code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = ShapEImgaImgPipeline a_ = ["""image"""] a_ = ["""image"""] a_ = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] a_ = False @property def _a ( self : str ): '''simple docstring''' return 32 @property def _a ( self : str ): '''simple docstring''' return 32 @property def _a ( self : List[Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def _a ( self : List[str] ): '''simple docstring''' return 8 @property def _a ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) A_ : Tuple = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size ,image_size=64 ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,num_attention_heads=4 ,num_channels=3 ,num_hidden_layers=5 ,patch_size=1 ,) A_ : Optional[Any] = CLIPVisionModel(_a ) return model @property def _a ( self : str ): '''simple docstring''' A_ : Tuple = CLIPImageProcessor( crop_size=224 ,do_center_crop=_a ,do_normalize=_a ,do_resize=_a ,image_mean=[0.48145466, 0.4578275, 0.40821073] ,image_std=[0.26862954, 0.26130258, 0.27577711] ,resample=3 ,size=224 ,) return image_processor @property def _a ( self : str ): '''simple docstring''' torch.manual_seed(0 ) A_ : Tuple = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } A_ : Optional[Any] = PriorTransformer(**_a ) return model @property def _a ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) A_ : List[str] = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } A_ : List[Any] = ShapERenderer(**_a ) return model def _a ( self : List[str] ): '''simple docstring''' A_ : str = self.dummy_prior A_ : Union[str, Any] = self.dummy_image_encoder A_ : List[Any] = self.dummy_image_processor A_ : Union[str, Any] = self.dummy_renderer A_ : List[Any] = HeunDiscreteScheduler( beta_schedule="""exp""" ,num_train_timesteps=1024 ,prediction_type="""sample""" ,use_karras_sigmas=_a ,clip_sample=_a ,clip_sample_range=1.0 ,) A_ : Tuple = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def _a ( self : int ,_a : Dict ,_a : List[str]=0 ): '''simple docstring''' A_ : Union[str, Any] = floats_tensor((1, 3, 64, 64) ,rng=random.Random(_a ) ).to(_a ) if str(_a ).startswith("""mps""" ): A_ : Optional[int] = torch.manual_seed(_a ) else: A_ : List[str] = torch.Generator(device=_a ).manual_seed(_a ) A_ : Tuple = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def _a ( self : Optional[Any] ): '''simple docstring''' A_ : Optional[Any] = """cpu""" A_ : Tuple = self.get_dummy_components() A_ : Optional[int] = self.pipeline_class(**_a ) A_ : Optional[int] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) A_ : Optional[Any] = pipe(**self.get_dummy_inputs(_a ) ) A_ : Tuple = output.images[0] A_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) A_ : Dict = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Optional[int] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _a ( self : List[Any] ): '''simple docstring''' A_ : int = torch_device == """cpu""" A_ : List[Any] = True self._test_inference_batch_single_identical( batch_size=2 ,test_max_difference=_a ,relax_max_difference=_a ,) def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : str = self.get_dummy_components() A_ : Optional[int] = self.pipeline_class(**_a ) A_ : List[str] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) A_ : str = 1 A_ : str = 2 A_ : List[Any] = self.get_dummy_inputs(_a ) for key in inputs.keys(): if key in self.batch_params: A_ : str = batch_size * [inputs[key]] A_ : Dict = pipe(**_a ,num_images_per_prompt=_a )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def _a ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : List[Any] ): '''simple docstring''' A_ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) A_ : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) A_ : Tuple = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) A_ : Union[str, Any] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) A_ : Dict = torch.Generator(device=_a ).manual_seed(0 ) A_ : Optional[Any] = pipe( _a ,generator=_a ,guidance_scale=3.0 ,num_inference_steps=64 ,frame_size=64 ,output_type="""np""" ,).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_a ,_a )
27
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __magic_name__ = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""pixel_values"""] def __init__( self : Optional[Any] ,_a : bool = True ,_a : Dict[str, int] = None ,_a : PILImageResampling = PILImageResampling.BICUBIC ,_a : bool = True ,_a : Dict[str, int] = None ,_a : bool = True ,_a : Union[int, float] = 1 / 255 ,_a : bool = True ,_a : Optional[Union[float, List[float]]] = None ,_a : Optional[Union[float, List[float]]] = None ,_a : bool = True ,**_a : Dict ,): '''simple docstring''' super().__init__(**_a ) A_ : Tuple = size if size is not None else {"""shortest_edge""": 224} A_ : Optional[Any] = get_size_dict(_a ,default_to_square=_a ) A_ : Tuple = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} A_ : Optional[Any] = get_size_dict(_a ,default_to_square=_a ,param_name="""crop_size""" ) A_ : Any = do_resize A_ : List[str] = size A_ : Union[str, Any] = resample A_ : Dict = do_center_crop A_ : List[str] = crop_size A_ : Any = do_rescale A_ : Union[str, Any] = rescale_factor A_ : Any = do_normalize A_ : List[str] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A_ : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD A_ : Tuple = do_convert_rgb def _a ( self : Optional[int] ,_a : np.ndarray ,_a : Dict[str, int] ,_a : PILImageResampling = PILImageResampling.BICUBIC ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Optional[Any] ,): '''simple docstring''' A_ : Optional[Any] = get_size_dict(_a ,default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A_ : Tuple = get_resize_output_image_size(_a ,size=size["""shortest_edge"""] ,default_to_square=_a ) return resize(_a ,size=_a ,resample=_a ,data_format=_a ,**_a ) def _a ( self : List[Any] ,_a : np.ndarray ,_a : Dict[str, int] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Optional[int] ,): '''simple docstring''' A_ : Optional[int] = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_a ,size=(size["""height"""], size["""width"""]) ,data_format=_a ,**_a ) def _a ( self : Any ,_a : np.ndarray ,_a : Union[int, float] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Any ,): '''simple docstring''' return rescale(_a ,scale=_a ,data_format=_a ,**_a ) def _a ( self : Any ,_a : np.ndarray ,_a : Union[float, List[float]] ,_a : Union[float, List[float]] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : List[str] ,): '''simple docstring''' return normalize(_a ,mean=_a ,std=_a ,data_format=_a ,**_a ) def _a ( self : Optional[Any] ,_a : ImageInput ,_a : bool = None ,_a : Dict[str, int] = None ,_a : PILImageResampling = None ,_a : bool = None ,_a : int = None ,_a : bool = None ,_a : float = None ,_a : bool = None ,_a : Optional[Union[float, List[float]]] = None ,_a : Optional[Union[float, List[float]]] = None ,_a : bool = None ,_a : Optional[Union[str, TensorType]] = None ,_a : Optional[ChannelDimension] = ChannelDimension.FIRST ,**_a : int ,): '''simple docstring''' A_ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize A_ : Tuple = size if size is not None else self.size A_ : Optional[int] = get_size_dict(_a ,param_name="""size""" ,default_to_square=_a ) A_ : List[str] = resample if resample is not None else self.resample A_ : int = do_center_crop if do_center_crop is not None else self.do_center_crop A_ : Any = crop_size if crop_size is not None else self.crop_size A_ : int = get_size_dict(_a ,param_name="""crop_size""" ,default_to_square=_a ) A_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale A_ : int = rescale_factor if rescale_factor is not None else self.rescale_factor A_ : Any = do_normalize if do_normalize is not None else self.do_normalize A_ : int = image_mean if image_mean is not None else self.image_mean A_ : int = image_std if image_std is not None else self.image_std A_ : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A_ : int = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: A_ : Optional[int] = [convert_to_rgb(_a ) for image in images] # All transformations expect numpy arrays. A_ : Dict = [to_numpy_array(_a ) for image in images] if do_resize: A_ : int = [self.resize(image=_a ,size=_a ,resample=_a ) for image in images] if do_center_crop: A_ : Tuple = [self.center_crop(image=_a ,size=_a ) for image in images] if do_rescale: A_ : List[str] = [self.rescale(image=_a ,scale=_a ) for image in images] if do_normalize: A_ : Any = [self.normalize(image=_a ,mean=_a ,std=_a ) for image in images] A_ : List[str] = [to_channel_dimension_format(_a ,_a ) for image in images] A_ : List[str] = {"""pixel_values""": images} return BatchFeature(data=_a ,tensor_type=_a )
27
1
'''simple docstring''' import math __magic_name__ = 10 __magic_name__ = 7 __magic_name__ = BALLS_PER_COLOUR * NUM_COLOURS def lowerCamelCase ( lowerCamelCase : int = 20): A_ : Dict = math.comb(lowerCamelCase , lowerCamelCase) A_ : Any = math.comb(NUM_BALLS - BALLS_PER_COLOUR , lowerCamelCase) A_ : Dict = NUM_COLOURS * (1 - missing_colour / total) return F'{result:.9f}' if __name__ == "__main__": print(solution(20))
27
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __magic_name__ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] ,*_a : Optional[Any] ,**_a : Optional[int] ): '''simple docstring''' warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" ,_a ,) super().__init__(*_a ,**_a )
27
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input __magic_name__ = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def lowerCamelCase ( ): A_ : Any = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: A_ : str = get_sagemaker_input() else: A_ : List[Any] = get_cluster_input() return config def lowerCamelCase ( lowerCamelCase : Union[str, Any]=None): if subparsers is not None: A_ : Tuple = subparsers.add_parser("""config""" , description=lowerCamelCase) else: A_ : str = argparse.ArgumentParser("""Accelerate config command""" , description=lowerCamelCase) parser.add_argument( """--config_file""" , default=lowerCamelCase , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=lowerCamelCase) return parser def lowerCamelCase ( lowerCamelCase : str): A_ : int = get_user_input() if args.config_file is not None: A_ : Dict = args.config_file else: if not os.path.isdir(lowerCamelCase): os.makedirs(lowerCamelCase) A_ : Optional[int] = default_yaml_config_file if config_file.endswith(""".json"""): config.to_json_file(lowerCamelCase) else: config.to_yaml_file(lowerCamelCase) print(F'accelerate configuration saved at {config_file}') def lowerCamelCase ( ): A_ : Optional[Any] = config_command_parser() A_ : Any = parser.parse_args() config_command(lowerCamelCase) if __name__ == "__main__": main()
27
'''simple docstring''' from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def lowerCamelCase ( lowerCamelCase : str , lowerCamelCase : complex , lowerCamelCase : str = "x" , lowerCamelCase : float = 10**-10 , lowerCamelCase : int = 1 , ): A_ : int = symbols(lowerCamelCase) A_ : List[Any] = lambdify(lowerCamelCase , lowerCamelCase) A_ : List[str] = lambdify(lowerCamelCase , diff(lowerCamelCase , lowerCamelCase)) A_ : str = starting_point while True: if diff_function(lowerCamelCase) != 0: A_ : int = prev_guess - multiplicity * func(lowerCamelCase) / diff_function( lowerCamelCase) else: raise ZeroDivisionError("""Could not find root""") from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess) < precision: return next_guess A_ : Union[str, Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5j)}""") # Find value of e print( 'The root of log(y) - 1 = 0 is ', f"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( 'The root of exp(x) - 1 = 0 is', f"""{newton_raphson('exp(x) - 1', 10, precision=0.0_0_5)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
27
1
'''simple docstring''' def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : list[int] , lowerCamelCase : int): def count_of_possible_combinations(lowerCamelCase : int) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item) for item in array) return count_of_possible_combinations(lowerCamelCase) def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : list[int] , lowerCamelCase : int): def count_of_possible_combinations_with_dp_array( lowerCamelCase : int , lowerCamelCase : list[int]) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] A_ : int = sum( count_of_possible_combinations_with_dp_array(target - item , lowerCamelCase) for item in array) A_ : Optional[Any] = answer return answer A_ : Optional[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(lowerCamelCase , lowerCamelCase) def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : list[int] , lowerCamelCase : int): A_ : Dict = [0] * (target + 1) A_ : Dict = 1 for i in range(1 , target + 1): for j in range(lowerCamelCase): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __magic_name__ = 3 __magic_name__ = 5 __magic_name__ = [1, 2, 5] print(combination_sum_iv(n, array, target))
27
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset __magic_name__ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_a : Dict ): '''simple docstring''' super().__init__() A_ : List[str] = torchvision.models.resnetaaa(pretrained=_a ) A_ : int = list(model.children() )[:-2] A_ : int = nn.Sequential(*_a ) A_ : Optional[int] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def _a ( self : str ,_a : Optional[int] ): '''simple docstring''' A_ : Tuple = self.pool(self.model(_a ) ) A_ : Any = torch.flatten(_a ,start_dim=2 ) A_ : str = out.transpose(1 ,2 ).contiguous() return out # BxNx2048 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,_a : Optional[Any] ,_a : Optional[Any] ,_a : Dict ,_a : Dict ,_a : Optional[Any] ): '''simple docstring''' A_ : Dict = [json.loads(_a ) for l in open(_a )] A_ : Optional[int] = os.path.dirname(_a ) A_ : Optional[Any] = tokenizer A_ : Optional[Any] = labels A_ : List[Any] = len(_a ) A_ : str = max_seq_length A_ : str = transforms def __len__( self : str ): '''simple docstring''' return len(self.data ) def __getitem__( self : Tuple ,_a : Optional[Any] ): '''simple docstring''' A_ : Optional[int] = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] ,add_special_tokens=_a ) ) A_ , A_ , A_ : Dict = sentence[0], sentence[1:-1], sentence[-1] A_ : Optional[int] = sentence[: self.max_seq_length] A_ : Any = torch.zeros(self.n_classes ) A_ : Tuple = 1 A_ : Optional[Any] = Image.open(os.path.join(self.data_dir ,self.data[index]["""img"""] ) ).convert("""RGB""" ) A_ : Union[str, Any] = self.transforms(_a ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _a ( self : List[Any] ): '''simple docstring''' A_ : str = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def lowerCamelCase ( lowerCamelCase : str): A_ : List[Any] = [len(row["""sentence"""]) for row in batch] A_ , A_ : Dict = len(lowerCamelCase), max(lowerCamelCase) A_ : Optional[int] = torch.zeros(lowerCamelCase , lowerCamelCase , dtype=torch.long) A_ : Tuple = torch.zeros(lowerCamelCase , lowerCamelCase , dtype=torch.long) for i_batch, (input_row, length) in enumerate(zip(lowerCamelCase , lowerCamelCase)): A_ : str = input_row["""sentence"""] A_ : Tuple = 1 A_ : int = torch.stack([row["""image"""] for row in batch]) A_ : str = torch.stack([row["""label"""] for row in batch]) A_ : List[Any] = torch.stack([row["""image_start_token"""] for row in batch]) A_ : Tuple = torch.stack([row["""image_end_token"""] for row in batch]) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase ( ): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase ( ): return transforms.Compose( [ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( mean=[0.4677_7044, 0.4453_1429, 0.4066_1017] , std=[0.1222_1994, 0.1214_5835, 0.1438_0469] , ), ])
27
1
'''simple docstring''' import string def lowerCamelCase ( lowerCamelCase : str): A_ : List[str] = """""" for i in sequence: A_ : Dict = ord(lowerCamelCase) if 65 <= extract <= 90: output += chr(155 - extract) elif 97 <= extract <= 122: output += chr(219 - extract) else: output += i return output def lowerCamelCase ( lowerCamelCase : str): A_ : Union[str, Any] = string.ascii_letters A_ : int = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(lowerCamelCase)] if c in letters else c for c in sequence) def lowerCamelCase ( ): from timeit import timeit print("""Running performance benchmarks...""") A_ : Optional[int] = """from string import printable ; from __main__ import atbash, atbash_slow""" print(F'> atbash_slow(): {timeit("atbash_slow(printable)" , setup=lowerCamelCase)} seconds') print(F'> atbash(): {timeit("atbash(printable)" , setup=lowerCamelCase)} seconds') if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f"""{example} encrypted in atbash: {atbash(example)}""") benchmark()
27
'''simple docstring''' from __future__ import annotations import math def lowerCamelCase ( lowerCamelCase : int): if num <= 0: A_ : List[Any] = F'{num}: Invalid input, please enter a positive integer.' raise ValueError(lowerCamelCase) A_ : str = [True] * (num + 1) A_ : Tuple = [] A_ : str = 2 A_ : Any = int(math.sqrt(lowerCamelCase)) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCamelCase) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCamelCase): if sieve[i] is True: A_ : Union[str, Any] = False start += 1 for j in range(end + 1 , num + 1): if sieve[j] is True: prime.append(lowerCamelCase) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
27
1
'''simple docstring''' import itertools import string from collections.abc import Generator, Iterable def lowerCamelCase ( lowerCamelCase : Iterable[str] , lowerCamelCase : int): A_ : List[str] = iter(lowerCamelCase) while True: A_ : List[Any] = tuple(itertools.islice(lowerCamelCase , lowerCamelCase)) if not chunk: return yield chunk def lowerCamelCase ( lowerCamelCase : str): A_ : Optional[Any] = """""".join([c.upper() for c in dirty if c in string.ascii_letters]) A_ : Optional[int] = """""" if len(lowerCamelCase) < 2: return dirty for i in range(len(lowerCamelCase) - 1): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(lowerCamelCase) & 1: clean += "X" return clean def lowerCamelCase ( lowerCamelCase : str): # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) A_ : Optional[int] = """ABCDEFGHIKLMNOPQRSTUVWXYZ""" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler A_ : Optional[int] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(lowerCamelCase) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(lowerCamelCase) return table def lowerCamelCase ( lowerCamelCase : str , lowerCamelCase : str): A_ : int = generate_table(lowerCamelCase) A_ : Union[str, Any] = prepare_input(lowerCamelCase) A_ : List[Any] = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowerCamelCase , 2): A_ , A_ : List[str] = divmod(table.index(lowerCamelCase) , 5) A_ , A_ : Union[str, Any] = divmod(table.index(lowerCamelCase) , 5) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def lowerCamelCase ( lowerCamelCase : str , lowerCamelCase : str): A_ : Tuple = generate_table(lowerCamelCase) A_ : int = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowerCamelCase , 2): A_ , A_ : List[Any] = divmod(table.index(lowerCamelCase) , 5) A_ , A_ : Optional[int] = divmod(table.index(lowerCamelCase) , 5) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
27
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __magic_name__ = trt.Logger(trt.Logger.WARNING) __magic_name__ = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __magic_name__ = logging.getLogger(__name__) __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=384, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=128, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) __magic_name__ = parser.parse_args() if args.tokenizer_name: __magic_name__ = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) __magic_name__ = args.per_device_eval_batch_size __magic_name__ = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __magic_name__ = True __magic_name__ = 'temp_engine/bert-fp32.engine' if args.fpaa: __magic_name__ = 'temp_engine/bert-fp16.engine' if args.inta: __magic_name__ = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') __magic_name__ = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __magic_name__ = [network.get_input(i) for i in range(network.num_inputs)] __magic_name__ = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __magic_name__ = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __magic_name__ = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __magic_name__ = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : Any , lowerCamelCase : List[Any] , lowerCamelCase : str , lowerCamelCase : List[str]): A_ : str = np.asarray(inputs["""input_ids"""] , dtype=np.intaa) A_ : int = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa) A_ : Optional[int] = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCamelCase) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCamelCase) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCamelCase) # start time A_ : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowerCamelCase) for d_inp in d_inputs] + [int(lowerCamelCase), int(lowerCamelCase)] , stream_handle=stream.handle) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCamelCase , lowerCamelCase , lowerCamelCase) cuda.memcpy_dtoh_async(lowerCamelCase , lowerCamelCase , lowerCamelCase) # Synchronize the stream and take time stream.synchronize() # end time A_ : str = time.time() A_ : Tuple = end_time - start_time A_ : Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __magic_name__ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __magic_name__ = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __magic_name__ = raw_datasets['validation'].column_names __magic_name__ = 'question' if 'question' in column_names else column_names[0] __magic_name__ = 'context' if 'context' in column_names else column_names[1] __magic_name__ = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __magic_name__ = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __magic_name__ = min(args.max_seq_length, tokenizer.model_max_length) def lowerCamelCase ( lowerCamelCase : Dict): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace A_ : List[Any] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. A_ : Optional[int] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCamelCase , stride=args.doc_stride , return_overflowing_tokens=lowerCamelCase , return_offsets_mapping=lowerCamelCase , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. A_ : List[str] = tokenized_examples.pop("""overflow_to_sample_mapping""") # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. A_ : Union[str, Any] = [] for i in range(len(tokenized_examples["""input_ids"""])): # Grab the sequence corresponding to that example (to know what is the context and what is the question). A_ : Any = tokenized_examples.sequence_ids(lowerCamelCase) A_ : Tuple = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. A_ : Union[str, Any] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index]) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. A_ : Dict = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i]) ] return tokenized_examples __magic_name__ = raw_datasets['validation'] # Validation Feature Creation __magic_name__ = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) __magic_name__ = default_data_collator __magic_name__ = eval_dataset.remove_columns(['example_id', 'offset_mapping']) __magic_name__ = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def lowerCamelCase ( lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any]="eval"): # Post-processing: we match the start logits and end logits to answers in the original context. A_ : Tuple = postprocess_qa_predictions( examples=lowerCamelCase , features=lowerCamelCase , predictions=lowerCamelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCamelCase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: A_ : Dict = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: A_ : Union[str, Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] A_ : Any = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCamelCase , label_ids=lowerCamelCase) __magic_name__ = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def lowerCamelCase ( lowerCamelCase : Union[str, Any]): return trt.volume(engine.get_binding_shape(lowerCamelCase)) * engine.get_binding_dtype(lowerCamelCase).itemsize # Allocate device memory for inputs and outputs. __magic_name__ = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __magic_name__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __magic_name__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __magic_name__ = cuda.mem_alloc(h_outputa.nbytes) __magic_name__ = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __magic_name__ = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(f""" Num examples = {len(eval_dataset)}""") logger.info(f""" Batch size = {args.per_device_eval_batch_size}""") __magic_name__ = 0.0 __magic_name__ = 0 __magic_name__ = timeit.default_timer() __magic_name__ = None for step, batch in enumerate(eval_dataloader): __magic_name__ , __magic_name__ = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __magic_name__ , __magic_name__ = outputs __magic_name__ = torch.tensor(start_logits) __magic_name__ = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __magic_name__ = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __magic_name__ = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __magic_name__ = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __magic_name__ = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __magic_name__ = nested_truncate(all_preds, len(eval_dataset)) __magic_name__ = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_000 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_000)) logger.info('Total Number of Inference = %d', niter) __magic_name__ = post_processing_function(eval_examples, eval_dataset, all_preds) __magic_name__ = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"""Evaluation metrics: {eval_metric}""")
27
1
'''simple docstring''' class __lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ,_a : list[int] ): '''simple docstring''' A_ : Tuple = len(_a ) A_ : Any = [0] * len_array if len_array > 0: A_ : Tuple = array[0] for i in range(1 ,_a ): A_ : Dict = self.prefix_sum[i - 1] + array[i] def _a ( self : List[str] ,_a : int ,_a : int ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def _a ( self : int ,_a : int ): '''simple docstring''' A_ : Optional[int] = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(_a ) return False if __name__ == "__main__": import doctest doctest.testmod()
27
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __magic_name__ = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['ConvNextFeatureExtractor'] __magic_name__ = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure)
27
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __magic_name__ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Tuple ,*_a : List[str] ,**_a : str ): '''simple docstring''' warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" ,_a ,) super().__init__(*_a ,**_a )
27
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { 'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json', 'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json', 'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json', } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """owlvit_text_model""" def __init__( self : Union[str, Any] ,_a : Any=49408 ,_a : Any=512 ,_a : Tuple=2048 ,_a : Dict=12 ,_a : Optional[int]=8 ,_a : Tuple=16 ,_a : Tuple="quick_gelu" ,_a : Optional[Any]=1e-5 ,_a : List[Any]=0.0 ,_a : Optional[int]=0.02 ,_a : Dict=1.0 ,_a : Dict=0 ,_a : Any=49406 ,_a : Tuple=49407 ,**_a : List[Any] ,): '''simple docstring''' super().__init__(pad_token_id=_a ,bos_token_id=_a ,eos_token_id=_a ,**_a ) A_ : Tuple = vocab_size A_ : int = hidden_size A_ : Optional[int] = intermediate_size A_ : Optional[int] = num_hidden_layers A_ : Union[str, Any] = num_attention_heads A_ : int = max_position_embeddings A_ : str = hidden_act A_ : Union[str, Any] = layer_norm_eps A_ : Tuple = attention_dropout A_ : Union[str, Any] = initializer_range A_ : List[Any] = initializer_factor @classmethod def _a ( cls : List[str] ,_a : Union[str, os.PathLike] ,**_a : str ): '''simple docstring''' cls._set_token_in_kwargs(_a ) A_ , A_ : int = cls.get_config_dict(_a ,**_a ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": A_ : Union[str, Any] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a ,**_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """owlvit_vision_model""" def __init__( self : List[Any] ,_a : Optional[Any]=768 ,_a : Tuple=3072 ,_a : Dict=12 ,_a : int=12 ,_a : Dict=3 ,_a : Tuple=768 ,_a : int=32 ,_a : int="quick_gelu" ,_a : List[Any]=1e-5 ,_a : Tuple=0.0 ,_a : List[Any]=0.02 ,_a : str=1.0 ,**_a : int ,): '''simple docstring''' super().__init__(**_a ) A_ : List[str] = hidden_size A_ : Union[str, Any] = intermediate_size A_ : Union[str, Any] = num_hidden_layers A_ : Optional[Any] = num_attention_heads A_ : int = num_channels A_ : str = image_size A_ : List[Any] = patch_size A_ : int = hidden_act A_ : List[Any] = layer_norm_eps A_ : List[str] = attention_dropout A_ : str = initializer_range A_ : str = initializer_factor @classmethod def _a ( cls : List[Any] ,_a : Union[str, os.PathLike] ,**_a : str ): '''simple docstring''' cls._set_token_in_kwargs(_a ) A_ , A_ : Optional[int] = cls.get_config_dict(_a ,**_a ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": A_ : List[str] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a ,**_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """owlvit""" a_ = True def __init__( self : Union[str, Any] ,_a : List[str]=None ,_a : List[str]=None ,_a : Dict=512 ,_a : List[Any]=2.6592 ,_a : Optional[Any]=True ,**_a : Optional[int] ,): '''simple docstring''' super().__init__(**_a ) if text_config is None: A_ : List[Any] = {} logger.info("""text_config is None. Initializing the OwlViTTextConfig with default values.""" ) if vision_config is None: A_ : Tuple = {} logger.info("""vision_config is None. initializing the OwlViTVisionConfig with default values.""" ) A_ : Dict = OwlViTTextConfig(**_a ) A_ : Dict = OwlViTVisionConfig(**_a ) A_ : Any = projection_dim A_ : Optional[int] = logit_scale_init_value A_ : Optional[int] = return_dict A_ : Dict = 1.0 @classmethod def _a ( cls : Union[str, Any] ,_a : Union[str, os.PathLike] ,**_a : Optional[int] ): '''simple docstring''' cls._set_token_in_kwargs(_a ) A_ , A_ : List[Any] = cls.get_config_dict(_a ,**_a ) if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a ,**_a ) @classmethod def _a ( cls : int ,_a : Dict ,_a : Dict ,**_a : List[str] ): '''simple docstring''' A_ : str = {} A_ : int = text_config A_ : Union[str, Any] = vision_config return cls.from_dict(_a ,**_a ) def _a ( self : Optional[int] ): '''simple docstring''' A_ : Dict = copy.deepcopy(self.__dict__ ) A_ : str = self.text_config.to_dict() A_ : Optional[int] = self.vision_config.to_dict() A_ : List[Any] = self.__class__.model_type return output class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _a ( self : int ): '''simple docstring''' return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ] ) @property def _a ( self : str ): '''simple docstring''' return OrderedDict( [ ("""logits_per_image""", {0: """batch"""}), ("""logits_per_text""", {0: """batch"""}), ("""text_embeds""", {0: """batch"""}), ("""image_embeds""", {0: """batch"""}), ] ) @property def _a ( self : Optional[Any] ): '''simple docstring''' return 1e-4 def _a ( self : int ,_a : "ProcessorMixin" ,_a : int = -1 ,_a : int = -1 ,_a : Optional["TensorType"] = None ,): '''simple docstring''' A_ : Any = super().generate_dummy_inputs( processor.tokenizer ,batch_size=_a ,seq_length=_a ,framework=_a ) A_ : Any = super().generate_dummy_inputs( processor.image_processor ,batch_size=_a ,framework=_a ) return {**text_input_dict, **image_input_dict} @property def _a ( self : Optional[Any] ): '''simple docstring''' return 14
27
1
'''simple docstring''' import fire from utils import calculate_rouge, save_json def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : List[str] , lowerCamelCase : Dict=None , **lowerCamelCase : Any): A_ : int = [x.strip() for x in open(lowerCamelCase).readlines()] A_ : Tuple = [x.strip() for x in open(lowerCamelCase).readlines()][: len(lowerCamelCase)] A_ : Tuple = calculate_rouge(lowerCamelCase , lowerCamelCase , **lowerCamelCase) if save_path is not None: save_json(lowerCamelCase , lowerCamelCase , indent=lowerCamelCase) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
27
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __magic_name__ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""input_features""", """is_longer"""] def __init__( self : Dict ,_a : Optional[int]=64 ,_a : List[Any]=48000 ,_a : str=480 ,_a : Optional[Any]=10 ,_a : Optional[int]=1024 ,_a : Tuple=0.0 ,_a : str=False ,_a : float = 0 ,_a : float = 14000 ,_a : int = None ,_a : str = "fusion" ,_a : str = "repeatpad" ,**_a : Tuple ,): '''simple docstring''' super().__init__( feature_size=_a ,sampling_rate=_a ,padding_value=_a ,return_attention_mask=_a ,**_a ,) A_ : Tuple = top_db A_ : Tuple = truncation A_ : Optional[Any] = padding A_ : Optional[int] = fft_window_size A_ : Dict = (fft_window_size >> 1) + 1 A_ : Any = hop_length A_ : List[Any] = max_length_s A_ : Tuple = max_length_s * sampling_rate A_ : Tuple = sampling_rate A_ : Optional[int] = frequency_min A_ : Tuple = frequency_max A_ : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=_a ,min_frequency=_a ,max_frequency=_a ,sampling_rate=_a ,norm=_a ,mel_scale="""htk""" ,) A_ : Dict = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=_a ,min_frequency=_a ,max_frequency=_a ,sampling_rate=_a ,norm="""slaney""" ,mel_scale="""slaney""" ,) def _a ( self : int ): '''simple docstring''' A_ : int = copy.deepcopy(self.__dict__ ) A_ : Tuple = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _a ( self : Dict ,_a : np.array ,_a : Optional[np.array] = None ): '''simple docstring''' A_ : List[str] = spectrogram( _a ,window_function(self.fft_window_size ,"""hann""" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=_a ,log_mel="""dB""" ,) return log_mel_spectrogram.T def _a ( self : Optional[int] ,_a : Dict ,_a : Optional[Any] ,_a : Optional[int] ): '''simple docstring''' A_ : Dict = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk A_ : List[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk A_ : int = [0] # randomly choose index for each part A_ : List[str] = np.random.choice(ranges[0] ) A_ : int = np.random.choice(ranges[1] ) A_ : Optional[int] = np.random.choice(ranges[2] ) A_ : Tuple = mel[idx_front : idx_front + chunk_frames, :] A_ : Dict = mel[idx_middle : idx_middle + chunk_frames, :] A_ : Dict = mel[idx_back : idx_back + chunk_frames, :] A_ : Optional[int] = torch.tensor(mel[None, None, :] ) A_ : Dict = torch.nn.functional.interpolate( _a ,size=[chunk_frames, 64] ,mode="""bilinear""" ,align_corners=_a ) A_ : str = mel_shrink[0][0].numpy() A_ : Tuple = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def _a ( self : Dict ,_a : np.array ,_a : Optional[Any] ,_a : int ,_a : Dict ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": A_ : Dict = True # random crop to max_length (for compatibility) -> this should be handled by self.pad A_ : Tuple = len(_a ) - max_length A_ : Optional[int] = np.random.randint(0 ,overflow + 1 ) A_ : List[Any] = waveform[idx : idx + max_length] A_ : Optional[Any] = self._np_extract_fbank_features(_a ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": A_ : Dict = self._np_extract_fbank_features(_a ,self.mel_filters ) A_ : Tuple = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed A_ : Optional[int] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. A_ : Optional[int] = np.stack([mel, mel, mel, mel] ,axis=0 ) A_ : str = False else: A_ : str = self._random_mel_fusion(_a ,_a ,_a ) A_ : Optional[Any] = True else: raise NotImplementedError(f'data_truncating {truncation} not implemented' ) else: A_ : Optional[int] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": A_ : int = int(max_length / len(_a ) ) A_ : Any = np.stack(np.tile(_a ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": A_ : List[str] = int(max_length / len(_a ) ) A_ : Optional[Any] = np.stack(np.tile(_a ,_a ) ) A_ : Any = np.pad(_a ,(0, max_length - waveform.shape[0]) ,mode="""constant""" ,constant_values=0 ) if truncation == "fusion": A_ : List[Any] = self._np_extract_fbank_features(_a ,self.mel_filters ) A_ : Optional[Any] = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: A_ : Union[str, Any] = self._np_extract_fbank_features(_a ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : List[Any] ,_a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,_a : str = None ,_a : Optional[str] = None ,_a : Optional[int] = None ,_a : Optional[int] = None ,_a : Optional[Union[str, TensorType]] = None ,**_a : Any ,): '''simple docstring''' A_ : List[str] = truncation if truncation is not None else self.truncation A_ : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) A_ : Any = isinstance(_a ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) A_ : int = is_batched_numpy or ( isinstance(_a ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: A_ : Optional[int] = [np.asarray(_a ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_a ,np.ndarray ): A_ : str = np.asarray(_a ,dtype=np.floataa ) elif isinstance(_a ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A_ : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A_ : Any = [np.asarray(_a )] # convert to mel spectrogram, truncate and pad if needed. A_ : str = [ self._get_input_mel(_a ,max_length if max_length else self.nb_max_samples ,_a ,_a ) for waveform in raw_speech ] A_ : int = [] A_ : Any = [] for mel, longer in padded_inputs: input_mel.append(_a ) is_longer.append(_a ) if truncation == "fusion" and sum(_a ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer A_ : List[Any] = np.random.randint(0 ,len(_a ) ) A_ : List[str] = True if isinstance(input_mel[0] ,_a ): A_ : Tuple = [np.asarray(_a ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool A_ : List[str] = [[longer] for longer in is_longer] A_ : Optional[Any] = {"""input_features""": input_mel, """is_longer""": is_longer} A_ : int = BatchFeature(_a ) if return_tensors is not None: A_ : int = input_features.convert_to_tensors(_a ) return input_features
27
1
'''simple docstring''' from __future__ import annotations def lowerCamelCase ( lowerCamelCase : list[int] , lowerCamelCase : list[int] , lowerCamelCase : list[int] , lowerCamelCase : list[list[str]] , lowerCamelCase : int , ): A_ : Dict = len(lowerCamelCase) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board]) return # We iterate each column in the row to find all possible results in each row for col in range(lowerCamelCase): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowerCamelCase , lowerCamelCase , ) def lowerCamelCase ( lowerCamelCase : int): A_ : list[list[str]] = [] depth_first_search([] , [] , [] , lowerCamelCase , lowerCamelCase) # Print all the boards for board in boards: for column in board: print(lowerCamelCase) print("""""") print(len(lowerCamelCase) , """solutions were found.""") if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
27
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ,_a : List[Any] ,_a : Dict=13 ,_a : List[Any]=7 ,_a : Optional[Any]=True ,_a : Any=True ,_a : Optional[int]=True ,_a : Union[str, Any]=99 ,_a : Union[str, Any]=32 ,_a : List[str]=5 ,_a : List[str]=4 ,_a : Dict=37 ,_a : List[Any]="gelu" ,_a : int=0.1 ,_a : Optional[int]=0.1 ,_a : Tuple=512 ,_a : Union[str, Any]=16 ,_a : Optional[Any]=2 ,_a : Optional[Any]=0.02 ,_a : Optional[int]=3 ,_a : str=4 ,_a : Optional[Any]=None ,): '''simple docstring''' A_ : Optional[Any] = parent A_ : str = batch_size A_ : int = seq_length A_ : Union[str, Any] = is_training A_ : Optional[Any] = use_token_type_ids A_ : int = use_labels A_ : Dict = vocab_size A_ : List[Any] = hidden_size A_ : Tuple = num_hidden_layers A_ : Optional[int] = num_attention_heads A_ : int = intermediate_size A_ : Tuple = hidden_act A_ : int = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : Any = max_position_embeddings A_ : Optional[Any] = type_vocab_size A_ : Tuple = type_sequence_label_size A_ : int = initializer_range A_ : Optional[Any] = num_labels A_ : str = num_choices A_ : Optional[Any] = scope A_ : List[Any] = self.vocab_size - 1 def _a ( self : Any ): '''simple docstring''' A_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A_ : List[Any] = None if self.use_token_type_ids: A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A_ : int = None A_ : str = None A_ : Union[str, Any] = None if self.use_labels: A_ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A_ : Any = ids_tensor([self.batch_size] ,self.num_choices ) A_ : List[Any] = OpenAIGPTConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) A_ : Tuple = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _a ( self : Optional[int] ,_a : List[str] ,_a : str ,_a : int ,_a : int ,*_a : Union[str, Any] ): '''simple docstring''' A_ : Optional[Any] = OpenAIGPTModel(config=_a ) model.to(_a ) model.eval() A_ : Optional[int] = model(_a ,token_type_ids=_a ,head_mask=_a ) A_ : str = model(_a ,token_type_ids=_a ) A_ : Dict = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Dict ,_a : Optional[int] ,_a : Union[str, Any] ,_a : Dict ,_a : List[str] ,*_a : str ): '''simple docstring''' A_ : str = OpenAIGPTLMHeadModel(_a ) model.to(_a ) model.eval() A_ : Any = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Any ,_a : Dict ,_a : List[Any] ,_a : Dict ,_a : Union[str, Any] ,*_a : str ): '''simple docstring''' A_ : Any = OpenAIGPTDoubleHeadsModel(_a ) model.to(_a ) model.eval() A_ : Optional[int] = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : List[str] ,_a : str ,_a : Tuple ,_a : Dict ,_a : Tuple ,*_a : Dict ): '''simple docstring''' A_ : List[str] = self.num_labels A_ : int = OpenAIGPTForSequenceClassification(_a ) model.to(_a ) model.eval() A_ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A_ : Optional[Any] = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _a ( self : Tuple ): '''simple docstring''' A_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : str = config_and_inputs A_ : int = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) a_ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly a_ = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _a ( self : Tuple ,_a : Optional[int] ,_a : str ,_a : List[str] ,_a : List[str] ,_a : Any ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _a ( self : Optional[int] ,_a : str ,_a : Dict ,_a : Optional[int]=False ): '''simple docstring''' A_ : Any = super()._prepare_for_class(_a ,_a ,return_labels=_a ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": A_ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) ,dtype=torch.long ,device=_a ,) A_ : Any = inputs_dict["""labels"""] A_ : Any = inputs_dict["""labels"""] A_ : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) ,dtype=torch.long ,device=_a ,) A_ : int = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_a ) return inputs_dict def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : Tuple = OpenAIGPTModelTester(self ) A_ : Optional[int] = ConfigTester(self ,config_class=_a ,n_embd=37 ) def _a ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def _a ( self : Optional[Any] ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_a ) def _a ( self : Tuple ): '''simple docstring''' A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_a ) def _a ( self : List[Any] ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_a ) def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_a ) @slow def _a ( self : List[Any] ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Union[str, Any] = OpenAIGPTModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def _a ( self : List[str] ): '''simple docstring''' A_ : Dict = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(_a ) A_ : Dict = torch.tensor([[481, 4735, 544]] ,dtype=torch.long ,device=_a ) # the president is A_ : Dict = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the A_ : int = model.generate(_a ,do_sample=_a ) self.assertListEqual(output_ids[0].tolist() ,_a )
27
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor __magic_name__ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[int] ,*_a : Optional[int] ,**_a : Dict ): '''simple docstring''' warnings.warn( """The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DPTImageProcessor instead.""" ,_a ,) super().__init__(*_a ,**_a )
27
'''simple docstring''' import baseaa def lowerCamelCase ( lowerCamelCase : str): return baseaa.aaaencode(string.encode("""utf-8""")) def lowerCamelCase ( lowerCamelCase : bytes): return baseaa.aaadecode(lowerCamelCase).decode("""utf-8""") if __name__ == "__main__": import doctest doctest.testmod()
27
1
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') __magic_name__ = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) __magic_name__ = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) __magic_name__ = BeautifulSoup(res.text, 'html.parser') __magic_name__ = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
27
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCamelCase ( lowerCamelCase : Optional[Any]): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def lowerCamelCase ( lowerCamelCase : str): # word like '180' or '身高' or '神' for char in word: A_ : Optional[Any] = ord(lowerCamelCase) if not _is_chinese_char(lowerCamelCase): return 0 return 1 def lowerCamelCase ( lowerCamelCase : List[str]): A_ : Any = set() for token in tokens: A_ : str = len(lowerCamelCase) > 1 and is_chinese(lowerCamelCase) if chinese_word: word_set.add(lowerCamelCase) A_ : Any = list(lowerCamelCase) return word_list def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : set()): if not chinese_word_set: return bert_tokens A_ : Any = max([len(lowerCamelCase) for w in chinese_word_set]) A_ : str = bert_tokens A_ , A_ : Any = 0, len(lowerCamelCase) while start < end: A_ : Tuple = True if is_chinese(bert_word[start]): A_ : List[str] = min(end - start , lowerCamelCase) for i in range(lowerCamelCase , 1 , -1): A_ : Tuple = """""".join(bert_word[start : start + i]) if whole_word in chinese_word_set: for j in range(start + 1 , start + i): A_ : Dict = """##""" + bert_word[j] A_ : str = start + i A_ : Dict = False break if single_word: start += 1 return bert_word def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : LTP , lowerCamelCase : BertTokenizer): A_ : Union[str, Any] = [] for i in range(0 , len(lowerCamelCase) , 100): A_ : List[Any] = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""]).cws A_ : int = [get_chinese_word(lowerCamelCase) for r in res] ltp_res.extend(lowerCamelCase) assert len(lowerCamelCase) == len(lowerCamelCase) A_ : List[Any] = [] for i in range(0 , len(lowerCamelCase) , 100): A_ : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=lowerCamelCase , truncation=lowerCamelCase , max_length=512) bert_res.extend(res["""input_ids"""]) assert len(lowerCamelCase) == len(lowerCamelCase) A_ : Union[str, Any] = [] for input_ids, chinese_word in zip(lowerCamelCase , lowerCamelCase): A_ : List[Any] = [] for id in input_ids: A_ : List[Any] = bert_tokenizer._convert_id_to_token(lowerCamelCase) input_tokens.append(lowerCamelCase) A_ : int = add_sub_symbol(lowerCamelCase , lowerCamelCase) A_ : str = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCamelCase): if token[:2] == "##": A_ : Optional[Any] = token[2:] # save chinese tokens' pos if len(lowerCamelCase) == 1 and _is_chinese_char(ord(lowerCamelCase)): ref_id.append(lowerCamelCase) ref_ids.append(lowerCamelCase) assert len(lowerCamelCase) == len(lowerCamelCase) return ref_ids def lowerCamelCase ( lowerCamelCase : Tuple): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""") as f: A_ : Optional[int] = f.readlines() A_ : Union[str, Any] = [line.strip() for line in data if len(lowerCamelCase) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ : Optional[Any] = LTP(args.ltp) # faster in GPU device A_ : Dict = BertTokenizer.from_pretrained(args.bert) A_ : str = prepare_ref(lowerCamelCase , lowerCamelCase , lowerCamelCase) with open(args.save_path , """w""" , encoding="""utf-8""") as f: A_ : Optional[Any] = [json.dumps(lowerCamelCase) + """\n""" for ref in ref_ids] f.writelines(lowerCamelCase) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) __magic_name__ = parser.parse_args() main(args)
27
1
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowerCamelCase ( lowerCamelCase : int): A_ : int = int(number**0.5) return number == sq * sq def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int): A_ : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den A_ : int = x_den * y_den * z_den A_ : int = gcd(lowerCamelCase , lowerCamelCase) top //= hcf bottom //= hcf return top, bottom def lowerCamelCase ( lowerCamelCase : int = 35): A_ : set = set() A_ : int A_ : Fraction = Fraction(0) A_ : tuple[int, int] for x_num in range(1 , order + 1): for x_den in range(x_num + 1 , order + 1): for y_num in range(1 , order + 1): for y_den in range(y_num + 1 , order + 1): # n=1 A_ : List[str] = x_num * y_den + x_den * y_num A_ : str = x_den * y_den A_ : Optional[Any] = gcd(lowerCamelCase , lowerCamelCase) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: A_ : Optional[Any] = add_three( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase) unique_s.add(lowerCamelCase) # n=2 A_ : Tuple = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) A_ : List[Any] = x_den * x_den * y_den * y_den if is_sq(lowerCamelCase) and is_sq(lowerCamelCase): A_ : Tuple = int(sqrt(lowerCamelCase)) A_ : Any = int(sqrt(lowerCamelCase)) A_ : Tuple = gcd(lowerCamelCase , lowerCamelCase) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: A_ : Any = add_three( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase) unique_s.add(lowerCamelCase) # n=-1 A_ : Optional[int] = x_num * y_num A_ : Dict = x_den * y_num + x_num * y_den A_ : Any = gcd(lowerCamelCase , lowerCamelCase) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: A_ : List[str] = add_three( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase) unique_s.add(lowerCamelCase) # n=2 A_ : str = x_num * x_num * y_num * y_num A_ : List[str] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowerCamelCase) and is_sq(lowerCamelCase): A_ : int = int(sqrt(lowerCamelCase)) A_ : List[Any] = int(sqrt(lowerCamelCase)) A_ : List[Any] = gcd(lowerCamelCase , lowerCamelCase) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: A_ : Union[str, Any] = add_three( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase) unique_s.add(lowerCamelCase) for num, den in unique_s: total += Fraction(lowerCamelCase , lowerCamelCase) return total.denominator + total.numerator if __name__ == "__main__": print(f"""{solution() = }""")
27
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""image_processor""", """tokenizer"""] a_ = """ViltImageProcessor""" a_ = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : List[Any] ,_a : Optional[Any]=None ,_a : List[str]=None ,**_a : Any ): '''simple docstring''' A_ : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" ,_a ,) A_ : List[str] = kwargs.pop("""feature_extractor""" ) A_ : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_a ,_a ) A_ : Optional[Any] = self.image_processor def __call__( self : Any ,_a : Tuple ,_a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,_a : bool = True ,_a : Union[bool, str, PaddingStrategy] = False ,_a : Union[bool, str, TruncationStrategy] = None ,_a : Optional[int] = None ,_a : int = 0 ,_a : Optional[int] = None ,_a : Optional[bool] = None ,_a : Optional[bool] = None ,_a : bool = False ,_a : bool = False ,_a : bool = False ,_a : bool = False ,_a : bool = True ,_a : Optional[Union[str, TensorType]] = None ,**_a : Tuple ,): '''simple docstring''' A_ : int = self.tokenizer( text=_a ,add_special_tokens=_a ,padding=_a ,truncation=_a ,max_length=_a ,stride=_a ,pad_to_multiple_of=_a ,return_token_type_ids=_a ,return_attention_mask=_a ,return_overflowing_tokens=_a ,return_special_tokens_mask=_a ,return_offsets_mapping=_a ,return_length=_a ,verbose=_a ,return_tensors=_a ,**_a ,) # add pixel_values + pixel_mask A_ : Optional[int] = self.image_processor(_a ,return_tensors=_a ) encoding.update(_a ) return encoding def _a ( self : List[Any] ,*_a : Any ,**_a : Any ): '''simple docstring''' return self.tokenizer.batch_decode(*_a ,**_a ) def _a ( self : int ,*_a : int ,**_a : Optional[int] ): '''simple docstring''' return self.tokenizer.decode(*_a ,**_a ) @property def _a ( self : List[Any] ): '''simple docstring''' A_ : Optional[int] = self.tokenizer.model_input_names A_ : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _a ( self : str ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" ,_a ,) return self.image_processor_class @property def _a ( self : int ): '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" ,_a ,) return self.image_processor
27
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = 42 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' @register_to_config def __init__( self : List[Any] ,_a : int = 65536 ,_a : Optional[int] = None ,_a : int = 2 ,_a : int = 2 ,_a : int = 0 ,_a : str = "fourier" ,_a : bool = True ,_a : bool = False ,_a : float = 0.0 ,_a : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") ,_a : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") ,_a : Tuple[str] = "UNetMidBlock1D" ,_a : str = None ,_a : Tuple[int] = (32, 32, 64) ,_a : str = None ,_a : int = 8 ,_a : int = 1 ,_a : bool = False ,): '''simple docstring''' super().__init__() A_ : int = sample_size # time if time_embedding_type == "fourier": A_ : str = GaussianFourierProjection( embedding_size=8 ,set_W_to_weight=_a ,log=_a ,flip_sin_to_cos=_a ) A_ : Tuple = 2 * block_out_channels[0] elif time_embedding_type == "positional": A_ : List[Any] = Timesteps( block_out_channels[0] ,flip_sin_to_cos=_a ,downscale_freq_shift=_a ) A_ : Optional[int] = block_out_channels[0] if use_timestep_embedding: A_ : str = block_out_channels[0] * 4 A_ : List[str] = TimestepEmbedding( in_channels=_a ,time_embed_dim=_a ,act_fn=_a ,out_dim=block_out_channels[0] ,) A_ : List[Any] = nn.ModuleList([] ) A_ : int = None A_ : List[str] = nn.ModuleList([] ) A_ : Optional[Any] = None # down A_ : Dict = in_channels for i, down_block_type in enumerate(_a ): A_ : Optional[int] = output_channel A_ : Dict = block_out_channels[i] if i == 0: input_channel += extra_in_channels A_ : str = i == len(_a ) - 1 A_ : List[str] = get_down_block( _a ,num_layers=_a ,in_channels=_a ,out_channels=_a ,temb_channels=block_out_channels[0] ,add_downsample=not is_final_block or downsample_each_block ,) self.down_blocks.append(_a ) # mid A_ : List[Any] = get_mid_block( _a ,in_channels=block_out_channels[-1] ,mid_channels=block_out_channels[-1] ,out_channels=block_out_channels[-1] ,embed_dim=block_out_channels[0] ,num_layers=_a ,add_downsample=_a ,) # up A_ : Tuple = list(reversed(_a ) ) A_ : List[Any] = reversed_block_out_channels[0] if out_block_type is None: A_ : Union[str, Any] = out_channels else: A_ : Tuple = block_out_channels[0] for i, up_block_type in enumerate(_a ): A_ : str = output_channel A_ : Any = ( reversed_block_out_channels[i + 1] if i < len(_a ) - 1 else final_upsample_channels ) A_ : Any = i == len(_a ) - 1 A_ : Union[str, Any] = get_up_block( _a ,num_layers=_a ,in_channels=_a ,out_channels=_a ,temb_channels=block_out_channels[0] ,add_upsample=not is_final_block ,) self.up_blocks.append(_a ) A_ : Any = output_channel # out A_ : str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 ,32 ) A_ : Optional[Any] = get_out_block( out_block_type=_a ,num_groups_out=_a ,embed_dim=block_out_channels[0] ,out_channels=_a ,act_fn=_a ,fc_dim=block_out_channels[-1] // 4 ,) def _a ( self : str ,_a : torch.FloatTensor ,_a : Union[torch.Tensor, float, int] ,_a : bool = True ,): '''simple docstring''' A_ : Tuple = timestep if not torch.is_tensor(_a ): A_ : Any = torch.tensor([timesteps] ,dtype=torch.long ,device=sample.device ) elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0: A_ : Tuple = timesteps[None].to(sample.device ) A_ : Dict = self.time_proj(_a ) if self.config.use_timestep_embedding: A_ : int = self.time_mlp(_a ) else: A_ : int = timestep_embed[..., None] A_ : Tuple = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) A_ : Dict = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down A_ : List[str] = () for downsample_block in self.down_blocks: A_ , A_ : Tuple = downsample_block(hidden_states=_a ,temb=_a ) down_block_res_samples += res_samples # 3. mid if self.mid_block: A_ : int = self.mid_block(_a ,_a ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): A_ : List[str] = down_block_res_samples[-1:] A_ : List[Any] = down_block_res_samples[:-1] A_ : Any = upsample_block(_a ,res_hidden_states_tuple=_a ,temb=_a ) # 5. post-process if self.out_block: A_ : Union[str, Any] = self.out_block(_a ,_a ) if not return_dict: return (sample,) return UNetaDOutput(sample=_a )
27
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""torch""", """torchsde"""] def __init__( self : Any ,*_a : Union[str, Any] ,**_a : Optional[int] ): '''simple docstring''' requires_backends(self ,["""torch""", """torchsde"""] ) @classmethod def _a ( cls : Optional[int] ,*_a : List[Any] ,**_a : Any ): '''simple docstring''' requires_backends(cls ,["""torch""", """torchsde"""] ) @classmethod def _a ( cls : List[Any] ,*_a : Tuple ,**_a : Union[str, Any] ): '''simple docstring''' requires_backends(cls ,["""torch""", """torchsde"""] )
27
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __magic_name__ = None __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __magic_name__ = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), }, 'tokenizer_file': { 'google/bigbird-roberta-base': ( 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json' ), 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json' ), }, } __magic_name__ = { 'google/bigbird-roberta-base': 4_096, 'google/bigbird-roberta-large': 4_096, 'google/bigbird-base-trivia-itc': 4_096, } __magic_name__ = '▁' class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = BigBirdTokenizer a_ = ["""input_ids""", """attention_mask"""] a_ = [] def __init__( self : str ,_a : Any=None ,_a : Optional[Any]=None ,_a : str="<unk>" ,_a : Union[str, Any]="<s>" ,_a : Optional[Any]="</s>" ,_a : Any="<pad>" ,_a : str="[SEP]" ,_a : Dict="[MASK]" ,_a : int="[CLS]" ,**_a : List[Any] ,): '''simple docstring''' A_ : Optional[Any] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else bos_token A_ : Optional[Any] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else eos_token A_ : Union[str, Any] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else unk_token A_ : Dict = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else pad_token A_ : Union[str, Any] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else cls_token A_ : Optional[Any] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else sep_token # Mask token behave like a normal word, i.e. include the space before it A_ : Optional[Any] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else mask_token super().__init__( _a ,tokenizer_file=_a ,bos_token=_a ,eos_token=_a ,unk_token=_a ,sep_token=_a ,pad_token=_a ,cls_token=_a ,mask_token=_a ,**_a ,) A_ : int = vocab_file A_ : str = False if not self.vocab_file else True def _a ( self : Any ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' A_ : List[Any] = [self.sep_token_id] A_ : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _a ( self : Tuple ,_a : List[int] ,_a : Optional[List[int]] = None ,_a : bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1] def _a ( self : str ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' A_ : Union[str, Any] = [self.sep_token_id] A_ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self : Union[str, Any] ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A_ : Union[str, Any] = os.path.join( _a ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file ,_a ) return (out_vocab_file,)
27
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : str=True , lowerCamelCase : Optional[Any]="pt"): A_ : Optional[int] = {"""add_prefix_space""": True} if isinstance(lowerCamelCase , lowerCamelCase) and not line.startswith(""" """) else {} A_ : Optional[int] = padding_side return tokenizer( [line] , max_length=lowerCamelCase , padding="""max_length""" if pad_to_max_length else None , truncation=lowerCamelCase , return_tensors=lowerCamelCase , add_special_tokens=lowerCamelCase , **lowerCamelCase , ) def lowerCamelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any]=None , ): A_ : Dict = input_ids.ne(lowerCamelCase).any(dim=0) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] ,_a : Optional[Any] ,_a : Tuple ,_a : Dict ,_a : Tuple ,_a : Tuple="train" ,_a : Optional[int]=None ,_a : Any=None ,_a : int=None ,_a : Union[str, Any]="" ,): '''simple docstring''' super().__init__() A_ : Union[str, Any] = Path(_a ).joinpath(type_path + """.source""" ) A_ : Any = Path(_a ).joinpath(type_path + """.target""" ) A_ : Dict = self.get_char_lens(self.src_file ) A_ : Optional[int] = max_source_length A_ : List[str] = max_target_length assert min(self.src_lens ) > 0, f'found empty line in {self.src_file}' A_ : List[Any] = tokenizer A_ : Optional[Any] = prefix if n_obs is not None: A_ : Any = self.src_lens[:n_obs] A_ : Optional[int] = src_lang A_ : Tuple = tgt_lang def __len__( self : Tuple ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self : List[str] ,_a : Tuple ): '''simple docstring''' A_ : int = index + 1 # linecache starts at 1 A_ : Union[str, Any] = self.prefix + linecache.getline(str(self.src_file ) ,_a ).rstrip("""\n""" ) A_ : Dict = linecache.getline(str(self.tgt_file ) ,_a ).rstrip("""\n""" ) assert source_line, f'empty source line for index {index}' assert tgt_line, f'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer ,_a ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A_ : List[str] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,_a ) else self.tokenizer ) A_ : Any = self.tokenizer.generator if isinstance(self.tokenizer ,_a ) else self.tokenizer A_ : Optional[int] = encode_line(_a ,_a ,self.max_source_length ,"""right""" ) A_ : Optional[int] = encode_line(_a ,_a ,self.max_target_length ,"""right""" ) A_ : Optional[Any] = source_inputs["""input_ids"""].squeeze() A_ : Dict = target_inputs["""input_ids"""].squeeze() A_ : Union[str, Any] = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _a ( _a : int ): '''simple docstring''' return [len(_a ) for x in Path(_a ).open().readlines()] def _a ( self : Optional[int] ,_a : Dict ): '''simple docstring''' A_ : str = torch.stack([x["""input_ids"""] for x in batch] ) A_ : Optional[Any] = torch.stack([x["""attention_mask"""] for x in batch] ) A_ : str = torch.stack([x["""decoder_input_ids"""] for x in batch] ) A_ : Union[str, Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,_a ) else self.tokenizer.pad_token_id ) A_ : str = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,_a ) else self.tokenizer.pad_token_id ) A_ : List[str] = trim_batch(_a ,_a ) A_ , A_ : Union[str, Any] = trim_batch(_a ,_a ,attention_mask=_a ) A_ : List[str] = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch __magic_name__ = getLogger(__name__) def lowerCamelCase ( lowerCamelCase : List[List]): return list(itertools.chain.from_iterable(lowerCamelCase)) def lowerCamelCase ( lowerCamelCase : str): A_ : Union[str, Any] = get_git_info() save_json(lowerCamelCase , os.path.join(lowerCamelCase , """git_log.json""")) def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : List[str]=4 , **lowerCamelCase : List[str]): with open(lowerCamelCase , """w""") as f: json.dump(lowerCamelCase , lowerCamelCase , indent=lowerCamelCase , **lowerCamelCase) def lowerCamelCase ( lowerCamelCase : Any): with open(lowerCamelCase) as f: return json.load(lowerCamelCase) def lowerCamelCase ( ): A_ : List[str] = git.Repo(search_parent_directories=lowerCamelCase) A_ : Union[str, Any] = { """repo_id""": str(lowerCamelCase), """repo_sha""": str(repo.head.object.hexsha), """repo_branch""": str(repo.active_branch), """hostname""": str(socket.gethostname()), } return repo_infos def lowerCamelCase ( lowerCamelCase : Callable , lowerCamelCase : Iterable): return list(map(lowerCamelCase , lowerCamelCase)) def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : Union[str, Any]): with open(lowerCamelCase , """wb""") as f: return pickle.dump(lowerCamelCase , lowerCamelCase) def lowerCamelCase ( lowerCamelCase : List[str]): def remove_articles(lowerCamelCase : Any): return re.sub(r"""\b(a|an|the)\b""" , """ """ , lowerCamelCase) def white_space_fix(lowerCamelCase : List[Any]): return " ".join(text.split()) def remove_punc(lowerCamelCase : Union[str, Any]): A_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(lowerCamelCase : List[str]): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase)))) def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : int): A_ : Tuple = normalize_answer(lowerCamelCase).split() A_ : Dict = normalize_answer(lowerCamelCase).split() A_ : int = Counter(lowerCamelCase) & Counter(lowerCamelCase) A_ : Any = sum(common.values()) if num_same == 0: return 0 A_ : Any = 1.0 * num_same / len(lowerCamelCase) A_ : Any = 1.0 * num_same / len(lowerCamelCase) A_ : Any = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Any): return normalize_answer(lowerCamelCase) == normalize_answer(lowerCamelCase) def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : List[str]): assert len(lowerCamelCase) == len(lowerCamelCase) A_ : Any = 0 for hypo, pred in zip(lowerCamelCase , lowerCamelCase): em += exact_match_score(lowerCamelCase , lowerCamelCase) if len(lowerCamelCase) > 0: em /= len(lowerCamelCase) return {"em": em} def lowerCamelCase ( lowerCamelCase : Union[str, Any]): return model_prefix.startswith("""rag""") def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Union[str, Any]): A_ : Optional[Any] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A_ : Tuple = """dropout_rate""" for p in extra_params: if getattr(lowerCamelCase , lowerCamelCase , lowerCamelCase): if not hasattr(lowerCamelCase , lowerCamelCase) and not hasattr(lowerCamelCase , equivalent_param[p]): logger.info("""config doesn't have a `{}` attribute""".format(lowerCamelCase)) delattr(lowerCamelCase , lowerCamelCase) continue A_ : Tuple = p if hasattr(lowerCamelCase , lowerCamelCase) else equivalent_param[p] setattr(lowerCamelCase , lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase)) delattr(lowerCamelCase , lowerCamelCase) return hparams, config
27
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def lowerCamelCase ( lowerCamelCase : List[str]): # vision encoder if "img_encoder.pos_embed" in name: A_ : List[Any] = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""") if "img_encoder.patch_embed.proj" in name: A_ : Tuple = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""") if "img_encoder.patch_embed.norm" in name: A_ : Any = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""") if "img_encoder.layers" in name: A_ : Union[str, Any] = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""") if "blocks" in name and "res" not in name: A_ : Dict = name.replace("""blocks""" , """layers""") if "attn" in name and "pre_assign" not in name: A_ : List[str] = name.replace("""attn""" , """self_attn""") if "proj" in name and "self_attn" in name and "text" not in name: A_ : Any = name.replace("""proj""" , """out_proj""") if "pre_assign_attn.attn.proj" in name: A_ : Dict = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""") if "norm1" in name: A_ : Optional[Any] = name.replace("""norm1""" , """layer_norm1""") if "norm2" in name and "pre_assign" not in name: A_ : Optional[int] = name.replace("""norm2""" , """layer_norm2""") if "img_encoder.norm" in name: A_ : Union[str, Any] = name.replace("""img_encoder.norm""" , """vision_model.layernorm""") # text encoder if "text_encoder.token_embedding" in name: A_ : Optional[Any] = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""") if "text_encoder.positional_embedding" in name: A_ : Any = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""") if "text_encoder.transformer.resblocks." in name: A_ : Optional[int] = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""") if "ln_1" in name: A_ : List[str] = name.replace("""ln_1""" , """layer_norm1""") if "ln_2" in name: A_ : Optional[Any] = name.replace("""ln_2""" , """layer_norm2""") if "c_fc" in name: A_ : Union[str, Any] = name.replace("""c_fc""" , """fc1""") if "c_proj" in name: A_ : List[Any] = name.replace("""c_proj""" , """fc2""") if "text_encoder" in name: A_ : List[Any] = name.replace("""text_encoder""" , """text_model""") if "ln_final" in name: A_ : int = name.replace("""ln_final""" , """final_layer_norm""") # projection layers if "img_projector.linear_hidden." in name: A_ : Union[str, Any] = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""") if "img_projector.linear_out." in name: A_ : Dict = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""") if "text_projector.linear_hidden" in name: A_ : Tuple = name.replace("""text_projector.linear_hidden""" , """text_projection""") if "text_projector.linear_out" in name: A_ : List[Any] = name.replace("""text_projector.linear_out""" , """text_projection.3""") return name def lowerCamelCase ( lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any]): for key in orig_state_dict.copy().keys(): A_ : Dict = orig_state_dict.pop(lowerCamelCase) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors A_ : Optional[int] = key.split(""".""") A_ , A_ : Optional[int] = int(key_split[2]), int(key_split[4]) A_ : Union[str, Any] = config.vision_config.hidden_size if "weight" in key: A_ : Tuple = val[:dim, :] A_ : int = val[dim : dim * 2, :] A_ : Union[str, Any] = val[-dim:, :] else: A_ : Tuple = val[:dim] A_ : Optional[Any] = val[dim : dim * 2] A_ : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors A_ : Union[str, Any] = key.split(""".""") A_ : str = int(key_split[3]) A_ : Optional[int] = config.text_config.hidden_size if "weight" in key: A_ : Optional[int] = val[:dim, :] A_ : int = val[ dim : dim * 2, : ] A_ : List[str] = val[-dim:, :] else: A_ : str = val[:dim] A_ : Union[str, Any] = val[dim : dim * 2] A_ : int = val[-dim:] else: A_ : List[Any] = rename_key(lowerCamelCase) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): A_ : List[Any] = val.squeeze_() else: A_ : Optional[Any] = val return orig_state_dict def lowerCamelCase ( ): A_ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : Any = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase).raw) return im @torch.no_grad() def lowerCamelCase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : List[str]="groupvit-gcc-yfcc" , lowerCamelCase : Dict=False): A_ : int = GroupViTConfig() A_ : Tuple = GroupViTModel(lowerCamelCase).eval() A_ : int = torch.load(lowerCamelCase , map_location="""cpu""")["""model"""] A_ : str = convert_state_dict(lowerCamelCase , lowerCamelCase) A_ , A_ : Tuple = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCamelCase) == 0) # verify result A_ : Union[str, Any] = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""") A_ : List[Any] = prepare_img() A_ : Union[str, Any] = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowerCamelCase , padding=lowerCamelCase , return_tensors="""pt""") with torch.no_grad(): A_ : Optional[int] = model(**lowerCamelCase) if model_name == "groupvit-gcc-yfcc": A_ : List[Any] = torch.tensor([[13.3523, 6.3629]]) elif model_name == "groupvit-gcc-redcaps": A_ : Tuple = torch.tensor([[16.1873, 8.6230]]) else: raise ValueError(F'Model name {model_name} not supported.') assert torch.allclose(outputs.logits_per_image , lowerCamelCase , atol=1E-3) processor.save_pretrained(lowerCamelCase) model.save_pretrained(lowerCamelCase) print("""Successfully saved processor and model to""" , lowerCamelCase) if push_to_hub: print("""Pushing to the hub...""") processor.push_to_hub(lowerCamelCase , organization="""nielsr""") model.push_to_hub(lowerCamelCase , organization="""nielsr""") if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) __magic_name__ = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
27
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
1
'''simple docstring''' def lowerCamelCase ( lowerCamelCase : int): A_ : list[list[int]] = [[0 for _ in range(lowerCamelCase)] for _ in range(m + 1)] for i in range(m + 1): A_ : Union[str, Any] = 1 for n in range(m + 1): for k in range(1 , lowerCamelCase): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: __magic_name__ = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: __magic_name__ = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
27
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = KandinskyVaaControlnetPipeline a_ = ["""image_embeds""", """negative_image_embeds""", """hint"""] a_ = ["""image_embeds""", """negative_image_embeds""", """hint"""] a_ = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a_ = False @property def _a ( self : Any ): '''simple docstring''' return 32 @property def _a ( self : Tuple ): '''simple docstring''' return 32 @property def _a ( self : Tuple ): '''simple docstring''' return self.time_input_dim @property def _a ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def _a ( self : Optional[Any] ): '''simple docstring''' return 100 @property def _a ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) A_ : List[Any] = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } A_ : Tuple = UNetaDConditionModel(**_a ) return model @property def _a ( self : List[str] ): '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _a ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) A_ : int = VQModel(**self.dummy_movq_kwargs ) return model def _a ( self : List[str] ): '''simple docstring''' A_ : Optional[Any] = self.dummy_unet A_ : int = self.dummy_movq A_ : Tuple = DDIMScheduler( num_train_timesteps=1000 ,beta_schedule="""linear""" ,beta_start=0.00085 ,beta_end=0.012 ,clip_sample=_a ,set_alpha_to_one=_a ,steps_offset=1 ,prediction_type="""epsilon""" ,thresholding=_a ,) A_ : int = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _a ( self : Dict ,_a : str ,_a : Union[str, Any]=0 ): '''simple docstring''' A_ : Dict = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(_a ) ).to(_a ) A_ : int = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( _a ) # create hint A_ : List[Any] = floats_tensor((1, 3, 64, 64) ,rng=random.Random(_a ) ).to(_a ) if str(_a ).startswith("""mps""" ): A_ : Optional[Any] = torch.manual_seed(_a ) else: A_ : str = torch.Generator(device=_a ).manual_seed(_a ) A_ : List[Any] = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def _a ( self : Dict ): '''simple docstring''' A_ : List[Any] = """cpu""" A_ : List[str] = self.get_dummy_components() A_ : Tuple = self.pipeline_class(**_a ) A_ : Dict = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) A_ : Tuple = pipe(**self.get_dummy_inputs(_a ) ) A_ : Tuple = output.images A_ : Optional[Any] = pipe( **self.get_dummy_inputs(_a ) ,return_dict=_a ,)[0] A_ : Tuple = image[0, -3:, -3:, -1] A_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ : List[Any] = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def _a ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Any ): '''simple docstring''' A_ : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) A_ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) A_ : Optional[int] = torch.from_numpy(np.array(_a ) ).float() / 255.0 A_ : List[Any] = hint.permute(2 ,0 ,1 ).unsqueeze(0 ) A_ : List[Any] = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" ,torch_dtype=torch.floataa ) pipe_prior.to(_a ) A_ : Union[str, Any] = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" ,torch_dtype=torch.floataa ) A_ : Union[str, Any] = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) A_ : Optional[Any] = """A robot, 4k photo""" A_ : Any = torch.Generator(device="""cuda""" ).manual_seed(0 ) A_ , A_ : List[str] = pipe_prior( _a ,generator=_a ,num_inference_steps=5 ,negative_prompt="""""" ,).to_tuple() A_ : int = torch.Generator(device="""cuda""" ).manual_seed(0 ) A_ : List[Any] = pipeline( image_embeds=_a ,negative_image_embeds=_a ,hint=_a ,generator=_a ,num_inference_steps=100 ,output_type="""np""" ,) A_ : Dict = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_a ,_a )
27
1
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def lowerCamelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any]): A_ : Optional[Any] = [] for part_id in partition_order: A_ : List[str] = df.where(F'SPARK_PARTITION_ID() = {part_id}').collect() for row_idx, row in enumerate(lowerCamelCase): expected_row_ids_and_row_dicts.append((F'{part_id}_{row_idx}', row.asDict())) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase ( ): A_ : Optional[Any] = pyspark.sql.SparkSession.builder.master("""local[*]""").appName("""pyspark""").getOrCreate() A_ : int = spark.range(100).repartition(1) A_ : Tuple = Spark(lowerCamelCase) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase ( ): A_ : str = pyspark.sql.SparkSession.builder.master("""local[*]""").appName("""pyspark""").getOrCreate() A_ : str = spark.range(10).repartition(2) A_ : List[str] = [1, 0] A_ : Any = _generate_iterable_examples(lowerCamelCase , lowerCamelCase) # Reverse the partitions. A_ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCamelCase , lowerCamelCase) for i, (row_id, row_dict) in enumerate(generate_fn()): A_ , A_ : int = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase ( ): A_ : str = pyspark.sql.SparkSession.builder.master("""local[*]""").appName("""pyspark""").getOrCreate() A_ : Optional[int] = spark.range(10).repartition(1) A_ : Union[str, Any] = SparkExamplesIterable(lowerCamelCase) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(lowerCamelCase): assert row_id == F'0_{i}' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase ( ): A_ : Optional[Any] = pyspark.sql.SparkSession.builder.master("""local[*]""").appName("""pyspark""").getOrCreate() A_ : int = spark.range(30).repartition(3) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""") as generator_mock: A_ : Dict = lambda lowerCamelCase: x.reverse() A_ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCamelCase , [2, 1, 0]) A_ : Any = SparkExamplesIterable(lowerCamelCase).shuffle_data_sources(lowerCamelCase) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(lowerCamelCase): A_ , A_ : Dict = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase ( ): A_ : str = pyspark.sql.SparkSession.builder.master("""local[*]""").appName("""pyspark""").getOrCreate() A_ : Tuple = spark.range(20).repartition(4) # Partitions 0 and 2 A_ : Optional[Any] = SparkExamplesIterable(lowerCamelCase).shard_data_sources(worker_id=0 , num_workers=2) assert shard_it_a.n_shards == 2 A_ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCamelCase , [0, 2]) for i, (row_id, row_dict) in enumerate(lowerCamelCase): A_ , A_ : Tuple = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 A_ : str = SparkExamplesIterable(lowerCamelCase).shard_data_sources(worker_id=1 , num_workers=2) assert shard_it_a.n_shards == 2 A_ : str = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCamelCase , [1, 3]) for i, (row_id, row_dict) in enumerate(lowerCamelCase): A_ , A_ : Union[str, Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase ( ): A_ : int = pyspark.sql.SparkSession.builder.master("""local[*]""").appName("""pyspark""").getOrCreate() A_ : Tuple = spark.range(100).repartition(1) A_ : Optional[int] = Spark(lowerCamelCase) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
27
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __magic_name__ = logging.get_logger(__name__) __magic_name__ = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """deberta-v2""" def __init__( self : Optional[Any] ,_a : Union[str, Any]=128100 ,_a : Optional[int]=1536 ,_a : Dict=24 ,_a : int=24 ,_a : Tuple=6144 ,_a : Union[str, Any]="gelu" ,_a : List[Any]=0.1 ,_a : Dict=0.1 ,_a : int=512 ,_a : int=0 ,_a : int=0.02 ,_a : int=1e-7 ,_a : List[str]=False ,_a : Union[str, Any]=-1 ,_a : List[Any]=0 ,_a : Optional[Any]=True ,_a : Tuple=None ,_a : Any=0 ,_a : int="gelu" ,**_a : Any ,): '''simple docstring''' super().__init__(**_a ) A_ : Union[str, Any] = hidden_size A_ : Dict = num_hidden_layers A_ : Union[str, Any] = num_attention_heads A_ : List[Any] = intermediate_size A_ : List[Any] = hidden_act A_ : Optional[int] = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : int = max_position_embeddings A_ : Any = type_vocab_size A_ : List[Any] = initializer_range A_ : int = relative_attention A_ : Tuple = max_relative_positions A_ : int = pad_token_id A_ : Tuple = position_biased_input # Backwards compatibility if type(_a ) == str: A_ : str = [x.strip() for x in pos_att_type.lower().split("""|""" )] A_ : Any = pos_att_type A_ : Optional[int] = vocab_size A_ : Tuple = layer_norm_eps A_ : Any = kwargs.get("""pooler_hidden_size""" ,_a ) A_ : Union[str, Any] = pooler_dropout A_ : List[Any] = pooler_hidden_act class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _a ( self : Any ): '''simple docstring''' if self.task == "multiple-choice": A_ : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : Any = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def _a ( self : Optional[int] ): '''simple docstring''' return 12 def _a ( self : int ,_a : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] ,_a : int = -1 ,_a : int = -1 ,_a : int = -1 ,_a : bool = False ,_a : Optional["TensorType"] = None ,_a : int = 3 ,_a : int = 40 ,_a : int = 40 ,_a : "PreTrainedTokenizerBase" = None ,): '''simple docstring''' A_ : Any = super().generate_dummy_inputs(preprocessor=_a ,framework=_a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
27
1
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __magic_name__ = logging.get_logger(__name__) def lowerCamelCase ( lowerCamelCase : Any): A_ : str = r"""\w+[.]\d+""" A_ : int = re.findall(lowerCamelCase , lowerCamelCase) for pat in pats: A_ : Optional[int] = key.replace(lowerCamelCase , """_""".join(pat.split("""."""))) return key def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : List[str] , lowerCamelCase : Optional[Any]): A_ : Optional[int] = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): A_ : Any = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: A_ : str = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: A_ : List[str] = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer A_ : Tuple = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: A_ : Union[str, Any] = pt_tensor.transpose(2 , 3 , 1 , 0) return renamed_pt_tuple_key, pt_tensor # linear layer A_ : Optional[int] = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": A_ : List[str] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A_ : int = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A_ : Union[str, Any] = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Tuple , lowerCamelCase : List[Any]=42): # Step 1: Convert pytorch tensor to numpy A_ : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params A_ : Dict = flax_model.init_weights(PRNGKey(lowerCamelCase)) A_ : Any = flatten_dict(lowerCamelCase) A_ : List[str] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A_ : Optional[int] = rename_key(lowerCamelCase) A_ : Optional[Any] = tuple(renamed_pt_key.split(""".""")) # Correctly rename weight parameters A_ , A_ : Optional[int] = rename_key_and_reshape_tensor(lowerCamelCase , lowerCamelCase , lowerCamelCase) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.') # also add unexpected weight so that warning is thrown A_ : int = jnp.asarray(lowerCamelCase) return unflatten_dict(lowerCamelCase)
27
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') __magic_name__ = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) __magic_name__ = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) __magic_name__ = BeautifulSoup(res.text, 'html.parser') __magic_name__ = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
27
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """openai-gpt""" a_ = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : List[str] ,_a : Any=40478 ,_a : Any=512 ,_a : str=768 ,_a : List[Any]=12 ,_a : Union[str, Any]=12 ,_a : Optional[Any]="gelu" ,_a : Optional[int]=0.1 ,_a : Dict=0.1 ,_a : List[str]=0.1 ,_a : Optional[int]=1e-5 ,_a : Any=0.02 ,_a : Dict="cls_index" ,_a : str=True ,_a : int=None ,_a : Union[str, Any]=True ,_a : Tuple=0.1 ,**_a : List[Any] ,): '''simple docstring''' A_ : Union[str, Any] = vocab_size A_ : str = n_positions A_ : Tuple = n_embd A_ : Any = n_layer A_ : Union[str, Any] = n_head A_ : Optional[int] = afn A_ : List[str] = resid_pdrop A_ : Dict = embd_pdrop A_ : str = attn_pdrop A_ : Optional[int] = layer_norm_epsilon A_ : Dict = initializer_range A_ : Tuple = summary_type A_ : int = summary_use_proj A_ : Dict = summary_activation A_ : Any = summary_first_dropout A_ : Optional[int] = summary_proj_to_labels super().__init__(**_a )
27
'''simple docstring''' from ... import PretrainedConfig __magic_name__ = { 'sijunhe/nezha-cn-base': 'https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json', } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP a_ = """nezha""" def __init__( self : int ,_a : Union[str, Any]=21128 ,_a : int=768 ,_a : Any=12 ,_a : List[str]=12 ,_a : str=3072 ,_a : int="gelu" ,_a : int=0.1 ,_a : str=0.1 ,_a : Tuple=512 ,_a : List[Any]=64 ,_a : Dict=2 ,_a : List[Any]=0.02 ,_a : Optional[Any]=1e-12 ,_a : List[Any]=0.1 ,_a : Union[str, Any]=0 ,_a : Any=2 ,_a : Union[str, Any]=3 ,_a : int=True ,**_a : int ,): '''simple docstring''' super().__init__(pad_token_id=_a ,bos_token_id=_a ,eos_token_id=_a ,**_a ) A_ : Tuple = vocab_size A_ : int = hidden_size A_ : Any = num_hidden_layers A_ : List[Any] = num_attention_heads A_ : Tuple = hidden_act A_ : List[Any] = intermediate_size A_ : List[str] = hidden_dropout_prob A_ : Tuple = attention_probs_dropout_prob A_ : Dict = max_position_embeddings A_ : Optional[Any] = max_relative_position A_ : List[Any] = type_vocab_size A_ : int = initializer_range A_ : Tuple = layer_norm_eps A_ : Dict = classifier_dropout A_ : int = use_cache
27
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """microsoft/speecht5_tts""" a_ = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) a_ = """text_reader""" a_ = SpeechTaProcessor a_ = SpeechTaForTextToSpeech a_ = SpeechTaHifiGan a_ = ["""text"""] a_ = ["""audio"""] def _a ( self : Tuple ): '''simple docstring''' if self.post_processor is None: A_ : int = """microsoft/speecht5_hifigan""" super().setup() def _a ( self : Any ,_a : Optional[int] ,_a : List[str]=None ): '''simple docstring''' A_ : Any = self.pre_processor(text=_a ,return_tensors="""pt""" ,truncation=_a ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) A_ : Dict = load_dataset("""Matthijs/cmu-arctic-xvectors""" ,split="""validation""" ) A_ : Union[str, Any] = torch.tensor(embeddings_dataset[7305]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _a ( self : Any ,_a : List[str] ): '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**_a ) def _a ( self : int ,_a : List[str] ): '''simple docstring''' with torch.no_grad(): return self.post_processor(_a ).cpu().detach()
27
'''simple docstring''' from __future__ import annotations def lowerCamelCase ( lowerCamelCase : dict , lowerCamelCase : str): A_ , A_ : List[Any] = set(lowerCamelCase), [start] while stack: A_ : Optional[Any] = stack.pop() explored.add(lowerCamelCase) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v]): if adj not in explored: stack.append(lowerCamelCase) return explored __magic_name__ = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
27
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __magic_name__ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] ,*_a : Optional[Any] ,**_a : Optional[int] ): '''simple docstring''' warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" ,_a ,) super().__init__(*_a ,**_a )
27
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) def lowerCamelCase ( lowerCamelCase : Dict): A_ : List[str] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: A_ : Union[str, Any] = [144, 192, 240] A_ : int = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: A_ : List[str] = [96, 120, 144] A_ : Any = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: A_ : Any = [64, 80, 96] A_ : List[str] = [16, 16, 24, 48, 64, 80, 320] A_ : Any = 0.05 A_ : List[Any] = 2.0 if mobilevit_name.startswith("""deeplabv3_"""): A_ : int = 512 A_ : Optional[int] = 16 A_ : List[Any] = 21 A_ : List[str] = """pascal-voc-id2label.json""" else: A_ : str = 1000 A_ : Any = """imagenet-1k-id2label.json""" A_ : Any = """huggingface/label-files""" A_ : List[str] = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""") , """r""")) A_ : str = {int(lowerCamelCase): v for k, v in idalabel.items()} A_ : Any = idalabel A_ : List[str] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : int=False): for i in range(1 , 6): if F'layer_{i}.' in name: A_ : Tuple = name.replace(F'layer_{i}.' , F'encoder.layer.{i - 1}.') if "conv_1." in name: A_ : Union[str, Any] = name.replace("""conv_1.""" , """conv_stem.""") if ".block." in name: A_ : Optional[Any] = name.replace(""".block.""" , """.""") if "exp_1x1" in name: A_ : Union[str, Any] = name.replace("""exp_1x1""" , """expand_1x1""") if "red_1x1" in name: A_ : int = name.replace("""red_1x1""" , """reduce_1x1""") if ".local_rep.conv_3x3." in name: A_ : List[str] = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""") if ".local_rep.conv_1x1." in name: A_ : Optional[int] = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""") if ".norm." in name: A_ : Tuple = name.replace(""".norm.""" , """.normalization.""") if ".conv." in name: A_ : List[Any] = name.replace(""".conv.""" , """.convolution.""") if ".conv_proj." in name: A_ : str = name.replace(""".conv_proj.""" , """.conv_projection.""") for i in range(0 , 2): for j in range(0 , 4): if F'.{i}.{j}.' in name: A_ : Tuple = name.replace(F'.{i}.{j}.' , F'.{i}.layer.{j}.') for i in range(2 , 6): for j in range(0 , 4): if F'.{i}.{j}.' in name: A_ : Dict = name.replace(F'.{i}.{j}.' , F'.{i}.') if "expand_1x1" in name: A_ : Union[str, Any] = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""") if "conv_3x3" in name: A_ : str = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""") if "reduce_1x1" in name: A_ : Union[str, Any] = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""") for i in range(2 , 5): if F'.global_rep.{i}.weight' in name: A_ : List[Any] = name.replace(F'.global_rep.{i}.weight' , """.layernorm.weight""") if F'.global_rep.{i}.bias' in name: A_ : Optional[int] = name.replace(F'.global_rep.{i}.bias' , """.layernorm.bias""") if ".global_rep." in name: A_ : Optional[Any] = name.replace(""".global_rep.""" , """.transformer.""") if ".pre_norm_mha.0." in name: A_ : int = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""") if ".pre_norm_mha.1.out_proj." in name: A_ : Dict = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""") if ".pre_norm_ffn.0." in name: A_ : Dict = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""") if ".pre_norm_ffn.1." in name: A_ : Any = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""") if ".pre_norm_ffn.4." in name: A_ : Union[str, Any] = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""") if ".transformer." in name: A_ : Any = name.replace(""".transformer.""" , """.transformer.layer.""") if ".aspp_layer." in name: A_ : int = name.replace(""".aspp_layer.""" , """.""") if ".aspp_pool." in name: A_ : Tuple = name.replace(""".aspp_pool.""" , """.""") if "seg_head." in name: A_ : Optional[int] = name.replace("""seg_head.""" , """segmentation_head.""") if "segmentation_head.classifier.classifier." in name: A_ : List[str] = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""") if "classifier.fc." in name: A_ : str = name.replace("""classifier.fc.""" , """classifier.""") elif (not base_model) and ("segmentation_head." not in name): A_ : str = """mobilevit.""" + name return name def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int]=False): if base_model: A_ : Dict = """""" else: A_ : Any = """mobilevit.""" for key in orig_state_dict.copy().keys(): A_ : List[Any] = orig_state_dict.pop(lowerCamelCase) if key[:8] == "encoder.": A_ : int = key[8:] if "qkv" in key: A_ : Any = key.split(""".""") A_ : str = int(key_split[0][6:]) - 1 A_ : int = int(key_split[3]) A_ : Optional[Any] = model.get_submodule(F'{model_prefix}encoder.layer.{layer_num}') A_ : Tuple = layer.transformer.layer[transformer_num].attention.attention.all_head_size A_ : Optional[Any] = ( F'{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.' ) if "weight" in key: A_ : Dict = val[:dim, :] A_ : Optional[int] = val[dim : dim * 2, :] A_ : List[Any] = val[-dim:, :] else: A_ : Optional[Any] = val[:dim] A_ : List[Any] = val[dim : dim * 2] A_ : Any = val[-dim:] else: A_ : List[str] = val return orig_state_dict def lowerCamelCase ( ): A_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : Dict = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase).raw) return im @torch.no_grad() def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : Any , lowerCamelCase : Optional[int] , lowerCamelCase : int=False): A_ : Optional[Any] = get_mobilevit_config(lowerCamelCase) # load original state_dict A_ : List[Any] = torch.load(lowerCamelCase , map_location="""cpu""") # load 🤗 model if mobilevit_name.startswith("""deeplabv3_"""): A_ : List[str] = MobileViTForSemanticSegmentation(lowerCamelCase).eval() else: A_ : str = MobileViTForImageClassification(lowerCamelCase).eval() A_ : str = convert_state_dict(lowerCamelCase , lowerCamelCase) model.load_state_dict(lowerCamelCase) # Check outputs on an image, prepared by MobileViTImageProcessor A_ : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32) A_ : Any = image_processor(images=prepare_img() , return_tensors="""pt""") A_ : List[Any] = model(**lowerCamelCase) A_ : Dict = outputs.logits if mobilevit_name.startswith("""deeplabv3_"""): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": A_ : int = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ]) elif mobilevit_name == "deeplabv3_mobilevit_xs": A_ : Tuple = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ]) elif mobilevit_name == "deeplabv3_mobilevit_xxs": A_ : Tuple = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ]) else: raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}') assert torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase , atol=1E-4) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": A_ : Tuple = torch.tensor([-0.9866, 0.2392, -1.1241]) elif mobilevit_name == "mobilevit_xs": A_ : Any = torch.tensor([-2.4761, -0.9399, -1.9587]) elif mobilevit_name == "mobilevit_xxs": A_ : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653]) else: raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}') assert torch.allclose(logits[0, :3] , lowerCamelCase , atol=1E-4) Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase) print(F'Saving model {mobilevit_name} to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase) print(F'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase) if push_to_hub: A_ : str = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""") A_ : Union[str, Any] = model_mapping[mobilevit_name] image_processor.push_to_hub(lowerCamelCase , organization="""apple""") model.push_to_hub(lowerCamelCase , organization="""apple""") if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--mobilevit_name', default='mobilevit_s', type=str, help=( 'Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',' ' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.' ), ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __magic_name__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
27
1
'''simple docstring''' from math import factorial class __lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] ,_a : List[str] ,_a : Optional[int] ): '''simple docstring''' A_ : Optional[int] = real if isinstance(_a ,_a ): A_ : str = [1] * rank else: A_ : Dict = rank def __repr__( self : Tuple ): '''simple docstring''' return ( f'{self.real}+' f'{"+".join(str(_a )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}' ) def _a ( self : List[Any] ): '''simple docstring''' A_ : Dict = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real ,_a ) def __add__( self : Optional[int] ,_a : List[Any] ): '''simple docstring''' if not isinstance(_a ,_a ): return Dual(self.real + other ,self.duals ) A_ : Dict = self.duals.copy() A_ : Dict = other.duals.copy() if len(_a ) > len(_a ): o_dual.extend([1] * (len(_a ) - len(_a )) ) elif len(_a ) < len(_a ): s_dual.extend([1] * (len(_a ) - len(_a )) ) A_ : str = [] for i in range(len(_a ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real ,_a ) a_ = __add__ def __sub__( self : Optional[int] ,_a : Tuple ): '''simple docstring''' return self + other * -1 def __mul__( self : List[Any] ,_a : Tuple ): '''simple docstring''' if not isinstance(_a ,_a ): A_ : Optional[int] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other ,_a ) A_ : int = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real ,_a ) a_ = __mul__ def __truediv__( self : Dict ,_a : Dict ): '''simple docstring''' if not isinstance(_a ,_a ): A_ : List[str] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other ,_a ) raise ValueError def __floordiv__( self : Any ,_a : Tuple ): '''simple docstring''' if not isinstance(_a ,_a ): A_ : Optional[Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other ,_a ) raise ValueError def __pow__( self : str ,_a : Union[str, Any] ): '''simple docstring''' if n < 0 or isinstance(_a ,_a ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self A_ : int = self for _ in range(n - 1 ): x *= self return x def lowerCamelCase ( lowerCamelCase : List[Any] , lowerCamelCase : str , lowerCamelCase : int): if not callable(lowerCamelCase): raise ValueError("""differentiate() requires a function as input for func""") if not isinstance(lowerCamelCase , (float, int)): raise ValueError("""differentiate() requires a float as input for position""") if not isinstance(lowerCamelCase , lowerCamelCase): raise ValueError("""differentiate() requires an int as input for order""") A_ : Tuple = Dual(lowerCamelCase , 1) A_ : int = func(lowerCamelCase) if order == 0: return result.real return result.duals[order - 1] * factorial(lowerCamelCase) if __name__ == "__main__": import doctest doctest.testmod() def lowerCamelCase ( lowerCamelCase : List[Any]): return y**2 * y**4 print(differentiate(f, 9, 2))
27
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __magic_name__ = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""pixel_values"""] def __init__( self : Optional[Any] ,_a : bool = True ,_a : Dict[str, int] = None ,_a : PILImageResampling = PILImageResampling.BICUBIC ,_a : bool = True ,_a : Dict[str, int] = None ,_a : bool = True ,_a : Union[int, float] = 1 / 255 ,_a : bool = True ,_a : Optional[Union[float, List[float]]] = None ,_a : Optional[Union[float, List[float]]] = None ,_a : bool = True ,**_a : Dict ,): '''simple docstring''' super().__init__(**_a ) A_ : Tuple = size if size is not None else {"""shortest_edge""": 224} A_ : Optional[Any] = get_size_dict(_a ,default_to_square=_a ) A_ : Tuple = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} A_ : Optional[Any] = get_size_dict(_a ,default_to_square=_a ,param_name="""crop_size""" ) A_ : Any = do_resize A_ : List[str] = size A_ : Union[str, Any] = resample A_ : Dict = do_center_crop A_ : List[str] = crop_size A_ : Any = do_rescale A_ : Union[str, Any] = rescale_factor A_ : Any = do_normalize A_ : List[str] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A_ : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD A_ : Tuple = do_convert_rgb def _a ( self : Optional[int] ,_a : np.ndarray ,_a : Dict[str, int] ,_a : PILImageResampling = PILImageResampling.BICUBIC ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Optional[Any] ,): '''simple docstring''' A_ : Optional[Any] = get_size_dict(_a ,default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A_ : Tuple = get_resize_output_image_size(_a ,size=size["""shortest_edge"""] ,default_to_square=_a ) return resize(_a ,size=_a ,resample=_a ,data_format=_a ,**_a ) def _a ( self : List[Any] ,_a : np.ndarray ,_a : Dict[str, int] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Optional[int] ,): '''simple docstring''' A_ : Optional[int] = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_a ,size=(size["""height"""], size["""width"""]) ,data_format=_a ,**_a ) def _a ( self : Any ,_a : np.ndarray ,_a : Union[int, float] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Any ,): '''simple docstring''' return rescale(_a ,scale=_a ,data_format=_a ,**_a ) def _a ( self : Any ,_a : np.ndarray ,_a : Union[float, List[float]] ,_a : Union[float, List[float]] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : List[str] ,): '''simple docstring''' return normalize(_a ,mean=_a ,std=_a ,data_format=_a ,**_a ) def _a ( self : Optional[Any] ,_a : ImageInput ,_a : bool = None ,_a : Dict[str, int] = None ,_a : PILImageResampling = None ,_a : bool = None ,_a : int = None ,_a : bool = None ,_a : float = None ,_a : bool = None ,_a : Optional[Union[float, List[float]]] = None ,_a : Optional[Union[float, List[float]]] = None ,_a : bool = None ,_a : Optional[Union[str, TensorType]] = None ,_a : Optional[ChannelDimension] = ChannelDimension.FIRST ,**_a : int ,): '''simple docstring''' A_ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize A_ : Tuple = size if size is not None else self.size A_ : Optional[int] = get_size_dict(_a ,param_name="""size""" ,default_to_square=_a ) A_ : List[str] = resample if resample is not None else self.resample A_ : int = do_center_crop if do_center_crop is not None else self.do_center_crop A_ : Any = crop_size if crop_size is not None else self.crop_size A_ : int = get_size_dict(_a ,param_name="""crop_size""" ,default_to_square=_a ) A_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale A_ : int = rescale_factor if rescale_factor is not None else self.rescale_factor A_ : Any = do_normalize if do_normalize is not None else self.do_normalize A_ : int = image_mean if image_mean is not None else self.image_mean A_ : int = image_std if image_std is not None else self.image_std A_ : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A_ : int = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: A_ : Optional[int] = [convert_to_rgb(_a ) for image in images] # All transformations expect numpy arrays. A_ : Dict = [to_numpy_array(_a ) for image in images] if do_resize: A_ : int = [self.resize(image=_a ,size=_a ,resample=_a ) for image in images] if do_center_crop: A_ : Tuple = [self.center_crop(image=_a ,size=_a ) for image in images] if do_rescale: A_ : List[str] = [self.rescale(image=_a ,scale=_a ) for image in images] if do_normalize: A_ : Any = [self.normalize(image=_a ,mean=_a ,std=_a ) for image in images] A_ : List[str] = [to_channel_dimension_format(_a ,_a ) for image in images] A_ : List[str] = {"""pixel_values""": images} return BatchFeature(data=_a ,tensor_type=_a )
27
1
'''simple docstring''' def lowerCamelCase ( lowerCamelCase : list): def merge(lowerCamelCase : list , lowerCamelCase : list) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0) yield from left yield from right return list(_merge()) if len(lowerCamelCase) <= 1: return collection A_ : Dict = len(lowerCamelCase) // 2 return merge(merge_sort(collection[:mid]) , merge_sort(collection[mid:])) if __name__ == "__main__": import doctest doctest.testmod() __magic_name__ = input('Enter numbers separated by a comma:\n').strip() __magic_name__ = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
27
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __magic_name__ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] ,*_a : Optional[Any] ,**_a : Optional[int] ): '''simple docstring''' warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" ,_a ,) super().__init__(*_a ,**_a )
27
1
'''simple docstring''' def lowerCamelCase ( lowerCamelCase : int): A_ : int = generate_pascal_triangle(lowerCamelCase) for row_idx in range(lowerCamelCase): # Print left spaces for _ in range(num_rows - row_idx - 1): print(end=""" """) # Print row values for col_idx in range(row_idx + 1): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """) else: print(triangle[row_idx][col_idx] , end="""""") print() def lowerCamelCase ( lowerCamelCase : int): if not isinstance(lowerCamelCase , lowerCamelCase): raise TypeError("""The input value of 'num_rows' should be 'int'""") if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""") A_ : list[list[int]] = [] for current_row_idx in range(lowerCamelCase): A_ : Dict = populate_current_row(lowerCamelCase , lowerCamelCase) triangle.append(lowerCamelCase) return triangle def lowerCamelCase ( lowerCamelCase : list[list[int]] , lowerCamelCase : int): A_ : List[Any] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 A_ , A_ : Any = 1, 1 for current_col_idx in range(1 , lowerCamelCase): calculate_current_element( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase) return current_row def lowerCamelCase ( lowerCamelCase : list[list[int]] , lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : int , ): A_ : int = triangle[current_row_idx - 1][current_col_idx - 1] A_ : int = triangle[current_row_idx - 1][current_col_idx] A_ : int = above_to_left_elt + above_to_right_elt def lowerCamelCase ( lowerCamelCase : int): if not isinstance(lowerCamelCase , lowerCamelCase): raise TypeError("""The input value of 'num_rows' should be 'int'""") if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""") A_ : list[list[int]] = [[1]] for row_index in range(1 , lowerCamelCase): A_ : Dict = [0] + result[-1] + [0] A_ : Any = row_index + 1 # Calculate the number of distinct elements in a row A_ : Optional[Any] = sum(divmod(lowerCamelCase , 2)) A_ : Tuple = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1) ] A_ : str = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() A_ : Optional[int] = row_first_half + row_second_half result.append(lowerCamelCase) return result def lowerCamelCase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCamelCase : Callable , lowerCamelCase : int) -> None: A_ : Union[str, Any] = F'{func.__name__}({value})' A_ : str = timeit(F'__main__.{call}' , setup="""import __main__""") # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds') for value in range(15): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCamelCase , lowerCamelCase) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
27
'''simple docstring''' from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def lowerCamelCase ( lowerCamelCase : str , lowerCamelCase : complex , lowerCamelCase : str = "x" , lowerCamelCase : float = 10**-10 , lowerCamelCase : int = 1 , ): A_ : int = symbols(lowerCamelCase) A_ : List[Any] = lambdify(lowerCamelCase , lowerCamelCase) A_ : List[str] = lambdify(lowerCamelCase , diff(lowerCamelCase , lowerCamelCase)) A_ : str = starting_point while True: if diff_function(lowerCamelCase) != 0: A_ : int = prev_guess - multiplicity * func(lowerCamelCase) / diff_function( lowerCamelCase) else: raise ZeroDivisionError("""Could not find root""") from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess) < precision: return next_guess A_ : Union[str, Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5j)}""") # Find value of e print( 'The root of log(y) - 1 = 0 is ', f"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( 'The root of exp(x) - 1 = 0 is', f"""{newton_raphson('exp(x) - 1', 10, precision=0.0_0_5)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
27
1
'''simple docstring''' import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) __magic_name__ = logging.getLogger(__name__) def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Any): A_ : List[Any] = np.argmax(lowerCamelCase , axis=1) return np.sum(outputs == labels) def lowerCamelCase ( lowerCamelCase : List[str]): with open(lowerCamelCase , encoding="""utf_8""") as f: A_ : str = csv.reader(lowerCamelCase) A_ : Tuple = [] next(lowerCamelCase) # skip the first line for line in tqdm(lowerCamelCase): output.append((""" """.join(line[1:5]), line[5], line[6], int(line[-1]) - 1)) return output def lowerCamelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : Dict , lowerCamelCase : str , lowerCamelCase : Any , lowerCamelCase : Optional[Any] , lowerCamelCase : Dict): A_ : int = [] for dataset in encoded_datasets: A_ : int = len(lowerCamelCase) A_ : Dict = np.zeros((n_batch, 2, input_len) , dtype=np.intaa) A_ : List[str] = np.zeros((n_batch, 2) , dtype=np.intaa) A_ : List[str] = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa) A_ : Union[str, Any] = np.zeros((n_batch,) , dtype=np.intaa) for ( i, (story, conta, conta, mc_label), ) in enumerate(lowerCamelCase): A_ : List[Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] A_ : Union[str, Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] A_ : Dict = with_conta A_ : Dict = with_conta A_ : str = len(lowerCamelCase) - 1 A_ : Any = len(lowerCamelCase) - 1 A_ : Optional[Any] = with_conta A_ : Dict = with_conta A_ : Optional[Any] = mc_label A_ : List[str] = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(lowerCamelCase) for t in all_inputs)) return tensor_datasets def lowerCamelCase ( ): A_ : List[Any] = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=lowerCamelCase , default="""openai-gpt""" , help="""pretrained model name""") parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""") parser.add_argument("""--do_eval""" , action="""store_true""" , help="""Whether to run eval on the dev set.""") parser.add_argument( """--output_dir""" , default=lowerCamelCase , type=lowerCamelCase , required=lowerCamelCase , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument("""--train_dataset""" , type=lowerCamelCase , default="""""") parser.add_argument("""--eval_dataset""" , type=lowerCamelCase , default="""""") parser.add_argument("""--seed""" , type=lowerCamelCase , default=42) parser.add_argument("""--num_train_epochs""" , type=lowerCamelCase , default=3) parser.add_argument("""--train_batch_size""" , type=lowerCamelCase , default=8) parser.add_argument("""--eval_batch_size""" , type=lowerCamelCase , default=16) parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=lowerCamelCase , help="""Epsilon for Adam optimizer.""") parser.add_argument("""--max_grad_norm""" , type=lowerCamelCase , default=1) parser.add_argument( """--max_steps""" , default=-1 , type=lowerCamelCase , help=( """If > 0: set total number of training steps to perform. Override num_train_epochs.""" ) , ) parser.add_argument( """--gradient_accumulation_steps""" , type=lowerCamelCase , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--learning_rate""" , type=lowerCamelCase , default=6.25E-5) parser.add_argument("""--warmup_steps""" , default=0 , type=lowerCamelCase , help="""Linear warmup over warmup_steps.""") parser.add_argument("""--lr_schedule""" , type=lowerCamelCase , default="""warmup_linear""") parser.add_argument("""--weight_decay""" , type=lowerCamelCase , default=0.01) parser.add_argument("""--lm_coef""" , type=lowerCamelCase , default=0.9) parser.add_argument("""--n_valid""" , type=lowerCamelCase , default=374) parser.add_argument("""--server_ip""" , type=lowerCamelCase , default="""""" , help="""Can be used for distant debugging.""") parser.add_argument("""--server_port""" , type=lowerCamelCase , default="""""" , help="""Can be used for distant debugging.""") A_ : str = parser.parse_args() print(lowerCamelCase) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""") ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCamelCase) ptvsd.wait_for_attach() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) A_ : Optional[int] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""") A_ : List[str] = torch.cuda.device_count() logger.info("""device: {}, n_gpu {}""".format(lowerCamelCase , lowerCamelCase)) if not args.do_train and not args.do_eval: raise ValueError("""At least one of `do_train` or `do_eval` must be True.""") if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset A_ : int = ["""_start_""", """_delimiter_""", """_classify_"""] A_ : Any = OpenAIGPTTokenizer.from_pretrained(args.model_name) tokenizer.add_tokens(lowerCamelCase) A_ : Optional[int] = tokenizer.convert_tokens_to_ids(lowerCamelCase) A_ : List[str] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name) model.resize_token_embeddings(len(lowerCamelCase)) model.to(lowerCamelCase) # Load and encode the datasets def tokenize_and_encode(lowerCamelCase : List[Any]): if isinstance(lowerCamelCase , lowerCamelCase): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(lowerCamelCase)) elif isinstance(lowerCamelCase , lowerCamelCase): return obj return [tokenize_and_encode(lowerCamelCase) for o in obj] logger.info("""Encoding dataset...""") A_ : Dict = load_rocstories_dataset(args.train_dataset) A_ : Optional[Any] = load_rocstories_dataset(args.eval_dataset) A_ : Union[str, Any] = (train_dataset, eval_dataset) A_ : Optional[int] = tokenize_and_encode(lowerCamelCase) # Compute the max input length for the Transformer A_ : int = model.config.n_positions // 2 - 2 A_ : Union[str, Any] = max( len(story[:max_length]) + max(len(conta[:max_length]) , len(conta[:max_length])) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset) A_ : Tuple = min(lowerCamelCase , model.config.n_positions) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders A_ : Dict = pre_process_datasets(lowerCamelCase , lowerCamelCase , lowerCamelCase , *lowerCamelCase) A_ , A_ : Optional[Any] = tensor_datasets[0], tensor_datasets[1] A_ : List[Any] = TensorDataset(*lowerCamelCase) A_ : Tuple = RandomSampler(lowerCamelCase) A_ : Any = DataLoader(lowerCamelCase , sampler=lowerCamelCase , batch_size=args.train_batch_size) A_ : List[Any] = TensorDataset(*lowerCamelCase) A_ : Tuple = SequentialSampler(lowerCamelCase) A_ : int = DataLoader(lowerCamelCase , sampler=lowerCamelCase , batch_size=args.eval_batch_size) # Prepare optimizer if args.do_train: if args.max_steps > 0: A_ : str = args.max_steps A_ : Union[str, Any] = args.max_steps // (len(lowerCamelCase) // args.gradient_accumulation_steps) + 1 else: A_ : List[Any] = len(lowerCamelCase) // args.gradient_accumulation_steps * args.num_train_epochs A_ : Union[str, Any] = list(model.named_parameters()) A_ : Optional[Any] = ["""bias""", """LayerNorm.bias""", """LayerNorm.weight"""] A_ : List[Any] = [ { """params""": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], """weight_decay""": args.weight_decay, }, {"""params""": [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], """weight_decay""": 0.0}, ] A_ : Union[str, Any] = AdamW(lowerCamelCase , lr=args.learning_rate , eps=args.adam_epsilon) A_ : Any = get_linear_schedule_with_warmup( lowerCamelCase , num_warmup_steps=args.warmup_steps , num_training_steps=lowerCamelCase) if args.do_train: A_ , A_ , A_ : int = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs) , desc="""Epoch"""): A_ : List[str] = 0 A_ : str = 0 A_ : Union[str, Any] = tqdm(lowerCamelCase , desc="""Training""") for step, batch in enumerate(lowerCamelCase): A_ : Any = tuple(t.to(lowerCamelCase) for t in batch) A_ , A_ , A_ , A_ : List[str] = batch A_ : Any = model(lowerCamelCase , mc_token_ids=lowerCamelCase , lm_labels=lowerCamelCase , mc_labels=lowerCamelCase) A_ : Dict = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() A_ : Optional[Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 A_ : Any = """Training loss: {:.2e} lr: {:.2e}""".format(lowerCamelCase , scheduler.get_lr()[0]) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer A_ : Optional[int] = model.module if hasattr(lowerCamelCase , """module""") else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` A_ : Dict = os.path.join(args.output_dir , lowerCamelCase) A_ : int = os.path.join(args.output_dir , lowerCamelCase) torch.save(model_to_save.state_dict() , lowerCamelCase) model_to_save.config.to_json_file(lowerCamelCase) tokenizer.save_vocabulary(args.output_dir) # Load a trained model and vocabulary that you have fine-tuned A_ : List[str] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir) A_ : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir) model.to(lowerCamelCase) if args.do_eval: model.eval() A_ , A_ : Any = 0, 0 A_ , A_ : Any = 0, 0 for batch in tqdm(lowerCamelCase , desc="""Evaluating"""): A_ : List[Any] = tuple(t.to(lowerCamelCase) for t in batch) A_ , A_ , A_ , A_ : int = batch with torch.no_grad(): A_ , A_ , A_ , A_ : Any = model( lowerCamelCase , mc_token_ids=lowerCamelCase , lm_labels=lowerCamelCase , mc_labels=lowerCamelCase) A_ : Tuple = mc_logits.detach().cpu().numpy() A_ : Union[str, Any] = mc_labels.to("""cpu""").numpy() A_ : Dict = accuracy(lowerCamelCase , lowerCamelCase) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 A_ : Optional[Any] = eval_loss / nb_eval_steps A_ : Union[str, Any] = eval_accuracy / nb_eval_examples A_ : Tuple = tr_loss / nb_tr_steps if args.do_train else None A_ : str = {"""eval_loss""": eval_loss, """eval_accuracy""": eval_accuracy, """train_loss""": train_loss} A_ : Tuple = os.path.join(args.output_dir , """eval_results.txt""") with open(lowerCamelCase , """w""") as writer: logger.info("""***** Eval results *****""") for key in sorted(result.keys()): logger.info(""" %s = %s""" , lowerCamelCase , str(result[key])) writer.write("""%s = %s\n""" % (key, str(result[key]))) if __name__ == "__main__": main()
27
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset __magic_name__ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_a : Dict ): '''simple docstring''' super().__init__() A_ : List[str] = torchvision.models.resnetaaa(pretrained=_a ) A_ : int = list(model.children() )[:-2] A_ : int = nn.Sequential(*_a ) A_ : Optional[int] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def _a ( self : str ,_a : Optional[int] ): '''simple docstring''' A_ : Tuple = self.pool(self.model(_a ) ) A_ : Any = torch.flatten(_a ,start_dim=2 ) A_ : str = out.transpose(1 ,2 ).contiguous() return out # BxNx2048 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,_a : Optional[Any] ,_a : Optional[Any] ,_a : Dict ,_a : Dict ,_a : Optional[Any] ): '''simple docstring''' A_ : Dict = [json.loads(_a ) for l in open(_a )] A_ : Optional[int] = os.path.dirname(_a ) A_ : Optional[Any] = tokenizer A_ : Optional[Any] = labels A_ : List[Any] = len(_a ) A_ : str = max_seq_length A_ : str = transforms def __len__( self : str ): '''simple docstring''' return len(self.data ) def __getitem__( self : Tuple ,_a : Optional[Any] ): '''simple docstring''' A_ : Optional[int] = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] ,add_special_tokens=_a ) ) A_ , A_ , A_ : Dict = sentence[0], sentence[1:-1], sentence[-1] A_ : Optional[int] = sentence[: self.max_seq_length] A_ : Any = torch.zeros(self.n_classes ) A_ : Tuple = 1 A_ : Optional[Any] = Image.open(os.path.join(self.data_dir ,self.data[index]["""img"""] ) ).convert("""RGB""" ) A_ : Union[str, Any] = self.transforms(_a ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _a ( self : List[Any] ): '''simple docstring''' A_ : str = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def lowerCamelCase ( lowerCamelCase : str): A_ : List[Any] = [len(row["""sentence"""]) for row in batch] A_ , A_ : Dict = len(lowerCamelCase), max(lowerCamelCase) A_ : Optional[int] = torch.zeros(lowerCamelCase , lowerCamelCase , dtype=torch.long) A_ : Tuple = torch.zeros(lowerCamelCase , lowerCamelCase , dtype=torch.long) for i_batch, (input_row, length) in enumerate(zip(lowerCamelCase , lowerCamelCase)): A_ : str = input_row["""sentence"""] A_ : Tuple = 1 A_ : int = torch.stack([row["""image"""] for row in batch]) A_ : str = torch.stack([row["""label"""] for row in batch]) A_ : List[Any] = torch.stack([row["""image_start_token"""] for row in batch]) A_ : Tuple = torch.stack([row["""image_end_token"""] for row in batch]) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase ( ): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase ( ): return transforms.Compose( [ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( mean=[0.4677_7044, 0.4453_1429, 0.4066_1017] , std=[0.1222_1994, 0.1214_5835, 0.1438_0469] , ), ])
27
1
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = TextToVideoSDPipeline a_ = TEXT_TO_IMAGE_PARAMS a_ = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a_ = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def _a ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) A_ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") ,up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") ,cross_attention_dim=32 ,attention_head_dim=4 ,) A_ : Tuple = DDIMScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=_a ,set_alpha_to_one=_a ,) torch.manual_seed(0 ) A_ : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,sample_size=128 ,) torch.manual_seed(0 ) A_ : Union[str, Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,hidden_act="""gelu""" ,projection_dim=512 ,) A_ : List[Any] = CLIPTextModel(_a ) A_ : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A_ : str = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def _a ( self : str ,_a : List[Any] ,_a : Union[str, Any]=0 ): '''simple docstring''' if str(_a ).startswith("""mps""" ): A_ : Dict = torch.manual_seed(_a ) else: A_ : str = torch.Generator(device=_a ).manual_seed(_a ) A_ : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def _a ( self : Optional[Any] ): '''simple docstring''' A_ : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : str = self.get_dummy_components() A_ : Optional[Any] = TextToVideoSDPipeline(**_a ) A_ : str = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) A_ : Optional[Any] = self.get_dummy_inputs(_a ) A_ : int = """np""" A_ : List[str] = sd_pipe(**_a ).frames A_ : int = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) A_ : List[Any] = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Any ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_a ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() ,reason="""XFormers attention is only available with CUDA and `xformers` installed""" ,) def _a ( self : Union[str, Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_a ,expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def _a ( self : int ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def _a ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def _a ( self : Optional[Any] ): '''simple docstring''' pass def _a ( self : Union[str, Any] ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def _a ( self : List[str] ): '''simple docstring''' A_ : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) A_ : Optional[Any] = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) A_ : Tuple = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) A_ : List[Any] = pipe.to("""cuda""" ) A_ : Optional[Any] = """Spiderman is surfing""" A_ : Optional[int] = torch.Generator(device="""cpu""" ).manual_seed(0 ) A_ : List[str] = pipe(_a ,generator=_a ,num_inference_steps=25 ,output_type="""pt""" ).frames A_ : str = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def _a ( self : int ): '''simple docstring''' A_ : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) A_ : Optional[Any] = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) A_ : Any = pipe.to("""cuda""" ) A_ : Any = """Spiderman is surfing""" A_ : Optional[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) A_ : List[str] = pipe(_a ,generator=_a ,num_inference_steps=2 ,output_type="""pt""" ).frames A_ : List[Any] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
27
'''simple docstring''' from __future__ import annotations import math def lowerCamelCase ( lowerCamelCase : int): if num <= 0: A_ : List[Any] = F'{num}: Invalid input, please enter a positive integer.' raise ValueError(lowerCamelCase) A_ : str = [True] * (num + 1) A_ : Tuple = [] A_ : str = 2 A_ : Any = int(math.sqrt(lowerCamelCase)) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCamelCase) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCamelCase): if sieve[i] is True: A_ : Union[str, Any] = False start += 1 for j in range(end + 1 , num + 1): if sieve[j] is True: prime.append(lowerCamelCase) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
27
1
'''simple docstring''' from __future__ import annotations __magic_name__ = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class __lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] ,_a : dict[str, list[str]] ,_a : str ): '''simple docstring''' A_ : str = graph # mapping node to its parent in resulting breadth first tree A_ : dict[str, str | None] = {} A_ : List[str] = source_vertex def _a ( self : List[Any] ): '''simple docstring''' A_ : Union[str, Any] = {self.source_vertex} A_ : List[str] = None A_ : List[str] = [self.source_vertex] # first in first out queue while queue: A_ : Union[str, Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_a ) A_ : Optional[Any] = vertex queue.append(_a ) def _a ( self : Dict ,_a : str ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex A_ : Dict = self.parent.get(_a ) if target_vertex_parent is None: A_ : str = ( f'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(_a ) return self.shortest_path(_a ) + f'->{target_vertex}' if __name__ == "__main__": __magic_name__ = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
27
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __magic_name__ = trt.Logger(trt.Logger.WARNING) __magic_name__ = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __magic_name__ = logging.getLogger(__name__) __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=384, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=128, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) __magic_name__ = parser.parse_args() if args.tokenizer_name: __magic_name__ = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) __magic_name__ = args.per_device_eval_batch_size __magic_name__ = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __magic_name__ = True __magic_name__ = 'temp_engine/bert-fp32.engine' if args.fpaa: __magic_name__ = 'temp_engine/bert-fp16.engine' if args.inta: __magic_name__ = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') __magic_name__ = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __magic_name__ = [network.get_input(i) for i in range(network.num_inputs)] __magic_name__ = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __magic_name__ = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __magic_name__ = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __magic_name__ = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : Any , lowerCamelCase : List[Any] , lowerCamelCase : str , lowerCamelCase : List[str]): A_ : str = np.asarray(inputs["""input_ids"""] , dtype=np.intaa) A_ : int = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa) A_ : Optional[int] = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCamelCase) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCamelCase) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCamelCase) # start time A_ : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowerCamelCase) for d_inp in d_inputs] + [int(lowerCamelCase), int(lowerCamelCase)] , stream_handle=stream.handle) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCamelCase , lowerCamelCase , lowerCamelCase) cuda.memcpy_dtoh_async(lowerCamelCase , lowerCamelCase , lowerCamelCase) # Synchronize the stream and take time stream.synchronize() # end time A_ : str = time.time() A_ : Tuple = end_time - start_time A_ : Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __magic_name__ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __magic_name__ = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __magic_name__ = raw_datasets['validation'].column_names __magic_name__ = 'question' if 'question' in column_names else column_names[0] __magic_name__ = 'context' if 'context' in column_names else column_names[1] __magic_name__ = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __magic_name__ = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __magic_name__ = min(args.max_seq_length, tokenizer.model_max_length) def lowerCamelCase ( lowerCamelCase : Dict): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace A_ : List[Any] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. A_ : Optional[int] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCamelCase , stride=args.doc_stride , return_overflowing_tokens=lowerCamelCase , return_offsets_mapping=lowerCamelCase , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. A_ : List[str] = tokenized_examples.pop("""overflow_to_sample_mapping""") # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. A_ : Union[str, Any] = [] for i in range(len(tokenized_examples["""input_ids"""])): # Grab the sequence corresponding to that example (to know what is the context and what is the question). A_ : Any = tokenized_examples.sequence_ids(lowerCamelCase) A_ : Tuple = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. A_ : Union[str, Any] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index]) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. A_ : Dict = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i]) ] return tokenized_examples __magic_name__ = raw_datasets['validation'] # Validation Feature Creation __magic_name__ = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) __magic_name__ = default_data_collator __magic_name__ = eval_dataset.remove_columns(['example_id', 'offset_mapping']) __magic_name__ = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def lowerCamelCase ( lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any]="eval"): # Post-processing: we match the start logits and end logits to answers in the original context. A_ : Tuple = postprocess_qa_predictions( examples=lowerCamelCase , features=lowerCamelCase , predictions=lowerCamelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCamelCase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: A_ : Dict = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: A_ : Union[str, Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] A_ : Any = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCamelCase , label_ids=lowerCamelCase) __magic_name__ = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def lowerCamelCase ( lowerCamelCase : Union[str, Any]): return trt.volume(engine.get_binding_shape(lowerCamelCase)) * engine.get_binding_dtype(lowerCamelCase).itemsize # Allocate device memory for inputs and outputs. __magic_name__ = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __magic_name__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __magic_name__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __magic_name__ = cuda.mem_alloc(h_outputa.nbytes) __magic_name__ = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __magic_name__ = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(f""" Num examples = {len(eval_dataset)}""") logger.info(f""" Batch size = {args.per_device_eval_batch_size}""") __magic_name__ = 0.0 __magic_name__ = 0 __magic_name__ = timeit.default_timer() __magic_name__ = None for step, batch in enumerate(eval_dataloader): __magic_name__ , __magic_name__ = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __magic_name__ , __magic_name__ = outputs __magic_name__ = torch.tensor(start_logits) __magic_name__ = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __magic_name__ = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __magic_name__ = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __magic_name__ = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __magic_name__ = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __magic_name__ = nested_truncate(all_preds, len(eval_dataset)) __magic_name__ = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_000 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_000)) logger.info('Total Number of Inference = %d', niter) __magic_name__ = post_processing_function(eval_examples, eval_dataset, all_preds) __magic_name__ = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"""Evaluation metrics: {eval_metric}""")
27
1
'''simple docstring''' def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : Optional[Any]): print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""") for i in range(lowerCamelCase): for j in range(lowerCamelCase): if dist[i][j] != float("""inf"""): print(int(dist[i][j]) , end="""\t""") else: print("""INF""" , end="""\t""") print() def lowerCamelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any]): A_ : Optional[int] = [[float("""inf""") for _ in range(lowerCamelCase)] for _ in range(lowerCamelCase)] for i in range(lowerCamelCase): for j in range(lowerCamelCase): A_ : List[str] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(lowerCamelCase): # looping through rows of graph array for i in range(lowerCamelCase): # looping through columns of graph array for j in range(lowerCamelCase): if ( dist[i][k] != float("""inf""") and dist[k][j] != float("""inf""") and dist[i][k] + dist[k][j] < dist[i][j] ): A_ : Tuple = dist[i][k] + dist[k][j] _print_dist(lowerCamelCase , lowerCamelCase) return dist, v if __name__ == "__main__": __magic_name__ = int(input('Enter number of vertices: ')) __magic_name__ = int(input('Enter number of edges: ')) __magic_name__ = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): __magic_name__ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) __magic_name__ = int(input('Enter source:')) __magic_name__ = int(input('Enter destination:')) __magic_name__ = float(input('Enter weight:')) __magic_name__ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
27
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __magic_name__ = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['ConvNextFeatureExtractor'] __magic_name__ = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure)
27
1
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __lowerCAmelCase : '''simple docstring''' def __init__( self : Dict ,_a : str ,_a : Optional[Any]=2 ,_a : Union[str, Any]=True ,_a : Optional[int]=False ,_a : List[str]=10 ,_a : Dict=3 ,_a : Optional[Any]=32 * 8 ,_a : Dict=32 * 8 ,_a : str=4 ,_a : Dict=64 ,): '''simple docstring''' A_ : List[Any] = parent A_ : Optional[Any] = batch_size A_ : Dict = is_training A_ : str = use_auxiliary_loss A_ : Optional[int] = num_queries A_ : Union[str, Any] = num_channels A_ : Optional[Any] = min_size A_ : Union[str, Any] = max_size A_ : int = num_labels A_ : Dict = hidden_dim A_ : Optional[int] = hidden_dim def _a ( self : Optional[Any] ): '''simple docstring''' A_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _a ) A_ : List[Any] = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=_a ) A_ : Any = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=_a ) > 0.5 ).float() A_ : List[str] = (torch.rand((self.batch_size, self.num_labels) ,device=_a ) > 0.5).long() A_ : int = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _a ( self : Any ): '''simple docstring''' A_ : List[str] = MaskaFormerConfig( hidden_size=self.hidden_dim ,) A_ : Optional[Any] = self.num_queries A_ : Any = self.num_labels A_ : Dict = [1, 1, 1, 1] A_ : str = self.num_channels A_ : List[Any] = 64 A_ : Optional[Any] = 128 A_ : List[str] = self.hidden_dim A_ : str = self.hidden_dim A_ : List[Any] = self.hidden_dim return config def _a ( self : List[Any] ): '''simple docstring''' A_ , A_ , A_ , A_ , A_ : Union[str, Any] = self.prepare_config_and_inputs() A_ : int = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def _a ( self : Tuple ,_a : Tuple ,_a : str ): '''simple docstring''' A_ : int = output.encoder_hidden_states A_ : Tuple = output.pixel_decoder_hidden_states A_ : str = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_a ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) ,config.decoder_layers ) def _a ( self : Tuple ,_a : List[str] ,_a : List[Any] ,_a : str ,_a : Union[str, Any]=False ): '''simple docstring''' with torch.no_grad(): A_ : Optional[Any] = MaskaFormerModel(config=_a ) model.to(_a ) model.eval() A_ : Dict = model(pixel_values=_a ,pixel_mask=_a ) A_ : str = model(_a ,output_hidden_states=_a ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.hidden_dim) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_a ,_a ) def _a ( self : Optional[int] ,_a : Any ,_a : Union[str, Any] ,_a : str ,_a : Tuple ,_a : Any ): '''simple docstring''' A_ : Dict = MaskaFormerForUniversalSegmentation(config=_a ) model.to(_a ) model.eval() def comm_check_on_output(_a : Union[str, Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): A_ : Union[str, Any] = model(pixel_values=_a ,pixel_mask=_a ) A_ : Dict = model(_a ) comm_check_on_output(_a ) A_ : Union[str, Any] = model( pixel_values=_a ,pixel_mask=_a ,mask_labels=_a ,class_labels=_a ) comm_check_on_output(_a ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () a_ = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False def _a ( self : List[str] ): '''simple docstring''' A_ : Tuple = MaskaFormerModelTester(self ) A_ : Dict = ConfigTester(self ,config_class=_a ,has_text_modality=_a ) def _a ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def _a ( self : Optional[Any] ): '''simple docstring''' A_ , A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a ,**_a ,output_hidden_states=_a ) def _a ( self : int ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_a ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def _a ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def _a ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def _a ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def _a ( self : Dict ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def _a ( self : Any ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self : Union[str, Any] ): '''simple docstring''' pass def _a ( self : str ): '''simple docstring''' A_ , A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[int] = model_class(_a ) A_ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : List[str] = [*signature.parameters.keys()] A_ : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,_a ) @slow def _a ( self : List[str] ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: A_ : str = MaskaFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def _a ( self : str ): '''simple docstring''' A_ : List[Any] = (self.model_tester.min_size,) * 2 A_ : Any = { """pixel_values""": torch.randn((2, 3, *size) ,device=_a ), """mask_labels""": torch.randn((2, 10, *size) ,device=_a ), """class_labels""": torch.zeros(2 ,10 ,device=_a ).long(), } A_ : Optional[Any] = self.model_tester.get_config() A_ : List[str] = MaskaFormerForUniversalSegmentation(_a ).to(_a ) A_ : int = model(**_a ) self.assertTrue(outputs.loss is not None ) def _a ( self : Any ): '''simple docstring''' A_ , A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a ,**_a ,output_hidden_states=_a ) def _a ( self : Tuple ): '''simple docstring''' A_ , A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Dict = model_class(_a ).to(_a ) A_ : Optional[int] = model(**_a ,output_attentions=_a ) self.assertTrue(outputs.attentions is not None ) def _a ( self : Optional[int] ): '''simple docstring''' if not self.model_tester.is_training: return A_ : List[Any] = self.all_model_classes[1] A_ , A_ , A_ , A_ , A_ : int = self.model_tester.prepare_config_and_inputs() A_ : Tuple = model_class(_a ) model.to(_a ) model.train() A_ : Dict = model(_a ,mask_labels=_a ,class_labels=_a ).loss loss.backward() def _a ( self : List[str] ): '''simple docstring''' A_ : Dict = self.all_model_classes[1] A_ , A_ , A_ , A_ , A_ : List[str] = self.model_tester.prepare_config_and_inputs() A_ : int = True A_ : Tuple = True A_ : Union[str, Any] = model_class(_a ).to(_a ) model.train() A_ : Dict = model(_a ,mask_labels=_a ,class_labels=_a ) A_ : Optional[int] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() A_ : List[Any] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() A_ : int = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() A_ : List[str] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_a ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __magic_name__ = 1e-4 def lowerCamelCase ( ): A_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") return image @require_vision @slow class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def _a ( self : Any ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def _a ( self : Union[str, Any] ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _a ( self : Tuple ): '''simple docstring''' A_ : Any = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_a ) A_ : Dict = self.default_image_processor A_ : Optional[int] = prepare_img() A_ : Union[str, Any] = image_processor(_a ,return_tensors="""pt""" ).to(_a ) A_ : str = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a ,(1, 3, 384, 384) ) with torch.no_grad(): A_ : Union[str, Any] = model(**_a ) A_ : Tuple = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_a ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,_a ,atol=_a ) ) A_ : Optional[Any] = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_a ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,_a ,atol=_a ) ) A_ : str = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_a ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,_a ,atol=_a ) ) def _a ( self : Optional[int] ): '''simple docstring''' A_ : Dict = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() A_ : str = self.default_image_processor A_ : str = prepare_img() A_ : str = image_processor(_a ,return_tensors="""pt""" ).to(_a ) A_ : Optional[Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a ,(1, 3, 384, 384) ) with torch.no_grad(): A_ : str = model(**_a ) # masks_queries_logits A_ : Dict = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) A_ : List[str] = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] A_ : Any = torch.tensor(_a ).to(_a ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,_a ,atol=_a ) ) # class_queries_logits A_ : List[str] = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape ,(1, model.config.num_queries, model.config.num_labels + 1) ) A_ : Dict = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_a ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,_a ,atol=_a ) ) def _a ( self : Optional[int] ): '''simple docstring''' A_ : List[str] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() A_ : Optional[int] = self.default_image_processor A_ : Tuple = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors="""pt""" ,) A_ : Optional[int] = inputs["""pixel_values"""].to(_a ) A_ : int = [el.to(_a ) for el in inputs["""mask_labels"""]] A_ : Any = [el.to(_a ) for el in inputs["""class_labels"""]] with torch.no_grad(): A_ : Tuple = model(**_a ) self.assertTrue(outputs.loss is not None )
27
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { 'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json', 'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json', 'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json', } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """owlvit_text_model""" def __init__( self : Union[str, Any] ,_a : Any=49408 ,_a : Any=512 ,_a : Tuple=2048 ,_a : Dict=12 ,_a : Optional[int]=8 ,_a : Tuple=16 ,_a : Tuple="quick_gelu" ,_a : Optional[Any]=1e-5 ,_a : List[Any]=0.0 ,_a : Optional[int]=0.02 ,_a : Dict=1.0 ,_a : Dict=0 ,_a : Any=49406 ,_a : Tuple=49407 ,**_a : List[Any] ,): '''simple docstring''' super().__init__(pad_token_id=_a ,bos_token_id=_a ,eos_token_id=_a ,**_a ) A_ : Tuple = vocab_size A_ : int = hidden_size A_ : Optional[int] = intermediate_size A_ : Optional[int] = num_hidden_layers A_ : Union[str, Any] = num_attention_heads A_ : int = max_position_embeddings A_ : str = hidden_act A_ : Union[str, Any] = layer_norm_eps A_ : Tuple = attention_dropout A_ : Union[str, Any] = initializer_range A_ : List[Any] = initializer_factor @classmethod def _a ( cls : List[str] ,_a : Union[str, os.PathLike] ,**_a : str ): '''simple docstring''' cls._set_token_in_kwargs(_a ) A_ , A_ : int = cls.get_config_dict(_a ,**_a ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": A_ : Union[str, Any] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a ,**_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """owlvit_vision_model""" def __init__( self : List[Any] ,_a : Optional[Any]=768 ,_a : Tuple=3072 ,_a : Dict=12 ,_a : int=12 ,_a : Dict=3 ,_a : Tuple=768 ,_a : int=32 ,_a : int="quick_gelu" ,_a : List[Any]=1e-5 ,_a : Tuple=0.0 ,_a : List[Any]=0.02 ,_a : str=1.0 ,**_a : int ,): '''simple docstring''' super().__init__(**_a ) A_ : List[str] = hidden_size A_ : Union[str, Any] = intermediate_size A_ : Union[str, Any] = num_hidden_layers A_ : Optional[Any] = num_attention_heads A_ : int = num_channels A_ : str = image_size A_ : List[Any] = patch_size A_ : int = hidden_act A_ : List[Any] = layer_norm_eps A_ : List[str] = attention_dropout A_ : str = initializer_range A_ : str = initializer_factor @classmethod def _a ( cls : List[Any] ,_a : Union[str, os.PathLike] ,**_a : str ): '''simple docstring''' cls._set_token_in_kwargs(_a ) A_ , A_ : Optional[int] = cls.get_config_dict(_a ,**_a ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": A_ : List[str] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a ,**_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """owlvit""" a_ = True def __init__( self : Union[str, Any] ,_a : List[str]=None ,_a : List[str]=None ,_a : Dict=512 ,_a : List[Any]=2.6592 ,_a : Optional[Any]=True ,**_a : Optional[int] ,): '''simple docstring''' super().__init__(**_a ) if text_config is None: A_ : List[Any] = {} logger.info("""text_config is None. Initializing the OwlViTTextConfig with default values.""" ) if vision_config is None: A_ : Tuple = {} logger.info("""vision_config is None. initializing the OwlViTVisionConfig with default values.""" ) A_ : Dict = OwlViTTextConfig(**_a ) A_ : Dict = OwlViTVisionConfig(**_a ) A_ : Any = projection_dim A_ : Optional[int] = logit_scale_init_value A_ : Optional[int] = return_dict A_ : Dict = 1.0 @classmethod def _a ( cls : Union[str, Any] ,_a : Union[str, os.PathLike] ,**_a : Optional[int] ): '''simple docstring''' cls._set_token_in_kwargs(_a ) A_ , A_ : List[Any] = cls.get_config_dict(_a ,**_a ) if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a ,**_a ) @classmethod def _a ( cls : int ,_a : Dict ,_a : Dict ,**_a : List[str] ): '''simple docstring''' A_ : str = {} A_ : int = text_config A_ : Union[str, Any] = vision_config return cls.from_dict(_a ,**_a ) def _a ( self : Optional[int] ): '''simple docstring''' A_ : Dict = copy.deepcopy(self.__dict__ ) A_ : str = self.text_config.to_dict() A_ : Optional[int] = self.vision_config.to_dict() A_ : List[Any] = self.__class__.model_type return output class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _a ( self : int ): '''simple docstring''' return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ] ) @property def _a ( self : str ): '''simple docstring''' return OrderedDict( [ ("""logits_per_image""", {0: """batch"""}), ("""logits_per_text""", {0: """batch"""}), ("""text_embeds""", {0: """batch"""}), ("""image_embeds""", {0: """batch"""}), ] ) @property def _a ( self : Optional[Any] ): '''simple docstring''' return 1e-4 def _a ( self : int ,_a : "ProcessorMixin" ,_a : int = -1 ,_a : int = -1 ,_a : Optional["TensorType"] = None ,): '''simple docstring''' A_ : Any = super().generate_dummy_inputs( processor.tokenizer ,batch_size=_a ,seq_length=_a ,framework=_a ) A_ : Any = super().generate_dummy_inputs( processor.image_processor ,batch_size=_a ,framework=_a ) return {**text_input_dict, **image_input_dict} @property def _a ( self : Optional[Any] ): '''simple docstring''' return 14
27
1
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def lowerCamelCase ( lowerCamelCase : Dict , lowerCamelCase : Optional[Any]): A_ : str = int(lowerCamelCase) assert noofclusters < len(lowerCamelCase) # Find out the dimensionality A_ : Union[str, Any] = len(vectors[0]) # Will help select random centroids from among the available vectors A_ : int = list(range(len(lowerCamelCase))) shuffle(lowerCamelCase) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. A_ : Dict = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION A_ : Union[str, Any] = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points A_ : List[Any] = [ tf.Variable(vectors[vector_indices[i]]) for i in range(lowerCamelCase) ] ##These nodes will assign the centroid Variables the appropriate ##values A_ : str = tf.placeholder("""float64""" , [dim]) A_ : Dict = [] for centroid in centroids: cent_assigns.append(tf.assign(lowerCamelCase , lowerCamelCase)) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) A_ : List[Any] = [tf.Variable(0) for i in range(len(lowerCamelCase))] ##These nodes will assign an assignment Variable the appropriate ##value A_ : List[str] = tf.placeholder("""int32""") A_ : Tuple = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowerCamelCase , lowerCamelCase)) ##Now lets construct the node that will compute the mean # The placeholder for the input A_ : Optional[int] = tf.placeholder("""float""" , [None, dim]) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors A_ : str = tf.reduce_mean(lowerCamelCase , 0) ##Node for computing Euclidean distances # Placeholders for input A_ : List[Any] = tf.placeholder("""float""" , [dim]) A_ : str = tf.placeholder("""float""" , [dim]) A_ : str = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowerCamelCase , lowerCamelCase) , 2))) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input A_ : int = tf.placeholder("""float""" , [noofclusters]) A_ : Optional[int] = tf.argmin(lowerCamelCase , 0) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. A_ : List[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowerCamelCase) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. A_ : Tuple = 100 for _ in range(lowerCamelCase): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowerCamelCase)): A_ : Tuple = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. A_ : Dict = [ sess.run(lowerCamelCase , feed_dict={va: vect, va: sess.run(lowerCamelCase)}) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input A_ : int = sess.run( lowerCamelCase , feed_dict={centroid_distances: distances}) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment}) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowerCamelCase): # Collect all the vectors assigned to this cluster A_ : str = [ vectors[i] for i in range(len(lowerCamelCase)) if sess.run(assignments[i]) == cluster_n ] # Compute new centroid location A_ : str = sess.run( lowerCamelCase , feed_dict={mean_input: array(lowerCamelCase)}) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location}) # Return centroids and assignments A_ : Optional[Any] = sess.run(lowerCamelCase) A_ : Dict = sess.run(lowerCamelCase) return centroids, assignments
27
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __magic_name__ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""input_features""", """is_longer"""] def __init__( self : Dict ,_a : Optional[int]=64 ,_a : List[Any]=48000 ,_a : str=480 ,_a : Optional[Any]=10 ,_a : Optional[int]=1024 ,_a : Tuple=0.0 ,_a : str=False ,_a : float = 0 ,_a : float = 14000 ,_a : int = None ,_a : str = "fusion" ,_a : str = "repeatpad" ,**_a : Tuple ,): '''simple docstring''' super().__init__( feature_size=_a ,sampling_rate=_a ,padding_value=_a ,return_attention_mask=_a ,**_a ,) A_ : Tuple = top_db A_ : Tuple = truncation A_ : Optional[Any] = padding A_ : Optional[int] = fft_window_size A_ : Dict = (fft_window_size >> 1) + 1 A_ : Any = hop_length A_ : List[Any] = max_length_s A_ : Tuple = max_length_s * sampling_rate A_ : Tuple = sampling_rate A_ : Optional[int] = frequency_min A_ : Tuple = frequency_max A_ : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=_a ,min_frequency=_a ,max_frequency=_a ,sampling_rate=_a ,norm=_a ,mel_scale="""htk""" ,) A_ : Dict = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=_a ,min_frequency=_a ,max_frequency=_a ,sampling_rate=_a ,norm="""slaney""" ,mel_scale="""slaney""" ,) def _a ( self : int ): '''simple docstring''' A_ : int = copy.deepcopy(self.__dict__ ) A_ : Tuple = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _a ( self : Dict ,_a : np.array ,_a : Optional[np.array] = None ): '''simple docstring''' A_ : List[str] = spectrogram( _a ,window_function(self.fft_window_size ,"""hann""" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=_a ,log_mel="""dB""" ,) return log_mel_spectrogram.T def _a ( self : Optional[int] ,_a : Dict ,_a : Optional[Any] ,_a : Optional[int] ): '''simple docstring''' A_ : Dict = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk A_ : List[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk A_ : int = [0] # randomly choose index for each part A_ : List[str] = np.random.choice(ranges[0] ) A_ : int = np.random.choice(ranges[1] ) A_ : Optional[int] = np.random.choice(ranges[2] ) A_ : Tuple = mel[idx_front : idx_front + chunk_frames, :] A_ : Dict = mel[idx_middle : idx_middle + chunk_frames, :] A_ : Dict = mel[idx_back : idx_back + chunk_frames, :] A_ : Optional[int] = torch.tensor(mel[None, None, :] ) A_ : Dict = torch.nn.functional.interpolate( _a ,size=[chunk_frames, 64] ,mode="""bilinear""" ,align_corners=_a ) A_ : str = mel_shrink[0][0].numpy() A_ : Tuple = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def _a ( self : Dict ,_a : np.array ,_a : Optional[Any] ,_a : int ,_a : Dict ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": A_ : Dict = True # random crop to max_length (for compatibility) -> this should be handled by self.pad A_ : Tuple = len(_a ) - max_length A_ : Optional[int] = np.random.randint(0 ,overflow + 1 ) A_ : List[Any] = waveform[idx : idx + max_length] A_ : Optional[Any] = self._np_extract_fbank_features(_a ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": A_ : Dict = self._np_extract_fbank_features(_a ,self.mel_filters ) A_ : Tuple = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed A_ : Optional[int] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. A_ : Optional[int] = np.stack([mel, mel, mel, mel] ,axis=0 ) A_ : str = False else: A_ : str = self._random_mel_fusion(_a ,_a ,_a ) A_ : Optional[Any] = True else: raise NotImplementedError(f'data_truncating {truncation} not implemented' ) else: A_ : Optional[int] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": A_ : int = int(max_length / len(_a ) ) A_ : Any = np.stack(np.tile(_a ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": A_ : List[str] = int(max_length / len(_a ) ) A_ : Optional[Any] = np.stack(np.tile(_a ,_a ) ) A_ : Any = np.pad(_a ,(0, max_length - waveform.shape[0]) ,mode="""constant""" ,constant_values=0 ) if truncation == "fusion": A_ : List[Any] = self._np_extract_fbank_features(_a ,self.mel_filters ) A_ : Optional[Any] = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: A_ : Union[str, Any] = self._np_extract_fbank_features(_a ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : List[Any] ,_a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,_a : str = None ,_a : Optional[str] = None ,_a : Optional[int] = None ,_a : Optional[int] = None ,_a : Optional[Union[str, TensorType]] = None ,**_a : Any ,): '''simple docstring''' A_ : List[str] = truncation if truncation is not None else self.truncation A_ : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) A_ : Any = isinstance(_a ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) A_ : int = is_batched_numpy or ( isinstance(_a ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: A_ : Optional[int] = [np.asarray(_a ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_a ,np.ndarray ): A_ : str = np.asarray(_a ,dtype=np.floataa ) elif isinstance(_a ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A_ : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A_ : Any = [np.asarray(_a )] # convert to mel spectrogram, truncate and pad if needed. A_ : str = [ self._get_input_mel(_a ,max_length if max_length else self.nb_max_samples ,_a ,_a ) for waveform in raw_speech ] A_ : int = [] A_ : Any = [] for mel, longer in padded_inputs: input_mel.append(_a ) is_longer.append(_a ) if truncation == "fusion" and sum(_a ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer A_ : List[Any] = np.random.randint(0 ,len(_a ) ) A_ : List[str] = True if isinstance(input_mel[0] ,_a ): A_ : Tuple = [np.asarray(_a ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool A_ : List[str] = [[longer] for longer in is_longer] A_ : Optional[Any] = {"""input_features""": input_mel, """is_longer""": is_longer} A_ : int = BatchFeature(_a ) if return_tensors is not None: A_ : int = input_features.convert_to_tensors(_a ) return input_features
27
1
'''simple docstring''' from __future__ import annotations def lowerCamelCase ( lowerCamelCase : list , lowerCamelCase : int): # Checks if the entire collection has been sorted if len(lowerCamelCase) <= 1 or n <= 1: return insert_next(lowerCamelCase , n - 1) rec_insertion_sort(lowerCamelCase , n - 1) def lowerCamelCase ( lowerCamelCase : list , lowerCamelCase : int): # Checks order between adjacent elements if index >= len(lowerCamelCase) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order A_ , A_ : Dict = ( collection[index], collection[index - 1], ) insert_next(lowerCamelCase , index + 1) if __name__ == "__main__": __magic_name__ = input('Enter integers separated by spaces: ') __magic_name__ = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
27
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ,_a : List[Any] ,_a : Dict=13 ,_a : List[Any]=7 ,_a : Optional[Any]=True ,_a : Any=True ,_a : Optional[int]=True ,_a : Union[str, Any]=99 ,_a : Union[str, Any]=32 ,_a : List[str]=5 ,_a : List[str]=4 ,_a : Dict=37 ,_a : List[Any]="gelu" ,_a : int=0.1 ,_a : Optional[int]=0.1 ,_a : Tuple=512 ,_a : Union[str, Any]=16 ,_a : Optional[Any]=2 ,_a : Optional[Any]=0.02 ,_a : Optional[int]=3 ,_a : str=4 ,_a : Optional[Any]=None ,): '''simple docstring''' A_ : Optional[Any] = parent A_ : str = batch_size A_ : int = seq_length A_ : Union[str, Any] = is_training A_ : Optional[Any] = use_token_type_ids A_ : int = use_labels A_ : Dict = vocab_size A_ : List[Any] = hidden_size A_ : Tuple = num_hidden_layers A_ : Optional[int] = num_attention_heads A_ : int = intermediate_size A_ : Tuple = hidden_act A_ : int = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : Any = max_position_embeddings A_ : Optional[Any] = type_vocab_size A_ : Tuple = type_sequence_label_size A_ : int = initializer_range A_ : Optional[Any] = num_labels A_ : str = num_choices A_ : Optional[Any] = scope A_ : List[Any] = self.vocab_size - 1 def _a ( self : Any ): '''simple docstring''' A_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A_ : List[Any] = None if self.use_token_type_ids: A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A_ : int = None A_ : str = None A_ : Union[str, Any] = None if self.use_labels: A_ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A_ : Any = ids_tensor([self.batch_size] ,self.num_choices ) A_ : List[Any] = OpenAIGPTConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) A_ : Tuple = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _a ( self : Optional[int] ,_a : List[str] ,_a : str ,_a : int ,_a : int ,*_a : Union[str, Any] ): '''simple docstring''' A_ : Optional[Any] = OpenAIGPTModel(config=_a ) model.to(_a ) model.eval() A_ : Optional[int] = model(_a ,token_type_ids=_a ,head_mask=_a ) A_ : str = model(_a ,token_type_ids=_a ) A_ : Dict = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Dict ,_a : Optional[int] ,_a : Union[str, Any] ,_a : Dict ,_a : List[str] ,*_a : str ): '''simple docstring''' A_ : str = OpenAIGPTLMHeadModel(_a ) model.to(_a ) model.eval() A_ : Any = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Any ,_a : Dict ,_a : List[Any] ,_a : Dict ,_a : Union[str, Any] ,*_a : str ): '''simple docstring''' A_ : Any = OpenAIGPTDoubleHeadsModel(_a ) model.to(_a ) model.eval() A_ : Optional[int] = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : List[str] ,_a : str ,_a : Tuple ,_a : Dict ,_a : Tuple ,*_a : Dict ): '''simple docstring''' A_ : List[str] = self.num_labels A_ : int = OpenAIGPTForSequenceClassification(_a ) model.to(_a ) model.eval() A_ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A_ : Optional[Any] = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _a ( self : Tuple ): '''simple docstring''' A_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : str = config_and_inputs A_ : int = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) a_ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly a_ = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _a ( self : Tuple ,_a : Optional[int] ,_a : str ,_a : List[str] ,_a : List[str] ,_a : Any ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _a ( self : Optional[int] ,_a : str ,_a : Dict ,_a : Optional[int]=False ): '''simple docstring''' A_ : Any = super()._prepare_for_class(_a ,_a ,return_labels=_a ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": A_ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) ,dtype=torch.long ,device=_a ,) A_ : Any = inputs_dict["""labels"""] A_ : Any = inputs_dict["""labels"""] A_ : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) ,dtype=torch.long ,device=_a ,) A_ : int = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_a ) return inputs_dict def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : Tuple = OpenAIGPTModelTester(self ) A_ : Optional[int] = ConfigTester(self ,config_class=_a ,n_embd=37 ) def _a ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def _a ( self : Optional[Any] ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_a ) def _a ( self : Tuple ): '''simple docstring''' A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_a ) def _a ( self : List[Any] ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_a ) def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_a ) @slow def _a ( self : List[Any] ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Union[str, Any] = OpenAIGPTModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def _a ( self : List[str] ): '''simple docstring''' A_ : Dict = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(_a ) A_ : Dict = torch.tensor([[481, 4735, 544]] ,dtype=torch.long ,device=_a ) # the president is A_ : Dict = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the A_ : int = model.generate(_a ,do_sample=_a ) self.assertListEqual(output_ids[0].tolist() ,_a )
27
1
'''simple docstring''' import operator as op __magic_name__ = 'scaler.pt' __magic_name__ = 'pytorch_model' __magic_name__ = 'random_states' __magic_name__ = 'optimizer' __magic_name__ = 'scheduler' __magic_name__ = 'pytorch_model.bin' __magic_name__ = 'pytorch_model.bin.index.json' __magic_name__ = 'model.safetensors' __magic_name__ = 'model.safetensors.index.json' __magic_name__ = '1.10.2' __magic_name__ = 'py38' __magic_name__ = '4.17.0' __magic_name__ = ['ml.p3.16xlarge', 'ml.p3dn.24xlarge', 'ml.p4dn.24xlarge'] __magic_name__ = ['FULL_SHARD', 'SHARD_GRAD_OP', 'NO_SHARD', 'HYBRID_SHARD', 'HYBRID_SHARD_ZERO2'] __magic_name__ = ['TRANSFORMER_BASED_WRAP', 'SIZE_BASED_WRAP', 'NO_WRAP'] __magic_name__ = ['BACKWARD_PRE', 'BACKWARD_POST', 'NO_PREFETCH'] __magic_name__ = ['FULL_STATE_DICT', 'LOCAL_STATE_DICT', 'SHARDED_STATE_DICT'] __magic_name__ = '2.0.1' __magic_name__ = ['pdsh', 'standard', 'openmpi', 'mvapich'] __magic_name__ = ['default', 'reduce-overhead', 'max-autotune'] __magic_name__ = {'>': op.gt, '>=': op.ge, '==': op.eq, '!=': op.ne, '<=': op.le, '<': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 __magic_name__ = [ 'nnodes', 'nproc_per_node', 'rdzv_backend', 'rdzv_endpoint', 'rdzv_id', 'rdzv_conf', 'standalone', 'max_restarts', 'monitor_interval', 'start_method', 'role', 'module', 'm', 'no_python', 'run_path', 'log_dir', 'r', 'redirects', 't', 'tee', 'node_rank', 'master_addr', 'master_port', ] __magic_name__ = ['DEEPSPEED', 'MULTI_GPU', 'FSDP', 'MEGATRON_LM'] __magic_name__ = ['DEEPSPEED', 'MULTI_XPU', 'FSDP']
27
'''simple docstring''' import baseaa def lowerCamelCase ( lowerCamelCase : str): return baseaa.aaaencode(string.encode("""utf-8""")) def lowerCamelCase ( lowerCamelCase : bytes): return baseaa.aaadecode(lowerCamelCase).decode("""utf-8""") if __name__ == "__main__": import doctest doctest.testmod()
27
1
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __magic_name__ = logging.get_logger(__name__) __magic_name__ = Dict[str, Any] __magic_name__ = List[Prediction] @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] ,*_a : List[str] ,**_a : List[str] ): '''simple docstring''' super().__init__(*_a ,**_a ) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.' ) requires_backends(self ,"""vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def _a ( self : List[Any] ,**_a : Union[str, Any] ): '''simple docstring''' A_ : str = {} if "threshold" in kwargs: A_ : Tuple = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self : Optional[int] ,*_a : Tuple ,**_a : Tuple ): '''simple docstring''' return super().__call__(*_a ,**_a ) def _a ( self : Optional[Any] ,_a : Any ): '''simple docstring''' A_ : Optional[int] = load_image(_a ) A_ : List[Any] = torch.IntTensor([[image.height, image.width]] ) A_ : Union[str, Any] = self.image_processor(images=[image] ,return_tensors="""pt""" ) if self.tokenizer is not None: A_ : List[str] = self.tokenizer(text=inputs["""words"""] ,boxes=inputs["""boxes"""] ,return_tensors="""pt""" ) A_ : Tuple = target_size return inputs def _a ( self : Any ,_a : List[str] ): '''simple docstring''' A_ : str = model_inputs.pop("""target_size""" ) A_ : str = self.model(**_a ) A_ : Optional[Any] = outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: A_ : Dict = model_inputs["""bbox"""] return model_outputs def _a ( self : Optional[int] ,_a : Optional[Any] ,_a : Dict=0.9 ): '''simple docstring''' A_ : Tuple = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. A_ , A_ : Optional[Any] = target_size[0].tolist() def unnormalize(_a : List[Any] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) A_ , A_ : Dict = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) A_ : int = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] A_ : Optional[Any] = [unnormalize(_a ) for bbox in model_outputs["""bbox"""].squeeze(0 )] A_ : Union[str, Any] = ["""score""", """label""", """box"""] A_ : Tuple = [dict(zip(_a ,_a ) ) for vals in zip(scores.tolist() ,_a ,_a ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel A_ : Optional[Any] = self.image_processor.post_process_object_detection(_a ,_a ,_a ) A_ : Any = raw_annotations[0] A_ : Tuple = raw_annotation["""scores"""] A_ : Dict = raw_annotation["""labels"""] A_ : int = raw_annotation["""boxes"""] A_ : Union[str, Any] = scores.tolist() A_ : int = [self.model.config.idalabel[label.item()] for label in labels] A_ : str = [self._get_bounding_box(_a ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] A_ : int = ["""score""", """label""", """box"""] A_ : Optional[int] = [ dict(zip(_a ,_a ) ) for vals in zip(raw_annotation["""scores"""] ,raw_annotation["""labels"""] ,raw_annotation["""boxes"""] ) ] return annotation def _a ( self : int ,_a : "torch.Tensor" ): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) A_ , A_ , A_ , A_ : Tuple = box.int().tolist() A_ : Optional[int] = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
27
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCamelCase ( lowerCamelCase : Optional[Any]): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def lowerCamelCase ( lowerCamelCase : str): # word like '180' or '身高' or '神' for char in word: A_ : Optional[Any] = ord(lowerCamelCase) if not _is_chinese_char(lowerCamelCase): return 0 return 1 def lowerCamelCase ( lowerCamelCase : List[str]): A_ : Any = set() for token in tokens: A_ : str = len(lowerCamelCase) > 1 and is_chinese(lowerCamelCase) if chinese_word: word_set.add(lowerCamelCase) A_ : Any = list(lowerCamelCase) return word_list def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : set()): if not chinese_word_set: return bert_tokens A_ : Any = max([len(lowerCamelCase) for w in chinese_word_set]) A_ : str = bert_tokens A_ , A_ : Any = 0, len(lowerCamelCase) while start < end: A_ : Tuple = True if is_chinese(bert_word[start]): A_ : List[str] = min(end - start , lowerCamelCase) for i in range(lowerCamelCase , 1 , -1): A_ : Tuple = """""".join(bert_word[start : start + i]) if whole_word in chinese_word_set: for j in range(start + 1 , start + i): A_ : Dict = """##""" + bert_word[j] A_ : str = start + i A_ : Dict = False break if single_word: start += 1 return bert_word def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : LTP , lowerCamelCase : BertTokenizer): A_ : Union[str, Any] = [] for i in range(0 , len(lowerCamelCase) , 100): A_ : List[Any] = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""]).cws A_ : int = [get_chinese_word(lowerCamelCase) for r in res] ltp_res.extend(lowerCamelCase) assert len(lowerCamelCase) == len(lowerCamelCase) A_ : List[Any] = [] for i in range(0 , len(lowerCamelCase) , 100): A_ : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=lowerCamelCase , truncation=lowerCamelCase , max_length=512) bert_res.extend(res["""input_ids"""]) assert len(lowerCamelCase) == len(lowerCamelCase) A_ : Union[str, Any] = [] for input_ids, chinese_word in zip(lowerCamelCase , lowerCamelCase): A_ : List[Any] = [] for id in input_ids: A_ : List[Any] = bert_tokenizer._convert_id_to_token(lowerCamelCase) input_tokens.append(lowerCamelCase) A_ : int = add_sub_symbol(lowerCamelCase , lowerCamelCase) A_ : str = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCamelCase): if token[:2] == "##": A_ : Optional[Any] = token[2:] # save chinese tokens' pos if len(lowerCamelCase) == 1 and _is_chinese_char(ord(lowerCamelCase)): ref_id.append(lowerCamelCase) ref_ids.append(lowerCamelCase) assert len(lowerCamelCase) == len(lowerCamelCase) return ref_ids def lowerCamelCase ( lowerCamelCase : Tuple): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""") as f: A_ : Optional[int] = f.readlines() A_ : Union[str, Any] = [line.strip() for line in data if len(lowerCamelCase) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ : Optional[Any] = LTP(args.ltp) # faster in GPU device A_ : Dict = BertTokenizer.from_pretrained(args.bert) A_ : str = prepare_ref(lowerCamelCase , lowerCamelCase , lowerCamelCase) with open(args.save_path , """w""" , encoding="""utf-8""") as f: A_ : Optional[Any] = [json.dumps(lowerCamelCase) + """\n""" for ref in ref_ids] f.writelines(lowerCamelCase) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) __magic_name__ = parser.parse_args() main(args)
27
1
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase ( lowerCamelCase : Tuple): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def _a ( _a : ArgumentParser ): '''simple docstring''' A_ : Any = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" ,type=_a ,default=_a ,help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" ,action="""store_true""" ,help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" ,action="""store_true""" ,help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" ,) download_parser.add_argument("""model""" ,type=_a ,help="""Name of the model to download""" ) download_parser.set_defaults(func=_a ) def __init__( self : List[str] ,_a : str ,_a : str ,_a : bool ,_a : bool ): '''simple docstring''' A_ : int = model A_ : Tuple = cache A_ : Tuple = force A_ : str = trust_remote_code def _a ( self : str ): '''simple docstring''' from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code )
27
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""image_processor""", """tokenizer"""] a_ = """ViltImageProcessor""" a_ = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : List[Any] ,_a : Optional[Any]=None ,_a : List[str]=None ,**_a : Any ): '''simple docstring''' A_ : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" ,_a ,) A_ : List[str] = kwargs.pop("""feature_extractor""" ) A_ : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_a ,_a ) A_ : Optional[Any] = self.image_processor def __call__( self : Any ,_a : Tuple ,_a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,_a : bool = True ,_a : Union[bool, str, PaddingStrategy] = False ,_a : Union[bool, str, TruncationStrategy] = None ,_a : Optional[int] = None ,_a : int = 0 ,_a : Optional[int] = None ,_a : Optional[bool] = None ,_a : Optional[bool] = None ,_a : bool = False ,_a : bool = False ,_a : bool = False ,_a : bool = False ,_a : bool = True ,_a : Optional[Union[str, TensorType]] = None ,**_a : Tuple ,): '''simple docstring''' A_ : int = self.tokenizer( text=_a ,add_special_tokens=_a ,padding=_a ,truncation=_a ,max_length=_a ,stride=_a ,pad_to_multiple_of=_a ,return_token_type_ids=_a ,return_attention_mask=_a ,return_overflowing_tokens=_a ,return_special_tokens_mask=_a ,return_offsets_mapping=_a ,return_length=_a ,verbose=_a ,return_tensors=_a ,**_a ,) # add pixel_values + pixel_mask A_ : Optional[int] = self.image_processor(_a ,return_tensors=_a ) encoding.update(_a ) return encoding def _a ( self : List[Any] ,*_a : Any ,**_a : Any ): '''simple docstring''' return self.tokenizer.batch_decode(*_a ,**_a ) def _a ( self : int ,*_a : int ,**_a : Optional[int] ): '''simple docstring''' return self.tokenizer.decode(*_a ,**_a ) @property def _a ( self : List[Any] ): '''simple docstring''' A_ : Optional[int] = self.tokenizer.model_input_names A_ : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _a ( self : str ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" ,_a ,) return self.image_processor_class @property def _a ( self : int ): '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" ,_a ,) return self.image_processor
27
1
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __magic_name__ = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __magic_name__ = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __magic_name__ = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } __magic_name__ = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } __magic_name__ = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } __magic_name__ = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } __magic_name__ = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } __magic_name__ = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } __magic_name__ = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = VOCAB_FILES_NAMES a_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP a_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION a_ = DPRContextEncoderTokenizer class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = VOCAB_FILES_NAMES a_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP a_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a_ = DPRQuestionEncoderTokenizer __magic_name__ = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) __magic_name__ = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) __magic_name__ = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase : '''simple docstring''' def __call__( self : Any ,_a : List[str] ,_a : Optional[str] = None ,_a : Optional[str] = None ,_a : Union[bool, str] = False ,_a : Union[bool, str] = False ,_a : Optional[int] = None ,_a : Optional[Union[str, TensorType]] = None ,_a : Optional[bool] = None ,**_a : Tuple ,): '''simple docstring''' if titles is None and texts is None: return super().__call__( _a ,padding=_a ,truncation=_a ,max_length=_a ,return_tensors=_a ,return_attention_mask=_a ,**_a ,) elif titles is None or texts is None: A_ : int = titles if texts is None else texts return super().__call__( _a ,_a ,padding=_a ,truncation=_a ,max_length=_a ,return_tensors=_a ,return_attention_mask=_a ,**_a ,) A_ : List[Any] = titles if not isinstance(_a ,_a ) else [titles] A_ : Dict = texts if not isinstance(_a ,_a ) else [texts] A_ : Tuple = len(_a ) A_ : Optional[Any] = questions if not isinstance(_a ,_a ) else [questions] * n_passages assert len(_a ) == len( _a ), f'There should be as many titles than texts but got {len(_a )} titles and {len(_a )} texts.' A_ : str = super().__call__(_a ,_a ,padding=_a ,truncation=_a )["""input_ids"""] A_ : Union[str, Any] = super().__call__(_a ,add_special_tokens=_a ,padding=_a ,truncation=_a )["""input_ids"""] A_ : str = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_a ,_a ) ] } if return_attention_mask is not False: A_ : List[str] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) A_ : int = attention_mask return self.pad(_a ,padding=_a ,max_length=_a ,return_tensors=_a ) def _a ( self : Optional[int] ,_a : BatchEncoding ,_a : DPRReaderOutput ,_a : int = 16 ,_a : int = 64 ,_a : int = 4 ,): '''simple docstring''' A_ : Dict = reader_input["""input_ids"""] A_ , A_ , A_ : Optional[int] = reader_output[:3] A_ : Dict = len(_a ) A_ : Dict = sorted(range(_a ) ,reverse=_a ,key=relevance_logits.__getitem__ ) A_ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: A_ : Tuple = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence A_ : List[Any] = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A_ : List[str] = sequence_ids.index(self.pad_token_id ) else: A_ : Union[str, Any] = len(_a ) A_ : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_a ,top_spans=_a ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_a ,start_index=_a ,end_index=_a ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(_a ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _a ( self : Optional[int] ,_a : List[int] ,_a : List[int] ,_a : int ,_a : int ,): '''simple docstring''' A_ : List[str] = [] for start_index, start_score in enumerate(_a ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) A_ : Any = sorted(_a ,key=lambda _a : x[1] ,reverse=_a ) A_ : List[str] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'Wrong span indices: [{start_index}:{end_index}]' A_ : List[str] = end_index - start_index + 1 assert length <= max_answer_length, f'Span is too long: {length} > {max_answer_length}' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_a ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = VOCAB_FILES_NAMES a_ = READER_PRETRAINED_VOCAB_FILES_MAP a_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = READER_PRETRAINED_INIT_CONFIGURATION a_ = ["""input_ids""", """attention_mask"""] a_ = DPRReaderTokenizer
27
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""torch""", """torchsde"""] def __init__( self : Any ,*_a : Union[str, Any] ,**_a : Optional[int] ): '''simple docstring''' requires_backends(self ,["""torch""", """torchsde"""] ) @classmethod def _a ( cls : Optional[int] ,*_a : List[Any] ,**_a : Any ): '''simple docstring''' requires_backends(cls ,["""torch""", """torchsde"""] ) @classmethod def _a ( cls : List[Any] ,*_a : Tuple ,**_a : Union[str, Any] ): '''simple docstring''' requires_backends(cls ,["""torch""", """torchsde"""] )
27
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : str=True , lowerCamelCase : Optional[Any]="pt"): A_ : Optional[int] = {"""add_prefix_space""": True} if isinstance(lowerCamelCase , lowerCamelCase) and not line.startswith(""" """) else {} A_ : Optional[int] = padding_side return tokenizer( [line] , max_length=lowerCamelCase , padding="""max_length""" if pad_to_max_length else None , truncation=lowerCamelCase , return_tensors=lowerCamelCase , add_special_tokens=lowerCamelCase , **lowerCamelCase , ) def lowerCamelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any]=None , ): A_ : Dict = input_ids.ne(lowerCamelCase).any(dim=0) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] ,_a : Optional[Any] ,_a : Tuple ,_a : Dict ,_a : Tuple ,_a : Tuple="train" ,_a : Optional[int]=None ,_a : Any=None ,_a : int=None ,_a : Union[str, Any]="" ,): '''simple docstring''' super().__init__() A_ : Union[str, Any] = Path(_a ).joinpath(type_path + """.source""" ) A_ : Any = Path(_a ).joinpath(type_path + """.target""" ) A_ : Dict = self.get_char_lens(self.src_file ) A_ : Optional[int] = max_source_length A_ : List[str] = max_target_length assert min(self.src_lens ) > 0, f'found empty line in {self.src_file}' A_ : List[Any] = tokenizer A_ : Optional[Any] = prefix if n_obs is not None: A_ : Any = self.src_lens[:n_obs] A_ : Optional[int] = src_lang A_ : Tuple = tgt_lang def __len__( self : Tuple ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self : List[str] ,_a : Tuple ): '''simple docstring''' A_ : int = index + 1 # linecache starts at 1 A_ : Union[str, Any] = self.prefix + linecache.getline(str(self.src_file ) ,_a ).rstrip("""\n""" ) A_ : Dict = linecache.getline(str(self.tgt_file ) ,_a ).rstrip("""\n""" ) assert source_line, f'empty source line for index {index}' assert tgt_line, f'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer ,_a ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A_ : List[str] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,_a ) else self.tokenizer ) A_ : Any = self.tokenizer.generator if isinstance(self.tokenizer ,_a ) else self.tokenizer A_ : Optional[int] = encode_line(_a ,_a ,self.max_source_length ,"""right""" ) A_ : Optional[int] = encode_line(_a ,_a ,self.max_target_length ,"""right""" ) A_ : Optional[Any] = source_inputs["""input_ids"""].squeeze() A_ : Dict = target_inputs["""input_ids"""].squeeze() A_ : Union[str, Any] = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _a ( _a : int ): '''simple docstring''' return [len(_a ) for x in Path(_a ).open().readlines()] def _a ( self : Optional[int] ,_a : Dict ): '''simple docstring''' A_ : str = torch.stack([x["""input_ids"""] for x in batch] ) A_ : Optional[Any] = torch.stack([x["""attention_mask"""] for x in batch] ) A_ : str = torch.stack([x["""decoder_input_ids"""] for x in batch] ) A_ : Union[str, Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,_a ) else self.tokenizer.pad_token_id ) A_ : str = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,_a ) else self.tokenizer.pad_token_id ) A_ : List[str] = trim_batch(_a ,_a ) A_ , A_ : Union[str, Any] = trim_batch(_a ,_a ,attention_mask=_a ) A_ : List[str] = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch __magic_name__ = getLogger(__name__) def lowerCamelCase ( lowerCamelCase : List[List]): return list(itertools.chain.from_iterable(lowerCamelCase)) def lowerCamelCase ( lowerCamelCase : str): A_ : Union[str, Any] = get_git_info() save_json(lowerCamelCase , os.path.join(lowerCamelCase , """git_log.json""")) def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : List[str]=4 , **lowerCamelCase : List[str]): with open(lowerCamelCase , """w""") as f: json.dump(lowerCamelCase , lowerCamelCase , indent=lowerCamelCase , **lowerCamelCase) def lowerCamelCase ( lowerCamelCase : Any): with open(lowerCamelCase) as f: return json.load(lowerCamelCase) def lowerCamelCase ( ): A_ : List[str] = git.Repo(search_parent_directories=lowerCamelCase) A_ : Union[str, Any] = { """repo_id""": str(lowerCamelCase), """repo_sha""": str(repo.head.object.hexsha), """repo_branch""": str(repo.active_branch), """hostname""": str(socket.gethostname()), } return repo_infos def lowerCamelCase ( lowerCamelCase : Callable , lowerCamelCase : Iterable): return list(map(lowerCamelCase , lowerCamelCase)) def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : Union[str, Any]): with open(lowerCamelCase , """wb""") as f: return pickle.dump(lowerCamelCase , lowerCamelCase) def lowerCamelCase ( lowerCamelCase : List[str]): def remove_articles(lowerCamelCase : Any): return re.sub(r"""\b(a|an|the)\b""" , """ """ , lowerCamelCase) def white_space_fix(lowerCamelCase : List[Any]): return " ".join(text.split()) def remove_punc(lowerCamelCase : Union[str, Any]): A_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(lowerCamelCase : List[str]): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase)))) def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : int): A_ : Tuple = normalize_answer(lowerCamelCase).split() A_ : Dict = normalize_answer(lowerCamelCase).split() A_ : int = Counter(lowerCamelCase) & Counter(lowerCamelCase) A_ : Any = sum(common.values()) if num_same == 0: return 0 A_ : Any = 1.0 * num_same / len(lowerCamelCase) A_ : Any = 1.0 * num_same / len(lowerCamelCase) A_ : Any = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Any): return normalize_answer(lowerCamelCase) == normalize_answer(lowerCamelCase) def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : List[str]): assert len(lowerCamelCase) == len(lowerCamelCase) A_ : Any = 0 for hypo, pred in zip(lowerCamelCase , lowerCamelCase): em += exact_match_score(lowerCamelCase , lowerCamelCase) if len(lowerCamelCase) > 0: em /= len(lowerCamelCase) return {"em": em} def lowerCamelCase ( lowerCamelCase : Union[str, Any]): return model_prefix.startswith("""rag""") def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Union[str, Any]): A_ : Optional[Any] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A_ : Tuple = """dropout_rate""" for p in extra_params: if getattr(lowerCamelCase , lowerCamelCase , lowerCamelCase): if not hasattr(lowerCamelCase , lowerCamelCase) and not hasattr(lowerCamelCase , equivalent_param[p]): logger.info("""config doesn't have a `{}` attribute""".format(lowerCamelCase)) delattr(lowerCamelCase , lowerCamelCase) continue A_ : Tuple = p if hasattr(lowerCamelCase , lowerCamelCase) else equivalent_param[p] setattr(lowerCamelCase , lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase)) delattr(lowerCamelCase , lowerCamelCase) return hparams, config
27
1
'''simple docstring''' from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
27
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
1
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowerCamelCase ( lowerCamelCase : Dict): A_ , A_ : List[str] = image.size A_ , A_ : Optional[int] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 A_ : Optional[Any] = image.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""]) A_ : Dict = np.array(lowerCamelCase).astype(np.floataa) / 255.0 A_ : List[str] = image[None].transpose(0 , 3 , 1 , 2) A_ : int = torch.from_numpy(lowerCamelCase) return 2.0 * image - 1.0 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[str] ,_a : VQModel ,_a : UNetaDModel ,_a : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] ,): '''simple docstring''' super().__init__() self.register_modules(vqvae=_a ,unet=_a ,scheduler=_a ) @torch.no_grad() def __call__( self : Any ,_a : Union[torch.Tensor, PIL.Image.Image] = None ,_a : Optional[int] = 1 ,_a : Optional[int] = 100 ,_a : Optional[float] = 0.0 ,_a : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_a : Optional[str] = "pil" ,_a : bool = True ,): '''simple docstring''' if isinstance(_a ,PIL.Image.Image ): A_ : Any = 1 elif isinstance(_a ,torch.Tensor ): A_ : Optional[int] = image.shape[0] else: raise ValueError(f'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_a )}' ) if isinstance(_a ,PIL.Image.Image ): A_ : str = preprocess(_a ) A_ , A_ : Any = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image A_ : Dict = (batch_size, self.unet.config.in_channels // 2, height, width) A_ : Optional[int] = next(self.unet.parameters() ).dtype A_ : int = randn_tensor(_a ,generator=_a ,device=self.device ,dtype=_a ) A_ : List[Any] = image.to(device=self.device ,dtype=_a ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_a ,device=self.device ) A_ : Optional[int] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler A_ : Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A_ : Union[str, Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A_ : List[Any] = {} if accepts_eta: A_ : Union[str, Any] = eta for t in self.progress_bar(_a ): # concat latents and low resolution image in the channel dimension. A_ : List[str] = torch.cat([latents, image] ,dim=1 ) A_ : Optional[Any] = self.scheduler.scale_model_input(_a ,_a ) # predict the noise residual A_ : Union[str, Any] = self.unet(_a ,_a ).sample # compute the previous noisy sample x_t -> x_t-1 A_ : Union[str, Any] = self.scheduler.step(_a ,_a ,_a ,**_a ).prev_sample # decode the image latents with the VQVAE A_ : Any = self.vqvae.decode(_a ).sample A_ : Tuple = torch.clamp(_a ,-1.0 ,1.0 ) A_ : int = image / 2 + 0.5 A_ : Any = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": A_ : List[Any] = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
27
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = KandinskyVaaControlnetPipeline a_ = ["""image_embeds""", """negative_image_embeds""", """hint"""] a_ = ["""image_embeds""", """negative_image_embeds""", """hint"""] a_ = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a_ = False @property def _a ( self : Any ): '''simple docstring''' return 32 @property def _a ( self : Tuple ): '''simple docstring''' return 32 @property def _a ( self : Tuple ): '''simple docstring''' return self.time_input_dim @property def _a ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def _a ( self : Optional[Any] ): '''simple docstring''' return 100 @property def _a ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) A_ : List[Any] = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } A_ : Tuple = UNetaDConditionModel(**_a ) return model @property def _a ( self : List[str] ): '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _a ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) A_ : int = VQModel(**self.dummy_movq_kwargs ) return model def _a ( self : List[str] ): '''simple docstring''' A_ : Optional[Any] = self.dummy_unet A_ : int = self.dummy_movq A_ : Tuple = DDIMScheduler( num_train_timesteps=1000 ,beta_schedule="""linear""" ,beta_start=0.00085 ,beta_end=0.012 ,clip_sample=_a ,set_alpha_to_one=_a ,steps_offset=1 ,prediction_type="""epsilon""" ,thresholding=_a ,) A_ : int = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _a ( self : Dict ,_a : str ,_a : Union[str, Any]=0 ): '''simple docstring''' A_ : Dict = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(_a ) ).to(_a ) A_ : int = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( _a ) # create hint A_ : List[Any] = floats_tensor((1, 3, 64, 64) ,rng=random.Random(_a ) ).to(_a ) if str(_a ).startswith("""mps""" ): A_ : Optional[Any] = torch.manual_seed(_a ) else: A_ : str = torch.Generator(device=_a ).manual_seed(_a ) A_ : List[Any] = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def _a ( self : Dict ): '''simple docstring''' A_ : List[Any] = """cpu""" A_ : List[str] = self.get_dummy_components() A_ : Tuple = self.pipeline_class(**_a ) A_ : Dict = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) A_ : Tuple = pipe(**self.get_dummy_inputs(_a ) ) A_ : Tuple = output.images A_ : Optional[Any] = pipe( **self.get_dummy_inputs(_a ) ,return_dict=_a ,)[0] A_ : Tuple = image[0, -3:, -3:, -1] A_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ : List[Any] = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def _a ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Any ): '''simple docstring''' A_ : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) A_ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) A_ : Optional[int] = torch.from_numpy(np.array(_a ) ).float() / 255.0 A_ : List[Any] = hint.permute(2 ,0 ,1 ).unsqueeze(0 ) A_ : List[Any] = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" ,torch_dtype=torch.floataa ) pipe_prior.to(_a ) A_ : Union[str, Any] = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" ,torch_dtype=torch.floataa ) A_ : Union[str, Any] = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) A_ : Optional[Any] = """A robot, 4k photo""" A_ : Any = torch.Generator(device="""cuda""" ).manual_seed(0 ) A_ , A_ : List[str] = pipe_prior( _a ,generator=_a ,num_inference_steps=5 ,negative_prompt="""""" ,).to_tuple() A_ : int = torch.Generator(device="""cuda""" ).manual_seed(0 ) A_ : List[Any] = pipeline( image_embeds=_a ,negative_image_embeds=_a ,hint=_a ,generator=_a ,num_inference_steps=100 ,output_type="""np""" ,) A_ : Dict = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_a ,_a )
27
1
'''simple docstring''' def lowerCamelCase ( lowerCamelCase : int): if not isinstance(lowerCamelCase , lowerCamelCase): A_ : List[Any] = F'Input value of [number={number}] must be an integer' raise TypeError(lowerCamelCase) if number < 1: A_ : int = F'Input value of [number={number}] must be > 0' raise ValueError(lowerCamelCase) A_ : Optional[Any] = 1 for i in range(1 , lowerCamelCase): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
27
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __magic_name__ = logging.get_logger(__name__) __magic_name__ = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """deberta-v2""" def __init__( self : Optional[Any] ,_a : Union[str, Any]=128100 ,_a : Optional[int]=1536 ,_a : Dict=24 ,_a : int=24 ,_a : Tuple=6144 ,_a : Union[str, Any]="gelu" ,_a : List[Any]=0.1 ,_a : Dict=0.1 ,_a : int=512 ,_a : int=0 ,_a : int=0.02 ,_a : int=1e-7 ,_a : List[str]=False ,_a : Union[str, Any]=-1 ,_a : List[Any]=0 ,_a : Optional[Any]=True ,_a : Tuple=None ,_a : Any=0 ,_a : int="gelu" ,**_a : Any ,): '''simple docstring''' super().__init__(**_a ) A_ : Union[str, Any] = hidden_size A_ : Dict = num_hidden_layers A_ : Union[str, Any] = num_attention_heads A_ : List[Any] = intermediate_size A_ : List[Any] = hidden_act A_ : Optional[int] = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : int = max_position_embeddings A_ : Any = type_vocab_size A_ : List[Any] = initializer_range A_ : int = relative_attention A_ : Tuple = max_relative_positions A_ : int = pad_token_id A_ : Tuple = position_biased_input # Backwards compatibility if type(_a ) == str: A_ : str = [x.strip() for x in pos_att_type.lower().split("""|""" )] A_ : Any = pos_att_type A_ : Optional[int] = vocab_size A_ : Tuple = layer_norm_eps A_ : Any = kwargs.get("""pooler_hidden_size""" ,_a ) A_ : Union[str, Any] = pooler_dropout A_ : List[Any] = pooler_hidden_act class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _a ( self : Any ): '''simple docstring''' if self.task == "multiple-choice": A_ : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : Any = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def _a ( self : Optional[int] ): '''simple docstring''' return 12 def _a ( self : int ,_a : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] ,_a : int = -1 ,_a : int = -1 ,_a : int = -1 ,_a : bool = False ,_a : Optional["TensorType"] = None ,_a : int = 3 ,_a : int = 40 ,_a : int = 40 ,_a : "PreTrainedTokenizerBase" = None ,): '''simple docstring''' A_ : Any = super().generate_dummy_inputs(preprocessor=_a ,framework=_a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
27
1
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __magic_name__ = 'http://www.mocksite.com/file1.txt' __magic_name__ = '"text": ["foo", "foo"]' __magic_name__ = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8' class __lowerCAmelCase : '''simple docstring''' a_ = 200 a_ = {"""Content-Length""": """100"""} a_ = {} def _a ( self : List[str] ,**_a : Dict ): '''simple docstring''' return [bytes(_a ,"""utf-8""" )] def lowerCamelCase ( *lowerCamelCase : List[str] , **lowerCamelCase : Any): return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict]) def lowerCamelCase ( lowerCamelCase : str , lowerCamelCase : Optional[int] , lowerCamelCase : Dict): import requests monkeypatch.setattr(lowerCamelCase , """request""" , lowerCamelCase) A_ : Dict = URL if issubclass(lowerCamelCase , lowerCamelCase): A_ : Union[str, Any] = url elif issubclass(lowerCamelCase , lowerCamelCase): A_ : Tuple = [url] elif issubclass(lowerCamelCase , lowerCamelCase): A_ : Union[str, Any] = {"""train""": url} A_ : Any = """dummy""" A_ : List[Any] = """downloads""" A_ : Dict = tmp_path A_ : Optional[Any] = DownloadConfig( cache_dir=os.path.join(lowerCamelCase , lowerCamelCase) , use_etag=lowerCamelCase , ) A_ : List[str] = DownloadManager(dataset_name=lowerCamelCase , download_config=lowerCamelCase) A_ : List[str] = dl_manager.download(lowerCamelCase) A_ : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCamelCase , lowerCamelCase): A_ : Dict = [downloaded_paths] A_ : List[str] = [urls] elif isinstance(lowerCamelCase , lowerCamelCase): assert "train" in downloaded_paths.keys() A_ : str = downloaded_paths.values() A_ : List[Any] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCamelCase , lowerCamelCase): assert downloaded_path == dl_manager.downloaded_paths[input_url] A_ : Optional[int] = Path(lowerCamelCase) A_ : List[Any] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() A_ : List[str] = downloaded_path.read_text() assert content == CONTENT A_ : str = downloaded_path.with_suffix(""".json""") assert metadata_downloaded_path.exists() A_ : List[Any] = json.loads(metadata_downloaded_path.read_text()) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict]) def lowerCamelCase ( lowerCamelCase : str , lowerCamelCase : List[str] , lowerCamelCase : List[str]): A_ : Tuple = str(lowerCamelCase) if issubclass(lowerCamelCase , lowerCamelCase): A_ : List[Any] = filename elif issubclass(lowerCamelCase , lowerCamelCase): A_ : Tuple = [filename] elif issubclass(lowerCamelCase , lowerCamelCase): A_ : Dict = {"""train""": filename} A_ : List[str] = """dummy""" A_ : List[str] = xz_file.parent A_ : Tuple = """extracted""" A_ : Optional[Any] = DownloadConfig( cache_dir=lowerCamelCase , use_etag=lowerCamelCase , ) A_ : List[Any] = DownloadManager(dataset_name=lowerCamelCase , download_config=lowerCamelCase) A_ : Any = dl_manager.extract(lowerCamelCase) A_ : Union[str, Any] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCamelCase , lowerCamelCase): A_ : int = [extracted_paths] A_ : List[Any] = [paths] elif isinstance(lowerCamelCase , lowerCamelCase): assert "train" in extracted_paths.keys() A_ : Any = extracted_paths.values() A_ : Union[str, Any] = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCamelCase , lowerCamelCase): assert extracted_path == dl_manager.extracted_paths[input_path] A_ : Optional[int] = Path(lowerCamelCase) A_ : Union[str, Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCamelCase , etag=lowerCamelCase) assert parts[-2] == extracted_subdir assert extracted_path.exists() A_ : Optional[int] = extracted_path.read_text() A_ : Dict = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : Optional[int]): assert path.endswith(""".jsonl""") for num_items, line in enumerate(lowerCamelCase , start=1): A_ : Any = json.loads(line.decode("""utf-8""")) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""]) def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : List[str]): A_ : List[Any] = request.getfixturevalue(lowerCamelCase) A_ : int = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCamelCase) , start=1): _test_jsonl(lowerCamelCase , lowerCamelCase) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""]) def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : Any): A_ : Union[str, Any] = request.getfixturevalue(lowerCamelCase) A_ : Union[str, Any] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCamelCase) , start=1): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCamelCase) , start=1): _test_jsonl(lowerCamelCase , lowerCamelCase) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase ( lowerCamelCase : Any): A_ : Dict = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCamelCase) , start=1): assert os.path.basename(lowerCamelCase) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
27
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') __magic_name__ = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) __magic_name__ = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) __magic_name__ = BeautifulSoup(res.text, 'html.parser') __magic_name__ = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
27
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __magic_name__ = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""pixel_values"""] def __init__( self : Optional[Any] ,_a : bool = True ,_a : Dict[str, int] = None ,_a : PILImageResampling = PILImageResampling.BICUBIC ,_a : bool = True ,_a : Dict[str, int] = None ,_a : bool = True ,_a : Union[int, float] = 1 / 255 ,_a : bool = True ,_a : Optional[Union[float, List[float]]] = None ,_a : Optional[Union[float, List[float]]] = None ,_a : bool = True ,**_a : Dict ,): '''simple docstring''' super().__init__(**_a ) A_ : Tuple = size if size is not None else {"""shortest_edge""": 224} A_ : Optional[Any] = get_size_dict(_a ,default_to_square=_a ) A_ : Tuple = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} A_ : Optional[Any] = get_size_dict(_a ,default_to_square=_a ,param_name="""crop_size""" ) A_ : Any = do_resize A_ : List[str] = size A_ : Union[str, Any] = resample A_ : Dict = do_center_crop A_ : List[str] = crop_size A_ : Any = do_rescale A_ : Union[str, Any] = rescale_factor A_ : Any = do_normalize A_ : List[str] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A_ : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD A_ : Tuple = do_convert_rgb def _a ( self : Optional[int] ,_a : np.ndarray ,_a : Dict[str, int] ,_a : PILImageResampling = PILImageResampling.BICUBIC ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Optional[Any] ,): '''simple docstring''' A_ : Optional[Any] = get_size_dict(_a ,default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A_ : Tuple = get_resize_output_image_size(_a ,size=size["""shortest_edge"""] ,default_to_square=_a ) return resize(_a ,size=_a ,resample=_a ,data_format=_a ,**_a ) def _a ( self : List[Any] ,_a : np.ndarray ,_a : Dict[str, int] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Optional[int] ,): '''simple docstring''' A_ : Optional[int] = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_a ,size=(size["""height"""], size["""width"""]) ,data_format=_a ,**_a ) def _a ( self : Any ,_a : np.ndarray ,_a : Union[int, float] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Any ,): '''simple docstring''' return rescale(_a ,scale=_a ,data_format=_a ,**_a ) def _a ( self : Any ,_a : np.ndarray ,_a : Union[float, List[float]] ,_a : Union[float, List[float]] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : List[str] ,): '''simple docstring''' return normalize(_a ,mean=_a ,std=_a ,data_format=_a ,**_a ) def _a ( self : Optional[Any] ,_a : ImageInput ,_a : bool = None ,_a : Dict[str, int] = None ,_a : PILImageResampling = None ,_a : bool = None ,_a : int = None ,_a : bool = None ,_a : float = None ,_a : bool = None ,_a : Optional[Union[float, List[float]]] = None ,_a : Optional[Union[float, List[float]]] = None ,_a : bool = None ,_a : Optional[Union[str, TensorType]] = None ,_a : Optional[ChannelDimension] = ChannelDimension.FIRST ,**_a : int ,): '''simple docstring''' A_ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize A_ : Tuple = size if size is not None else self.size A_ : Optional[int] = get_size_dict(_a ,param_name="""size""" ,default_to_square=_a ) A_ : List[str] = resample if resample is not None else self.resample A_ : int = do_center_crop if do_center_crop is not None else self.do_center_crop A_ : Any = crop_size if crop_size is not None else self.crop_size A_ : int = get_size_dict(_a ,param_name="""crop_size""" ,default_to_square=_a ) A_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale A_ : int = rescale_factor if rescale_factor is not None else self.rescale_factor A_ : Any = do_normalize if do_normalize is not None else self.do_normalize A_ : int = image_mean if image_mean is not None else self.image_mean A_ : int = image_std if image_std is not None else self.image_std A_ : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A_ : int = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: A_ : Optional[int] = [convert_to_rgb(_a ) for image in images] # All transformations expect numpy arrays. A_ : Dict = [to_numpy_array(_a ) for image in images] if do_resize: A_ : int = [self.resize(image=_a ,size=_a ,resample=_a ) for image in images] if do_center_crop: A_ : Tuple = [self.center_crop(image=_a ,size=_a ) for image in images] if do_rescale: A_ : List[str] = [self.rescale(image=_a ,scale=_a ) for image in images] if do_normalize: A_ : Any = [self.normalize(image=_a ,mean=_a ,std=_a ) for image in images] A_ : List[str] = [to_channel_dimension_format(_a ,_a ) for image in images] A_ : List[str] = {"""pixel_values""": images} return BatchFeature(data=_a ,tensor_type=_a )
27
'''simple docstring''' from ... import PretrainedConfig __magic_name__ = { 'sijunhe/nezha-cn-base': 'https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json', } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP a_ = """nezha""" def __init__( self : int ,_a : Union[str, Any]=21128 ,_a : int=768 ,_a : Any=12 ,_a : List[str]=12 ,_a : str=3072 ,_a : int="gelu" ,_a : int=0.1 ,_a : str=0.1 ,_a : Tuple=512 ,_a : List[Any]=64 ,_a : Dict=2 ,_a : List[Any]=0.02 ,_a : Optional[Any]=1e-12 ,_a : List[Any]=0.1 ,_a : Union[str, Any]=0 ,_a : Any=2 ,_a : Union[str, Any]=3 ,_a : int=True ,**_a : int ,): '''simple docstring''' super().__init__(pad_token_id=_a ,bos_token_id=_a ,eos_token_id=_a ,**_a ) A_ : Tuple = vocab_size A_ : int = hidden_size A_ : Any = num_hidden_layers A_ : List[Any] = num_attention_heads A_ : Tuple = hidden_act A_ : List[Any] = intermediate_size A_ : List[str] = hidden_dropout_prob A_ : Tuple = attention_probs_dropout_prob A_ : Dict = max_position_embeddings A_ : Optional[Any] = max_relative_position A_ : List[Any] = type_vocab_size A_ : int = initializer_range A_ : Tuple = layer_norm_eps A_ : Dict = classifier_dropout A_ : int = use_cache
27
1
'''simple docstring''' import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class __lowerCAmelCase : '''simple docstring''' a_ = None def _a ( self : Optional[Any] ): '''simple docstring''' A_ : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) A_ : Dict = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] ,_a ) def _a ( self : int ): '''simple docstring''' A_ : int = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A_ : Tuple = os.path.join(_a ,"""feat_extract.json""" ) feat_extract_first.to_json_file(_a ) A_ : List[str] = self.feature_extraction_class.from_json_file(_a ) self.assertEqual(feat_extract_second.to_dict() ,feat_extract_first.to_dict() ) def _a ( self : List[str] ): '''simple docstring''' A_ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A_ : Optional[int] = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) A_ : Any = self.feature_extraction_class.from_pretrained(_a ) self.assertEqual(feat_extract_second.to_dict() ,feat_extract_first.to_dict() ) def _a ( self : Dict ): '''simple docstring''' A_ : List[Any] = self.feature_extraction_class() self.assertIsNotNone(_a )
27
'''simple docstring''' from __future__ import annotations def lowerCamelCase ( lowerCamelCase : dict , lowerCamelCase : str): A_ , A_ : List[Any] = set(lowerCamelCase), [start] while stack: A_ : Optional[Any] = stack.pop() explored.add(lowerCamelCase) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v]): if adj not in explored: stack.append(lowerCamelCase) return explored __magic_name__ = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
27
1
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowerCamelCase ( lowerCamelCase : Optional[int]=None): if subparsers is not None: A_ : Tuple = subparsers.add_parser("""env""") else: A_ : Dict = argparse.ArgumentParser("""Accelerate env command""") parser.add_argument( """--config_file""" , default=lowerCamelCase , help="""The config file to use for the default values in the launching script.""") if subparsers is not None: parser.set_defaults(func=lowerCamelCase) return parser def lowerCamelCase ( lowerCamelCase : int): A_ : Optional[int] = torch.__version__ A_ : Optional[int] = torch.cuda.is_available() A_ : List[str] = is_xpu_available() A_ : Union[str, Any] = is_npu_available() A_ : Optional[Any] = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCamelCase): A_ : Dict = load_config_from_file(args.config_file).to_dict() A_ : Tuple = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": F'{pt_version} ({pt_cuda_available})', """PyTorch XPU available""": str(lowerCamelCase), """PyTorch NPU available""": str(lowerCamelCase), """System RAM""": F'{psutil.virtual_memory().total / 1024 ** 3:.2f} GB', } if pt_cuda_available: A_ : Tuple = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""") print("""\n""".join([F'- {prop}: {val}' for prop, val in info.items()])) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""") A_ : List[Any] = ( """\n""".join([F'\t- {prop}: {val}' for prop, val in accelerate_config.items()]) if isinstance(lowerCamelCase , lowerCamelCase) else F'\t{accelerate_config}' ) print(lowerCamelCase) A_ : Optional[Any] = accelerate_config return info def lowerCamelCase ( ): A_ : Dict = env_command_parser() A_ : Dict = parser.parse_args() env_command(lowerCamelCase) return 0 if __name__ == "__main__": raise SystemExit(main())
27
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) def lowerCamelCase ( lowerCamelCase : Dict): A_ : List[str] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: A_ : Union[str, Any] = [144, 192, 240] A_ : int = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: A_ : List[str] = [96, 120, 144] A_ : Any = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: A_ : Any = [64, 80, 96] A_ : List[str] = [16, 16, 24, 48, 64, 80, 320] A_ : Any = 0.05 A_ : List[Any] = 2.0 if mobilevit_name.startswith("""deeplabv3_"""): A_ : int = 512 A_ : Optional[int] = 16 A_ : List[Any] = 21 A_ : List[str] = """pascal-voc-id2label.json""" else: A_ : str = 1000 A_ : Any = """imagenet-1k-id2label.json""" A_ : Any = """huggingface/label-files""" A_ : List[str] = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""") , """r""")) A_ : str = {int(lowerCamelCase): v for k, v in idalabel.items()} A_ : Any = idalabel A_ : List[str] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : int=False): for i in range(1 , 6): if F'layer_{i}.' in name: A_ : Tuple = name.replace(F'layer_{i}.' , F'encoder.layer.{i - 1}.') if "conv_1." in name: A_ : Union[str, Any] = name.replace("""conv_1.""" , """conv_stem.""") if ".block." in name: A_ : Optional[Any] = name.replace(""".block.""" , """.""") if "exp_1x1" in name: A_ : Union[str, Any] = name.replace("""exp_1x1""" , """expand_1x1""") if "red_1x1" in name: A_ : int = name.replace("""red_1x1""" , """reduce_1x1""") if ".local_rep.conv_3x3." in name: A_ : List[str] = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""") if ".local_rep.conv_1x1." in name: A_ : Optional[int] = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""") if ".norm." in name: A_ : Tuple = name.replace(""".norm.""" , """.normalization.""") if ".conv." in name: A_ : List[Any] = name.replace(""".conv.""" , """.convolution.""") if ".conv_proj." in name: A_ : str = name.replace(""".conv_proj.""" , """.conv_projection.""") for i in range(0 , 2): for j in range(0 , 4): if F'.{i}.{j}.' in name: A_ : Tuple = name.replace(F'.{i}.{j}.' , F'.{i}.layer.{j}.') for i in range(2 , 6): for j in range(0 , 4): if F'.{i}.{j}.' in name: A_ : Dict = name.replace(F'.{i}.{j}.' , F'.{i}.') if "expand_1x1" in name: A_ : Union[str, Any] = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""") if "conv_3x3" in name: A_ : str = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""") if "reduce_1x1" in name: A_ : Union[str, Any] = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""") for i in range(2 , 5): if F'.global_rep.{i}.weight' in name: A_ : List[Any] = name.replace(F'.global_rep.{i}.weight' , """.layernorm.weight""") if F'.global_rep.{i}.bias' in name: A_ : Optional[int] = name.replace(F'.global_rep.{i}.bias' , """.layernorm.bias""") if ".global_rep." in name: A_ : Optional[Any] = name.replace(""".global_rep.""" , """.transformer.""") if ".pre_norm_mha.0." in name: A_ : int = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""") if ".pre_norm_mha.1.out_proj." in name: A_ : Dict = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""") if ".pre_norm_ffn.0." in name: A_ : Dict = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""") if ".pre_norm_ffn.1." in name: A_ : Any = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""") if ".pre_norm_ffn.4." in name: A_ : Union[str, Any] = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""") if ".transformer." in name: A_ : Any = name.replace(""".transformer.""" , """.transformer.layer.""") if ".aspp_layer." in name: A_ : int = name.replace(""".aspp_layer.""" , """.""") if ".aspp_pool." in name: A_ : Tuple = name.replace(""".aspp_pool.""" , """.""") if "seg_head." in name: A_ : Optional[int] = name.replace("""seg_head.""" , """segmentation_head.""") if "segmentation_head.classifier.classifier." in name: A_ : List[str] = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""") if "classifier.fc." in name: A_ : str = name.replace("""classifier.fc.""" , """classifier.""") elif (not base_model) and ("segmentation_head." not in name): A_ : str = """mobilevit.""" + name return name def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int]=False): if base_model: A_ : Dict = """""" else: A_ : Any = """mobilevit.""" for key in orig_state_dict.copy().keys(): A_ : List[Any] = orig_state_dict.pop(lowerCamelCase) if key[:8] == "encoder.": A_ : int = key[8:] if "qkv" in key: A_ : Any = key.split(""".""") A_ : str = int(key_split[0][6:]) - 1 A_ : int = int(key_split[3]) A_ : Optional[Any] = model.get_submodule(F'{model_prefix}encoder.layer.{layer_num}') A_ : Tuple = layer.transformer.layer[transformer_num].attention.attention.all_head_size A_ : Optional[Any] = ( F'{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.' ) if "weight" in key: A_ : Dict = val[:dim, :] A_ : Optional[int] = val[dim : dim * 2, :] A_ : List[Any] = val[-dim:, :] else: A_ : Optional[Any] = val[:dim] A_ : List[Any] = val[dim : dim * 2] A_ : Any = val[-dim:] else: A_ : List[str] = val return orig_state_dict def lowerCamelCase ( ): A_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : Dict = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase).raw) return im @torch.no_grad() def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : Any , lowerCamelCase : Optional[int] , lowerCamelCase : int=False): A_ : Optional[Any] = get_mobilevit_config(lowerCamelCase) # load original state_dict A_ : List[Any] = torch.load(lowerCamelCase , map_location="""cpu""") # load 🤗 model if mobilevit_name.startswith("""deeplabv3_"""): A_ : List[str] = MobileViTForSemanticSegmentation(lowerCamelCase).eval() else: A_ : str = MobileViTForImageClassification(lowerCamelCase).eval() A_ : str = convert_state_dict(lowerCamelCase , lowerCamelCase) model.load_state_dict(lowerCamelCase) # Check outputs on an image, prepared by MobileViTImageProcessor A_ : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32) A_ : Any = image_processor(images=prepare_img() , return_tensors="""pt""") A_ : List[Any] = model(**lowerCamelCase) A_ : Dict = outputs.logits if mobilevit_name.startswith("""deeplabv3_"""): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": A_ : int = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ]) elif mobilevit_name == "deeplabv3_mobilevit_xs": A_ : Tuple = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ]) elif mobilevit_name == "deeplabv3_mobilevit_xxs": A_ : Tuple = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ]) else: raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}') assert torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase , atol=1E-4) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": A_ : Tuple = torch.tensor([-0.9866, 0.2392, -1.1241]) elif mobilevit_name == "mobilevit_xs": A_ : Any = torch.tensor([-2.4761, -0.9399, -1.9587]) elif mobilevit_name == "mobilevit_xxs": A_ : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653]) else: raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}') assert torch.allclose(logits[0, :3] , lowerCamelCase , atol=1E-4) Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase) print(F'Saving model {mobilevit_name} to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase) print(F'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase) if push_to_hub: A_ : str = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""") A_ : Union[str, Any] = model_mapping[mobilevit_name] image_processor.push_to_hub(lowerCamelCase , organization="""apple""") model.push_to_hub(lowerCamelCase , organization="""apple""") if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--mobilevit_name', default='mobilevit_s', type=str, help=( 'Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',' ' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.' ), ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __magic_name__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
27
1
'''simple docstring''' def lowerCamelCase ( lowerCamelCase : int): A_ : Tuple = int(lowerCamelCase) if decimal in (0, 1): # Exit cases for the recursion return str(lowerCamelCase) A_ , A_ : List[str] = divmod(lowerCamelCase , 2) return binary_recursive(lowerCamelCase) + str(lowerCamelCase) def lowerCamelCase ( lowerCamelCase : str): A_ : Optional[int] = str(lowerCamelCase).strip() if not number: raise ValueError("""No input value was provided""") A_ : int = """-""" if number.startswith("""-""") else """""" A_ : Dict = number.lstrip("""-""") if not number.isnumeric(): raise ValueError("""Input value is not an integer""") return F'{negative}0b{binary_recursive(int(lowerCamelCase))}' if __name__ == "__main__": from doctest import testmod testmod()
27
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __magic_name__ = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""pixel_values"""] def __init__( self : Optional[Any] ,_a : bool = True ,_a : Dict[str, int] = None ,_a : PILImageResampling = PILImageResampling.BICUBIC ,_a : bool = True ,_a : Dict[str, int] = None ,_a : bool = True ,_a : Union[int, float] = 1 / 255 ,_a : bool = True ,_a : Optional[Union[float, List[float]]] = None ,_a : Optional[Union[float, List[float]]] = None ,_a : bool = True ,**_a : Dict ,): '''simple docstring''' super().__init__(**_a ) A_ : Tuple = size if size is not None else {"""shortest_edge""": 224} A_ : Optional[Any] = get_size_dict(_a ,default_to_square=_a ) A_ : Tuple = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} A_ : Optional[Any] = get_size_dict(_a ,default_to_square=_a ,param_name="""crop_size""" ) A_ : Any = do_resize A_ : List[str] = size A_ : Union[str, Any] = resample A_ : Dict = do_center_crop A_ : List[str] = crop_size A_ : Any = do_rescale A_ : Union[str, Any] = rescale_factor A_ : Any = do_normalize A_ : List[str] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A_ : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD A_ : Tuple = do_convert_rgb def _a ( self : Optional[int] ,_a : np.ndarray ,_a : Dict[str, int] ,_a : PILImageResampling = PILImageResampling.BICUBIC ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Optional[Any] ,): '''simple docstring''' A_ : Optional[Any] = get_size_dict(_a ,default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A_ : Tuple = get_resize_output_image_size(_a ,size=size["""shortest_edge"""] ,default_to_square=_a ) return resize(_a ,size=_a ,resample=_a ,data_format=_a ,**_a ) def _a ( self : List[Any] ,_a : np.ndarray ,_a : Dict[str, int] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Optional[int] ,): '''simple docstring''' A_ : Optional[int] = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_a ,size=(size["""height"""], size["""width"""]) ,data_format=_a ,**_a ) def _a ( self : Any ,_a : np.ndarray ,_a : Union[int, float] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Any ,): '''simple docstring''' return rescale(_a ,scale=_a ,data_format=_a ,**_a ) def _a ( self : Any ,_a : np.ndarray ,_a : Union[float, List[float]] ,_a : Union[float, List[float]] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : List[str] ,): '''simple docstring''' return normalize(_a ,mean=_a ,std=_a ,data_format=_a ,**_a ) def _a ( self : Optional[Any] ,_a : ImageInput ,_a : bool = None ,_a : Dict[str, int] = None ,_a : PILImageResampling = None ,_a : bool = None ,_a : int = None ,_a : bool = None ,_a : float = None ,_a : bool = None ,_a : Optional[Union[float, List[float]]] = None ,_a : Optional[Union[float, List[float]]] = None ,_a : bool = None ,_a : Optional[Union[str, TensorType]] = None ,_a : Optional[ChannelDimension] = ChannelDimension.FIRST ,**_a : int ,): '''simple docstring''' A_ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize A_ : Tuple = size if size is not None else self.size A_ : Optional[int] = get_size_dict(_a ,param_name="""size""" ,default_to_square=_a ) A_ : List[str] = resample if resample is not None else self.resample A_ : int = do_center_crop if do_center_crop is not None else self.do_center_crop A_ : Any = crop_size if crop_size is not None else self.crop_size A_ : int = get_size_dict(_a ,param_name="""crop_size""" ,default_to_square=_a ) A_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale A_ : int = rescale_factor if rescale_factor is not None else self.rescale_factor A_ : Any = do_normalize if do_normalize is not None else self.do_normalize A_ : int = image_mean if image_mean is not None else self.image_mean A_ : int = image_std if image_std is not None else self.image_std A_ : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A_ : int = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: A_ : Optional[int] = [convert_to_rgb(_a ) for image in images] # All transformations expect numpy arrays. A_ : Dict = [to_numpy_array(_a ) for image in images] if do_resize: A_ : int = [self.resize(image=_a ,size=_a ,resample=_a ) for image in images] if do_center_crop: A_ : Tuple = [self.center_crop(image=_a ,size=_a ) for image in images] if do_rescale: A_ : List[str] = [self.rescale(image=_a ,scale=_a ) for image in images] if do_normalize: A_ : Any = [self.normalize(image=_a ,mean=_a ,std=_a ) for image in images] A_ : List[str] = [to_channel_dimension_format(_a ,_a ) for image in images] A_ : List[str] = {"""pixel_values""": images} return BatchFeature(data=_a ,tensor_type=_a )
27
1
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __magic_name__ = { 'configuration_gpt_neox_japanese': ['GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXJapaneseConfig'], 'tokenization_gpt_neox_japanese': ['GPTNeoXJapaneseTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXJapaneseForCausalLM', 'GPTNeoXJapaneseLayer', 'GPTNeoXJapaneseModel', 'GPTNeoXJapanesePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __magic_name__ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] ,*_a : Optional[Any] ,**_a : Optional[int] ): '''simple docstring''' warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" ,_a ,) super().__init__(*_a ,**_a )
27
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = { 'configuration_albert': ['ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AlbertConfig', 'AlbertOnnxConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['AlbertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['AlbertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'AlbertForMaskedLM', 'AlbertForMultipleChoice', 'AlbertForPreTraining', 'AlbertForQuestionAnswering', 'AlbertForSequenceClassification', 'AlbertForTokenClassification', 'AlbertModel', 'AlbertPreTrainedModel', 'load_tf_weights_in_albert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAlbertForMaskedLM', 'TFAlbertForMultipleChoice', 'TFAlbertForPreTraining', 'TFAlbertForQuestionAnswering', 'TFAlbertForSequenceClassification', 'TFAlbertForTokenClassification', 'TFAlbertMainLayer', 'TFAlbertModel', 'TFAlbertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'FlaxAlbertForMaskedLM', 'FlaxAlbertForMultipleChoice', 'FlaxAlbertForPreTraining', 'FlaxAlbertForQuestionAnswering', 'FlaxAlbertForSequenceClassification', 'FlaxAlbertForTokenClassification', 'FlaxAlbertModel', 'FlaxAlbertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
'''simple docstring''' from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def lowerCamelCase ( lowerCamelCase : str , lowerCamelCase : complex , lowerCamelCase : str = "x" , lowerCamelCase : float = 10**-10 , lowerCamelCase : int = 1 , ): A_ : int = symbols(lowerCamelCase) A_ : List[Any] = lambdify(lowerCamelCase , lowerCamelCase) A_ : List[str] = lambdify(lowerCamelCase , diff(lowerCamelCase , lowerCamelCase)) A_ : str = starting_point while True: if diff_function(lowerCamelCase) != 0: A_ : int = prev_guess - multiplicity * func(lowerCamelCase) / diff_function( lowerCamelCase) else: raise ZeroDivisionError("""Could not find root""") from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess) < precision: return next_guess A_ : Union[str, Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5j)}""") # Find value of e print( 'The root of log(y) - 1 = 0 is ', f"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( 'The root of exp(x) - 1 = 0 is', f"""{newton_raphson('exp(x) - 1', 10, precision=0.0_0_5)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
27
1
'''simple docstring''' import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __magic_name__ = logging.getLogger(__name__) def lowerCamelCase ( lowerCamelCase : Tuple=2 , lowerCamelCase : Tuple=3 , lowerCamelCase : Tuple=16 , lowerCamelCase : int = 10 , lowerCamelCase : int = 2): def get_dataset(lowerCamelCase : Optional[int]): A_ : Tuple = torch.randn(batch_size * n_batches , 1) return TensorDataset(lowerCamelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1)) A_ : str = get_dataset(lowerCamelCase) A_ : Optional[Any] = get_dataset(lowerCamelCase) A_ : List[Any] = DataLoader(lowerCamelCase , shuffle=lowerCamelCase , batch_size=lowerCamelCase , num_workers=4) A_ : Optional[Any] = DataLoader(lowerCamelCase , shuffle=lowerCamelCase , batch_size=lowerCamelCase , num_workers=4) return (train_dataloader, valid_dataloader) def lowerCamelCase ( lowerCamelCase : str , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : Any , lowerCamelCase : Any , lowerCamelCase : str=None): A_ : List[str] = [] for epoch in range(lowerCamelCase): # Train quickly model.train() for batch in dataloader: A_ , A_ : int = batch A_ : Optional[int] = model(lowerCamelCase) A_ : str = torch.nn.functional.mse_loss(lowerCamelCase , lowerCamelCase) accelerator.backward(lowerCamelCase) optimizer.step() optimizer.zero_grad() rands.append(random.random()) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ): '''simple docstring''' super().__init__() A_ : Optional[Any] = nn.Parameter(torch.randn(1 ) ) A_ : List[str] = nn.Parameter(torch.randn(1 ) ) def _a ( self : List[Any] ,_a : int ): '''simple docstring''' return x * self.a + self.b class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def _a ( self : Union[str, Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A_ : Optional[Any] = DummyModel() A_ : Optional[int] = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) A_ , A_ : int = dummy_dataloaders() A_ : int = ProjectConfiguration(total_limit=1 ,project_dir=_a ,automatic_checkpoint_naming=_a ) # Train baseline A_ : Optional[Any] = Accelerator(project_config=_a ) A_ , A_ , A_ , A_ : Union[str, Any] = accelerator.prepare( _a ,_a ,_a ,_a ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) ,1 ) def _a ( self : Union[str, Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A_ : Optional[Any] = DummyModel() A_ : Dict = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) A_ , A_ : Optional[Any] = dummy_dataloaders() # Train baseline A_ : List[Any] = Accelerator() A_ , A_ , A_ , A_ : Dict = accelerator.prepare( _a ,_a ,_a ,_a ) # Save initial A_ : Dict = os.path.join(_a ,"""initial""" ) accelerator.save_state(_a ) ((A_) , (A_)) : Optional[Any] = model.a.item(), model.b.item() A_ : Tuple = optimizer.state_dict() A_ : List[str] = train(3 ,_a ,_a ,_a ,_a ) ((A_) , (A_)) : Union[str, Any] = model.a.item(), model.b.item() A_ : Optional[int] = optimizer.state_dict() # Train partially set_seed(42 ) A_ : Optional[Any] = DummyModel() A_ : List[Any] = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) A_ , A_ : Tuple = dummy_dataloaders() A_ : Optional[Any] = Accelerator() A_ , A_ , A_ , A_ : Optional[int] = accelerator.prepare( _a ,_a ,_a ,_a ) accelerator.load_state(_a ) ((A_) , (A_)) : Any = model.a.item(), model.b.item() A_ : str = optimizer.state_dict() self.assertEqual(_a ,_a ) self.assertEqual(_a ,_a ) self.assertEqual(_a ,_a ) A_ : Tuple = train(2 ,_a ,_a ,_a ,_a ) # Save everything A_ : Any = os.path.join(_a ,"""checkpoint""" ) accelerator.save_state(_a ) # Load everything back in and make sure all states work accelerator.load_state(_a ) test_rands += train(1 ,_a ,_a ,_a ,_a ) ((A_) , (A_)) : List[str] = model.a.item(), model.b.item() A_ : Optional[Any] = optimizer.state_dict() self.assertEqual(_a ,_a ) self.assertEqual(_a ,_a ) self.assertEqual(_a ,_a ) self.assertEqual(_a ,_a ) def _a ( self : Dict ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A_ : List[str] = DummyModel() A_ : List[str] = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) A_ , A_ : Dict = dummy_dataloaders() A_ : Dict = ProjectConfiguration(automatic_checkpoint_naming=_a ) # Train baseline A_ : int = Accelerator(project_dir=_a ,project_config=_a ) A_ , A_ , A_ , A_ : Tuple = accelerator.prepare( _a ,_a ,_a ,_a ) # Save initial accelerator.save_state() ((A_) , (A_)) : Tuple = model.a.item(), model.b.item() A_ : Union[str, Any] = optimizer.state_dict() A_ : Tuple = train(3 ,_a ,_a ,_a ,_a ) ((A_) , (A_)) : Any = model.a.item(), model.b.item() A_ : List[Any] = optimizer.state_dict() # Train partially set_seed(42 ) A_ : Any = DummyModel() A_ : Tuple = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) A_ , A_ : Any = dummy_dataloaders() A_ : Union[str, Any] = ProjectConfiguration(iteration=1 ,automatic_checkpoint_naming=_a ) A_ : List[Any] = Accelerator(project_dir=_a ,project_config=_a ) A_ , A_ , A_ , A_ : Union[str, Any] = accelerator.prepare( _a ,_a ,_a ,_a ) accelerator.load_state(os.path.join(_a ,"""checkpoints""" ,"""checkpoint_0""" ) ) ((A_) , (A_)) : Optional[int] = model.a.item(), model.b.item() A_ : List[str] = optimizer.state_dict() self.assertEqual(_a ,_a ) self.assertEqual(_a ,_a ) self.assertEqual(_a ,_a ) A_ : Optional[int] = train(2 ,_a ,_a ,_a ,_a ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_a ,"""checkpoints""" ,"""checkpoint_1""" ) ) test_rands += train(1 ,_a ,_a ,_a ,_a ) ((A_) , (A_)) : List[Any] = model.a.item(), model.b.item() A_ : Optional[int] = optimizer.state_dict() self.assertEqual(_a ,_a ) self.assertEqual(_a ,_a ) self.assertEqual(_a ,_a ) self.assertEqual(_a ,_a ) def _a ( self : int ): '''simple docstring''' A_ : Optional[int] = torch.tensor([1, 2, 3] ) A_ : str = torch.tensor([2, 3, 4] ) A_ : str = DummyModel() A_ : Tuple = torch.optim.Adam(net.parameters() ) A_ : List[str] = Accelerator() with self.assertRaises(_a ) as ve: accelerator.register_for_checkpointing(_a ,_a ,_a ,_a ) A_ : Union[str, Any] = str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def _a ( self : Tuple ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A_ : List[str] = DummyModel() A_ : Any = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) A_ : str = torch.optim.lr_scheduler.StepLR(_a ,step_size=1 ,gamma=0.99 ) A_ , A_ : List[str] = dummy_dataloaders() A_ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=_a ) # Train baseline A_ : List[Any] = Accelerator(project_dir=_a ,project_config=_a ) A_ , A_ , A_ , A_ , A_ : str = accelerator.prepare( _a ,_a ,_a ,_a ,_a ) # Save initial accelerator.save_state() A_ : List[Any] = scheduler.state_dict() train(3 ,_a ,_a ,_a ,_a ,_a ) self.assertNotEqual(_a ,scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_a ,"""checkpoints""" ,"""checkpoint_0""" ) ) self.assertEqual(_a ,scheduler.state_dict() ) def _a ( self : Union[str, Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A_ : Any = DummyModel() A_ : str = ProjectConfiguration(automatic_checkpoint_naming=_a ,total_limit=2 ) # Train baseline A_ : List[str] = Accelerator(project_dir=_a ,project_config=_a ) A_ : List[str] = accelerator.prepare(_a ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_a ,"""checkpoints""" ,"""checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_a ,"""checkpoints""" ,"""checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_a ,"""checkpoints""" ,"""checkpoint_10""" ) ) ) @require_cuda def _a ( self : Any ): '''simple docstring''' A_ : List[str] = ["""torchrun""", f'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(_a ,env=os.environ.copy() ) if __name__ == "__main__": __magic_name__ = '/tmp/accelerate/state_checkpointing' __magic_name__ = DummyModel() __magic_name__ = torch.optim.Adam(params=model.parameters(), lr=1e-3) __magic_name__ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) __magic_name__ , __magic_name__ = dummy_dataloaders() __magic_name__ = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __magic_name__ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __magic_name__ , __magic_name__ = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __magic_name__ = group['params'][0].device break assert param_device.type == accelerator.device.type __magic_name__ = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: __magic_name__ = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: __magic_name__ = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
27
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset __magic_name__ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_a : Dict ): '''simple docstring''' super().__init__() A_ : List[str] = torchvision.models.resnetaaa(pretrained=_a ) A_ : int = list(model.children() )[:-2] A_ : int = nn.Sequential(*_a ) A_ : Optional[int] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def _a ( self : str ,_a : Optional[int] ): '''simple docstring''' A_ : Tuple = self.pool(self.model(_a ) ) A_ : Any = torch.flatten(_a ,start_dim=2 ) A_ : str = out.transpose(1 ,2 ).contiguous() return out # BxNx2048 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,_a : Optional[Any] ,_a : Optional[Any] ,_a : Dict ,_a : Dict ,_a : Optional[Any] ): '''simple docstring''' A_ : Dict = [json.loads(_a ) for l in open(_a )] A_ : Optional[int] = os.path.dirname(_a ) A_ : Optional[Any] = tokenizer A_ : Optional[Any] = labels A_ : List[Any] = len(_a ) A_ : str = max_seq_length A_ : str = transforms def __len__( self : str ): '''simple docstring''' return len(self.data ) def __getitem__( self : Tuple ,_a : Optional[Any] ): '''simple docstring''' A_ : Optional[int] = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] ,add_special_tokens=_a ) ) A_ , A_ , A_ : Dict = sentence[0], sentence[1:-1], sentence[-1] A_ : Optional[int] = sentence[: self.max_seq_length] A_ : Any = torch.zeros(self.n_classes ) A_ : Tuple = 1 A_ : Optional[Any] = Image.open(os.path.join(self.data_dir ,self.data[index]["""img"""] ) ).convert("""RGB""" ) A_ : Union[str, Any] = self.transforms(_a ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _a ( self : List[Any] ): '''simple docstring''' A_ : str = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def lowerCamelCase ( lowerCamelCase : str): A_ : List[Any] = [len(row["""sentence"""]) for row in batch] A_ , A_ : Dict = len(lowerCamelCase), max(lowerCamelCase) A_ : Optional[int] = torch.zeros(lowerCamelCase , lowerCamelCase , dtype=torch.long) A_ : Tuple = torch.zeros(lowerCamelCase , lowerCamelCase , dtype=torch.long) for i_batch, (input_row, length) in enumerate(zip(lowerCamelCase , lowerCamelCase)): A_ : str = input_row["""sentence"""] A_ : Tuple = 1 A_ : int = torch.stack([row["""image"""] for row in batch]) A_ : str = torch.stack([row["""label"""] for row in batch]) A_ : List[Any] = torch.stack([row["""image_start_token"""] for row in batch]) A_ : Tuple = torch.stack([row["""image_end_token"""] for row in batch]) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase ( ): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase ( ): return transforms.Compose( [ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( mean=[0.4677_7044, 0.4453_1429, 0.4066_1017] , std=[0.1222_1994, 0.1214_5835, 0.1438_0469] , ), ])
27
1
'''simple docstring''' from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def lowerCamelCase ( lowerCamelCase : str , lowerCamelCase : complex , lowerCamelCase : str = "x" , lowerCamelCase : float = 10**-10 , lowerCamelCase : int = 1 , ): A_ : int = symbols(lowerCamelCase) A_ : List[Any] = lambdify(lowerCamelCase , lowerCamelCase) A_ : List[str] = lambdify(lowerCamelCase , diff(lowerCamelCase , lowerCamelCase)) A_ : str = starting_point while True: if diff_function(lowerCamelCase) != 0: A_ : int = prev_guess - multiplicity * func(lowerCamelCase) / diff_function( lowerCamelCase) else: raise ZeroDivisionError("""Could not find root""") from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess) < precision: return next_guess A_ : Union[str, Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5j)}""") # Find value of e print( 'The root of log(y) - 1 = 0 is ', f"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( 'The root of exp(x) - 1 = 0 is', f"""{newton_raphson('exp(x) - 1', 10, precision=0.0_0_5)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
27
'''simple docstring''' from __future__ import annotations import math def lowerCamelCase ( lowerCamelCase : int): if num <= 0: A_ : List[Any] = F'{num}: Invalid input, please enter a positive integer.' raise ValueError(lowerCamelCase) A_ : str = [True] * (num + 1) A_ : Tuple = [] A_ : str = 2 A_ : Any = int(math.sqrt(lowerCamelCase)) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCamelCase) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCamelCase): if sieve[i] is True: A_ : Union[str, Any] = False start += 1 for j in range(end + 1 , num + 1): if sieve[j] is True: prime.append(lowerCamelCase) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
27
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def _a ( self : int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _a ( self : Tuple ): '''simple docstring''' A_ : Any = 1 A_ : int = 3 A_ : List[Any] = (32, 32) A_ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(_a ) return image @property def _a ( self : str ): '''simple docstring''' torch.manual_seed(0 ) A_ : int = UNetaDConditionModel( block_out_channels=(32, 32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=7 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,attention_head_dim=8 ,use_linear_projection=_a ,only_cross_attention=(True, True, False) ,num_class_embeds=100 ,) return model @property def _a ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) A_ : str = AutoencoderKL( block_out_channels=[32, 32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def _a ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) A_ : Union[str, Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,hidden_act="""gelu""" ,projection_dim=512 ,) return CLIPTextModel(_a ) def _a ( self : Tuple ): '''simple docstring''' A_ : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : List[str] = self.dummy_cond_unet_upscale A_ : int = DDPMScheduler() A_ : Optional[int] = DDIMScheduler(prediction_type="""v_prediction""" ) A_ : List[str] = self.dummy_vae A_ : List[Any] = self.dummy_text_encoder A_ : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A_ : List[str] = self.dummy_image.cpu().permute(0 ,2 ,3 ,1 )[0] A_ : Dict = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk A_ : Optional[int] = StableDiffusionUpscalePipeline( unet=_a ,low_res_scheduler=_a ,scheduler=_a ,vae=_a ,text_encoder=_a ,tokenizer=_a ,max_noise_level=350 ,) A_ : Tuple = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) A_ : Tuple = """A painting of a squirrel eating a burger""" A_ : Any = torch.Generator(device=_a ).manual_seed(0 ) A_ : Optional[Any] = sd_pipe( [prompt] ,image=_a ,generator=_a ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type="""np""" ,) A_ : List[str] = output.images A_ : str = torch.Generator(device=_a ).manual_seed(0 ) A_ : Union[str, Any] = sd_pipe( [prompt] ,image=_a ,generator=_a ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=_a ,)[0] A_ : Union[str, Any] = image[0, -3:, -3:, -1] A_ : Dict = image_from_tuple[0, -3:, -3:, -1] A_ : Union[str, Any] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) A_ : List[str] = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ): '''simple docstring''' A_ : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : Optional[Any] = self.dummy_cond_unet_upscale A_ : Tuple = DDPMScheduler() A_ : List[Any] = DDIMScheduler(prediction_type="""v_prediction""" ) A_ : int = self.dummy_vae A_ : str = self.dummy_text_encoder A_ : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A_ : List[str] = self.dummy_image.cpu().permute(0 ,2 ,3 ,1 )[0] A_ : Optional[Any] = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk A_ : List[str] = StableDiffusionUpscalePipeline( unet=_a ,low_res_scheduler=_a ,scheduler=_a ,vae=_a ,text_encoder=_a ,tokenizer=_a ,max_noise_level=350 ,) A_ : Dict = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) A_ : List[Any] = """A painting of a squirrel eating a burger""" A_ : Union[str, Any] = sd_pipe( 2 * [prompt] ,image=2 * [low_res_image] ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type="""np""" ,) A_ : Tuple = output.images assert image.shape[0] == 2 A_ : Tuple = torch.Generator(device=_a ).manual_seed(0 ) A_ : List[str] = sd_pipe( [prompt] ,image=_a ,generator=_a ,num_images_per_prompt=2 ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type="""np""" ,) A_ : Any = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : Any = self.dummy_cond_unet_upscale A_ : Tuple = DDPMScheduler() A_ : Tuple = DDIMScheduler(prediction_type="""v_prediction""" ) A_ : Optional[Any] = self.dummy_vae A_ : List[str] = self.dummy_text_encoder A_ : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A_ : Tuple = self.dummy_image.cpu().permute(0 ,2 ,3 ,1 )[0] A_ : Tuple = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 A_ : Optional[Any] = unet.half() A_ : Tuple = text_encoder.half() # make sure here that pndm scheduler skips prk A_ : List[Any] = StableDiffusionUpscalePipeline( unet=_a ,low_res_scheduler=_a ,scheduler=_a ,vae=_a ,text_encoder=_a ,tokenizer=_a ,max_noise_level=350 ,) A_ : str = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) A_ : Optional[int] = """A painting of a squirrel eating a burger""" A_ : List[Any] = torch.manual_seed(0 ) A_ : str = sd_pipe( [prompt] ,image=_a ,generator=_a ,num_inference_steps=2 ,output_type="""np""" ,).images A_ : str = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def _a ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Dict ): '''simple docstring''' A_ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) A_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) A_ : List[str] = """stabilityai/stable-diffusion-x4-upscaler""" A_ : List[str] = StableDiffusionUpscalePipeline.from_pretrained(_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() A_ : Tuple = """a cat sitting on a park bench""" A_ : int = torch.manual_seed(0 ) A_ : int = pipe( prompt=_a ,image=_a ,generator=_a ,output_type="""np""" ,) A_ : Any = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-3 def _a ( self : Optional[int] ): '''simple docstring''' A_ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) A_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) A_ : Tuple = """stabilityai/stable-diffusion-x4-upscaler""" A_ : int = StableDiffusionUpscalePipeline.from_pretrained( _a ,torch_dtype=torch.floataa ,) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() A_ : Any = """a cat sitting on a park bench""" A_ : Union[str, Any] = torch.manual_seed(0 ) A_ : List[str] = pipe( prompt=_a ,image=_a ,generator=_a ,output_type="""np""" ,) A_ : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _a ( self : Optional[Any] ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A_ : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) A_ : Any = """stabilityai/stable-diffusion-x4-upscaler""" A_ : Tuple = StableDiffusionUpscalePipeline.from_pretrained( _a ,torch_dtype=torch.floataa ,) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A_ : Tuple = """a cat sitting on a park bench""" A_ : Any = torch.manual_seed(0 ) A_ : Optional[Any] = pipe( prompt=_a ,image=_a ,generator=_a ,num_inference_steps=5 ,output_type="""np""" ,) A_ : List[Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
27
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __magic_name__ = trt.Logger(trt.Logger.WARNING) __magic_name__ = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __magic_name__ = logging.getLogger(__name__) __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=384, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=128, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) __magic_name__ = parser.parse_args() if args.tokenizer_name: __magic_name__ = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) __magic_name__ = args.per_device_eval_batch_size __magic_name__ = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __magic_name__ = True __magic_name__ = 'temp_engine/bert-fp32.engine' if args.fpaa: __magic_name__ = 'temp_engine/bert-fp16.engine' if args.inta: __magic_name__ = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') __magic_name__ = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __magic_name__ = [network.get_input(i) for i in range(network.num_inputs)] __magic_name__ = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __magic_name__ = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __magic_name__ = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __magic_name__ = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : Any , lowerCamelCase : List[Any] , lowerCamelCase : str , lowerCamelCase : List[str]): A_ : str = np.asarray(inputs["""input_ids"""] , dtype=np.intaa) A_ : int = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa) A_ : Optional[int] = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCamelCase) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCamelCase) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCamelCase) # start time A_ : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowerCamelCase) for d_inp in d_inputs] + [int(lowerCamelCase), int(lowerCamelCase)] , stream_handle=stream.handle) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCamelCase , lowerCamelCase , lowerCamelCase) cuda.memcpy_dtoh_async(lowerCamelCase , lowerCamelCase , lowerCamelCase) # Synchronize the stream and take time stream.synchronize() # end time A_ : str = time.time() A_ : Tuple = end_time - start_time A_ : Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __magic_name__ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __magic_name__ = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __magic_name__ = raw_datasets['validation'].column_names __magic_name__ = 'question' if 'question' in column_names else column_names[0] __magic_name__ = 'context' if 'context' in column_names else column_names[1] __magic_name__ = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __magic_name__ = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __magic_name__ = min(args.max_seq_length, tokenizer.model_max_length) def lowerCamelCase ( lowerCamelCase : Dict): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace A_ : List[Any] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. A_ : Optional[int] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCamelCase , stride=args.doc_stride , return_overflowing_tokens=lowerCamelCase , return_offsets_mapping=lowerCamelCase , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. A_ : List[str] = tokenized_examples.pop("""overflow_to_sample_mapping""") # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. A_ : Union[str, Any] = [] for i in range(len(tokenized_examples["""input_ids"""])): # Grab the sequence corresponding to that example (to know what is the context and what is the question). A_ : Any = tokenized_examples.sequence_ids(lowerCamelCase) A_ : Tuple = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. A_ : Union[str, Any] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index]) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. A_ : Dict = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i]) ] return tokenized_examples __magic_name__ = raw_datasets['validation'] # Validation Feature Creation __magic_name__ = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) __magic_name__ = default_data_collator __magic_name__ = eval_dataset.remove_columns(['example_id', 'offset_mapping']) __magic_name__ = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def lowerCamelCase ( lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any]="eval"): # Post-processing: we match the start logits and end logits to answers in the original context. A_ : Tuple = postprocess_qa_predictions( examples=lowerCamelCase , features=lowerCamelCase , predictions=lowerCamelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCamelCase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: A_ : Dict = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: A_ : Union[str, Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] A_ : Any = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCamelCase , label_ids=lowerCamelCase) __magic_name__ = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def lowerCamelCase ( lowerCamelCase : Union[str, Any]): return trt.volume(engine.get_binding_shape(lowerCamelCase)) * engine.get_binding_dtype(lowerCamelCase).itemsize # Allocate device memory for inputs and outputs. __magic_name__ = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __magic_name__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __magic_name__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __magic_name__ = cuda.mem_alloc(h_outputa.nbytes) __magic_name__ = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __magic_name__ = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(f""" Num examples = {len(eval_dataset)}""") logger.info(f""" Batch size = {args.per_device_eval_batch_size}""") __magic_name__ = 0.0 __magic_name__ = 0 __magic_name__ = timeit.default_timer() __magic_name__ = None for step, batch in enumerate(eval_dataloader): __magic_name__ , __magic_name__ = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __magic_name__ , __magic_name__ = outputs __magic_name__ = torch.tensor(start_logits) __magic_name__ = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __magic_name__ = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __magic_name__ = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __magic_name__ = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __magic_name__ = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __magic_name__ = nested_truncate(all_preds, len(eval_dataset)) __magic_name__ = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_000 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_000)) logger.info('Total Number of Inference = %d', niter) __magic_name__ = post_processing_function(eval_examples, eval_dataset, all_preds) __magic_name__ = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"""Evaluation metrics: {eval_metric}""")
27
1
'''simple docstring''' import os import pytest from attr import dataclass __magic_name__ = 'us-east-1' # defaults region @dataclass class __lowerCAmelCase : '''simple docstring''' a_ = 42 a_ = """arn:aws:iam::558105141721:role/sagemaker_execution_role""" a_ = { """task_name""": """mnli""", """per_device_train_batch_size""": 16, """per_device_eval_batch_size""": 16, """do_train""": True, """do_eval""": True, """do_predict""": True, """output_dir""": """/opt/ml/model""", """overwrite_output_dir""": True, """max_steps""": 500, """save_steps""": 5_500, } a_ = {**hyperparameters, """max_steps""": 1_000} @property def _a ( self : int ): '''simple docstring''' if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def _a ( self : Any ): '''simple docstring''' return f'{self.framework}-transfromers-test' @property def _a ( self : Any ): '''simple docstring''' return f'./tests/sagemaker/scripts/{self.framework}' @property def _a ( self : List[Any] ): '''simple docstring''' if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""") def lowerCamelCase ( lowerCamelCase : Union[str, Any]): A_ : Dict = SageMakerTestEnvironment(framework=request.cls.framework)
27
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __magic_name__ = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['ConvNextFeatureExtractor'] __magic_name__ = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure)
27
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) def lowerCamelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any]=False): A_ : Optional[int] = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight')) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias')) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight')) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias')) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight')) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias')) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight')) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias')) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight')) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias')) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ]) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" A_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""") else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ]) return rename_keys def lowerCamelCase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : List[Any]=False): for i in range(config.num_hidden_layers): if base_model: A_ : str = """""" else: A_ : Any = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A_ : Optional[int] = state_dict.pop(F'blocks.{i}.attn.qkv.weight') A_ : Tuple = state_dict.pop(F'blocks.{i}.attn.qkv.bias') # next, add query, keys and values (in that order) to the state dict A_ : List[Any] = in_proj_weight[ : config.hidden_size, : ] A_ : str = in_proj_bias[: config.hidden_size] A_ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A_ : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A_ : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] A_ : Tuple = in_proj_bias[-config.hidden_size :] def lowerCamelCase ( lowerCamelCase : int): A_ : Union[str, Any] = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowerCamelCase , lowerCamelCase) def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : Dict , lowerCamelCase : int): A_ : List[str] = dct.pop(lowerCamelCase) A_ : Tuple = val def lowerCamelCase ( ): A_ : Any = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : Optional[Any] = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase).raw) return im @torch.no_grad() def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any]=True): A_ : Any = ViTConfig() # patch_size if model_name[-1] == "8": A_ : Tuple = 8 # set labels if required if not base_model: A_ : str = 1000 A_ : Any = """huggingface/label-files""" A_ : Optional[int] = """imagenet-1k-id2label.json""" A_ : Dict = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""") , """r""")) A_ : Any = {int(lowerCamelCase): v for k, v in idalabel.items()} A_ : List[str] = idalabel A_ : int = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: A_ : Any = 384 A_ : Tuple = 1536 A_ : Union[str, Any] = 12 A_ : Union[str, Any] = 6 # load original model from torch hub A_ : Tuple = torch.hub.load("""facebookresearch/dino:main""" , lowerCamelCase) original_model.eval() # load state_dict of original model, remove and rename some keys A_ : Tuple = original_model.state_dict() if base_model: remove_classification_head_(lowerCamelCase) A_ : Optional[Any] = create_rename_keys(lowerCamelCase , base_model=lowerCamelCase) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase) read_in_q_k_v(lowerCamelCase , lowerCamelCase , lowerCamelCase) # load HuggingFace model if base_model: A_ : Tuple = ViTModel(lowerCamelCase , add_pooling_layer=lowerCamelCase).eval() else: A_ : Union[str, Any] = ViTForImageClassification(lowerCamelCase).eval() model.load_state_dict(lowerCamelCase) # Check outputs on an image, prepared by ViTImageProcessor A_ : Tuple = ViTImageProcessor() A_ : str = image_processor(images=prepare_img() , return_tensors="""pt""") A_ : List[Any] = encoding["""pixel_values"""] A_ : Tuple = model(lowerCamelCase) if base_model: A_ : str = original_model(lowerCamelCase) assert torch.allclose(lowerCamelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1) else: A_ : int = original_model(lowerCamelCase) assert logits.shape == outputs.logits.shape assert torch.allclose(lowerCamelCase , outputs.logits , atol=1E-3) Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase) print(F'Saving model {model_name} to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase) print(F'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __magic_name__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
27
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { 'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json', 'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json', 'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json', } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """owlvit_text_model""" def __init__( self : Union[str, Any] ,_a : Any=49408 ,_a : Any=512 ,_a : Tuple=2048 ,_a : Dict=12 ,_a : Optional[int]=8 ,_a : Tuple=16 ,_a : Tuple="quick_gelu" ,_a : Optional[Any]=1e-5 ,_a : List[Any]=0.0 ,_a : Optional[int]=0.02 ,_a : Dict=1.0 ,_a : Dict=0 ,_a : Any=49406 ,_a : Tuple=49407 ,**_a : List[Any] ,): '''simple docstring''' super().__init__(pad_token_id=_a ,bos_token_id=_a ,eos_token_id=_a ,**_a ) A_ : Tuple = vocab_size A_ : int = hidden_size A_ : Optional[int] = intermediate_size A_ : Optional[int] = num_hidden_layers A_ : Union[str, Any] = num_attention_heads A_ : int = max_position_embeddings A_ : str = hidden_act A_ : Union[str, Any] = layer_norm_eps A_ : Tuple = attention_dropout A_ : Union[str, Any] = initializer_range A_ : List[Any] = initializer_factor @classmethod def _a ( cls : List[str] ,_a : Union[str, os.PathLike] ,**_a : str ): '''simple docstring''' cls._set_token_in_kwargs(_a ) A_ , A_ : int = cls.get_config_dict(_a ,**_a ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": A_ : Union[str, Any] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a ,**_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """owlvit_vision_model""" def __init__( self : List[Any] ,_a : Optional[Any]=768 ,_a : Tuple=3072 ,_a : Dict=12 ,_a : int=12 ,_a : Dict=3 ,_a : Tuple=768 ,_a : int=32 ,_a : int="quick_gelu" ,_a : List[Any]=1e-5 ,_a : Tuple=0.0 ,_a : List[Any]=0.02 ,_a : str=1.0 ,**_a : int ,): '''simple docstring''' super().__init__(**_a ) A_ : List[str] = hidden_size A_ : Union[str, Any] = intermediate_size A_ : Union[str, Any] = num_hidden_layers A_ : Optional[Any] = num_attention_heads A_ : int = num_channels A_ : str = image_size A_ : List[Any] = patch_size A_ : int = hidden_act A_ : List[Any] = layer_norm_eps A_ : List[str] = attention_dropout A_ : str = initializer_range A_ : str = initializer_factor @classmethod def _a ( cls : List[Any] ,_a : Union[str, os.PathLike] ,**_a : str ): '''simple docstring''' cls._set_token_in_kwargs(_a ) A_ , A_ : Optional[int] = cls.get_config_dict(_a ,**_a ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": A_ : List[str] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a ,**_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """owlvit""" a_ = True def __init__( self : Union[str, Any] ,_a : List[str]=None ,_a : List[str]=None ,_a : Dict=512 ,_a : List[Any]=2.6592 ,_a : Optional[Any]=True ,**_a : Optional[int] ,): '''simple docstring''' super().__init__(**_a ) if text_config is None: A_ : List[Any] = {} logger.info("""text_config is None. Initializing the OwlViTTextConfig with default values.""" ) if vision_config is None: A_ : Tuple = {} logger.info("""vision_config is None. initializing the OwlViTVisionConfig with default values.""" ) A_ : Dict = OwlViTTextConfig(**_a ) A_ : Dict = OwlViTVisionConfig(**_a ) A_ : Any = projection_dim A_ : Optional[int] = logit_scale_init_value A_ : Optional[int] = return_dict A_ : Dict = 1.0 @classmethod def _a ( cls : Union[str, Any] ,_a : Union[str, os.PathLike] ,**_a : Optional[int] ): '''simple docstring''' cls._set_token_in_kwargs(_a ) A_ , A_ : List[Any] = cls.get_config_dict(_a ,**_a ) if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a ,**_a ) @classmethod def _a ( cls : int ,_a : Dict ,_a : Dict ,**_a : List[str] ): '''simple docstring''' A_ : str = {} A_ : int = text_config A_ : Union[str, Any] = vision_config return cls.from_dict(_a ,**_a ) def _a ( self : Optional[int] ): '''simple docstring''' A_ : Dict = copy.deepcopy(self.__dict__ ) A_ : str = self.text_config.to_dict() A_ : Optional[int] = self.vision_config.to_dict() A_ : List[Any] = self.__class__.model_type return output class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _a ( self : int ): '''simple docstring''' return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ] ) @property def _a ( self : str ): '''simple docstring''' return OrderedDict( [ ("""logits_per_image""", {0: """batch"""}), ("""logits_per_text""", {0: """batch"""}), ("""text_embeds""", {0: """batch"""}), ("""image_embeds""", {0: """batch"""}), ] ) @property def _a ( self : Optional[Any] ): '''simple docstring''' return 1e-4 def _a ( self : int ,_a : "ProcessorMixin" ,_a : int = -1 ,_a : int = -1 ,_a : Optional["TensorType"] = None ,): '''simple docstring''' A_ : Any = super().generate_dummy_inputs( processor.tokenizer ,batch_size=_a ,seq_length=_a ,framework=_a ) A_ : Any = super().generate_dummy_inputs( processor.image_processor ,batch_size=_a ,framework=_a ) return {**text_input_dict, **image_input_dict} @property def _a ( self : Optional[Any] ): '''simple docstring''' return 14
27
1
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __magic_name__ = { 'sample_size': 32, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': 1_000, 'block_out_channels': [32, 64], 'attention_head_dim': 8, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } __magic_name__ = { 'sample_size': 64, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 3, 'num_class_embeds': 1_000, 'block_out_channels': [192, 192 * 2, 192 * 3, 192 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } __magic_name__ = { 'sample_size': 256, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': None, 'block_out_channels': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'default', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } __magic_name__ = { 'num_train_timesteps': 40, 'sigma_min': 0.0_0_2, 'sigma_max': 8_0.0, } __magic_name__ = { 'num_train_timesteps': 201, 'sigma_min': 0.0_0_2, 'sigma_max': 8_0.0, } __magic_name__ = { 'num_train_timesteps': 151, 'sigma_min': 0.0_0_2, 'sigma_max': 8_0.0, } def lowerCamelCase ( lowerCamelCase : Union[str, Any]): if isinstance(lowerCamelCase , lowerCamelCase): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("""boolean value expected""") def lowerCamelCase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Any , lowerCamelCase : Tuple=False): A_ : Dict = checkpoint[F'{old_prefix}.in_layers.0.weight'] A_ : Optional[int] = checkpoint[F'{old_prefix}.in_layers.0.bias'] A_ : Union[str, Any] = checkpoint[F'{old_prefix}.in_layers.2.weight'] A_ : Union[str, Any] = checkpoint[F'{old_prefix}.in_layers.2.bias'] A_ : List[str] = checkpoint[F'{old_prefix}.emb_layers.1.weight'] A_ : int = checkpoint[F'{old_prefix}.emb_layers.1.bias'] A_ : int = checkpoint[F'{old_prefix}.out_layers.0.weight'] A_ : Union[str, Any] = checkpoint[F'{old_prefix}.out_layers.0.bias'] A_ : Optional[Any] = checkpoint[F'{old_prefix}.out_layers.3.weight'] A_ : Optional[int] = checkpoint[F'{old_prefix}.out_layers.3.bias'] if has_skip: A_ : str = checkpoint[F'{old_prefix}.skip_connection.weight'] A_ : List[str] = checkpoint[F'{old_prefix}.skip_connection.bias'] return new_checkpoint def lowerCamelCase ( lowerCamelCase : str , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any]=None): A_ , A_ , A_ : Optional[Any] = checkpoint[F'{old_prefix}.qkv.weight'].chunk(3 , dim=0) A_ , A_ , A_ : List[Any] = checkpoint[F'{old_prefix}.qkv.bias'].chunk(3 , dim=0) A_ : List[Any] = checkpoint[F'{old_prefix}.norm.weight'] A_ : Tuple = checkpoint[F'{old_prefix}.norm.bias'] A_ : Union[str, Any] = weight_q.squeeze(-1).squeeze(-1) A_ : Dict = bias_q.squeeze(-1).squeeze(-1) A_ : int = weight_k.squeeze(-1).squeeze(-1) A_ : Tuple = bias_k.squeeze(-1).squeeze(-1) A_ : Optional[Any] = weight_v.squeeze(-1).squeeze(-1) A_ : Dict = bias_v.squeeze(-1).squeeze(-1) A_ : int = ( checkpoint[F'{old_prefix}.proj_out.weight'].squeeze(-1).squeeze(-1) ) A_ : int = checkpoint[F'{old_prefix}.proj_out.bias'].squeeze(-1).squeeze(-1) return new_checkpoint def lowerCamelCase ( lowerCamelCase : str , lowerCamelCase : Tuple): A_ : List[Any] = torch.load(lowerCamelCase , map_location="""cpu""") A_ : Optional[Any] = {} A_ : List[Any] = checkpoint["""time_embed.0.weight"""] A_ : Dict = checkpoint["""time_embed.0.bias"""] A_ : Optional[Any] = checkpoint["""time_embed.2.weight"""] A_ : Any = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: A_ : Union[str, Any] = checkpoint["""label_emb.weight"""] A_ : Union[str, Any] = checkpoint["""input_blocks.0.0.weight"""] A_ : List[str] = checkpoint["""input_blocks.0.0.bias"""] A_ : Optional[int] = unet_config["""down_block_types"""] A_ : Union[str, Any] = unet_config["""layers_per_block"""] A_ : Optional[Any] = unet_config["""attention_head_dim"""] A_ : Dict = unet_config["""block_out_channels"""] A_ : Union[str, Any] = 1 A_ : Optional[int] = channels_list[0] for i, layer_type in enumerate(lowerCamelCase): A_ : Any = channels_list[i] A_ : Tuple = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(lowerCamelCase): A_ : List[str] = F'down_blocks.{i}.resnets.{j}' A_ : Optional[int] = F'input_blocks.{current_layer}.0' A_ : Dict = True if j == 0 and downsample_block_has_skip else False A_ : Dict = convert_resnet(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , has_skip=lowerCamelCase) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(lowerCamelCase): A_ : Optional[Any] = F'down_blocks.{i}.resnets.{j}' A_ : Optional[Any] = F'input_blocks.{current_layer}.0' A_ : Optional[int] = True if j == 0 and downsample_block_has_skip else False A_ : List[str] = convert_resnet(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , has_skip=lowerCamelCase) A_ : str = F'down_blocks.{i}.attentions.{j}' A_ : List[str] = F'input_blocks.{current_layer}.1' A_ : Optional[int] = convert_attention( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase) current_layer += 1 if i != len(lowerCamelCase) - 1: A_ : str = F'down_blocks.{i}.downsamplers.0' A_ : List[str] = F'input_blocks.{current_layer}.0' A_ : Tuple = convert_resnet(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase) current_layer += 1 A_ : str = current_channels # hardcoded the mid-block for now A_ : Optional[Any] = """mid_block.resnets.0""" A_ : Dict = """middle_block.0""" A_ : Any = convert_resnet(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase) A_ : int = """mid_block.attentions.0""" A_ : Dict = """middle_block.1""" A_ : Optional[int] = convert_attention(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase) A_ : List[Any] = """mid_block.resnets.1""" A_ : Dict = """middle_block.2""" A_ : Optional[int] = convert_resnet(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase) A_ : Optional[Any] = 0 A_ : int = unet_config["""up_block_types"""] for i, layer_type in enumerate(lowerCamelCase): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1): A_ : Tuple = F'up_blocks.{i}.resnets.{j}' A_ : str = F'output_blocks.{current_layer}.0' A_ : Tuple = convert_resnet(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , has_skip=lowerCamelCase) current_layer += 1 if i != len(lowerCamelCase) - 1: A_ : int = F'up_blocks.{i}.upsamplers.0' A_ : Tuple = F'output_blocks.{current_layer-1}.1' A_ : Tuple = convert_resnet(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1): A_ : Tuple = F'up_blocks.{i}.resnets.{j}' A_ : Union[str, Any] = F'output_blocks.{current_layer}.0' A_ : Union[str, Any] = convert_resnet(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , has_skip=lowerCamelCase) A_ : List[str] = F'up_blocks.{i}.attentions.{j}' A_ : Optional[Any] = F'output_blocks.{current_layer}.1' A_ : int = convert_attention( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase) current_layer += 1 if i != len(lowerCamelCase) - 1: A_ : str = F'up_blocks.{i}.upsamplers.0' A_ : List[Any] = F'output_blocks.{current_layer-1}.2' A_ : Dict = convert_resnet(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase) A_ : str = checkpoint["""out.0.weight"""] A_ : Dict = checkpoint["""out.0.bias"""] A_ : Optional[Any] = checkpoint["""out.2.weight"""] A_ : int = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument('--unet_path', default=None, type=str, required=True, help='Path to the unet.pt to convert.') parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output the converted UNet model.' ) parser.add_argument('--class_cond', default=True, type=str, help='Whether the model is class-conditional.') __magic_name__ = parser.parse_args() __magic_name__ = strabool(args.class_cond) __magic_name__ = os.path.basename(args.unet_path) print(f"""Checkpoint: {ckpt_name}""") # Get U-Net config if "imagenet64" in ckpt_name: __magic_name__ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __magic_name__ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __magic_name__ = TEST_UNET_CONFIG else: raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""") if not args.class_cond: __magic_name__ = None __magic_name__ = con_pt_to_diffuser(args.unet_path, unet_config) __magic_name__ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __magic_name__ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __magic_name__ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __magic_name__ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""") __magic_name__ = CMStochasticIterativeScheduler(**scheduler_config) __magic_name__ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
27
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __magic_name__ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""input_features""", """is_longer"""] def __init__( self : Dict ,_a : Optional[int]=64 ,_a : List[Any]=48000 ,_a : str=480 ,_a : Optional[Any]=10 ,_a : Optional[int]=1024 ,_a : Tuple=0.0 ,_a : str=False ,_a : float = 0 ,_a : float = 14000 ,_a : int = None ,_a : str = "fusion" ,_a : str = "repeatpad" ,**_a : Tuple ,): '''simple docstring''' super().__init__( feature_size=_a ,sampling_rate=_a ,padding_value=_a ,return_attention_mask=_a ,**_a ,) A_ : Tuple = top_db A_ : Tuple = truncation A_ : Optional[Any] = padding A_ : Optional[int] = fft_window_size A_ : Dict = (fft_window_size >> 1) + 1 A_ : Any = hop_length A_ : List[Any] = max_length_s A_ : Tuple = max_length_s * sampling_rate A_ : Tuple = sampling_rate A_ : Optional[int] = frequency_min A_ : Tuple = frequency_max A_ : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=_a ,min_frequency=_a ,max_frequency=_a ,sampling_rate=_a ,norm=_a ,mel_scale="""htk""" ,) A_ : Dict = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=_a ,min_frequency=_a ,max_frequency=_a ,sampling_rate=_a ,norm="""slaney""" ,mel_scale="""slaney""" ,) def _a ( self : int ): '''simple docstring''' A_ : int = copy.deepcopy(self.__dict__ ) A_ : Tuple = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _a ( self : Dict ,_a : np.array ,_a : Optional[np.array] = None ): '''simple docstring''' A_ : List[str] = spectrogram( _a ,window_function(self.fft_window_size ,"""hann""" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=_a ,log_mel="""dB""" ,) return log_mel_spectrogram.T def _a ( self : Optional[int] ,_a : Dict ,_a : Optional[Any] ,_a : Optional[int] ): '''simple docstring''' A_ : Dict = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk A_ : List[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk A_ : int = [0] # randomly choose index for each part A_ : List[str] = np.random.choice(ranges[0] ) A_ : int = np.random.choice(ranges[1] ) A_ : Optional[int] = np.random.choice(ranges[2] ) A_ : Tuple = mel[idx_front : idx_front + chunk_frames, :] A_ : Dict = mel[idx_middle : idx_middle + chunk_frames, :] A_ : Dict = mel[idx_back : idx_back + chunk_frames, :] A_ : Optional[int] = torch.tensor(mel[None, None, :] ) A_ : Dict = torch.nn.functional.interpolate( _a ,size=[chunk_frames, 64] ,mode="""bilinear""" ,align_corners=_a ) A_ : str = mel_shrink[0][0].numpy() A_ : Tuple = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def _a ( self : Dict ,_a : np.array ,_a : Optional[Any] ,_a : int ,_a : Dict ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": A_ : Dict = True # random crop to max_length (for compatibility) -> this should be handled by self.pad A_ : Tuple = len(_a ) - max_length A_ : Optional[int] = np.random.randint(0 ,overflow + 1 ) A_ : List[Any] = waveform[idx : idx + max_length] A_ : Optional[Any] = self._np_extract_fbank_features(_a ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": A_ : Dict = self._np_extract_fbank_features(_a ,self.mel_filters ) A_ : Tuple = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed A_ : Optional[int] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. A_ : Optional[int] = np.stack([mel, mel, mel, mel] ,axis=0 ) A_ : str = False else: A_ : str = self._random_mel_fusion(_a ,_a ,_a ) A_ : Optional[Any] = True else: raise NotImplementedError(f'data_truncating {truncation} not implemented' ) else: A_ : Optional[int] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": A_ : int = int(max_length / len(_a ) ) A_ : Any = np.stack(np.tile(_a ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": A_ : List[str] = int(max_length / len(_a ) ) A_ : Optional[Any] = np.stack(np.tile(_a ,_a ) ) A_ : Any = np.pad(_a ,(0, max_length - waveform.shape[0]) ,mode="""constant""" ,constant_values=0 ) if truncation == "fusion": A_ : List[Any] = self._np_extract_fbank_features(_a ,self.mel_filters ) A_ : Optional[Any] = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: A_ : Union[str, Any] = self._np_extract_fbank_features(_a ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : List[Any] ,_a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,_a : str = None ,_a : Optional[str] = None ,_a : Optional[int] = None ,_a : Optional[int] = None ,_a : Optional[Union[str, TensorType]] = None ,**_a : Any ,): '''simple docstring''' A_ : List[str] = truncation if truncation is not None else self.truncation A_ : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) A_ : Any = isinstance(_a ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) A_ : int = is_batched_numpy or ( isinstance(_a ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: A_ : Optional[int] = [np.asarray(_a ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_a ,np.ndarray ): A_ : str = np.asarray(_a ,dtype=np.floataa ) elif isinstance(_a ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A_ : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A_ : Any = [np.asarray(_a )] # convert to mel spectrogram, truncate and pad if needed. A_ : str = [ self._get_input_mel(_a ,max_length if max_length else self.nb_max_samples ,_a ,_a ) for waveform in raw_speech ] A_ : int = [] A_ : Any = [] for mel, longer in padded_inputs: input_mel.append(_a ) is_longer.append(_a ) if truncation == "fusion" and sum(_a ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer A_ : List[Any] = np.random.randint(0 ,len(_a ) ) A_ : List[str] = True if isinstance(input_mel[0] ,_a ): A_ : Tuple = [np.asarray(_a ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool A_ : List[str] = [[longer] for longer in is_longer] A_ : Optional[Any] = {"""input_features""": input_mel, """is_longer""": is_longer} A_ : int = BatchFeature(_a ) if return_tensors is not None: A_ : int = input_features.convert_to_tensors(_a ) return input_features
27
1
'''simple docstring''' from __future__ import annotations def lowerCamelCase ( lowerCamelCase : dict , lowerCamelCase : str): A_ , A_ : List[Any] = set(lowerCamelCase), [start] while stack: A_ : Optional[Any] = stack.pop() explored.add(lowerCamelCase) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v]): if adj not in explored: stack.append(lowerCamelCase) return explored __magic_name__ = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
27
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ,_a : List[Any] ,_a : Dict=13 ,_a : List[Any]=7 ,_a : Optional[Any]=True ,_a : Any=True ,_a : Optional[int]=True ,_a : Union[str, Any]=99 ,_a : Union[str, Any]=32 ,_a : List[str]=5 ,_a : List[str]=4 ,_a : Dict=37 ,_a : List[Any]="gelu" ,_a : int=0.1 ,_a : Optional[int]=0.1 ,_a : Tuple=512 ,_a : Union[str, Any]=16 ,_a : Optional[Any]=2 ,_a : Optional[Any]=0.02 ,_a : Optional[int]=3 ,_a : str=4 ,_a : Optional[Any]=None ,): '''simple docstring''' A_ : Optional[Any] = parent A_ : str = batch_size A_ : int = seq_length A_ : Union[str, Any] = is_training A_ : Optional[Any] = use_token_type_ids A_ : int = use_labels A_ : Dict = vocab_size A_ : List[Any] = hidden_size A_ : Tuple = num_hidden_layers A_ : Optional[int] = num_attention_heads A_ : int = intermediate_size A_ : Tuple = hidden_act A_ : int = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : Any = max_position_embeddings A_ : Optional[Any] = type_vocab_size A_ : Tuple = type_sequence_label_size A_ : int = initializer_range A_ : Optional[Any] = num_labels A_ : str = num_choices A_ : Optional[Any] = scope A_ : List[Any] = self.vocab_size - 1 def _a ( self : Any ): '''simple docstring''' A_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A_ : List[Any] = None if self.use_token_type_ids: A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A_ : int = None A_ : str = None A_ : Union[str, Any] = None if self.use_labels: A_ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A_ : Any = ids_tensor([self.batch_size] ,self.num_choices ) A_ : List[Any] = OpenAIGPTConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) A_ : Tuple = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _a ( self : Optional[int] ,_a : List[str] ,_a : str ,_a : int ,_a : int ,*_a : Union[str, Any] ): '''simple docstring''' A_ : Optional[Any] = OpenAIGPTModel(config=_a ) model.to(_a ) model.eval() A_ : Optional[int] = model(_a ,token_type_ids=_a ,head_mask=_a ) A_ : str = model(_a ,token_type_ids=_a ) A_ : Dict = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Dict ,_a : Optional[int] ,_a : Union[str, Any] ,_a : Dict ,_a : List[str] ,*_a : str ): '''simple docstring''' A_ : str = OpenAIGPTLMHeadModel(_a ) model.to(_a ) model.eval() A_ : Any = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Any ,_a : Dict ,_a : List[Any] ,_a : Dict ,_a : Union[str, Any] ,*_a : str ): '''simple docstring''' A_ : Any = OpenAIGPTDoubleHeadsModel(_a ) model.to(_a ) model.eval() A_ : Optional[int] = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : List[str] ,_a : str ,_a : Tuple ,_a : Dict ,_a : Tuple ,*_a : Dict ): '''simple docstring''' A_ : List[str] = self.num_labels A_ : int = OpenAIGPTForSequenceClassification(_a ) model.to(_a ) model.eval() A_ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A_ : Optional[Any] = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _a ( self : Tuple ): '''simple docstring''' A_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : str = config_and_inputs A_ : int = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) a_ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly a_ = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _a ( self : Tuple ,_a : Optional[int] ,_a : str ,_a : List[str] ,_a : List[str] ,_a : Any ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _a ( self : Optional[int] ,_a : str ,_a : Dict ,_a : Optional[int]=False ): '''simple docstring''' A_ : Any = super()._prepare_for_class(_a ,_a ,return_labels=_a ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": A_ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) ,dtype=torch.long ,device=_a ,) A_ : Any = inputs_dict["""labels"""] A_ : Any = inputs_dict["""labels"""] A_ : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) ,dtype=torch.long ,device=_a ,) A_ : int = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_a ) return inputs_dict def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : Tuple = OpenAIGPTModelTester(self ) A_ : Optional[int] = ConfigTester(self ,config_class=_a ,n_embd=37 ) def _a ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def _a ( self : Optional[Any] ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_a ) def _a ( self : Tuple ): '''simple docstring''' A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_a ) def _a ( self : List[Any] ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_a ) def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_a ) @slow def _a ( self : List[Any] ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Union[str, Any] = OpenAIGPTModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def _a ( self : List[str] ): '''simple docstring''' A_ : Dict = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(_a ) A_ : Dict = torch.tensor([[481, 4735, 544]] ,dtype=torch.long ,device=_a ) # the president is A_ : Dict = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the A_ : int = model.generate(_a ,do_sample=_a ) self.assertListEqual(output_ids[0].tolist() ,_a )
27
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'vocab_file': 'sentencepiece.bpe.model'} __magic_name__ = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } __magic_name__ = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } __magic_name__ = '▁' class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["""input_ids""", """attention_mask"""] def __init__( self : str ,_a : Tuple ,_a : List[Any]="<s>" ,_a : Dict="</s>" ,_a : Union[str, Any]="</s>" ,_a : Tuple="<s>" ,_a : int="<unk>" ,_a : Union[str, Any]="<pad>" ,_a : Any="<mask>" ,_a : Optional[Dict[str, Any]] = None ,**_a : Optional[int] ,): '''simple docstring''' A_ : Optional[Any] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else mask_token A_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a ,eos_token=_a ,unk_token=_a ,sep_token=_a ,cls_token=_a ,pad_token=_a ,mask_token=_a ,sp_model_kwargs=self.sp_model_kwargs ,**_a ,) A_ : Any = vocab_file A_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) A_ : str = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} A_ : Optional[Any] = len(self.sp_model ) - 1 A_ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def _a ( self : Optional[Any] ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A_ : Tuple = [self.cls_token_id] A_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _a ( self : Any ,_a : List[int] ,_a : Optional[List[int]] = None ,_a : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a ,token_ids_a=_a ,already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def _a ( self : Any ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' A_ : str = [self.sep_token_id] A_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _a ( self : Optional[int] ): '''simple docstring''' return len(self.sp_model ) def _a ( self : Any ): '''simple docstring''' A_ : Tuple = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a ( self : str ,_a : str ): '''simple docstring''' return self.sp_model.encode(_a ,out_type=_a ) def _a ( self : Dict ,_a : List[str] ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A_ : str = self.sp_model.PieceToId(_a ) return spm_id if spm_id else self.unk_token_id def _a ( self : Optional[int] ,_a : List[Any] ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(_a ) def _a ( self : Dict ,_a : Optional[Any] ): '''simple docstring''' A_ : Optional[Any] = [] A_ : int = """""" A_ : int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a ) + token A_ : int = True A_ : Optional[int] = [] else: current_sub_tokens.append(_a ) A_ : Optional[Any] = False out_string += self.sp_model.decode(_a ) return out_string.strip() def __getstate__( self : List[str] ): '''simple docstring''' A_ : str = self.__dict__.copy() A_ : Any = None return state def __setstate__( self : Union[str, Any] ,_a : Union[str, Any] ): '''simple docstring''' A_ : Tuple = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): A_ : Optional[int] = {} A_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self : List[Any] ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A_ : Dict = os.path.join( _a ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_a ) elif not os.path.isfile(self.vocab_file ): with open(_a ,"""wb""" ) as fi: A_ : int = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
27
'''simple docstring''' import baseaa def lowerCamelCase ( lowerCamelCase : str): return baseaa.aaaencode(string.encode("""utf-8""")) def lowerCamelCase ( lowerCamelCase : bytes): return baseaa.aaadecode(lowerCamelCase).decode("""utf-8""") if __name__ == "__main__": import doctest doctest.testmod()
27
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __magic_name__ = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['ConvNextFeatureExtractor'] __magic_name__ = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure)
27
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCamelCase ( lowerCamelCase : Optional[Any]): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def lowerCamelCase ( lowerCamelCase : str): # word like '180' or '身高' or '神' for char in word: A_ : Optional[Any] = ord(lowerCamelCase) if not _is_chinese_char(lowerCamelCase): return 0 return 1 def lowerCamelCase ( lowerCamelCase : List[str]): A_ : Any = set() for token in tokens: A_ : str = len(lowerCamelCase) > 1 and is_chinese(lowerCamelCase) if chinese_word: word_set.add(lowerCamelCase) A_ : Any = list(lowerCamelCase) return word_list def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : set()): if not chinese_word_set: return bert_tokens A_ : Any = max([len(lowerCamelCase) for w in chinese_word_set]) A_ : str = bert_tokens A_ , A_ : Any = 0, len(lowerCamelCase) while start < end: A_ : Tuple = True if is_chinese(bert_word[start]): A_ : List[str] = min(end - start , lowerCamelCase) for i in range(lowerCamelCase , 1 , -1): A_ : Tuple = """""".join(bert_word[start : start + i]) if whole_word in chinese_word_set: for j in range(start + 1 , start + i): A_ : Dict = """##""" + bert_word[j] A_ : str = start + i A_ : Dict = False break if single_word: start += 1 return bert_word def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : LTP , lowerCamelCase : BertTokenizer): A_ : Union[str, Any] = [] for i in range(0 , len(lowerCamelCase) , 100): A_ : List[Any] = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""]).cws A_ : int = [get_chinese_word(lowerCamelCase) for r in res] ltp_res.extend(lowerCamelCase) assert len(lowerCamelCase) == len(lowerCamelCase) A_ : List[Any] = [] for i in range(0 , len(lowerCamelCase) , 100): A_ : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=lowerCamelCase , truncation=lowerCamelCase , max_length=512) bert_res.extend(res["""input_ids"""]) assert len(lowerCamelCase) == len(lowerCamelCase) A_ : Union[str, Any] = [] for input_ids, chinese_word in zip(lowerCamelCase , lowerCamelCase): A_ : List[Any] = [] for id in input_ids: A_ : List[Any] = bert_tokenizer._convert_id_to_token(lowerCamelCase) input_tokens.append(lowerCamelCase) A_ : int = add_sub_symbol(lowerCamelCase , lowerCamelCase) A_ : str = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCamelCase): if token[:2] == "##": A_ : Optional[Any] = token[2:] # save chinese tokens' pos if len(lowerCamelCase) == 1 and _is_chinese_char(ord(lowerCamelCase)): ref_id.append(lowerCamelCase) ref_ids.append(lowerCamelCase) assert len(lowerCamelCase) == len(lowerCamelCase) return ref_ids def lowerCamelCase ( lowerCamelCase : Tuple): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""") as f: A_ : Optional[int] = f.readlines() A_ : Union[str, Any] = [line.strip() for line in data if len(lowerCamelCase) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ : Optional[Any] = LTP(args.ltp) # faster in GPU device A_ : Dict = BertTokenizer.from_pretrained(args.bert) A_ : str = prepare_ref(lowerCamelCase , lowerCamelCase , lowerCamelCase) with open(args.save_path , """w""" , encoding="""utf-8""") as f: A_ : Optional[Any] = [json.dumps(lowerCamelCase) + """\n""" for ref in ref_ids] f.writelines(lowerCamelCase) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) __magic_name__ = parser.parse_args() main(args)
27
1
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels __magic_name__ = object() # For specifying empty leaf dict `{}` __magic_name__ = object() def lowerCamelCase ( lowerCamelCase : Tuple , lowerCamelCase : List[str]): A_ : List[Any] = tuple((re.compile(x + """$""") for x in qs)) for i in range(len(lowerCamelCase) - len(lowerCamelCase) + 1): A_ : List[str] = [x.match(lowerCamelCase) for x, y in zip(lowerCamelCase , ks[i:])] if matches and all(lowerCamelCase): return True return False def lowerCamelCase ( lowerCamelCase : List[Any]): def replace(lowerCamelCase : str , lowerCamelCase : List[Any]): for rule, replacement in rules: if _match(lowerCamelCase , lowerCamelCase): return replacement return val return replace def lowerCamelCase ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P("""mp""" , lowerCamelCase)), (("transformer", "wte", "embedding"), P("""mp""" , lowerCamelCase)), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(lowerCamelCase , """mp""")), (("attention", "out_proj", "kernel"), P("""mp""" , lowerCamelCase)), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(lowerCamelCase , """mp""")), (("mlp", "c_fc", "bias"), P("""mp""")), (("mlp", "c_proj", "kernel"), P("""mp""" , lowerCamelCase)), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def lowerCamelCase ( lowerCamelCase : str): A_ : Dict = _get_partition_rules() A_ : Optional[int] = _replacement_rules(lowerCamelCase) A_ : Optional[Any] = {k: _unmatched for k in flatten_dict(lowerCamelCase)} A_ : str = {k: replace(lowerCamelCase , lowerCamelCase) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(lowerCamelCase))
27
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""image_processor""", """tokenizer"""] a_ = """ViltImageProcessor""" a_ = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : List[Any] ,_a : Optional[Any]=None ,_a : List[str]=None ,**_a : Any ): '''simple docstring''' A_ : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" ,_a ,) A_ : List[str] = kwargs.pop("""feature_extractor""" ) A_ : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_a ,_a ) A_ : Optional[Any] = self.image_processor def __call__( self : Any ,_a : Tuple ,_a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,_a : bool = True ,_a : Union[bool, str, PaddingStrategy] = False ,_a : Union[bool, str, TruncationStrategy] = None ,_a : Optional[int] = None ,_a : int = 0 ,_a : Optional[int] = None ,_a : Optional[bool] = None ,_a : Optional[bool] = None ,_a : bool = False ,_a : bool = False ,_a : bool = False ,_a : bool = False ,_a : bool = True ,_a : Optional[Union[str, TensorType]] = None ,**_a : Tuple ,): '''simple docstring''' A_ : int = self.tokenizer( text=_a ,add_special_tokens=_a ,padding=_a ,truncation=_a ,max_length=_a ,stride=_a ,pad_to_multiple_of=_a ,return_token_type_ids=_a ,return_attention_mask=_a ,return_overflowing_tokens=_a ,return_special_tokens_mask=_a ,return_offsets_mapping=_a ,return_length=_a ,verbose=_a ,return_tensors=_a ,**_a ,) # add pixel_values + pixel_mask A_ : Optional[int] = self.image_processor(_a ,return_tensors=_a ) encoding.update(_a ) return encoding def _a ( self : List[Any] ,*_a : Any ,**_a : Any ): '''simple docstring''' return self.tokenizer.batch_decode(*_a ,**_a ) def _a ( self : int ,*_a : int ,**_a : Optional[int] ): '''simple docstring''' return self.tokenizer.decode(*_a ,**_a ) @property def _a ( self : List[Any] ): '''simple docstring''' A_ : Optional[int] = self.tokenizer.model_input_names A_ : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _a ( self : str ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" ,_a ,) return self.image_processor_class @property def _a ( self : int ): '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" ,_a ,) return self.image_processor
27
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __magic_name__ = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['ConditionalDetrFeatureExtractor'] __magic_name__ = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""torch""", """torchsde"""] def __init__( self : Any ,*_a : Union[str, Any] ,**_a : Optional[int] ): '''simple docstring''' requires_backends(self ,["""torch""", """torchsde"""] ) @classmethod def _a ( cls : Optional[int] ,*_a : List[Any] ,**_a : Any ): '''simple docstring''' requires_backends(cls ,["""torch""", """torchsde"""] ) @classmethod def _a ( cls : List[Any] ,*_a : Tuple ,**_a : Union[str, Any] ): '''simple docstring''' requires_backends(cls ,["""torch""", """torchsde"""] )
27
1
'''simple docstring''' import baseaa def lowerCamelCase ( lowerCamelCase : str): return baseaa.aaaencode(string.encode("""utf-8""")) def lowerCamelCase ( lowerCamelCase : bytes): return baseaa.aaadecode(lowerCamelCase).decode("""utf-8""") if __name__ == "__main__": import doctest doctest.testmod()
27
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : str=True , lowerCamelCase : Optional[Any]="pt"): A_ : Optional[int] = {"""add_prefix_space""": True} if isinstance(lowerCamelCase , lowerCamelCase) and not line.startswith(""" """) else {} A_ : Optional[int] = padding_side return tokenizer( [line] , max_length=lowerCamelCase , padding="""max_length""" if pad_to_max_length else None , truncation=lowerCamelCase , return_tensors=lowerCamelCase , add_special_tokens=lowerCamelCase , **lowerCamelCase , ) def lowerCamelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any]=None , ): A_ : Dict = input_ids.ne(lowerCamelCase).any(dim=0) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] ,_a : Optional[Any] ,_a : Tuple ,_a : Dict ,_a : Tuple ,_a : Tuple="train" ,_a : Optional[int]=None ,_a : Any=None ,_a : int=None ,_a : Union[str, Any]="" ,): '''simple docstring''' super().__init__() A_ : Union[str, Any] = Path(_a ).joinpath(type_path + """.source""" ) A_ : Any = Path(_a ).joinpath(type_path + """.target""" ) A_ : Dict = self.get_char_lens(self.src_file ) A_ : Optional[int] = max_source_length A_ : List[str] = max_target_length assert min(self.src_lens ) > 0, f'found empty line in {self.src_file}' A_ : List[Any] = tokenizer A_ : Optional[Any] = prefix if n_obs is not None: A_ : Any = self.src_lens[:n_obs] A_ : Optional[int] = src_lang A_ : Tuple = tgt_lang def __len__( self : Tuple ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self : List[str] ,_a : Tuple ): '''simple docstring''' A_ : int = index + 1 # linecache starts at 1 A_ : Union[str, Any] = self.prefix + linecache.getline(str(self.src_file ) ,_a ).rstrip("""\n""" ) A_ : Dict = linecache.getline(str(self.tgt_file ) ,_a ).rstrip("""\n""" ) assert source_line, f'empty source line for index {index}' assert tgt_line, f'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer ,_a ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A_ : List[str] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,_a ) else self.tokenizer ) A_ : Any = self.tokenizer.generator if isinstance(self.tokenizer ,_a ) else self.tokenizer A_ : Optional[int] = encode_line(_a ,_a ,self.max_source_length ,"""right""" ) A_ : Optional[int] = encode_line(_a ,_a ,self.max_target_length ,"""right""" ) A_ : Optional[Any] = source_inputs["""input_ids"""].squeeze() A_ : Dict = target_inputs["""input_ids"""].squeeze() A_ : Union[str, Any] = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _a ( _a : int ): '''simple docstring''' return [len(_a ) for x in Path(_a ).open().readlines()] def _a ( self : Optional[int] ,_a : Dict ): '''simple docstring''' A_ : str = torch.stack([x["""input_ids"""] for x in batch] ) A_ : Optional[Any] = torch.stack([x["""attention_mask"""] for x in batch] ) A_ : str = torch.stack([x["""decoder_input_ids"""] for x in batch] ) A_ : Union[str, Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,_a ) else self.tokenizer.pad_token_id ) A_ : str = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,_a ) else self.tokenizer.pad_token_id ) A_ : List[str] = trim_batch(_a ,_a ) A_ , A_ : Union[str, Any] = trim_batch(_a ,_a ,attention_mask=_a ) A_ : List[str] = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch __magic_name__ = getLogger(__name__) def lowerCamelCase ( lowerCamelCase : List[List]): return list(itertools.chain.from_iterable(lowerCamelCase)) def lowerCamelCase ( lowerCamelCase : str): A_ : Union[str, Any] = get_git_info() save_json(lowerCamelCase , os.path.join(lowerCamelCase , """git_log.json""")) def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : List[str]=4 , **lowerCamelCase : List[str]): with open(lowerCamelCase , """w""") as f: json.dump(lowerCamelCase , lowerCamelCase , indent=lowerCamelCase , **lowerCamelCase) def lowerCamelCase ( lowerCamelCase : Any): with open(lowerCamelCase) as f: return json.load(lowerCamelCase) def lowerCamelCase ( ): A_ : List[str] = git.Repo(search_parent_directories=lowerCamelCase) A_ : Union[str, Any] = { """repo_id""": str(lowerCamelCase), """repo_sha""": str(repo.head.object.hexsha), """repo_branch""": str(repo.active_branch), """hostname""": str(socket.gethostname()), } return repo_infos def lowerCamelCase ( lowerCamelCase : Callable , lowerCamelCase : Iterable): return list(map(lowerCamelCase , lowerCamelCase)) def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : Union[str, Any]): with open(lowerCamelCase , """wb""") as f: return pickle.dump(lowerCamelCase , lowerCamelCase) def lowerCamelCase ( lowerCamelCase : List[str]): def remove_articles(lowerCamelCase : Any): return re.sub(r"""\b(a|an|the)\b""" , """ """ , lowerCamelCase) def white_space_fix(lowerCamelCase : List[Any]): return " ".join(text.split()) def remove_punc(lowerCamelCase : Union[str, Any]): A_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(lowerCamelCase : List[str]): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase)))) def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : int): A_ : Tuple = normalize_answer(lowerCamelCase).split() A_ : Dict = normalize_answer(lowerCamelCase).split() A_ : int = Counter(lowerCamelCase) & Counter(lowerCamelCase) A_ : Any = sum(common.values()) if num_same == 0: return 0 A_ : Any = 1.0 * num_same / len(lowerCamelCase) A_ : Any = 1.0 * num_same / len(lowerCamelCase) A_ : Any = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Any): return normalize_answer(lowerCamelCase) == normalize_answer(lowerCamelCase) def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : List[str]): assert len(lowerCamelCase) == len(lowerCamelCase) A_ : Any = 0 for hypo, pred in zip(lowerCamelCase , lowerCamelCase): em += exact_match_score(lowerCamelCase , lowerCamelCase) if len(lowerCamelCase) > 0: em /= len(lowerCamelCase) return {"em": em} def lowerCamelCase ( lowerCamelCase : Union[str, Any]): return model_prefix.startswith("""rag""") def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Union[str, Any]): A_ : Optional[Any] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A_ : Tuple = """dropout_rate""" for p in extra_params: if getattr(lowerCamelCase , lowerCamelCase , lowerCamelCase): if not hasattr(lowerCamelCase , lowerCamelCase) and not hasattr(lowerCamelCase , equivalent_param[p]): logger.info("""config doesn't have a `{}` attribute""".format(lowerCamelCase)) delattr(lowerCamelCase , lowerCamelCase) continue A_ : Tuple = p if hasattr(lowerCamelCase , lowerCamelCase) else equivalent_param[p] setattr(lowerCamelCase , lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase)) delattr(lowerCamelCase , lowerCamelCase) return hparams, config
27
1
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __magic_name__ = { 'iou_prediction_head.layers.0': 'iou_prediction_head.proj_in', 'iou_prediction_head.layers.1': 'iou_prediction_head.layers.0', 'iou_prediction_head.layers.2': 'iou_prediction_head.proj_out', 'mask_decoder.output_upscaling.0': 'mask_decoder.upscale_conv1', 'mask_decoder.output_upscaling.1': 'mask_decoder.upscale_layer_norm', 'mask_decoder.output_upscaling.3': 'mask_decoder.upscale_conv2', 'mask_downscaling.0': 'mask_embed.conv1', 'mask_downscaling.1': 'mask_embed.layer_norm1', 'mask_downscaling.3': 'mask_embed.conv2', 'mask_downscaling.4': 'mask_embed.layer_norm2', 'mask_downscaling.6': 'mask_embed.conv3', 'point_embeddings': 'point_embed', 'pe_layer.positional_encoding_gaussian_matrix': 'shared_embedding.positional_embedding', 'image_encoder': 'vision_encoder', 'neck.0': 'neck.conv1', 'neck.1': 'neck.layer_norm1', 'neck.2': 'neck.conv2', 'neck.3': 'neck.layer_norm2', 'patch_embed.proj': 'patch_embed.projection', '.norm': '.layer_norm', 'blocks': 'layers', } def lowerCamelCase ( lowerCamelCase : Optional[Any]): A_ : Optional[Any] = {} state_dict.pop("""pixel_mean""" , lowerCamelCase) state_dict.pop("""pixel_std""" , lowerCamelCase) A_ : List[Any] = r""".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*""" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: A_ : Dict = key.replace(lowerCamelCase , lowerCamelCase) if re.match(lowerCamelCase , lowerCamelCase): A_ : Union[str, Any] = int(re.match(lowerCamelCase , lowerCamelCase).group(2)) if layer_nb == 0: A_ : List[str] = key.replace("""layers.0""" , """proj_in""") elif layer_nb == 1: A_ : Optional[Any] = key.replace("""layers.1""" , """layers.0""") elif layer_nb == 2: A_ : int = key.replace("""layers.2""" , """proj_out""") A_ : int = value A_ : str = model_state_dict[ """prompt_encoder.shared_embedding.positional_embedding""" ] return model_state_dict def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Union[str, Any]="ybelkada/segment-anything"): A_ : List[Any] = hf_hub_download(lowerCamelCase , F'checkpoints/{model_name}.pth') if "sam_vit_b" in model_name: A_ : Optional[int] = SamConfig() elif "sam_vit_l" in model_name: A_ : Optional[Any] = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) A_ : int = SamConfig( vision_config=lowerCamelCase , ) elif "sam_vit_h" in model_name: A_ : str = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) A_ : Optional[int] = SamConfig( vision_config=lowerCamelCase , ) A_ : int = torch.load(lowerCamelCase , map_location="""cpu""") A_ : List[str] = replace_keys(lowerCamelCase) A_ : Dict = SamImageProcessor() A_ : Union[str, Any] = SamProcessor(image_processor=lowerCamelCase) A_ : List[Any] = SamModel(lowerCamelCase) hf_model.load_state_dict(lowerCamelCase) A_ : List[str] = hf_model.to("""cuda""") A_ : int = """https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png""" A_ : Dict = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase).raw).convert("""RGB""") A_ : List[Any] = [[[400, 650]]] A_ : Union[str, Any] = [[1]] A_ : List[Any] = processor(images=np.array(lowerCamelCase) , return_tensors="""pt""").to("""cuda""") with torch.no_grad(): A_ : Union[str, Any] = hf_model(**lowerCamelCase) A_ : Tuple = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_8902_5115_9668 A_ : Tuple = processor( images=np.array(lowerCamelCase) , input_points=lowerCamelCase , input_labels=lowerCamelCase , return_tensors="""pt""").to("""cuda""") with torch.no_grad(): A_ : Tuple = hf_model(**lowerCamelCase) A_ : Tuple = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712_6030_9219_3604 A_ : List[Any] = ((75, 275, 1725, 850),) A_ : List[str] = processor(images=np.array(lowerCamelCase) , input_boxes=lowerCamelCase , return_tensors="""pt""").to("""cuda""") with torch.no_grad(): A_ : Union[str, Any] = hf_model(**lowerCamelCase) A_ : Dict = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686_0156_0592_6514 # Test with 2 points and 1 image. A_ : Any = [[[400, 650], [800, 650]]] A_ : Union[str, Any] = [[1, 1]] A_ : int = processor( images=np.array(lowerCamelCase) , input_points=lowerCamelCase , input_labels=lowerCamelCase , return_tensors="""pt""").to("""cuda""") with torch.no_grad(): A_ : int = hf_model(**lowerCamelCase) A_ : Tuple = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936_0477_9243_4692 if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() __magic_name__ = ['sam_vit_b_01ec64', 'sam_vit_h_4b8939', 'sam_vit_l_0b3195'] parser.add_argument( '--model_name', default='sam_vit_h_4b8939', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) parser.add_argument( '--model_hub_id', default='ybelkada/segment-anything', choices=choices, type=str, help='Path to hf config.json of model to convert', ) __magic_name__ = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
27
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
1
'''simple docstring''' import math def lowerCamelCase ( lowerCamelCase : int): A_ : Dict = 0 A_ : str = 0 while num > 0: A_ : List[str] = num % 8 A_ : Any = octal + (remainder * math.floor(math.pow(10 , lowerCamelCase))) counter += 1 A_ : Dict = math.floor(num / 8) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F'0o{int(lowerCamelCase)}' def lowerCamelCase ( ): print("""\n2 in octal is:""") print(decimal_to_octal(2)) # = 2 print("""\n8 in octal is:""") print(decimal_to_octal(8)) # = 10 print("""\n65 in octal is:""") print(decimal_to_octal(65)) # = 101 print("""\n216 in octal is:""") print(decimal_to_octal(216)) # = 330 print("""\n512 in octal is:""") print(decimal_to_octal(512)) # = 1000 print("""\n""") if __name__ == "__main__": main()
27
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = KandinskyVaaControlnetPipeline a_ = ["""image_embeds""", """negative_image_embeds""", """hint"""] a_ = ["""image_embeds""", """negative_image_embeds""", """hint"""] a_ = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a_ = False @property def _a ( self : Any ): '''simple docstring''' return 32 @property def _a ( self : Tuple ): '''simple docstring''' return 32 @property def _a ( self : Tuple ): '''simple docstring''' return self.time_input_dim @property def _a ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def _a ( self : Optional[Any] ): '''simple docstring''' return 100 @property def _a ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) A_ : List[Any] = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } A_ : Tuple = UNetaDConditionModel(**_a ) return model @property def _a ( self : List[str] ): '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _a ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) A_ : int = VQModel(**self.dummy_movq_kwargs ) return model def _a ( self : List[str] ): '''simple docstring''' A_ : Optional[Any] = self.dummy_unet A_ : int = self.dummy_movq A_ : Tuple = DDIMScheduler( num_train_timesteps=1000 ,beta_schedule="""linear""" ,beta_start=0.00085 ,beta_end=0.012 ,clip_sample=_a ,set_alpha_to_one=_a ,steps_offset=1 ,prediction_type="""epsilon""" ,thresholding=_a ,) A_ : int = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _a ( self : Dict ,_a : str ,_a : Union[str, Any]=0 ): '''simple docstring''' A_ : Dict = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(_a ) ).to(_a ) A_ : int = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( _a ) # create hint A_ : List[Any] = floats_tensor((1, 3, 64, 64) ,rng=random.Random(_a ) ).to(_a ) if str(_a ).startswith("""mps""" ): A_ : Optional[Any] = torch.manual_seed(_a ) else: A_ : str = torch.Generator(device=_a ).manual_seed(_a ) A_ : List[Any] = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def _a ( self : Dict ): '''simple docstring''' A_ : List[Any] = """cpu""" A_ : List[str] = self.get_dummy_components() A_ : Tuple = self.pipeline_class(**_a ) A_ : Dict = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) A_ : Tuple = pipe(**self.get_dummy_inputs(_a ) ) A_ : Tuple = output.images A_ : Optional[Any] = pipe( **self.get_dummy_inputs(_a ) ,return_dict=_a ,)[0] A_ : Tuple = image[0, -3:, -3:, -1] A_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ : List[Any] = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def _a ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Any ): '''simple docstring''' A_ : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) A_ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) A_ : Optional[int] = torch.from_numpy(np.array(_a ) ).float() / 255.0 A_ : List[Any] = hint.permute(2 ,0 ,1 ).unsqueeze(0 ) A_ : List[Any] = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" ,torch_dtype=torch.floataa ) pipe_prior.to(_a ) A_ : Union[str, Any] = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" ,torch_dtype=torch.floataa ) A_ : Union[str, Any] = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) A_ : Optional[Any] = """A robot, 4k photo""" A_ : Any = torch.Generator(device="""cuda""" ).manual_seed(0 ) A_ , A_ : List[str] = pipe_prior( _a ,generator=_a ,num_inference_steps=5 ,negative_prompt="""""" ,).to_tuple() A_ : int = torch.Generator(device="""cuda""" ).manual_seed(0 ) A_ : List[Any] = pipeline( image_embeds=_a ,negative_image_embeds=_a ,hint=_a ,generator=_a ,num_inference_steps=100 ,output_type="""np""" ,) A_ : Dict = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_a ,_a )
27
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ,_a : List[Any] ,_a : Dict=13 ,_a : List[Any]=7 ,_a : Optional[Any]=True ,_a : Any=True ,_a : Optional[int]=True ,_a : Union[str, Any]=99 ,_a : Union[str, Any]=32 ,_a : List[str]=5 ,_a : List[str]=4 ,_a : Dict=37 ,_a : List[Any]="gelu" ,_a : int=0.1 ,_a : Optional[int]=0.1 ,_a : Tuple=512 ,_a : Union[str, Any]=16 ,_a : Optional[Any]=2 ,_a : Optional[Any]=0.02 ,_a : Optional[int]=3 ,_a : str=4 ,_a : Optional[Any]=None ,): '''simple docstring''' A_ : Optional[Any] = parent A_ : str = batch_size A_ : int = seq_length A_ : Union[str, Any] = is_training A_ : Optional[Any] = use_token_type_ids A_ : int = use_labels A_ : Dict = vocab_size A_ : List[Any] = hidden_size A_ : Tuple = num_hidden_layers A_ : Optional[int] = num_attention_heads A_ : int = intermediate_size A_ : Tuple = hidden_act A_ : int = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : Any = max_position_embeddings A_ : Optional[Any] = type_vocab_size A_ : Tuple = type_sequence_label_size A_ : int = initializer_range A_ : Optional[Any] = num_labels A_ : str = num_choices A_ : Optional[Any] = scope A_ : List[Any] = self.vocab_size - 1 def _a ( self : Any ): '''simple docstring''' A_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A_ : List[Any] = None if self.use_token_type_ids: A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A_ : int = None A_ : str = None A_ : Union[str, Any] = None if self.use_labels: A_ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A_ : Any = ids_tensor([self.batch_size] ,self.num_choices ) A_ : List[Any] = OpenAIGPTConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) A_ : Tuple = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _a ( self : Optional[int] ,_a : List[str] ,_a : str ,_a : int ,_a : int ,*_a : Union[str, Any] ): '''simple docstring''' A_ : Optional[Any] = OpenAIGPTModel(config=_a ) model.to(_a ) model.eval() A_ : Optional[int] = model(_a ,token_type_ids=_a ,head_mask=_a ) A_ : str = model(_a ,token_type_ids=_a ) A_ : Dict = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Dict ,_a : Optional[int] ,_a : Union[str, Any] ,_a : Dict ,_a : List[str] ,*_a : str ): '''simple docstring''' A_ : str = OpenAIGPTLMHeadModel(_a ) model.to(_a ) model.eval() A_ : Any = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Any ,_a : Dict ,_a : List[Any] ,_a : Dict ,_a : Union[str, Any] ,*_a : str ): '''simple docstring''' A_ : Any = OpenAIGPTDoubleHeadsModel(_a ) model.to(_a ) model.eval() A_ : Optional[int] = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : List[str] ,_a : str ,_a : Tuple ,_a : Dict ,_a : Tuple ,*_a : Dict ): '''simple docstring''' A_ : List[str] = self.num_labels A_ : int = OpenAIGPTForSequenceClassification(_a ) model.to(_a ) model.eval() A_ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A_ : Optional[Any] = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _a ( self : Tuple ): '''simple docstring''' A_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : str = config_and_inputs A_ : int = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) a_ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly a_ = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _a ( self : Tuple ,_a : Optional[int] ,_a : str ,_a : List[str] ,_a : List[str] ,_a : Any ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _a ( self : Optional[int] ,_a : str ,_a : Dict ,_a : Optional[int]=False ): '''simple docstring''' A_ : Any = super()._prepare_for_class(_a ,_a ,return_labels=_a ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": A_ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) ,dtype=torch.long ,device=_a ,) A_ : Any = inputs_dict["""labels"""] A_ : Any = inputs_dict["""labels"""] A_ : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) ,dtype=torch.long ,device=_a ,) A_ : int = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_a ) return inputs_dict def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : Tuple = OpenAIGPTModelTester(self ) A_ : Optional[int] = ConfigTester(self ,config_class=_a ,n_embd=37 ) def _a ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def _a ( self : Optional[Any] ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_a ) def _a ( self : Tuple ): '''simple docstring''' A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_a ) def _a ( self : List[Any] ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_a ) def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_a ) @slow def _a ( self : List[Any] ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Union[str, Any] = OpenAIGPTModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def _a ( self : List[str] ): '''simple docstring''' A_ : Dict = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(_a ) A_ : Dict = torch.tensor([[481, 4735, 544]] ,dtype=torch.long ,device=_a ) # the president is A_ : Dict = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the A_ : int = model.generate(_a ,do_sample=_a ) self.assertListEqual(output_ids[0].tolist() ,_a )
27
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __magic_name__ = logging.get_logger(__name__) __magic_name__ = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """deberta-v2""" def __init__( self : Optional[Any] ,_a : Union[str, Any]=128100 ,_a : Optional[int]=1536 ,_a : Dict=24 ,_a : int=24 ,_a : Tuple=6144 ,_a : Union[str, Any]="gelu" ,_a : List[Any]=0.1 ,_a : Dict=0.1 ,_a : int=512 ,_a : int=0 ,_a : int=0.02 ,_a : int=1e-7 ,_a : List[str]=False ,_a : Union[str, Any]=-1 ,_a : List[Any]=0 ,_a : Optional[Any]=True ,_a : Tuple=None ,_a : Any=0 ,_a : int="gelu" ,**_a : Any ,): '''simple docstring''' super().__init__(**_a ) A_ : Union[str, Any] = hidden_size A_ : Dict = num_hidden_layers A_ : Union[str, Any] = num_attention_heads A_ : List[Any] = intermediate_size A_ : List[Any] = hidden_act A_ : Optional[int] = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : int = max_position_embeddings A_ : Any = type_vocab_size A_ : List[Any] = initializer_range A_ : int = relative_attention A_ : Tuple = max_relative_positions A_ : int = pad_token_id A_ : Tuple = position_biased_input # Backwards compatibility if type(_a ) == str: A_ : str = [x.strip() for x in pos_att_type.lower().split("""|""" )] A_ : Any = pos_att_type A_ : Optional[int] = vocab_size A_ : Tuple = layer_norm_eps A_ : Any = kwargs.get("""pooler_hidden_size""" ,_a ) A_ : Union[str, Any] = pooler_dropout A_ : List[Any] = pooler_hidden_act class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _a ( self : Any ): '''simple docstring''' if self.task == "multiple-choice": A_ : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : Any = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def _a ( self : Optional[int] ): '''simple docstring''' return 12 def _a ( self : int ,_a : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] ,_a : int = -1 ,_a : int = -1 ,_a : int = -1 ,_a : bool = False ,_a : Optional["TensorType"] = None ,_a : int = 3 ,_a : int = 40 ,_a : int = 40 ,_a : "PreTrainedTokenizerBase" = None ,): '''simple docstring''' A_ : Any = super().generate_dummy_inputs(preprocessor=_a ,framework=_a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
27
1
'''simple docstring''' import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple ,_a : Tuple ,_a : Optional[Any]=13 ,_a : Optional[int]=7 ,_a : Optional[Any]=True ,_a : Optional[Any]=True ,_a : List[str]=True ,_a : str=True ,_a : Dict=99 ,_a : Optional[int]=32 ,_a : Optional[int]=5 ,_a : int=4 ,_a : Tuple=37 ,_a : int="gelu" ,_a : Tuple=0.1 ,_a : Union[str, Any]=0.1 ,_a : Optional[Any]=512 ,_a : Dict=16 ,_a : List[Any]=2 ,_a : Optional[Any]=0.02 ,_a : Union[str, Any]=3 ,_a : List[str]=4 ,_a : List[Any]=None ,): '''simple docstring''' A_ : Optional[int] = parent A_ : int = batch_size A_ : List[Any] = seq_length A_ : Tuple = is_training A_ : str = use_input_mask A_ : int = use_token_type_ids A_ : Dict = use_labels A_ : List[str] = vocab_size A_ : List[str] = hidden_size A_ : Dict = num_hidden_layers A_ : str = num_attention_heads A_ : int = intermediate_size A_ : Optional[Any] = hidden_act A_ : int = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : str = max_position_embeddings A_ : List[Any] = type_vocab_size A_ : List[str] = type_sequence_label_size A_ : List[Any] = initializer_range A_ : int = num_labels A_ : int = num_choices A_ : int = scope def _a ( self : Optional[int] ): '''simple docstring''' A_ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A_ : int = None if self.use_input_mask: A_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) A_ : List[Any] = None if self.use_token_type_ids: A_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A_ : Union[str, Any] = None A_ : Dict = None A_ : Tuple = None if self.use_labels: A_ : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A_ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A_ : Union[str, Any] = ids_tensor([self.batch_size] ,self.num_choices ) A_ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self : List[str] ): '''simple docstring''' return NystromformerConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_a ,initializer_range=self.initializer_range ,) def _a ( self : str ,_a : List[str] ,_a : List[str] ,_a : Optional[Any] ,_a : Optional[Any] ,_a : List[str] ,_a : List[str] ,_a : List[Any] ): '''simple docstring''' A_ : Optional[int] = NystromformerModel(config=_a ) model.to(_a ) model.eval() A_ : Optional[Any] = model(_a ,attention_mask=_a ,token_type_ids=_a ) A_ : Any = model(_a ,token_type_ids=_a ) A_ : Tuple = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Tuple ,_a : List[Any] ,_a : Dict ,_a : Tuple ,_a : Optional[Any] ,_a : Any ,_a : List[Any] ,_a : int ): '''simple docstring''' A_ : int = NystromformerForMaskedLM(config=_a ) model.to(_a ) model.eval() A_ : Tuple = model(_a ,attention_mask=_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Any ,_a : Optional[Any] ,_a : Dict ,_a : Any ,_a : Optional[int] ,_a : str ,_a : Dict ,_a : List[str] ): '''simple docstring''' A_ : List[str] = NystromformerForQuestionAnswering(config=_a ) model.to(_a ) model.eval() A_ : Dict = model( _a ,attention_mask=_a ,token_type_ids=_a ,start_positions=_a ,end_positions=_a ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _a ( self : str ,_a : Optional[int] ,_a : List[str] ,_a : List[str] ,_a : Any ,_a : Tuple ,_a : Union[str, Any] ,_a : Union[str, Any] ): '''simple docstring''' A_ : Optional[Any] = self.num_labels A_ : Optional[int] = NystromformerForSequenceClassification(_a ) model.to(_a ) model.eval() A_ : List[Any] = model(_a ,attention_mask=_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _a ( self : Optional[int] ,_a : List[Any] ,_a : int ,_a : Tuple ,_a : Optional[Any] ,_a : Any ,_a : Union[str, Any] ,_a : Tuple ): '''simple docstring''' A_ : List[str] = self.num_labels A_ : List[Any] = NystromformerForTokenClassification(config=_a ) model.to(_a ) model.eval() A_ : Dict = model(_a ,attention_mask=_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _a ( self : int ,_a : Tuple ,_a : List[Any] ,_a : Optional[Any] ,_a : Any ,_a : Optional[int] ,_a : Tuple ,_a : Any ): '''simple docstring''' A_ : Optional[int] = self.num_choices A_ : Tuple = NystromformerForMultipleChoice(config=_a ) model.to(_a ) model.eval() A_ : int = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A_ : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A_ : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A_ : Optional[Any] = model( _a ,attention_mask=_a ,token_type_ids=_a ,labels=_a ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _a ( self : List[str] ): '''simple docstring''' A_ : Dict = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : str = config_and_inputs A_ : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) a_ = ( { """feature-extraction""": NystromformerModel, """fill-mask""": NystromformerForMaskedLM, """question-answering""": NystromformerForQuestionAnswering, """text-classification""": NystromformerForSequenceClassification, """token-classification""": NystromformerForTokenClassification, """zero-shot""": NystromformerForSequenceClassification, } if is_torch_available() else {} ) a_ = False a_ = False def _a ( self : int ): '''simple docstring''' A_ : Any = NystromformerModelTester(self ) A_ : Any = ConfigTester(self ,config_class=_a ,hidden_size=37 ) def _a ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def _a ( self : List[Any] ): '''simple docstring''' A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _a ( self : Optional[int] ): '''simple docstring''' A_ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A_ : List[str] = type self.model_tester.create_and_check_model(*_a ) def _a ( self : str ): '''simple docstring''' A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def _a ( self : Tuple ): '''simple docstring''' A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_a ) def _a ( self : Dict ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) def _a ( self : Any ): '''simple docstring''' A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_a ) def _a ( self : int ): '''simple docstring''' A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) @slow def _a ( self : int ): '''simple docstring''' for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[int] = NystromformerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def _a ( self : int ): '''simple docstring''' A_ : Optional[int] = NystromformerModel.from_pretrained("""uw-madison/nystromformer-512""" ) A_ : int = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): A_ : int = model(_a )[0] A_ : Union[str, Any] = torch.Size((1, 6, 768) ) self.assertEqual(output.shape ,_a ) A_ : Tuple = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,_a ,atol=1e-4 ) ) @slow def _a ( self : Optional[int] ): '''simple docstring''' A_ : Tuple = """the [MASK] of Belgium is Brussels""" A_ : List[Any] = AutoTokenizer.from_pretrained("""uw-madison/nystromformer-512""" ) A_ : List[Any] = NystromformerForMaskedLM.from_pretrained("""uw-madison/nystromformer-512""" ) A_ : Tuple = tokenizer(_a ,return_tensors="""pt""" ) with torch.no_grad(): A_ : Union[str, Any] = model(encoding.input_ids ).logits A_ : str = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(_a ) ,"""capital""" )
27
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') __magic_name__ = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) __magic_name__ = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) __magic_name__ = BeautifulSoup(res.text, 'html.parser') __magic_name__ = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
27
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __magic_name__ = logging.get_logger(__name__) __magic_name__ = { 'salesforce/blip2-opt-2.7b': 'https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json', } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """blip_2_vision_model""" def __init__( self : List[str] ,_a : List[str]=1408 ,_a : str=6144 ,_a : int=39 ,_a : Tuple=16 ,_a : str=224 ,_a : Optional[Any]=14 ,_a : Tuple="gelu" ,_a : Dict=0.00001 ,_a : str=0.0 ,_a : Optional[Any]=1e-10 ,_a : Tuple=True ,**_a : List[Any] ,): '''simple docstring''' super().__init__(**_a ) A_ : Dict = hidden_size A_ : Optional[int] = intermediate_size A_ : Any = num_hidden_layers A_ : Dict = num_attention_heads A_ : Union[str, Any] = patch_size A_ : Optional[int] = image_size A_ : List[Any] = initializer_range A_ : Dict = attention_dropout A_ : List[str] = layer_norm_eps A_ : Union[str, Any] = hidden_act A_ : Dict = qkv_bias @classmethod def _a ( cls : int ,_a : Union[str, os.PathLike] ,**_a : Any ): '''simple docstring''' cls._set_token_in_kwargs(_a ) A_ , A_ : str = cls.get_config_dict(_a ,**_a ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": A_ : Tuple = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a ,**_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """blip_2_qformer""" def __init__( self : List[str] ,_a : List[Any]=30522 ,_a : Any=768 ,_a : str=12 ,_a : str=12 ,_a : Any=3072 ,_a : Any="gelu" ,_a : Optional[int]=0.1 ,_a : List[str]=0.1 ,_a : Tuple=512 ,_a : List[str]=0.02 ,_a : Union[str, Any]=1e-12 ,_a : Optional[Any]=0 ,_a : Tuple="absolute" ,_a : Union[str, Any]=2 ,_a : Union[str, Any]=1408 ,**_a : int ,): '''simple docstring''' super().__init__(pad_token_id=_a ,**_a ) A_ : List[str] = vocab_size A_ : Optional[int] = hidden_size A_ : Optional[Any] = num_hidden_layers A_ : Optional[Any] = num_attention_heads A_ : List[str] = hidden_act A_ : Optional[Any] = intermediate_size A_ : Any = hidden_dropout_prob A_ : Any = attention_probs_dropout_prob A_ : Dict = max_position_embeddings A_ : Union[str, Any] = initializer_range A_ : List[Any] = layer_norm_eps A_ : Optional[Any] = position_embedding_type A_ : Optional[int] = cross_attention_frequency A_ : List[str] = encoder_hidden_size @classmethod def _a ( cls : Optional[Any] ,_a : Union[str, os.PathLike] ,**_a : Tuple ): '''simple docstring''' cls._set_token_in_kwargs(_a ) A_ , A_ : Any = cls.get_config_dict(_a ,**_a ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": A_ : Tuple = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a ,**_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """blip-2""" a_ = True def __init__( self : str ,_a : Union[str, Any]=None ,_a : Any=None ,_a : str=None ,_a : List[str]=32 ,**_a : Union[str, Any] ): '''simple docstring''' super().__init__(**_a ) if vision_config is None: A_ : int = {} logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""" ) if qformer_config is None: A_ : Tuple = {} logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""" ) if text_config is None: A_ : str = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) A_ : Tuple = BlipaVisionConfig(**_a ) A_ : str = BlipaQFormerConfig(**_a ) A_ : List[Any] = text_config["""model_type"""] if """model_type""" in text_config else """opt""" A_ : Dict = CONFIG_MAPPING[text_model_type](**_a ) A_ : Union[str, Any] = self.text_config.tie_word_embeddings A_ : int = self.text_config.is_encoder_decoder A_ : Optional[int] = num_query_tokens A_ : List[Any] = self.vision_config.hidden_size A_ : Optional[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES A_ : List[Any] = 1.0 A_ : Optional[int] = 0.02 @classmethod def _a ( cls : List[Any] ,_a : BlipaVisionConfig ,_a : BlipaQFormerConfig ,_a : PretrainedConfig ,**_a : Tuple ,): '''simple docstring''' return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**_a ,) def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : Tuple = copy.deepcopy(self.__dict__ ) A_ : Optional[int] = self.vision_config.to_dict() A_ : Optional[Any] = self.qformer_config.to_dict() A_ : str = self.text_config.to_dict() A_ : List[Any] = self.__class__.model_type return output
27
'''simple docstring''' from ... import PretrainedConfig __magic_name__ = { 'sijunhe/nezha-cn-base': 'https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json', } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP a_ = """nezha""" def __init__( self : int ,_a : Union[str, Any]=21128 ,_a : int=768 ,_a : Any=12 ,_a : List[str]=12 ,_a : str=3072 ,_a : int="gelu" ,_a : int=0.1 ,_a : str=0.1 ,_a : Tuple=512 ,_a : List[Any]=64 ,_a : Dict=2 ,_a : List[Any]=0.02 ,_a : Optional[Any]=1e-12 ,_a : List[Any]=0.1 ,_a : Union[str, Any]=0 ,_a : Any=2 ,_a : Union[str, Any]=3 ,_a : int=True ,**_a : int ,): '''simple docstring''' super().__init__(pad_token_id=_a ,bos_token_id=_a ,eos_token_id=_a ,**_a ) A_ : Tuple = vocab_size A_ : int = hidden_size A_ : Any = num_hidden_layers A_ : List[Any] = num_attention_heads A_ : Tuple = hidden_act A_ : List[Any] = intermediate_size A_ : List[str] = hidden_dropout_prob A_ : Tuple = attention_probs_dropout_prob A_ : Dict = max_position_embeddings A_ : Optional[Any] = max_relative_position A_ : List[Any] = type_vocab_size A_ : int = initializer_range A_ : Tuple = layer_norm_eps A_ : Dict = classifier_dropout A_ : int = use_cache
27
1
'''simple docstring''' import argparse import datetime def lowerCamelCase ( lowerCamelCase : str): A_ : str = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } A_ : Optional[int] = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowerCamelCase) < 11: raise ValueError("""Must be 10 characters long""") # Get month A_ : int = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""") A_ : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""") # Get day A_ : int = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""") # Get second separator A_ : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""") # Get year A_ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 45 < y < 8500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""") # Get datetime obj for validation A_ : Union[str, Any] = datetime.date(int(lowerCamelCase) , int(lowerCamelCase) , int(lowerCamelCase)) # Start math if m <= 2: A_ : Any = y - 1 A_ : List[Any] = m + 12 # maths var A_ : int = int(str(lowerCamelCase)[:2]) A_ : int = int(str(lowerCamelCase)[2:]) A_ : int = int(2.6 * m - 5.39) A_ : int = int(c / 4) A_ : int = int(k / 4) A_ : int = int(d + k) A_ : int = int(t + u + v + x) A_ : int = int(z - (2 * c)) A_ : int = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""") # Response A_ : str = F'Your date {date_input}, is a {days[str(lowerCamelCase)]}!' return response if __name__ == "__main__": import doctest doctest.testmod() __magic_name__ = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) __magic_name__ = parser.parse_args() zeller(args.date_input)
27
'''simple docstring''' from __future__ import annotations def lowerCamelCase ( lowerCamelCase : dict , lowerCamelCase : str): A_ , A_ : List[Any] = set(lowerCamelCase), [start] while stack: A_ : Optional[Any] = stack.pop() explored.add(lowerCamelCase) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v]): if adj not in explored: stack.append(lowerCamelCase) return explored __magic_name__ = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
27
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __magic_name__ = logging.get_logger(__name__) __magic_name__ = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """imagegpt""" a_ = ["""past_key_values"""] a_ = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : str ,_a : int=512 + 1 ,_a : List[str]=32 * 32 ,_a : int=512 ,_a : Optional[int]=24 ,_a : List[str]=8 ,_a : Dict=None ,_a : Optional[Any]="quick_gelu" ,_a : str=0.1 ,_a : Optional[Any]=0.1 ,_a : List[str]=0.1 ,_a : str=1e-5 ,_a : Union[str, Any]=0.02 ,_a : int=True ,_a : Optional[int]=True ,_a : Optional[Any]=False ,_a : List[Any]=False ,_a : str=False ,**_a : Tuple ,): '''simple docstring''' A_ : Optional[int] = vocab_size A_ : List[Any] = n_positions A_ : Any = n_embd A_ : List[Any] = n_layer A_ : Optional[int] = n_head A_ : Union[str, Any] = n_inner A_ : Tuple = activation_function A_ : Union[str, Any] = resid_pdrop A_ : Union[str, Any] = embd_pdrop A_ : Tuple = attn_pdrop A_ : List[Any] = layer_norm_epsilon A_ : Union[str, Any] = initializer_range A_ : Any = scale_attn_weights A_ : int = use_cache A_ : Tuple = scale_attn_by_inverse_layer_idx A_ : Optional[Any] = reorder_and_upcast_attn A_ : Dict = tie_word_embeddings super().__init__(tie_word_embeddings=_a ,**_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _a ( self : List[str] ): '''simple docstring''' return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ] ) def _a ( self : int ,_a : "FeatureExtractionMixin" ,_a : int = 1 ,_a : int = -1 ,_a : bool = False ,_a : Optional["TensorType"] = None ,_a : int = 3 ,_a : int = 32 ,_a : int = 32 ,): '''simple docstring''' A_ : Any = self._generate_dummy_images(_a ,_a ,_a ,_a ) A_ : List[Any] = dict(preprocessor(images=_a ,return_tensors=_a ) ) return inputs
27
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) def lowerCamelCase ( lowerCamelCase : Dict): A_ : List[str] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: A_ : Union[str, Any] = [144, 192, 240] A_ : int = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: A_ : List[str] = [96, 120, 144] A_ : Any = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: A_ : Any = [64, 80, 96] A_ : List[str] = [16, 16, 24, 48, 64, 80, 320] A_ : Any = 0.05 A_ : List[Any] = 2.0 if mobilevit_name.startswith("""deeplabv3_"""): A_ : int = 512 A_ : Optional[int] = 16 A_ : List[Any] = 21 A_ : List[str] = """pascal-voc-id2label.json""" else: A_ : str = 1000 A_ : Any = """imagenet-1k-id2label.json""" A_ : Any = """huggingface/label-files""" A_ : List[str] = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""") , """r""")) A_ : str = {int(lowerCamelCase): v for k, v in idalabel.items()} A_ : Any = idalabel A_ : List[str] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : int=False): for i in range(1 , 6): if F'layer_{i}.' in name: A_ : Tuple = name.replace(F'layer_{i}.' , F'encoder.layer.{i - 1}.') if "conv_1." in name: A_ : Union[str, Any] = name.replace("""conv_1.""" , """conv_stem.""") if ".block." in name: A_ : Optional[Any] = name.replace(""".block.""" , """.""") if "exp_1x1" in name: A_ : Union[str, Any] = name.replace("""exp_1x1""" , """expand_1x1""") if "red_1x1" in name: A_ : int = name.replace("""red_1x1""" , """reduce_1x1""") if ".local_rep.conv_3x3." in name: A_ : List[str] = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""") if ".local_rep.conv_1x1." in name: A_ : Optional[int] = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""") if ".norm." in name: A_ : Tuple = name.replace(""".norm.""" , """.normalization.""") if ".conv." in name: A_ : List[Any] = name.replace(""".conv.""" , """.convolution.""") if ".conv_proj." in name: A_ : str = name.replace(""".conv_proj.""" , """.conv_projection.""") for i in range(0 , 2): for j in range(0 , 4): if F'.{i}.{j}.' in name: A_ : Tuple = name.replace(F'.{i}.{j}.' , F'.{i}.layer.{j}.') for i in range(2 , 6): for j in range(0 , 4): if F'.{i}.{j}.' in name: A_ : Dict = name.replace(F'.{i}.{j}.' , F'.{i}.') if "expand_1x1" in name: A_ : Union[str, Any] = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""") if "conv_3x3" in name: A_ : str = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""") if "reduce_1x1" in name: A_ : Union[str, Any] = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""") for i in range(2 , 5): if F'.global_rep.{i}.weight' in name: A_ : List[Any] = name.replace(F'.global_rep.{i}.weight' , """.layernorm.weight""") if F'.global_rep.{i}.bias' in name: A_ : Optional[int] = name.replace(F'.global_rep.{i}.bias' , """.layernorm.bias""") if ".global_rep." in name: A_ : Optional[Any] = name.replace(""".global_rep.""" , """.transformer.""") if ".pre_norm_mha.0." in name: A_ : int = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""") if ".pre_norm_mha.1.out_proj." in name: A_ : Dict = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""") if ".pre_norm_ffn.0." in name: A_ : Dict = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""") if ".pre_norm_ffn.1." in name: A_ : Any = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""") if ".pre_norm_ffn.4." in name: A_ : Union[str, Any] = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""") if ".transformer." in name: A_ : Any = name.replace(""".transformer.""" , """.transformer.layer.""") if ".aspp_layer." in name: A_ : int = name.replace(""".aspp_layer.""" , """.""") if ".aspp_pool." in name: A_ : Tuple = name.replace(""".aspp_pool.""" , """.""") if "seg_head." in name: A_ : Optional[int] = name.replace("""seg_head.""" , """segmentation_head.""") if "segmentation_head.classifier.classifier." in name: A_ : List[str] = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""") if "classifier.fc." in name: A_ : str = name.replace("""classifier.fc.""" , """classifier.""") elif (not base_model) and ("segmentation_head." not in name): A_ : str = """mobilevit.""" + name return name def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int]=False): if base_model: A_ : Dict = """""" else: A_ : Any = """mobilevit.""" for key in orig_state_dict.copy().keys(): A_ : List[Any] = orig_state_dict.pop(lowerCamelCase) if key[:8] == "encoder.": A_ : int = key[8:] if "qkv" in key: A_ : Any = key.split(""".""") A_ : str = int(key_split[0][6:]) - 1 A_ : int = int(key_split[3]) A_ : Optional[Any] = model.get_submodule(F'{model_prefix}encoder.layer.{layer_num}') A_ : Tuple = layer.transformer.layer[transformer_num].attention.attention.all_head_size A_ : Optional[Any] = ( F'{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.' ) if "weight" in key: A_ : Dict = val[:dim, :] A_ : Optional[int] = val[dim : dim * 2, :] A_ : List[Any] = val[-dim:, :] else: A_ : Optional[Any] = val[:dim] A_ : List[Any] = val[dim : dim * 2] A_ : Any = val[-dim:] else: A_ : List[str] = val return orig_state_dict def lowerCamelCase ( ): A_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : Dict = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase).raw) return im @torch.no_grad() def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : Any , lowerCamelCase : Optional[int] , lowerCamelCase : int=False): A_ : Optional[Any] = get_mobilevit_config(lowerCamelCase) # load original state_dict A_ : List[Any] = torch.load(lowerCamelCase , map_location="""cpu""") # load 🤗 model if mobilevit_name.startswith("""deeplabv3_"""): A_ : List[str] = MobileViTForSemanticSegmentation(lowerCamelCase).eval() else: A_ : str = MobileViTForImageClassification(lowerCamelCase).eval() A_ : str = convert_state_dict(lowerCamelCase , lowerCamelCase) model.load_state_dict(lowerCamelCase) # Check outputs on an image, prepared by MobileViTImageProcessor A_ : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32) A_ : Any = image_processor(images=prepare_img() , return_tensors="""pt""") A_ : List[Any] = model(**lowerCamelCase) A_ : Dict = outputs.logits if mobilevit_name.startswith("""deeplabv3_"""): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": A_ : int = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ]) elif mobilevit_name == "deeplabv3_mobilevit_xs": A_ : Tuple = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ]) elif mobilevit_name == "deeplabv3_mobilevit_xxs": A_ : Tuple = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ]) else: raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}') assert torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase , atol=1E-4) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": A_ : Tuple = torch.tensor([-0.9866, 0.2392, -1.1241]) elif mobilevit_name == "mobilevit_xs": A_ : Any = torch.tensor([-2.4761, -0.9399, -1.9587]) elif mobilevit_name == "mobilevit_xxs": A_ : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653]) else: raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}') assert torch.allclose(logits[0, :3] , lowerCamelCase , atol=1E-4) Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase) print(F'Saving model {mobilevit_name} to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase) print(F'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase) if push_to_hub: A_ : str = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""") A_ : Union[str, Any] = model_mapping[mobilevit_name] image_processor.push_to_hub(lowerCamelCase , organization="""apple""") model.push_to_hub(lowerCamelCase , organization="""apple""") if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--mobilevit_name', default='mobilevit_s', type=str, help=( 'Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',' ' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.' ), ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __magic_name__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
27
1
'''simple docstring''' def lowerCamelCase ( lowerCamelCase : list[int] , lowerCamelCase : str): A_ : str = int(lowerCamelCase) # Initialize Result A_ : Dict = [] # Traverse through all denomination for denomination in reversed(lowerCamelCase): # Find denominations while int(lowerCamelCase) >= int(lowerCamelCase): total_value -= int(lowerCamelCase) answer.append(lowerCamelCase) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __magic_name__ = [] __magic_name__ = '0' if ( input('Do you want to enter your denominations ? (yY/n): ').strip().lower() == "y" ): __magic_name__ = int(input('Enter the number of denominations you want to add: ').strip()) for i in range(0, n): denominations.append(int(input(f"""Denomination {i}: """).strip())) __magic_name__ = input('Enter the change you want to make in Indian Currency: ').strip() else: # All denominations of Indian Currency if user does not enter __magic_name__ = [1, 2, 5, 10, 20, 50, 100, 500, 2_000] __magic_name__ = input('Enter the change you want to make: ').strip() if int(value) == 0 or int(value) < 0: print('The total value cannot be zero or negative.') else: print(f"""Following is minimal change for {value}: """) __magic_name__ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=' ')
27
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __magic_name__ = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""pixel_values"""] def __init__( self : Optional[Any] ,_a : bool = True ,_a : Dict[str, int] = None ,_a : PILImageResampling = PILImageResampling.BICUBIC ,_a : bool = True ,_a : Dict[str, int] = None ,_a : bool = True ,_a : Union[int, float] = 1 / 255 ,_a : bool = True ,_a : Optional[Union[float, List[float]]] = None ,_a : Optional[Union[float, List[float]]] = None ,_a : bool = True ,**_a : Dict ,): '''simple docstring''' super().__init__(**_a ) A_ : Tuple = size if size is not None else {"""shortest_edge""": 224} A_ : Optional[Any] = get_size_dict(_a ,default_to_square=_a ) A_ : Tuple = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} A_ : Optional[Any] = get_size_dict(_a ,default_to_square=_a ,param_name="""crop_size""" ) A_ : Any = do_resize A_ : List[str] = size A_ : Union[str, Any] = resample A_ : Dict = do_center_crop A_ : List[str] = crop_size A_ : Any = do_rescale A_ : Union[str, Any] = rescale_factor A_ : Any = do_normalize A_ : List[str] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A_ : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD A_ : Tuple = do_convert_rgb def _a ( self : Optional[int] ,_a : np.ndarray ,_a : Dict[str, int] ,_a : PILImageResampling = PILImageResampling.BICUBIC ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Optional[Any] ,): '''simple docstring''' A_ : Optional[Any] = get_size_dict(_a ,default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A_ : Tuple = get_resize_output_image_size(_a ,size=size["""shortest_edge"""] ,default_to_square=_a ) return resize(_a ,size=_a ,resample=_a ,data_format=_a ,**_a ) def _a ( self : List[Any] ,_a : np.ndarray ,_a : Dict[str, int] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Optional[int] ,): '''simple docstring''' A_ : Optional[int] = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_a ,size=(size["""height"""], size["""width"""]) ,data_format=_a ,**_a ) def _a ( self : Any ,_a : np.ndarray ,_a : Union[int, float] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Any ,): '''simple docstring''' return rescale(_a ,scale=_a ,data_format=_a ,**_a ) def _a ( self : Any ,_a : np.ndarray ,_a : Union[float, List[float]] ,_a : Union[float, List[float]] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : List[str] ,): '''simple docstring''' return normalize(_a ,mean=_a ,std=_a ,data_format=_a ,**_a ) def _a ( self : Optional[Any] ,_a : ImageInput ,_a : bool = None ,_a : Dict[str, int] = None ,_a : PILImageResampling = None ,_a : bool = None ,_a : int = None ,_a : bool = None ,_a : float = None ,_a : bool = None ,_a : Optional[Union[float, List[float]]] = None ,_a : Optional[Union[float, List[float]]] = None ,_a : bool = None ,_a : Optional[Union[str, TensorType]] = None ,_a : Optional[ChannelDimension] = ChannelDimension.FIRST ,**_a : int ,): '''simple docstring''' A_ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize A_ : Tuple = size if size is not None else self.size A_ : Optional[int] = get_size_dict(_a ,param_name="""size""" ,default_to_square=_a ) A_ : List[str] = resample if resample is not None else self.resample A_ : int = do_center_crop if do_center_crop is not None else self.do_center_crop A_ : Any = crop_size if crop_size is not None else self.crop_size A_ : int = get_size_dict(_a ,param_name="""crop_size""" ,default_to_square=_a ) A_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale A_ : int = rescale_factor if rescale_factor is not None else self.rescale_factor A_ : Any = do_normalize if do_normalize is not None else self.do_normalize A_ : int = image_mean if image_mean is not None else self.image_mean A_ : int = image_std if image_std is not None else self.image_std A_ : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A_ : int = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: A_ : Optional[int] = [convert_to_rgb(_a ) for image in images] # All transformations expect numpy arrays. A_ : Dict = [to_numpy_array(_a ) for image in images] if do_resize: A_ : int = [self.resize(image=_a ,size=_a ,resample=_a ) for image in images] if do_center_crop: A_ : Tuple = [self.center_crop(image=_a ,size=_a ) for image in images] if do_rescale: A_ : List[str] = [self.rescale(image=_a ,scale=_a ) for image in images] if do_normalize: A_ : Any = [self.normalize(image=_a ,mean=_a ,std=_a ) for image in images] A_ : List[str] = [to_channel_dimension_format(_a ,_a ) for image in images] A_ : List[str] = {"""pixel_values""": images} return BatchFeature(data=_a ,tensor_type=_a )
27
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class __lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] ,_a : Union[str, Any] ,_a : List[Any]=13 ,_a : Any=7 ,_a : Tuple=True ,_a : Tuple=True ,_a : List[Any]=True ,_a : List[str]=True ,_a : int=99 ,_a : Any=[1, 1, 2] ,_a : Union[str, Any]=1 ,_a : Optional[Any]=32 ,_a : Optional[int]=4 ,_a : List[Any]=8 ,_a : List[str]=37 ,_a : Optional[int]="gelu_new" ,_a : Any=0.1 ,_a : Optional[Any]=0.1 ,_a : List[Any]=0.0 ,_a : List[str]=512 ,_a : List[Any]=3 ,_a : Any=0.02 ,_a : List[Any]=3 ,_a : Optional[Any]=4 ,_a : List[str]=None ,_a : List[Any]=False ,): '''simple docstring''' A_ : Any = parent A_ : List[Any] = batch_size A_ : Union[str, Any] = seq_length A_ : List[Any] = is_training A_ : List[Any] = use_input_mask A_ : Tuple = use_token_type_ids A_ : Any = use_labels A_ : str = vocab_size A_ : int = block_sizes A_ : Dict = num_decoder_layers A_ : Dict = d_model A_ : Tuple = n_head A_ : Tuple = d_head A_ : str = d_inner A_ : Dict = hidden_act A_ : List[Any] = hidden_dropout A_ : Union[str, Any] = attention_dropout A_ : int = activation_dropout A_ : Any = max_position_embeddings A_ : Any = type_vocab_size A_ : Optional[Any] = 2 A_ : Dict = num_labels A_ : str = num_choices A_ : int = scope A_ : List[Any] = initializer_std # Used in the tests to check the size of the first attention layer A_ : Optional[int] = n_head # Used in the tests to check the size of the first hidden state A_ : List[str] = self.d_model # Used in the tests to check the number of output hidden states/attentions A_ : List[Any] = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: A_ : int = self.num_hidden_layers + 2 def _a ( self : Any ): '''simple docstring''' A_ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A_ : int = None if self.use_input_mask: A_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) A_ : Any = None if self.use_token_type_ids: A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A_ : Optional[Any] = None A_ : Union[str, Any] = None A_ : Optional[int] = None if self.use_labels: A_ : Union[str, Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A_ : int = ids_tensor([self.batch_size] ,self.num_choices ) A_ : List[Any] = FunnelConfig( vocab_size=self.vocab_size ,block_sizes=self.block_sizes ,num_decoder_layers=self.num_decoder_layers ,d_model=self.d_model ,n_head=self.n_head ,d_head=self.d_head ,d_inner=self.d_inner ,hidden_act=self.hidden_act ,hidden_dropout=self.hidden_dropout ,attention_dropout=self.attention_dropout ,activation_dropout=self.activation_dropout ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_std=self.initializer_std ,) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def _a ( self : Dict ,_a : Optional[int] ,_a : List[Any] ,_a : int ,_a : Optional[int] ,_a : List[str] ,_a : List[str] ,_a : List[Any] ,): '''simple docstring''' A_ : Tuple = TFFunnelModel(config=_a ) A_ : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A_ : int = model(_a ) A_ : Tuple = [input_ids, input_mask] A_ : Dict = model(_a ) A_ : Optional[int] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) A_ : Optional[Any] = False A_ : Tuple = TFFunnelModel(config=_a ) A_ : Union[str, Any] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) A_ : int = False A_ : List[Any] = TFFunnelModel(config=_a ) A_ : Optional[int] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) def _a ( self : int ,_a : Any ,_a : Any ,_a : List[str] ,_a : Tuple ,_a : Optional[Any] ,_a : Optional[Any] ,_a : Optional[Any] ,): '''simple docstring''' A_ : Dict = TFFunnelBaseModel(config=_a ) A_ : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A_ : List[Any] = model(_a ) A_ : int = [input_ids, input_mask] A_ : Any = model(_a ) A_ : List[str] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) A_ : Dict = False A_ : Union[str, Any] = TFFunnelBaseModel(config=_a ) A_ : Optional[Any] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 3, self.d_model) ) A_ : List[Any] = False A_ : Any = TFFunnelBaseModel(config=_a ) A_ : Union[str, Any] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) def _a ( self : Tuple ,_a : Optional[Any] ,_a : List[str] ,_a : List[str] ,_a : Optional[Any] ,_a : List[Any] ,_a : Optional[int] ,_a : List[str] ,): '''simple docstring''' A_ : int = TFFunnelForPreTraining(config=_a ) A_ : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A_ : Optional[int] = model(_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length) ) def _a ( self : str ,_a : int ,_a : List[str] ,_a : List[str] ,_a : List[str] ,_a : Optional[int] ,_a : Optional[Any] ,_a : Union[str, Any] ,): '''simple docstring''' A_ : Optional[Any] = TFFunnelForMaskedLM(config=_a ) A_ : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A_ : int = model(_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : List[Any] ,_a : Tuple ,_a : str ,_a : List[str] ,_a : Optional[Any] ,_a : int ,_a : Optional[int] ,_a : Tuple ,): '''simple docstring''' A_ : Union[str, Any] = self.num_labels A_ : Any = TFFunnelForSequenceClassification(config=_a ) A_ : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A_ : List[str] = model(_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _a ( self : Tuple ,_a : Optional[Any] ,_a : Optional[Any] ,_a : List[str] ,_a : Tuple ,_a : Tuple ,_a : List[str] ,_a : Any ,): '''simple docstring''' A_ : Union[str, Any] = self.num_choices A_ : Union[str, Any] = TFFunnelForMultipleChoice(config=_a ) A_ : Union[str, Any] = tf.tile(tf.expand_dims(_a ,1 ) ,(1, self.num_choices, 1) ) A_ : int = tf.tile(tf.expand_dims(_a ,1 ) ,(1, self.num_choices, 1) ) A_ : List[Any] = tf.tile(tf.expand_dims(_a ,1 ) ,(1, self.num_choices, 1) ) A_ : Tuple = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } A_ : Tuple = model(_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _a ( self : Tuple ,_a : Dict ,_a : Optional[int] ,_a : str ,_a : List[Any] ,_a : Optional[int] ,_a : Tuple ,_a : Tuple ,): '''simple docstring''' A_ : Tuple = self.num_labels A_ : Union[str, Any] = TFFunnelForTokenClassification(config=_a ) A_ : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A_ : int = model(_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _a ( self : Any ,_a : Optional[Any] ,_a : int ,_a : Union[str, Any] ,_a : Dict ,_a : Tuple ,_a : Union[str, Any] ,_a : Tuple ,): '''simple docstring''' A_ : Optional[Any] = TFFunnelForQuestionAnswering(config=_a ) A_ : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A_ : List[Any] = model(_a ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _a ( self : Optional[Any] ): '''simple docstring''' A_ : Any = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : List[str] = config_and_inputs A_ : str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) a_ = ( { """feature-extraction""": (TFFunnelBaseModel, TFFunnelModel), """fill-mask""": TFFunnelForMaskedLM, """question-answering""": TFFunnelForQuestionAnswering, """text-classification""": TFFunnelForSequenceClassification, """token-classification""": TFFunnelForTokenClassification, """zero-shot""": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False def _a ( self : Any ): '''simple docstring''' A_ : int = TFFunnelModelTester(self ) A_ : List[Any] = ConfigTester(self ,config_class=_a ) def _a ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _a ( self : int ): '''simple docstring''' A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _a ( self : Optional[Any] ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_a ) def _a ( self : List[str] ): '''simple docstring''' A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def _a ( self : List[str] ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) def _a ( self : int ): '''simple docstring''' A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) a_ = False a_ = False def _a ( self : List[Any] ): '''simple docstring''' A_ : Dict = TFFunnelModelTester(self ,base=_a ) A_ : List[Any] = ConfigTester(self ,config_class=_a ) def _a ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def _a ( self : Tuple ): '''simple docstring''' A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*_a ) def _a ( self : List[str] ): '''simple docstring''' A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_a ) def _a ( self : Optional[Any] ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_a )
27
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __magic_name__ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] ,*_a : Optional[Any] ,**_a : Optional[int] ): '''simple docstring''' warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" ,_a ,) super().__init__(*_a ,**_a )
27
1
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowerCamelCase ( lowerCamelCase : Optional[Any]): assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCamelCase ( ): assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCamelCase ( ): A_ : Dict = """mock-s3-bucket""" A_ : str = F's3://{mock_bucket}' A_ : List[Any] = extract_path_from_uri(lowerCamelCase) assert dataset_path.startswith("""s3://""") is False A_ : List[str] = """./local/path""" A_ : Any = extract_path_from_uri(lowerCamelCase) assert dataset_path == new_dataset_path def lowerCamelCase ( lowerCamelCase : int): A_ : Union[str, Any] = is_remote_filesystem(lowerCamelCase) assert is_remote is True A_ : Optional[Any] = fsspec.filesystem("""file""") A_ : Optional[int] = is_remote_filesystem(lowerCamelCase) assert is_remote is False @pytest.mark.parametrize("""compression_fs_class""" , lowerCamelCase) def lowerCamelCase ( lowerCamelCase : str , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : List[str] , lowerCamelCase : Any): A_ : Any = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_file, """bz2""": bza_file, """lz4""": lza_file} A_ : Dict = input_paths[compression_fs_class.protocol] if input_path is None: A_ : Optional[int] = F'for \'{compression_fs_class.protocol}\' compression protocol, ' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCamelCase) A_ : List[Any] = fsspec.filesystem(compression_fs_class.protocol , fo=lowerCamelCase) assert isinstance(lowerCamelCase , lowerCamelCase) A_ : List[Any] = os.path.basename(lowerCamelCase) A_ : Optional[int] = expected_filename[: expected_filename.rindex(""".""")] assert fs.glob("""*""") == [expected_filename] with fs.open(lowerCamelCase , """r""" , encoding="""utf-8""") as f, open(lowerCamelCase , encoding="""utf-8""") as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("""protocol""" , ["""zip""", """gzip"""]) def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : Dict , lowerCamelCase : Optional[Any]): A_ : Union[str, Any] = {"""zip""": zip_jsonl_path, """gzip""": jsonl_gz_path} A_ : Any = compressed_file_paths[protocol] A_ : List[Any] = """dataset.jsonl""" A_ : List[str] = F'{protocol}://{member_file_path}::{compressed_file_path}' A_ , *A_ : int = fsspec.get_fs_token_paths(lowerCamelCase) assert fs.isfile(lowerCamelCase) assert not fs.isfile("""non_existing_""" + member_file_path) @pytest.mark.integration def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : List[Any]): A_ : Optional[Any] = hf_api.dataset_info(lowerCamelCase , token=lowerCamelCase) A_ : Optional[int] = HfFileSystem(repo_info=lowerCamelCase , token=lowerCamelCase) assert sorted(hffs.glob("""*""")) == [".gitattributes", "data"] assert hffs.isdir("""data""") assert hffs.isfile(""".gitattributes""") and hffs.isfile("""data/text_data.txt""") with open(lowerCamelCase) as f: assert hffs.open("""data/text_data.txt""" , """r""").read() == f.read() def lowerCamelCase ( ): A_ : Union[str, Any] = """bz2""" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(lowerCamelCase , lowerCamelCase , clobber=lowerCamelCase) with pytest.warns(lowerCamelCase) as warning_info: importlib.reload(datasets.filesystems) assert len(lowerCamelCase) == 1 assert ( str(warning_info[0].message) == F'A filesystem protocol was already set for {protocol} and will be overwritten.' )
27
'''simple docstring''' from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def lowerCamelCase ( lowerCamelCase : str , lowerCamelCase : complex , lowerCamelCase : str = "x" , lowerCamelCase : float = 10**-10 , lowerCamelCase : int = 1 , ): A_ : int = symbols(lowerCamelCase) A_ : List[Any] = lambdify(lowerCamelCase , lowerCamelCase) A_ : List[str] = lambdify(lowerCamelCase , diff(lowerCamelCase , lowerCamelCase)) A_ : str = starting_point while True: if diff_function(lowerCamelCase) != 0: A_ : int = prev_guess - multiplicity * func(lowerCamelCase) / diff_function( lowerCamelCase) else: raise ZeroDivisionError("""Could not find root""") from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess) < precision: return next_guess A_ : Union[str, Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5j)}""") # Find value of e print( 'The root of log(y) - 1 = 0 is ', f"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( 'The root of exp(x) - 1 = 0 is', f"""{newton_raphson('exp(x) - 1', 10, precision=0.0_0_5)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
27
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict ,_a : Optional[Any] ,_a : Optional[Any]=13 ,_a : Any=3 ,_a : Optional[int]=224 ,_a : Optional[int]=30 ,_a : List[str]=400 ,_a : Dict=True ,_a : int=None ,_a : Union[str, Any]=True ,_a : Optional[Any]=[0.5, 0.5, 0.5] ,_a : int=[0.5, 0.5, 0.5] ,): '''simple docstring''' A_ : int = size if size is not None else {"""height""": 18, """width""": 18} A_ : str = parent A_ : int = batch_size A_ : str = num_channels A_ : Optional[int] = image_size A_ : List[Any] = min_resolution A_ : Dict = max_resolution A_ : str = do_resize A_ : Union[str, Any] = size A_ : Optional[int] = do_normalize A_ : Any = image_mean A_ : Any = image_std def _a ( self : str ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = ViTImageProcessor if is_vision_available() else None def _a ( self : Any ): '''simple docstring''' A_ : Union[str, Any] = EfficientFormerImageProcessorTester(self ) @property def _a ( self : Optional[int] ): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def _a ( self : Any ): '''simple docstring''' A_ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a ,"""image_mean""" ) ) self.assertTrue(hasattr(_a ,"""image_std""" ) ) self.assertTrue(hasattr(_a ,"""do_normalize""" ) ) self.assertTrue(hasattr(_a ,"""do_resize""" ) ) self.assertTrue(hasattr(_a ,"""size""" ) ) def _a ( self : Any ): '''simple docstring''' pass def _a ( self : str ): '''simple docstring''' A_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : int = prepare_image_inputs(self.image_proc_tester ,equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a ,Image.Image ) # Test not batched input A_ : Optional[int] = image_processor(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) ,) # Test batched A_ : Dict = image_processor(_a ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) ,) def _a ( self : str ): '''simple docstring''' A_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : List[str] = prepare_image_inputs(self.image_proc_tester ,equal_resolution=_a ,numpify=_a ) for image in image_inputs: self.assertIsInstance(_a ,np.ndarray ) # Test not batched input A_ : Dict = image_processor(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) ,) # Test batched A_ : Optional[Any] = image_processor(_a ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) ,) def _a ( self : Optional[int] ): '''simple docstring''' A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : Optional[Any] = prepare_image_inputs(self.image_proc_tester ,equal_resolution=_a ,torchify=_a ) for image in image_inputs: self.assertIsInstance(_a ,torch.Tensor ) # Test not batched input A_ : Optional[Any] = image_processor(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) ,) # Test batched A_ : List[str] = image_processor(_a ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) ,)
27
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset __magic_name__ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_a : Dict ): '''simple docstring''' super().__init__() A_ : List[str] = torchvision.models.resnetaaa(pretrained=_a ) A_ : int = list(model.children() )[:-2] A_ : int = nn.Sequential(*_a ) A_ : Optional[int] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def _a ( self : str ,_a : Optional[int] ): '''simple docstring''' A_ : Tuple = self.pool(self.model(_a ) ) A_ : Any = torch.flatten(_a ,start_dim=2 ) A_ : str = out.transpose(1 ,2 ).contiguous() return out # BxNx2048 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,_a : Optional[Any] ,_a : Optional[Any] ,_a : Dict ,_a : Dict ,_a : Optional[Any] ): '''simple docstring''' A_ : Dict = [json.loads(_a ) for l in open(_a )] A_ : Optional[int] = os.path.dirname(_a ) A_ : Optional[Any] = tokenizer A_ : Optional[Any] = labels A_ : List[Any] = len(_a ) A_ : str = max_seq_length A_ : str = transforms def __len__( self : str ): '''simple docstring''' return len(self.data ) def __getitem__( self : Tuple ,_a : Optional[Any] ): '''simple docstring''' A_ : Optional[int] = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] ,add_special_tokens=_a ) ) A_ , A_ , A_ : Dict = sentence[0], sentence[1:-1], sentence[-1] A_ : Optional[int] = sentence[: self.max_seq_length] A_ : Any = torch.zeros(self.n_classes ) A_ : Tuple = 1 A_ : Optional[Any] = Image.open(os.path.join(self.data_dir ,self.data[index]["""img"""] ) ).convert("""RGB""" ) A_ : Union[str, Any] = self.transforms(_a ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _a ( self : List[Any] ): '''simple docstring''' A_ : str = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def lowerCamelCase ( lowerCamelCase : str): A_ : List[Any] = [len(row["""sentence"""]) for row in batch] A_ , A_ : Dict = len(lowerCamelCase), max(lowerCamelCase) A_ : Optional[int] = torch.zeros(lowerCamelCase , lowerCamelCase , dtype=torch.long) A_ : Tuple = torch.zeros(lowerCamelCase , lowerCamelCase , dtype=torch.long) for i_batch, (input_row, length) in enumerate(zip(lowerCamelCase , lowerCamelCase)): A_ : str = input_row["""sentence"""] A_ : Tuple = 1 A_ : int = torch.stack([row["""image"""] for row in batch]) A_ : str = torch.stack([row["""label"""] for row in batch]) A_ : List[Any] = torch.stack([row["""image_start_token"""] for row in batch]) A_ : Tuple = torch.stack([row["""image_end_token"""] for row in batch]) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase ( ): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase ( ): return transforms.Compose( [ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( mean=[0.4677_7044, 0.4453_1429, 0.4066_1017] , std=[0.1222_1994, 0.1214_5835, 0.1438_0469] , ), ])
27
1
'''simple docstring''' def lowerCamelCase ( lowerCamelCase : list[int]): A_ : str = [] if len(lowerCamelCase) == 1: return [nums.copy()] for _ in range(len(lowerCamelCase)): A_ : Optional[Any] = nums.pop(0) A_ : Tuple = permute(lowerCamelCase) for perm in permutations: perm.append(lowerCamelCase) result.extend(lowerCamelCase) nums.append(lowerCamelCase) return result def lowerCamelCase ( lowerCamelCase : Dict): def backtrack(lowerCamelCase : Tuple): if start == len(lowerCamelCase) - 1: output.append(nums[:]) else: for i in range(lowerCamelCase , len(lowerCamelCase)): A_ , A_ : Any = nums[i], nums[start] backtrack(start + 1) A_ , A_ : List[str] = nums[i], nums[start] # backtrack A_ : List[str] = [] backtrack(0) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function __magic_name__ = permutea([1, 2, 3]) print(res) doctest.testmod()
27
'''simple docstring''' from __future__ import annotations import math def lowerCamelCase ( lowerCamelCase : int): if num <= 0: A_ : List[Any] = F'{num}: Invalid input, please enter a positive integer.' raise ValueError(lowerCamelCase) A_ : str = [True] * (num + 1) A_ : Tuple = [] A_ : str = 2 A_ : Any = int(math.sqrt(lowerCamelCase)) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCamelCase) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCamelCase): if sieve[i] is True: A_ : Union[str, Any] = False start += 1 for j in range(end + 1 , num + 1): if sieve[j] is True: prime.append(lowerCamelCase) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
27
1
'''simple docstring''' from __future__ import annotations import math def lowerCamelCase ( lowerCamelCase : int): if num <= 0: A_ : List[Any] = F'{num}: Invalid input, please enter a positive integer.' raise ValueError(lowerCamelCase) A_ : str = [True] * (num + 1) A_ : Tuple = [] A_ : str = 2 A_ : Any = int(math.sqrt(lowerCamelCase)) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCamelCase) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCamelCase): if sieve[i] is True: A_ : Union[str, Any] = False start += 1 for j in range(end + 1 , num + 1): if sieve[j] is True: prime.append(lowerCamelCase) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
27
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __magic_name__ = trt.Logger(trt.Logger.WARNING) __magic_name__ = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __magic_name__ = logging.getLogger(__name__) __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=384, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=128, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) __magic_name__ = parser.parse_args() if args.tokenizer_name: __magic_name__ = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) __magic_name__ = args.per_device_eval_batch_size __magic_name__ = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __magic_name__ = True __magic_name__ = 'temp_engine/bert-fp32.engine' if args.fpaa: __magic_name__ = 'temp_engine/bert-fp16.engine' if args.inta: __magic_name__ = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') __magic_name__ = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __magic_name__ = [network.get_input(i) for i in range(network.num_inputs)] __magic_name__ = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __magic_name__ = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __magic_name__ = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __magic_name__ = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : Any , lowerCamelCase : List[Any] , lowerCamelCase : str , lowerCamelCase : List[str]): A_ : str = np.asarray(inputs["""input_ids"""] , dtype=np.intaa) A_ : int = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa) A_ : Optional[int] = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCamelCase) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCamelCase) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCamelCase) # start time A_ : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowerCamelCase) for d_inp in d_inputs] + [int(lowerCamelCase), int(lowerCamelCase)] , stream_handle=stream.handle) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCamelCase , lowerCamelCase , lowerCamelCase) cuda.memcpy_dtoh_async(lowerCamelCase , lowerCamelCase , lowerCamelCase) # Synchronize the stream and take time stream.synchronize() # end time A_ : str = time.time() A_ : Tuple = end_time - start_time A_ : Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __magic_name__ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __magic_name__ = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __magic_name__ = raw_datasets['validation'].column_names __magic_name__ = 'question' if 'question' in column_names else column_names[0] __magic_name__ = 'context' if 'context' in column_names else column_names[1] __magic_name__ = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __magic_name__ = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __magic_name__ = min(args.max_seq_length, tokenizer.model_max_length) def lowerCamelCase ( lowerCamelCase : Dict): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace A_ : List[Any] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. A_ : Optional[int] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCamelCase , stride=args.doc_stride , return_overflowing_tokens=lowerCamelCase , return_offsets_mapping=lowerCamelCase , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. A_ : List[str] = tokenized_examples.pop("""overflow_to_sample_mapping""") # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. A_ : Union[str, Any] = [] for i in range(len(tokenized_examples["""input_ids"""])): # Grab the sequence corresponding to that example (to know what is the context and what is the question). A_ : Any = tokenized_examples.sequence_ids(lowerCamelCase) A_ : Tuple = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. A_ : Union[str, Any] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index]) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. A_ : Dict = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i]) ] return tokenized_examples __magic_name__ = raw_datasets['validation'] # Validation Feature Creation __magic_name__ = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) __magic_name__ = default_data_collator __magic_name__ = eval_dataset.remove_columns(['example_id', 'offset_mapping']) __magic_name__ = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def lowerCamelCase ( lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any]="eval"): # Post-processing: we match the start logits and end logits to answers in the original context. A_ : Tuple = postprocess_qa_predictions( examples=lowerCamelCase , features=lowerCamelCase , predictions=lowerCamelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCamelCase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: A_ : Dict = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: A_ : Union[str, Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] A_ : Any = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCamelCase , label_ids=lowerCamelCase) __magic_name__ = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def lowerCamelCase ( lowerCamelCase : Union[str, Any]): return trt.volume(engine.get_binding_shape(lowerCamelCase)) * engine.get_binding_dtype(lowerCamelCase).itemsize # Allocate device memory for inputs and outputs. __magic_name__ = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __magic_name__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __magic_name__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __magic_name__ = cuda.mem_alloc(h_outputa.nbytes) __magic_name__ = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __magic_name__ = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(f""" Num examples = {len(eval_dataset)}""") logger.info(f""" Batch size = {args.per_device_eval_batch_size}""") __magic_name__ = 0.0 __magic_name__ = 0 __magic_name__ = timeit.default_timer() __magic_name__ = None for step, batch in enumerate(eval_dataloader): __magic_name__ , __magic_name__ = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __magic_name__ , __magic_name__ = outputs __magic_name__ = torch.tensor(start_logits) __magic_name__ = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __magic_name__ = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __magic_name__ = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __magic_name__ = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __magic_name__ = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __magic_name__ = nested_truncate(all_preds, len(eval_dataset)) __magic_name__ = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_000 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_000)) logger.info('Total Number of Inference = %d', niter) __magic_name__ = post_processing_function(eval_examples, eval_dataset, all_preds) __magic_name__ = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"""Evaluation metrics: {eval_metric}""")
27
1
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict ,_a : int ,_a : Tuple=13 ,_a : str=7 ,_a : str=True ,_a : Optional[Any]=True ,_a : List[Any]=True ,_a : Optional[Any]=True ,_a : List[Any]=99 ,_a : Union[str, Any]=32 ,_a : Optional[int]=5 ,_a : Optional[int]=4 ,_a : Union[str, Any]=37 ,_a : List[str]="gelu" ,_a : Tuple=0.1 ,_a : str=0.1 ,_a : Optional[int]=512 ,_a : Union[str, Any]=16 ,_a : Dict=2 ,_a : Any=0.02 ,_a : List[Any]=4 ,): '''simple docstring''' A_ : Optional[Any] = parent A_ : Any = batch_size A_ : str = seq_length A_ : Union[str, Any] = is_training A_ : Any = use_attention_mask A_ : str = use_token_type_ids A_ : Dict = use_labels A_ : List[str] = vocab_size A_ : Optional[Any] = hidden_size A_ : Tuple = num_hidden_layers A_ : int = num_attention_heads A_ : Optional[int] = intermediate_size A_ : str = hidden_act A_ : Optional[int] = hidden_dropout_prob A_ : Optional[int] = attention_probs_dropout_prob A_ : str = max_position_embeddings A_ : Dict = type_vocab_size A_ : List[str] = type_sequence_label_size A_ : str = initializer_range A_ : int = num_choices def _a ( self : Optional[int] ): '''simple docstring''' A_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A_ : Dict = None if self.use_attention_mask: A_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) A_ : str = None if self.use_token_type_ids: A_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A_ : List[Any] = RoFormerConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_a ,initializer_range=self.initializer_range ,) return config, input_ids, token_type_ids, attention_mask def _a ( self : Dict ): '''simple docstring''' A_ : Any = self.prepare_config_and_inputs() A_ , A_ , A_ , A_ : Union[str, Any] = config_and_inputs A_ : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = True a_ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _a ( self : Tuple ): '''simple docstring''' A_ : Dict = FlaxRoFormerModelTester(self ) @slow def _a ( self : Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: A_ : Optional[int] = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" ,from_pt=_a ) A_ : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_a ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def _a ( self : List[Any] ): '''simple docstring''' A_ : Union[str, Any] = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) A_ : Union[str, Any] = jnp.array([[0, 1, 2, 3, 4, 5]] ) A_ : List[Any] = model(_a )[0] A_ : int = 50000 A_ : str = (1, 6, vocab_size) self.assertEqual(output.shape ,_a ) A_ : Any = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] ,_a ,atol=1e-4 ) )
27
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __magic_name__ = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['ConvNextFeatureExtractor'] __magic_name__ = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure)
27
1
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """""" a_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) a_ = None # compression type in fsspec. ex: "gzip" a_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : int ,_a : str = "" ,_a : Optional[str] = None ,_a : Optional[dict] = None ,**_a : Optional[Any] ): '''simple docstring''' super().__init__(self ,**_a ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode A_ : Dict = fsspec.open( _a ,mode="""rb""" ,protocol=_a ,compression=self.compression ,client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" ,{} ), # To avoid issues if it was already passed. } ,**(target_options or {}) ,) A_ : Dict = os.path.basename(self.file.path.split("""::""" )[0] ) A_ : Dict = ( self.compressed_name[: self.compressed_name.rindex(""".""" )] if """.""" in self.compressed_name else self.compressed_name ) A_ : int = None @classmethod def _a ( cls : List[str] ,_a : str ): '''simple docstring''' return super()._strip_protocol(_a ).lstrip("""/""" ) def _a ( self : Optional[Any] ): '''simple docstring''' if self.dir_cache is None: A_ : Optional[Any] = {**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name} A_ : Optional[Any] = {f["""name"""]: f} def _a ( self : Optional[int] ,_a : str ): '''simple docstring''' return self.file.open().read() def _a ( self : Optional[int] ,_a : str ,_a : str = "rb" ,_a : Any=None ,_a : str=True ,_a : int=None ,**_a : List[Any] ,): '''simple docstring''' A_ : Dict = self._strip_protocol(_a ) if mode != "rb": raise ValueError(f'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'' ) return self.file.open() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """bz2""" a_ = """bz2""" a_ = """.bz2""" class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """gzip""" a_ = """gzip""" a_ = """.gz""" class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """lz4""" a_ = """lz4""" a_ = """.lz4""" class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """xz""" a_ = """xz""" a_ = """.xz""" class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """zstd""" a_ = """zstd""" a_ = """.zst""" def __init__( self : Union[str, Any] ,_a : str ,_a : str = "rb" ,_a : Optional[str] = None ,_a : Optional[dict] = None ,_a : int = DEFAULT_BLOCK_SIZE ,**_a : Union[str, Any] ,): '''simple docstring''' super().__init__( fo=_a ,mode=_a ,target_protocol=_a ,target_options=_a ,block_size=_a ,**_a ,) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 A_ : Optional[Any] = self.file.__enter__ class __lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple ,_a : List[Any] ): '''simple docstring''' A_ : Tuple = file_ def __enter__( self : Tuple ): '''simple docstring''' self._file.__enter__() return self def __exit__( self : Union[str, Any] ,*_a : Tuple ,**_a : List[str] ): '''simple docstring''' self._file.__exit__(*_a ,**_a ) def __iter__( self : Any ): '''simple docstring''' return iter(self._file ) def _a ( self : Dict ): '''simple docstring''' return next(self._file ) def __getattr__( self : str ,_a : Tuple ): '''simple docstring''' return getattr(self._file ,_a ) def fixed_enter(*_a : Dict ,**_a : Dict ): return WrappedFile(_enter(*_a ,**_a ) ) A_ : List[str] = fixed_enter
27
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { 'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json', 'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json', 'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json', } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """owlvit_text_model""" def __init__( self : Union[str, Any] ,_a : Any=49408 ,_a : Any=512 ,_a : Tuple=2048 ,_a : Dict=12 ,_a : Optional[int]=8 ,_a : Tuple=16 ,_a : Tuple="quick_gelu" ,_a : Optional[Any]=1e-5 ,_a : List[Any]=0.0 ,_a : Optional[int]=0.02 ,_a : Dict=1.0 ,_a : Dict=0 ,_a : Any=49406 ,_a : Tuple=49407 ,**_a : List[Any] ,): '''simple docstring''' super().__init__(pad_token_id=_a ,bos_token_id=_a ,eos_token_id=_a ,**_a ) A_ : Tuple = vocab_size A_ : int = hidden_size A_ : Optional[int] = intermediate_size A_ : Optional[int] = num_hidden_layers A_ : Union[str, Any] = num_attention_heads A_ : int = max_position_embeddings A_ : str = hidden_act A_ : Union[str, Any] = layer_norm_eps A_ : Tuple = attention_dropout A_ : Union[str, Any] = initializer_range A_ : List[Any] = initializer_factor @classmethod def _a ( cls : List[str] ,_a : Union[str, os.PathLike] ,**_a : str ): '''simple docstring''' cls._set_token_in_kwargs(_a ) A_ , A_ : int = cls.get_config_dict(_a ,**_a ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": A_ : Union[str, Any] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a ,**_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """owlvit_vision_model""" def __init__( self : List[Any] ,_a : Optional[Any]=768 ,_a : Tuple=3072 ,_a : Dict=12 ,_a : int=12 ,_a : Dict=3 ,_a : Tuple=768 ,_a : int=32 ,_a : int="quick_gelu" ,_a : List[Any]=1e-5 ,_a : Tuple=0.0 ,_a : List[Any]=0.02 ,_a : str=1.0 ,**_a : int ,): '''simple docstring''' super().__init__(**_a ) A_ : List[str] = hidden_size A_ : Union[str, Any] = intermediate_size A_ : Union[str, Any] = num_hidden_layers A_ : Optional[Any] = num_attention_heads A_ : int = num_channels A_ : str = image_size A_ : List[Any] = patch_size A_ : int = hidden_act A_ : List[Any] = layer_norm_eps A_ : List[str] = attention_dropout A_ : str = initializer_range A_ : str = initializer_factor @classmethod def _a ( cls : List[Any] ,_a : Union[str, os.PathLike] ,**_a : str ): '''simple docstring''' cls._set_token_in_kwargs(_a ) A_ , A_ : Optional[int] = cls.get_config_dict(_a ,**_a ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": A_ : List[str] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a ,**_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """owlvit""" a_ = True def __init__( self : Union[str, Any] ,_a : List[str]=None ,_a : List[str]=None ,_a : Dict=512 ,_a : List[Any]=2.6592 ,_a : Optional[Any]=True ,**_a : Optional[int] ,): '''simple docstring''' super().__init__(**_a ) if text_config is None: A_ : List[Any] = {} logger.info("""text_config is None. Initializing the OwlViTTextConfig with default values.""" ) if vision_config is None: A_ : Tuple = {} logger.info("""vision_config is None. initializing the OwlViTVisionConfig with default values.""" ) A_ : Dict = OwlViTTextConfig(**_a ) A_ : Dict = OwlViTVisionConfig(**_a ) A_ : Any = projection_dim A_ : Optional[int] = logit_scale_init_value A_ : Optional[int] = return_dict A_ : Dict = 1.0 @classmethod def _a ( cls : Union[str, Any] ,_a : Union[str, os.PathLike] ,**_a : Optional[int] ): '''simple docstring''' cls._set_token_in_kwargs(_a ) A_ , A_ : List[Any] = cls.get_config_dict(_a ,**_a ) if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a ,**_a ) @classmethod def _a ( cls : int ,_a : Dict ,_a : Dict ,**_a : List[str] ): '''simple docstring''' A_ : str = {} A_ : int = text_config A_ : Union[str, Any] = vision_config return cls.from_dict(_a ,**_a ) def _a ( self : Optional[int] ): '''simple docstring''' A_ : Dict = copy.deepcopy(self.__dict__ ) A_ : str = self.text_config.to_dict() A_ : Optional[int] = self.vision_config.to_dict() A_ : List[Any] = self.__class__.model_type return output class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _a ( self : int ): '''simple docstring''' return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ] ) @property def _a ( self : str ): '''simple docstring''' return OrderedDict( [ ("""logits_per_image""", {0: """batch"""}), ("""logits_per_text""", {0: """batch"""}), ("""text_embeds""", {0: """batch"""}), ("""image_embeds""", {0: """batch"""}), ] ) @property def _a ( self : Optional[Any] ): '''simple docstring''' return 1e-4 def _a ( self : int ,_a : "ProcessorMixin" ,_a : int = -1 ,_a : int = -1 ,_a : Optional["TensorType"] = None ,): '''simple docstring''' A_ : Any = super().generate_dummy_inputs( processor.tokenizer ,batch_size=_a ,seq_length=_a ,framework=_a ) A_ : Any = super().generate_dummy_inputs( processor.image_processor ,batch_size=_a ,framework=_a ) return {**text_input_dict, **image_input_dict} @property def _a ( self : Optional[Any] ): '''simple docstring''' return 14
27
1
'''simple docstring''' def lowerCamelCase ( lowerCamelCase : int): A_ : List[str] = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
27
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __magic_name__ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""input_features""", """is_longer"""] def __init__( self : Dict ,_a : Optional[int]=64 ,_a : List[Any]=48000 ,_a : str=480 ,_a : Optional[Any]=10 ,_a : Optional[int]=1024 ,_a : Tuple=0.0 ,_a : str=False ,_a : float = 0 ,_a : float = 14000 ,_a : int = None ,_a : str = "fusion" ,_a : str = "repeatpad" ,**_a : Tuple ,): '''simple docstring''' super().__init__( feature_size=_a ,sampling_rate=_a ,padding_value=_a ,return_attention_mask=_a ,**_a ,) A_ : Tuple = top_db A_ : Tuple = truncation A_ : Optional[Any] = padding A_ : Optional[int] = fft_window_size A_ : Dict = (fft_window_size >> 1) + 1 A_ : Any = hop_length A_ : List[Any] = max_length_s A_ : Tuple = max_length_s * sampling_rate A_ : Tuple = sampling_rate A_ : Optional[int] = frequency_min A_ : Tuple = frequency_max A_ : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=_a ,min_frequency=_a ,max_frequency=_a ,sampling_rate=_a ,norm=_a ,mel_scale="""htk""" ,) A_ : Dict = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=_a ,min_frequency=_a ,max_frequency=_a ,sampling_rate=_a ,norm="""slaney""" ,mel_scale="""slaney""" ,) def _a ( self : int ): '''simple docstring''' A_ : int = copy.deepcopy(self.__dict__ ) A_ : Tuple = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _a ( self : Dict ,_a : np.array ,_a : Optional[np.array] = None ): '''simple docstring''' A_ : List[str] = spectrogram( _a ,window_function(self.fft_window_size ,"""hann""" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=_a ,log_mel="""dB""" ,) return log_mel_spectrogram.T def _a ( self : Optional[int] ,_a : Dict ,_a : Optional[Any] ,_a : Optional[int] ): '''simple docstring''' A_ : Dict = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk A_ : List[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk A_ : int = [0] # randomly choose index for each part A_ : List[str] = np.random.choice(ranges[0] ) A_ : int = np.random.choice(ranges[1] ) A_ : Optional[int] = np.random.choice(ranges[2] ) A_ : Tuple = mel[idx_front : idx_front + chunk_frames, :] A_ : Dict = mel[idx_middle : idx_middle + chunk_frames, :] A_ : Dict = mel[idx_back : idx_back + chunk_frames, :] A_ : Optional[int] = torch.tensor(mel[None, None, :] ) A_ : Dict = torch.nn.functional.interpolate( _a ,size=[chunk_frames, 64] ,mode="""bilinear""" ,align_corners=_a ) A_ : str = mel_shrink[0][0].numpy() A_ : Tuple = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def _a ( self : Dict ,_a : np.array ,_a : Optional[Any] ,_a : int ,_a : Dict ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": A_ : Dict = True # random crop to max_length (for compatibility) -> this should be handled by self.pad A_ : Tuple = len(_a ) - max_length A_ : Optional[int] = np.random.randint(0 ,overflow + 1 ) A_ : List[Any] = waveform[idx : idx + max_length] A_ : Optional[Any] = self._np_extract_fbank_features(_a ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": A_ : Dict = self._np_extract_fbank_features(_a ,self.mel_filters ) A_ : Tuple = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed A_ : Optional[int] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. A_ : Optional[int] = np.stack([mel, mel, mel, mel] ,axis=0 ) A_ : str = False else: A_ : str = self._random_mel_fusion(_a ,_a ,_a ) A_ : Optional[Any] = True else: raise NotImplementedError(f'data_truncating {truncation} not implemented' ) else: A_ : Optional[int] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": A_ : int = int(max_length / len(_a ) ) A_ : Any = np.stack(np.tile(_a ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": A_ : List[str] = int(max_length / len(_a ) ) A_ : Optional[Any] = np.stack(np.tile(_a ,_a ) ) A_ : Any = np.pad(_a ,(0, max_length - waveform.shape[0]) ,mode="""constant""" ,constant_values=0 ) if truncation == "fusion": A_ : List[Any] = self._np_extract_fbank_features(_a ,self.mel_filters ) A_ : Optional[Any] = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: A_ : Union[str, Any] = self._np_extract_fbank_features(_a ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : List[Any] ,_a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,_a : str = None ,_a : Optional[str] = None ,_a : Optional[int] = None ,_a : Optional[int] = None ,_a : Optional[Union[str, TensorType]] = None ,**_a : Any ,): '''simple docstring''' A_ : List[str] = truncation if truncation is not None else self.truncation A_ : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) A_ : Any = isinstance(_a ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) A_ : int = is_batched_numpy or ( isinstance(_a ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: A_ : Optional[int] = [np.asarray(_a ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_a ,np.ndarray ): A_ : str = np.asarray(_a ,dtype=np.floataa ) elif isinstance(_a ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A_ : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A_ : Any = [np.asarray(_a )] # convert to mel spectrogram, truncate and pad if needed. A_ : str = [ self._get_input_mel(_a ,max_length if max_length else self.nb_max_samples ,_a ,_a ) for waveform in raw_speech ] A_ : int = [] A_ : Any = [] for mel, longer in padded_inputs: input_mel.append(_a ) is_longer.append(_a ) if truncation == "fusion" and sum(_a ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer A_ : List[Any] = np.random.randint(0 ,len(_a ) ) A_ : List[str] = True if isinstance(input_mel[0] ,_a ): A_ : Tuple = [np.asarray(_a ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool A_ : List[str] = [[longer] for longer in is_longer] A_ : Optional[Any] = {"""input_features""": input_mel, """is_longer""": is_longer} A_ : int = BatchFeature(_a ) if return_tensors is not None: A_ : int = input_features.convert_to_tensors(_a ) return input_features
27
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { 'facebook/nllb-moe-54B': 'https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json', } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """nllb-moe""" a_ = ["""past_key_values"""] a_ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Union[str, Any] ,_a : Dict=128112 ,_a : Union[str, Any]=1024 ,_a : Any=12 ,_a : Tuple=4096 ,_a : Optional[int]=16 ,_a : str=12 ,_a : Optional[Any]=4096 ,_a : List[Any]=16 ,_a : Dict=0.05 ,_a : Tuple=0.05 ,_a : List[Any]=True ,_a : str=True ,_a : Union[str, Any]="relu" ,_a : Optional[Any]=1024 ,_a : Optional[Any]=0.1 ,_a : Optional[Any]=0.1 ,_a : List[Any]=0.0 ,_a : Optional[Any]=0.02 ,_a : List[Any]=2 ,_a : Optional[int]=True ,_a : Optional[Any]=False ,_a : Union[str, Any]="float32" ,_a : Union[str, Any]=False ,_a : List[str]=128 ,_a : Optional[int]=64 ,_a : List[str]=4 ,_a : Tuple=4 ,_a : int=0.001 ,_a : Any=0.001 ,_a : Union[str, Any]="all" ,_a : int=False ,_a : List[str]=False ,_a : Dict=1.0 ,_a : Any=0.2 ,_a : Dict=1 ,_a : int=0 ,_a : Optional[Any]=2 ,_a : Any=False ,**_a : List[str] ,): '''simple docstring''' A_ : int = vocab_size A_ : int = max_position_embeddings A_ : Any = d_model A_ : List[Any] = encoder_ffn_dim A_ : Dict = encoder_layers A_ : Union[str, Any] = encoder_attention_heads A_ : int = decoder_ffn_dim A_ : List[Any] = decoder_layers A_ : Optional[int] = decoder_attention_heads A_ : Tuple = dropout A_ : int = attention_dropout A_ : Optional[Any] = activation_dropout A_ : Tuple = activation_function A_ : Any = init_std A_ : str = encoder_layerdrop A_ : str = decoder_layerdrop A_ : Optional[Any] = use_cache A_ : int = encoder_layers A_ : Dict = scale_embedding # scale factor will be sqrt(d_model) if True A_ : Any = router_z_loss_coef A_ : Tuple = router_aux_loss_coef A_ : List[Any] = decoder_sparse_step A_ : Optional[int] = encoder_sparse_step A_ : Any = num_experts A_ : Optional[Any] = expert_capacity A_ : Optional[Any] = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) A_ : Tuple = router_dtype A_ : Any = router_ignore_padding_tokens A_ : Any = batch_prioritized_routing A_ : Tuple = second_expert_policy A_ : Dict = normalize_router_prob_before_dropping A_ : Any = moe_eval_capacity_token_fraction A_ : Optional[Any] = moe_token_dropout A_ : List[str] = output_router_logits super().__init__( pad_token_id=_a ,bos_token_id=_a ,eos_token_id=_a ,is_encoder_decoder=_a ,decoder_start_token_id=_a ,**_a ,)
27
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ,_a : List[Any] ,_a : Dict=13 ,_a : List[Any]=7 ,_a : Optional[Any]=True ,_a : Any=True ,_a : Optional[int]=True ,_a : Union[str, Any]=99 ,_a : Union[str, Any]=32 ,_a : List[str]=5 ,_a : List[str]=4 ,_a : Dict=37 ,_a : List[Any]="gelu" ,_a : int=0.1 ,_a : Optional[int]=0.1 ,_a : Tuple=512 ,_a : Union[str, Any]=16 ,_a : Optional[Any]=2 ,_a : Optional[Any]=0.02 ,_a : Optional[int]=3 ,_a : str=4 ,_a : Optional[Any]=None ,): '''simple docstring''' A_ : Optional[Any] = parent A_ : str = batch_size A_ : int = seq_length A_ : Union[str, Any] = is_training A_ : Optional[Any] = use_token_type_ids A_ : int = use_labels A_ : Dict = vocab_size A_ : List[Any] = hidden_size A_ : Tuple = num_hidden_layers A_ : Optional[int] = num_attention_heads A_ : int = intermediate_size A_ : Tuple = hidden_act A_ : int = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : Any = max_position_embeddings A_ : Optional[Any] = type_vocab_size A_ : Tuple = type_sequence_label_size A_ : int = initializer_range A_ : Optional[Any] = num_labels A_ : str = num_choices A_ : Optional[Any] = scope A_ : List[Any] = self.vocab_size - 1 def _a ( self : Any ): '''simple docstring''' A_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A_ : List[Any] = None if self.use_token_type_ids: A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A_ : int = None A_ : str = None A_ : Union[str, Any] = None if self.use_labels: A_ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A_ : Any = ids_tensor([self.batch_size] ,self.num_choices ) A_ : List[Any] = OpenAIGPTConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) A_ : Tuple = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _a ( self : Optional[int] ,_a : List[str] ,_a : str ,_a : int ,_a : int ,*_a : Union[str, Any] ): '''simple docstring''' A_ : Optional[Any] = OpenAIGPTModel(config=_a ) model.to(_a ) model.eval() A_ : Optional[int] = model(_a ,token_type_ids=_a ,head_mask=_a ) A_ : str = model(_a ,token_type_ids=_a ) A_ : Dict = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Dict ,_a : Optional[int] ,_a : Union[str, Any] ,_a : Dict ,_a : List[str] ,*_a : str ): '''simple docstring''' A_ : str = OpenAIGPTLMHeadModel(_a ) model.to(_a ) model.eval() A_ : Any = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Any ,_a : Dict ,_a : List[Any] ,_a : Dict ,_a : Union[str, Any] ,*_a : str ): '''simple docstring''' A_ : Any = OpenAIGPTDoubleHeadsModel(_a ) model.to(_a ) model.eval() A_ : Optional[int] = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : List[str] ,_a : str ,_a : Tuple ,_a : Dict ,_a : Tuple ,*_a : Dict ): '''simple docstring''' A_ : List[str] = self.num_labels A_ : int = OpenAIGPTForSequenceClassification(_a ) model.to(_a ) model.eval() A_ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A_ : Optional[Any] = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _a ( self : Tuple ): '''simple docstring''' A_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : str = config_and_inputs A_ : int = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) a_ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly a_ = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _a ( self : Tuple ,_a : Optional[int] ,_a : str ,_a : List[str] ,_a : List[str] ,_a : Any ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _a ( self : Optional[int] ,_a : str ,_a : Dict ,_a : Optional[int]=False ): '''simple docstring''' A_ : Any = super()._prepare_for_class(_a ,_a ,return_labels=_a ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": A_ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) ,dtype=torch.long ,device=_a ,) A_ : Any = inputs_dict["""labels"""] A_ : Any = inputs_dict["""labels"""] A_ : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) ,dtype=torch.long ,device=_a ,) A_ : int = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_a ) return inputs_dict def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : Tuple = OpenAIGPTModelTester(self ) A_ : Optional[int] = ConfigTester(self ,config_class=_a ,n_embd=37 ) def _a ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def _a ( self : Optional[Any] ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_a ) def _a ( self : Tuple ): '''simple docstring''' A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_a ) def _a ( self : List[Any] ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_a ) def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_a ) @slow def _a ( self : List[Any] ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Union[str, Any] = OpenAIGPTModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def _a ( self : List[str] ): '''simple docstring''' A_ : Dict = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(_a ) A_ : Dict = torch.tensor([[481, 4735, 544]] ,dtype=torch.long ,device=_a ) # the president is A_ : Dict = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the A_ : int = model.generate(_a ,do_sample=_a ) self.assertListEqual(output_ids[0].tolist() ,_a )
27
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule __magic_name__ = {'tokenization_byt5': ['ByT5Tokenizer']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys __magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
'''simple docstring''' import baseaa def lowerCamelCase ( lowerCamelCase : str): return baseaa.aaaencode(string.encode("""utf-8""")) def lowerCamelCase ( lowerCamelCase : bytes): return baseaa.aaadecode(lowerCamelCase).decode("""utf-8""") if __name__ == "__main__": import doctest doctest.testmod()
27
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) def lowerCamelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : int , lowerCamelCase : Tuple , lowerCamelCase : List[str]): A_ : List[Any] = original_name.split(""".""")[0] A_ : str = key.split(""".""") A_ : List[Any] = int(key_list[key_list.index(lowerCamelCase) - 2]) A_ : List[Any] = int(key_list[key_list.index(lowerCamelCase) - 1]) A_ : List[Any] = orig_block_num - offset A_ : Optional[Any] = key.replace(F'{orig_block_num}.{layer_num}.{original_name}' , F'block.{new_block_num}.{layer_num}.{new_name}') return key def lowerCamelCase ( lowerCamelCase : Any): A_ : str = OrderedDict() A_ , A_ : Tuple = 0, 0 for key, value in state_dict.items(): if key.startswith("""network"""): A_ : List[str] = key.replace("""network""" , """poolformer.encoder""") if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("""bias""") and "patch_embed" not in key: patch_emb_offset += 1 A_ : Optional[int] = key[: key.find("""proj""")] A_ : List[str] = key.replace(lowerCamelCase , F'patch_embeddings.{total_embed_found}.') A_ : Tuple = key.replace("""proj""" , """projection""") if key.endswith("""bias"""): total_embed_found += 1 if "patch_embeddings" in key: A_ : Tuple = """poolformer.encoder.""" + key if "mlp.fc1" in key: A_ : Any = replace_key_with_offset(lowerCamelCase , lowerCamelCase , """mlp.fc1""" , """output.conv1""") if "mlp.fc2" in key: A_ : str = replace_key_with_offset(lowerCamelCase , lowerCamelCase , """mlp.fc2""" , """output.conv2""") if "norm1" in key: A_ : Dict = replace_key_with_offset(lowerCamelCase , lowerCamelCase , """norm1""" , """before_norm""") if "norm2" in key: A_ : Any = replace_key_with_offset(lowerCamelCase , lowerCamelCase , """norm2""" , """after_norm""") if "layer_scale_1" in key: A_ : Any = replace_key_with_offset(lowerCamelCase , lowerCamelCase , """layer_scale_1""" , """layer_scale_1""") if "layer_scale_2" in key: A_ : List[Any] = replace_key_with_offset(lowerCamelCase , lowerCamelCase , """layer_scale_2""" , """layer_scale_2""") if "head" in key: A_ : int = key.replace("""head""" , """classifier""") A_ : Optional[int] = value return new_state_dict def lowerCamelCase ( ): A_ : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : Dict = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase).raw) return image @torch.no_grad() def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : Dict): A_ : List[str] = PoolFormerConfig() # set attributes based on model_name A_ : Tuple = """huggingface/label-files""" A_ : List[Any] = model_name[-3:] A_ : int = 1000 A_ : Tuple = """imagenet-1k-id2label.json""" A_ : str = (1, 1000) # set config attributes A_ : Tuple = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""") , """r""")) A_ : List[str] = {int(lowerCamelCase): v for k, v in idalabel.items()} A_ : Tuple = idalabel A_ : Union[str, Any] = {v: k for k, v in idalabel.items()} if size == "s12": A_ : List[str] = [2, 2, 6, 2] A_ : str = [64, 128, 320, 512] A_ : Optional[Any] = 4.0 A_ : Tuple = 0.9 elif size == "s24": A_ : str = [4, 4, 12, 4] A_ : Any = [64, 128, 320, 512] A_ : Any = 4.0 A_ : Union[str, Any] = 0.9 elif size == "s36": A_ : Optional[int] = [6, 6, 18, 6] A_ : List[Any] = [64, 128, 320, 512] A_ : Optional[Any] = 4.0 A_ : str = 1E-6 A_ : Optional[int] = 0.9 elif size == "m36": A_ : Optional[int] = [6, 6, 18, 6] A_ : Optional[int] = [96, 192, 384, 768] A_ : List[Any] = 4.0 A_ : List[str] = 1E-6 A_ : List[Any] = 0.95 elif size == "m48": A_ : Optional[int] = [8, 8, 24, 8] A_ : Optional[int] = [96, 192, 384, 768] A_ : Dict = 4.0 A_ : List[str] = 1E-6 A_ : Tuple = 0.95 else: raise ValueError(F'Size {size} not supported') # load image processor A_ : str = PoolFormerImageProcessor(crop_pct=lowerCamelCase) # Prepare image A_ : Union[str, Any] = prepare_img() A_ : Tuple = image_processor(images=lowerCamelCase , return_tensors="""pt""").pixel_values logger.info(F'Converting model {model_name}...') # load original state dict A_ : Optional[int] = torch.load(lowerCamelCase , map_location=torch.device("""cpu""")) # rename keys A_ : Union[str, Any] = rename_keys(lowerCamelCase) # create HuggingFace model and load state dict A_ : Optional[int] = PoolFormerForImageClassification(lowerCamelCase) model.load_state_dict(lowerCamelCase) model.eval() # Define image processor A_ : int = PoolFormerImageProcessor(crop_pct=lowerCamelCase) A_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""").pixel_values # forward pass A_ : str = model(lowerCamelCase) A_ : Optional[int] = outputs.logits # define expected logit slices for different models if size == "s12": A_ : List[str] = torch.tensor([-0.3045, -0.6758, -0.4869]) elif size == "s24": A_ : Optional[int] = torch.tensor([0.4402, -0.1374, -0.8045]) elif size == "s36": A_ : Tuple = torch.tensor([-0.6080, -0.5133, -0.5898]) elif size == "m36": A_ : str = torch.tensor([0.3952, 0.2263, -1.2668]) elif size == "m48": A_ : Union[str, Any] = torch.tensor([0.1167, -0.0656, -0.3423]) else: raise ValueError(F'Size {size} not supported') # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , lowerCamelCase , atol=1E-2) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...') Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase) model.save_pretrained(lowerCamelCase) print(F'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) __magic_name__ = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
27
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCamelCase ( lowerCamelCase : Optional[Any]): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def lowerCamelCase ( lowerCamelCase : str): # word like '180' or '身高' or '神' for char in word: A_ : Optional[Any] = ord(lowerCamelCase) if not _is_chinese_char(lowerCamelCase): return 0 return 1 def lowerCamelCase ( lowerCamelCase : List[str]): A_ : Any = set() for token in tokens: A_ : str = len(lowerCamelCase) > 1 and is_chinese(lowerCamelCase) if chinese_word: word_set.add(lowerCamelCase) A_ : Any = list(lowerCamelCase) return word_list def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : set()): if not chinese_word_set: return bert_tokens A_ : Any = max([len(lowerCamelCase) for w in chinese_word_set]) A_ : str = bert_tokens A_ , A_ : Any = 0, len(lowerCamelCase) while start < end: A_ : Tuple = True if is_chinese(bert_word[start]): A_ : List[str] = min(end - start , lowerCamelCase) for i in range(lowerCamelCase , 1 , -1): A_ : Tuple = """""".join(bert_word[start : start + i]) if whole_word in chinese_word_set: for j in range(start + 1 , start + i): A_ : Dict = """##""" + bert_word[j] A_ : str = start + i A_ : Dict = False break if single_word: start += 1 return bert_word def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : LTP , lowerCamelCase : BertTokenizer): A_ : Union[str, Any] = [] for i in range(0 , len(lowerCamelCase) , 100): A_ : List[Any] = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""]).cws A_ : int = [get_chinese_word(lowerCamelCase) for r in res] ltp_res.extend(lowerCamelCase) assert len(lowerCamelCase) == len(lowerCamelCase) A_ : List[Any] = [] for i in range(0 , len(lowerCamelCase) , 100): A_ : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=lowerCamelCase , truncation=lowerCamelCase , max_length=512) bert_res.extend(res["""input_ids"""]) assert len(lowerCamelCase) == len(lowerCamelCase) A_ : Union[str, Any] = [] for input_ids, chinese_word in zip(lowerCamelCase , lowerCamelCase): A_ : List[Any] = [] for id in input_ids: A_ : List[Any] = bert_tokenizer._convert_id_to_token(lowerCamelCase) input_tokens.append(lowerCamelCase) A_ : int = add_sub_symbol(lowerCamelCase , lowerCamelCase) A_ : str = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCamelCase): if token[:2] == "##": A_ : Optional[Any] = token[2:] # save chinese tokens' pos if len(lowerCamelCase) == 1 and _is_chinese_char(ord(lowerCamelCase)): ref_id.append(lowerCamelCase) ref_ids.append(lowerCamelCase) assert len(lowerCamelCase) == len(lowerCamelCase) return ref_ids def lowerCamelCase ( lowerCamelCase : Tuple): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""") as f: A_ : Optional[int] = f.readlines() A_ : Union[str, Any] = [line.strip() for line in data if len(lowerCamelCase) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ : Optional[Any] = LTP(args.ltp) # faster in GPU device A_ : Dict = BertTokenizer.from_pretrained(args.bert) A_ : str = prepare_ref(lowerCamelCase , lowerCamelCase , lowerCamelCase) with open(args.save_path , """w""" , encoding="""utf-8""") as f: A_ : Optional[Any] = [json.dumps(lowerCamelCase) + """\n""" for ref in ref_ids] f.writelines(lowerCamelCase) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) __magic_name__ = parser.parse_args() main(args)
27
1
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase ( lowerCamelCase : Optional[Any]): A_ : Tuple = filter(lambda lowerCamelCase: p.requires_grad , model.parameters()) A_ : List[str] = sum([np.prod(p.size()) for p in model_parameters]) return params __magic_name__ = logging.getLogger(__name__) def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : str): if metric == "rouge2": A_ : List[str] = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": A_ : List[str] = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": A_ : Dict = """{val_avg_em:.4f}-{step_count}""" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' """ function.""") A_ : Any = ModelCheckpoint( dirpath=lowerCamelCase , filename=lowerCamelCase , monitor=F'val_{metric}' , mode="""max""" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : Optional[int]): return EarlyStopping( monitor=F'val_{metric}' , mode="""min""" if """loss""" in metric else """max""" , patience=lowerCamelCase , verbose=lowerCamelCase , ) class __lowerCAmelCase ( pl.Callback ): '''simple docstring''' def _a ( self : str ,_a : Optional[Any] ,_a : Optional[Any] ): '''simple docstring''' A_ : int = {f'lr_group_{i}': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_a ) @rank_zero_only def _a ( self : Dict ,_a : pl.Trainer ,_a : pl.LightningModule ,_a : str ,_a : Union[str, Any]=True ): '''simple docstring''' logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) A_ : Dict = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results A_ : str = Path(pl_module.hparams.output_dir ) if type_path == "test": A_ : Dict = od / """test_results.txt""" A_ : Optional[Any] = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. A_ : Union[str, Any] = od / f'{type_path}_results/{trainer.global_step:05d}.txt' A_ : Optional[Any] = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_a ) generations_file.parent.mkdir(exist_ok=_a ) with open(_a ,"""a+""" ) as writer: for key in sorted(_a ): if key in ["log", "progress_bar", "preds"]: continue A_ : Optional[int] = metrics[key] if isinstance(_a ,torch.Tensor ): A_ : Union[str, Any] = val.item() A_ : Dict = f'{key}: {val:.6f}\n' writer.write(_a ) if not save_generations: return if "preds" in metrics: A_ : int = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(_a ) @rank_zero_only def _a ( self : Optional[int] ,_a : List[Any] ,_a : str ): '''simple docstring''' try: A_ : Union[str, Any] = pl_module.model.model.num_parameters() except AttributeError: A_ : Tuple = pl_module.model.num_parameters() A_ : str = count_trainable_parameters(_a ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} ) @rank_zero_only def _a ( self : Optional[Any] ,_a : pl.Trainer ,_a : pl.LightningModule ): '''simple docstring''' save_json(pl_module.metrics ,pl_module.metrics_save_path ) return self._write_logs(_a ,_a ,"""test""" ) @rank_zero_only def _a ( self : Union[str, Any] ,_a : pl.Trainer ,_a : List[Any] ): '''simple docstring''' save_json(pl_module.metrics ,pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
27
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""image_processor""", """tokenizer"""] a_ = """ViltImageProcessor""" a_ = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : List[Any] ,_a : Optional[Any]=None ,_a : List[str]=None ,**_a : Any ): '''simple docstring''' A_ : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" ,_a ,) A_ : List[str] = kwargs.pop("""feature_extractor""" ) A_ : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_a ,_a ) A_ : Optional[Any] = self.image_processor def __call__( self : Any ,_a : Tuple ,_a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,_a : bool = True ,_a : Union[bool, str, PaddingStrategy] = False ,_a : Union[bool, str, TruncationStrategy] = None ,_a : Optional[int] = None ,_a : int = 0 ,_a : Optional[int] = None ,_a : Optional[bool] = None ,_a : Optional[bool] = None ,_a : bool = False ,_a : bool = False ,_a : bool = False ,_a : bool = False ,_a : bool = True ,_a : Optional[Union[str, TensorType]] = None ,**_a : Tuple ,): '''simple docstring''' A_ : int = self.tokenizer( text=_a ,add_special_tokens=_a ,padding=_a ,truncation=_a ,max_length=_a ,stride=_a ,pad_to_multiple_of=_a ,return_token_type_ids=_a ,return_attention_mask=_a ,return_overflowing_tokens=_a ,return_special_tokens_mask=_a ,return_offsets_mapping=_a ,return_length=_a ,verbose=_a ,return_tensors=_a ,**_a ,) # add pixel_values + pixel_mask A_ : Optional[int] = self.image_processor(_a ,return_tensors=_a ) encoding.update(_a ) return encoding def _a ( self : List[Any] ,*_a : Any ,**_a : Any ): '''simple docstring''' return self.tokenizer.batch_decode(*_a ,**_a ) def _a ( self : int ,*_a : int ,**_a : Optional[int] ): '''simple docstring''' return self.tokenizer.decode(*_a ,**_a ) @property def _a ( self : List[Any] ): '''simple docstring''' A_ : Optional[int] = self.tokenizer.model_input_names A_ : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _a ( self : str ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" ,_a ,) return self.image_processor_class @property def _a ( self : int ): '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" ,_a ,) return self.image_processor
27
1
'''simple docstring''' def lowerCamelCase ( lowerCamelCase : int): if a < 0: raise ValueError("""Input value must be a positive integer""") elif isinstance(lowerCamelCase , lowerCamelCase): raise TypeError("""Input value must be a 'int' type""") return bin(lowerCamelCase).count("""1""") if __name__ == "__main__": import doctest doctest.testmod()
27
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""torch""", """torchsde"""] def __init__( self : Any ,*_a : Union[str, Any] ,**_a : Optional[int] ): '''simple docstring''' requires_backends(self ,["""torch""", """torchsde"""] ) @classmethod def _a ( cls : Optional[int] ,*_a : List[Any] ,**_a : Any ): '''simple docstring''' requires_backends(cls ,["""torch""", """torchsde"""] ) @classmethod def _a ( cls : List[Any] ,*_a : Tuple ,**_a : Union[str, Any] ): '''simple docstring''' requires_backends(cls ,["""torch""", """torchsde"""] )
27
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'vocab_file': 'spiece.model'} __magic_name__ = { 'vocab_file': { 'bert_for_seq_generation': ( 'https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model' ), } } __magic_name__ = {'bert_for_seq_generation': 512} class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = [] a_ = ["""input_ids""", """attention_mask"""] def __init__( self : Any ,_a : Optional[Any] ,_a : Union[str, Any]="<s>" ,_a : int="</s>" ,_a : List[str]="<unk>" ,_a : Any="<pad>" ,_a : List[str]="<::::>" ,_a : Optional[Dict[str, Any]] = None ,**_a : str ,): '''simple docstring''' A_ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=_a ,eos_token=_a ,unk_token=_a ,pad_token=_a ,sep_token=_a ,sp_model_kwargs=self.sp_model_kwargs ,**_a ,) A_ : List[str] = vocab_file A_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) @property def _a ( self : Tuple ): '''simple docstring''' return self.sp_model.get_piece_size() def _a ( self : Optional[Any] ): '''simple docstring''' A_ : int = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ): '''simple docstring''' A_ : List[Any] = self.__dict__.copy() A_ : str = None return state def __setstate__( self : Tuple ,_a : Optional[int] ): '''simple docstring''' A_ : Tuple = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): A_ : Optional[Any] = {} A_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self : Union[str, Any] ,_a : str ): '''simple docstring''' return self.sp_model.encode(_a ,out_type=_a ) def _a ( self : int ,_a : Optional[Any] ): '''simple docstring''' return self.sp_model.piece_to_id(_a ) def _a ( self : Any ,_a : int ): '''simple docstring''' A_ : Tuple = self.sp_model.IdToPiece(_a ) return token def _a ( self : List[str] ,_a : Optional[Any] ): '''simple docstring''' A_ : Union[str, Any] = [] A_ : Union[str, Any] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_a ) + token A_ : Dict = [] else: current_sub_tokens.append(_a ) out_string += self.sp_model.decode(_a ) return out_string.strip() def _a ( self : Dict ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A_ : Tuple = os.path.join( _a ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_a ) elif not os.path.isfile(self.vocab_file ): with open(_a ,"""wb""" ) as fi: A_ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
27
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : str=True , lowerCamelCase : Optional[Any]="pt"): A_ : Optional[int] = {"""add_prefix_space""": True} if isinstance(lowerCamelCase , lowerCamelCase) and not line.startswith(""" """) else {} A_ : Optional[int] = padding_side return tokenizer( [line] , max_length=lowerCamelCase , padding="""max_length""" if pad_to_max_length else None , truncation=lowerCamelCase , return_tensors=lowerCamelCase , add_special_tokens=lowerCamelCase , **lowerCamelCase , ) def lowerCamelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any]=None , ): A_ : Dict = input_ids.ne(lowerCamelCase).any(dim=0) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] ,_a : Optional[Any] ,_a : Tuple ,_a : Dict ,_a : Tuple ,_a : Tuple="train" ,_a : Optional[int]=None ,_a : Any=None ,_a : int=None ,_a : Union[str, Any]="" ,): '''simple docstring''' super().__init__() A_ : Union[str, Any] = Path(_a ).joinpath(type_path + """.source""" ) A_ : Any = Path(_a ).joinpath(type_path + """.target""" ) A_ : Dict = self.get_char_lens(self.src_file ) A_ : Optional[int] = max_source_length A_ : List[str] = max_target_length assert min(self.src_lens ) > 0, f'found empty line in {self.src_file}' A_ : List[Any] = tokenizer A_ : Optional[Any] = prefix if n_obs is not None: A_ : Any = self.src_lens[:n_obs] A_ : Optional[int] = src_lang A_ : Tuple = tgt_lang def __len__( self : Tuple ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self : List[str] ,_a : Tuple ): '''simple docstring''' A_ : int = index + 1 # linecache starts at 1 A_ : Union[str, Any] = self.prefix + linecache.getline(str(self.src_file ) ,_a ).rstrip("""\n""" ) A_ : Dict = linecache.getline(str(self.tgt_file ) ,_a ).rstrip("""\n""" ) assert source_line, f'empty source line for index {index}' assert tgt_line, f'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer ,_a ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A_ : List[str] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,_a ) else self.tokenizer ) A_ : Any = self.tokenizer.generator if isinstance(self.tokenizer ,_a ) else self.tokenizer A_ : Optional[int] = encode_line(_a ,_a ,self.max_source_length ,"""right""" ) A_ : Optional[int] = encode_line(_a ,_a ,self.max_target_length ,"""right""" ) A_ : Optional[Any] = source_inputs["""input_ids"""].squeeze() A_ : Dict = target_inputs["""input_ids"""].squeeze() A_ : Union[str, Any] = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _a ( _a : int ): '''simple docstring''' return [len(_a ) for x in Path(_a ).open().readlines()] def _a ( self : Optional[int] ,_a : Dict ): '''simple docstring''' A_ : str = torch.stack([x["""input_ids"""] for x in batch] ) A_ : Optional[Any] = torch.stack([x["""attention_mask"""] for x in batch] ) A_ : str = torch.stack([x["""decoder_input_ids"""] for x in batch] ) A_ : Union[str, Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,_a ) else self.tokenizer.pad_token_id ) A_ : str = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,_a ) else self.tokenizer.pad_token_id ) A_ : List[str] = trim_batch(_a ,_a ) A_ , A_ : Union[str, Any] = trim_batch(_a ,_a ,attention_mask=_a ) A_ : List[str] = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch __magic_name__ = getLogger(__name__) def lowerCamelCase ( lowerCamelCase : List[List]): return list(itertools.chain.from_iterable(lowerCamelCase)) def lowerCamelCase ( lowerCamelCase : str): A_ : Union[str, Any] = get_git_info() save_json(lowerCamelCase , os.path.join(lowerCamelCase , """git_log.json""")) def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : List[str]=4 , **lowerCamelCase : List[str]): with open(lowerCamelCase , """w""") as f: json.dump(lowerCamelCase , lowerCamelCase , indent=lowerCamelCase , **lowerCamelCase) def lowerCamelCase ( lowerCamelCase : Any): with open(lowerCamelCase) as f: return json.load(lowerCamelCase) def lowerCamelCase ( ): A_ : List[str] = git.Repo(search_parent_directories=lowerCamelCase) A_ : Union[str, Any] = { """repo_id""": str(lowerCamelCase), """repo_sha""": str(repo.head.object.hexsha), """repo_branch""": str(repo.active_branch), """hostname""": str(socket.gethostname()), } return repo_infos def lowerCamelCase ( lowerCamelCase : Callable , lowerCamelCase : Iterable): return list(map(lowerCamelCase , lowerCamelCase)) def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : Union[str, Any]): with open(lowerCamelCase , """wb""") as f: return pickle.dump(lowerCamelCase , lowerCamelCase) def lowerCamelCase ( lowerCamelCase : List[str]): def remove_articles(lowerCamelCase : Any): return re.sub(r"""\b(a|an|the)\b""" , """ """ , lowerCamelCase) def white_space_fix(lowerCamelCase : List[Any]): return " ".join(text.split()) def remove_punc(lowerCamelCase : Union[str, Any]): A_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(lowerCamelCase : List[str]): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase)))) def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : int): A_ : Tuple = normalize_answer(lowerCamelCase).split() A_ : Dict = normalize_answer(lowerCamelCase).split() A_ : int = Counter(lowerCamelCase) & Counter(lowerCamelCase) A_ : Any = sum(common.values()) if num_same == 0: return 0 A_ : Any = 1.0 * num_same / len(lowerCamelCase) A_ : Any = 1.0 * num_same / len(lowerCamelCase) A_ : Any = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Any): return normalize_answer(lowerCamelCase) == normalize_answer(lowerCamelCase) def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : List[str]): assert len(lowerCamelCase) == len(lowerCamelCase) A_ : Any = 0 for hypo, pred in zip(lowerCamelCase , lowerCamelCase): em += exact_match_score(lowerCamelCase , lowerCamelCase) if len(lowerCamelCase) > 0: em /= len(lowerCamelCase) return {"em": em} def lowerCamelCase ( lowerCamelCase : Union[str, Any]): return model_prefix.startswith("""rag""") def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Union[str, Any]): A_ : Optional[Any] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A_ : Tuple = """dropout_rate""" for p in extra_params: if getattr(lowerCamelCase , lowerCamelCase , lowerCamelCase): if not hasattr(lowerCamelCase , lowerCamelCase) and not hasattr(lowerCamelCase , equivalent_param[p]): logger.info("""config doesn't have a `{}` attribute""".format(lowerCamelCase)) delattr(lowerCamelCase , lowerCamelCase) continue A_ : Tuple = p if hasattr(lowerCamelCase , lowerCamelCase) else equivalent_param[p] setattr(lowerCamelCase , lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase)) delattr(lowerCamelCase , lowerCamelCase) return hparams, config
27
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = KandinskyVaaControlnetPipeline a_ = ["""image_embeds""", """negative_image_embeds""", """hint"""] a_ = ["""image_embeds""", """negative_image_embeds""", """hint"""] a_ = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a_ = False @property def _a ( self : Any ): '''simple docstring''' return 32 @property def _a ( self : Tuple ): '''simple docstring''' return 32 @property def _a ( self : Tuple ): '''simple docstring''' return self.time_input_dim @property def _a ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def _a ( self : Optional[Any] ): '''simple docstring''' return 100 @property def _a ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) A_ : List[Any] = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } A_ : Tuple = UNetaDConditionModel(**_a ) return model @property def _a ( self : List[str] ): '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _a ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) A_ : int = VQModel(**self.dummy_movq_kwargs ) return model def _a ( self : List[str] ): '''simple docstring''' A_ : Optional[Any] = self.dummy_unet A_ : int = self.dummy_movq A_ : Tuple = DDIMScheduler( num_train_timesteps=1000 ,beta_schedule="""linear""" ,beta_start=0.00085 ,beta_end=0.012 ,clip_sample=_a ,set_alpha_to_one=_a ,steps_offset=1 ,prediction_type="""epsilon""" ,thresholding=_a ,) A_ : int = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _a ( self : Dict ,_a : str ,_a : Union[str, Any]=0 ): '''simple docstring''' A_ : Dict = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(_a ) ).to(_a ) A_ : int = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( _a ) # create hint A_ : List[Any] = floats_tensor((1, 3, 64, 64) ,rng=random.Random(_a ) ).to(_a ) if str(_a ).startswith("""mps""" ): A_ : Optional[Any] = torch.manual_seed(_a ) else: A_ : str = torch.Generator(device=_a ).manual_seed(_a ) A_ : List[Any] = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def _a ( self : Dict ): '''simple docstring''' A_ : List[Any] = """cpu""" A_ : List[str] = self.get_dummy_components() A_ : Tuple = self.pipeline_class(**_a ) A_ : Dict = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) A_ : Tuple = pipe(**self.get_dummy_inputs(_a ) ) A_ : Tuple = output.images A_ : Optional[Any] = pipe( **self.get_dummy_inputs(_a ) ,return_dict=_a ,)[0] A_ : Tuple = image[0, -3:, -3:, -1] A_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ : List[Any] = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def _a ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Any ): '''simple docstring''' A_ : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) A_ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) A_ : Optional[int] = torch.from_numpy(np.array(_a ) ).float() / 255.0 A_ : List[Any] = hint.permute(2 ,0 ,1 ).unsqueeze(0 ) A_ : List[Any] = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" ,torch_dtype=torch.floataa ) pipe_prior.to(_a ) A_ : Union[str, Any] = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" ,torch_dtype=torch.floataa ) A_ : Union[str, Any] = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) A_ : Optional[Any] = """A robot, 4k photo""" A_ : Any = torch.Generator(device="""cuda""" ).manual_seed(0 ) A_ , A_ : List[str] = pipe_prior( _a ,generator=_a ,num_inference_steps=5 ,negative_prompt="""""" ,).to_tuple() A_ : int = torch.Generator(device="""cuda""" ).manual_seed(0 ) A_ : List[Any] = pipeline( image_embeds=_a ,negative_image_embeds=_a ,hint=_a ,generator=_a ,num_inference_steps=100 ,output_type="""np""" ,) A_ : Dict = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_a ,_a )
27
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
1
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ,_a : Tuple ,_a : Dict=13 ,_a : Tuple=30 ,_a : Dict=2 ,_a : List[Any]=3 ,_a : List[Any]=True ,_a : Dict=True ,_a : Optional[Any]=32 ,_a : List[str]=5 ,_a : List[Any]=4 ,_a : str=37 ,_a : List[Any]="gelu" ,_a : Dict=0.1 ,_a : Optional[int]=0.1 ,_a : Tuple=10 ,_a : Optional[Any]=0.02 ,_a : Dict=3 ,_a : List[str]=0.6 ,_a : Optional[Any]=None ,): '''simple docstring''' A_ : List[str] = parent A_ : Optional[int] = batch_size A_ : Any = image_size A_ : Tuple = patch_size A_ : Any = num_channels A_ : Dict = is_training A_ : str = use_labels A_ : List[str] = hidden_size A_ : Optional[Any] = num_hidden_layers A_ : Optional[int] = num_attention_heads A_ : Optional[Any] = intermediate_size A_ : str = hidden_act A_ : Union[str, Any] = hidden_dropout_prob A_ : Optional[int] = attention_probs_dropout_prob A_ : List[str] = type_sequence_label_size A_ : Optional[int] = initializer_range A_ : Optional[Any] = mask_ratio A_ : Optional[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) A_ : Optional[Any] = (image_size // patch_size) ** 2 A_ : Any = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _a ( self : str ): '''simple docstring''' A_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Tuple = None if self.use_labels: A_ : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A_ : Any = self.get_config() return config, pixel_values, labels def _a ( self : List[Any] ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_a ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def _a ( self : Dict ,_a : List[Any] ,_a : str ,_a : List[Any] ): '''simple docstring''' A_ : int = ViTMAEModel(config=_a ) model.to(_a ) model.eval() A_ : Tuple = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Union[str, Any] ,_a : Any ,_a : int ,_a : List[Any] ): '''simple docstring''' A_ : Union[str, Any] = ViTMAEForPreTraining(_a ) model.to(_a ) model.eval() A_ : Optional[Any] = model(_a ) A_ : Any = (self.image_size // self.patch_size) ** 2 A_ : str = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images A_ : int = 1 A_ : Tuple = ViTMAEForPreTraining(_a ) model.to(_a ) model.eval() A_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : str = model(_a ) A_ : Any = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def _a ( self : Any ): '''simple docstring''' A_ : List[str] = self.prepare_config_and_inputs() A_ , A_ , A_ : Dict = config_and_inputs A_ : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () a_ = {"""feature-extraction""": ViTMAEModel} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False def _a ( self : Dict ): '''simple docstring''' A_ : List[Any] = ViTMAEModelTester(self ) A_ : str = ConfigTester(self ,config_class=_a ,has_text_modality=_a ,hidden_size=37 ) def _a ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def _a ( self : Any ): '''simple docstring''' pass def _a ( self : Optional[Any] ): '''simple docstring''' A_ , A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[str] = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) A_ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a ,nn.Linear ) ) def _a ( self : str ): '''simple docstring''' A_ , A_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : str = model_class(_a ) A_ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Union[str, Any] = [*signature.parameters.keys()] A_ : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,_a ) def _a ( self : List[str] ): '''simple docstring''' A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _a ( self : str ): '''simple docstring''' A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_a ) def _a ( self : str ,_a : str ,_a : str ,_a : Any ): '''simple docstring''' np.random.seed(2 ) A_ : str = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) A_ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) A_ : Optional[Any] = torch.from_numpy(_a ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument A_ : List[Any] = pt_noise super().check_pt_tf_models(_a ,_a ,_a ) def _a ( self : int ): '''simple docstring''' A_ , A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[str] = model_class(_a ) model.to(_a ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ : Dict = model(**self._prepare_for_class(_a ,_a ) ) A_ : Tuple = outputs[0].cpu().numpy() A_ : Optional[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_a ) A_ : Union[str, Any] = model_class.from_pretrained(_a ) model.to(_a ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ : Union[str, Any] = model(**self._prepare_for_class(_a ,_a ) ) # Make sure we don't have nans A_ : Optional[int] = after_outputs[0].cpu().numpy() A_ : Tuple = 0 A_ : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_a ,1e-5 ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _a ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _a ( self : List[Any] ): '''simple docstring''' pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _a ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def _a ( self : Dict ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self : Tuple ): '''simple docstring''' pass @slow def _a ( self : int ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[int] = ViTMAEModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCamelCase ( ): A_ : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def _a ( self : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def _a ( self : int ): '''simple docstring''' np.random.seed(2 ) A_ : Optional[Any] = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(_a ) A_ : Dict = self.default_image_processor A_ : Union[str, Any] = prepare_img() A_ : List[Any] = image_processor(images=_a ,return_tensors="""pt""" ).to(_a ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) A_ : Optional[int] = ViTMAEConfig() A_ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) A_ : Dict = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): A_ : Tuple = model(**_a ,noise=torch.from_numpy(_a ).to(device=_a ) ) # verify the logits A_ : Any = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape ,_a ) A_ : int = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(_a ) ,atol=1e-4 ) )
27
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = KandinskyVaaControlnetPipeline a_ = ["""image_embeds""", """negative_image_embeds""", """hint"""] a_ = ["""image_embeds""", """negative_image_embeds""", """hint"""] a_ = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a_ = False @property def _a ( self : Any ): '''simple docstring''' return 32 @property def _a ( self : Tuple ): '''simple docstring''' return 32 @property def _a ( self : Tuple ): '''simple docstring''' return self.time_input_dim @property def _a ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def _a ( self : Optional[Any] ): '''simple docstring''' return 100 @property def _a ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) A_ : List[Any] = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } A_ : Tuple = UNetaDConditionModel(**_a ) return model @property def _a ( self : List[str] ): '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _a ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) A_ : int = VQModel(**self.dummy_movq_kwargs ) return model def _a ( self : List[str] ): '''simple docstring''' A_ : Optional[Any] = self.dummy_unet A_ : int = self.dummy_movq A_ : Tuple = DDIMScheduler( num_train_timesteps=1000 ,beta_schedule="""linear""" ,beta_start=0.00085 ,beta_end=0.012 ,clip_sample=_a ,set_alpha_to_one=_a ,steps_offset=1 ,prediction_type="""epsilon""" ,thresholding=_a ,) A_ : int = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _a ( self : Dict ,_a : str ,_a : Union[str, Any]=0 ): '''simple docstring''' A_ : Dict = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(_a ) ).to(_a ) A_ : int = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( _a ) # create hint A_ : List[Any] = floats_tensor((1, 3, 64, 64) ,rng=random.Random(_a ) ).to(_a ) if str(_a ).startswith("""mps""" ): A_ : Optional[Any] = torch.manual_seed(_a ) else: A_ : str = torch.Generator(device=_a ).manual_seed(_a ) A_ : List[Any] = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def _a ( self : Dict ): '''simple docstring''' A_ : List[Any] = """cpu""" A_ : List[str] = self.get_dummy_components() A_ : Tuple = self.pipeline_class(**_a ) A_ : Dict = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) A_ : Tuple = pipe(**self.get_dummy_inputs(_a ) ) A_ : Tuple = output.images A_ : Optional[Any] = pipe( **self.get_dummy_inputs(_a ) ,return_dict=_a ,)[0] A_ : Tuple = image[0, -3:, -3:, -1] A_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ : List[Any] = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def _a ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Any ): '''simple docstring''' A_ : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) A_ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) A_ : Optional[int] = torch.from_numpy(np.array(_a ) ).float() / 255.0 A_ : List[Any] = hint.permute(2 ,0 ,1 ).unsqueeze(0 ) A_ : List[Any] = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" ,torch_dtype=torch.floataa ) pipe_prior.to(_a ) A_ : Union[str, Any] = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" ,torch_dtype=torch.floataa ) A_ : Union[str, Any] = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) A_ : Optional[Any] = """A robot, 4k photo""" A_ : Any = torch.Generator(device="""cuda""" ).manual_seed(0 ) A_ , A_ : List[str] = pipe_prior( _a ,generator=_a ,num_inference_steps=5 ,negative_prompt="""""" ,).to_tuple() A_ : int = torch.Generator(device="""cuda""" ).manual_seed(0 ) A_ : List[Any] = pipeline( image_embeds=_a ,negative_image_embeds=_a ,hint=_a ,generator=_a ,num_inference_steps=100 ,output_type="""np""" ,) A_ : Dict = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_a ,_a )
27
1
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __magic_name__ = logging.get_logger(__name__) # General docstring __magic_name__ = 'PoolFormerConfig' # Base docstring __magic_name__ = 'sail/poolformer_s12' __magic_name__ = [1, 512, 7, 7] # Image classification docstring __magic_name__ = 'sail/poolformer_s12' __magic_name__ = 'tabby, tabby cat' __magic_name__ = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : float = 0.0 , lowerCamelCase : bool = False): if drop_prob == 0.0 or not training: return input A_ : int = 1 - drop_prob A_ : str = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets A_ : int = keep_prob + torch.rand(lowerCamelCase , dtype=input.dtype , device=input.device) random_tensor.floor_() # binarize A_ : List[Any] = input.div(lowerCamelCase) * random_tensor return output class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_a : Optional[float] = None ): '''simple docstring''' super().__init__() A_ : str = drop_prob def _a ( self : Union[str, Any] ,_a : torch.Tensor ): '''simple docstring''' return drop_path(_a ,self.drop_prob ,self.training ) def _a ( self : Dict ): '''simple docstring''' return "p={}".format(self.drop_prob ) class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any ,_a : Dict ,_a : Optional[int] ,_a : Any ,_a : Optional[int] ,_a : Tuple ,_a : str=None ): '''simple docstring''' super().__init__() A_ : str = patch_size if isinstance(_a ,collections.abc.Iterable ) else (patch_size, patch_size) A_ : Dict = stride if isinstance(_a ,collections.abc.Iterable ) else (stride, stride) A_ : Any = padding if isinstance(_a ,collections.abc.Iterable ) else (padding, padding) A_ : List[Any] = nn.Convad(_a ,_a ,kernel_size=_a ,stride=_a ,padding=_a ) A_ : Dict = norm_layer(_a ) if norm_layer else nn.Identity() def _a ( self : List[str] ,_a : int ): '''simple docstring''' A_ : str = self.projection(_a ) A_ : Tuple = self.norm(_a ) return embeddings class __lowerCAmelCase ( nn.GroupNorm ): '''simple docstring''' def __init__( self : Union[str, Any] ,_a : Optional[int] ,**_a : Dict ): '''simple docstring''' super().__init__(1 ,_a ,**_a ) class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] ,_a : int ): '''simple docstring''' super().__init__() A_ : Tuple = nn.AvgPoolad(_a ,stride=1 ,padding=pool_size // 2 ,count_include_pad=_a ) def _a ( self : Dict ,_a : Optional[int] ): '''simple docstring''' return self.pool(_a ) - hidden_states class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any ,_a : List[str] ,_a : Any ,_a : int ,_a : int ): '''simple docstring''' super().__init__() A_ : Dict = nn.Convad(_a ,_a ,1 ) A_ : Union[str, Any] = nn.Convad(_a ,_a ,1 ) A_ : Optional[Any] = PoolFormerDropPath(_a ) if isinstance(config.hidden_act ,_a ): A_ : Union[str, Any] = ACTaFN[config.hidden_act] else: A_ : Dict = config.hidden_act def _a ( self : str ,_a : Tuple ): '''simple docstring''' A_ : Any = self.conva(_a ) A_ : str = self.act_fn(_a ) A_ : Optional[int] = self.drop(_a ) A_ : List[str] = self.conva(_a ) A_ : List[str] = self.drop(_a ) return hidden_states class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,_a : Any ,_a : Tuple ,_a : List[Any] ,_a : Tuple ,_a : Optional[Any] ,_a : List[Any] ): '''simple docstring''' super().__init__() A_ : List[Any] = PoolFormerPooling(_a ) A_ : str = PoolFormerOutput(_a ,_a ,_a ,_a ) A_ : List[Any] = PoolFormerGroupNorm(_a ) A_ : Optional[Any] = PoolFormerGroupNorm(_a ) # Useful for training neural nets A_ : Optional[int] = PoolFormerDropPath(_a ) if drop_path > 0.0 else nn.Identity() A_ : Any = config.use_layer_scale if config.use_layer_scale: A_ : Optional[int] = nn.Parameter( config.layer_scale_init_value * torch.ones((_a) ) ,requires_grad=_a ) A_ : Union[str, Any] = nn.Parameter( config.layer_scale_init_value * torch.ones((_a) ) ,requires_grad=_a ) def _a ( self : Optional[int] ,_a : Any ): '''simple docstring''' if self.use_layer_scale: A_ : Optional[Any] = self.pooling(self.before_norm(_a ) ) A_ : str = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection A_ : Optional[int] = hidden_states + self.drop_path(_a ) A_ : Optional[Any] = () A_ : List[Any] = self.output(self.after_norm(_a ) ) A_ : str = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection A_ : Union[str, Any] = hidden_states + self.drop_path(_a ) A_ : Dict = (output,) + outputs return outputs else: A_ : Union[str, Any] = self.drop_path(self.pooling(self.before_norm(_a ) ) ) # First residual connection A_ : Any = pooling_output + hidden_states A_ : List[str] = () # Second residual connection inside the PoolFormerOutput block A_ : List[Any] = self.drop_path(self.output(self.after_norm(_a ) ) ) A_ : str = hidden_states + layer_output A_ : Optional[Any] = (output,) + outputs return outputs class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_a : Optional[Any] ): '''simple docstring''' super().__init__() A_ : Any = config # stochastic depth decay rule A_ : Dict = [x.item() for x in torch.linspace(0 ,config.drop_path_rate ,sum(config.depths ) )] # patch embeddings A_ : Tuple = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] ,stride=config.strides[i] ,padding=config.padding[i] ,num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] ,hidden_size=config.hidden_sizes[i] ,) ) A_ : Optional[Any] = nn.ModuleList(_a ) # Transformer blocks A_ : Tuple = [] A_ : int = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers A_ : str = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( _a ,num_channels=config.hidden_sizes[i] ,pool_size=config.pool_size ,hidden_size=config.hidden_sizes[i] ,intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) ,drop_path=dpr[cur + j] ,) ) blocks.append(nn.ModuleList(_a ) ) A_ : List[Any] = nn.ModuleList(_a ) def _a ( self : Tuple ,_a : List[str] ,_a : List[Any]=False ,_a : Dict=True ): '''simple docstring''' A_ : List[Any] = () if output_hidden_states else None A_ : str = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings ,self.block ) ): A_ , A_ : List[str] = layers # Get patch embeddings from hidden_states A_ : Any = embedding_layer(_a ) # Send the embeddings through the blocks for _, blk in enumerate(_a ): A_ : Tuple = blk(_a ) A_ : List[str] = layer_outputs[0] if output_hidden_states: A_ : Union[str, Any] = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_a ,hidden_states=_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = PoolFormerConfig a_ = """poolformer""" a_ = """pixel_values""" a_ = True def _a ( self : int ,_a : List[str] ): '''simple docstring''' if isinstance(_a ,(nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_a ,nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _a ( self : Any ,_a : Optional[int] ,_a : List[str]=False ): '''simple docstring''' if isinstance(_a ,_a ): A_ : int = value __magic_name__ = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __magic_name__ = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( """The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.""" , __SCREAMING_SNAKE_CASE , ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : str ,_a : str ): '''simple docstring''' super().__init__(_a ) A_ : List[str] = config A_ : Optional[Any] = PoolFormerEncoder(_a ) # Initialize weights and apply final processing self.post_init() def _a ( self : Optional[int] ): '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(_a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_a ,config_class=_CONFIG_FOR_DOC ,modality="""vision""" ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def _a ( self : List[str] ,_a : Optional[torch.FloatTensor] = None ,_a : Optional[bool] = None ,_a : Optional[bool] = None ,): '''simple docstring''' A_ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) A_ : List[Any] = self.encoder( _a ,output_hidden_states=_a ,return_dict=_a ,) A_ : int = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=_a ,hidden_states=encoder_outputs.hidden_states ,) class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,_a : str ): '''simple docstring''' super().__init__() A_ : Optional[int] = nn.Linear(config.hidden_size ,config.hidden_size ) def _a ( self : str ,_a : Any ): '''simple docstring''' A_ : Optional[Any] = self.dense(_a ) return output @add_start_docstrings( """ PoolFormer Model transformer with an image classification head on top """ , __SCREAMING_SNAKE_CASE , ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,_a : List[str] ): '''simple docstring''' super().__init__(_a ) A_ : List[str] = config.num_labels A_ : str = PoolFormerModel(_a ) # Final norm A_ : Union[str, Any] = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head A_ : Optional[Any] = ( nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_a ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def _a ( self : str ,_a : Optional[torch.FloatTensor] = None ,_a : Optional[torch.LongTensor] = None ,_a : Optional[bool] = None ,_a : Optional[bool] = None ,): '''simple docstring''' A_ : int = return_dict if return_dict is not None else self.config.use_return_dict A_ : Tuple = self.poolformer( _a ,output_hidden_states=_a ,return_dict=_a ,) A_ : Optional[Any] = outputs[0] A_ : Optional[int] = self.classifier(self.norm(_a ).mean([-2, -1] ) ) A_ : Tuple = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: A_ : Optional[Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): A_ : List[Any] = """single_label_classification""" else: A_ : int = """multi_label_classification""" if self.config.problem_type == "regression": A_ : Optional[Any] = MSELoss() if self.num_labels == 1: A_ : Optional[int] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: A_ : List[Any] = loss_fct(_a ,_a ) elif self.config.problem_type == "single_label_classification": A_ : List[str] = CrossEntropyLoss() A_ : List[str] = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": A_ : Dict = BCEWithLogitsLoss() A_ : List[str] = loss_fct(_a ,_a ) if not return_dict: A_ : List[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_a ,logits=_a ,hidden_states=outputs.hidden_states )
27
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __magic_name__ = logging.get_logger(__name__) __magic_name__ = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """deberta-v2""" def __init__( self : Optional[Any] ,_a : Union[str, Any]=128100 ,_a : Optional[int]=1536 ,_a : Dict=24 ,_a : int=24 ,_a : Tuple=6144 ,_a : Union[str, Any]="gelu" ,_a : List[Any]=0.1 ,_a : Dict=0.1 ,_a : int=512 ,_a : int=0 ,_a : int=0.02 ,_a : int=1e-7 ,_a : List[str]=False ,_a : Union[str, Any]=-1 ,_a : List[Any]=0 ,_a : Optional[Any]=True ,_a : Tuple=None ,_a : Any=0 ,_a : int="gelu" ,**_a : Any ,): '''simple docstring''' super().__init__(**_a ) A_ : Union[str, Any] = hidden_size A_ : Dict = num_hidden_layers A_ : Union[str, Any] = num_attention_heads A_ : List[Any] = intermediate_size A_ : List[Any] = hidden_act A_ : Optional[int] = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : int = max_position_embeddings A_ : Any = type_vocab_size A_ : List[Any] = initializer_range A_ : int = relative_attention A_ : Tuple = max_relative_positions A_ : int = pad_token_id A_ : Tuple = position_biased_input # Backwards compatibility if type(_a ) == str: A_ : str = [x.strip() for x in pos_att_type.lower().split("""|""" )] A_ : Any = pos_att_type A_ : Optional[int] = vocab_size A_ : Tuple = layer_norm_eps A_ : Any = kwargs.get("""pooler_hidden_size""" ,_a ) A_ : Union[str, Any] = pooler_dropout A_ : List[Any] = pooler_hidden_act class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _a ( self : Any ): '''simple docstring''' if self.task == "multiple-choice": A_ : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : Any = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def _a ( self : Optional[int] ): '''simple docstring''' return 12 def _a ( self : int ,_a : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] ,_a : int = -1 ,_a : int = -1 ,_a : int = -1 ,_a : bool = False ,_a : Optional["TensorType"] = None ,_a : int = 3 ,_a : int = 40 ,_a : int = 40 ,_a : "PreTrainedTokenizerBase" = None ,): '''simple docstring''' A_ : Any = super().generate_dummy_inputs(preprocessor=_a ,framework=_a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
27
1
'''simple docstring''' import os import numpy import onnx def lowerCamelCase ( lowerCamelCase : Tuple , lowerCamelCase : Tuple): A_ : Tuple = a.name A_ : int = b.name A_ : str = """""" A_ : List[str] = """""" A_ : str = a == b A_ : Union[str, Any] = name_a A_ : Optional[int] = name_b return res def lowerCamelCase ( lowerCamelCase : Dict , lowerCamelCase : List[str] , lowerCamelCase : str): for i, input_name in enumerate(node_proto.input): if input_name == name: node_proto.input.insert(lowerCamelCase , lowerCamelCase) node_proto.input.pop(i + 1) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowerCamelCase , lowerCamelCase) _graph_replace_input_with(node_proto.attribute[1].g , lowerCamelCase , lowerCamelCase) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowerCamelCase , lowerCamelCase) def lowerCamelCase ( lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : Any): for n in graph_proto.node: _node_replace_input_with(lowerCamelCase , lowerCamelCase , lowerCamelCase) def lowerCamelCase ( lowerCamelCase : Dict , lowerCamelCase : List[Any] , lowerCamelCase : Tuple): A_ : int = list(model.graph.initializer) A_ : str = list(model_without_ext.graph.initializer) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i A_ : Tuple = inits[i].name A_ : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i]) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowerCamelCase , lowerCamelCase) def lowerCamelCase ( lowerCamelCase : Optional[int]): A_ : Any = os.path.dirname(lowerCamelCase) A_ : Optional[Any] = os.path.basename(lowerCamelCase) A_ : Tuple = onnx.load(os.path.join(lowerCamelCase , lowerCamelCase)) A_ : str = list(model.graph.initializer) A_ : Union[str, Any] = set() A_ : Dict = {} A_ : int = [] A_ : Optional[Any] = 0 for i in range(len(lowerCamelCase)): if i in dup_set: continue for j in range(i + 1 , len(lowerCamelCase)): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j]): dup_set.add(lowerCamelCase) dup_set.add(lowerCamelCase) A_ : str = inits[j].data_type A_ : int = numpy.prod(inits[j].dims) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , lowerCamelCase) total_reduced_size += mem_size A_ : List[Any] = inits[i].name A_ : List[Any] = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCamelCase) else: A_ : Any = [name_j] ind_to_replace.append((j, i)) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""") A_ : List[Any] = sorted(lowerCamelCase) _remove_dup_initializers_from_model(lowerCamelCase , lowerCamelCase , lowerCamelCase) A_ : Optional[int] = """optimized_""" + model_file_name A_ : List[str] = os.path.join(lowerCamelCase , lowerCamelCase) onnx.save(lowerCamelCase , lowerCamelCase) return new_model
27
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') __magic_name__ = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) __magic_name__ = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) __magic_name__ = BeautifulSoup(res.text, 'html.parser') __magic_name__ = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
27
1
'''simple docstring''' from collections.abc import Callable def lowerCamelCase ( lowerCamelCase : Callable[[float], float] , lowerCamelCase : float , lowerCamelCase : float): A_ : float = a A_ : float = b if function(lowerCamelCase) == 0: # one of the a or b is a root for the function return a elif function(lowerCamelCase) == 0: return b elif ( function(lowerCamelCase) * function(lowerCamelCase) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("""could not find root in given interval.""") else: A_ : float = start + (end - start) / 2.0 while abs(start - mid) > 10**-7: # until precisely equals to 10^-7 if function(lowerCamelCase) == 0: return mid elif function(lowerCamelCase) * function(lowerCamelCase) < 0: A_ : List[str] = mid else: A_ : Dict = mid A_ : Any = start + (end - start) / 2.0 return mid def lowerCamelCase ( lowerCamelCase : float): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
27
'''simple docstring''' from ... import PretrainedConfig __magic_name__ = { 'sijunhe/nezha-cn-base': 'https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json', } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP a_ = """nezha""" def __init__( self : int ,_a : Union[str, Any]=21128 ,_a : int=768 ,_a : Any=12 ,_a : List[str]=12 ,_a : str=3072 ,_a : int="gelu" ,_a : int=0.1 ,_a : str=0.1 ,_a : Tuple=512 ,_a : List[Any]=64 ,_a : Dict=2 ,_a : List[Any]=0.02 ,_a : Optional[Any]=1e-12 ,_a : List[Any]=0.1 ,_a : Union[str, Any]=0 ,_a : Any=2 ,_a : Union[str, Any]=3 ,_a : int=True ,**_a : int ,): '''simple docstring''' super().__init__(pad_token_id=_a ,bos_token_id=_a ,eos_token_id=_a ,**_a ) A_ : Tuple = vocab_size A_ : int = hidden_size A_ : Any = num_hidden_layers A_ : List[Any] = num_attention_heads A_ : Tuple = hidden_act A_ : List[Any] = intermediate_size A_ : List[str] = hidden_dropout_prob A_ : Tuple = attention_probs_dropout_prob A_ : Dict = max_position_embeddings A_ : Optional[Any] = max_relative_position A_ : List[Any] = type_vocab_size A_ : int = initializer_range A_ : Tuple = layer_norm_eps A_ : Dict = classifier_dropout A_ : int = use_cache
27
1
'''simple docstring''' import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __magic_name__ = 'python tqdm regex requests packaging filelock numpy tokenizers'.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('dataclasses') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('importlib_metadata') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def lowerCamelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : Any=None): require_version(deps[pkg] , lowerCamelCase)
27
'''simple docstring''' from __future__ import annotations def lowerCamelCase ( lowerCamelCase : dict , lowerCamelCase : str): A_ , A_ : List[Any] = set(lowerCamelCase), [start] while stack: A_ : Optional[Any] = stack.pop() explored.add(lowerCamelCase) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v]): if adj not in explored: stack.append(lowerCamelCase) return explored __magic_name__ = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
27
1
'''simple docstring''' def lowerCamelCase ( lowerCamelCase : int = 1000): A_ : List[str] = -1 A_ : str = 0 for a in range(1 , n // 3): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c A_ : Dict = (n * n - 2 * a * n) // (2 * n - 2 * a) A_ : str = n - a - b if c * c == (a * a + b * b): A_ : Any = a * b * c if candidate >= product: A_ : Any = candidate return product if __name__ == "__main__": print(f"""{solution() = }""")
27
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) def lowerCamelCase ( lowerCamelCase : Dict): A_ : List[str] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: A_ : Union[str, Any] = [144, 192, 240] A_ : int = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: A_ : List[str] = [96, 120, 144] A_ : Any = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: A_ : Any = [64, 80, 96] A_ : List[str] = [16, 16, 24, 48, 64, 80, 320] A_ : Any = 0.05 A_ : List[Any] = 2.0 if mobilevit_name.startswith("""deeplabv3_"""): A_ : int = 512 A_ : Optional[int] = 16 A_ : List[Any] = 21 A_ : List[str] = """pascal-voc-id2label.json""" else: A_ : str = 1000 A_ : Any = """imagenet-1k-id2label.json""" A_ : Any = """huggingface/label-files""" A_ : List[str] = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""") , """r""")) A_ : str = {int(lowerCamelCase): v for k, v in idalabel.items()} A_ : Any = idalabel A_ : List[str] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : int=False): for i in range(1 , 6): if F'layer_{i}.' in name: A_ : Tuple = name.replace(F'layer_{i}.' , F'encoder.layer.{i - 1}.') if "conv_1." in name: A_ : Union[str, Any] = name.replace("""conv_1.""" , """conv_stem.""") if ".block." in name: A_ : Optional[Any] = name.replace(""".block.""" , """.""") if "exp_1x1" in name: A_ : Union[str, Any] = name.replace("""exp_1x1""" , """expand_1x1""") if "red_1x1" in name: A_ : int = name.replace("""red_1x1""" , """reduce_1x1""") if ".local_rep.conv_3x3." in name: A_ : List[str] = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""") if ".local_rep.conv_1x1." in name: A_ : Optional[int] = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""") if ".norm." in name: A_ : Tuple = name.replace(""".norm.""" , """.normalization.""") if ".conv." in name: A_ : List[Any] = name.replace(""".conv.""" , """.convolution.""") if ".conv_proj." in name: A_ : str = name.replace(""".conv_proj.""" , """.conv_projection.""") for i in range(0 , 2): for j in range(0 , 4): if F'.{i}.{j}.' in name: A_ : Tuple = name.replace(F'.{i}.{j}.' , F'.{i}.layer.{j}.') for i in range(2 , 6): for j in range(0 , 4): if F'.{i}.{j}.' in name: A_ : Dict = name.replace(F'.{i}.{j}.' , F'.{i}.') if "expand_1x1" in name: A_ : Union[str, Any] = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""") if "conv_3x3" in name: A_ : str = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""") if "reduce_1x1" in name: A_ : Union[str, Any] = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""") for i in range(2 , 5): if F'.global_rep.{i}.weight' in name: A_ : List[Any] = name.replace(F'.global_rep.{i}.weight' , """.layernorm.weight""") if F'.global_rep.{i}.bias' in name: A_ : Optional[int] = name.replace(F'.global_rep.{i}.bias' , """.layernorm.bias""") if ".global_rep." in name: A_ : Optional[Any] = name.replace(""".global_rep.""" , """.transformer.""") if ".pre_norm_mha.0." in name: A_ : int = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""") if ".pre_norm_mha.1.out_proj." in name: A_ : Dict = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""") if ".pre_norm_ffn.0." in name: A_ : Dict = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""") if ".pre_norm_ffn.1." in name: A_ : Any = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""") if ".pre_norm_ffn.4." in name: A_ : Union[str, Any] = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""") if ".transformer." in name: A_ : Any = name.replace(""".transformer.""" , """.transformer.layer.""") if ".aspp_layer." in name: A_ : int = name.replace(""".aspp_layer.""" , """.""") if ".aspp_pool." in name: A_ : Tuple = name.replace(""".aspp_pool.""" , """.""") if "seg_head." in name: A_ : Optional[int] = name.replace("""seg_head.""" , """segmentation_head.""") if "segmentation_head.classifier.classifier." in name: A_ : List[str] = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""") if "classifier.fc." in name: A_ : str = name.replace("""classifier.fc.""" , """classifier.""") elif (not base_model) and ("segmentation_head." not in name): A_ : str = """mobilevit.""" + name return name def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int]=False): if base_model: A_ : Dict = """""" else: A_ : Any = """mobilevit.""" for key in orig_state_dict.copy().keys(): A_ : List[Any] = orig_state_dict.pop(lowerCamelCase) if key[:8] == "encoder.": A_ : int = key[8:] if "qkv" in key: A_ : Any = key.split(""".""") A_ : str = int(key_split[0][6:]) - 1 A_ : int = int(key_split[3]) A_ : Optional[Any] = model.get_submodule(F'{model_prefix}encoder.layer.{layer_num}') A_ : Tuple = layer.transformer.layer[transformer_num].attention.attention.all_head_size A_ : Optional[Any] = ( F'{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.' ) if "weight" in key: A_ : Dict = val[:dim, :] A_ : Optional[int] = val[dim : dim * 2, :] A_ : List[Any] = val[-dim:, :] else: A_ : Optional[Any] = val[:dim] A_ : List[Any] = val[dim : dim * 2] A_ : Any = val[-dim:] else: A_ : List[str] = val return orig_state_dict def lowerCamelCase ( ): A_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : Dict = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase).raw) return im @torch.no_grad() def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : Any , lowerCamelCase : Optional[int] , lowerCamelCase : int=False): A_ : Optional[Any] = get_mobilevit_config(lowerCamelCase) # load original state_dict A_ : List[Any] = torch.load(lowerCamelCase , map_location="""cpu""") # load 🤗 model if mobilevit_name.startswith("""deeplabv3_"""): A_ : List[str] = MobileViTForSemanticSegmentation(lowerCamelCase).eval() else: A_ : str = MobileViTForImageClassification(lowerCamelCase).eval() A_ : str = convert_state_dict(lowerCamelCase , lowerCamelCase) model.load_state_dict(lowerCamelCase) # Check outputs on an image, prepared by MobileViTImageProcessor A_ : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32) A_ : Any = image_processor(images=prepare_img() , return_tensors="""pt""") A_ : List[Any] = model(**lowerCamelCase) A_ : Dict = outputs.logits if mobilevit_name.startswith("""deeplabv3_"""): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": A_ : int = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ]) elif mobilevit_name == "deeplabv3_mobilevit_xs": A_ : Tuple = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ]) elif mobilevit_name == "deeplabv3_mobilevit_xxs": A_ : Tuple = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ]) else: raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}') assert torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase , atol=1E-4) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": A_ : Tuple = torch.tensor([-0.9866, 0.2392, -1.1241]) elif mobilevit_name == "mobilevit_xs": A_ : Any = torch.tensor([-2.4761, -0.9399, -1.9587]) elif mobilevit_name == "mobilevit_xxs": A_ : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653]) else: raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}') assert torch.allclose(logits[0, :3] , lowerCamelCase , atol=1E-4) Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase) print(F'Saving model {mobilevit_name} to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase) print(F'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase) if push_to_hub: A_ : str = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""") A_ : Union[str, Any] = model_mapping[mobilevit_name] image_processor.push_to_hub(lowerCamelCase , organization="""apple""") model.push_to_hub(lowerCamelCase , organization="""apple""") if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--mobilevit_name', default='mobilevit_s', type=str, help=( 'Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',' ' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.' ), ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __magic_name__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
27
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __magic_name__ = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } __magic_name__ = { 'squeezebert/squeezebert-uncased': 512, 'squeezebert/squeezebert-mnli': 512, 'squeezebert/squeezebert-mnli-headless': 512, } __magic_name__ = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_INIT_CONFIGURATION a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = SqueezeBertTokenizer def __init__( self : Optional[int] ,_a : Optional[Any]=None ,_a : Optional[int]=None ,_a : str=True ,_a : Any="[UNK]" ,_a : str="[SEP]" ,_a : Optional[Any]="[PAD]" ,_a : List[str]="[CLS]" ,_a : List[str]="[MASK]" ,_a : Optional[Any]=True ,_a : Optional[Any]=None ,**_a : Any ,): '''simple docstring''' super().__init__( _a ,tokenizer_file=_a ,do_lower_case=_a ,unk_token=_a ,sep_token=_a ,pad_token=_a ,cls_token=_a ,mask_token=_a ,tokenize_chinese_chars=_a ,strip_accents=_a ,**_a ,) A_ : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" ,_a ) != do_lower_case or normalizer_state.get("""strip_accents""" ,_a ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" ,_a ) != tokenize_chinese_chars ): A_ : List[Any] = getattr(_a ,normalizer_state.pop("""type""" ) ) A_ : Union[str, Any] = do_lower_case A_ : List[str] = strip_accents A_ : Dict = tokenize_chinese_chars A_ : List[str] = normalizer_class(**_a ) A_ : Any = do_lower_case def _a ( self : int ,_a : Dict ,_a : Dict=None ): '''simple docstring''' A_ : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _a ( self : Any ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' A_ : Dict = [self.sep_token_id] A_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self : Optional[int] ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' A_ : Union[str, Any] = self._tokenizer.model.save(_a ,name=_a ) return tuple(_a )
27
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __magic_name__ = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""pixel_values"""] def __init__( self : Optional[Any] ,_a : bool = True ,_a : Dict[str, int] = None ,_a : PILImageResampling = PILImageResampling.BICUBIC ,_a : bool = True ,_a : Dict[str, int] = None ,_a : bool = True ,_a : Union[int, float] = 1 / 255 ,_a : bool = True ,_a : Optional[Union[float, List[float]]] = None ,_a : Optional[Union[float, List[float]]] = None ,_a : bool = True ,**_a : Dict ,): '''simple docstring''' super().__init__(**_a ) A_ : Tuple = size if size is not None else {"""shortest_edge""": 224} A_ : Optional[Any] = get_size_dict(_a ,default_to_square=_a ) A_ : Tuple = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} A_ : Optional[Any] = get_size_dict(_a ,default_to_square=_a ,param_name="""crop_size""" ) A_ : Any = do_resize A_ : List[str] = size A_ : Union[str, Any] = resample A_ : Dict = do_center_crop A_ : List[str] = crop_size A_ : Any = do_rescale A_ : Union[str, Any] = rescale_factor A_ : Any = do_normalize A_ : List[str] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A_ : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD A_ : Tuple = do_convert_rgb def _a ( self : Optional[int] ,_a : np.ndarray ,_a : Dict[str, int] ,_a : PILImageResampling = PILImageResampling.BICUBIC ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Optional[Any] ,): '''simple docstring''' A_ : Optional[Any] = get_size_dict(_a ,default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A_ : Tuple = get_resize_output_image_size(_a ,size=size["""shortest_edge"""] ,default_to_square=_a ) return resize(_a ,size=_a ,resample=_a ,data_format=_a ,**_a ) def _a ( self : List[Any] ,_a : np.ndarray ,_a : Dict[str, int] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Optional[int] ,): '''simple docstring''' A_ : Optional[int] = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_a ,size=(size["""height"""], size["""width"""]) ,data_format=_a ,**_a ) def _a ( self : Any ,_a : np.ndarray ,_a : Union[int, float] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Any ,): '''simple docstring''' return rescale(_a ,scale=_a ,data_format=_a ,**_a ) def _a ( self : Any ,_a : np.ndarray ,_a : Union[float, List[float]] ,_a : Union[float, List[float]] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : List[str] ,): '''simple docstring''' return normalize(_a ,mean=_a ,std=_a ,data_format=_a ,**_a ) def _a ( self : Optional[Any] ,_a : ImageInput ,_a : bool = None ,_a : Dict[str, int] = None ,_a : PILImageResampling = None ,_a : bool = None ,_a : int = None ,_a : bool = None ,_a : float = None ,_a : bool = None ,_a : Optional[Union[float, List[float]]] = None ,_a : Optional[Union[float, List[float]]] = None ,_a : bool = None ,_a : Optional[Union[str, TensorType]] = None ,_a : Optional[ChannelDimension] = ChannelDimension.FIRST ,**_a : int ,): '''simple docstring''' A_ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize A_ : Tuple = size if size is not None else self.size A_ : Optional[int] = get_size_dict(_a ,param_name="""size""" ,default_to_square=_a ) A_ : List[str] = resample if resample is not None else self.resample A_ : int = do_center_crop if do_center_crop is not None else self.do_center_crop A_ : Any = crop_size if crop_size is not None else self.crop_size A_ : int = get_size_dict(_a ,param_name="""crop_size""" ,default_to_square=_a ) A_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale A_ : int = rescale_factor if rescale_factor is not None else self.rescale_factor A_ : Any = do_normalize if do_normalize is not None else self.do_normalize A_ : int = image_mean if image_mean is not None else self.image_mean A_ : int = image_std if image_std is not None else self.image_std A_ : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A_ : int = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: A_ : Optional[int] = [convert_to_rgb(_a ) for image in images] # All transformations expect numpy arrays. A_ : Dict = [to_numpy_array(_a ) for image in images] if do_resize: A_ : int = [self.resize(image=_a ,size=_a ,resample=_a ) for image in images] if do_center_crop: A_ : Tuple = [self.center_crop(image=_a ,size=_a ) for image in images] if do_rescale: A_ : List[str] = [self.rescale(image=_a ,scale=_a ) for image in images] if do_normalize: A_ : Any = [self.normalize(image=_a ,mean=_a ,std=_a ) for image in images] A_ : List[str] = [to_channel_dimension_format(_a ,_a ) for image in images] A_ : List[str] = {"""pixel_values""": images} return BatchFeature(data=_a ,tensor_type=_a )
27
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __magic_name__ = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['MobileViTFeatureExtractor'] __magic_name__ = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __magic_name__ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] ,*_a : Optional[Any] ,**_a : Optional[int] ): '''simple docstring''' warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" ,_a ,) super().__init__(*_a ,**_a )
27
1
'''simple docstring''' import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __magic_name__ = logging.get_logger(__name__) def lowerCamelCase ( lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : int , lowerCamelCase : Optional[Any]=None , lowerCamelCase : Optional[Any]=None): # Recurse if needed if "." in tensor_name: A_ : Union[str, Any] = tensor_name.split(""".""") for split in splits[:-1]: A_ : List[str] = getattr(lowerCamelCase , lowerCamelCase) if new_module is None: raise ValueError(F'{module} has no attribute {split}.') A_ : Any = new_module A_ : Tuple = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F'{module} does not have a parameter or a buffer named {tensor_name}.') A_ : Union[str, Any] = tensor_name in module._buffers A_ : str = getattr(lowerCamelCase , lowerCamelCase) if old_value.device == torch.device("""meta""") and device not in ["meta", torch.device("""meta""")] and value is None: raise ValueError(F'{tensor_name} is on the meta device, we need a `value` to put in on {device}.') A_ : int = False A_ : Any = False if is_buffer or not is_bitsandbytes_available(): A_ : Tuple = False A_ : str = False else: A_ : Any = hasattr(bnb.nn , """Params4bit""") and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit) A_ : Dict = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams) if is_abit or is_abit: A_ : Optional[Any] = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: A_ : int = old_value.to(lowerCamelCase) elif isinstance(lowerCamelCase , torch.Tensor): A_ : Tuple = value.to("""cpu""") if value.dtype == torch.inta: A_ : int = version.parse(importlib.metadata.version("""bitsandbytes""")) > version.parse( """0.37.2""") if not is_abit_serializable: raise ValueError( """Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. """ """Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.""") else: A_ : List[str] = torch.tensor(lowerCamelCase , device="""cpu""") # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , lowerCamelCase) and fpaa_statistics is None: A_ : Tuple = new_value.T A_ : str = old_value.__dict__ if is_abit: A_ : Dict = bnb.nn.IntaParams(lowerCamelCase , requires_grad=lowerCamelCase , **lowerCamelCase).to(lowerCamelCase) elif is_abit: A_ : List[str] = bnb.nn.Paramsabit(lowerCamelCase , requires_grad=lowerCamelCase , **lowerCamelCase).to(lowerCamelCase) A_ : Union[str, Any] = new_value if fpaa_statistics is not None: setattr(module.weight , """SCB""" , fpaa_statistics.to(lowerCamelCase)) else: if value is None: A_ : Optional[Any] = old_value.to(lowerCamelCase) elif isinstance(lowerCamelCase , torch.Tensor): A_ : List[Any] = value.to(lowerCamelCase) else: A_ : Any = torch.tensor(lowerCamelCase , device=lowerCamelCase) if is_buffer: A_ : Dict = new_value else: A_ : List[Any] = nn.Parameter(lowerCamelCase , requires_grad=old_value.requires_grad) A_ : Any = new_value def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : Optional[Any]=None , lowerCamelCase : int=None , lowerCamelCase : Optional[Any]=None , lowerCamelCase : List[Any]=False): for name, module in model.named_children(): if current_key_name is None: A_ : Tuple = [] current_key_name.append(lowerCamelCase) if (isinstance(lowerCamelCase , nn.Linear) or isinstance(lowerCamelCase , lowerCamelCase)) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in """.""".join(lowerCamelCase) for key in modules_to_not_convert): with init_empty_weights(): if isinstance(lowerCamelCase , lowerCamelCase): A_ , A_ : List[Any] = module.weight.shape else: A_ : Optional[Any] = module.in_features A_ : Dict = module.out_features if quantization_config.quantization_method() == "llm_int8": A_ : List[Any] = bnb.nn.LinearabitLt( lowerCamelCase , lowerCamelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) A_ : Any = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: A_ : Optional[int] = bnb.nn.Linearabit( lowerCamelCase , lowerCamelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) A_ : Tuple = True # Store the module class in case we need to transpose the weight later A_ : int = type(lowerCamelCase) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(lowerCamelCase) if len(list(module.children())) > 0: A_ , A_ : Any = _replace_with_bnb_linear( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , has_been_replaced=lowerCamelCase , ) # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : Optional[Any]=None , lowerCamelCase : str=None , lowerCamelCase : Union[str, Any]=None): A_ : str = ["""lm_head"""] if modules_to_not_convert is None else modules_to_not_convert A_ , A_ : str = _replace_with_bnb_linear( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""") return model def lowerCamelCase ( *lowerCamelCase : List[Any] , **lowerCamelCase : Union[str, Any]): warnings.warn( """`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead""" , lowerCamelCase , ) return replace_with_bnb_linear(*lowerCamelCase , **lowerCamelCase) def lowerCamelCase ( *lowerCamelCase : Tuple , **lowerCamelCase : Dict): warnings.warn( """`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead""" , lowerCamelCase , ) return set_module_quantized_tensor_to_device(*lowerCamelCase , **lowerCamelCase) def lowerCamelCase ( lowerCamelCase : Tuple): A_ : str = deepcopy(lowerCamelCase) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() A_ : Optional[Any] = find_tied_parameters(lowerCamelCase) # For compatibility with Accelerate < 0.18 if isinstance(lowerCamelCase , lowerCamelCase): A_ : str = sum(list(tied_params.values()) , []) + list(tied_params.keys()) else: A_ : Dict = sum(lowerCamelCase , []) A_ : List[Any] = len(lowerCamelCase) > 0 # Check if it is a base model A_ : Union[str, Any] = not hasattr(lowerCamelCase , model.base_model_prefix) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head A_ : int = list(model.named_children()) A_ : List[Any] = [list_modules[-1][0]] # add last module together with tied weights A_ : Any = set(lowerCamelCase) - set(lowerCamelCase) A_ : Any = list(set(lowerCamelCase)) + list(lowerCamelCase) # remove ".weight" from the keys A_ : Dict = [""".weight""", """.bias"""] A_ : Union[str, Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: A_ : Any = name.replace(lowerCamelCase , """""") filtered_module_names.append(lowerCamelCase) return filtered_module_names
27
'''simple docstring''' from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def lowerCamelCase ( lowerCamelCase : str , lowerCamelCase : complex , lowerCamelCase : str = "x" , lowerCamelCase : float = 10**-10 , lowerCamelCase : int = 1 , ): A_ : int = symbols(lowerCamelCase) A_ : List[Any] = lambdify(lowerCamelCase , lowerCamelCase) A_ : List[str] = lambdify(lowerCamelCase , diff(lowerCamelCase , lowerCamelCase)) A_ : str = starting_point while True: if diff_function(lowerCamelCase) != 0: A_ : int = prev_guess - multiplicity * func(lowerCamelCase) / diff_function( lowerCamelCase) else: raise ZeroDivisionError("""Could not find root""") from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess) < precision: return next_guess A_ : Union[str, Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5j)}""") # Find value of e print( 'The root of log(y) - 1 = 0 is ', f"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( 'The root of exp(x) - 1 = 0 is', f"""{newton_raphson('exp(x) - 1', 10, precision=0.0_0_5)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
27
1
'''simple docstring''' def lowerCamelCase ( lowerCamelCase : str , lowerCamelCase : List[Any]): A_ : int = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any]): A_ : Dict = 0 while b > 0: if b & 1: A_ : Tuple = ((res % c) + (a % c)) % c a += a b >>= 1 return res
27
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset __magic_name__ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_a : Dict ): '''simple docstring''' super().__init__() A_ : List[str] = torchvision.models.resnetaaa(pretrained=_a ) A_ : int = list(model.children() )[:-2] A_ : int = nn.Sequential(*_a ) A_ : Optional[int] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def _a ( self : str ,_a : Optional[int] ): '''simple docstring''' A_ : Tuple = self.pool(self.model(_a ) ) A_ : Any = torch.flatten(_a ,start_dim=2 ) A_ : str = out.transpose(1 ,2 ).contiguous() return out # BxNx2048 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,_a : Optional[Any] ,_a : Optional[Any] ,_a : Dict ,_a : Dict ,_a : Optional[Any] ): '''simple docstring''' A_ : Dict = [json.loads(_a ) for l in open(_a )] A_ : Optional[int] = os.path.dirname(_a ) A_ : Optional[Any] = tokenizer A_ : Optional[Any] = labels A_ : List[Any] = len(_a ) A_ : str = max_seq_length A_ : str = transforms def __len__( self : str ): '''simple docstring''' return len(self.data ) def __getitem__( self : Tuple ,_a : Optional[Any] ): '''simple docstring''' A_ : Optional[int] = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] ,add_special_tokens=_a ) ) A_ , A_ , A_ : Dict = sentence[0], sentence[1:-1], sentence[-1] A_ : Optional[int] = sentence[: self.max_seq_length] A_ : Any = torch.zeros(self.n_classes ) A_ : Tuple = 1 A_ : Optional[Any] = Image.open(os.path.join(self.data_dir ,self.data[index]["""img"""] ) ).convert("""RGB""" ) A_ : Union[str, Any] = self.transforms(_a ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _a ( self : List[Any] ): '''simple docstring''' A_ : str = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def lowerCamelCase ( lowerCamelCase : str): A_ : List[Any] = [len(row["""sentence"""]) for row in batch] A_ , A_ : Dict = len(lowerCamelCase), max(lowerCamelCase) A_ : Optional[int] = torch.zeros(lowerCamelCase , lowerCamelCase , dtype=torch.long) A_ : Tuple = torch.zeros(lowerCamelCase , lowerCamelCase , dtype=torch.long) for i_batch, (input_row, length) in enumerate(zip(lowerCamelCase , lowerCamelCase)): A_ : str = input_row["""sentence"""] A_ : Tuple = 1 A_ : int = torch.stack([row["""image"""] for row in batch]) A_ : str = torch.stack([row["""label"""] for row in batch]) A_ : List[Any] = torch.stack([row["""image_start_token"""] for row in batch]) A_ : Tuple = torch.stack([row["""image_end_token"""] for row in batch]) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase ( ): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase ( ): return transforms.Compose( [ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( mean=[0.4677_7044, 0.4453_1429, 0.4066_1017] , std=[0.1222_1994, 0.1214_5835, 0.1438_0469] , ), ])
27
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __magic_name__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __magic_name__ = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } __magic_name__ = { 'google/electra-small-generator': 512, 'google/electra-base-generator': 512, 'google/electra-large-generator': 512, 'google/electra-small-discriminator': 512, 'google/electra-base-discriminator': 512, 'google/electra-large-discriminator': 512, } __magic_name__ = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_INIT_CONFIGURATION a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ElectraTokenizer def __init__( self : Any ,_a : str=None ,_a : Union[str, Any]=None ,_a : Optional[int]=True ,_a : Union[str, Any]="[UNK]" ,_a : List[Any]="[SEP]" ,_a : Union[str, Any]="[PAD]" ,_a : str="[CLS]" ,_a : Union[str, Any]="[MASK]" ,_a : Optional[int]=True ,_a : Tuple=None ,**_a : List[str] ,): '''simple docstring''' super().__init__( _a ,tokenizer_file=_a ,do_lower_case=_a ,unk_token=_a ,sep_token=_a ,pad_token=_a ,cls_token=_a ,mask_token=_a ,tokenize_chinese_chars=_a ,strip_accents=_a ,**_a ,) A_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" ,_a ) != do_lower_case or normalizer_state.get("""strip_accents""" ,_a ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" ,_a ) != tokenize_chinese_chars ): A_ : List[str] = getattr(_a ,normalizer_state.pop("""type""" ) ) A_ : str = do_lower_case A_ : List[Any] = strip_accents A_ : Optional[Any] = tokenize_chinese_chars A_ : List[str] = normalizer_class(**_a ) A_ : Dict = do_lower_case def _a ( self : List[Any] ,_a : Any ,_a : int=None ): '''simple docstring''' A_ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _a ( self : int ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' A_ : List[str] = [self.sep_token_id] A_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self : Dict ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' A_ : Optional[Any] = self._tokenizer.model.save(_a ,name=_a ) return tuple(_a )
27
'''simple docstring''' from __future__ import annotations import math def lowerCamelCase ( lowerCamelCase : int): if num <= 0: A_ : List[Any] = F'{num}: Invalid input, please enter a positive integer.' raise ValueError(lowerCamelCase) A_ : str = [True] * (num + 1) A_ : Tuple = [] A_ : str = 2 A_ : Any = int(math.sqrt(lowerCamelCase)) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCamelCase) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCamelCase): if sieve[i] is True: A_ : Union[str, Any] = False start += 1 for j in range(end + 1 , num + 1): if sieve[j] is True: prime.append(lowerCamelCase) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
27
1
'''simple docstring''' import numpy as np __magic_name__ = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class __lowerCAmelCase : '''simple docstring''' def __init__( self : Any ): '''simple docstring''' A_ : str = np.array(_a ) def _a ( self : Any ,_a : str ): '''simple docstring''' A_ , A_ : Optional[Any] = np.where(letter == self.SQUARE ) A_ : Tuple = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _a ( self : List[Any] ,_a : int ,_a : int ): '''simple docstring''' A_ : str = self.SQUARE[indexa - 1, indexa - 1] return letter def _a ( self : int ,_a : str ): '''simple docstring''' A_ : Dict = message.lower() A_ : Any = message.replace(""" """ ,"""""" ) A_ : List[str] = message.replace("""j""" ,"""i""" ) A_ : int = np.empty((2, len(_a )) ) for letter_index in range(len(_a ) ): A_ : List[Any] = self.letter_to_numbers(message[letter_index] ) A_ : Dict = numbers[0] A_ : str = numbers[1] A_ : Optional[Any] = first_step.reshape(2 * len(_a ) ) A_ : Tuple = """""" for numbers_index in range(len(_a ) ): A_ : Any = int(second_step[numbers_index * 2] ) A_ : List[Any] = int(second_step[(numbers_index * 2) + 1] ) A_ : int = self.numbers_to_letter(_a ,_a ) A_ : Dict = encoded_message + letter return encoded_message def _a ( self : Union[str, Any] ,_a : str ): '''simple docstring''' A_ : Union[str, Any] = message.lower() message.replace(""" """ ,"""""" ) A_ : Tuple = np.empty(2 * len(_a ) ) for letter_index in range(len(_a ) ): A_ : str = self.letter_to_numbers(message[letter_index] ) A_ : List[str] = numbers[0] A_ : List[str] = numbers[1] A_ : Dict = first_step.reshape((2, len(_a )) ) A_ : Union[str, Any] = """""" for numbers_index in range(len(_a ) ): A_ : Optional[Any] = int(second_step[0, numbers_index] ) A_ : Union[str, Any] = int(second_step[1, numbers_index] ) A_ : List[Any] = self.numbers_to_letter(_a ,_a ) A_ : List[Any] = decoded_message + letter return decoded_message
27
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __magic_name__ = trt.Logger(trt.Logger.WARNING) __magic_name__ = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __magic_name__ = logging.getLogger(__name__) __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=384, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=128, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) __magic_name__ = parser.parse_args() if args.tokenizer_name: __magic_name__ = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) __magic_name__ = args.per_device_eval_batch_size __magic_name__ = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __magic_name__ = True __magic_name__ = 'temp_engine/bert-fp32.engine' if args.fpaa: __magic_name__ = 'temp_engine/bert-fp16.engine' if args.inta: __magic_name__ = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') __magic_name__ = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __magic_name__ = [network.get_input(i) for i in range(network.num_inputs)] __magic_name__ = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __magic_name__ = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __magic_name__ = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __magic_name__ = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : Any , lowerCamelCase : List[Any] , lowerCamelCase : str , lowerCamelCase : List[str]): A_ : str = np.asarray(inputs["""input_ids"""] , dtype=np.intaa) A_ : int = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa) A_ : Optional[int] = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCamelCase) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCamelCase) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCamelCase) # start time A_ : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowerCamelCase) for d_inp in d_inputs] + [int(lowerCamelCase), int(lowerCamelCase)] , stream_handle=stream.handle) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCamelCase , lowerCamelCase , lowerCamelCase) cuda.memcpy_dtoh_async(lowerCamelCase , lowerCamelCase , lowerCamelCase) # Synchronize the stream and take time stream.synchronize() # end time A_ : str = time.time() A_ : Tuple = end_time - start_time A_ : Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __magic_name__ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __magic_name__ = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __magic_name__ = raw_datasets['validation'].column_names __magic_name__ = 'question' if 'question' in column_names else column_names[0] __magic_name__ = 'context' if 'context' in column_names else column_names[1] __magic_name__ = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __magic_name__ = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __magic_name__ = min(args.max_seq_length, tokenizer.model_max_length) def lowerCamelCase ( lowerCamelCase : Dict): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace A_ : List[Any] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. A_ : Optional[int] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCamelCase , stride=args.doc_stride , return_overflowing_tokens=lowerCamelCase , return_offsets_mapping=lowerCamelCase , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. A_ : List[str] = tokenized_examples.pop("""overflow_to_sample_mapping""") # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. A_ : Union[str, Any] = [] for i in range(len(tokenized_examples["""input_ids"""])): # Grab the sequence corresponding to that example (to know what is the context and what is the question). A_ : Any = tokenized_examples.sequence_ids(lowerCamelCase) A_ : Tuple = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. A_ : Union[str, Any] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index]) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. A_ : Dict = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i]) ] return tokenized_examples __magic_name__ = raw_datasets['validation'] # Validation Feature Creation __magic_name__ = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) __magic_name__ = default_data_collator __magic_name__ = eval_dataset.remove_columns(['example_id', 'offset_mapping']) __magic_name__ = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def lowerCamelCase ( lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any]="eval"): # Post-processing: we match the start logits and end logits to answers in the original context. A_ : Tuple = postprocess_qa_predictions( examples=lowerCamelCase , features=lowerCamelCase , predictions=lowerCamelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCamelCase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: A_ : Dict = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: A_ : Union[str, Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] A_ : Any = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCamelCase , label_ids=lowerCamelCase) __magic_name__ = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def lowerCamelCase ( lowerCamelCase : Union[str, Any]): return trt.volume(engine.get_binding_shape(lowerCamelCase)) * engine.get_binding_dtype(lowerCamelCase).itemsize # Allocate device memory for inputs and outputs. __magic_name__ = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __magic_name__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __magic_name__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __magic_name__ = cuda.mem_alloc(h_outputa.nbytes) __magic_name__ = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __magic_name__ = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(f""" Num examples = {len(eval_dataset)}""") logger.info(f""" Batch size = {args.per_device_eval_batch_size}""") __magic_name__ = 0.0 __magic_name__ = 0 __magic_name__ = timeit.default_timer() __magic_name__ = None for step, batch in enumerate(eval_dataloader): __magic_name__ , __magic_name__ = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __magic_name__ , __magic_name__ = outputs __magic_name__ = torch.tensor(start_logits) __magic_name__ = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __magic_name__ = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __magic_name__ = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __magic_name__ = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __magic_name__ = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __magic_name__ = nested_truncate(all_preds, len(eval_dataset)) __magic_name__ = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_000 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_000)) logger.info('Total Number of Inference = %d', niter) __magic_name__ = post_processing_function(eval_examples, eval_dataset, all_preds) __magic_name__ = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"""Evaluation metrics: {eval_metric}""")
27
1
'''simple docstring''' from __future__ import annotations import math def lowerCamelCase ( lowerCamelCase : int): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase ( lowerCamelCase : int): A_ : Optional[int] = str(lowerCamelCase) A_ : Optional[int] = [n] for i in range(1 , len(lowerCamelCase)): list_nums.append(int(str_num[i:])) list_nums.append(int(str_num[:-i])) return list_nums def lowerCamelCase ( lowerCamelCase : int): if len(str(lowerCamelCase)) > 3: if not is_prime(int(str(lowerCamelCase)[-3:])) or not is_prime(int(str(lowerCamelCase)[:3])): return False return True def lowerCamelCase ( lowerCamelCase : int = 11): A_ : list[int] = [] A_ : Union[str, Any] = 13 while len(lowerCamelCase) != count: if validate(lowerCamelCase): A_ : Dict = list_truncated_nums(lowerCamelCase) if all(is_prime(lowerCamelCase) for i in list_nums): list_truncated_primes.append(lowerCamelCase) num += 2 return list_truncated_primes def lowerCamelCase ( ): return sum(compute_truncated_primes(11)) if __name__ == "__main__": print(f"""{sum(compute_truncated_primes(11)) = }""")
27
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __magic_name__ = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['ConvNextFeatureExtractor'] __magic_name__ = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure)
27
1
'''simple docstring''' def lowerCamelCase ( lowerCamelCase : List[Any] , lowerCamelCase : Tuple): A_ : List[str] = """""" for i in table: res += inp[i - 1] return res def lowerCamelCase ( lowerCamelCase : List[Any]): return data[1:] + data[0] def lowerCamelCase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any]): A_ : List[Any] = """""" for i in range(len(lowerCamelCase)): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCamelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : int): A_ : str = int("""0b""" + data[0] + data[-1] , 2) A_ : Tuple = int("""0b""" + data[1:3] , 2) return bin(s[row][col])[2:] def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : int , lowerCamelCase : Tuple): A_ : Any = message[:4] A_ : Optional[Any] = message[4:] A_ : Any = apply_table(lowerCamelCase , lowerCamelCase) A_ : str = xor(lowerCamelCase , lowerCamelCase) A_ : Tuple = apply_sbox(lowerCamelCase , temp[:4]) # noqa: E741 A_ : Any = apply_sbox(lowerCamelCase , temp[4:]) A_ : List[str] = """0""" * (2 - len(lowerCamelCase)) + l # noqa: E741 A_ : Tuple = """0""" * (2 - len(lowerCamelCase)) + r A_ : Optional[Any] = apply_table(l + r , lowerCamelCase) A_ : Union[str, Any] = xor(lowerCamelCase , lowerCamelCase) return temp + right if __name__ == "__main__": __magic_name__ = input('Enter 10 bit key: ') __magic_name__ = input('Enter 8 bit message: ') __magic_name__ = [6, 3, 7, 4, 8, 5, 10, 9] __magic_name__ = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] __magic_name__ = [2, 4, 3, 1] __magic_name__ = [2, 6, 3, 1, 4, 8, 5, 7] __magic_name__ = [4, 1, 3, 5, 7, 2, 8, 6] __magic_name__ = [4, 1, 2, 3, 2, 3, 4, 1] __magic_name__ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __magic_name__ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __magic_name__ = apply_table(key, paa_table) __magic_name__ = temp[:5] __magic_name__ = temp[5:] __magic_name__ = left_shift(left) __magic_name__ = left_shift(right) __magic_name__ = apply_table(left + right, pa_table) __magic_name__ = left_shift(left) __magic_name__ = left_shift(right) __magic_name__ = left_shift(left) __magic_name__ = left_shift(right) __magic_name__ = apply_table(left + right, pa_table) # encryption __magic_name__ = apply_table(message, IP) __magic_name__ = function(expansion, sa, sa, keya, temp) __magic_name__ = temp[4:] + temp[:4] __magic_name__ = function(expansion, sa, sa, keya, temp) __magic_name__ = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption __magic_name__ = apply_table(CT, IP) __magic_name__ = function(expansion, sa, sa, keya, temp) __magic_name__ = temp[4:] + temp[:4] __magic_name__ = function(expansion, sa, sa, keya, temp) __magic_name__ = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
27
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { 'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json', 'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json', 'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json', } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """owlvit_text_model""" def __init__( self : Union[str, Any] ,_a : Any=49408 ,_a : Any=512 ,_a : Tuple=2048 ,_a : Dict=12 ,_a : Optional[int]=8 ,_a : Tuple=16 ,_a : Tuple="quick_gelu" ,_a : Optional[Any]=1e-5 ,_a : List[Any]=0.0 ,_a : Optional[int]=0.02 ,_a : Dict=1.0 ,_a : Dict=0 ,_a : Any=49406 ,_a : Tuple=49407 ,**_a : List[Any] ,): '''simple docstring''' super().__init__(pad_token_id=_a ,bos_token_id=_a ,eos_token_id=_a ,**_a ) A_ : Tuple = vocab_size A_ : int = hidden_size A_ : Optional[int] = intermediate_size A_ : Optional[int] = num_hidden_layers A_ : Union[str, Any] = num_attention_heads A_ : int = max_position_embeddings A_ : str = hidden_act A_ : Union[str, Any] = layer_norm_eps A_ : Tuple = attention_dropout A_ : Union[str, Any] = initializer_range A_ : List[Any] = initializer_factor @classmethod def _a ( cls : List[str] ,_a : Union[str, os.PathLike] ,**_a : str ): '''simple docstring''' cls._set_token_in_kwargs(_a ) A_ , A_ : int = cls.get_config_dict(_a ,**_a ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": A_ : Union[str, Any] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a ,**_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """owlvit_vision_model""" def __init__( self : List[Any] ,_a : Optional[Any]=768 ,_a : Tuple=3072 ,_a : Dict=12 ,_a : int=12 ,_a : Dict=3 ,_a : Tuple=768 ,_a : int=32 ,_a : int="quick_gelu" ,_a : List[Any]=1e-5 ,_a : Tuple=0.0 ,_a : List[Any]=0.02 ,_a : str=1.0 ,**_a : int ,): '''simple docstring''' super().__init__(**_a ) A_ : List[str] = hidden_size A_ : Union[str, Any] = intermediate_size A_ : Union[str, Any] = num_hidden_layers A_ : Optional[Any] = num_attention_heads A_ : int = num_channels A_ : str = image_size A_ : List[Any] = patch_size A_ : int = hidden_act A_ : List[Any] = layer_norm_eps A_ : List[str] = attention_dropout A_ : str = initializer_range A_ : str = initializer_factor @classmethod def _a ( cls : List[Any] ,_a : Union[str, os.PathLike] ,**_a : str ): '''simple docstring''' cls._set_token_in_kwargs(_a ) A_ , A_ : Optional[int] = cls.get_config_dict(_a ,**_a ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": A_ : List[str] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a ,**_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """owlvit""" a_ = True def __init__( self : Union[str, Any] ,_a : List[str]=None ,_a : List[str]=None ,_a : Dict=512 ,_a : List[Any]=2.6592 ,_a : Optional[Any]=True ,**_a : Optional[int] ,): '''simple docstring''' super().__init__(**_a ) if text_config is None: A_ : List[Any] = {} logger.info("""text_config is None. Initializing the OwlViTTextConfig with default values.""" ) if vision_config is None: A_ : Tuple = {} logger.info("""vision_config is None. initializing the OwlViTVisionConfig with default values.""" ) A_ : Dict = OwlViTTextConfig(**_a ) A_ : Dict = OwlViTVisionConfig(**_a ) A_ : Any = projection_dim A_ : Optional[int] = logit_scale_init_value A_ : Optional[int] = return_dict A_ : Dict = 1.0 @classmethod def _a ( cls : Union[str, Any] ,_a : Union[str, os.PathLike] ,**_a : Optional[int] ): '''simple docstring''' cls._set_token_in_kwargs(_a ) A_ , A_ : List[Any] = cls.get_config_dict(_a ,**_a ) if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a ,**_a ) @classmethod def _a ( cls : int ,_a : Dict ,_a : Dict ,**_a : List[str] ): '''simple docstring''' A_ : str = {} A_ : int = text_config A_ : Union[str, Any] = vision_config return cls.from_dict(_a ,**_a ) def _a ( self : Optional[int] ): '''simple docstring''' A_ : Dict = copy.deepcopy(self.__dict__ ) A_ : str = self.text_config.to_dict() A_ : Optional[int] = self.vision_config.to_dict() A_ : List[Any] = self.__class__.model_type return output class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _a ( self : int ): '''simple docstring''' return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ] ) @property def _a ( self : str ): '''simple docstring''' return OrderedDict( [ ("""logits_per_image""", {0: """batch"""}), ("""logits_per_text""", {0: """batch"""}), ("""text_embeds""", {0: """batch"""}), ("""image_embeds""", {0: """batch"""}), ] ) @property def _a ( self : Optional[Any] ): '''simple docstring''' return 1e-4 def _a ( self : int ,_a : "ProcessorMixin" ,_a : int = -1 ,_a : int = -1 ,_a : Optional["TensorType"] = None ,): '''simple docstring''' A_ : Any = super().generate_dummy_inputs( processor.tokenizer ,batch_size=_a ,seq_length=_a ,framework=_a ) A_ : Any = super().generate_dummy_inputs( processor.image_processor ,batch_size=_a ,framework=_a ) return {**text_input_dict, **image_input_dict} @property def _a ( self : Optional[Any] ): '''simple docstring''' return 14
27
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""torch""", """torchsde"""] def __init__( self : Any ,*_a : Union[str, Any] ,**_a : Optional[int] ): '''simple docstring''' requires_backends(self ,["""torch""", """torchsde"""] ) @classmethod def _a ( cls : Optional[int] ,*_a : List[Any] ,**_a : Any ): '''simple docstring''' requires_backends(cls ,["""torch""", """torchsde"""] ) @classmethod def _a ( cls : List[Any] ,*_a : Tuple ,**_a : Union[str, Any] ): '''simple docstring''' requires_backends(cls ,["""torch""", """torchsde"""] )
27
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __magic_name__ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""input_features""", """is_longer"""] def __init__( self : Dict ,_a : Optional[int]=64 ,_a : List[Any]=48000 ,_a : str=480 ,_a : Optional[Any]=10 ,_a : Optional[int]=1024 ,_a : Tuple=0.0 ,_a : str=False ,_a : float = 0 ,_a : float = 14000 ,_a : int = None ,_a : str = "fusion" ,_a : str = "repeatpad" ,**_a : Tuple ,): '''simple docstring''' super().__init__( feature_size=_a ,sampling_rate=_a ,padding_value=_a ,return_attention_mask=_a ,**_a ,) A_ : Tuple = top_db A_ : Tuple = truncation A_ : Optional[Any] = padding A_ : Optional[int] = fft_window_size A_ : Dict = (fft_window_size >> 1) + 1 A_ : Any = hop_length A_ : List[Any] = max_length_s A_ : Tuple = max_length_s * sampling_rate A_ : Tuple = sampling_rate A_ : Optional[int] = frequency_min A_ : Tuple = frequency_max A_ : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=_a ,min_frequency=_a ,max_frequency=_a ,sampling_rate=_a ,norm=_a ,mel_scale="""htk""" ,) A_ : Dict = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=_a ,min_frequency=_a ,max_frequency=_a ,sampling_rate=_a ,norm="""slaney""" ,mel_scale="""slaney""" ,) def _a ( self : int ): '''simple docstring''' A_ : int = copy.deepcopy(self.__dict__ ) A_ : Tuple = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _a ( self : Dict ,_a : np.array ,_a : Optional[np.array] = None ): '''simple docstring''' A_ : List[str] = spectrogram( _a ,window_function(self.fft_window_size ,"""hann""" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=_a ,log_mel="""dB""" ,) return log_mel_spectrogram.T def _a ( self : Optional[int] ,_a : Dict ,_a : Optional[Any] ,_a : Optional[int] ): '''simple docstring''' A_ : Dict = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk A_ : List[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk A_ : int = [0] # randomly choose index for each part A_ : List[str] = np.random.choice(ranges[0] ) A_ : int = np.random.choice(ranges[1] ) A_ : Optional[int] = np.random.choice(ranges[2] ) A_ : Tuple = mel[idx_front : idx_front + chunk_frames, :] A_ : Dict = mel[idx_middle : idx_middle + chunk_frames, :] A_ : Dict = mel[idx_back : idx_back + chunk_frames, :] A_ : Optional[int] = torch.tensor(mel[None, None, :] ) A_ : Dict = torch.nn.functional.interpolate( _a ,size=[chunk_frames, 64] ,mode="""bilinear""" ,align_corners=_a ) A_ : str = mel_shrink[0][0].numpy() A_ : Tuple = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def _a ( self : Dict ,_a : np.array ,_a : Optional[Any] ,_a : int ,_a : Dict ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": A_ : Dict = True # random crop to max_length (for compatibility) -> this should be handled by self.pad A_ : Tuple = len(_a ) - max_length A_ : Optional[int] = np.random.randint(0 ,overflow + 1 ) A_ : List[Any] = waveform[idx : idx + max_length] A_ : Optional[Any] = self._np_extract_fbank_features(_a ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": A_ : Dict = self._np_extract_fbank_features(_a ,self.mel_filters ) A_ : Tuple = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed A_ : Optional[int] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. A_ : Optional[int] = np.stack([mel, mel, mel, mel] ,axis=0 ) A_ : str = False else: A_ : str = self._random_mel_fusion(_a ,_a ,_a ) A_ : Optional[Any] = True else: raise NotImplementedError(f'data_truncating {truncation} not implemented' ) else: A_ : Optional[int] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": A_ : int = int(max_length / len(_a ) ) A_ : Any = np.stack(np.tile(_a ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": A_ : List[str] = int(max_length / len(_a ) ) A_ : Optional[Any] = np.stack(np.tile(_a ,_a ) ) A_ : Any = np.pad(_a ,(0, max_length - waveform.shape[0]) ,mode="""constant""" ,constant_values=0 ) if truncation == "fusion": A_ : List[Any] = self._np_extract_fbank_features(_a ,self.mel_filters ) A_ : Optional[Any] = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: A_ : Union[str, Any] = self._np_extract_fbank_features(_a ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : List[Any] ,_a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,_a : str = None ,_a : Optional[str] = None ,_a : Optional[int] = None ,_a : Optional[int] = None ,_a : Optional[Union[str, TensorType]] = None ,**_a : Any ,): '''simple docstring''' A_ : List[str] = truncation if truncation is not None else self.truncation A_ : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) A_ : Any = isinstance(_a ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) A_ : int = is_batched_numpy or ( isinstance(_a ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: A_ : Optional[int] = [np.asarray(_a ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_a ,np.ndarray ): A_ : str = np.asarray(_a ,dtype=np.floataa ) elif isinstance(_a ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A_ : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A_ : Any = [np.asarray(_a )] # convert to mel spectrogram, truncate and pad if needed. A_ : str = [ self._get_input_mel(_a ,max_length if max_length else self.nb_max_samples ,_a ,_a ) for waveform in raw_speech ] A_ : int = [] A_ : Any = [] for mel, longer in padded_inputs: input_mel.append(_a ) is_longer.append(_a ) if truncation == "fusion" and sum(_a ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer A_ : List[Any] = np.random.randint(0 ,len(_a ) ) A_ : List[str] = True if isinstance(input_mel[0] ,_a ): A_ : Tuple = [np.asarray(_a ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool A_ : List[str] = [[longer] for longer in is_longer] A_ : Optional[Any] = {"""input_features""": input_mel, """is_longer""": is_longer} A_ : int = BatchFeature(_a ) if return_tensors is not None: A_ : int = input_features.convert_to_tensors(_a ) return input_features
27
1
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = (CMStochasticIterativeScheduler,) a_ = 10 def _a ( self : Dict ,**_a : int ): '''simple docstring''' A_ : Optional[Any] = { """num_train_timesteps""": 201, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**_a ) return config def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : Any = 10 A_ : Optional[Any] = self.get_scheduler_config() A_ : Union[str, Any] = self.scheduler_classes[0](**_a ) scheduler.set_timesteps(_a ) A_ : List[str] = scheduler.timesteps[0] A_ : Union[str, Any] = scheduler.timesteps[1] A_ : Optional[Any] = self.dummy_sample A_ : int = 0.1 * sample A_ : Optional[Any] = scheduler.step(_a ,_a ,_a ).prev_sample A_ : str = scheduler.step(_a ,_a ,_a ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def _a ( self : Any ): '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_a ) def _a ( self : int ): '''simple docstring''' for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_a ) def _a ( self : Optional[Any] ): '''simple docstring''' A_ : int = self.scheduler_classes[0] A_ : Any = self.get_scheduler_config() A_ : List[Any] = scheduler_class(**_a ) A_ : Optional[int] = 1 scheduler.set_timesteps(_a ) A_ : List[str] = scheduler.timesteps A_ : Tuple = torch.manual_seed(0 ) A_ : Dict = self.dummy_model() A_ : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_a ): # 1. scale model input A_ : Union[str, Any] = scheduler.scale_model_input(_a ,_a ) # 2. predict noise residual A_ : List[Any] = model(_a ,_a ) # 3. predict previous sample x_t-1 A_ : Any = scheduler.step(_a ,_a ,_a ,generator=_a ).prev_sample A_ : str = pred_prev_sample A_ : int = torch.sum(torch.abs(_a ) ) A_ : Optional[int] = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def _a ( self : int ): '''simple docstring''' A_ : List[Any] = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config() A_ : List[Any] = scheduler_class(**_a ) A_ : List[str] = [106, 0] scheduler.set_timesteps(timesteps=_a ) A_ : List[Any] = scheduler.timesteps A_ : Any = torch.manual_seed(0 ) A_ : Optional[int] = self.dummy_model() A_ : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input A_ : Any = scheduler.scale_model_input(_a ,_a ) # 2. predict noise residual A_ : Tuple = model(_a ,_a ) # 3. predict previous sample x_t-1 A_ : Optional[Any] = scheduler.step(_a ,_a ,_a ,generator=_a ).prev_sample A_ : Any = pred_prev_sample A_ : List[str] = torch.sum(torch.abs(_a ) ) A_ : List[Any] = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def _a ( self : Optional[int] ): '''simple docstring''' A_ : str = self.scheduler_classes[0] A_ : Union[str, Any] = self.get_scheduler_config() A_ : int = scheduler_class(**_a ) A_ : Tuple = [39, 30, 12, 15, 0] with self.assertRaises(_a ,msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_a ) def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : Dict = self.scheduler_classes[0] A_ : str = self.get_scheduler_config() A_ : List[str] = scheduler_class(**_a ) A_ : Union[str, Any] = [39, 30, 12, 1, 0] A_ : int = len(_a ) with self.assertRaises(_a ,msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_a ,timesteps=_a ) def _a ( self : Optional[Any] ): '''simple docstring''' A_ : Tuple = self.scheduler_classes[0] A_ : Optional[Any] = self.get_scheduler_config() A_ : Tuple = scheduler_class(**_a ) A_ : Any = [scheduler.config.num_train_timesteps] with self.assertRaises( _a ,msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" ,): scheduler.set_timesteps(timesteps=_a )
27
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ,_a : List[Any] ,_a : Dict=13 ,_a : List[Any]=7 ,_a : Optional[Any]=True ,_a : Any=True ,_a : Optional[int]=True ,_a : Union[str, Any]=99 ,_a : Union[str, Any]=32 ,_a : List[str]=5 ,_a : List[str]=4 ,_a : Dict=37 ,_a : List[Any]="gelu" ,_a : int=0.1 ,_a : Optional[int]=0.1 ,_a : Tuple=512 ,_a : Union[str, Any]=16 ,_a : Optional[Any]=2 ,_a : Optional[Any]=0.02 ,_a : Optional[int]=3 ,_a : str=4 ,_a : Optional[Any]=None ,): '''simple docstring''' A_ : Optional[Any] = parent A_ : str = batch_size A_ : int = seq_length A_ : Union[str, Any] = is_training A_ : Optional[Any] = use_token_type_ids A_ : int = use_labels A_ : Dict = vocab_size A_ : List[Any] = hidden_size A_ : Tuple = num_hidden_layers A_ : Optional[int] = num_attention_heads A_ : int = intermediate_size A_ : Tuple = hidden_act A_ : int = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : Any = max_position_embeddings A_ : Optional[Any] = type_vocab_size A_ : Tuple = type_sequence_label_size A_ : int = initializer_range A_ : Optional[Any] = num_labels A_ : str = num_choices A_ : Optional[Any] = scope A_ : List[Any] = self.vocab_size - 1 def _a ( self : Any ): '''simple docstring''' A_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A_ : List[Any] = None if self.use_token_type_ids: A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A_ : int = None A_ : str = None A_ : Union[str, Any] = None if self.use_labels: A_ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A_ : Any = ids_tensor([self.batch_size] ,self.num_choices ) A_ : List[Any] = OpenAIGPTConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) A_ : Tuple = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _a ( self : Optional[int] ,_a : List[str] ,_a : str ,_a : int ,_a : int ,*_a : Union[str, Any] ): '''simple docstring''' A_ : Optional[Any] = OpenAIGPTModel(config=_a ) model.to(_a ) model.eval() A_ : Optional[int] = model(_a ,token_type_ids=_a ,head_mask=_a ) A_ : str = model(_a ,token_type_ids=_a ) A_ : Dict = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Dict ,_a : Optional[int] ,_a : Union[str, Any] ,_a : Dict ,_a : List[str] ,*_a : str ): '''simple docstring''' A_ : str = OpenAIGPTLMHeadModel(_a ) model.to(_a ) model.eval() A_ : Any = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Any ,_a : Dict ,_a : List[Any] ,_a : Dict ,_a : Union[str, Any] ,*_a : str ): '''simple docstring''' A_ : Any = OpenAIGPTDoubleHeadsModel(_a ) model.to(_a ) model.eval() A_ : Optional[int] = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : List[str] ,_a : str ,_a : Tuple ,_a : Dict ,_a : Tuple ,*_a : Dict ): '''simple docstring''' A_ : List[str] = self.num_labels A_ : int = OpenAIGPTForSequenceClassification(_a ) model.to(_a ) model.eval() A_ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A_ : Optional[Any] = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _a ( self : Tuple ): '''simple docstring''' A_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : str = config_and_inputs A_ : int = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) a_ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly a_ = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _a ( self : Tuple ,_a : Optional[int] ,_a : str ,_a : List[str] ,_a : List[str] ,_a : Any ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _a ( self : Optional[int] ,_a : str ,_a : Dict ,_a : Optional[int]=False ): '''simple docstring''' A_ : Any = super()._prepare_for_class(_a ,_a ,return_labels=_a ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": A_ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) ,dtype=torch.long ,device=_a ,) A_ : Any = inputs_dict["""labels"""] A_ : Any = inputs_dict["""labels"""] A_ : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) ,dtype=torch.long ,device=_a ,) A_ : int = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_a ) return inputs_dict def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : Tuple = OpenAIGPTModelTester(self ) A_ : Optional[int] = ConfigTester(self ,config_class=_a ,n_embd=37 ) def _a ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def _a ( self : Optional[Any] ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_a ) def _a ( self : Tuple ): '''simple docstring''' A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_a ) def _a ( self : List[Any] ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_a ) def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_a ) @slow def _a ( self : List[Any] ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Union[str, Any] = OpenAIGPTModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def _a ( self : List[str] ): '''simple docstring''' A_ : Dict = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(_a ) A_ : Dict = torch.tensor([[481, 4735, 544]] ,dtype=torch.long ,device=_a ) # the president is A_ : Dict = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the A_ : int = model.generate(_a ,do_sample=_a ) self.assertListEqual(output_ids[0].tolist() ,_a )
27
1
'''simple docstring''' def lowerCamelCase ( lowerCamelCase : int): if not isinstance(lowerCamelCase , lowerCamelCase): raise ValueError("""check_bouncy() accepts only integer arguments""") A_ : List[str] = str(lowerCamelCase) A_ : Union[str, Any] = """""".join(sorted(lowerCamelCase)) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def lowerCamelCase ( lowerCamelCase : float = 99): if not 0 < percent < 100: raise ValueError("""solution() only accepts values from 0 to 100""") A_ : Optional[int] = 0 A_ : int = 1 while True: if check_bouncy(lowerCamelCase): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(99)}""")
27
'''simple docstring''' import baseaa def lowerCamelCase ( lowerCamelCase : str): return baseaa.aaaencode(string.encode("""utf-8""")) def lowerCamelCase ( lowerCamelCase : bytes): return baseaa.aaadecode(lowerCamelCase).decode("""utf-8""") if __name__ == "__main__": import doctest doctest.testmod()
27
1
'''simple docstring''' import os def lowerCamelCase ( ): with open(os.path.dirname(SCREAMING_SNAKE_CASE_) + """/grid.txt""") as f: A_ : Optional[int] = [] # noqa: E741 for _ in range(20): l.append([int(SCREAMING_SNAKE_CASE_) for x in f.readline().split()]) A_ : str = 0 # right for i in range(20): for j in range(17): A_ : Union[str, Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: A_ : Tuple = temp # down for i in range(17): for j in range(20): A_ : int = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: A_ : Dict = temp # diagonal 1 for i in range(17): for j in range(17): A_ : str = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: A_ : Optional[Any] = temp # diagonal 2 for i in range(17): for j in range(3 , 20): A_ : List[Any] = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: A_ : Any = temp return maximum if __name__ == "__main__": print(solution())
700
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCamelCase ( lowerCamelCase : Optional[Any]): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def lowerCamelCase ( lowerCamelCase : str): # word like '180' or '身高' or '神' for char in word: A_ : Optional[Any] = ord(lowerCamelCase) if not _is_chinese_char(lowerCamelCase): return 0 return 1 def lowerCamelCase ( lowerCamelCase : List[str]): A_ : Any = set() for token in tokens: A_ : str = len(lowerCamelCase) > 1 and is_chinese(lowerCamelCase) if chinese_word: word_set.add(lowerCamelCase) A_ : Any = list(lowerCamelCase) return word_list def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : set()): if not chinese_word_set: return bert_tokens A_ : Any = max([len(lowerCamelCase) for w in chinese_word_set]) A_ : str = bert_tokens A_ , A_ : Any = 0, len(lowerCamelCase) while start < end: A_ : Tuple = True if is_chinese(bert_word[start]): A_ : List[str] = min(end - start , lowerCamelCase) for i in range(lowerCamelCase , 1 , -1): A_ : Tuple = """""".join(bert_word[start : start + i]) if whole_word in chinese_word_set: for j in range(start + 1 , start + i): A_ : Dict = """##""" + bert_word[j] A_ : str = start + i A_ : Dict = False break if single_word: start += 1 return bert_word def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : LTP , lowerCamelCase : BertTokenizer): A_ : Union[str, Any] = [] for i in range(0 , len(lowerCamelCase) , 100): A_ : List[Any] = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""]).cws A_ : int = [get_chinese_word(lowerCamelCase) for r in res] ltp_res.extend(lowerCamelCase) assert len(lowerCamelCase) == len(lowerCamelCase) A_ : List[Any] = [] for i in range(0 , len(lowerCamelCase) , 100): A_ : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=lowerCamelCase , truncation=lowerCamelCase , max_length=512) bert_res.extend(res["""input_ids"""]) assert len(lowerCamelCase) == len(lowerCamelCase) A_ : Union[str, Any] = [] for input_ids, chinese_word in zip(lowerCamelCase , lowerCamelCase): A_ : List[Any] = [] for id in input_ids: A_ : List[Any] = bert_tokenizer._convert_id_to_token(lowerCamelCase) input_tokens.append(lowerCamelCase) A_ : int = add_sub_symbol(lowerCamelCase , lowerCamelCase) A_ : str = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCamelCase): if token[:2] == "##": A_ : Optional[Any] = token[2:] # save chinese tokens' pos if len(lowerCamelCase) == 1 and _is_chinese_char(ord(lowerCamelCase)): ref_id.append(lowerCamelCase) ref_ids.append(lowerCamelCase) assert len(lowerCamelCase) == len(lowerCamelCase) return ref_ids def lowerCamelCase ( lowerCamelCase : Tuple): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""") as f: A_ : Optional[int] = f.readlines() A_ : Union[str, Any] = [line.strip() for line in data if len(lowerCamelCase) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ : Optional[Any] = LTP(args.ltp) # faster in GPU device A_ : Dict = BertTokenizer.from_pretrained(args.bert) A_ : str = prepare_ref(lowerCamelCase , lowerCamelCase , lowerCamelCase) with open(args.save_path , """w""" , encoding="""utf-8""") as f: A_ : Optional[Any] = [json.dumps(lowerCamelCase) + """\n""" for ref in ref_ids] f.writelines(lowerCamelCase) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) __magic_name__ = parser.parse_args() main(args)
27
0