code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations def UpperCAmelCase ( _lowerCamelCase : list[int | float] , _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' if len(_lowerCamelCase ) == 0: raise ValueError("find_max() arg is an empty sequence" ) if ( left >= len(_lowerCamelCase ) or left < -len(_lowerCamelCase ) or right >= len(_lowerCamelCase ) or right < -len(_lowerCamelCase ) ): raise IndexError("list index out of range" ) if left == right: return nums[left] SCREAMING_SNAKE_CASE__ : Optional[int] = (left + right) >> 1 # the middle SCREAMING_SNAKE_CASE__ : List[Any] = find_max(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # find max in range[left, mid] SCREAMING_SNAKE_CASE__ : Optional[int] = find_max(_lowerCamelCase , mid + 1 , _lowerCamelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
709
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __lowercase :List[Any] = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any]=None ): '''simple docstring''' require_version(deps[pkg] , _lowerCamelCase )
26
0
def UpperCAmelCase ( _lowerCamelCase : int = 1_000 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = -1 SCREAMING_SNAKE_CASE__ : str = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c SCREAMING_SNAKE_CASE__ : Tuple = (n * n - 2 * a * n) // (2 * n - 2 * a) SCREAMING_SNAKE_CASE__ : Dict = n - a - b if c * c == (a * a + b * b): SCREAMING_SNAKE_CASE__ : str = a * b * c if candidate >= product: SCREAMING_SNAKE_CASE__ : List[str] = candidate return product if __name__ == "__main__": print(f"{solution() = }")
710
from __future__ import annotations def UpperCAmelCase ( _lowerCamelCase : list[int] , _lowerCamelCase : int ): '''simple docstring''' if len(_lowerCamelCase ) < k or k < 0: raise ValueError("Invalid Input" ) SCREAMING_SNAKE_CASE__ : int = sum(array[:k] ) for i in range(len(_lowerCamelCase ) - k ): SCREAMING_SNAKE_CASE__ : str = current_sum - array[i] + array[i + k] SCREAMING_SNAKE_CASE__ : Union[str, Any] = max(_lowerCamelCase , _lowerCamelCase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() __lowercase :List[str] = [randint(-1_000, 1_000) for i in range(100)] __lowercase :Any = randint(0, 110) print(f"The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}")
26
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase :List[str] = { "configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"], "tokenization_roberta": ["RobertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase :str = ["RobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase :Union[str, Any] = [ "ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaForCausalLM", "RobertaForMaskedLM", "RobertaForMultipleChoice", "RobertaForQuestionAnswering", "RobertaForSequenceClassification", "RobertaForTokenClassification", "RobertaModel", "RobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase :Any = [ "TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaForCausalLM", "TFRobertaForMaskedLM", "TFRobertaForMultipleChoice", "TFRobertaForQuestionAnswering", "TFRobertaForSequenceClassification", "TFRobertaForTokenClassification", "TFRobertaMainLayer", "TFRobertaModel", "TFRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase :Any = [ "FlaxRobertaForCausalLM", "FlaxRobertaForMaskedLM", "FlaxRobertaForMultipleChoice", "FlaxRobertaForQuestionAnswering", "FlaxRobertaForSequenceClassification", "FlaxRobertaForTokenClassification", "FlaxRobertaModel", "FlaxRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys __lowercase :str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
711
from __future__ import annotations def UpperCAmelCase ( _lowerCamelCase : list[int | float] , _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' if len(_lowerCamelCase ) == 0: raise ValueError("find_max() arg is an empty sequence" ) if ( left >= len(_lowerCamelCase ) or left < -len(_lowerCamelCase ) or right >= len(_lowerCamelCase ) or right < -len(_lowerCamelCase ) ): raise IndexError("list index out of range" ) if left == right: return nums[left] SCREAMING_SNAKE_CASE__ : Optional[int] = (left + right) >> 1 # the middle SCREAMING_SNAKE_CASE__ : List[Any] = find_max(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # find max in range[left, mid] SCREAMING_SNAKE_CASE__ : Optional[int] = find_max(_lowerCamelCase , mid + 1 , _lowerCamelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
26
0
def UpperCAmelCase ( _lowerCamelCase : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = [0] * len(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Dict = [] SCREAMING_SNAKE_CASE__ : int = [1] * len(_lowerCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_lowerCamelCase ) ): if indegree[i] == 0: queue.append(_lowerCamelCase ) while queue: SCREAMING_SNAKE_CASE__ : List[Any] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: SCREAMING_SNAKE_CASE__ : Optional[Any] = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_lowerCamelCase ) print(max(_lowerCamelCase ) ) # Adjacency list of Graph __lowercase :Tuple = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
712
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __lowercase :str = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class _a ( lowercase__ ): """simple docstring""" def __init__( self : List[str] , a : Optional[int] , a : str , a : int=None , a : Optional[Any]=1 ) ->Optional[Any]: SCREAMING_SNAKE_CASE__ : Dict = tokenizer SCREAMING_SNAKE_CASE__ : Optional[int] = dataset SCREAMING_SNAKE_CASE__ : Optional[Any] = len(a ) if n_tasks is None else n_tasks SCREAMING_SNAKE_CASE__ : Dict = n_copies def __iter__( self : str ) ->Tuple: SCREAMING_SNAKE_CASE__ : str = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) SCREAMING_SNAKE_CASE__ : int = self.tokenizer(a , padding=a , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _a ( lowercase__ ): """simple docstring""" def __init__( self : Dict , a : int , a : int , a : Tuple ) ->Dict: SCREAMING_SNAKE_CASE__ : Dict = start_length SCREAMING_SNAKE_CASE__ : Any = eof_strings SCREAMING_SNAKE_CASE__ : Any = tokenizer def __call__( self : Any , a : Optional[int] , a : int , **a : Union[str, Any] ) ->List[str]: SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) SCREAMING_SNAKE_CASE__ : int = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(a ) def UpperCAmelCase ( _lowerCamelCase : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = re.split("(%s)" % "|".join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : str=20 , **_lowerCamelCase : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): SCREAMING_SNAKE_CASE__ : str = batch["ids"].shape[-1] SCREAMING_SNAKE_CASE__ : List[Any] = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch["ids"][:, : batch["input_len"]] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times SCREAMING_SNAKE_CASE__ : Dict = batch["task_id"].repeat(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Dict = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Any = accelerator.gather((generated_tokens, generated_tasks) ) SCREAMING_SNAKE_CASE__ : Dict = generated_tokens.cpu().numpy() SCREAMING_SNAKE_CASE__ : Any = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = HfArgumentParser(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric SCREAMING_SNAKE_CASE__ : List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing SCREAMING_SNAKE_CASE__ : str = "false" if args.num_workers is None: SCREAMING_SNAKE_CASE__ : Dict = multiprocessing.cpu_count() # Use dataset load to feed to accelerate SCREAMING_SNAKE_CASE__ : Dict = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer SCREAMING_SNAKE_CASE__ : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.eos_token SCREAMING_SNAKE_CASE__ : List[str] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings SCREAMING_SNAKE_CASE__ : List[Any] = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric SCREAMING_SNAKE_CASE__ : str = load_dataset("openai_humaneval" ) SCREAMING_SNAKE_CASE__ : Any = load_metric("code_eval" ) SCREAMING_SNAKE_CASE__ : Dict = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = args.n_samples // args.batch_size SCREAMING_SNAKE_CASE__ : Dict = TokenizedDataset(_lowerCamelCase , human_eval["test"] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences SCREAMING_SNAKE_CASE__ : Optional[int] = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: SCREAMING_SNAKE_CASE__ : int = code_eval_metric.compute(references=[""] , predictions=[[""]] ) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation." ) raise exception SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Tuple = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for task in tqdm(range(_lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ : List[Any] = human_eval["test"][task]["test"] SCREAMING_SNAKE_CASE__ : List[Any] = f"""check({human_eval['test'][task]['entry_point']})""" references.append("\n" + test_func + "\n" + entry_point ) # Evaluate completions with "code_eval" metric SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Dict = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , "w" ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
26
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _a ( lowercase__ , unittest.TestCase ): """simple docstring""" snake_case_ = ShapEPipeline snake_case_ = ["prompt"] snake_case_ = ["prompt"] snake_case_ = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] snake_case_ = False @property def A_ ( self : Dict ) ->List[Any]: return 32 @property def A_ ( self : str ) ->Optional[int]: return 32 @property def A_ ( self : Tuple ) ->List[str]: return self.time_input_dim * 4 @property def A_ ( self : Any ) ->List[Any]: return 8 @property def A_ ( self : List[str] ) ->Tuple: SCREAMING_SNAKE_CASE__ : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def A_ ( self : Dict ) ->Any: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(a ) @property def A_ ( self : Optional[int] ) ->Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } SCREAMING_SNAKE_CASE__ : Any = PriorTransformer(**a ) return model @property def A_ ( self : Dict ) ->List[str]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : int = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE__ : Optional[int] = ShapERenderer(**a ) return model def A_ ( self : List[str] ) ->Any: SCREAMING_SNAKE_CASE__ : List[str] = self.dummy_prior SCREAMING_SNAKE_CASE__ : Tuple = self.dummy_text_encoder SCREAMING_SNAKE_CASE__ : Optional[Any] = self.dummy_tokenizer SCREAMING_SNAKE_CASE__ : Optional[Any] = self.dummy_renderer SCREAMING_SNAKE_CASE__ : Tuple = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=10_24 , prediction_type="sample" , use_karras_sigmas=a , clip_sample=a , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def A_ ( self : Tuple , a : str , a : str=0 ) ->Optional[Any]: if str(a ).startswith("mps" ): SCREAMING_SNAKE_CASE__ : Tuple = torch.manual_seed(a ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = torch.Generator(device=a ).manual_seed(a ) SCREAMING_SNAKE_CASE__ : List[Any] = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def A_ ( self : str ) ->Any: SCREAMING_SNAKE_CASE__ : Optional[int] = "cpu" SCREAMING_SNAKE_CASE__ : str = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Optional[Any] = self.pipeline_class(**a ) SCREAMING_SNAKE_CASE__ : str = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE__ : List[Any] = pipe(**self.get_dummy_inputs(a ) ) SCREAMING_SNAKE_CASE__ : Dict = output.images[0] SCREAMING_SNAKE_CASE__ : str = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A_ ( self : List[str] ) ->List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def A_ ( self : List[str] ) ->List[str]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch_device == "cpu" SCREAMING_SNAKE_CASE__ : List[str] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=a , relax_max_difference=a , ) def A_ ( self : Dict ) ->List[str]: SCREAMING_SNAKE_CASE__ : Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : List[str] = self.pipeline_class(**a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE__ : int = 1 SCREAMING_SNAKE_CASE__ : Dict = 2 SCREAMING_SNAKE_CASE__ : int = self.get_dummy_inputs(a ) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE__ : List[Any] = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipe(**a , num_images_per_prompt=a )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def A_ ( self : str ) ->List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : Tuple ) ->Optional[Any]: SCREAMING_SNAKE_CASE__ : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy" ) SCREAMING_SNAKE_CASE__ : Tuple = ShapEPipeline.from_pretrained("openai/shap-e" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE__ : Tuple = torch.Generator(device=a ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipe( "a shark" , generator=a , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(a , a )
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase :str = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase :Union[str, Any] = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys __lowercase :str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
0
__lowercase :Optional[int] = 0 # The first color of the flag. __lowercase :Union[str, Any] = 1 # The second color of the flag. __lowercase :List[str] = 2 # The third color of the flag. __lowercase :Optional[Any] = (red, white, blue) def UpperCAmelCase ( _lowerCamelCase : list ): '''simple docstring''' if not sequence: return [] if len(_lowerCamelCase ) == 1: return list(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Tuple = 0 SCREAMING_SNAKE_CASE__ : List[Any] = len(_lowerCamelCase ) - 1 SCREAMING_SNAKE_CASE__ : Tuple = 0 while mid <= high: if sequence[mid] == colors[0]: SCREAMING_SNAKE_CASE__ : str = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: SCREAMING_SNAKE_CASE__ : int = sequence[high], sequence[mid] high -= 1 else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = f"""The elements inside the sequence must contains only {colors} values""" raise ValueError(_lowerCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() __lowercase :Union[str, Any] = input("Enter numbers separated by commas:\n").strip() __lowercase :Optional[Any] = [int(item.strip()) for item in user_input.split(",")] print(f"{dutch_national_flag_sort(unsorted)}")
714
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : int , _lowerCamelCase : Optional[int] = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = {} if train_file is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] = [train_file] if eval_file is not None: SCREAMING_SNAKE_CASE__ : int = [eval_file] if test_file is not None: SCREAMING_SNAKE_CASE__ : int = [test_file] SCREAMING_SNAKE_CASE__ : Optional[int] = datasets.load_dataset("csv" , data_files=_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[str] = list(ds[list(files.keys() )[0]].features.keys() ) SCREAMING_SNAKE_CASE__ : int = features_name.pop(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = list(set(ds[list(files.keys() )[0]][label_name] ) ) SCREAMING_SNAKE_CASE__ : List[str] = {label: i for i, label in enumerate(_lowerCamelCase )} SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.model_input_names SCREAMING_SNAKE_CASE__ : Any = {} if len(_lowerCamelCase ) == 1: for k in files.keys(): SCREAMING_SNAKE_CASE__ : List[Any] = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="max_length" ) , batched=_lowerCamelCase , ) elif len(_lowerCamelCase ) == 2: for k in files.keys(): SCREAMING_SNAKE_CASE__ : Any = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="max_length" , ) , batched=_lowerCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: SCREAMING_SNAKE_CASE__ : Tuple = {k: v for k, v in ex.items() if k in input_names} SCREAMING_SNAKE_CASE__ : List[Any] = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: SCREAMING_SNAKE_CASE__ : int = {k: v for k, v in ex.items() if k in input_names} SCREAMING_SNAKE_CASE__ : Optional[int] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: SCREAMING_SNAKE_CASE__ : int = {k: v for k, v in ex.items() if k in input_names} SCREAMING_SNAKE_CASE__ : Optional[Any] = labelaid[ex[label_name]] yield (d, label) SCREAMING_SNAKE_CASE__ : Tuple = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: SCREAMING_SNAKE_CASE__ : Any = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) SCREAMING_SNAKE_CASE__ : Dict = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: SCREAMING_SNAKE_CASE__ : Dict = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowercase :List[Any] = logging.getLogger(__name__) @dataclass class _a : """simple docstring""" snake_case_ = field(metadata={"help": "Which column contains the label"} ) snake_case_ = field(default=lowercase__ , metadata={"help": "The path of the training file"} ) snake_case_ = field(default=lowercase__ , metadata={"help": "The path of the development file"} ) snake_case_ = field(default=lowercase__ , metadata={"help": "The path of the test file"} ) snake_case_ = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case_ = field( default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class _a : """simple docstring""" snake_case_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case_ = field( default=lowercase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case_ = field( default=lowercase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case_ = field(default=lowercase__ , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. snake_case_ = field( default=lowercase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_lowerCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) SCREAMING_SNAKE_CASE__ : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): SCREAMING_SNAKE_CASE__ : Optional[Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(_lowerCamelCase : EvalPrediction ) -> Dict: SCREAMING_SNAKE_CASE__ : Dict = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer SCREAMING_SNAKE_CASE__ : str = TFTrainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , compute_metrics=_lowerCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation SCREAMING_SNAKE_CASE__ : Dict = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) SCREAMING_SNAKE_CASE__ : str = trainer.evaluate() SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(_lowerCamelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(_lowerCamelCase ) return results if __name__ == "__main__": main()
26
0
import os import sys __lowercase :int = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) __lowercase :List[Any] = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def UpperCAmelCase ( *_lowerCamelCase : Any , **_lowerCamelCase : List[Any] ): '''simple docstring''' return AutoConfig.from_pretrained(*_lowerCamelCase , **_lowerCamelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def UpperCAmelCase ( *_lowerCamelCase : str , **_lowerCamelCase : List[Any] ): '''simple docstring''' return AutoTokenizer.from_pretrained(*_lowerCamelCase , **_lowerCamelCase ) @add_start_docstrings(AutoModel.__doc__ ) def UpperCAmelCase ( *_lowerCamelCase : Tuple , **_lowerCamelCase : Dict ): '''simple docstring''' return AutoModel.from_pretrained(*_lowerCamelCase , **_lowerCamelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def UpperCAmelCase ( *_lowerCamelCase : List[Any] , **_lowerCamelCase : Tuple ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*_lowerCamelCase , **_lowerCamelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def UpperCAmelCase ( *_lowerCamelCase : List[Any] , **_lowerCamelCase : List[Any] ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*_lowerCamelCase , **_lowerCamelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def UpperCAmelCase ( *_lowerCamelCase : Any , **_lowerCamelCase : int ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*_lowerCamelCase , **_lowerCamelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def UpperCAmelCase ( *_lowerCamelCase : Dict , **_lowerCamelCase : Dict ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*_lowerCamelCase , **_lowerCamelCase )
715
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowercase :int = logging.get_logger(__name__) class _a ( lowercase__ ): """simple docstring""" snake_case_ = ["pixel_values"] def __init__( self : int , a : bool = True , a : Optional[Dict[str, int]] = None , a : PILImageResampling = PILImageResampling.BILINEAR , a : bool = True , a : Dict[str, int] = None , a : bool = True , a : Union[int, float] = 1 / 2_55 , a : bool = True , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , **a : List[str] , ) ->None: super().__init__(**a ) SCREAMING_SNAKE_CASE__ : List[str] = size if size is not None else {"shortest_edge": 2_56} SCREAMING_SNAKE_CASE__ : Any = get_size_dict(a , default_to_square=a ) SCREAMING_SNAKE_CASE__ : List[Any] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} SCREAMING_SNAKE_CASE__ : Dict = get_size_dict(a ) SCREAMING_SNAKE_CASE__ : List[str] = do_resize SCREAMING_SNAKE_CASE__ : List[str] = size SCREAMING_SNAKE_CASE__ : List[Any] = resample SCREAMING_SNAKE_CASE__ : int = do_center_crop SCREAMING_SNAKE_CASE__ : Optional[Any] = crop_size SCREAMING_SNAKE_CASE__ : Any = do_rescale SCREAMING_SNAKE_CASE__ : Any = rescale_factor SCREAMING_SNAKE_CASE__ : int = do_normalize SCREAMING_SNAKE_CASE__ : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def A_ ( self : Tuple , a : np.ndarray , a : Dict[str, int] , a : PILImageResampling = PILImageResampling.BICUBIC , a : Optional[Union[str, ChannelDimension]] = None , **a : Optional[int] , ) ->np.ndarray: SCREAMING_SNAKE_CASE__ : List[Any] = get_size_dict(a , default_to_square=a ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = get_resize_output_image_size(a , size=size["shortest_edge"] , default_to_square=a ) return resize(a , size=a , resample=a , data_format=a , **a ) def A_ ( self : List[Any] , a : np.ndarray , a : Dict[str, int] , a : Optional[Union[str, ChannelDimension]] = None , **a : List[Any] , ) ->np.ndarray: SCREAMING_SNAKE_CASE__ : Tuple = get_size_dict(a ) return center_crop(a , size=(size["height"], size["width"]) , data_format=a , **a ) def A_ ( self : Optional[int] , a : np.ndarray , a : float , a : Optional[Union[str, ChannelDimension]] = None , **a : Dict ) ->np.ndarray: return rescale(a , scale=a , data_format=a , **a ) def A_ ( self : Union[str, Any] , a : np.ndarray , a : Union[float, List[float]] , a : Union[float, List[float]] , a : Optional[Union[str, ChannelDimension]] = None , **a : Union[str, Any] , ) ->np.ndarray: return normalize(a , mean=a , std=a , data_format=a , **a ) def A_ ( self : Tuple , a : ImageInput , a : Optional[bool] = None , a : Dict[str, int] = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : Optional[bool] = None , a : Optional[float] = None , a : Optional[bool] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[str, TensorType]] = None , a : Union[str, ChannelDimension] = ChannelDimension.FIRST , **a : Any , ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : Optional[Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ : Union[str, Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE__ : Dict = get_size_dict(a , default_to_square=a ) SCREAMING_SNAKE_CASE__ : str = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE__ : Optional[int] = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE__ : Dict = get_size_dict(a ) SCREAMING_SNAKE_CASE__ : List[str] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ : Dict = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ : Optional[int] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ : Tuple = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ : Union[str, Any] = make_list_of_images(a ) if not valid_images(a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : List[str] = [to_numpy_array(a ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ : Tuple = [self.resize(image=a , size=a , resample=a ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE__ : List[Any] = [self.center_crop(image=a , size=a ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ : List[str] = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ : Dict = [self.normalize(image=a , mean=a , std=a ) for image in images] SCREAMING_SNAKE_CASE__ : Dict = [to_channel_dimension_format(a , a ) for image in images] SCREAMING_SNAKE_CASE__ : Optional[int] = {"pixel_values": images} return BatchFeature(data=a , tensor_type=a )
26
0
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva __lowercase :Any = "" __lowercase :Optional[Any] = "" __lowercase :Tuple = "" __lowercase :List[Any] = 1 # (0 is vertical, 1 is horizontal) def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_dataset(_lowerCamelCase , _lowerCamelCase ) print("Processing..." ) SCREAMING_SNAKE_CASE__ : List[Any] = update_image_and_anno(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for index, image in enumerate(_lowerCamelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' SCREAMING_SNAKE_CASE__ : Dict = random_chars(32 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , _lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(_lowerCamelCase )} with {file_name}""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] for anno in new_annos[index]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(_lowerCamelCase ) with open(f"""/{file_root}.txt""" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for label_file in glob.glob(os.path.join(_lowerCamelCase , "*.txt" ) ): SCREAMING_SNAKE_CASE__ : Optional[Any] = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(_lowerCamelCase ) as in_file: SCREAMING_SNAKE_CASE__ : List[str] = in_file.readlines() SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(_lowerCamelCase , f"""{label_name}.jpg""" ) SCREAMING_SNAKE_CASE__ : List[str] = [] for obj_list in obj_lists: SCREAMING_SNAKE_CASE__ : Optional[int] = obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(_lowerCamelCase ) labels.append(_lowerCamelCase ) return img_paths, labels def UpperCAmelCase ( _lowerCamelCase : list , _lowerCamelCase : list , _lowerCamelCase : int = 1 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = [] SCREAMING_SNAKE_CASE__ : List[Any] = [] SCREAMING_SNAKE_CASE__ : str = [] for idx in range(len(_lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Union[str, Any] = img_list[idx] path_list.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : int = anno_list[idx] SCREAMING_SNAKE_CASE__ : List[str] = cva.imread(_lowerCamelCase ) if flip_type == 1: SCREAMING_SNAKE_CASE__ : str = cva.flip(_lowerCamelCase , _lowerCamelCase ) for bbox in img_annos: SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: SCREAMING_SNAKE_CASE__ : int = cva.flip(_lowerCamelCase , _lowerCamelCase ) for bbox in img_annos: SCREAMING_SNAKE_CASE__ : Optional[int] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(_lowerCamelCase ) new_imgs_list.append(_lowerCamelCase ) return new_imgs_list, new_annos_lists, path_list def UpperCAmelCase ( _lowerCamelCase : int = 32 ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" SCREAMING_SNAKE_CASE__ : List[str] = ascii_lowercase + digits return "".join(random.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
716
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _a ( unittest.TestCase ): """simple docstring""" def A_ ( self : Dict ) ->List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def A_ ( self : Dict ) ->Tuple: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Dict = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" , from_pt=a , dtype=jnp.bfloataa ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Dict = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) SCREAMING_SNAKE_CASE__ : List[Any] = controlnet_params SCREAMING_SNAKE_CASE__ : Dict = "bird" SCREAMING_SNAKE_CASE__ : List[Any] = jax.device_count() SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) SCREAMING_SNAKE_CASE__ : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipe.prepare_image_inputs([canny_image] * num_samples ) SCREAMING_SNAKE_CASE__ : List[Any] = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE__ : int = jax.random.split(a , jax.device_count() ) SCREAMING_SNAKE_CASE__ : List[Any] = replicate(a ) SCREAMING_SNAKE_CASE__ : List[str] = shard(a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = shard(a ) SCREAMING_SNAKE_CASE__ : Dict = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=50 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) SCREAMING_SNAKE_CASE__ : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) SCREAMING_SNAKE_CASE__ : List[Any] = images[0, 2_53:2_56, 2_53:2_56, -1] SCREAMING_SNAKE_CASE__ : Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def A_ ( self : List[Any] ) ->Optional[Any]: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : int = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" , from_pt=a , dtype=jnp.bfloataa ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) SCREAMING_SNAKE_CASE__ : Optional[int] = controlnet_params SCREAMING_SNAKE_CASE__ : Any = "Chef in the kitchen" SCREAMING_SNAKE_CASE__ : Union[str, Any] = jax.device_count() SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) SCREAMING_SNAKE_CASE__ : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) SCREAMING_SNAKE_CASE__ : str = pipe.prepare_image_inputs([pose_image] * num_samples ) SCREAMING_SNAKE_CASE__ : Any = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE__ : List[str] = jax.random.split(a , jax.device_count() ) SCREAMING_SNAKE_CASE__ : Optional[Any] = replicate(a ) SCREAMING_SNAKE_CASE__ : Tuple = shard(a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = shard(a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=50 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) SCREAMING_SNAKE_CASE__ : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) SCREAMING_SNAKE_CASE__ : str = images[0, 2_53:2_56, 2_53:2_56, -1] SCREAMING_SNAKE_CASE__ : Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
26
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class _a ( lowercase__ ): """simple docstring""" snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
717
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowercase :List[Any] = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def UpperCAmelCase ( _lowerCamelCase : int ): '''simple docstring''' config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested" ) config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested" ) config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested" ) config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment" ) config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate" ) config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule" ) def UpperCAmelCase ( _lowerCamelCase : str ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase : Tuple ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE__ : List[str] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(_lowerCamelCase , id=_lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict ): '''simple docstring''' if exitstatus == 5: SCREAMING_SNAKE_CASE__ : List[str] = 0 # Doctest custom flag to ignore output. __lowercase :Optional[Any] = doctest.register_optionflag("IGNORE_RESULT") __lowercase :Dict = doctest.OutputChecker class _a ( lowercase__ ): """simple docstring""" def A_ ( self : Dict , a : List[str] , a : Dict , a : int ) ->Optional[Any]: if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , a , a , a ) __lowercase :Any = CustomOutputChecker __lowercase :Any = HfDoctestModule __lowercase :int = HfDocTestParser
26
0
from __future__ import annotations import math def UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : bool , _lowerCamelCase : list[int] , _lowerCamelCase : float ): '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if not scores: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) ) def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = [90, 23, 6, 33, 21, 65, 123, 34_423] SCREAMING_SNAKE_CASE__ : List[Any] = math.log(len(_lowerCamelCase ) , 2 ) print(f"""Optimal value : {minimax(0 , 0 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
718
def UpperCAmelCase ( _lowerCamelCase : int = 1_000 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = -1 SCREAMING_SNAKE_CASE__ : str = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c SCREAMING_SNAKE_CASE__ : Tuple = (n * n - 2 * a * n) // (2 * n - 2 * a) SCREAMING_SNAKE_CASE__ : Dict = n - a - b if c * c == (a * a + b * b): SCREAMING_SNAKE_CASE__ : str = a * b * c if candidate >= product: SCREAMING_SNAKE_CASE__ : List[str] = candidate return product if __name__ == "__main__": print(f"{solution() = }")
26
0
from sklearn.metrics import recall_score import datasets __lowercase :List[Any] = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" __lowercase :List[str] = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" __lowercase :Union[str, Any] = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def A_ ( self : Dict ) ->Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] , ) def A_ ( self : Any , a : str , a : Union[str, Any] , a : str=None , a : Union[str, Any]=1 , a : str="binary" , a : List[str]=None , a : Optional[Any]="warn" , ) ->Any: SCREAMING_SNAKE_CASE__ : List[Any] = recall_score( a , a , labels=a , pos_label=a , average=a , sample_weight=a , zero_division=a , ) return {"recall": float(a ) if score.size == 1 else score}
719
from __future__ import annotations def UpperCAmelCase ( _lowerCamelCase : list , _lowerCamelCase : int | None = None , _lowerCamelCase : int | None = None ): '''simple docstring''' if start is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 if end is None: SCREAMING_SNAKE_CASE__ : Any = len(_lowerCamelCase ) - 1 if start >= end: return SCREAMING_SNAKE_CASE__ : List[str] = (start + end) // 2 slowsort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) slowsort(_lowerCamelCase , mid + 1 , _lowerCamelCase ) if sequence[end] < sequence[mid]: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = sequence[mid], sequence[end] slowsort(_lowerCamelCase , _lowerCamelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
26
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase :List[str] = logging.get_logger(__name__) class UpperCamelCase__ ( lowercase__ ): """simple docstring""" snake_case_ = "encoder-decoder" snake_case_ = True def __init__( self : Optional[int] , **a : Dict ) ->Union[str, Any]: super().__init__(**a ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" SCREAMING_SNAKE_CASE__ : List[Any] = kwargs.pop("encoder" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = encoder_config.pop("model_type" ) SCREAMING_SNAKE_CASE__ : Any = kwargs.pop("decoder" ) SCREAMING_SNAKE_CASE__ : List[Any] = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig SCREAMING_SNAKE_CASE__ : List[Any] = AutoConfig.for_model(a , **a ) SCREAMING_SNAKE_CASE__ : Any = AutoConfig.for_model(a , **a ) SCREAMING_SNAKE_CASE__ : Dict = True @classmethod def A_ ( cls : int , a : PretrainedConfig , a : PretrainedConfig , **a : List[str] ) ->PretrainedConfig: logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) SCREAMING_SNAKE_CASE__ : Tuple = True SCREAMING_SNAKE_CASE__ : List[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **a ) def A_ ( self : Dict ) ->Tuple: SCREAMING_SNAKE_CASE__ : str = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ : Dict = self.encoder.to_dict() SCREAMING_SNAKE_CASE__ : List[Any] = self.decoder.to_dict() SCREAMING_SNAKE_CASE__ : Dict = self.__class__.model_type return output
720
from __future__ import annotations from fractions import Fraction def UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def UpperCAmelCase ( _lowerCamelCase : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = [] SCREAMING_SNAKE_CASE__ : str = 11 SCREAMING_SNAKE_CASE__ : Any = int("1" + "0" * digit_len ) for num in range(_lowerCamelCase , _lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_lowerCamelCase , _lowerCamelCase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 SCREAMING_SNAKE_CASE__ : str = 10 return solutions def UpperCAmelCase ( _lowerCamelCase : int = 2 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = 1.0 for fraction in fraction_list(_lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Any = Fraction(_lowerCamelCase ) result *= frac.denominator / frac.numerator return int(_lowerCamelCase ) if __name__ == "__main__": print(solution())
26
0
'''simple docstring''' from __future__ import annotations class _a : """simple docstring""" def __init__( self : int , a : list[list[int]] ) ->List[Any]: SCREAMING_SNAKE_CASE__ : Optional[int] = TypeError( "Matrices must be formed from a list of zero or more lists containing at " "least one and the same number of values, each of which must be of type " "int or float." ) if len(a ) != 0: SCREAMING_SNAKE_CASE__ : Optional[Any] = len(rows[0] ) if cols == 0: raise error for row in rows: if len(a ) != cols: raise error for value in row: if not isinstance(a , (int, float) ): raise error SCREAMING_SNAKE_CASE__ : Tuple = rows else: SCREAMING_SNAKE_CASE__ : Dict = [] def A_ ( self : Dict ) ->list[list[int]]: return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def A_ ( self : str ) ->int: return len(self.rows ) @property def A_ ( self : Optional[int] ) ->int: return len(self.rows[0] ) @property def A_ ( self : Optional[int] ) ->tuple[int, int]: return (self.num_rows, self.num_columns) @property def A_ ( self : Union[str, Any] ) ->bool: return self.order[0] == self.order[1] def A_ ( self : str ) ->Matrix: SCREAMING_SNAKE_CASE__ : int = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(a ) def A_ ( self : List[str] ) ->int: if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def A_ ( self : Dict ) ->bool: return bool(self.determinant() ) def A_ ( self : Tuple , a : int , a : int ) ->int: SCREAMING_SNAKE_CASE__ : Optional[Any] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(a ).determinant() def A_ ( self : Any , a : int , a : int ) ->int: if (row + column) % 2 == 0: return self.get_minor(a , a ) return -1 * self.get_minor(a , a ) def A_ ( self : Optional[int] ) ->Matrix: return Matrix( [ [self.get_minor(a , a ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def A_ ( self : List[str] ) ->Matrix: return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def A_ ( self : Optional[int] ) ->Matrix: SCREAMING_SNAKE_CASE__ : Tuple = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(a ) def A_ ( self : Optional[Any] ) ->Matrix: SCREAMING_SNAKE_CASE__ : List[str] = self.determinant() if not determinant: raise TypeError("Only matrices with a non-zero determinant have an inverse" ) return self.adjugate() * (1 / determinant) def __repr__( self : Optional[Any] ) ->str: return str(self.rows ) def __str__( self : str ) ->str: if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ "[" + ". ".join([str(a ) for value in row] ) + ".]" for row in self.rows ] ) + "]" ) def A_ ( self : Optional[Any] , a : list[int] , a : int | None = None ) ->None: SCREAMING_SNAKE_CASE__ : Dict = TypeError("Row must be a list containing all ints and/or floats" ) if not isinstance(a , a ): raise type_error for value in row: if not isinstance(a , (int, float) ): raise type_error if len(a ) != self.num_columns: raise ValueError( "Row must be equal in length to the other rows in the matrix" ) if position is None: self.rows.append(a ) else: SCREAMING_SNAKE_CASE__ : List[str] = self.rows[0:position] + [row] + self.rows[position:] def A_ ( self : Optional[Any] , a : list[int] , a : int | None = None ) ->None: SCREAMING_SNAKE_CASE__ : List[Any] = TypeError( "Column must be a list containing all ints and/or floats" ) if not isinstance(a , a ): raise type_error for value in column: if not isinstance(a , (int, float) ): raise type_error if len(a ) != self.num_rows: raise ValueError( "Column must be equal in length to the other columns in the matrix" ) if position is None: SCREAMING_SNAKE_CASE__ : List[Any] = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: SCREAMING_SNAKE_CASE__ : str = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : Tuple , a : object ) ->bool: if not isinstance(a , a ): return NotImplemented return self.rows == other.rows def __ne__( self : List[Any] , a : object ) ->bool: return not self == other def __neg__( self : List[str] ) ->Matrix: return self * -1 def __add__( self : Union[str, Any] , a : Matrix ) ->Matrix: if self.order != other.order: raise ValueError("Addition requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : Optional[Any] , a : Matrix ) ->Matrix: if self.order != other.order: raise ValueError("Subtraction requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : Tuple , a : Matrix | int | float ) ->Matrix: if isinstance(a , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(a , a ): if self.num_columns != other.num_rows: raise ValueError( "The number of columns in the first matrix must " "be equal to the number of rows in the second" ) return Matrix( [ [Matrix.dot_product(a , a ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( "A Matrix can only be multiplied by an int, float, or another matrix" ) def __pow__( self : List[Any] , a : int ) ->Matrix: if not isinstance(a , a ): raise TypeError("A Matrix can only be raised to the power of an int" ) if not self.is_square: raise ValueError("Only square matrices can be raised to a power" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( "Only invertable matrices can be raised to a negative power" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self for _ in range(other - 1 ): result *= self return result @classmethod def A_ ( cls : List[Any] , a : list[int] , a : list[int] ) ->int: return sum(row[i] * column[i] for i in range(len(a ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
721
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class _a ( unittest.TestCase ): """simple docstring""" @require_torch def A_ ( self : Dict ) ->str: SCREAMING_SNAKE_CASE__ : Any = pipeline( task="zero-shot-audio-classification" , model="hf-internal-testing/tiny-clap-htsat-unfused" ) SCREAMING_SNAKE_CASE__ : Optional[int] = load_dataset("ashraq/esc50" ) SCREAMING_SNAKE_CASE__ : Optional[int] = dataset["train"]["audio"][-1]["array"] SCREAMING_SNAKE_CASE__ : int = audio_classifier(a , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(a ) , [{"score": 0.501, "label": "Sound of a dog"}, {"score": 0.499, "label": "Sound of vaccum cleaner"}] , ) @unittest.skip("No models are available in TF" ) def A_ ( self : int ) ->Union[str, Any]: pass @slow @require_torch def A_ ( self : int ) ->str: SCREAMING_SNAKE_CASE__ : List[str] = pipeline( task="zero-shot-audio-classification" , model="laion/clap-htsat-unfused" , ) # This is an audio of a dog SCREAMING_SNAKE_CASE__ : int = load_dataset("ashraq/esc50" ) SCREAMING_SNAKE_CASE__ : str = dataset["train"]["audio"][-1]["array"] SCREAMING_SNAKE_CASE__ : List[Any] = audio_classifier(a , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(a ) , [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ] , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(a ) , [ [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) SCREAMING_SNAKE_CASE__ : int = audio_classifier( [audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] , batch_size=5 ) self.assertEqual( nested_simplify(a ) , [ [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) @unittest.skip("No models are available in TF" ) def A_ ( self : Optional[int] ) ->Union[str, Any]: pass
26
0
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a : """simple docstring""" def __init__( self : int , a : str , a : str=13 , a : str=30 , a : Tuple=2 , a : List[Any]=3 , a : List[Any]=True , a : str=True , a : Optional[int]=32 , a : Optional[int]=5 , a : List[str]=4 , a : Optional[int]=37 , a : Tuple="gelu" , a : Optional[int]=0.1 , a : str=0.1 , a : Optional[int]=10 , a : Any=0.02 , a : Union[str, Any]=None , a : Any=2 , ) ->int: SCREAMING_SNAKE_CASE__ : List[Any] = parent SCREAMING_SNAKE_CASE__ : List[str] = batch_size SCREAMING_SNAKE_CASE__ : int = image_size SCREAMING_SNAKE_CASE__ : List[str] = patch_size SCREAMING_SNAKE_CASE__ : List[Any] = num_channels SCREAMING_SNAKE_CASE__ : Dict = is_training SCREAMING_SNAKE_CASE__ : Dict = use_labels SCREAMING_SNAKE_CASE__ : Any = hidden_size SCREAMING_SNAKE_CASE__ : Any = num_hidden_layers SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE__ : int = intermediate_size SCREAMING_SNAKE_CASE__ : Dict = hidden_act SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Tuple = type_sequence_label_size SCREAMING_SNAKE_CASE__ : List[Any] = initializer_range SCREAMING_SNAKE_CASE__ : Tuple = scope SCREAMING_SNAKE_CASE__ : Union[str, Any] = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE__ : Dict = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE__ : Dict = num_patches + 1 def A_ ( self : Dict ) ->List[str]: SCREAMING_SNAKE_CASE__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : str = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_config() return config, pixel_values, labels def A_ ( self : List[Any] ) ->Tuple: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A_ ( self : Tuple , a : Dict , a : Optional[int] , a : str ) ->Optional[Any]: SCREAMING_SNAKE_CASE__ : Any = ViTModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE__ : int = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : Optional[int] , a : Optional[Any] , a : Optional[int] , a : Optional[Any] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : List[str] = ViTForMaskedImageModeling(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE__ : Any = model(a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images SCREAMING_SNAKE_CASE__ : int = 1 SCREAMING_SNAKE_CASE__ : str = ViTForMaskedImageModeling(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A_ ( self : Optional[int] , a : Optional[int] , a : Optional[int] , a : Any ) ->Any: SCREAMING_SNAKE_CASE__ : List[str] = self.type_sequence_label_size SCREAMING_SNAKE_CASE__ : Any = ViTForImageClassification(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE__ : Dict = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE__ : Optional[int] = 1 SCREAMING_SNAKE_CASE__ : int = ViTForImageClassification(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A_ ( self : Any ) ->List[str]: SCREAMING_SNAKE_CASE__ : Any = self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE__ ) : Any = config_and_inputs SCREAMING_SNAKE_CASE__ : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _a ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" snake_case_ = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) snake_case_ = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = False def A_ ( self : Tuple ) ->List[Any]: SCREAMING_SNAKE_CASE__ : str = ViTModelTester(self ) SCREAMING_SNAKE_CASE__ : List[str] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37 ) def A_ ( self : Tuple ) ->List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def A_ ( self : Union[str, Any] ) ->List[Any]: pass def A_ ( self : List[str] ) ->Optional[Any]: SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[str] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE__ : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def A_ ( self : Dict ) ->Optional[Any]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : str = model_class(a ) SCREAMING_SNAKE_CASE__ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : str = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , a ) def A_ ( self : Union[str, Any] ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def A_ ( self : Tuple ) ->Any: SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a ) def A_ ( self : int ) ->str: SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) @slow def A_ ( self : Tuple ) ->List[Any]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : int = ViTModel.from_pretrained(a ) self.assertIsNotNone(a ) def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _a ( unittest.TestCase ): """simple docstring""" @cached_property def A_ ( self : Optional[Any] ) ->Tuple: return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def A_ ( self : str ) ->List[Any]: SCREAMING_SNAKE_CASE__ : List[Any] = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(a ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.default_image_processor SCREAMING_SNAKE_CASE__ : Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE__ : int = image_processor(images=a , return_tensors="pt" ).to(a ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[Any] = model(**a ) # verify the logits SCREAMING_SNAKE_CASE__ : Any = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , a ) SCREAMING_SNAKE_CASE__ : str = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1E-4 ) ) @slow def A_ ( self : Tuple ) ->int: # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. SCREAMING_SNAKE_CASE__ : Optional[Any] = ViTModel.from_pretrained("facebook/dino-vits8" ).to(a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=4_80 ) SCREAMING_SNAKE_CASE__ : List[Any] = prepare_img() SCREAMING_SNAKE_CASE__ : List[Any] = image_processor(images=a , return_tensors="pt" ) SCREAMING_SNAKE_CASE__ : List[str] = inputs.pixel_values.to(a ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[str] = model(a , interpolate_pos_encoding=a ) # verify the logits SCREAMING_SNAKE_CASE__ : List[str] = torch.Size((1, 36_01, 3_84) ) self.assertEqual(outputs.last_hidden_state.shape , a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , a , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def A_ ( self : int ) ->Any: SCREAMING_SNAKE_CASE__ : Tuple = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" ) SCREAMING_SNAKE_CASE__ : List[Any] = self.default_image_processor SCREAMING_SNAKE_CASE__ : str = prepare_img() SCREAMING_SNAKE_CASE__ : str = image_processor(images=a , return_tensors="pt" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = inputs.pixel_values.to(a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[Any] = model(a )
700
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 __lowercase :List[str] = get_tests_dir("fixtures/dummy_feature_extractor_config.json") __lowercase :str = get_tests_dir("fixtures/vocab.json") __lowercase :Optional[int] = get_tests_dir("fixtures") class _a ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def A_ ( self : Optional[Any] ) ->int: SCREAMING_SNAKE_CASE__ : Dict = 0 def A_ ( self : Any ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : List[Any] = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(a , a ) def A_ ( self : Union[str, Any] ) ->List[str]: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : Dict = WavaVecaConfig() SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) # save in new folder model_config.save_pretrained(a ) processor.save_pretrained(a ) SCREAMING_SNAKE_CASE__ : str = AutoProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) def A_ ( self : int ) ->List[str]: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(a , os.path.join(a , a ) ) copyfile(a , os.path.join(a , "vocab.json" ) ) SCREAMING_SNAKE_CASE__ : List[Any] = AutoProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) def A_ ( self : List[Any] ) ->Tuple: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : Optional[Any] = WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE__ : Tuple = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) SCREAMING_SNAKE_CASE__ : Any = WavaVecaProcessor(a , a ) # save in new folder processor.save_pretrained(a ) # drop `processor_class` in tokenizer with open(os.path.join(a , a ) , "r" ) as f: SCREAMING_SNAKE_CASE__ : Optional[int] = json.load(a ) config_dict.pop("processor_class" ) with open(os.path.join(a , a ) , "w" ) as f: f.write(json.dumps(a ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = AutoProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) def A_ ( self : List[str] ) ->Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : Tuple = WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) SCREAMING_SNAKE_CASE__ : Optional[int] = WavaVecaProcessor(a , a ) # save in new folder processor.save_pretrained(a ) # drop `processor_class` in feature extractor with open(os.path.join(a , a ) , "r" ) as f: SCREAMING_SNAKE_CASE__ : List[Any] = json.load(a ) config_dict.pop("processor_class" ) with open(os.path.join(a , a ) , "w" ) as f: f.write(json.dumps(a ) ) SCREAMING_SNAKE_CASE__ : List[Any] = AutoProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) def A_ ( self : Union[str, Any] ) ->str: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : List[Any] = WavaVecaConfig(processor_class="Wav2Vec2Processor" ) model_config.save_pretrained(a ) # copy relevant files copyfile(a , os.path.join(a , "vocab.json" ) ) # create emtpy sample processor with open(os.path.join(a , a ) , "w" ) as f: f.write("{}" ) SCREAMING_SNAKE_CASE__ : Tuple = AutoProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) def A_ ( self : Optional[Any] ) ->Optional[int]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(a ): SCREAMING_SNAKE_CASE__ : Optional[int] = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(a ): SCREAMING_SNAKE_CASE__ : Any = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=a ) SCREAMING_SNAKE_CASE__ : List[Any] = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" , trust_remote_code=a ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) SCREAMING_SNAKE_CASE__ : Dict = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version SCREAMING_SNAKE_CASE__ : int = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=a , use_fast=a ) SCREAMING_SNAKE_CASE__ : List[Any] = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , "NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) def A_ ( self : Tuple ) ->List[Any]: try: AutoConfig.register("custom" , a ) AutoFeatureExtractor.register(a , a ) AutoTokenizer.register(a , slow_tokenizer_class=a ) AutoProcessor.register(a , a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a ): AutoProcessor.register(a , a ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE__ : List[str] = CustomFeatureExtractor.from_pretrained(a ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ : int = os.path.join(a , "vocab.txt" ) with open(a , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = CustomTokenizer(a ) SCREAMING_SNAKE_CASE__ : List[Any] = CustomProcessor(a , a ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(a ) SCREAMING_SNAKE_CASE__ : Any = AutoProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def A_ ( self : Union[str, Any] ) ->int: class _a ( lowercase__ ): """simple docstring""" snake_case_ = False class _a ( lowercase__ ): """simple docstring""" snake_case_ = False class _a ( lowercase__ ): """simple docstring""" snake_case_ = "AutoFeatureExtractor" snake_case_ = "AutoTokenizer" snake_case_ = False try: AutoConfig.register("custom" , a ) AutoFeatureExtractor.register(a , a ) AutoTokenizer.register(a , slow_tokenizer_class=a ) AutoProcessor.register(a , a ) # If remote code is not set, the default is to use local classes. SCREAMING_SNAKE_CASE__ : Optional[int] = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. SCREAMING_SNAKE_CASE__ : Tuple = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=a ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. SCREAMING_SNAKE_CASE__ : Any = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=a ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def A_ ( self : Optional[Any] ) ->Dict: SCREAMING_SNAKE_CASE__ : Optional[int] = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(processor.__class__.__name__ , "BertTokenizerFast" ) def A_ ( self : Dict ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : Dict = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext" ) self.assertEqual(processor.__class__.__name__ , "ConvNextImageProcessor" ) @is_staging_test class _a ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def A_ ( cls : List[str] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : int = TOKEN HfFolder.save_token(a ) @classmethod def A_ ( cls : List[str] ) ->Optional[int]: try: delete_repo(token=cls._token , repo_id="test-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-processor" ) except HTTPError: pass def A_ ( self : Dict ) ->Dict: SCREAMING_SNAKE_CASE__ : Tuple = WavaVecaProcessor.from_pretrained(a ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(a , "test-processor" ) , push_to_hub=a , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ : Optional[int] = WavaVecaProcessor.from_pretrained(f"""{USER}/test-processor""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(a , getattr(new_processor.feature_extractor , a ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def A_ ( self : List[str] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : Optional[Any] = WavaVecaProcessor.from_pretrained(a ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(a , "test-processor-org" ) , push_to_hub=a , use_auth_token=self._token , organization="valid_org" , ) SCREAMING_SNAKE_CASE__ : Dict = WavaVecaProcessor.from_pretrained("valid_org/test-processor-org" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(a , getattr(new_processor.feature_extractor , a ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def A_ ( self : Any ) ->int: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() SCREAMING_SNAKE_CASE__ : Any = CustomFeatureExtractor.from_pretrained(a ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(a , "vocab.txt" ) with open(a , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ : str = CustomTokenizer(a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = CustomProcessor(a , a ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f"""{USER}/test-dynamic-processor""" , token=self._token ) SCREAMING_SNAKE_CASE__ : str = Repository(a , clone_from=f"""{USER}/test-dynamic-processor""" , token=self._token ) processor.save_pretrained(a ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { "AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor", "AutoProcessor": "custom_processing.CustomProcessor", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(a , "tokenizer_config.json" ) ) as f: SCREAMING_SNAKE_CASE__ : str = json.load(a ) self.assertDictEqual( tokenizer_config["auto_map"] , { "AutoTokenizer": ["custom_tokenization.CustomTokenizer", None], "AutoProcessor": "custom_processing.CustomProcessor", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(a , "custom_feature_extraction.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(a , "custom_tokenization.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(a , "custom_processing.py" ) ) ) repo.push_to_hub() SCREAMING_SNAKE_CASE__ : List[Any] = AutoProcessor.from_pretrained(f"""{USER}/test-dynamic-processor""" , trust_remote_code=a ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , "CustomProcessor" )
26
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _a ( lowercase__ ): """simple docstring""" snake_case_ = "Salesforce/blip-image-captioning-base" snake_case_ = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) snake_case_ = "image_captioner" snake_case_ = AutoModelForVisionaSeq snake_case_ = ["image"] snake_case_ = ["text"] def __init__( self : Optional[int] , *a : Optional[int] , **a : List[str] ) ->Tuple: requires_backends(self , ["vision"] ) super().__init__(*a , **a ) def A_ ( self : Tuple , a : "Image" ) ->Optional[Any]: return self.pre_processor(images=a , return_tensors="pt" ) def A_ ( self : Any , a : Any ) ->Any: return self.model.generate(**a ) def A_ ( self : List[Any] , a : Optional[Any] ) ->Optional[Any]: return self.pre_processor.batch_decode(a , skip_special_tokens=a )[0].strip()
701
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( lowercase__ ): """simple docstring""" snake_case_ = ["image_processor", "tokenizer"] snake_case_ = "CLIPImageProcessor" snake_case_ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Any , a : List[Any]=None , a : Any=None , **a : int ) ->int: SCREAMING_SNAKE_CASE__ : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , a , ) SCREAMING_SNAKE_CASE__ : List[Any] = kwargs.pop("feature_extractor" ) SCREAMING_SNAKE_CASE__ : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(a , a ) def __call__( self : Tuple , a : Tuple=None , a : Union[str, Any]=None , a : List[str]=None , **a : Optional[Any] ) ->Optional[Any]: if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: SCREAMING_SNAKE_CASE__ : str = self.tokenizer(a , return_tensors=a , **a ) if images is not None: SCREAMING_SNAKE_CASE__ : int = self.image_processor(a , return_tensors=a , **a ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ : Tuple = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a ) , tensor_type=a ) def A_ ( self : Optional[int] , *a : Any , **a : List[str] ) ->Any: return self.tokenizer.batch_decode(*a , **a ) def A_ ( self : Any , *a : Optional[int] , **a : Dict ) ->Any: return self.tokenizer.decode(*a , **a ) @property def A_ ( self : List[str] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A_ ( self : Optional[int] ) ->List[Any]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , a , ) return self.image_processor_class @property def A_ ( self : Dict ) ->str: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , a , ) return self.image_processor
26
0
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters __lowercase :List[Any] = False __lowercase :Union[str, Any] = False def UpperCAmelCase ( _lowerCamelCase : Namespace ): '''simple docstring''' return TrainCommand(_lowerCamelCase ) class _a ( lowercase__ ): """simple docstring""" @staticmethod def A_ ( a : ArgumentParser ) ->List[Any]: SCREAMING_SNAKE_CASE__ : List[str] = parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=a , required=a , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=a , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=a , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=a , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=a , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=a , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=a , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=a , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=a , default="bert-base-uncased" , help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=a , default=32 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=a , default=64 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=a , default=3E-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=a , default=1E-08 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=a ) def __init__( self : Union[str, Any] , a : Namespace ) ->Tuple: SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger("transformers-cli/training" ) SCREAMING_SNAKE_CASE__ : Dict = "tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=a ) SCREAMING_SNAKE_CASE__ : Tuple = args.output SCREAMING_SNAKE_CASE__ : Optional[Any] = args.column_label SCREAMING_SNAKE_CASE__ : int = args.column_text SCREAMING_SNAKE_CASE__ : int = args.column_id self.logger.info(f"""Loading {args.task} pipeline for {args.model}""" ) if args.task == "text_classification": SCREAMING_SNAKE_CASE__ : List[Any] = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"""Loading dataset from {args.train_data}""" ) SCREAMING_SNAKE_CASE__ : Tuple = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) SCREAMING_SNAKE_CASE__ : str = None if args.validation_data: self.logger.info(f"""Loading validation dataset from {args.validation_data}""" ) SCREAMING_SNAKE_CASE__ : Dict = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) SCREAMING_SNAKE_CASE__ : Tuple = args.validation_split SCREAMING_SNAKE_CASE__ : str = args.train_batch_size SCREAMING_SNAKE_CASE__ : Tuple = args.valid_batch_size SCREAMING_SNAKE_CASE__ : Optional[Any] = args.learning_rate SCREAMING_SNAKE_CASE__ : List[str] = args.adam_epsilon def A_ ( self : Dict ) ->Dict: if self.framework == "tf": return self.run_tf() return self.run_torch() def A_ ( self : int ) ->Union[str, Any]: raise NotImplementedError def A_ ( self : Tuple ) ->str: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
702
import sys from collections import defaultdict class _a : """simple docstring""" def __init__( self : Any ) ->Dict: SCREAMING_SNAKE_CASE__ : Tuple = [] def A_ ( self : int , a : List[str] ) ->Dict: return self.node_position[vertex] def A_ ( self : Optional[Any] , a : Any , a : List[str] ) ->Optional[Any]: SCREAMING_SNAKE_CASE__ : str = pos def A_ ( self : List[Any] , a : List[str] , a : Dict , a : Dict , a : List[Any] ) ->Optional[int]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: SCREAMING_SNAKE_CASE__ : Optional[Any] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: SCREAMING_SNAKE_CASE__ : Dict = 2 * start + 1 else: SCREAMING_SNAKE_CASE__ : Tuple = 2 * start + 2 if heap[smallest_child] < heap[start]: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : int = heap[smallest_child], positions[smallest_child] SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = ( heap[start], positions[start], ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Tuple = temp, tempa SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , a ) self.top_to_bottom(a , a , a , a ) def A_ ( self : Union[str, Any] , a : Tuple , a : Tuple , a : Union[str, Any] , a : List[Any] ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : List[Any] = position[index] while index != 0: SCREAMING_SNAKE_CASE__ : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: SCREAMING_SNAKE_CASE__ : List[Any] = heap[parent] SCREAMING_SNAKE_CASE__ : str = position[parent] self.set_position(position[parent] , a ) else: SCREAMING_SNAKE_CASE__ : int = val SCREAMING_SNAKE_CASE__ : Optional[Any] = temp self.set_position(a , a ) break SCREAMING_SNAKE_CASE__ : Optional[int] = parent else: SCREAMING_SNAKE_CASE__ : int = val SCREAMING_SNAKE_CASE__ : List[str] = temp self.set_position(a , 0 ) def A_ ( self : Union[str, Any] , a : int , a : List[str] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : List[str] = len(a ) // 2 - 1 for i in range(a , -1 , -1 ): self.top_to_bottom(a , a , len(a ) , a ) def A_ ( self : Dict , a : List[Any] , a : Dict ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : Any = positions[0] SCREAMING_SNAKE_CASE__ : Optional[int] = sys.maxsize self.top_to_bottom(a , 0 , len(a ) , a ) return temp def UpperCAmelCase ( _lowerCamelCase : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = Heap() SCREAMING_SNAKE_CASE__ : Any = [0] * len(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Any = [-1] * len(_lowerCamelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] # Heap of Distance of vertices from their neighboring vertex SCREAMING_SNAKE_CASE__ : str = [] for vertex in range(len(_lowerCamelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_lowerCamelCase ) heap.node_position.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = [] SCREAMING_SNAKE_CASE__ : int = 1 SCREAMING_SNAKE_CASE__ : int = sys.maxsize for neighbor, distance in adjacency_list[0]: SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : List[str] = distance heap.heapify(_lowerCamelCase , _lowerCamelCase ) for _ in range(1 , len(_lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ : Optional[Any] = heap.delete_minimum(_lowerCamelCase , _lowerCamelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_lowerCamelCase )] ): SCREAMING_SNAKE_CASE__ : Any = distance heap.bottom_to_top( _lowerCamelCase , heap.get_position(_lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : str = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __lowercase :Union[str, Any] = int(input("Enter number of edges: ").strip()) __lowercase :Dict = defaultdict(list) for _ in range(edges_number): __lowercase :Any = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
26
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase :Optional[Any] = logging.get_logger(__name__) __lowercase :List[str] = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class _a ( lowercase__ ): """simple docstring""" snake_case_ = "trocr" snake_case_ = ["past_key_values"] snake_case_ = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : int , a : int=5_02_65 , a : int=10_24 , a : Tuple=12 , a : int=16 , a : Optional[int]=40_96 , a : Dict="gelu" , a : str=5_12 , a : Optional[Any]=0.1 , a : int=0.0 , a : Optional[int]=0.0 , a : List[Any]=2 , a : str=0.02 , a : Dict=0.0 , a : List[Any]=True , a : int=False , a : List[str]=True , a : str=True , a : List[Any]=1 , a : Dict=0 , a : Any=2 , **a : int , ) ->List[str]: SCREAMING_SNAKE_CASE__ : Dict = vocab_size SCREAMING_SNAKE_CASE__ : List[str] = d_model SCREAMING_SNAKE_CASE__ : List[Any] = decoder_layers SCREAMING_SNAKE_CASE__ : Tuple = decoder_attention_heads SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : Optional[int] = activation_function SCREAMING_SNAKE_CASE__ : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : int = dropout SCREAMING_SNAKE_CASE__ : List[str] = attention_dropout SCREAMING_SNAKE_CASE__ : Optional[Any] = activation_dropout SCREAMING_SNAKE_CASE__ : Dict = init_std SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_layerdrop SCREAMING_SNAKE_CASE__ : Dict = use_cache SCREAMING_SNAKE_CASE__ : Any = scale_embedding SCREAMING_SNAKE_CASE__ : int = use_learned_position_embeddings SCREAMING_SNAKE_CASE__ : Union[str, Any] = layernorm_embedding super().__init__( pad_token_id=a , bos_token_id=a , eos_token_id=a , decoder_start_token_id=a , **a , )
703
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __lowercase :List[Any] = logging.get_logger(__name__) __lowercase :Optional[int] = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class _a ( lowercase__ ): """simple docstring""" snake_case_ = "longformer" def __init__( self : List[str] , a : Union[List[int], int] = 5_12 , a : int = 2 , a : int = 1 , a : int = 0 , a : int = 2 , a : int = 3_05_22 , a : int = 7_68 , a : int = 12 , a : int = 12 , a : int = 30_72 , a : str = "gelu" , a : float = 0.1 , a : float = 0.1 , a : int = 5_12 , a : int = 2 , a : float = 0.02 , a : float = 1E-12 , a : bool = False , **a : Dict , ) ->Tuple: super().__init__(pad_token_id=a , **a ) SCREAMING_SNAKE_CASE__ : int = attention_window SCREAMING_SNAKE_CASE__ : Any = sep_token_id SCREAMING_SNAKE_CASE__ : str = bos_token_id SCREAMING_SNAKE_CASE__ : List[str] = eos_token_id SCREAMING_SNAKE_CASE__ : List[str] = vocab_size SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE__ : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE__ : List[Any] = hidden_act SCREAMING_SNAKE_CASE__ : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE__ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : str = type_vocab_size SCREAMING_SNAKE_CASE__ : Any = initializer_range SCREAMING_SNAKE_CASE__ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE__ : Any = onnx_export class _a ( lowercase__ ): """simple docstring""" def __init__( self : int , a : "PretrainedConfig" , a : str = "default" , a : "List[PatchingSpec]" = None ) ->str: super().__init__(a , a , a ) SCREAMING_SNAKE_CASE__ : Any = True @property def A_ ( self : int ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ : int = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE__ : str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ] ) @property def A_ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: SCREAMING_SNAKE_CASE__ : Optional[Any] = super().outputs if self.task == "default": SCREAMING_SNAKE_CASE__ : List[str] = {0: "batch"} return outputs @property def A_ ( self : str ) ->float: return 1E-4 @property def A_ ( self : Any ) ->int: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def A_ ( self : str , a : "PreTrainedTokenizerBase" , a : int = -1 , a : int = -1 , a : bool = False , a : Optional[TensorType] = None , ) ->Mapping[str, Any]: SCREAMING_SNAKE_CASE__ : Tuple = super().generate_dummy_inputs( preprocessor=a , batch_size=a , seq_length=a , is_pair=a , framework=a ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly SCREAMING_SNAKE_CASE__ : Any = torch.zeros_like(inputs["input_ids"] ) # make every second token global SCREAMING_SNAKE_CASE__ : str = 1 return inputs
26
0
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def UpperCAmelCase ( _lowerCamelCase : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", "decoder.output_projection.weight", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = emb.weight.shape SCREAMING_SNAKE_CASE__ : Union[str, Any] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Any = emb.weight.data return lin_layer def UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : int="facebook/mbart-large-en-ro" , _lowerCamelCase : Tuple=False , _lowerCamelCase : Optional[int]=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = torch.load(_lowerCamelCase , map_location="cpu" )["model"] remove_ignore_keys_(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = state_dict["encoder.embed_tokens.weight"].shape[0] SCREAMING_SNAKE_CASE__ : int = MBartConfig.from_pretrained(_lowerCamelCase , vocab_size=_lowerCamelCase ) if mbart_aa and finetuned: SCREAMING_SNAKE_CASE__ : Optional[int] = "relu" SCREAMING_SNAKE_CASE__ : Any = state_dict["decoder.embed_tokens.weight"] SCREAMING_SNAKE_CASE__ : List[Any] = MBartForConditionalGeneration(_lowerCamelCase ) model.model.load_state_dict(_lowerCamelCase ) if finetuned: SCREAMING_SNAKE_CASE__ : List[str] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __lowercase :Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default="facebook/mbart-large-cc25", type=str, help="Which huggingface architecture to use: mbart-large", ) parser.add_argument("--mbart_50", action="store_true", help="whether the model is mMART-50 checkpoint") parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint") __lowercase :Dict = parser.parse_args() __lowercase :Union[str, Any] = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
704
def UpperCAmelCase ( _lowerCamelCase : int = 4_000_000 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = [0, 1] SCREAMING_SNAKE_CASE__ : List[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 for j in range(len(_lowerCamelCase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"{solution() = }")
26
0
import argparse import os import re import packaging.version __lowercase :int = "examples/" __lowercase :List[Any] = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __lowercase :List[Any] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __lowercase :List[str] = "README.md" def UpperCAmelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Any ): '''simple docstring''' with open(_lowerCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE__ : Optional[Any] = f.read() SCREAMING_SNAKE_CASE__ : int = REPLACE_PATTERNS[pattern] SCREAMING_SNAKE_CASE__ : List[Any] = replace.replace("VERSION" , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Any = re_pattern.sub(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(_lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase : List[Any] ): '''simple docstring''' for folder, directories, fnames in os.walk(_lowerCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , pattern="examples" ) def UpperCAmelCase ( _lowerCamelCase : Any , _lowerCamelCase : Any=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not patch: update_version_in_examples(_lowerCamelCase ) def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = "🤗 Transformers currently provides the following architectures" SCREAMING_SNAKE_CASE__ : str = "1. Want to contribute a new model?" with open(_lowerCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE__ : List[Any] = f.readlines() # Find the start of the list. SCREAMING_SNAKE_CASE__ : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE__ : str = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): SCREAMING_SNAKE_CASE__ : str = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(_lowerCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(_lowerCamelCase ) def UpperCAmelCase ( ): '''simple docstring''' with open(REPLACE_FILES["init"] , "r" ) as f: SCREAMING_SNAKE_CASE__ : Dict = f.read() SCREAMING_SNAKE_CASE__ : str = REPLACE_PATTERNS["init"][0].search(_lowerCamelCase ).groups()[0] return packaging.version.parse(_lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase : Optional[Any]=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: SCREAMING_SNAKE_CASE__ : str = default_version.base_version elif patch: SCREAMING_SNAKE_CASE__ : List[str] = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: SCREAMING_SNAKE_CASE__ : List[str] = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. SCREAMING_SNAKE_CASE__ : List[str] = input(f"""Which version are you releasing? [{default_version}]""" ) if len(_lowerCamelCase ) == 0: SCREAMING_SNAKE_CASE__ : int = default_version print(f"""Updating version to {version}.""" ) global_version_update(_lowerCamelCase , patch=_lowerCamelCase ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = get_version() SCREAMING_SNAKE_CASE__ : List[Any] = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" SCREAMING_SNAKE_CASE__ : Optional[int] = current_version.base_version # Check with the user we got that right. SCREAMING_SNAKE_CASE__ : Tuple = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(_lowerCamelCase ) == 0: SCREAMING_SNAKE_CASE__ : Union[str, Any] = dev_version print(f"""Updating version to {version}.""" ) global_version_update(_lowerCamelCase ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowercase :Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __lowercase :Any = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
705
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _a ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , a : Any , a : bool = True , a : Dict[str, int] = None , a : int = 32 , a : bool = True , a : Union[int, float] = 1 / 2_55 , a : bool = True , a : bool = True , a : Optional[Union[float, List[float]]] = [0.4814_5466, 0.457_8275, 0.4082_1073] , a : Optional[Union[float, List[float]]] = [0.2686_2954, 0.2613_0258, 0.2757_7711] , a : bool = True , a : Any=7 , a : str=30 , a : Dict=4_00 , a : Optional[int]=3 , ) ->int: SCREAMING_SNAKE_CASE__ : int = parent SCREAMING_SNAKE_CASE__ : Dict = do_resize SCREAMING_SNAKE_CASE__ : List[str] = size if size is not None else {"shortest_edge": 2_88} SCREAMING_SNAKE_CASE__ : List[Any] = size_divisor SCREAMING_SNAKE_CASE__ : List[Any] = do_rescale SCREAMING_SNAKE_CASE__ : Tuple = rescale_factor SCREAMING_SNAKE_CASE__ : Optional[int] = do_normalize SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_center_crop SCREAMING_SNAKE_CASE__ : Optional[int] = image_mean SCREAMING_SNAKE_CASE__ : Dict = image_std SCREAMING_SNAKE_CASE__ : List[str] = do_pad SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE__ : int = num_channels SCREAMING_SNAKE_CASE__ : Optional[int] = min_resolution SCREAMING_SNAKE_CASE__ : Union[str, Any] = max_resolution def A_ ( self : List[str] ) ->Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def A_ ( self : int , a : Optional[int] , a : Union[str, Any]=False ) ->Optional[Any]: if not batched: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.size["shortest_edge"] SCREAMING_SNAKE_CASE__ : Dict = image_inputs[0] if isinstance(a , Image.Image ): SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Dict = image.size else: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : List[str] = image.shape[1], image.shape[2] SCREAMING_SNAKE_CASE__ : Any = size / min(a , a ) if h < w: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = size, scale * w else: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : List[str] = scale * h, size SCREAMING_SNAKE_CASE__ : List[Any] = int((13_33 / 8_00) * size ) if max(a , a ) > max_size: SCREAMING_SNAKE_CASE__ : List[Any] = max_size / max(a , a ) SCREAMING_SNAKE_CASE__ : int = newh * scale SCREAMING_SNAKE_CASE__ : Optional[int] = neww * scale SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Any = int(newh + 0.5 ), int(neww + 0.5 ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Any = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: SCREAMING_SNAKE_CASE__ : List[Any] = [] for image in image_inputs: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE__ : Tuple = max(a , key=lambda a : item[0] )[0] SCREAMING_SNAKE_CASE__ : Tuple = max(a , key=lambda a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( lowercase__ , unittest.TestCase ): """simple docstring""" snake_case_ = BridgeTowerImageProcessor if is_vision_available() else None def A_ ( self : List[Any] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : Any = BridgeTowerImageProcessingTester(self ) @property def A_ ( self : Optional[int] ) ->Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def A_ ( self : Tuple ) ->str: SCREAMING_SNAKE_CASE__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , "image_mean" ) ) self.assertTrue(hasattr(a , "image_std" ) ) self.assertTrue(hasattr(a , "do_normalize" ) ) self.assertTrue(hasattr(a , "do_resize" ) ) self.assertTrue(hasattr(a , "size" ) ) self.assertTrue(hasattr(a , "size_divisor" ) ) def A_ ( self : List[Any] ) ->List[Any]: pass def A_ ( self : Tuple ) ->Optional[Any]: # Initialize image processor SCREAMING_SNAKE_CASE__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ : int = image_processing(a , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Any = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self : Optional[int] ) ->Any: # Initialize image processor SCREAMING_SNAKE_CASE__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : List[Any] = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ : Tuple = image_processing(a , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self : str ) ->Optional[int]: # Initialize image processor SCREAMING_SNAKE_CASE__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Tuple = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ : Any = image_processing(a , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
26
0
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __lowercase :List[str] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __lowercase :Union[str, Any] = [0, 25, 50] __lowercase :Optional[int] = [25, 50, 75] __lowercase :Union[str, Any] = fuzz.membership.trimf(X, abca) __lowercase :int = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __lowercase :int = np.ones(75) __lowercase :List[str] = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) __lowercase :str = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __lowercase :str = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __lowercase :List[Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __lowercase :str = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __lowercase :int = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __lowercase :str = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __lowercase :List[str] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __lowercase :Union[str, Any] = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("Young") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("Middle aged") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("union") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("intersection") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("complement_a") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("difference a/b") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("alg_sum") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("alg_product") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("bdd_sum") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("bdd_difference") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
706
def UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : bool = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_317_044_064_679_887_385_961_981 and not allow_probable: raise ValueError( "Warning: upper bound of deterministic test is exceeded. " "Pass allow_probable=True to allow probabilistic test. " "A return value of True indicates a probable prime." ) # array bounds provided by analysis SCREAMING_SNAKE_CASE__ : List[str] = [ 2_047, 1_373_653, 25_326_001, 3_215_031_751, 2_152_302_898_747, 3_474_749_660_383, 341_550_071_728_321, 1, 3_825_123_056_546_413_051, 1, 1, 318_665_857_834_031_151_167_461, 3_317_044_064_679_887_385_961_981, ] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(_lowerCamelCase , 1 ): if n < _p: # then we have our last prime to check SCREAMING_SNAKE_CASE__ : Dict = primes[:idx] break SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Dict = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: SCREAMING_SNAKE_CASE__ : str = False for r in range(_lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Optional[Any] = pow(_lowerCamelCase , d * 2**r , _lowerCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): SCREAMING_SNAKE_CASE__ : str = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def UpperCAmelCase ( ): '''simple docstring''' assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838_201 ) assert miller_rabin(838_207 ) # 1_373_653 assert not miller_rabin(17_316_001 ) assert miller_rabin(17_316_017 ) # 25_326_001 assert not miller_rabin(3_078_386_641 ) assert miller_rabin(3_078_386_653 ) # 3_215_031_751 assert not miller_rabin(1_713_045_574_801 ) assert miller_rabin(1_713_045_574_819 ) # 2_152_302_898_747 assert not miller_rabin(2_779_799_728_307 ) assert miller_rabin(2_779_799_728_327 ) # 3_474_749_660_383 assert not miller_rabin(113_850_023_909_441 ) assert miller_rabin(113_850_023_909_527 ) # 341_550_071_728_321 assert not miller_rabin(1_275_041_018_848_804_351 ) assert miller_rabin(1_275_041_018_848_804_391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79_666_464_458_507_787_791_867 ) assert miller_rabin(79_666_464_458_507_787_791_951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552_840_677_446_647_897_660_333 ) assert miller_rabin(552_840_677_446_647_897_660_359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
26
0
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __lowercase :Any = "http://www.mocksite.com/file1.txt" __lowercase :Dict = "\"text\": [\"foo\", \"foo\"]" __lowercase :Optional[Any] = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class _a : """simple docstring""" snake_case_ = 2_00 snake_case_ = {"Content-Length": "100"} snake_case_ = {} def A_ ( self : str , **a : Union[str, Any] ) ->str: return [bytes(a , "utf-8" )] def UpperCAmelCase ( *_lowerCamelCase : Dict , **_lowerCamelCase : int ): '''simple docstring''' return MockResponse() @pytest.mark.parametrize("urls_type" , [str, list, dict] ) def UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : List[str] ): '''simple docstring''' import requests monkeypatch.setattr(_lowerCamelCase , "request" , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : str = URL if issubclass(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = url elif issubclass(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Any = [url] elif issubclass(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"train": url} SCREAMING_SNAKE_CASE__ : Tuple = "dummy" SCREAMING_SNAKE_CASE__ : Optional[Any] = "downloads" SCREAMING_SNAKE_CASE__ : List[Any] = tmp_path SCREAMING_SNAKE_CASE__ : Optional[int] = DownloadConfig( cache_dir=os.path.join(_lowerCamelCase , _lowerCamelCase ) , use_etag=_lowerCamelCase , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Tuple = dl_manager.download(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Dict = urls for downloaded_paths in [downloaded_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE__ : str = [downloaded_paths] SCREAMING_SNAKE_CASE__ : List[Any] = [urls] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in downloaded_paths.keys() SCREAMING_SNAKE_CASE__ : Union[str, Any] = downloaded_paths.values() SCREAMING_SNAKE_CASE__ : Optional[int] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_lowerCamelCase , _lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] SCREAMING_SNAKE_CASE__ : Dict = Path(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() SCREAMING_SNAKE_CASE__ : Optional[int] = downloaded_path.read_text() assert content == CONTENT SCREAMING_SNAKE_CASE__ : Union[str, Any] = downloaded_path.with_suffix(".json" ) assert metadata_downloaded_path.exists() SCREAMING_SNAKE_CASE__ : Optional[Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("paths_type" , [str, list, dict] ) def UpperCAmelCase ( _lowerCamelCase : Any , _lowerCamelCase : int , _lowerCamelCase : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = str(_lowerCamelCase ) if issubclass(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Optional[Any] = filename elif issubclass(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE__ : int = [filename] elif issubclass(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE__ : List[str] = {"train": filename} SCREAMING_SNAKE_CASE__ : Tuple = "dummy" SCREAMING_SNAKE_CASE__ : int = xz_file.parent SCREAMING_SNAKE_CASE__ : List[Any] = "extracted" SCREAMING_SNAKE_CASE__ : Dict = DownloadConfig( cache_dir=_lowerCamelCase , use_etag=_lowerCamelCase , ) SCREAMING_SNAKE_CASE__ : Tuple = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Tuple = dl_manager.extract(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = paths for extracted_paths in [extracted_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Any = [extracted_paths] SCREAMING_SNAKE_CASE__ : Optional[Any] = [paths] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in extracted_paths.keys() SCREAMING_SNAKE_CASE__ : str = extracted_paths.values() SCREAMING_SNAKE_CASE__ : Any = paths.values() assert extracted_paths for extracted_path, input_path in zip(_lowerCamelCase , _lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] SCREAMING_SNAKE_CASE__ : Any = Path(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Any = extracted_path.parts assert parts[-1] == hash_url_to_filename(_lowerCamelCase , etag=_lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() SCREAMING_SNAKE_CASE__ : int = extracted_path.read_text() SCREAMING_SNAKE_CASE__ : str = text_file.read_text() assert extracted_file_content == expected_file_content def UpperCAmelCase ( _lowerCamelCase : Any , _lowerCamelCase : List[Any] ): '''simple docstring''' assert path.endswith(".jsonl" ) for num_items, line in enumerate(_lowerCamelCase , start=1 ): SCREAMING_SNAKE_CASE__ : List[str] = json.loads(line.decode("utf-8" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("archive_jsonl" , ["tar_jsonl_path", "zip_jsonl_path"] ) def UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = request.getfixturevalue(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("archive_nested_jsonl" , ["tar_nested_jsonl_path", "zip_nested_jsonl_path"] ) def UpperCAmelCase ( _lowerCamelCase : Optional[int] , _lowerCamelCase : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = request.getfixturevalue(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[str] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def UpperCAmelCase ( _lowerCamelCase : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_lowerCamelCase ) , start=1 ): assert os.path.basename(_lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
707
import numpy class _a : """simple docstring""" def __init__( self : Optional[int] , a : numpy.ndarray , a : numpy.ndarray ) ->None: SCREAMING_SNAKE_CASE__ : Any = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. SCREAMING_SNAKE_CASE__ : int = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. SCREAMING_SNAKE_CASE__ : Dict = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. SCREAMING_SNAKE_CASE__ : List[Any] = numpy.random.rand(3 , 1 ) # Real output values provided. SCREAMING_SNAKE_CASE__ : str = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. SCREAMING_SNAKE_CASE__ : Tuple = numpy.zeros(output_array.shape ) def A_ ( self : Union[str, Any] ) ->numpy.ndarray: SCREAMING_SNAKE_CASE__ : List[Any] = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. SCREAMING_SNAKE_CASE__ : Optional[int] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. SCREAMING_SNAKE_CASE__ : int = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def A_ ( self : int ) ->None: SCREAMING_SNAKE_CASE__ : Optional[int] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) SCREAMING_SNAKE_CASE__ : int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def A_ ( self : int , a : numpy.ndarray , a : int , a : bool ) ->None: for iteration in range(1 , iterations + 1 ): SCREAMING_SNAKE_CASE__ : Dict = self.feedforward() self.back_propagation() if give_loss: SCREAMING_SNAKE_CASE__ : int = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f"""Iteration {iteration} Loss: {loss}""" ) def A_ ( self : Tuple , a : numpy.ndarray ) ->int: SCREAMING_SNAKE_CASE__ : Optional[int] = input_arr SCREAMING_SNAKE_CASE__ : Dict = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) SCREAMING_SNAKE_CASE__ : Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def UpperCAmelCase ( _lowerCamelCase : numpy.ndarray ): '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def UpperCAmelCase ( _lowerCamelCase : numpy.ndarray ): '''simple docstring''' return (value) * (1 - (value)) def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. SCREAMING_SNAKE_CASE__ : Any = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. SCREAMING_SNAKE_CASE__ : List[Any] = TwoHiddenLayerNeuralNetwork( input_array=_lowerCamelCase , output_array=_lowerCamelCase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_lowerCamelCase , iterations=10 , give_loss=_lowerCamelCase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
26
0
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = BertConfig.from_json_file(_lowerCamelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) SCREAMING_SNAKE_CASE__ : List[Any] = BertForPreTraining(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _lowerCamelCase ) if __name__ == "__main__": __lowercase :str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowercase :Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
708
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowercase :Tuple = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" __lowercase :str = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" __lowercase :List[Any] = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def A_ ( self : List[Any] ) ->MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def A_ ( self : str , a : List[List[List[str]]] , a : List[List[str]] , a : int = 1 , a : int = 4 , ) ->Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=a , hypotheses=a , min_len=a , max_len=a ) }
26
0
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _a ( lowercase__ , unittest.TestCase ): """simple docstring""" snake_case_ = BioGptTokenizer snake_case_ = False def A_ ( self : int ) ->Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE__ : List[str] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] SCREAMING_SNAKE_CASE__ : Dict = dict(zip(a , range(len(a ) ) ) ) SCREAMING_SNAKE_CASE__ : List[str] = ["l o 123", "lo w 1456", "e r</w> 1789", ""] SCREAMING_SNAKE_CASE__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(a ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(a ) ) def A_ ( self : List[str] , a : Optional[int] ) ->Tuple: SCREAMING_SNAKE_CASE__ : Optional[int] = "lower newer" SCREAMING_SNAKE_CASE__ : str = "lower newer" return input_text, output_text def A_ ( self : Optional[int] ) ->Tuple: SCREAMING_SNAKE_CASE__ : Optional[int] = BioGptTokenizer(self.vocab_file , self.merges_file ) SCREAMING_SNAKE_CASE__ : Optional[int] = "lower" SCREAMING_SNAKE_CASE__ : Tuple = ["low", "er</w>"] SCREAMING_SNAKE_CASE__ : Any = tokenizer.tokenize(a ) self.assertListEqual(a , a ) SCREAMING_SNAKE_CASE__ : Dict = tokens + ["<unk>"] SCREAMING_SNAKE_CASE__ : Any = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a ) @slow def A_ ( self : Dict ) ->Optional[Any]: SCREAMING_SNAKE_CASE__ : str = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.encode("sequence builders" , add_special_tokens=a ) SCREAMING_SNAKE_CASE__ : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(a , a ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
709
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __lowercase :List[Any] = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any]=None ): '''simple docstring''' require_version(deps[pkg] , _lowerCamelCase )
26
0
from __future__ import annotations from typing import Any class _a : """simple docstring""" def __init__( self : Tuple , a : int , a : int , a : float = 0 ) ->None: SCREAMING_SNAKE_CASE__ : List[str] = row, column SCREAMING_SNAKE_CASE__ : List[Any] = [[default_value for c in range(a )] for r in range(a )] def __str__( self : List[Any] ) ->str: SCREAMING_SNAKE_CASE__ : Optional[int] = f"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier SCREAMING_SNAKE_CASE__ : Tuple = 0 for row_vector in self.array: for obj in row_vector: SCREAMING_SNAKE_CASE__ : int = max(a , len(str(a ) ) ) SCREAMING_SNAKE_CASE__ : Dict = f"""%{max_element_length}s""" # Make string and return def single_line(a : list[float] ) -> str: nonlocal string_format_identifier SCREAMING_SNAKE_CASE__ : Dict = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(a ) for row_vector in self.array ) return s def __repr__( self : int ) ->str: return str(self ) def A_ ( self : str , a : tuple[int, int] ) ->bool: if not (isinstance(a , (list, tuple) ) and len(a ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Tuple , a : tuple[int, int] ) ->Any: assert self.validate_indicies(a ) return self.array[loc[0]][loc[1]] def __setitem__( self : Optional[int] , a : tuple[int, int] , a : float ) ->None: assert self.validate_indicies(a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = value def __add__( self : List[str] , a : Matrix ) ->Matrix: assert isinstance(a , a ) assert self.row == another.row and self.column == another.column # Add SCREAMING_SNAKE_CASE__ : str = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self[r, c] + another[r, c] return result def __neg__( self : Tuple ) ->Matrix: SCREAMING_SNAKE_CASE__ : List[Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE__ : Any = -self[r, c] return result def __sub__( self : Dict , a : Matrix ) ->Matrix: return self + (-another) def __mul__( self : Dict , a : int | float | Matrix ) ->Matrix: if isinstance(a , (int, float) ): # Scalar multiplication SCREAMING_SNAKE_CASE__ : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE__ : Tuple = self[r, c] * another return result elif isinstance(a , a ): # Matrix multiplication assert self.column == another.row SCREAMING_SNAKE_CASE__ : Optional[Any] = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: SCREAMING_SNAKE_CASE__ : Optional[int] = f"""Unsupported type given for another ({type(a )})""" raise TypeError(a ) def A_ ( self : Optional[int] ) ->Matrix: SCREAMING_SNAKE_CASE__ : Optional[int] = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE__ : Any = self[r, c] return result def A_ ( self : int , a : Matrix , a : Matrix ) ->Any: assert isinstance(a , a ) and isinstance(a , a ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate SCREAMING_SNAKE_CASE__ : Optional[int] = v.transpose() SCREAMING_SNAKE_CASE__ : Dict = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = Matrix(3 , 3 , 0 ) for i in range(3 ): SCREAMING_SNAKE_CASE__ : int = 1 print(f"""a^(-1) is {ainv}""" ) # u, v SCREAMING_SNAKE_CASE__ : Optional[Any] = Matrix(3 , 1 , 0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = 1, 2, -3 SCREAMING_SNAKE_CASE__ : List[Any] = Matrix(3 , 1 , 0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = 4, -2, 5 print(f"""u is {u}""" ) print(f"""v is {v}""" ) print(f"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(f"""(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}""" ) def UpperCAmelCase ( ): '''simple docstring''' import doctest doctest.testmod() testa()
710
from __future__ import annotations def UpperCAmelCase ( _lowerCamelCase : list[int] , _lowerCamelCase : int ): '''simple docstring''' if len(_lowerCamelCase ) < k or k < 0: raise ValueError("Invalid Input" ) SCREAMING_SNAKE_CASE__ : int = sum(array[:k] ) for i in range(len(_lowerCamelCase ) - k ): SCREAMING_SNAKE_CASE__ : str = current_sum - array[i] + array[i + k] SCREAMING_SNAKE_CASE__ : Union[str, Any] = max(_lowerCamelCase , _lowerCamelCase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() __lowercase :List[str] = [randint(-1_000, 1_000) for i in range(100)] __lowercase :Any = randint(0, 110) print(f"The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}")
26
0
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging __lowercase :Dict = logging.get_logger(__name__) __lowercase :List[Any] = {"vocab_file": "spiece.model"} __lowercase :Union[str, Any] = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 __lowercase :List[Any] = { "t5-small": 512, "t5-base": 512, "t5-large": 512, "t5-3b": 512, "t5-11b": 512, } __lowercase :List[str] = "▁" class _a ( lowercase__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] def __init__( self : Tuple , a : int , a : Optional[Any]="</s>" , a : Optional[Any]="<unk>" , a : Tuple="<pad>" , a : int=1_00 , a : Tuple=None , a : Optional[Dict[str, Any]] = None , a : List[Any]=True , **a : Dict , ) ->None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: SCREAMING_SNAKE_CASE__ : Tuple = [f"""<extra_id_{i}>""" for i in range(a )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens SCREAMING_SNAKE_CASE__ : Dict = len(set(filter(lambda a : bool("extra_id" in str(a ) ) , a ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) if legacy: logger.warning_once( f"""You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to""" " read the related pull request available at https://github.com/huggingface/transformers/pull/24565" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = legacy SCREAMING_SNAKE_CASE__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=a , unk_token=a , pad_token=a , extra_ids=a , additional_special_tokens=a , sp_model_kwargs=self.sp_model_kwargs , legacy=a , **a , ) SCREAMING_SNAKE_CASE__ : Dict = vocab_file SCREAMING_SNAKE_CASE__ : Optional[int] = extra_ids SCREAMING_SNAKE_CASE__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a ) @staticmethod def A_ ( a : Any , a : List[Any] , a : Dict ) ->str: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: SCREAMING_SNAKE_CASE__ : Optional[int] = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , a , ) return max_model_length @property def A_ ( self : List[str] ) ->int: return self.sp_model.get_piece_size() + self._extra_ids def A_ ( self : str ) ->int: SCREAMING_SNAKE_CASE__ : Tuple = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A_ ( self : int , a : List[int] , a : Optional[List[int]] = None , a : bool = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(a )) + [1] return ([0] * len(a )) + [1] + ([0] * len(a )) + [1] def A_ ( self : Optional[int] ) ->List[Any]: return list( set(filter(lambda a : bool(re.search(r"<extra_id_\d+>" , a ) ) is not None , self.additional_special_tokens ) ) ) def A_ ( self : Union[str, Any] ) ->Dict: return [self._convert_token_to_id(a ) for token in self.get_sentinel_tokens()] def A_ ( self : str , a : List[int] ) ->List[int]: if len(a ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def A_ ( self : str , a : List[int] , a : Optional[List[int]] = None ) ->List[int]: SCREAMING_SNAKE_CASE__ : Optional[int] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def A_ ( self : str , a : List[int] , a : Optional[List[int]] = None ) ->List[int]: SCREAMING_SNAKE_CASE__ : Tuple = self._add_eos_if_not_present(a ) if token_ids_a is None: return token_ids_a else: SCREAMING_SNAKE_CASE__ : Optional[int] = self._add_eos_if_not_present(a ) return token_ids_a + token_ids_a def __getstate__( self : List[Any] ) ->str: SCREAMING_SNAKE_CASE__ : List[Any] = self.__dict__.copy() SCREAMING_SNAKE_CASE__ : str = None return state def __setstate__( self : Any , a : List[str] ) ->Tuple: SCREAMING_SNAKE_CASE__ : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): SCREAMING_SNAKE_CASE__ : List[Any] = {} SCREAMING_SNAKE_CASE__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A_ ( self : Dict , a : "TextInput" , **a : Dict ) ->List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: SCREAMING_SNAKE_CASE__ : Tuple = SPIECE_UNDERLINE + text.replace(a , " " ) return super().tokenize(a , **a ) def A_ ( self : List[str] , a : List[Any] , **a : Union[str, Any] ) ->List[str]: if not self.legacy: SCREAMING_SNAKE_CASE__ : int = text.startswith(a ) if is_first: SCREAMING_SNAKE_CASE__ : int = text[1:] SCREAMING_SNAKE_CASE__ : Dict = self.sp_model.encode(a , out_type=a ) if not self.legacy and not is_first and not text.startswith(" " ) and tokens[0].startswith(a ): SCREAMING_SNAKE_CASE__ : Dict = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def A_ ( self : int , a : List[Any] ) ->Optional[Any]: if token.startswith("<extra_id_" ): SCREAMING_SNAKE_CASE__ : Optional[int] = re.match(r"<extra_id_(\d+)>" , a ) SCREAMING_SNAKE_CASE__ : Dict = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(a ) def A_ ( self : Optional[int] , a : Union[str, Any] ) ->List[str]: if index < self.sp_model.get_piece_size(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.sp_model.IdToPiece(a ) else: SCREAMING_SNAKE_CASE__ : int = f"""<extra_id_{self.vocab_size - 1 - index}>""" return token def A_ ( self : Any , a : Union[str, Any] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : Dict = [] SCREAMING_SNAKE_CASE__ : Dict = "" SCREAMING_SNAKE_CASE__ : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a ) + token SCREAMING_SNAKE_CASE__ : int = True SCREAMING_SNAKE_CASE__ : List[Any] = [] else: current_sub_tokens.append(a ) SCREAMING_SNAKE_CASE__ : List[str] = False out_string += self.sp_model.decode(a ) return out_string.strip() def A_ ( self : Any , a : str , a : Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE__ : str = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , "wb" ) as fi: SCREAMING_SNAKE_CASE__ : Any = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,)
711
from __future__ import annotations def UpperCAmelCase ( _lowerCamelCase : list[int | float] , _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' if len(_lowerCamelCase ) == 0: raise ValueError("find_max() arg is an empty sequence" ) if ( left >= len(_lowerCamelCase ) or left < -len(_lowerCamelCase ) or right >= len(_lowerCamelCase ) or right < -len(_lowerCamelCase ) ): raise IndexError("list index out of range" ) if left == right: return nums[left] SCREAMING_SNAKE_CASE__ : Optional[int] = (left + right) >> 1 # the middle SCREAMING_SNAKE_CASE__ : List[Any] = find_max(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # find max in range[left, mid] SCREAMING_SNAKE_CASE__ : Optional[int] = find_max(_lowerCamelCase , mid + 1 , _lowerCamelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
26
0
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def UpperCAmelCase ( *_lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Union[Dict, Any]] = None , _lowerCamelCase : Dict=True , _lowerCamelCase : Dict=2 ): '''simple docstring''' from .. import __version__ SCREAMING_SNAKE_CASE__ : Optional[Any] = take_from SCREAMING_SNAKE_CASE__ : str = () if not isinstance(args[0] , _lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Dict = (args,) for attribute, version_name, message in args: if version.parse(version.parse(_lowerCamelCase ).base_version ) >= version.parse(_lowerCamelCase ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if isinstance(_lowerCamelCase , _lowerCamelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(_lowerCamelCase ),) SCREAMING_SNAKE_CASE__ : Optional[int] = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(_lowerCamelCase , _lowerCamelCase ): values += (getattr(_lowerCamelCase , _lowerCamelCase ),) SCREAMING_SNAKE_CASE__ : Optional[Any] = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: SCREAMING_SNAKE_CASE__ : List[Any] = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: SCREAMING_SNAKE_CASE__ : List[str] = warning + " " if standard_warn else "" warnings.warn(warning + message , _lowerCamelCase , stacklevel=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) > 0: SCREAMING_SNAKE_CASE__ : List[str] = inspect.getouterframes(inspect.currentframe() )[1] SCREAMING_SNAKE_CASE__ : Optional[Any] = call_frame.filename SCREAMING_SNAKE_CASE__ : Tuple = call_frame.lineno SCREAMING_SNAKE_CASE__ : Optional[Any] = call_frame.function SCREAMING_SNAKE_CASE__ : List[str] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(_lowerCamelCase ) == 0: return elif len(_lowerCamelCase ) == 1: return values[0] return values
712
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __lowercase :str = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class _a ( lowercase__ ): """simple docstring""" def __init__( self : List[str] , a : Optional[int] , a : str , a : int=None , a : Optional[Any]=1 ) ->Optional[Any]: SCREAMING_SNAKE_CASE__ : Dict = tokenizer SCREAMING_SNAKE_CASE__ : Optional[int] = dataset SCREAMING_SNAKE_CASE__ : Optional[Any] = len(a ) if n_tasks is None else n_tasks SCREAMING_SNAKE_CASE__ : Dict = n_copies def __iter__( self : str ) ->Tuple: SCREAMING_SNAKE_CASE__ : str = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) SCREAMING_SNAKE_CASE__ : int = self.tokenizer(a , padding=a , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _a ( lowercase__ ): """simple docstring""" def __init__( self : Dict , a : int , a : int , a : Tuple ) ->Dict: SCREAMING_SNAKE_CASE__ : Dict = start_length SCREAMING_SNAKE_CASE__ : Any = eof_strings SCREAMING_SNAKE_CASE__ : Any = tokenizer def __call__( self : Any , a : Optional[int] , a : int , **a : Union[str, Any] ) ->List[str]: SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) SCREAMING_SNAKE_CASE__ : int = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(a ) def UpperCAmelCase ( _lowerCamelCase : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = re.split("(%s)" % "|".join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : str=20 , **_lowerCamelCase : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): SCREAMING_SNAKE_CASE__ : str = batch["ids"].shape[-1] SCREAMING_SNAKE_CASE__ : List[Any] = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch["ids"][:, : batch["input_len"]] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times SCREAMING_SNAKE_CASE__ : Dict = batch["task_id"].repeat(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Dict = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Any = accelerator.gather((generated_tokens, generated_tasks) ) SCREAMING_SNAKE_CASE__ : Dict = generated_tokens.cpu().numpy() SCREAMING_SNAKE_CASE__ : Any = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = HfArgumentParser(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric SCREAMING_SNAKE_CASE__ : List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing SCREAMING_SNAKE_CASE__ : str = "false" if args.num_workers is None: SCREAMING_SNAKE_CASE__ : Dict = multiprocessing.cpu_count() # Use dataset load to feed to accelerate SCREAMING_SNAKE_CASE__ : Dict = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer SCREAMING_SNAKE_CASE__ : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.eos_token SCREAMING_SNAKE_CASE__ : List[str] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings SCREAMING_SNAKE_CASE__ : List[Any] = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric SCREAMING_SNAKE_CASE__ : str = load_dataset("openai_humaneval" ) SCREAMING_SNAKE_CASE__ : Any = load_metric("code_eval" ) SCREAMING_SNAKE_CASE__ : Dict = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = args.n_samples // args.batch_size SCREAMING_SNAKE_CASE__ : Dict = TokenizedDataset(_lowerCamelCase , human_eval["test"] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences SCREAMING_SNAKE_CASE__ : Optional[int] = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: SCREAMING_SNAKE_CASE__ : int = code_eval_metric.compute(references=[""] , predictions=[[""]] ) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation." ) raise exception SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Tuple = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for task in tqdm(range(_lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ : List[Any] = human_eval["test"][task]["test"] SCREAMING_SNAKE_CASE__ : List[Any] = f"""check({human_eval['test'][task]['entry_point']})""" references.append("\n" + test_func + "\n" + entry_point ) # Evaluate completions with "code_eval" metric SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Dict = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , "w" ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
26
0
from __future__ import annotations def UpperCAmelCase ( _lowerCamelCase : list[int] , _lowerCamelCase : int ): '''simple docstring''' if len(_lowerCamelCase ) < k or k < 0: raise ValueError("Invalid Input" ) SCREAMING_SNAKE_CASE__ : int = sum(array[:k] ) for i in range(len(_lowerCamelCase ) - k ): SCREAMING_SNAKE_CASE__ : str = current_sum - array[i] + array[i + k] SCREAMING_SNAKE_CASE__ : Union[str, Any] = max(_lowerCamelCase , _lowerCamelCase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() __lowercase = [randint(-1_000, 1_000) for i in range(100)] __lowercase = randint(0, 110) print(f"The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}")
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase :str = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase :Union[str, Any] = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys __lowercase :str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
0
from __future__ import annotations from collections.abc import Iterator class _a : """simple docstring""" def __init__( self : List[Any] , a : int ) ->None: SCREAMING_SNAKE_CASE__ : Optional[int] = value SCREAMING_SNAKE_CASE__ : Node | None = None SCREAMING_SNAKE_CASE__ : Node | None = None class _a : """simple docstring""" def __init__( self : Tuple , a : Node ) ->None: SCREAMING_SNAKE_CASE__ : int = tree def A_ ( self : str , a : Node | None ) ->int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Optional[Any] ) ->Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
714
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : int , _lowerCamelCase : Optional[int] = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = {} if train_file is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] = [train_file] if eval_file is not None: SCREAMING_SNAKE_CASE__ : int = [eval_file] if test_file is not None: SCREAMING_SNAKE_CASE__ : int = [test_file] SCREAMING_SNAKE_CASE__ : Optional[int] = datasets.load_dataset("csv" , data_files=_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[str] = list(ds[list(files.keys() )[0]].features.keys() ) SCREAMING_SNAKE_CASE__ : int = features_name.pop(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = list(set(ds[list(files.keys() )[0]][label_name] ) ) SCREAMING_SNAKE_CASE__ : List[str] = {label: i for i, label in enumerate(_lowerCamelCase )} SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.model_input_names SCREAMING_SNAKE_CASE__ : Any = {} if len(_lowerCamelCase ) == 1: for k in files.keys(): SCREAMING_SNAKE_CASE__ : List[Any] = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="max_length" ) , batched=_lowerCamelCase , ) elif len(_lowerCamelCase ) == 2: for k in files.keys(): SCREAMING_SNAKE_CASE__ : Any = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="max_length" , ) , batched=_lowerCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: SCREAMING_SNAKE_CASE__ : Tuple = {k: v for k, v in ex.items() if k in input_names} SCREAMING_SNAKE_CASE__ : List[Any] = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: SCREAMING_SNAKE_CASE__ : int = {k: v for k, v in ex.items() if k in input_names} SCREAMING_SNAKE_CASE__ : Optional[int] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: SCREAMING_SNAKE_CASE__ : int = {k: v for k, v in ex.items() if k in input_names} SCREAMING_SNAKE_CASE__ : Optional[Any] = labelaid[ex[label_name]] yield (d, label) SCREAMING_SNAKE_CASE__ : Tuple = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: SCREAMING_SNAKE_CASE__ : Any = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) SCREAMING_SNAKE_CASE__ : Dict = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: SCREAMING_SNAKE_CASE__ : Dict = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowercase :List[Any] = logging.getLogger(__name__) @dataclass class _a : """simple docstring""" snake_case_ = field(metadata={"help": "Which column contains the label"} ) snake_case_ = field(default=lowercase__ , metadata={"help": "The path of the training file"} ) snake_case_ = field(default=lowercase__ , metadata={"help": "The path of the development file"} ) snake_case_ = field(default=lowercase__ , metadata={"help": "The path of the test file"} ) snake_case_ = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case_ = field( default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class _a : """simple docstring""" snake_case_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case_ = field( default=lowercase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case_ = field( default=lowercase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case_ = field(default=lowercase__ , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. snake_case_ = field( default=lowercase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_lowerCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) SCREAMING_SNAKE_CASE__ : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): SCREAMING_SNAKE_CASE__ : Optional[Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(_lowerCamelCase : EvalPrediction ) -> Dict: SCREAMING_SNAKE_CASE__ : Dict = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer SCREAMING_SNAKE_CASE__ : str = TFTrainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , compute_metrics=_lowerCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation SCREAMING_SNAKE_CASE__ : Dict = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) SCREAMING_SNAKE_CASE__ : str = trainer.evaluate() SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(_lowerCamelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(_lowerCamelCase ) return results if __name__ == "__main__": main()
26
0
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _a ( unittest.TestCase ): """simple docstring""" def A_ ( self : List[str] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : List[str] = tf.convert_to_tensor( [ [ 8.222_0991, # 3rd highest value; idx. 0 -0.562_0044, 5.2322_9752, 4.038_6393, -6.879_8378, -0.5478_5802, -3.201_2153, 2.9277_7176, 1.8817_1953, 7.3534_1276, # 5th highest value; idx. 9 8.4320_7833, # 2nd highest value; idx. 10 -9.8571_1836, -5.9620_9236, -1.1303_9161, -7.111_5294, -0.836_9633, -5.318_6408, 7.0642_7407, 0.8136_9344, -0.8202_3817, -5.917_9796, 0.5881_3443, -6.9977_8438, 4.7155_1189, -0.1877_1637, 7.4402_0759, # 4th highest value; idx. 25 9.3845_0987, # 1st highest value; idx. 26 2.1266_2941, -9.3256_2038, 2.3565_2522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.5842_5518, 4.5313_9238, -5.5751_0464, -6.2803_0699, -7.1952_9503, -4.0212_2551, 1.3933_7037, -6.0670_7057, 1.5948_0517, -9.64_3119, 0.0390_7799, 0.6723_1762, -8.8820_6726, 6.2711_5922, # 4th highest value; idx. 13 2.2852_0723, 4.8276_7506, 4.3042_1368, 8.827_5313, # 2nd highest value; idx. 17 5.4402_9958, # 5th highest value; idx. 18 -4.473_5794, 7.3857_9536, # 3rd highest value; idx. 20 -2.9105_1663, 2.6194_6077, -2.567_4762, -9.4895_9302, -4.0292_2645, -1.3541_6918, 9.6770_2323, # 1st highest value; idx. 27 -5.8947_8553, 1.8537_0467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) SCREAMING_SNAKE_CASE__ : List[str] = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above SCREAMING_SNAKE_CASE__ : Any = tf.convert_to_tensor( [8.22_2099, 7.353_4126, 8.43_2078, 7.440_2075, 9.3_8451, 6.27_1159, 8.82_7531, 5.440_2995, 7.385_7956, 9.67_7023] , dtype=tf.floataa , ) # expected non filtered values as noted above SCREAMING_SNAKE_CASE__ : Tuple = tf_top_k_top_p_filtering(a , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) SCREAMING_SNAKE_CASE__ : Tuple = output[output != -float("inf" )] SCREAMING_SNAKE_CASE__ : Dict = tf.cast( tf.where(tf.not_equal(a , tf.constant(-float("inf" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(a , a , rtol=1E-12 ) tf.debugging.assert_equal(a , a ) @require_tf class _a ( unittest.TestCase , lowercase__ ): """simple docstring""" if is_tf_available(): snake_case_ = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def A_ ( self : Optional[Any] ) ->List[Any]: # TF-only test: tf.saved_model export SCREAMING_SNAKE_CASE__ : Optional[int] = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE__ : List[str] = 2 SCREAMING_SNAKE_CASE__ : List[Any] = 2 class _a ( tf.Module ): """simple docstring""" def __init__( self : List[str] , a : Any ) ->List[str]: super(a , self ).__init__() SCREAMING_SNAKE_CASE__ : List[Any] = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="input_ids" ), tf.TensorSpec((None, input_length) , tf.intaa , name="attention_mask" ), ) , jit_compile=a , ) def A_ ( self : Tuple , a : Optional[Any] , a : str ) ->List[Any]: SCREAMING_SNAKE_CASE__ : Tuple = self.model.generate( input_ids=a , attention_mask=a , max_new_tokens=a , return_dict_in_generate=a , ) return {"sequences": outputs["sequences"]} SCREAMING_SNAKE_CASE__ : Union[str, Any] = [[2, 0], [1_02, 1_03]] SCREAMING_SNAKE_CASE__ : List[str] = [[1, 0], [1, 1]] SCREAMING_SNAKE_CASE__ : Optional[Any] = DummyModel(model=a ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(a , a , signatures={"serving_default": dummy_model.serving} ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.saved_model.load(a ).signatures["serving_default"] for batch_size in range(1 , len(a ) + 1 ): SCREAMING_SNAKE_CASE__ : int = { "input_ids": tf.constant(dummy_input_ids[:batch_size] ), "attention_mask": tf.constant(dummy_attention_masks[:batch_size] ), } SCREAMING_SNAKE_CASE__ : List[Any] = serving_func(**a )["sequences"] SCREAMING_SNAKE_CASE__ : List[str] = test_model.generate(**a , max_new_tokens=a ) tf.debugging.assert_equal(a , a ) @slow def A_ ( self : List[str] ) ->Any: # TF-only test: tf.saved_model export SCREAMING_SNAKE_CASE__ : Optional[int] = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE__ : Dict = 1 SCREAMING_SNAKE_CASE__ : Any = 2 class _a ( tf.Module ): """simple docstring""" def __init__( self : List[str] , a : Union[str, Any] ) ->str: super(a , self ).__init__() SCREAMING_SNAKE_CASE__ : List[str] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="input_ids" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="attention_mask" ), ) , jit_compile=a , ) def A_ ( self : str , a : Tuple , a : List[Any] ) ->List[Any]: SCREAMING_SNAKE_CASE__ : List[Any] = self.model.generate( input_ids=a , attention_mask=a , max_new_tokens=a , return_dict_in_generate=a , ) return {"sequences": outputs["sequences"]} SCREAMING_SNAKE_CASE__ : Tuple = [[2], [1_02, 1_03]] SCREAMING_SNAKE_CASE__ : str = [[1], [1, 1]] SCREAMING_SNAKE_CASE__ : Optional[Any] = DummyModel(model=a ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(a , a , signatures={"serving_default": dummy_model.serving} ) SCREAMING_SNAKE_CASE__ : Optional[int] = tf.saved_model.load(a ).signatures["serving_default"] for input_row in range(len(a ) ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "input_ids": tf.constant([dummy_input_ids[input_row]] ), "attention_mask": tf.constant([dummy_attention_masks[input_row]] ), } SCREAMING_SNAKE_CASE__ : List[Any] = serving_func(**a )["sequences"] SCREAMING_SNAKE_CASE__ : Optional[int] = test_model.generate(**a , max_new_tokens=a ) tf.debugging.assert_equal(a , a ) @slow @require_tensorflow_text def A_ ( self : Tuple ) ->List[str]: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="google/flan-t5-small" , filename="spiece.model" , local_dir=a ) class _a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : int ) ->str: super().__init__() SCREAMING_SNAKE_CASE__ : Optional[Any] = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(a , "spiece.model" ) , "rb" ).read() ) SCREAMING_SNAKE_CASE__ : str = TFAutoModelForSeqaSeqLM.from_pretrained("hf-internal-testing/tiny-random-t5" ) def A_ ( self : Any , a : Union[str, Any] , *a : Optional[int] , **a : Any ) ->Optional[Any]: SCREAMING_SNAKE_CASE__ : Any = self.tokenizer.tokenize(a ) SCREAMING_SNAKE_CASE__ : int = text.pad_model_inputs( a , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) SCREAMING_SNAKE_CASE__ : List[Any] = self.model.generate(input_ids=a , attention_mask=a ) return self.tokenizer.detokenize(a ) SCREAMING_SNAKE_CASE__ : Tuple = CompleteSentenceTransformer() SCREAMING_SNAKE_CASE__ : Optional[int] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="inputs" ) SCREAMING_SNAKE_CASE__ : List[Any] = complete_model(a ) SCREAMING_SNAKE_CASE__ : List[str] = tf.keras.Model(a , a ) keras_model.save(a ) def A_ ( self : Dict ) ->Optional[int]: # Has PT equivalent: this test relies on random sampling SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "do_sample": True, "num_beams": 1, "top_p": 0.7, "top_k": 10, "temperature": 0.7, } SCREAMING_SNAKE_CASE__ : Dict = 14 SCREAMING_SNAKE_CASE__ : str = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE__ : int = "Hello, my dog is cute and" SCREAMING_SNAKE_CASE__ : int = tokenizer(a , return_tensors="tf" ) SCREAMING_SNAKE_CASE__ : Any = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0" ): tf.random.set_seed(0 ) SCREAMING_SNAKE_CASE__ : Any = model.generate(**a , eos_token_id=a , **a ) self.assertTrue(expectation == len(generated_tokens[0] ) ) SCREAMING_SNAKE_CASE__ : str = [6_38, 1_98] with tf.device(":/CPU:0" ): tf.random.set_seed(0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model.generate(**a , eos_token_id=a , **a ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def A_ ( self : Optional[int] ) ->Dict: # Has PT equivalent: ample use of framework-specific code SCREAMING_SNAKE_CASE__ : str = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart" ) SCREAMING_SNAKE_CASE__ : str = "Hugging Face is a technology company based in New York and Paris." SCREAMING_SNAKE_CASE__ : str = bart_tokenizer(a , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE__ : Optional[int] = TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart" ) SCREAMING_SNAKE_CASE__ : Optional[int] = bart_model.generate(a ).numpy() class _a ( lowercase__ ): """simple docstring""" def A_ ( self : Optional[Any] , a : List[str] , a : Dict=None , **a : str ) ->Optional[int]: return super().call(a , **a ) SCREAMING_SNAKE_CASE__ : Dict = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = bart_model.generate(a , foo="bar" ).numpy() self.assertTrue(np.array_equal(a , a ) ) class _a ( bart_model.model.encoder.__class__ ): """simple docstring""" def A_ ( self : Any , a : Tuple , **a : Union[str, Any] ) ->Any: return super().call(a , **a ) SCREAMING_SNAKE_CASE__ : Optional[int] = FakeEncoder(bart_model.config , bart_model.model.shared ) SCREAMING_SNAKE_CASE__ : Tuple = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) SCREAMING_SNAKE_CASE__ : Tuple = bart_model.generate(a ).numpy() with self.assertRaises(a ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(a , foo="bar" )
715
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowercase :int = logging.get_logger(__name__) class _a ( lowercase__ ): """simple docstring""" snake_case_ = ["pixel_values"] def __init__( self : int , a : bool = True , a : Optional[Dict[str, int]] = None , a : PILImageResampling = PILImageResampling.BILINEAR , a : bool = True , a : Dict[str, int] = None , a : bool = True , a : Union[int, float] = 1 / 2_55 , a : bool = True , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , **a : List[str] , ) ->None: super().__init__(**a ) SCREAMING_SNAKE_CASE__ : List[str] = size if size is not None else {"shortest_edge": 2_56} SCREAMING_SNAKE_CASE__ : Any = get_size_dict(a , default_to_square=a ) SCREAMING_SNAKE_CASE__ : List[Any] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} SCREAMING_SNAKE_CASE__ : Dict = get_size_dict(a ) SCREAMING_SNAKE_CASE__ : List[str] = do_resize SCREAMING_SNAKE_CASE__ : List[str] = size SCREAMING_SNAKE_CASE__ : List[Any] = resample SCREAMING_SNAKE_CASE__ : int = do_center_crop SCREAMING_SNAKE_CASE__ : Optional[Any] = crop_size SCREAMING_SNAKE_CASE__ : Any = do_rescale SCREAMING_SNAKE_CASE__ : Any = rescale_factor SCREAMING_SNAKE_CASE__ : int = do_normalize SCREAMING_SNAKE_CASE__ : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def A_ ( self : Tuple , a : np.ndarray , a : Dict[str, int] , a : PILImageResampling = PILImageResampling.BICUBIC , a : Optional[Union[str, ChannelDimension]] = None , **a : Optional[int] , ) ->np.ndarray: SCREAMING_SNAKE_CASE__ : List[Any] = get_size_dict(a , default_to_square=a ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = get_resize_output_image_size(a , size=size["shortest_edge"] , default_to_square=a ) return resize(a , size=a , resample=a , data_format=a , **a ) def A_ ( self : List[Any] , a : np.ndarray , a : Dict[str, int] , a : Optional[Union[str, ChannelDimension]] = None , **a : List[Any] , ) ->np.ndarray: SCREAMING_SNAKE_CASE__ : Tuple = get_size_dict(a ) return center_crop(a , size=(size["height"], size["width"]) , data_format=a , **a ) def A_ ( self : Optional[int] , a : np.ndarray , a : float , a : Optional[Union[str, ChannelDimension]] = None , **a : Dict ) ->np.ndarray: return rescale(a , scale=a , data_format=a , **a ) def A_ ( self : Union[str, Any] , a : np.ndarray , a : Union[float, List[float]] , a : Union[float, List[float]] , a : Optional[Union[str, ChannelDimension]] = None , **a : Union[str, Any] , ) ->np.ndarray: return normalize(a , mean=a , std=a , data_format=a , **a ) def A_ ( self : Tuple , a : ImageInput , a : Optional[bool] = None , a : Dict[str, int] = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : Optional[bool] = None , a : Optional[float] = None , a : Optional[bool] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[str, TensorType]] = None , a : Union[str, ChannelDimension] = ChannelDimension.FIRST , **a : Any , ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : Optional[Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ : Union[str, Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE__ : Dict = get_size_dict(a , default_to_square=a ) SCREAMING_SNAKE_CASE__ : str = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE__ : Optional[int] = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE__ : Dict = get_size_dict(a ) SCREAMING_SNAKE_CASE__ : List[str] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ : Dict = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ : Optional[int] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ : Tuple = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ : Union[str, Any] = make_list_of_images(a ) if not valid_images(a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : List[str] = [to_numpy_array(a ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ : Tuple = [self.resize(image=a , size=a , resample=a ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE__ : List[Any] = [self.center_crop(image=a , size=a ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ : List[str] = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ : Dict = [self.normalize(image=a , mean=a , std=a ) for image in images] SCREAMING_SNAKE_CASE__ : Dict = [to_channel_dimension_format(a , a ) for image in images] SCREAMING_SNAKE_CASE__ : Optional[int] = {"pixel_values": images} return BatchFeature(data=a , tensor_type=a )
26
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : Dict=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""module.blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""module.blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""module.blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""module.blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""module.blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""module.blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""module.blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""module.blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""module.blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""module.blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE__ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : List[str]=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE__ : Dict = "" else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ : Any = state_dict.pop(f"""module.blocks.{i}.attn.qkv.weight""" ) SCREAMING_SNAKE_CASE__ : List[str] = state_dict.pop(f"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ : Tuple = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE__ : str = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE__ : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE__ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE__ : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE__ : Union[str, Any] = in_proj_bias[-config.hidden_size :] def UpperCAmelCase ( _lowerCamelCase : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str] , _lowerCamelCase : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = dct.pop(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = val def UpperCAmelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ViTMSNConfig() SCREAMING_SNAKE_CASE__ : Any = 1_000 SCREAMING_SNAKE_CASE__ : Optional[int] = "datasets/huggingface/label-files" SCREAMING_SNAKE_CASE__ : Any = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE__ : Any = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase ) , "r" ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : Dict = idalabel SCREAMING_SNAKE_CASE__ : List[str] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE__ : Optional[int] = 384 SCREAMING_SNAKE_CASE__ : Optional[Any] = 1_536 SCREAMING_SNAKE_CASE__ : List[Any] = 6 elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE__ : str = 1_024 SCREAMING_SNAKE_CASE__ : str = 4_096 SCREAMING_SNAKE_CASE__ : Dict = 24 SCREAMING_SNAKE_CASE__ : Optional[int] = 16 SCREAMING_SNAKE_CASE__ : Optional[Any] = 0.1 elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE__ : Optional[int] = 4 elif "l7" in checkpoint_url: SCREAMING_SNAKE_CASE__ : int = 7 SCREAMING_SNAKE_CASE__ : Optional[Any] = 1_024 SCREAMING_SNAKE_CASE__ : List[Any] = 4_096 SCREAMING_SNAKE_CASE__ : Optional[Any] = 24 SCREAMING_SNAKE_CASE__ : Tuple = 16 SCREAMING_SNAKE_CASE__ : int = 0.1 SCREAMING_SNAKE_CASE__ : str = ViTMSNModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[str] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" )["target_encoder"] SCREAMING_SNAKE_CASE__ : Union[str, Any] = ViTImageProcessor(size=config.image_size ) remove_projection_head(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : str = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , base_model=_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE__ : Tuple = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) SCREAMING_SNAKE_CASE__ : Dict = ViTImageProcessor( size=config.image_size , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : str = image_processor(images=_lowerCamelCase , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE__ : Tuple = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Any = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: SCREAMING_SNAKE_CASE__ : Dict = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE__ : int = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , _lowerCamelCase , atol=1E-4 ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __lowercase :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __lowercase :Dict = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
716
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _a ( unittest.TestCase ): """simple docstring""" def A_ ( self : Dict ) ->List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def A_ ( self : Dict ) ->Tuple: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Dict = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" , from_pt=a , dtype=jnp.bfloataa ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Dict = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) SCREAMING_SNAKE_CASE__ : List[Any] = controlnet_params SCREAMING_SNAKE_CASE__ : Dict = "bird" SCREAMING_SNAKE_CASE__ : List[Any] = jax.device_count() SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) SCREAMING_SNAKE_CASE__ : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipe.prepare_image_inputs([canny_image] * num_samples ) SCREAMING_SNAKE_CASE__ : List[Any] = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE__ : int = jax.random.split(a , jax.device_count() ) SCREAMING_SNAKE_CASE__ : List[Any] = replicate(a ) SCREAMING_SNAKE_CASE__ : List[str] = shard(a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = shard(a ) SCREAMING_SNAKE_CASE__ : Dict = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=50 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) SCREAMING_SNAKE_CASE__ : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) SCREAMING_SNAKE_CASE__ : List[Any] = images[0, 2_53:2_56, 2_53:2_56, -1] SCREAMING_SNAKE_CASE__ : Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def A_ ( self : List[Any] ) ->Optional[Any]: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : int = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" , from_pt=a , dtype=jnp.bfloataa ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) SCREAMING_SNAKE_CASE__ : Optional[int] = controlnet_params SCREAMING_SNAKE_CASE__ : Any = "Chef in the kitchen" SCREAMING_SNAKE_CASE__ : Union[str, Any] = jax.device_count() SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) SCREAMING_SNAKE_CASE__ : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) SCREAMING_SNAKE_CASE__ : str = pipe.prepare_image_inputs([pose_image] * num_samples ) SCREAMING_SNAKE_CASE__ : Any = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE__ : List[str] = jax.random.split(a , jax.device_count() ) SCREAMING_SNAKE_CASE__ : Optional[Any] = replicate(a ) SCREAMING_SNAKE_CASE__ : Tuple = shard(a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = shard(a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=50 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) SCREAMING_SNAKE_CASE__ : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) SCREAMING_SNAKE_CASE__ : str = images[0, 2_53:2_56, 2_53:2_56, -1] SCREAMING_SNAKE_CASE__ : Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
26
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __lowercase :Union[str, Any] = logging.get_logger() @dataclass class _a : """simple docstring""" snake_case_ = 42 snake_case_ = field(default_factory=lowercase__ ) snake_case_ = field(default_factory=lowercase__ ) def A_ ( self : Tuple , a : Dict , a : Tensor , a : Tensor ) ->Optional[Any]: SCREAMING_SNAKE_CASE__ : Optional[Any] = len(list(m.modules() ) ) == 1 or isinstance(a , nn.Convad ) or isinstance(a , nn.BatchNormad ) if has_not_submodules: self.traced.append(a ) def __call__( self : List[str] , a : Tensor ) ->Any: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(a ) [x.remove() for x in self.handles] return self @property def A_ ( self : List[str] ) ->Optional[int]: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda a : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _a : """simple docstring""" snake_case_ = 42 snake_case_ = 42 snake_case_ = 1 snake_case_ = field(default_factory=lowercase__ ) snake_case_ = field(default_factory=lowercase__ ) snake_case_ = True def __call__( self : int , a : Tensor ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : Optional[int] = Tracker(self.dest )(a ).parametrized SCREAMING_SNAKE_CASE__ : Union[str, Any] = Tracker(self.src )(a ).parametrized SCREAMING_SNAKE_CASE__ : Optional[Any] = list(filter(lambda a : type(a ) not in self.src_skip , a ) ) SCREAMING_SNAKE_CASE__ : Dict = list(filter(lambda a : type(a ) not in self.dest_skip , a ) ) if len(a ) != len(a ) and self.raise_if_mismatch: raise Exception( f"""Numbers of operations are different. Source module has {len(a )} operations while""" f""" destination module has {len(a )}.""" ) for dest_m, src_m in zip(a , a ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) class _a ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , a : nn.Module ) ->int: super().__init__() SCREAMING_SNAKE_CASE__ : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(("conv1", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("block" ), f"""Unexpected layer name {k}""" SCREAMING_SNAKE_CASE__ : Tuple = len(a ) + 1 feature_blocks.append((f"""res{block_index}""", v) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = nn.ModuleDict(a ) def A_ ( self : List[Any] , a : Tensor ) ->Optional[Any]: return get_trunk_forward_outputs( a , out_feat_keys=a , feature_blocks=self._feature_blocks , ) class _a ( lowercase__ ): """simple docstring""" def A_ ( self : Tuple , a : str ) ->str: SCREAMING_SNAKE_CASE__ : Union[str, Any] = x.split("-" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : List[str] , a : str ) ->Callable[[], Tuple[nn.Module, Dict]]: # default to timm! if x not in self: SCREAMING_SNAKE_CASE__ : Dict = self.convert_name_to_timm(a ) SCREAMING_SNAKE_CASE__ : List[Any] = partial(lambda: (timm.create_model(a , pretrained=a ).eval(), None) ) else: SCREAMING_SNAKE_CASE__ : Dict = super().__getitem__(a ) return val class _a ( lowercase__ ): """simple docstring""" def __getitem__( self : Union[str, Any] , a : str ) ->Callable[[], nn.Module]: if "seer" in x and "in1k" not in x: SCREAMING_SNAKE_CASE__ : Tuple = RegNetModel else: SCREAMING_SNAKE_CASE__ : Tuple = RegNetForImageClassification return val def UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : List[Tuple[str, str]] ): '''simple docstring''' for from_key, to_key in keys: SCREAMING_SNAKE_CASE__ : Tuple = from_state_dict[from_key].clone() print(f"""Copied key={from_key} to={to_key}""" ) return to_state_dict def UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : Callable[[], nn.Module] , _lowerCamelCase : Callable[[], nn.Module] , _lowerCamelCase : RegNetConfig , _lowerCamelCase : Path , _lowerCamelCase : bool = True , ): '''simple docstring''' print(f"""Converting {name}...""" ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[Any] = from_model_func() SCREAMING_SNAKE_CASE__ : Optional[Any] = our_model_func(_lowerCamelCase ).eval() SCREAMING_SNAKE_CASE__ : int = ModuleTransfer(src=_lowerCamelCase , dest=_lowerCamelCase , raise_if_mismatch=_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Any = torch.randn((1, 3, 224, 224) ) module_transfer(_lowerCamelCase ) if from_state_dict is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE__ : List[str] = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")] SCREAMING_SNAKE_CASE__ : int = manually_copy_vissl_head(_lowerCamelCase , our_model.state_dict() , _lowerCamelCase ) our_model.load_state_dict(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Any = our_model(_lowerCamelCase , output_hidden_states=_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( our_outputs.logits if isinstance(_lowerCamelCase , _lowerCamelCase ) else our_outputs.last_hidden_state ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = from_model(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = from_output[-1] if type(_lowerCamelCase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE__ : Optional[Any] = our_outputs.hidden_states[-1] assert torch.allclose(_lowerCamelCase , _lowerCamelCase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add model" , use_temp_dir=_lowerCamelCase , ) SCREAMING_SNAKE_CASE__ : Tuple = 224 if "seer" not in name else 384 # we can use the convnext one SCREAMING_SNAKE_CASE__ : Dict = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" , size=_lowerCamelCase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , ) print(f"""Pushed {name}""" ) def UpperCAmelCase ( _lowerCamelCase : Path , _lowerCamelCase : str = None , _lowerCamelCase : bool = True ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE__ : int = 1_000 SCREAMING_SNAKE_CASE__ : Union[str, Any] = (1, num_labels) SCREAMING_SNAKE_CASE__ : Dict = "huggingface/label-files" SCREAMING_SNAKE_CASE__ : Tuple = num_labels SCREAMING_SNAKE_CASE__ : Dict = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) ) , "r" ) ) SCREAMING_SNAKE_CASE__ : Any = {int(_lowerCamelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : str = idalabel SCREAMING_SNAKE_CASE__ : Union[str, Any] = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : Dict = partial(_lowerCamelCase , num_labels=_lowerCamelCase , idalabel=_lowerCamelCase , labelaid=_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Tuple = { "regnet-x-002": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="x" ), "regnet-x-004": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="x" ), "regnet-x-006": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="x" ), "regnet-x-008": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="x" ), "regnet-x-016": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="x" ), "regnet-x-032": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1_008] , groups_width=48 , layer_type="x" ), "regnet-x-040": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1_360] , groups_width=40 , layer_type="x" ), "regnet-x-064": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1_624] , groups_width=56 , layer_type="x" ), "regnet-x-080": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1_920] , groups_width=120 , layer_type="x" ), "regnet-x-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112 , layer_type="x" ), "regnet-x-160": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2_048] , groups_width=128 , layer_type="x" ), "regnet-x-320": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1_344, 2_520] , groups_width=168 , layer_type="x" ), # y variant "regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), "regnet-y-004": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), "regnet-y-006": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), "regnet-y-008": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), "regnet-y-016": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), "regnet-y-032": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1_512] , groups_width=24 ), "regnet-y-040": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1_088] , groups_width=64 ), "regnet-y-064": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1_296] , groups_width=72 ), "regnet-y-080": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2_016] , groups_width=56 ), "regnet-y-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112 ), "regnet-y-160": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1_232, 3_024] , groups_width=112 ), "regnet-y-320": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 "regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), "regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328 ), "regnet-y-1280-seer": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264 ), "regnet-y-2560-seer": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640 ), "regnet-y-10b-seer": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010 ), # finetuned on imagenet "regnet-y-320-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), "regnet-y-640-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328 ), "regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264 ), "regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640 ), "regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010 ), } SCREAMING_SNAKE_CASE__ : Optional[Any] = NameToOurModelFuncMap() SCREAMING_SNAKE_CASE__ : Any = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_lowerCamelCase : str , _lowerCamelCase : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: SCREAMING_SNAKE_CASE__ : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , model_dir=str(_lowerCamelCase ) , map_location="cpu" ) SCREAMING_SNAKE_CASE__ : Dict = model_func() # check if we have a head, if yes add it SCREAMING_SNAKE_CASE__ : int = files["classy_state_dict"]["base_model"]["model"] SCREAMING_SNAKE_CASE__ : Optional[int] = model_state_dict["trunk"] model.load_state_dict(_lowerCamelCase ) return model.eval(), model_state_dict["heads"] # pretrained SCREAMING_SNAKE_CASE__ : Optional[int] = partial( _lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = partial( _lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = partial( _lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) SCREAMING_SNAKE_CASE__ : Dict = partial( _lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=620.83 , w_m=2.5_2 ) ) ) , ) # IN1K finetuned SCREAMING_SNAKE_CASE__ : Any = partial( _lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) SCREAMING_SNAKE_CASE__ : List[Any] = partial( _lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = partial( _lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = partial( _lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=620.83 , w_m=2.5_2 ) ) ) , ) if model_name: convert_weight_and_push( _lowerCamelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _lowerCamelCase , _lowerCamelCase , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( _lowerCamelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) return config, expected_shape if __name__ == "__main__": __lowercase :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) __lowercase :Optional[int] = parser.parse_args() __lowercase :Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
717
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowercase :List[Any] = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def UpperCAmelCase ( _lowerCamelCase : int ): '''simple docstring''' config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested" ) config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested" ) config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested" ) config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment" ) config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate" ) config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule" ) def UpperCAmelCase ( _lowerCamelCase : str ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase : Tuple ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE__ : List[str] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(_lowerCamelCase , id=_lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict ): '''simple docstring''' if exitstatus == 5: SCREAMING_SNAKE_CASE__ : List[str] = 0 # Doctest custom flag to ignore output. __lowercase :Optional[Any] = doctest.register_optionflag("IGNORE_RESULT") __lowercase :Dict = doctest.OutputChecker class _a ( lowercase__ ): """simple docstring""" def A_ ( self : Dict , a : List[str] , a : Dict , a : int ) ->Optional[Any]: if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , a , a , a ) __lowercase :Any = CustomOutputChecker __lowercase :Any = HfDoctestModule __lowercase :int = HfDocTestParser
26
0
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _a : """simple docstring""" @staticmethod def A_ ( *a : Dict , **a : Dict ) ->Any: pass @is_pipeline_test @require_torch @require_vision class _a ( unittest.TestCase ): """simple docstring""" snake_case_ = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def A_ ( self : Tuple , a : Optional[int] , a : List[Any] , a : Any ) ->Any: SCREAMING_SNAKE_CASE__ : int = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) SCREAMING_SNAKE_CASE__ : str = [ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def A_ ( self : Dict , a : Union[str, Any] , a : Optional[int] ) ->Optional[Any]: SCREAMING_SNAKE_CASE__ : Dict = vqa_pipeline(a , top_k=1 ) self.assertEqual( a , [ [{"score": ANY(a ), "answer": ANY(a )}], [{"score": ANY(a ), "answer": ANY(a )}], ] , ) @require_torch def A_ ( self : Any ) ->List[Any]: SCREAMING_SNAKE_CASE__ : List[Any] = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) SCREAMING_SNAKE_CASE__ : Dict = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE__ : List[Any] = "How many cats are there?" SCREAMING_SNAKE_CASE__ : Optional[int] = vqa_pipeline(image=a , question="How many cats are there?" , top_k=2 ) self.assertEqual( a , [{"score": ANY(a ), "answer": ANY(a )}, {"score": ANY(a ), "answer": ANY(a )}] ) SCREAMING_SNAKE_CASE__ : str = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( a , [{"score": ANY(a ), "answer": ANY(a )}, {"score": ANY(a ), "answer": ANY(a )}] ) @slow @require_torch def A_ ( self : Optional[Any] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : Optional[Any] = pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) SCREAMING_SNAKE_CASE__ : int = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE__ : List[str] = "How many cats are there?" SCREAMING_SNAKE_CASE__ : int = vqa_pipeline(image=a , question=a , top_k=2 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) SCREAMING_SNAKE_CASE__ : str = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) SCREAMING_SNAKE_CASE__ : List[Any] = vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [[{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def A_ ( self : Tuple ) ->Optional[Any]: pass
718
def UpperCAmelCase ( _lowerCamelCase : int = 1_000 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = -1 SCREAMING_SNAKE_CASE__ : str = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c SCREAMING_SNAKE_CASE__ : Tuple = (n * n - 2 * a * n) // (2 * n - 2 * a) SCREAMING_SNAKE_CASE__ : Dict = n - a - b if c * c == (a * a + b * b): SCREAMING_SNAKE_CASE__ : str = a * b * c if candidate >= product: SCREAMING_SNAKE_CASE__ : List[str] = candidate return product if __name__ == "__main__": print(f"{solution() = }")
26
0
def UpperCAmelCase ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 1_000 , _lowerCamelCase : bool = True ): '''simple docstring''' assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)" ) return min_val if option else max_val def UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' return int((number_a + number_a) / 2 ) def UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)" ) if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value" ) def answer(_lowerCamelCase : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started..." ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = lower SCREAMING_SNAKE_CASE__ : Tuple = higher SCREAMING_SNAKE_CASE__ : Tuple = [] while True: SCREAMING_SNAKE_CASE__ : List[Any] = get_avg(_lowerCamelCase , _lowerCamelCase ) last_numbers.append(_lowerCamelCase ) if answer(_lowerCamelCase ) == "low": SCREAMING_SNAKE_CASE__ : Dict = number elif answer(_lowerCamelCase ) == "high": SCREAMING_SNAKE_CASE__ : int = number else: break print(f"""guess the number : {last_numbers[-1]}""" ) print(f"""details : {last_numbers!s}""" ) def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = int(input("Enter lower value : " ).strip() ) SCREAMING_SNAKE_CASE__ : Optional[Any] = int(input("Enter high value : " ).strip() ) SCREAMING_SNAKE_CASE__ : Dict = int(input("Enter value to guess : " ).strip() ) guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
719
from __future__ import annotations def UpperCAmelCase ( _lowerCamelCase : list , _lowerCamelCase : int | None = None , _lowerCamelCase : int | None = None ): '''simple docstring''' if start is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 if end is None: SCREAMING_SNAKE_CASE__ : Any = len(_lowerCamelCase ) - 1 if start >= end: return SCREAMING_SNAKE_CASE__ : List[str] = (start + end) // 2 slowsort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) slowsort(_lowerCamelCase , mid + 1 , _lowerCamelCase ) if sequence[end] < sequence[mid]: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = sequence[mid], sequence[end] slowsort(_lowerCamelCase , _lowerCamelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
26
0
import numpy as np import qiskit def UpperCAmelCase ( _lowerCamelCase : int = 8 , _lowerCamelCase : int | None = None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = np.random.default_rng(seed=_lowerCamelCase ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. SCREAMING_SNAKE_CASE__ : Optional[Any] = 6 * key_len # Measurement basis for Alice's qubits. SCREAMING_SNAKE_CASE__ : List[str] = rng.integers(2 , size=_lowerCamelCase ) # The set of states Alice will prepare. SCREAMING_SNAKE_CASE__ : str = rng.integers(2 , size=_lowerCamelCase ) # Measurement basis for Bob's qubits. SCREAMING_SNAKE_CASE__ : List[str] = rng.integers(2 , size=_lowerCamelCase ) # Quantum Circuit to simulate BB84 SCREAMING_SNAKE_CASE__ : Tuple = qiskit.QuantumCircuit(_lowerCamelCase , name="BB84" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(_lowerCamelCase ): if alice_state[index] == 1: bbaa_circ.x(_lowerCamelCase ) if alice_basis[index] == 1: bbaa_circ.h(_lowerCamelCase ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(_lowerCamelCase ): if bob_basis[index] == 1: bbaa_circ.h(_lowerCamelCase ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. SCREAMING_SNAKE_CASE__ : Optional[Any] = qiskit.Aer.get_backend("aer_simulator" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. SCREAMING_SNAKE_CASE__ : Tuple = qiskit.execute(_lowerCamelCase , _lowerCamelCase , shots=1 , seed_simulator=_lowerCamelCase ) # Returns the result of measurement. SCREAMING_SNAKE_CASE__ : Optional[int] = job.result().get_counts(_lowerCamelCase ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. SCREAMING_SNAKE_CASE__ : Any = "".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. SCREAMING_SNAKE_CASE__ : Optional[int] = gen_key[:key_len] if len(_lowerCamelCase ) >= key_len else gen_key.ljust(_lowerCamelCase , "0" ) return key if __name__ == "__main__": print(f"The generated key is : {bbaa(8, seed=0)}") from doctest import testmod testmod()
720
from __future__ import annotations from fractions import Fraction def UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def UpperCAmelCase ( _lowerCamelCase : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = [] SCREAMING_SNAKE_CASE__ : str = 11 SCREAMING_SNAKE_CASE__ : Any = int("1" + "0" * digit_len ) for num in range(_lowerCamelCase , _lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_lowerCamelCase , _lowerCamelCase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 SCREAMING_SNAKE_CASE__ : str = 10 return solutions def UpperCAmelCase ( _lowerCamelCase : int = 2 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = 1.0 for fraction in fraction_list(_lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Any = Fraction(_lowerCamelCase ) result *= frac.denominator / frac.numerator return int(_lowerCamelCase ) if __name__ == "__main__": print(solution())
26
0
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __lowercase :Any = logging.get_logger(__name__) def UpperCAmelCase ( _lowerCamelCase : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) SCREAMING_SNAKE_CASE__ : Dict = re.match(r"^mobilenet_v1_([^_]*)_([^_]*)$" , _lowerCamelCase ) if matches: SCREAMING_SNAKE_CASE__ : int = float(matches[1] ) SCREAMING_SNAKE_CASE__ : Optional[int] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". SCREAMING_SNAKE_CASE__ : Any = 1_001 SCREAMING_SNAKE_CASE__ : Tuple = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE__ : Dict = "huggingface/label-files" SCREAMING_SNAKE_CASE__ : str = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE__ : List[str] = {int(_lowerCamelCase ) + 1: v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : int = "background" SCREAMING_SNAKE_CASE__ : List[Any] = idalabel SCREAMING_SNAKE_CASE__ : Any = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE__ : Tuple = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = get_mobilenet_va_config(_lowerCamelCase ) # Load 🤗 model SCREAMING_SNAKE_CASE__ : Any = MobileNetVaForImageClassification(_lowerCamelCase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor SCREAMING_SNAKE_CASE__ : Tuple = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 32} , ) SCREAMING_SNAKE_CASE__ : Tuple = image_processor(images=prepare_img() , return_tensors="pt" ) SCREAMING_SNAKE_CASE__ : List[Any] = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[str] = outputs.logits assert logits.shape == (1, 1_001) if model_name == "mobilenet_v1_1.0_224": SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1E-4 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print("Pushing to the hub..." ) SCREAMING_SNAKE_CASE__ : Dict = "google/" + model_name image_processor.push_to_hub(_lowerCamelCase ) model.push_to_hub(_lowerCamelCase ) if __name__ == "__main__": __lowercase :Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __lowercase :Union[str, Any] = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
721
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class _a ( unittest.TestCase ): """simple docstring""" @require_torch def A_ ( self : Dict ) ->str: SCREAMING_SNAKE_CASE__ : Any = pipeline( task="zero-shot-audio-classification" , model="hf-internal-testing/tiny-clap-htsat-unfused" ) SCREAMING_SNAKE_CASE__ : Optional[int] = load_dataset("ashraq/esc50" ) SCREAMING_SNAKE_CASE__ : Optional[int] = dataset["train"]["audio"][-1]["array"] SCREAMING_SNAKE_CASE__ : int = audio_classifier(a , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(a ) , [{"score": 0.501, "label": "Sound of a dog"}, {"score": 0.499, "label": "Sound of vaccum cleaner"}] , ) @unittest.skip("No models are available in TF" ) def A_ ( self : int ) ->Union[str, Any]: pass @slow @require_torch def A_ ( self : int ) ->str: SCREAMING_SNAKE_CASE__ : List[str] = pipeline( task="zero-shot-audio-classification" , model="laion/clap-htsat-unfused" , ) # This is an audio of a dog SCREAMING_SNAKE_CASE__ : int = load_dataset("ashraq/esc50" ) SCREAMING_SNAKE_CASE__ : str = dataset["train"]["audio"][-1]["array"] SCREAMING_SNAKE_CASE__ : List[Any] = audio_classifier(a , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(a ) , [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ] , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(a ) , [ [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) SCREAMING_SNAKE_CASE__ : int = audio_classifier( [audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] , batch_size=5 ) self.assertEqual( nested_simplify(a ) , [ [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) @unittest.skip("No models are available in TF" ) def A_ ( self : Optional[int] ) ->Union[str, Any]: pass
26
0
def UpperCAmelCase ( _lowerCamelCase : list ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = 0 while len(_lowerCamelCase ) > 1: SCREAMING_SNAKE_CASE__ : str = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): SCREAMING_SNAKE_CASE__ : List[Any] = files.index(min(_lowerCamelCase ) ) temp += files[min_index] files.pop(_lowerCamelCase ) files.append(_lowerCamelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
700
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 __lowercase :List[str] = get_tests_dir("fixtures/dummy_feature_extractor_config.json") __lowercase :str = get_tests_dir("fixtures/vocab.json") __lowercase :Optional[int] = get_tests_dir("fixtures") class _a ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def A_ ( self : Optional[Any] ) ->int: SCREAMING_SNAKE_CASE__ : Dict = 0 def A_ ( self : Any ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : List[Any] = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(a , a ) def A_ ( self : Union[str, Any] ) ->List[str]: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : Dict = WavaVecaConfig() SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) # save in new folder model_config.save_pretrained(a ) processor.save_pretrained(a ) SCREAMING_SNAKE_CASE__ : str = AutoProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) def A_ ( self : int ) ->List[str]: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(a , os.path.join(a , a ) ) copyfile(a , os.path.join(a , "vocab.json" ) ) SCREAMING_SNAKE_CASE__ : List[Any] = AutoProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) def A_ ( self : List[Any] ) ->Tuple: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : Optional[Any] = WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE__ : Tuple = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) SCREAMING_SNAKE_CASE__ : Any = WavaVecaProcessor(a , a ) # save in new folder processor.save_pretrained(a ) # drop `processor_class` in tokenizer with open(os.path.join(a , a ) , "r" ) as f: SCREAMING_SNAKE_CASE__ : Optional[int] = json.load(a ) config_dict.pop("processor_class" ) with open(os.path.join(a , a ) , "w" ) as f: f.write(json.dumps(a ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = AutoProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) def A_ ( self : List[str] ) ->Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : Tuple = WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) SCREAMING_SNAKE_CASE__ : Optional[int] = WavaVecaProcessor(a , a ) # save in new folder processor.save_pretrained(a ) # drop `processor_class` in feature extractor with open(os.path.join(a , a ) , "r" ) as f: SCREAMING_SNAKE_CASE__ : List[Any] = json.load(a ) config_dict.pop("processor_class" ) with open(os.path.join(a , a ) , "w" ) as f: f.write(json.dumps(a ) ) SCREAMING_SNAKE_CASE__ : List[Any] = AutoProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) def A_ ( self : Union[str, Any] ) ->str: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : List[Any] = WavaVecaConfig(processor_class="Wav2Vec2Processor" ) model_config.save_pretrained(a ) # copy relevant files copyfile(a , os.path.join(a , "vocab.json" ) ) # create emtpy sample processor with open(os.path.join(a , a ) , "w" ) as f: f.write("{}" ) SCREAMING_SNAKE_CASE__ : Tuple = AutoProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) def A_ ( self : Optional[Any] ) ->Optional[int]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(a ): SCREAMING_SNAKE_CASE__ : Optional[int] = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(a ): SCREAMING_SNAKE_CASE__ : Any = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=a ) SCREAMING_SNAKE_CASE__ : List[Any] = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" , trust_remote_code=a ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) SCREAMING_SNAKE_CASE__ : Dict = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version SCREAMING_SNAKE_CASE__ : int = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=a , use_fast=a ) SCREAMING_SNAKE_CASE__ : List[Any] = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , "NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) def A_ ( self : Tuple ) ->List[Any]: try: AutoConfig.register("custom" , a ) AutoFeatureExtractor.register(a , a ) AutoTokenizer.register(a , slow_tokenizer_class=a ) AutoProcessor.register(a , a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a ): AutoProcessor.register(a , a ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE__ : List[str] = CustomFeatureExtractor.from_pretrained(a ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ : int = os.path.join(a , "vocab.txt" ) with open(a , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = CustomTokenizer(a ) SCREAMING_SNAKE_CASE__ : List[Any] = CustomProcessor(a , a ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(a ) SCREAMING_SNAKE_CASE__ : Any = AutoProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def A_ ( self : Union[str, Any] ) ->int: class _a ( lowercase__ ): """simple docstring""" snake_case_ = False class _a ( lowercase__ ): """simple docstring""" snake_case_ = False class _a ( lowercase__ ): """simple docstring""" snake_case_ = "AutoFeatureExtractor" snake_case_ = "AutoTokenizer" snake_case_ = False try: AutoConfig.register("custom" , a ) AutoFeatureExtractor.register(a , a ) AutoTokenizer.register(a , slow_tokenizer_class=a ) AutoProcessor.register(a , a ) # If remote code is not set, the default is to use local classes. SCREAMING_SNAKE_CASE__ : Optional[int] = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. SCREAMING_SNAKE_CASE__ : Tuple = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=a ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. SCREAMING_SNAKE_CASE__ : Any = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=a ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def A_ ( self : Optional[Any] ) ->Dict: SCREAMING_SNAKE_CASE__ : Optional[int] = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(processor.__class__.__name__ , "BertTokenizerFast" ) def A_ ( self : Dict ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : Dict = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext" ) self.assertEqual(processor.__class__.__name__ , "ConvNextImageProcessor" ) @is_staging_test class _a ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def A_ ( cls : List[str] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : int = TOKEN HfFolder.save_token(a ) @classmethod def A_ ( cls : List[str] ) ->Optional[int]: try: delete_repo(token=cls._token , repo_id="test-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-processor" ) except HTTPError: pass def A_ ( self : Dict ) ->Dict: SCREAMING_SNAKE_CASE__ : Tuple = WavaVecaProcessor.from_pretrained(a ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(a , "test-processor" ) , push_to_hub=a , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ : Optional[int] = WavaVecaProcessor.from_pretrained(f"""{USER}/test-processor""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(a , getattr(new_processor.feature_extractor , a ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def A_ ( self : List[str] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : Optional[Any] = WavaVecaProcessor.from_pretrained(a ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(a , "test-processor-org" ) , push_to_hub=a , use_auth_token=self._token , organization="valid_org" , ) SCREAMING_SNAKE_CASE__ : Dict = WavaVecaProcessor.from_pretrained("valid_org/test-processor-org" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(a , getattr(new_processor.feature_extractor , a ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def A_ ( self : Any ) ->int: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() SCREAMING_SNAKE_CASE__ : Any = CustomFeatureExtractor.from_pretrained(a ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(a , "vocab.txt" ) with open(a , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ : str = CustomTokenizer(a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = CustomProcessor(a , a ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f"""{USER}/test-dynamic-processor""" , token=self._token ) SCREAMING_SNAKE_CASE__ : str = Repository(a , clone_from=f"""{USER}/test-dynamic-processor""" , token=self._token ) processor.save_pretrained(a ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { "AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor", "AutoProcessor": "custom_processing.CustomProcessor", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(a , "tokenizer_config.json" ) ) as f: SCREAMING_SNAKE_CASE__ : str = json.load(a ) self.assertDictEqual( tokenizer_config["auto_map"] , { "AutoTokenizer": ["custom_tokenization.CustomTokenizer", None], "AutoProcessor": "custom_processing.CustomProcessor", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(a , "custom_feature_extraction.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(a , "custom_tokenization.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(a , "custom_processing.py" ) ) ) repo.push_to_hub() SCREAMING_SNAKE_CASE__ : List[Any] = AutoProcessor.from_pretrained(f"""{USER}/test-dynamic-processor""" , trust_remote_code=a ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , "CustomProcessor" )
26
0
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
701
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( lowercase__ ): """simple docstring""" snake_case_ = ["image_processor", "tokenizer"] snake_case_ = "CLIPImageProcessor" snake_case_ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Any , a : List[Any]=None , a : Any=None , **a : int ) ->int: SCREAMING_SNAKE_CASE__ : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , a , ) SCREAMING_SNAKE_CASE__ : List[Any] = kwargs.pop("feature_extractor" ) SCREAMING_SNAKE_CASE__ : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(a , a ) def __call__( self : Tuple , a : Tuple=None , a : Union[str, Any]=None , a : List[str]=None , **a : Optional[Any] ) ->Optional[Any]: if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: SCREAMING_SNAKE_CASE__ : str = self.tokenizer(a , return_tensors=a , **a ) if images is not None: SCREAMING_SNAKE_CASE__ : int = self.image_processor(a , return_tensors=a , **a ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ : Tuple = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a ) , tensor_type=a ) def A_ ( self : Optional[int] , *a : Any , **a : List[str] ) ->Any: return self.tokenizer.batch_decode(*a , **a ) def A_ ( self : Any , *a : Optional[int] , **a : Dict ) ->Any: return self.tokenizer.decode(*a , **a ) @property def A_ ( self : List[str] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A_ ( self : Optional[int] ) ->List[Any]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , a , ) return self.image_processor_class @property def A_ ( self : Dict ) ->str: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , a , ) return self.image_processor
26
0
import sys from collections import defaultdict class _a : """simple docstring""" def __init__( self : Any ) ->Dict: SCREAMING_SNAKE_CASE__ : Tuple = [] def A_ ( self : int , a : List[str] ) ->Dict: return self.node_position[vertex] def A_ ( self : Optional[Any] , a : Any , a : List[str] ) ->Optional[Any]: SCREAMING_SNAKE_CASE__ : str = pos def A_ ( self : List[Any] , a : List[str] , a : Dict , a : Dict , a : List[Any] ) ->Optional[int]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: SCREAMING_SNAKE_CASE__ : Optional[Any] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: SCREAMING_SNAKE_CASE__ : Dict = 2 * start + 1 else: SCREAMING_SNAKE_CASE__ : Tuple = 2 * start + 2 if heap[smallest_child] < heap[start]: SCREAMING_SNAKE_CASE__ : int = heap[smallest_child], positions[smallest_child] SCREAMING_SNAKE_CASE__ : Optional[int] = ( heap[start], positions[start], ) SCREAMING_SNAKE_CASE__ : Tuple = temp, tempa SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , a ) self.top_to_bottom(a , a , a , a ) def A_ ( self : Union[str, Any] , a : Tuple , a : Tuple , a : Union[str, Any] , a : List[Any] ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : List[Any] = position[index] while index != 0: SCREAMING_SNAKE_CASE__ : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: SCREAMING_SNAKE_CASE__ : List[Any] = heap[parent] SCREAMING_SNAKE_CASE__ : str = position[parent] self.set_position(position[parent] , a ) else: SCREAMING_SNAKE_CASE__ : int = val SCREAMING_SNAKE_CASE__ : Optional[Any] = temp self.set_position(a , a ) break SCREAMING_SNAKE_CASE__ : Optional[int] = parent else: SCREAMING_SNAKE_CASE__ : int = val SCREAMING_SNAKE_CASE__ : List[str] = temp self.set_position(a , 0 ) def A_ ( self : Union[str, Any] , a : int , a : List[str] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : List[str] = len(a ) // 2 - 1 for i in range(a , -1 , -1 ): self.top_to_bottom(a , a , len(a ) , a ) def A_ ( self : Dict , a : List[Any] , a : Dict ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : Any = positions[0] SCREAMING_SNAKE_CASE__ : Optional[int] = sys.maxsize self.top_to_bottom(a , 0 , len(a ) , a ) return temp def UpperCAmelCase ( _lowerCamelCase : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = Heap() SCREAMING_SNAKE_CASE__ : Any = [0] * len(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Any = [-1] * len(_lowerCamelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] # Heap of Distance of vertices from their neighboring vertex SCREAMING_SNAKE_CASE__ : str = [] for vertex in range(len(_lowerCamelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_lowerCamelCase ) heap.node_position.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = [] SCREAMING_SNAKE_CASE__ : int = 1 SCREAMING_SNAKE_CASE__ : int = sys.maxsize for neighbor, distance in adjacency_list[0]: SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : List[str] = distance heap.heapify(_lowerCamelCase , _lowerCamelCase ) for _ in range(1 , len(_lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ : Optional[Any] = heap.delete_minimum(_lowerCamelCase , _lowerCamelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_lowerCamelCase )] ): SCREAMING_SNAKE_CASE__ : Any = distance heap.bottom_to_top( _lowerCamelCase , heap.get_position(_lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : str = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __lowercase :Union[str, Any] = int(input("Enter number of edges: ").strip()) __lowercase :Dict = defaultdict(list) for _ in range(edges_number): __lowercase :Any = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
702
import sys from collections import defaultdict class _a : """simple docstring""" def __init__( self : Any ) ->Dict: SCREAMING_SNAKE_CASE__ : Tuple = [] def A_ ( self : int , a : List[str] ) ->Dict: return self.node_position[vertex] def A_ ( self : Optional[Any] , a : Any , a : List[str] ) ->Optional[Any]: SCREAMING_SNAKE_CASE__ : str = pos def A_ ( self : List[Any] , a : List[str] , a : Dict , a : Dict , a : List[Any] ) ->Optional[int]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: SCREAMING_SNAKE_CASE__ : Optional[Any] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: SCREAMING_SNAKE_CASE__ : Dict = 2 * start + 1 else: SCREAMING_SNAKE_CASE__ : Tuple = 2 * start + 2 if heap[smallest_child] < heap[start]: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : int = heap[smallest_child], positions[smallest_child] SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = ( heap[start], positions[start], ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Tuple = temp, tempa SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , a ) self.top_to_bottom(a , a , a , a ) def A_ ( self : Union[str, Any] , a : Tuple , a : Tuple , a : Union[str, Any] , a : List[Any] ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : List[Any] = position[index] while index != 0: SCREAMING_SNAKE_CASE__ : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: SCREAMING_SNAKE_CASE__ : List[Any] = heap[parent] SCREAMING_SNAKE_CASE__ : str = position[parent] self.set_position(position[parent] , a ) else: SCREAMING_SNAKE_CASE__ : int = val SCREAMING_SNAKE_CASE__ : Optional[Any] = temp self.set_position(a , a ) break SCREAMING_SNAKE_CASE__ : Optional[int] = parent else: SCREAMING_SNAKE_CASE__ : int = val SCREAMING_SNAKE_CASE__ : List[str] = temp self.set_position(a , 0 ) def A_ ( self : Union[str, Any] , a : int , a : List[str] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : List[str] = len(a ) // 2 - 1 for i in range(a , -1 , -1 ): self.top_to_bottom(a , a , len(a ) , a ) def A_ ( self : Dict , a : List[Any] , a : Dict ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : Any = positions[0] SCREAMING_SNAKE_CASE__ : Optional[int] = sys.maxsize self.top_to_bottom(a , 0 , len(a ) , a ) return temp def UpperCAmelCase ( _lowerCamelCase : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = Heap() SCREAMING_SNAKE_CASE__ : Any = [0] * len(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Any = [-1] * len(_lowerCamelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] # Heap of Distance of vertices from their neighboring vertex SCREAMING_SNAKE_CASE__ : str = [] for vertex in range(len(_lowerCamelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_lowerCamelCase ) heap.node_position.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = [] SCREAMING_SNAKE_CASE__ : int = 1 SCREAMING_SNAKE_CASE__ : int = sys.maxsize for neighbor, distance in adjacency_list[0]: SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : List[str] = distance heap.heapify(_lowerCamelCase , _lowerCamelCase ) for _ in range(1 , len(_lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ : Optional[Any] = heap.delete_minimum(_lowerCamelCase , _lowerCamelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_lowerCamelCase )] ): SCREAMING_SNAKE_CASE__ : Any = distance heap.bottom_to_top( _lowerCamelCase , heap.get_position(_lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : str = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __lowercase :Union[str, Any] = int(input("Enter number of edges: ").strip()) __lowercase :Dict = defaultdict(list) for _ in range(edges_number): __lowercase :Any = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
26
0
from __future__ import annotations import math import random from typing import Any class _a : """simple docstring""" def __init__( self : Any ) ->None: SCREAMING_SNAKE_CASE__ : list[Any] = [] SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : int = 0 def A_ ( self : List[str] ) ->bool: return self.head == self.tail def A_ ( self : Optional[int] , a : Any ) ->None: self.data.append(a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tail + 1 def A_ ( self : Union[str, Any] ) ->Any: SCREAMING_SNAKE_CASE__ : Tuple = self.data[self.head] SCREAMING_SNAKE_CASE__ : int = self.head + 1 return ret def A_ ( self : Tuple ) ->int: return self.tail - self.head def A_ ( self : Tuple ) ->None: print(self.data ) print("**************" ) print(self.data[self.head : self.tail] ) class _a : """simple docstring""" def __init__( self : List[Any] , a : Any ) ->None: SCREAMING_SNAKE_CASE__ : List[Any] = data SCREAMING_SNAKE_CASE__ : MyNode | None = None SCREAMING_SNAKE_CASE__ : MyNode | None = None SCREAMING_SNAKE_CASE__ : int = 1 def A_ ( self : int ) ->Any: return self.data def A_ ( self : Union[str, Any] ) ->MyNode | None: return self.left def A_ ( self : List[Any] ) ->MyNode | None: return self.right def A_ ( self : Dict ) ->int: return self.height def A_ ( self : Optional[Any] , a : Any ) ->None: SCREAMING_SNAKE_CASE__ : List[str] = data def A_ ( self : Any , a : MyNode | None ) ->None: SCREAMING_SNAKE_CASE__ : List[str] = node def A_ ( self : Any , a : MyNode | None ) ->None: SCREAMING_SNAKE_CASE__ : List[Any] = node def A_ ( self : Tuple , a : int ) ->None: SCREAMING_SNAKE_CASE__ : Optional[int] = height def UpperCAmelCase ( _lowerCamelCase : MyNode | None ): '''simple docstring''' if node is None: return 0 return node.get_height() def UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' if a > b: return a return b def UpperCAmelCase ( _lowerCamelCase : MyNode ): '''simple docstring''' print("left rotation node:" , node.get_data() ) SCREAMING_SNAKE_CASE__ : str = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : str = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Tuple = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_lowerCamelCase ) return ret def UpperCAmelCase ( _lowerCamelCase : MyNode ): '''simple docstring''' print("right rotation node:" , node.get_data() ) SCREAMING_SNAKE_CASE__ : List[str] = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Tuple = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_lowerCamelCase ) return ret def UpperCAmelCase ( _lowerCamelCase : MyNode ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = node.get_left() assert left_child is not None node.set_left(left_rotation(_lowerCamelCase ) ) return right_rotation(_lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase : MyNode ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = node.get_right() assert right_child is not None node.set_right(right_rotation(_lowerCamelCase ) ) return left_rotation(_lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase : MyNode | None , _lowerCamelCase : Any ): '''simple docstring''' if node is None: return MyNode(_lowerCamelCase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , _lowerCamelCase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected SCREAMING_SNAKE_CASE__ : str = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child SCREAMING_SNAKE_CASE__ : List[Any] = right_rotation(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = lr_rotation(_lowerCamelCase ) else: node.set_right(insert_node(node.get_right() , _lowerCamelCase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: SCREAMING_SNAKE_CASE__ : Optional[int] = node.get_right() assert right_child is not None if data < right_child.get_data(): SCREAMING_SNAKE_CASE__ : Any = rl_rotation(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE__ : List[Any] = left_rotation(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowerCamelCase ) return node def UpperCAmelCase ( _lowerCamelCase : MyNode ): '''simple docstring''' while True: SCREAMING_SNAKE_CASE__ : Optional[int] = root.get_right() if right_child is None: break SCREAMING_SNAKE_CASE__ : int = right_child return root.get_data() def UpperCAmelCase ( _lowerCamelCase : MyNode ): '''simple docstring''' while True: SCREAMING_SNAKE_CASE__ : List[Any] = root.get_left() if left_child is None: break SCREAMING_SNAKE_CASE__ : str = left_child return root.get_data() def UpperCAmelCase ( _lowerCamelCase : MyNode , _lowerCamelCase : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = root.get_left() SCREAMING_SNAKE_CASE__ : int = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: SCREAMING_SNAKE_CASE__ : Dict = get_left_most(_lowerCamelCase ) root.set_data(_lowerCamelCase ) root.set_right(del_node(_lowerCamelCase , _lowerCamelCase ) ) elif left_child is not None: SCREAMING_SNAKE_CASE__ : List[str] = left_child elif right_child is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] = right_child else: return None elif root.get_data() > data: if left_child is None: print("No such data" ) return root else: root.set_left(del_node(_lowerCamelCase , _lowerCamelCase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(_lowerCamelCase , _lowerCamelCase ) ) if get_height(_lowerCamelCase ) - get_height(_lowerCamelCase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): SCREAMING_SNAKE_CASE__ : str = left_rotation(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE__ : List[str] = rl_rotation(_lowerCamelCase ) elif get_height(_lowerCamelCase ) - get_height(_lowerCamelCase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): SCREAMING_SNAKE_CASE__ : str = right_rotation(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE__ : Tuple = lr_rotation(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Dict = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(_lowerCamelCase ) return root class _a : """simple docstring""" def __init__( self : List[Any] ) ->None: SCREAMING_SNAKE_CASE__ : MyNode | None = None def A_ ( self : Optional[Any] ) ->int: return get_height(self.root ) def A_ ( self : Optional[Any] , a : Any ) ->None: print("insert:" + str(a ) ) SCREAMING_SNAKE_CASE__ : Dict = insert_node(self.root , a ) def A_ ( self : Any , a : Any ) ->None: print("delete:" + str(a ) ) if self.root is None: print("Tree is empty!" ) return SCREAMING_SNAKE_CASE__ : str = del_node(self.root , a ) def __str__( self : str , ) ->str: # a level traversale, gives a more intuitive look on the tree SCREAMING_SNAKE_CASE__ : List[Any] = "" SCREAMING_SNAKE_CASE__ : List[str] = MyQueue() q.push(self.root ) SCREAMING_SNAKE_CASE__ : str = self.get_height() if layer == 0: return output SCREAMING_SNAKE_CASE__ : int = 0 while not q.is_empty(): SCREAMING_SNAKE_CASE__ : List[str] = q.pop() SCREAMING_SNAKE_CASE__ : Optional[int] = " " * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(a ) q.push(a ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space SCREAMING_SNAKE_CASE__ : Dict = cnt + 1 for i in range(1_00 ): if cnt == math.pow(2 , a ) - 1: SCREAMING_SNAKE_CASE__ : List[Any] = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def UpperCAmelCase ( ): '''simple docstring''' import doctest doctest.testmod() if __name__ == "__main__": _test() __lowercase :int = AVLtree() __lowercase :str = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
703
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __lowercase :List[Any] = logging.get_logger(__name__) __lowercase :Optional[int] = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class _a ( lowercase__ ): """simple docstring""" snake_case_ = "longformer" def __init__( self : List[str] , a : Union[List[int], int] = 5_12 , a : int = 2 , a : int = 1 , a : int = 0 , a : int = 2 , a : int = 3_05_22 , a : int = 7_68 , a : int = 12 , a : int = 12 , a : int = 30_72 , a : str = "gelu" , a : float = 0.1 , a : float = 0.1 , a : int = 5_12 , a : int = 2 , a : float = 0.02 , a : float = 1E-12 , a : bool = False , **a : Dict , ) ->Tuple: super().__init__(pad_token_id=a , **a ) SCREAMING_SNAKE_CASE__ : int = attention_window SCREAMING_SNAKE_CASE__ : Any = sep_token_id SCREAMING_SNAKE_CASE__ : str = bos_token_id SCREAMING_SNAKE_CASE__ : List[str] = eos_token_id SCREAMING_SNAKE_CASE__ : List[str] = vocab_size SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE__ : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE__ : List[Any] = hidden_act SCREAMING_SNAKE_CASE__ : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE__ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : str = type_vocab_size SCREAMING_SNAKE_CASE__ : Any = initializer_range SCREAMING_SNAKE_CASE__ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE__ : Any = onnx_export class _a ( lowercase__ ): """simple docstring""" def __init__( self : int , a : "PretrainedConfig" , a : str = "default" , a : "List[PatchingSpec]" = None ) ->str: super().__init__(a , a , a ) SCREAMING_SNAKE_CASE__ : Any = True @property def A_ ( self : int ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ : int = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE__ : str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ] ) @property def A_ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: SCREAMING_SNAKE_CASE__ : Optional[Any] = super().outputs if self.task == "default": SCREAMING_SNAKE_CASE__ : List[str] = {0: "batch"} return outputs @property def A_ ( self : str ) ->float: return 1E-4 @property def A_ ( self : Any ) ->int: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def A_ ( self : str , a : "PreTrainedTokenizerBase" , a : int = -1 , a : int = -1 , a : bool = False , a : Optional[TensorType] = None , ) ->Mapping[str, Any]: SCREAMING_SNAKE_CASE__ : Tuple = super().generate_dummy_inputs( preprocessor=a , batch_size=a , seq_length=a , is_pair=a , framework=a ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly SCREAMING_SNAKE_CASE__ : Any = torch.zeros_like(inputs["input_ids"] ) # make every second token global SCREAMING_SNAKE_CASE__ : str = 1 return inputs
26
0
from __future__ import annotations __lowercase :Optional[int] = list[list[int]] # assigning initial values to the grid __lowercase :Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __lowercase :Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def UpperCAmelCase ( _lowerCamelCase : Matrix , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def UpperCAmelCase ( _lowerCamelCase : Matrix ): '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def UpperCAmelCase ( _lowerCamelCase : Matrix ): '''simple docstring''' if location := find_empty_location(_lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Optional[int] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Optional[int] = digit if sudoku(_lowerCamelCase ) is not None: return grid SCREAMING_SNAKE_CASE__ : str = 0 return None def UpperCAmelCase ( _lowerCamelCase : Matrix ): '''simple docstring''' for row in grid: for cell in row: print(_lowerCamelCase , end=" " ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") __lowercase :Any = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
704
def UpperCAmelCase ( _lowerCamelCase : int = 4_000_000 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = [0, 1] SCREAMING_SNAKE_CASE__ : List[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 for j in range(len(_lowerCamelCase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"{solution() = }")
26
0
from typing import List from .keymap import KEYMAP, get_character def UpperCAmelCase ( _lowerCamelCase : str ): '''simple docstring''' def decorator(_lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE__ : Tuple = getattr(_lowerCamelCase , "handle_key" , [] ) handle += [key] setattr(_lowerCamelCase , "handle_key" , _lowerCamelCase ) return func return decorator def UpperCAmelCase ( *_lowerCamelCase : List[str] ): '''simple docstring''' def decorator(_lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE__ : Optional[int] = getattr(_lowerCamelCase , "handle_key" , [] ) handle += keys setattr(_lowerCamelCase , "handle_key" , _lowerCamelCase ) return func return decorator class _a ( lowercase__ ): """simple docstring""" def __new__( cls : Any , a : Any , a : Any , a : Optional[Any] ) ->Dict: SCREAMING_SNAKE_CASE__ : List[str] = super().__new__(cls , a , a , a ) if not hasattr(a , "key_handler" ): setattr(a , "key_handler" , {} ) setattr(a , "handle_input" , KeyHandler.handle_input ) for value in attrs.values(): SCREAMING_SNAKE_CASE__ : Optional[Any] = getattr(a , "handle_key" , [] ) for key in handled_keys: SCREAMING_SNAKE_CASE__ : Optional[Any] = value return new_cls @staticmethod def A_ ( cls : Dict ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_character() if char != KEYMAP["undefined"]: SCREAMING_SNAKE_CASE__ : Dict = ord(a ) SCREAMING_SNAKE_CASE__ : Tuple = cls.key_handler.get(a ) if handler: SCREAMING_SNAKE_CASE__ : int = char return handler(cls ) else: return None def UpperCAmelCase ( cls : Union[str, Any] ): '''simple docstring''' return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
705
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _a ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , a : Any , a : bool = True , a : Dict[str, int] = None , a : int = 32 , a : bool = True , a : Union[int, float] = 1 / 2_55 , a : bool = True , a : bool = True , a : Optional[Union[float, List[float]]] = [0.4814_5466, 0.457_8275, 0.4082_1073] , a : Optional[Union[float, List[float]]] = [0.2686_2954, 0.2613_0258, 0.2757_7711] , a : bool = True , a : Any=7 , a : str=30 , a : Dict=4_00 , a : Optional[int]=3 , ) ->int: SCREAMING_SNAKE_CASE__ : int = parent SCREAMING_SNAKE_CASE__ : Dict = do_resize SCREAMING_SNAKE_CASE__ : List[str] = size if size is not None else {"shortest_edge": 2_88} SCREAMING_SNAKE_CASE__ : List[Any] = size_divisor SCREAMING_SNAKE_CASE__ : List[Any] = do_rescale SCREAMING_SNAKE_CASE__ : Tuple = rescale_factor SCREAMING_SNAKE_CASE__ : Optional[int] = do_normalize SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_center_crop SCREAMING_SNAKE_CASE__ : Optional[int] = image_mean SCREAMING_SNAKE_CASE__ : Dict = image_std SCREAMING_SNAKE_CASE__ : List[str] = do_pad SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE__ : int = num_channels SCREAMING_SNAKE_CASE__ : Optional[int] = min_resolution SCREAMING_SNAKE_CASE__ : Union[str, Any] = max_resolution def A_ ( self : List[str] ) ->Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def A_ ( self : int , a : Optional[int] , a : Union[str, Any]=False ) ->Optional[Any]: if not batched: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.size["shortest_edge"] SCREAMING_SNAKE_CASE__ : Dict = image_inputs[0] if isinstance(a , Image.Image ): SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Dict = image.size else: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : List[str] = image.shape[1], image.shape[2] SCREAMING_SNAKE_CASE__ : Any = size / min(a , a ) if h < w: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = size, scale * w else: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : List[str] = scale * h, size SCREAMING_SNAKE_CASE__ : List[Any] = int((13_33 / 8_00) * size ) if max(a , a ) > max_size: SCREAMING_SNAKE_CASE__ : List[Any] = max_size / max(a , a ) SCREAMING_SNAKE_CASE__ : int = newh * scale SCREAMING_SNAKE_CASE__ : Optional[int] = neww * scale SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Any = int(newh + 0.5 ), int(neww + 0.5 ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Any = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: SCREAMING_SNAKE_CASE__ : List[Any] = [] for image in image_inputs: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE__ : Tuple = max(a , key=lambda a : item[0] )[0] SCREAMING_SNAKE_CASE__ : Tuple = max(a , key=lambda a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( lowercase__ , unittest.TestCase ): """simple docstring""" snake_case_ = BridgeTowerImageProcessor if is_vision_available() else None def A_ ( self : List[Any] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : Any = BridgeTowerImageProcessingTester(self ) @property def A_ ( self : Optional[int] ) ->Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def A_ ( self : Tuple ) ->str: SCREAMING_SNAKE_CASE__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , "image_mean" ) ) self.assertTrue(hasattr(a , "image_std" ) ) self.assertTrue(hasattr(a , "do_normalize" ) ) self.assertTrue(hasattr(a , "do_resize" ) ) self.assertTrue(hasattr(a , "size" ) ) self.assertTrue(hasattr(a , "size_divisor" ) ) def A_ ( self : List[Any] ) ->List[Any]: pass def A_ ( self : Tuple ) ->Optional[Any]: # Initialize image processor SCREAMING_SNAKE_CASE__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ : int = image_processing(a , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Any = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self : Optional[int] ) ->Any: # Initialize image processor SCREAMING_SNAKE_CASE__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : List[Any] = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ : Tuple = image_processing(a , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self : str ) ->Optional[int]: # Initialize image processor SCREAMING_SNAKE_CASE__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Tuple = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ : Any = image_processing(a , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
26
0
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _a ( lowercase__ ): """simple docstring""" snake_case_ = (EulerDiscreteScheduler,) snake_case_ = 10 def A_ ( self : Union[str, Any] , **a : Union[str, Any] ) ->int: SCREAMING_SNAKE_CASE__ : List[str] = { "num_train_timesteps": 11_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**a ) return config def A_ ( self : List[str] ) ->Any: for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=a ) def A_ ( self : List[str] ) ->Tuple: for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=a , beta_end=a ) def A_ ( self : str ) ->Union[str, Any]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a ) def A_ ( self : Optional[int] ) ->Tuple: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a ) def A_ ( self : Union[str, Any] ) ->Tuple: SCREAMING_SNAKE_CASE__ : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : Tuple = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : List[str] = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE__ : int = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] = self.dummy_model() SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE__ : Optional[Any] = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE__ : Tuple = scheduler.scale_model_input(a , a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(a , a ) SCREAMING_SNAKE_CASE__ : Optional[int] = scheduler.step(a , a , a , generator=a ) SCREAMING_SNAKE_CASE__ : str = output.prev_sample SCREAMING_SNAKE_CASE__ : Any = torch.sum(torch.abs(a ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.mean(torch.abs(a ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def A_ ( self : List[Any] ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : str = self.get_scheduler_config(prediction_type="v_prediction" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Tuple = self.dummy_model() SCREAMING_SNAKE_CASE__ : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE__ : int = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE__ : Any = scheduler.scale_model_input(a , a ) SCREAMING_SNAKE_CASE__ : str = model(a , a ) SCREAMING_SNAKE_CASE__ : Dict = scheduler.step(a , a , a , generator=a ) SCREAMING_SNAKE_CASE__ : Any = output.prev_sample SCREAMING_SNAKE_CASE__ : List[Any] = torch.sum(torch.abs(a ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.mean(torch.abs(a ) ) assert abs(result_sum.item() - 0.0002 ) < 1E-2 assert abs(result_mean.item() - 2.2676E-06 ) < 1E-3 def A_ ( self : int ) ->str: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : Tuple = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : Any = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict = self.dummy_model() SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE__ : Tuple = sample.to(a ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE__ : str = scheduler.scale_model_input(a , a ) SCREAMING_SNAKE_CASE__ : Any = model(a , a ) SCREAMING_SNAKE_CASE__ : int = scheduler.step(a , a , a , generator=a ) SCREAMING_SNAKE_CASE__ : Optional[int] = output.prev_sample SCREAMING_SNAKE_CASE__ : str = torch.sum(torch.abs(a ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.mean(torch.abs(a ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def A_ ( self : List[str] ) ->Any: SCREAMING_SNAKE_CASE__ : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : Tuple = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : List[str] = scheduler_class(**a , use_karras_sigmas=a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) SCREAMING_SNAKE_CASE__ : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : int = self.dummy_model() SCREAMING_SNAKE_CASE__ : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE__ : Tuple = sample.to(a ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE__ : Optional[Any] = scheduler.scale_model_input(a , a ) SCREAMING_SNAKE_CASE__ : List[Any] = model(a , a ) SCREAMING_SNAKE_CASE__ : Dict = scheduler.step(a , a , a , generator=a ) SCREAMING_SNAKE_CASE__ : List[Any] = output.prev_sample SCREAMING_SNAKE_CASE__ : Any = torch.sum(torch.abs(a ) ) SCREAMING_SNAKE_CASE__ : int = torch.mean(torch.abs(a ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1E-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1E-3
706
def UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : bool = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_317_044_064_679_887_385_961_981 and not allow_probable: raise ValueError( "Warning: upper bound of deterministic test is exceeded. " "Pass allow_probable=True to allow probabilistic test. " "A return value of True indicates a probable prime." ) # array bounds provided by analysis SCREAMING_SNAKE_CASE__ : List[str] = [ 2_047, 1_373_653, 25_326_001, 3_215_031_751, 2_152_302_898_747, 3_474_749_660_383, 341_550_071_728_321, 1, 3_825_123_056_546_413_051, 1, 1, 318_665_857_834_031_151_167_461, 3_317_044_064_679_887_385_961_981, ] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(_lowerCamelCase , 1 ): if n < _p: # then we have our last prime to check SCREAMING_SNAKE_CASE__ : Dict = primes[:idx] break SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Dict = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: SCREAMING_SNAKE_CASE__ : str = False for r in range(_lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Optional[Any] = pow(_lowerCamelCase , d * 2**r , _lowerCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): SCREAMING_SNAKE_CASE__ : str = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def UpperCAmelCase ( ): '''simple docstring''' assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838_201 ) assert miller_rabin(838_207 ) # 1_373_653 assert not miller_rabin(17_316_001 ) assert miller_rabin(17_316_017 ) # 25_326_001 assert not miller_rabin(3_078_386_641 ) assert miller_rabin(3_078_386_653 ) # 3_215_031_751 assert not miller_rabin(1_713_045_574_801 ) assert miller_rabin(1_713_045_574_819 ) # 2_152_302_898_747 assert not miller_rabin(2_779_799_728_307 ) assert miller_rabin(2_779_799_728_327 ) # 3_474_749_660_383 assert not miller_rabin(113_850_023_909_441 ) assert miller_rabin(113_850_023_909_527 ) # 341_550_071_728_321 assert not miller_rabin(1_275_041_018_848_804_351 ) assert miller_rabin(1_275_041_018_848_804_391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79_666_464_458_507_787_791_867 ) assert miller_rabin(79_666_464_458_507_787_791_951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552_840_677_446_647_897_660_333 ) assert miller_rabin(552_840_677_446_647_897_660_359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
26
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase :Any = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase :Optional[int] = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase :List[Any] = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase :Tuple = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys __lowercase :Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
707
import numpy class _a : """simple docstring""" def __init__( self : Optional[int] , a : numpy.ndarray , a : numpy.ndarray ) ->None: SCREAMING_SNAKE_CASE__ : Any = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. SCREAMING_SNAKE_CASE__ : int = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. SCREAMING_SNAKE_CASE__ : Dict = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. SCREAMING_SNAKE_CASE__ : List[Any] = numpy.random.rand(3 , 1 ) # Real output values provided. SCREAMING_SNAKE_CASE__ : str = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. SCREAMING_SNAKE_CASE__ : Tuple = numpy.zeros(output_array.shape ) def A_ ( self : Union[str, Any] ) ->numpy.ndarray: SCREAMING_SNAKE_CASE__ : List[Any] = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. SCREAMING_SNAKE_CASE__ : Optional[int] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. SCREAMING_SNAKE_CASE__ : int = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def A_ ( self : int ) ->None: SCREAMING_SNAKE_CASE__ : Optional[int] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) SCREAMING_SNAKE_CASE__ : int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def A_ ( self : int , a : numpy.ndarray , a : int , a : bool ) ->None: for iteration in range(1 , iterations + 1 ): SCREAMING_SNAKE_CASE__ : Dict = self.feedforward() self.back_propagation() if give_loss: SCREAMING_SNAKE_CASE__ : int = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f"""Iteration {iteration} Loss: {loss}""" ) def A_ ( self : Tuple , a : numpy.ndarray ) ->int: SCREAMING_SNAKE_CASE__ : Optional[int] = input_arr SCREAMING_SNAKE_CASE__ : Dict = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) SCREAMING_SNAKE_CASE__ : Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def UpperCAmelCase ( _lowerCamelCase : numpy.ndarray ): '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def UpperCAmelCase ( _lowerCamelCase : numpy.ndarray ): '''simple docstring''' return (value) * (1 - (value)) def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. SCREAMING_SNAKE_CASE__ : Any = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. SCREAMING_SNAKE_CASE__ : List[Any] = TwoHiddenLayerNeuralNetwork( input_array=_lowerCamelCase , output_array=_lowerCamelCase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_lowerCamelCase , iterations=10 , give_loss=_lowerCamelCase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
26
0
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __lowercase :Optional[int] = logging.get_logger(__name__) class _a ( lowercase__ ): """simple docstring""" def __init__( self : int , *a : Any , **a : Optional[int] ) ->None: warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , a , ) super().__init__(*a , **a )
708
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowercase :Tuple = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" __lowercase :str = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" __lowercase :List[Any] = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def A_ ( self : List[Any] ) ->MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def A_ ( self : str , a : List[List[List[str]]] , a : List[List[str]] , a : int = 1 , a : int = 4 , ) ->Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=a , hypotheses=a , min_len=a , max_len=a ) }
26
0
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def UpperCAmelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict , _lowerCamelCase : Any=1_024 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = [], [] SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(zip(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ : List[Any] = sorted_examples[0] def is_too_big(_lowerCamelCase : int ): return tok(_lowerCamelCase , return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): SCREAMING_SNAKE_CASE__ : int = new_src + " " + src SCREAMING_SNAKE_CASE__ : str = new_tgt + " " + tgt if is_too_big(_lowerCamelCase ) or is_too_big(_lowerCamelCase ): # cant fit, finalize example finished_src.append(_lowerCamelCase ) finished_tgt.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = src, tgt else: # can fit, keep adding SCREAMING_SNAKE_CASE__ : Optional[Any] = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(_lowerCamelCase ) finished_tgt.append(_lowerCamelCase ) return finished_src, finished_tgt def UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Path , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = Path(_lowerCamelCase ) save_path.mkdir(exist_ok=_lowerCamelCase ) for split in ["train"]: SCREAMING_SNAKE_CASE__ : Optional[Any] = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" SCREAMING_SNAKE_CASE__ : str = [x.rstrip() for x in Path(_lowerCamelCase ).open().readlines()] SCREAMING_SNAKE_CASE__ : Optional[Any] = [x.rstrip() for x in Path(_lowerCamelCase ).open().readlines()] SCREAMING_SNAKE_CASE__ : int = pack_examples(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) print(f"""packed {split} split from {len(_lowerCamelCase )} examples -> {len(_lowerCamelCase )}.""" ) Path(save_path / f"""{split}.source""" ).open("w" ).write("\n".join(_lowerCamelCase ) ) Path(save_path / f"""{split}.target""" ).open("w" ).write("\n".join(_lowerCamelCase ) ) for split in ["val", "test"]: SCREAMING_SNAKE_CASE__ : List[str] = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" shutil.copyfile(_lowerCamelCase , save_path / f"""{split}.source""" ) shutil.copyfile(_lowerCamelCase , save_path / f"""{split}.target""" ) def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = argparse.ArgumentParser() parser.add_argument("--tok_name" , type=_lowerCamelCase , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len" , type=_lowerCamelCase , default=128 ) parser.add_argument("--data_dir" , type=_lowerCamelCase ) parser.add_argument("--save_path" , type=_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[str] = parser.parse_args() SCREAMING_SNAKE_CASE__ : int = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(_lowerCamelCase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
709
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __lowercase :List[Any] = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any]=None ): '''simple docstring''' require_version(deps[pkg] , _lowerCamelCase )
26
0
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class _a ( unittest.TestCase ): """simple docstring""" def A_ ( self : List[Any] ) ->int: debug_launcher(test_script.main ) def A_ ( self : Union[str, Any] ) ->Optional[Any]: debug_launcher(test_ops.main )
710
from __future__ import annotations def UpperCAmelCase ( _lowerCamelCase : list[int] , _lowerCamelCase : int ): '''simple docstring''' if len(_lowerCamelCase ) < k or k < 0: raise ValueError("Invalid Input" ) SCREAMING_SNAKE_CASE__ : int = sum(array[:k] ) for i in range(len(_lowerCamelCase ) - k ): SCREAMING_SNAKE_CASE__ : str = current_sum - array[i] + array[i + k] SCREAMING_SNAKE_CASE__ : Union[str, Any] = max(_lowerCamelCase , _lowerCamelCase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() __lowercase :List[str] = [randint(-1_000, 1_000) for i in range(100)] __lowercase :Any = randint(0, 110) print(f"The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}")
26
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowercase :List[Any] = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def UpperCAmelCase ( _lowerCamelCase : int ): '''simple docstring''' config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested" ) config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested" ) config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested" ) config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment" ) config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate" ) config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule" ) def UpperCAmelCase ( _lowerCamelCase : str ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase : Tuple ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE__ : List[str] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(_lowerCamelCase , id=_lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict ): '''simple docstring''' if exitstatus == 5: SCREAMING_SNAKE_CASE__ : List[str] = 0 # Doctest custom flag to ignore output. __lowercase :Optional[Any] = doctest.register_optionflag("IGNORE_RESULT") __lowercase :Dict = doctest.OutputChecker class _a ( lowercase__ ): """simple docstring""" def A_ ( self : Dict , a : List[str] , a : Dict , a : int ) ->Optional[Any]: if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , a , a , a ) __lowercase :Any = CustomOutputChecker __lowercase :Any = HfDoctestModule __lowercase :int = HfDocTestParser
711
from __future__ import annotations def UpperCAmelCase ( _lowerCamelCase : list[int | float] , _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' if len(_lowerCamelCase ) == 0: raise ValueError("find_max() arg is an empty sequence" ) if ( left >= len(_lowerCamelCase ) or left < -len(_lowerCamelCase ) or right >= len(_lowerCamelCase ) or right < -len(_lowerCamelCase ) ): raise IndexError("list index out of range" ) if left == right: return nums[left] SCREAMING_SNAKE_CASE__ : Optional[int] = (left + right) >> 1 # the middle SCREAMING_SNAKE_CASE__ : List[Any] = find_max(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # find max in range[left, mid] SCREAMING_SNAKE_CASE__ : Optional[int] = find_max(_lowerCamelCase , mid + 1 , _lowerCamelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
26
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowercase :int = logging.get_logger(__name__) class _a ( lowercase__ ): """simple docstring""" snake_case_ = ["pixel_values"] def __init__( self : int , a : bool = True , a : Optional[Dict[str, int]] = None , a : PILImageResampling = PILImageResampling.BILINEAR , a : bool = True , a : Dict[str, int] = None , a : bool = True , a : Union[int, float] = 1 / 2_55 , a : bool = True , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , **a : List[str] , ) ->None: super().__init__(**a ) SCREAMING_SNAKE_CASE__ : List[str] = size if size is not None else {"shortest_edge": 2_56} SCREAMING_SNAKE_CASE__ : Any = get_size_dict(a , default_to_square=a ) SCREAMING_SNAKE_CASE__ : List[Any] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} SCREAMING_SNAKE_CASE__ : Dict = get_size_dict(a ) SCREAMING_SNAKE_CASE__ : List[str] = do_resize SCREAMING_SNAKE_CASE__ : List[str] = size SCREAMING_SNAKE_CASE__ : List[Any] = resample SCREAMING_SNAKE_CASE__ : int = do_center_crop SCREAMING_SNAKE_CASE__ : Optional[Any] = crop_size SCREAMING_SNAKE_CASE__ : Any = do_rescale SCREAMING_SNAKE_CASE__ : Any = rescale_factor SCREAMING_SNAKE_CASE__ : int = do_normalize SCREAMING_SNAKE_CASE__ : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def A_ ( self : Tuple , a : np.ndarray , a : Dict[str, int] , a : PILImageResampling = PILImageResampling.BICUBIC , a : Optional[Union[str, ChannelDimension]] = None , **a : Optional[int] , ) ->np.ndarray: SCREAMING_SNAKE_CASE__ : List[Any] = get_size_dict(a , default_to_square=a ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = get_resize_output_image_size(a , size=size["shortest_edge"] , default_to_square=a ) return resize(a , size=a , resample=a , data_format=a , **a ) def A_ ( self : List[Any] , a : np.ndarray , a : Dict[str, int] , a : Optional[Union[str, ChannelDimension]] = None , **a : List[Any] , ) ->np.ndarray: SCREAMING_SNAKE_CASE__ : Tuple = get_size_dict(a ) return center_crop(a , size=(size["height"], size["width"]) , data_format=a , **a ) def A_ ( self : Optional[int] , a : np.ndarray , a : float , a : Optional[Union[str, ChannelDimension]] = None , **a : Dict ) ->np.ndarray: return rescale(a , scale=a , data_format=a , **a ) def A_ ( self : Union[str, Any] , a : np.ndarray , a : Union[float, List[float]] , a : Union[float, List[float]] , a : Optional[Union[str, ChannelDimension]] = None , **a : Union[str, Any] , ) ->np.ndarray: return normalize(a , mean=a , std=a , data_format=a , **a ) def A_ ( self : Tuple , a : ImageInput , a : Optional[bool] = None , a : Dict[str, int] = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : Optional[bool] = None , a : Optional[float] = None , a : Optional[bool] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[str, TensorType]] = None , a : Union[str, ChannelDimension] = ChannelDimension.FIRST , **a : Any , ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : Optional[Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ : Union[str, Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE__ : Dict = get_size_dict(a , default_to_square=a ) SCREAMING_SNAKE_CASE__ : str = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE__ : Optional[int] = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE__ : Dict = get_size_dict(a ) SCREAMING_SNAKE_CASE__ : List[str] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ : Dict = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ : Optional[int] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ : Tuple = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ : Union[str, Any] = make_list_of_images(a ) if not valid_images(a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : List[str] = [to_numpy_array(a ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ : Tuple = [self.resize(image=a , size=a , resample=a ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE__ : List[Any] = [self.center_crop(image=a , size=a ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ : List[str] = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ : Dict = [self.normalize(image=a , mean=a , std=a ) for image in images] SCREAMING_SNAKE_CASE__ : Dict = [to_channel_dimension_format(a , a ) for image in images] SCREAMING_SNAKE_CASE__ : Optional[int] = {"pixel_values": images} return BatchFeature(data=a , tensor_type=a )
712
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __lowercase :str = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class _a ( lowercase__ ): """simple docstring""" def __init__( self : List[str] , a : Optional[int] , a : str , a : int=None , a : Optional[Any]=1 ) ->Optional[Any]: SCREAMING_SNAKE_CASE__ : Dict = tokenizer SCREAMING_SNAKE_CASE__ : Optional[int] = dataset SCREAMING_SNAKE_CASE__ : Optional[Any] = len(a ) if n_tasks is None else n_tasks SCREAMING_SNAKE_CASE__ : Dict = n_copies def __iter__( self : str ) ->Tuple: SCREAMING_SNAKE_CASE__ : str = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) SCREAMING_SNAKE_CASE__ : int = self.tokenizer(a , padding=a , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _a ( lowercase__ ): """simple docstring""" def __init__( self : Dict , a : int , a : int , a : Tuple ) ->Dict: SCREAMING_SNAKE_CASE__ : Dict = start_length SCREAMING_SNAKE_CASE__ : Any = eof_strings SCREAMING_SNAKE_CASE__ : Any = tokenizer def __call__( self : Any , a : Optional[int] , a : int , **a : Union[str, Any] ) ->List[str]: SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) SCREAMING_SNAKE_CASE__ : int = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(a ) def UpperCAmelCase ( _lowerCamelCase : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = re.split("(%s)" % "|".join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : str=20 , **_lowerCamelCase : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): SCREAMING_SNAKE_CASE__ : str = batch["ids"].shape[-1] SCREAMING_SNAKE_CASE__ : List[Any] = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch["ids"][:, : batch["input_len"]] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times SCREAMING_SNAKE_CASE__ : Dict = batch["task_id"].repeat(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Dict = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Any = accelerator.gather((generated_tokens, generated_tasks) ) SCREAMING_SNAKE_CASE__ : Dict = generated_tokens.cpu().numpy() SCREAMING_SNAKE_CASE__ : Any = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = HfArgumentParser(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric SCREAMING_SNAKE_CASE__ : List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing SCREAMING_SNAKE_CASE__ : str = "false" if args.num_workers is None: SCREAMING_SNAKE_CASE__ : Dict = multiprocessing.cpu_count() # Use dataset load to feed to accelerate SCREAMING_SNAKE_CASE__ : Dict = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer SCREAMING_SNAKE_CASE__ : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.eos_token SCREAMING_SNAKE_CASE__ : List[str] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings SCREAMING_SNAKE_CASE__ : List[Any] = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric SCREAMING_SNAKE_CASE__ : str = load_dataset("openai_humaneval" ) SCREAMING_SNAKE_CASE__ : Any = load_metric("code_eval" ) SCREAMING_SNAKE_CASE__ : Dict = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = args.n_samples // args.batch_size SCREAMING_SNAKE_CASE__ : Dict = TokenizedDataset(_lowerCamelCase , human_eval["test"] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences SCREAMING_SNAKE_CASE__ : Optional[int] = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: SCREAMING_SNAKE_CASE__ : int = code_eval_metric.compute(references=[""] , predictions=[[""]] ) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation." ) raise exception SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Tuple = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for task in tqdm(range(_lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ : List[Any] = human_eval["test"][task]["test"] SCREAMING_SNAKE_CASE__ : List[Any] = f"""check({human_eval['test'][task]['entry_point']})""" references.append("\n" + test_func + "\n" + entry_point ) # Evaluate completions with "code_eval" metric SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Dict = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , "w" ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
26
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __lowercase = logging.get_logger(__name__) __lowercase = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class _a ( lowercase__ ): """simple docstring""" snake_case_ = "bloom" snake_case_ = ["past_key_values"] snake_case_ = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : List[str] , a : Dict=25_08_80 , a : Optional[int]=64 , a : Optional[int]=2 , a : Any=8 , a : List[Any]=1E-5 , a : int=0.02 , a : List[Any]=True , a : Optional[int]=1 , a : Optional[Any]=2 , a : int=False , a : Tuple=0.0 , a : Optional[int]=0.0 , a : Optional[Any]=1 , a : Any=False , **a : Optional[Any] , ) ->List[str]: SCREAMING_SNAKE_CASE__ : Any = vocab_size # Backward compatibility with n_embed kwarg SCREAMING_SNAKE_CASE__ : List[str] = kwargs.pop("n_embed" , a ) SCREAMING_SNAKE_CASE__ : int = hidden_size if n_embed is None else n_embed SCREAMING_SNAKE_CASE__ : Optional[Any] = n_layer SCREAMING_SNAKE_CASE__ : Union[str, Any] = n_head SCREAMING_SNAKE_CASE__ : int = layer_norm_epsilon SCREAMING_SNAKE_CASE__ : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_cache SCREAMING_SNAKE_CASE__ : List[str] = pretraining_tp SCREAMING_SNAKE_CASE__ : str = apply_residual_connection_post_layernorm SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_dropout SCREAMING_SNAKE_CASE__ : Tuple = attention_dropout SCREAMING_SNAKE_CASE__ : List[str] = bos_token_id SCREAMING_SNAKE_CASE__ : Any = eos_token_id SCREAMING_SNAKE_CASE__ : Optional[int] = slow_but_exact super().__init__(bos_token_id=a , eos_token_id=a , **a ) class _a ( lowercase__ ): """simple docstring""" snake_case_ = version.parse("1.12" ) def __init__( self : Optional[int] , a : PretrainedConfig , a : str = "default" , a : List[PatchingSpec] = None , a : bool = False , ) ->int: super().__init__(a , task=a , patching_specs=a , use_past=a ) if not getattr(self._config , "pad_token_id" , a ): # TODO: how to do that better? SCREAMING_SNAKE_CASE__ : int = 0 @property def A_ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: SCREAMING_SNAKE_CASE__ : Tuple = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(a , direction="inputs" , inverted_values_shape=a ) SCREAMING_SNAKE_CASE__ : Tuple = {0: "batch", 1: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE__ : str = {0: "batch", 1: "sequence"} return common_inputs @property def A_ ( self : int ) ->int: return self._config.n_layer @property def A_ ( self : Union[str, Any] ) ->int: return self._config.n_head @property def A_ ( self : Optional[int] ) ->float: return 1E-3 def A_ ( self : Optional[Any] , a : "PreTrainedTokenizer" , a : int = -1 , a : int = -1 , a : bool = False , a : Optional["TensorType"] = None , ) ->Mapping[str, Any]: SCREAMING_SNAKE_CASE__ : Optional[int] = super(a , self ).generate_dummy_inputs( a , batch_size=a , seq_length=a , is_pair=a , framework=a ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE__ : Union[str, Any] = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE__ : Tuple = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE__ : str = seqlen + 2 SCREAMING_SNAKE_CASE__ : int = self._config.hidden_size // self.num_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) SCREAMING_SNAKE_CASE__ : List[str] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) SCREAMING_SNAKE_CASE__ : List[str] = [ (torch.zeros(a ), torch.zeros(a )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE__ : Optional[int] = common_inputs["attention_mask"] if self.use_past: SCREAMING_SNAKE_CASE__ : Tuple = ordered_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE__ : Optional[int] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(a , a , dtype=a )] , dim=1 ) return ordered_inputs @property def A_ ( self : Optional[Any] ) ->int: return 13
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase :str = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase :Union[str, Any] = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys __lowercase :str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
0
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __lowercase :List[str] = logging.get_logger(__name__) def UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : str , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : Optional[int]=None ): '''simple docstring''' if "." in tensor_name: SCREAMING_SNAKE_CASE__ : Optional[int] = tensor_name.split("." ) for split in splits[:-1]: SCREAMING_SNAKE_CASE__ : List[Any] = getattr(_lowerCamelCase , _lowerCamelCase ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) SCREAMING_SNAKE_CASE__ : Any = new_module SCREAMING_SNAKE_CASE__ : int = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) SCREAMING_SNAKE_CASE__ : int = tensor_name in module._buffers SCREAMING_SNAKE_CASE__ : Tuple = getattr(_lowerCamelCase , _lowerCamelCase ) if old_value.device == torch.device("meta" ) and device not in ["meta", torch.device("meta" )] and value is None: raise ValueError(f"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) SCREAMING_SNAKE_CASE__ : str = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False if is_buffer or not is_bitsandbytes_available(): SCREAMING_SNAKE_CASE__ : List[Any] = False SCREAMING_SNAKE_CASE__ : int = False else: SCREAMING_SNAKE_CASE__ : Optional[Any] = hasattr(bnb.nn , "Params4bit" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: SCREAMING_SNAKE_CASE__ : Union[str, Any] = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: SCREAMING_SNAKE_CASE__ : Dict = old_value.to(_lowerCamelCase ) elif isinstance(_lowerCamelCase , torch.Tensor ): SCREAMING_SNAKE_CASE__ : int = value.to("cpu" ) if value.dtype == torch.inta: SCREAMING_SNAKE_CASE__ : List[Any] = version.parse(importlib.metadata.version("bitsandbytes" ) ) > version.parse( "0.37.2" ) if not is_abit_serializable: raise ValueError( "Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. " "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." ) else: SCREAMING_SNAKE_CASE__ : Any = torch.tensor(_lowerCamelCase , device="cpu" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , _lowerCamelCase ) and fpaa_statistics is None: SCREAMING_SNAKE_CASE__ : Dict = new_value.T SCREAMING_SNAKE_CASE__ : int = old_value.__dict__ if is_abit: SCREAMING_SNAKE_CASE__ : Optional[int] = bnb.nn.IntaParams(_lowerCamelCase , requires_grad=_lowerCamelCase , **_lowerCamelCase ).to(_lowerCamelCase ) elif is_abit: SCREAMING_SNAKE_CASE__ : List[str] = bnb.nn.Paramsabit(_lowerCamelCase , requires_grad=_lowerCamelCase , **_lowerCamelCase ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[str] = new_value if fpaa_statistics is not None: setattr(module.weight , "SCB" , fpaa_statistics.to(_lowerCamelCase ) ) else: if value is None: SCREAMING_SNAKE_CASE__ : List[str] = old_value.to(_lowerCamelCase ) elif isinstance(_lowerCamelCase , torch.Tensor ): SCREAMING_SNAKE_CASE__ : Optional[Any] = value.to(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE__ : Any = torch.tensor(_lowerCamelCase , device=_lowerCamelCase ) if is_buffer: SCREAMING_SNAKE_CASE__ : Union[str, Any] = new_value else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = nn.Parameter(_lowerCamelCase , requires_grad=old_value.requires_grad ) SCREAMING_SNAKE_CASE__ : Dict = new_value def UpperCAmelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple=None , _lowerCamelCase : Any=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Union[str, Any]=False ): '''simple docstring''' for name, module in model.named_children(): if current_key_name is None: SCREAMING_SNAKE_CASE__ : Optional[Any] = [] current_key_name.append(_lowerCamelCase ) if (isinstance(_lowerCamelCase , nn.Linear ) or isinstance(_lowerCamelCase , _lowerCamelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in ".".join(_lowerCamelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE__ : List[str] = module.weight.shape else: SCREAMING_SNAKE_CASE__ : Any = module.in_features SCREAMING_SNAKE_CASE__ : int = module.out_features if quantization_config.quantization_method() == "llm_int8": SCREAMING_SNAKE_CASE__ : str = bnb.nn.LinearabitLt( _lowerCamelCase , _lowerCamelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) SCREAMING_SNAKE_CASE__ : Tuple = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: SCREAMING_SNAKE_CASE__ : Optional[Any] = bnb.nn.Linearabit( _lowerCamelCase , _lowerCamelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) SCREAMING_SNAKE_CASE__ : str = True # Store the module class in case we need to transpose the weight later SCREAMING_SNAKE_CASE__ : Tuple = type(_lowerCamelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowerCamelCase ) if len(list(module.children() ) ) > 0: SCREAMING_SNAKE_CASE__ : List[str] = _replace_with_bnb_linear( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , has_been_replaced=_lowerCamelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple=None , _lowerCamelCase : int=None , _lowerCamelCase : str=None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert SCREAMING_SNAKE_CASE__ : Any = _replace_with_bnb_linear( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def UpperCAmelCase ( *_lowerCamelCase : Dict , **_lowerCamelCase : List[Any] ): '''simple docstring''' warnings.warn( "`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead" , _lowerCamelCase , ) return replace_with_bnb_linear(*_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase ( *_lowerCamelCase : Union[str, Any] , **_lowerCamelCase : Optional[int] ): '''simple docstring''' warnings.warn( "`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead" , _lowerCamelCase , ) return set_module_quantized_tensor_to_device(*_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = deepcopy(_lowerCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() SCREAMING_SNAKE_CASE__ : List[str] = find_tied_parameters(_lowerCamelCase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = sum(_lowerCamelCase , [] ) SCREAMING_SNAKE_CASE__ : int = len(_lowerCamelCase ) > 0 # Check if it is a base model SCREAMING_SNAKE_CASE__ : Optional[int] = not hasattr(_lowerCamelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head SCREAMING_SNAKE_CASE__ : Optional[int] = list(model.named_children() ) SCREAMING_SNAKE_CASE__ : int = [list_modules[-1][0]] # add last module together with tied weights SCREAMING_SNAKE_CASE__ : int = set(_lowerCamelCase ) - set(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Any = list(set(_lowerCamelCase ) ) + list(_lowerCamelCase ) # remove ".weight" from the keys SCREAMING_SNAKE_CASE__ : Dict = [".weight", ".bias"] SCREAMING_SNAKE_CASE__ : str = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: SCREAMING_SNAKE_CASE__ : Any = name.replace(_lowerCamelCase , "" ) filtered_module_names.append(_lowerCamelCase ) return filtered_module_names
714
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : int , _lowerCamelCase : Optional[int] = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = {} if train_file is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] = [train_file] if eval_file is not None: SCREAMING_SNAKE_CASE__ : int = [eval_file] if test_file is not None: SCREAMING_SNAKE_CASE__ : int = [test_file] SCREAMING_SNAKE_CASE__ : Optional[int] = datasets.load_dataset("csv" , data_files=_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[str] = list(ds[list(files.keys() )[0]].features.keys() ) SCREAMING_SNAKE_CASE__ : int = features_name.pop(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = list(set(ds[list(files.keys() )[0]][label_name] ) ) SCREAMING_SNAKE_CASE__ : List[str] = {label: i for i, label in enumerate(_lowerCamelCase )} SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.model_input_names SCREAMING_SNAKE_CASE__ : Any = {} if len(_lowerCamelCase ) == 1: for k in files.keys(): SCREAMING_SNAKE_CASE__ : List[Any] = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="max_length" ) , batched=_lowerCamelCase , ) elif len(_lowerCamelCase ) == 2: for k in files.keys(): SCREAMING_SNAKE_CASE__ : Any = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="max_length" , ) , batched=_lowerCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: SCREAMING_SNAKE_CASE__ : Tuple = {k: v for k, v in ex.items() if k in input_names} SCREAMING_SNAKE_CASE__ : List[Any] = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: SCREAMING_SNAKE_CASE__ : int = {k: v for k, v in ex.items() if k in input_names} SCREAMING_SNAKE_CASE__ : Optional[int] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: SCREAMING_SNAKE_CASE__ : int = {k: v for k, v in ex.items() if k in input_names} SCREAMING_SNAKE_CASE__ : Optional[Any] = labelaid[ex[label_name]] yield (d, label) SCREAMING_SNAKE_CASE__ : Tuple = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: SCREAMING_SNAKE_CASE__ : Any = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) SCREAMING_SNAKE_CASE__ : Dict = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: SCREAMING_SNAKE_CASE__ : Dict = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowercase :List[Any] = logging.getLogger(__name__) @dataclass class _a : """simple docstring""" snake_case_ = field(metadata={"help": "Which column contains the label"} ) snake_case_ = field(default=lowercase__ , metadata={"help": "The path of the training file"} ) snake_case_ = field(default=lowercase__ , metadata={"help": "The path of the development file"} ) snake_case_ = field(default=lowercase__ , metadata={"help": "The path of the test file"} ) snake_case_ = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case_ = field( default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class _a : """simple docstring""" snake_case_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case_ = field( default=lowercase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case_ = field( default=lowercase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case_ = field(default=lowercase__ , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. snake_case_ = field( default=lowercase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_lowerCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) SCREAMING_SNAKE_CASE__ : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): SCREAMING_SNAKE_CASE__ : Optional[Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(_lowerCamelCase : EvalPrediction ) -> Dict: SCREAMING_SNAKE_CASE__ : Dict = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer SCREAMING_SNAKE_CASE__ : str = TFTrainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , compute_metrics=_lowerCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation SCREAMING_SNAKE_CASE__ : Dict = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) SCREAMING_SNAKE_CASE__ : str = trainer.evaluate() SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(_lowerCamelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(_lowerCamelCase ) return results if __name__ == "__main__": main()
26
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase :Union[str, Any] = { "configuration_longformer": [ "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongformerConfig", "LongformerOnnxConfig", ], "tokenization_longformer": ["LongformerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase :Tuple = ["LongformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase :str = [ "LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "LongformerForMaskedLM", "LongformerForMultipleChoice", "LongformerForQuestionAnswering", "LongformerForSequenceClassification", "LongformerForTokenClassification", "LongformerModel", "LongformerPreTrainedModel", "LongformerSelfAttention", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase :Any = [ "TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLongformerForMaskedLM", "TFLongformerForMultipleChoice", "TFLongformerForQuestionAnswering", "TFLongformerForSequenceClassification", "TFLongformerForTokenClassification", "TFLongformerModel", "TFLongformerPreTrainedModel", "TFLongformerSelfAttention", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys __lowercase :Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
715
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowercase :int = logging.get_logger(__name__) class _a ( lowercase__ ): """simple docstring""" snake_case_ = ["pixel_values"] def __init__( self : int , a : bool = True , a : Optional[Dict[str, int]] = None , a : PILImageResampling = PILImageResampling.BILINEAR , a : bool = True , a : Dict[str, int] = None , a : bool = True , a : Union[int, float] = 1 / 2_55 , a : bool = True , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , **a : List[str] , ) ->None: super().__init__(**a ) SCREAMING_SNAKE_CASE__ : List[str] = size if size is not None else {"shortest_edge": 2_56} SCREAMING_SNAKE_CASE__ : Any = get_size_dict(a , default_to_square=a ) SCREAMING_SNAKE_CASE__ : List[Any] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} SCREAMING_SNAKE_CASE__ : Dict = get_size_dict(a ) SCREAMING_SNAKE_CASE__ : List[str] = do_resize SCREAMING_SNAKE_CASE__ : List[str] = size SCREAMING_SNAKE_CASE__ : List[Any] = resample SCREAMING_SNAKE_CASE__ : int = do_center_crop SCREAMING_SNAKE_CASE__ : Optional[Any] = crop_size SCREAMING_SNAKE_CASE__ : Any = do_rescale SCREAMING_SNAKE_CASE__ : Any = rescale_factor SCREAMING_SNAKE_CASE__ : int = do_normalize SCREAMING_SNAKE_CASE__ : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def A_ ( self : Tuple , a : np.ndarray , a : Dict[str, int] , a : PILImageResampling = PILImageResampling.BICUBIC , a : Optional[Union[str, ChannelDimension]] = None , **a : Optional[int] , ) ->np.ndarray: SCREAMING_SNAKE_CASE__ : List[Any] = get_size_dict(a , default_to_square=a ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = get_resize_output_image_size(a , size=size["shortest_edge"] , default_to_square=a ) return resize(a , size=a , resample=a , data_format=a , **a ) def A_ ( self : List[Any] , a : np.ndarray , a : Dict[str, int] , a : Optional[Union[str, ChannelDimension]] = None , **a : List[Any] , ) ->np.ndarray: SCREAMING_SNAKE_CASE__ : Tuple = get_size_dict(a ) return center_crop(a , size=(size["height"], size["width"]) , data_format=a , **a ) def A_ ( self : Optional[int] , a : np.ndarray , a : float , a : Optional[Union[str, ChannelDimension]] = None , **a : Dict ) ->np.ndarray: return rescale(a , scale=a , data_format=a , **a ) def A_ ( self : Union[str, Any] , a : np.ndarray , a : Union[float, List[float]] , a : Union[float, List[float]] , a : Optional[Union[str, ChannelDimension]] = None , **a : Union[str, Any] , ) ->np.ndarray: return normalize(a , mean=a , std=a , data_format=a , **a ) def A_ ( self : Tuple , a : ImageInput , a : Optional[bool] = None , a : Dict[str, int] = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : Optional[bool] = None , a : Optional[float] = None , a : Optional[bool] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[str, TensorType]] = None , a : Union[str, ChannelDimension] = ChannelDimension.FIRST , **a : Any , ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : Optional[Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ : Union[str, Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE__ : Dict = get_size_dict(a , default_to_square=a ) SCREAMING_SNAKE_CASE__ : str = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE__ : Optional[int] = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE__ : Dict = get_size_dict(a ) SCREAMING_SNAKE_CASE__ : List[str] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ : Dict = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ : Optional[int] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ : Tuple = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ : Union[str, Any] = make_list_of_images(a ) if not valid_images(a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : List[str] = [to_numpy_array(a ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ : Tuple = [self.resize(image=a , size=a , resample=a ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE__ : List[Any] = [self.center_crop(image=a , size=a ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ : List[str] = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ : Dict = [self.normalize(image=a , mean=a , std=a ) for image in images] SCREAMING_SNAKE_CASE__ : Dict = [to_channel_dimension_format(a , a ) for image in images] SCREAMING_SNAKE_CASE__ : Optional[int] = {"pixel_values": images} return BatchFeature(data=a , tensor_type=a )
26
0
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class _a ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] ) ->Any: super().__init__() SCREAMING_SNAKE_CASE__ : Any = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE__ : List[Any] = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE__ : Any = nn.Linear(4 , 5 ) def A_ ( self : List[Any] , a : Dict ) ->Any: return self.lineara(self.batchnorm(self.lineara(a ) ) ) class _a ( lowercase__ ): """simple docstring""" def A_ ( self : Optional[Any] , a : Union[str, Any] , *a : Union[str, Any] , **a : List[Any] ) ->Any: return (args[0] + 1,) + args[1:], kwargs class _a ( lowercase__ ): """simple docstring""" def A_ ( self : str , a : Tuple , a : Tuple ) ->str: return output + 1 class _a ( unittest.TestCase ): """simple docstring""" def A_ ( self : Any ) ->str: SCREAMING_SNAKE_CASE__ : List[str] = ModelForTest() SCREAMING_SNAKE_CASE__ : Dict = ModelHook() add_hook_to_module(a , a ) self.assertEqual(test_model._hf_hook , a ) self.assertTrue(hasattr(a , "_old_forward" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , "forward" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["x"] ) remove_hook_from_module(a ) self.assertFalse(hasattr(a , "_hf_hook" ) ) self.assertFalse(hasattr(a , "_old_forward" ) ) def A_ ( self : str ) ->List[Any]: SCREAMING_SNAKE_CASE__ : List[Any] = ModelForTest() SCREAMING_SNAKE_CASE__ : Optional[Any] = ModelHook() add_hook_to_module(a , a ) add_hook_to_module(a , a , append=a ) self.assertEqual(isinstance(test_model._hf_hook , a ) , a ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(a , "_old_forward" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , "forward" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["x"] ) remove_hook_from_module(a ) self.assertFalse(hasattr(a , "_hf_hook" ) ) self.assertFalse(hasattr(a , "_old_forward" ) ) def A_ ( self : List[str] ) ->List[Any]: SCREAMING_SNAKE_CASE__ : Any = ModelForTest() SCREAMING_SNAKE_CASE__ : Any = torch.randn(2 , 3 ) SCREAMING_SNAKE_CASE__ : Any = test_model(x + 1 ) SCREAMING_SNAKE_CASE__ : int = test_model(x + 2 ) SCREAMING_SNAKE_CASE__ : List[str] = PreForwardHook() add_hook_to_module(a , a ) SCREAMING_SNAKE_CASE__ : Optional[int] = test_model(a ) self.assertTrue(torch.allclose(a , a , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain SCREAMING_SNAKE_CASE__ : Dict = PreForwardHook() add_hook_to_module(a , a ) SCREAMING_SNAKE_CASE__ : Tuple = test_model(a ) self.assertTrue(torch.allclose(a , a , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks SCREAMING_SNAKE_CASE__ : Optional[int] = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(a , a ) SCREAMING_SNAKE_CASE__ : str = test_model(a ) assert torch.allclose(a , a , atol=1E-5 ) def A_ ( self : Optional[Any] ) ->Tuple: SCREAMING_SNAKE_CASE__ : int = ModelForTest() SCREAMING_SNAKE_CASE__ : Tuple = torch.randn(2 , 3 ) SCREAMING_SNAKE_CASE__ : Tuple = test_model(a ) SCREAMING_SNAKE_CASE__ : str = PostForwardHook() add_hook_to_module(a , a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = test_model(a ) self.assertTrue(torch.allclose(a , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain SCREAMING_SNAKE_CASE__ : Tuple = PostForwardHook() add_hook_to_module(a , a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = test_model(a ) self.assertTrue(torch.allclose(a , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks SCREAMING_SNAKE_CASE__ : List[str] = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(a , a ) SCREAMING_SNAKE_CASE__ : Tuple = test_model(a ) assert torch.allclose(a , output + 2 , atol=1E-5 ) def A_ ( self : int ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : str = ModelForTest() SCREAMING_SNAKE_CASE__ : Tuple = torch.randn(2 , 3 ) SCREAMING_SNAKE_CASE__ : int = test_model(a ) SCREAMING_SNAKE_CASE__ : Dict = PostForwardHook() add_hook_to_module(a , a ) SCREAMING_SNAKE_CASE__ : int = test_model(a ) self.assertTrue(torch.allclose(a , output + 1 ) ) self.assertTrue(outputa.requires_grad ) SCREAMING_SNAKE_CASE__ : Optional[Any] = True SCREAMING_SNAKE_CASE__ : Optional[Any] = test_model(a ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def A_ ( self : int ) ->Dict: SCREAMING_SNAKE_CASE__ : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device SCREAMING_SNAKE_CASE__ : Any = torch.randn(2 , 3 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(a ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(a , AlignDevicesHook(io_same_device=a ) ) SCREAMING_SNAKE_CASE__ : List[str] = torch.randn(2 , 3 ).to(0 ) SCREAMING_SNAKE_CASE__ : Tuple = model(a ) self.assertEqual(output.device , torch.device(0 ) ) def A_ ( self : Tuple ) ->List[Any]: SCREAMING_SNAKE_CASE__ : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices SCREAMING_SNAKE_CASE__ : int = {"execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True} add_hook_to_module(model.lineara , AlignDevicesHook(**a ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**a ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**a ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device SCREAMING_SNAKE_CASE__ : str = torch.device(hook_kwargs["execution_device"] ) self.assertEqual(model.batchnorm.running_mean.device , a ) SCREAMING_SNAKE_CASE__ : int = torch.randn(2 , 3 ) SCREAMING_SNAKE_CASE__ : str = model(a ) self.assertEqual(output.device , a ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # Now test with buffers included in the offload SCREAMING_SNAKE_CASE__ : Tuple = { "execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True, "offload_buffers": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**a ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**a ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**a ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) ) SCREAMING_SNAKE_CASE__ : int = torch.randn(2 , 3 ) SCREAMING_SNAKE_CASE__ : Tuple = model(a ) self.assertEqual(output.device , a ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) def A_ ( self : Dict ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices SCREAMING_SNAKE_CASE__ : Any = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook(a , execution_device=a , offload=a ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device SCREAMING_SNAKE_CASE__ : Optional[int] = torch.device(a ) self.assertEqual(model.batchnorm.running_mean.device , a ) SCREAMING_SNAKE_CASE__ : Any = torch.randn(2 , 3 ) SCREAMING_SNAKE_CASE__ : Dict = model(a ) self.assertEqual(output.device , a ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(a ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # Now test with buffers included in the offload attach_align_device_hook(a , execution_device=a , offload=a , offload_buffers=a ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) ) SCREAMING_SNAKE_CASE__ : Tuple = torch.randn(2 , 3 ) SCREAMING_SNAKE_CASE__ : Any = model(a ) self.assertEqual(output.device , a ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(a ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) def A_ ( self : Tuple ) ->List[str]: SCREAMING_SNAKE_CASE__ : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook( a , execution_device=a , offload=a , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device SCREAMING_SNAKE_CASE__ : str = torch.device(a ) self.assertEqual(model.batchnorm.running_mean.device , a ) SCREAMING_SNAKE_CASE__ : Any = torch.randn(2 , 3 ) SCREAMING_SNAKE_CASE__ : str = model(a ) self.assertEqual(output.device , a ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(a ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # Now test with buffers included in the offload attach_align_device_hook( a , execution_device=a , offload=a , weights_map=model.state_dict() , offload_buffers=a , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.randn(2 , 3 ) SCREAMING_SNAKE_CASE__ : Dict = model(a ) self.assertEqual(output.device , a ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(a ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
716
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _a ( unittest.TestCase ): """simple docstring""" def A_ ( self : Dict ) ->List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def A_ ( self : Dict ) ->Tuple: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Dict = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" , from_pt=a , dtype=jnp.bfloataa ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Dict = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) SCREAMING_SNAKE_CASE__ : List[Any] = controlnet_params SCREAMING_SNAKE_CASE__ : Dict = "bird" SCREAMING_SNAKE_CASE__ : List[Any] = jax.device_count() SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) SCREAMING_SNAKE_CASE__ : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipe.prepare_image_inputs([canny_image] * num_samples ) SCREAMING_SNAKE_CASE__ : List[Any] = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE__ : int = jax.random.split(a , jax.device_count() ) SCREAMING_SNAKE_CASE__ : List[Any] = replicate(a ) SCREAMING_SNAKE_CASE__ : List[str] = shard(a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = shard(a ) SCREAMING_SNAKE_CASE__ : Dict = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=50 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) SCREAMING_SNAKE_CASE__ : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) SCREAMING_SNAKE_CASE__ : List[Any] = images[0, 2_53:2_56, 2_53:2_56, -1] SCREAMING_SNAKE_CASE__ : Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def A_ ( self : List[Any] ) ->Optional[Any]: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : int = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" , from_pt=a , dtype=jnp.bfloataa ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) SCREAMING_SNAKE_CASE__ : Optional[int] = controlnet_params SCREAMING_SNAKE_CASE__ : Any = "Chef in the kitchen" SCREAMING_SNAKE_CASE__ : Union[str, Any] = jax.device_count() SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) SCREAMING_SNAKE_CASE__ : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) SCREAMING_SNAKE_CASE__ : str = pipe.prepare_image_inputs([pose_image] * num_samples ) SCREAMING_SNAKE_CASE__ : Any = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE__ : List[str] = jax.random.split(a , jax.device_count() ) SCREAMING_SNAKE_CASE__ : Optional[Any] = replicate(a ) SCREAMING_SNAKE_CASE__ : Tuple = shard(a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = shard(a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=50 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) SCREAMING_SNAKE_CASE__ : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) SCREAMING_SNAKE_CASE__ : str = images[0, 2_53:2_56, 2_53:2_56, -1] SCREAMING_SNAKE_CASE__ : Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
26
0
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser __lowercase :str = logging.getLogger(__name__) torch.set_grad_enabled(False) __lowercase :Optional[Any] = "cuda" if torch.cuda.is_available() else "cpu" def UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : str=100 , _lowerCamelCase : str=" " ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = text.split(_lowerCamelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_lowerCamelCase ) , _lowerCamelCase )] def UpperCAmelCase ( _lowerCamelCase : dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(_lowerCamelCase ): titles.append(title if title is not None else "" ) texts.append(_lowerCamelCase ) return {"title": titles, "text": texts} def UpperCAmelCase ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = ctx_tokenizer( documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt" )["input_ids"] SCREAMING_SNAKE_CASE__ : Dict = ctx_encoder(input_ids.to(device=_lowerCamelCase ) , return_dict=_lowerCamelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def UpperCAmelCase ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ): '''simple docstring''' logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way SCREAMING_SNAKE_CASE__ : Dict = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words SCREAMING_SNAKE_CASE__ : Tuple = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc ) # And compute the embeddings SCREAMING_SNAKE_CASE__ : List[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) SCREAMING_SNAKE_CASE__ : str = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space SCREAMING_SNAKE_CASE__ : List[str] = dataset.map( partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase ) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , ) # And finally save your dataset SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(_lowerCamelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search SCREAMING_SNAKE_CASE__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase ) # And save the index SCREAMING_SNAKE_CASE__ : Dict = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(_lowerCamelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _a : """simple docstring""" snake_case_ = field( default=str(Path(lowercase__ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) snake_case_ = field( default=lowercase__ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) snake_case_ = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) snake_case_ = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) snake_case_ = field( default=str(Path(lowercase__ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class _a : """simple docstring""" snake_case_ = field( default=lowercase__ , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) snake_case_ = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class _a : """simple docstring""" snake_case_ = field( default=7_68 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) snake_case_ = field( default=1_28 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) __lowercase :str = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) __lowercase :List[Any] = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: __lowercase :str = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
717
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowercase :List[Any] = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def UpperCAmelCase ( _lowerCamelCase : int ): '''simple docstring''' config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested" ) config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested" ) config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested" ) config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment" ) config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate" ) config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule" ) def UpperCAmelCase ( _lowerCamelCase : str ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase : Tuple ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE__ : List[str] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(_lowerCamelCase , id=_lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict ): '''simple docstring''' if exitstatus == 5: SCREAMING_SNAKE_CASE__ : List[str] = 0 # Doctest custom flag to ignore output. __lowercase :Optional[Any] = doctest.register_optionflag("IGNORE_RESULT") __lowercase :Dict = doctest.OutputChecker class _a ( lowercase__ ): """simple docstring""" def A_ ( self : Dict , a : List[str] , a : Dict , a : int ) ->Optional[Any]: if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , a , a , a ) __lowercase :Any = CustomOutputChecker __lowercase :Any = HfDoctestModule __lowercase :int = HfDocTestParser
26
0
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): __lowercase :int = True from torch.cuda.amp import autocast __lowercase :str = logging.getLogger(__name__) @dataclass class _a : """simple docstring""" snake_case_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case_ = field( default=lowercase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) snake_case_ = field( default=lowercase__ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) snake_case_ = field( default=lowercase__ , metadata={"help": "Whether to log verbose messages or not."} , ) snake_case_ = field( default=2.0 , metadata={"help": "Maximum temperature for gumbel softmax."} ) snake_case_ = field( default=0.5 , metadata={"help": "Minimum temperature for gumbel softmax."} ) snake_case_ = field( default=0.9_9_9_9_9_5 , metadata={"help": "Decay of gumbel temperature during training."} ) def UpperCAmelCase ( _lowerCamelCase : ModelArguments , _lowerCamelCase : TrainingArguments ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) SCREAMING_SNAKE_CASE__ : str = logging.WARNING if model_args.verbose_logging: SCREAMING_SNAKE_CASE__ : str = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): SCREAMING_SNAKE_CASE__ : List[str] = logging.INFO logger.setLevel(_lowerCamelCase ) @dataclass class _a : """simple docstring""" snake_case_ = field( default=lowercase__ , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) snake_case_ = field( default=lowercase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) snake_case_ = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) snake_case_ = field( default="validation" , metadata={ "help": ( "The name of the validation data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) snake_case_ = field( default="file" , metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"} , ) snake_case_ = field( default=lowercase__ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) snake_case_ = field( default=1 , metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } , ) snake_case_ = field( default=lowercase__ , metadata={"help": "The number of processes to use for the preprocessing."} , ) snake_case_ = field( default=20.0 , metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"} ) @dataclass class _a : """simple docstring""" snake_case_ = 42 snake_case_ = 42 snake_case_ = "longest" snake_case_ = None snake_case_ = None def __call__( self : Any , a : List[Dict[str, Union[List[int], torch.Tensor]]] ) ->Dict[str, torch.Tensor]: # reformat list to dict and set to pytorch format SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.feature_extractor.pad( a , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) SCREAMING_SNAKE_CASE__ : int = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula SCREAMING_SNAKE_CASE__ : List[Any] = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) SCREAMING_SNAKE_CASE__ : int = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 SCREAMING_SNAKE_CASE__ : Optional[int] = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices SCREAMING_SNAKE_CASE__ : Optional[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=a , min_masks=2 , ) return batch class _a ( lowercase__ ): """simple docstring""" def __init__( self : Union[str, Any] , *a : Dict , a : List[Any]=1 , a : Optional[Any]=0 , a : Tuple=1.0 , **a : Tuple ) ->Optional[int]: super().__init__(*a , **a ) SCREAMING_SNAKE_CASE__ : List[str] = 0 SCREAMING_SNAKE_CASE__ : str = max_gumbel_temp SCREAMING_SNAKE_CASE__ : str = min_gumbel_temp SCREAMING_SNAKE_CASE__ : Union[str, Any] = gumbel_temp_decay def A_ ( self : Any , a : nn.Module , a : Dict[str, Union[torch.Tensor, Any]] ) ->torch.Tensor: model.train() SCREAMING_SNAKE_CASE__ : int = self._prepare_inputs(a ) if self.use_amp: with autocast(): SCREAMING_SNAKE_CASE__ : Optional[int] = self.compute_loss(a , a ) else: SCREAMING_SNAKE_CASE__ : List[str] = self.compute_loss(a , a ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": SCREAMING_SNAKE_CASE__ : Any = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": SCREAMING_SNAKE_CASE__ : Tuple = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: SCREAMING_SNAKE_CASE__ : Union[str, Any] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(a ).backward() elif self.use_apex: with amp.scale_loss(a , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(a ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) SCREAMING_SNAKE_CASE__ : int = parser.parse_args_into_dataclasses() configure_logger(_lowerCamelCase , _lowerCamelCase ) # Downloading and loading a dataset from the hub. SCREAMING_SNAKE_CASE__ : Tuple = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" SCREAMING_SNAKE_CASE__ : Optional[int] = DatasetDict() SCREAMING_SNAKE_CASE__ : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[:{data_args.validation_split_percentage}%]""" , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE__ : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[{data_args.validation_split_percentage}%:]""" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" SCREAMING_SNAKE_CASE__ : str = DatasetDict() SCREAMING_SNAKE_CASE__ : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE__ : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}""" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported SCREAMING_SNAKE_CASE__ : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_lowerCamelCase ) def prepare_dataset(_lowerCamelCase : Any ): # check that all files have the correct sampling rate SCREAMING_SNAKE_CASE__ : Dict = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays SCREAMING_SNAKE_CASE__ : Optional[Any] = datasets.map( _lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long SCREAMING_SNAKE_CASE__ : int = vectorized_datasets.filter( lambda _lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_lowerCamelCase : Union[str, Any] ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` SCREAMING_SNAKE_CASE__ : int = vectorized_datasets.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 SCREAMING_SNAKE_CASE__ : Any = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) SCREAMING_SNAKE_CASE__ : Dict = WavaVecaForPreTraining(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = DataCollatorForWavaVecaPretraining(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Any = WavaVecaPreTrainer( model=_lowerCamelCase , data_collator=_lowerCamelCase , args=_lowerCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=_lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
718
def UpperCAmelCase ( _lowerCamelCase : int = 1_000 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = -1 SCREAMING_SNAKE_CASE__ : str = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c SCREAMING_SNAKE_CASE__ : Tuple = (n * n - 2 * a * n) // (2 * n - 2 * a) SCREAMING_SNAKE_CASE__ : Dict = n - a - b if c * c == (a * a + b * b): SCREAMING_SNAKE_CASE__ : str = a * b * c if candidate >= product: SCREAMING_SNAKE_CASE__ : List[str] = candidate return product if __name__ == "__main__": print(f"{solution() = }")
26
0
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _a : """simple docstring""" def __init__( self : Optional[int] , a : List[Any] , a : str=None , a : List[str]=None , a : Optional[int]=None , a : Union[str, Any]="resnet50" , a : Union[str, Any]=3 , a : Any=32 , a : str=3 , a : Dict=True , a : Dict=True , ) ->List[str]: SCREAMING_SNAKE_CASE__ : int = parent SCREAMING_SNAKE_CASE__ : List[Any] = out_indices if out_indices is not None else [4] SCREAMING_SNAKE_CASE__ : List[Any] = stage_names SCREAMING_SNAKE_CASE__ : Any = out_features SCREAMING_SNAKE_CASE__ : Optional[int] = backbone SCREAMING_SNAKE_CASE__ : Optional[int] = batch_size SCREAMING_SNAKE_CASE__ : Any = image_size SCREAMING_SNAKE_CASE__ : Any = num_channels SCREAMING_SNAKE_CASE__ : Optional[int] = use_pretrained_backbone SCREAMING_SNAKE_CASE__ : Optional[int] = is_training def A_ ( self : Union[str, Any] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_config() return config, pixel_values def A_ ( self : Tuple ) ->str: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def A_ ( self : Dict , a : Optional[Any] , a : Any ) ->Any: SCREAMING_SNAKE_CASE__ : int = TimmBackbone(config=a ) model.to(a ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Dict = model(a ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def A_ ( self : List[str] ) ->int: SCREAMING_SNAKE_CASE__ : Tuple = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : int = config_and_inputs SCREAMING_SNAKE_CASE__ : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class _a ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" snake_case_ = (TimmBackbone,) if is_torch_available() else () snake_case_ = {"feature-extraction": TimmBackbone} if is_torch_available() else {} snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def A_ ( self : List[str] ) ->Any: SCREAMING_SNAKE_CASE__ : int = TimmBackboneModelTester(self ) SCREAMING_SNAKE_CASE__ : Optional[int] = ConfigTester(self , config_class=a , has_text_modality=a ) def A_ ( self : Any ) ->Optional[int]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A_ ( self : List[Any] ) ->List[Any]: SCREAMING_SNAKE_CASE__ : List[Any] = "resnet18" SCREAMING_SNAKE_CASE__ : Optional[int] = "microsoft/resnet-18" SCREAMING_SNAKE_CASE__ : Tuple = AutoBackbone.from_pretrained(a , use_timm_backbone=a ) SCREAMING_SNAKE_CASE__ : Dict = AutoBackbone.from_pretrained(a ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) SCREAMING_SNAKE_CASE__ : str = AutoBackbone.from_pretrained(a , use_timm_backbone=a , out_indices=[1, 2, 3] ) SCREAMING_SNAKE_CASE__ : Any = AutoBackbone.from_pretrained(a , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def A_ ( self : Dict ) ->Optional[int]: pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def A_ ( self : Optional[Any] ) ->List[Any]: pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def A_ ( self : Tuple ) ->Optional[Any]: pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def A_ ( self : Dict ) ->Optional[int]: pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def A_ ( self : Dict ) ->str: pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def A_ ( self : List[str] ) ->Any: pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def A_ ( self : Optional[int] ) ->int: pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def A_ ( self : List[str] ) ->List[str]: pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def A_ ( self : Optional[int] ) ->Union[str, Any]: pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def A_ ( self : int ) ->List[Any]: pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def A_ ( self : List[Any] ) ->Optional[int]: pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def A_ ( self : Optional[Any] ) ->Tuple: pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def A_ ( self : int ) ->Tuple: pass @unittest.skip("Safetensors is not supported by timm." ) def A_ ( self : int ) ->List[Any]: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A_ ( self : int ) ->Tuple: pass def A_ ( self : Dict ) ->Any: SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : str = model_class(a ) SCREAMING_SNAKE_CASE__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , a ) def A_ ( self : Optional[int] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : Any = True SCREAMING_SNAKE_CASE__ : Optional[int] = self.has_attentions # no need to test all models as different heads yield the same functionality SCREAMING_SNAKE_CASE__ : str = self.all_model_classes[0] SCREAMING_SNAKE_CASE__ : str = model_class(a ) model.to(a ) SCREAMING_SNAKE_CASE__ : Any = self._prepare_for_class(a , a ) SCREAMING_SNAKE_CASE__ : int = model(**a ) SCREAMING_SNAKE_CASE__ : int = outputs[0][-1] # Encoder-/Decoder-only models SCREAMING_SNAKE_CASE__ : Any = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: SCREAMING_SNAKE_CASE__ : List[Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=a ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def A_ ( self : Optional[int] ) ->List[str]: SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Dict = model_class(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE__ : int = model(**a ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None SCREAMING_SNAKE_CASE__ : Optional[int] = copy.deepcopy(a ) SCREAMING_SNAKE_CASE__ : str = None SCREAMING_SNAKE_CASE__ : Tuple = model_class(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**a ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights SCREAMING_SNAKE_CASE__ : Optional[Any] = copy.deepcopy(a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = False SCREAMING_SNAKE_CASE__ : Any = model_class(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE__ : List[Any] = model(**a )
719
from __future__ import annotations def UpperCAmelCase ( _lowerCamelCase : list , _lowerCamelCase : int | None = None , _lowerCamelCase : int | None = None ): '''simple docstring''' if start is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 if end is None: SCREAMING_SNAKE_CASE__ : Any = len(_lowerCamelCase ) - 1 if start >= end: return SCREAMING_SNAKE_CASE__ : List[str] = (start + end) // 2 slowsort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) slowsort(_lowerCamelCase , mid + 1 , _lowerCamelCase ) if sequence[end] < sequence[mid]: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = sequence[mid], sequence[end] slowsort(_lowerCamelCase , _lowerCamelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
26
0
from __future__ import annotations from functools import lru_cache from math import ceil __lowercase :Tuple = 100 __lowercase :Optional[int] = set(range(3, NUM_PRIMES, 2)) primes.add(2) __lowercase :int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCAmelCase ( _lowerCamelCase : int ): '''simple docstring''' if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} SCREAMING_SNAKE_CASE__ : set[int] = set() SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCAmelCase ( _lowerCamelCase : int = 5_000 ): '''simple docstring''' for number_to_partition in range(1 , _lowerCamelCase ): if len(partition(_lowerCamelCase ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f"{solution() = }")
720
from __future__ import annotations from fractions import Fraction def UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def UpperCAmelCase ( _lowerCamelCase : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = [] SCREAMING_SNAKE_CASE__ : str = 11 SCREAMING_SNAKE_CASE__ : Any = int("1" + "0" * digit_len ) for num in range(_lowerCamelCase , _lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_lowerCamelCase , _lowerCamelCase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 SCREAMING_SNAKE_CASE__ : str = 10 return solutions def UpperCAmelCase ( _lowerCamelCase : int = 2 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = 1.0 for fraction in fraction_list(_lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Any = Fraction(_lowerCamelCase ) result *= frac.denominator / frac.numerator return int(_lowerCamelCase ) if __name__ == "__main__": print(solution())
26
0
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowercase :Tuple = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" __lowercase :str = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" __lowercase :List[Any] = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def A_ ( self : List[Any] ) ->MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def A_ ( self : str , a : List[List[List[str]]] , a : List[List[str]] , a : int = 1 , a : int = 4 , ) ->Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=a , hypotheses=a , min_len=a , max_len=a ) }
721
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class _a ( unittest.TestCase ): """simple docstring""" @require_torch def A_ ( self : Dict ) ->str: SCREAMING_SNAKE_CASE__ : Any = pipeline( task="zero-shot-audio-classification" , model="hf-internal-testing/tiny-clap-htsat-unfused" ) SCREAMING_SNAKE_CASE__ : Optional[int] = load_dataset("ashraq/esc50" ) SCREAMING_SNAKE_CASE__ : Optional[int] = dataset["train"]["audio"][-1]["array"] SCREAMING_SNAKE_CASE__ : int = audio_classifier(a , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(a ) , [{"score": 0.501, "label": "Sound of a dog"}, {"score": 0.499, "label": "Sound of vaccum cleaner"}] , ) @unittest.skip("No models are available in TF" ) def A_ ( self : int ) ->Union[str, Any]: pass @slow @require_torch def A_ ( self : int ) ->str: SCREAMING_SNAKE_CASE__ : List[str] = pipeline( task="zero-shot-audio-classification" , model="laion/clap-htsat-unfused" , ) # This is an audio of a dog SCREAMING_SNAKE_CASE__ : int = load_dataset("ashraq/esc50" ) SCREAMING_SNAKE_CASE__ : str = dataset["train"]["audio"][-1]["array"] SCREAMING_SNAKE_CASE__ : List[Any] = audio_classifier(a , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(a ) , [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ] , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(a ) , [ [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) SCREAMING_SNAKE_CASE__ : int = audio_classifier( [audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] , batch_size=5 ) self.assertEqual( nested_simplify(a ) , [ [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) @unittest.skip("No models are available in TF" ) def A_ ( self : Optional[int] ) ->Union[str, Any]: pass
26
0
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowercase :Tuple = 16 __lowercase :Dict = 32 def UpperCAmelCase ( _lowerCamelCase : Accelerator , _lowerCamelCase : int = 16 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE__ : Tuple = load_dataset("glue" , "mrpc" ) def tokenize_function(_lowerCamelCase : str ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE__ : Dict = datasets.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE__ : List[Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_lowerCamelCase : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE__ : str = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE__ : Tuple = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE__ : str = 8 else: SCREAMING_SNAKE_CASE__ : Optional[Any] = None return tokenizer.pad( _lowerCamelCase , padding="longest" , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE__ : List[str] = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __lowercase :List[Any] = mocked_dataloaders # noqa: F811 def UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : Any ): '''simple docstring''' if os.environ.get("TESTING_MOCKED_DATALOADERS" , _lowerCamelCase ) == "1": SCREAMING_SNAKE_CASE__ : Tuple = 2 # Initialize accelerator SCREAMING_SNAKE_CASE__ : Any = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE__ : Dict = config["lr"] SCREAMING_SNAKE_CASE__ : str = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE__ : int = int(config["seed"] ) SCREAMING_SNAKE_CASE__ : List[Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE__ : Any = evaluate.load("glue" , "mrpc" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=_lowerCamelCase ) def inner_training_loop(_lowerCamelCase : Any ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(_lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE__ : Optional[int] = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE__ : Optional[Any] = AdamW(params=model.parameters() , lr=_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_dataloaders(_lowerCamelCase , _lowerCamelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE__ : Optional[int] = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Now we train the model for epoch in range(_lowerCamelCase ): model.train() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Dict = outputs.loss accelerator.backward(_lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[Any] = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Any = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE__ : List[Any] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_lowerCamelCase , references=_lowerCamelCase , ) SCREAMING_SNAKE_CASE__ : List[str] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , _lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_lowerCamelCase , default=_lowerCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE__ : str = parser.parse_args() SCREAMING_SNAKE_CASE__ : Optional[int] = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
700
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 __lowercase :List[str] = get_tests_dir("fixtures/dummy_feature_extractor_config.json") __lowercase :str = get_tests_dir("fixtures/vocab.json") __lowercase :Optional[int] = get_tests_dir("fixtures") class _a ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def A_ ( self : Optional[Any] ) ->int: SCREAMING_SNAKE_CASE__ : Dict = 0 def A_ ( self : Any ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : List[Any] = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(a , a ) def A_ ( self : Union[str, Any] ) ->List[str]: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : Dict = WavaVecaConfig() SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) # save in new folder model_config.save_pretrained(a ) processor.save_pretrained(a ) SCREAMING_SNAKE_CASE__ : str = AutoProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) def A_ ( self : int ) ->List[str]: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(a , os.path.join(a , a ) ) copyfile(a , os.path.join(a , "vocab.json" ) ) SCREAMING_SNAKE_CASE__ : List[Any] = AutoProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) def A_ ( self : List[Any] ) ->Tuple: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : Optional[Any] = WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE__ : Tuple = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) SCREAMING_SNAKE_CASE__ : Any = WavaVecaProcessor(a , a ) # save in new folder processor.save_pretrained(a ) # drop `processor_class` in tokenizer with open(os.path.join(a , a ) , "r" ) as f: SCREAMING_SNAKE_CASE__ : Optional[int] = json.load(a ) config_dict.pop("processor_class" ) with open(os.path.join(a , a ) , "w" ) as f: f.write(json.dumps(a ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = AutoProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) def A_ ( self : List[str] ) ->Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : Tuple = WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) SCREAMING_SNAKE_CASE__ : Optional[int] = WavaVecaProcessor(a , a ) # save in new folder processor.save_pretrained(a ) # drop `processor_class` in feature extractor with open(os.path.join(a , a ) , "r" ) as f: SCREAMING_SNAKE_CASE__ : List[Any] = json.load(a ) config_dict.pop("processor_class" ) with open(os.path.join(a , a ) , "w" ) as f: f.write(json.dumps(a ) ) SCREAMING_SNAKE_CASE__ : List[Any] = AutoProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) def A_ ( self : Union[str, Any] ) ->str: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : List[Any] = WavaVecaConfig(processor_class="Wav2Vec2Processor" ) model_config.save_pretrained(a ) # copy relevant files copyfile(a , os.path.join(a , "vocab.json" ) ) # create emtpy sample processor with open(os.path.join(a , a ) , "w" ) as f: f.write("{}" ) SCREAMING_SNAKE_CASE__ : Tuple = AutoProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) def A_ ( self : Optional[Any] ) ->Optional[int]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(a ): SCREAMING_SNAKE_CASE__ : Optional[int] = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(a ): SCREAMING_SNAKE_CASE__ : Any = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=a ) SCREAMING_SNAKE_CASE__ : List[Any] = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" , trust_remote_code=a ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) SCREAMING_SNAKE_CASE__ : Dict = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version SCREAMING_SNAKE_CASE__ : int = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=a , use_fast=a ) SCREAMING_SNAKE_CASE__ : List[Any] = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , "NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) def A_ ( self : Tuple ) ->List[Any]: try: AutoConfig.register("custom" , a ) AutoFeatureExtractor.register(a , a ) AutoTokenizer.register(a , slow_tokenizer_class=a ) AutoProcessor.register(a , a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a ): AutoProcessor.register(a , a ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE__ : List[str] = CustomFeatureExtractor.from_pretrained(a ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ : int = os.path.join(a , "vocab.txt" ) with open(a , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = CustomTokenizer(a ) SCREAMING_SNAKE_CASE__ : List[Any] = CustomProcessor(a , a ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(a ) SCREAMING_SNAKE_CASE__ : Any = AutoProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def A_ ( self : Union[str, Any] ) ->int: class _a ( lowercase__ ): """simple docstring""" snake_case_ = False class _a ( lowercase__ ): """simple docstring""" snake_case_ = False class _a ( lowercase__ ): """simple docstring""" snake_case_ = "AutoFeatureExtractor" snake_case_ = "AutoTokenizer" snake_case_ = False try: AutoConfig.register("custom" , a ) AutoFeatureExtractor.register(a , a ) AutoTokenizer.register(a , slow_tokenizer_class=a ) AutoProcessor.register(a , a ) # If remote code is not set, the default is to use local classes. SCREAMING_SNAKE_CASE__ : Optional[int] = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. SCREAMING_SNAKE_CASE__ : Tuple = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=a ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. SCREAMING_SNAKE_CASE__ : Any = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=a ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def A_ ( self : Optional[Any] ) ->Dict: SCREAMING_SNAKE_CASE__ : Optional[int] = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(processor.__class__.__name__ , "BertTokenizerFast" ) def A_ ( self : Dict ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : Dict = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext" ) self.assertEqual(processor.__class__.__name__ , "ConvNextImageProcessor" ) @is_staging_test class _a ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def A_ ( cls : List[str] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : int = TOKEN HfFolder.save_token(a ) @classmethod def A_ ( cls : List[str] ) ->Optional[int]: try: delete_repo(token=cls._token , repo_id="test-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-processor" ) except HTTPError: pass def A_ ( self : Dict ) ->Dict: SCREAMING_SNAKE_CASE__ : Tuple = WavaVecaProcessor.from_pretrained(a ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(a , "test-processor" ) , push_to_hub=a , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ : Optional[int] = WavaVecaProcessor.from_pretrained(f"""{USER}/test-processor""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(a , getattr(new_processor.feature_extractor , a ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def A_ ( self : List[str] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : Optional[Any] = WavaVecaProcessor.from_pretrained(a ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(a , "test-processor-org" ) , push_to_hub=a , use_auth_token=self._token , organization="valid_org" , ) SCREAMING_SNAKE_CASE__ : Dict = WavaVecaProcessor.from_pretrained("valid_org/test-processor-org" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(a , getattr(new_processor.feature_extractor , a ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def A_ ( self : Any ) ->int: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() SCREAMING_SNAKE_CASE__ : Any = CustomFeatureExtractor.from_pretrained(a ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(a , "vocab.txt" ) with open(a , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ : str = CustomTokenizer(a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = CustomProcessor(a , a ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f"""{USER}/test-dynamic-processor""" , token=self._token ) SCREAMING_SNAKE_CASE__ : str = Repository(a , clone_from=f"""{USER}/test-dynamic-processor""" , token=self._token ) processor.save_pretrained(a ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { "AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor", "AutoProcessor": "custom_processing.CustomProcessor", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(a , "tokenizer_config.json" ) ) as f: SCREAMING_SNAKE_CASE__ : str = json.load(a ) self.assertDictEqual( tokenizer_config["auto_map"] , { "AutoTokenizer": ["custom_tokenization.CustomTokenizer", None], "AutoProcessor": "custom_processing.CustomProcessor", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(a , "custom_feature_extraction.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(a , "custom_tokenization.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(a , "custom_processing.py" ) ) ) repo.push_to_hub() SCREAMING_SNAKE_CASE__ : List[Any] = AutoProcessor.from_pretrained(f"""{USER}/test-dynamic-processor""" , trust_remote_code=a ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , "CustomProcessor" )
26
0
def UpperCAmelCase ( _lowerCamelCase : int ): '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("only integers accepted as input" ) else: SCREAMING_SNAKE_CASE__ : List[str] = str(abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = [list(_lowerCamelCase ) for char in range(len(_lowerCamelCase ) )] for index in range(len(_lowerCamelCase ) ): num_transpositions[index].pop(_lowerCamelCase ) return max( int("".join(list(_lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
701
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( lowercase__ ): """simple docstring""" snake_case_ = ["image_processor", "tokenizer"] snake_case_ = "CLIPImageProcessor" snake_case_ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Any , a : List[Any]=None , a : Any=None , **a : int ) ->int: SCREAMING_SNAKE_CASE__ : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , a , ) SCREAMING_SNAKE_CASE__ : List[Any] = kwargs.pop("feature_extractor" ) SCREAMING_SNAKE_CASE__ : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(a , a ) def __call__( self : Tuple , a : Tuple=None , a : Union[str, Any]=None , a : List[str]=None , **a : Optional[Any] ) ->Optional[Any]: if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: SCREAMING_SNAKE_CASE__ : str = self.tokenizer(a , return_tensors=a , **a ) if images is not None: SCREAMING_SNAKE_CASE__ : int = self.image_processor(a , return_tensors=a , **a ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ : Tuple = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a ) , tensor_type=a ) def A_ ( self : Optional[int] , *a : Any , **a : List[str] ) ->Any: return self.tokenizer.batch_decode(*a , **a ) def A_ ( self : Any , *a : Optional[int] , **a : Dict ) ->Any: return self.tokenizer.decode(*a , **a ) @property def A_ ( self : List[str] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A_ ( self : Optional[int] ) ->List[Any]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , a , ) return self.image_processor_class @property def A_ ( self : Dict ) ->str: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , a , ) return self.image_processor
26
0
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class _a ( lowercase__ ): """simple docstring""" def __init__( self : Any , a : List[str] , a : List[str] , a : Union[str, Any] ) ->Optional[Any]: SCREAMING_SNAKE_CASE__ : Any = dataset SCREAMING_SNAKE_CASE__ : List[Any] = process SCREAMING_SNAKE_CASE__ : Optional[Any] = params def __len__( self : int ) ->Optional[int]: return len(self.dataset ) def __getitem__( self : Optional[Any] , a : Tuple ) ->Dict: SCREAMING_SNAKE_CASE__ : Tuple = self.dataset[i] SCREAMING_SNAKE_CASE__ : str = self.process(a , **self.params ) return processed class _a ( lowercase__ ): """simple docstring""" def __init__( self : Union[str, Any] , a : Any , a : List[Any] , a : List[Any] , a : Any=None ) ->str: SCREAMING_SNAKE_CASE__ : Any = loader SCREAMING_SNAKE_CASE__ : Optional[int] = infer SCREAMING_SNAKE_CASE__ : List[str] = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : int = loader_batch_size # Internal bookkeeping SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : Tuple = None def __len__( self : Optional[int] ) ->Optional[Any]: return len(self.loader ) def __iter__( self : Any ) ->Tuple: SCREAMING_SNAKE_CASE__ : List[str] = iter(self.loader ) return self def A_ ( self : Tuple ) ->Dict: if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice SCREAMING_SNAKE_CASE__ : int = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) SCREAMING_SNAKE_CASE__ : Union[str, Any] = {} for k, element in self._loader_batch_data.items(): if isinstance(a , a ): # Convert ModelOutput to tuple first SCREAMING_SNAKE_CASE__ : int = element.to_tuple() if isinstance(element[0] , torch.Tensor ): SCREAMING_SNAKE_CASE__ : str = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): SCREAMING_SNAKE_CASE__ : Dict = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(a , a ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): SCREAMING_SNAKE_CASE__ : Any = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): SCREAMING_SNAKE_CASE__ : int = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around SCREAMING_SNAKE_CASE__ : Tuple = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers SCREAMING_SNAKE_CASE__ : Optional[int] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers SCREAMING_SNAKE_CASE__ : Tuple = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. SCREAMING_SNAKE_CASE__ : int = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 SCREAMING_SNAKE_CASE__ : Any = self._loader_batch_data.__class__(a ) self._loader_batch_index += 1 return result def A_ ( self : List[str] ) ->Optional[Any]: if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch SCREAMING_SNAKE_CASE__ : Any = next(self.iterator ) SCREAMING_SNAKE_CASE__ : List[Any] = self.infer(a , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(a , torch.Tensor ): SCREAMING_SNAKE_CASE__ : Tuple = processed else: SCREAMING_SNAKE_CASE__ : int = list(processed.keys() )[0] SCREAMING_SNAKE_CASE__ : Any = processed[key] if isinstance(a , a ): SCREAMING_SNAKE_CASE__ : Optional[Any] = len(a ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. SCREAMING_SNAKE_CASE__ : List[Any] = observed_batch_size # Setting internal index to unwrap the batch SCREAMING_SNAKE_CASE__ : Tuple = processed SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class _a ( lowercase__ ): """simple docstring""" def __init__( self : Tuple , a : Union[str, Any] , a : Union[str, Any] , a : List[str] , a : Any=None ) ->List[Any]: super().__init__(a , a , a ) def __iter__( self : Optional[Any] ) ->Optional[Any]: SCREAMING_SNAKE_CASE__ : Optional[Any] = iter(self.loader ) SCREAMING_SNAKE_CASE__ : Tuple = None return self def A_ ( self : Dict ) ->int: if self.subiterator is None: SCREAMING_SNAKE_CASE__ : str = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item SCREAMING_SNAKE_CASE__ : Optional[int] = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators SCREAMING_SNAKE_CASE__ : str = self.infer(next(self.iterator ) , **self.params ) SCREAMING_SNAKE_CASE__ : List[str] = next(self.subiterator ) return processed class _a ( lowercase__ ): """simple docstring""" def __iter__( self : str ) ->Dict: SCREAMING_SNAKE_CASE__ : Union[str, Any] = iter(self.loader ) return self def A_ ( self : List[Any] ) ->Optional[Any]: # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : str = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: SCREAMING_SNAKE_CASE__ : List[str] = self.loader_batch_item() SCREAMING_SNAKE_CASE__ : Optional[Any] = item.pop("is_last" ) accumulator.append(a ) if is_last: return accumulator while not is_last: SCREAMING_SNAKE_CASE__ : Tuple = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(a , torch.Tensor ): SCREAMING_SNAKE_CASE__ : Dict = processed else: SCREAMING_SNAKE_CASE__ : Optional[int] = list(processed.keys() )[0] SCREAMING_SNAKE_CASE__ : List[str] = processed[key] if isinstance(a , a ): SCREAMING_SNAKE_CASE__ : str = len(a ) else: SCREAMING_SNAKE_CASE__ : List[str] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. SCREAMING_SNAKE_CASE__ : Any = observed_batch_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = processed SCREAMING_SNAKE_CASE__ : str = 0 while self._loader_batch_index < self.loader_batch_size: SCREAMING_SNAKE_CASE__ : Dict = self.loader_batch_item() SCREAMING_SNAKE_CASE__ : str = item.pop("is_last" ) accumulator.append(a ) if is_last: return accumulator else: SCREAMING_SNAKE_CASE__ : Tuple = processed SCREAMING_SNAKE_CASE__ : Union[str, Any] = item.pop("is_last" ) accumulator.append(a ) return accumulator class _a ( lowercase__ ): """simple docstring""" def __init__( self : List[str] , a : Dataset , a : str ) ->Any: SCREAMING_SNAKE_CASE__ : List[str] = dataset SCREAMING_SNAKE_CASE__ : Any = key def __len__( self : str ) ->List[Any]: return len(self.dataset ) def __getitem__( self : int , a : Any ) ->Union[str, Any]: return self.dataset[i][self.key] class _a ( lowercase__ ): """simple docstring""" def __init__( self : Tuple , a : Dataset , a : str , a : str ) ->Any: SCREAMING_SNAKE_CASE__ : Optional[Any] = dataset SCREAMING_SNAKE_CASE__ : Optional[int] = keya SCREAMING_SNAKE_CASE__ : List[Any] = keya def __len__( self : Union[str, Any] ) ->int: return len(self.dataset ) def __getitem__( self : Any , a : Union[str, Any] ) ->Any: return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
702
import sys from collections import defaultdict class _a : """simple docstring""" def __init__( self : Any ) ->Dict: SCREAMING_SNAKE_CASE__ : Tuple = [] def A_ ( self : int , a : List[str] ) ->Dict: return self.node_position[vertex] def A_ ( self : Optional[Any] , a : Any , a : List[str] ) ->Optional[Any]: SCREAMING_SNAKE_CASE__ : str = pos def A_ ( self : List[Any] , a : List[str] , a : Dict , a : Dict , a : List[Any] ) ->Optional[int]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: SCREAMING_SNAKE_CASE__ : Optional[Any] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: SCREAMING_SNAKE_CASE__ : Dict = 2 * start + 1 else: SCREAMING_SNAKE_CASE__ : Tuple = 2 * start + 2 if heap[smallest_child] < heap[start]: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : int = heap[smallest_child], positions[smallest_child] SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = ( heap[start], positions[start], ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Tuple = temp, tempa SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , a ) self.top_to_bottom(a , a , a , a ) def A_ ( self : Union[str, Any] , a : Tuple , a : Tuple , a : Union[str, Any] , a : List[Any] ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : List[Any] = position[index] while index != 0: SCREAMING_SNAKE_CASE__ : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: SCREAMING_SNAKE_CASE__ : List[Any] = heap[parent] SCREAMING_SNAKE_CASE__ : str = position[parent] self.set_position(position[parent] , a ) else: SCREAMING_SNAKE_CASE__ : int = val SCREAMING_SNAKE_CASE__ : Optional[Any] = temp self.set_position(a , a ) break SCREAMING_SNAKE_CASE__ : Optional[int] = parent else: SCREAMING_SNAKE_CASE__ : int = val SCREAMING_SNAKE_CASE__ : List[str] = temp self.set_position(a , 0 ) def A_ ( self : Union[str, Any] , a : int , a : List[str] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : List[str] = len(a ) // 2 - 1 for i in range(a , -1 , -1 ): self.top_to_bottom(a , a , len(a ) , a ) def A_ ( self : Dict , a : List[Any] , a : Dict ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : Any = positions[0] SCREAMING_SNAKE_CASE__ : Optional[int] = sys.maxsize self.top_to_bottom(a , 0 , len(a ) , a ) return temp def UpperCAmelCase ( _lowerCamelCase : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = Heap() SCREAMING_SNAKE_CASE__ : Any = [0] * len(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Any = [-1] * len(_lowerCamelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] # Heap of Distance of vertices from their neighboring vertex SCREAMING_SNAKE_CASE__ : str = [] for vertex in range(len(_lowerCamelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_lowerCamelCase ) heap.node_position.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = [] SCREAMING_SNAKE_CASE__ : int = 1 SCREAMING_SNAKE_CASE__ : int = sys.maxsize for neighbor, distance in adjacency_list[0]: SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : List[str] = distance heap.heapify(_lowerCamelCase , _lowerCamelCase ) for _ in range(1 , len(_lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ : Optional[Any] = heap.delete_minimum(_lowerCamelCase , _lowerCamelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_lowerCamelCase )] ): SCREAMING_SNAKE_CASE__ : Any = distance heap.bottom_to_top( _lowerCamelCase , heap.get_position(_lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : str = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __lowercase :Union[str, Any] = int(input("Enter number of edges: ").strip()) __lowercase :Dict = defaultdict(list) for _ in range(edges_number): __lowercase :Any = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
26
0
import torch def UpperCAmelCase ( ): '''simple docstring''' if torch.cuda.is_available(): SCREAMING_SNAKE_CASE__ : str = torch.cuda.device_count() else: SCREAMING_SNAKE_CASE__ : str = 0 print(f"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
703
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __lowercase :List[Any] = logging.get_logger(__name__) __lowercase :Optional[int] = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class _a ( lowercase__ ): """simple docstring""" snake_case_ = "longformer" def __init__( self : List[str] , a : Union[List[int], int] = 5_12 , a : int = 2 , a : int = 1 , a : int = 0 , a : int = 2 , a : int = 3_05_22 , a : int = 7_68 , a : int = 12 , a : int = 12 , a : int = 30_72 , a : str = "gelu" , a : float = 0.1 , a : float = 0.1 , a : int = 5_12 , a : int = 2 , a : float = 0.02 , a : float = 1E-12 , a : bool = False , **a : Dict , ) ->Tuple: super().__init__(pad_token_id=a , **a ) SCREAMING_SNAKE_CASE__ : int = attention_window SCREAMING_SNAKE_CASE__ : Any = sep_token_id SCREAMING_SNAKE_CASE__ : str = bos_token_id SCREAMING_SNAKE_CASE__ : List[str] = eos_token_id SCREAMING_SNAKE_CASE__ : List[str] = vocab_size SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE__ : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE__ : List[Any] = hidden_act SCREAMING_SNAKE_CASE__ : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE__ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : str = type_vocab_size SCREAMING_SNAKE_CASE__ : Any = initializer_range SCREAMING_SNAKE_CASE__ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE__ : Any = onnx_export class _a ( lowercase__ ): """simple docstring""" def __init__( self : int , a : "PretrainedConfig" , a : str = "default" , a : "List[PatchingSpec]" = None ) ->str: super().__init__(a , a , a ) SCREAMING_SNAKE_CASE__ : Any = True @property def A_ ( self : int ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ : int = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE__ : str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ] ) @property def A_ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: SCREAMING_SNAKE_CASE__ : Optional[Any] = super().outputs if self.task == "default": SCREAMING_SNAKE_CASE__ : List[str] = {0: "batch"} return outputs @property def A_ ( self : str ) ->float: return 1E-4 @property def A_ ( self : Any ) ->int: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def A_ ( self : str , a : "PreTrainedTokenizerBase" , a : int = -1 , a : int = -1 , a : bool = False , a : Optional[TensorType] = None , ) ->Mapping[str, Any]: SCREAMING_SNAKE_CASE__ : Tuple = super().generate_dummy_inputs( preprocessor=a , batch_size=a , seq_length=a , is_pair=a , framework=a ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly SCREAMING_SNAKE_CASE__ : Any = torch.zeros_like(inputs["input_ids"] ) # make every second token global SCREAMING_SNAKE_CASE__ : str = 1 return inputs
26
0
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __lowercase :Any = logging.get_logger(__name__) __lowercase :List[Any] = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def UpperCAmelCase ( _lowerCamelCase : List[Any] ): '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE__ : Optional[Any] = k.replace(_lowerCamelCase , _lowerCamelCase ) if k.startswith("encoder" ): SCREAMING_SNAKE_CASE__ : Optional[int] = k.replace(".attn" , ".self_attn" ) SCREAMING_SNAKE_CASE__ : Dict = k.replace("norm1" , "self_attn_layer_norm" ) SCREAMING_SNAKE_CASE__ : str = k.replace("norm2" , "final_layer_norm" ) elif k.startswith("decoder" ): SCREAMING_SNAKE_CASE__ : Dict = k.replace("norm1" , "self_attn_layer_norm" ) SCREAMING_SNAKE_CASE__ : Tuple = k.replace("norm2" , "encoder_attn_layer_norm" ) SCREAMING_SNAKE_CASE__ : int = k.replace("norm3" , "final_layer_norm" ) return k def UpperCAmelCase ( _lowerCamelCase : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: SCREAMING_SNAKE_CASE__ : Optional[int] = sd.pop(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = k.replace("layernorm_embedding" , "layer_norm" ) assert new_k not in sd SCREAMING_SNAKE_CASE__ : str = v __lowercase :List[str] = ["START"] @torch.no_grad() def UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : str , _lowerCamelCase : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = torch.load(_lowerCamelCase , map_location="cpu" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model["model"] SCREAMING_SNAKE_CASE__ : List[str] = BlenderbotConfig.from_json_file(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : str = BlenderbotForConditionalGeneration(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : str = m.model.state_dict().keys() SCREAMING_SNAKE_CASE__ : Dict = [] SCREAMING_SNAKE_CASE__ : List[Any] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue SCREAMING_SNAKE_CASE__ : List[str] = rename_state_dict_key(_lowerCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_lowerCamelCase ) m.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) m.half() m.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __lowercase :Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __lowercase :List[str] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
704
def UpperCAmelCase ( _lowerCamelCase : int = 4_000_000 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = [0, 1] SCREAMING_SNAKE_CASE__ : List[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 for j in range(len(_lowerCamelCase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"{solution() = }")
26
0
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __lowercase :Union[str, Any] = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __lowercase :Tuple = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __lowercase :List[Any] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_000)) def UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = len([g for position, g in enumerate(_lowerCamelCase ) if g == main_target[position]] ) return (item, float(_lowerCamelCase )) def UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = random.randint(0 , len(_lowerCamelCase ) - 1 ) SCREAMING_SNAKE_CASE__ : Tuple = parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE__ : Any = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : list[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = list(_lowerCamelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE__ : Optional[Any] = random.choice(_lowerCamelCase ) return "".join(_lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase : tuple[str, float] , _lowerCamelCase : list[tuple[str, float]] , _lowerCamelCase : list[str] , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = [] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE__ : Optional[int] = int(parent_a[1] * 100 ) + 1 SCREAMING_SNAKE_CASE__ : str = 10 if child_n >= 10 else child_n for _ in range(_lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Any = population_score[random.randint(0 , _lowerCamelCase )][0] SCREAMING_SNAKE_CASE__ : List[str] = crossover(parent_a[0] , _lowerCamelCase ) # Append new string to the population list. pop.append(mutate(_lowerCamelCase , _lowerCamelCase ) ) pop.append(mutate(_lowerCamelCase , _lowerCamelCase ) ) return pop def UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : list[str] , _lowerCamelCase : bool = True ): '''simple docstring''' if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE__ : int = f"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(_lowerCamelCase ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE__ : Optional[Any] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE__ : int = f"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(_lowerCamelCase ) # Generate random starting population. SCREAMING_SNAKE_CASE__ : List[Any] = [] for _ in range(_lowerCamelCase ): population.append("".join([random.choice(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE__ : Dict = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_lowerCamelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE__ : List[str] = [evaluate(_lowerCamelCase , _lowerCamelCase ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE__ : Any = sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] , reverse=_lowerCamelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"""\nGeneration: {generation}""" f"""\nTotal Population:{total_population}""" f"""\nBest score: {population_score[0][1]}""" f"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE__ : Any = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_lowerCamelCase ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE__ : List[Any] = [ (item, score / len(_lowerCamelCase )) for item, score in population_score ] # This is selection for i in range(_lowerCamelCase ): population.extend(select(population_score[int(_lowerCamelCase )] , _lowerCamelCase , _lowerCamelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_lowerCamelCase ) > N_POPULATION: break if __name__ == "__main__": __lowercase :Tuple = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) __lowercase :int = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) __lowercase :Any = basic(target_str, genes_list) print( f"\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}" )
705
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _a ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , a : Any , a : bool = True , a : Dict[str, int] = None , a : int = 32 , a : bool = True , a : Union[int, float] = 1 / 2_55 , a : bool = True , a : bool = True , a : Optional[Union[float, List[float]]] = [0.4814_5466, 0.457_8275, 0.4082_1073] , a : Optional[Union[float, List[float]]] = [0.2686_2954, 0.2613_0258, 0.2757_7711] , a : bool = True , a : Any=7 , a : str=30 , a : Dict=4_00 , a : Optional[int]=3 , ) ->int: SCREAMING_SNAKE_CASE__ : int = parent SCREAMING_SNAKE_CASE__ : Dict = do_resize SCREAMING_SNAKE_CASE__ : List[str] = size if size is not None else {"shortest_edge": 2_88} SCREAMING_SNAKE_CASE__ : List[Any] = size_divisor SCREAMING_SNAKE_CASE__ : List[Any] = do_rescale SCREAMING_SNAKE_CASE__ : Tuple = rescale_factor SCREAMING_SNAKE_CASE__ : Optional[int] = do_normalize SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_center_crop SCREAMING_SNAKE_CASE__ : Optional[int] = image_mean SCREAMING_SNAKE_CASE__ : Dict = image_std SCREAMING_SNAKE_CASE__ : List[str] = do_pad SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE__ : int = num_channels SCREAMING_SNAKE_CASE__ : Optional[int] = min_resolution SCREAMING_SNAKE_CASE__ : Union[str, Any] = max_resolution def A_ ( self : List[str] ) ->Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def A_ ( self : int , a : Optional[int] , a : Union[str, Any]=False ) ->Optional[Any]: if not batched: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.size["shortest_edge"] SCREAMING_SNAKE_CASE__ : Dict = image_inputs[0] if isinstance(a , Image.Image ): SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Dict = image.size else: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : List[str] = image.shape[1], image.shape[2] SCREAMING_SNAKE_CASE__ : Any = size / min(a , a ) if h < w: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = size, scale * w else: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : List[str] = scale * h, size SCREAMING_SNAKE_CASE__ : List[Any] = int((13_33 / 8_00) * size ) if max(a , a ) > max_size: SCREAMING_SNAKE_CASE__ : List[Any] = max_size / max(a , a ) SCREAMING_SNAKE_CASE__ : int = newh * scale SCREAMING_SNAKE_CASE__ : Optional[int] = neww * scale SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Any = int(newh + 0.5 ), int(neww + 0.5 ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Any = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: SCREAMING_SNAKE_CASE__ : List[Any] = [] for image in image_inputs: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE__ : Tuple = max(a , key=lambda a : item[0] )[0] SCREAMING_SNAKE_CASE__ : Tuple = max(a , key=lambda a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( lowercase__ , unittest.TestCase ): """simple docstring""" snake_case_ = BridgeTowerImageProcessor if is_vision_available() else None def A_ ( self : List[Any] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : Any = BridgeTowerImageProcessingTester(self ) @property def A_ ( self : Optional[int] ) ->Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def A_ ( self : Tuple ) ->str: SCREAMING_SNAKE_CASE__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , "image_mean" ) ) self.assertTrue(hasattr(a , "image_std" ) ) self.assertTrue(hasattr(a , "do_normalize" ) ) self.assertTrue(hasattr(a , "do_resize" ) ) self.assertTrue(hasattr(a , "size" ) ) self.assertTrue(hasattr(a , "size_divisor" ) ) def A_ ( self : List[Any] ) ->List[Any]: pass def A_ ( self : Tuple ) ->Optional[Any]: # Initialize image processor SCREAMING_SNAKE_CASE__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ : int = image_processing(a , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Any = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self : Optional[int] ) ->Any: # Initialize image processor SCREAMING_SNAKE_CASE__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : List[Any] = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ : Tuple = image_processing(a , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self : str ) ->Optional[int]: # Initialize image processor SCREAMING_SNAKE_CASE__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Tuple = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ : Any = image_processing(a , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
26
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowercase :Tuple = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase :List[str] = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase :List[str] = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase :List[Any] = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __lowercase :Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
706
def UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : bool = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_317_044_064_679_887_385_961_981 and not allow_probable: raise ValueError( "Warning: upper bound of deterministic test is exceeded. " "Pass allow_probable=True to allow probabilistic test. " "A return value of True indicates a probable prime." ) # array bounds provided by analysis SCREAMING_SNAKE_CASE__ : List[str] = [ 2_047, 1_373_653, 25_326_001, 3_215_031_751, 2_152_302_898_747, 3_474_749_660_383, 341_550_071_728_321, 1, 3_825_123_056_546_413_051, 1, 1, 318_665_857_834_031_151_167_461, 3_317_044_064_679_887_385_961_981, ] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(_lowerCamelCase , 1 ): if n < _p: # then we have our last prime to check SCREAMING_SNAKE_CASE__ : Dict = primes[:idx] break SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Dict = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: SCREAMING_SNAKE_CASE__ : str = False for r in range(_lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Optional[Any] = pow(_lowerCamelCase , d * 2**r , _lowerCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): SCREAMING_SNAKE_CASE__ : str = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def UpperCAmelCase ( ): '''simple docstring''' assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838_201 ) assert miller_rabin(838_207 ) # 1_373_653 assert not miller_rabin(17_316_001 ) assert miller_rabin(17_316_017 ) # 25_326_001 assert not miller_rabin(3_078_386_641 ) assert miller_rabin(3_078_386_653 ) # 3_215_031_751 assert not miller_rabin(1_713_045_574_801 ) assert miller_rabin(1_713_045_574_819 ) # 2_152_302_898_747 assert not miller_rabin(2_779_799_728_307 ) assert miller_rabin(2_779_799_728_327 ) # 3_474_749_660_383 assert not miller_rabin(113_850_023_909_441 ) assert miller_rabin(113_850_023_909_527 ) # 341_550_071_728_321 assert not miller_rabin(1_275_041_018_848_804_351 ) assert miller_rabin(1_275_041_018_848_804_391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79_666_464_458_507_787_791_867 ) assert miller_rabin(79_666_464_458_507_787_791_951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552_840_677_446_647_897_660_333 ) assert miller_rabin(552_840_677_446_647_897_660_359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
26
0
def UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[list[int]] ): '''simple docstring''' def update_area_of_max_square(_lowerCamelCase : int , _lowerCamelCase : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 SCREAMING_SNAKE_CASE__ : Any = update_area_of_max_square(_lowerCamelCase , col + 1 ) SCREAMING_SNAKE_CASE__ : Dict = update_area_of_max_square(row + 1 , col + 1 ) SCREAMING_SNAKE_CASE__ : Any = update_area_of_max_square(row + 1 , _lowerCamelCase ) if mat[row][col]: SCREAMING_SNAKE_CASE__ : Any = 1 + min([right, diagonal, down] ) SCREAMING_SNAKE_CASE__ : Any = max(largest_square_area[0] , _lowerCamelCase ) return sub_problem_sol else: return 0 SCREAMING_SNAKE_CASE__ : Tuple = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[list[int]] ): '''simple docstring''' def update_area_of_max_square_using_dp_array( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] SCREAMING_SNAKE_CASE__ : Optional[Any] = update_area_of_max_square_using_dp_array(_lowerCamelCase , col + 1 , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Dict = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Any = update_area_of_max_square_using_dp_array(row + 1 , _lowerCamelCase , _lowerCamelCase ) if mat[row][col]: SCREAMING_SNAKE_CASE__ : Optional[int] = 1 + min([right, diagonal, down] ) SCREAMING_SNAKE_CASE__ : Tuple = max(largest_square_area[0] , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = sub_problem_sol return sub_problem_sol else: return 0 SCREAMING_SNAKE_CASE__ : str = [0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [[-1] * cols for _ in range(_lowerCamelCase )] update_area_of_max_square_using_dp_array(0 , 0 , _lowerCamelCase ) return largest_square_area[0] def UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[list[int]] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = [[0] * (cols + 1) for _ in range(rows + 1 )] SCREAMING_SNAKE_CASE__ : Dict = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): SCREAMING_SNAKE_CASE__ : Any = dp_array[row][col + 1] SCREAMING_SNAKE_CASE__ : List[str] = dp_array[row + 1][col + 1] SCREAMING_SNAKE_CASE__ : Tuple = dp_array[row + 1][col] if mat[row][col] == 1: SCREAMING_SNAKE_CASE__ : Dict = 1 + min(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : str = max(dp_array[row][col] , _lowerCamelCase ) else: SCREAMING_SNAKE_CASE__ : int = 0 return largest_square_area def UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[list[int]] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = [0] * (cols + 1) SCREAMING_SNAKE_CASE__ : List[str] = [0] * (cols + 1) SCREAMING_SNAKE_CASE__ : List[str] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): SCREAMING_SNAKE_CASE__ : List[Any] = current_row[col + 1] SCREAMING_SNAKE_CASE__ : Dict = next_row[col + 1] SCREAMING_SNAKE_CASE__ : int = next_row[col] if mat[row][col] == 1: SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 + min(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[str] = max(current_row[col] , _lowerCamelCase ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = 0 SCREAMING_SNAKE_CASE__ : Tuple = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
707
import numpy class _a : """simple docstring""" def __init__( self : Optional[int] , a : numpy.ndarray , a : numpy.ndarray ) ->None: SCREAMING_SNAKE_CASE__ : Any = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. SCREAMING_SNAKE_CASE__ : int = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. SCREAMING_SNAKE_CASE__ : Dict = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. SCREAMING_SNAKE_CASE__ : List[Any] = numpy.random.rand(3 , 1 ) # Real output values provided. SCREAMING_SNAKE_CASE__ : str = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. SCREAMING_SNAKE_CASE__ : Tuple = numpy.zeros(output_array.shape ) def A_ ( self : Union[str, Any] ) ->numpy.ndarray: SCREAMING_SNAKE_CASE__ : List[Any] = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. SCREAMING_SNAKE_CASE__ : Optional[int] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. SCREAMING_SNAKE_CASE__ : int = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def A_ ( self : int ) ->None: SCREAMING_SNAKE_CASE__ : Optional[int] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) SCREAMING_SNAKE_CASE__ : int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def A_ ( self : int , a : numpy.ndarray , a : int , a : bool ) ->None: for iteration in range(1 , iterations + 1 ): SCREAMING_SNAKE_CASE__ : Dict = self.feedforward() self.back_propagation() if give_loss: SCREAMING_SNAKE_CASE__ : int = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f"""Iteration {iteration} Loss: {loss}""" ) def A_ ( self : Tuple , a : numpy.ndarray ) ->int: SCREAMING_SNAKE_CASE__ : Optional[int] = input_arr SCREAMING_SNAKE_CASE__ : Dict = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) SCREAMING_SNAKE_CASE__ : Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def UpperCAmelCase ( _lowerCamelCase : numpy.ndarray ): '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def UpperCAmelCase ( _lowerCamelCase : numpy.ndarray ): '''simple docstring''' return (value) * (1 - (value)) def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. SCREAMING_SNAKE_CASE__ : Any = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. SCREAMING_SNAKE_CASE__ : List[Any] = TwoHiddenLayerNeuralNetwork( input_array=_lowerCamelCase , output_array=_lowerCamelCase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_lowerCamelCase , iterations=10 , give_loss=_lowerCamelCase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
26
0
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __lowercase :str = logging.get_logger(__name__) def UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Any ): '''simple docstring''' return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def UpperCAmelCase ( _lowerCamelCase : np.ndarray , _lowerCamelCase : Optional[str] , _lowerCamelCase : Optional[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = to_pil_image(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pil_image.size SCREAMING_SNAKE_CASE__ : Tuple = pytesseract.image_to_data(_lowerCamelCase , lang=_lowerCamelCase , output_type="dict" , config=_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Dict = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates SCREAMING_SNAKE_CASE__ : List[str] = [idx for idx, word in enumerate(_lowerCamelCase ) if not word.strip()] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [word for idx, word in enumerate(_lowerCamelCase ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ : Optional[Any] = [coord for idx, coord in enumerate(_lowerCamelCase ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ : int = [coord for idx, coord in enumerate(_lowerCamelCase ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ : Dict = [coord for idx, coord in enumerate(_lowerCamelCase ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ : int = [coord for idx, coord in enumerate(_lowerCamelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format SCREAMING_SNAKE_CASE__ : Tuple = [] for x, y, w, h in zip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE__ : List[str] = [x, y, x + w, y + h] actual_boxes.append(_lowerCamelCase ) # finally, normalize the bounding boxes SCREAMING_SNAKE_CASE__ : str = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class _a ( lowercase__ ): """simple docstring""" snake_case_ = ["pixel_values"] def __init__( self : int , a : bool = True , a : Dict[str, int] = None , a : PILImageResampling = PILImageResampling.BILINEAR , a : bool = True , a : float = 1 / 2_55 , a : bool = True , a : Union[float, Iterable[float]] = None , a : Union[float, Iterable[float]] = None , a : bool = True , a : Optional[str] = None , a : Optional[str] = "" , **a : Optional[int] , ) ->None: super().__init__(**a ) SCREAMING_SNAKE_CASE__ : Dict = size if size is not None else {"height": 2_24, "width": 2_24} SCREAMING_SNAKE_CASE__ : Optional[Any] = get_size_dict(a ) SCREAMING_SNAKE_CASE__ : Optional[int] = do_resize SCREAMING_SNAKE_CASE__ : Optional[Any] = size SCREAMING_SNAKE_CASE__ : Optional[int] = resample SCREAMING_SNAKE_CASE__ : Optional[int] = do_rescale SCREAMING_SNAKE_CASE__ : List[Any] = rescale_value SCREAMING_SNAKE_CASE__ : Dict = do_normalize SCREAMING_SNAKE_CASE__ : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE__ : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD SCREAMING_SNAKE_CASE__ : str = apply_ocr SCREAMING_SNAKE_CASE__ : int = ocr_lang SCREAMING_SNAKE_CASE__ : Optional[int] = tesseract_config def A_ ( self : Any , a : np.ndarray , a : Dict[str, int] , a : PILImageResampling = PILImageResampling.BILINEAR , a : Optional[Union[str, ChannelDimension]] = None , **a : Optional[int] , ) ->np.ndarray: SCREAMING_SNAKE_CASE__ : List[str] = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE__ : Any = (size["height"], size["width"]) return resize(a , size=a , resample=a , data_format=a , **a ) def A_ ( self : Tuple , a : np.ndarray , a : Union[int, float] , a : Optional[Union[str, ChannelDimension]] = None , **a : Any , ) ->np.ndarray: return rescale(a , scale=a , data_format=a , **a ) def A_ ( self : Optional[int] , a : np.ndarray , a : Union[float, Iterable[float]] , a : Union[float, Iterable[float]] , a : Optional[Union[str, ChannelDimension]] = None , **a : Optional[Any] , ) ->np.ndarray: return normalize(a , mean=a , std=a , data_format=a , **a ) def A_ ( self : Any , a : ImageInput , a : bool = None , a : Dict[str, int] = None , a : List[str]=None , a : bool = None , a : float = None , a : bool = None , a : Union[float, Iterable[float]] = None , a : Union[float, Iterable[float]] = None , a : bool = None , a : Optional[str] = None , a : Optional[str] = None , a : Optional[Union[str, TensorType]] = None , a : ChannelDimension = ChannelDimension.FIRST , **a : int , ) ->PIL.Image.Image: SCREAMING_SNAKE_CASE__ : List[str] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ : List[Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE__ : Any = get_size_dict(a ) SCREAMING_SNAKE_CASE__ : Tuple = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ : List[str] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ : Dict = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ : Tuple = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ : Any = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ : str = apply_ocr if apply_ocr is not None else self.apply_ocr SCREAMING_SNAKE_CASE__ : List[str] = ocr_lang if ocr_lang is not None else self.ocr_lang SCREAMING_SNAKE_CASE__ : List[str] = tesseract_config if tesseract_config is not None else self.tesseract_config SCREAMING_SNAKE_CASE__ : str = make_list_of_images(a ) if not valid_images(a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("If do_normalize is True, image_mean and image_std must be specified." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : int = [to_numpy_array(a ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , "pytesseract" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] SCREAMING_SNAKE_CASE__ : List[Any] = [] for image in images: SCREAMING_SNAKE_CASE__ : Dict = apply_tesseract(a , a , a ) words_batch.append(a ) boxes_batch.append(a ) if do_resize: SCREAMING_SNAKE_CASE__ : str = [self.resize(image=a , size=a , resample=a ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ : Optional[int] = [self.normalize(image=a , mean=a , std=a ) for image in images] SCREAMING_SNAKE_CASE__ : Any = [to_channel_dimension_format(a , a ) for image in images] SCREAMING_SNAKE_CASE__ : List[str] = BatchFeature(data={"pixel_values": images} , tensor_type=a ) if apply_ocr: SCREAMING_SNAKE_CASE__ : Any = words_batch SCREAMING_SNAKE_CASE__ : Union[str, Any] = boxes_batch return data
708
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowercase :Tuple = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" __lowercase :str = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" __lowercase :List[Any] = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def A_ ( self : List[Any] ) ->MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def A_ ( self : str , a : List[List[List[str]]] , a : List[List[str]] , a : int = 1 , a : int = 4 , ) ->Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=a , hypotheses=a , min_len=a , max_len=a ) }
26
0
from random import shuffle import tensorflow as tf from numpy import array def UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = int(_lowerCamelCase ) assert noofclusters < len(_lowerCamelCase ) # Find out the dimensionality SCREAMING_SNAKE_CASE__ : str = len(vectors[0] ) # Will help select random centroids from among the available vectors SCREAMING_SNAKE_CASE__ : Optional[Any] = list(range(len(_lowerCamelCase ) ) ) shuffle(_lowerCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. SCREAMING_SNAKE_CASE__ : List[Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION SCREAMING_SNAKE_CASE__ : Any = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_lowerCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values SCREAMING_SNAKE_CASE__ : List[str] = tf.placeholder("float64" , [dim] ) SCREAMING_SNAKE_CASE__ : Any = [] for centroid in centroids: cent_assigns.append(tf.assign(_lowerCamelCase , _lowerCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) SCREAMING_SNAKE_CASE__ : Dict = [tf.Variable(0 ) for i in range(len(_lowerCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value SCREAMING_SNAKE_CASE__ : str = tf.placeholder("int32" ) SCREAMING_SNAKE_CASE__ : Tuple = [] for assignment in assignments: cluster_assigns.append(tf.assign(_lowerCamelCase , _lowerCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input SCREAMING_SNAKE_CASE__ : Tuple = tf.placeholder("float" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors SCREAMING_SNAKE_CASE__ : List[Any] = tf.reduce_mean(_lowerCamelCase , 0 ) ##Node for computing Euclidean distances # Placeholders for input SCREAMING_SNAKE_CASE__ : List[str] = tf.placeholder("float" , [dim] ) SCREAMING_SNAKE_CASE__ : str = tf.placeholder("float" , [dim] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_lowerCamelCase , _lowerCamelCase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.placeholder("float" , [noofclusters] ) SCREAMING_SNAKE_CASE__ : Optional[int] = tf.argmin(_lowerCamelCase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. SCREAMING_SNAKE_CASE__ : Any = tf.initialize_all_variables() # Initialize all variables sess.run(_lowerCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. SCREAMING_SNAKE_CASE__ : Union[str, Any] = 100 for _ in range(_lowerCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ : int = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. SCREAMING_SNAKE_CASE__ : Optional[int] = [ sess.run(_lowerCamelCase , feed_dict={va: vect, va: sess.run(_lowerCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input SCREAMING_SNAKE_CASE__ : Tuple = sess.run( _lowerCamelCase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_lowerCamelCase ): # Collect all the vectors assigned to this cluster SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ vectors[i] for i in range(len(_lowerCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location SCREAMING_SNAKE_CASE__ : Tuple = sess.run( _lowerCamelCase , feed_dict={mean_input: array(_lowerCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments SCREAMING_SNAKE_CASE__ : Optional[Any] = sess.run(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = sess.run(_lowerCamelCase ) return centroids, assignments
709
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __lowercase :List[Any] = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any]=None ): '''simple docstring''' require_version(deps[pkg] , _lowerCamelCase )
26
0
from __future__ import annotations from cmath import sqrt def UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) SCREAMING_SNAKE_CASE__ : str = b * b - 4 * a * c SCREAMING_SNAKE_CASE__ : int = (-b + sqrt(_lowerCamelCase )) / (2 * a) SCREAMING_SNAKE_CASE__ : Dict = (-b - sqrt(_lowerCamelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = quadratic_roots(a=5 , b=6 , c=1 ) print(f"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
710
from __future__ import annotations def UpperCAmelCase ( _lowerCamelCase : list[int] , _lowerCamelCase : int ): '''simple docstring''' if len(_lowerCamelCase ) < k or k < 0: raise ValueError("Invalid Input" ) SCREAMING_SNAKE_CASE__ : int = sum(array[:k] ) for i in range(len(_lowerCamelCase ) - k ): SCREAMING_SNAKE_CASE__ : str = current_sum - array[i] + array[i + k] SCREAMING_SNAKE_CASE__ : Union[str, Any] = max(_lowerCamelCase , _lowerCamelCase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() __lowercase :List[str] = [randint(-1_000, 1_000) for i in range(100)] __lowercase :Any = randint(0, 110) print(f"The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}")
26
0
from statistics import mean, stdev def UpperCAmelCase ( _lowerCamelCase : list , _lowerCamelCase : int = 3 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = min(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : int = max(_lowerCamelCase ) # normalize data return [round((x - x_min) / (x_max - x_min) , _lowerCamelCase ) for x in data] def UpperCAmelCase ( _lowerCamelCase : list , _lowerCamelCase : int = 3 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = mean(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = stdev(_lowerCamelCase ) # standardize data return [round((x - mu) / (sigma) , _lowerCamelCase ) for x in data]
711
from __future__ import annotations def UpperCAmelCase ( _lowerCamelCase : list[int | float] , _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' if len(_lowerCamelCase ) == 0: raise ValueError("find_max() arg is an empty sequence" ) if ( left >= len(_lowerCamelCase ) or left < -len(_lowerCamelCase ) or right >= len(_lowerCamelCase ) or right < -len(_lowerCamelCase ) ): raise IndexError("list index out of range" ) if left == right: return nums[left] SCREAMING_SNAKE_CASE__ : Optional[int] = (left + right) >> 1 # the middle SCREAMING_SNAKE_CASE__ : List[Any] = find_max(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # find max in range[left, mid] SCREAMING_SNAKE_CASE__ : Optional[int] = find_max(_lowerCamelCase , mid + 1 , _lowerCamelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
26
0
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
712
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __lowercase :str = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class _a ( lowercase__ ): """simple docstring""" def __init__( self : List[str] , a : Optional[int] , a : str , a : int=None , a : Optional[Any]=1 ) ->Optional[Any]: SCREAMING_SNAKE_CASE__ : Dict = tokenizer SCREAMING_SNAKE_CASE__ : Optional[int] = dataset SCREAMING_SNAKE_CASE__ : Optional[Any] = len(a ) if n_tasks is None else n_tasks SCREAMING_SNAKE_CASE__ : Dict = n_copies def __iter__( self : str ) ->Tuple: SCREAMING_SNAKE_CASE__ : str = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) SCREAMING_SNAKE_CASE__ : int = self.tokenizer(a , padding=a , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _a ( lowercase__ ): """simple docstring""" def __init__( self : Dict , a : int , a : int , a : Tuple ) ->Dict: SCREAMING_SNAKE_CASE__ : Dict = start_length SCREAMING_SNAKE_CASE__ : Any = eof_strings SCREAMING_SNAKE_CASE__ : Any = tokenizer def __call__( self : Any , a : Optional[int] , a : int , **a : Union[str, Any] ) ->List[str]: SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) SCREAMING_SNAKE_CASE__ : int = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(a ) def UpperCAmelCase ( _lowerCamelCase : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = re.split("(%s)" % "|".join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : str=20 , **_lowerCamelCase : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): SCREAMING_SNAKE_CASE__ : str = batch["ids"].shape[-1] SCREAMING_SNAKE_CASE__ : List[Any] = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch["ids"][:, : batch["input_len"]] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times SCREAMING_SNAKE_CASE__ : Dict = batch["task_id"].repeat(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Dict = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Any = accelerator.gather((generated_tokens, generated_tasks) ) SCREAMING_SNAKE_CASE__ : Dict = generated_tokens.cpu().numpy() SCREAMING_SNAKE_CASE__ : Any = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = HfArgumentParser(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric SCREAMING_SNAKE_CASE__ : List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing SCREAMING_SNAKE_CASE__ : str = "false" if args.num_workers is None: SCREAMING_SNAKE_CASE__ : Dict = multiprocessing.cpu_count() # Use dataset load to feed to accelerate SCREAMING_SNAKE_CASE__ : Dict = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer SCREAMING_SNAKE_CASE__ : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.eos_token SCREAMING_SNAKE_CASE__ : List[str] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings SCREAMING_SNAKE_CASE__ : List[Any] = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric SCREAMING_SNAKE_CASE__ : str = load_dataset("openai_humaneval" ) SCREAMING_SNAKE_CASE__ : Any = load_metric("code_eval" ) SCREAMING_SNAKE_CASE__ : Dict = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = args.n_samples // args.batch_size SCREAMING_SNAKE_CASE__ : Dict = TokenizedDataset(_lowerCamelCase , human_eval["test"] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences SCREAMING_SNAKE_CASE__ : Optional[int] = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: SCREAMING_SNAKE_CASE__ : int = code_eval_metric.compute(references=[""] , predictions=[[""]] ) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation." ) raise exception SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Tuple = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for task in tqdm(range(_lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ : List[Any] = human_eval["test"][task]["test"] SCREAMING_SNAKE_CASE__ : List[Any] = f"""check({human_eval['test'][task]['entry_point']})""" references.append("\n" + test_func + "\n" + entry_point ) # Evaluate completions with "code_eval" metric SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Dict = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , "w" ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
26
0
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __lowercase = logging.get_logger(__name__) class _a ( lowercase__ ): """simple docstring""" def __init__( self : str , *a : Optional[Any] , **a : int ) ->None: warnings.warn( "The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use OwlViTImageProcessor instead." , a , ) super().__init__(*a , **a )
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase :str = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase :Union[str, Any] = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys __lowercase :str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
0
from __future__ import annotations from fractions import Fraction def UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def UpperCAmelCase ( _lowerCamelCase : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = [] SCREAMING_SNAKE_CASE__ : str = 11 SCREAMING_SNAKE_CASE__ : Any = int("1" + "0" * digit_len ) for num in range(_lowerCamelCase , _lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_lowerCamelCase , _lowerCamelCase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 SCREAMING_SNAKE_CASE__ : str = 10 return solutions def UpperCAmelCase ( _lowerCamelCase : int = 2 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = 1.0 for fraction in fraction_list(_lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Any = Fraction(_lowerCamelCase ) result *= frac.denominator / frac.numerator return int(_lowerCamelCase ) if __name__ == "__main__": print(solution())
714
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : int , _lowerCamelCase : Optional[int] = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = {} if train_file is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] = [train_file] if eval_file is not None: SCREAMING_SNAKE_CASE__ : int = [eval_file] if test_file is not None: SCREAMING_SNAKE_CASE__ : int = [test_file] SCREAMING_SNAKE_CASE__ : Optional[int] = datasets.load_dataset("csv" , data_files=_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[str] = list(ds[list(files.keys() )[0]].features.keys() ) SCREAMING_SNAKE_CASE__ : int = features_name.pop(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = list(set(ds[list(files.keys() )[0]][label_name] ) ) SCREAMING_SNAKE_CASE__ : List[str] = {label: i for i, label in enumerate(_lowerCamelCase )} SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.model_input_names SCREAMING_SNAKE_CASE__ : Any = {} if len(_lowerCamelCase ) == 1: for k in files.keys(): SCREAMING_SNAKE_CASE__ : List[Any] = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="max_length" ) , batched=_lowerCamelCase , ) elif len(_lowerCamelCase ) == 2: for k in files.keys(): SCREAMING_SNAKE_CASE__ : Any = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="max_length" , ) , batched=_lowerCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: SCREAMING_SNAKE_CASE__ : Tuple = {k: v for k, v in ex.items() if k in input_names} SCREAMING_SNAKE_CASE__ : List[Any] = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: SCREAMING_SNAKE_CASE__ : int = {k: v for k, v in ex.items() if k in input_names} SCREAMING_SNAKE_CASE__ : Optional[int] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: SCREAMING_SNAKE_CASE__ : int = {k: v for k, v in ex.items() if k in input_names} SCREAMING_SNAKE_CASE__ : Optional[Any] = labelaid[ex[label_name]] yield (d, label) SCREAMING_SNAKE_CASE__ : Tuple = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: SCREAMING_SNAKE_CASE__ : Any = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) SCREAMING_SNAKE_CASE__ : Dict = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: SCREAMING_SNAKE_CASE__ : Dict = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowercase :List[Any] = logging.getLogger(__name__) @dataclass class _a : """simple docstring""" snake_case_ = field(metadata={"help": "Which column contains the label"} ) snake_case_ = field(default=lowercase__ , metadata={"help": "The path of the training file"} ) snake_case_ = field(default=lowercase__ , metadata={"help": "The path of the development file"} ) snake_case_ = field(default=lowercase__ , metadata={"help": "The path of the test file"} ) snake_case_ = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case_ = field( default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class _a : """simple docstring""" snake_case_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case_ = field( default=lowercase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case_ = field( default=lowercase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case_ = field(default=lowercase__ , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. snake_case_ = field( default=lowercase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_lowerCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) SCREAMING_SNAKE_CASE__ : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): SCREAMING_SNAKE_CASE__ : Optional[Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(_lowerCamelCase : EvalPrediction ) -> Dict: SCREAMING_SNAKE_CASE__ : Dict = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer SCREAMING_SNAKE_CASE__ : str = TFTrainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , compute_metrics=_lowerCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation SCREAMING_SNAKE_CASE__ : Dict = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) SCREAMING_SNAKE_CASE__ : str = trainer.evaluate() SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(_lowerCamelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(_lowerCamelCase ) return results if __name__ == "__main__": main()
26
0
from random import randint from tempfile import TemporaryFile import numpy as np def UpperCAmelCase ( _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 if start < end: SCREAMING_SNAKE_CASE__ : Union[str, Any] = randint(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : str = a[end] SCREAMING_SNAKE_CASE__ : List[str] = a[pivot] SCREAMING_SNAKE_CASE__ : Tuple = temp SCREAMING_SNAKE_CASE__ : int = _in_place_partition(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) count += _in_place_quick_sort(_lowerCamelCase , _lowerCamelCase , p - 1 ) count += _in_place_quick_sort(_lowerCamelCase , p + 1 , _lowerCamelCase ) return count def UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple , _lowerCamelCase : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = 0 SCREAMING_SNAKE_CASE__ : Optional[int] = randint(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = a[end] SCREAMING_SNAKE_CASE__ : Optional[int] = a[pivot] SCREAMING_SNAKE_CASE__ : List[Any] = temp SCREAMING_SNAKE_CASE__ : Union[str, Any] = start - 1 for index in range(_lowerCamelCase , _lowerCamelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value SCREAMING_SNAKE_CASE__ : Optional[int] = new_pivot_index + 1 SCREAMING_SNAKE_CASE__ : Optional[Any] = a[new_pivot_index] SCREAMING_SNAKE_CASE__ : Tuple = a[index] SCREAMING_SNAKE_CASE__ : Any = temp SCREAMING_SNAKE_CASE__ : List[Any] = a[new_pivot_index + 1] SCREAMING_SNAKE_CASE__ : Dict = a[end] SCREAMING_SNAKE_CASE__ : Optional[Any] = temp return new_pivot_index + 1, count __lowercase :str = TemporaryFile() __lowercase :List[Any] = 100 # 1000 elements are to be sorted __lowercase :Dict = 0, 1 # mean and standard deviation __lowercase :str = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array __lowercase :Tuple = np.load(outfile) __lowercase :int = len(M) - 1 __lowercase :Tuple = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
715
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowercase :int = logging.get_logger(__name__) class _a ( lowercase__ ): """simple docstring""" snake_case_ = ["pixel_values"] def __init__( self : int , a : bool = True , a : Optional[Dict[str, int]] = None , a : PILImageResampling = PILImageResampling.BILINEAR , a : bool = True , a : Dict[str, int] = None , a : bool = True , a : Union[int, float] = 1 / 2_55 , a : bool = True , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , **a : List[str] , ) ->None: super().__init__(**a ) SCREAMING_SNAKE_CASE__ : List[str] = size if size is not None else {"shortest_edge": 2_56} SCREAMING_SNAKE_CASE__ : Any = get_size_dict(a , default_to_square=a ) SCREAMING_SNAKE_CASE__ : List[Any] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} SCREAMING_SNAKE_CASE__ : Dict = get_size_dict(a ) SCREAMING_SNAKE_CASE__ : List[str] = do_resize SCREAMING_SNAKE_CASE__ : List[str] = size SCREAMING_SNAKE_CASE__ : List[Any] = resample SCREAMING_SNAKE_CASE__ : int = do_center_crop SCREAMING_SNAKE_CASE__ : Optional[Any] = crop_size SCREAMING_SNAKE_CASE__ : Any = do_rescale SCREAMING_SNAKE_CASE__ : Any = rescale_factor SCREAMING_SNAKE_CASE__ : int = do_normalize SCREAMING_SNAKE_CASE__ : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def A_ ( self : Tuple , a : np.ndarray , a : Dict[str, int] , a : PILImageResampling = PILImageResampling.BICUBIC , a : Optional[Union[str, ChannelDimension]] = None , **a : Optional[int] , ) ->np.ndarray: SCREAMING_SNAKE_CASE__ : List[Any] = get_size_dict(a , default_to_square=a ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = get_resize_output_image_size(a , size=size["shortest_edge"] , default_to_square=a ) return resize(a , size=a , resample=a , data_format=a , **a ) def A_ ( self : List[Any] , a : np.ndarray , a : Dict[str, int] , a : Optional[Union[str, ChannelDimension]] = None , **a : List[Any] , ) ->np.ndarray: SCREAMING_SNAKE_CASE__ : Tuple = get_size_dict(a ) return center_crop(a , size=(size["height"], size["width"]) , data_format=a , **a ) def A_ ( self : Optional[int] , a : np.ndarray , a : float , a : Optional[Union[str, ChannelDimension]] = None , **a : Dict ) ->np.ndarray: return rescale(a , scale=a , data_format=a , **a ) def A_ ( self : Union[str, Any] , a : np.ndarray , a : Union[float, List[float]] , a : Union[float, List[float]] , a : Optional[Union[str, ChannelDimension]] = None , **a : Union[str, Any] , ) ->np.ndarray: return normalize(a , mean=a , std=a , data_format=a , **a ) def A_ ( self : Tuple , a : ImageInput , a : Optional[bool] = None , a : Dict[str, int] = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : Optional[bool] = None , a : Optional[float] = None , a : Optional[bool] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[str, TensorType]] = None , a : Union[str, ChannelDimension] = ChannelDimension.FIRST , **a : Any , ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : Optional[Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ : Union[str, Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE__ : Dict = get_size_dict(a , default_to_square=a ) SCREAMING_SNAKE_CASE__ : str = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE__ : Optional[int] = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE__ : Dict = get_size_dict(a ) SCREAMING_SNAKE_CASE__ : List[str] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ : Dict = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ : Optional[int] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ : Tuple = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ : Union[str, Any] = make_list_of_images(a ) if not valid_images(a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : List[str] = [to_numpy_array(a ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ : Tuple = [self.resize(image=a , size=a , resample=a ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE__ : List[Any] = [self.center_crop(image=a , size=a ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ : List[str] = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ : Dict = [self.normalize(image=a , mean=a , std=a ) for image in images] SCREAMING_SNAKE_CASE__ : Dict = [to_channel_dimension_format(a , a ) for image in images] SCREAMING_SNAKE_CASE__ : Optional[int] = {"pixel_values": images} return BatchFeature(data=a , tensor_type=a )
26
0
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def UpperCAmelCase ( _lowerCamelCase : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = emb.weight.shape SCREAMING_SNAKE_CASE__ : Optional[Any] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[str] = emb.weight.data return lin_layer def UpperCAmelCase ( _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str]=None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = {} for old_key in state_dict.keys(): SCREAMING_SNAKE_CASE__ : Optional[Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: SCREAMING_SNAKE_CASE__ : Dict = key.replace("moe_layer.experts.0" , f"""ffn.experts.expert_{expert_idx}""" ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: SCREAMING_SNAKE_CASE__ : Union[str, Any] = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: SCREAMING_SNAKE_CASE__ : List[str] = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: SCREAMING_SNAKE_CASE__ : int = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: SCREAMING_SNAKE_CASE__ : List[Any] = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: SCREAMING_SNAKE_CASE__ : Tuple = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: SCREAMING_SNAKE_CASE__ : List[str] = key.replace("final_layer_norm" , "ff_layer_norm" ) SCREAMING_SNAKE_CASE__ : Dict = state_dict[old_key] return new_dict def UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str = WEIGHTS_NAME ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = [] SCREAMING_SNAKE_CASE__ : str = 0 os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) for expert in range(_lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Dict = switch_checkpoint_path + f"""-rank-{expert}.pt""" if os.path.isfile(_lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Optional[int] = torch.load(_lowerCamelCase )["model"] remove_ignore_keys_(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Tuple = os.path.join( _lowerCamelCase , weights_name.replace(".bin" , f"""-{len(_lowerCamelCase )+1:05d}-of-???.bin""" ) ) torch.save(_lowerCamelCase , _lowerCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_lowerCamelCase )[0]].dtype ) # Add the last block SCREAMING_SNAKE_CASE__ : int = os.path.join(_lowerCamelCase , weights_name.replace(".bin" , f"""-{len(_lowerCamelCase )+1:05d}-of-???.bin""" ) ) SCREAMING_SNAKE_CASE__ : List[Any] = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Dict = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Any = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowerCamelCase ) == 1: SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) torch.save(_lowerCamelCase , _lowerCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowerCamelCase , _lowerCamelCase ) # Otherwise, let's build the index SCREAMING_SNAKE_CASE__ : Union[str, Any] = {} for idx, shard in enumerate(_lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Optional[Any] = weights_name.replace(".bin" , f"""-{idx+1:05d}-of-{len(_lowerCamelCase ):05d}.bin""" ) SCREAMING_SNAKE_CASE__ : Any = os.path.join(_lowerCamelCase , weights_name.replace(".bin" , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) for key in shard: SCREAMING_SNAKE_CASE__ : Dict = shard_file # Add the metadata SCREAMING_SNAKE_CASE__ : List[str] = {"total_size": total_size} SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_lowerCamelCase , _lowerCamelCase ) , "w" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE__ : Optional[Any] = json.dumps(_lowerCamelCase , indent=2 , sort_keys=_lowerCamelCase ) + "\n" f.write(_lowerCamelCase ) return metadata, index if __name__ == "__main__": __lowercase :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) __lowercase :Any = parser.parse_args() __lowercase :Optional[Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __lowercase :Union[str, Any] = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __lowercase :Union[str, Any] = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
716
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _a ( unittest.TestCase ): """simple docstring""" def A_ ( self : Dict ) ->List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def A_ ( self : Dict ) ->Tuple: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Dict = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" , from_pt=a , dtype=jnp.bfloataa ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Dict = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) SCREAMING_SNAKE_CASE__ : List[Any] = controlnet_params SCREAMING_SNAKE_CASE__ : Dict = "bird" SCREAMING_SNAKE_CASE__ : List[Any] = jax.device_count() SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) SCREAMING_SNAKE_CASE__ : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipe.prepare_image_inputs([canny_image] * num_samples ) SCREAMING_SNAKE_CASE__ : List[Any] = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE__ : int = jax.random.split(a , jax.device_count() ) SCREAMING_SNAKE_CASE__ : List[Any] = replicate(a ) SCREAMING_SNAKE_CASE__ : List[str] = shard(a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = shard(a ) SCREAMING_SNAKE_CASE__ : Dict = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=50 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) SCREAMING_SNAKE_CASE__ : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) SCREAMING_SNAKE_CASE__ : List[Any] = images[0, 2_53:2_56, 2_53:2_56, -1] SCREAMING_SNAKE_CASE__ : Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def A_ ( self : List[Any] ) ->Optional[Any]: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : int = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" , from_pt=a , dtype=jnp.bfloataa ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=a , from_pt=a , dtype=jnp.bfloataa ) SCREAMING_SNAKE_CASE__ : Optional[int] = controlnet_params SCREAMING_SNAKE_CASE__ : Any = "Chef in the kitchen" SCREAMING_SNAKE_CASE__ : Union[str, Any] = jax.device_count() SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) SCREAMING_SNAKE_CASE__ : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) SCREAMING_SNAKE_CASE__ : str = pipe.prepare_image_inputs([pose_image] * num_samples ) SCREAMING_SNAKE_CASE__ : Any = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE__ : List[str] = jax.random.split(a , jax.device_count() ) SCREAMING_SNAKE_CASE__ : Optional[Any] = replicate(a ) SCREAMING_SNAKE_CASE__ : Tuple = shard(a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = shard(a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=50 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) SCREAMING_SNAKE_CASE__ : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) SCREAMING_SNAKE_CASE__ : str = images[0, 2_53:2_56, 2_53:2_56, -1] SCREAMING_SNAKE_CASE__ : Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
26
0
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowercase :Dict = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp __lowercase :Optional[int] = 5 __lowercase :Optional[Any] = 10 @require_sentencepiece @require_tokenizers class _a ( lowercase__ , unittest.TestCase ): """simple docstring""" snake_case_ = SpeechaTextTokenizer snake_case_ = False snake_case_ = True def A_ ( self : Union[str, Any] ) ->Optional[Any]: super().setUp() SCREAMING_SNAKE_CASE__ : Optional[Any] = sp.SentencePieceProcessor() spm_model.Load(a ) SCREAMING_SNAKE_CASE__ : Any = ["<s>", "<pad>", "</s>", "<unk>"] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(a ) )] SCREAMING_SNAKE_CASE__ : List[str] = dict(zip(a , range(len(a ) ) ) ) SCREAMING_SNAKE_CASE__ : str = Path(self.tmpdirname ) save_json(a , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(a , save_dir / VOCAB_FILES_NAMES["spm_file"] ) SCREAMING_SNAKE_CASE__ : Optional[int] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Optional[int] ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : Dict = "<pad>" SCREAMING_SNAKE_CASE__ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a ) , a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a ) , a ) def A_ ( self : Dict ) ->List[str]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(a ) , 10_01 ) def A_ ( self : List[Any] ) ->Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 10_01 ) def A_ ( self : int ) ->List[str]: SCREAMING_SNAKE_CASE__ : str = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Dict = tokenizer.tokenize("This is a test" ) self.assertListEqual(a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a ) , [2_89, 50, 14, 1_74, 3_86] , ) SCREAMING_SNAKE_CASE__ : Any = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) SCREAMING_SNAKE_CASE__ : str = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual(a , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def A_ ( self : List[str] ) ->Tuple: # fmt: off SCREAMING_SNAKE_CASE__ : Tuple = {"input_ids": [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , ) @require_sentencepiece class _a ( unittest.TestCase ): """simple docstring""" snake_case_ = "valhalla/s2t_mustc_multilinguial_medium" snake_case_ = "C'est trop cool" snake_case_ = "Esto es genial" @classmethod def A_ ( cls : List[Any] ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def A_ ( self : Any ) ->Dict: self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 11 ) def A_ ( self : Union[str, Any] ) ->str: self.assertEqual(self.tokenizer.vocab_size , 1_00_00 ) def A_ ( self : int ) ->Union[str, Any]: self.assertIn(a , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE__ : List[Any] = [ES_CODE, 4, 16_01, 47, 76_47, 2] SCREAMING_SNAKE_CASE__ : List[Any] = self.tokenizer.decode(a , skip_special_tokens=a ) SCREAMING_SNAKE_CASE__ : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a ) self.assertEqual(a , a ) self.assertNotIn(self.tokenizer.eos_token , a ) def A_ ( self : List[str] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : Tuple = "fr" SCREAMING_SNAKE_CASE__ : Any = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , a ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def A_ ( self : int ) ->Optional[int]: SCREAMING_SNAKE_CASE__ : int = "fr" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = "es" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
717
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowercase :List[Any] = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def UpperCAmelCase ( _lowerCamelCase : int ): '''simple docstring''' config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested" ) config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested" ) config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested" ) config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment" ) config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate" ) config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule" ) def UpperCAmelCase ( _lowerCamelCase : str ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase : Tuple ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE__ : List[str] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(_lowerCamelCase , id=_lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict ): '''simple docstring''' if exitstatus == 5: SCREAMING_SNAKE_CASE__ : List[str] = 0 # Doctest custom flag to ignore output. __lowercase :Optional[Any] = doctest.register_optionflag("IGNORE_RESULT") __lowercase :Dict = doctest.OutputChecker class _a ( lowercase__ ): """simple docstring""" def A_ ( self : Dict , a : List[str] , a : Dict , a : int ) ->Optional[Any]: if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , a , a , a ) __lowercase :Any = CustomOutputChecker __lowercase :Any = HfDoctestModule __lowercase :int = HfDocTestParser
26
0
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _a ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , a : Any , a : bool = True , a : Dict[str, int] = None , a : int = 32 , a : bool = True , a : Union[int, float] = 1 / 2_55 , a : bool = True , a : bool = True , a : Optional[Union[float, List[float]]] = [0.4814_5466, 0.457_8275, 0.4082_1073] , a : Optional[Union[float, List[float]]] = [0.2686_2954, 0.2613_0258, 0.2757_7711] , a : bool = True , a : Any=7 , a : str=30 , a : Dict=4_00 , a : Optional[int]=3 , ) ->int: SCREAMING_SNAKE_CASE__ : int = parent SCREAMING_SNAKE_CASE__ : Dict = do_resize SCREAMING_SNAKE_CASE__ : List[str] = size if size is not None else {"shortest_edge": 2_88} SCREAMING_SNAKE_CASE__ : List[Any] = size_divisor SCREAMING_SNAKE_CASE__ : List[Any] = do_rescale SCREAMING_SNAKE_CASE__ : Tuple = rescale_factor SCREAMING_SNAKE_CASE__ : Optional[int] = do_normalize SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_center_crop SCREAMING_SNAKE_CASE__ : Optional[int] = image_mean SCREAMING_SNAKE_CASE__ : Dict = image_std SCREAMING_SNAKE_CASE__ : List[str] = do_pad SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE__ : int = num_channels SCREAMING_SNAKE_CASE__ : Optional[int] = min_resolution SCREAMING_SNAKE_CASE__ : Union[str, Any] = max_resolution def A_ ( self : List[str] ) ->Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def A_ ( self : int , a : Optional[int] , a : Union[str, Any]=False ) ->Optional[Any]: if not batched: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.size["shortest_edge"] SCREAMING_SNAKE_CASE__ : Dict = image_inputs[0] if isinstance(a , Image.Image ): SCREAMING_SNAKE_CASE__ : Dict = image.size else: SCREAMING_SNAKE_CASE__ : List[str] = image.shape[1], image.shape[2] SCREAMING_SNAKE_CASE__ : Any = size / min(a , a ) if h < w: SCREAMING_SNAKE_CASE__ : Optional[int] = size, scale * w else: SCREAMING_SNAKE_CASE__ : List[str] = scale * h, size SCREAMING_SNAKE_CASE__ : List[Any] = int((13_33 / 8_00) * size ) if max(a , a ) > max_size: SCREAMING_SNAKE_CASE__ : List[Any] = max_size / max(a , a ) SCREAMING_SNAKE_CASE__ : int = newh * scale SCREAMING_SNAKE_CASE__ : Optional[int] = neww * scale SCREAMING_SNAKE_CASE__ : Any = int(newh + 0.5 ), int(neww + 0.5 ) SCREAMING_SNAKE_CASE__ : Any = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: SCREAMING_SNAKE_CASE__ : List[Any] = [] for image in image_inputs: SCREAMING_SNAKE_CASE__ : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE__ : Tuple = max(a , key=lambda a : item[0] )[0] SCREAMING_SNAKE_CASE__ : Tuple = max(a , key=lambda a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( lowercase__ , unittest.TestCase ): """simple docstring""" snake_case_ = BridgeTowerImageProcessor if is_vision_available() else None def A_ ( self : List[Any] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : Any = BridgeTowerImageProcessingTester(self ) @property def A_ ( self : Optional[int] ) ->Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def A_ ( self : Tuple ) ->str: SCREAMING_SNAKE_CASE__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , "image_mean" ) ) self.assertTrue(hasattr(a , "image_std" ) ) self.assertTrue(hasattr(a , "do_normalize" ) ) self.assertTrue(hasattr(a , "do_resize" ) ) self.assertTrue(hasattr(a , "size" ) ) self.assertTrue(hasattr(a , "size_divisor" ) ) def A_ ( self : List[Any] ) ->List[Any]: pass def A_ ( self : Tuple ) ->Optional[Any]: # Initialize image processor SCREAMING_SNAKE_CASE__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ : int = image_processing(a , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__ : Any = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self : Optional[int] ) ->Any: # Initialize image processor SCREAMING_SNAKE_CASE__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__ : List[Any] = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ : Tuple = image_processing(a , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self : str ) ->Optional[int]: # Initialize image processor SCREAMING_SNAKE_CASE__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__ : Tuple = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ : Any = image_processing(a , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
718
def UpperCAmelCase ( _lowerCamelCase : int = 1_000 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = -1 SCREAMING_SNAKE_CASE__ : str = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c SCREAMING_SNAKE_CASE__ : Tuple = (n * n - 2 * a * n) // (2 * n - 2 * a) SCREAMING_SNAKE_CASE__ : Dict = n - a - b if c * c == (a * a + b * b): SCREAMING_SNAKE_CASE__ : str = a * b * c if candidate >= product: SCREAMING_SNAKE_CASE__ : List[str] = candidate return product if __name__ == "__main__": print(f"{solution() = }")
26
0
from __future__ import annotations def UpperCAmelCase ( _lowerCamelCase : Any , _lowerCamelCase : Any , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] ): # noqa: E741 '''simple docstring''' while r - l > 1: SCREAMING_SNAKE_CASE__ : Any = (l + r) // 2 if v[m] >= key: SCREAMING_SNAKE_CASE__ : Optional[int] = m else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = m # noqa: E741 return r def UpperCAmelCase ( _lowerCamelCase : list[int] ): '''simple docstring''' if len(_lowerCamelCase ) == 0: return 0 SCREAMING_SNAKE_CASE__ : Dict = [0] * len(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : str = 1 SCREAMING_SNAKE_CASE__ : int = v[0] for i in range(1 , len(_lowerCamelCase ) ): if v[i] < tail[0]: SCREAMING_SNAKE_CASE__ : List[Any] = v[i] elif v[i] > tail[length - 1]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = v[i] length += 1 else: SCREAMING_SNAKE_CASE__ : str = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
719
from __future__ import annotations def UpperCAmelCase ( _lowerCamelCase : list , _lowerCamelCase : int | None = None , _lowerCamelCase : int | None = None ): '''simple docstring''' if start is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 if end is None: SCREAMING_SNAKE_CASE__ : Any = len(_lowerCamelCase ) - 1 if start >= end: return SCREAMING_SNAKE_CASE__ : List[str] = (start + end) // 2 slowsort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) slowsort(_lowerCamelCase , mid + 1 , _lowerCamelCase ) if sequence[end] < sequence[mid]: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = sequence[mid], sequence[end] slowsort(_lowerCamelCase , _lowerCamelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
26
0
def UpperCAmelCase ( _lowerCamelCase : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def UpperCAmelCase ( _lowerCamelCase : int = 5_000 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )] for i, pentagonal_i in enumerate(_lowerCamelCase ): for j in range(_lowerCamelCase , len(_lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ : Any = pentagonal_nums[j] SCREAMING_SNAKE_CASE__ : int = pentagonal_i + pentagonal_j SCREAMING_SNAKE_CASE__ : Optional[Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ): return b return -1 if __name__ == "__main__": print(f"{solution() = }")
720
from __future__ import annotations from fractions import Fraction def UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def UpperCAmelCase ( _lowerCamelCase : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = [] SCREAMING_SNAKE_CASE__ : str = 11 SCREAMING_SNAKE_CASE__ : Any = int("1" + "0" * digit_len ) for num in range(_lowerCamelCase , _lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_lowerCamelCase , _lowerCamelCase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 SCREAMING_SNAKE_CASE__ : str = 10 return solutions def UpperCAmelCase ( _lowerCamelCase : int = 2 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = 1.0 for fraction in fraction_list(_lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Any = Fraction(_lowerCamelCase ) result *= frac.denominator / frac.numerator return int(_lowerCamelCase ) if __name__ == "__main__": print(solution())
26
0
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule __lowercase :Optional[int] = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __lowercase :int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
721
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class _a ( unittest.TestCase ): """simple docstring""" @require_torch def A_ ( self : Dict ) ->str: SCREAMING_SNAKE_CASE__ : Any = pipeline( task="zero-shot-audio-classification" , model="hf-internal-testing/tiny-clap-htsat-unfused" ) SCREAMING_SNAKE_CASE__ : Optional[int] = load_dataset("ashraq/esc50" ) SCREAMING_SNAKE_CASE__ : Optional[int] = dataset["train"]["audio"][-1]["array"] SCREAMING_SNAKE_CASE__ : int = audio_classifier(a , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(a ) , [{"score": 0.501, "label": "Sound of a dog"}, {"score": 0.499, "label": "Sound of vaccum cleaner"}] , ) @unittest.skip("No models are available in TF" ) def A_ ( self : int ) ->Union[str, Any]: pass @slow @require_torch def A_ ( self : int ) ->str: SCREAMING_SNAKE_CASE__ : List[str] = pipeline( task="zero-shot-audio-classification" , model="laion/clap-htsat-unfused" , ) # This is an audio of a dog SCREAMING_SNAKE_CASE__ : int = load_dataset("ashraq/esc50" ) SCREAMING_SNAKE_CASE__ : str = dataset["train"]["audio"][-1]["array"] SCREAMING_SNAKE_CASE__ : List[Any] = audio_classifier(a , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(a ) , [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ] , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(a ) , [ [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) SCREAMING_SNAKE_CASE__ : int = audio_classifier( [audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] , batch_size=5 ) self.assertEqual( nested_simplify(a ) , [ [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) @unittest.skip("No models are available in TF" ) def A_ ( self : Optional[int] ) ->Union[str, Any]: pass
26
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCamelCase ( lowerCamelCase : Optional[Any]): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def lowerCamelCase ( lowerCamelCase : str): # word like '180' or '身高' or '神' for char in word: A_ : Optional[Any] = ord(lowerCamelCase) if not _is_chinese_char(lowerCamelCase): return 0 return 1 def lowerCamelCase ( lowerCamelCase : List[str]): A_ : Any = set() for token in tokens: A_ : str = len(lowerCamelCase) > 1 and is_chinese(lowerCamelCase) if chinese_word: word_set.add(lowerCamelCase) A_ : Any = list(lowerCamelCase) return word_list def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : set()): if not chinese_word_set: return bert_tokens A_ : Any = max([len(lowerCamelCase) for w in chinese_word_set]) A_ : str = bert_tokens A_ , A_ : Any = 0, len(lowerCamelCase) while start < end: A_ : Tuple = True if is_chinese(bert_word[start]): A_ : List[str] = min(end - start , lowerCamelCase) for i in range(lowerCamelCase , 1 , -1): A_ : Tuple = """""".join(bert_word[start : start + i]) if whole_word in chinese_word_set: for j in range(start + 1 , start + i): A_ : Dict = """##""" + bert_word[j] A_ : str = start + i A_ : Dict = False break if single_word: start += 1 return bert_word def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : LTP , lowerCamelCase : BertTokenizer): A_ : Union[str, Any] = [] for i in range(0 , len(lowerCamelCase) , 100): A_ : List[Any] = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""]).cws A_ : int = [get_chinese_word(lowerCamelCase) for r in res] ltp_res.extend(lowerCamelCase) assert len(lowerCamelCase) == len(lowerCamelCase) A_ : List[Any] = [] for i in range(0 , len(lowerCamelCase) , 100): A_ : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=lowerCamelCase , truncation=lowerCamelCase , max_length=512) bert_res.extend(res["""input_ids"""]) assert len(lowerCamelCase) == len(lowerCamelCase) A_ : Union[str, Any] = [] for input_ids, chinese_word in zip(lowerCamelCase , lowerCamelCase): A_ : List[Any] = [] for id in input_ids: A_ : List[Any] = bert_tokenizer._convert_id_to_token(lowerCamelCase) input_tokens.append(lowerCamelCase) A_ : int = add_sub_symbol(lowerCamelCase , lowerCamelCase) A_ : str = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCamelCase): if token[:2] == "##": A_ : Optional[Any] = token[2:] # save chinese tokens' pos if len(lowerCamelCase) == 1 and _is_chinese_char(ord(lowerCamelCase)): ref_id.append(lowerCamelCase) ref_ids.append(lowerCamelCase) assert len(lowerCamelCase) == len(lowerCamelCase) return ref_ids def lowerCamelCase ( lowerCamelCase : Tuple): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""") as f: A_ : Optional[int] = f.readlines() A_ : Union[str, Any] = [line.strip() for line in data if len(lowerCamelCase) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ : Optional[Any] = LTP(args.ltp) # faster in GPU device A_ : Dict = BertTokenizer.from_pretrained(args.bert) A_ : str = prepare_ref(lowerCamelCase , lowerCamelCase , lowerCamelCase) with open(args.save_path , """w""" , encoding="""utf-8""") as f: A_ : Optional[Any] = [json.dumps(lowerCamelCase) + """\n""" for ref in ref_ids] f.writelines(lowerCamelCase) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) __magic_name__ = parser.parse_args() main(args)
27
1
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """Wav2Vec2FeatureExtractor""" a_ = """AutoTokenizer""" def __init__( self : str ,_a : str ,_a : Any ): '''simple docstring''' super().__init__(_a ,_a ) A_ : List[str] = self.feature_extractor A_ : Dict = False @classmethod def _a ( cls : Any ,_a : List[str] ,**_a : Optional[int] ): '''simple docstring''' try: return super().from_pretrained(_a ,**_a ) except OSError: warnings.warn( f'Loading a tokenizer inside {cls.__name__} from a config that does not' """ include a `tokenizer_class` attribute is deprecated and will be """ """removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`""" """ attribute to either your `config.json` or `tokenizer_config.json` """ """file to suppress this warning: """ ,_a ,) A_ : List[str] = WavaVecaFeatureExtractor.from_pretrained(_a ,**_a ) A_ : Any = WavaVecaCTCTokenizer.from_pretrained(_a ,**_a ) return cls(feature_extractor=_a ,tokenizer=_a ) def __call__( self : int ,*_a : List[Any] ,**_a : Optional[int] ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_a ,**_a ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) A_ : str = kwargs.pop("""raw_speech""" ) else: A_ : List[Any] = kwargs.pop("""audio""" ,_a ) A_ : Optional[Any] = kwargs.pop("""sampling_rate""" ,_a ) A_ : List[str] = kwargs.pop("""text""" ,_a ) if len(_a ) > 0: A_ : List[Any] = args[0] A_ : Any = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: A_ : Union[str, Any] = self.feature_extractor(_a ,*_a ,sampling_rate=_a ,**_a ) if text is not None: A_ : Dict = self.tokenizer(_a ,**_a ) if text is None: return inputs elif audio is None: return encodings else: A_ : Dict = encodings["""input_ids"""] return inputs def _a ( self : Optional[int] ,*_a : Union[str, Any] ,**_a : List[Any] ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor.pad(*_a ,**_a ) A_ : Optional[int] = kwargs.pop("""input_features""" ,_a ) A_ : Union[str, Any] = kwargs.pop("""labels""" ,_a ) if len(_a ) > 0: A_ : int = args[0] A_ : Tuple = args[1:] if input_features is not None: A_ : List[str] = self.feature_extractor.pad(_a ,*_a ,**_a ) if labels is not None: A_ : Tuple = self.tokenizer.pad(_a ,**_a ) if labels is None: return input_features elif input_features is None: return labels else: A_ : str = labels["""input_ids"""] return input_features def _a ( self : Optional[int] ,*_a : Tuple ,**_a : Dict ): '''simple docstring''' return self.tokenizer.batch_decode(*_a ,**_a ) def _a ( self : Union[str, Any] ,*_a : List[str] ,**_a : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*_a ,**_a ) @contextmanager def _a ( self : Union[str, Any] ): '''simple docstring''' warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) A_ : int = True A_ : List[str] = self.tokenizer yield A_ : Optional[int] = self.feature_extractor A_ : Optional[Any] = False
27
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""image_processor""", """tokenizer"""] a_ = """ViltImageProcessor""" a_ = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : List[Any] ,_a : Optional[Any]=None ,_a : List[str]=None ,**_a : Any ): '''simple docstring''' A_ : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" ,_a ,) A_ : List[str] = kwargs.pop("""feature_extractor""" ) A_ : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_a ,_a ) A_ : Optional[Any] = self.image_processor def __call__( self : Any ,_a : Tuple ,_a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,_a : bool = True ,_a : Union[bool, str, PaddingStrategy] = False ,_a : Union[bool, str, TruncationStrategy] = None ,_a : Optional[int] = None ,_a : int = 0 ,_a : Optional[int] = None ,_a : Optional[bool] = None ,_a : Optional[bool] = None ,_a : bool = False ,_a : bool = False ,_a : bool = False ,_a : bool = False ,_a : bool = True ,_a : Optional[Union[str, TensorType]] = None ,**_a : Tuple ,): '''simple docstring''' A_ : int = self.tokenizer( text=_a ,add_special_tokens=_a ,padding=_a ,truncation=_a ,max_length=_a ,stride=_a ,pad_to_multiple_of=_a ,return_token_type_ids=_a ,return_attention_mask=_a ,return_overflowing_tokens=_a ,return_special_tokens_mask=_a ,return_offsets_mapping=_a ,return_length=_a ,verbose=_a ,return_tensors=_a ,**_a ,) # add pixel_values + pixel_mask A_ : Optional[int] = self.image_processor(_a ,return_tensors=_a ) encoding.update(_a ) return encoding def _a ( self : List[Any] ,*_a : Any ,**_a : Any ): '''simple docstring''' return self.tokenizer.batch_decode(*_a ,**_a ) def _a ( self : int ,*_a : int ,**_a : Optional[int] ): '''simple docstring''' return self.tokenizer.decode(*_a ,**_a ) @property def _a ( self : List[Any] ): '''simple docstring''' A_ : Optional[int] = self.tokenizer.model_input_names A_ : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _a ( self : str ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" ,_a ,) return self.image_processor_class @property def _a ( self : int ): '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" ,_a ,) return self.image_processor
27
1
'''simple docstring''' def lowerCamelCase ( lowerCamelCase : int): if n == 1 or not isinstance(lowerCamelCase , lowerCamelCase): return 0 elif n == 2: return 1 else: A_ : List[str] = [0, 1] for i in range(2 , n + 1): sequence.append(sequence[i - 1] + sequence[i - 2]) return sequence[n] def lowerCamelCase ( lowerCamelCase : int): A_ : List[Any] = 0 A_ : Any = 2 while digits < n: index += 1 A_ : str = len(str(fibonacci(lowerCamelCase))) return index def lowerCamelCase ( lowerCamelCase : int = 1000): return fibonacci_digits_index(lowerCamelCase) if __name__ == "__main__": print(solution(int(str(input()).strip())))
27
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""torch""", """torchsde"""] def __init__( self : Any ,*_a : Union[str, Any] ,**_a : Optional[int] ): '''simple docstring''' requires_backends(self ,["""torch""", """torchsde"""] ) @classmethod def _a ( cls : Optional[int] ,*_a : List[Any] ,**_a : Any ): '''simple docstring''' requires_backends(cls ,["""torch""", """torchsde"""] ) @classmethod def _a ( cls : List[Any] ,*_a : Tuple ,**_a : Union[str, Any] ): '''simple docstring''' requires_backends(cls ,["""torch""", """torchsde"""] )
27
1
'''simple docstring''' def lowerCamelCase ( lowerCamelCase : str): A_ : int = 0 # if input_string is "aba" than new_input_string become "a|b|a" A_ : Dict = """""" A_ : Any = """""" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(lowerCamelCase) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring A_ , A_ : List[Any] = 0, 0 # length[i] shows the length of palindromic substring with center i A_ : Union[str, Any] = [1 for i in range(len(lowerCamelCase))] # for each character in new_string find corresponding palindromic string A_ : Union[str, Any] = 0 for j in range(len(lowerCamelCase)): A_ : Union[str, Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1) while ( j - k >= 0 and j + k < len(lowerCamelCase) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 A_ : Optional[Any] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: A_ : str = j - k + 1 # noqa: E741 A_ : Any = j + k - 1 # update max_length and start position if max_length < length[j]: A_ : str = length[j] A_ : List[str] = j # create that string A_ : Tuple = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
27
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : str=True , lowerCamelCase : Optional[Any]="pt"): A_ : Optional[int] = {"""add_prefix_space""": True} if isinstance(lowerCamelCase , lowerCamelCase) and not line.startswith(""" """) else {} A_ : Optional[int] = padding_side return tokenizer( [line] , max_length=lowerCamelCase , padding="""max_length""" if pad_to_max_length else None , truncation=lowerCamelCase , return_tensors=lowerCamelCase , add_special_tokens=lowerCamelCase , **lowerCamelCase , ) def lowerCamelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any]=None , ): A_ : Dict = input_ids.ne(lowerCamelCase).any(dim=0) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] ,_a : Optional[Any] ,_a : Tuple ,_a : Dict ,_a : Tuple ,_a : Tuple="train" ,_a : Optional[int]=None ,_a : Any=None ,_a : int=None ,_a : Union[str, Any]="" ,): '''simple docstring''' super().__init__() A_ : Union[str, Any] = Path(_a ).joinpath(type_path + """.source""" ) A_ : Any = Path(_a ).joinpath(type_path + """.target""" ) A_ : Dict = self.get_char_lens(self.src_file ) A_ : Optional[int] = max_source_length A_ : List[str] = max_target_length assert min(self.src_lens ) > 0, f'found empty line in {self.src_file}' A_ : List[Any] = tokenizer A_ : Optional[Any] = prefix if n_obs is not None: A_ : Any = self.src_lens[:n_obs] A_ : Optional[int] = src_lang A_ : Tuple = tgt_lang def __len__( self : Tuple ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self : List[str] ,_a : Tuple ): '''simple docstring''' A_ : int = index + 1 # linecache starts at 1 A_ : Union[str, Any] = self.prefix + linecache.getline(str(self.src_file ) ,_a ).rstrip("""\n""" ) A_ : Dict = linecache.getline(str(self.tgt_file ) ,_a ).rstrip("""\n""" ) assert source_line, f'empty source line for index {index}' assert tgt_line, f'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer ,_a ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A_ : List[str] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,_a ) else self.tokenizer ) A_ : Any = self.tokenizer.generator if isinstance(self.tokenizer ,_a ) else self.tokenizer A_ : Optional[int] = encode_line(_a ,_a ,self.max_source_length ,"""right""" ) A_ : Optional[int] = encode_line(_a ,_a ,self.max_target_length ,"""right""" ) A_ : Optional[Any] = source_inputs["""input_ids"""].squeeze() A_ : Dict = target_inputs["""input_ids"""].squeeze() A_ : Union[str, Any] = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _a ( _a : int ): '''simple docstring''' return [len(_a ) for x in Path(_a ).open().readlines()] def _a ( self : Optional[int] ,_a : Dict ): '''simple docstring''' A_ : str = torch.stack([x["""input_ids"""] for x in batch] ) A_ : Optional[Any] = torch.stack([x["""attention_mask"""] for x in batch] ) A_ : str = torch.stack([x["""decoder_input_ids"""] for x in batch] ) A_ : Union[str, Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,_a ) else self.tokenizer.pad_token_id ) A_ : str = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,_a ) else self.tokenizer.pad_token_id ) A_ : List[str] = trim_batch(_a ,_a ) A_ , A_ : Union[str, Any] = trim_batch(_a ,_a ,attention_mask=_a ) A_ : List[str] = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch __magic_name__ = getLogger(__name__) def lowerCamelCase ( lowerCamelCase : List[List]): return list(itertools.chain.from_iterable(lowerCamelCase)) def lowerCamelCase ( lowerCamelCase : str): A_ : Union[str, Any] = get_git_info() save_json(lowerCamelCase , os.path.join(lowerCamelCase , """git_log.json""")) def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : List[str]=4 , **lowerCamelCase : List[str]): with open(lowerCamelCase , """w""") as f: json.dump(lowerCamelCase , lowerCamelCase , indent=lowerCamelCase , **lowerCamelCase) def lowerCamelCase ( lowerCamelCase : Any): with open(lowerCamelCase) as f: return json.load(lowerCamelCase) def lowerCamelCase ( ): A_ : List[str] = git.Repo(search_parent_directories=lowerCamelCase) A_ : Union[str, Any] = { """repo_id""": str(lowerCamelCase), """repo_sha""": str(repo.head.object.hexsha), """repo_branch""": str(repo.active_branch), """hostname""": str(socket.gethostname()), } return repo_infos def lowerCamelCase ( lowerCamelCase : Callable , lowerCamelCase : Iterable): return list(map(lowerCamelCase , lowerCamelCase)) def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : Union[str, Any]): with open(lowerCamelCase , """wb""") as f: return pickle.dump(lowerCamelCase , lowerCamelCase) def lowerCamelCase ( lowerCamelCase : List[str]): def remove_articles(lowerCamelCase : Any): return re.sub(r"""\b(a|an|the)\b""" , """ """ , lowerCamelCase) def white_space_fix(lowerCamelCase : List[Any]): return " ".join(text.split()) def remove_punc(lowerCamelCase : Union[str, Any]): A_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(lowerCamelCase : List[str]): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase)))) def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : int): A_ : Tuple = normalize_answer(lowerCamelCase).split() A_ : Dict = normalize_answer(lowerCamelCase).split() A_ : int = Counter(lowerCamelCase) & Counter(lowerCamelCase) A_ : Any = sum(common.values()) if num_same == 0: return 0 A_ : Any = 1.0 * num_same / len(lowerCamelCase) A_ : Any = 1.0 * num_same / len(lowerCamelCase) A_ : Any = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Any): return normalize_answer(lowerCamelCase) == normalize_answer(lowerCamelCase) def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : List[str]): assert len(lowerCamelCase) == len(lowerCamelCase) A_ : Any = 0 for hypo, pred in zip(lowerCamelCase , lowerCamelCase): em += exact_match_score(lowerCamelCase , lowerCamelCase) if len(lowerCamelCase) > 0: em /= len(lowerCamelCase) return {"em": em} def lowerCamelCase ( lowerCamelCase : Union[str, Any]): return model_prefix.startswith("""rag""") def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Union[str, Any]): A_ : Optional[Any] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A_ : Tuple = """dropout_rate""" for p in extra_params: if getattr(lowerCamelCase , lowerCamelCase , lowerCamelCase): if not hasattr(lowerCamelCase , lowerCamelCase) and not hasattr(lowerCamelCase , equivalent_param[p]): logger.info("""config doesn't have a `{}` attribute""".format(lowerCamelCase)) delattr(lowerCamelCase , lowerCamelCase) continue A_ : Tuple = p if hasattr(lowerCamelCase , lowerCamelCase) else equivalent_param[p] setattr(lowerCamelCase , lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase)) delattr(lowerCamelCase , lowerCamelCase) return hparams, config
27
1
'''simple docstring''' def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : Optional[int]): A_ : Union[str, Any] = [1] for i in range(2 , lowerCamelCase): factorials.append(factorials[-1] * i) assert 0 <= k < factorials[-1] * n, "k out of bounds" A_ : int = [] A_ : Union[str, Any] = list(range(lowerCamelCase)) # Find permutation while factorials: A_ : List[Any] = factorials.pop() A_ , A_ : Optional[int] = divmod(lowerCamelCase , lowerCamelCase) permutation.append(elements[number]) elements.remove(elements[number]) permutation.append(elements[0]) return permutation if __name__ == "__main__": import doctest doctest.testmod()
27
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
1
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def _a ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() def _a ( self : List[Any] ): '''simple docstring''' A_ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A_ : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A_ : Union[str, Any] = """xvjiarui/stable-diffusion-2-inpainting""" A_ , A_ : List[Any] = FlaxStableDiffusionInpaintPipeline.from_pretrained(_a ,safety_checker=_a ) A_ : int = """Face of a yellow cat, high resolution, sitting on a park bench""" A_ : Tuple = jax.random.PRNGKey(0 ) A_ : Optional[int] = 50 A_ : Union[str, Any] = jax.device_count() A_ : Tuple = num_samples * [prompt] A_ : int = num_samples * [init_image] A_ : Dict = num_samples * [mask_image] A_ , A_ , A_ : Tuple = pipeline.prepare_inputs(_a ,_a ,_a ) # shard inputs and rng A_ : str = replicate(_a ) A_ : str = jax.random.split(_a ,jax.device_count() ) A_ : List[str] = shard(_a ) A_ : int = shard(_a ) A_ : Tuple = shard(_a ) A_ : str = pipeline( _a ,_a ,_a ,_a ,_a ,_a ,jit=_a ) A_ : List[Any] = output.images.reshape(_a ,512 ,512 ,3 ) A_ : List[Any] = images[0, 253:256, 253:256, -1] A_ : List[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) A_ : Optional[Any] = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
27
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = KandinskyVaaControlnetPipeline a_ = ["""image_embeds""", """negative_image_embeds""", """hint"""] a_ = ["""image_embeds""", """negative_image_embeds""", """hint"""] a_ = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a_ = False @property def _a ( self : Any ): '''simple docstring''' return 32 @property def _a ( self : Tuple ): '''simple docstring''' return 32 @property def _a ( self : Tuple ): '''simple docstring''' return self.time_input_dim @property def _a ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def _a ( self : Optional[Any] ): '''simple docstring''' return 100 @property def _a ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) A_ : List[Any] = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } A_ : Tuple = UNetaDConditionModel(**_a ) return model @property def _a ( self : List[str] ): '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _a ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) A_ : int = VQModel(**self.dummy_movq_kwargs ) return model def _a ( self : List[str] ): '''simple docstring''' A_ : Optional[Any] = self.dummy_unet A_ : int = self.dummy_movq A_ : Tuple = DDIMScheduler( num_train_timesteps=1000 ,beta_schedule="""linear""" ,beta_start=0.00085 ,beta_end=0.012 ,clip_sample=_a ,set_alpha_to_one=_a ,steps_offset=1 ,prediction_type="""epsilon""" ,thresholding=_a ,) A_ : int = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _a ( self : Dict ,_a : str ,_a : Union[str, Any]=0 ): '''simple docstring''' A_ : Dict = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(_a ) ).to(_a ) A_ : int = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( _a ) # create hint A_ : List[Any] = floats_tensor((1, 3, 64, 64) ,rng=random.Random(_a ) ).to(_a ) if str(_a ).startswith("""mps""" ): A_ : Optional[Any] = torch.manual_seed(_a ) else: A_ : str = torch.Generator(device=_a ).manual_seed(_a ) A_ : List[Any] = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def _a ( self : Dict ): '''simple docstring''' A_ : List[Any] = """cpu""" A_ : List[str] = self.get_dummy_components() A_ : Tuple = self.pipeline_class(**_a ) A_ : Dict = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) A_ : Tuple = pipe(**self.get_dummy_inputs(_a ) ) A_ : Tuple = output.images A_ : Optional[Any] = pipe( **self.get_dummy_inputs(_a ) ,return_dict=_a ,)[0] A_ : Tuple = image[0, -3:, -3:, -1] A_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ : List[Any] = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def _a ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Any ): '''simple docstring''' A_ : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) A_ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) A_ : Optional[int] = torch.from_numpy(np.array(_a ) ).float() / 255.0 A_ : List[Any] = hint.permute(2 ,0 ,1 ).unsqueeze(0 ) A_ : List[Any] = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" ,torch_dtype=torch.floataa ) pipe_prior.to(_a ) A_ : Union[str, Any] = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" ,torch_dtype=torch.floataa ) A_ : Union[str, Any] = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) A_ : Optional[Any] = """A robot, 4k photo""" A_ : Any = torch.Generator(device="""cuda""" ).manual_seed(0 ) A_ , A_ : List[str] = pipe_prior( _a ,generator=_a ,num_inference_steps=5 ,negative_prompt="""""" ,).to_tuple() A_ : int = torch.Generator(device="""cuda""" ).manual_seed(0 ) A_ : List[Any] = pipeline( image_embeds=_a ,negative_image_embeds=_a ,hint=_a ,generator=_a ,num_inference_steps=100 ,output_type="""np""" ,) A_ : Dict = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_a ,_a )
27
1
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) __magic_name__ = _symbol_database.Default() __magic_name__ = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) __magic_name__ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: __magic_name__ = None __magic_name__ = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" __magic_name__ = 45 __magic_name__ = 1_581 __magic_name__ = 1_517 __magic_name__ = 1_570 __magic_name__ = 1_584 __magic_name__ = 1_793 __magic_name__ = 1_795 __magic_name__ = 1_916 __magic_name__ = 1_864 __magic_name__ = 1_905 __magic_name__ = 1_919 __magic_name__ = 2_429 __magic_name__ = 2_208 __magic_name__ = 2_418 __magic_name__ = 2_323 __magic_name__ = 2_407 # @@protoc_insertion_point(module_scope)
27
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __magic_name__ = logging.get_logger(__name__) __magic_name__ = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """deberta-v2""" def __init__( self : Optional[Any] ,_a : Union[str, Any]=128100 ,_a : Optional[int]=1536 ,_a : Dict=24 ,_a : int=24 ,_a : Tuple=6144 ,_a : Union[str, Any]="gelu" ,_a : List[Any]=0.1 ,_a : Dict=0.1 ,_a : int=512 ,_a : int=0 ,_a : int=0.02 ,_a : int=1e-7 ,_a : List[str]=False ,_a : Union[str, Any]=-1 ,_a : List[Any]=0 ,_a : Optional[Any]=True ,_a : Tuple=None ,_a : Any=0 ,_a : int="gelu" ,**_a : Any ,): '''simple docstring''' super().__init__(**_a ) A_ : Union[str, Any] = hidden_size A_ : Dict = num_hidden_layers A_ : Union[str, Any] = num_attention_heads A_ : List[Any] = intermediate_size A_ : List[Any] = hidden_act A_ : Optional[int] = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : int = max_position_embeddings A_ : Any = type_vocab_size A_ : List[Any] = initializer_range A_ : int = relative_attention A_ : Tuple = max_relative_positions A_ : int = pad_token_id A_ : Tuple = position_biased_input # Backwards compatibility if type(_a ) == str: A_ : str = [x.strip() for x in pos_att_type.lower().split("""|""" )] A_ : Any = pos_att_type A_ : Optional[int] = vocab_size A_ : Tuple = layer_norm_eps A_ : Any = kwargs.get("""pooler_hidden_size""" ,_a ) A_ : Union[str, Any] = pooler_dropout A_ : List[Any] = pooler_hidden_act class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _a ( self : Any ): '''simple docstring''' if self.task == "multiple-choice": A_ : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : Any = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def _a ( self : Optional[int] ): '''simple docstring''' return 12 def _a ( self : int ,_a : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] ,_a : int = -1 ,_a : int = -1 ,_a : int = -1 ,_a : bool = False ,_a : Optional["TensorType"] = None ,_a : int = 3 ,_a : int = 40 ,_a : int = 40 ,_a : "PreTrainedTokenizerBase" = None ,): '''simple docstring''' A_ : Any = super().generate_dummy_inputs(preprocessor=_a ,framework=_a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
27
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __magic_name__ = logging.get_logger(__name__) __magic_name__ = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """deberta-v2""" def __init__( self : Optional[Any] ,_a : Union[str, Any]=128100 ,_a : Optional[int]=1536 ,_a : Dict=24 ,_a : int=24 ,_a : Tuple=6144 ,_a : Union[str, Any]="gelu" ,_a : List[Any]=0.1 ,_a : Dict=0.1 ,_a : int=512 ,_a : int=0 ,_a : int=0.02 ,_a : int=1e-7 ,_a : List[str]=False ,_a : Union[str, Any]=-1 ,_a : List[Any]=0 ,_a : Optional[Any]=True ,_a : Tuple=None ,_a : Any=0 ,_a : int="gelu" ,**_a : Any ,): '''simple docstring''' super().__init__(**_a ) A_ : Union[str, Any] = hidden_size A_ : Dict = num_hidden_layers A_ : Union[str, Any] = num_attention_heads A_ : List[Any] = intermediate_size A_ : List[Any] = hidden_act A_ : Optional[int] = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : int = max_position_embeddings A_ : Any = type_vocab_size A_ : List[Any] = initializer_range A_ : int = relative_attention A_ : Tuple = max_relative_positions A_ : int = pad_token_id A_ : Tuple = position_biased_input # Backwards compatibility if type(_a ) == str: A_ : str = [x.strip() for x in pos_att_type.lower().split("""|""" )] A_ : Any = pos_att_type A_ : Optional[int] = vocab_size A_ : Tuple = layer_norm_eps A_ : Any = kwargs.get("""pooler_hidden_size""" ,_a ) A_ : Union[str, Any] = pooler_dropout A_ : List[Any] = pooler_hidden_act class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _a ( self : Any ): '''simple docstring''' if self.task == "multiple-choice": A_ : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : Any = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def _a ( self : Optional[int] ): '''simple docstring''' return 12 def _a ( self : int ,_a : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] ,_a : int = -1 ,_a : int = -1 ,_a : int = -1 ,_a : bool = False ,_a : Optional["TensorType"] = None ,_a : int = 3 ,_a : int = 40 ,_a : int = 40 ,_a : "PreTrainedTokenizerBase" = None ,): '''simple docstring''' A_ : Any = super().generate_dummy_inputs(preprocessor=_a ,framework=_a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
27
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') __magic_name__ = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) __magic_name__ = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) __magic_name__ = BeautifulSoup(res.text, 'html.parser') __magic_name__ = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
27
1
'''simple docstring''' import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType __magic_name__ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """vision-encoder-decoder""" a_ = True def __init__( self : Any ,**_a : List[str] ): '''simple docstring''' super().__init__(**_a ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'A configuraton of type {self.model_type} cannot be instantiated because ' f'not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}' ) A_ : Dict = kwargs.pop("""encoder""" ) A_ : Union[str, Any] = encoder_config.pop("""model_type""" ) A_ : Optional[Any] = kwargs.pop("""decoder""" ) A_ : Any = decoder_config.pop("""model_type""" ) A_ : List[Any] = AutoConfig.for_model(_a ,**_a ) A_ : int = AutoConfig.for_model(_a ,**_a ) A_ : Optional[int] = True @classmethod def _a ( cls : List[Any] ,_a : PretrainedConfig ,_a : PretrainedConfig ,**_a : Any ): '''simple docstring''' logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) A_ : Optional[int] = True A_ : Any = True return cls(encoder=encoder_config.to_dict() ,decoder=decoder_config.to_dict() ,**_a ) def _a ( self : Tuple ): '''simple docstring''' A_ : List[Any] = copy.deepcopy(self.__dict__ ) A_ : Any = self.encoder.to_dict() A_ : Dict = self.decoder.to_dict() A_ : Union[str, Any] = self.__class__.model_type return output class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = version.parse("""1.11""" ) @property def _a ( self : List[Any] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _a ( self : Union[str, Any] ): '''simple docstring''' return 1e-4 @property def _a ( self : Union[str, Any] ): '''simple docstring''' return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _a ( self : Any ): '''simple docstring''' A_ : List[Any] = OrderedDict() A_ : Dict = {0: """batch""", 1: """past_decoder_sequence + sequence"""} A_ : List[Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} A_ : str = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def _a ( self : Optional[Any] ,_a : "PreTrainedTokenizerBase" ,_a : int = -1 ,_a : int = -1 ,_a : bool = False ,_a : Optional["TensorType"] = None ,): '''simple docstring''' import torch A_ : int = OrderedDict() A_ : Dict = super().generate_dummy_inputs( _a ,batch_size=_a ,seq_length=_a ,is_pair=_a ,framework=_a ) A_ , A_ : str = dummy_input["""input_ids"""].shape A_ : Optional[Any] = (batch, encoder_sequence, self._config.encoder_hidden_size) A_ : Dict = dummy_input.pop("""input_ids""" ) A_ : Optional[int] = dummy_input.pop("""attention_mask""" ) A_ : Dict = torch.zeros(_a ) return common_inputs class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _a ( self : int ): '''simple docstring''' pass def _a ( self : Optional[Any] ,_a : PretrainedConfig ): '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(_a ) def _a ( self : int ,_a : PretrainedConfig ,_a : PretrainedConfig ,_a : str = "default" ): '''simple docstring''' A_ : Union[str, Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_a ,_a )
27
'''simple docstring''' from ... import PretrainedConfig __magic_name__ = { 'sijunhe/nezha-cn-base': 'https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json', } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP a_ = """nezha""" def __init__( self : int ,_a : Union[str, Any]=21128 ,_a : int=768 ,_a : Any=12 ,_a : List[str]=12 ,_a : str=3072 ,_a : int="gelu" ,_a : int=0.1 ,_a : str=0.1 ,_a : Tuple=512 ,_a : List[Any]=64 ,_a : Dict=2 ,_a : List[Any]=0.02 ,_a : Optional[Any]=1e-12 ,_a : List[Any]=0.1 ,_a : Union[str, Any]=0 ,_a : Any=2 ,_a : Union[str, Any]=3 ,_a : int=True ,**_a : int ,): '''simple docstring''' super().__init__(pad_token_id=_a ,bos_token_id=_a ,eos_token_id=_a ,**_a ) A_ : Tuple = vocab_size A_ : int = hidden_size A_ : Any = num_hidden_layers A_ : List[Any] = num_attention_heads A_ : Tuple = hidden_act A_ : List[Any] = intermediate_size A_ : List[str] = hidden_dropout_prob A_ : Tuple = attention_probs_dropout_prob A_ : Dict = max_position_embeddings A_ : Optional[Any] = max_relative_position A_ : List[Any] = type_vocab_size A_ : int = initializer_range A_ : Tuple = layer_norm_eps A_ : Dict = classifier_dropout A_ : int = use_cache
27
1
'''simple docstring''' def lowerCamelCase ( lowerCamelCase : list , lowerCamelCase : int , lowerCamelCase : int = 0 , lowerCamelCase : int = 0): A_ : str = right or len(lowerCamelCase) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowerCamelCase , lowerCamelCase , left + 1 , right - 1) if __name__ == "__main__": import doctest doctest.testmod()
27
'''simple docstring''' from __future__ import annotations def lowerCamelCase ( lowerCamelCase : dict , lowerCamelCase : str): A_ , A_ : List[Any] = set(lowerCamelCase), [start] while stack: A_ : Optional[Any] = stack.pop() explored.add(lowerCamelCase) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v]): if adj not in explored: stack.append(lowerCamelCase) return explored __magic_name__ = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
27
1
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __magic_name__ = random.Random() def lowerCamelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any]=1.0 , lowerCamelCase : Tuple=None , lowerCamelCase : Dict=None): if rng is None: A_ : Any = global_rng A_ : Optional[Any] = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values @require_torch @require_torchaudio class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] ,_a : Dict ,_a : Tuple=7 ,_a : Tuple=400 ,_a : Any=2000 ,_a : Union[str, Any]=10 ,_a : Tuple=160 ,_a : Optional[int]=8 ,_a : Optional[Any]=0.0 ,_a : Optional[Any]=4000 ,_a : List[Any]=False ,_a : Tuple=True ,): '''simple docstring''' A_ : str = parent A_ : Any = batch_size A_ : Tuple = min_seq_length A_ : str = max_seq_length A_ : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A_ : int = padding_value A_ : str = sampling_rate A_ : List[str] = return_attention_mask A_ : Union[str, Any] = do_normalize A_ : Dict = feature_size A_ : int = chunk_length A_ : Union[str, Any] = hop_length def _a ( self : Union[str, Any] ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _a ( self : Optional[Any] ,_a : Dict=False ,_a : List[Any]=False ): '''simple docstring''' def _flatten(_a : Dict ): return list(itertools.chain(*_a ) ) if equal_length: A_ : Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A_ : Any = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: A_ : Optional[Any] = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = WhisperFeatureExtractor if is_speech_available() else None def _a ( self : str ): '''simple docstring''' A_ : str = WhisperFeatureExtractionTester(self ) def _a ( self : str ): '''simple docstring''' A_ : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A_ : Dict = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) A_ : Optional[Any] = self.feature_extraction_class.from_pretrained(_a ) A_ : Any = feat_extract_first.to_dict() A_ : Any = feat_extract_second.to_dict() A_ : str = feat_extract_first.mel_filters A_ : Optional[Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a ,_a ) ) self.assertEqual(_a ,_a ) def _a ( self : Any ): '''simple docstring''' A_ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A_ : Optional[int] = os.path.join(_a ,"""feat_extract.json""" ) feat_extract_first.to_json_file(_a ) A_ : str = self.feature_extraction_class.from_json_file(_a ) A_ : Any = feat_extract_first.to_dict() A_ : List[str] = feat_extract_second.to_dict() A_ : Any = feat_extract_first.mel_filters A_ : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a ,_a ) ) self.assertEqual(_a ,_a ) def _a ( self : str ): '''simple docstring''' A_ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A_ : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] A_ : str = [np.asarray(_a ) for speech_input in speech_inputs] # Test feature size A_ : List[Any] = feature_extractor(_a ,padding="""max_length""" ,return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input A_ : List[Any] = feature_extractor(speech_inputs[0] ,return_tensors="""np""" ).input_features A_ : List[str] = feature_extractor(np_speech_inputs[0] ,return_tensors="""np""" ).input_features self.assertTrue(np.allclose(_a ,_a ,atol=1e-3 ) ) # Test batched A_ : List[str] = feature_extractor(_a ,return_tensors="""np""" ).input_features A_ : str = feature_extractor(_a ,return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a ,_a ): self.assertTrue(np.allclose(_a ,_a ,atol=1e-3 ) ) # Test 2-D numpy arrays are batched. A_ : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] A_ : Union[str, Any] = np.asarray(_a ) A_ : Dict = feature_extractor(_a ,return_tensors="""np""" ).input_features A_ : Dict = feature_extractor(_a ,return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a ,_a ): self.assertTrue(np.allclose(_a ,_a ,atol=1e-3 ) ) # Test truncation required A_ : Tuple = [floats_list((1, x) )[0] for x in range(200 ,(feature_extractor.n_samples + 500) ,200 )] A_ : int = [np.asarray(_a ) for speech_input in speech_inputs] A_ : List[Any] = [x[: feature_extractor.n_samples] for x in speech_inputs] A_ : Any = [np.asarray(_a ) for speech_input in speech_inputs_truncated] A_ : Any = feature_extractor(_a ,return_tensors="""np""" ).input_features A_ : List[str] = feature_extractor(_a ,return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a ,_a ): self.assertTrue(np.allclose(_a ,_a ,atol=1e-3 ) ) def _a ( self : Union[str, Any] ): '''simple docstring''' import torch A_ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ : Dict = np.random.rand(100 ,32 ).astype(np.floataa ) A_ : Union[str, Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A_ : Union[str, Any] = feature_extractor.pad([{"""input_features""": inputs}] ,return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) A_ : Dict = feature_extractor.pad([{"""input_features""": inputs}] ,return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _a ( self : List[Any] ,_a : Any ): '''simple docstring''' A_ : Union[str, Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" ,"""clean""" ,split="""validation""" ) # automatic decoding with librispeech A_ : List[Any] = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _a ( self : Any ): '''simple docstring''' A_ : Optional[int] = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on A_ : Union[str, Any] = self._load_datasamples(1 ) A_ : int = WhisperFeatureExtractor() A_ : Dict = feature_extractor(_a ,return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape ,(1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] ,_a ,atol=1e-4 ) ) def _a ( self : List[str] ): '''simple docstring''' A_ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ : Tuple = self._load_datasamples(1 )[0] A_ : Optional[Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue A_ : str = feat_extract.zero_mean_unit_var_norm([audio] ,attention_mask=_a )[0] self.assertTrue(np.all(np.mean(_a ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a ) - 1 ) < 1e-3 ) )
27
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) def lowerCamelCase ( lowerCamelCase : Dict): A_ : List[str] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: A_ : Union[str, Any] = [144, 192, 240] A_ : int = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: A_ : List[str] = [96, 120, 144] A_ : Any = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: A_ : Any = [64, 80, 96] A_ : List[str] = [16, 16, 24, 48, 64, 80, 320] A_ : Any = 0.05 A_ : List[Any] = 2.0 if mobilevit_name.startswith("""deeplabv3_"""): A_ : int = 512 A_ : Optional[int] = 16 A_ : List[Any] = 21 A_ : List[str] = """pascal-voc-id2label.json""" else: A_ : str = 1000 A_ : Any = """imagenet-1k-id2label.json""" A_ : Any = """huggingface/label-files""" A_ : List[str] = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""") , """r""")) A_ : str = {int(lowerCamelCase): v for k, v in idalabel.items()} A_ : Any = idalabel A_ : List[str] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : int=False): for i in range(1 , 6): if F'layer_{i}.' in name: A_ : Tuple = name.replace(F'layer_{i}.' , F'encoder.layer.{i - 1}.') if "conv_1." in name: A_ : Union[str, Any] = name.replace("""conv_1.""" , """conv_stem.""") if ".block." in name: A_ : Optional[Any] = name.replace(""".block.""" , """.""") if "exp_1x1" in name: A_ : Union[str, Any] = name.replace("""exp_1x1""" , """expand_1x1""") if "red_1x1" in name: A_ : int = name.replace("""red_1x1""" , """reduce_1x1""") if ".local_rep.conv_3x3." in name: A_ : List[str] = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""") if ".local_rep.conv_1x1." in name: A_ : Optional[int] = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""") if ".norm." in name: A_ : Tuple = name.replace(""".norm.""" , """.normalization.""") if ".conv." in name: A_ : List[Any] = name.replace(""".conv.""" , """.convolution.""") if ".conv_proj." in name: A_ : str = name.replace(""".conv_proj.""" , """.conv_projection.""") for i in range(0 , 2): for j in range(0 , 4): if F'.{i}.{j}.' in name: A_ : Tuple = name.replace(F'.{i}.{j}.' , F'.{i}.layer.{j}.') for i in range(2 , 6): for j in range(0 , 4): if F'.{i}.{j}.' in name: A_ : Dict = name.replace(F'.{i}.{j}.' , F'.{i}.') if "expand_1x1" in name: A_ : Union[str, Any] = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""") if "conv_3x3" in name: A_ : str = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""") if "reduce_1x1" in name: A_ : Union[str, Any] = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""") for i in range(2 , 5): if F'.global_rep.{i}.weight' in name: A_ : List[Any] = name.replace(F'.global_rep.{i}.weight' , """.layernorm.weight""") if F'.global_rep.{i}.bias' in name: A_ : Optional[int] = name.replace(F'.global_rep.{i}.bias' , """.layernorm.bias""") if ".global_rep." in name: A_ : Optional[Any] = name.replace(""".global_rep.""" , """.transformer.""") if ".pre_norm_mha.0." in name: A_ : int = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""") if ".pre_norm_mha.1.out_proj." in name: A_ : Dict = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""") if ".pre_norm_ffn.0." in name: A_ : Dict = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""") if ".pre_norm_ffn.1." in name: A_ : Any = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""") if ".pre_norm_ffn.4." in name: A_ : Union[str, Any] = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""") if ".transformer." in name: A_ : Any = name.replace(""".transformer.""" , """.transformer.layer.""") if ".aspp_layer." in name: A_ : int = name.replace(""".aspp_layer.""" , """.""") if ".aspp_pool." in name: A_ : Tuple = name.replace(""".aspp_pool.""" , """.""") if "seg_head." in name: A_ : Optional[int] = name.replace("""seg_head.""" , """segmentation_head.""") if "segmentation_head.classifier.classifier." in name: A_ : List[str] = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""") if "classifier.fc." in name: A_ : str = name.replace("""classifier.fc.""" , """classifier.""") elif (not base_model) and ("segmentation_head." not in name): A_ : str = """mobilevit.""" + name return name def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int]=False): if base_model: A_ : Dict = """""" else: A_ : Any = """mobilevit.""" for key in orig_state_dict.copy().keys(): A_ : List[Any] = orig_state_dict.pop(lowerCamelCase) if key[:8] == "encoder.": A_ : int = key[8:] if "qkv" in key: A_ : Any = key.split(""".""") A_ : str = int(key_split[0][6:]) - 1 A_ : int = int(key_split[3]) A_ : Optional[Any] = model.get_submodule(F'{model_prefix}encoder.layer.{layer_num}') A_ : Tuple = layer.transformer.layer[transformer_num].attention.attention.all_head_size A_ : Optional[Any] = ( F'{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.' ) if "weight" in key: A_ : Dict = val[:dim, :] A_ : Optional[int] = val[dim : dim * 2, :] A_ : List[Any] = val[-dim:, :] else: A_ : Optional[Any] = val[:dim] A_ : List[Any] = val[dim : dim * 2] A_ : Any = val[-dim:] else: A_ : List[str] = val return orig_state_dict def lowerCamelCase ( ): A_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : Dict = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase).raw) return im @torch.no_grad() def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : Any , lowerCamelCase : Optional[int] , lowerCamelCase : int=False): A_ : Optional[Any] = get_mobilevit_config(lowerCamelCase) # load original state_dict A_ : List[Any] = torch.load(lowerCamelCase , map_location="""cpu""") # load 🤗 model if mobilevit_name.startswith("""deeplabv3_"""): A_ : List[str] = MobileViTForSemanticSegmentation(lowerCamelCase).eval() else: A_ : str = MobileViTForImageClassification(lowerCamelCase).eval() A_ : str = convert_state_dict(lowerCamelCase , lowerCamelCase) model.load_state_dict(lowerCamelCase) # Check outputs on an image, prepared by MobileViTImageProcessor A_ : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32) A_ : Any = image_processor(images=prepare_img() , return_tensors="""pt""") A_ : List[Any] = model(**lowerCamelCase) A_ : Dict = outputs.logits if mobilevit_name.startswith("""deeplabv3_"""): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": A_ : int = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ]) elif mobilevit_name == "deeplabv3_mobilevit_xs": A_ : Tuple = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ]) elif mobilevit_name == "deeplabv3_mobilevit_xxs": A_ : Tuple = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ]) else: raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}') assert torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase , atol=1E-4) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": A_ : Tuple = torch.tensor([-0.9866, 0.2392, -1.1241]) elif mobilevit_name == "mobilevit_xs": A_ : Any = torch.tensor([-2.4761, -0.9399, -1.9587]) elif mobilevit_name == "mobilevit_xxs": A_ : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653]) else: raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}') assert torch.allclose(logits[0, :3] , lowerCamelCase , atol=1E-4) Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase) print(F'Saving model {mobilevit_name} to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase) print(F'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase) if push_to_hub: A_ : str = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""") A_ : Union[str, Any] = model_mapping[mobilevit_name] image_processor.push_to_hub(lowerCamelCase , organization="""apple""") model.push_to_hub(lowerCamelCase , organization="""apple""") if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--mobilevit_name', default='mobilevit_s', type=str, help=( 'Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',' ' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.' ), ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __magic_name__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
27
1
'''simple docstring''' import os def lowerCamelCase ( ): with open(os.path.dirname(lowerCamelCase) + """/grid.txt""") as f: A_ : str = [] # noqa: E741 for _ in range(20): l.append([int(lowerCamelCase) for x in f.readline().split()]) A_ : str = 0 # right for i in range(20): for j in range(17): A_ : Optional[int] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: A_ : Optional[int] = temp # down for i in range(17): for j in range(20): A_ : List[Any] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: A_ : List[Any] = temp # diagonal 1 for i in range(17): for j in range(17): A_ : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: A_ : Optional[Any] = temp # diagonal 2 for i in range(17): for j in range(3 , 20): A_ : List[str] = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: A_ : Any = temp return maximum if __name__ == "__main__": print(solution())
27
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __magic_name__ = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""pixel_values"""] def __init__( self : Optional[Any] ,_a : bool = True ,_a : Dict[str, int] = None ,_a : PILImageResampling = PILImageResampling.BICUBIC ,_a : bool = True ,_a : Dict[str, int] = None ,_a : bool = True ,_a : Union[int, float] = 1 / 255 ,_a : bool = True ,_a : Optional[Union[float, List[float]]] = None ,_a : Optional[Union[float, List[float]]] = None ,_a : bool = True ,**_a : Dict ,): '''simple docstring''' super().__init__(**_a ) A_ : Tuple = size if size is not None else {"""shortest_edge""": 224} A_ : Optional[Any] = get_size_dict(_a ,default_to_square=_a ) A_ : Tuple = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} A_ : Optional[Any] = get_size_dict(_a ,default_to_square=_a ,param_name="""crop_size""" ) A_ : Any = do_resize A_ : List[str] = size A_ : Union[str, Any] = resample A_ : Dict = do_center_crop A_ : List[str] = crop_size A_ : Any = do_rescale A_ : Union[str, Any] = rescale_factor A_ : Any = do_normalize A_ : List[str] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A_ : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD A_ : Tuple = do_convert_rgb def _a ( self : Optional[int] ,_a : np.ndarray ,_a : Dict[str, int] ,_a : PILImageResampling = PILImageResampling.BICUBIC ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Optional[Any] ,): '''simple docstring''' A_ : Optional[Any] = get_size_dict(_a ,default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A_ : Tuple = get_resize_output_image_size(_a ,size=size["""shortest_edge"""] ,default_to_square=_a ) return resize(_a ,size=_a ,resample=_a ,data_format=_a ,**_a ) def _a ( self : List[Any] ,_a : np.ndarray ,_a : Dict[str, int] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Optional[int] ,): '''simple docstring''' A_ : Optional[int] = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_a ,size=(size["""height"""], size["""width"""]) ,data_format=_a ,**_a ) def _a ( self : Any ,_a : np.ndarray ,_a : Union[int, float] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Any ,): '''simple docstring''' return rescale(_a ,scale=_a ,data_format=_a ,**_a ) def _a ( self : Any ,_a : np.ndarray ,_a : Union[float, List[float]] ,_a : Union[float, List[float]] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : List[str] ,): '''simple docstring''' return normalize(_a ,mean=_a ,std=_a ,data_format=_a ,**_a ) def _a ( self : Optional[Any] ,_a : ImageInput ,_a : bool = None ,_a : Dict[str, int] = None ,_a : PILImageResampling = None ,_a : bool = None ,_a : int = None ,_a : bool = None ,_a : float = None ,_a : bool = None ,_a : Optional[Union[float, List[float]]] = None ,_a : Optional[Union[float, List[float]]] = None ,_a : bool = None ,_a : Optional[Union[str, TensorType]] = None ,_a : Optional[ChannelDimension] = ChannelDimension.FIRST ,**_a : int ,): '''simple docstring''' A_ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize A_ : Tuple = size if size is not None else self.size A_ : Optional[int] = get_size_dict(_a ,param_name="""size""" ,default_to_square=_a ) A_ : List[str] = resample if resample is not None else self.resample A_ : int = do_center_crop if do_center_crop is not None else self.do_center_crop A_ : Any = crop_size if crop_size is not None else self.crop_size A_ : int = get_size_dict(_a ,param_name="""crop_size""" ,default_to_square=_a ) A_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale A_ : int = rescale_factor if rescale_factor is not None else self.rescale_factor A_ : Any = do_normalize if do_normalize is not None else self.do_normalize A_ : int = image_mean if image_mean is not None else self.image_mean A_ : int = image_std if image_std is not None else self.image_std A_ : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A_ : int = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: A_ : Optional[int] = [convert_to_rgb(_a ) for image in images] # All transformations expect numpy arrays. A_ : Dict = [to_numpy_array(_a ) for image in images] if do_resize: A_ : int = [self.resize(image=_a ,size=_a ,resample=_a ) for image in images] if do_center_crop: A_ : Tuple = [self.center_crop(image=_a ,size=_a ) for image in images] if do_rescale: A_ : List[str] = [self.rescale(image=_a ,scale=_a ) for image in images] if do_normalize: A_ : Any = [self.normalize(image=_a ,mean=_a ,std=_a ) for image in images] A_ : List[str] = [to_channel_dimension_format(_a ,_a ) for image in images] A_ : List[str] = {"""pixel_values""": images} return BatchFeature(data=_a ,tensor_type=_a )
27
1
'''simple docstring''' import sys __magic_name__ = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def lowerCamelCase ( lowerCamelCase : str): A_ : int = 1 for digit in s: product *= int(lowerCamelCase) return product def lowerCamelCase ( lowerCamelCase : str = N): A_ : Optional[int] = -sys.maxsize - 1 A_ : Any = n[:13] A_ : Union[str, Any] = 13 while cur_index < len(lowerCamelCase) - 13: if int(n[cur_index]) >= int(substr[0]): A_ : Optional[Any] = substr[1:] + n[cur_index] cur_index += 1 else: A_ : Dict = max(lowerCamelCase , str_eval(lowerCamelCase)) A_ : Dict = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
27
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __magic_name__ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] ,*_a : Optional[Any] ,**_a : Optional[int] ): '''simple docstring''' warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" ,_a ,) super().__init__(*_a ,**_a )
27
1
'''simple docstring''' import datasets from .evaluate import evaluate __magic_name__ = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' __magic_name__ = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' __magic_name__ = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def _a ( self : Any ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) ,codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] ,reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] ,) def _a ( self : Union[str, Any] ,_a : Union[str, Any] ,_a : Any ): '''simple docstring''' A_ : str = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} A_ : Tuple = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] A_ : int = evaluate(dataset=_a ,predictions=_a ) return score
27
'''simple docstring''' from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def lowerCamelCase ( lowerCamelCase : str , lowerCamelCase : complex , lowerCamelCase : str = "x" , lowerCamelCase : float = 10**-10 , lowerCamelCase : int = 1 , ): A_ : int = symbols(lowerCamelCase) A_ : List[Any] = lambdify(lowerCamelCase , lowerCamelCase) A_ : List[str] = lambdify(lowerCamelCase , diff(lowerCamelCase , lowerCamelCase)) A_ : str = starting_point while True: if diff_function(lowerCamelCase) != 0: A_ : int = prev_guess - multiplicity * func(lowerCamelCase) / diff_function( lowerCamelCase) else: raise ZeroDivisionError("""Could not find root""") from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess) < precision: return next_guess A_ : Union[str, Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5j)}""") # Find value of e print( 'The root of log(y) - 1 = 0 is ', f"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( 'The root of exp(x) - 1 = 0 is', f"""{newton_raphson('exp(x) - 1', 10, precision=0.0_0_5)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
27
1
'''simple docstring''' import qiskit def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : int): A_ : Tuple = qiskit.Aer.get_backend("""aer_simulator""") # Create a Quantum Circuit acting on the q register A_ : Optional[int] = qiskit.QuantumCircuit(lowerCamelCase , lowerCamelCase) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0) circuit.x(1) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1]) # Execute the circuit on the qasm simulator A_ : Optional[Any] = qiskit.execute(lowerCamelCase , lowerCamelCase , shots=1000) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowerCamelCase) if __name__ == "__main__": __magic_name__ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
27
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset __magic_name__ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class __lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_a : Dict ): '''simple docstring''' super().__init__() A_ : List[str] = torchvision.models.resnetaaa(pretrained=_a ) A_ : int = list(model.children() )[:-2] A_ : int = nn.Sequential(*_a ) A_ : Optional[int] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def _a ( self : str ,_a : Optional[int] ): '''simple docstring''' A_ : Tuple = self.pool(self.model(_a ) ) A_ : Any = torch.flatten(_a ,start_dim=2 ) A_ : str = out.transpose(1 ,2 ).contiguous() return out # BxNx2048 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,_a : Optional[Any] ,_a : Optional[Any] ,_a : Dict ,_a : Dict ,_a : Optional[Any] ): '''simple docstring''' A_ : Dict = [json.loads(_a ) for l in open(_a )] A_ : Optional[int] = os.path.dirname(_a ) A_ : Optional[Any] = tokenizer A_ : Optional[Any] = labels A_ : List[Any] = len(_a ) A_ : str = max_seq_length A_ : str = transforms def __len__( self : str ): '''simple docstring''' return len(self.data ) def __getitem__( self : Tuple ,_a : Optional[Any] ): '''simple docstring''' A_ : Optional[int] = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] ,add_special_tokens=_a ) ) A_ , A_ , A_ : Dict = sentence[0], sentence[1:-1], sentence[-1] A_ : Optional[int] = sentence[: self.max_seq_length] A_ : Any = torch.zeros(self.n_classes ) A_ : Tuple = 1 A_ : Optional[Any] = Image.open(os.path.join(self.data_dir ,self.data[index]["""img"""] ) ).convert("""RGB""" ) A_ : Union[str, Any] = self.transforms(_a ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _a ( self : List[Any] ): '''simple docstring''' A_ : str = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def lowerCamelCase ( lowerCamelCase : str): A_ : List[Any] = [len(row["""sentence"""]) for row in batch] A_ , A_ : Dict = len(lowerCamelCase), max(lowerCamelCase) A_ : Optional[int] = torch.zeros(lowerCamelCase , lowerCamelCase , dtype=torch.long) A_ : Tuple = torch.zeros(lowerCamelCase , lowerCamelCase , dtype=torch.long) for i_batch, (input_row, length) in enumerate(zip(lowerCamelCase , lowerCamelCase)): A_ : str = input_row["""sentence"""] A_ : Tuple = 1 A_ : int = torch.stack([row["""image"""] for row in batch]) A_ : str = torch.stack([row["""label"""] for row in batch]) A_ : List[Any] = torch.stack([row["""image_start_token"""] for row in batch]) A_ : Tuple = torch.stack([row["""image_end_token"""] for row in batch]) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase ( ): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase ( ): return transforms.Compose( [ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( mean=[0.4677_7044, 0.4453_1429, 0.4066_1017] , std=[0.1222_1994, 0.1214_5835, 0.1438_0469] , ), ])
27
1
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __magic_name__ = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def lowerCamelCase ( lowerCamelCase : Optional[Any]=None): if subparsers is not None: A_ : Dict = subparsers.add_parser("""tpu-config""" , description=_description) else: A_ : Optional[int] = argparse.ArgumentParser("""Accelerate tpu-config command""" , description=_description) # Core arguments A_ : Tuple = parser.add_argument_group( """Config Arguments""" , """Arguments that can be configured through `accelerate config`.""") config_args.add_argument( """--config_file""" , type=lowerCamelCase , default=lowerCamelCase , help="""Path to the config file to use for accelerate.""" , ) config_args.add_argument( """--tpu_name""" , default=lowerCamelCase , help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" , ) config_args.add_argument( """--tpu_zone""" , default=lowerCamelCase , help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" , ) A_ : Tuple = parser.add_argument_group("""TPU Arguments""" , """Arguments for options ran inside the TPU.""") pod_args.add_argument( """--use_alpha""" , action="""store_true""" , help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" , ) pod_args.add_argument( """--command_file""" , default=lowerCamelCase , help="""The path to the file containing the commands to run on the pod on startup.""" , ) pod_args.add_argument( """--command""" , action="""append""" , nargs="""+""" , help="""A command to run on the pod. Can be passed multiple times.""" , ) pod_args.add_argument( """--install_accelerate""" , action="""store_true""" , help="""Whether to install accelerate on the pod. Defaults to False.""" , ) pod_args.add_argument( """--accelerate_version""" , default="""latest""" , help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.""" , ) pod_args.add_argument( """--debug""" , action="""store_true""" , help="""If set, will print the command that would be run instead of running it.""") if subparsers is not None: parser.set_defaults(func=lowerCamelCase) return parser def lowerCamelCase ( lowerCamelCase : List[Any]): A_ : Any = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(lowerCamelCase): A_ : Tuple = load_config_from_file(args.config_file) if not args.command_file and defaults.command_file is not None and not args.command: A_ : Any = defaults.command_file if not args.command and defaults.commands is not None: A_ : Union[str, Any] = defaults.commands if not args.tpu_name: A_ : Optional[int] = defaults.tpu_name if not args.tpu_zone: A_ : Union[str, Any] = defaults.tpu_zone if args.accelerate_version == "dev": A_ : List[Any] = """git+https://github.com/huggingface/accelerate.git""" elif args.accelerate_version == "latest": A_ : int = """accelerate -U""" elif isinstance(parse(args.accelerate_version) , lowerCamelCase): A_ : Tuple = F'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""") if args.command_file: with open(args.command_file , """r""") as f: A_ : int = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , lowerCamelCase): A_ : List[Any] = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate A_ : int = ["""cd /usr/share"""] if args.install_accelerate: new_cmd += [F'pip install {args.accelerate_version}'] new_cmd += args.command A_ : List[Any] = """; """.join(lowerCamelCase) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess A_ : Union[str, Any] = ["""gcloud"""] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'Running {" ".join(lowerCamelCase)}') return subprocess.run(lowerCamelCase) print("""Successfully setup pod.""") def lowerCamelCase ( ): A_ : Tuple = tpu_command_parser() A_ : str = parser.parse_args() tpu_command_launcher(lowerCamelCase)
27
'''simple docstring''' from __future__ import annotations import math def lowerCamelCase ( lowerCamelCase : int): if num <= 0: A_ : List[Any] = F'{num}: Invalid input, please enter a positive integer.' raise ValueError(lowerCamelCase) A_ : str = [True] * (num + 1) A_ : Tuple = [] A_ : str = 2 A_ : Any = int(math.sqrt(lowerCamelCase)) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCamelCase) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCamelCase): if sieve[i] is True: A_ : Union[str, Any] = False start += 1 for j in range(end + 1 , num + 1): if sieve[j] is True: prime.append(lowerCamelCase) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
27
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = AltDiffusionPipeline a_ = TEXT_TO_IMAGE_PARAMS a_ = TEXT_TO_IMAGE_BATCH_PARAMS a_ = TEXT_TO_IMAGE_IMAGE_PARAMS a_ = TEXT_TO_IMAGE_IMAGE_PARAMS def _a ( self : int ): '''simple docstring''' torch.manual_seed(0 ) A_ : int = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) A_ : Dict = DDIMScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=_a ,set_alpha_to_one=_a ,) torch.manual_seed(0 ) A_ : Dict = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) A_ : str = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,projection_dim=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=5002 ,) A_ : int = CLIPTextModel(_a ) A_ : Tuple = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) A_ : Union[str, Any] = 77 A_ : Tuple = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _a ( self : List[str] ,_a : str ,_a : List[str]=0 ): '''simple docstring''' if str(_a ).startswith("""mps""" ): A_ : Dict = torch.manual_seed(_a ) else: A_ : List[str] = torch.Generator(device=_a ).manual_seed(_a ) A_ : List[str] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _a ( self : Union[str, Any] ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def _a ( self : Any ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _a ( self : List[Any] ): '''simple docstring''' A_ : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : Tuple = self.get_dummy_components() torch.manual_seed(0 ) A_ : Tuple = RobertaSeriesConfig( hidden_size=32 ,project_dim=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=5002 ,) # TODO: remove after fixing the non-deterministic text encoder A_ : Union[str, Any] = RobertaSeriesModelWithTransformation(_a ) A_ : Optional[int] = text_encoder A_ : str = AltDiffusionPipeline(**_a ) A_ : Any = alt_pipe.to(_a ) alt_pipe.set_progress_bar_config(disable=_a ) A_ : Any = self.get_dummy_inputs(_a ) A_ : int = """A photo of an astronaut""" A_ : int = alt_pipe(**_a ) A_ : Tuple = output.images A_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ : List[Any] = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Any ): '''simple docstring''' A_ : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : Any = self.get_dummy_components() A_ : List[Any] = PNDMScheduler(skip_prk_steps=_a ) torch.manual_seed(0 ) A_ : str = RobertaSeriesConfig( hidden_size=32 ,project_dim=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=5002 ,) # TODO: remove after fixing the non-deterministic text encoder A_ : List[str] = RobertaSeriesModelWithTransformation(_a ) A_ : List[Any] = text_encoder A_ : Any = AltDiffusionPipeline(**_a ) A_ : Optional[Any] = alt_pipe.to(_a ) alt_pipe.set_progress_bar_config(disable=_a ) A_ : Any = self.get_dummy_inputs(_a ) A_ : Tuple = alt_pipe(**_a ) A_ : int = output.images A_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ : Any = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def _a ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : Optional[int] = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" ,safety_checker=_a ) A_ : Any = alt_pipe.to(_a ) alt_pipe.set_progress_bar_config(disable=_a ) A_ : List[str] = """A painting of a squirrel eating a burger""" A_ : List[str] = torch.manual_seed(0 ) A_ : Dict = alt_pipe([prompt] ,generator=_a ,guidance_scale=6.0 ,num_inference_steps=20 ,output_type="""np""" ) A_ : Optional[Any] = output.images A_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A_ : List[str] = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : Union[str, Any] = DDIMScheduler.from_pretrained("""BAAI/AltDiffusion""" ,subfolder="""scheduler""" ) A_ : str = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" ,scheduler=_a ,safety_checker=_a ) A_ : Dict = alt_pipe.to(_a ) alt_pipe.set_progress_bar_config(disable=_a ) A_ : List[Any] = """A painting of a squirrel eating a burger""" A_ : Dict = torch.manual_seed(0 ) A_ : int = alt_pipe([prompt] ,generator=_a ,num_inference_steps=2 ,output_type="""numpy""" ) A_ : Any = output.images A_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A_ : Dict = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
27
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __magic_name__ = trt.Logger(trt.Logger.WARNING) __magic_name__ = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __magic_name__ = logging.getLogger(__name__) __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=384, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=128, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) __magic_name__ = parser.parse_args() if args.tokenizer_name: __magic_name__ = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) __magic_name__ = args.per_device_eval_batch_size __magic_name__ = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __magic_name__ = True __magic_name__ = 'temp_engine/bert-fp32.engine' if args.fpaa: __magic_name__ = 'temp_engine/bert-fp16.engine' if args.inta: __magic_name__ = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') __magic_name__ = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __magic_name__ = [network.get_input(i) for i in range(network.num_inputs)] __magic_name__ = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __magic_name__ = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __magic_name__ = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __magic_name__ = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : Any , lowerCamelCase : List[Any] , lowerCamelCase : str , lowerCamelCase : List[str]): A_ : str = np.asarray(inputs["""input_ids"""] , dtype=np.intaa) A_ : int = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa) A_ : Optional[int] = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCamelCase) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCamelCase) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCamelCase) # start time A_ : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowerCamelCase) for d_inp in d_inputs] + [int(lowerCamelCase), int(lowerCamelCase)] , stream_handle=stream.handle) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCamelCase , lowerCamelCase , lowerCamelCase) cuda.memcpy_dtoh_async(lowerCamelCase , lowerCamelCase , lowerCamelCase) # Synchronize the stream and take time stream.synchronize() # end time A_ : str = time.time() A_ : Tuple = end_time - start_time A_ : Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __magic_name__ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __magic_name__ = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __magic_name__ = raw_datasets['validation'].column_names __magic_name__ = 'question' if 'question' in column_names else column_names[0] __magic_name__ = 'context' if 'context' in column_names else column_names[1] __magic_name__ = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __magic_name__ = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __magic_name__ = min(args.max_seq_length, tokenizer.model_max_length) def lowerCamelCase ( lowerCamelCase : Dict): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace A_ : List[Any] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. A_ : Optional[int] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCamelCase , stride=args.doc_stride , return_overflowing_tokens=lowerCamelCase , return_offsets_mapping=lowerCamelCase , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. A_ : List[str] = tokenized_examples.pop("""overflow_to_sample_mapping""") # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. A_ : Union[str, Any] = [] for i in range(len(tokenized_examples["""input_ids"""])): # Grab the sequence corresponding to that example (to know what is the context and what is the question). A_ : Any = tokenized_examples.sequence_ids(lowerCamelCase) A_ : Tuple = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. A_ : Union[str, Any] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index]) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. A_ : Dict = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i]) ] return tokenized_examples __magic_name__ = raw_datasets['validation'] # Validation Feature Creation __magic_name__ = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) __magic_name__ = default_data_collator __magic_name__ = eval_dataset.remove_columns(['example_id', 'offset_mapping']) __magic_name__ = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def lowerCamelCase ( lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any]="eval"): # Post-processing: we match the start logits and end logits to answers in the original context. A_ : Tuple = postprocess_qa_predictions( examples=lowerCamelCase , features=lowerCamelCase , predictions=lowerCamelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCamelCase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: A_ : Dict = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: A_ : Union[str, Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] A_ : Any = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCamelCase , label_ids=lowerCamelCase) __magic_name__ = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def lowerCamelCase ( lowerCamelCase : Union[str, Any]): return trt.volume(engine.get_binding_shape(lowerCamelCase)) * engine.get_binding_dtype(lowerCamelCase).itemsize # Allocate device memory for inputs and outputs. __magic_name__ = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __magic_name__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __magic_name__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __magic_name__ = cuda.mem_alloc(h_outputa.nbytes) __magic_name__ = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __magic_name__ = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(f""" Num examples = {len(eval_dataset)}""") logger.info(f""" Batch size = {args.per_device_eval_batch_size}""") __magic_name__ = 0.0 __magic_name__ = 0 __magic_name__ = timeit.default_timer() __magic_name__ = None for step, batch in enumerate(eval_dataloader): __magic_name__ , __magic_name__ = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __magic_name__ , __magic_name__ = outputs __magic_name__ = torch.tensor(start_logits) __magic_name__ = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __magic_name__ = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __magic_name__ = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __magic_name__ = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __magic_name__ = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __magic_name__ = nested_truncate(all_preds, len(eval_dataset)) __magic_name__ = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_000 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_000)) logger.info('Total Number of Inference = %d', niter) __magic_name__ = post_processing_function(eval_examples, eval_dataset, all_preds) __magic_name__ = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"""Evaluation metrics: {eval_metric}""")
27
1
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase ( lowerCamelCase : Tuple): A_ : Union[str, Any] = filter(lambda lowerCamelCase: p.requires_grad , model.parameters()) A_ : Optional[int] = sum([np.prod(p.size()) for p in model_parameters]) return params __magic_name__ = logging.getLogger(__name__) def lowerCamelCase ( lowerCamelCase : Dict , lowerCamelCase : List[Any]): if metric == "rouge2": A_ : Union[str, Any] = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": A_ : List[Any] = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": A_ : Optional[int] = """{val_avg_em:.4f}-{step_count}""" elif metric == "loss": A_ : Union[str, Any] = """{val_avg_loss:.4f}-{step_count}""" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' """ function.""") A_ : List[str] = ModelCheckpoint( dirpath=lowerCamelCase , filename=lowerCamelCase , monitor=F'val_{metric}' , mode="""max""" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase ( lowerCamelCase : List[Any] , lowerCamelCase : List[Any]): return EarlyStopping( monitor=F'val_{metric}' , mode="""min""" if """loss""" in metric else """max""" , patience=lowerCamelCase , verbose=lowerCamelCase , ) class __lowerCAmelCase ( pl.Callback ): '''simple docstring''' def _a ( self : str ,_a : Any ,_a : Union[str, Any] ): '''simple docstring''' A_ : List[Any] = {f'lr_group_{i}': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_a ) @rank_zero_only def _a ( self : str ,_a : pl.Trainer ,_a : pl.LightningModule ,_a : str ,_a : str=True ): '''simple docstring''' logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) A_ : int = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results A_ : str = Path(pl_module.hparams.output_dir ) if type_path == "test": A_ : Optional[Any] = od / """test_results.txt""" A_ : Any = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. A_ : Dict = od / f'{type_path}_results/{trainer.global_step:05d}.txt' A_ : Dict = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_a ) generations_file.parent.mkdir(exist_ok=_a ) with open(_a ,"""a+""" ) as writer: for key in sorted(_a ): if key in ["log", "progress_bar", "preds"]: continue A_ : Dict = metrics[key] if isinstance(_a ,torch.Tensor ): A_ : Any = val.item() A_ : Optional[int] = f'{key}: {val:.6f}\n' writer.write(_a ) if not save_generations: return if "preds" in metrics: A_ : List[str] = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(_a ) @rank_zero_only def _a ( self : str ,_a : int ,_a : Optional[int] ): '''simple docstring''' try: A_ : Union[str, Any] = pl_module.model.model.num_parameters() except AttributeError: A_ : str = pl_module.model.num_parameters() A_ : Dict = count_trainable_parameters(_a ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} ) @rank_zero_only def _a ( self : Tuple ,_a : pl.Trainer ,_a : pl.LightningModule ): '''simple docstring''' save_json(pl_module.metrics ,pl_module.metrics_save_path ) return self._write_logs(_a ,_a ,"""test""" ) @rank_zero_only def _a ( self : Any ,_a : pl.Trainer ,_a : Dict ): '''simple docstring''' save_json(pl_module.metrics ,pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
27
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __magic_name__ = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['ConvNextFeatureExtractor'] __magic_name__ = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure)
27
1
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCamelCase ( lowerCamelCase : Optional[Any]): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def lowerCamelCase ( lowerCamelCase : str): # word like '180' or '身高' or '神' for char in word: A_ : Optional[Any] = ord(lowerCamelCase) if not _is_chinese_char(lowerCamelCase): return 0 return 1 def lowerCamelCase ( lowerCamelCase : List[str]): A_ : Any = set() for token in tokens: A_ : str = len(lowerCamelCase) > 1 and is_chinese(lowerCamelCase) if chinese_word: word_set.add(lowerCamelCase) A_ : Any = list(lowerCamelCase) return word_list def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : set()): if not chinese_word_set: return bert_tokens A_ : Any = max([len(lowerCamelCase) for w in chinese_word_set]) A_ : str = bert_tokens A_ , A_ : Any = 0, len(lowerCamelCase) while start < end: A_ : Tuple = True if is_chinese(bert_word[start]): A_ : List[str] = min(end - start , lowerCamelCase) for i in range(lowerCamelCase , 1 , -1): A_ : Tuple = """""".join(bert_word[start : start + i]) if whole_word in chinese_word_set: for j in range(start + 1 , start + i): A_ : Dict = """##""" + bert_word[j] A_ : str = start + i A_ : Dict = False break if single_word: start += 1 return bert_word def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : LTP , lowerCamelCase : BertTokenizer): A_ : Union[str, Any] = [] for i in range(0 , len(lowerCamelCase) , 100): A_ : List[Any] = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""]).cws A_ : int = [get_chinese_word(lowerCamelCase) for r in res] ltp_res.extend(lowerCamelCase) assert len(lowerCamelCase) == len(lowerCamelCase) A_ : List[Any] = [] for i in range(0 , len(lowerCamelCase) , 100): A_ : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=lowerCamelCase , truncation=lowerCamelCase , max_length=512) bert_res.extend(res["""input_ids"""]) assert len(lowerCamelCase) == len(lowerCamelCase) A_ : Union[str, Any] = [] for input_ids, chinese_word in zip(lowerCamelCase , lowerCamelCase): A_ : List[Any] = [] for id in input_ids: A_ : List[Any] = bert_tokenizer._convert_id_to_token(lowerCamelCase) input_tokens.append(lowerCamelCase) A_ : int = add_sub_symbol(lowerCamelCase , lowerCamelCase) A_ : str = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCamelCase): if token[:2] == "##": A_ : Optional[Any] = token[2:] # save chinese tokens' pos if len(lowerCamelCase) == 1 and _is_chinese_char(ord(lowerCamelCase)): ref_id.append(lowerCamelCase) ref_ids.append(lowerCamelCase) assert len(lowerCamelCase) == len(lowerCamelCase) return ref_ids def lowerCamelCase ( lowerCamelCase : Tuple): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""") as f: A_ : Optional[int] = f.readlines() A_ : Union[str, Any] = [line.strip() for line in data if len(lowerCamelCase) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ : Optional[Any] = LTP(args.ltp) # faster in GPU device A_ : Dict = BertTokenizer.from_pretrained(args.bert) A_ : str = prepare_ref(lowerCamelCase , lowerCamelCase , lowerCamelCase) with open(args.save_path , """w""" , encoding="""utf-8""") as f: A_ : Optional[Any] = [json.dumps(lowerCamelCase) + """\n""" for ref in ref_ids] f.writelines(lowerCamelCase) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) __magic_name__ = parser.parse_args() main(args)
27
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { 'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json', 'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json', 'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json', } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """owlvit_text_model""" def __init__( self : Union[str, Any] ,_a : Any=49408 ,_a : Any=512 ,_a : Tuple=2048 ,_a : Dict=12 ,_a : Optional[int]=8 ,_a : Tuple=16 ,_a : Tuple="quick_gelu" ,_a : Optional[Any]=1e-5 ,_a : List[Any]=0.0 ,_a : Optional[int]=0.02 ,_a : Dict=1.0 ,_a : Dict=0 ,_a : Any=49406 ,_a : Tuple=49407 ,**_a : List[Any] ,): '''simple docstring''' super().__init__(pad_token_id=_a ,bos_token_id=_a ,eos_token_id=_a ,**_a ) A_ : Tuple = vocab_size A_ : int = hidden_size A_ : Optional[int] = intermediate_size A_ : Optional[int] = num_hidden_layers A_ : Union[str, Any] = num_attention_heads A_ : int = max_position_embeddings A_ : str = hidden_act A_ : Union[str, Any] = layer_norm_eps A_ : Tuple = attention_dropout A_ : Union[str, Any] = initializer_range A_ : List[Any] = initializer_factor @classmethod def _a ( cls : List[str] ,_a : Union[str, os.PathLike] ,**_a : str ): '''simple docstring''' cls._set_token_in_kwargs(_a ) A_ , A_ : int = cls.get_config_dict(_a ,**_a ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": A_ : Union[str, Any] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a ,**_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """owlvit_vision_model""" def __init__( self : List[Any] ,_a : Optional[Any]=768 ,_a : Tuple=3072 ,_a : Dict=12 ,_a : int=12 ,_a : Dict=3 ,_a : Tuple=768 ,_a : int=32 ,_a : int="quick_gelu" ,_a : List[Any]=1e-5 ,_a : Tuple=0.0 ,_a : List[Any]=0.02 ,_a : str=1.0 ,**_a : int ,): '''simple docstring''' super().__init__(**_a ) A_ : List[str] = hidden_size A_ : Union[str, Any] = intermediate_size A_ : Union[str, Any] = num_hidden_layers A_ : Optional[Any] = num_attention_heads A_ : int = num_channels A_ : str = image_size A_ : List[Any] = patch_size A_ : int = hidden_act A_ : List[Any] = layer_norm_eps A_ : List[str] = attention_dropout A_ : str = initializer_range A_ : str = initializer_factor @classmethod def _a ( cls : List[Any] ,_a : Union[str, os.PathLike] ,**_a : str ): '''simple docstring''' cls._set_token_in_kwargs(_a ) A_ , A_ : Optional[int] = cls.get_config_dict(_a ,**_a ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": A_ : List[str] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a ,**_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """owlvit""" a_ = True def __init__( self : Union[str, Any] ,_a : List[str]=None ,_a : List[str]=None ,_a : Dict=512 ,_a : List[Any]=2.6592 ,_a : Optional[Any]=True ,**_a : Optional[int] ,): '''simple docstring''' super().__init__(**_a ) if text_config is None: A_ : List[Any] = {} logger.info("""text_config is None. Initializing the OwlViTTextConfig with default values.""" ) if vision_config is None: A_ : Tuple = {} logger.info("""vision_config is None. initializing the OwlViTVisionConfig with default values.""" ) A_ : Dict = OwlViTTextConfig(**_a ) A_ : Dict = OwlViTVisionConfig(**_a ) A_ : Any = projection_dim A_ : Optional[int] = logit_scale_init_value A_ : Optional[int] = return_dict A_ : Dict = 1.0 @classmethod def _a ( cls : Union[str, Any] ,_a : Union[str, os.PathLike] ,**_a : Optional[int] ): '''simple docstring''' cls._set_token_in_kwargs(_a ) A_ , A_ : List[Any] = cls.get_config_dict(_a ,**_a ) if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a ,**_a ) @classmethod def _a ( cls : int ,_a : Dict ,_a : Dict ,**_a : List[str] ): '''simple docstring''' A_ : str = {} A_ : int = text_config A_ : Union[str, Any] = vision_config return cls.from_dict(_a ,**_a ) def _a ( self : Optional[int] ): '''simple docstring''' A_ : Dict = copy.deepcopy(self.__dict__ ) A_ : str = self.text_config.to_dict() A_ : Optional[int] = self.vision_config.to_dict() A_ : List[Any] = self.__class__.model_type return output class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _a ( self : int ): '''simple docstring''' return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ] ) @property def _a ( self : str ): '''simple docstring''' return OrderedDict( [ ("""logits_per_image""", {0: """batch"""}), ("""logits_per_text""", {0: """batch"""}), ("""text_embeds""", {0: """batch"""}), ("""image_embeds""", {0: """batch"""}), ] ) @property def _a ( self : Optional[Any] ): '''simple docstring''' return 1e-4 def _a ( self : int ,_a : "ProcessorMixin" ,_a : int = -1 ,_a : int = -1 ,_a : Optional["TensorType"] = None ,): '''simple docstring''' A_ : Any = super().generate_dummy_inputs( processor.tokenizer ,batch_size=_a ,seq_length=_a ,framework=_a ) A_ : Any = super().generate_dummy_inputs( processor.image_processor ,batch_size=_a ,framework=_a ) return {**text_input_dict, **image_input_dict} @property def _a ( self : Optional[Any] ): '''simple docstring''' return 14
27
1
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] ,_a : List[Any] ,_a : Optional[int]=13 ,_a : Union[str, Any]=30 ,_a : Optional[Any]=2 ,_a : Optional[int]=3 ,_a : Dict=True ,_a : Tuple=True ,_a : Any=32 ,_a : List[str]=5 ,_a : Union[str, Any]=4 ,_a : Union[str, Any]=37 ,_a : str="gelu" ,_a : str=0.1 ,_a : int=0.1 ,_a : Dict=10 ,_a : str=0.02 ,_a : Tuple=None ,_a : List[str]=2 ,): '''simple docstring''' A_ : Union[str, Any] = parent A_ : str = batch_size A_ : Union[str, Any] = image_size A_ : int = patch_size A_ : str = num_channels A_ : List[Any] = is_training A_ : Dict = use_labels A_ : Dict = hidden_size A_ : List[Any] = num_hidden_layers A_ : List[Any] = num_attention_heads A_ : Any = intermediate_size A_ : Any = hidden_act A_ : str = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Any = type_sequence_label_size A_ : Dict = initializer_range A_ : List[str] = scope A_ : Union[str, Any] = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A_ : Optional[int] = (image_size // patch_size) ** 2 A_ : Optional[int] = num_patches + 1 def _a ( self : Any ): '''simple docstring''' A_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Optional[int] = None if self.use_labels: A_ : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A_ : int = self.get_config() return config, pixel_values, labels def _a ( self : List[Any] ): '''simple docstring''' return ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_a ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def _a ( self : Dict ,_a : Optional[int] ,_a : List[Any] ,_a : Any ): '''simple docstring''' A_ : List[Any] = ViTModel(config=_a ) model.to(_a ) model.eval() A_ : Any = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : List[Any] ,_a : List[str] ,_a : Any ,_a : Optional[int] ): '''simple docstring''' A_ : Any = ViTForMaskedImageModeling(config=_a ) model.to(_a ) model.eval() A_ : Any = model(_a ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A_ : Any = 1 A_ : List[str] = ViTForMaskedImageModeling(_a ) model.to(_a ) model.eval() A_ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : Dict = model(_a ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def _a ( self : List[Any] ,_a : str ,_a : Optional[int] ,_a : Dict ): '''simple docstring''' A_ : int = self.type_sequence_label_size A_ : Any = ViTForImageClassification(_a ) model.to(_a ) model.eval() A_ : Any = model(_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ : Union[str, Any] = 1 A_ : Optional[Any] = ViTForImageClassification(_a ) model.to(_a ) model.eval() A_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : Any = model(_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _a ( self : Optional[int] ): '''simple docstring''' A_ : str = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ) : Optional[int] = config_and_inputs A_ : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) a_ = ( {"""feature-extraction""": ViTModel, """image-classification""": ViTForImageClassification} if is_torch_available() else {} ) a_ = True a_ = False a_ = False a_ = False def _a ( self : int ): '''simple docstring''' A_ : Optional[Any] = ViTModelTester(self ) A_ : List[Any] = ConfigTester(self ,config_class=_a ,has_text_modality=_a ,hidden_size=37 ) def _a ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def _a ( self : int ): '''simple docstring''' pass def _a ( self : int ): '''simple docstring''' A_ , A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Dict = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) A_ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a ,nn.Linear ) ) def _a ( self : Optional[Any] ): '''simple docstring''' A_ , A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : str = model_class(_a ) A_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : List[Any] = [*signature.parameters.keys()] A_ : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,_a ) def _a ( self : Optional[int] ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_a ) def _a ( self : str ): '''simple docstring''' A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def _a ( self : Optional[Any] ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[Any] = ViTModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCamelCase ( ): A_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def _a ( self : Optional[int] ): '''simple docstring''' return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def _a ( self : str ): '''simple docstring''' A_ : Optional[int] = ViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ).to(_a ) A_ : str = self.default_image_processor A_ : Union[str, Any] = prepare_img() A_ : int = image_processor(images=_a ,return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): A_ : List[str] = model(**_a ) # verify the logits A_ : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_a ) A_ : List[Any] = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_a ,atol=1e-4 ) ) @slow def _a ( self : List[str] ): '''simple docstring''' A_ : List[Any] = ViTModel.from_pretrained("""facebook/dino-vits8""" ).to(_a ) A_ : Tuple = ViTImageProcessor.from_pretrained("""facebook/dino-vits8""" ,size=480 ) A_ : int = prepare_img() A_ : Optional[int] = image_processor(images=_a ,return_tensors="""pt""" ) A_ : Optional[int] = inputs.pixel_values.to(_a ) # forward pass with torch.no_grad(): A_ : Union[str, Any] = model(_a ,interpolate_pos_encoding=_a ) # verify the logits A_ : Union[str, Any] = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape ,_a ) A_ : Optional[Any] = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(_a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,_a ,atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def _a ( self : Tuple ): '''simple docstring''' A_ : Tuple = ViTModel.from_pretrained("""facebook/dino-vits8""" ,torch_dtype=torch.floataa ,device_map="""auto""" ) A_ : Any = self.default_image_processor A_ : Optional[Any] = prepare_img() A_ : str = image_processor(images=_a ,return_tensors="""pt""" ) A_ : Optional[int] = inputs.pixel_values.to(_a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): A_ : Dict = model(_a )
27
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __magic_name__ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""input_features""", """is_longer"""] def __init__( self : Dict ,_a : Optional[int]=64 ,_a : List[Any]=48000 ,_a : str=480 ,_a : Optional[Any]=10 ,_a : Optional[int]=1024 ,_a : Tuple=0.0 ,_a : str=False ,_a : float = 0 ,_a : float = 14000 ,_a : int = None ,_a : str = "fusion" ,_a : str = "repeatpad" ,**_a : Tuple ,): '''simple docstring''' super().__init__( feature_size=_a ,sampling_rate=_a ,padding_value=_a ,return_attention_mask=_a ,**_a ,) A_ : Tuple = top_db A_ : Tuple = truncation A_ : Optional[Any] = padding A_ : Optional[int] = fft_window_size A_ : Dict = (fft_window_size >> 1) + 1 A_ : Any = hop_length A_ : List[Any] = max_length_s A_ : Tuple = max_length_s * sampling_rate A_ : Tuple = sampling_rate A_ : Optional[int] = frequency_min A_ : Tuple = frequency_max A_ : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=_a ,min_frequency=_a ,max_frequency=_a ,sampling_rate=_a ,norm=_a ,mel_scale="""htk""" ,) A_ : Dict = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=_a ,min_frequency=_a ,max_frequency=_a ,sampling_rate=_a ,norm="""slaney""" ,mel_scale="""slaney""" ,) def _a ( self : int ): '''simple docstring''' A_ : int = copy.deepcopy(self.__dict__ ) A_ : Tuple = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _a ( self : Dict ,_a : np.array ,_a : Optional[np.array] = None ): '''simple docstring''' A_ : List[str] = spectrogram( _a ,window_function(self.fft_window_size ,"""hann""" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=_a ,log_mel="""dB""" ,) return log_mel_spectrogram.T def _a ( self : Optional[int] ,_a : Dict ,_a : Optional[Any] ,_a : Optional[int] ): '''simple docstring''' A_ : Dict = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk A_ : List[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk A_ : int = [0] # randomly choose index for each part A_ : List[str] = np.random.choice(ranges[0] ) A_ : int = np.random.choice(ranges[1] ) A_ : Optional[int] = np.random.choice(ranges[2] ) A_ : Tuple = mel[idx_front : idx_front + chunk_frames, :] A_ : Dict = mel[idx_middle : idx_middle + chunk_frames, :] A_ : Dict = mel[idx_back : idx_back + chunk_frames, :] A_ : Optional[int] = torch.tensor(mel[None, None, :] ) A_ : Dict = torch.nn.functional.interpolate( _a ,size=[chunk_frames, 64] ,mode="""bilinear""" ,align_corners=_a ) A_ : str = mel_shrink[0][0].numpy() A_ : Tuple = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def _a ( self : Dict ,_a : np.array ,_a : Optional[Any] ,_a : int ,_a : Dict ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": A_ : Dict = True # random crop to max_length (for compatibility) -> this should be handled by self.pad A_ : Tuple = len(_a ) - max_length A_ : Optional[int] = np.random.randint(0 ,overflow + 1 ) A_ : List[Any] = waveform[idx : idx + max_length] A_ : Optional[Any] = self._np_extract_fbank_features(_a ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": A_ : Dict = self._np_extract_fbank_features(_a ,self.mel_filters ) A_ : Tuple = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed A_ : Optional[int] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. A_ : Optional[int] = np.stack([mel, mel, mel, mel] ,axis=0 ) A_ : str = False else: A_ : str = self._random_mel_fusion(_a ,_a ,_a ) A_ : Optional[Any] = True else: raise NotImplementedError(f'data_truncating {truncation} not implemented' ) else: A_ : Optional[int] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": A_ : int = int(max_length / len(_a ) ) A_ : Any = np.stack(np.tile(_a ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": A_ : List[str] = int(max_length / len(_a ) ) A_ : Optional[Any] = np.stack(np.tile(_a ,_a ) ) A_ : Any = np.pad(_a ,(0, max_length - waveform.shape[0]) ,mode="""constant""" ,constant_values=0 ) if truncation == "fusion": A_ : List[Any] = self._np_extract_fbank_features(_a ,self.mel_filters ) A_ : Optional[Any] = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: A_ : Union[str, Any] = self._np_extract_fbank_features(_a ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : List[Any] ,_a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,_a : str = None ,_a : Optional[str] = None ,_a : Optional[int] = None ,_a : Optional[int] = None ,_a : Optional[Union[str, TensorType]] = None ,**_a : Any ,): '''simple docstring''' A_ : List[str] = truncation if truncation is not None else self.truncation A_ : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) A_ : Any = isinstance(_a ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) A_ : int = is_batched_numpy or ( isinstance(_a ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: A_ : Optional[int] = [np.asarray(_a ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_a ,np.ndarray ): A_ : str = np.asarray(_a ,dtype=np.floataa ) elif isinstance(_a ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A_ : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A_ : Any = [np.asarray(_a )] # convert to mel spectrogram, truncate and pad if needed. A_ : str = [ self._get_input_mel(_a ,max_length if max_length else self.nb_max_samples ,_a ,_a ) for waveform in raw_speech ] A_ : int = [] A_ : Any = [] for mel, longer in padded_inputs: input_mel.append(_a ) is_longer.append(_a ) if truncation == "fusion" and sum(_a ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer A_ : List[Any] = np.random.randint(0 ,len(_a ) ) A_ : List[str] = True if isinstance(input_mel[0] ,_a ): A_ : Tuple = [np.asarray(_a ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool A_ : List[str] = [[longer] for longer in is_longer] A_ : Optional[Any] = {"""input_features""": input_mel, """is_longer""": is_longer} A_ : int = BatchFeature(_a ) if return_tensors is not None: A_ : int = input_features.convert_to_tensors(_a ) return input_features
27
1
'''simple docstring''' from __future__ import annotations class __lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] ,_a : Any=None ): '''simple docstring''' A_ : List[Any] = data A_ : Optional[int] = None def __repr__( self : Any ): '''simple docstring''' A_ : Any = [] A_ : List[str] = self while temp: string_rep.append(f'{temp.data}' ) A_ : Dict = temp.next return "->".join(_a ) def lowerCamelCase ( lowerCamelCase : list): if not elements_list: raise Exception("""The Elements List is empty""") A_ : Tuple = Node(elements_list[0]) for i in range(1 , len(lowerCamelCase)): A_ : Tuple = Node(elements_list[i]) A_ : Union[str, Any] = current.next return head def lowerCamelCase ( lowerCamelCase : Node): if head_node is not None and isinstance(lowerCamelCase , lowerCamelCase): print_reverse(head_node.next) print(head_node.data) def lowerCamelCase ( ): from doctest import testmod testmod() A_ : List[Any] = make_linked_list([14, 52, 14, 12, 43]) print("""Linked List:""") print(lowerCamelCase) print("""Elements in Reverse:""") print_reverse(lowerCamelCase) if __name__ == "__main__": main()
27
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ,_a : List[Any] ,_a : Dict=13 ,_a : List[Any]=7 ,_a : Optional[Any]=True ,_a : Any=True ,_a : Optional[int]=True ,_a : Union[str, Any]=99 ,_a : Union[str, Any]=32 ,_a : List[str]=5 ,_a : List[str]=4 ,_a : Dict=37 ,_a : List[Any]="gelu" ,_a : int=0.1 ,_a : Optional[int]=0.1 ,_a : Tuple=512 ,_a : Union[str, Any]=16 ,_a : Optional[Any]=2 ,_a : Optional[Any]=0.02 ,_a : Optional[int]=3 ,_a : str=4 ,_a : Optional[Any]=None ,): '''simple docstring''' A_ : Optional[Any] = parent A_ : str = batch_size A_ : int = seq_length A_ : Union[str, Any] = is_training A_ : Optional[Any] = use_token_type_ids A_ : int = use_labels A_ : Dict = vocab_size A_ : List[Any] = hidden_size A_ : Tuple = num_hidden_layers A_ : Optional[int] = num_attention_heads A_ : int = intermediate_size A_ : Tuple = hidden_act A_ : int = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : Any = max_position_embeddings A_ : Optional[Any] = type_vocab_size A_ : Tuple = type_sequence_label_size A_ : int = initializer_range A_ : Optional[Any] = num_labels A_ : str = num_choices A_ : Optional[Any] = scope A_ : List[Any] = self.vocab_size - 1 def _a ( self : Any ): '''simple docstring''' A_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A_ : List[Any] = None if self.use_token_type_ids: A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A_ : int = None A_ : str = None A_ : Union[str, Any] = None if self.use_labels: A_ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A_ : Any = ids_tensor([self.batch_size] ,self.num_choices ) A_ : List[Any] = OpenAIGPTConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) A_ : Tuple = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _a ( self : Optional[int] ,_a : List[str] ,_a : str ,_a : int ,_a : int ,*_a : Union[str, Any] ): '''simple docstring''' A_ : Optional[Any] = OpenAIGPTModel(config=_a ) model.to(_a ) model.eval() A_ : Optional[int] = model(_a ,token_type_ids=_a ,head_mask=_a ) A_ : str = model(_a ,token_type_ids=_a ) A_ : Dict = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Dict ,_a : Optional[int] ,_a : Union[str, Any] ,_a : Dict ,_a : List[str] ,*_a : str ): '''simple docstring''' A_ : str = OpenAIGPTLMHeadModel(_a ) model.to(_a ) model.eval() A_ : Any = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Any ,_a : Dict ,_a : List[Any] ,_a : Dict ,_a : Union[str, Any] ,*_a : str ): '''simple docstring''' A_ : Any = OpenAIGPTDoubleHeadsModel(_a ) model.to(_a ) model.eval() A_ : Optional[int] = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : List[str] ,_a : str ,_a : Tuple ,_a : Dict ,_a : Tuple ,*_a : Dict ): '''simple docstring''' A_ : List[str] = self.num_labels A_ : int = OpenAIGPTForSequenceClassification(_a ) model.to(_a ) model.eval() A_ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A_ : Optional[Any] = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _a ( self : Tuple ): '''simple docstring''' A_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : str = config_and_inputs A_ : int = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) a_ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly a_ = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _a ( self : Tuple ,_a : Optional[int] ,_a : str ,_a : List[str] ,_a : List[str] ,_a : Any ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _a ( self : Optional[int] ,_a : str ,_a : Dict ,_a : Optional[int]=False ): '''simple docstring''' A_ : Any = super()._prepare_for_class(_a ,_a ,return_labels=_a ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": A_ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) ,dtype=torch.long ,device=_a ,) A_ : Any = inputs_dict["""labels"""] A_ : Any = inputs_dict["""labels"""] A_ : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) ,dtype=torch.long ,device=_a ,) A_ : int = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_a ) return inputs_dict def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : Tuple = OpenAIGPTModelTester(self ) A_ : Optional[int] = ConfigTester(self ,config_class=_a ,n_embd=37 ) def _a ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def _a ( self : Optional[Any] ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_a ) def _a ( self : Tuple ): '''simple docstring''' A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_a ) def _a ( self : List[Any] ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_a ) def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_a ) @slow def _a ( self : List[Any] ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Union[str, Any] = OpenAIGPTModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def _a ( self : List[str] ): '''simple docstring''' A_ : Dict = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(_a ) A_ : Dict = torch.tensor([[481, 4735, 544]] ,dtype=torch.long ,device=_a ) # the president is A_ : Dict = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the A_ : int = model.generate(_a ,do_sample=_a ) self.assertListEqual(output_ids[0].tolist() ,_a )
27
1