare_for_class(a_, a_ ) ) _snake_case : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case : Optional[int] = self.model_tester.num_stages self.assertEqual(len(a_ ), expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) _snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Optional[Any] = True check_hidden_states_output(a_, a_, a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : List[str] = True check_hidden_states_output(a_, a_, a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : str = ConvNextVaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(a_ ) _snake_case : Union[str, Any] = self.default_image_processor _snake_case : List[Any] = prepare_img() _snake_case : Optional[int] = preprocessor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Optional[int] = model(**a_ ) # verify the logits _snake_case : Optional[int] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, a_ ) _snake_case : Optional[int] = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], a_, atol=1E-4 ) )
28
0
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A_ = '''▁''' A_ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = BigBirdTokenizer lowercase__ = BigBirdTokenizerFast lowercase__ = True lowercase__ = True def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' super().setUp() _snake_case : Union[str, Any] = self.tokenizer_class(a_, keep_accents=a_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Any = """<s>""" _snake_case : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ), a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ), a_ ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], """<unk>""" ) self.assertEqual(vocab_keys[1], """<s>""" ) self.assertEqual(vocab_keys[-1], """[MASK]""" ) self.assertEqual(len(a_ ), 1_004 ) def UpperCamelCase_ ( self: int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 1_000 ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' if not self.test_rust_tokenizer: return _snake_case : Optional[int] = self.get_tokenizer() _snake_case : Any = self.get_rust_tokenizer() _snake_case : Optional[Any] = """I was born in 92000, and this is falsé.""" _snake_case : Tuple = tokenizer.tokenize(a_ ) _snake_case : Tuple = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_, a_ ) _snake_case : List[str] = tokenizer.encode(a_, add_special_tokens=a_ ) _snake_case : Optional[Any] = rust_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) _snake_case : Tuple = self.get_rust_tokenizer() _snake_case : Union[str, Any] = tokenizer.encode(a_ ) _snake_case : Optional[Any] = rust_tokenizer.encode(a_ ) self.assertListEqual(a_, a_ ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : int = BigBirdTokenizer(a_, keep_accents=a_ ) _snake_case : int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(a_, ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a_ ), [285, 46, 10, 170, 382], ) _snake_case : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( a_, [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ], ) _snake_case : Union[str, Any] = tokenizer.convert_tokens_to_ids(a_ ) self.assertListEqual( a_, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4], ) _snake_case : Optional[Any] = tokenizer.convert_ids_to_tokens(a_ ) self.assertListEqual( a_, [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ], ) @cached_property def UpperCamelCase_ ( self: str ): '''simple docstring''' return BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) @slow def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = """Hello World!""" _snake_case : List[str] = [65, 18_536, 2_260, 101, 66] self.assertListEqual(a_, self.big_tokenizer.encode(a_ ) ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Any = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) # fmt: off _snake_case : Union[str, Any] = [65, 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, 66] # noqa: E231 # fmt: on self.assertListEqual(a_, self.big_tokenizer.encode(a_ ) ) @require_torch @slow def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence _snake_case : int = list(self.big_tokenizer.get_vocab().keys() )[:10] _snake_case : List[Any] = """ """.join(a_ ) _snake_case : Dict = self.big_tokenizer.encode_plus(a_, return_tensors="""pt""", return_token_type_ids=a_ ) _snake_case : List[str] = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence], return_tensors="""pt""", return_token_type_ids=a_ ) _snake_case : Any = BigBirdConfig(attention_type="""original_full""" ) _snake_case : str = BigBirdModel(a_ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**a_ ) model(**a_ ) @slow def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) _snake_case : Optional[int] = tokenizer.decode(tokenizer("""Paris is the [MASK].""" ).input_ids ) self.assertTrue(decoded_text == """[CLS] Paris is the[MASK].[SEP]""" ) @slow def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Any = {"""input_ids""": [[65, 39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114, 66], [65, 448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a_, model_name="""google/bigbird-roberta-base""", revision="""215c99f1600e06f83acce68422f2035b2b5c3510""", )
715
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Dict ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Dict ): """simple docstring""" _snake_case : str = tmp_path / """cache""" _snake_case : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _snake_case : str = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : int , snake_case__ : List[Any] ): """simple docstring""" _snake_case : str = tmp_path / """cache""" _snake_case : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : List[Any] = features.copy() if features else default_expected_features _snake_case : List[Any] = ( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) _snake_case : Optional[Any] = ParquetDatasetReader(snake_case__ , features=snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : List[str] = tmp_path / """cache""" _snake_case : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : int = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ , split=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : str , snake_case__ : str ): """simple docstring""" if issubclass(snake_case__ , snake_case__ ): _snake_case : Optional[Any] = parquet_path elif issubclass(snake_case__ , snake_case__ ): _snake_case : int = [parquet_path] _snake_case : Union[str, Any] = tmp_path / """cache""" _snake_case : Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : List[str] = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : str=("train",) ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ) for split in splits: _snake_case : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str , snake_case__ : List[Any] ): """simple docstring""" _snake_case : Tuple = tmp_path / """cache""" _snake_case : Optional[int] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _snake_case : Tuple = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] ): """simple docstring""" _snake_case : Optional[int] = tmp_path / """cache""" _snake_case : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : Optional[Any] = features.copy() if features else default_expected_features _snake_case : Dict = ( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) _snake_case : Optional[int] = ParquetDatasetReader({"""train""": parquet_path} , features=snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Tuple ): """simple docstring""" if split: _snake_case : int = {split: parquet_path} else: _snake_case : Optional[Any] = """train""" _snake_case : int = {"""train""": parquet_path, """test""": parquet_path} _snake_case : Dict = tmp_path / """cache""" _snake_case : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : Union[str, Any] = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : Tuple ): """simple docstring""" _snake_case : List[Any] = ParquetDatasetWriter(snake_case__ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _snake_case : str = pq.ParquetFile(tmp_path / """foo.parquet""" ) _snake_case : int = pf.read() assert dataset.data.table == output_table def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : Optional[Any] = str(shared_datadir / """test_image_rgb.jpg""" ) _snake_case : Tuple = {"""image""": [image_path]} _snake_case : Optional[int] = Features({"""image""": Image()} ) _snake_case : int = Dataset.from_dict(snake_case__ , features=snake_case__ ) _snake_case : Optional[Any] = ParquetDatasetWriter(snake_case__ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _snake_case : List[str] = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features _snake_case : Optional[Any] = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=snake_case__ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : str ): """simple docstring""" assert get_writer_batch_size(snake_case__ ) == expected
28
0
"""simple docstring""" from math import isqrt def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(snake_case__ ) + 1 ) ) def UpperCAmelCase__ (snake_case__ : int = 10**6 ): """simple docstring""" _snake_case : Optional[int] = 0 _snake_case : List[Any] = 1 _snake_case : str = 7 while prime_candidate < max_prime: primes_count += is_prime(snake_case__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
716
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase: '''simple docstring''' def __init__( self: Dict, a_: Union[str, Any], a_: Tuple=13, a_: Dict=32, a_: Optional[Any]=3, a_: Optional[Any]=4, a_: Optional[int]=[10, 20, 30, 40], a_: Any=[2, 2, 3, 2], a_: Dict=True, a_: Dict=True, a_: List[str]=37, a_: Dict="gelu", a_: List[str]=10, a_: Union[str, Any]=0.02, a_: Any=["stage2", "stage3", "stage4"], a_: Optional[int]=3, a_: Tuple=None, ): '''simple docstring''' _snake_case : Dict = parent _snake_case : Dict = batch_size _snake_case : Optional[Any] = image_size _snake_case : int = num_channels _snake_case : Tuple = num_stages _snake_case : int = hidden_sizes _snake_case : List[str] = depths _snake_case : str = is_training _snake_case : Dict = use_labels _snake_case : List[str] = intermediate_size _snake_case : Optional[int] = hidden_act _snake_case : Any = type_sequence_label_size _snake_case : List[str] = initializer_range _snake_case : Union[str, Any] = out_features _snake_case : Dict = num_labels _snake_case : int = scope _snake_case : Dict = num_stages def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Optional[int] = None if self.use_labels: _snake_case : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) _snake_case : Tuple = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels, num_stages=self.num_stages, hidden_sizes=self.hidden_sizes, depths=self.depths, is_training=self.is_training, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, out_features=self.out_features, ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config(), hidden_size=512, pool_scales=[1, 2, 3, 6], use_auxiliary_head=a_, auxiliary_loss_weight=0.4, auxiliary_in_channels=40, auxiliary_channels=256, auxiliary_num_convs=1, auxiliary_concat_input=a_, loss_ignore_index=255, num_labels=self.num_labels, ) def UpperCamelCase_ ( self: Tuple, a_: List[Any], a_: Dict, a_: Tuple ): '''simple docstring''' _snake_case : List[Any] = UperNetForSemanticSegmentation(config=a_ ) model.to(a_ ) model.eval() _snake_case : Tuple = model(a_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Any = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : List[Any] = config_and_inputs _snake_case : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase__ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = UperNetModelTester(self ) _snake_case : Dict = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Dict = model_class(a_ ) _snake_case : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Tuple = [*signature.parameters.keys()] _snake_case : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1], a_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not have a base model""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not have a base model""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' pass def UpperCamelCase_ ( self: str ): '''simple docstring''' def check_hidden_states_output(a_: Dict, a_: List[str], a_: Optional[int] ): _snake_case : Optional[Any] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): _snake_case : Any = model(**self._prepare_for_class(a_, a_ ) ) _snake_case : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case : List[str] = self.model_tester.num_stages self.assertEqual(len(a_ ), expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) _snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : int = True check_hidden_states_output(a_, a_, a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : Optional[int] = True check_hidden_states_output(a_, a_, a_ ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Tuple = _config_zero_init(a_ ) _snake_case : Dict = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _snake_case : Optional[int] = model_class(config=a_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' pass @slow def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : int = UperNetForSemanticSegmentation.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Union[str, Any] = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) _snake_case : List[Any] = Image.open(snake_case__ ).convert("""RGB""" ) return image @require_torch @require_vision @slow class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : str = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) _snake_case : Any = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(a_ ) _snake_case : Dict = prepare_img() _snake_case : str = processor(images=a_, return_tensors="""pt""" ).to(a_ ) with torch.no_grad(): _snake_case : Tuple = model(**a_ ) _snake_case : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape, a_ ) _snake_case : int = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], a_, atol=1E-4 ) ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) _snake_case : Optional[int] = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(a_ ) _snake_case : List[str] = prepare_img() _snake_case : Tuple = processor(images=a_, return_tensors="""pt""" ).to(a_ ) with torch.no_grad(): _snake_case : Optional[Any] = model(**a_ ) _snake_case : Union[str, Any] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape, a_ ) _snake_case : Optional[Any] = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], a_, atol=1E-4 ) )
28
0
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = LongformerTokenizer lowercase__ = True lowercase__ = LongformerTokenizerFast lowercase__ = True def UpperCamelCase_ ( self: Any ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case : List[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _snake_case : List[str] = dict(zip(a_, range(len(a_ ) ) ) ) _snake_case : List[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _snake_case : Any = {"""unk_token""": """<unk>"""} _snake_case : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) _snake_case : Tuple = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as fp: fp.write(json.dumps(a_ ) + """\n""" ) with open(self.merges_file, """w""", encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a_ ) ) def UpperCamelCase_ ( self: Union[str, Any], **a_: List[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname, **a_ ) def UpperCamelCase_ ( self: str, **a_: str ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **a_ ) def UpperCamelCase_ ( self: Tuple, a_: Tuple ): '''simple docstring''' _snake_case : int = """lower newer""" _snake_case : Optional[int] = """lower newer""" return input_text, output_text def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Any = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map ) _snake_case : int = """lower newer""" _snake_case : Union[str, Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _snake_case : int = tokenizer.tokenize(a_ ) # , add_prefix_space=True) self.assertListEqual(a_, a_ ) _snake_case : Any = tokens + [tokenizer.unk_token] _snake_case : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ), a_ ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : int = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""", add_special_tokens=a_ ), [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""", add_special_tokens=a_ ), [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2], ) @slow def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Optional[int] = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) _snake_case : Union[str, Any] = tokenizer.encode("""sequence builders""", add_special_tokens=a_ ) _snake_case : Tuple = tokenizer.encode("""multi-sequence build""", add_special_tokens=a_ ) _snake_case : Tuple = tokenizer.encode( """sequence builders""", add_special_tokens=a_, add_prefix_space=a_ ) _snake_case : Optional[Any] = tokenizer.encode( """sequence builders""", """multi-sequence build""", add_special_tokens=a_, add_prefix_space=a_ ) _snake_case : List[str] = tokenizer.build_inputs_with_special_tokens(a_ ) _snake_case : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(a_, a_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Optional[Any] = self.get_tokenizer() _snake_case : Dict = """Encode this sequence.""" _snake_case : Optional[Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments _snake_case : Union[str, Any] = tokenizer.encode(a_, add_special_tokens=a_, add_prefix_space=a_ ) _snake_case : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(a_, a_ ) _snake_case : Optional[int] = tokenizer.encode(a_, add_special_tokens=a_, add_prefix_space=a_ ) _snake_case : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(a_, a_ ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) _snake_case : Union[str, Any] = tokenizer.encode(a_, add_special_tokens=a_ ) _snake_case : str = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(a_, a_ ) # Testing spaces after special tokens _snake_case : List[str] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(a_, lstrip=a_, rstrip=a_ )} ) # mask token has a left space _snake_case : str = tokenizer.convert_tokens_to_ids(a_ ) _snake_case : int = """Encode <mask> sequence""" _snake_case : Tuple = """Encode <mask>sequence""" _snake_case : List[str] = tokenizer.encode(a_ ) _snake_case : Optional[int] = encoded.index(a_ ) _snake_case : Tuple = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(a_, a_ ) _snake_case : Union[str, Any] = tokenizer.encode(a_ ) _snake_case : Optional[int] = encoded.index(a_ ) _snake_case : Any = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(a_, a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' pass def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): _snake_case : str = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) _snake_case : Dict = self.tokenizer_class.from_pretrained(a_, **a_ ) _snake_case : List[str] = """A, <mask> AllenNLP sentence.""" _snake_case : Tuple = tokenizer_r.encode_plus(a_, add_special_tokens=a_, return_token_type_ids=a_ ) _snake_case : Optional[int] = tokenizer_p.encode_plus(a_, add_special_tokens=a_, return_token_type_ids=a_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ), sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ), sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ), ) _snake_case : int = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) _snake_case : int = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( a_, ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( a_, ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2 ): _snake_case : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname, use_fast=a_, add_prefix_space=a_, trim_offsets=a_ ) _snake_case : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _snake_case : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""], a_ ) self.assertEqual(post_processor_state["""add_prefix_space"""], a_ ) self.assertEqual(post_processor_state["""trim_offsets"""], a_ ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): _snake_case : Optional[int] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` _snake_case : int = f"{text_of_1_token} {text_of_1_token}" _snake_case : Optional[int] = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, add_prefix_space=a_, trim_offsets=a_ ) _snake_case : Dict = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )), ) _snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, add_prefix_space=a_, trim_offsets=a_ ) _snake_case : str = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )), ) _snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, add_prefix_space=a_, trim_offsets=a_ ) _snake_case : Dict = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (len(a_ ), len(a_ ) + 1 + len(a_ )), ) _snake_case : Tuple = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, add_prefix_space=a_, trim_offsets=a_ ) _snake_case : Union[str, Any] = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (len(a_ ), len(a_ ) + 1 + len(a_ )), ) _snake_case : Tuple = f" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _snake_case : Optional[Any] = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, add_prefix_space=a_, trim_offsets=a_ ) _snake_case : Union[str, Any] = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(a_ ) + 1, 1 + len(a_ ) + 1 + len(a_ )), ) _snake_case : Tuple = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, add_prefix_space=a_, trim_offsets=a_ ) _snake_case : Any = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(a_ ), 1 + len(a_ ) + 1 + len(a_ )), ) _snake_case : List[str] = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, add_prefix_space=a_, trim_offsets=a_ ) _snake_case : Optional[Any] = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(a_ ), 1 + len(a_ ) + 1 + len(a_ )), )
717
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path A_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) A_ = [ord(letter) for letter in string.ascii_lowercase] A_ = {ord(char) for char in VALID_CHARS} A_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : tuple[int, ...] ): """simple docstring""" _snake_case : str = "" _snake_case : int _snake_case : int _snake_case : int for keychar, cipherchar in zip(cycle(snake_case__ ) , snake_case__ ): _snake_case : List[str] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case__ ) return decoded def UpperCAmelCase__ (snake_case__ : list[int] ): """simple docstring""" _snake_case : list[str] = [] for key in product(snake_case__ , repeat=3 ): _snake_case : List[Any] = try_key(snake_case__ , snake_case__ ) if encoded is not None: possibles.append(snake_case__ ) return possibles def UpperCAmelCase__ (snake_case__ : list[str] , snake_case__ : str ): """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def UpperCAmelCase__ (snake_case__ : str = "p059_cipher.txt" ): """simple docstring""" _snake_case : list[int] _snake_case : list[str] _snake_case : str _snake_case : str _snake_case : str = Path(snake_case__ ).parent.joinpath(snake_case__ ).read_text(encoding="""utf-8""" ) _snake_case : List[Any] = [int(snake_case__ ) for number in data.strip().split(""",""" )] _snake_case : Optional[Any] = filter_valid_chars(snake_case__ ) for common_word in COMMON_WORDS: _snake_case : Union[str, Any] = filter_common_word(snake_case__ , snake_case__ ) if len(snake_case__ ) == 1: break _snake_case : Optional[int] = possibles[0] return sum(ord(snake_case__ ) for char in decoded_text ) if __name__ == "__main__": print(F'''{solution() = }''')
28
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class lowercase( __a ): '''simple docstring''' lowercase__ = "luke" def __init__( self: Dict, a_: str=50_267, a_: Tuple=500_000, a_: Tuple=768, a_: Optional[Any]=256, a_: Optional[Any]=12, a_: Tuple=12, a_: Union[str, Any]=3_072, a_: Any="gelu", a_: Optional[int]=0.1, a_: Optional[int]=0.1, a_: Tuple=512, a_: Optional[Any]=2, a_: Union[str, Any]=0.02, a_: Union[str, Any]=1E-12, a_: Any=True, a_: Any=None, a_: Tuple=1, a_: Optional[int]=0, a_: Union[str, Any]=2, **a_: List[Any], ): '''simple docstring''' super().__init__(pad_token_id=a_, bos_token_id=a_, eos_token_id=a_, **a_ ) _snake_case : Optional[int] = vocab_size _snake_case : Any = entity_vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Union[str, Any] = entity_emb_size _snake_case : str = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : Any = hidden_act _snake_case : Union[str, Any] = intermediate_size _snake_case : str = hidden_dropout_prob _snake_case : Any = attention_probs_dropout_prob _snake_case : int = max_position_embeddings _snake_case : List[Any] = type_vocab_size _snake_case : List[str] = initializer_range _snake_case : Optional[Any] = layer_norm_eps _snake_case : Dict = use_entity_aware_attention _snake_case : List[Any] = classifier_dropout
718
"""simple docstring""" from ...processing_utils import ProcessorMixin class lowercase( __a ): '''simple docstring''' lowercase__ = ["image_processor", "feature_extractor"] lowercase__ = "TvltImageProcessor" lowercase__ = "TvltFeatureExtractor" def __init__( self: Dict, a_: Union[str, Any], a_: Union[str, Any] ): '''simple docstring''' super().__init__(image_processor=a_, feature_extractor=a_ ) _snake_case : Any = image_processor _snake_case : Dict = feature_extractor def __call__( self: int, a_: str=None, a_: Tuple=None, a_: Dict=None, a_: str=None, a_: Optional[int]=False, a_: Tuple=False, *a_: List[str], **a_: int, ): '''simple docstring''' if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) _snake_case : Optional[int] = None if images is not None: _snake_case : Tuple = self.image_processor(a_, mask_pixel=a_, *a_, **a_ ) if images_mixed is not None: _snake_case : Optional[int] = self.image_processor(a_, is_mixed=a_, *a_, **a_ ) if audio is not None: _snake_case : Any = self.feature_extractor( a_, *a_, sampling_rate=a_, mask_audio=a_, **a_ ) _snake_case : List[str] = {} if audio is not None: output_dict.update(a_ ) if images is not None: output_dict.update(a_ ) if images_mixed_dict is not None: output_dict.update(a_ ) return output_dict @property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Dict = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
28
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
719
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A_ = '''pt''' elif is_tf_available(): A_ = '''tf''' else: A_ = '''jax''' class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ByTaTokenizer lowercase__ = False def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' super().setUp() _snake_case : List[str] = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def UpperCamelCase_ ( self: List[Any], **a_: int ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **a_ ) def UpperCamelCase_ ( self: Optional[Any], a_: Optional[Any], a_: List[Any]=False, a_: int=20, a_: Union[str, Any]=5 ): '''simple docstring''' _snake_case : List[Any] = [] for i in range(len(a_ ) ): try: _snake_case : Optional[Any] = tokenizer.decode([i], clean_up_tokenization_spaces=a_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _snake_case : str = list(filter(lambda a_ : re.match(r"""^[ a-zA-Z]+$""", t[1] ), a_ ) ) _snake_case : List[Any] = list(filter(lambda a_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=a_ ), a_ ) ) if max_length is not None and len(a_ ) > max_length: _snake_case : Tuple = toks[:max_length] if min_length is not None and len(a_ ) < min_length and len(a_ ) > 0: while len(a_ ) < min_length: _snake_case : List[str] = toks + toks # toks_str = [t[1] for t in toks] _snake_case : Tuple = [t[0] for t in toks] # Ensure consistency _snake_case : Optional[Any] = tokenizer.decode(a_, clean_up_tokenization_spaces=a_ ) if " " not in output_txt and len(a_ ) > 1: _snake_case : Dict = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=a_ ) + """ """ + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=a_ ) ) if with_prefix_space: _snake_case : Union[str, Any] = """ """ + output_txt _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) return output_txt, output_ids def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[int] = self.ta_base_tokenizer _snake_case : Optional[Any] = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) _snake_case : int = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""], batch_without_eos_added["""input_ids"""] ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[str] = self.ta_base_tokenizer _snake_case : Tuple = """Unicode €.""" _snake_case : List[Any] = tokenizer(a_ ) _snake_case : Tuple = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["""input_ids"""], a_ ) # decoding _snake_case : Tuple = tokenizer.decode(a_ ) self.assertEqual(a_, """Unicode €.</s>""" ) _snake_case : Tuple = tokenizer("""e è é ê ë""" ) _snake_case : List[Any] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["""input_ids"""], a_ ) # decoding _snake_case : int = tokenizer.decode(a_ ) self.assertEqual(a_, """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ), """e è é ê ë</s>""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Dict = self.ta_base_tokenizer _snake_case : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off _snake_case : Union[str, Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on _snake_case : int = tokenizer(a_, padding=a_, return_tensors=a_ ) self.assertIsInstance(a_, a_ ) if FRAMEWORK != "jax": _snake_case : List[str] = list(batch.input_ids.numpy()[0] ) else: _snake_case : Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(a_, a_ ) self.assertEqual((2, 37), batch.input_ids.shape ) self.assertEqual((2, 37), batch.attention_mask.shape ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : List[Any] = self.ta_base_tokenizer _snake_case : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _snake_case : Tuple = tokenizer(a_, padding=a_, return_tensors=a_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""", a_ ) self.assertIn("""attention_mask""", a_ ) self.assertNotIn("""decoder_input_ids""", a_ ) self.assertNotIn("""decoder_attention_mask""", a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Union[str, Any] = self.ta_base_tokenizer _snake_case : Dict = [ """Summary of the text.""", """Another summary.""", ] _snake_case : Optional[int] = tokenizer( text_target=a_, max_length=32, padding="""max_length""", truncation=a_, return_tensors=a_ ) self.assertEqual(32, targets["""input_ids"""].shape[1] ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : int = self.ta_base_tokenizer _snake_case : Optional[int] = ["""A long paragraph for summarization. </s>"""] _snake_case : Dict = ["""Summary of the text. </s>"""] # fmt: off _snake_case : Optional[int] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] _snake_case : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on _snake_case : Optional[Any] = tokenizer(a_, text_target=a_ ) self.assertEqual(a_, batch["""input_ids"""][0] ) self.assertEqual(a_, batch["""labels"""][0] ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test _snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _snake_case : List[str] = tempfile.mkdtemp() _snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running""" _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) _snake_case : List[Any] = tokenizer.__class__.from_pretrained(a_ ) _snake_case : Dict = after_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) shutil.rmtree(a_ ) _snake_case : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _snake_case : Union[str, Any] = tempfile.mkdtemp() _snake_case : List[Any] = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) _snake_case : Optional[Any] = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) _snake_case : Optional[Any] = tokenizer.__class__.from_pretrained(a_ ) _snake_case : str = after_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) self.assertIn("""new_additional_special_token""", after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) _snake_case : Optional[int] = tokenizer.__class__.from_pretrained(a_, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(a_ ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a_ ) with open(os.path.join(a_, """special_tokens_map.json""" ), encoding="""utf-8""" ) as json_file: _snake_case : Union[str, Any] = json.load(a_ ) with open(os.path.join(a_, """tokenizer_config.json""" ), encoding="""utf-8""" ) as json_file: _snake_case : List[Any] = json.load(a_ ) _snake_case : int = [f"<extra_id_{i}>" for i in range(125 )] _snake_case : Optional[int] = added_tokens_extra_ids + [ """an_additional_special_token""" ] _snake_case : Dict = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(a_, """special_tokens_map.json""" ), """w""", encoding="""utf-8""" ) as outfile: json.dump(a_, a_ ) with open(os.path.join(a_, """tokenizer_config.json""" ), """w""", encoding="""utf-8""" ) as outfile: json.dump(a_, a_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case : Optional[int] = tokenizer_class.from_pretrained( a_, ) self.assertIn( """an_additional_special_token""", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case : Union[str, Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""", lstrip=a_ )] _snake_case : List[Any] = tokenizer_class.from_pretrained( a_, additional_special_tokens=a_, ) self.assertIn("""a_new_additional_special_token""", tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ), ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a_ ) _snake_case : Optional[Any] = tokenizer_class.from_pretrained(a_ ) self.assertTrue(tokenizer.decode([255] ) == """""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.get_tokenizers(fast=a_, do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : Dict = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] _snake_case : List[Any] = tokenizer.convert_tokens_to_string(a_ ) self.assertIsInstance(a_, a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : Optional[int] = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] _snake_case : Any = 0 _snake_case : Union[str, Any] = tokenizer.convert_ids_to_tokens( a_, skip_special_tokens=a_ ) for attr in attributes_list: setattr(a_, attr + """_id""", a_ ) self.assertEqual(getattr(a_, a_ ), a_ ) self.assertEqual(getattr(a_, attr + """_id""" ), a_ ) setattr(a_, attr + """_id""", a_ ) self.assertEqual(getattr(a_, a_ ), a_ ) self.assertEqual(getattr(a_, attr + """_id""" ), a_ ) setattr(a_, """additional_special_tokens_ids""", [] ) self.assertListEqual(getattr(a_, """additional_special_tokens""" ), [] ) self.assertListEqual(getattr(a_, """additional_special_tokens_ids""" ), [] ) setattr(a_, """additional_special_tokens_ids""", [token_id_to_test_setters] ) self.assertListEqual(getattr(a_, """additional_special_tokens""" ), [token_to_test_setters] ) self.assertListEqual(getattr(a_, """additional_special_tokens_ids""" ), [token_id_to_test_setters] )
28
0
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int = 1_00_00_00 ): """simple docstring""" _snake_case : Tuple = set(range(3 , snake_case__ , 2 ) ) primes.add(2 ) for p in range(3 , snake_case__ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , snake_case__ , snake_case__ ) ) ) _snake_case : Union[str, Any] = [float(snake_case__ ) for n in range(limit + 1 )] for p in primes: for n in range(snake_case__ , limit + 1 , snake_case__ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'''{solution() = }''')
720
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class lowercase( __a ): '''simple docstring''' @staticmethod @abstractmethod def UpperCamelCase_ ( a_: ArgumentParser ): '''simple docstring''' raise NotImplementedError() @abstractmethod def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' raise NotImplementedError()
28
0
"""simple docstring""" from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def UpperCAmelCase__ (): """simple docstring""" _snake_case : Dict = ArgumentParser("""Transformers CLI tool""" , usage="""transformers-cli <command> [<args>]""" ) _snake_case : List[Any] = parser.add_subparsers(help="""transformers-cli command helpers""" ) # Register commands ConvertCommand.register_subcommand(snake_case__ ) DownloadCommand.register_subcommand(snake_case__ ) EnvironmentCommand.register_subcommand(snake_case__ ) RunCommand.register_subcommand(snake_case__ ) ServeCommand.register_subcommand(snake_case__ ) UserCommands.register_subcommand(snake_case__ ) AddNewModelCommand.register_subcommand(snake_case__ ) AddNewModelLikeCommand.register_subcommand(snake_case__ ) LfsCommands.register_subcommand(snake_case__ ) PTtoTFCommand.register_subcommand(snake_case__ ) # Let's go _snake_case : Union[str, Any] = parser.parse_args() if not hasattr(snake_case__ , """func""" ): parser.print_help() exit(1 ) # Run _snake_case : Optional[Any] = args.func(snake_case__ ) service.run() if __name__ == "__main__": main()
721
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase( __a ): '''simple docstring''' lowercase__ = "roformer" def __init__( self: List[str], a_: Tuple=50_000, a_: Optional[Any]=None, a_: List[str]=768, a_: Union[str, Any]=12, a_: Optional[int]=12, a_: Optional[Any]=3_072, a_: List[str]="gelu", a_: List[str]=0.1, a_: Tuple=0.1, a_: Optional[int]=1_536, a_: Any=2, a_: Optional[int]=0.02, a_: Tuple=1E-12, a_: Dict=0, a_: str=False, a_: Dict=True, **a_: Dict, ): '''simple docstring''' super().__init__(pad_token_id=a_, **a_ ) _snake_case : int = vocab_size _snake_case : int = hidden_size if embedding_size is None else embedding_size _snake_case : Dict = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : Any = num_attention_heads _snake_case : Dict = hidden_act _snake_case : Optional[int] = intermediate_size _snake_case : List[Any] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = max_position_embeddings _snake_case : Tuple = type_vocab_size _snake_case : List[Any] = initializer_range _snake_case : List[Any] = layer_norm_eps _snake_case : Optional[Any] = rotary_value _snake_case : List[str] = use_cache class lowercase( __a ): '''simple docstring''' @property def UpperCamelCase_ ( self: Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : str = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : List[str] = {0: """batch""", 1: """sequence"""} _snake_case : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
28
0
"""simple docstring""" import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer A_ = logging.get_logger(__name__) A_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} A_ = { '''vocab_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json''', }, '''merges_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''Salesforce/codegen-350M-mono''': ( '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json''' ), }, } A_ = { '''Salesforce/codegen-350M-mono''': 20_48, } class lowercase( __a ): '''simple docstring''' lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["input_ids", "attention_mask"] lowercase__ = CodeGenTokenizer def __init__( self: str, a_: List[str]=None, a_: str=None, a_: Any=None, a_: List[Any]="<|endoftext|>", a_: int="<|endoftext|>", a_: List[Any]="<|endoftext|>", a_: int=False, **a_: List[Any], ): '''simple docstring''' super().__init__( a_, a_, tokenizer_file=a_, unk_token=a_, bos_token=a_, eos_token=a_, add_prefix_space=a_, **a_, ) if kwargs.pop("""add_bos_token""", a_ ): _snake_case : Union[str, Any] = kwargs.pop("""name_or_path""", """""" ) raise ValueError( """Currenty GPT2's fast tokenizer does NOT support adding a BOS token.""" """Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n""" f"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n" f"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n" """This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.""" """ so that the fast tokenizer works correctly.""" ) _snake_case : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""", a_ ) != add_prefix_space: _snake_case : str = getattr(a_, pre_tok_state.pop("""type""" ) ) _snake_case : Dict = add_prefix_space _snake_case : List[Any] = pre_tok_class(**a_ ) _snake_case : List[str] = add_prefix_space def UpperCamelCase_ ( self: List[Any], *a_: Tuple, **a_: Optional[int] ): '''simple docstring''' _snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""", a_ ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a_, **a_ ) def UpperCamelCase_ ( self: Optional[int], *a_: Dict, **a_: Optional[int] ): '''simple docstring''' _snake_case : int = kwargs.get("""is_split_into_words""", a_ ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*a_, **a_ ) def UpperCamelCase_ ( self: Optional[int], a_: str, a_: Optional[str] = None ): '''simple docstring''' _snake_case : int = self._tokenizer.model.save(a_, name=a_ ) return tuple(a_ ) def UpperCamelCase_ ( self: List[str], a_: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"], a_: bool = False, a_: bool = None, a_: Optional[List[str]] = None, **a_: Optional[int], ): '''simple docstring''' _snake_case : str = super().decode( token_ids=a_, skip_special_tokens=a_, clean_up_tokenization_spaces=a_, **a_, ) if truncate_before_pattern is not None and len(a_ ) > 0: _snake_case : int = self.truncate(a_, a_ ) return decoded_text def UpperCamelCase_ ( self: List[Any], a_: List[str], a_: str ): '''simple docstring''' def find_re(a_: Union[str, Any], a_: List[Any], a_: List[str] ): _snake_case : str = pattern.search(a_, a_ ) return m.start() if m else -1 _snake_case : Optional[int] = [re.compile(a_, re.MULTILINE ) for pattern in truncate_before_pattern] _snake_case : List[str] = list(re.finditer("""^print""", a_, re.MULTILINE ) ) if len(a_ ) > 1: _snake_case : List[str] = completion[: prints[1].start()] _snake_case : List[Any] = list(re.finditer("""^def""", a_, re.MULTILINE ) ) if len(a_ ) > 1: _snake_case : Optional[int] = completion[: defs[1].start()] _snake_case : str = 0 _snake_case : str = [ pos for pos in [find_re(a_, a_, a_ ) for terminal in terminals] if pos != -1 ] if len(a_ ) > 0: return completion[: min(a_ )] else: return completion
700
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Union[str, Any]=1 ): """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : List[Any]=0 ): """simple docstring""" _snake_case : Optional[Any] = [] for old_item in old_list: _snake_case : Union[str, Any] = old_item.replace("""in_layers.0""" , """norm1""" ) _snake_case : List[Any] = new_item.replace("""in_layers.2""" , """conv1""" ) _snake_case : Tuple = new_item.replace("""out_layers.0""" , """norm2""" ) _snake_case : Dict = new_item.replace("""out_layers.3""" , """conv2""" ) _snake_case : int = new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) _snake_case : Optional[Any] = new_item.replace("""skip_connection""" , """conv_shortcut""" ) _snake_case : str = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : Dict=0 ): """simple docstring""" _snake_case : Dict = [] for old_item in old_list: _snake_case : Dict = old_item _snake_case : int = new_item.replace("""norm.weight""" , """group_norm.weight""" ) _snake_case : str = new_item.replace("""norm.bias""" , """group_norm.bias""" ) _snake_case : Optional[Any] = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) _snake_case : Optional[Any] = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) _snake_case : Optional[Any] = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : str=None , snake_case__ : str=None , snake_case__ : List[str]=None ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _snake_case : Union[str, Any] = old_checkpoint[path] _snake_case : Optional[int] = old_tensor.shape[0] // 3 _snake_case : List[Any] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) _snake_case : Union[str, Any] = old_tensor.shape[0] // config["""num_head_channels"""] // 3 _snake_case : Any = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _snake_case , _snake_case , _snake_case : List[str] = old_tensor.split(channels // num_heads , dim=1 ) _snake_case : Union[str, Any] = query.reshape(snake_case__ ) _snake_case : Tuple = key.reshape(snake_case__ ) _snake_case : Any = value.reshape(snake_case__ ) for path in paths: _snake_case : List[Any] = path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _snake_case : Union[str, Any] = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) _snake_case : str = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) _snake_case : Any = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: _snake_case : int = new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _snake_case : Dict = old_checkpoint[path["""old"""]][:, :, 0] else: _snake_case : Optional[Any] = old_checkpoint[path["""old"""]] def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : List[str] ): """simple docstring""" _snake_case : int = {} _snake_case : Tuple = checkpoint["""time_embed.0.weight"""] _snake_case : List[str] = checkpoint["""time_embed.0.bias"""] _snake_case : List[str] = checkpoint["""time_embed.2.weight"""] _snake_case : Tuple = checkpoint["""time_embed.2.bias"""] _snake_case : Dict = checkpoint["""input_blocks.0.0.weight"""] _snake_case : List[Any] = checkpoint["""input_blocks.0.0.bias"""] _snake_case : List[Any] = checkpoint["""out.0.weight"""] _snake_case : Any = checkpoint["""out.0.bias"""] _snake_case : Any = checkpoint["""out.2.weight"""] _snake_case : List[str] = checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only _snake_case : List[str] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) _snake_case : Any = { layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key] for layer_id in range(snake_case__ ) } # Retrieves the keys for the middle blocks only _snake_case : Optional[int] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) _snake_case : Optional[int] = { layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key] for layer_id in range(snake_case__ ) } # Retrieves the keys for the output blocks only _snake_case : str = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) _snake_case : List[Any] = { layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key] for layer_id in range(snake_case__ ) } for i in range(1 , snake_case__ ): _snake_case : Union[str, Any] = (i - 1) // (config["""num_res_blocks"""] + 1) _snake_case : int = (i - 1) % (config["""num_res_blocks"""] + 1) _snake_case : List[str] = [key for key in input_blocks[i] if F"input_blocks.{i}.0" in key] _snake_case : str = [key for key in input_blocks[i] if F"input_blocks.{i}.1" in key] if F"input_blocks.{i}.0.op.weight" in checkpoint: _snake_case : Union[str, Any] = checkpoint[ F"input_blocks.{i}.0.op.weight" ] _snake_case : Dict = checkpoint[ F"input_blocks.{i}.0.op.bias" ] continue _snake_case : Optional[int] = renew_resnet_paths(snake_case__ ) _snake_case : int = {"""old""": F"input_blocks.{i}.0", """new""": F"down_blocks.{block_id}.resnets.{layer_in_block_id}"} _snake_case : Tuple = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path, resnet_op] , config=snake_case__ ) if len(snake_case__ ): _snake_case : str = renew_attention_paths(snake_case__ ) _snake_case : List[str] = { """old""": F"input_blocks.{i}.1", """new""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}", } _snake_case : Optional[int] = { F"input_blocks.{i}.1.qkv.bias": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"input_blocks.{i}.1.qkv.weight": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=snake_case__ , config=snake_case__ , ) _snake_case : int = middle_blocks[0] _snake_case : List[str] = middle_blocks[1] _snake_case : Any = middle_blocks[2] _snake_case : Dict = renew_resnet_paths(snake_case__ ) assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ ) _snake_case : Any = renew_resnet_paths(snake_case__ ) assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ ) _snake_case : Dict = renew_attention_paths(snake_case__ ) _snake_case : Tuple = { """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , attention_paths_to_split=snake_case__ , config=snake_case__ ) for i in range(snake_case__ ): _snake_case : Optional[Any] = i // (config["""num_res_blocks"""] + 1) _snake_case : Dict = i % (config["""num_res_blocks"""] + 1) _snake_case : List[str] = [shave_segments(snake_case__ , 2 ) for name in output_blocks[i]] _snake_case : Any = {} for layer in output_block_layers: _snake_case , _snake_case : Any = layer.split(""".""" )[0], shave_segments(snake_case__ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(snake_case__ ) else: _snake_case : str = [layer_name] if len(snake_case__ ) > 1: _snake_case : Dict = [key for key in output_blocks[i] if F"output_blocks.{i}.0" in key] _snake_case : List[str] = [key for key in output_blocks[i] if F"output_blocks.{i}.1" in key] _snake_case : List[Any] = renew_resnet_paths(snake_case__ ) _snake_case : int = renew_resnet_paths(snake_case__ ) _snake_case : Optional[Any] = {"""old""": F"output_blocks.{i}.0", """new""": F"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _snake_case : str = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) _snake_case : Any = checkpoint[ F"output_blocks.{i}.{index}.conv.weight" ] _snake_case : Optional[int] = checkpoint[ F"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(snake_case__ ) == 2: _snake_case : Any = [] if len(snake_case__ ): _snake_case : str = renew_attention_paths(snake_case__ ) _snake_case : str = { """old""": F"output_blocks.{i}.1", """new""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}", } _snake_case : int = { F"output_blocks.{i}.1.qkv.bias": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"output_blocks.{i}.1.qkv.weight": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=snake_case__ , ) else: _snake_case : Optional[Any] = renew_resnet_paths(snake_case__ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: _snake_case : Optional[Any] = """.""".join(["""output_blocks""", str(snake_case__ ), path["""old"""]] ) _snake_case : Optional[int] = """.""".join(["""up_blocks""", str(snake_case__ ), """resnets""", str(snake_case__ ), path["""new"""]] ) _snake_case : Any = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') A_ = parser.parse_args() A_ = torch.load(args.checkpoint_path) with open(args.config_file) as f: A_ = json.loads(f.read()) A_ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] A_ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: A_ = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) A_ = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) A_ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
28
0
"""simple docstring""" import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP A_ = False try: A_ = _is_package_available('''google.colab''') except ModuleNotFoundError: pass @input.register class lowercase: '''simple docstring''' def __init__( self: Dict, a_: str = None, a_: list = [] ): '''simple docstring''' _snake_case : Optional[int] = 0 _snake_case : int = choices _snake_case : Optional[int] = prompt if sys.platform == "win32": _snake_case : Any = """*""" else: _snake_case : List[str] = """➔ """ def UpperCamelCase_ ( self: List[str], a_: Optional[int], a_: str = "" ): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index], 32, a_ ) else: forceWrite(self.choices[index], a_ ) def UpperCamelCase_ ( self: List[str], a_: int ): '''simple docstring''' if index == self.position: forceWrite(f" {self.arrow_char} " ) self.write_choice(a_ ) else: forceWrite(f" {self.choices[index]}" ) reset_cursor() def UpperCamelCase_ ( self: Optional[Any], a_: Direction, a_: int = 1 ): '''simple docstring''' _snake_case : Union[str, Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(a_ ) move_cursor(a_, direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' move_cursor(len(self.choices ) - self.position, """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' move_cursor(len(self.choices ) - self.position, """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(a_ )] for number in range(10 )] ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Any = int(chr(self.current_selection ) ) _snake_case : Optional[Any] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP, -movement ) elif self.position < index: self.move_direction(Direction.DOWN, a_ ) else: return else: return def UpperCamelCase_ ( self: Tuple, a_: int = 0 ): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt, """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""", """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""", """\n""" ) _snake_case : str = default_choice for i in range(len(self.choices ) ): self.print_choice(a_ ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position, """UP""" ) with cursor.hide(): while True: if in_colab: try: _snake_case : Optional[Any] = int(builtins.input() ) except ValueError: _snake_case : List[str] = default_choice else: _snake_case : int = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1, """UP""" ) clear_line() self.write_choice(a_, """\n""" ) return choice
701
"""simple docstring""" from typing import Any def UpperCAmelCase__ (snake_case__ : list ): """simple docstring""" if not input_list: return [] _snake_case : List[Any] = [input_list.count(snake_case__ ) for value in input_list] _snake_case : Optional[int] = max(snake_case__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(snake_case__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
28
0
"""simple docstring""" import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowercase: '''simple docstring''' @staticmethod def UpperCamelCase_ ( *a_: Dict, **a_: Union[str, Any] ): '''simple docstring''' pass @is_pipeline_test @require_vision class lowercase( unittest.TestCase ): '''simple docstring''' @require_torch def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""", ) _snake_case : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _snake_case : Any = image_classifier(a_, candidate_labels=["""a""", """b""", """c"""] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(a_ ), [ [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}], [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """c"""}, {"""score""": 0.333, """label""": """b"""}], ], ) _snake_case : str = image_classifier([image] * 5, candidate_labels=["""A""", """B""", """C"""], batch_size=2 ) self.assertEqual( nested_simplify(a_ ), [ [ {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, ], [ {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, ], [ {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, ], [ {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, ], [ {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, ], ], ) @require_tf def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : List[str] = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""", framework="""tf""" ) _snake_case : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _snake_case : str = image_classifier(a_, candidate_labels=["""a""", """b""", """c"""] ) self.assertEqual( nested_simplify(a_ ), [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}], ) _snake_case : Any = image_classifier([image] * 5, candidate_labels=["""A""", """B""", """C"""], batch_size=2 ) self.assertEqual( nested_simplify(a_ ), [ [ {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, ], [ {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, ], [ {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, ], [ {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, ], [ {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, ], ], ) @slow @require_torch def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Dict = pipeline( task="""zero-shot-image-classification""", model="""openai/clip-vit-base-patch32""", ) # This is an image of 2 cats with remotes and no planes _snake_case : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _snake_case : Any = image_classifier(a_, candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(a_ ), [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ) _snake_case : str = image_classifier([image] * 5, candidate_labels=["""cat""", """plane""", """remote"""], batch_size=2 ) self.assertEqual( nested_simplify(a_ ), [ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5, ) @slow @require_tf def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[Any] = pipeline( task="""zero-shot-image-classification""", model="""openai/clip-vit-base-patch32""", framework="""tf""" ) # This is an image of 2 cats with remotes and no planes _snake_case : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _snake_case : Tuple = image_classifier(a_, candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(a_ ), [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ) _snake_case : Any = image_classifier([image] * 5, candidate_labels=["""cat""", """plane""", """remote"""], batch_size=2 ) self.assertEqual( nested_simplify(a_ ), [ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5, )
702
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''', '''BridgeTower/bridgetower-base-itm-mlm''': ( '''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json''' ), } class lowercase( __a ): '''simple docstring''' lowercase__ = "bridgetower_vision_model" def __init__( self: Tuple, a_: str=768, a_: Union[str, Any]=12, a_: List[str]=3, a_: Optional[int]=16, a_: List[Any]=288, a_: Optional[Any]=1, a_: Any=1E-05, a_: Dict=False, a_: Any=True, a_: int=False, **a_: int, ): '''simple docstring''' super().__init__(**a_ ) _snake_case : str = hidden_size _snake_case : int = num_hidden_layers _snake_case : Any = num_channels _snake_case : Union[str, Any] = patch_size _snake_case : Dict = image_size _snake_case : Optional[Any] = initializer_factor _snake_case : Any = layer_norm_eps _snake_case : int = stop_gradient _snake_case : Any = share_layernorm _snake_case : List[Any] = remove_last_layer @classmethod def UpperCamelCase_ ( cls: Union[str, Any], a_: Union[str, os.PathLike], **a_: Optional[Any] ): '''simple docstring''' _snake_case , _snake_case : List[Any] = cls.get_config_dict(a_, **a_ ) if config_dict.get("""model_type""" ) == "bridgetower": _snake_case : str = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a_, **a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "bridgetower_text_model" def __init__( self: str, a_: Dict=50_265, a_: List[Any]=768, a_: Union[str, Any]=12, a_: List[str]=12, a_: str=1, a_: Optional[Any]=3_072, a_: int="gelu", a_: int=0.1, a_: int=0.1, a_: Optional[int]=514, a_: Tuple=1, a_: Tuple=1E-05, a_: Optional[int]=1, a_: Union[str, Any]=0, a_: str=2, a_: Any="absolute", a_: List[Any]=True, **a_: Union[str, Any], ): '''simple docstring''' super().__init__(**a_ ) _snake_case : str = vocab_size _snake_case : Optional[int] = hidden_size _snake_case : Dict = num_hidden_layers _snake_case : Optional[int] = num_attention_heads _snake_case : Optional[int] = hidden_act _snake_case : List[Any] = initializer_factor _snake_case : Optional[int] = intermediate_size _snake_case : int = hidden_dropout_prob _snake_case : Tuple = attention_probs_dropout_prob _snake_case : List[str] = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : List[Any] = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Dict = use_cache _snake_case : int = pad_token_id _snake_case : Union[str, Any] = bos_token_id _snake_case : Union[str, Any] = eos_token_id @classmethod def UpperCamelCase_ ( cls: str, a_: Union[str, os.PathLike], **a_: int ): '''simple docstring''' _snake_case , _snake_case : Optional[int] = cls.get_config_dict(a_, **a_ ) if config_dict.get("""model_type""" ) == "bridgetower": _snake_case : Union[str, Any] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a_, **a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "bridgetower" def __init__( self: int, a_: List[str]=True, a_: Any="gelu", a_: List[Any]=768, a_: int=1, a_: Optional[int]=1E-05, a_: Tuple=False, a_: Optional[Any]="add", a_: List[str]=12, a_: Union[str, Any]=6, a_: int=False, a_: Any=False, a_: Dict=None, a_: Any=None, **a_: str, ): '''simple docstring''' _snake_case : str = kwargs.pop("""text_config_dict""", a_ ) _snake_case : Optional[Any] = kwargs.pop("""vision_config_dict""", a_ ) super().__init__(**a_ ) _snake_case : str = share_cross_modal_transformer_layers _snake_case : Any = hidden_act _snake_case : Union[str, Any] = hidden_size _snake_case : Union[str, Any] = initializer_factor _snake_case : Dict = layer_norm_eps _snake_case : Dict = share_link_tower_layers _snake_case : Optional[int] = link_tower_type _snake_case : Any = num_attention_heads _snake_case : int = num_hidden_layers _snake_case : int = tie_word_embeddings _snake_case : Optional[Any] = init_layernorm_from_vision_encoder if text_config is None: _snake_case : Optional[Any] = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: _snake_case : str = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) _snake_case : Any = BridgeTowerTextConfig(**a_ ) _snake_case : List[Any] = BridgeTowerVisionConfig(**a_ ) @classmethod def UpperCamelCase_ ( cls: Union[str, Any], a_: BridgeTowerTextConfig, a_: BridgeTowerVisionConfig, **a_: Optional[Any] ): '''simple docstring''' return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[int] = copy.deepcopy(self.__dict__ ) _snake_case : str = self.text_config.to_dict() _snake_case : List[str] = self.vision_config.to_dict() _snake_case : Tuple = self.__class__.model_type return output
28
0
"""simple docstring""" import unittest from knapsack import greedy_knapsack as kp class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Optional[Any] = [10, 20, 30, 40, 50, 60] _snake_case : List[str] = [2, 4, 6, 8, 10, 12] _snake_case : Tuple = 100 self.assertEqual(kp.calc_profit(a_, a_, a_ ), 210 ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' self.assertRaisesRegex(a_, """max_weight must greater than zero.""" ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' self.assertRaisesRegex(a_, """Weight can not be negative.""" ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' self.assertRaisesRegex(a_, """Profit can not be negative.""" ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' self.assertRaisesRegex(a_, """max_weight must greater than zero.""" ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' self.assertRaisesRegex( a_, """The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
703
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCAmelCase__ (): """simple docstring""" _snake_case : Optional[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" _snake_case : Union[str, Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("""RGB""" ) return image def UpperCAmelCase__ (snake_case__ : Any ): """simple docstring""" _snake_case : str = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"visual_encoder.blocks.{i}.norm1.weight", F"vision_model.encoder.layers.{i}.layer_norm1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm1.bias", F"vision_model.encoder.layers.{i}.layer_norm1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.weight", F"vision_model.encoder.layers.{i}.layer_norm2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.bias", F"vision_model.encoder.layers.{i}.layer_norm2.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.qkv.weight", F"vision_model.encoder.layers.{i}.self_attn.qkv.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.weight", F"vision_model.encoder.layers.{i}.self_attn.projection.weight",) ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.bias", F"vision_model.encoder.layers.{i}.self_attn.projection.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.weight", F"vision_model.encoder.layers.{i}.mlp.fc1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.bias", F"vision_model.encoder.layers.{i}.mlp.fc1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.weight", F"vision_model.encoder.layers.{i}.mlp.fc2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.bias", F"vision_model.encoder.layers.{i}.mlp.fc2.bias") ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : Tuple ): """simple docstring""" _snake_case : Optional[Any] = dct.pop(snake_case__ ) _snake_case : Optional[int] = val def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : str ): """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _snake_case : Optional[int] = state_dict.pop(F"visual_encoder.blocks.{i}.attn.q_bias" ) _snake_case : Tuple = state_dict.pop(F"visual_encoder.blocks.{i}.attn.v_bias" ) # next, set bias in the state dict _snake_case : List[str] = torch.cat((q_bias, torch.zeros_like(snake_case__ , requires_grad=snake_case__ ), v_bias) ) _snake_case : Dict = qkv_bias def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Union[str, Any] ): """simple docstring""" _snake_case : List[Any] = 3_64 if """coco""" in model_name else 2_24 _snake_case : List[str] = BlipaVisionConfig(image_size=snake_case__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _snake_case : List[str] = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=snake_case__ ).to_dict() elif "opt-6.7b" in model_name: _snake_case : List[str] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=snake_case__ ).to_dict() elif "t5-xl" in model_name: _snake_case : Tuple = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _snake_case : List[Any] = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() _snake_case : int = BlipaConfig(vision_config=snake_case__ , text_config=snake_case__ ) return config, image_size @torch.no_grad() def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int=None , snake_case__ : str=False ): """simple docstring""" _snake_case : List[str] = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) _snake_case : str = tokenizer("""\n""" , add_special_tokens=snake_case__ ).input_ids[0] _snake_case , _snake_case : Dict = get_blipa_config(snake_case__ , eos_token_id=snake_case__ ) _snake_case : str = BlipaForConditionalGeneration(snake_case__ ).eval() _snake_case : int = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } _snake_case , _snake_case : List[Any] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) _snake_case : int = """cuda""" if torch.cuda.is_available() else """cpu""" _snake_case , _snake_case , _snake_case : Any = load_model_and_preprocess( name=snake_case__ , model_type=snake_case__ , is_eval=snake_case__ , device=snake_case__ ) original_model.eval() print("""Done!""" ) # update state dict keys _snake_case : Any = original_model.state_dict() _snake_case : Dict = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _snake_case : str = state_dict.pop(snake_case__ ) if key.startswith("""Qformer.bert""" ): _snake_case : str = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: _snake_case : Any = key.replace("""self""" , """attention""" ) if "opt_proj" in key: _snake_case : List[str] = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: _snake_case : Optional[Any] = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): _snake_case : List[Any] = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): _snake_case : List[Any] = key.replace("""t5""" , """language""" ) _snake_case : str = val # read in qv biases read_in_q_v_bias(snake_case__ , snake_case__ ) _snake_case , _snake_case : List[str] = hf_model.load_state_dict(snake_case__ , strict=snake_case__ ) assert len(snake_case__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _snake_case : Any = load_demo_image() _snake_case : str = vis_processors["""eval"""](snake_case__ ).unsqueeze(0 ).to(snake_case__ ) _snake_case : List[Any] = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(snake_case__ ) # create processor _snake_case : Any = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=snake_case__ , image_std=snake_case__ ) _snake_case : int = BlipaProcessor(image_processor=snake_case__ , tokenizer=snake_case__ ) _snake_case : Any = processor(images=snake_case__ , return_tensors="""pt""" ).pixel_values.to(snake_case__ ) # make sure processor creates exact same pixel values assert torch.allclose(snake_case__ , snake_case__ ) original_model.to(snake_case__ ) hf_model.to(snake_case__ ) with torch.no_grad(): if "opt" in model_name: _snake_case : str = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits _snake_case : int = hf_model(snake_case__ , snake_case__ ).logits else: _snake_case : str = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits _snake_case : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) _snake_case : Union[str, Any] = hf_model(snake_case__ , snake_case__ , labels=snake_case__ ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _snake_case : List[str] = torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=snake_case__ ) assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _snake_case : Union[str, Any] = torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=snake_case__ ) else: # cast to same type _snake_case : int = logits.dtype assert torch.allclose(original_logits.to(snake_case__ ) , snake_case__ , atol=1e-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) _snake_case : Any = """""" _snake_case : str = tokenizer(snake_case__ , return_tensors="""pt""" ).input_ids.to(snake_case__ ) _snake_case : Union[str, Any] = original_model.generate({"""image""": original_pixel_values} ) _snake_case : Tuple = hf_model.generate( snake_case__ , snake_case__ , do_sample=snake_case__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , snake_case__ ) _snake_case : Optional[Any] = input_ids.shape[1] _snake_case : int = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=snake_case__ ) _snake_case : Optional[Any] = [text.strip() for text in output_text] print("""HF generation:""" , snake_case__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(snake_case__ ) hf_model.save_pretrained(snake_case__ ) if push_to_hub: processor.push_to_hub(F"nielsr/{model_name}" ) hf_model.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() A_ = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) A_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
28
0
import datasets from .evaluate import evaluate A_ = '''\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } ''' A_ = ''' This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. ''' A_ = ''' Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': the text of the answer references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the SQuAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}] >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}] >>> squad_metric = datasets.load_metric("squad") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self: Dict ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ), codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""], reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""], ) def UpperCamelCase_ ( self: Union[str, Any], a_: Optional[Any], a_: int ): '''simple docstring''' _snake_case : int = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} _snake_case : Tuple = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] _snake_case : int = evaluate(dataset=a_, predictions=a_ ) return score
704
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def UpperCAmelCase__ (snake_case__ : Optional[int] ): """simple docstring""" print("""Loading config file...""" ) def flatten_yaml_as_dict(snake_case__ : List[Any] , snake_case__ : Optional[Any]="" , snake_case__ : Tuple="." ): _snake_case : Union[str, Any] = [] for k, v in d.items(): _snake_case : List[str] = parent_key + sep + k if parent_key else k if isinstance(snake_case__ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(snake_case__ , snake_case__ , sep=snake_case__ ).items() ) else: items.append((new_key, v) ) return dict(snake_case__ ) _snake_case : Dict = argparse.Namespace() with open(snake_case__ , """r""" ) as yaml_file: try: _snake_case : List[Any] = yaml.load(snake_case__ , Loader=yaml.FullLoader ) _snake_case : Any = flatten_yaml_as_dict(snake_case__ ) for k, v in flat_cfg.items(): setattr(snake_case__ , snake_case__ , snake_case__ ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(snake_case__ , str(snake_case__ ) ) ) return config def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : Dict = MobileViTVaConfig() _snake_case : Optional[int] = False # dataset if task_name.startswith("""imagenet1k_""" ): _snake_case : Dict = 10_00 if int(task_name.strip().split("""_""" )[-1] ) == 3_84: _snake_case : Union[str, Any] = 3_84 else: _snake_case : Optional[Any] = 2_56 _snake_case : str = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): _snake_case : str = 2_10_00 if int(task_name.strip().split("""_""" )[-1] ) == 3_84: _snake_case : Dict = 3_84 else: _snake_case : Union[str, Any] = 2_56 _snake_case : Tuple = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): _snake_case : Tuple = 1_51 _snake_case : str = 5_12 _snake_case : List[Any] = """ade20k-id2label.json""" _snake_case : Union[str, Any] = True elif task_name.startswith("""voc_""" ): _snake_case : List[Any] = 21 _snake_case : List[str] = 5_12 _snake_case : int = """pascal-voc-id2label.json""" _snake_case : int = True # orig_config _snake_case : int = load_orig_config_file(snake_case__ ) assert getattr(snake_case__ , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model" _snake_case : str = getattr(snake_case__ , """model.classification.mitv2.width_multiplier""" , 1.0 ) assert ( getattr(snake_case__ , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _snake_case : int = getattr(snake_case__ , """model.classification.activation.name""" , """swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _snake_case : Tuple = getattr(snake_case__ , """model.segmentation.output_stride""" , 16 ) if "_deeplabv3" in task_name: _snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] ) _snake_case : Tuple = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_out_channels""" , 5_12 ) _snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 ) # id2label _snake_case : Union[str, Any] = """huggingface/label-files""" _snake_case : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) ) _snake_case : List[Any] = {int(snake_case__ ): v for k, v in idalabel.items()} _snake_case : Tuple = idalabel _snake_case : Any = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[Any] ): """simple docstring""" _snake_case : List[str] = dct.pop(snake_case__ ) _snake_case : List[Any] = val def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : int=False ): """simple docstring""" if base_model: _snake_case : Any = """""" else: _snake_case : Union[str, Any] = """mobilevitv2.""" _snake_case : Dict = [] for k in state_dict.keys(): if k[:8] == "encoder.": _snake_case : List[str] = k[8:] else: _snake_case : str = k if ".block." in k: _snake_case : Optional[int] = k_new.replace(""".block.""" , """.""" ) if ".conv." in k: _snake_case : Union[str, Any] = k_new.replace(""".conv.""" , """.convolution.""" ) if ".norm." in k: _snake_case : str = k_new.replace(""".norm.""" , """.normalization.""" ) if "conv_1." in k: _snake_case : int = k_new.replace("""conv_1.""" , F"{model_prefix}conv_stem." ) for i in [1, 2]: if F"layer_{i}." in k: _snake_case : Tuple = k_new.replace(F"layer_{i}." , F"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: _snake_case : Optional[Any] = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" ) if ".red_1x1." in k: _snake_case : Optional[Any] = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" ) for i in [3, 4, 5]: if F"layer_{i}.0." in k: _snake_case : Tuple = k_new.replace(F"layer_{i}.0." , F"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if F"layer_{i}.1.local_rep.0." in k: _snake_case : Any = k_new.replace(F"layer_{i}.1.local_rep.0." , F"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if F"layer_{i}.1.local_rep.1." in k: _snake_case : str = k_new.replace(F"layer_{i}.1.local_rep.1." , F"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: _snake_case : Optional[Any] = [0, 1] elif i == 4: _snake_case : Any = [0, 1, 2, 3] elif i == 5: _snake_case : List[Any] = [0, 1, 2] for j in j_in: if F"layer_{i}.1.global_rep.{j}." in k: _snake_case : Any = k_new.replace( F"layer_{i}.1.global_rep.{j}." , F"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if F"layer_{i}.1.global_rep.{j+1}." in k: _snake_case : List[Any] = k_new.replace( F"layer_{i}.1.global_rep.{j+1}." , F"{model_prefix}encoder.layer.{i-1}.layernorm." ) if F"layer_{i}.1.conv_proj." in k: _snake_case : Union[str, Any] = k_new.replace(F"layer_{i}.1.conv_proj." , F"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: _snake_case : List[Any] = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" ) if "pre_norm_attn.1." in k: _snake_case : Optional[int] = k_new.replace("""pre_norm_attn.1.""" , """attention.""" ) if "pre_norm_ffn.0." in k: _snake_case : List[Any] = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" ) if "pre_norm_ffn.1." in k: _snake_case : Tuple = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" ) if "pre_norm_ffn.3." in k: _snake_case : Any = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" ) if "classifier.1." in k: _snake_case : List[str] = k_new.replace("""classifier.1.""" , """classifier.""" ) if "seg_head." in k: _snake_case : str = k_new.replace("""seg_head.""" , """segmentation_head.""" ) if ".aspp_layer." in k: _snake_case : Optional[int] = k_new.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in k: _snake_case : int = k_new.replace(""".aspp_pool.""" , """.""" ) rename_keys.append((k, k_new) ) return rename_keys def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" _snake_case : List[str] = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(snake_case__ ) for k in keys_to_ignore: state_dict.pop(snake_case__ , snake_case__ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _snake_case : Any = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Tuple ): """simple docstring""" _snake_case : int = get_mobilevitva_config(snake_case__ , snake_case__ ) # load original state_dict _snake_case : Optional[int] = torch.load(snake_case__ , map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): _snake_case : Any = MobileViTVaForSemanticSegmentation(snake_case__ ).eval() _snake_case : List[Any] = False else: _snake_case : List[Any] = MobileViTVaForImageClassification(snake_case__ ).eval() _snake_case : Optional[Any] = False # remove and rename some keys of load the original model _snake_case : Union[str, Any] = checkpoint remove_unused_keys(snake_case__ ) _snake_case : List[str] = create_rename_keys(snake_case__ , base_model=snake_case__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # load modified state_dict model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by MobileViTImageProcessor _snake_case : Optional[int] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _snake_case : List[str] = image_processor(images=prepare_img() , return_tensors="""pt""" ) _snake_case : Optional[Any] = model(**snake_case__ ) # verify classification model if task_name.startswith("""imagenet""" ): _snake_case : List[str] = outputs.logits _snake_case : Any = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant _snake_case : List[str] = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] ) assert torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) A_ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
28
0
"""simple docstring""" from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A_ = logging.get_logger(__name__) class lowercase( __a ): '''simple docstring''' lowercase__ = ["pixel_values"] def __init__( self: str, a_: bool = True, a_: Dict[str, int] = None, a_: PILImageResampling = PILImageResampling.BICUBIC, a_: bool = True, a_: Dict[str, int] = None, a_: bool = True, a_: Union[int, float] = 1 / 255, a_: bool = True, a_: Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN, a_: Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD, **a_: str, ): '''simple docstring''' super().__init__(**a_ ) _snake_case : Union[str, Any] = size if size is not None else {"""shortest_edge""": 224} _snake_case : str = get_size_dict(a_, default_to_square=a_ ) _snake_case : Optional[int] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _snake_case : List[str] = get_size_dict(a_, param_name="""crop_size""" ) _snake_case : int = do_resize _snake_case : str = size _snake_case : List[Any] = resample _snake_case : List[Any] = do_center_crop _snake_case : Any = crop_size _snake_case : Union[str, Any] = do_rescale _snake_case : str = rescale_factor _snake_case : Union[str, Any] = do_normalize _snake_case : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _snake_case : int = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase_ ( self: Tuple, a_: np.ndarray, a_: Dict[str, int], a_: PILImageResampling = PILImageResampling.BICUBIC, a_: Optional[Union[str, ChannelDimension]] = None, **a_: List[Any], ): '''simple docstring''' _snake_case : List[Any] = get_size_dict(a_, default_to_square=a_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _snake_case : List[str] = int((256 / 224) * size["""shortest_edge"""] ) _snake_case : Tuple = get_resize_output_image_size(a_, size=a_, default_to_square=a_ ) _snake_case : Dict = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}" ) return resize( a_, size=(size_dict["""height"""], size_dict["""width"""]), resample=a_, data_format=a_, **a_ ) def UpperCamelCase_ ( self: List[Any], a_: np.ndarray, a_: Dict[str, int], a_: Optional[Union[str, ChannelDimension]] = None, **a_: Any, ): '''simple docstring''' _snake_case : Dict = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(f"Size dict must have keys 'height' and 'width'. Got {size.keys()}" ) return center_crop(a_, size=(size["""height"""], size["""width"""]), data_format=a_, **a_ ) def UpperCamelCase_ ( self: Dict, a_: np.ndarray, a_: Union[int, float], a_: Optional[Union[str, ChannelDimension]] = None, **a_: str, ): '''simple docstring''' return rescale(a_, scale=a_, data_format=a_, **a_ ) def UpperCamelCase_ ( self: Optional[int], a_: np.ndarray, a_: Union[float, List[float]], a_: Union[float, List[float]], a_: Optional[Union[str, ChannelDimension]] = None, **a_: Tuple, ): '''simple docstring''' return normalize(a_, mean=a_, std=a_, data_format=a_, **a_ ) def UpperCamelCase_ ( self: Dict, a_: ImageInput, a_: Optional[bool] = None, a_: Optional[Dict[str, int]] = None, a_: PILImageResampling = None, a_: Optional[bool] = None, a_: Optional[Dict[str, int]] = None, a_: Optional[bool] = None, a_: Optional[float] = None, a_: Optional[bool] = None, a_: Optional[Union[float, Iterable[float]]] = None, a_: Optional[Union[float, Iterable[float]]] = None, a_: Optional[TensorType] = None, a_: ChannelDimension = ChannelDimension.FIRST, **a_: List[str], ): '''simple docstring''' _snake_case : Any = do_resize if do_resize is not None else self.do_resize _snake_case : Union[str, Any] = resample if resample is not None else self.resample _snake_case : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case : Dict = do_rescale if do_rescale is not None else self.do_rescale _snake_case : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case : List[Any] = do_normalize if do_normalize is not None else self.do_normalize _snake_case : Tuple = image_mean if image_mean is not None else self.image_mean _snake_case : int = image_std if image_std is not None else self.image_std _snake_case : Union[str, Any] = size if size is not None else self.size _snake_case : Tuple = get_size_dict(a_, default_to_square=a_ ) _snake_case : str = crop_size if crop_size is not None else self.crop_size _snake_case : int = get_size_dict(a_, param_name="""crop_size""" ) _snake_case : Optional[Any] = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _snake_case : Any = [to_numpy_array(a_ ) for image in images] if do_resize: _snake_case : List[Any] = [self.resize(a_, a_, a_ ) for image in images] if do_center_crop: _snake_case : str = [self.center_crop(a_, a_ ) for image in images] if do_rescale: _snake_case : Optional[Any] = [self.rescale(a_, a_ ) for image in images] if do_normalize: _snake_case : Optional[int] = [self.normalize(a_, a_, a_ ) for image in images] _snake_case : Tuple = [to_channel_dimension_format(a_, a_ ) for image in images] _snake_case : Tuple = {"""pixel_values""": images} return BatchFeature(data=a_, tensor_type=a_ )
705
"""simple docstring""" import os import sys import unittest A_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path A_ = os.path.join(git_repo_path, '''src''', '''diffusers''') class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Optional[int] = find_backend(""" if not is_torch_available():""" ) self.assertEqual(a_, """torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") _snake_case : Any = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(a_, """torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") _snake_case : Union[str, Any] = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(a_, """torch_and_transformers_and_onnx""" ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Dict = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""", a_ ) self.assertIn("""torch_and_transformers""", a_ ) self.assertIn("""flax_and_transformers""", a_ ) self.assertIn("""torch_and_transformers_and_onnx""", a_ ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""", objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""", objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""", objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""", objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""", objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""", objects["""torch_and_transformers_and_onnx"""] ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[Any] = create_dummy_object("""CONSTANT""", """'torch'""" ) self.assertEqual(a_, """\nCONSTANT = None\n""" ) _snake_case : Optional[int] = create_dummy_object("""function""", """'torch'""" ) self.assertEqual( a_, """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) _snake_case : List[Any] = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ _snake_case : Union[str, Any] = create_dummy_object("""FakeClass""", """'torch'""" ) self.assertEqual(a_, a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ _snake_case : List[Any] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""], a_ )
28
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowercase( metaclass=__a ): '''simple docstring''' lowercase__ = ["flax"] def __init__( self: List[str], *a_: Optional[Any], **a_: Optional[int] ): '''simple docstring''' requires_backends(self, ["""flax"""] ) @classmethod def UpperCamelCase_ ( cls: List[Any], *a_: List[str], **a_: Optional[int] ): '''simple docstring''' requires_backends(cls, ["""flax"""] ) @classmethod def UpperCamelCase_ ( cls: Optional[Any], *a_: Tuple, **a_: Union[str, Any] ): '''simple docstring''' requires_backends(cls, ["""flax"""] ) class lowercase( metaclass=__a ): '''simple docstring''' lowercase__ = ["flax"] def __init__( self: Any, *a_: Union[str, Any], **a_: Optional[Any] ): '''simple docstring''' requires_backends(self, ["""flax"""] ) @classmethod def UpperCamelCase_ ( cls: Optional[Any], *a_: Optional[int], **a_: List[Any] ): '''simple docstring''' requires_backends(cls, ["""flax"""] ) @classmethod def UpperCamelCase_ ( cls: List[str], *a_: List[str], **a_: int ): '''simple docstring''' requires_backends(cls, ["""flax"""] ) class lowercase( metaclass=__a ): '''simple docstring''' lowercase__ = ["flax"] def __init__( self: List[Any], *a_: Optional[int], **a_: List[Any] ): '''simple docstring''' requires_backends(self, ["""flax"""] ) @classmethod def UpperCamelCase_ ( cls: Tuple, *a_: Optional[Any], **a_: Optional[Any] ): '''simple docstring''' requires_backends(cls, ["""flax"""] ) @classmethod def UpperCamelCase_ ( cls: Optional[Any], *a_: Optional[int], **a_: Optional[int] ): '''simple docstring''' requires_backends(cls, ["""flax"""] ) class lowercase( metaclass=__a ): '''simple docstring''' lowercase__ = ["flax"] def __init__( self: Any, *a_: Any, **a_: Union[str, Any] ): '''simple docstring''' requires_backends(self, ["""flax"""] ) @classmethod def UpperCamelCase_ ( cls: Dict, *a_: str, **a_: Tuple ): '''simple docstring''' requires_backends(cls, ["""flax"""] ) @classmethod def UpperCamelCase_ ( cls: Any, *a_: Dict, **a_: Tuple ): '''simple docstring''' requires_backends(cls, ["""flax"""] ) class lowercase( metaclass=__a ): '''simple docstring''' lowercase__ = ["flax"] def __init__( self: Optional[int], *a_: Union[str, Any], **a_: int ): '''simple docstring''' requires_backends(self, ["""flax"""] ) @classmethod def UpperCamelCase_ ( cls: Union[str, Any], *a_: List[str], **a_: Optional[int] ): '''simple docstring''' requires_backends(cls, ["""flax"""] ) @classmethod def UpperCamelCase_ ( cls: List[str], *a_: str, **a_: int ): '''simple docstring''' requires_backends(cls, ["""flax"""] ) class lowercase( metaclass=__a ): '''simple docstring''' lowercase__ = ["flax"] def __init__( self: int, *a_: str, **a_: List[Any] ): '''simple docstring''' requires_backends(self, ["""flax"""] ) @classmethod def UpperCamelCase_ ( cls: str, *a_: int, **a_: Union[str, Any] ): '''simple docstring''' requires_backends(cls, ["""flax"""] ) @classmethod def UpperCamelCase_ ( cls: Optional[int], *a_: int, **a_: Optional[int] ): '''simple docstring''' requires_backends(cls, ["""flax"""] ) class lowercase( metaclass=__a ): '''simple docstring''' lowercase__ = ["flax"] def __init__( self: Optional[Any], *a_: List[str], **a_: Dict ): '''simple docstring''' requires_backends(self, ["""flax"""] ) @classmethod def UpperCamelCase_ ( cls: List[str], *a_: List[str], **a_: Tuple ): '''simple docstring''' requires_backends(cls, ["""flax"""] ) @classmethod def UpperCamelCase_ ( cls: Any, *a_: Dict, **a_: List[str] ): '''simple docstring''' requires_backends(cls, ["""flax"""] ) class lowercase( metaclass=__a ): '''simple docstring''' lowercase__ = ["flax"] def __init__( self: List[Any], *a_: Any, **a_: Dict ): '''simple docstring''' requires_backends(self, ["""flax"""] ) @classmethod def UpperCamelCase_ ( cls: str, *a_: List[Any], **a_: Optional[Any] ): '''simple docstring''' requires_backends(cls, ["""flax"""] ) @classmethod def UpperCamelCase_ ( cls: str, *a_: int, **a_: str ): '''simple docstring''' requires_backends(cls, ["""flax"""] ) class lowercase( metaclass=__a ): '''simple docstring''' lowercase__ = ["flax"] def __init__( self: str, *a_: Optional[Any], **a_: List[Any] ): '''simple docstring''' requires_backends(self, ["""flax"""] ) @classmethod def UpperCamelCase_ ( cls: Dict, *a_: Dict, **a_: Tuple ): '''simple docstring''' requires_backends(cls, ["""flax"""] ) @classmethod def UpperCamelCase_ ( cls: Optional[int], *a_: Tuple, **a_: Dict ): '''simple docstring''' requires_backends(cls, ["""flax"""] ) class lowercase( metaclass=__a ): '''simple docstring''' lowercase__ = ["flax"] def __init__( self: List[str], *a_: Union[str, Any], **a_: Any ): '''simple docstring''' requires_backends(self, ["""flax"""] ) @classmethod def UpperCamelCase_ ( cls: List[str], *a_: Dict, **a_: str ): '''simple docstring''' requires_backends(cls, ["""flax"""] ) @classmethod def UpperCamelCase_ ( cls: int, *a_: Dict, **a_: str ): '''simple docstring''' requires_backends(cls, ["""flax"""] ) class lowercase( metaclass=__a ): '''simple docstring''' lowercase__ = ["flax"] def __init__( self: Optional[Any], *a_: str, **a_: str ): '''simple docstring''' requires_backends(self, ["""flax"""] ) @classmethod def UpperCamelCase_ ( cls: Optional[Any], *a_: Tuple, **a_: Union[str, Any] ): '''simple docstring''' requires_backends(cls, ["""flax"""] ) @classmethod def UpperCamelCase_ ( cls: Dict, *a_: Union[str, Any], **a_: List[str] ): '''simple docstring''' requires_backends(cls, ["""flax"""] ) class lowercase( metaclass=__a ): '''simple docstring''' lowercase__ = ["flax"] def __init__( self: Optional[int], *a_: Dict, **a_: List[Any] ): '''simple docstring''' requires_backends(self, ["""flax"""] ) @classmethod def UpperCamelCase_ ( cls: List[Any], *a_: List[Any], **a_: Union[str, Any] ): '''simple docstring''' requires_backends(cls, ["""flax"""] ) @classmethod def UpperCamelCase_ ( cls: Any, *a_: Tuple, **a_: Dict ): '''simple docstring''' requires_backends(cls, ["""flax"""] ) class lowercase( metaclass=__a ): '''simple docstring''' lowercase__ = ["flax"] def __init__( self: int, *a_: Optional[Any], **a_: int ): '''simple docstring''' requires_backends(self, ["""flax"""] ) @classmethod def UpperCamelCase_ ( cls: Union[str, Any], *a_: Tuple, **a_: List[Any] ): '''simple docstring''' requires_backends(cls, ["""flax"""] ) @classmethod def UpperCamelCase_ ( cls: str, *a_: int, **a_: List[Any] ): '''simple docstring''' requires_backends(cls, ["""flax"""] )
706
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''OwlViTFeatureExtractor'''] A_ = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
28
0
"""simple docstring""" import csv import tweepy # Twitter API credentials A_ = '''''' A_ = '''''' A_ = '''''' A_ = '''''' def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" _snake_case : str = tweepy.OAuthHandler(snake_case__ , snake_case__ ) auth.set_access_token(snake_case__ , snake_case__ ) _snake_case : Optional[int] = tweepy.API(snake_case__ ) # initialize a list to hold all the tweepy Tweets _snake_case : Union[str, Any] = [] # make initial request for most recent tweets (200 is the maximum allowed count) _snake_case : List[str] = api.user_timeline(screen_name=snake_case__ , count=2_00 ) # save most recent tweets alltweets.extend(snake_case__ ) # save the id of the oldest tweet less one _snake_case : Optional[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(snake_case__ ) > 0: print(F"getting tweets before {oldest}" ) # all subsequent requests use the max_id param to prevent duplicates _snake_case : List[Any] = api.user_timeline( screen_name=snake_case__ , count=2_00 , max_id=snake_case__ ) # save most recent tweets alltweets.extend(snake_case__ ) # update the id of the oldest tweet less one _snake_case : Optional[int] = alltweets[-1].id - 1 print(F"...{len(snake_case__ )} tweets downloaded so far" ) # transform the tweepy tweets into a 2D array that will populate the csv _snake_case : Optional[int] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"new_{screen_name}_tweets.csv" , """w""" ) as f: _snake_case : List[str] = csv.writer(snake_case__ ) writer.writerow(["""id""", """created_at""", """text"""] ) writer.writerows(snake_case__ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
707
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml A_ = logging.get_logger(__name__) def UpperCAmelCase__ (snake_case__ : bool , snake_case__ : bool ): """simple docstring""" def run_func(snake_case__ : Tuple ): @wraps(snake_case__ ) def run_in_eager_mode(*snake_case__ : str , **snake_case__ : Any ): return func(*snake_case__ , **snake_case__ ) @wraps(snake_case__ ) @tf.function(experimental_compile=snake_case__ ) def run_in_graph_mode(*snake_case__ : Any , **snake_case__ : Optional[int] ): return func(*snake_case__ , **snake_case__ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : List[str] = random.Random() _snake_case : Optional[int] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case__ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class lowercase( __a ): '''simple docstring''' lowercase__ = 42 lowercase__ = 42 lowercase__ = "TensorFlow" @property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' return tf.__version__ def UpperCamelCase_ ( self: List[str], a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : List[str] = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : Optional[int] = self._prepare_inference_func(a_, a_, a_ ) return self._measure_speed(_inference ) def UpperCamelCase_ ( self: int, a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : Tuple = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : Optional[Any] = self._prepare_train_func(a_, a_, a_ ) return self._measure_speed(_train ) def UpperCamelCase_ ( self: Dict, a_: str, a_: int, a_: int ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], a_ ) _snake_case : str = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : List[str] = self._prepare_inference_func(a_, a_, a_ ) return self._measure_memory(_inference ) def UpperCamelCase_ ( self: Tuple, a_: str, a_: int, a_: int ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], a_ ) _snake_case : Dict = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : Optional[int] = self._prepare_train_func(a_, a_, a_ ) return self._measure_memory(_train ) def UpperCamelCase_ ( self: Optional[Any], a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : List[Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _snake_case : List[Any] = ( hasattr(a_, """architectures""" ) and isinstance(config.architectures, a_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _snake_case : str = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _snake_case : List[Any] = __import__("""transformers""", fromlist=[model_class] ) _snake_case : Dict = getattr(a_, a_ ) _snake_case : Any = model_cls(a_ ) except ImportError: raise ImportError( f"{model_class} does not exist. If you just want to test the pretrained model, you might want to" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _snake_case : Any = TF_MODEL_MAPPING[config.__class__](a_ ) # encoder-decoder has vocab size saved differently _snake_case : List[Any] = config.vocab_size if hasattr(a_, """vocab_size""" ) else config.encoder.vocab_size _snake_case : List[str] = random_input_ids(a_, a_, a_ ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_decoder_forward(): return model(a_, decoder_input_ids=a_, training=a_ ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_forward(): return model(a_, training=a_ ) _snake_case : Optional[int] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def UpperCamelCase_ ( self: Optional[int], a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : str = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _snake_case : Tuple = ( hasattr(a_, """architectures""" ) and isinstance(config.architectures, a_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _snake_case : List[str] = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _snake_case : str = __import__("""transformers""", fromlist=[model_class] ) _snake_case : Tuple = getattr(a_, a_ ) _snake_case : Any = model_cls(a_ ) except ImportError: raise ImportError( f"{model_class} does not exist. If you just want to test the pretrained model, you might want to" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _snake_case : Optional[Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](a_ ) # encoder-decoder has vocab size saved differently _snake_case : List[Any] = config.vocab_size if hasattr(a_, """vocab_size""" ) else config.encoder.vocab_size _snake_case : int = random_input_ids(a_, a_, a_ ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_decoder_train(): _snake_case : Dict = model(a_, decoder_input_ids=a_, labels=a_, training=a_ )[0] _snake_case : str = tf.gradients(a_, model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_train(): _snake_case : Optional[Any] = model(a_, labels=a_, training=a_ )[0] _snake_case : Optional[Any] = tf.gradients(a_, model.trainable_variables ) return gradients _snake_case : int = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def UpperCamelCase_ ( self: Union[str, Any], a_: str ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(a_, repeat=1, number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _snake_case : Dict = timeit.repeat( a_, repeat=self.args.repeat, number=10, ) return min(a_ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"Doesn't fit on GPU. {e}" ) def UpperCamelCase_ ( self: Optional[Any], a_: Callable[[], None] ): '''simple docstring''' logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) _snake_case : List[Any] = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) _snake_case : Optional[Any] = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() _snake_case : List[str] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _snake_case : Tuple = nvml.nvmlDeviceGetMemoryInfo(a_ ) _snake_case : List[str] = meminfo.used _snake_case : Any = Memory(a_ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) _snake_case : List[Any] = None else: _snake_case : int = measure_peak_memory_cpu(a_ ) _snake_case : List[str] = Memory(a_ ) if isinstance(a_, a_ ) else memory_bytes if self.args.trace_memory_line_by_line: _snake_case : Tuple = stop_memory_tracing(a_ ) if memory is None: _snake_case : int = summary.total else: _snake_case : int = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"Doesn't fit on GPU. {e}" ) return "N/A", None
28
0
"""simple docstring""" from __future__ import annotations class lowercase: '''simple docstring''' def __init__( self: Optional[int], a_: int = 0 ): '''simple docstring''' _snake_case : str = key def UpperCamelCase_ ( self: Tuple, a_: str, a_: int ): '''simple docstring''' assert isinstance(a_, a_ ) and isinstance(a_, a_ ) _snake_case : Optional[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(a_ ) ^ key ) for ch in content] def UpperCamelCase_ ( self: Union[str, Any], a_: str, a_: int ): '''simple docstring''' assert isinstance(a_, a_ ) and isinstance(a_, a_ ) _snake_case : Dict = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(a_ ) ^ key ) for ch in content] def UpperCamelCase_ ( self: Optional[int], a_: str, a_: int = 0 ): '''simple docstring''' assert isinstance(a_, a_ ) and isinstance(a_, a_ ) _snake_case : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _snake_case : List[str] = """""" for ch in content: ans += chr(ord(a_ ) ^ key ) return ans def UpperCamelCase_ ( self: Optional[int], a_: str, a_: int = 0 ): '''simple docstring''' assert isinstance(a_, a_ ) and isinstance(a_, a_ ) _snake_case : Any = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _snake_case : str = """""" for ch in content: ans += chr(ord(a_ ) ^ key ) return ans def UpperCamelCase_ ( self: Dict, a_: str, a_: int = 0 ): '''simple docstring''' assert isinstance(a_, a_ ) and isinstance(a_, a_ ) try: with open(a_ ) as fin, open("""encrypt.out""", """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(a_, a_ ) ) except OSError: return False return True def UpperCamelCase_ ( self: Union[str, Any], a_: str, a_: int ): '''simple docstring''' assert isinstance(a_, a_ ) and isinstance(a_, a_ ) try: with open(a_ ) as fin, open("""decrypt.out""", """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(a_, a_ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
708
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : str ): """simple docstring""" _snake_case : str = int(snake_case__ ) # Initialize Result _snake_case : str = [] # Traverse through all denomination for denomination in reversed(snake_case__ ): # Find denominations while int(snake_case__ ) >= int(snake_case__ ): total_value -= int(snake_case__ ) answer.append(snake_case__ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": A_ = [] A_ = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): A_ = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) A_ = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter A_ = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] A_ = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F'''Following is minimal change for {value}: ''') A_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
28
0
"""simple docstring""" from abc import ABC, abstractmethod from typing import List, Optional class lowercase( __a ): '''simple docstring''' def __init__( self: Dict ): '''simple docstring''' self.test() def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Tuple = 0 _snake_case : List[Any] = False while not completed: if counter == 1: self.reset() _snake_case : List[str] = self.advance() if not self.does_advance(a_ ): raise Exception( """Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" ) _snake_case : Union[str, Any] = self.update(a_ ) counter += 1 if counter > 10_000: raise Exception("""update() does not fulfill the constraint.""" ) if self.remaining() != 0: raise Exception("""Custom Constraint is not defined correctly.""" ) @abstractmethod def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase_ ( self: Optional[int], a_: int ): '''simple docstring''' raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase_ ( self: Optional[int], a_: int ): '''simple docstring''' raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase_ ( self: int ): '''simple docstring''' raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase_ ( self: List[str], a_: Tuple=False ): '''simple docstring''' raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class lowercase( __a ): '''simple docstring''' def __init__( self: Tuple, a_: List[int] ): '''simple docstring''' super(a_, self ).__init__() if not isinstance(a_, a_ ) or len(a_ ) == 0: raise ValueError(f"`token_ids` has to be a non-empty list, but is {token_ids}." ) if any((not isinstance(a_, a_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(f"Each list in `token_ids` has to be a list of positive integers, but is {token_ids}." ) _snake_case : Optional[int] = token_ids _snake_case : Dict = len(self.token_ids ) _snake_case : Union[str, Any] = -1 # the index of the currently fulfilled step _snake_case : str = False def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def UpperCamelCase_ ( self: List[Any], a_: int ): '''simple docstring''' if not isinstance(a_, a_ ): raise ValueError(f"`token_id` has to be an `int`, but is {token_id} of type {type(a_ )}" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def UpperCamelCase_ ( self: List[str], a_: int ): '''simple docstring''' if not isinstance(a_, a_ ): raise ValueError(f"`token_id` has to be an `int`, but is {token_id} of type {type(a_ )}" ) _snake_case : Optional[int] = False _snake_case : List[str] = False _snake_case : List[Any] = False if self.does_advance(a_ ): self.fulfilled_idx += 1 _snake_case : List[str] = True if self.fulfilled_idx == (self.seqlen - 1): _snake_case : str = True _snake_case : Optional[int] = completed else: # failed to make progress. _snake_case : Union[str, Any] = True self.reset() return stepped, completed, reset def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : int = False _snake_case : Dict = 0 def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return self.seqlen - (self.fulfilled_idx + 1) def UpperCamelCase_ ( self: Union[str, Any], a_: str=False ): '''simple docstring''' _snake_case : Dict = PhrasalConstraint(self.token_ids ) if stateful: _snake_case : List[Any] = self.seqlen _snake_case : str = self.fulfilled_idx _snake_case : Union[str, Any] = self.completed return new_constraint class lowercase: '''simple docstring''' def __init__( self: int, a_: List[List[int]], a_: int=True ): '''simple docstring''' _snake_case : List[str] = max([len(a_ ) for one in nested_token_ids] ) _snake_case : int = {} for token_ids in nested_token_ids: _snake_case : List[str] = root for tidx, token_id in enumerate(a_ ): if token_id not in level: _snake_case : int = {} _snake_case : List[Any] = level[token_id] if no_subsets and self.has_subsets(a_, a_ ): raise ValueError( """Each list in `nested_token_ids` can't be a complete subset of another list, but is""" f" {nested_token_ids}." ) _snake_case : int = root def UpperCamelCase_ ( self: Tuple, a_: Tuple ): '''simple docstring''' _snake_case : Union[str, Any] = self.trie for current_token in current_seq: _snake_case : Any = start[current_token] _snake_case : Any = list(start.keys() ) return next_tokens def UpperCamelCase_ ( self: List[Any], a_: Optional[int] ): '''simple docstring''' _snake_case : Any = self.next_tokens(a_ ) return len(a_ ) == 0 def UpperCamelCase_ ( self: Dict, a_: List[Any] ): '''simple docstring''' _snake_case : int = list(root.values() ) if len(a_ ) == 0: return 1 else: return sum([self.count_leaves(a_ ) for nn in next_nodes] ) def UpperCamelCase_ ( self: str, a_: List[Any], a_: int ): '''simple docstring''' _snake_case : str = self.count_leaves(a_ ) return len(a_ ) != leaf_count class lowercase( __a ): '''simple docstring''' def __init__( self: Tuple, a_: List[List[int]] ): '''simple docstring''' super(a_, self ).__init__() if not isinstance(a_, a_ ) or len(a_ ) == 0: raise ValueError(f"`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}." ) if any(not isinstance(a_, a_ ) for token_ids in nested_token_ids ): raise ValueError(f"`nested_token_ids` has to be a list of lists, but is {nested_token_ids}." ) if any( any((not isinstance(a_, a_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f"Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}." ) _snake_case : Optional[Any] = DisjunctiveTrie(a_ ) _snake_case : Optional[int] = nested_token_ids _snake_case : Tuple = self.trie.max_height _snake_case : List[str] = [] _snake_case : Union[str, Any] = False def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : List[Any] = self.trie.next_tokens(self.current_seq ) if len(a_ ) == 0: return None else: return token_list def UpperCamelCase_ ( self: Tuple, a_: int ): '''simple docstring''' if not isinstance(a_, a_ ): raise ValueError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(a_ )}" ) _snake_case : Optional[Any] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def UpperCamelCase_ ( self: Any, a_: int ): '''simple docstring''' if not isinstance(a_, a_ ): raise ValueError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(a_ )}" ) _snake_case : Any = False _snake_case : Union[str, Any] = False _snake_case : Tuple = False if self.does_advance(a_ ): self.current_seq.append(a_ ) _snake_case : Optional[Any] = True else: _snake_case : Tuple = True self.reset() _snake_case : Any = self.trie.reached_leaf(self.current_seq ) _snake_case : Tuple = completed return stepped, completed, reset def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Any = False _snake_case : Tuple = [] def UpperCamelCase_ ( self: str ): '''simple docstring''' if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def UpperCamelCase_ ( self: Dict, a_: List[Any]=False ): '''simple docstring''' _snake_case : Union[str, Any] = DisjunctiveConstraint(self.token_ids ) if stateful: _snake_case : Tuple = self.seqlen _snake_case : List[str] = self.current_seq _snake_case : List[Any] = self.completed return new_constraint class lowercase: '''simple docstring''' def __init__( self: Any, a_: List[Constraint] ): '''simple docstring''' _snake_case : Any = constraints # max # of steps required to fulfill a given constraint _snake_case : Optional[int] = max([c.seqlen for c in constraints] ) _snake_case : Optional[Any] = len(a_ ) _snake_case : List[Any] = False self.init_state() def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[Any] = [] _snake_case : Union[str, Any] = None _snake_case : Optional[int] = [constraint.copy(stateful=a_ ) for constraint in self.constraints] def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Any = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Union[str, Any] = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" _snake_case : str = constraint.advance() if isinstance(a_, a_ ): token_list.append(a_ ) elif isinstance(a_, a_ ): token_list.extend(a_ ) else: _snake_case : List[str] = self.inprogress_constraint.advance() if isinstance(a_, a_ ): token_list.append(a_ ) elif isinstance(a_, a_ ): token_list.extend(a_ ) if len(a_ ) == 0: return None else: return token_list def UpperCamelCase_ ( self: int, a_: Optional[List[int]] ): '''simple docstring''' self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint _snake_case : int = self.add(a_ ) # the entire list of constraints are fulfilled if self.completed: break def UpperCamelCase_ ( self: List[Any], a_: int ): '''simple docstring''' if not isinstance(a_, a_ ): raise ValueError(f"`token_id` should be an `int`, but is `{token_id}`." ) _snake_case : List[str] = False, False if self.completed: _snake_case : Dict = True _snake_case : List[Any] = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state _snake_case : Optional[int] = self.inprogress_constraint.update(a_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=a_ ) ) _snake_case : Union[str, Any] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) _snake_case : Dict = None if len(self.pending_constraints ) == 0: # we're done! _snake_case : Union[str, Any] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(a_ ): _snake_case : Any = pending_constraint.update(a_ ) if not stepped: raise Exception( """`constraint.update(token_id)` is not yielding incremental progress, """ """even though `constraint.does_advance(token_id)` is true.""" ) if complete: self.complete_constraints.append(a_ ) _snake_case : Optional[Any] = None if not complete and stepped: _snake_case : List[Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". _snake_case : Any = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. _snake_case : List[str] = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def UpperCamelCase_ ( self: Dict, a_: int=True ): '''simple docstring''' _snake_case : Dict = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: _snake_case : List[Any] = [ constraint.copy(stateful=a_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: _snake_case : Dict = self.inprogress_constraint.copy(stateful=a_ ) _snake_case : List[str] = [constraint.copy() for constraint in self.pending_constraints] return new_state
709
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowercase: '''simple docstring''' def __init__( self: Optional[Any], a_: Union[str, Any], a_: int=100, a_: int=13, a_: List[Any]=30, a_: str=2, a_: Optional[Any]=3, a_: Optional[int]=True, a_: Any=True, a_: Optional[Any]=32, a_: Tuple=4, a_: str=4, a_: List[Any]=37, a_: List[str]="gelu", a_: str=0.1, a_: Optional[int]=0.1, a_: Any=10, a_: List[str]=0.02, a_: Dict=3, a_: str=None, a_: Optional[int]=[0, 1, 2, 3], ): '''simple docstring''' _snake_case : Optional[int] = parent _snake_case : Optional[Any] = 100 _snake_case : Any = batch_size _snake_case : List[Any] = image_size _snake_case : Optional[Any] = patch_size _snake_case : str = num_channels _snake_case : Tuple = is_training _snake_case : Tuple = use_labels _snake_case : Any = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : List[str] = num_attention_heads _snake_case : Union[str, Any] = intermediate_size _snake_case : Dict = hidden_act _snake_case : str = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Optional[Any] = type_sequence_label_size _snake_case : Any = initializer_range _snake_case : List[str] = scope _snake_case : int = out_indices _snake_case : Optional[Any] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _snake_case : Dict = (image_size // patch_size) ** 2 _snake_case : str = num_patches + 1 def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : List[Any] = None _snake_case : Tuple = None if self.use_labels: _snake_case : str = ids_tensor([self.batch_size], self.type_sequence_label_size ) _snake_case : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) _snake_case : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=a_, initializer_range=self.initializer_range, out_indices=self.out_indices, ) def UpperCamelCase_ ( self: List[Any], a_: List[Any], a_: Any, a_: Optional[Any], a_: List[str] ): '''simple docstring''' _snake_case : str = BeitModel(config=a_ ) model.to(a_ ) model.eval() _snake_case : Dict = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self: str, a_: List[Any], a_: Optional[Any], a_: Optional[int], a_: List[Any] ): '''simple docstring''' _snake_case : List[str] = BeitForMaskedImageModeling(config=a_ ) model.to(a_ ) model.eval() _snake_case : Union[str, Any] = model(a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCamelCase_ ( self: Any, a_: List[str], a_: Any, a_: List[Any], a_: Optional[Any] ): '''simple docstring''' _snake_case : Any = self.type_sequence_label_size _snake_case : Any = BeitForImageClassification(a_ ) model.to(a_ ) model.eval() _snake_case : List[Any] = model(a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case : Any = 1 _snake_case : str = BeitForImageClassification(a_ ) model.to(a_ ) model.eval() _snake_case : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case : Optional[Any] = model(a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self: List[Any], a_: Optional[int], a_: List[Any], a_: str, a_: int ): '''simple docstring''' _snake_case : List[str] = self.num_labels _snake_case : List[Any] = BeitForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() _snake_case : List[str] = model(a_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) _snake_case : str = model(a_, labels=a_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Tuple = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case , _snake_case : Any = config_and_inputs _snake_case : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase__ = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Dict = BeitModelTester(self ) _snake_case : int = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def UpperCamelCase_ ( self: str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""BEiT does not use inputs_embeds""" ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCamelCase_ ( self: str ): '''simple docstring''' pass def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : List[str] = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) _snake_case : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_, nn.Linear ) ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Any = model_class(a_ ) _snake_case : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : List[Any] = [*signature.parameters.keys()] _snake_case : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1], a_ ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' if not self.model_tester.is_training: return _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Any = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(a_ ), BeitForMaskedImageModeling]: continue _snake_case : List[Any] = model_class(a_ ) model.to(a_ ) model.train() _snake_case : Dict = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : List[Any] = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _snake_case : Dict = False _snake_case : Optional[Any] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(a_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue _snake_case : Any = model_class(a_ ) model.gradient_checkpointing_enable() model.to(a_ ) model.train() _snake_case : Any = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : int = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : int = _config_zero_init(a_ ) for model_class in self.all_model_classes: _snake_case : Tuple = model_class(config=a_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @slow def UpperCamelCase_ ( self: int ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Optional[int] = BeitModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self: Dict ): '''simple docstring''' return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : str = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(a_ ) _snake_case : Dict = self.default_image_processor _snake_case : Dict = prepare_img() _snake_case : List[str] = image_processor(images=a_, return_tensors="""pt""" ).pixel_values.to(a_ ) # prepare bool_masked_pos _snake_case : Optional[int] = torch.ones((1, 196), dtype=torch.bool ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : int = model(pixel_values=a_, bool_masked_pos=a_ ) _snake_case : Dict = outputs.logits # verify the logits _snake_case : Optional[int] = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape, a_ ) _snake_case : Optional[Any] = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(a_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], a_, atol=1E-2 ) ) @slow def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Dict = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(a_ ) _snake_case : List[Any] = self.default_image_processor _snake_case : Any = prepare_img() _snake_case : Any = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : int = model(**a_ ) _snake_case : Optional[int] = outputs.logits # verify the logits _snake_case : Tuple = torch.Size((1, 1_000) ) self.assertEqual(logits.shape, a_ ) _snake_case : Any = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(a_ ) self.assertTrue(torch.allclose(logits[0, :3], a_, atol=1E-4 ) ) _snake_case : str = 281 self.assertEqual(logits.argmax(-1 ).item(), a_ ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : int = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to( a_ ) _snake_case : int = self.default_image_processor _snake_case : Optional[Any] = prepare_img() _snake_case : Union[str, Any] = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Union[str, Any] = model(**a_ ) _snake_case : Dict = outputs.logits # verify the logits _snake_case : Tuple = torch.Size((1, 21_841) ) self.assertEqual(logits.shape, a_ ) _snake_case : Optional[int] = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(a_ ) self.assertTrue(torch.allclose(logits[0, :3], a_, atol=1E-4 ) ) _snake_case : List[str] = 2_396 self.assertEqual(logits.argmax(-1 ).item(), a_ ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[str] = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) _snake_case : int = model.to(a_ ) _snake_case : List[str] = BeitImageProcessor(do_resize=a_, size=640, do_center_crop=a_ ) _snake_case : Optional[int] = load_dataset("""hf-internal-testing/fixtures_ade20k""", split="""test""" ) _snake_case : Union[str, Any] = Image.open(ds[0]["""file"""] ) _snake_case : List[Any] = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Optional[int] = model(**a_ ) _snake_case : Union[str, Any] = outputs.logits # verify the logits _snake_case : List[str] = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape, a_ ) _snake_case : Optional[int] = version.parse(PIL.__version__ ) < version.parse("""9.0.0""" ) if is_pillow_less_than_a: _snake_case : Any = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ], device=a_, ) else: _snake_case : Optional[Any] = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ], device=a_, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], a_, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : int = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) _snake_case : List[Any] = model.to(a_ ) _snake_case : Tuple = BeitImageProcessor(do_resize=a_, size=640, do_center_crop=a_ ) _snake_case : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_ade20k""", split="""test""" ) _snake_case : str = Image.open(ds[0]["""file"""] ) _snake_case : Tuple = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Optional[int] = model(**a_ ) _snake_case : Union[str, Any] = outputs.logits.detach().cpu() _snake_case : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=a_, target_sizes=[(500, 300)] ) _snake_case : Optional[int] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape, a_ ) _snake_case : List[str] = image_processor.post_process_semantic_segmentation(outputs=a_ ) _snake_case : List[str] = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape, a_ )
28
0
"""simple docstring""" import pytest A_ = '''__dummy_dataset1__''' A_ = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def UpperCAmelCase__ (): """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCAmelCase__ (): """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : List[str] ): """simple docstring""" _snake_case : List[str] = dataset_loading_script_name _snake_case : Optional[Any] = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=snake_case__ ) _snake_case : Tuple = script_dir / F"{script_name}.py" with open(snake_case__ , """w""" ) as f: f.write(snake_case__ ) return str(snake_case__ )
710
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase( __a ): '''simple docstring''' lowercase__ = (IPNDMScheduler,) lowercase__ = (("num_inference_steps", 50),) def UpperCamelCase_ ( self: Union[str, Any], **a_: Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = {"""num_train_timesteps""": 1_000} config.update(**a_ ) return config def UpperCamelCase_ ( self: Tuple, a_: Optional[int]=0, **a_: int ): '''simple docstring''' _snake_case : Optional[int] = dict(self.forward_default_kwargs ) _snake_case : Optional[Any] = kwargs.pop("""num_inference_steps""", a_ ) _snake_case : Optional[Any] = self.dummy_sample _snake_case : Dict = 0.1 * sample _snake_case : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _snake_case : int = self.get_scheduler_config(**a_ ) _snake_case : Dict = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals _snake_case : int = dummy_past_residuals[:] if time_step is None: _snake_case : Union[str, Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) _snake_case : Tuple = scheduler_class.from_pretrained(a_ ) new_scheduler.set_timesteps(a_ ) # copy over dummy past residuals _snake_case : Optional[Any] = dummy_past_residuals[:] _snake_case : List[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : str = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _snake_case : Optional[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : Optional[int] = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self: str, a_: Any=0, **a_: Tuple ): '''simple docstring''' _snake_case : str = dict(self.forward_default_kwargs ) _snake_case : List[Any] = kwargs.pop("""num_inference_steps""", a_ ) _snake_case : Optional[int] = self.dummy_sample _snake_case : Tuple = 0.1 * sample _snake_case : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _snake_case : Any = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals (must be after setting timesteps) _snake_case : Union[str, Any] = dummy_past_residuals[:] if time_step is None: _snake_case : Tuple = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) _snake_case : List[str] = scheduler_class.from_pretrained(a_ ) # copy over dummy past residuals new_scheduler.set_timesteps(a_ ) # copy over dummy past residual (must be after setting timesteps) _snake_case : List[str] = dummy_past_residuals[:] _snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : Any = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : int = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self: List[Any], **a_: Optional[int] ): '''simple docstring''' _snake_case : Union[str, Any] = self.scheduler_classes[0] _snake_case : Any = self.get_scheduler_config(**a_ ) _snake_case : List[Any] = scheduler_class(**a_ ) _snake_case : Union[str, Any] = 10 _snake_case : Union[str, Any] = self.dummy_model() _snake_case : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(a_ ) for i, t in enumerate(scheduler.timesteps ): _snake_case : Optional[Any] = model(a_, a_ ) _snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample for i, t in enumerate(scheduler.timesteps ): _snake_case : Union[str, Any] = model(a_, a_ ) _snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample return sample def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : str = dict(self.forward_default_kwargs ) _snake_case : int = kwargs.pop("""num_inference_steps""", a_ ) for scheduler_class in self.scheduler_classes: _snake_case : Union[str, Any] = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**a_ ) _snake_case : Dict = self.dummy_sample _snake_case : List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(a_, """set_timesteps""" ): scheduler.set_timesteps(a_ ) elif num_inference_steps is not None and not hasattr(a_, """set_timesteps""" ): _snake_case : Dict = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _snake_case : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _snake_case : List[str] = dummy_past_residuals[:] _snake_case : Optional[int] = scheduler.timesteps[5] _snake_case : Optional[Any] = scheduler.timesteps[6] _snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : List[str] = scheduler.step(a_, a_, a_, **a_ ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) _snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=a_, time_step=a_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=a_, time_step=a_ ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.full_loop() _snake_case : Optional[int] = torch.mean(torch.abs(a_ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
28
0
"""simple docstring""" import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py A_ = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) A_ = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def UpperCAmelCase__ (snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Tuple ): """simple docstring""" _snake_case : Union[str, Any] = SavedModel() _snake_case : Optional[Any] = [] with open(os.path.join(snake_case__ , """utils""" , """tf_ops""" , """onnx.json""" ) ) as f: _snake_case : Any = json.load(snake_case__ )["""opsets"""] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(snake_case__ )] ) with open(snake_case__ , """rb""" ) as f: saved_model.ParseFromString(f.read() ) _snake_case : List[Any] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _snake_case : Tuple = sorted(snake_case__ ) _snake_case : str = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(snake_case__ ) if strict and len(snake_case__ ) > 0: raise Exception(F"Found the following incompatible ops for the opset {opset}:\n" + incompatible_ops ) elif len(snake_case__ ) > 0: print(F"Found the following incompatible ops for the opset {opset}:" ) print(*snake_case__ , sep="""\n""" ) else: print(F"The saved model {saved_model_path} can properly be converted with ONNX." ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) A_ = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
711
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True A_ = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) _snake_case : Any = [] for num in range(len(snake_case__ ) ): _snake_case : Optional[int] = 0 while 2 * i * i <= odd_composites[num]: _snake_case : Optional[int] = odd_composites[num] - 2 * i * i if is_prime(snake_case__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(snake_case__ ) == n: return list_nums return [] def UpperCAmelCase__ (): """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(F'''{solution() = }''')
28
0
"""simple docstring""" class lowercase: '''simple docstring''' def __init__( self: Union[str, Any], a_: Tuple ): '''simple docstring''' _snake_case : List[str] = val _snake_case : List[Any] = None _snake_case : Optional[Any] = None def UpperCamelCase_ ( self: int, a_: List[str] ): '''simple docstring''' if self.val: if val < self.val: if self.left is None: _snake_case : List[Any] = Node(a_ ) else: self.left.insert(a_ ) elif val > self.val: if self.right is None: _snake_case : Any = Node(a_ ) else: self.right.insert(a_ ) else: _snake_case : Optional[int] = val def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Tuple ): """simple docstring""" if root: inorder(root.left , snake_case__ ) res.append(root.val ) inorder(root.right , snake_case__ ) def UpperCAmelCase__ (snake_case__ : Any ): """simple docstring""" if len(snake_case__ ) == 0: return arr _snake_case : List[str] = Node(arr[0] ) for i in range(1 , len(snake_case__ ) ): root.insert(arr[i] ) # Traverse BST in order. _snake_case : List[Any] = [] inorder(snake_case__ , snake_case__ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
712
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class lowercase: '''simple docstring''' def __init__( self: List[Any], a_: str = "cpu", a_: str = "openai/clip-vit-large-patch14" ): '''simple docstring''' _snake_case : Optional[int] = device _snake_case : str = CLIPTokenizerFast.from_pretrained(a_ ) _snake_case : Union[str, Any] = [0.48_145_466, 0.4_578_275, 0.40_821_073] _snake_case : Optional[int] = [0.26_862_954, 0.26_130_258, 0.27_577_711] _snake_case : str = torchvision.transforms.Normalize(self.image_mean, self.image_std ) _snake_case : Optional[int] = torchvision.transforms.Resize(224 ) _snake_case : str = torchvision.transforms.CenterCrop(224 ) def UpperCamelCase_ ( self: List[str], a_: str ): '''simple docstring''' _snake_case : Optional[int] = self.resize(a_ ) _snake_case : List[Any] = self.center_crop(a_ ) _snake_case : Optional[Any] = self.normalize(a_ ) return images def __call__( self: Any, a_: Optional[int]=None, a_: str=None, **a_: str ): '''simple docstring''' _snake_case : Optional[int] = self.tokenizer(text=a_, **a_ ) _snake_case : Any = self.preprocess_img(a_ ) _snake_case : Union[str, Any] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class lowercase( nn.Module ): '''simple docstring''' def __init__( self: List[Any], a_: List[Any]=10, a_: Optional[Any]=0.01, a_: List[str]=None, a_: str=None, a_: Any=None, a_: Tuple=None, a_: List[str]=None, a_: List[str]=None, a_: str=False, a_: List[str]=True, a_: Any="image", a_: Optional[Any]=True, a_: Dict=False, a_: List[str]=False, a_: Optional[int]=False, ): '''simple docstring''' super().__init__() _snake_case : int = None _snake_case : List[str] = device if device else get_device() if vqgan: _snake_case : Any = vqgan else: _snake_case : Optional[Any] = load_vqgan(self.device, conf_path=a_, ckpt_path=a_ ) self.vqgan.eval() if clip: _snake_case : Tuple = clip else: _snake_case : Optional[Any] = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) _snake_case : List[str] = ProcessorGradientFlow(device=self.device ) _snake_case : Union[str, Any] = iterations _snake_case : Dict = lr _snake_case : Optional[int] = log _snake_case : List[str] = make_grid _snake_case : Union[str, Any] = return_val _snake_case : List[str] = quantize _snake_case : List[str] = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self: Tuple, a_: str=None, a_: Dict=None, a_: Dict=5, a_: Dict=True ): '''simple docstring''' _snake_case : Dict = [] if output_path is None: _snake_case : Tuple = """./animation.gif""" if input_path is None: _snake_case : Any = self.save_path _snake_case : Optional[int] = sorted(glob(input_path + """/*""" ) ) if not len(a_ ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(a_ ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) _snake_case : List[Any] = total_duration / len(a_ ) _snake_case : Optional[Any] = [frame_duration] * len(a_ ) if extend_frames: _snake_case : Optional[int] = 1.5 _snake_case : int = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(a_ ) ) imageio.mimsave(a_, a_, duration=a_ ) print(f"gif saved to {output_path}" ) def UpperCamelCase_ ( self: str, a_: Tuple=None, a_: Optional[Any]=None ): '''simple docstring''' if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError _snake_case : int = preprocess(Image.open(a_ ), target_image_size=256 ).to(self.device ) _snake_case : int = preprocess_vqgan(a_ ) _snake_case , *_snake_case : List[Any] = self.vqgan.encode(a_ ) return z def UpperCamelCase_ ( self: Union[str, Any], a_: Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.latent.detach().requires_grad_() _snake_case : Tuple = base_latent + transform_vector if self.quantize: _snake_case , *_snake_case : Any = self.vqgan.quantize(a_ ) else: _snake_case : List[Any] = trans_latent return self.vqgan.decode(a_ ) def UpperCamelCase_ ( self: List[Any], a_: Any, a_: Union[str, Any], a_: Dict=None ): '''simple docstring''' _snake_case : Tuple = self.clip_preprocessor(text=a_, images=a_, return_tensors="""pt""", padding=a_ ) _snake_case : Any = self.clip(**a_ ) _snake_case : str = clip_outputs.logits_per_image if weights is not None: _snake_case : Any = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self: Any, a_: Any, a_: List[str], a_: Dict ): '''simple docstring''' _snake_case : List[Any] = self._get_clip_similarity(pos_prompts["""prompts"""], a_, weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: _snake_case : List[str] = self._get_clip_similarity(neg_prompts["""prompts"""], a_, weights=neg_prompts["""weights"""] ) else: _snake_case : Tuple = torch.tensor([1], device=self.device ) _snake_case : int = -torch.log(a_ ) + torch.log(a_ ) return loss def UpperCamelCase_ ( self: Optional[Any], a_: Tuple, a_: Union[str, Any], a_: List[str] ): '''simple docstring''' _snake_case : Tuple = torch.randn_like(self.latent, requires_grad=a_, device=self.device ) _snake_case : Dict = torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _snake_case : str = self._add_vector(a_ ) _snake_case : List[Any] = loop_post_process(a_ ) _snake_case : List[Any] = self._get_CLIP_loss(a_, a_, a_ ) print("""CLIP loss""", a_ ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=a_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self: int, a_: Any, a_: Union[str, Any], a_: Optional[int] ): '''simple docstring''' wandb.init(reinit=a_, project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: _snake_case : Any = Image.open(a_ ) _snake_case : str = image.resize((256, 256) ) wandb.log("""Original Image""", wandb.Image(a_ ) ) def UpperCamelCase_ ( self: str, a_: List[Any] ): '''simple docstring''' if not prompts: return [] _snake_case : List[str] = [] _snake_case : Tuple = [] if isinstance(a_, a_ ): _snake_case : Union[str, Any] = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(a_, (tuple, list) ): _snake_case : List[Any] = prompt[0] _snake_case : Optional[Any] = float(prompt[1] ) elif ":" in prompt: _snake_case , _snake_case : List[Any] = prompt.split(""":""" ) _snake_case : str = float(a_ ) else: _snake_case : int = prompt _snake_case : Union[str, Any] = 1.0 processed_prompts.append(a_ ) weights.append(a_ ) return { "prompts": processed_prompts, "weights": torch.tensor(a_, device=self.device ), } def UpperCamelCase_ ( self: Dict, a_: List[Any], a_: List[Any]=None, a_: Optional[Any]=None, a_: Optional[Any]=True, a_: Dict=False, a_: Optional[Any]=True, a_: Optional[Any]=True, a_: Any=None, ): '''simple docstring''' if image_path: _snake_case : Union[str, Any] = self._get_latent(a_ ) else: _snake_case : Any = torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(a_, a_, a_ ) assert pos_prompts, "You must provide at least one positive prompt." _snake_case : str = self.process_prompts(a_ ) _snake_case : Dict = self.process_prompts(a_ ) if save_final and save_path is None: _snake_case : Any = os.path.join("""./outputs/""", """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(a_ ): os.makedirs(a_ ) else: _snake_case : List[Any] = save_path + """_""" + get_timestamp() os.makedirs(a_ ) _snake_case : Optional[Any] = save_path _snake_case : List[Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(a_ ) ) _snake_case : List[Any] = loop_post_process(a_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(a_, a_, a_ ) ): if show_intermediate: show_pil(a_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}.png" ) ) if self.log: wandb.log({"""Image""": wandb.Image(a_ )} ) if show_final: show_pil(a_ ) if save_final: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}_final.png" ) )
28
0
"""simple docstring""" from typing import Dict from .base import GenericTensor, Pipeline class lowercase( __a ): '''simple docstring''' def UpperCamelCase_ ( self: int, a_: Any=None, a_: Optional[int]=None, a_: Dict=None, **a_: Dict ): '''simple docstring''' if tokenize_kwargs is None: _snake_case : Union[str, Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( """truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" ) _snake_case : List[str] = truncation _snake_case : Dict = tokenize_kwargs _snake_case : Any = {} if return_tensors is not None: _snake_case : Any = return_tensors return preprocess_params, {}, postprocess_params def UpperCamelCase_ ( self: Dict, a_: Any, **a_: Optional[Any] ): '''simple docstring''' _snake_case : Tuple = self.framework _snake_case : Optional[Any] = self.tokenizer(a_, return_tensors=a_, **a_ ) return model_inputs def UpperCamelCase_ ( self: Optional[int], a_: str ): '''simple docstring''' _snake_case : Optional[Any] = self.model(**a_ ) return model_outputs def UpperCamelCase_ ( self: List[Any], a_: Optional[int], a_: str=False ): '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self: Tuple, *a_: Union[str, Any], **a_: Any ): '''simple docstring''' return super().__call__(*a_, **a_ )
713
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _snake_case : Dict = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
28
0
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml A_ = logging.get_logger(__name__) def UpperCAmelCase__ (snake_case__ : bool , snake_case__ : bool ): """simple docstring""" def run_func(snake_case__ : Tuple ): @wraps(snake_case__ ) def run_in_eager_mode(*snake_case__ : str , **snake_case__ : Any ): return func(*snake_case__ , **snake_case__ ) @wraps(snake_case__ ) @tf.function(experimental_compile=snake_case__ ) def run_in_graph_mode(*snake_case__ : Any , **snake_case__ : Optional[int] ): return func(*snake_case__ , **snake_case__ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : List[str] = random.Random() _snake_case : Optional[int] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case__ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class lowercase( __a ): '''simple docstring''' lowercase__ = 42 lowercase__ = 42 lowercase__ = "TensorFlow" @property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' return tf.__version__ def UpperCamelCase_ ( self: List[str], a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : List[str] = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : Optional[int] = self._prepare_inference_func(a_, a_, a_ ) return self._measure_speed(_inference ) def UpperCamelCase_ ( self: int, a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : Tuple = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : Optional[Any] = self._prepare_train_func(a_, a_, a_ ) return self._measure_speed(_train ) def UpperCamelCase_ ( self: Dict, a_: str, a_: int, a_: int ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], a_ ) _snake_case : str = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : List[str] = self._prepare_inference_func(a_, a_, a_ ) return self._measure_memory(_inference ) def UpperCamelCase_ ( self: Tuple, a_: str, a_: int, a_: int ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], a_ ) _snake_case : Dict = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _snake_case : Optional[int] = self._prepare_train_func(a_, a_, a_ ) return self._measure_memory(_train ) def UpperCamelCase_ ( self: Optional[Any], a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : List[Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _snake_case : List[Any] = ( hasattr(a_, """architectures""" ) and isinstance(config.architectures, a_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _snake_case : str = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _snake_case : List[Any] = __import__("""transformers""", fromlist=[model_class] ) _snake_case : Dict = getattr(a_, a_ ) _snake_case : Any = model_cls(a_ ) except ImportError: raise ImportError( f"{model_class} does not exist. If you just want to test the pretrained model, you might want to" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _snake_case : Any = TF_MODEL_MAPPING[config.__class__](a_ ) # encoder-decoder has vocab size saved differently _snake_case : List[Any] = config.vocab_size if hasattr(a_, """vocab_size""" ) else config.encoder.vocab_size _snake_case : List[str] = random_input_ids(a_, a_, a_ ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_decoder_forward(): return model(a_, decoder_input_ids=a_, training=a_ ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_forward(): return model(a_, training=a_ ) _snake_case : Optional[int] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def UpperCamelCase_ ( self: Optional[int], a_: str, a_: int, a_: int ): '''simple docstring''' _snake_case : str = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _snake_case : Tuple = ( hasattr(a_, """architectures""" ) and isinstance(config.architectures, a_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _snake_case : List[str] = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _snake_case : str = __import__("""transformers""", fromlist=[model_class] ) _snake_case : Tuple = getattr(a_, a_ ) _snake_case : Any = model_cls(a_ ) except ImportError: raise ImportError( f"{model_class} does not exist. If you just want to test the pretrained model, you might want to" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _snake_case : Optional[Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](a_ ) # encoder-decoder has vocab size saved differently _snake_case : List[Any] = config.vocab_size if hasattr(a_, """vocab_size""" ) else config.encoder.vocab_size _snake_case : int = random_input_ids(a_, a_, a_ ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_decoder_train(): _snake_case : Dict = model(a_, decoder_input_ids=a_, labels=a_, training=a_ )[0] _snake_case : str = tf.gradients(a_, model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_train(): _snake_case : Optional[Any] = model(a_, labels=a_, training=a_ )[0] _snake_case : Optional[Any] = tf.gradients(a_, model.trainable_variables ) return gradients _snake_case : int = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def UpperCamelCase_ ( self: Union[str, Any], a_: str ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(a_, repeat=1, number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _snake_case : Dict = timeit.repeat( a_, repeat=self.args.repeat, number=10, ) return min(a_ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"Doesn't fit on GPU. {e}" ) def UpperCamelCase_ ( self: Optional[Any], a_: Callable[[], None] ): '''simple docstring''' logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) _snake_case : List[Any] = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) _snake_case : Optional[Any] = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() _snake_case : List[str] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _snake_case : Tuple = nvml.nvmlDeviceGetMemoryInfo(a_ ) _snake_case : List[str] = meminfo.used _snake_case : Any = Memory(a_ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) _snake_case : List[Any] = None else: _snake_case : int = measure_peak_memory_cpu(a_ ) _snake_case : List[str] = Memory(a_ ) if isinstance(a_, a_ ) else memory_bytes if self.args.trace_memory_line_by_line: _snake_case : Tuple = stop_memory_tracing(a_ ) if memory is None: _snake_case : int = summary.total else: _snake_case : int = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"Doesn't fit on GPU. {e}" ) return "N/A", None
714
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase: '''simple docstring''' def __init__( self: List[str], a_: List[Any], a_: str=13, a_: Dict=32, a_: Union[str, Any]=3, a_: Union[str, Any]=4, a_: Tuple=[10, 20, 30, 40], a_: Dict=[2, 2, 3, 2], a_: Tuple=True, a_: Optional[Any]=True, a_: Any=37, a_: Any="gelu", a_: int=10, a_: Tuple=0.02, a_: str=["stage2", "stage3", "stage4"], a_: List[str]=[2, 3, 4], a_: List[str]=None, ): '''simple docstring''' _snake_case : int = parent _snake_case : int = batch_size _snake_case : List[Any] = image_size _snake_case : List[str] = num_channels _snake_case : Tuple = num_stages _snake_case : Union[str, Any] = hidden_sizes _snake_case : List[Any] = depths _snake_case : Tuple = is_training _snake_case : List[str] = use_labels _snake_case : Tuple = intermediate_size _snake_case : List[str] = hidden_act _snake_case : Optional[Any] = num_labels _snake_case : Tuple = initializer_range _snake_case : Tuple = out_features _snake_case : Tuple = out_indices _snake_case : Dict = scope def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Any = None if self.use_labels: _snake_case : Dict = ids_tensor([self.batch_size], self.num_labels ) _snake_case : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=a_, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, ) def UpperCamelCase_ ( self: int, a_: Tuple, a_: Any, a_: Dict ): '''simple docstring''' _snake_case : int = ConvNextVaModel(config=a_ ) model.to(a_ ) model.eval() _snake_case : Any = model(a_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def UpperCamelCase_ ( self: Optional[int], a_: List[str], a_: Tuple, a_: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = ConvNextVaForImageClassification(a_ ) model.to(a_ ) model.eval() _snake_case : Optional[int] = model(a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self: Union[str, Any], a_: Tuple, a_: Tuple, a_: Tuple ): '''simple docstring''' _snake_case : List[str] = ConvNextVaBackbone(config=a_ ) model.to(a_ ) model.eval() _snake_case : int = model(a_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] ) # verify backbone works with out_features=None _snake_case : Tuple = None _snake_case : Tuple = ConvNextVaBackbone(config=a_ ) model.to(a_ ) model.eval() _snake_case : List[Any] = model(a_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ), 1 ) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Dict = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : Any = config_and_inputs _snake_case : str = {"""pixel_values""": pixel_values} return config, inputs_dict def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[Any] = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : List[str] = config_and_inputs _snake_case : Any = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase__ = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Tuple = ConvNextVaModelTester(self ) _snake_case : int = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def UpperCamelCase_ ( self: str ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _snake_case , _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_with_labels() _snake_case : List[Any] = True if model_class.__name__ in [ *get_values(a_ ), *get_values(a_ ), ]: continue _snake_case : Tuple = model_class(a_ ) model.to(a_ ) model.train() _snake_case : Optional[Any] = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : Any = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_with_labels() _snake_case : Any = False _snake_case : List[Any] = True if ( model_class.__name__ in [*get_values(a_ ), *get_values(a_ )] or not model_class.supports_gradient_checkpointing ): continue _snake_case : Dict = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() _snake_case : str = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : Optional[int] = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : List[str] = model_class(a_ ) _snake_case : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : int = [*signature.parameters.keys()] _snake_case : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1], a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(a_: str, a_: Tuple, a_: Tuple ): _snake_case : Optional[Any] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): _snake_case : Any = model(**self._prepare_for_class(a_, a_ ) ) _snake_case : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case : Optional[int] = self.model_tester.num_stages self.assertEqual(len(a_ ), expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) _snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Optional[Any] = True check_hidden_states_output(a_, a_, a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : List[str] = True check_hidden_states_output(a_, a_, a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : str = ConvNextVaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(a_ ) _snake_case : Union[str, Any] = self.default_image_processor _snake_case : List[Any] = prepare_img() _snake_case : Optional[int] = preprocessor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Optional[int] = model(**a_ ) # verify the logits _snake_case : Optional[int] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, a_ ) _snake_case : Optional[int] = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], a_, atol=1E-4 ) )
28
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A_ = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
715
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Dict ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Dict ): """simple docstring""" _snake_case : str = tmp_path / """cache""" _snake_case : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _snake_case : str = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : int , snake_case__ : List[Any] ): """simple docstring""" _snake_case : str = tmp_path / """cache""" _snake_case : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : List[Any] = features.copy() if features else default_expected_features _snake_case : List[Any] = ( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) _snake_case : Optional[Any] = ParquetDatasetReader(snake_case__ , features=snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : List[str] = tmp_path / """cache""" _snake_case : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : int = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ , split=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : str , snake_case__ : str ): """simple docstring""" if issubclass(snake_case__ , snake_case__ ): _snake_case : Optional[Any] = parquet_path elif issubclass(snake_case__ , snake_case__ ): _snake_case : int = [parquet_path] _snake_case : Union[str, Any] = tmp_path / """cache""" _snake_case : Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : List[str] = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : str=("train",) ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ) for split in splits: _snake_case : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str , snake_case__ : List[Any] ): """simple docstring""" _snake_case : Tuple = tmp_path / """cache""" _snake_case : Optional[int] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _snake_case : Tuple = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] ): """simple docstring""" _snake_case : Optional[int] = tmp_path / """cache""" _snake_case : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : Optional[Any] = features.copy() if features else default_expected_features _snake_case : Dict = ( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) _snake_case : Optional[int] = ParquetDatasetReader({"""train""": parquet_path} , features=snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Tuple ): """simple docstring""" if split: _snake_case : int = {split: parquet_path} else: _snake_case : Optional[Any] = """train""" _snake_case : int = {"""train""": parquet_path, """test""": parquet_path} _snake_case : Dict = tmp_path / """cache""" _snake_case : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : Union[str, Any] = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : Tuple ): """simple docstring""" _snake_case : List[Any] = ParquetDatasetWriter(snake_case__ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _snake_case : str = pq.ParquetFile(tmp_path / """foo.parquet""" ) _snake_case : int = pf.read() assert dataset.data.table == output_table def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : Optional[Any] = str(shared_datadir / """test_image_rgb.jpg""" ) _snake_case : Tuple = {"""image""": [image_path]} _snake_case : Optional[int] = Features({"""image""": Image()} ) _snake_case : int = Dataset.from_dict(snake_case__ , features=snake_case__ ) _snake_case : Optional[Any] = ParquetDatasetWriter(snake_case__ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _snake_case : List[str] = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features _snake_case : Optional[Any] = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=snake_case__ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : str ): """simple docstring""" assert get_writer_batch_size(snake_case__ ) == expected
28
0
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record A_ = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' A_ = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' A_ = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : int ): """simple docstring""" return float((preds == labels).mean() ) def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : List[Any]="binary" ): """simple docstring""" _snake_case : Any = simple_accuracy(snake_case__ , snake_case__ ) _snake_case : int = float(fa_score(y_true=snake_case__ , y_pred=snake_case__ , average=snake_case__ ) ) return { "accuracy": acc, "f1": fa, } def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : str ): """simple docstring""" _snake_case : Tuple = {} for id_pred, label in zip(snake_case__ , snake_case__ ): _snake_case : Tuple = F"{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}" _snake_case : str = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _snake_case : Any = [(pred, label)] _snake_case : Dict = [], [] for question, preds_labels in question_map.items(): _snake_case : Union[str, Any] = zip(*snake_case__ ) _snake_case : int = fa_score(y_true=snake_case__ , y_pred=snake_case__ , average="""macro""" ) fas.append(snake_case__ ) _snake_case : Tuple = int(sum(pred == label for pred, label in preds_labels ) == len(snake_case__ ) ) ems.append(snake_case__ ) _snake_case : List[str] = float(sum(snake_case__ ) / len(snake_case__ ) ) _snake_case : Union[str, Any] = sum(snake_case__ ) / len(snake_case__ ) _snake_case : Union[str, Any] = float(fa_score(y_true=snake_case__ , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(self._get_feature_types() ), codebase_urls=[], reference_urls=[], format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None, ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def UpperCamelCase_ ( self: int, a_: Tuple, a_: int ): '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(a_, a_ )} elif self.config_name == "cb": return acc_and_fa(a_, a_, fa_avg="""macro""" ) elif self.config_name == "record": _snake_case : Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] _snake_case : int = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(a_, a_ )[0] elif self.config_name == "multirc": return evaluate_multirc(a_, a_ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(a_, a_ )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
716
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase: '''simple docstring''' def __init__( self: Dict, a_: Union[str, Any], a_: Tuple=13, a_: Dict=32, a_: Optional[Any]=3, a_: Optional[Any]=4, a_: Optional[int]=[10, 20, 30, 40], a_: Any=[2, 2, 3, 2], a_: Dict=True, a_: Dict=True, a_: List[str]=37, a_: Dict="gelu", a_: List[str]=10, a_: Union[str, Any]=0.02, a_: Any=["stage2", "stage3", "stage4"], a_: Optional[int]=3, a_: Tuple=None, ): '''simple docstring''' _snake_case : Dict = parent _snake_case : Dict = batch_size _snake_case : Optional[Any] = image_size _snake_case : int = num_channels _snake_case : Tuple = num_stages _snake_case : int = hidden_sizes _snake_case : List[str] = depths _snake_case : str = is_training _snake_case : Dict = use_labels _snake_case : List[str] = intermediate_size _snake_case : Optional[int] = hidden_act _snake_case : Any = type_sequence_label_size _snake_case : List[str] = initializer_range _snake_case : Union[str, Any] = out_features _snake_case : Dict = num_labels _snake_case : int = scope _snake_case : Dict = num_stages def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Optional[int] = None if self.use_labels: _snake_case : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) _snake_case : Tuple = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels, num_stages=self.num_stages, hidden_sizes=self.hidden_sizes, depths=self.depths, is_training=self.is_training, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, out_features=self.out_features, ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config(), hidden_size=512, pool_scales=[1, 2, 3, 6], use_auxiliary_head=a_, auxiliary_loss_weight=0.4, auxiliary_in_channels=40, auxiliary_channels=256, auxiliary_num_convs=1, auxiliary_concat_input=a_, loss_ignore_index=255, num_labels=self.num_labels, ) def UpperCamelCase_ ( self: Tuple, a_: List[Any], a_: Dict, a_: Tuple ): '''simple docstring''' _snake_case : List[Any] = UperNetForSemanticSegmentation(config=a_ ) model.to(a_ ) model.eval() _snake_case : Tuple = model(a_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Any = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : List[Any] = config_and_inputs _snake_case : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase__ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = UperNetModelTester(self ) _snake_case : Dict = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Dict = model_class(a_ ) _snake_case : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Tuple = [*signature.parameters.keys()] _snake_case : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1], a_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not have a base model""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not have a base model""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' pass def UpperCamelCase_ ( self: str ): '''simple docstring''' def check_hidden_states_output(a_: Dict, a_: List[str], a_: Optional[int] ): _snake_case : Optional[Any] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): _snake_case : Any = model(**self._prepare_for_class(a_, a_ ) ) _snake_case : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case : List[str] = self.model_tester.num_stages self.assertEqual(len(a_ ), expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) _snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : int = True check_hidden_states_output(a_, a_, a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : Optional[int] = True check_hidden_states_output(a_, a_, a_ ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Tuple = _config_zero_init(a_ ) _snake_case : Dict = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _snake_case : Optional[int] = model_class(config=a_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' pass @slow def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : int = UperNetForSemanticSegmentation.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Union[str, Any] = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) _snake_case : List[Any] = Image.open(snake_case__ ).convert("""RGB""" ) return image @require_torch @require_vision @slow class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : str = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) _snake_case : Any = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(a_ ) _snake_case : Dict = prepare_img() _snake_case : str = processor(images=a_, return_tensors="""pt""" ).to(a_ ) with torch.no_grad(): _snake_case : Tuple = model(**a_ ) _snake_case : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape, a_ ) _snake_case : int = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], a_, atol=1E-4 ) ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) _snake_case : Optional[int] = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(a_ ) _snake_case : List[str] = prepare_img() _snake_case : Tuple = processor(images=a_, return_tensors="""pt""" ).to(a_ ) with torch.no_grad(): _snake_case : Optional[Any] = model(**a_ ) _snake_case : Union[str, Any] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape, a_ ) _snake_case : Optional[Any] = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], a_, atol=1E-4 ) )
28
0
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _snake_case : Dict = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
717
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path A_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) A_ = [ord(letter) for letter in string.ascii_lowercase] A_ = {ord(char) for char in VALID_CHARS} A_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : tuple[int, ...] ): """simple docstring""" _snake_case : str = "" _snake_case : int _snake_case : int _snake_case : int for keychar, cipherchar in zip(cycle(snake_case__ ) , snake_case__ ): _snake_case : List[str] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case__ ) return decoded def UpperCAmelCase__ (snake_case__ : list[int] ): """simple docstring""" _snake_case : list[str] = [] for key in product(snake_case__ , repeat=3 ): _snake_case : List[Any] = try_key(snake_case__ , snake_case__ ) if encoded is not None: possibles.append(snake_case__ ) return possibles def UpperCAmelCase__ (snake_case__ : list[str] , snake_case__ : str ): """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def UpperCAmelCase__ (snake_case__ : str = "p059_cipher.txt" ): """simple docstring""" _snake_case : list[int] _snake_case : list[str] _snake_case : str _snake_case : str _snake_case : str = Path(snake_case__ ).parent.joinpath(snake_case__ ).read_text(encoding="""utf-8""" ) _snake_case : List[Any] = [int(snake_case__ ) for number in data.strip().split(""",""" )] _snake_case : Optional[Any] = filter_valid_chars(snake_case__ ) for common_word in COMMON_WORDS: _snake_case : Union[str, Any] = filter_common_word(snake_case__ , snake_case__ ) if len(snake_case__ ) == 1: break _snake_case : Optional[int] = possibles[0] return sum(ord(snake_case__ ) for char in decoded_text ) if __name__ == "__main__": print(F'''{solution() = }''')
28
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = StableDiffusionXLImgaImgPipeline lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} lowercase__ = PipelineTesterMixin.required_optional_params - {"latents"} lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Any = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D"""), up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D"""), attention_head_dim=(2, 4), use_linear_projection=a_, addition_embed_type="""text_time""", addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, cross_attention_dim=64, ) _snake_case : List[str] = EulerDiscreteScheduler( beta_start=0.00_085, beta_end=0.012, steps_offset=1, beta_schedule="""scaled_linear""", timestep_spacing="""leading""", ) torch.manual_seed(0 ) _snake_case : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) _snake_case : Union[str, Any] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act="""gelu""", projection_dim=32, ) _snake_case : Dict = CLIPTextModel(a_ ) _snake_case : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""", local_files_only=a_ ) _snake_case : Tuple = CLIPTextModelWithProjection(a_ ) _snake_case : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""", local_files_only=a_ ) _snake_case : Union[str, Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def UpperCamelCase_ ( self: Union[str, Any], a_: str, a_: Dict=0 ): '''simple docstring''' _snake_case : int = floats_tensor((1, 3, 32, 32), rng=random.Random(a_ ) ).to(a_ ) _snake_case : Optional[int] = image / 2 + 0.5 if str(a_ ).startswith("""mps""" ): _snake_case : Optional[int] = torch.manual_seed(a_ ) else: _snake_case : str = torch.Generator(device=a_ ).manual_seed(a_ ) _snake_case : str = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.75, } return inputs def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator _snake_case : Tuple = self.get_dummy_components() _snake_case : List[Any] = StableDiffusionXLImgaImgPipeline(**a_ ) _snake_case : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _snake_case : str = self.get_dummy_inputs(a_ ) _snake_case : List[Any] = sd_pipe(**a_ ).images _snake_case : int = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case : List[Any] = np.array([0.4_656, 0.4_840, 0.4_439, 0.6_698, 0.5_574, 0.4_524, 0.5_799, 0.5_943, 0.5_165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCamelCase_ ( self: str ): '''simple docstring''' pass def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Optional[Any] = self.get_dummy_components() _snake_case : Tuple = StableDiffusionXLImgaImgPipeline(**a_ ) _snake_case : Union[str, Any] = sd_pipe.to(a_ ) _snake_case : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) # forward without prompt embeds _snake_case : str = self.get_dummy_inputs(a_ ) _snake_case : Any = 3 * ["""this is a negative prompt"""] _snake_case : Optional[Any] = negative_prompt _snake_case : Optional[Any] = 3 * [inputs["""prompt"""]] _snake_case : Any = sd_pipe(**a_ ) _snake_case : List[str] = output.images[0, -3:, -3:, -1] # forward with prompt embeds _snake_case : Optional[int] = self.get_dummy_inputs(a_ ) _snake_case : Any = 3 * ["""this is a negative prompt"""] _snake_case : List[str] = 3 * [inputs.pop("""prompt""" )] ( _snake_case ) : str = sd_pipe.encode_prompt(a_, negative_prompt=a_ ) _snake_case : Any = sd_pipe( **a_, prompt_embeds=a_, negative_prompt_embeds=a_, pooled_prompt_embeds=a_, negative_pooled_prompt_embeds=a_, ) _snake_case : Optional[Any] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self: List[str], a_: str, a_: Dict="cpu", a_: str=torch.floataa, a_: str=0 ): '''simple docstring''' _snake_case : str = torch.Generator(device=a_ ).manual_seed(a_ ) _snake_case : Any = np.random.RandomState(a_ ).standard_normal((1, 4, 64, 64) ) _snake_case : str = torch.from_numpy(a_ ).to(device=a_, dtype=a_ ) _snake_case : int = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : str = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) _snake_case : int = self.get_inputs(a_ ) _snake_case : Dict = pipe(**a_ ).images _snake_case : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _snake_case : Optional[int] = np.array([0.49_493, 0.47_896, 0.40_798, 0.54_214, 0.53_212, 0.48_202, 0.47_656, 0.46_329, 0.48_506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
718
"""simple docstring""" from ...processing_utils import ProcessorMixin class lowercase( __a ): '''simple docstring''' lowercase__ = ["image_processor", "feature_extractor"] lowercase__ = "TvltImageProcessor" lowercase__ = "TvltFeatureExtractor" def __init__( self: Dict, a_: Union[str, Any], a_: Union[str, Any] ): '''simple docstring''' super().__init__(image_processor=a_, feature_extractor=a_ ) _snake_case : Any = image_processor _snake_case : Dict = feature_extractor def __call__( self: int, a_: str=None, a_: Tuple=None, a_: Dict=None, a_: str=None, a_: Optional[int]=False, a_: Tuple=False, *a_: List[str], **a_: int, ): '''simple docstring''' if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) _snake_case : Optional[int] = None if images is not None: _snake_case : Tuple = self.image_processor(a_, mask_pixel=a_, *a_, **a_ ) if images_mixed is not None: _snake_case : Optional[int] = self.image_processor(a_, is_mixed=a_, *a_, **a_ ) if audio is not None: _snake_case : Any = self.feature_extractor( a_, *a_, sampling_rate=a_, mask_audio=a_, **a_ ) _snake_case : List[str] = {} if audio is not None: output_dict.update(a_ ) if images is not None: output_dict.update(a_ ) if images_mixed_dict is not None: output_dict.update(a_ ) return output_dict @property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Dict = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
28
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available A_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''BartphoTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
719
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A_ = '''pt''' elif is_tf_available(): A_ = '''tf''' else: A_ = '''jax''' class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ByTaTokenizer lowercase__ = False def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' super().setUp() _snake_case : List[str] = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def UpperCamelCase_ ( self: List[Any], **a_: int ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **a_ ) def UpperCamelCase_ ( self: Optional[Any], a_: Optional[Any], a_: List[Any]=False, a_: int=20, a_: Union[str, Any]=5 ): '''simple docstring''' _snake_case : List[Any] = [] for i in range(len(a_ ) ): try: _snake_case : Optional[Any] = tokenizer.decode([i], clean_up_tokenization_spaces=a_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _snake_case : str = list(filter(lambda a_ : re.match(r"""^[ a-zA-Z]+$""", t[1] ), a_ ) ) _snake_case : List[Any] = list(filter(lambda a_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=a_ ), a_ ) ) if max_length is not None and len(a_ ) > max_length: _snake_case : Tuple = toks[:max_length] if min_length is not None and len(a_ ) < min_length and len(a_ ) > 0: while len(a_ ) < min_length: _snake_case : List[str] = toks + toks # toks_str = [t[1] for t in toks] _snake_case : Tuple = [t[0] for t in toks] # Ensure consistency _snake_case : Optional[Any] = tokenizer.decode(a_, clean_up_tokenization_spaces=a_ ) if " " not in output_txt and len(a_ ) > 1: _snake_case : Dict = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=a_ ) + """ """ + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=a_ ) ) if with_prefix_space: _snake_case : Union[str, Any] = """ """ + output_txt _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) return output_txt, output_ids def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[int] = self.ta_base_tokenizer _snake_case : Optional[Any] = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) _snake_case : int = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""], batch_without_eos_added["""input_ids"""] ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[str] = self.ta_base_tokenizer _snake_case : Tuple = """Unicode €.""" _snake_case : List[Any] = tokenizer(a_ ) _snake_case : Tuple = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["""input_ids"""], a_ ) # decoding _snake_case : Tuple = tokenizer.decode(a_ ) self.assertEqual(a_, """Unicode €.</s>""" ) _snake_case : Tuple = tokenizer("""e è é ê ë""" ) _snake_case : List[Any] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["""input_ids"""], a_ ) # decoding _snake_case : int = tokenizer.decode(a_ ) self.assertEqual(a_, """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ), """e è é ê ë</s>""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Dict = self.ta_base_tokenizer _snake_case : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off _snake_case : Union[str, Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on _snake_case : int = tokenizer(a_, padding=a_, return_tensors=a_ ) self.assertIsInstance(a_, a_ ) if FRAMEWORK != "jax": _snake_case : List[str] = list(batch.input_ids.numpy()[0] ) else: _snake_case : Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(a_, a_ ) self.assertEqual((2, 37), batch.input_ids.shape ) self.assertEqual((2, 37), batch.attention_mask.shape ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : List[Any] = self.ta_base_tokenizer _snake_case : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _snake_case : Tuple = tokenizer(a_, padding=a_, return_tensors=a_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""", a_ ) self.assertIn("""attention_mask""", a_ ) self.assertNotIn("""decoder_input_ids""", a_ ) self.assertNotIn("""decoder_attention_mask""", a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Union[str, Any] = self.ta_base_tokenizer _snake_case : Dict = [ """Summary of the text.""", """Another summary.""", ] _snake_case : Optional[int] = tokenizer( text_target=a_, max_length=32, padding="""max_length""", truncation=a_, return_tensors=a_ ) self.assertEqual(32, targets["""input_ids"""].shape[1] ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : int = self.ta_base_tokenizer _snake_case : Optional[int] = ["""A long paragraph for summarization. </s>"""] _snake_case : Dict = ["""Summary of the text. </s>"""] # fmt: off _snake_case : Optional[int] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] _snake_case : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on _snake_case : Optional[Any] = tokenizer(a_, text_target=a_ ) self.assertEqual(a_, batch["""input_ids"""][0] ) self.assertEqual(a_, batch["""labels"""][0] ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test _snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _snake_case : List[str] = tempfile.mkdtemp() _snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running""" _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) _snake_case : List[Any] = tokenizer.__class__.from_pretrained(a_ ) _snake_case : Dict = after_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) shutil.rmtree(a_ ) _snake_case : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _snake_case : Union[str, Any] = tempfile.mkdtemp() _snake_case : List[Any] = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) _snake_case : Optional[Any] = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) _snake_case : Optional[Any] = tokenizer.__class__.from_pretrained(a_ ) _snake_case : str = after_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) self.assertIn("""new_additional_special_token""", after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) _snake_case : Optional[int] = tokenizer.__class__.from_pretrained(a_, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(a_ ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a_ ) with open(os.path.join(a_, """special_tokens_map.json""" ), encoding="""utf-8""" ) as json_file: _snake_case : Union[str, Any] = json.load(a_ ) with open(os.path.join(a_, """tokenizer_config.json""" ), encoding="""utf-8""" ) as json_file: _snake_case : List[Any] = json.load(a_ ) _snake_case : int = [f"<extra_id_{i}>" for i in range(125 )] _snake_case : Optional[int] = added_tokens_extra_ids + [ """an_additional_special_token""" ] _snake_case : Dict = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(a_, """special_tokens_map.json""" ), """w""", encoding="""utf-8""" ) as outfile: json.dump(a_, a_ ) with open(os.path.join(a_, """tokenizer_config.json""" ), """w""", encoding="""utf-8""" ) as outfile: json.dump(a_, a_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case : Optional[int] = tokenizer_class.from_pretrained( a_, ) self.assertIn( """an_additional_special_token""", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case : Union[str, Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""", lstrip=a_ )] _snake_case : List[Any] = tokenizer_class.from_pretrained( a_, additional_special_tokens=a_, ) self.assertIn("""a_new_additional_special_token""", tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ), ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a_ ) _snake_case : Optional[Any] = tokenizer_class.from_pretrained(a_ ) self.assertTrue(tokenizer.decode([255] ) == """""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.get_tokenizers(fast=a_, do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : Dict = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] _snake_case : List[Any] = tokenizer.convert_tokens_to_string(a_ ) self.assertIsInstance(a_, a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : Optional[int] = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] _snake_case : Any = 0 _snake_case : Union[str, Any] = tokenizer.convert_ids_to_tokens( a_, skip_special_tokens=a_ ) for attr in attributes_list: setattr(a_, attr + """_id""", a_ ) self.assertEqual(getattr(a_, a_ ), a_ ) self.assertEqual(getattr(a_, attr + """_id""" ), a_ ) setattr(a_, attr + """_id""", a_ ) self.assertEqual(getattr(a_, a_ ), a_ ) self.assertEqual(getattr(a_, attr + """_id""" ), a_ ) setattr(a_, """additional_special_tokens_ids""", [] ) self.assertListEqual(getattr(a_, """additional_special_tokens""" ), [] ) self.assertListEqual(getattr(a_, """additional_special_tokens_ids""" ), [] ) setattr(a_, """additional_special_tokens_ids""", [token_id_to_test_setters] ) self.assertListEqual(getattr(a_, """additional_special_tokens""" ), [token_to_test_setters] ) self.assertListEqual(getattr(a_, """additional_special_tokens_ids""" ), [token_id_to_test_setters] )
28
0
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class lowercase: def __init__( self: List[Any], a_: str = "cpu", a_: str = "openai/clip-vit-large-patch14" ): '''simple docstring''' _snake_case : Optional[int] = device _snake_case : str = CLIPTokenizerFast.from_pretrained(a_ ) _snake_case : Union[str, Any] = [0.48_145_466, 0.4_578_275, 0.40_821_073] _snake_case : Optional[int] = [0.26_862_954, 0.26_130_258, 0.27_577_711] _snake_case : str = torchvision.transforms.Normalize(self.image_mean, self.image_std ) _snake_case : Optional[int] = torchvision.transforms.Resize(224 ) _snake_case : str = torchvision.transforms.CenterCrop(224 ) def UpperCamelCase_ ( self: List[str], a_: str ): '''simple docstring''' _snake_case : Optional[int] = self.resize(a_ ) _snake_case : List[Any] = self.center_crop(a_ ) _snake_case : Optional[Any] = self.normalize(a_ ) return images def __call__( self: Any, a_: Optional[int]=None, a_: str=None, **a_: str ): '''simple docstring''' _snake_case : Optional[int] = self.tokenizer(text=a_, **a_ ) _snake_case : Any = self.preprocess_img(a_ ) _snake_case : Union[str, Any] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class lowercase( nn.Module ): def __init__( self: List[Any], a_: List[Any]=10, a_: Optional[Any]=0.01, a_: List[str]=None, a_: str=None, a_: Any=None, a_: Tuple=None, a_: List[str]=None, a_: List[str]=None, a_: str=False, a_: List[str]=True, a_: Any="image", a_: Optional[Any]=True, a_: Dict=False, a_: List[str]=False, a_: Optional[int]=False, ): '''simple docstring''' super().__init__() _snake_case : int = None _snake_case : List[str] = device if device else get_device() if vqgan: _snake_case : Any = vqgan else: _snake_case : Optional[Any] = load_vqgan(self.device, conf_path=a_, ckpt_path=a_ ) self.vqgan.eval() if clip: _snake_case : Tuple = clip else: _snake_case : Optional[Any] = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) _snake_case : List[str] = ProcessorGradientFlow(device=self.device ) _snake_case : Union[str, Any] = iterations _snake_case : Dict = lr _snake_case : Optional[int] = log _snake_case : List[str] = make_grid _snake_case : Union[str, Any] = return_val _snake_case : List[str] = quantize _snake_case : List[str] = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self: Tuple, a_: str=None, a_: Dict=None, a_: Dict=5, a_: Dict=True ): '''simple docstring''' _snake_case : Dict = [] if output_path is None: _snake_case : Tuple = """./animation.gif""" if input_path is None: _snake_case : Any = self.save_path _snake_case : Optional[int] = sorted(glob(input_path + """/*""" ) ) if not len(a_ ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(a_ ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) _snake_case : List[Any] = total_duration / len(a_ ) _snake_case : Optional[Any] = [frame_duration] * len(a_ ) if extend_frames: _snake_case : Optional[int] = 1.5 _snake_case : int = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(a_ ) ) imageio.mimsave(a_, a_, duration=a_ ) print(f"gif saved to {output_path}" ) def UpperCamelCase_ ( self: str, a_: Tuple=None, a_: Optional[Any]=None ): '''simple docstring''' if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError _snake_case : int = preprocess(Image.open(a_ ), target_image_size=256 ).to(self.device ) _snake_case : int = preprocess_vqgan(a_ ) _snake_case : List[Any] = self.vqgan.encode(a_ ) return z def UpperCamelCase_ ( self: Union[str, Any], a_: Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.latent.detach().requires_grad_() _snake_case : Tuple = base_latent + transform_vector if self.quantize: _snake_case : Any = self.vqgan.quantize(a_ ) else: _snake_case : List[Any] = trans_latent return self.vqgan.decode(a_ ) def UpperCamelCase_ ( self: List[Any], a_: Any, a_: Union[str, Any], a_: Dict=None ): '''simple docstring''' _snake_case : Tuple = self.clip_preprocessor(text=a_, images=a_, return_tensors="""pt""", padding=a_ ) _snake_case : Any = self.clip(**a_ ) _snake_case : str = clip_outputs.logits_per_image if weights is not None: _snake_case : Any = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self: Any, a_: Any, a_: List[str], a_: Dict ): '''simple docstring''' _snake_case : List[Any] = self._get_clip_similarity(pos_prompts["""prompts"""], a_, weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: _snake_case : List[str] = self._get_clip_similarity(neg_prompts["""prompts"""], a_, weights=neg_prompts["""weights"""] ) else: _snake_case : Tuple = torch.tensor([1], device=self.device ) _snake_case : int = -torch.log(a_ ) + torch.log(a_ ) return loss def UpperCamelCase_ ( self: Optional[Any], a_: Tuple, a_: Union[str, Any], a_: List[str] ): '''simple docstring''' _snake_case : Tuple = torch.randn_like(self.latent, requires_grad=a_, device=self.device ) _snake_case : Dict = torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _snake_case : str = self._add_vector(a_ ) _snake_case : List[Any] = loop_post_process(a_ ) _snake_case : List[Any] = self._get_CLIP_loss(a_, a_, a_ ) print("""CLIP loss""", a_ ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=a_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self: int, a_: Any, a_: Union[str, Any], a_: Optional[int] ): '''simple docstring''' wandb.init(reinit=a_, project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: _snake_case : Any = Image.open(a_ ) _snake_case : str = image.resize((256, 256) ) wandb.log("""Original Image""", wandb.Image(a_ ) ) def UpperCamelCase_ ( self: str, a_: List[Any] ): '''simple docstring''' if not prompts: return [] _snake_case : List[str] = [] _snake_case : Tuple = [] if isinstance(a_, a_ ): _snake_case : Union[str, Any] = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(a_, (tuple, list) ): _snake_case : List[Any] = prompt[0] _snake_case : Optional[Any] = float(prompt[1] ) elif ":" in prompt: _snake_case : List[Any] = prompt.split(""":""" ) _snake_case : str = float(a_ ) else: _snake_case : int = prompt _snake_case : Union[str, Any] = 1.0 processed_prompts.append(a_ ) weights.append(a_ ) return { "prompts": processed_prompts, "weights": torch.tensor(a_, device=self.device ), } def UpperCamelCase_ ( self: Dict, a_: List[Any], a_: List[Any]=None, a_: Optional[Any]=None, a_: Optional[Any]=True, a_: Dict=False, a_: Optional[Any]=True, a_: Optional[Any]=True, a_: Any=None, ): '''simple docstring''' if image_path: _snake_case : Union[str, Any] = self._get_latent(a_ ) else: _snake_case : Any = torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(a_, a_, a_ ) assert pos_prompts, "You must provide at least one positive prompt." _snake_case : str = self.process_prompts(a_ ) _snake_case : Dict = self.process_prompts(a_ ) if save_final and save_path is None: _snake_case : Any = os.path.join("""./outputs/""", """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(a_ ): os.makedirs(a_ ) else: _snake_case : List[Any] = save_path + """_""" + get_timestamp() os.makedirs(a_ ) _snake_case : Optional[Any] = save_path _snake_case : List[Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(a_ ) ) _snake_case : List[Any] = loop_post_process(a_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(a_, a_, a_ ) ): if show_intermediate: show_pil(a_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}.png" ) ) if self.log: wandb.log({"""Image""": wandb.Image(a_ )} ) if show_final: show_pil(a_ ) if save_final: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}_final.png" ) )
720
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class lowercase( __a ): '''simple docstring''' @staticmethod @abstractmethod def UpperCamelCase_ ( a_: ArgumentParser ): '''simple docstring''' raise NotImplementedError() @abstractmethod def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' raise NotImplementedError()
28
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ = { '''configuration_longformer''': [ '''LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongformerConfig''', '''LongformerOnnxConfig''', ], '''tokenization_longformer''': ['''LongformerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''LongformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongformerForMaskedLM''', '''LongformerForMultipleChoice''', '''LongformerForQuestionAnswering''', '''LongformerForSequenceClassification''', '''LongformerForTokenClassification''', '''LongformerModel''', '''LongformerPreTrainedModel''', '''LongformerSelfAttention''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLongformerForMaskedLM''', '''TFLongformerForMultipleChoice''', '''TFLongformerForQuestionAnswering''', '''TFLongformerForSequenceClassification''', '''TFLongformerForTokenClassification''', '''TFLongformerModel''', '''TFLongformerPreTrainedModel''', '''TFLongformerSelfAttention''', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
721
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase( __a ): '''simple docstring''' lowercase__ = "roformer" def __init__( self: List[str], a_: Tuple=50_000, a_: Optional[Any]=None, a_: List[str]=768, a_: Union[str, Any]=12, a_: Optional[int]=12, a_: Optional[Any]=3_072, a_: List[str]="gelu", a_: List[str]=0.1, a_: Tuple=0.1, a_: Optional[int]=1_536, a_: Any=2, a_: Optional[int]=0.02, a_: Tuple=1E-12, a_: Dict=0, a_: str=False, a_: Dict=True, **a_: Dict, ): '''simple docstring''' super().__init__(pad_token_id=a_, **a_ ) _snake_case : int = vocab_size _snake_case : int = hidden_size if embedding_size is None else embedding_size _snake_case : Dict = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : Any = num_attention_heads _snake_case : Dict = hidden_act _snake_case : Optional[int] = intermediate_size _snake_case : List[Any] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = max_position_embeddings _snake_case : Tuple = type_vocab_size _snake_case : List[Any] = initializer_range _snake_case : List[Any] = layer_norm_eps _snake_case : Optional[Any] = rotary_value _snake_case : List[str] = use_cache class lowercase( __a ): '''simple docstring''' @property def UpperCamelCase_ ( self: Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : str = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : List[str] = {0: """batch""", 1: """sequence"""} _snake_case : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
28
0
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int = 10_00 ): """simple docstring""" return sum(e for e in range(3 , snake_case__ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F'''{solution() = }''')
700
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Union[str, Any]=1 ): """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : List[Any]=0 ): """simple docstring""" _snake_case : Optional[Any] = [] for old_item in old_list: _snake_case : Union[str, Any] = old_item.replace("""in_layers.0""" , """norm1""" ) _snake_case : List[Any] = new_item.replace("""in_layers.2""" , """conv1""" ) _snake_case : Tuple = new_item.replace("""out_layers.0""" , """norm2""" ) _snake_case : Dict = new_item.replace("""out_layers.3""" , """conv2""" ) _snake_case : int = new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) _snake_case : Optional[Any] = new_item.replace("""skip_connection""" , """conv_shortcut""" ) _snake_case : str = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : Dict=0 ): """simple docstring""" _snake_case : Dict = [] for old_item in old_list: _snake_case : Dict = old_item _snake_case : int = new_item.replace("""norm.weight""" , """group_norm.weight""" ) _snake_case : str = new_item.replace("""norm.bias""" , """group_norm.bias""" ) _snake_case : Optional[Any] = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) _snake_case : Optional[Any] = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) _snake_case : Optional[Any] = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : str=None , snake_case__ : str=None , snake_case__ : List[str]=None ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _snake_case : Union[str, Any] = old_checkpoint[path] _snake_case : Optional[int] = old_tensor.shape[0] // 3 _snake_case : List[Any] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) _snake_case : Union[str, Any] = old_tensor.shape[0] // config["""num_head_channels"""] // 3 _snake_case : Any = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _snake_case , _snake_case , _snake_case : List[str] = old_tensor.split(channels // num_heads , dim=1 ) _snake_case : Union[str, Any] = query.reshape(snake_case__ ) _snake_case : Tuple = key.reshape(snake_case__ ) _snake_case : Any = value.reshape(snake_case__ ) for path in paths: _snake_case : List[Any] = path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _snake_case : Union[str, Any] = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) _snake_case : str = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) _snake_case : Any = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: _snake_case : int = new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _snake_case : Dict = old_checkpoint[path["""old"""]][:, :, 0] else: _snake_case : Optional[Any] = old_checkpoint[path["""old"""]] def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : List[str] ): """simple docstring""" _snake_case : int = {} _snake_case : Tuple = checkpoint["""time_embed.0.weight"""] _snake_case : List[str] = checkpoint["""time_embed.0.bias"""] _snake_case : List[str] = checkpoint["""time_embed.2.weight"""] _snake_case : Tuple = checkpoint["""time_embed.2.bias"""] _snake_case : Dict = checkpoint["""input_blocks.0.0.weight"""] _snake_case : List[Any] = checkpoint["""input_blocks.0.0.bias"""] _snake_case : List[Any] = checkpoint["""out.0.weight"""] _snake_case : Any = checkpoint["""out.0.bias"""] _snake_case : Any = checkpoint["""out.2.weight"""] _snake_case : List[str] = checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only _snake_case : List[str] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) _snake_case : Any = { layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key] for layer_id in range(snake_case__ ) } # Retrieves the keys for the middle blocks only _snake_case : Optional[int] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) _snake_case : Optional[int] = { layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key] for layer_id in range(snake_case__ ) } # Retrieves the keys for the output blocks only _snake_case : str = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) _snake_case : List[Any] = { layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key] for layer_id in range(snake_case__ ) } for i in range(1 , snake_case__ ): _snake_case : Union[str, Any] = (i - 1) // (config["""num_res_blocks"""] + 1) _snake_case : int = (i - 1) % (config["""num_res_blocks"""] + 1) _snake_case : List[str] = [key for key in input_blocks[i] if F"input_blocks.{i}.0" in key] _snake_case : str = [key for key in input_blocks[i] if F"input_blocks.{i}.1" in key] if F"input_blocks.{i}.0.op.weight" in checkpoint: _snake_case : Union[str, Any] = checkpoint[ F"input_blocks.{i}.0.op.weight" ] _snake_case : Dict = checkpoint[ F"input_blocks.{i}.0.op.bias" ] continue _snake_case : Optional[int] = renew_resnet_paths(snake_case__ ) _snake_case : int = {"""old""": F"input_blocks.{i}.0", """new""": F"down_blocks.{block_id}.resnets.{layer_in_block_id}"} _snake_case : Tuple = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path, resnet_op] , config=snake_case__ ) if len(snake_case__ ): _snake_case : str = renew_attention_paths(snake_case__ ) _snake_case : List[str] = { """old""": F"input_blocks.{i}.1", """new""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}", } _snake_case : Optional[int] = { F"input_blocks.{i}.1.qkv.bias": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"input_blocks.{i}.1.qkv.weight": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=snake_case__ , config=snake_case__ , ) _snake_case : int = middle_blocks[0] _snake_case : List[str] = middle_blocks[1] _snake_case : Any = middle_blocks[2] _snake_case : Dict = renew_resnet_paths(snake_case__ ) assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ ) _snake_case : Any = renew_resnet_paths(snake_case__ ) assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ ) _snake_case : Dict = renew_attention_paths(snake_case__ ) _snake_case : Tuple = { """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , attention_paths_to_split=snake_case__ , config=snake_case__ ) for i in range(snake_case__ ): _snake_case : Optional[Any] = i // (config["""num_res_blocks"""] + 1) _snake_case : Dict = i % (config["""num_res_blocks"""] + 1) _snake_case : List[str] = [shave_segments(snake_case__ , 2 ) for name in output_blocks[i]] _snake_case : Any = {} for layer in output_block_layers: _snake_case , _snake_case : Any = layer.split(""".""" )[0], shave_segments(snake_case__ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(snake_case__ ) else: _snake_case : str = [layer_name] if len(snake_case__ ) > 1: _snake_case : Dict = [key for key in output_blocks[i] if F"output_blocks.{i}.0" in key] _snake_case : List[str] = [key for key in output_blocks[i] if F"output_blocks.{i}.1" in key] _snake_case : List[Any] = renew_resnet_paths(snake_case__ ) _snake_case : int = renew_resnet_paths(snake_case__ ) _snake_case : Optional[Any] = {"""old""": F"output_blocks.{i}.0", """new""": F"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _snake_case : str = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) _snake_case : Any = checkpoint[ F"output_blocks.{i}.{index}.conv.weight" ] _snake_case : Optional[int] = checkpoint[ F"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(snake_case__ ) == 2: _snake_case : Any = [] if len(snake_case__ ): _snake_case : str = renew_attention_paths(snake_case__ ) _snake_case : str = { """old""": F"output_blocks.{i}.1", """new""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}", } _snake_case : int = { F"output_blocks.{i}.1.qkv.bias": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"output_blocks.{i}.1.qkv.weight": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=snake_case__ , ) else: _snake_case : Optional[Any] = renew_resnet_paths(snake_case__ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: _snake_case : Optional[Any] = """.""".join(["""output_blocks""", str(snake_case__ ), path["""old"""]] ) _snake_case : Optional[int] = """.""".join(["""up_blocks""", str(snake_case__ ), """resnets""", str(snake_case__ ), path["""new"""]] ) _snake_case : Any = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') A_ = parser.parse_args() A_ = torch.load(args.checkpoint_path) with open(args.config_file) as f: A_ = json.loads(f.read()) A_ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] A_ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: A_ = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) A_ = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) A_ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
28
0
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) A_ = [ '''cross_validation.py''', '''gradient_accumulation.py''', '''local_sgd.py''', '''multi_process_metrics.py''', '''memory.py''', '''automatic_gradient_accumulation.py''', '''fsdp_with_peak_mem_tracking.py''', '''deepspeed_with_config_support.py''', '''megatron_lm_gpt_pretraining.py''', ] class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: List[Any], a_: str, a_: bool, a_: str = None, a_: list = None ): '''simple docstring''' _snake_case : List[Any] = None _snake_case : Union[str, Any] = os.path.abspath(os.path.join("""examples""", """by_feature""" ) ) _snake_case : List[Any] = os.path.abspath("""examples""" ) for item in os.listdir(a_ ): if item not in EXCLUDE_EXAMPLES: _snake_case : List[Any] = os.path.join(a_, a_ ) if os.path.isfile(a_ ) and ".py" in item_path: with self.subTest( tested_script=a_, feature_script=a_, tested_section="""main()""" if parser_only else """training_function()""", ): _snake_case : Dict = compare_against_test( os.path.join(a_, a_ ), a_, a_, a_ ) _snake_case : Any = """\n""".join(a_ ) if special_strings is not None: for string in special_strings: _snake_case : int = diff.replace(a_, """""" ) self.assertEqual(a_, """""" ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' self.one_complete_example("""complete_nlp_example.py""", a_ ) self.one_complete_example("""complete_nlp_example.py""", a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : List[str] = os.path.abspath(os.path.join("""examples""", """cv_example.py""" ) ) _snake_case : Optional[Any] = [ """ """ * 16 + """{\n\n""", """ """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""", """ """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""", """ """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""", """ """ * 20 + """\"epoch\": epoch,\n\n""", """ """ * 16 + """},\n\n""", """ """ * 16 + """step=epoch,\n""", """ """ * 12, """ """ * 8 + """for step, batch in enumerate(active_dataloader):\n""", ] self.one_complete_example("""complete_cv_example.py""", a_, a_, a_ ) self.one_complete_example("""complete_cv_example.py""", a_, a_, a_ ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class lowercase( __a ): '''simple docstring''' lowercase__ = False @classmethod def UpperCamelCase_ ( cls: Any ): '''simple docstring''' super().setUpClass() _snake_case : int = tempfile.mkdtemp() _snake_case : Any = os.path.join(cls._tmpdir, """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) _snake_case : Any = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def UpperCamelCase_ ( cls: Dict ): '''simple docstring''' super().tearDownClass() shutil.rmtree(cls._tmpdir ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Optional[Any] = f"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir, """epoch_0""" ) ) ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = f"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() _snake_case : List[str] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir, """step_2""" ) ) ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : str = f"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir, 'epoch_0' )}\n ".split() _snake_case : Optional[Any] = run_command(self._launch_args + testargs, return_stdout=a_ ) self.assertNotIn("""epoch 0:""", a_ ) self.assertIn("""epoch 1:""", a_ ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : List[Any] = f"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir, 'step_2' )}\n ".split() _snake_case : Dict = run_command(self._launch_args + testargs, return_stdout=a_ ) if torch.cuda.is_available(): _snake_case : Dict = torch.cuda.device_count() else: _snake_case : Optional[Any] = 1 if num_processes > 1: self.assertNotIn("""epoch 0:""", a_ ) self.assertIn("""epoch 1:""", a_ ) else: self.assertIn("""epoch 0:""", a_ ) self.assertIn("""epoch 1:""", a_ ) @slow def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = """ examples/by_feature/cross_validation.py --num_folds 2 """.split() with mock.patch.dict(os.environ, {"""TESTING_MOCKED_DATALOADERS""": """0"""} ): _snake_case : Optional[int] = run_command(self._launch_args + testargs, return_stdout=a_ ) _snake_case : List[Any] = re.findall("""({.+})""", a_ ) _snake_case : List[Any] = [r for r in results if """accuracy""" in r][-1] _snake_case : List[Any] = ast.literal_eval(a_ ) self.assertGreaterEqual(results["""accuracy"""], 0.75 ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : List[Any] = ["""examples/by_feature/multi_process_metrics.py"""] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ, {"""WANDB_MODE""": """offline"""} ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: _snake_case : Dict = f"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(a_, """tracking""" ) ) ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = ["""examples/by_feature/gradient_accumulation.py"""] run_command(self._launch_args + testargs ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Any = ["""examples/by_feature/local_sgd.py"""] run_command(self._launch_args + testargs )
701
"""simple docstring""" from typing import Any def UpperCAmelCase__ (snake_case__ : list ): """simple docstring""" if not input_list: return [] _snake_case : List[Any] = [input_list.count(snake_case__ ) for value in input_list] _snake_case : Optional[int] = max(snake_case__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(snake_case__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
28
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (snake_case__ : float , snake_case__ : float , snake_case__ : float ): """simple docstring""" if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
702
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''', '''BridgeTower/bridgetower-base-itm-mlm''': ( '''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json''' ), } class lowercase( __a ): '''simple docstring''' lowercase__ = "bridgetower_vision_model" def __init__( self: Tuple, a_: str=768, a_: Union[str, Any]=12, a_: List[str]=3, a_: Optional[int]=16, a_: List[Any]=288, a_: Optional[Any]=1, a_: Any=1E-05, a_: Dict=False, a_: Any=True, a_: int=False, **a_: int, ): '''simple docstring''' super().__init__(**a_ ) _snake_case : str = hidden_size _snake_case : int = num_hidden_layers _snake_case : Any = num_channels _snake_case : Union[str, Any] = patch_size _snake_case : Dict = image_size _snake_case : Optional[Any] = initializer_factor _snake_case : Any = layer_norm_eps _snake_case : int = stop_gradient _snake_case : Any = share_layernorm _snake_case : List[Any] = remove_last_layer @classmethod def UpperCamelCase_ ( cls: Union[str, Any], a_: Union[str, os.PathLike], **a_: Optional[Any] ): '''simple docstring''' _snake_case , _snake_case : List[Any] = cls.get_config_dict(a_, **a_ ) if config_dict.get("""model_type""" ) == "bridgetower": _snake_case : str = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a_, **a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "bridgetower_text_model" def __init__( self: str, a_: Dict=50_265, a_: List[Any]=768, a_: Union[str, Any]=12, a_: List[str]=12, a_: str=1, a_: Optional[Any]=3_072, a_: int="gelu", a_: int=0.1, a_: int=0.1, a_: Optional[int]=514, a_: Tuple=1, a_: Tuple=1E-05, a_: Optional[int]=1, a_: Union[str, Any]=0, a_: str=2, a_: Any="absolute", a_: List[Any]=True, **a_: Union[str, Any], ): '''simple docstring''' super().__init__(**a_ ) _snake_case : str = vocab_size _snake_case : Optional[int] = hidden_size _snake_case : Dict = num_hidden_layers _snake_case : Optional[int] = num_attention_heads _snake_case : Optional[int] = hidden_act _snake_case : List[Any] = initializer_factor _snake_case : Optional[int] = intermediate_size _snake_case : int = hidden_dropout_prob _snake_case : Tuple = attention_probs_dropout_prob _snake_case : List[str] = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : List[Any] = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Dict = use_cache _snake_case : int = pad_token_id _snake_case : Union[str, Any] = bos_token_id _snake_case : Union[str, Any] = eos_token_id @classmethod def UpperCamelCase_ ( cls: str, a_: Union[str, os.PathLike], **a_: int ): '''simple docstring''' _snake_case , _snake_case : Optional[int] = cls.get_config_dict(a_, **a_ ) if config_dict.get("""model_type""" ) == "bridgetower": _snake_case : Union[str, Any] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a_, **a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "bridgetower" def __init__( self: int, a_: List[str]=True, a_: Any="gelu", a_: List[Any]=768, a_: int=1, a_: Optional[int]=1E-05, a_: Tuple=False, a_: Optional[Any]="add", a_: List[str]=12, a_: Union[str, Any]=6, a_: int=False, a_: Any=False, a_: Dict=None, a_: Any=None, **a_: str, ): '''simple docstring''' _snake_case : str = kwargs.pop("""text_config_dict""", a_ ) _snake_case : Optional[Any] = kwargs.pop("""vision_config_dict""", a_ ) super().__init__(**a_ ) _snake_case : str = share_cross_modal_transformer_layers _snake_case : Any = hidden_act _snake_case : Union[str, Any] = hidden_size _snake_case : Union[str, Any] = initializer_factor _snake_case : Dict = layer_norm_eps _snake_case : Dict = share_link_tower_layers _snake_case : Optional[int] = link_tower_type _snake_case : Any = num_attention_heads _snake_case : int = num_hidden_layers _snake_case : int = tie_word_embeddings _snake_case : Optional[Any] = init_layernorm_from_vision_encoder if text_config is None: _snake_case : Optional[Any] = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: _snake_case : str = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) _snake_case : Any = BridgeTowerTextConfig(**a_ ) _snake_case : List[Any] = BridgeTowerVisionConfig(**a_ ) @classmethod def UpperCamelCase_ ( cls: Union[str, Any], a_: BridgeTowerTextConfig, a_: BridgeTowerVisionConfig, **a_: Optional[Any] ): '''simple docstring''' return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[int] = copy.deepcopy(self.__dict__ ) _snake_case : str = self.text_config.to_dict() _snake_case : List[str] = self.vision_config.to_dict() _snake_case : Tuple = self.__class__.model_type return output
28
0
"""simple docstring""" import sys import turtle def UpperCAmelCase__ (snake_case__ : tuple[float, float] , snake_case__ : tuple[float, float] ): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def UpperCAmelCase__ (snake_case__ : tuple[float, float] , snake_case__ : tuple[float, float] , snake_case__ : tuple[float, float] , snake_case__ : int , ): my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(snake_case__ , get_mid(snake_case__ , snake_case__ ) , get_mid(snake_case__ , snake_case__ ) , depth - 1 ) triangle(snake_case__ , get_mid(snake_case__ , snake_case__ ) , get_mid(snake_case__ , snake_case__ ) , depth - 1 ) triangle(snake_case__ , get_mid(snake_case__ , snake_case__ ) , get_mid(snake_case__ , snake_case__ ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) A_ = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') A_ = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
703
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCAmelCase__ (): """simple docstring""" _snake_case : Optional[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" _snake_case : Union[str, Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("""RGB""" ) return image def UpperCAmelCase__ (snake_case__ : Any ): """simple docstring""" _snake_case : str = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"visual_encoder.blocks.{i}.norm1.weight", F"vision_model.encoder.layers.{i}.layer_norm1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm1.bias", F"vision_model.encoder.layers.{i}.layer_norm1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.weight", F"vision_model.encoder.layers.{i}.layer_norm2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.bias", F"vision_model.encoder.layers.{i}.layer_norm2.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.qkv.weight", F"vision_model.encoder.layers.{i}.self_attn.qkv.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.weight", F"vision_model.encoder.layers.{i}.self_attn.projection.weight",) ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.bias", F"vision_model.encoder.layers.{i}.self_attn.projection.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.weight", F"vision_model.encoder.layers.{i}.mlp.fc1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.bias", F"vision_model.encoder.layers.{i}.mlp.fc1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.weight", F"vision_model.encoder.layers.{i}.mlp.fc2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.bias", F"vision_model.encoder.layers.{i}.mlp.fc2.bias") ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : Tuple ): """simple docstring""" _snake_case : Optional[Any] = dct.pop(snake_case__ ) _snake_case : Optional[int] = val def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : str ): """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _snake_case : Optional[int] = state_dict.pop(F"visual_encoder.blocks.{i}.attn.q_bias" ) _snake_case : Tuple = state_dict.pop(F"visual_encoder.blocks.{i}.attn.v_bias" ) # next, set bias in the state dict _snake_case : List[str] = torch.cat((q_bias, torch.zeros_like(snake_case__ , requires_grad=snake_case__ ), v_bias) ) _snake_case : Dict = qkv_bias def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Union[str, Any] ): """simple docstring""" _snake_case : List[Any] = 3_64 if """coco""" in model_name else 2_24 _snake_case : List[str] = BlipaVisionConfig(image_size=snake_case__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _snake_case : List[str] = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=snake_case__ ).to_dict() elif "opt-6.7b" in model_name: _snake_case : List[str] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=snake_case__ ).to_dict() elif "t5-xl" in model_name: _snake_case : Tuple = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _snake_case : List[Any] = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() _snake_case : int = BlipaConfig(vision_config=snake_case__ , text_config=snake_case__ ) return config, image_size @torch.no_grad() def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int=None , snake_case__ : str=False ): """simple docstring""" _snake_case : List[str] = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) _snake_case : str = tokenizer("""\n""" , add_special_tokens=snake_case__ ).input_ids[0] _snake_case , _snake_case : Dict = get_blipa_config(snake_case__ , eos_token_id=snake_case__ ) _snake_case : str = BlipaForConditionalGeneration(snake_case__ ).eval() _snake_case : int = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } _snake_case , _snake_case : List[Any] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) _snake_case : int = """cuda""" if torch.cuda.is_available() else """cpu""" _snake_case , _snake_case , _snake_case : Any = load_model_and_preprocess( name=snake_case__ , model_type=snake_case__ , is_eval=snake_case__ , device=snake_case__ ) original_model.eval() print("""Done!""" ) # update state dict keys _snake_case : Any = original_model.state_dict() _snake_case : Dict = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _snake_case : str = state_dict.pop(snake_case__ ) if key.startswith("""Qformer.bert""" ): _snake_case : str = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: _snake_case : Any = key.replace("""self""" , """attention""" ) if "opt_proj" in key: _snake_case : List[str] = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: _snake_case : Optional[Any] = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): _snake_case : List[Any] = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): _snake_case : List[Any] = key.replace("""t5""" , """language""" ) _snake_case : str = val # read in qv biases read_in_q_v_bias(snake_case__ , snake_case__ ) _snake_case , _snake_case : List[str] = hf_model.load_state_dict(snake_case__ , strict=snake_case__ ) assert len(snake_case__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _snake_case : Any = load_demo_image() _snake_case : str = vis_processors["""eval"""](snake_case__ ).unsqueeze(0 ).to(snake_case__ ) _snake_case : List[Any] = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(snake_case__ ) # create processor _snake_case : Any = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=snake_case__ , image_std=snake_case__ ) _snake_case : int = BlipaProcessor(image_processor=snake_case__ , tokenizer=snake_case__ ) _snake_case : Any = processor(images=snake_case__ , return_tensors="""pt""" ).pixel_values.to(snake_case__ ) # make sure processor creates exact same pixel values assert torch.allclose(snake_case__ , snake_case__ ) original_model.to(snake_case__ ) hf_model.to(snake_case__ ) with torch.no_grad(): if "opt" in model_name: _snake_case : str = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits _snake_case : int = hf_model(snake_case__ , snake_case__ ).logits else: _snake_case : str = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits _snake_case : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) _snake_case : Union[str, Any] = hf_model(snake_case__ , snake_case__ , labels=snake_case__ ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _snake_case : List[str] = torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=snake_case__ ) assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _snake_case : Union[str, Any] = torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=snake_case__ ) else: # cast to same type _snake_case : int = logits.dtype assert torch.allclose(original_logits.to(snake_case__ ) , snake_case__ , atol=1e-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) _snake_case : Any = """""" _snake_case : str = tokenizer(snake_case__ , return_tensors="""pt""" ).input_ids.to(snake_case__ ) _snake_case : Union[str, Any] = original_model.generate({"""image""": original_pixel_values} ) _snake_case : Tuple = hf_model.generate( snake_case__ , snake_case__ , do_sample=snake_case__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , snake_case__ ) _snake_case : Optional[Any] = input_ids.shape[1] _snake_case : int = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=snake_case__ ) _snake_case : Optional[Any] = [text.strip() for text in output_text] print("""HF generation:""" , snake_case__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(snake_case__ ) hf_model.save_pretrained(snake_case__ ) if push_to_hub: processor.push_to_hub(F"nielsr/{model_name}" ) hf_model.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() A_ = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) A_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
28
0
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A_ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ReformerTokenizer lowercase__ = ReformerTokenizerFast lowercase__ = True lowercase__ = False lowercase__ = True def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' super().setUp() _snake_case : Any = ReformerTokenizer(a_, keep_accents=a_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : str = """<s>""" _snake_case : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ), a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ), a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], """<unk>""" ) self.assertEqual(vocab_keys[1], """<s>""" ) self.assertEqual(vocab_keys[-1], """j""" ) self.assertEqual(len(a_ ), 1_000 ) def UpperCamelCase_ ( self: int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 1_000 ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' if not self.test_rust_tokenizer: return _snake_case : Union[str, Any] = self.get_tokenizer() _snake_case : Union[str, Any] = self.get_rust_tokenizer() _snake_case : Tuple = """I was born in 92000, and this is falsé.""" _snake_case : List[Any] = tokenizer.tokenize(a_ ) _snake_case : Optional[int] = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_, a_ ) _snake_case : Optional[int] = tokenizer.encode(a_, add_special_tokens=a_ ) _snake_case : Dict = rust_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) _snake_case : Tuple = self.get_rust_tokenizer() _snake_case : List[str] = tokenizer.encode(a_ ) _snake_case : List[str] = rust_tokenizer.encode(a_ ) self.assertListEqual(a_, a_ ) def UpperCamelCase_ ( self: Union[str, Any], a_: str=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): _snake_case : int = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) # Simple input _snake_case : List[Any] = """This is a simple input""" _snake_case : Union[str, Any] = ["""This is a simple input 1""", """This is a simple input 2"""] _snake_case : Union[str, Any] = ("""This is a simple input""", """This is a pair""") _snake_case : int = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a_, tokenizer_r.encode, a_, max_length=a_, padding="""max_length""" ) # Simple input self.assertRaises(a_, tokenizer_r.encode_plus, a_, max_length=a_, padding="""max_length""" ) # Simple input self.assertRaises( a_, tokenizer_r.batch_encode_plus, a_, max_length=a_, padding="""max_length""", ) # Pair input self.assertRaises(a_, tokenizer_r.encode, a_, max_length=a_, padding="""max_length""" ) # Pair input self.assertRaises(a_, tokenizer_r.encode_plus, a_, max_length=a_, padding="""max_length""" ) # Pair input self.assertRaises( a_, tokenizer_r.batch_encode_plus, a_, max_length=a_, padding="""max_length""", ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = ReformerTokenizer(a_, keep_accents=a_ ) _snake_case : List[str] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(a_, ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a_ ), [285, 46, 10, 170, 382], ) _snake_case : Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( a_, [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ], ) _snake_case : List[Any] = tokenizer.convert_tokens_to_ids(a_ ) self.assertListEqual( a_, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4], ) _snake_case : List[str] = tokenizer.convert_ids_to_tokens(a_ ) self.assertListEqual( a_, [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ], ) @cached_property def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' return ReformerTokenizer.from_pretrained("""google/reformer-crime-and-punishment""" ) @slow def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Dict = """Hello World!""" _snake_case : Tuple = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(a_, self.big_tokenizer.encode(a_ ) ) @slow def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[str] = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) _snake_case : List[Any] = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(a_, self.big_tokenizer.encode(a_ ) ) @require_torch @slow def UpperCamelCase_ ( self: str ): '''simple docstring''' import torch from transformers import ReformerConfig, ReformerModel # Build sequence _snake_case : Optional[int] = list(self.big_tokenizer.get_vocab().keys() )[:10] _snake_case : Tuple = """ """.join(a_ ) _snake_case : Union[str, Any] = self.big_tokenizer.encode_plus(a_, return_tensors="""pt""" ) _snake_case : List[Any] = self.big_tokenizer.batch_encode_plus([sequence, sequence], return_tensors="""pt""" ) _snake_case : List[str] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) _snake_case : Optional[Any] = encoded_sequence["""input_ids"""].shape _snake_case : Dict = ReformerModel(a_ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**a_ ) model(**a_ ) @slow def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Dict = {"""input_ids""": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 _snake_case : Tuple = [ """This is a very simple sentence.""", """The quick brown fox jumps over the lazy dog.""", ] self.tokenizer_integration_test_util( expected_encoding=a_, model_name="""google/reformer-crime-and-punishment""", revision="""0e6c3decb8211d49bf881013425dc8b0448b3f5a""", padding=a_, sequences=a_, )
704
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def UpperCAmelCase__ (snake_case__ : Optional[int] ): """simple docstring""" print("""Loading config file...""" ) def flatten_yaml_as_dict(snake_case__ : List[Any] , snake_case__ : Optional[Any]="" , snake_case__ : Tuple="." ): _snake_case : Union[str, Any] = [] for k, v in d.items(): _snake_case : List[str] = parent_key + sep + k if parent_key else k if isinstance(snake_case__ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(snake_case__ , snake_case__ , sep=snake_case__ ).items() ) else: items.append((new_key, v) ) return dict(snake_case__ ) _snake_case : Dict = argparse.Namespace() with open(snake_case__ , """r""" ) as yaml_file: try: _snake_case : List[Any] = yaml.load(snake_case__ , Loader=yaml.FullLoader ) _snake_case : Any = flatten_yaml_as_dict(snake_case__ ) for k, v in flat_cfg.items(): setattr(snake_case__ , snake_case__ , snake_case__ ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(snake_case__ , str(snake_case__ ) ) ) return config def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : Dict = MobileViTVaConfig() _snake_case : Optional[int] = False # dataset if task_name.startswith("""imagenet1k_""" ): _snake_case : Dict = 10_00 if int(task_name.strip().split("""_""" )[-1] ) == 3_84: _snake_case : Union[str, Any] = 3_84 else: _snake_case : Optional[Any] = 2_56 _snake_case : str = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): _snake_case : str = 2_10_00 if int(task_name.strip().split("""_""" )[-1] ) == 3_84: _snake_case : Dict = 3_84 else: _snake_case : Union[str, Any] = 2_56 _snake_case : Tuple = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): _snake_case : Tuple = 1_51 _snake_case : str = 5_12 _snake_case : List[Any] = """ade20k-id2label.json""" _snake_case : Union[str, Any] = True elif task_name.startswith("""voc_""" ): _snake_case : List[Any] = 21 _snake_case : List[str] = 5_12 _snake_case : int = """pascal-voc-id2label.json""" _snake_case : int = True # orig_config _snake_case : int = load_orig_config_file(snake_case__ ) assert getattr(snake_case__ , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model" _snake_case : str = getattr(snake_case__ , """model.classification.mitv2.width_multiplier""" , 1.0 ) assert ( getattr(snake_case__ , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _snake_case : int = getattr(snake_case__ , """model.classification.activation.name""" , """swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _snake_case : Tuple = getattr(snake_case__ , """model.segmentation.output_stride""" , 16 ) if "_deeplabv3" in task_name: _snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] ) _snake_case : Tuple = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_out_channels""" , 5_12 ) _snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 ) # id2label _snake_case : Union[str, Any] = """huggingface/label-files""" _snake_case : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) ) _snake_case : List[Any] = {int(snake_case__ ): v for k, v in idalabel.items()} _snake_case : Tuple = idalabel _snake_case : Any = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[Any] ): """simple docstring""" _snake_case : List[str] = dct.pop(snake_case__ ) _snake_case : List[Any] = val def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : int=False ): """simple docstring""" if base_model: _snake_case : Any = """""" else: _snake_case : Union[str, Any] = """mobilevitv2.""" _snake_case : Dict = [] for k in state_dict.keys(): if k[:8] == "encoder.": _snake_case : List[str] = k[8:] else: _snake_case : str = k if ".block." in k: _snake_case : Optional[int] = k_new.replace(""".block.""" , """.""" ) if ".conv." in k: _snake_case : Union[str, Any] = k_new.replace(""".conv.""" , """.convolution.""" ) if ".norm." in k: _snake_case : str = k_new.replace(""".norm.""" , """.normalization.""" ) if "conv_1." in k: _snake_case : int = k_new.replace("""conv_1.""" , F"{model_prefix}conv_stem." ) for i in [1, 2]: if F"layer_{i}." in k: _snake_case : Tuple = k_new.replace(F"layer_{i}." , F"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: _snake_case : Optional[Any] = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" ) if ".red_1x1." in k: _snake_case : Optional[Any] = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" ) for i in [3, 4, 5]: if F"layer_{i}.0." in k: _snake_case : Tuple = k_new.replace(F"layer_{i}.0." , F"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if F"layer_{i}.1.local_rep.0." in k: _snake_case : Any = k_new.replace(F"layer_{i}.1.local_rep.0." , F"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if F"layer_{i}.1.local_rep.1." in k: _snake_case : str = k_new.replace(F"layer_{i}.1.local_rep.1." , F"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: _snake_case : Optional[Any] = [0, 1] elif i == 4: _snake_case : Any = [0, 1, 2, 3] elif i == 5: _snake_case : List[Any] = [0, 1, 2] for j in j_in: if F"layer_{i}.1.global_rep.{j}." in k: _snake_case : Any = k_new.replace( F"layer_{i}.1.global_rep.{j}." , F"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if F"layer_{i}.1.global_rep.{j+1}." in k: _snake_case : List[Any] = k_new.replace( F"layer_{i}.1.global_rep.{j+1}." , F"{model_prefix}encoder.layer.{i-1}.layernorm." ) if F"layer_{i}.1.conv_proj." in k: _snake_case : Union[str, Any] = k_new.replace(F"layer_{i}.1.conv_proj." , F"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: _snake_case : List[Any] = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" ) if "pre_norm_attn.1." in k: _snake_case : Optional[int] = k_new.replace("""pre_norm_attn.1.""" , """attention.""" ) if "pre_norm_ffn.0." in k: _snake_case : List[Any] = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" ) if "pre_norm_ffn.1." in k: _snake_case : Tuple = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" ) if "pre_norm_ffn.3." in k: _snake_case : Any = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" ) if "classifier.1." in k: _snake_case : List[str] = k_new.replace("""classifier.1.""" , """classifier.""" ) if "seg_head." in k: _snake_case : str = k_new.replace("""seg_head.""" , """segmentation_head.""" ) if ".aspp_layer." in k: _snake_case : Optional[int] = k_new.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in k: _snake_case : int = k_new.replace(""".aspp_pool.""" , """.""" ) rename_keys.append((k, k_new) ) return rename_keys def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" _snake_case : List[str] = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(snake_case__ ) for k in keys_to_ignore: state_dict.pop(snake_case__ , snake_case__ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _snake_case : Any = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Tuple ): """simple docstring""" _snake_case : int = get_mobilevitva_config(snake_case__ , snake_case__ ) # load original state_dict _snake_case : Optional[int] = torch.load(snake_case__ , map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): _snake_case : Any = MobileViTVaForSemanticSegmentation(snake_case__ ).eval() _snake_case : List[Any] = False else: _snake_case : List[Any] = MobileViTVaForImageClassification(snake_case__ ).eval() _snake_case : Optional[Any] = False # remove and rename some keys of load the original model _snake_case : Union[str, Any] = checkpoint remove_unused_keys(snake_case__ ) _snake_case : List[str] = create_rename_keys(snake_case__ , base_model=snake_case__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # load modified state_dict model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by MobileViTImageProcessor _snake_case : Optional[int] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _snake_case : List[str] = image_processor(images=prepare_img() , return_tensors="""pt""" ) _snake_case : Optional[Any] = model(**snake_case__ ) # verify classification model if task_name.startswith("""imagenet""" ): _snake_case : List[str] = outputs.logits _snake_case : Any = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant _snake_case : List[str] = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] ) assert torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) A_ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
28
0
"""simple docstring""" import numpy as np A_ = [ ['''a''', '''b''', '''c''', '''d''', '''e'''], ['''f''', '''g''', '''h''', '''i''', '''k'''], ['''l''', '''m''', '''n''', '''o''', '''p'''], ['''q''', '''r''', '''s''', '''t''', '''u'''], ['''v''', '''w''', '''x''', '''y''', '''z'''], ] class lowercase: '''simple docstring''' def __init__( self: Dict ): '''simple docstring''' _snake_case : List[Any] = np.array(a_ ) def UpperCamelCase_ ( self: Union[str, Any], a_: str ): '''simple docstring''' _snake_case : Union[str, Any] = np.where(letter == self.SQUARE ) _snake_case : Dict = np.concatenate([indexa + 1, indexa + 1] ) return indexes def UpperCamelCase_ ( self: Union[str, Any], a_: int, a_: int ): '''simple docstring''' _snake_case : List[str] = self.SQUARE[indexa - 1, indexa - 1] return letter def UpperCamelCase_ ( self: Any, a_: str ): '''simple docstring''' _snake_case : int = message.lower() _snake_case : str = message.replace(""" """, """""" ) _snake_case : Optional[int] = message.replace("""j""", """i""" ) _snake_case : List[str] = np.empty((2, len(a_ )) ) for letter_index in range(len(a_ ) ): _snake_case : List[Any] = self.letter_to_numbers(message[letter_index] ) _snake_case : Union[str, Any] = numbers[0] _snake_case : Optional[int] = numbers[1] _snake_case : Tuple = first_step.reshape(2 * len(a_ ) ) _snake_case : Optional[Any] = """""" for numbers_index in range(len(a_ ) ): _snake_case : int = int(second_step[numbers_index * 2] ) _snake_case : Tuple = int(second_step[(numbers_index * 2) + 1] ) _snake_case : Optional[int] = self.numbers_to_letter(a_, a_ ) _snake_case : int = encoded_message + letter return encoded_message def UpperCamelCase_ ( self: Any, a_: str ): '''simple docstring''' _snake_case : List[Any] = message.lower() message.replace(""" """, """""" ) _snake_case : Any = np.empty(2 * len(a_ ) ) for letter_index in range(len(a_ ) ): _snake_case : List[str] = self.letter_to_numbers(message[letter_index] ) _snake_case : str = numbers[0] _snake_case : Dict = numbers[1] _snake_case : int = first_step.reshape((2, len(a_ )) ) _snake_case : Optional[Any] = """""" for numbers_index in range(len(a_ ) ): _snake_case : Union[str, Any] = int(second_step[0, numbers_index] ) _snake_case : Tuple = int(second_step[1, numbers_index] ) _snake_case : List[str] = self.numbers_to_letter(a_, a_ ) _snake_case : List[str] = decoded_message + letter return decoded_message
705
"""simple docstring""" import os import sys import unittest A_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path A_ = os.path.join(git_repo_path, '''src''', '''diffusers''') class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Optional[int] = find_backend(""" if not is_torch_available():""" ) self.assertEqual(a_, """torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") _snake_case : Any = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(a_, """torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") _snake_case : Union[str, Any] = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(a_, """torch_and_transformers_and_onnx""" ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Dict = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""", a_ ) self.assertIn("""torch_and_transformers""", a_ ) self.assertIn("""flax_and_transformers""", a_ ) self.assertIn("""torch_and_transformers_and_onnx""", a_ ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""", objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""", objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""", objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""", objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""", objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""", objects["""torch_and_transformers_and_onnx"""] ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[Any] = create_dummy_object("""CONSTANT""", """'torch'""" ) self.assertEqual(a_, """\nCONSTANT = None\n""" ) _snake_case : Optional[int] = create_dummy_object("""function""", """'torch'""" ) self.assertEqual( a_, """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) _snake_case : List[Any] = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ _snake_case : Union[str, Any] = create_dummy_object("""FakeClass""", """'torch'""" ) self.assertEqual(a_, a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ _snake_case : List[Any] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""], a_ )
28
0
"""simple docstring""" from math import ceil, sqrt def UpperCAmelCase__ (snake_case__ : int = 1_00_00_00 ): """simple docstring""" _snake_case : List[Any] = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: _snake_case : Any = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: _snake_case : Dict = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F'''{solution() = }''')
706
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''OwlViTFeatureExtractor'''] A_ = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
28
0