code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## SCREAMING_SNAKE_CASE = 16 SCREAMING_SNAKE_CASE = 32 def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 16 ) -> Union[str, Any]: UpperCAmelCase_ = AutoTokenizer.from_pretrained("bert-base-cased" ) UpperCAmelCase_ = DatasetDict( { "train": dataset["train"].select(_lowercase ), "validation": dataset["train"].select(_lowercase ), "test": dataset["validation"], } ) def tokenize_function(__SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowercase , max_length=_lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase_ = datasets.map( _lowercase , batched=_lowercase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase_ = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase_ = 8 else: UpperCAmelCase_ = None return tokenizer.pad( _lowercase , padding="longest" , max_length=_lowercase , pad_to_multiple_of=_lowercase , return_tensors="pt" , ) # Instantiate dataloaders. UpperCAmelCase_ = DataLoader( tokenized_datasets["train"] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) UpperCAmelCase_ = DataLoader( tokenized_datasets["validation"] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) UpperCAmelCase_ = DataLoader( tokenized_datasets["test"] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) return train_dataloader, eval_dataloader, test_dataloader def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ = [] # Download the dataset UpperCAmelCase_ = load_dataset("glue" , "mrpc" ) # Create our splits UpperCAmelCase_ = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator UpperCAmelCase_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ = config["lr"] UpperCAmelCase_ = int(config["num_epochs"] ) UpperCAmelCase_ = int(config["seed"] ) UpperCAmelCase_ = int(config["batch_size"] ) UpperCAmelCase_ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation UpperCAmelCase_ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase_ = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase_ = MAX_GPU_BATCH_SIZE set_seed(_lowercase ) # New Code # # Create our folds: UpperCAmelCase_ = kfold.split(np.zeros(datasets["train"].num_rows ) , datasets["train"]["label"] ) UpperCAmelCase_ = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(_lowercase ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_fold_dataloaders( _lowercase , _lowercase , _lowercase , _lowercase , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase_ = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase_ = AdamW(params=model.parameters() , lr=_lowercase ) # Instantiate scheduler UpperCAmelCase_ = get_linear_schedule_with_warmup( optimizer=_lowercase , num_warmup_steps=100 , num_training_steps=(len(_lowercase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # Now we train the model for epoch in range(_lowercase ): model.train() for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase_ = model(**_lowercase ) UpperCAmelCase_ = outputs.loss UpperCAmelCase_ = loss / gradient_accumulation_steps accelerator.backward(_lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ = model(**_lowercase ) UpperCAmelCase_ = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_lowercase , references=_lowercase , ) UpperCAmelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , _lowercase ) # New Code # # We also run predictions on the test set at the very end UpperCAmelCase_ = [] for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ = model(**_lowercase ) UpperCAmelCase_ = outputs.logits UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(_lowercase , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: UpperCAmelCase_ = torch.cat(_lowercase , dim=0 ) UpperCAmelCase_ = torch.stack(_lowercase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) UpperCAmelCase_ = metric.compute(predictions=_lowercase , references=_lowercase ) accelerator.print("Average test metrics from all folds:" , _lowercase ) def snake_case__ ( ) -> Union[str, Any]: UpperCAmelCase_ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_lowercase , default=_lowercase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) # New Code # parser.add_argument("--num_folds" , type=_lowercase , default=3 , help="The number of splits to perform across the dataset" ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowercase , _lowercase ) if __name__ == "__main__": main()
717
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ): UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=lowerCAmelCase ).to(lowerCAmelCase ) UpperCAmelCase_ = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase_ = tokenizer("Hello there" , return_tensors="pt" ).input_ids UpperCAmelCase_ = tokenizer("Hi I am" , return_tensors="pt" ).input_ids UpperCAmelCase_ = model(input_ids.to(lowerCAmelCase ) , labels=labels.to(lowerCAmelCase ) ).loss UpperCAmelCase_ = -(labels.shape[-1] * loss.item()) UpperCAmelCase_ = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
23
0
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Tuple: if not nums: # Makes sure that the list is not empty raise ValueError("List is empty" ) UpperCAmelCase_ = sum(_lowerCamelCase ) / len(_lowerCamelCase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
718
def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ = 0 while b > 0: if b & 1: UpperCAmelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
23
0
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case__ ( ) -> Any: UpperCAmelCase_ = HfArgumentParser(lowercase_ ) UpperCAmelCase_ = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ = TensorFlowBenchmark(args=lowercase_ ) try: UpperCAmelCase_ = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" UpperCAmelCase_ = """ """.join(str(lowercase_ ).split(" " )[:-1] ) UpperCAmelCase_ = """""" UpperCAmelCase_ = eval(str(lowercase_ ).split(" " )[-1] ) UpperCAmelCase_ = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowercase_ ) if len(lowercase_ ) > 0: UpperCAmelCase_ = full_error_msg + begin_error_msg + str(lowercase_ ) raise ValueError(lowercase_ ) benchmark.run() if __name__ == "__main__": main()
719
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> List[List[ImageInput]]: if isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[Any] = ['pixel_values'] def __init__( self , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = PILImageResampling.BILINEAR , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = True , lowerCAmelCase = 1 / 255 , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ): super().__init__(**lowerCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = PILImageResampling.BILINEAR , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(lowerCAmelCase , size["shortest_edge"] , default_to_square=lowerCAmelCase ) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(lowerCAmelCase , size=(size["height"], size["width"]) , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): return rescale(lowerCAmelCase , scale=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): return normalize(lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = to_numpy_array(lowerCAmelCase ) if do_resize: UpperCAmelCase_ = self.resize(image=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase ) if do_center_crop: UpperCAmelCase_ = self.center_crop(lowerCAmelCase , size=lowerCAmelCase ) if do_rescale: UpperCAmelCase_ = self.rescale(image=lowerCAmelCase , scale=lowerCAmelCase ) if do_normalize: UpperCAmelCase_ = self.normalize(image=lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase ) UpperCAmelCase_ = to_channel_dimension_format(lowerCAmelCase , lowerCAmelCase ) return image def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = ChannelDimension.FIRST , **lowerCAmelCase , ): UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="crop_size" ) if not valid_images(lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase_ = make_batched(lowerCAmelCase ) UpperCAmelCase_ = [ [ self._preprocess_image( image=lowerCAmelCase , do_resize=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , do_center_crop=lowerCAmelCase , crop_size=lowerCAmelCase , do_rescale=lowerCAmelCase , rescale_factor=lowerCAmelCase , do_normalize=lowerCAmelCase , image_mean=lowerCAmelCase , image_std=lowerCAmelCase , data_format=lowerCAmelCase , ) for img in video ] for video in videos ] UpperCAmelCase_ = {"pixel_values": videos} return BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase )
23
0
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging SCREAMING_SNAKE_CASE = "\\n\n" SCREAMING_SNAKE_CASE = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n" SCREAMING_SNAKE_CASE = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to 'cuda' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id='gpt2',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!='']\n >>> results = perplexity.compute(model_id='gpt2',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): '''simple docstring''' def A__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "input_texts": datasets.Value("string" ), } ) , reference_urls=["https://huggingface.co/docs/transformers/perplexity"] , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 16 , lowerCAmelCase = True , lowerCAmelCase=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCAmelCase_ = "cuda" else: UpperCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained(_a ) UpperCAmelCase_ = model.to(_a ) UpperCAmelCase_ = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCAmelCase_ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCAmelCase_ = model.config.max_length - 1 else: UpperCAmelCase_ = model.config.max_length UpperCAmelCase_ = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors="pt" , return_attention_mask=_a , ).to(_a ) UpperCAmelCase_ = encodings["input_ids"] UpperCAmelCase_ = encodings["attention_mask"] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCAmelCase_ = [] UpperCAmelCase_ = CrossEntropyLoss(reduction="none" ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): UpperCAmelCase_ = min(start_index + batch_size , len(_a ) ) UpperCAmelCase_ = encoded_texts[start_index:end_index] UpperCAmelCase_ = attn_masks[start_index:end_index] if add_start_token: UpperCAmelCase_ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) UpperCAmelCase_ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) UpperCAmelCase_ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) UpperCAmelCase_ = encoded_batch with torch.no_grad(): UpperCAmelCase_ = model(_a , attention_mask=_a ).logits UpperCAmelCase_ = out_logits[..., :-1, :].contiguous() UpperCAmelCase_ = labels[..., 1:].contiguous() UpperCAmelCase_ = attn_mask[..., 1:].contiguous() UpperCAmelCase_ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
720
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = 1 for i in range(1 , num + 1 ): fact *= i return fact def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = 0 while number > 0: UpperCAmelCase_ = number % 10 sum_of_digits += last_digit UpperCAmelCase_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def snake_case__ ( __SCREAMING_SNAKE_CASE = 100 ) -> int: UpperCAmelCase_ = factorial(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = split_and_add(__SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
23
0
import math SCREAMING_SNAKE_CASE = 10 SCREAMING_SNAKE_CASE = 7 SCREAMING_SNAKE_CASE = BALLS_PER_COLOUR * NUM_COLOURS def snake_case__ ( __SCREAMING_SNAKE_CASE = 20 ) -> List[str]: UpperCAmelCase_ = math.comb(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , _lowerCamelCase ) UpperCAmelCase_ = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
721
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
import heapq import sys import numpy as np SCREAMING_SNAKE_CASE = tuple[int, int] class lowerCamelCase : '''simple docstring''' def __init__( self ): UpperCAmelCase_ = [] UpperCAmelCase_ = set() def A__ ( self ): if not self.empty(): return self.elements[0][0] else: return float("inf" ) def A__ ( self ): return len(self.elements ) == 0 def A__ ( self , lowerCAmelCase , lowerCAmelCase ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(lowerCAmelCase ) else: # update # print("update", item) UpperCAmelCase_ = [] ((UpperCAmelCase_) , (UpperCAmelCase_)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((UpperCAmelCase_) , (UpperCAmelCase_)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def A__ ( self , lowerCAmelCase ): if item in self.set: self.set.remove(lowerCAmelCase ) UpperCAmelCase_ = [] ((UpperCAmelCase_) , (UpperCAmelCase_)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((UpperCAmelCase_) , (UpperCAmelCase_)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def A__ ( self ): return self.elements[0][1] def A__ ( self ): ((UpperCAmelCase_) , (UpperCAmelCase_)) = heapq.heappop(self.elements ) self.set.remove(lowerCAmelCase ) return (priority, item) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Any: # euclidean distance UpperCAmelCase_ = np.array(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = np.array(__SCREAMING_SNAKE_CASE ) return np.linalg.norm(a - b ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: # integer division by time variable return consistent_heuristic(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) // t def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Any: UpperCAmelCase_ = g_function[start] + Wa * heuristics[i](__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return ans def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[str]: UpperCAmelCase_ = np.chararray((n, n) ) for i in range(__SCREAMING_SNAKE_CASE ): for j in range(__SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = "*" for i in range(__SCREAMING_SNAKE_CASE ): for j in range(__SCREAMING_SNAKE_CASE ): if (j, (n - 1) - i) in blocks: UpperCAmelCase_ = "#" UpperCAmelCase_ = "-" UpperCAmelCase_ = back_pointer[goal] while x != start: ((UpperCAmelCase_) , (UpperCAmelCase_)) = x # print(x) UpperCAmelCase_ = "-" UpperCAmelCase_ = back_pointer[x] UpperCAmelCase_ = "-" for i in range(__SCREAMING_SNAKE_CASE ): for j in range(__SCREAMING_SNAKE_CASE ): if (i, j) == (0, n - 1): print(grid[i][j] , end=" " ) print("<-- End position" , end=" " ) else: print(grid[i][j] , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) print("PATH TAKEN BY THE ALGORITHM IS:-" ) UpperCAmelCase_ = back_pointer[goal] while x != start: print(__SCREAMING_SNAKE_CASE , end=" " ) UpperCAmelCase_ = back_pointer[x] print(__SCREAMING_SNAKE_CASE ) sys.exit() def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Dict: if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: for itera in range(__SCREAMING_SNAKE_CASE ): open_list[itera].remove_element(__SCREAMING_SNAKE_CASE ) # print("s", s) # print("j", j) ((UpperCAmelCase_) , (UpperCAmelCase_)) = s UpperCAmelCase_ = (x - 1, y) UpperCAmelCase_ = (x + 1, y) UpperCAmelCase_ = (x, y + 1) UpperCAmelCase_ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(__SCREAMING_SNAKE_CASE ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = -1 UpperCAmelCase_ = float("inf" ) if valid(__SCREAMING_SNAKE_CASE ) and g_function[neighbours] > g_function[s] + 1: UpperCAmelCase_ = g_function[s] + 1 UpperCAmelCase_ = s if neighbours not in close_list_anchor: open_list[0].put(__SCREAMING_SNAKE_CASE , key(__SCREAMING_SNAKE_CASE , 0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) if neighbours not in close_list_inad: for var in range(1 , __SCREAMING_SNAKE_CASE ): if key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) <= Wa * key( __SCREAMING_SNAKE_CASE , 0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): open_list[j].put( __SCREAMING_SNAKE_CASE , key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def snake_case__ ( ) -> Any: UpperCAmelCase_ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list SCREAMING_SNAKE_CASE = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} SCREAMING_SNAKE_CASE = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] SCREAMING_SNAKE_CASE = make_common_ground() SCREAMING_SNAKE_CASE = blocks_blk # hyper parameters SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 20 SCREAMING_SNAKE_CASE = 3 # one consistent and two other inconsistent # start and end destination SCREAMING_SNAKE_CASE = (0, 0) SCREAMING_SNAKE_CASE = (n - 1, n - 1) SCREAMING_SNAKE_CASE = 1 def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Any: UpperCAmelCase_ = {start: 0, goal: float("inf" )} UpperCAmelCase_ = {start: -1, goal: -1} UpperCAmelCase_ = [] UpperCAmelCase_ = set() for i in range(__SCREAMING_SNAKE_CASE ): open_list.append(PriorityQueue() ) open_list[i].put(__SCREAMING_SNAKE_CASE , key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] while open_list[0].minkey() < float("inf" ): for i in range(1 , __SCREAMING_SNAKE_CASE ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("inf" ): do_something(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ , UpperCAmelCase_ = open_list[i].top_show() visited.add(__SCREAMING_SNAKE_CASE ) expand_state( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) close_list_inad.append(__SCREAMING_SNAKE_CASE ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("inf" ): do_something(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ = open_list[0].top_show() visited.add(__SCREAMING_SNAKE_CASE ) expand_state( __SCREAMING_SNAKE_CASE , 0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) close_list_anchor.append(__SCREAMING_SNAKE_CASE ) print("No path found to goal" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(__SCREAMING_SNAKE_CASE ): if (j, i) in blocks: print("#" , end=" " ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("*" , end=" " ) else: print("-" , end=" " ) else: print("*" , end=" " ) if (j, i) == (n - 1, n - 1): print("<-- End position" , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
700
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: # Initialise PyTorch model UpperCAmelCase_ = MobileBertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase_ = MobileBertForPreTraining(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint UpperCAmelCase_ = load_tf_weights_in_mobilebert(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
23
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } SCREAMING_SNAKE_CASE = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCAmelCase_ = "lm_head" UpperCAmelCase_ = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if weight_type is not None: UpperCAmelCase_ = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).shape else: UpperCAmelCase_ = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ = [] UpperCAmelCase_ = fairseq_model.state_dict() UpperCAmelCase_ = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase_ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase_ = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(SCREAMING_SNAKE_CASE_ )[0].split("." )[-2] UpperCAmelCase_ = mapped_key.replace("*" , SCREAMING_SNAKE_CASE_ ) if "weight_g" in name: UpperCAmelCase_ = "weight_g" elif "weight_v" in name: UpperCAmelCase_ = "weight_v" elif "bias" in name: UpperCAmelCase_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase_ = "weight" else: UpperCAmelCase_ = None set_recursively(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE_ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = full_name.split("conv_layers." )[-1] UpperCAmelCase_ = name.split("." ) UpperCAmelCase_ = int(items[0] ) UpperCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase_ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase_ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) UpperCAmelCase_ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase_ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True ) -> List[Any]: if config_path is not None: UpperCAmelCase_ = UniSpeechConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase_ = UniSpeechConfig() if is_finetuned: if dict_path: UpperCAmelCase_ = Dictionary.load_from_json(SCREAMING_SNAKE_CASE_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase_ = target_dict.pad_index UpperCAmelCase_ = target_dict.bos_index UpperCAmelCase_ = target_dict.eos_index UpperCAmelCase_ = len(target_dict.symbols ) UpperCAmelCase_ = os.path.join(SCREAMING_SNAKE_CASE_ , "vocab.json" ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(SCREAMING_SNAKE_CASE_ ) ) return os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase_ = 42 UpperCAmelCase_ = 43 with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ = WavaVecaPhonemeCTCTokenizer( SCREAMING_SNAKE_CASE_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=SCREAMING_SNAKE_CASE_ , ) UpperCAmelCase_ = True if config.feat_extract_norm == "layer" else False UpperCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , ) UpperCAmelCase_ = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ = UniSpeechForCTC(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase_ = UniSpeechForPreTraining(SCREAMING_SNAKE_CASE_ ) if is_finetuned: UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) UpperCAmelCase_ = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) hf_unispeech.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
701
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase ): UpperCAmelCase_ = str(id_ ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = [] UpperCAmelCase_ = {} # {vertex:distance} def __lt__( self , lowerCAmelCase ): return self.key < other.key def __repr__( self ): return self.id def A__ ( self , lowerCAmelCase ): self.neighbors.append(lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = weight def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __SCREAMING_SNAKE_CASE ) graph[b - 1].add_edge(graph[a - 1] , __SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> list: UpperCAmelCase_ = [] for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = graph[:] while q: UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE ) q.remove(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Iterator[tuple]: for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = list(__SCREAMING_SNAKE_CASE ) hq.heapify(__SCREAMING_SNAKE_CASE ) while h: UpperCAmelCase_ = hq.heappop(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] hq.heapify(__SCREAMING_SNAKE_CASE ) for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def snake_case__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
23
0
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : str = (DDPMParallelScheduler,) def A__ ( self , **lowerCAmelCase ): UpperCAmelCase_ = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**lowerCAmelCase ) return config def A__ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase ) def A__ ( self ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase ) def A__ ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase ) def A__ ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase ) def A__ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase ) def A__ ( self ): self.check_over_configs(thresholding=lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , ) def A__ ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase ) def A__ ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def A__ ( self ): UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**lowerCAmelCase ) UpperCAmelCase_ = len(lowerCAmelCase ) UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter UpperCAmelCase_ = self.dummy_sample_deter + 0.1 UpperCAmelCase_ = self.dummy_sample_deter - 0.1 UpperCAmelCase_ = samplea.shape[0] UpperCAmelCase_ = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCAmelCase_ = torch.arange(lowerCAmelCase )[0:3, None].repeat(1 , lowerCAmelCase ) UpperCAmelCase_ = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCAmelCase_ = scheduler.batch_step_no_noise(lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) UpperCAmelCase_ = torch.sum(torch.abs(lowerCAmelCase ) ) UpperCAmelCase_ = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def A__ ( self ): UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**lowerCAmelCase ) UpperCAmelCase_ = len(lowerCAmelCase ) UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter UpperCAmelCase_ = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase ) ): # 1. predict noise residual UpperCAmelCase_ = model(lowerCAmelCase , lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase_ = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase ).prev_sample UpperCAmelCase_ = pred_prev_sample UpperCAmelCase_ = torch.sum(torch.abs(lowerCAmelCase ) ) UpperCAmelCase_ = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def A__ ( self ): UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(prediction_type="v_prediction" ) UpperCAmelCase_ = scheduler_class(**lowerCAmelCase ) UpperCAmelCase_ = len(lowerCAmelCase ) UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter UpperCAmelCase_ = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase ) ): # 1. predict noise residual UpperCAmelCase_ = model(lowerCAmelCase , lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase_ = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase ).prev_sample UpperCAmelCase_ = pred_prev_sample UpperCAmelCase_ = torch.sum(torch.abs(lowerCAmelCase ) ) UpperCAmelCase_ = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def A__ ( self ): UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**lowerCAmelCase ) UpperCAmelCase_ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase ) UpperCAmelCase_ = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase ): if i == len(lowerCAmelCase ) - 1: UpperCAmelCase_ = -1 else: UpperCAmelCase_ = timesteps[i + 1] UpperCAmelCase_ = scheduler.previous_timestep(lowerCAmelCase ) UpperCAmelCase_ = prev_t.item() self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**lowerCAmelCase ) UpperCAmelCase_ = [100, 87, 50, 51, 0] with self.assertRaises(lowerCAmelCase , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**lowerCAmelCase ) UpperCAmelCase_ = [100, 87, 50, 1, 0] UpperCAmelCase_ = len(lowerCAmelCase ) with self.assertRaises(lowerCAmelCase , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase , timesteps=lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**lowerCAmelCase ) UpperCAmelCase_ = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=lowerCAmelCase )
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
import qiskit def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register UpperCAmelCase_ = qiskit.QuantumCircuit(__lowercase , __lowercase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator UpperCAmelCase_ = qiskit.execute(__lowercase , __lowercase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__lowercase ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
703
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE = { "yjernite/retribert-base-uncased": 512, } SCREAMING_SNAKE_CASE = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase_ : int = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Dict = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : List[str] = RetriBertTokenizer lowerCAmelCase_ : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**lowerCAmelCase ) UpperCAmelCase_ = do_lower_case def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
23
0
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") SCREAMING_SNAKE_CASE = parser.parse_args() SCREAMING_SNAKE_CASE = "cpu" SCREAMING_SNAKE_CASE = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" SCREAMING_SNAKE_CASE = "path-to-your-trained-model" SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) SCREAMING_SNAKE_CASE = pipe.to(device) # to channels last SCREAMING_SNAKE_CASE = pipe.unet.to(memory_format=torch.channels_last) SCREAMING_SNAKE_CASE = pipe.vae.to(memory_format=torch.channels_last) SCREAMING_SNAKE_CASE = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: SCREAMING_SNAKE_CASE = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex SCREAMING_SNAKE_CASE = torch.randn(2, 4, 64, 64) SCREAMING_SNAKE_CASE = torch.rand(1) * 999 SCREAMING_SNAKE_CASE = torch.randn(2, 77, 768) SCREAMING_SNAKE_CASE = (sample, timestep, encoder_hidden_status) try: SCREAMING_SNAKE_CASE = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: SCREAMING_SNAKE_CASE = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) SCREAMING_SNAKE_CASE = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) SCREAMING_SNAKE_CASE = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: SCREAMING_SNAKE_CASE = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute SCREAMING_SNAKE_CASE = 666 SCREAMING_SNAKE_CASE = torch.Generator(device).manual_seed(seed) SCREAMING_SNAKE_CASE = {"generator": generator} if args.steps is not None: SCREAMING_SNAKE_CASE = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): SCREAMING_SNAKE_CASE = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
704
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } SCREAMING_SNAKE_CASE = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Any = VOCAB_FILES_NAMES lowerCAmelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : int = ['input_ids', 'attention_mask'] lowerCAmelCase_ : str = DistilBertTokenizer def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**lowerCAmelCase ) UpperCAmelCase_ = do_lower_case def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
23
0
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets SCREAMING_SNAKE_CASE = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' SCREAMING_SNAKE_CASE = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' SCREAMING_SNAKE_CASE = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): '''simple docstring''' def A__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"] , reference_urls=[ "https://en.wikipedia.org/wiki/ROUGE_(metric)", "https://github.com/google-research/google-research/tree/master/rouge", ] , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase=False ): if rouge_types is None: UpperCAmelCase_ = ["rouge1", "rouge2", "rougeL", "rougeLsum"] UpperCAmelCase_ = rouge_scorer.RougeScorer(rouge_types=snake_case__ , use_stemmer=snake_case__ ) if use_aggregator: UpperCAmelCase_ = scoring.BootstrapAggregator() else: UpperCAmelCase_ = [] for ref, pred in zip(snake_case__ , snake_case__ ): UpperCAmelCase_ = scorer.score(snake_case__ , snake_case__ ) if use_aggregator: aggregator.add_scores(snake_case__ ) else: scores.append(snake_case__ ) if use_aggregator: UpperCAmelCase_ = aggregator.aggregate() else: UpperCAmelCase_ = {} for key in scores[0]: UpperCAmelCase_ = [score[key] for score in scores] return result
705
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> np.array: UpperCAmelCase_ = f'''{sampling_rate}''' UpperCAmelCase_ = "1" UpperCAmelCase_ = "f32le" UpperCAmelCase_ = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: UpperCAmelCase_ = ffmpeg_process.communicate(__SCREAMING_SNAKE_CASE ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error UpperCAmelCase_ = output_stream[0] UpperCAmelCase_ = np.frombuffer(__SCREAMING_SNAKE_CASE , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "f32le" , ) -> Dict: UpperCAmelCase_ = f'''{sampling_rate}''' UpperCAmelCase_ = "1" if format_for_conversion == "s16le": UpperCAmelCase_ = 2 elif format_for_conversion == "f32le": UpperCAmelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) UpperCAmelCase_ = platform.system() if system == "Linux": UpperCAmelCase_ = "alsa" UpperCAmelCase_ = "default" elif system == "Darwin": UpperCAmelCase_ = "avfoundation" UpperCAmelCase_ = ":0" elif system == "Windows": UpperCAmelCase_ = "dshow" UpperCAmelCase_ = "default" UpperCAmelCase_ = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample UpperCAmelCase_ = _ffmpeg_stream(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for item in iterator: yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "f32le" , ) -> int: if stream_chunk_s is not None: UpperCAmelCase_ = stream_chunk_s else: UpperCAmelCase_ = chunk_length_s UpperCAmelCase_ = ffmpeg_microphone(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , format_for_conversion=__SCREAMING_SNAKE_CASE ) if format_for_conversion == "s16le": UpperCAmelCase_ = np.intaa UpperCAmelCase_ = 2 elif format_for_conversion == "f32le": UpperCAmelCase_ = np.floataa UpperCAmelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: UpperCAmelCase_ = chunk_length_s / 6 UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): UpperCAmelCase_ = [stride_length_s, stride_length_s] UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample UpperCAmelCase_ = datetime.datetime.now() UpperCAmelCase_ = datetime.timedelta(seconds=__SCREAMING_SNAKE_CASE ) for item in chunk_bytes_iter(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=(stride_left, stride_right) , stream=__SCREAMING_SNAKE_CASE ): # Put everything back in numpy scale UpperCAmelCase_ = np.frombuffer(item["raw"] , dtype=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) UpperCAmelCase_ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False ) -> Dict: UpperCAmelCase_ = B"" UpperCAmelCase_ , UpperCAmelCase_ = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) UpperCAmelCase_ = 0 for raw in iterator: acc += raw if stream and len(__SCREAMING_SNAKE_CASE ) < chunk_len: UpperCAmelCase_ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__SCREAMING_SNAKE_CASE ) >= chunk_len: # We are flushing the accumulator UpperCAmelCase_ = (_stride_left, stride_right) UpperCAmelCase_ = {"raw": acc[:chunk_len], "stride": stride} if stream: UpperCAmelCase_ = False yield item UpperCAmelCase_ = stride_left UpperCAmelCase_ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__SCREAMING_SNAKE_CASE ) > stride_left: UpperCAmelCase_ = {"raw": acc, "stride": (_stride_left, 0)} if stream: UpperCAmelCase_ = False yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ = 2**24 # 16Mo try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE , bufsize=__SCREAMING_SNAKE_CASE ) as ffmpeg_process: while True: UpperCAmelCase_ = ffmpeg_process.stdout.read(__SCREAMING_SNAKE_CASE ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
23
0
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ) -> Any: try: UpperCAmelCase_ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCAmelCase_ = default else: # KEY is set, convert it to True or False. try: UpperCAmelCase_ = strtobool(lowerCAmelCase_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value SCREAMING_SNAKE_CASE = parse_flag_from_env("RUN_SLOW", default=False) SCREAMING_SNAKE_CASE = parse_flag_from_env("RUN_REMOTE", default=False) SCREAMING_SNAKE_CASE = parse_flag_from_env("RUN_LOCAL", default=True) SCREAMING_SNAKE_CASE = parse_flag_from_env("RUN_PACKAGED", default=True) # Compression SCREAMING_SNAKE_CASE = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="test requires lz4") SCREAMING_SNAKE_CASE = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="test requires py7zr") SCREAMING_SNAKE_CASE = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="test requires zstandard") # Audio SCREAMING_SNAKE_CASE = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("soundfile") is None or version.parse(importlib_metadata.version("soundfile")) < version.parse("0.12.0"), reason="test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ", ) # Beam SCREAMING_SNAKE_CASE = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("0.3.2"), reason="test requires apache-beam and a compatible dill version", ) # Dill-cloudpickle compatibility SCREAMING_SNAKE_CASE = pytest.mark.skipif( config.DILL_VERSION <= version.parse("0.3.2"), reason="test requires dill>0.3.2 for cloudpickle compatibility", ) # Windows SCREAMING_SNAKE_CASE = pytest.mark.skipif( sys.platform == "win32", reason="test should not be run on Windows", ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Optional[int]: try: import faiss # noqa except ImportError: UpperCAmelCase_ = unittest.skip("test requires faiss" )(lowerCAmelCase_ ) return test_case def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Optional[Any]: try: import regex # noqa except ImportError: UpperCAmelCase_ = unittest.skip("test requires regex" )(lowerCAmelCase_ ) return test_case def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: try: import elasticsearch # noqa except ImportError: UpperCAmelCase_ = unittest.skip("test requires elasticsearch" )(lowerCAmelCase_ ) return test_case def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Any: try: import sqlalchemy # noqa except ImportError: UpperCAmelCase_ = unittest.skip("test requires sqlalchemy" )(lowerCAmelCase_ ) return test_case def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: if not config.TORCH_AVAILABLE: UpperCAmelCase_ = unittest.skip("test requires PyTorch" )(lowerCAmelCase_ ) return test_case def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Any: if not config.TF_AVAILABLE: UpperCAmelCase_ = unittest.skip("test requires TensorFlow" )(lowerCAmelCase_ ) return test_case def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: if not config.JAX_AVAILABLE: UpperCAmelCase_ = unittest.skip("test requires JAX" )(lowerCAmelCase_ ) return test_case def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> List[Any]: if not config.PIL_AVAILABLE: UpperCAmelCase_ = unittest.skip("test requires Pillow" )(lowerCAmelCase_ ) return test_case def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> List[str]: try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers" )(lowerCAmelCase_ ) else: return test_case def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken" )(lowerCAmelCase_ ) else: return test_case def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Any: try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy" )(lowerCAmelCase_ ) else: return test_case def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Tuple: def _require_spacy_model(__SCREAMING_SNAKE_CASE ): try: import spacy # noqa F401 spacy.load(lowerCAmelCase_ ) except ImportError: return unittest.skip("test requires spacy" )(lowerCAmelCase_ ) except OSError: return unittest.skip("test requires spacy model '{}'".format(lowerCAmelCase_ ) )(lowerCAmelCase_ ) else: return test_case return _require_spacy_model def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark" )(lowerCAmelCase_ ) else: return test_case def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> List[Any]: try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark" )(lowerCAmelCase_ ) else: return test_case def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Optional[int]: if not _run_slow_tests or _run_slow_tests == 0: UpperCAmelCase_ = unittest.skip("test is slow" )(lowerCAmelCase_ ) return test_case def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> List[str]: if not _run_local_tests or _run_local_tests == 0: UpperCAmelCase_ = unittest.skip("test is local" )(lowerCAmelCase_ ) return test_case def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Optional[int]: if not _run_packaged_tests or _run_packaged_tests == 0: UpperCAmelCase_ = unittest.skip("test is packaged" )(lowerCAmelCase_ ) return test_case def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Dict: if not _run_remote_tests or _run_remote_tests == 0: UpperCAmelCase_ = unittest.skip("test requires remote" )(lowerCAmelCase_ ) return test_case def snake_case__ ( *__SCREAMING_SNAKE_CASE ) -> List[Any]: def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(lowerCAmelCase_ ) and name.startswith("test" ): for decorator in decorators: UpperCAmelCase_ = decorator(lowerCAmelCase_ ) setattr(cls , lowerCAmelCase_ , lowerCAmelCase_ ) return cls return decorate class lowerCamelCase ( __lowerCamelCase ): '''simple docstring''' pass class lowerCamelCase ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase_ : List[str] = 0 lowerCAmelCase_ : List[str] = 1 lowerCAmelCase_ : List[Any] = 2 @contextmanager def snake_case__ ( __SCREAMING_SNAKE_CASE=OfflineSimulationMode.CONNECTION_FAILS , __SCREAMING_SNAKE_CASE=1E-16 ) -> str: UpperCAmelCase_ = requests.Session().request def timeout_request(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): # Change the url to an invalid url so that the connection hangs UpperCAmelCase_ = "https://10.255.255.1" if kwargs.get("timeout" ) is None: raise RequestWouldHangIndefinitelyError( f'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' ) UpperCAmelCase_ = timeout try: return online_request(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCAmelCase_ = url UpperCAmelCase_ = e.args[0] UpperCAmelCase_ = (max_retry_error.args[0].replace("10.255.255.1" , f'''OfflineMock[{url}]''' ),) UpperCAmelCase_ = (max_retry_error,) raise def raise_connection_error(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): raise requests.ConnectionError("Offline mode is enabled." , request=lowerCAmelCase_ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send" , lowerCAmelCase_ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request" , lowerCAmelCase_ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE" , lowerCAmelCase_ ): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum." ) @contextmanager def snake_case__ ( *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ = str(Path().resolve() ) with tempfile.TemporaryDirectory(*lowerCAmelCase_ , **lowerCAmelCase_ ) as tmp_dir: try: os.chdir(lowerCAmelCase_ ) yield finally: os.chdir(lowerCAmelCase_ ) @contextmanager def snake_case__ ( ) -> Tuple: import gc gc.collect() UpperCAmelCase_ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def snake_case__ ( ) -> Any: import gc gc.collect() UpperCAmelCase_ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: return deepcopy(lowerCAmelCase_ ).integers(0 , 100 , 10 ).tolist() == deepcopy(lowerCAmelCase_ ).integers(0 , 100 , 10 ).tolist() def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: import decorator from requests.exceptions import HTTPError def _wrapper(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): try: return func(*lowerCAmelCase_ , **lowerCAmelCase_ ) except HTTPError as err: if str(lowerCAmelCase_ ).startswith("500" ) or str(lowerCAmelCase_ ).startswith("502" ): pytest.xfail(str(lowerCAmelCase_ ) ) raise err return decorator.decorator(_wrapper , lowerCAmelCase_ ) class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = returncode UpperCAmelCase_ = stdout UpperCAmelCase_ = stderr async def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: while True: UpperCAmelCase_ = await stream.readline() if line: callback(lowerCAmelCase_ ) else: break async def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False ) -> Any: if echo: print("\nRunning: " , " ".join(lowerCAmelCase_ ) ) UpperCAmelCase_ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowerCAmelCase_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowerCAmelCase_ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCAmelCase_ = [] UpperCAmelCase_ = [] def tee(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="" ): UpperCAmelCase_ = line.decode("utf-8" ).rstrip() sink.append(lowerCAmelCase_ ) if not quiet: print(lowerCAmelCase_ , lowerCAmelCase_ , file=lowerCAmelCase_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __SCREAMING_SNAKE_CASE : tee(lowerCAmelCase_ , lowerCAmelCase_ , sys.stdout , label="stdout:" ) ), _read_stream(p.stderr , lambda __SCREAMING_SNAKE_CASE : tee(lowerCAmelCase_ , lowerCAmelCase_ , sys.stderr , label="stderr:" ) ), ] , timeout=lowerCAmelCase_ , ) return _RunOutput(await p.wait() , lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=180 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True ) -> int: UpperCAmelCase_ = asyncio.get_event_loop() UpperCAmelCase_ = loop.run_until_complete( _stream_subprocess(lowerCAmelCase_ , env=lowerCAmelCase_ , stdin=lowerCAmelCase_ , timeout=lowerCAmelCase_ , quiet=lowerCAmelCase_ , echo=lowerCAmelCase_ ) ) UpperCAmelCase_ = " ".join(lowerCAmelCase_ ) if result.returncode > 0: UpperCAmelCase_ = "\n".join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'''\'{cmd_str}\' produced no output.''' ) return result def snake_case__ ( ) -> List[str]: UpperCAmelCase_ = os.environ.get("PYTEST_XDIST_WORKER" , "gw0" ) UpperCAmelCase_ = re.sub(R"^gw" , "" , lowerCAmelCase_ , 0 , re.M ) return int(lowerCAmelCase_ ) def snake_case__ ( ) -> Tuple: UpperCAmelCase_ = 2_9500 UpperCAmelCase_ = pytest_xdist_worker_id() return port + uniq_delta
706
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowerCamelCase ( lowercase__, lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCAmelCase = 768 , ): super().__init__() UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(torch.ones(1 , lowerCAmelCase ) ) def A__ ( self , lowerCAmelCase = None , lowerCAmelCase = None , ): UpperCAmelCase_ = nn.Parameter(self.mean.to(lowerCAmelCase ).to(lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(self.std.to(lowerCAmelCase ).to(lowerCAmelCase ) ) return self def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (embeds * self.std) + self.mean return embeds
23
0
'''simple docstring''' def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) UpperCAmelCase_ = str(bin(_snake_case ) )[2:] # remove the leading "0b" UpperCAmelCase_ = str(bin(_snake_case ) )[2:] # remove the leading "0b" UpperCAmelCase_ = max(len(_snake_case ) , len(_snake_case ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(_snake_case ) , b_binary.zfill(_snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
707
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): super().__init__(*lowerCAmelCase , **lowerCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def A__ ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None ): UpperCAmelCase_ = {} UpperCAmelCase_ = {} if prompt is not None: UpperCAmelCase_ = prompt if generate_kwargs is not None: UpperCAmelCase_ = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: UpperCAmelCase_ = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one" ) UpperCAmelCase_ = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , lowerCAmelCase , **lowerCAmelCase ): return super().__call__(lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = load_image(lowerCAmelCase ) if prompt is not None: if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(lowerCAmelCase )} - but expected a single string. ''' "Note also that one single text can be provided for conditional image to text generation." ) UpperCAmelCase_ = self.model.config.model_type if model_type == "git": UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) UpperCAmelCase_ = self.tokenizer(text=lowerCAmelCase , add_special_tokens=lowerCAmelCase ).input_ids UpperCAmelCase_ = [self.tokenizer.cls_token_id] + input_ids UpperCAmelCase_ = torch.tensor(lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"input_ids": input_ids} ) elif model_type == "pix2struct": UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , header_text=lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) UpperCAmelCase_ = self.tokenizer(lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: UpperCAmelCase_ = None return model_inputs def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , lowerCAmelCase ) and all(x is None for x in model_inputs["input_ids"] ) ): UpperCAmelCase_ = None if generate_kwargs is None: UpperCAmelCase_ = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. UpperCAmelCase_ = model_inputs.pop(self.model.main_input_name ) UpperCAmelCase_ = self.model.generate(lowerCAmelCase , **lowerCAmelCase , **lowerCAmelCase ) return model_outputs def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = [] for output_ids in model_outputs: UpperCAmelCase_ = { "generated_text": self.tokenizer.decode( lowerCAmelCase , skip_special_tokens=lowerCAmelCase , ) } records.append(lowerCAmelCase ) return records
23
0
class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = name UpperCAmelCase_ = val def __str__( self ): return f'''{self.__class__.__name__}({self.name}, {self.val})''' def __lt__( self , lowerCAmelCase ): return self.val < other.val class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase ): UpperCAmelCase_ = {} UpperCAmelCase_ = {} UpperCAmelCase_ = self.build_heap(_SCREAMING_SNAKE_CASE ) def __getitem__( self , lowerCAmelCase ): return self.get_value(_SCREAMING_SNAKE_CASE ) def A__ ( self , lowerCAmelCase ): return (idx - 1) // 2 def A__ ( self , lowerCAmelCase ): return idx * 2 + 1 def A__ ( self , lowerCAmelCase ): return idx * 2 + 2 def A__ ( self , lowerCAmelCase ): return self.heap_dict[key] def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = len(_SCREAMING_SNAKE_CASE ) - 1 UpperCAmelCase_ = self.get_parent_idx(_SCREAMING_SNAKE_CASE ) for idx, i in enumerate(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = idx UpperCAmelCase_ = i.val for i in range(_SCREAMING_SNAKE_CASE , -1 , -1 ): self.sift_down(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return array def A__ ( self , lowerCAmelCase , lowerCAmelCase ): while True: UpperCAmelCase_ = self.get_left_child_idx(_SCREAMING_SNAKE_CASE ) # noqa: E741 UpperCAmelCase_ = self.get_right_child_idx(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = idx if l < len(_SCREAMING_SNAKE_CASE ) and array[l] < array[idx]: UpperCAmelCase_ = l if r < len(_SCREAMING_SNAKE_CASE ) and array[r] < array[smallest]: UpperCAmelCase_ = r if smallest != idx: UpperCAmelCase_ , UpperCAmelCase_ = array[smallest], array[idx] ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) UpperCAmelCase_ = smallest else: break def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = self.get_parent_idx(_SCREAMING_SNAKE_CASE ) while p >= 0 and self.heap[p] > self.heap[idx]: UpperCAmelCase_ , UpperCAmelCase_ = self.heap[idx], self.heap[p] UpperCAmelCase_ , UpperCAmelCase_ = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) UpperCAmelCase_ = p UpperCAmelCase_ = self.get_parent_idx(_SCREAMING_SNAKE_CASE ) def A__ ( self ): return self.heap[0] def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.heap[-1], self.heap[0] UpperCAmelCase_ , UpperCAmelCase_ = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) UpperCAmelCase_ = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def A__ ( self , lowerCAmelCase ): self.heap.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = len(self.heap ) - 1 UpperCAmelCase_ = node.val self.sift_up(len(self.heap ) - 1 ) def A__ ( self ): return len(self.heap ) == 0 def A__ ( self , lowerCAmelCase , lowerCAmelCase ): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" UpperCAmelCase_ = new_value UpperCAmelCase_ = new_value self.sift_up(self.idx_of_element[node] ) SCREAMING_SNAKE_CASE = Node("R", -1) SCREAMING_SNAKE_CASE = Node("B", 6) SCREAMING_SNAKE_CASE = Node("A", 3) SCREAMING_SNAKE_CASE = Node("X", 1) SCREAMING_SNAKE_CASE = Node("E", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array SCREAMING_SNAKE_CASE = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("Min Heap - before decrease key") for i in my_min_heap.heap: print(i) print("Min Heap - After decrease key of node [B -> -17]") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
708
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCamelCase ( lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : int = TextToVideoSDPipeline lowerCAmelCase_ : Dict = TEXT_TO_IMAGE_PARAMS lowerCAmelCase_ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. lowerCAmelCase_ : Optional[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def A__ ( self ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCAmelCase_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) UpperCAmelCase_ = CLIPTextModel(lowerCAmelCase ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def A__ ( self , lowerCAmelCase , lowerCAmelCase=0 ): if str(lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(lowerCAmelCase ) else: UpperCAmelCase_ = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) UpperCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def A__ ( self ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = TextToVideoSDPipeline(**lowerCAmelCase ) UpperCAmelCase_ = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs(lowerCAmelCase ) UpperCAmelCase_ = "np" UpperCAmelCase_ = sd_pipe(**lowerCAmelCase ).frames UpperCAmelCase_ = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) UpperCAmelCase_ = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCAmelCase , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCAmelCase , expected_max_diff=1e-2 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def A__ ( self ): pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def A__ ( self ): pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def A__ ( self ): pass def A__ ( self ): return super().test_progress_bar() @slow @skip_mps class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy" ) UpperCAmelCase_ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ = pipe.to("cuda" ) UpperCAmelCase_ = "Spiderman is surfing" UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=25 , output_type="pt" ).frames UpperCAmelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def A__ ( self ): UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy" ) UpperCAmelCase_ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) UpperCAmelCase_ = pipe.to("cuda" ) UpperCAmelCase_ = "Spiderman is surfing" UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=2 , output_type="pt" ).frames UpperCAmelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
23
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } SCREAMING_SNAKE_CASE = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } SCREAMING_SNAKE_CASE = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class lowerCamelCase ( _A ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase_ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Any = ConvBertTokenizer def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , tokenize_chinese_chars=UpperCamelCase__ , strip_accents=UpperCamelCase__ , **UpperCamelCase__ , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCamelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCamelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCamelCase__ ) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(UpperCamelCase__ , normalizer_state.pop("type" ) ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**UpperCamelCase__ ) UpperCAmelCase_ = do_lower_case def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ )
709
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = [1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 0, 0, 0 UpperCAmelCase_ = ugly_nums[ia] * 2 UpperCAmelCase_ = ugly_nums[ia] * 3 UpperCAmelCase_ = ugly_nums[ia] * 5 for _ in range(1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ugly_nums.append(__SCREAMING_SNAKE_CASE ) if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(200) = }''')
23
0
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors SCREAMING_SNAKE_CASE = logging.getLogger(__name__) class lowerCamelCase ( snake_case__ ): '''simple docstring''' lowerCAmelCase_ : Any = '''sequence-classification''' def __init__( self , lowerCAmelCase ): if type(_A ) == dict: UpperCAmelCase_ = Namespace(**_A ) UpperCAmelCase_ = glue_output_modes[hparams.task] UpperCAmelCase_ = glue_tasks_num_labels[hparams.task] super().__init__(_A , _A , self.mode ) def A__ ( self , **lowerCAmelCase ): return self.model(**_A ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: UpperCAmelCase_ = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None UpperCAmelCase_ = self(**_A ) UpperCAmelCase_ = outputs[0] UpperCAmelCase_ = self.trainer.lr_schedulers[0]['scheduler'] UpperCAmelCase_ = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A__ ( self ): UpperCAmelCase_ = self.hparams UpperCAmelCase_ = processors[args.task]() UpperCAmelCase_ = processor.get_labels() for mode in ["train", "dev"]: UpperCAmelCase_ = self._feature_file(_A ) if os.path.exists(_A ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , _A ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) UpperCAmelCase_ = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) UpperCAmelCase_ = convert_examples_to_features( _A , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , _A ) torch.save(_A , _A ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = False ): UpperCAmelCase_ = 'dev' if mode == 'test' else mode UpperCAmelCase_ = self._feature_file(_A ) logger.info("Loading features from cached file %s" , _A ) UpperCAmelCase_ = torch.load(_A ) UpperCAmelCase_ = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase_ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) UpperCAmelCase_ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": UpperCAmelCase_ = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": UpperCAmelCase_ = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(_A , _A , _A , _A ) , batch_size=_A , shuffle=_A , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: UpperCAmelCase_ = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None UpperCAmelCase_ = self(**_A ) UpperCAmelCase_ = outputs[:2] UpperCAmelCase_ = logits.detach().cpu().numpy() UpperCAmelCase_ = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() UpperCAmelCase_ = np.concatenate([x["pred"] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": UpperCAmelCase_ = np.argmax(_A , axis=1 ) elif self.hparams.glue_output_mode == "regression": UpperCAmelCase_ = np.squeeze(_A ) UpperCAmelCase_ = np.concatenate([x["target"] for x in outputs] , axis=0 ) UpperCAmelCase_ = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , _A , _A )} UpperCAmelCase_ = dict(results.items() ) UpperCAmelCase_ = results return ret, preds_list, out_label_list def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = self._eval_end(_A ) UpperCAmelCase_ = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = self._eval_end(_A ) UpperCAmelCase_ = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A__ ( lowerCAmelCase , lowerCAmelCase ): BaseTransformer.add_model_specific_args(_A , _A ) parser.add_argument( "--max_seq_length" , default=128 , type=_A , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=_A , required=_A , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=_A , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser def snake_case__ ( ) -> Tuple: UpperCAmelCase_ = argparse.ArgumentParser() add_generic_args(__SCREAMING_SNAKE_CASE , os.getcwd() ) UpperCAmelCase_ = GLUETransformer.add_model_specific_args(__SCREAMING_SNAKE_CASE , os.getcwd() ) UpperCAmelCase_ = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: UpperCAmelCase_ = os.path.join( "./results" , f'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) UpperCAmelCase_ = GLUETransformer(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = generic_train(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Optionally, predict on dev set and write to output_dir if args.do_predict: UpperCAmelCase_ = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=__SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
710
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=3 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=224 , lowerCAmelCase=1000 , lowerCAmelCase=[3, 3, 6, 4] , lowerCAmelCase=[48, 56, 112, 220] , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = num_labels UpperCAmelCase_ = image_size UpperCAmelCase_ = layer_depths UpperCAmelCase_ = embed_dims def A__ ( self ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def A__ ( self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCAmelCase , layer_scale_init_value=1e-5 , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = SwiftFormerModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) UpperCAmelCase_ = SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self ): ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = self.prepare_config_and_inputs() UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase__, lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowerCAmelCase_ : int = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : int = False lowerCAmelCase_ : str = False lowerCAmelCase_ : Optional[Any] = False def A__ ( self ): UpperCAmelCase_ = SwiftFormerModelTester(self ) UpperCAmelCase_ = ConfigTester( self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def A__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def A__ ( self ): pass def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def A__ ( self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = SwiftFormerModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def A__ ( self ): pass def A__ ( self ): def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 8 self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): def _config_zero_init(lowerCAmelCase ): UpperCAmelCase_ = copy.deepcopy(lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCAmelCase , lowerCAmelCase , 1e-1_0 ) if isinstance(getattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ): UpperCAmelCase_ = _config_zero_init(getattr(lowerCAmelCase , lowerCAmelCase ) ) setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return configs_no_init UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = _config_zero_init(lowerCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(config=lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A__ ( self ): pass def snake_case__ ( ) -> str: UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def A__ ( self ): UpperCAmelCase_ = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(lowerCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=lowerCAmelCase , return_tensors="pt" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase_ = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1e-4 ) )
23
0
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> List[Tuple[int, ...]]: UpperCAmelCase_ = [] if isinstance(__snake_case , __snake_case ): for v in tree.values(): shapes.extend(_fetch_dims(__snake_case ) ) elif isinstance(__snake_case , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__snake_case ) ) elif isinstance(__snake_case , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("Not supported" ) return shapes @torch.jit.ignore def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple[int, ...]: UpperCAmelCase_ = [] for d in reversed(__snake_case ): idx.append(flat_idx % d ) UpperCAmelCase_ = flat_idx // d return tuple(reversed(__snake_case ) ) @torch.jit.ignore def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , ) -> List[Tuple[slice, ...]]: def reduce_edge_list(__SCREAMING_SNAKE_CASE ) -> None: UpperCAmelCase_ = True for i in range(len(__snake_case ) ): UpperCAmelCase_ = -1 * (i + 1) l[reversed_idx] &= tally UpperCAmelCase_ = l[reversed_idx] if start_edges is None: UpperCAmelCase_ = [s == 0 for s in start] reduce_edge_list(__snake_case ) if end_edges is None: UpperCAmelCase_ = [e == (d - 1) for e, d in zip(__snake_case , __snake_case )] reduce_edge_list(__snake_case ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__snake_case ) == 0: return [()] elif len(__snake_case ) == 1: return [(slice(start[0] , end[0] + 1 ),)] UpperCAmelCase_ = [] UpperCAmelCase_ = [] # Dimensions common to start and end can be selected directly for s, e in zip(__snake_case , __snake_case ): if s == e: path_list.append(slice(__snake_case , s + 1 ) ) else: break UpperCAmelCase_ = tuple(__snake_case ) UpperCAmelCase_ = len(__snake_case ) # start == end, and we're done if divergence_idx == len(__snake_case ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCAmelCase_ = start[divergence_idx] return tuple( path + (slice(__snake_case , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCAmelCase_ = end[divergence_idx] return tuple( path + (slice(__snake_case , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) UpperCAmelCase_ = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> torch.Tensor: UpperCAmelCase_ = t.shape[:no_batch_dims] UpperCAmelCase_ = list(_flat_idx_to_idx(__snake_case , __snake_case ) ) # _get_minimal_slice_set is inclusive UpperCAmelCase_ = list(_flat_idx_to_idx(flat_end - 1 , __snake_case ) ) # Get an ordered list of slices to perform UpperCAmelCase_ = _get_minimal_slice_set( __snake_case , __snake_case , __snake_case , ) UpperCAmelCase_ = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , ) -> Any: if not (len(__snake_case ) > 0): raise ValueError("Must provide at least one input" ) UpperCAmelCase_ = [shape[:no_batch_dims] for shape in _fetch_dims(__snake_case )] UpperCAmelCase_ = tuple([max(__snake_case ) for s in zip(*__snake_case )] ) def _prep_inputs(__SCREAMING_SNAKE_CASE ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: UpperCAmelCase_ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) UpperCAmelCase_ = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: UpperCAmelCase_ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t UpperCAmelCase_ = tensor_tree_map(_prep_inputs , __snake_case ) UpperCAmelCase_ = None if _out is not None: UpperCAmelCase_ = tensor_tree_map(lambda __SCREAMING_SNAKE_CASE : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) UpperCAmelCase_ = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCAmelCase_ = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(__SCREAMING_SNAKE_CASE ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCAmelCase_ = 0 UpperCAmelCase_ = prepped_outputs for _ in range(__snake_case ): # Chunk the input if not low_mem: UpperCAmelCase_ = _select_chunk else: UpperCAmelCase_ = partial( _chunk_slice , flat_start=__snake_case , flat_end=min(__snake_case , i + chunk_size ) , no_batch_dims=len(__snake_case ) , ) UpperCAmelCase_ = tensor_tree_map(__snake_case , __snake_case ) # Run the layer on the chunk UpperCAmelCase_ = layer(**__snake_case ) # Allocate space for the output if out is None: UpperCAmelCase_ = tensor_tree_map(lambda __SCREAMING_SNAKE_CASE : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , __snake_case ) # Put the chunk in its pre-allocated space if isinstance(__snake_case , __snake_case ): def assign(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None: for k, v in da.items(): if isinstance(__snake_case , __snake_case ): assign(__snake_case , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCAmelCase_ = da[k] assign(__snake_case , __snake_case ) elif isinstance(__snake_case , __snake_case ): for xa, xa in zip(__snake_case , __snake_case ): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCAmelCase_ = xa elif isinstance(__snake_case , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCAmelCase_ = output_chunk else: raise ValueError("Not supported" ) i += chunk_size UpperCAmelCase_ = tensor_tree_map(lambda __SCREAMING_SNAKE_CASE : t.view(orig_batch_dims + t.shape[1:] ) , __snake_case ) return out class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase = 512 , ): UpperCAmelCase_ = max_chunk_size UpperCAmelCase_ = None UpperCAmelCase_ = None def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): logging.info("Tuning chunk size..." ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCAmelCase_ = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] UpperCAmelCase_ = [c for c in candidates if c > min_chunk_size] UpperCAmelCase_ = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(lowerCAmelCase ) -> bool: try: with torch.no_grad(): fn(*__a , chunk_size=__a ) return True except RuntimeError: return False UpperCAmelCase_ = 0 UpperCAmelCase_ = len(__a ) - 1 while i > min_viable_chunk_size_index: UpperCAmelCase_ = test_chunk_size(candidates[i] ) if not viable: UpperCAmelCase_ = (min_viable_chunk_size_index + i) // 2 else: UpperCAmelCase_ = i UpperCAmelCase_ = (i + len(__a ) - 1) // 2 return candidates[min_viable_chunk_size_index] def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = True for aa, aa in zip(__a , __a ): assert type(__a ) == type(__a ) if isinstance(__a , (list, tuple) ): consistent &= self._compare_arg_caches(__a , __a ) elif isinstance(__a , __a ): UpperCAmelCase_ = [v for _, v in sorted(aa.items() , key=lambda lowerCAmelCase : x[0] )] UpperCAmelCase_ = [v for _, v in sorted(aa.items() , key=lambda lowerCAmelCase : x[0] )] consistent &= self._compare_arg_caches(__a , __a ) else: consistent &= aa == aa return consistent def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): UpperCAmelCase_ = True UpperCAmelCase_ = tree_map(lambda lowerCAmelCase : a.shape if isinstance(__a , torch.Tensor ) else a , __a , __a ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(__a ) UpperCAmelCase_ = self._compare_arg_caches(self.cached_arg_data , __a ) else: # Otherwise, we can reuse the precomputed value UpperCAmelCase_ = False if not consistent: UpperCAmelCase_ = self._determine_favorable_chunk_size( __a , __a , __a , ) UpperCAmelCase_ = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
711
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available SCREAMING_SNAKE_CASE = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class lowerCamelCase : def A__ ( self , lowerCAmelCase ): raise NotImplementedError() def A__ ( self ): raise NotImplementedError() class lowerCamelCase ( lowercase_ ): def __init__( self , lowerCAmelCase , lowerCAmelCase = False , **lowerCAmelCase ): UpperCAmelCase_ = tokenizer UpperCAmelCase_ = skip_prompt UpperCAmelCase_ = decode_kwargs # variables used in the streaming process UpperCAmelCase_ = [] UpperCAmelCase_ = 0 UpperCAmelCase_ = True def A__ ( self , lowerCAmelCase ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1" ) elif len(value.shape ) > 1: UpperCAmelCase_ = value[0] if self.skip_prompt and self.next_tokens_are_prompt: UpperCAmelCase_ = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) UpperCAmelCase_ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("\n" ): UpperCAmelCase_ = text[self.print_len :] UpperCAmelCase_ = [] UpperCAmelCase_ = 0 # If the last token is a CJK character, we print the characters. elif len(lowerCamelCase_ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): UpperCAmelCase_ = text[self.print_len :] self.print_len += len(lowerCamelCase_ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: UpperCAmelCase_ = text[self.print_len : text.rfind(" " ) + 1] self.print_len += len(lowerCamelCase_ ) self.on_finalized_text(lowerCamelCase_ ) def A__ ( self ): if len(self.token_cache ) > 0: UpperCAmelCase_ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) UpperCAmelCase_ = text[self.print_len :] UpperCAmelCase_ = [] UpperCAmelCase_ = 0 else: UpperCAmelCase_ = """""" UpperCAmelCase_ = True self.on_finalized_text(lowerCamelCase_ , stream_end=lowerCamelCase_ ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = False ): print(lowerCamelCase_ , flush=lowerCamelCase_ , end="" if not stream_end else None ) def A__ ( self , lowerCAmelCase ): if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x2_0000 and cp <= 0x2_A6DF) # or (cp >= 0x2_A700 and cp <= 0x2_B73F) # or (cp >= 0x2_B740 and cp <= 0x2_B81F) # or (cp >= 0x2_B820 and cp <= 0x2_CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2_F800 and cp <= 0x2_FA1F) # ): # return True return False class lowerCamelCase ( lowercase_ ): def __init__( self , lowerCAmelCase , lowerCAmelCase = False , lowerCAmelCase = None , **lowerCAmelCase ): super().__init__(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) UpperCAmelCase_ = Queue() UpperCAmelCase_ = None UpperCAmelCase_ = timeout def A__ ( self , lowerCAmelCase , lowerCAmelCase = False ): self.text_queue.put(lowerCamelCase_ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ): return self def A__ ( self ): UpperCAmelCase_ = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
712
import math def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> list[int]: UpperCAmelCase_ = [] UpperCAmelCase_ = 2 UpperCAmelCase_ = int(math.sqrt(__SCREAMING_SNAKE_CASE ) ) # Size of every segment UpperCAmelCase_ = [True] * (end + 1) UpperCAmelCase_ = [] while start <= end: if temp[start] is True: in_prime.append(__SCREAMING_SNAKE_CASE ) for i in range(start * start , end + 1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = False start += 1 prime += in_prime UpperCAmelCase_ = end + 1 UpperCAmelCase_ = min(2 * end , __SCREAMING_SNAKE_CASE ) while low <= n: UpperCAmelCase_ = [True] * (high - low + 1) for each in in_prime: UpperCAmelCase_ = math.floor(low / each ) * each if t < low: t += each for j in range(__SCREAMING_SNAKE_CASE , high + 1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = False for j in range(len(__SCREAMING_SNAKE_CASE ) ): if temp[j] is True: prime.append(j + low ) UpperCAmelCase_ = high + 1 UpperCAmelCase_ = min(high + end , __SCREAMING_SNAKE_CASE ) return prime print(sieve(10**6))
23
0
from collections.abc import Sequence from queue import Queue class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=None ): UpperCAmelCase_ = start UpperCAmelCase_ = end UpperCAmelCase_ = val UpperCAmelCase_ = (start + end) // 2 UpperCAmelCase_ = left UpperCAmelCase_ = right def __repr__( self ): return f'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = collection UpperCAmelCase_ = function if self.collection: UpperCAmelCase_ = self._build_tree(0 , len(UpperCamelCase_ ) - 1 ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): self._update_tree(self.root , UpperCamelCase_ , UpperCamelCase_ ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): return self._query_range(self.root , UpperCamelCase_ , UpperCamelCase_ ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): if start == end: return SegmentTreeNode(UpperCamelCase_ , UpperCamelCase_ , self.collection[start] ) UpperCAmelCase_ = (start + end) // 2 UpperCAmelCase_ = self._build_tree(UpperCamelCase_ , UpperCamelCase_ ) UpperCAmelCase_ = self._build_tree(mid + 1 , UpperCamelCase_ ) return SegmentTreeNode(UpperCamelCase_ , UpperCamelCase_ , self.fn(left.val , right.val ) , UpperCamelCase_ , UpperCamelCase_ ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if node.start == i and node.end == i: UpperCAmelCase_ = val return if i <= node.mid: self._update_tree(node.left , UpperCamelCase_ , UpperCamelCase_ ) else: self._update_tree(node.right , UpperCamelCase_ , UpperCamelCase_ ) UpperCAmelCase_ = self.fn(node.left.val , node.right.val ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , UpperCamelCase_ , UpperCamelCase_ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , UpperCamelCase_ , node.mid ) , self._query_range(node.right , node.mid + 1 , UpperCamelCase_ ) , ) else: # range in right child tree return self._query_range(node.right , UpperCamelCase_ , UpperCamelCase_ ) def A__ ( self ): if self.root is not None: UpperCAmelCase_ = Queue() queue.put(self.root ) while not queue.empty(): UpperCAmelCase_ = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("*" * 50) SCREAMING_SNAKE_CASE = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
713
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : torch.FloatTensor class lowerCamelCase ( lowercase__, lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCAmelCase = 32 , lowerCAmelCase = 64 , lowerCAmelCase = 20 , lowerCAmelCase = 768 , lowerCAmelCase=77 , lowerCAmelCase=4 , lowerCAmelCase = 0.0 , lowerCAmelCase = "silu" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "linear" , lowerCAmelCase = "prd" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ): super().__init__() UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = attention_head_dim UpperCAmelCase_ = num_attention_heads * attention_head_dim UpperCAmelCase_ = additional_embeddings UpperCAmelCase_ = time_embed_dim or inner_dim UpperCAmelCase_ = embedding_proj_dim or embedding_dim UpperCAmelCase_ = clip_embed_dim or embedding_dim UpperCAmelCase_ = Timesteps(lowerCAmelCase , lowerCAmelCase , 0 ) UpperCAmelCase_ = TimestepEmbedding(lowerCAmelCase , lowerCAmelCase , out_dim=lowerCAmelCase , act_fn=lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if embedding_proj_norm_type is None: UpperCAmelCase_ = None elif embedding_proj_norm_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if encoder_hid_proj_type is None: UpperCAmelCase_ = None elif encoder_hid_proj_type == "linear": UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCAmelCase ) ) if added_emb_type == "prd": UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , 1 , lowerCAmelCase ) ) elif added_emb_type is None: UpperCAmelCase_ = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) UpperCAmelCase_ = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , dropout=lowerCAmelCase , activation_fn="gelu" , attention_bias=lowerCAmelCase , ) for d in range(lowerCAmelCase ) ] ) if norm_in_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) elif norm_in_type is None: UpperCAmelCase_ = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) UpperCAmelCase_ = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask" , lowerCAmelCase , persistent=lowerCAmelCase ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def A__ ( self ): UpperCAmelCase_ = {} def fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): UpperCAmelCase_ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return processors def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = len(self.attn_processors.keys() ) if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(lowerCAmelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): if not isinstance(lowerCAmelCase , lowerCAmelCase ): module.set_processor(lowerCAmelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): self.set_attn_processor(AttnProcessor() ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = True , ): UpperCAmelCase_ = hidden_states.shape[0] UpperCAmelCase_ = timestep if not torch.is_tensor(lowerCAmelCase ): UpperCAmelCase_ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCAmelCase ) and len(timesteps.shape ) == 0: UpperCAmelCase_ = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase_ = timesteps * torch.ones(lowerCAmelCase , dtype=timesteps.dtype , device=timesteps.device ) UpperCAmelCase_ = self.time_proj(lowerCAmelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. UpperCAmelCase_ = timesteps_projected.to(dtype=self.dtype ) UpperCAmelCase_ = self.time_embedding(lowerCAmelCase ) if self.embedding_proj_norm is not None: UpperCAmelCase_ = self.embedding_proj_norm(lowerCAmelCase ) UpperCAmelCase_ = self.embedding_proj(lowerCAmelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: UpperCAmelCase_ = self.encoder_hidden_states_proj(lowerCAmelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" ) UpperCAmelCase_ = self.proj_in(lowerCAmelCase ) UpperCAmelCase_ = self.positional_embedding.to(hidden_states.dtype ) UpperCAmelCase_ = [] UpperCAmelCase_ = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCAmelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: UpperCAmelCase_ = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: UpperCAmelCase_ = hidden_states[:, None, :] UpperCAmelCase_ = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: UpperCAmelCase_ = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCAmelCase , -1 , -1 ) additional_embeds.append(lowerCAmelCase ) UpperCAmelCase_ = torch.cat( lowerCAmelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens UpperCAmelCase_ = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: UpperCAmelCase_ = F.pad( lowerCAmelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) UpperCAmelCase_ = hidden_states + positional_embeddings if attention_mask is not None: UpperCAmelCase_ = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 UpperCAmelCase_ = F.pad(lowerCAmelCase , (0, self.additional_embeddings) , value=0.0 ) UpperCAmelCase_ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) UpperCAmelCase_ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: UpperCAmelCase_ = self.norm_in(lowerCAmelCase ) for block in self.transformer_blocks: UpperCAmelCase_ = block(lowerCAmelCase , attention_mask=lowerCAmelCase ) UpperCAmelCase_ = self.norm_out(lowerCAmelCase ) if self.prd_embedding is not None: UpperCAmelCase_ = hidden_states[:, -1] else: UpperCAmelCase_ = hidden_states[:, additional_embeddings_len:] UpperCAmelCase_ = self.proj_to_clip_embeddings(lowerCAmelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
23
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class lowerCamelCase ( _UpperCamelCase, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Dict = XLMRobertaTokenizer lowerCAmelCase_ : Optional[Any] = XLMRobertaTokenizerFast lowerCAmelCase_ : Tuple = True lowerCAmelCase_ : Any = True def A__ ( self ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = XLMRobertaTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self ): UpperCAmelCase_ = "<pad>" UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase ) , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowerCAmelCase ) , 1002 ) def A__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def A__ ( self ): UpperCAmelCase_ = XLMRobertaTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(lowerCAmelCase ) self.assertListEqual( lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase ) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def A__ ( self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase_ = (self.rust_tokenizer_class, "hf-internal-testing/tiny-xlm-roberta", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase_ = self.tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = tokenizer_r.save_pretrained(lowerCAmelCase ) UpperCAmelCase_ = tokenizer_p.save_pretrained(lowerCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) UpperCAmelCase_ = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(lowerCAmelCase , lowerCAmelCase ) # Checks everything loads correctly in the same way UpperCAmelCase_ = tokenizer_r.from_pretrained(lowerCAmelCase ) UpperCAmelCase_ = tokenizer_p.from_pretrained(lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase , lowerCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCAmelCase ) # Save tokenizer rust, legacy_format=True UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = tokenizer_r.save_pretrained(lowerCAmelCase , legacy_format=lowerCAmelCase ) UpperCAmelCase_ = tokenizer_p.save_pretrained(lowerCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(lowerCAmelCase , lowerCAmelCase ) # Checks everything loads correctly in the same way UpperCAmelCase_ = tokenizer_r.from_pretrained(lowerCAmelCase ) UpperCAmelCase_ = tokenizer_p.from_pretrained(lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase , lowerCAmelCase ) ) shutil.rmtree(lowerCAmelCase ) # Save tokenizer rust, legacy_format=False UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = tokenizer_r.save_pretrained(lowerCAmelCase , legacy_format=lowerCAmelCase ) UpperCAmelCase_ = tokenizer_p.save_pretrained(lowerCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase_ = tokenizer_r.from_pretrained(lowerCAmelCase ) UpperCAmelCase_ = tokenizer_p.from_pretrained(lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase , lowerCAmelCase ) ) shutil.rmtree(lowerCAmelCase ) @cached_property def A__ ( self ): return XLMRobertaTokenizer.from_pretrained("xlm-roberta-base" ) def A__ ( self ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase , f.name ) UpperCAmelCase_ = XLMRobertaTokenizer(f.name , keep_accents=lowerCAmelCase ) UpperCAmelCase_ = pickle.dumps(lowerCAmelCase ) pickle.loads(lowerCAmelCase ) def A__ ( self ): if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = "I was born in 92000, and this is falsé." UpperCAmelCase_ = tokenizer.tokenize(lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.encode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) @slow def A__ ( self ): UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = [0, 3_5378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase ) ) @slow def A__ ( self ): UpperCAmelCase_ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) UpperCAmelCase_ = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 17_9459, 12_4850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 1_0114, 711, 152, 20, 6, 5, 2_2376, 642, 1221, 1_5190, 3_4153, 450, 5608, 959, 1119, 5_7702, 136, 186, 47, 1098, 2_9367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 5_0901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase ) ) @slow def A__ ( self ): # fmt: off UpperCAmelCase_ = {"input_ids": [[0, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [0, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name="xlm-roberta-base" , revision="d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3" , )
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
import unittest from knapsack import knapsack as k class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): UpperCAmelCase_ = 0 UpperCAmelCase_ = [0] UpperCAmelCase_ = [0] UpperCAmelCase_ = len(lowercase_ ) self.assertEqual(k.knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , 0 ) UpperCAmelCase_ = [60] UpperCAmelCase_ = [10] UpperCAmelCase_ = len(lowercase_ ) self.assertEqual(k.knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , 0 ) def A__ ( self ): UpperCAmelCase_ = 3 UpperCAmelCase_ = [1, 2, 3] UpperCAmelCase_ = [3, 2, 1] UpperCAmelCase_ = len(lowercase_ ) self.assertEqual(k.knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , 5 ) def A__ ( self ): UpperCAmelCase_ = 50 UpperCAmelCase_ = [60, 100, 120] UpperCAmelCase_ = [10, 20, 30] UpperCAmelCase_ = len(lowercase_ ) self.assertEqual(k.knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , 220 ) if __name__ == "__main__": unittest.main()
715
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = 'xlm-roberta' def __init__( self , lowerCAmelCase=3_0522 , lowerCAmelCase=768 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=3072 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-1_2 , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase="absolute" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class lowerCamelCase ( lowercase__ ): '''simple docstring''' @property def A__ ( self ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
23
0
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''encoder.deit.blocks.{i}.norm1.weight''', f'''encoder.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''encoder.deit.blocks.{i}.norm1.bias''', f'''encoder.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.attn.proj.weight''', f'''encoder.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.attn.proj.bias''', f'''encoder.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.norm2.weight''', f'''encoder.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''encoder.deit.blocks.{i}.norm2.bias''', f'''encoder.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc1.weight''', f'''encoder.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc1.bias''', f'''encoder.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc2.weight''', f'''encoder.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''encoder.deit.blocks.{i}.mlp.fc2.bias''', f'''encoder.encoder.layer.{i}.output.dense.bias''') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) UpperCAmelCase_ = state_dict.pop(f'''encoder.deit.blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase_ = in_proj_weight[ : encoder_config.hidden_size, : ] UpperCAmelCase_ = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] UpperCAmelCase_ = in_proj_weight[ -encoder_config.hidden_size :, : ] def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Dict: UpperCAmelCase_ = dct.pop(snake_case__ ) UpperCAmelCase_ = val def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: if "handwritten" in checkpoint_url: UpperCAmelCase_ = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: UpperCAmelCase_ = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" UpperCAmelCase_ = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("RGB" ) return im @torch.no_grad() def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ = ViTConfig(image_size=384 , qkv_bias=snake_case__ ) UpperCAmelCase_ = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: UpperCAmelCase_ = 768 elif "large" in checkpoint_url: # use ViT-large encoder UpperCAmelCase_ = 1024 UpperCAmelCase_ = 4096 UpperCAmelCase_ = 24 UpperCAmelCase_ = 16 UpperCAmelCase_ = 1024 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: UpperCAmelCase_ = False UpperCAmelCase_ = "relu" UpperCAmelCase_ = 1024 UpperCAmelCase_ = True UpperCAmelCase_ = False UpperCAmelCase_ = False # load HuggingFace model UpperCAmelCase_ = ViTModel(snake_case__ , add_pooling_layer=snake_case__ ) UpperCAmelCase_ = TrOCRForCausalLM(snake_case__ ) UpperCAmelCase_ = VisionEncoderDecoderModel(encoder=snake_case__ , decoder=snake_case__ ) model.eval() # load state_dict of original model, rename some keys UpperCAmelCase_ = torch.hub.load_state_dict_from_url(snake_case__ , map_location="cpu" , check_hash=snake_case__ )["model"] UpperCAmelCase_ = create_rename_keys(snake_case__ , snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) read_in_q_k_v(snake_case__ , snake_case__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): UpperCAmelCase_ = state_dict.pop(snake_case__ ) if key.startswith("decoder" ) and "output_projection" not in key: UpperCAmelCase_ = val else: UpperCAmelCase_ = val # load state dict model.load_state_dict(snake_case__ ) # Check outputs on an image UpperCAmelCase_ = ViTImageProcessor(size=encoder_config.image_size ) UpperCAmelCase_ = RobertaTokenizer.from_pretrained("roberta-large" ) UpperCAmelCase_ = TrOCRProcessor(snake_case__ , snake_case__ ) UpperCAmelCase_ = processor(images=prepare_img(snake_case__ ) , return_tensors="pt" ).pixel_values # verify logits UpperCAmelCase_ = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) UpperCAmelCase_ = model(pixel_values=snake_case__ , decoder_input_ids=snake_case__ ) UpperCAmelCase_ = outputs.logits UpperCAmelCase_ = torch.Size([1, 1, 5_0265] ) if "trocr-base-handwritten" in checkpoint_url: UpperCAmelCase_ = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: UpperCAmelCase_ = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: UpperCAmelCase_ = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: UpperCAmelCase_ = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , snake_case__ , atol=1E-3 ), "First elements of logits not as expected" Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
716
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = int(__SCREAMING_SNAKE_CASE ) if decimal in (0, 1): # Exit cases for the recursion return str(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ , UpperCAmelCase_ = divmod(__SCREAMING_SNAKE_CASE , 2 ) return binary_recursive(__SCREAMING_SNAKE_CASE ) + str(__SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = str(__SCREAMING_SNAKE_CASE ).strip() if not number: raise ValueError("No input value was provided" ) UpperCAmelCase_ = "-" if number.startswith("-" ) else "" UpperCAmelCase_ = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f'''{negative}0b{binary_recursive(int(__SCREAMING_SNAKE_CASE ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
23
0
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase , ): UpperCAmelCase_ = parent UpperCAmelCase_ = 13 UpperCAmelCase_ = 7 UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = False UpperCAmelCase_ = True UpperCAmelCase_ = 99 UpperCAmelCase_ = 32 UpperCAmelCase_ = 2 UpperCAmelCase_ = 4 UpperCAmelCase_ = 37 UpperCAmelCase_ = '''gelu''' UpperCAmelCase_ = 0.1 UpperCAmelCase_ = 0.1 UpperCAmelCase_ = 512 UpperCAmelCase_ = 16 UpperCAmelCase_ = 2 UpperCAmelCase_ = 0.02 UpperCAmelCase_ = 3 UpperCAmelCase_ = 4 UpperCAmelCase_ = None def A__ ( self ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = TFDistilBertModel(config=UpperCAmelCase__ ) UpperCAmelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} UpperCAmelCase_ = model(UpperCAmelCase__ ) UpperCAmelCase_ = [input_ids, input_mask] UpperCAmelCase_ = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = TFDistilBertForMaskedLM(config=UpperCAmelCase__ ) UpperCAmelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} UpperCAmelCase_ = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = TFDistilBertForQuestionAnswering(config=UpperCAmelCase__ ) UpperCAmelCase_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } UpperCAmelCase_ = model(UpperCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = TFDistilBertForSequenceClassification(UpperCAmelCase__ ) UpperCAmelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} UpperCAmelCase_ = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = self.num_choices UpperCAmelCase_ = TFDistilBertForMultipleChoice(UpperCAmelCase__ ) UpperCAmelCase_ = tf.tile(tf.expand_dims(UpperCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ = tf.tile(tf.expand_dims(UpperCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } UpperCAmelCase_ = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = TFDistilBertForTokenClassification(UpperCAmelCase__ ) UpperCAmelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} UpperCAmelCase_ = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self ): UpperCAmelCase_ = self.prepare_config_and_inputs() (UpperCAmelCase_) = config_and_inputs UpperCAmelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCamelCase ( lowercase__, lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : str = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) lowerCAmelCase_ : int = ( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Optional[Any] = False lowerCAmelCase_ : int = False def A__ ( self ): UpperCAmelCase_ = TFDistilBertModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=UpperCAmelCase__ , dim=37 ) def A__ ( self ): self.config_tester.run_common_tests() def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase__ ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase__ ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase__ ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase__ ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase__ ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase__ ) @slow def A__ ( self ): for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): UpperCAmelCase_ = TFDistilBertModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @require_tf class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ): UpperCAmelCase_ = TFDistilBertModel.from_pretrained("distilbert-base-uncased" ) UpperCAmelCase_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase_ = model(UpperCAmelCase__ )[0] UpperCAmelCase_ = [1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase__ ) UpperCAmelCase_ = tf.constant( [ [ [0.19261885, -0.13732955, 0.4119799], [0.22150156, -0.07422661, 0.39037204], [0.22756018, -0.0896414, 0.3701467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase__ , atol=1e-4 )
717
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ): UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=lowerCAmelCase ).to(lowerCAmelCase ) UpperCAmelCase_ = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase_ = tokenizer("Hello there" , return_tensors="pt" ).input_ids UpperCAmelCase_ = tokenizer("Hi I am" , return_tensors="pt" ).input_ids UpperCAmelCase_ = model(input_ids.to(lowerCAmelCase ) , labels=labels.to(lowerCAmelCase ) ).loss UpperCAmelCase_ = -(labels.shape[-1] * loss.item()) UpperCAmelCase_ = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
23
0
SCREAMING_SNAKE_CASE = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] SCREAMING_SNAKE_CASE = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] SCREAMING_SNAKE_CASE = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] SCREAMING_SNAKE_CASE = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] SCREAMING_SNAKE_CASE = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] SCREAMING_SNAKE_CASE = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] SCREAMING_SNAKE_CASE = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] SCREAMING_SNAKE_CASE = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
718
def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ = 0 while b > 0: if b & 1: UpperCAmelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
23
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCamelCase ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = 'trocr' lowerCAmelCase_ : Tuple = ['past_key_values'] lowerCAmelCase_ : Tuple = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self , lowerCAmelCase=5_0265 , lowerCAmelCase=1024 , lowerCAmelCase=12 , lowerCAmelCase=16 , lowerCAmelCase=4096 , lowerCAmelCase="gelu" , lowerCAmelCase=512 , lowerCAmelCase=0.1 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=0.0 , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , **lowerCAmelCase , ): UpperCAmelCase_ = vocab_size UpperCAmelCase_ = d_model UpperCAmelCase_ = decoder_layers UpperCAmelCase_ = decoder_attention_heads UpperCAmelCase_ = decoder_ffn_dim UpperCAmelCase_ = activation_function UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = activation_dropout UpperCAmelCase_ = init_std UpperCAmelCase_ = decoder_layerdrop UpperCAmelCase_ = use_cache UpperCAmelCase_ = scale_embedding UpperCAmelCase_ = use_learned_position_embeddings UpperCAmelCase_ = layernorm_embedding super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
719
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> List[List[ImageInput]]: if isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[Any] = ['pixel_values'] def __init__( self , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = PILImageResampling.BILINEAR , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = True , lowerCAmelCase = 1 / 255 , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ): super().__init__(**lowerCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = PILImageResampling.BILINEAR , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(lowerCAmelCase , size["shortest_edge"] , default_to_square=lowerCAmelCase ) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(lowerCAmelCase , size=(size["height"], size["width"]) , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): return rescale(lowerCAmelCase , scale=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): return normalize(lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = to_numpy_array(lowerCAmelCase ) if do_resize: UpperCAmelCase_ = self.resize(image=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase ) if do_center_crop: UpperCAmelCase_ = self.center_crop(lowerCAmelCase , size=lowerCAmelCase ) if do_rescale: UpperCAmelCase_ = self.rescale(image=lowerCAmelCase , scale=lowerCAmelCase ) if do_normalize: UpperCAmelCase_ = self.normalize(image=lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase ) UpperCAmelCase_ = to_channel_dimension_format(lowerCAmelCase , lowerCAmelCase ) return image def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = ChannelDimension.FIRST , **lowerCAmelCase , ): UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="crop_size" ) if not valid_images(lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase_ = make_batched(lowerCAmelCase ) UpperCAmelCase_ = [ [ self._preprocess_image( image=lowerCAmelCase , do_resize=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , do_center_crop=lowerCAmelCase , crop_size=lowerCAmelCase , do_rescale=lowerCAmelCase , rescale_factor=lowerCAmelCase , do_normalize=lowerCAmelCase , image_mean=lowerCAmelCase , image_std=lowerCAmelCase , data_format=lowerCAmelCase , ) for img in video ] for video in videos ] UpperCAmelCase_ = {"pixel_values": videos} return BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase )
23
0
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE = { """bart""": ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), """bert""": ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-base-cased-finetuned-mrpc""": ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """dpr""": ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), """gpt2""": ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlnet""": ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm""": ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm-roberta""": ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """transfo-xl""": ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """openai-gpt""": ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """roberta""": ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """layoutlm""": ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), """roberta-large-mnli""": ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """camembert""": ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """flaubert""": ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert""": ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert-base-distilled-squad""": ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert""": ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert-visual-feature-encoder""": ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """ctrl""": ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """albert""": ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """t5""": ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """electra""": ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """wav2vec2""": ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True ) -> int: if model_type not in MODEL_CLASSES: raise ValueError(f'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) UpperCAmelCase_ = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: UpperCAmelCase_ = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) UpperCAmelCase_ = config_class.from_json_file(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = True UpperCAmelCase_ = True print(f'''Building TensorFlow model from configuration: {config}''' ) UpperCAmelCase_ = model_class(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): UpperCAmelCase_ = cached_file( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: UpperCAmelCase_ = load_pytorch_checkpoint_in_tfa_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if compare_with_pt_model: UpperCAmelCase_ = tf_model(tf_model.dummy_inputs , training=__SCREAMING_SNAKE_CASE ) # build the network UpperCAmelCase_ = torch.load(__SCREAMING_SNAKE_CASE , map_location="cpu" ) UpperCAmelCase_ = pt_model_class.from_pretrained( pretrained_model_name_or_path=__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE , state_dict=__SCREAMING_SNAKE_CASE ) with torch.no_grad(): UpperCAmelCase_ = pt_model(**pt_model.dummy_inputs ) UpperCAmelCase_ = pto[0].numpy() UpperCAmelCase_ = tfo[0].numpy() UpperCAmelCase_ = np.amax(np.abs(np_pt - np_tf ) ) print(f'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2E-2, f'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(f'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(__SCREAMING_SNAKE_CASE , save_format="h5" ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , ) -> Any: if args_model_type is None: UpperCAmelCase_ = list(MODEL_CLASSES.keys() ) else: UpperCAmelCase_ = [args_model_type] for j, model_type in enumerate(__SCREAMING_SNAKE_CASE , start=1 ): print("=" * 100 ) print(f''' Converting model type {j}/{len(__SCREAMING_SNAKE_CASE )}: {model_type}''' ) print("=" * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(f'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) UpperCAmelCase_ = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: UpperCAmelCase_ = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: UpperCAmelCase_ = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , start=1 ): print("-" * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue UpperCAmelCase_ = model_shortcut_name elif only_convert_finetuned_models: print(f''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( f''' Converting checkpoint {i}/{len(__SCREAMING_SNAKE_CASE )}: {model_shortcut_name} - model_type {model_type}''' ) print("-" * 100 ) if config_shortcut_name in aws_config_map: UpperCAmelCase_ = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) else: UpperCAmelCase_ = config_shortcut_name if model_shortcut_name in aws_model_maps: UpperCAmelCase_ = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) else: UpperCAmelCase_ = model_shortcut_name if os.path.isfile(__SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = "converted_model" convert_pt_checkpoint_to_tf( model_type=__SCREAMING_SNAKE_CASE , pytorch_checkpoint_path=__SCREAMING_SNAKE_CASE , config_file=__SCREAMING_SNAKE_CASE , tf_dump_path=os.path.join(__SCREAMING_SNAKE_CASE , model_shortcut_name + "-tf_model.h5" ) , compare_with_pt_model=__SCREAMING_SNAKE_CASE , ) if remove_cached_files: os.remove(__SCREAMING_SNAKE_CASE ) os.remove(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file." ) parser.add_argument( "--model_type", default=None, type=str, help=( f'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and ''' "convert all the models from AWS." ), ) parser.add_argument( "--pytorch_checkpoint_path", default=None, type=str, help=( "Path to the PyTorch checkpoint path or shortcut name to download from AWS. " "If not given, will download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--config_file", default=None, type=str, help=( "The config json file corresponding to the pre-trained model. \n" "This specifies the model architecture. If not given and " "--pytorch_checkpoint_path is not given or is a shortcut name " "use the configuration associated to the shortcut name on the AWS" ), ) parser.add_argument( "--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions." ) parser.add_argument( "--use_cached_models", action="store_true", help="Use cached models if possible instead of updating to latest checkpoint versions.", ) parser.add_argument( "--remove_cached_files", action="store_true", help="Remove pytorch models after conversion (save memory when converting in batches).", ) parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.") SCREAMING_SNAKE_CASE = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
720
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = 1 for i in range(1 , num + 1 ): fact *= i return fact def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = 0 while number > 0: UpperCAmelCase_ = number % 10 sum_of_digits += last_digit UpperCAmelCase_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def snake_case__ ( __SCREAMING_SNAKE_CASE = 100 ) -> int: UpperCAmelCase_ = factorial(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = split_and_add(__SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
23
0
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml SCREAMING_SNAKE_CASE = NewType("DataClass", Any) SCREAMING_SNAKE_CASE = NewType("DataClassType", Any) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Callable[[str], Any]: UpperCAmelCase_ = {str(__SCREAMING_SNAKE_CASE ): choice for choice in choices} return lambda __SCREAMING_SNAKE_CASE : str_to_choice.get(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def snake_case__ ( *, __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = dataclasses.MISSING , __SCREAMING_SNAKE_CASE = dataclasses.MISSING , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls UpperCAmelCase_ = {} if aliases is not None: UpperCAmelCase_ = aliases if help is not None: UpperCAmelCase_ = help return dataclasses.field(metadata=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , default_factory=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[Any] = 42 def __init__( self , lowerCAmelCase , **lowerCAmelCase ): # To make the default appear when using --help if "formatter_class" not in kwargs: UpperCAmelCase_ = ArgumentDefaultsHelpFormatter super().__init__(**UpperCAmelCase__ ) if dataclasses.is_dataclass(UpperCAmelCase__ ): UpperCAmelCase_ = [dataclass_types] UpperCAmelCase_ = list(UpperCAmelCase__ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(UpperCAmelCase__ ) @staticmethod def A__ ( lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = f'''--{field.name}''' UpperCAmelCase_ = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , UpperCAmelCase__ ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) UpperCAmelCase_ = kwargs.pop("aliases" , [] ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCAmelCase_ = [aliases] UpperCAmelCase_ = getattr(field.type , "__origin__" , field.type ) if origin_type is Union or (hasattr(UpperCAmelCase__ , "UnionType" ) and isinstance(UpperCAmelCase__ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(UpperCAmelCase__ ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." f''' Problem encountered in field \'{field.name}\'.''' ) if type(UpperCAmelCase__ ) not in field.type.__args__: # filter `str` in Union UpperCAmelCase_ = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] UpperCAmelCase_ = getattr(field.type , "__origin__" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) UpperCAmelCase_ = ( field.type.__args__[0] if isinstance(UpperCAmelCase__ , field.type.__args__[1] ) else field.type.__args__[1] ) UpperCAmelCase_ = getattr(field.type , "__origin__" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) UpperCAmelCase_ = {} if origin_type is Literal or (isinstance(field.type , UpperCAmelCase__ ) and issubclass(field.type , UpperCAmelCase__ )): if origin_type is Literal: UpperCAmelCase_ = field.type.__args__ else: UpperCAmelCase_ = [x.value for x in field.type] UpperCAmelCase_ = make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: UpperCAmelCase_ = field.default else: UpperCAmelCase_ = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument UpperCAmelCase_ = copy(UpperCAmelCase__ ) # Hack because type=bool in argparse does not behave as we want. UpperCAmelCase_ = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. UpperCAmelCase_ = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way UpperCAmelCase_ = default # This tells argparse we accept 0 or 1 value after --field_name UpperCAmelCase_ = '''?''' # This is the value that will get picked if we do --field_name (without value) UpperCAmelCase_ = True elif isclass(UpperCAmelCase__ ) and issubclass(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCAmelCase_ = field.type.__args__[0] UpperCAmelCase_ = '''+''' if field.default_factory is not dataclasses.MISSING: UpperCAmelCase_ = field.default_factory() elif field.default is dataclasses.MISSING: UpperCAmelCase_ = True else: UpperCAmelCase_ = field.type if field.default is not dataclasses.MISSING: UpperCAmelCase_ = field.default elif field.default_factory is not dataclasses.MISSING: UpperCAmelCase_ = field.default_factory() else: UpperCAmelCase_ = True parser.add_argument(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): UpperCAmelCase_ = False parser.add_argument(f'''--no_{field.name}''' , action="store_false" , dest=field.name , **UpperCAmelCase__ ) def A__ ( self , lowerCAmelCase ): if hasattr(UpperCAmelCase__ , "_argument_group_name" ): UpperCAmelCase_ = self.add_argument_group(dtype._argument_group_name ) else: UpperCAmelCase_ = self try: UpperCAmelCase_ = get_type_hints(UpperCAmelCase__ ) except NameError: raise RuntimeError( f'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(UpperCAmelCase__ ): UpperCAmelCase_ = '''.'''.join(map(UpperCAmelCase__ , sys.version_info[:3] ) ) raise RuntimeError( f'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(UpperCAmelCase__ ): if not field.init: continue UpperCAmelCase_ = type_hints[field.name] self._parse_dataclass_field(UpperCAmelCase__ , UpperCAmelCase__ ) def A__ ( self , lowerCAmelCase=None , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=None , ): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): UpperCAmelCase_ = [] if args_filename: args_files.append(Path(UpperCAmelCase__ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values UpperCAmelCase_ = ArgumentParser() args_file_parser.add_argument(UpperCAmelCase__ , type=UpperCAmelCase__ , action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) UpperCAmelCase_ = args_file_parser.parse_known_args(args=UpperCAmelCase__ ) UpperCAmelCase_ = vars(UpperCAmelCase__ ).get(args_file_flag.lstrip("-" ) , UpperCAmelCase__ ) if cmd_args_file_paths: args_files.extend([Path(UpperCAmelCase__ ) for p in cmd_args_file_paths] ) UpperCAmelCase_ = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last UpperCAmelCase_ = file_args + args if args is not None else file_args + sys.argv[1:] UpperCAmelCase_ = self.parse_known_args(args=UpperCAmelCase__ ) UpperCAmelCase_ = [] for dtype in self.dataclass_types: UpperCAmelCase_ = {f.name for f in dataclasses.fields(UpperCAmelCase__ ) if f.init} UpperCAmelCase_ = {k: v for k, v in vars(UpperCAmelCase__ ).items() if k in keys} for k in keys: delattr(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase_ = dtype(**UpperCAmelCase__ ) outputs.append(UpperCAmelCase__ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(UpperCAmelCase__ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def A__ ( self , lowerCAmelCase , lowerCAmelCase = False ): UpperCAmelCase_ = set(args.keys() ) UpperCAmelCase_ = [] for dtype in self.dataclass_types: UpperCAmelCase_ = {f.name for f in dataclasses.fields(UpperCAmelCase__ ) if f.init} UpperCAmelCase_ = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) UpperCAmelCase_ = dtype(**UpperCAmelCase__ ) outputs.append(UpperCAmelCase__ ) if not allow_extra_keys and unused_keys: raise ValueError(f'''Some keys are not used by the HfArgumentParser: {sorted(UpperCAmelCase__ )}''' ) return tuple(UpperCAmelCase__ ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = False ): with open(Path(UpperCAmelCase__ ) , encoding="utf-8" ) as open_json_file: UpperCAmelCase_ = json.loads(open_json_file.read() ) UpperCAmelCase_ = self.parse_dict(UpperCAmelCase__ , allow_extra_keys=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = False ): UpperCAmelCase_ = self.parse_dict(yaml.safe_load(Path(UpperCAmelCase__ ).read_text() ) , allow_extra_keys=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ )
721
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
from __future__ import annotations import typing from collections import Counter def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(_lowerCAmelCase , max_perimeter + 1 ): UpperCAmelCase_ = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(_lowerCAmelCase ): UpperCAmelCase_ = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def snake_case__ ( __SCREAMING_SNAKE_CASE = 1000 ) -> str: UpperCAmelCase_ = pythagorean_triple(_lowerCAmelCase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f'''Perimeter {solution()} has maximum solutions''')
700
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: # Initialise PyTorch model UpperCAmelCase_ = MobileBertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase_ = MobileBertForPreTraining(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint UpperCAmelCase_ = load_tf_weights_in_mobilebert(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
23
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
701
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase ): UpperCAmelCase_ = str(id_ ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = [] UpperCAmelCase_ = {} # {vertex:distance} def __lt__( self , lowerCAmelCase ): return self.key < other.key def __repr__( self ): return self.id def A__ ( self , lowerCAmelCase ): self.neighbors.append(lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = weight def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __SCREAMING_SNAKE_CASE ) graph[b - 1].add_edge(graph[a - 1] , __SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> list: UpperCAmelCase_ = [] for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = graph[:] while q: UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE ) q.remove(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Iterator[tuple]: for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = list(__SCREAMING_SNAKE_CASE ) hq.heapify(__SCREAMING_SNAKE_CASE ) while h: UpperCAmelCase_ = hq.heappop(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] hq.heapify(__SCREAMING_SNAKE_CASE ) for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def snake_case__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
23
0
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase=14 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=99 , lowerCAmelCase=32 , lowerCAmelCase=4 , lowerCAmelCase=4 , lowerCAmelCase=4 , lowerCAmelCase=37 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=0.02 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = rotary_dim UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = initializer_range UpperCAmelCase_ = None UpperCAmelCase_ = vocab_size - 1 UpperCAmelCase_ = vocab_size - 1 UpperCAmelCase_ = vocab_size - 1 def A__ ( self ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=_lowercase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def A__ ( self ): UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = 20 UpperCAmelCase_ = model_class_name(_lowercase ) UpperCAmelCase_ = model.init_cache(input_ids.shape[0] , _lowercase ) UpperCAmelCase_ = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="i4" ) UpperCAmelCase_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCAmelCase_ = model( input_ids[:, :-1] , attention_mask=_lowercase , past_key_values=_lowercase , position_ids=_lowercase , ) UpperCAmelCase_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCAmelCase_ = model( input_ids[:, -1:] , attention_mask=_lowercase , past_key_values=outputs_cache.past_key_values , position_ids=_lowercase , ) UpperCAmelCase_ = model(_lowercase ) UpperCAmelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = 20 UpperCAmelCase_ = model_class_name(_lowercase ) UpperCAmelCase_ = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) UpperCAmelCase_ = model.init_cache(input_ids.shape[0] , _lowercase ) UpperCAmelCase_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCAmelCase_ = model( input_ids[:, :-1] , attention_mask=_lowercase , past_key_values=_lowercase , position_ids=_lowercase , ) UpperCAmelCase_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCAmelCase_ = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=_lowercase , position_ids=_lowercase , ) UpperCAmelCase_ = model(_lowercase , attention_mask=_lowercase ) UpperCAmelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class lowerCamelCase ( UpperCAmelCase_, UpperCAmelCase_, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Dict = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () lowerCAmelCase_ : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else () def A__ ( self ): UpperCAmelCase_ = FlaxGPTJModelTester(self ) def A__ ( self ): for model_class_name in self.all_model_classes: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(_lowercase , _lowercase , _lowercase , _lowercase ) def A__ ( self ): for model_class_name in self.all_model_classes: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( _lowercase , _lowercase , _lowercase , _lowercase ) @tooslow def A__ ( self ): UpperCAmelCase_ = GPTaTokenizer.from_pretrained("gpt2" , pad_token="<|endoftext|>" , padding_side="left" ) UpperCAmelCase_ = tokenizer(["Hello this is a long string", "Hey"] , return_tensors="np" , padding=_lowercase , truncation=_lowercase ) UpperCAmelCase_ = FlaxGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B" ) UpperCAmelCase_ = False UpperCAmelCase_ = model.config.eos_token_id UpperCAmelCase_ = jax.jit(model.generate ) UpperCAmelCase_ = jit_generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , pad_token_id=tokenizer.pad_token_id ).sequences UpperCAmelCase_ = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) UpperCAmelCase_ = [ "Hello this is a long string of text.\n\nI\'m trying to get the text of the", "Hey, I\'m a little late to the party. I\'m going to", ] self.assertListEqual(_lowercase , _lowercase ) @is_pt_flax_cross_test def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase ) UpperCAmelCase_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCAmelCase_ = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase_ = getattr(_lowercase , _lowercase ) UpperCAmelCase_ , UpperCAmelCase_ = pt_inputs["input_ids"].shape UpperCAmelCase_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_lowercase ): UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 UpperCAmelCase_ = pt_model_class(_lowercase ).eval() UpperCAmelCase_ = model_class(_lowercase , dtype=jnp.floataa ) UpperCAmelCase_ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _lowercase ) UpperCAmelCase_ = fx_state with torch.no_grad(): UpperCAmelCase_ = pt_model(**_lowercase ).to_tuple() UpperCAmelCase_ = fx_model(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_lowercase , _lowercase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_lowercase ) UpperCAmelCase_ = model_class.from_pretrained(_lowercase , from_pt=_lowercase ) UpperCAmelCase_ = fx_model_loaded(**_lowercase ).to_tuple() self.assertEqual( len(_lowercase ) , len(_lowercase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(_lowercase , _lowercase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase ) UpperCAmelCase_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCAmelCase_ = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase_ = getattr(_lowercase , _lowercase ) UpperCAmelCase_ = pt_model_class(_lowercase ).eval() UpperCAmelCase_ = model_class(_lowercase , dtype=jnp.floataa ) UpperCAmelCase_ = load_flax_weights_in_pytorch_model(_lowercase , fx_model.params ) UpperCAmelCase_ , UpperCAmelCase_ = pt_inputs["input_ids"].shape UpperCAmelCase_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_lowercase ): UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): UpperCAmelCase_ = pt_model(**_lowercase ).to_tuple() UpperCAmelCase_ = fx_model(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_lowercase , _lowercase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_lowercase ) UpperCAmelCase_ = pt_model_class.from_pretrained(_lowercase , from_flax=_lowercase ) with torch.no_grad(): UpperCAmelCase_ = pt_model_loaded(**_lowercase ).to_tuple() self.assertEqual( len(_lowercase ) , len(_lowercase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_lowercase , _lowercase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def A__ ( self ): for model_class_name in self.all_model_classes: UpperCAmelCase_ = model_class_name.from_pretrained("EleutherAI/gpt-j-6B" ) UpperCAmelCase_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase )
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase ( snake_case__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = GPTaTokenizer lowerCAmelCase_ : List[Any] = GPTaTokenizerFast lowerCAmelCase_ : Union[str, Any] = True lowerCAmelCase_ : Dict = {'add_prefix_space': True} lowerCAmelCase_ : Optional[Any] = False def A__ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] UpperCAmelCase_ = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) UpperCAmelCase_ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCAmelCase_ = {"unk_token": "<unk>"} UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowercase_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowercase_ ) ) def A__ ( self , **lowerCAmelCase ): kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def A__ ( self , **lowerCAmelCase ): kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_ ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = "lower newer" UpperCAmelCase_ = "lower newer" return input_text, output_text def A__ ( self ): UpperCAmelCase_ = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase_ = "lower newer" UpperCAmelCase_ = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] UpperCAmelCase_ = tokenizer.tokenize(lowercase_ , add_prefix_space=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) UpperCAmelCase_ = tokens + [tokenizer.unk_token] UpperCAmelCase_ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ ) def A__ ( self ): if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer(add_prefix_space=lowercase_ ) UpperCAmelCase_ = "lower newer" # Testing tokenization UpperCAmelCase_ = tokenizer.tokenize(lowercase_ , add_prefix_space=lowercase_ ) UpperCAmelCase_ = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # Testing conversion to ids without special tokens UpperCAmelCase_ = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) UpperCAmelCase_ = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # Testing conversion to ids with special tokens UpperCAmelCase_ = self.get_rust_tokenizer(add_prefix_space=lowercase_ ) UpperCAmelCase_ = tokenizer.encode(lowercase_ , add_prefix_space=lowercase_ ) UpperCAmelCase_ = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # Testing the unknown token UpperCAmelCase_ = tokens + [rust_tokenizer.unk_token] UpperCAmelCase_ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ ) def A__ ( self , *lowerCAmelCase , **lowerCAmelCase ): # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def A__ ( self , lowerCAmelCase=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) # Simple input UpperCAmelCase_ = "This is a simple input" UpperCAmelCase_ = ["This is a simple input 1", "This is a simple input 2"] UpperCAmelCase_ = ("This is a simple input", "This is a pair") UpperCAmelCase_ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding="max_length" ) # Simple input self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" ) # Simple input self.assertRaises( lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" , ) # Pair input self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding="max_length" ) # Pair input self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" ) # Pair input self.assertRaises( lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" , ) def A__ ( self ): UpperCAmelCase_ = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input UpperCAmelCase_ = "This is a simple input" UpperCAmelCase_ = ["This is a simple input looooooooong", "This is a simple input"] UpperCAmelCase_ = ("This is a simple input", "This is a pair") UpperCAmelCase_ = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] UpperCAmelCase_ = tokenizer.pad_token_id UpperCAmelCase_ = tokenizer(lowercase_ , padding="max_length" , max_length=30 , return_tensors="np" ) UpperCAmelCase_ = tokenizer(lowercase_ , padding=lowercase_ , truncate=lowercase_ , return_tensors="np" ) UpperCAmelCase_ = tokenizer(*lowercase_ , padding="max_length" , max_length=60 , return_tensors="np" ) UpperCAmelCase_ = tokenizer(lowercase_ , padding=lowercase_ , truncate=lowercase_ , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def A__ ( self ): UpperCAmelCase_ = "$$$" UpperCAmelCase_ = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=lowercase_ , add_bos_token=lowercase_ ) UpperCAmelCase_ = "This is a simple input" UpperCAmelCase_ = ["This is a simple input 1", "This is a simple input 2"] UpperCAmelCase_ = tokenizer.bos_token_id UpperCAmelCase_ = tokenizer(lowercase_ ) UpperCAmelCase_ = tokenizer(lowercase_ ) self.assertEqual(out_s.input_ids[0] , lowercase_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) UpperCAmelCase_ = tokenizer.decode(out_s.input_ids ) UpperCAmelCase_ = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , lowercase_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def A__ ( self ): pass def A__ ( self ): # TODO: change to self.get_tokenizers() when the fast version is implemented UpperCAmelCase_ = [self.get_tokenizer(do_lower_case=lowercase_ , add_bos_token=lowercase_ )] for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): UpperCAmelCase_ = "Encode this." UpperCAmelCase_ = "This one too please." UpperCAmelCase_ = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) encoded_sequence += tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCAmelCase_ = tokenizer.encode_plus( lowercase_ , lowercase_ , add_special_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , ) UpperCAmelCase_ = encoded_sequence_dict["input_ids"] UpperCAmelCase_ = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) UpperCAmelCase_ = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(lowercase_ ) ] UpperCAmelCase_ = [x for x in filtered_sequence if x is not None] self.assertEqual(lowercase_ , lowercase_ ) @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 UpperCAmelCase_ = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=lowercase_ ) UpperCAmelCase_ = "A photo of a cat" UpperCAmelCase_ = tokenizer.encode( lowercase_ , ) self.assertEqual(lowercase_ , [2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("test_opt" ) UpperCAmelCase_ = AutoTokenizer.from_pretrained("./test_opt" ) UpperCAmelCase_ = tokenizer.encode( lowercase_ , ) self.assertEqual(lowercase_ , [2, 250, 1345, 9, 10, 4758] ) def A__ ( self ): UpperCAmelCase_ = AutoTokenizer.from_pretrained("facebook/opt-350m" , use_slow=lowercase_ ) UpperCAmelCase_ = "A photo of a cat" UpperCAmelCase_ = tokenizer.encode( lowercase_ , ) # Same as above self.assertEqual(lowercase_ , [2, 250, 1345, 9, 10, 4758] ) @unittest.skip("This test is failing because of a bug in the fast tokenizer" ) def A__ ( self ): UpperCAmelCase_ = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=lowercase_ ) UpperCAmelCase_ = "bos" UpperCAmelCase_ = tokenizer.get_vocab()["bos"] UpperCAmelCase_ = "A photo of a cat" UpperCAmelCase_ = tokenizer.encode( lowercase_ , ) # We changed the bos token self.assertEqual(lowercase_ , [3_1957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("./tok" ) UpperCAmelCase_ = AutoTokenizer.from_pretrained("./tok" ) self.assertTrue(tokenizer.is_fast ) UpperCAmelCase_ = tokenizer.encode( lowercase_ , ) self.assertEqual(lowercase_ , [3_1957, 250, 1345, 9, 10, 4758] )
703
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE = { "yjernite/retribert-base-uncased": 512, } SCREAMING_SNAKE_CASE = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase_ : int = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Dict = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : List[str] = RetriBertTokenizer lowerCAmelCase_ : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**lowerCAmelCase ) UpperCAmelCase_ = do_lower_case def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
23
0
def snake_case__ ( __SCREAMING_SNAKE_CASE = 1000 ) -> str: return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
704
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } SCREAMING_SNAKE_CASE = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Any = VOCAB_FILES_NAMES lowerCAmelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : int = ['input_ids', 'attention_mask'] lowerCAmelCase_ : str = DistilBertTokenizer def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**lowerCAmelCase ) UpperCAmelCase_ = do_lower_case def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
23
0
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> None: UpperCAmelCase_ = analyze_text(_lowerCamelCase ) UpperCAmelCase_ = list(" " + ascii_lowercase ) # what is our total sum of probabilities. UpperCAmelCase_ = sum(single_char_strings.values() ) # one length string UpperCAmelCase_ = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCAmelCase_ = single_char_strings[ch] UpperCAmelCase_ = my_str / all_sum my_fir_sum += prob * math.loga(_lowerCamelCase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string UpperCAmelCase_ = sum(two_char_strings.values() ) UpperCAmelCase_ = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCAmelCase_ = cha + cha if sequence in two_char_strings: UpperCAmelCase_ = two_char_strings[sequence] UpperCAmelCase_ = int(_lowerCamelCase ) / all_sum my_sec_sum += prob * math.loga(_lowerCamelCase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> tuple[dict, dict]: UpperCAmelCase_ = Counter() # type: ignore UpperCAmelCase_ = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_lowerCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def snake_case__ ( ) -> List[str]: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
705
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> np.array: UpperCAmelCase_ = f'''{sampling_rate}''' UpperCAmelCase_ = "1" UpperCAmelCase_ = "f32le" UpperCAmelCase_ = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: UpperCAmelCase_ = ffmpeg_process.communicate(__SCREAMING_SNAKE_CASE ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error UpperCAmelCase_ = output_stream[0] UpperCAmelCase_ = np.frombuffer(__SCREAMING_SNAKE_CASE , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "f32le" , ) -> Dict: UpperCAmelCase_ = f'''{sampling_rate}''' UpperCAmelCase_ = "1" if format_for_conversion == "s16le": UpperCAmelCase_ = 2 elif format_for_conversion == "f32le": UpperCAmelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) UpperCAmelCase_ = platform.system() if system == "Linux": UpperCAmelCase_ = "alsa" UpperCAmelCase_ = "default" elif system == "Darwin": UpperCAmelCase_ = "avfoundation" UpperCAmelCase_ = ":0" elif system == "Windows": UpperCAmelCase_ = "dshow" UpperCAmelCase_ = "default" UpperCAmelCase_ = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample UpperCAmelCase_ = _ffmpeg_stream(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for item in iterator: yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "f32le" , ) -> int: if stream_chunk_s is not None: UpperCAmelCase_ = stream_chunk_s else: UpperCAmelCase_ = chunk_length_s UpperCAmelCase_ = ffmpeg_microphone(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , format_for_conversion=__SCREAMING_SNAKE_CASE ) if format_for_conversion == "s16le": UpperCAmelCase_ = np.intaa UpperCAmelCase_ = 2 elif format_for_conversion == "f32le": UpperCAmelCase_ = np.floataa UpperCAmelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: UpperCAmelCase_ = chunk_length_s / 6 UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): UpperCAmelCase_ = [stride_length_s, stride_length_s] UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample UpperCAmelCase_ = datetime.datetime.now() UpperCAmelCase_ = datetime.timedelta(seconds=__SCREAMING_SNAKE_CASE ) for item in chunk_bytes_iter(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=(stride_left, stride_right) , stream=__SCREAMING_SNAKE_CASE ): # Put everything back in numpy scale UpperCAmelCase_ = np.frombuffer(item["raw"] , dtype=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) UpperCAmelCase_ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False ) -> Dict: UpperCAmelCase_ = B"" UpperCAmelCase_ , UpperCAmelCase_ = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) UpperCAmelCase_ = 0 for raw in iterator: acc += raw if stream and len(__SCREAMING_SNAKE_CASE ) < chunk_len: UpperCAmelCase_ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__SCREAMING_SNAKE_CASE ) >= chunk_len: # We are flushing the accumulator UpperCAmelCase_ = (_stride_left, stride_right) UpperCAmelCase_ = {"raw": acc[:chunk_len], "stride": stride} if stream: UpperCAmelCase_ = False yield item UpperCAmelCase_ = stride_left UpperCAmelCase_ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__SCREAMING_SNAKE_CASE ) > stride_left: UpperCAmelCase_ = {"raw": acc, "stride": (_stride_left, 0)} if stream: UpperCAmelCase_ = False yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ = 2**24 # 16Mo try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE , bufsize=__SCREAMING_SNAKE_CASE ) as ffmpeg_process: while True: UpperCAmelCase_ = ffmpeg_process.stdout.read(__SCREAMING_SNAKE_CASE ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
23
0
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
706
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowerCamelCase ( lowercase__, lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCAmelCase = 768 , ): super().__init__() UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(torch.ones(1 , lowerCAmelCase ) ) def A__ ( self , lowerCAmelCase = None , lowerCAmelCase = None , ): UpperCAmelCase_ = nn.Parameter(self.mean.to(lowerCAmelCase ).to(lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(self.std.to(lowerCAmelCase ).to(lowerCAmelCase ) ) return self def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (embeds * self.std) + self.mean return embeds
23
0
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ = VideoMAEConfig() set_architecture_configs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "finetuned" not in model_name: UpperCAmelCase_ = False if "finetuned" in model_name: UpperCAmelCase_ = """huggingface/label-files""" if "kinetics" in model_name: UpperCAmelCase_ = 400 UpperCAmelCase_ = """kinetics400-id2label.json""" elif "ssv2" in model_name: UpperCAmelCase_ = 174 UpperCAmelCase_ = """something-something-v2-id2label.json""" else: raise ValueError("Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned." ) UpperCAmelCase_ = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} return config def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: if "small" in model_name: UpperCAmelCase_ = 384 UpperCAmelCase_ = 1536 UpperCAmelCase_ = 12 UpperCAmelCase_ = 16 UpperCAmelCase_ = 12 UpperCAmelCase_ = 3 UpperCAmelCase_ = 192 UpperCAmelCase_ = 768 elif "large" in model_name: UpperCAmelCase_ = 1024 UpperCAmelCase_ = 4096 UpperCAmelCase_ = 24 UpperCAmelCase_ = 16 UpperCAmelCase_ = 12 UpperCAmelCase_ = 8 UpperCAmelCase_ = 512 UpperCAmelCase_ = 2048 elif "huge" in model_name: UpperCAmelCase_ = 1280 UpperCAmelCase_ = 5120 UpperCAmelCase_ = 32 UpperCAmelCase_ = 16 UpperCAmelCase_ = 12 UpperCAmelCase_ = 8 UpperCAmelCase_ = 640 UpperCAmelCase_ = 2560 elif "base" not in model_name: raise ValueError("Model name should include either \"small\", \"base\", \"large\", or \"huge\"" ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> List[str]: if "encoder." in name: UpperCAmelCase_ = name.replace("encoder." , "" ) if "cls_token" in name: UpperCAmelCase_ = name.replace("cls_token" , "videomae.embeddings.cls_token" ) if "decoder_pos_embed" in name: UpperCAmelCase_ = name.replace("decoder_pos_embed" , "decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: UpperCAmelCase_ = name.replace("pos_embed" , "videomae.embeddings.position_embeddings" ) if "patch_embed.proj" in name: UpperCAmelCase_ = name.replace("patch_embed.proj" , "videomae.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: UpperCAmelCase_ = name.replace("patch_embed.norm" , "videomae.embeddings.norm" ) if "decoder.blocks" in name: UpperCAmelCase_ = name.replace("decoder.blocks" , "decoder.decoder_layers" ) if "blocks" in name: UpperCAmelCase_ = name.replace("blocks" , "videomae.encoder.layer" ) if "attn.proj" in name: UpperCAmelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "bias" not in name: UpperCAmelCase_ = name.replace("attn" , "attention.self" ) if "attn" in name: UpperCAmelCase_ = name.replace("attn" , "attention.attention" ) if "norm1" in name: UpperCAmelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: UpperCAmelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: UpperCAmelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: UpperCAmelCase_ = name.replace("mlp.fc2" , "output.dense" ) if "decoder_embed" in name: UpperCAmelCase_ = name.replace("decoder_embed" , "decoder.decoder_embed" ) if "decoder_norm" in name: UpperCAmelCase_ = name.replace("decoder_norm" , "decoder.decoder_norm" ) if "decoder_pred" in name: UpperCAmelCase_ = name.replace("decoder_pred" , "decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: UpperCAmelCase_ = name.replace("norm.weight" , "videomae.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: UpperCAmelCase_ = name.replace("norm.bias" , "videomae.layernorm.bias" ) if "head" in name and "decoder" not in name: UpperCAmelCase_ = name.replace("head" , "classifier" ) return name def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: for key in orig_state_dict.copy().keys(): UpperCAmelCase_ = orig_state_dict.pop(__SCREAMING_SNAKE_CASE ) if key.startswith("encoder." ): UpperCAmelCase_ = key.replace("encoder." , "" ) if "qkv" in key: UpperCAmelCase_ = key.split("." ) if key.startswith("decoder.blocks" ): UpperCAmelCase_ = config.decoder_hidden_size UpperCAmelCase_ = int(key_split[2] ) UpperCAmelCase_ = """decoder.decoder_layers.""" if "weight" in key: UpperCAmelCase_ = val[:dim, :] UpperCAmelCase_ = val[dim : dim * 2, :] UpperCAmelCase_ = val[-dim:, :] else: UpperCAmelCase_ = config.hidden_size UpperCAmelCase_ = int(key_split[1] ) UpperCAmelCase_ = """videomae.encoder.layer.""" if "weight" in key: UpperCAmelCase_ = val[:dim, :] UpperCAmelCase_ = val[dim : dim * 2, :] UpperCAmelCase_ = val[-dim:, :] else: UpperCAmelCase_ = val return orig_state_dict def snake_case__ ( ) -> Union[str, Any]: UpperCAmelCase_ = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) UpperCAmelCase_ = np.load(__SCREAMING_SNAKE_CASE ) return list(__SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Any: UpperCAmelCase_ = get_videomae_config(__SCREAMING_SNAKE_CASE ) if "finetuned" in model_name: UpperCAmelCase_ = VideoMAEForVideoClassification(__SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ = VideoMAEForPreTraining(__SCREAMING_SNAKE_CASE ) # download original checkpoint, hosted on Google Drive UpperCAmelCase_ = """pytorch_model.bin""" gdown.cached_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , quiet=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = torch.load(__SCREAMING_SNAKE_CASE , map_location="cpu" ) if "model" in files: UpperCAmelCase_ = files["""model"""] else: UpperCAmelCase_ = files["""module"""] UpperCAmelCase_ = convert_state_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) model.eval() # verify model on basic input UpperCAmelCase_ = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) UpperCAmelCase_ = prepare_video() UpperCAmelCase_ = image_processor(__SCREAMING_SNAKE_CASE , return_tensors="pt" ) if "finetuned" not in model_name: UpperCAmelCase_ = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) UpperCAmelCase_ = torch.load(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = model(**__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = outputs.logits UpperCAmelCase_ = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": UpperCAmelCase_ = torch.Size([1, 400] ) UpperCAmelCase_ = torch.tensor([-0.9_291, -0.4_061, -0.9_307] ) elif model_name == "videomae-small-finetuned-ssv2": UpperCAmelCase_ = torch.Size([1, 174] ) UpperCAmelCase_ = torch.tensor([0.2_671, -0.4_689, -0.8_235] ) elif model_name == "videomae-base": UpperCAmelCase_ = torch.Size([1, 1408, 1536] ) UpperCAmelCase_ = torch.tensor([[0.7_739, 0.7_968, 0.7_089], [0.6_701, 0.7_487, 0.6_209], [0.4_287, 0.5_158, 0.4_773]] ) elif model_name == "videomae-base-short": UpperCAmelCase_ = torch.Size([1, 1408, 1536] ) UpperCAmelCase_ = torch.tensor([[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] ) # we verified the loss both for normalized and unnormalized targets for this one UpperCAmelCase_ = torch.tensor([0.5_142] ) if config.norm_pix_loss else torch.tensor([0.6_469] ) elif model_name == "videomae-large": UpperCAmelCase_ = torch.Size([1, 1408, 1536] ) UpperCAmelCase_ = torch.tensor([[0.7_149, 0.7_997, 0.6_966], [0.6_768, 0.7_869, 0.6_948], [0.5_139, 0.6_221, 0.5_605]] ) elif model_name == "videomae-large-finetuned-kinetics": UpperCAmelCase_ = torch.Size([1, 400] ) UpperCAmelCase_ = torch.tensor([0.0_771, 0.0_011, -0.3_625] ) elif model_name == "videomae-huge-finetuned-kinetics": UpperCAmelCase_ = torch.Size([1, 400] ) UpperCAmelCase_ = torch.tensor([0.2_433, 0.1_632, -0.4_894] ) elif model_name == "videomae-base-short-finetuned-kinetics": UpperCAmelCase_ = torch.Size([1, 400] ) UpperCAmelCase_ = torch.tensor([0.6_588, 0.0_990, -0.2_493] ) elif model_name == "videomae-base-finetuned-kinetics": UpperCAmelCase_ = torch.Size([1, 400] ) UpperCAmelCase_ = torch.tensor([0.3_669, -0.0_688, -0.2_421] ) elif model_name == "videomae-base-short-ssv2": UpperCAmelCase_ = torch.Size([1, 1408, 1536] ) UpperCAmelCase_ = torch.tensor([[0.4_712, 0.5_296, 0.5_786], [0.2_278, 0.2_729, 0.4_026], [0.0_352, 0.0_730, 0.2_506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": UpperCAmelCase_ = torch.Size([1, 174] ) UpperCAmelCase_ = torch.tensor([-0.0_537, -0.1_539, -0.3_266] ) elif model_name == "videomae-base-ssv2": UpperCAmelCase_ = torch.Size([1, 1408, 1536] ) UpperCAmelCase_ = torch.tensor([[0.8_131, 0.8_727, 0.8_546], [0.7_366, 0.9_377, 0.8_870], [0.5_935, 0.8_874, 0.8_564]] ) elif model_name == "videomae-base-finetuned-ssv2": UpperCAmelCase_ = torch.Size([1, 174] ) UpperCAmelCase_ = torch.tensor([0.1_961, -0.8_337, -0.6_389] ) else: raise ValueError(f'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) else: print("Logits:" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) print("Logits ok!" ) # verify loss, if applicable if model_name == "videomae-base-short": UpperCAmelCase_ = outputs.loss assert torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-4 ) print("Loss ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: print("Pushing to the hub..." ) model.push_to_hub(__SCREAMING_SNAKE_CASE , organization="nielsr" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4", type=str, help=( "URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct" " download link." ), ) parser.add_argument( "--pytorch_dump_folder_path", default="/Users/nielsrogge/Documents/VideoMAE/Test", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--model_name", default="videomae-base", type=str, help="Name of the model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
707
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): super().__init__(*lowerCAmelCase , **lowerCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def A__ ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None ): UpperCAmelCase_ = {} UpperCAmelCase_ = {} if prompt is not None: UpperCAmelCase_ = prompt if generate_kwargs is not None: UpperCAmelCase_ = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: UpperCAmelCase_ = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one" ) UpperCAmelCase_ = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , lowerCAmelCase , **lowerCAmelCase ): return super().__call__(lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = load_image(lowerCAmelCase ) if prompt is not None: if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(lowerCAmelCase )} - but expected a single string. ''' "Note also that one single text can be provided for conditional image to text generation." ) UpperCAmelCase_ = self.model.config.model_type if model_type == "git": UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) UpperCAmelCase_ = self.tokenizer(text=lowerCAmelCase , add_special_tokens=lowerCAmelCase ).input_ids UpperCAmelCase_ = [self.tokenizer.cls_token_id] + input_ids UpperCAmelCase_ = torch.tensor(lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"input_ids": input_ids} ) elif model_type == "pix2struct": UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , header_text=lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) UpperCAmelCase_ = self.tokenizer(lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: UpperCAmelCase_ = None return model_inputs def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , lowerCAmelCase ) and all(x is None for x in model_inputs["input_ids"] ) ): UpperCAmelCase_ = None if generate_kwargs is None: UpperCAmelCase_ = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. UpperCAmelCase_ = model_inputs.pop(self.model.main_input_name ) UpperCAmelCase_ = self.model.generate(lowerCAmelCase , **lowerCAmelCase , **lowerCAmelCase ) return model_outputs def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = [] for output_ids in model_outputs: UpperCAmelCase_ = { "generated_text": self.tokenizer.decode( lowerCAmelCase , skip_special_tokens=lowerCAmelCase , ) } records.append(lowerCAmelCase ) return records
23
0
from __future__ import annotations import collections import pprint from pathlib import Path def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Optional[int]: return "".join(sorted(lowerCAmelCase__ ) ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: return word_by_signature[signature(lowerCAmelCase__ )] SCREAMING_SNAKE_CASE = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8") SCREAMING_SNAKE_CASE = sorted({word.strip().lower() for word in data.splitlines()}) SCREAMING_SNAKE_CASE = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": SCREAMING_SNAKE_CASE = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("anagrams.txt", "w") as file: file.write("all_anagrams = \n ") file.write(pprint.pformat(all_anagrams))
708
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCamelCase ( lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : int = TextToVideoSDPipeline lowerCAmelCase_ : Dict = TEXT_TO_IMAGE_PARAMS lowerCAmelCase_ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. lowerCAmelCase_ : Optional[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def A__ ( self ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCAmelCase_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) UpperCAmelCase_ = CLIPTextModel(lowerCAmelCase ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def A__ ( self , lowerCAmelCase , lowerCAmelCase=0 ): if str(lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(lowerCAmelCase ) else: UpperCAmelCase_ = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) UpperCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def A__ ( self ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = TextToVideoSDPipeline(**lowerCAmelCase ) UpperCAmelCase_ = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs(lowerCAmelCase ) UpperCAmelCase_ = "np" UpperCAmelCase_ = sd_pipe(**lowerCAmelCase ).frames UpperCAmelCase_ = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) UpperCAmelCase_ = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCAmelCase , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCAmelCase , expected_max_diff=1e-2 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def A__ ( self ): pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def A__ ( self ): pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def A__ ( self ): pass def A__ ( self ): return super().test_progress_bar() @slow @skip_mps class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy" ) UpperCAmelCase_ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ = pipe.to("cuda" ) UpperCAmelCase_ = "Spiderman is surfing" UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=25 , output_type="pt" ).frames UpperCAmelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def A__ ( self ): UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy" ) UpperCAmelCase_ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) UpperCAmelCase_ = pipe.to("cuda" ) UpperCAmelCase_ = "Spiderman is surfing" UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=2 , output_type="pt" ).frames UpperCAmelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
23
0
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCamelCase ( a__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : str = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def A__ ( self , lowerCAmelCase=0 ): UpperCAmelCase_ = np.random.RandomState(lowerCamelCase_ ) UpperCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def A__ ( self ): UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = pipe(**lowerCamelCase_ ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ = np.array([0.65072, 0.58492, 0.48219, 0.55521, 0.53180, 0.55939, 0.50697, 0.39800, 0.46455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self ): UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = pipe(**lowerCamelCase_ ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ = np.array([0.65863, 0.59425, 0.49326, 0.56313, 0.53875, 0.56627, 0.51065, 0.39777, 0.46330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self ): UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = pipe(**lowerCamelCase_ ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self ): UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = pipe(**lowerCamelCase_ ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self ): UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = pipe(**lowerCamelCase_ ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ = np.array([0.53817, 0.60812, 0.47384, 0.49530, 0.51894, 0.49814, 0.47984, 0.38958, 0.44271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self ): UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = pipe(**lowerCamelCase_ ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ = np.array([0.53895, 0.60808, 0.47933, 0.49608, 0.51886, 0.49950, 0.48053, 0.38957, 0.44200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self ): UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = 3 * [inputs["prompt"]] # forward UpperCAmelCase_ = pipe(**lowerCamelCase_ ) UpperCAmelCase_ = output.images[0, -3:, -3:, -1] UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = 3 * [inputs.pop("prompt" )] UpperCAmelCase_ = pipe.tokenizer( lowerCamelCase_ , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=lowerCamelCase_ , return_tensors="np" , ) UpperCAmelCase_ = text_inputs["input_ids"] UpperCAmelCase_ = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] UpperCAmelCase_ = prompt_embeds # forward UpperCAmelCase_ = pipe(**lowerCamelCase_ ) UpperCAmelCase_ = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def A__ ( self ): UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = 3 * ["this is a negative prompt"] UpperCAmelCase_ = negative_prompt UpperCAmelCase_ = 3 * [inputs["prompt"]] # forward UpperCAmelCase_ = pipe(**lowerCamelCase_ ) UpperCAmelCase_ = output.images[0, -3:, -3:, -1] UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = 3 * [inputs.pop("prompt" )] UpperCAmelCase_ = [] for p in [prompt, negative_prompt]: UpperCAmelCase_ = pipe.tokenizer( lowerCamelCase_ , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=lowerCamelCase_ , return_tensors="np" , ) UpperCAmelCase_ = text_inputs["input_ids"] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) UpperCAmelCase_ , UpperCAmelCase_ = embeds # forward UpperCAmelCase_ = pipe(**lowerCamelCase_ ) UpperCAmelCase_ = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @property def A__ ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def A__ ( self ): UpperCAmelCase_ = ort.SessionOptions() UpperCAmelCase_ = False return options def A__ ( self ): # using the PNDM scheduler by default UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" np.random.seed(0 ) UpperCAmelCase_ = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="np" ) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ): UpperCAmelCase_ = DDIMScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ = "open neural network exchange" UpperCAmelCase_ = np.random.RandomState(0 ) UpperCAmelCase_ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase_ , output_type="np" ) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ): UpperCAmelCase_ = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ = "open neural network exchange" UpperCAmelCase_ = np.random.RandomState(0 ) UpperCAmelCase_ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase_ , output_type="np" ) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ): UpperCAmelCase_ = 0 def test_callback_fn(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> None: UpperCAmelCase_ = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) UpperCAmelCase_ = latents[0, -3:, -3:, -1] UpperCAmelCase_ = np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) UpperCAmelCase_ = latents[0, -3:, -3:, -1] UpperCAmelCase_ = np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 UpperCAmelCase_ = False UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ = "Andromeda galaxy in a bottle" UpperCAmelCase_ = np.random.RandomState(0 ) pipe( prompt=lowerCamelCase_ , num_inference_steps=5 , guidance_scale=7.5 , generator=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def A__ ( self ): UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert pipe.safety_checker is None UpperCAmelCase_ = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) UpperCAmelCase_ = OnnxStableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCAmelCase_ = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None
709
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = [1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 0, 0, 0 UpperCAmelCase_ = ugly_nums[ia] * 2 UpperCAmelCase_ = ugly_nums[ia] * 3 UpperCAmelCase_ = ugly_nums[ia] * 5 for _ in range(1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ugly_nums.append(__SCREAMING_SNAKE_CASE ) if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(200) = }''')
23
0
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys SCREAMING_SNAKE_CASE = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") SCREAMING_SNAKE_CASE = ( subprocess.check_output(f'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("utf-8").split() ) SCREAMING_SNAKE_CASE = "|".join(sys.argv[1:]) SCREAMING_SNAKE_CASE = re.compile(Rf'''^({joined_dirs}).*?\.py$''') SCREAMING_SNAKE_CASE = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
710
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=3 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=224 , lowerCAmelCase=1000 , lowerCAmelCase=[3, 3, 6, 4] , lowerCAmelCase=[48, 56, 112, 220] , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = num_labels UpperCAmelCase_ = image_size UpperCAmelCase_ = layer_depths UpperCAmelCase_ = embed_dims def A__ ( self ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def A__ ( self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCAmelCase , layer_scale_init_value=1e-5 , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = SwiftFormerModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) UpperCAmelCase_ = SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self ): ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = self.prepare_config_and_inputs() UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase__, lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowerCAmelCase_ : int = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : int = False lowerCAmelCase_ : str = False lowerCAmelCase_ : Optional[Any] = False def A__ ( self ): UpperCAmelCase_ = SwiftFormerModelTester(self ) UpperCAmelCase_ = ConfigTester( self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def A__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def A__ ( self ): pass def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def A__ ( self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = SwiftFormerModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def A__ ( self ): pass def A__ ( self ): def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 8 self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): def _config_zero_init(lowerCAmelCase ): UpperCAmelCase_ = copy.deepcopy(lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCAmelCase , lowerCAmelCase , 1e-1_0 ) if isinstance(getattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ): UpperCAmelCase_ = _config_zero_init(getattr(lowerCAmelCase , lowerCAmelCase ) ) setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return configs_no_init UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = _config_zero_init(lowerCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(config=lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A__ ( self ): pass def snake_case__ ( ) -> str: UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def A__ ( self ): UpperCAmelCase_ = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(lowerCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=lowerCAmelCase , return_tensors="pt" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase_ = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1e-4 ) )
23
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCamelCase ( __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase_ : List[str] = ['pixel_values'] def __init__( self , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = PILImageResampling.BILINEAR , lowerCAmelCase = True , lowerCAmelCase = 1 / 255 , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ): super().__init__(**lowerCAmelCase_ ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ = crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = PILImageResampling.BICUBIC , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) if "shortest_edge" not in size: raise ValueError(f'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) UpperCAmelCase_ = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ = int(shortest_edge / crop_pct ) UpperCAmelCase_ = get_resize_output_image_size(lowerCAmelCase_ , size=lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) UpperCAmelCase_ = resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=lowerCAmelCase_ , size=(shortest_edge, shortest_edge) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( lowerCAmelCase_ , size=(shortest_edge, shortest_edge) , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = ChannelDimension.FIRST , **lowerCAmelCase , ): UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) UpperCAmelCase_ = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , crop_pct=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
711
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available SCREAMING_SNAKE_CASE = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
from __future__ import annotations import typing from collections import Counter def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> typing.Counter[int]: UpperCAmelCase_ = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a_ , max_perimeter + 1 ): UpperCAmelCase_ = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a_ ): UpperCAmelCase_ = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def snake_case__ ( __SCREAMING_SNAKE_CASE = 1000 ) -> int: UpperCAmelCase_ = pythagorean_triple(a_ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f'''Perimeter {solution()} has maximum solutions''')
712
import math def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> list[int]: UpperCAmelCase_ = [] UpperCAmelCase_ = 2 UpperCAmelCase_ = int(math.sqrt(__SCREAMING_SNAKE_CASE ) ) # Size of every segment UpperCAmelCase_ = [True] * (end + 1) UpperCAmelCase_ = [] while start <= end: if temp[start] is True: in_prime.append(__SCREAMING_SNAKE_CASE ) for i in range(start * start , end + 1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = False start += 1 prime += in_prime UpperCAmelCase_ = end + 1 UpperCAmelCase_ = min(2 * end , __SCREAMING_SNAKE_CASE ) while low <= n: UpperCAmelCase_ = [True] * (high - low + 1) for each in in_prime: UpperCAmelCase_ = math.floor(low / each ) * each if t < low: t += each for j in range(__SCREAMING_SNAKE_CASE , high + 1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = False for j in range(len(__SCREAMING_SNAKE_CASE ) ): if temp[j] is True: prime.append(j + low ) UpperCAmelCase_ = high + 1 UpperCAmelCase_ = min(high + end , __SCREAMING_SNAKE_CASE ) return prime print(sieve(10**6))
23
0
def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Dict: if principal <= 0: raise Exception("Principal borrowed must be > 0" ) if rate_per_annum < 0: raise Exception("Rate of interest must be >= 0" ) if years_to_repay <= 0 or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise Exception("Years to repay must be an integer > 0" ) # Yearly rate is divided by 12 to get monthly rate UpperCAmelCase_ = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly UpperCAmelCase_ = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
713
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : torch.FloatTensor class lowerCamelCase ( lowercase__, lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCAmelCase = 32 , lowerCAmelCase = 64 , lowerCAmelCase = 20 , lowerCAmelCase = 768 , lowerCAmelCase=77 , lowerCAmelCase=4 , lowerCAmelCase = 0.0 , lowerCAmelCase = "silu" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "linear" , lowerCAmelCase = "prd" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ): super().__init__() UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = attention_head_dim UpperCAmelCase_ = num_attention_heads * attention_head_dim UpperCAmelCase_ = additional_embeddings UpperCAmelCase_ = time_embed_dim or inner_dim UpperCAmelCase_ = embedding_proj_dim or embedding_dim UpperCAmelCase_ = clip_embed_dim or embedding_dim UpperCAmelCase_ = Timesteps(lowerCAmelCase , lowerCAmelCase , 0 ) UpperCAmelCase_ = TimestepEmbedding(lowerCAmelCase , lowerCAmelCase , out_dim=lowerCAmelCase , act_fn=lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if embedding_proj_norm_type is None: UpperCAmelCase_ = None elif embedding_proj_norm_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if encoder_hid_proj_type is None: UpperCAmelCase_ = None elif encoder_hid_proj_type == "linear": UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCAmelCase ) ) if added_emb_type == "prd": UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , 1 , lowerCAmelCase ) ) elif added_emb_type is None: UpperCAmelCase_ = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) UpperCAmelCase_ = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , dropout=lowerCAmelCase , activation_fn="gelu" , attention_bias=lowerCAmelCase , ) for d in range(lowerCAmelCase ) ] ) if norm_in_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) elif norm_in_type is None: UpperCAmelCase_ = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) UpperCAmelCase_ = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask" , lowerCAmelCase , persistent=lowerCAmelCase ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def A__ ( self ): UpperCAmelCase_ = {} def fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): UpperCAmelCase_ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return processors def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = len(self.attn_processors.keys() ) if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(lowerCAmelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): if not isinstance(lowerCAmelCase , lowerCAmelCase ): module.set_processor(lowerCAmelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): self.set_attn_processor(AttnProcessor() ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = True , ): UpperCAmelCase_ = hidden_states.shape[0] UpperCAmelCase_ = timestep if not torch.is_tensor(lowerCAmelCase ): UpperCAmelCase_ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCAmelCase ) and len(timesteps.shape ) == 0: UpperCAmelCase_ = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase_ = timesteps * torch.ones(lowerCAmelCase , dtype=timesteps.dtype , device=timesteps.device ) UpperCAmelCase_ = self.time_proj(lowerCAmelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. UpperCAmelCase_ = timesteps_projected.to(dtype=self.dtype ) UpperCAmelCase_ = self.time_embedding(lowerCAmelCase ) if self.embedding_proj_norm is not None: UpperCAmelCase_ = self.embedding_proj_norm(lowerCAmelCase ) UpperCAmelCase_ = self.embedding_proj(lowerCAmelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: UpperCAmelCase_ = self.encoder_hidden_states_proj(lowerCAmelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" ) UpperCAmelCase_ = self.proj_in(lowerCAmelCase ) UpperCAmelCase_ = self.positional_embedding.to(hidden_states.dtype ) UpperCAmelCase_ = [] UpperCAmelCase_ = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCAmelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: UpperCAmelCase_ = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: UpperCAmelCase_ = hidden_states[:, None, :] UpperCAmelCase_ = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: UpperCAmelCase_ = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCAmelCase , -1 , -1 ) additional_embeds.append(lowerCAmelCase ) UpperCAmelCase_ = torch.cat( lowerCAmelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens UpperCAmelCase_ = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: UpperCAmelCase_ = F.pad( lowerCAmelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) UpperCAmelCase_ = hidden_states + positional_embeddings if attention_mask is not None: UpperCAmelCase_ = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 UpperCAmelCase_ = F.pad(lowerCAmelCase , (0, self.additional_embeddings) , value=0.0 ) UpperCAmelCase_ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) UpperCAmelCase_ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: UpperCAmelCase_ = self.norm_in(lowerCAmelCase ) for block in self.transformer_blocks: UpperCAmelCase_ = block(lowerCAmelCase , attention_mask=lowerCAmelCase ) UpperCAmelCase_ = self.norm_out(lowerCAmelCase ) if self.prd_embedding is not None: UpperCAmelCase_ = hidden_states[:, -1] else: UpperCAmelCase_ = hidden_states[:, additional_embeddings_len:] UpperCAmelCase_ = self.proj_to_clip_embeddings(lowerCAmelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
23
0
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = 3 class lowerCamelCase ( lowercase__ ): '''simple docstring''' pass def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Any: for shard in shards: for i in range(UpperCAmelCase__ ): yield {"i": i, "shard": shard} def snake_case__ ( ) -> List[str]: UpperCAmelCase_ = int(os.environ["RANK"] ) UpperCAmelCase_ = int(os.environ["WORLD_SIZE"] ) UpperCAmelCase_ = ArgumentParser() parser.add_argument("--streaming" , type=UpperCAmelCase__ ) parser.add_argument("--local_rank" , type=UpperCAmelCase__ ) parser.add_argument("--num_workers" , type=UpperCAmelCase__ , default=0 ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = args.streaming UpperCAmelCase_ = args.num_workers UpperCAmelCase_ = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(UpperCAmelCase__ )]} UpperCAmelCase_ = IterableDataset.from_generator(UpperCAmelCase__ , gen_kwargs=UpperCAmelCase__ ) if not streaming: UpperCAmelCase_ = Dataset.from_list(list(UpperCAmelCase__ ) ) UpperCAmelCase_ = split_dataset_by_node(UpperCAmelCase__ , rank=UpperCAmelCase__ , world_size=UpperCAmelCase__ ) UpperCAmelCase_ = torch.utils.data.DataLoader(UpperCAmelCase__ , num_workers=UpperCAmelCase__ ) UpperCAmelCase_ = NUM_SHARDS * NUM_ITEMS_PER_SHARD UpperCAmelCase_ = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) UpperCAmelCase_ = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase ( lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = XLMTokenizer lowerCAmelCase_ : List[Any] = False def A__ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] UpperCAmelCase_ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) UpperCAmelCase_ = ["l o 123", "lo w 1456", "e r</w> 1789", ""] UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(lowerCAmelCase ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(lowerCAmelCase ) ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = "lower newer" UpperCAmelCase_ = "lower newer" return input_text, output_text def A__ ( self ): UpperCAmelCase_ = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase_ = "lower" UpperCAmelCase_ = ["low", "er</w>"] UpperCAmelCase_ = tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = tokens + ["<unk>"] UpperCAmelCase_ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , lowerCAmelCase ) @slow def A__ ( self ): UpperCAmelCase_ = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" ) UpperCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=lowerCAmelCase ) UpperCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=lowerCAmelCase ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
715
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = 'xlm-roberta' def __init__( self , lowerCAmelCase=3_0522 , lowerCAmelCase=768 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=3072 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-1_2 , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase="absolute" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class lowerCamelCase ( lowercase__ ): '''simple docstring''' @property def A__ ( self ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
23
0
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"""vocab_file""": """spiece.model"""} SCREAMING_SNAKE_CASE = { """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), } } SCREAMING_SNAKE_CASE = { """google/bigbird-roberta-base""": 4096, """google/bigbird-roberta-large""": 4096, """google/bigbird-base-trivia-itc""": 4096, } class lowerCamelCase ( __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase_ : Dict = VOCAB_FILES_NAMES lowerCAmelCase_ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Tuple = ['input_ids', 'attention_mask'] lowerCAmelCase_ : Tuple = [] def __init__( self , lowerCAmelCase , lowerCAmelCase="<unk>" , lowerCAmelCase="<s>" , lowerCAmelCase="</s>" , lowerCAmelCase="<pad>" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[MASK]" , lowerCAmelCase="[CLS]" , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else bos_token UpperCAmelCase_ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else eos_token UpperCAmelCase_ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else unk_token UpperCAmelCase_ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else pad_token UpperCAmelCase_ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else cls_token UpperCAmelCase_ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , sep_token=lowerCAmelCase , mask_token=lowerCAmelCase , cls_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase ) @property def A__ ( self ): return self.sp_model.get_piece_size() def A__ ( self ): UpperCAmelCase_ = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self , lowerCAmelCase ): UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A__ ( self , lowerCAmelCase ): return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): return self.sp_model.piece_to_id(lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = self.sp_model.IdToPiece(lowerCAmelCase ) return token def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = [] UpperCAmelCase_ = "" UpperCAmelCase_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase_ = True UpperCAmelCase_ = [] else: current_sub_tokens.append(lowerCAmelCase ) UpperCAmelCase_ = False out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def A__ ( self , lowerCAmelCase , lowerCAmelCase = False , lowerCAmelCase = None , lowerCAmelCase = True , **lowerCAmelCase , ): UpperCAmelCase_ = kwargs.pop("use_source_tokenizer" , lowerCAmelCase ) UpperCAmelCase_ = self.convert_ids_to_tokens(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCAmelCase_ = [] UpperCAmelCase_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase ) ) UpperCAmelCase_ = [] sub_texts.append(lowerCAmelCase ) else: current_sub_text.append(lowerCAmelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: UpperCAmelCase_ = re.sub(r" (\[(MASK|SEP)\])" , r"\1" , " ".join(lowerCAmelCase ) ) else: UpperCAmelCase_ = "".join(lowerCAmelCase ) UpperCAmelCase_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCAmelCase_ = self.clean_up_tokenization(lowerCAmelCase ) return clean_text else: return text def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): if not os.path.isdir(lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ = os.path.join( lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , "wb" ) as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] UpperCAmelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase )) + [1] return [1] + ([0] * len(lowerCAmelCase )) + [1] + ([0] * len(lowerCAmelCase )) + [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
716
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = int(__SCREAMING_SNAKE_CASE ) if decimal in (0, 1): # Exit cases for the recursion return str(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ , UpperCAmelCase_ = divmod(__SCREAMING_SNAKE_CASE , 2 ) return binary_recursive(__SCREAMING_SNAKE_CASE ) + str(__SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = str(__SCREAMING_SNAKE_CASE ).strip() if not number: raise ValueError("No input value was provided" ) UpperCAmelCase_ = "-" if number.startswith("-" ) else "" UpperCAmelCase_ = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f'''{negative}0b{binary_recursive(int(__SCREAMING_SNAKE_CASE ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
23
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json", # See all CANINE models at https://huggingface.co/models?filter=canine } class lowerCamelCase ( __lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ : Dict = "canine" def __init__( self , lowerCAmelCase=768 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=3072 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=1_6384 , lowerCAmelCase=16 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-1_2 , lowerCAmelCase=0 , lowerCAmelCase=0xE000 , lowerCAmelCase=0xE001 , lowerCAmelCase=4 , lowerCAmelCase=4 , lowerCAmelCase=8 , lowerCAmelCase=1_6384 , lowerCAmelCase=128 , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = layer_norm_eps # Character config: UpperCAmelCase_ = downsampling_rate UpperCAmelCase_ = upsampling_kernel_size UpperCAmelCase_ = num_hash_functions UpperCAmelCase_ = num_hash_buckets UpperCAmelCase_ = local_transformer_stride
717
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ): UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=lowerCAmelCase ).to(lowerCAmelCase ) UpperCAmelCase_ = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase_ = tokenizer("Hello there" , return_tensors="pt" ).input_ids UpperCAmelCase_ = tokenizer("Hi I am" , return_tensors="pt" ).input_ids UpperCAmelCase_ = model(input_ids.to(lowerCAmelCase ) , labels=labels.to(lowerCAmelCase ) ).loss UpperCAmelCase_ = -(labels.shape[-1] * loss.item()) UpperCAmelCase_ = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
23
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE = '▁' SCREAMING_SNAKE_CASE = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } SCREAMING_SNAKE_CASE = { 'google/pegasus-xsum': 512, } SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCamelCase ( UpperCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Dict = VOCAB_FILES_NAMES lowerCAmelCase_ : Dict = VOCAB_FILES_NAMES lowerCAmelCase_ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Any = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase , lowerCAmelCase="<pad>" , lowerCAmelCase="</s>" , lowerCAmelCase="<unk>" , lowerCAmelCase="<mask_2>" , lowerCAmelCase="<mask_1>" , lowerCAmelCase=None , lowerCAmelCase=103 , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = offset if additional_special_tokens is not None: if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(lowerCAmelCase )}, but is''' f''' {type(lowerCAmelCase )}''' ) UpperCAmelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(lowerCAmelCase ) , self.offset - 1 ) ] if len(set(lowerCAmelCase ) ) != len(lowerCAmelCase ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) UpperCAmelCase_ = additional_special_tokens_extended else: UpperCAmelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , mask_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token_sent=lowerCAmelCase , offset=lowerCAmelCase , additional_special_tokens=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase_ = mask_token_sent UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase ) # add special tokens to encoder dict UpperCAmelCase_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) UpperCAmelCase_ = {v: k for k, v in self.encoder.items()} @property def A__ ( self ): return len(self.sp_model ) + self.offset def A__ ( self ): UpperCAmelCase_ = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self , lowerCAmelCase ): UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A__ ( self , lowerCAmelCase ): return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] UpperCAmelCase_ = self.sp_model.piece_to_id(lowerCAmelCase ) return sp_id + self.offset def A__ ( self , lowerCAmelCase ): if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: UpperCAmelCase_ = self.sp_model.IdToPiece(index - self.offset ) return token def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = [] UpperCAmelCase_ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase_ = [] else: current_sub_tokens.append(lowerCAmelCase ) out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def A__ ( self , lowerCAmelCase=False ): return 1 def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = False ): if already_has_special_tokens: return self._special_token_mask(lowerCAmelCase ) elif token_ids_a is None: return self._special_token_mask(lowerCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): if not os.path.isdir(lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ = os.path.join( lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , "wb" ) as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,)
718
def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ = 0 while b > 0: if b & 1: UpperCAmelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
23
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
719
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> List[List[ImageInput]]: if isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[Any] = ['pixel_values'] def __init__( self , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = PILImageResampling.BILINEAR , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = True , lowerCAmelCase = 1 / 255 , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ): super().__init__(**lowerCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = PILImageResampling.BILINEAR , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(lowerCAmelCase , size["shortest_edge"] , default_to_square=lowerCAmelCase ) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(lowerCAmelCase , size=(size["height"], size["width"]) , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): return rescale(lowerCAmelCase , scale=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): return normalize(lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = to_numpy_array(lowerCAmelCase ) if do_resize: UpperCAmelCase_ = self.resize(image=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase ) if do_center_crop: UpperCAmelCase_ = self.center_crop(lowerCAmelCase , size=lowerCAmelCase ) if do_rescale: UpperCAmelCase_ = self.rescale(image=lowerCAmelCase , scale=lowerCAmelCase ) if do_normalize: UpperCAmelCase_ = self.normalize(image=lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase ) UpperCAmelCase_ = to_channel_dimension_format(lowerCAmelCase , lowerCAmelCase ) return image def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = ChannelDimension.FIRST , **lowerCAmelCase , ): UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="crop_size" ) if not valid_images(lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase_ = make_batched(lowerCAmelCase ) UpperCAmelCase_ = [ [ self._preprocess_image( image=lowerCAmelCase , do_resize=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , do_center_crop=lowerCAmelCase , crop_size=lowerCAmelCase , do_rescale=lowerCAmelCase , rescale_factor=lowerCAmelCase , do_normalize=lowerCAmelCase , image_mean=lowerCAmelCase , image_std=lowerCAmelCase , data_format=lowerCAmelCase , ) for img in video ] for video in videos ] UpperCAmelCase_ = {"pixel_values": videos} return BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase )
23
0
from __future__ import annotations def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> bool: if len(lowerCamelCase__ ) == 0: return False UpperCAmelCase_ = len(lowerCamelCase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowerCamelCase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowerCamelCase__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = input("Enter numbers separated by comma:\n").strip() SCREAMING_SNAKE_CASE = [int(item.strip()) for item in user_input.split(",")] SCREAMING_SNAKE_CASE = int(input("Enter the number to be found in the list:\n").strip()) SCREAMING_SNAKE_CASE = "" if binary_search(sequence, target) else "not " print(f'''{target} was {not_str}found in {sequence}''')
720
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = 1 for i in range(1 , num + 1 ): fact *= i return fact def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = 0 while number > 0: UpperCAmelCase_ = number % 10 sum_of_digits += last_digit UpperCAmelCase_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def snake_case__ ( __SCREAMING_SNAKE_CASE = 100 ) -> int: UpperCAmelCase_ = factorial(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = split_and_add(__SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
23
0
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=0.0 , lowerCAmelCase = None , lowerCAmelCase = "geglu" , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = False , lowerCAmelCase = False , lowerCAmelCase = False , lowerCAmelCase = True , lowerCAmelCase = "layer_norm" , lowerCAmelCase = False , ): super().__init__() UpperCAmelCase_ = only_cross_attention UpperCAmelCase_ = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" UpperCAmelCase_ = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: UpperCAmelCase_ = AdaLayerNorm(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.use_ada_layer_norm_zero: UpperCAmelCase_ = AdaLayerNormZero(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ = nn.LayerNorm(_SCREAMING_SNAKE_CASE , elementwise_affine=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = Attention( query_dim=_SCREAMING_SNAKE_CASE , heads=_SCREAMING_SNAKE_CASE , dim_head=_SCREAMING_SNAKE_CASE , dropout=_SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=_SCREAMING_SNAKE_CASE , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. UpperCAmelCase_ = ( AdaLayerNorm(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm else nn.LayerNorm(_SCREAMING_SNAKE_CASE , elementwise_affine=_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ = Attention( query_dim=_SCREAMING_SNAKE_CASE , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=_SCREAMING_SNAKE_CASE , dim_head=_SCREAMING_SNAKE_CASE , dropout=_SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE , upcast_attention=_SCREAMING_SNAKE_CASE , ) # is self-attn if encoder_hidden_states is none else: UpperCAmelCase_ = None UpperCAmelCase_ = None # 3. Feed-forward UpperCAmelCase_ = nn.LayerNorm(_SCREAMING_SNAKE_CASE , elementwise_affine=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = FeedForward(_SCREAMING_SNAKE_CASE , dropout=_SCREAMING_SNAKE_CASE , activation_fn=_SCREAMING_SNAKE_CASE , final_dropout=_SCREAMING_SNAKE_CASE ) # let chunk size default to None UpperCAmelCase_ = None UpperCAmelCase_ = 0 def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = chunk_size UpperCAmelCase_ = dim def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: UpperCAmelCase_ = self.norma(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.use_ada_layer_norm_zero: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.norma( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hidden_dtype=hidden_states.dtype ) else: UpperCAmelCase_ = self.norma(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = cross_attention_kwargs if cross_attention_kwargs is not None else {} UpperCAmelCase_ = self.attna( _SCREAMING_SNAKE_CASE , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) if self.use_ada_layer_norm_zero: UpperCAmelCase_ = gate_msa.unsqueeze(1 ) * attn_output UpperCAmelCase_ = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: UpperCAmelCase_ = ( self.norma(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm else self.norma(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ = self.attna( _SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCAmelCase_ = attn_output + hidden_states # 3. Feed-forward UpperCAmelCase_ = self.norma(_SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm_zero: UpperCAmelCase_ = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) UpperCAmelCase_ = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size UpperCAmelCase_ = torch.cat( [self.ff(_SCREAMING_SNAKE_CASE ) for hid_slice in norm_hidden_states.chunk(_SCREAMING_SNAKE_CASE , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: UpperCAmelCase_ = self.ff(_SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm_zero: UpperCAmelCase_ = gate_mlp.unsqueeze(1 ) * ff_output UpperCAmelCase_ = ff_output + hidden_states return hidden_states class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = 4 , lowerCAmelCase = 0.0 , lowerCAmelCase = "geglu" , lowerCAmelCase = False , ): super().__init__() UpperCAmelCase_ = int(dim * mult ) UpperCAmelCase_ = dim_out if dim_out is not None else dim if activation_fn == "gelu": UpperCAmelCase_ = GELU(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if activation_fn == "gelu-approximate": UpperCAmelCase_ = GELU(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , approximate="tanh" ) elif activation_fn == "geglu": UpperCAmelCase_ = GEGLU(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif activation_fn == "geglu-approximate": UpperCAmelCase_ = ApproximateGELU(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = nn.ModuleList([] ) # project in self.net.append(_SCREAMING_SNAKE_CASE ) # project dropout self.net.append(nn.Dropout(_SCREAMING_SNAKE_CASE ) ) # project out self.net.append(nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_SCREAMING_SNAKE_CASE ) ) def A__ ( self , lowerCAmelCase ): for module in self.net: UpperCAmelCase_ = module(_SCREAMING_SNAKE_CASE ) return hidden_states class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = "none" ): super().__init__() UpperCAmelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = approximate def A__ ( self , lowerCAmelCase ): if gate.device.type != "mps": return F.gelu(_SCREAMING_SNAKE_CASE , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = self.proj(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = self.gelu(_SCREAMING_SNAKE_CASE ) return hidden_states class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase ): super().__init__() UpperCAmelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , dim_out * 2 ) def A__ ( self , lowerCAmelCase ): if gate.device.type != "mps": return F.gelu(_SCREAMING_SNAKE_CASE ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ , UpperCAmelCase_ = self.proj(_SCREAMING_SNAKE_CASE ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(_SCREAMING_SNAKE_CASE ) class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase ): super().__init__() UpperCAmelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = self.proj(_SCREAMING_SNAKE_CASE ) return x * torch.sigmoid(1.702 * x ) class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase ): super().__init__() UpperCAmelCase_ = nn.Embedding(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = nn.SiLU() UpperCAmelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , embedding_dim * 2 ) UpperCAmelCase_ = nn.LayerNorm(_SCREAMING_SNAKE_CASE , elementwise_affine=_SCREAMING_SNAKE_CASE ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = self.linear(self.silu(self.emb(_SCREAMING_SNAKE_CASE ) ) ) UpperCAmelCase_ , UpperCAmelCase_ = torch.chunk(_SCREAMING_SNAKE_CASE , 2 ) UpperCAmelCase_ = self.norm(_SCREAMING_SNAKE_CASE ) * (1 + scale) + shift return x class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase ): super().__init__() UpperCAmelCase_ = CombinedTimestepLabelEmbeddings(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = nn.SiLU() UpperCAmelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , 6 * embedding_dim , bias=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = nn.LayerNorm(_SCREAMING_SNAKE_CASE , elementwise_affine=_SCREAMING_SNAKE_CASE , eps=1e-6 ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = self.linear(self.silu(self.emb(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hidden_dtype=_SCREAMING_SNAKE_CASE ) ) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = emb.chunk(6 , dim=1 ) UpperCAmelCase_ = self.norm(_SCREAMING_SNAKE_CASE ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = 1e-5 ): super().__init__() UpperCAmelCase_ = num_groups UpperCAmelCase_ = eps if act_fn is None: UpperCAmelCase_ = None else: UpperCAmelCase_ = get_activation(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , out_dim * 2 ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): if self.act: UpperCAmelCase_ = self.act(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = self.linear(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = emb[:, :, None, None] UpperCAmelCase_ , UpperCAmelCase_ = emb.chunk(2 , dim=1 ) UpperCAmelCase_ = F.group_norm(_SCREAMING_SNAKE_CASE , self.num_groups , eps=self.eps ) UpperCAmelCase_ = x * (1 + scale) + shift return x
721
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available SCREAMING_SNAKE_CASE = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
700
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: # Initialise PyTorch model UpperCAmelCase_ = MobileBertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase_ = MobileBertForPreTraining(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint UpperCAmelCase_ = load_tf_weights_in_mobilebert(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
23
0
'''simple docstring''' def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = [0] * len(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = [] UpperCAmelCase_ = [1] * len(__SCREAMING_SNAKE_CASE ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__SCREAMING_SNAKE_CASE ) ): if indegree[i] == 0: queue.append(__SCREAMING_SNAKE_CASE ) while queue: UpperCAmelCase_ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: UpperCAmelCase_ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__SCREAMING_SNAKE_CASE ) print(max(__SCREAMING_SNAKE_CASE ) ) # Adjacency list of Graph SCREAMING_SNAKE_CASE = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
701
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase ): UpperCAmelCase_ = str(id_ ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = [] UpperCAmelCase_ = {} # {vertex:distance} def __lt__( self , lowerCAmelCase ): return self.key < other.key def __repr__( self ): return self.id def A__ ( self , lowerCAmelCase ): self.neighbors.append(lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = weight def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __SCREAMING_SNAKE_CASE ) graph[b - 1].add_edge(graph[a - 1] , __SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> list: UpperCAmelCase_ = [] for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = graph[:] while q: UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE ) q.remove(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Iterator[tuple]: for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = list(__SCREAMING_SNAKE_CASE ) hq.heapify(__SCREAMING_SNAKE_CASE ) while h: UpperCAmelCase_ = hq.heappop(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] hq.heapify(__SCREAMING_SNAKE_CASE ) for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def snake_case__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
23
0
from __future__ import annotations class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ , UpperCAmelCase_ = text, pattern UpperCAmelCase_ , UpperCAmelCase_ = len(lowerCAmelCase ), len(lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def A__ ( self , lowerCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def A__ ( self ): # searches pattern in text and returns index positions UpperCAmelCase_ = [] for i in range(self.textLen - self.patLen + 1 ): UpperCAmelCase_ = self.mismatch_in_text(lowerCAmelCase ) if mismatch_index == -1: positions.append(lowerCAmelCase ) else: UpperCAmelCase_ = self.match_in_pattern(self.text[mismatch_index] ) UpperCAmelCase_ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions SCREAMING_SNAKE_CASE = "ABAABA" SCREAMING_SNAKE_CASE = "AB" SCREAMING_SNAKE_CASE = BoyerMooreSearch(text, pattern) SCREAMING_SNAKE_CASE = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np SCREAMING_SNAKE_CASE = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 SCREAMING_SNAKE_CASE = typing.Union[np.floataa, int, float] # noqa: UP007 def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> VectorOut: return np.sqrt(np.sum((np.asarray(__SCREAMING_SNAKE_CASE ) - np.asarray(__SCREAMING_SNAKE_CASE )) ** 2 ) ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) ** (1 / 2) if __name__ == "__main__": def snake_case__ ( ) -> None: from timeit import timeit print("Without Numpy" ) print( timeit( "euclidean_distance_no_np([1, 2, 3], [4, 5, 6])" , number=1_0000 , globals=globals() , ) ) print("With Numpy" ) print( timeit( "euclidean_distance([1, 2, 3], [4, 5, 6])" , number=1_0000 , globals=globals() , ) ) benchmark()
703
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE = { "yjernite/retribert-base-uncased": 512, } SCREAMING_SNAKE_CASE = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase_ : int = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Dict = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : List[str] = RetriBertTokenizer lowerCAmelCase_ : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**lowerCAmelCase ) UpperCAmelCase_ = do_lower_case def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
23
0
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ = FileLock(str(tmpdir / "foo.lock" ) ) UpperCAmelCase_ = FileLock(str(tmpdir / "foo.lock" ) ) UpperCAmelCase_ = 0.01 with locka.acquire(): with pytest.raises(__SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = time.time() locka.acquire(__SCREAMING_SNAKE_CASE ) assert time.time() - _start > timeout def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Any: UpperCAmelCase_ = "a" * 1000 + ".lock" UpperCAmelCase_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(__SCREAMING_SNAKE_CASE ) assert len(os.path.basename(locka._lock_file ) ) <= 255 UpperCAmelCase_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__SCREAMING_SNAKE_CASE ): locka.acquire(0 )
704
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } SCREAMING_SNAKE_CASE = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Any = VOCAB_FILES_NAMES lowerCAmelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : int = ['input_ids', 'attention_mask'] lowerCAmelCase_ : str = DistilBertTokenizer def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**lowerCAmelCase ) UpperCAmelCase_ = do_lower_case def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
23
0
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: # Initialise PyTorch model UpperCAmelCase_ = AlbertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase_ = AlbertForPreTraining(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_albert(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
705
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> np.array: UpperCAmelCase_ = f'''{sampling_rate}''' UpperCAmelCase_ = "1" UpperCAmelCase_ = "f32le" UpperCAmelCase_ = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: UpperCAmelCase_ = ffmpeg_process.communicate(__SCREAMING_SNAKE_CASE ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error UpperCAmelCase_ = output_stream[0] UpperCAmelCase_ = np.frombuffer(__SCREAMING_SNAKE_CASE , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "f32le" , ) -> Dict: UpperCAmelCase_ = f'''{sampling_rate}''' UpperCAmelCase_ = "1" if format_for_conversion == "s16le": UpperCAmelCase_ = 2 elif format_for_conversion == "f32le": UpperCAmelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) UpperCAmelCase_ = platform.system() if system == "Linux": UpperCAmelCase_ = "alsa" UpperCAmelCase_ = "default" elif system == "Darwin": UpperCAmelCase_ = "avfoundation" UpperCAmelCase_ = ":0" elif system == "Windows": UpperCAmelCase_ = "dshow" UpperCAmelCase_ = "default" UpperCAmelCase_ = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample UpperCAmelCase_ = _ffmpeg_stream(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for item in iterator: yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "f32le" , ) -> int: if stream_chunk_s is not None: UpperCAmelCase_ = stream_chunk_s else: UpperCAmelCase_ = chunk_length_s UpperCAmelCase_ = ffmpeg_microphone(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , format_for_conversion=__SCREAMING_SNAKE_CASE ) if format_for_conversion == "s16le": UpperCAmelCase_ = np.intaa UpperCAmelCase_ = 2 elif format_for_conversion == "f32le": UpperCAmelCase_ = np.floataa UpperCAmelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: UpperCAmelCase_ = chunk_length_s / 6 UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): UpperCAmelCase_ = [stride_length_s, stride_length_s] UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample UpperCAmelCase_ = datetime.datetime.now() UpperCAmelCase_ = datetime.timedelta(seconds=__SCREAMING_SNAKE_CASE ) for item in chunk_bytes_iter(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=(stride_left, stride_right) , stream=__SCREAMING_SNAKE_CASE ): # Put everything back in numpy scale UpperCAmelCase_ = np.frombuffer(item["raw"] , dtype=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) UpperCAmelCase_ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False ) -> Dict: UpperCAmelCase_ = B"" UpperCAmelCase_ , UpperCAmelCase_ = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) UpperCAmelCase_ = 0 for raw in iterator: acc += raw if stream and len(__SCREAMING_SNAKE_CASE ) < chunk_len: UpperCAmelCase_ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__SCREAMING_SNAKE_CASE ) >= chunk_len: # We are flushing the accumulator UpperCAmelCase_ = (_stride_left, stride_right) UpperCAmelCase_ = {"raw": acc[:chunk_len], "stride": stride} if stream: UpperCAmelCase_ = False yield item UpperCAmelCase_ = stride_left UpperCAmelCase_ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__SCREAMING_SNAKE_CASE ) > stride_left: UpperCAmelCase_ = {"raw": acc, "stride": (_stride_left, 0)} if stream: UpperCAmelCase_ = False yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ = 2**24 # 16Mo try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE , bufsize=__SCREAMING_SNAKE_CASE ) as ffmpeg_process: while True: UpperCAmelCase_ = ffmpeg_process.stdout.read(__SCREAMING_SNAKE_CASE ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
23
0
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Any: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase ): super().__init__() UpperCAmelCase_ = module UpperCAmelCase_ = nn.Sequential( nn.Linear(module.in_features , lowerCAmelCase , bias=lowerCAmelCase ) , nn.Linear(lowerCAmelCase , module.out_features , bias=lowerCAmelCase ) , ) UpperCAmelCase_ = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def A__ ( self , lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase ): return self.module(lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase ) + self.adapter(lowerCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Any = 'bigscience/bloom-1b7' # Constant values lowerCAmelCase_ : Union[str, Any] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4 lowerCAmelCase_ : List[Any] = 'Hello my name is' lowerCAmelCase_ : List[str] = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) lowerCAmelCase_ : Any = 10 def A__ ( self ): # Models and tokenizer UpperCAmelCase_ = AutoTokenizer.from_pretrained(self.model_name ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' def A__ ( self ): super().setUp() # Models and tokenizer UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="auto" ) UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase , device_map="auto" ) def A__ ( self ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def A__ ( self ): UpperCAmelCase_ = self.model_abit.config self.assertTrue(hasattr(lowerCAmelCase , "quantization_config" ) ) UpperCAmelCase_ = config.to_dict() UpperCAmelCase_ = config.to_diff_dict() UpperCAmelCase_ = config.to_json_string() def A__ ( self ): from bitsandbytes.nn import Paramsabit UpperCAmelCase_ = self.model_fpaa.get_memory_footprint() UpperCAmelCase_ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) UpperCAmelCase_ = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def A__ ( self ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def A__ ( self ): UpperCAmelCase_ = self.tokenizer(self.input_text , return_tensors="pt" ) UpperCAmelCase_ = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase ) , self.EXPECTED_OUTPUTS ) def A__ ( self ): UpperCAmelCase_ = BitsAndBytesConfig() UpperCAmelCase_ = True UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase , device_map="auto" ) UpperCAmelCase_ = self.tokenizer(self.input_text , return_tensors="pt" ) UpperCAmelCase_ = model_abit_from_config.generate( input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase ) , self.EXPECTED_OUTPUTS ) def A__ ( self ): with self.assertRaises(lowerCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = BitsAndBytesConfig() with self.assertRaises(lowerCAmelCase ): UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase , load_in_abit=lowerCAmelCase , device_map="auto" , bnb_abit_quant_type="nf4" , ) def A__ ( self ): with self.assertRaises(lowerCAmelCase ): # Tries with `str` self.model_abit.to("cpu" ) with self.assertRaises(lowerCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device("cuda:0" ) ) with self.assertRaises(lowerCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything UpperCAmelCase_ = self.tokenizer(self.input_text , return_tensors="pt" ) UpperCAmelCase_ = self.model_fpaa.to(torch.floataa ) UpperCAmelCase_ = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error UpperCAmelCase_ = self.model_fpaa.to("cpu" ) # Check this does not throw an error UpperCAmelCase_ = self.model_fpaa.half() # Check this does not throw an error UpperCAmelCase_ = self.model_fpaa.float() def A__ ( self ): UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained("t5-small" , load_in_abit=lowerCAmelCase , device_map="auto" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def A__ ( cls ): UpperCAmelCase_ = "t5-small" UpperCAmelCase_ = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense UpperCAmelCase_ = AutoTokenizer.from_pretrained(cls.model_name ) UpperCAmelCase_ = "Translate in German: Hello, my dog is cute" def A__ ( self ): gc.collect() torch.cuda.empty_cache() def A__ ( self ): from transformers import TaForConditionalGeneration UpperCAmelCase_ = TaForConditionalGeneration._keep_in_fpaa_modules UpperCAmelCase_ = None # test with `t5-small` UpperCAmelCase_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase , device_map="auto" ) UpperCAmelCase_ = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) UpperCAmelCase_ = model.generate(**lowerCAmelCase ) # test with `flan-t5-small` UpperCAmelCase_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase , device_map="auto" ) UpperCAmelCase_ = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) UpperCAmelCase_ = model.generate(**lowerCAmelCase ) UpperCAmelCase_ = modules def A__ ( self ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` UpperCAmelCase_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase , device_map="auto" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) UpperCAmelCase_ = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) UpperCAmelCase_ = model.generate(**lowerCAmelCase ) # test with `flan-t5-small` UpperCAmelCase_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase , device_map="auto" ) UpperCAmelCase_ = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) UpperCAmelCase_ = model.generate(**lowerCAmelCase ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' def A__ ( self ): super().setUp() # model_name UpperCAmelCase_ = "bigscience/bloom-560m" UpperCAmelCase_ = "t5-small" # Different types of model UpperCAmelCase_ = AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase , device_map="auto" ) # Sequence classification model UpperCAmelCase_ = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase , device_map="auto" ) # CausalLM model UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase , device_map="auto" ) # Seq2seq model UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCAmelCase , device_map="auto" ) def A__ ( self ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def A__ ( self ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' def A__ ( self ): super().setUp() def A__ ( self ): del self.pipe gc.collect() torch.cuda.empty_cache() def A__ ( self ): UpperCAmelCase_ = pipeline( "text-generation" , model=self.model_name , model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass UpperCAmelCase_ = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["generated_text"] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class lowerCamelCase ( lowercase__ ): '''simple docstring''' def A__ ( self ): super().setUp() def A__ ( self ): UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase , device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model UpperCAmelCase_ = self.tokenizer(self.input_text , return_tensors="pt" ) # Second real batch UpperCAmelCase_ = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase ) , self.EXPECTED_OUTPUTS ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' def A__ ( self ): UpperCAmelCase_ = "facebook/opt-350m" super().setUp() def A__ ( self ): if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ): return # Step 1: freeze all parameters UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): UpperCAmelCase_ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability UpperCAmelCase_ = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCAmelCase ) ): UpperCAmelCase_ = LoRALayer(module.q_proj , rank=16 ) UpperCAmelCase_ = LoRALayer(module.k_proj , rank=16 ) UpperCAmelCase_ = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch UpperCAmelCase_ = self.tokenizer("Test batch " , return_tensors="pt" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): UpperCAmelCase_ = model.forward(**lowerCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCAmelCase , lowerCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Dict = 'gpt2-xl' lowerCAmelCase_ : int = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
706
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowerCamelCase ( lowercase__, lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCAmelCase = 768 , ): super().__init__() UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(torch.ones(1 , lowerCAmelCase ) ) def A__ ( self , lowerCAmelCase = None , lowerCAmelCase = None , ): UpperCAmelCase_ = nn.Parameter(self.mean.to(lowerCAmelCase ).to(lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(self.std.to(lowerCAmelCase ).to(lowerCAmelCase ) ) return self def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (embeds * self.std) + self.mean return embeds
23
0
'''simple docstring''' import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): debug_launcher(test_script.main ) def A__ ( self ): debug_launcher(test_ops.main )
707
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): super().__init__(*lowerCAmelCase , **lowerCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def A__ ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None ): UpperCAmelCase_ = {} UpperCAmelCase_ = {} if prompt is not None: UpperCAmelCase_ = prompt if generate_kwargs is not None: UpperCAmelCase_ = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: UpperCAmelCase_ = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one" ) UpperCAmelCase_ = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , lowerCAmelCase , **lowerCAmelCase ): return super().__call__(lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = load_image(lowerCAmelCase ) if prompt is not None: if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(lowerCAmelCase )} - but expected a single string. ''' "Note also that one single text can be provided for conditional image to text generation." ) UpperCAmelCase_ = self.model.config.model_type if model_type == "git": UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) UpperCAmelCase_ = self.tokenizer(text=lowerCAmelCase , add_special_tokens=lowerCAmelCase ).input_ids UpperCAmelCase_ = [self.tokenizer.cls_token_id] + input_ids UpperCAmelCase_ = torch.tensor(lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"input_ids": input_ids} ) elif model_type == "pix2struct": UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , header_text=lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) UpperCAmelCase_ = self.tokenizer(lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: UpperCAmelCase_ = None return model_inputs def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , lowerCAmelCase ) and all(x is None for x in model_inputs["input_ids"] ) ): UpperCAmelCase_ = None if generate_kwargs is None: UpperCAmelCase_ = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. UpperCAmelCase_ = model_inputs.pop(self.model.main_input_name ) UpperCAmelCase_ = self.model.generate(lowerCAmelCase , **lowerCAmelCase , **lowerCAmelCase ) return model_outputs def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = [] for output_ids in model_outputs: UpperCAmelCase_ = { "generated_text": self.tokenizer.decode( lowerCAmelCase , skip_special_tokens=lowerCAmelCase , ) } records.append(lowerCAmelCase ) return records
23
0
import argparse from collections import defaultdict def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: UpperCAmelCase_ = f'''{file}_{class_name}_{test_name}''' done_test[_id] += 1 with open(__SCREAMING_SNAKE_CASE , "r" ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = f'''class {class_name}(''' UpperCAmelCase_ = f'''{4 * ' '}def {test_name}(''' UpperCAmelCase_ = f'''{8 * ' '}{correct_line.split()[0]}''' UpperCAmelCase_ = f'''{16 * ' '}{correct_line.split()[0]}''' UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = [] for line in lines: if line.startswith(__SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = True elif in_class and line.startswith(__SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = True elif in_class and in_func and (line.startswith(__SCREAMING_SNAKE_CASE ) or line.startswith(__SCREAMING_SNAKE_CASE )): UpperCAmelCase_ = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: UpperCAmelCase_ = True if in_class and in_func and in_line: if ")" not in line: continue else: UpperCAmelCase_ = True if in_class and in_func and in_line and insert_line: new_lines.append(f'''{spaces * ' '}{correct_line}''' ) UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = False else: new_lines.append(__SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE , "w" ) as f: for line in new_lines: f.write(__SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) -> Dict: if fail is not None: with open(__SCREAMING_SNAKE_CASE , "r" ) as f: UpperCAmelCase_ = {l.strip() for l in f.readlines()} else: UpperCAmelCase_ = None with open(__SCREAMING_SNAKE_CASE , "r" ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = defaultdict(__SCREAMING_SNAKE_CASE ) for line in correct_lines: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = line.split(";" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--correct_filename", help="filename of tests with expected result") parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None) SCREAMING_SNAKE_CASE = parser.parse_args() main(args.correct_filename, args.fail_filename)
708
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCamelCase ( lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : int = TextToVideoSDPipeline lowerCAmelCase_ : Dict = TEXT_TO_IMAGE_PARAMS lowerCAmelCase_ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. lowerCAmelCase_ : Optional[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def A__ ( self ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCAmelCase_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) UpperCAmelCase_ = CLIPTextModel(lowerCAmelCase ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def A__ ( self , lowerCAmelCase , lowerCAmelCase=0 ): if str(lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(lowerCAmelCase ) else: UpperCAmelCase_ = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) UpperCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def A__ ( self ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = TextToVideoSDPipeline(**lowerCAmelCase ) UpperCAmelCase_ = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs(lowerCAmelCase ) UpperCAmelCase_ = "np" UpperCAmelCase_ = sd_pipe(**lowerCAmelCase ).frames UpperCAmelCase_ = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) UpperCAmelCase_ = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCAmelCase , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCAmelCase , expected_max_diff=1e-2 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def A__ ( self ): pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def A__ ( self ): pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def A__ ( self ): pass def A__ ( self ): return super().test_progress_bar() @slow @skip_mps class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy" ) UpperCAmelCase_ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ = pipe.to("cuda" ) UpperCAmelCase_ = "Spiderman is surfing" UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=25 , output_type="pt" ).frames UpperCAmelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def A__ ( self ): UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy" ) UpperCAmelCase_ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) UpperCAmelCase_ = pipe.to("cuda" ) UpperCAmelCase_ = "Spiderman is surfing" UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=2 , output_type="pt" ).frames UpperCAmelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
23
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class lowerCamelCase : '''simple docstring''' lowerCAmelCase_ : Dict = PegasusConfig lowerCAmelCase_ : Any = {} lowerCAmelCase_ : Optional[int] = 'gelu' def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=99 , lowerCAmelCase=32 , lowerCAmelCase=2 , lowerCAmelCase=4 , lowerCAmelCase=37 , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=40 , lowerCAmelCase=2 , lowerCAmelCase=1 , lowerCAmelCase=0 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = eos_token_id UpperCAmelCase_ = pad_token_id UpperCAmelCase_ = bos_token_id def A__ ( self ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase_ = prepare_pegasus_inputs_dict(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return config, inputs_dict def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = TFPegasusModel(config=lowerCAmelCase ).get_decoder() UpperCAmelCase_ = inputs_dict["input_ids"] UpperCAmelCase_ = input_ids[:1, :] UpperCAmelCase_ = inputs_dict["attention_mask"][:1, :] UpperCAmelCase_ = inputs_dict["head_mask"] UpperCAmelCase_ = 1 # first forward pass UpperCAmelCase_ = model(lowerCAmelCase , attention_mask=lowerCAmelCase , head_mask=lowerCAmelCase , use_cache=lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase_ = model(lowerCAmelCase , attention_mask=lowerCAmelCase )[0] UpperCAmelCase_ = model(lowerCAmelCase , attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase , lowerCAmelCase , rtol=1e-3 ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , ) -> Dict: if attention_mask is None: UpperCAmelCase_ = tf.cast(tf.math.not_equal(__SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCamelCase ( lowercase__, lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Any = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () lowerCAmelCase_ : Optional[int] = (TFPegasusForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase_ : Optional[Any] = ( { 'conversational': TFPegasusForConditionalGeneration, 'feature-extraction': TFPegasusModel, 'summarization': TFPegasusForConditionalGeneration, 'text2text-generation': TFPegasusForConditionalGeneration, 'translation': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase_ : int = True lowerCAmelCase_ : Tuple = False lowerCAmelCase_ : List[str] = False def A__ ( self ): UpperCAmelCase_ = TFPegasusModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=lowerCAmelCase ) def A__ ( self ): self.config_tester.run_common_tests() def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] lowerCAmelCase_ : str = [ 'California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to' ' reduce the risk of wildfires.', 'N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.', ] # differs slightly from pytorch, likely due to numerical differences in linear layers lowerCAmelCase_ : Any = 'google/pegasus-xsum' @cached_property def A__ ( self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def A__ ( self ): UpperCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def A__ ( self , **lowerCAmelCase ): UpperCAmelCase_ = self.translate_src_text(**lowerCAmelCase ) assert self.expected_text == generated_words def A__ ( self , **lowerCAmelCase ): UpperCAmelCase_ = self.tokenizer(self.src_text , **lowerCAmelCase , padding=lowerCAmelCase , return_tensors="tf" ) UpperCAmelCase_ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowerCAmelCase , ) UpperCAmelCase_ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowerCAmelCase ) return generated_words @slow def A__ ( self ): self._assert_generated_batch_equal_expected()
709
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = [1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 0, 0, 0 UpperCAmelCase_ = ugly_nums[ia] * 2 UpperCAmelCase_ = ugly_nums[ia] * 3 UpperCAmelCase_ = ugly_nums[ia] * 5 for _ in range(1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ugly_nums.append(__SCREAMING_SNAKE_CASE ) if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(200) = }''')
23
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
710
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=3 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=224 , lowerCAmelCase=1000 , lowerCAmelCase=[3, 3, 6, 4] , lowerCAmelCase=[48, 56, 112, 220] , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = num_labels UpperCAmelCase_ = image_size UpperCAmelCase_ = layer_depths UpperCAmelCase_ = embed_dims def A__ ( self ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def A__ ( self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCAmelCase , layer_scale_init_value=1e-5 , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = SwiftFormerModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) UpperCAmelCase_ = SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self ): ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = self.prepare_config_and_inputs() UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase__, lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowerCAmelCase_ : int = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : int = False lowerCAmelCase_ : str = False lowerCAmelCase_ : Optional[Any] = False def A__ ( self ): UpperCAmelCase_ = SwiftFormerModelTester(self ) UpperCAmelCase_ = ConfigTester( self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def A__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def A__ ( self ): pass def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def A__ ( self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = SwiftFormerModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def A__ ( self ): pass def A__ ( self ): def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 8 self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): def _config_zero_init(lowerCAmelCase ): UpperCAmelCase_ = copy.deepcopy(lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCAmelCase , lowerCAmelCase , 1e-1_0 ) if isinstance(getattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ): UpperCAmelCase_ = _config_zero_init(getattr(lowerCAmelCase , lowerCAmelCase ) ) setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return configs_no_init UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = _config_zero_init(lowerCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(config=lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A__ ( self ): pass def snake_case__ ( ) -> str: UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def A__ ( self ): UpperCAmelCase_ = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(lowerCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=lowerCAmelCase , return_tensors="pt" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase_ = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1e-4 ) )
23
0
SCREAMING_SNAKE_CASE = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" SCREAMING_SNAKE_CASE = [{"type": "code", "content": INSTALL_CONTENT}] SCREAMING_SNAKE_CASE = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
711
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available SCREAMING_SNAKE_CASE = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE = { "configuration_nllb_moe": [ "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "NllbMoeConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST", "NllbMoeForConditionalGeneration", "NllbMoeModel", "NllbMoePreTrainedModel", "NllbMoeTop2Router", "NllbMoeSparseMLP", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
712
import math def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> list[int]: UpperCAmelCase_ = [] UpperCAmelCase_ = 2 UpperCAmelCase_ = int(math.sqrt(__SCREAMING_SNAKE_CASE ) ) # Size of every segment UpperCAmelCase_ = [True] * (end + 1) UpperCAmelCase_ = [] while start <= end: if temp[start] is True: in_prime.append(__SCREAMING_SNAKE_CASE ) for i in range(start * start , end + 1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = False start += 1 prime += in_prime UpperCAmelCase_ = end + 1 UpperCAmelCase_ = min(2 * end , __SCREAMING_SNAKE_CASE ) while low <= n: UpperCAmelCase_ = [True] * (high - low + 1) for each in in_prime: UpperCAmelCase_ = math.floor(low / each ) * each if t < low: t += each for j in range(__SCREAMING_SNAKE_CASE , high + 1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = False for j in range(len(__SCREAMING_SNAKE_CASE ) ): if temp[j] is True: prime.append(j + low ) UpperCAmelCase_ = high + 1 UpperCAmelCase_ = min(high + end , __SCREAMING_SNAKE_CASE ) return prime print(sieve(10**6))
23
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "spiece.model"} SCREAMING_SNAKE_CASE = { "vocab_file": { "bert_for_seq_generation": ( "https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model" ), } } SCREAMING_SNAKE_CASE = {"bert_for_seq_generation": 512} class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Any = VOCAB_FILES_NAMES lowerCAmelCase_ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : List[int] = [] lowerCAmelCase_ : List[str] = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase , lowerCAmelCase="<s>" , lowerCAmelCase="</s>" , lowerCAmelCase="<unk>" , lowerCAmelCase="<pad>" , lowerCAmelCase="<::::>" , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , sep_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase ) @property def A__ ( self ): return self.sp_model.get_piece_size() def A__ ( self ): UpperCAmelCase_ = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self , lowerCAmelCase ): UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A__ ( self , lowerCAmelCase ): return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): return self.sp_model.piece_to_id(lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = self.sp_model.IdToPiece(lowerCAmelCase ) return token def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = [] UpperCAmelCase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase_ = [] else: current_sub_tokens.append(lowerCAmelCase ) out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): if not os.path.isdir(lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ = os.path.join( lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , "wb" ) as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,)
713
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : torch.FloatTensor class lowerCamelCase ( lowercase__, lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCAmelCase = 32 , lowerCAmelCase = 64 , lowerCAmelCase = 20 , lowerCAmelCase = 768 , lowerCAmelCase=77 , lowerCAmelCase=4 , lowerCAmelCase = 0.0 , lowerCAmelCase = "silu" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "linear" , lowerCAmelCase = "prd" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ): super().__init__() UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = attention_head_dim UpperCAmelCase_ = num_attention_heads * attention_head_dim UpperCAmelCase_ = additional_embeddings UpperCAmelCase_ = time_embed_dim or inner_dim UpperCAmelCase_ = embedding_proj_dim or embedding_dim UpperCAmelCase_ = clip_embed_dim or embedding_dim UpperCAmelCase_ = Timesteps(lowerCAmelCase , lowerCAmelCase , 0 ) UpperCAmelCase_ = TimestepEmbedding(lowerCAmelCase , lowerCAmelCase , out_dim=lowerCAmelCase , act_fn=lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if embedding_proj_norm_type is None: UpperCAmelCase_ = None elif embedding_proj_norm_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if encoder_hid_proj_type is None: UpperCAmelCase_ = None elif encoder_hid_proj_type == "linear": UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCAmelCase ) ) if added_emb_type == "prd": UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , 1 , lowerCAmelCase ) ) elif added_emb_type is None: UpperCAmelCase_ = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) UpperCAmelCase_ = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , dropout=lowerCAmelCase , activation_fn="gelu" , attention_bias=lowerCAmelCase , ) for d in range(lowerCAmelCase ) ] ) if norm_in_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) elif norm_in_type is None: UpperCAmelCase_ = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) UpperCAmelCase_ = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask" , lowerCAmelCase , persistent=lowerCAmelCase ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def A__ ( self ): UpperCAmelCase_ = {} def fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): UpperCAmelCase_ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return processors def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = len(self.attn_processors.keys() ) if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(lowerCAmelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): if not isinstance(lowerCAmelCase , lowerCAmelCase ): module.set_processor(lowerCAmelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): self.set_attn_processor(AttnProcessor() ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = True , ): UpperCAmelCase_ = hidden_states.shape[0] UpperCAmelCase_ = timestep if not torch.is_tensor(lowerCAmelCase ): UpperCAmelCase_ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCAmelCase ) and len(timesteps.shape ) == 0: UpperCAmelCase_ = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase_ = timesteps * torch.ones(lowerCAmelCase , dtype=timesteps.dtype , device=timesteps.device ) UpperCAmelCase_ = self.time_proj(lowerCAmelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. UpperCAmelCase_ = timesteps_projected.to(dtype=self.dtype ) UpperCAmelCase_ = self.time_embedding(lowerCAmelCase ) if self.embedding_proj_norm is not None: UpperCAmelCase_ = self.embedding_proj_norm(lowerCAmelCase ) UpperCAmelCase_ = self.embedding_proj(lowerCAmelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: UpperCAmelCase_ = self.encoder_hidden_states_proj(lowerCAmelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" ) UpperCAmelCase_ = self.proj_in(lowerCAmelCase ) UpperCAmelCase_ = self.positional_embedding.to(hidden_states.dtype ) UpperCAmelCase_ = [] UpperCAmelCase_ = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCAmelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: UpperCAmelCase_ = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: UpperCAmelCase_ = hidden_states[:, None, :] UpperCAmelCase_ = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: UpperCAmelCase_ = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCAmelCase , -1 , -1 ) additional_embeds.append(lowerCAmelCase ) UpperCAmelCase_ = torch.cat( lowerCAmelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens UpperCAmelCase_ = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: UpperCAmelCase_ = F.pad( lowerCAmelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) UpperCAmelCase_ = hidden_states + positional_embeddings if attention_mask is not None: UpperCAmelCase_ = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 UpperCAmelCase_ = F.pad(lowerCAmelCase , (0, self.additional_embeddings) , value=0.0 ) UpperCAmelCase_ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) UpperCAmelCase_ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: UpperCAmelCase_ = self.norm_in(lowerCAmelCase ) for block in self.transformer_blocks: UpperCAmelCase_ = block(lowerCAmelCase , attention_mask=lowerCAmelCase ) UpperCAmelCase_ = self.norm_out(lowerCAmelCase ) if self.prd_embedding is not None: UpperCAmelCase_ = hidden_states[:, -1] else: UpperCAmelCase_ = hidden_states[:, additional_embeddings_len:] UpperCAmelCase_ = self.proj_to_clip_embeddings(lowerCAmelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
23
0
import os import time import numpy as np import onnxruntime as ort SCREAMING_SNAKE_CASE = "1" SCREAMING_SNAKE_CASE = "0" SCREAMING_SNAKE_CASE = "1" SCREAMING_SNAKE_CASE = ort.SessionOptions() SCREAMING_SNAKE_CASE = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("Create inference session...") SCREAMING_SNAKE_CASE = ["TensorrtExecutionProvider", "CUDAExecutionProvider"] SCREAMING_SNAKE_CASE = ort.InferenceSession("model.onnx", sess_options=sess_opt, providers=execution_provider) SCREAMING_SNAKE_CASE = ort.RunOptions() SCREAMING_SNAKE_CASE = 128 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = np.ones((batch, sequence), dtype=np.intaa) SCREAMING_SNAKE_CASE = np.ones((batch, sequence), dtype=np.intaa) SCREAMING_SNAKE_CASE = np.ones((batch, sequence), dtype=np.intaa) print("Warm up phase...") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Start inference...") SCREAMING_SNAKE_CASE = time.time() SCREAMING_SNAKE_CASE = 2000 SCREAMING_SNAKE_CASE = {} for iter in range(max_iters): SCREAMING_SNAKE_CASE = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Average Inference Time = {:.3f} ms".format((time.time() - start_time) * 1000 / max_iters))
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } SCREAMING_SNAKE_CASE = {"allegro/herbert-base-cased": 514} SCREAMING_SNAKE_CASE = {} class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES lowerCAmelCase_ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : int = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : List[Any] = HerbertTokenizer def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase="<s>" , lowerCAmelCase="<unk>" , lowerCAmelCase="<pad>" , lowerCAmelCase="<mask>" , lowerCAmelCase="</s>" , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , cls_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , sep_token=lowerCAmelCase , **lowerCAmelCase , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.cls_token_id] UpperCAmelCase_ = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase )) + [1] return [1] + ([0] * len(lowerCAmelCase )) + [1] + ([0] * len(lowerCAmelCase )) + [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
715
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = 'xlm-roberta' def __init__( self , lowerCAmelCase=3_0522 , lowerCAmelCase=768 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=3072 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-1_2 , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase="absolute" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class lowerCamelCase ( lowercase__ ): '''simple docstring''' @property def A__ ( self ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
23
0
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(lowerCAmelCase ): UpperCAmelCase_ = AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = FlaxAutoModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) @slow def A__ ( self ): for model_name in ["roberta-base", "roberta-large"]: with self.subTest(lowerCAmelCase ): UpperCAmelCase_ = AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = FlaxAutoModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) @slow def A__ ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: UpperCAmelCase_ = AutoTokenizer.from_pretrained(lowerCAmelCase ) UpperCAmelCase_ = FlaxBertModel.from_pretrained(lowerCAmelCase ) UpperCAmelCase_ = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCAmelCase ): return model(**lowerCAmelCase ) eval(**lowerCAmelCase ).block_until_ready() @slow def A__ ( self ): for model_name in ["roberta-base", "roberta-large"]: UpperCAmelCase_ = AutoTokenizer.from_pretrained(lowerCAmelCase ) UpperCAmelCase_ = FlaxRobertaModel.from_pretrained(lowerCAmelCase ) UpperCAmelCase_ = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCAmelCase ): return model(**lowerCAmelCase ) eval(**lowerCAmelCase ).block_until_ready() def A__ ( self ): with self.assertRaisesRegex( lowerCAmelCase , "bert-base is not a local folder and is not a valid model identifier" ): UpperCAmelCase_ = FlaxAutoModel.from_pretrained("bert-base" ) def A__ ( self ): with self.assertRaisesRegex( lowerCAmelCase , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): UpperCAmelCase_ = FlaxAutoModel.from_pretrained(lowerCAmelCase , revision="aaaaaa" ) def A__ ( self ): with self.assertRaisesRegex( lowerCAmelCase , "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack" , ): UpperCAmelCase_ = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def A__ ( self ): with self.assertRaisesRegex(lowerCAmelCase , "Use `from_pt=True` to load this model" ): UpperCAmelCase_ = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
716
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = int(__SCREAMING_SNAKE_CASE ) if decimal in (0, 1): # Exit cases for the recursion return str(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ , UpperCAmelCase_ = divmod(__SCREAMING_SNAKE_CASE , 2 ) return binary_recursive(__SCREAMING_SNAKE_CASE ) + str(__SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = str(__SCREAMING_SNAKE_CASE ).strip() if not number: raise ValueError("No input value was provided" ) UpperCAmelCase_ = "-" if number.startswith("-" ) else "" UpperCAmelCase_ = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f'''{negative}0b{binary_recursive(int(__SCREAMING_SNAKE_CASE ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
23
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Tuple = 'mgp-str' def __init__( self , lowerCAmelCase=[32, 128] , lowerCAmelCase=4 , lowerCAmelCase=3 , lowerCAmelCase=27 , lowerCAmelCase=38 , lowerCAmelCase=5_0257 , lowerCAmelCase=3_0522 , lowerCAmelCase=768 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=4.0 , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=1e-5 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=False , lowerCAmelCase=0.02 , **lowerCAmelCase , ): super().__init__(**lowerCAmelCase ) UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = max_token_length UpperCAmelCase_ = num_character_labels UpperCAmelCase_ = num_bpe_labels UpperCAmelCase_ = num_wordpiece_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = distilled UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = drop_rate UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = attn_drop_rate UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = output_aa_attentions UpperCAmelCase_ = initializer_range
717
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ): UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=lowerCAmelCase ).to(lowerCAmelCase ) UpperCAmelCase_ = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase_ = tokenizer("Hello there" , return_tensors="pt" ).input_ids UpperCAmelCase_ = tokenizer("Hi I am" , return_tensors="pt" ).input_ids UpperCAmelCase_ = model(input_ids.to(lowerCAmelCase ) , labels=labels.to(lowerCAmelCase ) ).loss UpperCAmelCase_ = -(labels.shape[-1] * loss.item()) UpperCAmelCase_ = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
23
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : jnp.ndarray lowerCAmelCase_ : jnp.ndarray class lowerCamelCase ( nn.Module ): '''simple docstring''' lowerCAmelCase_ : int lowerCAmelCase_ : Tuple[int] = (16, 32, 96, 256) lowerCAmelCase_ : jnp.dtype = jnp.floataa def A__ ( self ): UpperCAmelCase_ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) UpperCAmelCase_ = [] for i in range(len(self.block_out_channels ) - 1 ): UpperCAmelCase_ = self.block_out_channels[i] UpperCAmelCase_ = self.block_out_channels[i + 1] UpperCAmelCase_ = nn.Conv( lowerCAmelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowerCAmelCase ) UpperCAmelCase_ = nn.Conv( lowerCAmelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowerCAmelCase ) UpperCAmelCase_ = blocks UpperCAmelCase_ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , lowerCAmelCase ): UpperCAmelCase_ = self.conv_in(lowerCAmelCase ) UpperCAmelCase_ = nn.silu(lowerCAmelCase ) for block in self.blocks: UpperCAmelCase_ = block(lowerCAmelCase ) UpperCAmelCase_ = nn.silu(lowerCAmelCase ) UpperCAmelCase_ = self.conv_out(lowerCAmelCase ) return embedding @flax_register_to_config class lowerCamelCase ( nn.Module, lowercase__, lowercase__ ): '''simple docstring''' lowerCAmelCase_ : int = 32 lowerCAmelCase_ : int = 4 lowerCAmelCase_ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowerCAmelCase_ : Union[bool, Tuple[bool]] = False lowerCAmelCase_ : Tuple[int] = (320, 640, 1280, 1280) lowerCAmelCase_ : int = 2 lowerCAmelCase_ : Union[int, Tuple[int]] = 8 lowerCAmelCase_ : Optional[Union[int, Tuple[int]]] = None lowerCAmelCase_ : int = 1280 lowerCAmelCase_ : float = 0.0 lowerCAmelCase_ : bool = False lowerCAmelCase_ : jnp.dtype = jnp.floataa lowerCAmelCase_ : bool = True lowerCAmelCase_ : int = 0 lowerCAmelCase_ : str = "rgb" lowerCAmelCase_ : Tuple[int] = (16, 32, 96, 256) def A__ ( self , lowerCAmelCase ): # init input tensors UpperCAmelCase_ = (1, self.in_channels, self.sample_size, self.sample_size) UpperCAmelCase_ = jnp.zeros(lowerCAmelCase , dtype=jnp.floataa ) UpperCAmelCase_ = jnp.ones((1,) , dtype=jnp.intaa ) UpperCAmelCase_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) UpperCAmelCase_ = (1, 3, self.sample_size * 8, self.sample_size * 8) UpperCAmelCase_ = jnp.zeros(lowerCAmelCase , dtype=jnp.floataa ) UpperCAmelCase_ , UpperCAmelCase_ = jax.random.split(lowerCAmelCase ) UpperCAmelCase_ = {"params": params_rng, "dropout": dropout_rng} return self.init(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )["params"] def A__ ( self ): UpperCAmelCase_ = self.block_out_channels UpperCAmelCase_ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. UpperCAmelCase_ = self.num_attention_heads or self.attention_head_dim # input UpperCAmelCase_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time UpperCAmelCase_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) UpperCAmelCase_ = FlaxTimestepEmbedding(lowerCAmelCase , dtype=self.dtype ) UpperCAmelCase_ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) UpperCAmelCase_ = self.only_cross_attention if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = (num_attention_heads,) * len(self.down_block_types ) # down UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = block_out_channels[0] UpperCAmelCase_ = nn.Conv( lowerCAmelCase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowerCAmelCase ) for i, down_block_type in enumerate(self.down_block_types ): UpperCAmelCase_ = output_channel UpperCAmelCase_ = block_out_channels[i] UpperCAmelCase_ = i == len(lowerCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": UpperCAmelCase_ = FlaxCrossAttnDownBlockaD( in_channels=lowerCAmelCase , out_channels=lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: UpperCAmelCase_ = FlaxDownBlockaD( in_channels=lowerCAmelCase , out_channels=lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowerCAmelCase ) for _ in range(self.layers_per_block ): UpperCAmelCase_ = nn.Conv( lowerCAmelCase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowerCAmelCase ) if not is_final_block: UpperCAmelCase_ = nn.Conv( lowerCAmelCase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowerCAmelCase ) UpperCAmelCase_ = down_blocks UpperCAmelCase_ = controlnet_down_blocks # mid UpperCAmelCase_ = block_out_channels[-1] UpperCAmelCase_ = FlaxUNetMidBlockaDCrossAttn( in_channels=lowerCAmelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) UpperCAmelCase_ = nn.Conv( lowerCAmelCase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1.0 , lowerCAmelCase = True , lowerCAmelCase = False , ): UpperCAmelCase_ = self.controlnet_conditioning_channel_order if channel_order == "bgr": UpperCAmelCase_ = jnp.flip(lowerCAmelCase , axis=1 ) # 1. time if not isinstance(lowerCAmelCase , jnp.ndarray ): UpperCAmelCase_ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(lowerCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: UpperCAmelCase_ = timesteps.astype(dtype=jnp.floataa ) UpperCAmelCase_ = jnp.expand_dims(lowerCAmelCase , 0 ) UpperCAmelCase_ = self.time_proj(lowerCAmelCase ) UpperCAmelCase_ = self.time_embedding(lowerCAmelCase ) # 2. pre-process UpperCAmelCase_ = jnp.transpose(lowerCAmelCase , (0, 2, 3, 1) ) UpperCAmelCase_ = self.conv_in(lowerCAmelCase ) UpperCAmelCase_ = jnp.transpose(lowerCAmelCase , (0, 2, 3, 1) ) UpperCAmelCase_ = self.controlnet_cond_embedding(lowerCAmelCase ) sample += controlnet_cond # 3. down UpperCAmelCase_ = (sample,) for down_block in self.down_blocks: if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ , UpperCAmelCase_ = down_block(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , deterministic=not train ) else: UpperCAmelCase_ , UpperCAmelCase_ = down_block(lowerCAmelCase , lowerCAmelCase , deterministic=not train ) down_block_res_samples += res_samples # 4. mid UpperCAmelCase_ = self.mid_block(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , deterministic=not train ) # 5. contronet blocks UpperCAmelCase_ = () for down_block_res_sample, controlnet_block in zip(lowerCAmelCase , self.controlnet_down_blocks ): UpperCAmelCase_ = controlnet_block(lowerCAmelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) UpperCAmelCase_ = controlnet_down_block_res_samples UpperCAmelCase_ = self.controlnet_mid_block(lowerCAmelCase ) # 6. scaling UpperCAmelCase_ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowerCAmelCase , mid_block_res_sample=lowerCAmelCase )
718
def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ = 0 while b > 0: if b & 1: UpperCAmelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
23
0
'''simple docstring''' from math import factorial, pi def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 30 ) -> float: if not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): raise ValueError("maclaurin_sin() requires either an int or float for theta" ) if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy" ) UpperCAmelCase_ = float(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(__SCREAMING_SNAKE_CASE ) ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 30 ) -> float: if not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): raise ValueError("maclaurin_cos() requires either an int or float for theta" ) if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy" ) UpperCAmelCase_ = float(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
719
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> List[List[ImageInput]]: if isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[Any] = ['pixel_values'] def __init__( self , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = PILImageResampling.BILINEAR , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = True , lowerCAmelCase = 1 / 255 , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ): super().__init__(**lowerCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = PILImageResampling.BILINEAR , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(lowerCAmelCase , size["shortest_edge"] , default_to_square=lowerCAmelCase ) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(lowerCAmelCase , size=(size["height"], size["width"]) , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): return rescale(lowerCAmelCase , scale=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): return normalize(lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = to_numpy_array(lowerCAmelCase ) if do_resize: UpperCAmelCase_ = self.resize(image=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase ) if do_center_crop: UpperCAmelCase_ = self.center_crop(lowerCAmelCase , size=lowerCAmelCase ) if do_rescale: UpperCAmelCase_ = self.rescale(image=lowerCAmelCase , scale=lowerCAmelCase ) if do_normalize: UpperCAmelCase_ = self.normalize(image=lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase ) UpperCAmelCase_ = to_channel_dimension_format(lowerCAmelCase , lowerCAmelCase ) return image def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = ChannelDimension.FIRST , **lowerCAmelCase , ): UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="crop_size" ) if not valid_images(lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase_ = make_batched(lowerCAmelCase ) UpperCAmelCase_ = [ [ self._preprocess_image( image=lowerCAmelCase , do_resize=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , do_center_crop=lowerCAmelCase , crop_size=lowerCAmelCase , do_rescale=lowerCAmelCase , rescale_factor=lowerCAmelCase , do_normalize=lowerCAmelCase , image_mean=lowerCAmelCase , image_std=lowerCAmelCase , data_format=lowerCAmelCase , ) for img in video ] for video in videos ] UpperCAmelCase_ = {"pixel_values": videos} return BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase )
23
0
from __future__ import annotations import math import random from typing import Any class lowerCamelCase : '''simple docstring''' def __init__( self ): UpperCAmelCase_ = [] UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 def A__ ( self ): return self.head == self.tail def A__ ( self , lowerCAmelCase ): self.data.append(lowerCAmelCase ) UpperCAmelCase_ = self.tail + 1 def A__ ( self ): UpperCAmelCase_ = self.data[self.head] UpperCAmelCase_ = self.head + 1 return ret def A__ ( self ): return self.tail - self.head def A__ ( self ): print(self.data ) print("**************" ) print(self.data[self.head : self.tail] ) class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase ): UpperCAmelCase_ = data UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = 1 def A__ ( self ): return self.data def A__ ( self ): return self.left def A__ ( self ): return self.right def A__ ( self ): return self.height def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = data def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = node def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = node def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = height def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return node.get_height() def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: if a > b: return a return b def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> MyNode: print("left rotation node:" , node.get_data() ) UpperCAmelCase_ = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__SCREAMING_SNAKE_CASE ) return ret def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> MyNode: print("right rotation node:" , node.get_data() ) UpperCAmelCase_ = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__SCREAMING_SNAKE_CASE ) return ret def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> MyNode: UpperCAmelCase_ = node.get_left() assert left_child is not None node.set_left(left_rotation(__SCREAMING_SNAKE_CASE ) ) return right_rotation(__SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> MyNode: UpperCAmelCase_ = node.get_right() assert right_child is not None node.set_right(right_rotation(__SCREAMING_SNAKE_CASE ) ) return left_rotation(__SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> MyNode | None: if node is None: return MyNode(__SCREAMING_SNAKE_CASE ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , __SCREAMING_SNAKE_CASE ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected UpperCAmelCase_ = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child UpperCAmelCase_ = right_rotation(__SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ = lr_rotation(__SCREAMING_SNAKE_CASE ) else: node.set_right(insert_node(node.get_right() , __SCREAMING_SNAKE_CASE ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: UpperCAmelCase_ = node.get_right() assert right_child is not None if data < right_child.get_data(): UpperCAmelCase_ = rl_rotation(__SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ = left_rotation(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__SCREAMING_SNAKE_CASE ) return node def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Any: while True: UpperCAmelCase_ = root.get_right() if right_child is None: break UpperCAmelCase_ = right_child return root.get_data() def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Any: while True: UpperCAmelCase_ = root.get_left() if left_child is None: break UpperCAmelCase_ = left_child return root.get_data() def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> MyNode | None: UpperCAmelCase_ = root.get_left() UpperCAmelCase_ = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: UpperCAmelCase_ = get_left_most(__SCREAMING_SNAKE_CASE ) root.set_data(__SCREAMING_SNAKE_CASE ) root.set_right(del_node(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) elif left_child is not None: UpperCAmelCase_ = left_child elif right_child is not None: UpperCAmelCase_ = right_child else: return None elif root.get_data() > data: if left_child is None: print("No such data" ) return root else: root.set_left(del_node(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) if get_height(__SCREAMING_SNAKE_CASE ) - get_height(__SCREAMING_SNAKE_CASE ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): UpperCAmelCase_ = left_rotation(__SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ = rl_rotation(__SCREAMING_SNAKE_CASE ) elif get_height(__SCREAMING_SNAKE_CASE ) - get_height(__SCREAMING_SNAKE_CASE ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): UpperCAmelCase_ = right_rotation(__SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ = lr_rotation(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(__SCREAMING_SNAKE_CASE ) return root class lowerCamelCase : '''simple docstring''' def __init__( self ): UpperCAmelCase_ = None def A__ ( self ): return get_height(self.root ) def A__ ( self , lowerCAmelCase ): print("insert:" + str(lowerCAmelCase ) ) UpperCAmelCase_ = insert_node(self.root , lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): print("delete:" + str(lowerCAmelCase ) ) if self.root is None: print("Tree is empty!" ) return UpperCAmelCase_ = del_node(self.root , lowerCAmelCase ) def __str__( self , ): # a level traversale, gives a more intuitive look on the tree UpperCAmelCase_ = "" UpperCAmelCase_ = MyQueue() q.push(self.root ) UpperCAmelCase_ = self.get_height() if layer == 0: return output UpperCAmelCase_ = 0 while not q.is_empty(): UpperCAmelCase_ = q.pop() UpperCAmelCase_ = " " * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(lowerCAmelCase ) q.push(lowerCAmelCase ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space UpperCAmelCase_ = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , lowerCAmelCase ) - 1: UpperCAmelCase_ = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def snake_case__ ( ) -> None: import doctest doctest.testmod() if __name__ == "__main__": _test() SCREAMING_SNAKE_CASE = AVLtree() SCREAMING_SNAKE_CASE = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
720
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = 1 for i in range(1 , num + 1 ): fact *= i return fact def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = 0 while number > 0: UpperCAmelCase_ = number % 10 sum_of_digits += last_digit UpperCAmelCase_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def snake_case__ ( __SCREAMING_SNAKE_CASE = 100 ) -> int: UpperCAmelCase_ = factorial(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = split_and_add(__SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
23
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
721
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
import math from datetime import datetime, timedelta def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> datetime: UpperCAmelCase_ = year % 19 UpperCAmelCase_ = year % 4 UpperCAmelCase_ = year % 7 UpperCAmelCase_ = math.floor(year / 100 ) UpperCAmelCase_ = math.floor((13 + 8 * leap_day_inhibits) / 25 ) UpperCAmelCase_ = leap_day_inhibits / 4 UpperCAmelCase_ = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 UpperCAmelCase_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 UpperCAmelCase_ = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon UpperCAmelCase_ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__SCREAMING_SNAKE_CASE , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__SCREAMING_SNAKE_CASE , 4 , 18 ) else: return datetime(__SCREAMING_SNAKE_CASE , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): SCREAMING_SNAKE_CASE = "will be" if year > datetime.now().year else "was" print(f'''Easter in {year} {tense} {gauss_easter(year)}''')
700
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: # Initialise PyTorch model UpperCAmelCase_ = MobileBertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase_ = MobileBertForPreTraining(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint UpperCAmelCase_ = load_tf_weights_in_mobilebert(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
23
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE = { "yjernite/retribert-base-uncased": 512, } SCREAMING_SNAKE_CASE = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase_ : int = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Dict = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : List[str] = RetriBertTokenizer lowerCAmelCase_ : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**lowerCAmelCase ) UpperCAmelCase_ = do_lower_case def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
701
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase ): UpperCAmelCase_ = str(id_ ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = [] UpperCAmelCase_ = {} # {vertex:distance} def __lt__( self , lowerCAmelCase ): return self.key < other.key def __repr__( self ): return self.id def A__ ( self , lowerCAmelCase ): self.neighbors.append(lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = weight def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __SCREAMING_SNAKE_CASE ) graph[b - 1].add_edge(graph[a - 1] , __SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> list: UpperCAmelCase_ = [] for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = graph[:] while q: UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE ) q.remove(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Iterator[tuple]: for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = list(__SCREAMING_SNAKE_CASE ) hq.heapify(__SCREAMING_SNAKE_CASE ) while h: UpperCAmelCase_ = hq.heappop(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] hq.heapify(__SCREAMING_SNAKE_CASE ) for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def snake_case__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
23
0
import os def snake_case__ ( ) -> str: UpperCAmelCase_ = os.path.dirname(os.path.realpath(__SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ = os.path.join(__SCREAMING_SNAKE_CASE , "triangle.txt" ) with open(__SCREAMING_SNAKE_CASE ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = [] for line in triangle: UpperCAmelCase_ = [] for number in line.strip().split(" " ): numbers_from_line.append(int(__SCREAMING_SNAKE_CASE ) ) a.append(__SCREAMING_SNAKE_CASE ) for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): for j in range(len(a[i] ) ): UpperCAmelCase_ = a[i - 1][j] if j != len(a[i - 1] ) else 0 UpperCAmelCase_ = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return max(a[-1] ) if __name__ == "__main__": print(solution())
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "x" , __SCREAMING_SNAKE_CASE = 10**-10 , __SCREAMING_SNAKE_CASE = 1 , ) -> complex: UpperCAmelCase_ = symbols(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = lambdify(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = lambdify(__SCREAMING_SNAKE_CASE , diff(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ = starting_point while True: if diff_function(__SCREAMING_SNAKE_CASE ) != 0: UpperCAmelCase_ = prev_guess - multiplicity * func(__SCREAMING_SNAKE_CASE ) / diff_function( __SCREAMING_SNAKE_CASE ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCAmelCase_ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial # Find fourth Root of 5 print(f'''The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}''') # Find value of e print( "The root of log(y) - 1 = 0 is ", f'''{newton_raphson("log(y) - 1", 2, variable="y")}''', ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f'''{newton_raphson("exp(x) - 1", 10, precision=0.0_05)}''', ) # Find root of cos(x) print(f'''The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}''')
703
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE = { "yjernite/retribert-base-uncased": 512, } SCREAMING_SNAKE_CASE = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase_ : int = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Dict = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : List[str] = RetriBertTokenizer lowerCAmelCase_ : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**lowerCAmelCase ) UpperCAmelCase_ = do_lower_case def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
23
0
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(">=", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType SCREAMING_SNAKE_CASE = get_logger(__name__) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ) -> int: os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) with FSDP.state_dict_type( __SCREAMING_SNAKE_CASE , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): UpperCAmelCase_ = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCAmelCase_ = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' UpperCAmelCase_ = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if accelerator.process_index == 0: logger.info(f'''Saving model to {output_model_file}''' ) torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCAmelCase_ = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) UpperCAmelCase_ = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) logger.info(f'''Saving model to {output_model_file}''' ) torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCAmelCase_ = os.path.join(__SCREAMING_SNAKE_CASE , f'''{MODEL_NAME}_{model_index}''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) logger.info(f'''Saving model to {ckpt_dir}''' ) UpperCAmelCase_ = {"model": state_dict} dist_cp.save_state_dict( state_dict=__SCREAMING_SNAKE_CASE , storage_writer=dist_cp.FileSystemWriter(__SCREAMING_SNAKE_CASE ) , planner=DefaultSavePlanner() , ) logger.info(f'''Model saved to {ckpt_dir}''' ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ) -> List[Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( __SCREAMING_SNAKE_CASE , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__SCREAMING_SNAKE_CASE ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return UpperCAmelCase_ = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' UpperCAmelCase_ = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) logger.info(f'''Loading model from {input_model_file}''' ) UpperCAmelCase_ = torch.load(__SCREAMING_SNAKE_CASE ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCAmelCase_ = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) UpperCAmelCase_ = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) logger.info(f'''Loading model from {input_model_file}''' ) UpperCAmelCase_ = torch.load(__SCREAMING_SNAKE_CASE ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCAmelCase_ = ( os.path.join(__SCREAMING_SNAKE_CASE , f'''{MODEL_NAME}_{model_index}''' ) if f'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading model from {ckpt_dir}''' ) UpperCAmelCase_ = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=__SCREAMING_SNAKE_CASE , storage_reader=dist_cp.FileSystemReader(__SCREAMING_SNAKE_CASE ) , planner=DefaultLoadPlanner() , ) UpperCAmelCase_ = state_dict["model"] logger.info(f'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ) -> Optional[Any]: os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) with FSDP.state_dict_type( __SCREAMING_SNAKE_CASE , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): UpperCAmelCase_ = FSDP.optim_state_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: UpperCAmelCase_ = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) UpperCAmelCase_ = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) logger.info(f'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) logger.info(f'''Optimizer state saved in {output_optimizer_file}''' ) else: UpperCAmelCase_ = os.path.join(__SCREAMING_SNAKE_CASE , f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) logger.info(f'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(__SCREAMING_SNAKE_CASE ) , planner=DefaultSavePlanner() , ) logger.info(f'''Optimizer state saved in {ckpt_dir}''' ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ) -> Optional[Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( __SCREAMING_SNAKE_CASE , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCAmelCase_ = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: UpperCAmelCase_ = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) UpperCAmelCase_ = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) logger.info(f'''Loading Optimizer state from {input_optimizer_file}''' ) UpperCAmelCase_ = torch.load(__SCREAMING_SNAKE_CASE ) logger.info(f'''Optimizer state loaded from {input_optimizer_file}''' ) else: UpperCAmelCase_ = ( os.path.join(__SCREAMING_SNAKE_CASE , f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if f'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading Optimizer from {ckpt_dir}''' ) UpperCAmelCase_ = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(__SCREAMING_SNAKE_CASE ) , ) UpperCAmelCase_ = optim_state["optimizer"] logger.info(f'''Optimizer loaded from {ckpt_dir}''' ) UpperCAmelCase_ = FSDP.optim_state_dict_to_load(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) optimizer.load_state_dict(__SCREAMING_SNAKE_CASE )
704
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } SCREAMING_SNAKE_CASE = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Any = VOCAB_FILES_NAMES lowerCAmelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : int = ['input_ids', 'attention_mask'] lowerCAmelCase_ : str = DistilBertTokenizer def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**lowerCAmelCase ) UpperCAmelCase_ = do_lower_case def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
23
0
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = abs(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = 0 while n > 0: res += n % 10 n //= 10 return res def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = abs(__SCREAMING_SNAKE_CASE ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: return sum(int(__SCREAMING_SNAKE_CASE ) for c in str(abs(__SCREAMING_SNAKE_CASE ) ) ) def snake_case__ ( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None: UpperCAmelCase_ = f'''{func.__name__}({value})''' UpperCAmelCase_ = timeit(f'''__main__.{call}''' , setup="import __main__" ) print(f'''{call:56} = {func(__SCREAMING_SNAKE_CASE )} -- {timing:.4f} seconds''' ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
705
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> np.array: UpperCAmelCase_ = f'''{sampling_rate}''' UpperCAmelCase_ = "1" UpperCAmelCase_ = "f32le" UpperCAmelCase_ = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: UpperCAmelCase_ = ffmpeg_process.communicate(__SCREAMING_SNAKE_CASE ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error UpperCAmelCase_ = output_stream[0] UpperCAmelCase_ = np.frombuffer(__SCREAMING_SNAKE_CASE , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "f32le" , ) -> Dict: UpperCAmelCase_ = f'''{sampling_rate}''' UpperCAmelCase_ = "1" if format_for_conversion == "s16le": UpperCAmelCase_ = 2 elif format_for_conversion == "f32le": UpperCAmelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) UpperCAmelCase_ = platform.system() if system == "Linux": UpperCAmelCase_ = "alsa" UpperCAmelCase_ = "default" elif system == "Darwin": UpperCAmelCase_ = "avfoundation" UpperCAmelCase_ = ":0" elif system == "Windows": UpperCAmelCase_ = "dshow" UpperCAmelCase_ = "default" UpperCAmelCase_ = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample UpperCAmelCase_ = _ffmpeg_stream(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for item in iterator: yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "f32le" , ) -> int: if stream_chunk_s is not None: UpperCAmelCase_ = stream_chunk_s else: UpperCAmelCase_ = chunk_length_s UpperCAmelCase_ = ffmpeg_microphone(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , format_for_conversion=__SCREAMING_SNAKE_CASE ) if format_for_conversion == "s16le": UpperCAmelCase_ = np.intaa UpperCAmelCase_ = 2 elif format_for_conversion == "f32le": UpperCAmelCase_ = np.floataa UpperCAmelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: UpperCAmelCase_ = chunk_length_s / 6 UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): UpperCAmelCase_ = [stride_length_s, stride_length_s] UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample UpperCAmelCase_ = datetime.datetime.now() UpperCAmelCase_ = datetime.timedelta(seconds=__SCREAMING_SNAKE_CASE ) for item in chunk_bytes_iter(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=(stride_left, stride_right) , stream=__SCREAMING_SNAKE_CASE ): # Put everything back in numpy scale UpperCAmelCase_ = np.frombuffer(item["raw"] , dtype=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) UpperCAmelCase_ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False ) -> Dict: UpperCAmelCase_ = B"" UpperCAmelCase_ , UpperCAmelCase_ = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) UpperCAmelCase_ = 0 for raw in iterator: acc += raw if stream and len(__SCREAMING_SNAKE_CASE ) < chunk_len: UpperCAmelCase_ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__SCREAMING_SNAKE_CASE ) >= chunk_len: # We are flushing the accumulator UpperCAmelCase_ = (_stride_left, stride_right) UpperCAmelCase_ = {"raw": acc[:chunk_len], "stride": stride} if stream: UpperCAmelCase_ = False yield item UpperCAmelCase_ = stride_left UpperCAmelCase_ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__SCREAMING_SNAKE_CASE ) > stride_left: UpperCAmelCase_ = {"raw": acc, "stride": (_stride_left, 0)} if stream: UpperCAmelCase_ = False yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ = 2**24 # 16Mo try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE , bufsize=__SCREAMING_SNAKE_CASE ) as ffmpeg_process: while True: UpperCAmelCase_ = ffmpeg_process.stdout.read(__SCREAMING_SNAKE_CASE ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
23
0
import os from typing import Dict, List, Tuple, TypeVar, Union SCREAMING_SNAKE_CASE = TypeVar("T") SCREAMING_SNAKE_CASE = Union[List[T], Tuple[T, ...]] SCREAMING_SNAKE_CASE = Union[T, List[T], Dict[str, T]] SCREAMING_SNAKE_CASE = Union[str, bytes, os.PathLike]
706
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowerCamelCase ( lowercase__, lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCAmelCase = 768 , ): super().__init__() UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(torch.ones(1 , lowerCAmelCase ) ) def A__ ( self , lowerCAmelCase = None , lowerCAmelCase = None , ): UpperCAmelCase_ = nn.Parameter(self.mean.to(lowerCAmelCase ).to(lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(self.std.to(lowerCAmelCase ).to(lowerCAmelCase ) ) return self def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (embeds * self.std) + self.mean return embeds
23
0
'''simple docstring''' from __future__ import annotations import math def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> list[int]: if num <= 0: UpperCAmelCase_ = f'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = [True] * (num + 1) UpperCAmelCase_ = [] UpperCAmelCase_ = 2 UpperCAmelCase_ = int(math.sqrt(__SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(__SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , __SCREAMING_SNAKE_CASE ): if sieve[i] is True: UpperCAmelCase_ = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(__SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
707
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): super().__init__(*lowerCAmelCase , **lowerCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def A__ ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None ): UpperCAmelCase_ = {} UpperCAmelCase_ = {} if prompt is not None: UpperCAmelCase_ = prompt if generate_kwargs is not None: UpperCAmelCase_ = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: UpperCAmelCase_ = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one" ) UpperCAmelCase_ = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , lowerCAmelCase , **lowerCAmelCase ): return super().__call__(lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = load_image(lowerCAmelCase ) if prompt is not None: if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(lowerCAmelCase )} - but expected a single string. ''' "Note also that one single text can be provided for conditional image to text generation." ) UpperCAmelCase_ = self.model.config.model_type if model_type == "git": UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) UpperCAmelCase_ = self.tokenizer(text=lowerCAmelCase , add_special_tokens=lowerCAmelCase ).input_ids UpperCAmelCase_ = [self.tokenizer.cls_token_id] + input_ids UpperCAmelCase_ = torch.tensor(lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"input_ids": input_ids} ) elif model_type == "pix2struct": UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , header_text=lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) UpperCAmelCase_ = self.tokenizer(lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: UpperCAmelCase_ = None return model_inputs def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , lowerCAmelCase ) and all(x is None for x in model_inputs["input_ids"] ) ): UpperCAmelCase_ = None if generate_kwargs is None: UpperCAmelCase_ = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. UpperCAmelCase_ = model_inputs.pop(self.model.main_input_name ) UpperCAmelCase_ = self.model.generate(lowerCAmelCase , **lowerCAmelCase , **lowerCAmelCase ) return model_outputs def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = [] for output_ids in model_outputs: UpperCAmelCase_ = { "generated_text": self.tokenizer.decode( lowerCAmelCase , skip_special_tokens=lowerCAmelCase , ) } records.append(lowerCAmelCase ) return records
23
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , lowerCAmelCase ): UpperCAmelCase_ = data def __iter__( self ): for element in self.data: yield element def snake_case__ ( __SCREAMING_SNAKE_CASE=True ) -> Optional[int]: UpperCAmelCase_ = Accelerator(even_batches=__SCREAMING_SNAKE_CASE ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False ) -> Any: if iterable: UpperCAmelCase_ = DummyIterableDataset(torch.as_tensor(range(__SCREAMING_SNAKE_CASE ) ) ) else: UpperCAmelCase_ = TensorDataset(torch.as_tensor(range(__SCREAMING_SNAKE_CASE ) ) ) UpperCAmelCase_ = DataLoader(__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = accelerator.prepare(__SCREAMING_SNAKE_CASE ) return dl def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) -> Optional[Any]: UpperCAmelCase_ = create_dataloader(accelerator=__SCREAMING_SNAKE_CASE , dataset_size=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def snake_case__ ( ) -> Optional[int]: UpperCAmelCase_ = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __SCREAMING_SNAKE_CASE , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def snake_case__ ( ) -> Optional[int]: UpperCAmelCase_ = create_accelerator(even_batches=__SCREAMING_SNAKE_CASE ) verify_dataloader_batch_sizes( __SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __SCREAMING_SNAKE_CASE , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def snake_case__ ( ) -> Dict: UpperCAmelCase_ = create_accelerator(even_batches=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = torch.nn.Linear(1 , 1 ) UpperCAmelCase_ = accelerator.prepare(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = create_dataloader(__SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) UpperCAmelCase_ = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = ddp_model(batch[0].float() ) UpperCAmelCase_ = output.sum() loss.backward() batch_idxs.append(__SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: with warnings.catch_warnings(record=__SCREAMING_SNAKE_CASE ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __SCREAMING_SNAKE_CASE ) assert "only supported for multi-GPU" in str(w[-1].message ) def snake_case__ ( ) -> Optional[Any]: UpperCAmelCase_ = True UpperCAmelCase_ = False UpperCAmelCase_ = create_accelerator(even_batches=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = torch.nn.Linear(1 , 1 ) UpperCAmelCase_ = accelerator.prepare(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = create_dataloader(__SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) UpperCAmelCase_ = create_dataloader(__SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = train_dl.batch_sampler.even_batches UpperCAmelCase_ = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def snake_case__ ( ) -> int: UpperCAmelCase_ = True UpperCAmelCase_ = False UpperCAmelCase_ = create_accelerator(even_batches=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = torch.nn.Linear(1 , 1 ) UpperCAmelCase_ = accelerator.prepare(__SCREAMING_SNAKE_CASE ) create_dataloader(__SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , iterable=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = create_dataloader(__SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("ignore" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def snake_case__ ( ) -> List[Any]: UpperCAmelCase_ = create_accelerator() UpperCAmelCase_ = torch.nn.Linear(1 , 1 ) UpperCAmelCase_ = accelerator.prepare(__SCREAMING_SNAKE_CASE ) create_dataloader(__SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , iterable=__SCREAMING_SNAKE_CASE ) with warnings.catch_warnings(record=__SCREAMING_SNAKE_CASE ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__SCREAMING_SNAKE_CASE ): pass assert issubclass(w[-1].category , __SCREAMING_SNAKE_CASE ) assert "only supported for map-style datasets" in str(w[-1].message ) def snake_case__ ( ) -> Union[str, Any]: UpperCAmelCase_ = create_accelerator() accelerator.print("Test that even_batches variable ensures uniform batches across processes" ) test_default_ensures_even_batch_sizes() accelerator.print("Run tests with even_batches disabled" ) test_can_disable_even_batches() accelerator.print("Test joining uneven inputs" ) test_can_join_uneven_inputs() accelerator.print("Test overriding even_batches when joining uneven inputs" ) test_join_can_override_even_batches() accelerator.print("Test overriding even_batches for mixed dataloader types" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("Test join with non DDP distributed raises warning" ) UpperCAmelCase_ = accelerator.state.distributed_type UpperCAmelCase_ = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = original_state if __name__ == "__main__": main()
708
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCamelCase ( lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : int = TextToVideoSDPipeline lowerCAmelCase_ : Dict = TEXT_TO_IMAGE_PARAMS lowerCAmelCase_ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. lowerCAmelCase_ : Optional[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def A__ ( self ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCAmelCase_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) UpperCAmelCase_ = CLIPTextModel(lowerCAmelCase ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def A__ ( self , lowerCAmelCase , lowerCAmelCase=0 ): if str(lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(lowerCAmelCase ) else: UpperCAmelCase_ = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) UpperCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def A__ ( self ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = TextToVideoSDPipeline(**lowerCAmelCase ) UpperCAmelCase_ = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs(lowerCAmelCase ) UpperCAmelCase_ = "np" UpperCAmelCase_ = sd_pipe(**lowerCAmelCase ).frames UpperCAmelCase_ = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) UpperCAmelCase_ = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCAmelCase , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCAmelCase , expected_max_diff=1e-2 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def A__ ( self ): pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def A__ ( self ): pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def A__ ( self ): pass def A__ ( self ): return super().test_progress_bar() @slow @skip_mps class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy" ) UpperCAmelCase_ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ = pipe.to("cuda" ) UpperCAmelCase_ = "Spiderman is surfing" UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=25 , output_type="pt" ).frames UpperCAmelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def A__ ( self ): UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy" ) UpperCAmelCase_ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) UpperCAmelCase_ = pipe.to("cuda" ) UpperCAmelCase_ = "Spiderman is surfing" UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=2 , output_type="pt" ).frames UpperCAmelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
23
0
import torch from torch import nn class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=1 , lowerCAmelCase=False ): super().__init__() UpperCAmelCase_ = n_token UpperCAmelCase_ = d_embed UpperCAmelCase_ = d_proj UpperCAmelCase_ = cutoffs + [n_token] UpperCAmelCase_ = [0] + self.cutoffs UpperCAmelCase_ = div_val UpperCAmelCase_ = self.cutoffs[0] UpperCAmelCase_ = len(self.cutoffs ) - 1 UpperCAmelCase_ = self.shortlist_size + self.n_clusters if self.n_clusters > 0: UpperCAmelCase_ = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) UpperCAmelCase_ = nn.Parameter(torch.zeros(self.n_clusters ) ) UpperCAmelCase_ = nn.ModuleList() UpperCAmelCase_ = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase ) ) ) else: self.out_projs.append(lowerCAmelCase ) self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase ) ) else: for i in range(len(self.cutoffs ) ): UpperCAmelCase_ , UpperCAmelCase_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase_ = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase ) ) ) self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx ) ) UpperCAmelCase_ = keep_order def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if proj is None: UpperCAmelCase_ = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: UpperCAmelCase_ = nn.functional.linear(lowerCAmelCase , proj.t().contiguous() ) UpperCAmelCase_ = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def A__ ( self , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=False ): if labels is not None: # Shift so that tokens < n predict n UpperCAmelCase_ = hidden[..., :-1, :].contiguous() UpperCAmelCase_ = labels[..., 1:].contiguous() UpperCAmelCase_ = hidden.view(-1 , hidden.size(-1 ) ) UpperCAmelCase_ = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("Input and labels should have the same size in the batch dimension." ) else: UpperCAmelCase_ = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: UpperCAmelCase_ = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: UpperCAmelCase_ = labels != -100 UpperCAmelCase_ = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device ) UpperCAmelCase_ = ( -nn.functional.log_softmax(lowerCAmelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: UpperCAmelCase_ = nn.functional.log_softmax(lowerCAmelCase , dim=-1 ) else: # construct weights and biases UpperCAmelCase_ , UpperCAmelCase_ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCAmelCase_ , UpperCAmelCase_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase_ = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase_ = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase_ = self.out_layers[i].weight UpperCAmelCase_ = self.out_layers[i].bias if i == 0: UpperCAmelCase_ = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCAmelCase_ = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(lowerCAmelCase ) biases.append(lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = weights[0], biases[0], self.out_projs[0] UpperCAmelCase_ = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = nn.functional.log_softmax(lowerCAmelCase , dim=1 ) if labels is None: UpperCAmelCase_ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: UpperCAmelCase_ = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device ) UpperCAmelCase_ = 0 UpperCAmelCase_ = [0] + self.cutoffs for i in range(len(lowerCAmelCase ) - 1 ): UpperCAmelCase_ , UpperCAmelCase_ = cutoff_values[i], cutoff_values[i + 1] if labels is not None: UpperCAmelCase_ = (labels >= l_idx) & (labels < r_idx) UpperCAmelCase_ = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue UpperCAmelCase_ = labels.index_select(0 , lowerCAmelCase ) - l_idx UpperCAmelCase_ = head_logprob.index_select(0 , lowerCAmelCase ) UpperCAmelCase_ = hidden.index_select(0 , lowerCAmelCase ) else: UpperCAmelCase_ = hidden if i == 0: if labels is not None: UpperCAmelCase_ = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: UpperCAmelCase_ = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = weights[i], biases[i], self.out_projs[i] UpperCAmelCase_ = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = nn.functional.log_softmax(lowerCAmelCase , dim=1 ) UpperCAmelCase_ = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: UpperCAmelCase_ = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: UpperCAmelCase_ = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i UpperCAmelCase_ = logprob_i if labels is not None: if (hasattr(self , "keep_order" ) and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def A__ ( self , lowerCAmelCase ): if self.n_clusters == 0: UpperCAmelCase_ = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(lowerCAmelCase , dim=-1 ) else: # construct weights and biases UpperCAmelCase_ , UpperCAmelCase_ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCAmelCase_ , UpperCAmelCase_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase_ = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase_ = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase_ = self.out_layers[i].weight UpperCAmelCase_ = self.out_layers[i].bias if i == 0: UpperCAmelCase_ = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCAmelCase_ = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(lowerCAmelCase ) biases.append(lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = weights[0], biases[0], self.out_projs[0] UpperCAmelCase_ = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) UpperCAmelCase_ = nn.functional.log_softmax(lowerCAmelCase , dim=1 ) UpperCAmelCase_ = [0] + self.cutoffs for i in range(len(lowerCAmelCase ) - 1 ): UpperCAmelCase_ , UpperCAmelCase_ = cutoff_values[i], cutoff_values[i + 1] if i == 0: UpperCAmelCase_ = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = weights[i], biases[i], self.out_projs[i] UpperCAmelCase_ = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = nn.functional.log_softmax(lowerCAmelCase , dim=1 ) UpperCAmelCase_ = head_logprob[:, -i] + tail_logprob_i UpperCAmelCase_ = logprob_i return out
709
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = [1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 0, 0, 0 UpperCAmelCase_ = ugly_nums[ia] * 2 UpperCAmelCase_ = ugly_nums[ia] * 3 UpperCAmelCase_ = ugly_nums[ia] * 5 for _ in range(1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ugly_nums.append(__SCREAMING_SNAKE_CASE ) if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(200) = }''')
23
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase ( lowercase__, lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Any = StableDiffusionSAGPipeline lowerCAmelCase_ : Union[str, Any] = TEXT_TO_IMAGE_PARAMS lowerCAmelCase_ : Any = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase_ : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase_ : str = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase_ : List[Any] = False def A__ ( self ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) UpperCAmelCase_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase_ = CLIPTextModel(lowerCAmelCase ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def A__ ( self , lowerCAmelCase , lowerCAmelCase=0 ): if str(lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(lowerCAmelCase ) else: UpperCAmelCase_ = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) UpperCAmelCase_ = { "prompt": ".", "generator": generator, "num_inference_steps": 2, "guidance_scale": 1.0, "sag_scale": 1.0, "output_type": "numpy", } return inputs def A__ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): UpperCAmelCase_ = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) UpperCAmelCase_ = sag_pipe.to(lowerCAmelCase ) sag_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase_ = "." UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sag_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def A__ ( self ): UpperCAmelCase_ = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) UpperCAmelCase_ = sag_pipe.to(lowerCAmelCase ) sag_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase_ = "." UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sag_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def A__ ( self ): UpperCAmelCase_ = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) UpperCAmelCase_ = sag_pipe.to(lowerCAmelCase ) sag_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase_ = "." UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sag_pipe( [prompt] , width=768 , height=512 , generator=lowerCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" , ) UpperCAmelCase_ = output.images assert image.shape == (1, 512, 768, 3)
710
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=3 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=224 , lowerCAmelCase=1000 , lowerCAmelCase=[3, 3, 6, 4] , lowerCAmelCase=[48, 56, 112, 220] , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = num_labels UpperCAmelCase_ = image_size UpperCAmelCase_ = layer_depths UpperCAmelCase_ = embed_dims def A__ ( self ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def A__ ( self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCAmelCase , layer_scale_init_value=1e-5 , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = SwiftFormerModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) UpperCAmelCase_ = SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self ): ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = self.prepare_config_and_inputs() UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase__, lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowerCAmelCase_ : int = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : int = False lowerCAmelCase_ : str = False lowerCAmelCase_ : Optional[Any] = False def A__ ( self ): UpperCAmelCase_ = SwiftFormerModelTester(self ) UpperCAmelCase_ = ConfigTester( self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def A__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def A__ ( self ): pass def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def A__ ( self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = SwiftFormerModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def A__ ( self ): pass def A__ ( self ): def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 8 self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): def _config_zero_init(lowerCAmelCase ): UpperCAmelCase_ = copy.deepcopy(lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCAmelCase , lowerCAmelCase , 1e-1_0 ) if isinstance(getattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ): UpperCAmelCase_ = _config_zero_init(getattr(lowerCAmelCase , lowerCAmelCase ) ) setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return configs_no_init UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = _config_zero_init(lowerCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(config=lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A__ ( self ): pass def snake_case__ ( ) -> str: UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def A__ ( self ): UpperCAmelCase_ = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(lowerCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=lowerCAmelCase , return_tensors="pt" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase_ = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1e-4 ) )
23
0
import datasets from .evaluate import evaluate SCREAMING_SNAKE_CASE = "\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n" SCREAMING_SNAKE_CASE = "\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n" SCREAMING_SNAKE_CASE = "\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the CUAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\n 'aupr': Area Under the Precision-Recall curve\n 'prec_at_80_recall': Precision at 80% recall\n 'prec_at_90_recall': Precision at 90% recall\nExamples:\n >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> cuad_metric = datasets.load_metric(\"cuad\")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): '''simple docstring''' def A__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": { "id": datasets.Value("string" ), "prediction_text": datasets.features.Sequence(datasets.Value("string" ) ), }, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} UpperCAmelCase_ = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] UpperCAmelCase_ = evaluate(dataset=lowerCAmelCase , predictions=lowerCAmelCase ) return score
711
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available SCREAMING_SNAKE_CASE = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
import requests SCREAMING_SNAKE_CASE = "YOUR API KEY" def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = giphy_api_key ) -> list: UpperCAmelCase_ = "+".join(query.split() ) UpperCAmelCase_ = f'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' UpperCAmelCase_ = requests.get(__SCREAMING_SNAKE_CASE ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("\n".join(get_gifs("space ship")))
712
import math def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> list[int]: UpperCAmelCase_ = [] UpperCAmelCase_ = 2 UpperCAmelCase_ = int(math.sqrt(__SCREAMING_SNAKE_CASE ) ) # Size of every segment UpperCAmelCase_ = [True] * (end + 1) UpperCAmelCase_ = [] while start <= end: if temp[start] is True: in_prime.append(__SCREAMING_SNAKE_CASE ) for i in range(start * start , end + 1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = False start += 1 prime += in_prime UpperCAmelCase_ = end + 1 UpperCAmelCase_ = min(2 * end , __SCREAMING_SNAKE_CASE ) while low <= n: UpperCAmelCase_ = [True] * (high - low + 1) for each in in_prime: UpperCAmelCase_ = math.floor(low / each ) * each if t < low: t += each for j in range(__SCREAMING_SNAKE_CASE , high + 1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = False for j in range(len(__SCREAMING_SNAKE_CASE ) ): if temp[j] is True: prime.append(j + low ) UpperCAmelCase_ = high + 1 UpperCAmelCase_ = min(high + end , __SCREAMING_SNAKE_CASE ) return prime print(sieve(10**6))
23
0
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> list: UpperCAmelCase_ = int(__SCREAMING_SNAKE_CASE ) if n_element < 1: UpperCAmelCase_ = ValueError("a should be a positive number" ) raise my_error UpperCAmelCase_ = [1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = (0, 0, 0) UpperCAmelCase_ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": SCREAMING_SNAKE_CASE = input("Enter the last number (nth term) of the Hamming Number Series: ") print("Formula of Hamming Number Series => 2^i * 3^j * 5^k") SCREAMING_SNAKE_CASE = hamming(int(n)) print("-----------------------------------------------------") print(f'''The list with nth numbers is: {hamming_numbers}''') print("-----------------------------------------------------")
713
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : torch.FloatTensor class lowerCamelCase ( lowercase__, lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCAmelCase = 32 , lowerCAmelCase = 64 , lowerCAmelCase = 20 , lowerCAmelCase = 768 , lowerCAmelCase=77 , lowerCAmelCase=4 , lowerCAmelCase = 0.0 , lowerCAmelCase = "silu" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "linear" , lowerCAmelCase = "prd" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ): super().__init__() UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = attention_head_dim UpperCAmelCase_ = num_attention_heads * attention_head_dim UpperCAmelCase_ = additional_embeddings UpperCAmelCase_ = time_embed_dim or inner_dim UpperCAmelCase_ = embedding_proj_dim or embedding_dim UpperCAmelCase_ = clip_embed_dim or embedding_dim UpperCAmelCase_ = Timesteps(lowerCAmelCase , lowerCAmelCase , 0 ) UpperCAmelCase_ = TimestepEmbedding(lowerCAmelCase , lowerCAmelCase , out_dim=lowerCAmelCase , act_fn=lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if embedding_proj_norm_type is None: UpperCAmelCase_ = None elif embedding_proj_norm_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if encoder_hid_proj_type is None: UpperCAmelCase_ = None elif encoder_hid_proj_type == "linear": UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCAmelCase ) ) if added_emb_type == "prd": UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , 1 , lowerCAmelCase ) ) elif added_emb_type is None: UpperCAmelCase_ = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) UpperCAmelCase_ = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , dropout=lowerCAmelCase , activation_fn="gelu" , attention_bias=lowerCAmelCase , ) for d in range(lowerCAmelCase ) ] ) if norm_in_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) elif norm_in_type is None: UpperCAmelCase_ = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) UpperCAmelCase_ = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask" , lowerCAmelCase , persistent=lowerCAmelCase ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def A__ ( self ): UpperCAmelCase_ = {} def fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): UpperCAmelCase_ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return processors def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = len(self.attn_processors.keys() ) if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(lowerCAmelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): if not isinstance(lowerCAmelCase , lowerCAmelCase ): module.set_processor(lowerCAmelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): self.set_attn_processor(AttnProcessor() ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = True , ): UpperCAmelCase_ = hidden_states.shape[0] UpperCAmelCase_ = timestep if not torch.is_tensor(lowerCAmelCase ): UpperCAmelCase_ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCAmelCase ) and len(timesteps.shape ) == 0: UpperCAmelCase_ = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase_ = timesteps * torch.ones(lowerCAmelCase , dtype=timesteps.dtype , device=timesteps.device ) UpperCAmelCase_ = self.time_proj(lowerCAmelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. UpperCAmelCase_ = timesteps_projected.to(dtype=self.dtype ) UpperCAmelCase_ = self.time_embedding(lowerCAmelCase ) if self.embedding_proj_norm is not None: UpperCAmelCase_ = self.embedding_proj_norm(lowerCAmelCase ) UpperCAmelCase_ = self.embedding_proj(lowerCAmelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: UpperCAmelCase_ = self.encoder_hidden_states_proj(lowerCAmelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" ) UpperCAmelCase_ = self.proj_in(lowerCAmelCase ) UpperCAmelCase_ = self.positional_embedding.to(hidden_states.dtype ) UpperCAmelCase_ = [] UpperCAmelCase_ = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCAmelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: UpperCAmelCase_ = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: UpperCAmelCase_ = hidden_states[:, None, :] UpperCAmelCase_ = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: UpperCAmelCase_ = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCAmelCase , -1 , -1 ) additional_embeds.append(lowerCAmelCase ) UpperCAmelCase_ = torch.cat( lowerCAmelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens UpperCAmelCase_ = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: UpperCAmelCase_ = F.pad( lowerCAmelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) UpperCAmelCase_ = hidden_states + positional_embeddings if attention_mask is not None: UpperCAmelCase_ = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 UpperCAmelCase_ = F.pad(lowerCAmelCase , (0, self.additional_embeddings) , value=0.0 ) UpperCAmelCase_ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) UpperCAmelCase_ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: UpperCAmelCase_ = self.norm_in(lowerCAmelCase ) for block in self.transformer_blocks: UpperCAmelCase_ = block(lowerCAmelCase , attention_mask=lowerCAmelCase ) UpperCAmelCase_ = self.norm_out(lowerCAmelCase ) if self.prd_embedding is not None: UpperCAmelCase_ = hidden_states[:, -1] else: UpperCAmelCase_ = hidden_states[:, additional_embeddings_len:] UpperCAmelCase_ = self.proj_to_clip_embeddings(lowerCAmelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
23
0
def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: return int((input_a, input_a).count(0 ) != 0 ) def snake_case__ ( ) -> None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=99 , lowerCAmelCase=32 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=37 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=16 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=4 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_attention_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_choices def A__ ( self ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = None if self.use_attention_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCAmelCase , ) return config, input_ids, attention_mask def A__ ( self ): UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCamelCase ( lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : List[Any] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def A__ ( self ): UpperCAmelCase_ = FlaxDistilBertModelTester(self ) @slow def A__ ( self ): for model_class_name in self.all_model_classes: UpperCAmelCase_ = model_class_name.from_pretrained("distilbert-base-uncased" ) UpperCAmelCase_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase ) @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ): UpperCAmelCase_ = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" ) UpperCAmelCase_ = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) UpperCAmelCase_ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCAmelCase_ = model(lowerCAmelCase , attention_mask=lowerCAmelCase )[0] UpperCAmelCase_ = (1, 11, 768) self.assertEqual(output.shape , lowerCAmelCase ) UpperCAmelCase_ = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCAmelCase , atol=1e-4 ) )
715
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = 'xlm-roberta' def __init__( self , lowerCAmelCase=3_0522 , lowerCAmelCase=768 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=3072 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-1_2 , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase="absolute" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class lowerCamelCase ( lowercase__ ): '''simple docstring''' @property def A__ ( self ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
23
0
import numpy as np def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> np.ndarray: return 1 / (1 + np.exp(-vector )) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> np.ndarray: return vector * sigmoid(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
716
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = int(__SCREAMING_SNAKE_CASE ) if decimal in (0, 1): # Exit cases for the recursion return str(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ , UpperCAmelCase_ = divmod(__SCREAMING_SNAKE_CASE , 2 ) return binary_recursive(__SCREAMING_SNAKE_CASE ) + str(__SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = str(__SCREAMING_SNAKE_CASE ).strip() if not number: raise ValueError("No input value was provided" ) UpperCAmelCase_ = "-" if number.startswith("-" ) else "" UpperCAmelCase_ = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f'''{negative}0b{binary_recursive(int(__SCREAMING_SNAKE_CASE ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
23
0
import gc import threading import time import psutil import torch class lowerCamelCase : '''simple docstring''' def __init__( self ): UpperCAmelCase_ = psutil.Process() UpperCAmelCase_ = False def A__ ( self ): UpperCAmelCase_ = -1 while True: UpperCAmelCase_ = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def A__ ( self ): UpperCAmelCase_ = True UpperCAmelCase_ = threading.Thread(target=self.peak_monitor ) UpperCAmelCase_ = True self.thread.start() def A__ ( self ): UpperCAmelCase_ = False self.thread.join() return self.cpu_memory_peak SCREAMING_SNAKE_CASE = PeakCPUMemory() def snake_case__ ( ) -> List[Any]: # Time UpperCAmelCase_ = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem UpperCAmelCase_ = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): UpperCAmelCase_ = torch.cuda.memory_allocated(__SCREAMING_SNAKE_CASE ) torch.cuda.reset_peak_memory_stats() return measures def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: # Time UpperCAmelCase_ = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem UpperCAmelCase_ = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 UpperCAmelCase_ = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): UpperCAmelCase_ = (torch.cuda.memory_allocated(__SCREAMING_SNAKE_CASE ) - start_measures[str(__SCREAMING_SNAKE_CASE )]) / 2**20 UpperCAmelCase_ = (torch.cuda.max_memory_allocated(__SCREAMING_SNAKE_CASE ) - start_measures[str(__SCREAMING_SNAKE_CASE )]) / 2**20 return measures def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: print(f'''{description}:''' ) print(f'''- Time: {measures['time']:.2f}s''' ) for i in range(torch.cuda.device_count() ): print(f'''- GPU {i} allocated: {measures[str(__SCREAMING_SNAKE_CASE )]:.2f}MiB''' ) UpperCAmelCase_ = measures[f'''{i}-peak'''] print(f'''- GPU {i} peak: {peak:.2f}MiB''' ) print(f'''- CPU RAM allocated: {measures['cpu']:.2f}MiB''' ) print(f'''- CPU RAM peak: {measures['cpu-peak']:.2f}MiB''' )
717
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ): UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=lowerCAmelCase ).to(lowerCAmelCase ) UpperCAmelCase_ = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase_ = tokenizer("Hello there" , return_tensors="pt" ).input_ids UpperCAmelCase_ = tokenizer("Hi I am" , return_tensors="pt" ).input_ids UpperCAmelCase_ = model(input_ids.to(lowerCAmelCase ) , labels=labels.to(lowerCAmelCase ) ).loss UpperCAmelCase_ = -(labels.shape[-1] * loss.item()) UpperCAmelCase_ = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
23
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[Any] = 'trocr' lowerCAmelCase_ : Union[str, Any] = ['past_key_values'] lowerCAmelCase_ : List[Any] = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self , lowerCAmelCase=5_0265 , lowerCAmelCase=1024 , lowerCAmelCase=12 , lowerCAmelCase=16 , lowerCAmelCase=4096 , lowerCAmelCase="gelu" , lowerCAmelCase=512 , lowerCAmelCase=0.1 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=0.0 , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , **lowerCAmelCase , ): UpperCAmelCase_ = vocab_size UpperCAmelCase_ = d_model UpperCAmelCase_ = decoder_layers UpperCAmelCase_ = decoder_attention_heads UpperCAmelCase_ = decoder_ffn_dim UpperCAmelCase_ = activation_function UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = activation_dropout UpperCAmelCase_ = init_std UpperCAmelCase_ = decoder_layerdrop UpperCAmelCase_ = use_cache UpperCAmelCase_ = scale_embedding UpperCAmelCase_ = use_learned_position_embeddings UpperCAmelCase_ = layernorm_embedding super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , )
718
def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ = 0 while b > 0: if b & 1: UpperCAmelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
23
0
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class lowerCamelCase ( lowercase__ ): '''simple docstring''' @staticmethod @abstractmethod def A__ ( lowerCAmelCase ): raise NotImplementedError() @abstractmethod def A__ ( self ): raise NotImplementedError()
719
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> List[List[ImageInput]]: if isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[Any] = ['pixel_values'] def __init__( self , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = PILImageResampling.BILINEAR , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = True , lowerCAmelCase = 1 / 255 , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ): super().__init__(**lowerCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = PILImageResampling.BILINEAR , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(lowerCAmelCase , size["shortest_edge"] , default_to_square=lowerCAmelCase ) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(lowerCAmelCase , size=(size["height"], size["width"]) , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): return rescale(lowerCAmelCase , scale=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): return normalize(lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = to_numpy_array(lowerCAmelCase ) if do_resize: UpperCAmelCase_ = self.resize(image=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase ) if do_center_crop: UpperCAmelCase_ = self.center_crop(lowerCAmelCase , size=lowerCAmelCase ) if do_rescale: UpperCAmelCase_ = self.rescale(image=lowerCAmelCase , scale=lowerCAmelCase ) if do_normalize: UpperCAmelCase_ = self.normalize(image=lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase ) UpperCAmelCase_ = to_channel_dimension_format(lowerCAmelCase , lowerCAmelCase ) return image def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = ChannelDimension.FIRST , **lowerCAmelCase , ): UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="crop_size" ) if not valid_images(lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase_ = make_batched(lowerCAmelCase ) UpperCAmelCase_ = [ [ self._preprocess_image( image=lowerCAmelCase , do_resize=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , do_center_crop=lowerCAmelCase , crop_size=lowerCAmelCase , do_rescale=lowerCAmelCase , rescale_factor=lowerCAmelCase , do_normalize=lowerCAmelCase , image_mean=lowerCAmelCase , image_std=lowerCAmelCase , data_format=lowerCAmelCase , ) for img in video ] for video in videos ] UpperCAmelCase_ = {"pixel_values": videos} return BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase )
23
0
from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = ['flax'] def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(self , ["flax"] ) @classmethod def A__ ( cls , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(cls , ["flax"] ) @classmethod def A__ ( cls , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(cls , ["flax"] ) class lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Tuple = ['flax'] def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(self , ["flax"] ) @classmethod def A__ ( cls , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(cls , ["flax"] ) @classmethod def A__ ( cls , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(cls , ["flax"] ) class lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Dict = ['flax'] def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(self , ["flax"] ) @classmethod def A__ ( cls , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(cls , ["flax"] ) @classmethod def A__ ( cls , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(cls , ["flax"] ) class lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Any = ['flax'] def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(self , ["flax"] ) @classmethod def A__ ( cls , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(cls , ["flax"] ) @classmethod def A__ ( cls , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(cls , ["flax"] ) class lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' lowerCAmelCase_ : int = ['flax'] def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(self , ["flax"] ) @classmethod def A__ ( cls , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(cls , ["flax"] ) @classmethod def A__ ( cls , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(cls , ["flax"] ) class lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = ['flax'] def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(self , ["flax"] ) @classmethod def A__ ( cls , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(cls , ["flax"] ) @classmethod def A__ ( cls , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(cls , ["flax"] ) class lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' lowerCAmelCase_ : str = ['flax'] def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(self , ["flax"] ) @classmethod def A__ ( cls , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(cls , ["flax"] ) @classmethod def A__ ( cls , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(cls , ["flax"] ) class lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[Any] = ['flax'] def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(self , ["flax"] ) @classmethod def A__ ( cls , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(cls , ["flax"] ) @classmethod def A__ ( cls , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(cls , ["flax"] ) class lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' lowerCAmelCase_ : int = ['flax'] def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(self , ["flax"] ) @classmethod def A__ ( cls , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(cls , ["flax"] ) @classmethod def A__ ( cls , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(cls , ["flax"] ) class lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Dict = ['flax'] def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(self , ["flax"] ) @classmethod def A__ ( cls , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(cls , ["flax"] ) @classmethod def A__ ( cls , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(cls , ["flax"] ) class lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' lowerCAmelCase_ : int = ['flax'] def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(self , ["flax"] ) @classmethod def A__ ( cls , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(cls , ["flax"] ) @classmethod def A__ ( cls , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(cls , ["flax"] ) class lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Any = ['flax'] def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(self , ["flax"] ) @classmethod def A__ ( cls , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(cls , ["flax"] ) @classmethod def A__ ( cls , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(cls , ["flax"] ) class lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = ['flax'] def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(self , ["flax"] ) @classmethod def A__ ( cls , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(cls , ["flax"] ) @classmethod def A__ ( cls , *lowerCAmelCase , **lowerCAmelCase ): requires_backends(cls , ["flax"] )
720
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = 1 for i in range(1 , num + 1 ): fact *= i return fact def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = 0 while number > 0: UpperCAmelCase_ = number % 10 sum_of_digits += last_digit UpperCAmelCase_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def snake_case__ ( __SCREAMING_SNAKE_CASE = 100 ) -> int: UpperCAmelCase_ = factorial(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = split_and_add(__SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
23
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json", # See all Nat models at https://huggingface.co/models?filter=nat } class lowerCamelCase ( lowercase__, lowercase__ ): '''simple docstring''' lowerCAmelCase_ : str = 'nat' lowerCAmelCase_ : Optional[Any] = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , lowerCAmelCase=4 , lowerCAmelCase=3 , lowerCAmelCase=64 , lowerCAmelCase=[3, 4, 6, 5] , lowerCAmelCase=[2, 4, 8, 16] , lowerCAmelCase=7 , lowerCAmelCase=3.0 , lowerCAmelCase=True , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.1 , lowerCAmelCase="gelu" , lowerCAmelCase=0.02 , lowerCAmelCase=1e-5 , lowerCAmelCase=0.0 , lowerCAmelCase=None , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__(**lowerCAmelCase ) UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embed_dim UpperCAmelCase_ = depths UpperCAmelCase_ = len(lowerCAmelCase ) UpperCAmelCase_ = num_heads UpperCAmelCase_ = kernel_size UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ = int(embed_dim * 2 ** (len(lowerCAmelCase ) - 1) ) UpperCAmelCase_ = layer_scale_init_value UpperCAmelCase_ = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase ) + 1 )] UpperCAmelCase_ , UpperCAmelCase_ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names )
721
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
SCREAMING_SNAKE_CASE = "Input must be a string of 8 numbers plus letter" SCREAMING_SNAKE_CASE = "TRWAGMYFPDXBNJZSQVHLCKE" def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> bool: if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = f'''Expected string as input, found {type(__SCREAMING_SNAKE_CASE ).__name__}''' raise TypeError(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = spanish_id.replace("-" , "" ).upper() if len(__SCREAMING_SNAKE_CASE ) != 9: raise ValueError(__SCREAMING_SNAKE_CASE ) try: UpperCAmelCase_ = int(spanish_id_clean[0:8] ) UpperCAmelCase_ = spanish_id_clean[8] except ValueError as ex: raise ValueError(__SCREAMING_SNAKE_CASE ) from ex if letter.isdigit(): raise ValueError(__SCREAMING_SNAKE_CASE ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
700
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: # Initialise PyTorch model UpperCAmelCase_ = MobileBertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase_ = MobileBertForPreTraining(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint UpperCAmelCase_ = load_tf_weights_in_mobilebert(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
23
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ = SwinConfig(image_size=192 ) if "base" in model_name: UpperCAmelCase_ = 6 UpperCAmelCase_ = 128 UpperCAmelCase_ = (2, 2, 18, 2) UpperCAmelCase_ = (4, 8, 16, 32) elif "large" in model_name: UpperCAmelCase_ = 12 UpperCAmelCase_ = 192 UpperCAmelCase_ = (2, 2, 18, 2) UpperCAmelCase_ = (6, 12, 24, 48) else: raise ValueError("Model not supported, only supports base and large variants" ) UpperCAmelCase_ = window_size UpperCAmelCase_ = embed_dim UpperCAmelCase_ = depths UpperCAmelCase_ = num_heads return config def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Optional[Any]: if "encoder.mask_token" in name: UpperCAmelCase_ = name.replace("encoder.mask_token" , "embeddings.mask_token" ) if "encoder.patch_embed.proj" in name: UpperCAmelCase_ = name.replace("encoder.patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "encoder.patch_embed.norm" in name: UpperCAmelCase_ = name.replace("encoder.patch_embed.norm" , "embeddings.norm" ) if "attn.proj" in name: UpperCAmelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: UpperCAmelCase_ = name.replace("attn" , "attention.self" ) if "norm1" in name: UpperCAmelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: UpperCAmelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: UpperCAmelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: UpperCAmelCase_ = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": UpperCAmelCase_ = "layernorm.weight" if name == "encoder.norm.bias": UpperCAmelCase_ = "layernorm.bias" if "decoder" in name: pass else: UpperCAmelCase_ = "swin." + name return name def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[str]: for key in orig_state_dict.copy().keys(): UpperCAmelCase_ = orig_state_dict.pop(__SCREAMING_SNAKE_CASE ) if "attn_mask" in key: pass elif "qkv" in key: UpperCAmelCase_ = key.split("." ) UpperCAmelCase_ = int(key_split[2] ) UpperCAmelCase_ = int(key_split[4] ) UpperCAmelCase_ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCAmelCase_ = val[:dim, :] UpperCAmelCase_ = val[ dim : dim * 2, : ] UpperCAmelCase_ = val[-dim:, :] else: UpperCAmelCase_ = val[ :dim ] UpperCAmelCase_ = val[ dim : dim * 2 ] UpperCAmelCase_ = val[ -dim: ] else: UpperCAmelCase_ = val return orig_state_dict def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ = torch.load(__SCREAMING_SNAKE_CASE , map_location="cpu" )["model"] UpperCAmelCase_ = get_swin_config(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = SwinForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase_ = convert_state_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = ViTImageProcessor(size={"height": 192, "width": 192} ) UpperCAmelCase_ = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) UpperCAmelCase_ = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="pt" ) with torch.no_grad(): UpperCAmelCase_ = model(**__SCREAMING_SNAKE_CASE ).logits print(outputs.keys() ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: print(f'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(f'''microsoft/{model_name}''' ) image_processor.push_to_hub(f'''microsoft/{model_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="swin-base-simmim-window6-192", type=str, choices=["swin-base-simmim-window6-192", "swin-large-simmim-window12-192"], help="Name of the Swin SimMIM model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth", type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
701
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase ): UpperCAmelCase_ = str(id_ ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = [] UpperCAmelCase_ = {} # {vertex:distance} def __lt__( self , lowerCAmelCase ): return self.key < other.key def __repr__( self ): return self.id def A__ ( self , lowerCAmelCase ): self.neighbors.append(lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = weight def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __SCREAMING_SNAKE_CASE ) graph[b - 1].add_edge(graph[a - 1] , __SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> list: UpperCAmelCase_ = [] for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = graph[:] while q: UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE ) q.remove(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Iterator[tuple]: for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = list(__SCREAMING_SNAKE_CASE ) hq.heapify(__SCREAMING_SNAKE_CASE ) while h: UpperCAmelCase_ = hq.heappop(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] hq.heapify(__SCREAMING_SNAKE_CASE ) for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def snake_case__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
23
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = torch.device("cpu") def snake_case__ ( ) -> Optional[int]: UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Tuple: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.17_03E00, 2.11_07E00, -2.08_11E00, 8.86_85E-01, 2.43_60E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.96_36E-01, 2.34_78E-01, -1.69_63E00, -1.73_81E00, -8.63_37E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.27_68E-01, -4.74_29E-01, -1.08_97E00, -1.02_48E00, 3.55_23E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.53_30E-01, 2.42_11E-01, -6.01_85E-01, -8.27_89E-01, -6.04_46E-02] ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Dict: UpperCAmelCase_ = dct.pop(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = val def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ = [] for k in state_dict.keys(): UpperCAmelCase_ = k if ".pwconv" in k: UpperCAmelCase_ = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: UpperCAmelCase_ = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: UpperCAmelCase_ = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: UpperCAmelCase_ = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: UpperCAmelCase_ = k_new.split("." ) if ls[2].isdigit(): UpperCAmelCase_ = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: UpperCAmelCase_ = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[str]: UpperCAmelCase_ = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase_ = 1000 UpperCAmelCase_ = "huggingface/label-files" UpperCAmelCase_ = "imagenet-1k-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": UpperCAmelCase_ = [3, 3, 6, 4] UpperCAmelCase_ = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": UpperCAmelCase_ = [3, 3, 9, 6] UpperCAmelCase_ = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": UpperCAmelCase_ = [4, 3, 10, 5] UpperCAmelCase_ = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": UpperCAmelCase_ = [4, 4, 12, 6] UpperCAmelCase_ = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): UpperCAmelCase_ = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location="cpu" , check_hash=__SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ = torch.load(__SCREAMING_SNAKE_CASE , map_location="cpu" ) UpperCAmelCase_ = checkpoint UpperCAmelCase_ = create_rename_keys(__SCREAMING_SNAKE_CASE ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # load HuggingFace model UpperCAmelCase_ = SwiftFormerForImageClassification(__SCREAMING_SNAKE_CASE ).eval() hf_model.load_state_dict(__SCREAMING_SNAKE_CASE ) # prepare test inputs UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = ViTImageProcessor.from_pretrained("preprocessor_config" ) UpperCAmelCase_ = processor(images=__SCREAMING_SNAKE_CASE , return_tensors="pt" ) # compare outputs from both models UpperCAmelCase_ = get_expected_output(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , __SCREAMING_SNAKE_CASE , atol=1E-3 ) Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) print(f'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") SCREAMING_SNAKE_CASE = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: UpperCAmelCase_ = [1] for i in range(2 , __SCREAMING_SNAKE_CASE ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" UpperCAmelCase_ = [] UpperCAmelCase_ = list(range(__SCREAMING_SNAKE_CASE ) ) # Find permutation while factorials: UpperCAmelCase_ = factorials.pop() UpperCAmelCase_ , UpperCAmelCase_ = divmod(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
703
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE = { "yjernite/retribert-base-uncased": 512, } SCREAMING_SNAKE_CASE = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase_ : int = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Dict = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : List[str] = RetriBertTokenizer lowerCAmelCase_ : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**lowerCAmelCase ) UpperCAmelCase_ = do_lower_case def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
23
0
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", }, "tokenizer_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/tokenizer.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/tokenizer.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/tokenizer.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/tokenizer.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/tokenizer.json", }, } # TODO(PVP) - this should be removed in Transformers v5 SCREAMING_SNAKE_CASE = { "t5-small": 512, "t5-base": 512, "t5-large": 512, "t5-3b": 512, "t5-11b": 512, } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Tuple = VOCAB_FILES_NAMES lowerCAmelCase_ : str = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Union[str, Any] = ['input_ids', 'attention_mask'] lowerCAmelCase_ : Dict = TaTokenizer lowerCAmelCase_ : List[int] = [] def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase="</s>" , lowerCAmelCase="<unk>" , lowerCAmelCase="<pad>" , lowerCAmelCase=100 , lowerCAmelCase=None , **lowerCAmelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase_ = [f'''<extra_id_{i}>''' for i in range(lowerCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCAmelCase_ = len(set(filter(lambda lowerCAmelCase : bool("extra_id_" in str(lowerCAmelCase ) ) , lowerCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , extra_ids=lowerCAmelCase , additional_special_tokens=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = vocab_file UpperCAmelCase_ = False if not self.vocab_file else True UpperCAmelCase_ = extra_ids @staticmethod def A__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCAmelCase_ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , lowerCAmelCase , ) return max_model_length def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ = os.path.join( lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ): copyfile(self.vocab_file , lowerCAmelCase ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCAmelCase_ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def A__ ( self ): return list( set(filter(lambda lowerCAmelCase : bool(re.search(r"<extra_id_\d+>" , lowerCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def A__ ( self ): return [self.convert_tokens_to_ids(lowerCAmelCase ) for token in self.get_sentinel_tokens()]
704
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } SCREAMING_SNAKE_CASE = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Any = VOCAB_FILES_NAMES lowerCAmelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : int = ['input_ids', 'attention_mask'] lowerCAmelCase_ : str = DistilBertTokenizer def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**lowerCAmelCase ) UpperCAmelCase_ = do_lower_case def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
23
0
def snake_case__ ( __SCREAMING_SNAKE_CASE = 100_0000 ) -> int: UpperCAmelCase_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __SCREAMING_SNAKE_CASE ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
705
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> np.array: UpperCAmelCase_ = f'''{sampling_rate}''' UpperCAmelCase_ = "1" UpperCAmelCase_ = "f32le" UpperCAmelCase_ = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: UpperCAmelCase_ = ffmpeg_process.communicate(__SCREAMING_SNAKE_CASE ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error UpperCAmelCase_ = output_stream[0] UpperCAmelCase_ = np.frombuffer(__SCREAMING_SNAKE_CASE , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "f32le" , ) -> Dict: UpperCAmelCase_ = f'''{sampling_rate}''' UpperCAmelCase_ = "1" if format_for_conversion == "s16le": UpperCAmelCase_ = 2 elif format_for_conversion == "f32le": UpperCAmelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) UpperCAmelCase_ = platform.system() if system == "Linux": UpperCAmelCase_ = "alsa" UpperCAmelCase_ = "default" elif system == "Darwin": UpperCAmelCase_ = "avfoundation" UpperCAmelCase_ = ":0" elif system == "Windows": UpperCAmelCase_ = "dshow" UpperCAmelCase_ = "default" UpperCAmelCase_ = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample UpperCAmelCase_ = _ffmpeg_stream(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for item in iterator: yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "f32le" , ) -> int: if stream_chunk_s is not None: UpperCAmelCase_ = stream_chunk_s else: UpperCAmelCase_ = chunk_length_s UpperCAmelCase_ = ffmpeg_microphone(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , format_for_conversion=__SCREAMING_SNAKE_CASE ) if format_for_conversion == "s16le": UpperCAmelCase_ = np.intaa UpperCAmelCase_ = 2 elif format_for_conversion == "f32le": UpperCAmelCase_ = np.floataa UpperCAmelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: UpperCAmelCase_ = chunk_length_s / 6 UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): UpperCAmelCase_ = [stride_length_s, stride_length_s] UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample UpperCAmelCase_ = datetime.datetime.now() UpperCAmelCase_ = datetime.timedelta(seconds=__SCREAMING_SNAKE_CASE ) for item in chunk_bytes_iter(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=(stride_left, stride_right) , stream=__SCREAMING_SNAKE_CASE ): # Put everything back in numpy scale UpperCAmelCase_ = np.frombuffer(item["raw"] , dtype=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) UpperCAmelCase_ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False ) -> Dict: UpperCAmelCase_ = B"" UpperCAmelCase_ , UpperCAmelCase_ = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) UpperCAmelCase_ = 0 for raw in iterator: acc += raw if stream and len(__SCREAMING_SNAKE_CASE ) < chunk_len: UpperCAmelCase_ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__SCREAMING_SNAKE_CASE ) >= chunk_len: # We are flushing the accumulator UpperCAmelCase_ = (_stride_left, stride_right) UpperCAmelCase_ = {"raw": acc[:chunk_len], "stride": stride} if stream: UpperCAmelCase_ = False yield item UpperCAmelCase_ = stride_left UpperCAmelCase_ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__SCREAMING_SNAKE_CASE ) > stride_left: UpperCAmelCase_ = {"raw": acc, "stride": (_stride_left, 0)} if stream: UpperCAmelCase_ = False yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ = 2**24 # 16Mo try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE , bufsize=__SCREAMING_SNAKE_CASE ) as ffmpeg_process: while True: UpperCAmelCase_ = ffmpeg_process.stdout.read(__SCREAMING_SNAKE_CASE ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
23
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[Any] = 'ibert' def __init__( self , lowerCAmelCase=3_0522 , lowerCAmelCase=768 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=3072 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-1_2 , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase="absolute" , lowerCAmelCase=False , lowerCAmelCase="none" , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = quant_mode UpperCAmelCase_ = force_dequant class lowerCamelCase ( lowercase__ ): '''simple docstring''' @property def A__ ( self ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
706
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowerCamelCase ( lowercase__, lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCAmelCase = 768 , ): super().__init__() UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(torch.ones(1 , lowerCAmelCase ) ) def A__ ( self , lowerCAmelCase = None , lowerCAmelCase = None , ): UpperCAmelCase_ = nn.Parameter(self.mean.to(lowerCAmelCase ).to(lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(self.std.to(lowerCAmelCase ).to(lowerCAmelCase ) ) return self def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (embeds * self.std) + self.mean return embeds
23
0