code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : str = 'EncodecFeatureExtractor' lowerCAmelCase_ : str = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self , lowerCAmelCase , lowerCAmelCase ): super().__init__(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = self.feature_extractor UpperCAmelCase_ = False def A__ ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True ): return self.tokenizer.get_decoder_prompt_ids(task=lowerCAmelCase , language=lowerCAmelCase , no_timestamps=lowerCAmelCase ) def __call__( self , *lowerCAmelCase , **lowerCAmelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase_ = kwargs.pop("audio" , lowerCAmelCase ) UpperCAmelCase_ = kwargs.pop("sampling_rate" , lowerCAmelCase ) UpperCAmelCase_ = kwargs.pop("text" , lowerCAmelCase ) if len(lowerCAmelCase ) > 0: UpperCAmelCase_ = args[0] UpperCAmelCase_ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if text is not None: UpperCAmelCase_ = self.tokenizer(lowerCAmelCase , **lowerCAmelCase ) if audio is not None: UpperCAmelCase_ = self.feature_extractor(lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , **lowerCAmelCase ) if audio is None: return inputs elif text is None: return audio_inputs else: UpperCAmelCase_ = audio_inputs["input_values"] if "padding_mask" in audio_inputs: UpperCAmelCase_ = audio_inputs["padding_mask"] return inputs def A__ ( self , *lowerCAmelCase , **lowerCAmelCase ): UpperCAmelCase_ = kwargs.pop("audio" , lowerCAmelCase ) UpperCAmelCase_ = kwargs.pop("padding_mask" , lowerCAmelCase ) if len(lowerCAmelCase ) > 0: UpperCAmelCase_ = args[0] UpperCAmelCase_ = args[1:] if audio_values is not None: return self._decode_audio(lowerCAmelCase , padding_mask=lowerCAmelCase ) else: return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , *lowerCAmelCase , **lowerCAmelCase ): return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = to_numpy(lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = audio_values.shape if padding_mask is None: return list(lowerCAmelCase ) UpperCAmelCase_ = to_numpy(lowerCAmelCase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) UpperCAmelCase_ = seq_len - padding_mask.shape[-1] UpperCAmelCase_ = 1 - self.feature_extractor.padding_value UpperCAmelCase_ = np.pad(lowerCAmelCase , ((0, 0), (0, difference)) , "constant" , constant_values=lowerCAmelCase ) UpperCAmelCase_ = audio_values.tolist() for i in range(lowerCAmelCase ): UpperCAmelCase_ = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] UpperCAmelCase_ = sliced_audio.reshape(lowerCAmelCase , -1 ) return audio_values
707
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): super().__init__(*lowerCAmelCase , **lowerCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def A__ ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None ): UpperCAmelCase_ = {} UpperCAmelCase_ = {} if prompt is not None: UpperCAmelCase_ = prompt if generate_kwargs is not None: UpperCAmelCase_ = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: UpperCAmelCase_ = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one" ) UpperCAmelCase_ = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , lowerCAmelCase , **lowerCAmelCase ): return super().__call__(lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = load_image(lowerCAmelCase ) if prompt is not None: if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(lowerCAmelCase )} - but expected a single string. ''' "Note also that one single text can be provided for conditional image to text generation." ) UpperCAmelCase_ = self.model.config.model_type if model_type == "git": UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) UpperCAmelCase_ = self.tokenizer(text=lowerCAmelCase , add_special_tokens=lowerCAmelCase ).input_ids UpperCAmelCase_ = [self.tokenizer.cls_token_id] + input_ids UpperCAmelCase_ = torch.tensor(lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"input_ids": input_ids} ) elif model_type == "pix2struct": UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , header_text=lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) UpperCAmelCase_ = self.tokenizer(lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: UpperCAmelCase_ = None return model_inputs def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , lowerCAmelCase ) and all(x is None for x in model_inputs["input_ids"] ) ): UpperCAmelCase_ = None if generate_kwargs is None: UpperCAmelCase_ = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. UpperCAmelCase_ = model_inputs.pop(self.model.main_input_name ) UpperCAmelCase_ = self.model.generate(lowerCAmelCase , **lowerCAmelCase , **lowerCAmelCase ) return model_outputs def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = [] for output_ids in model_outputs: UpperCAmelCase_ = { "generated_text": self.tokenizer.decode( lowerCAmelCase , skip_special_tokens=lowerCAmelCase , ) } records.append(lowerCAmelCase ) return records
23
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowerCamelCase ( lowercase__ ): '''simple docstring''' @slow @require_torch def A__ ( self ): UpperCAmelCase_ = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) UpperCAmelCase_ = BertTokenizer.from_pretrained("bert-base-uncased" ) UpperCAmelCase_ = bertabert.config.encoder.vocab_size UpperCAmelCase_ = tokenizer.sep_token_id UpperCAmelCase_ = tokenizer.cls_token_id UpperCAmelCase_ = 128 UpperCAmelCase_ = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) UpperCAmelCase_ = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) UpperCAmelCase_ = train_dataset.select(range(32 ) ) UpperCAmelCase_ = val_dataset.select(range(16 ) ) UpperCAmelCase_ = 4 def _map_to_encoder_decoder_inputs(lowerCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCAmelCase_ = tokenizer(batch["article"] , padding="max_length" , truncation=lowerCAmelCase , max_length=512 ) UpperCAmelCase_ = tokenizer(batch["highlights"] , padding="max_length" , truncation=lowerCAmelCase , max_length=128 ) UpperCAmelCase_ = inputs.input_ids UpperCAmelCase_ = inputs.attention_mask UpperCAmelCase_ = outputs.input_ids UpperCAmelCase_ = outputs.input_ids.copy() UpperCAmelCase_ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] UpperCAmelCase_ = outputs.attention_mask assert all(len(lowerCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(lowerCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(lowerCAmelCase ): UpperCAmelCase_ = pred.label_ids UpperCAmelCase_ = pred.predictions # all unnecessary tokens are removed UpperCAmelCase_ = tokenizer.batch_decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) UpperCAmelCase_ = tokenizer.batch_decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) UpperCAmelCase_ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(lowerCAmelCase ) )] ) / len(lowerCAmelCase ) return {"accuracy": accuracy} # map train dataset UpperCAmelCase_ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=lowerCAmelCase , batch_size=lowerCAmelCase , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset UpperCAmelCase_ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=lowerCAmelCase , batch_size=lowerCAmelCase , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = SeqaSeqTrainingArguments( output_dir=lowerCAmelCase , per_device_train_batch_size=lowerCAmelCase , per_device_eval_batch_size=lowerCAmelCase , predict_with_generate=lowerCAmelCase , evaluation_strategy="steps" , do_train=lowerCAmelCase , do_eval=lowerCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCAmelCase_ = SeqaSeqTrainer( model=lowerCAmelCase , args=lowerCAmelCase , compute_metrics=_compute_metrics , train_dataset=lowerCAmelCase , eval_dataset=lowerCAmelCase , tokenizer=lowerCAmelCase , ) # start training trainer.train()
708
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCamelCase ( lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : int = TextToVideoSDPipeline lowerCAmelCase_ : Dict = TEXT_TO_IMAGE_PARAMS lowerCAmelCase_ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. lowerCAmelCase_ : Optional[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def A__ ( self ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCAmelCase_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) UpperCAmelCase_ = CLIPTextModel(lowerCAmelCase ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def A__ ( self , lowerCAmelCase , lowerCAmelCase=0 ): if str(lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(lowerCAmelCase ) else: UpperCAmelCase_ = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) UpperCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def A__ ( self ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = TextToVideoSDPipeline(**lowerCAmelCase ) UpperCAmelCase_ = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs(lowerCAmelCase ) UpperCAmelCase_ = "np" UpperCAmelCase_ = sd_pipe(**lowerCAmelCase ).frames UpperCAmelCase_ = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) UpperCAmelCase_ = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCAmelCase , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCAmelCase , expected_max_diff=1e-2 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def A__ ( self ): pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def A__ ( self ): pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def A__ ( self ): pass def A__ ( self ): return super().test_progress_bar() @slow @skip_mps class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy" ) UpperCAmelCase_ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ = pipe.to("cuda" ) UpperCAmelCase_ = "Spiderman is surfing" UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=25 , output_type="pt" ).frames UpperCAmelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def A__ ( self ): UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy" ) UpperCAmelCase_ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) UpperCAmelCase_ = pipe.to("cuda" ) UpperCAmelCase_ = "Spiderman is surfing" UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=2 , output_type="pt" ).frames UpperCAmelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
23
0
def snake_case__ ( __SCREAMING_SNAKE_CASE = 10 , __SCREAMING_SNAKE_CASE = 22 ) -> int: UpperCAmelCase_ = range(1 , __SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = range(1 , __SCREAMING_SNAKE_CASE ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(10, 22) = }''')
709
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = [1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 0, 0, 0 UpperCAmelCase_ = ugly_nums[ia] * 2 UpperCAmelCase_ = ugly_nums[ia] * 3 UpperCAmelCase_ = ugly_nums[ia] * 5 for _ in range(1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ugly_nums.append(__SCREAMING_SNAKE_CASE ) if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(200) = }''')
23
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = 'xlm-roberta' def __init__( self , lowerCAmelCase=3_0522 , lowerCAmelCase=768 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=3072 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-1_2 , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase="absolute" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class lowerCamelCase ( lowercase__ ): '''simple docstring''' @property def A__ ( self ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
710
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=3 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=224 , lowerCAmelCase=1000 , lowerCAmelCase=[3, 3, 6, 4] , lowerCAmelCase=[48, 56, 112, 220] , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = num_labels UpperCAmelCase_ = image_size UpperCAmelCase_ = layer_depths UpperCAmelCase_ = embed_dims def A__ ( self ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def A__ ( self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCAmelCase , layer_scale_init_value=1e-5 , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = SwiftFormerModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) UpperCAmelCase_ = SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self ): ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = self.prepare_config_and_inputs() UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase__, lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowerCAmelCase_ : int = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : int = False lowerCAmelCase_ : str = False lowerCAmelCase_ : Optional[Any] = False def A__ ( self ): UpperCAmelCase_ = SwiftFormerModelTester(self ) UpperCAmelCase_ = ConfigTester( self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def A__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def A__ ( self ): pass def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def A__ ( self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = SwiftFormerModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def A__ ( self ): pass def A__ ( self ): def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 8 self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): def _config_zero_init(lowerCAmelCase ): UpperCAmelCase_ = copy.deepcopy(lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCAmelCase , lowerCAmelCase , 1e-1_0 ) if isinstance(getattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ): UpperCAmelCase_ = _config_zero_init(getattr(lowerCAmelCase , lowerCAmelCase ) ) setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return configs_no_init UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = _config_zero_init(lowerCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(config=lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A__ ( self ): pass def snake_case__ ( ) -> str: UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def A__ ( self ): UpperCAmelCase_ = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(lowerCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=lowerCAmelCase , return_tensors="pt" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase_ = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1e-4 ) )
23
0
from statistics import mean, stdev def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 3 ) -> list: UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = max(__SCREAMING_SNAKE_CASE ) # normalize data return [round((x - x_min) / (x_max - x_min) , __SCREAMING_SNAKE_CASE ) for x in data] def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 3 ) -> list: UpperCAmelCase_ = mean(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = stdev(__SCREAMING_SNAKE_CASE ) # standardize data return [round((x - mu) / (sigma) , __SCREAMING_SNAKE_CASE ) for x in data]
711
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available SCREAMING_SNAKE_CASE = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } SCREAMING_SNAKE_CASE = { "gpt-neox-20b": 2048, } class lowerCamelCase ( lowercase__ ): lowerCAmelCase_ : int = VOCAB_FILES_NAMES lowerCAmelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : List[str] = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase="<|endoftext|>" , lowerCAmelCase="<|endoftext|>" , lowerCAmelCase="<|endoftext|>" , lowerCAmelCase=False , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCAmelCase ) != add_prefix_space: UpperCAmelCase_ = getattr(lowerCAmelCase , pre_tok_state.pop("type" ) ) UpperCAmelCase_ = add_prefix_space UpperCAmelCase_ = pre_tok_class(**lowerCAmelCase ) UpperCAmelCase_ = add_prefix_space def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) + [self.eos_token_id] ) if len(lowerCAmelCase ) > self.model_max_length: UpperCAmelCase_ = input_ids[-self.model_max_length :] return input_ids
712
import math def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> list[int]: UpperCAmelCase_ = [] UpperCAmelCase_ = 2 UpperCAmelCase_ = int(math.sqrt(__SCREAMING_SNAKE_CASE ) ) # Size of every segment UpperCAmelCase_ = [True] * (end + 1) UpperCAmelCase_ = [] while start <= end: if temp[start] is True: in_prime.append(__SCREAMING_SNAKE_CASE ) for i in range(start * start , end + 1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = False start += 1 prime += in_prime UpperCAmelCase_ = end + 1 UpperCAmelCase_ = min(2 * end , __SCREAMING_SNAKE_CASE ) while low <= n: UpperCAmelCase_ = [True] * (high - low + 1) for each in in_prime: UpperCAmelCase_ = math.floor(low / each ) * each if t < low: t += each for j in range(__SCREAMING_SNAKE_CASE , high + 1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = False for j in range(len(__SCREAMING_SNAKE_CASE ) ): if temp[j] is True: prime.append(j + low ) UpperCAmelCase_ = high + 1 UpperCAmelCase_ = min(high + end , __SCREAMING_SNAKE_CASE ) return prime print(sieve(10**6))
23
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): UpperCAmelCase_ = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } UpperCAmelCase_ = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 128, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 142, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(lowerCAmelCase ) , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(lowerCAmelCase ) , x.transpose() ) ) UpperCAmelCase_ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(lowerCAmelCase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def A__ ( self ): UpperCAmelCase_ = np.random.randn(3 , 4 ) UpperCAmelCase_ = torch.tensor(lowerCAmelCase ) self.assertTrue(np.allclose(transpose(lowerCAmelCase ) , transpose(lowerCAmelCase ).numpy() ) ) UpperCAmelCase_ = np.random.randn(3 , 4 , 5 ) UpperCAmelCase_ = torch.tensor(lowerCAmelCase ) self.assertTrue(np.allclose(transpose(lowerCAmelCase , axes=(1, 2, 0) ) , transpose(lowerCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_tf def A__ ( self ): UpperCAmelCase_ = np.random.randn(3 , 4 ) UpperCAmelCase_ = tf.constant(lowerCAmelCase ) self.assertTrue(np.allclose(transpose(lowerCAmelCase ) , transpose(lowerCAmelCase ).numpy() ) ) UpperCAmelCase_ = np.random.randn(3 , 4 , 5 ) UpperCAmelCase_ = tf.constant(lowerCAmelCase ) self.assertTrue(np.allclose(transpose(lowerCAmelCase , axes=(1, 2, 0) ) , transpose(lowerCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_flax def A__ ( self ): UpperCAmelCase_ = np.random.randn(3 , 4 ) UpperCAmelCase_ = jnp.array(lowerCAmelCase ) self.assertTrue(np.allclose(transpose(lowerCAmelCase ) , np.asarray(transpose(lowerCAmelCase ) ) ) ) UpperCAmelCase_ = np.random.randn(3 , 4 , 5 ) UpperCAmelCase_ = jnp.array(lowerCAmelCase ) self.assertTrue(np.allclose(transpose(lowerCAmelCase , axes=(1, 2, 0) ) , np.asarray(transpose(lowerCAmelCase , axes=(1, 2, 0) ) ) ) ) def A__ ( self ): UpperCAmelCase_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(lowerCAmelCase , (4, 3) ) , np.reshape(lowerCAmelCase , (4, 3) ) ) ) UpperCAmelCase_ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(lowerCAmelCase , (12, 5) ) , np.reshape(lowerCAmelCase , (12, 5) ) ) ) @require_torch def A__ ( self ): UpperCAmelCase_ = np.random.randn(3 , 4 ) UpperCAmelCase_ = torch.tensor(lowerCAmelCase ) self.assertTrue(np.allclose(reshape(lowerCAmelCase , (4, 3) ) , reshape(lowerCAmelCase , (4, 3) ).numpy() ) ) UpperCAmelCase_ = np.random.randn(3 , 4 , 5 ) UpperCAmelCase_ = torch.tensor(lowerCAmelCase ) self.assertTrue(np.allclose(reshape(lowerCAmelCase , (12, 5) ) , reshape(lowerCAmelCase , (12, 5) ).numpy() ) ) @require_tf def A__ ( self ): UpperCAmelCase_ = np.random.randn(3 , 4 ) UpperCAmelCase_ = tf.constant(lowerCAmelCase ) self.assertTrue(np.allclose(reshape(lowerCAmelCase , (4, 3) ) , reshape(lowerCAmelCase , (4, 3) ).numpy() ) ) UpperCAmelCase_ = np.random.randn(3 , 4 , 5 ) UpperCAmelCase_ = tf.constant(lowerCAmelCase ) self.assertTrue(np.allclose(reshape(lowerCAmelCase , (12, 5) ) , reshape(lowerCAmelCase , (12, 5) ).numpy() ) ) @require_flax def A__ ( self ): UpperCAmelCase_ = np.random.randn(3 , 4 ) UpperCAmelCase_ = jnp.array(lowerCAmelCase ) self.assertTrue(np.allclose(reshape(lowerCAmelCase , (4, 3) ) , np.asarray(reshape(lowerCAmelCase , (4, 3) ) ) ) ) UpperCAmelCase_ = np.random.randn(3 , 4 , 5 ) UpperCAmelCase_ = jnp.array(lowerCAmelCase ) self.assertTrue(np.allclose(reshape(lowerCAmelCase , (12, 5) ) , np.asarray(reshape(lowerCAmelCase , (12, 5) ) ) ) ) def A__ ( self ): UpperCAmelCase_ = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(lowerCAmelCase ) , np.squeeze(lowerCAmelCase ) ) ) UpperCAmelCase_ = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(lowerCAmelCase , axis=2 ) , np.squeeze(lowerCAmelCase , axis=2 ) ) ) @require_torch def A__ ( self ): UpperCAmelCase_ = np.random.randn(1 , 3 , 4 ) UpperCAmelCase_ = torch.tensor(lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(lowerCAmelCase ) , squeeze(lowerCAmelCase ).numpy() ) ) UpperCAmelCase_ = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase_ = torch.tensor(lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(lowerCAmelCase , axis=2 ) , squeeze(lowerCAmelCase , axis=2 ).numpy() ) ) @require_tf def A__ ( self ): UpperCAmelCase_ = np.random.randn(1 , 3 , 4 ) UpperCAmelCase_ = tf.constant(lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(lowerCAmelCase ) , squeeze(lowerCAmelCase ).numpy() ) ) UpperCAmelCase_ = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase_ = tf.constant(lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(lowerCAmelCase , axis=2 ) , squeeze(lowerCAmelCase , axis=2 ).numpy() ) ) @require_flax def A__ ( self ): UpperCAmelCase_ = np.random.randn(1 , 3 , 4 ) UpperCAmelCase_ = jnp.array(lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(lowerCAmelCase ) , np.asarray(squeeze(lowerCAmelCase ) ) ) ) UpperCAmelCase_ = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase_ = jnp.array(lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(lowerCAmelCase , axis=2 ) , np.asarray(squeeze(lowerCAmelCase , axis=2 ) ) ) ) def A__ ( self ): UpperCAmelCase_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(lowerCAmelCase , axis=1 ) , np.expand_dims(lowerCAmelCase , axis=1 ) ) ) @require_torch def A__ ( self ): UpperCAmelCase_ = np.random.randn(3 , 4 ) UpperCAmelCase_ = torch.tensor(lowerCAmelCase ) self.assertTrue(np.allclose(expand_dims(lowerCAmelCase , axis=1 ) , expand_dims(lowerCAmelCase , axis=1 ).numpy() ) ) @require_tf def A__ ( self ): UpperCAmelCase_ = np.random.randn(3 , 4 ) UpperCAmelCase_ = tf.constant(lowerCAmelCase ) self.assertTrue(np.allclose(expand_dims(lowerCAmelCase , axis=1 ) , expand_dims(lowerCAmelCase , axis=1 ).numpy() ) ) @require_flax def A__ ( self ): UpperCAmelCase_ = np.random.randn(3 , 4 ) UpperCAmelCase_ = jnp.array(lowerCAmelCase ) self.assertTrue(np.allclose(expand_dims(lowerCAmelCase , axis=1 ) , np.asarray(expand_dims(lowerCAmelCase , axis=1 ) ) ) )
713
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : torch.FloatTensor class lowerCamelCase ( lowercase__, lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCAmelCase = 32 , lowerCAmelCase = 64 , lowerCAmelCase = 20 , lowerCAmelCase = 768 , lowerCAmelCase=77 , lowerCAmelCase=4 , lowerCAmelCase = 0.0 , lowerCAmelCase = "silu" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "linear" , lowerCAmelCase = "prd" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ): super().__init__() UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = attention_head_dim UpperCAmelCase_ = num_attention_heads * attention_head_dim UpperCAmelCase_ = additional_embeddings UpperCAmelCase_ = time_embed_dim or inner_dim UpperCAmelCase_ = embedding_proj_dim or embedding_dim UpperCAmelCase_ = clip_embed_dim or embedding_dim UpperCAmelCase_ = Timesteps(lowerCAmelCase , lowerCAmelCase , 0 ) UpperCAmelCase_ = TimestepEmbedding(lowerCAmelCase , lowerCAmelCase , out_dim=lowerCAmelCase , act_fn=lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if embedding_proj_norm_type is None: UpperCAmelCase_ = None elif embedding_proj_norm_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if encoder_hid_proj_type is None: UpperCAmelCase_ = None elif encoder_hid_proj_type == "linear": UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCAmelCase ) ) if added_emb_type == "prd": UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , 1 , lowerCAmelCase ) ) elif added_emb_type is None: UpperCAmelCase_ = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) UpperCAmelCase_ = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , dropout=lowerCAmelCase , activation_fn="gelu" , attention_bias=lowerCAmelCase , ) for d in range(lowerCAmelCase ) ] ) if norm_in_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) elif norm_in_type is None: UpperCAmelCase_ = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) UpperCAmelCase_ = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask" , lowerCAmelCase , persistent=lowerCAmelCase ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def A__ ( self ): UpperCAmelCase_ = {} def fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): UpperCAmelCase_ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return processors def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = len(self.attn_processors.keys() ) if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(lowerCAmelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): if not isinstance(lowerCAmelCase , lowerCAmelCase ): module.set_processor(lowerCAmelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): self.set_attn_processor(AttnProcessor() ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = True , ): UpperCAmelCase_ = hidden_states.shape[0] UpperCAmelCase_ = timestep if not torch.is_tensor(lowerCAmelCase ): UpperCAmelCase_ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCAmelCase ) and len(timesteps.shape ) == 0: UpperCAmelCase_ = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase_ = timesteps * torch.ones(lowerCAmelCase , dtype=timesteps.dtype , device=timesteps.device ) UpperCAmelCase_ = self.time_proj(lowerCAmelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. UpperCAmelCase_ = timesteps_projected.to(dtype=self.dtype ) UpperCAmelCase_ = self.time_embedding(lowerCAmelCase ) if self.embedding_proj_norm is not None: UpperCAmelCase_ = self.embedding_proj_norm(lowerCAmelCase ) UpperCAmelCase_ = self.embedding_proj(lowerCAmelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: UpperCAmelCase_ = self.encoder_hidden_states_proj(lowerCAmelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" ) UpperCAmelCase_ = self.proj_in(lowerCAmelCase ) UpperCAmelCase_ = self.positional_embedding.to(hidden_states.dtype ) UpperCAmelCase_ = [] UpperCAmelCase_ = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCAmelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: UpperCAmelCase_ = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: UpperCAmelCase_ = hidden_states[:, None, :] UpperCAmelCase_ = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: UpperCAmelCase_ = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCAmelCase , -1 , -1 ) additional_embeds.append(lowerCAmelCase ) UpperCAmelCase_ = torch.cat( lowerCAmelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens UpperCAmelCase_ = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: UpperCAmelCase_ = F.pad( lowerCAmelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) UpperCAmelCase_ = hidden_states + positional_embeddings if attention_mask is not None: UpperCAmelCase_ = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 UpperCAmelCase_ = F.pad(lowerCAmelCase , (0, self.additional_embeddings) , value=0.0 ) UpperCAmelCase_ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) UpperCAmelCase_ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: UpperCAmelCase_ = self.norm_in(lowerCAmelCase ) for block in self.transformer_blocks: UpperCAmelCase_ = block(lowerCAmelCase , attention_mask=lowerCAmelCase ) UpperCAmelCase_ = self.norm_out(lowerCAmelCase ) if self.prd_embedding is not None: UpperCAmelCase_ = hidden_states[:, -1] else: UpperCAmelCase_ = hidden_states[:, additional_embeddings_len:] UpperCAmelCase_ = self.proj_to_clip_embeddings(lowerCAmelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
23
0
import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model") SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece_bpe.model") SCREAMING_SNAKE_CASE = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class lowerCamelCase ( lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : int = CamembertTokenizer lowerCAmelCase_ : int = CamembertTokenizerFast lowerCAmelCase_ : Tuple = True lowerCAmelCase_ : Union[str, Any] = True def A__ ( self ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = CamembertTokenizer(lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self ): UpperCAmelCase_ = "<pad>" UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase ) , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>NOTUSED" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowerCAmelCase ) , 1004 ) def A__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def A__ ( self ): UpperCAmelCase_ = CamembertTokenizer(lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) UpperCAmelCase_ = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) UpperCAmelCase_ = "I was born in 92000, and this is falsé." UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.encode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = "I was born in 92000, and this is falsé." UpperCAmelCase_ = tokenizer.tokenize(lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.encode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) @slow def A__ ( self ): # fmt: off UpperCAmelCase_ = {"input_ids": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 2_7575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 2_2804, 1_8818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 1_0326, 24, 2267, 20, 416, 5072, 1_5612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. UpperCAmelCase_ = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name="camembert-base" , revision="3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf" , sequences=lowerCAmelCase , )
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
715
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = 'xlm-roberta' def __init__( self , lowerCAmelCase=3_0522 , lowerCAmelCase=768 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=3072 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-1_2 , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase="absolute" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class lowerCamelCase ( lowercase__ ): '''simple docstring''' @property def A__ ( self ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
23
0
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ = checkpoint UpperCAmelCase_ = {} UpperCAmelCase_ = vae_state_dict["encoder.conv_in.weight"] UpperCAmelCase_ = vae_state_dict["encoder.conv_in.bias"] UpperCAmelCase_ = vae_state_dict["encoder.conv_out.weight"] UpperCAmelCase_ = vae_state_dict["encoder.conv_out.bias"] UpperCAmelCase_ = vae_state_dict["encoder.norm_out.weight"] UpperCAmelCase_ = vae_state_dict["encoder.norm_out.bias"] UpperCAmelCase_ = vae_state_dict["decoder.conv_in.weight"] UpperCAmelCase_ = vae_state_dict["decoder.conv_in.bias"] UpperCAmelCase_ = vae_state_dict["decoder.conv_out.weight"] UpperCAmelCase_ = vae_state_dict["decoder.conv_out.bias"] UpperCAmelCase_ = vae_state_dict["decoder.norm_out.weight"] UpperCAmelCase_ = vae_state_dict["decoder.norm_out.bias"] UpperCAmelCase_ = vae_state_dict["quant_conv.weight"] UpperCAmelCase_ = vae_state_dict["quant_conv.bias"] UpperCAmelCase_ = vae_state_dict["post_quant_conv.weight"] UpperCAmelCase_ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in vae_state_dict if f'''down.{layer_id}''' in key] for layer_id in range(__SCREAMING_SNAKE_CASE ) } # Retrieves the keys for the decoder up blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in vae_state_dict if f'''up.{layer_id}''' in key] for layer_id in range(__SCREAMING_SNAKE_CASE ) } for i in range(__SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = [key for key in down_blocks[i] if f'''down.{i}''' in key and f'''down.{i}.downsample''' not in key] if f'''encoder.down.{i}.downsample.conv.weight''' in vae_state_dict: UpperCAmelCase_ = vae_state_dict.pop( f'''encoder.down.{i}.downsample.conv.weight''' ) UpperCAmelCase_ = vae_state_dict.pop( f'''encoder.down.{i}.downsample.conv.bias''' ) UpperCAmelCase_ = renew_vae_resnet_paths(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = {"old": f'''down.{i}.block''', "new": f'''down_blocks.{i}.resnets'''} assign_to_checkpoint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.block" in key] UpperCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ = [key for key in mid_resnets if f'''encoder.mid.block_{i}''' in key] UpperCAmelCase_ = renew_vae_resnet_paths(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = {"old": f'''mid.block_{i}''', "new": f'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.attn" in key] UpperCAmelCase_ = renew_vae_attention_paths(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , config=__SCREAMING_SNAKE_CASE ) conv_attn_to_linear(__SCREAMING_SNAKE_CASE ) for i in range(__SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = num_up_blocks - 1 - i UpperCAmelCase_ = [ key for key in up_blocks[block_id] if f'''up.{block_id}''' in key and f'''up.{block_id}.upsample''' not in key ] if f'''decoder.up.{block_id}.upsample.conv.weight''' in vae_state_dict: UpperCAmelCase_ = vae_state_dict[ f'''decoder.up.{block_id}.upsample.conv.weight''' ] UpperCAmelCase_ = vae_state_dict[ f'''decoder.up.{block_id}.upsample.conv.bias''' ] UpperCAmelCase_ = renew_vae_resnet_paths(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = {"old": f'''up.{block_id}.block''', "new": f'''up_blocks.{i}.resnets'''} assign_to_checkpoint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.block" in key] UpperCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ = [key for key in mid_resnets if f'''decoder.mid.block_{i}''' in key] UpperCAmelCase_ = renew_vae_resnet_paths(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = {"old": f'''mid.block_{i}''', "new": f'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.attn" in key] UpperCAmelCase_ = renew_vae_attention_paths(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , config=__SCREAMING_SNAKE_CASE ) conv_attn_to_linear(__SCREAMING_SNAKE_CASE ) return new_checkpoint def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) -> List[str]: # Only support V1 UpperCAmelCase_ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) UpperCAmelCase_ = io.BytesIO(r.content ) UpperCAmelCase_ = OmegaConf.load(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = 512 UpperCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open UpperCAmelCase_ = {} with safe_open(__SCREAMING_SNAKE_CASE , framework="pt" , device="cpu" ) as f: for key in f.keys(): UpperCAmelCase_ = f.get_tensor(__SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ = torch.load(__SCREAMING_SNAKE_CASE , map_location=__SCREAMING_SNAKE_CASE )["state_dict"] # Convert the VAE model. UpperCAmelCase_ = create_vae_diffusers_config(__SCREAMING_SNAKE_CASE , image_size=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = custom_convert_ldm_vae_checkpoint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = AutoencoderKL(**__SCREAMING_SNAKE_CASE ) vae.load_state_dict(__SCREAMING_SNAKE_CASE ) vae.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") SCREAMING_SNAKE_CASE = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
716
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = int(__SCREAMING_SNAKE_CASE ) if decimal in (0, 1): # Exit cases for the recursion return str(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ , UpperCAmelCase_ = divmod(__SCREAMING_SNAKE_CASE , 2 ) return binary_recursive(__SCREAMING_SNAKE_CASE ) + str(__SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = str(__SCREAMING_SNAKE_CASE ).strip() if not number: raise ValueError("No input value was provided" ) UpperCAmelCase_ = "-" if number.startswith("-" ) else "" UpperCAmelCase_ = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f'''{negative}0b{binary_recursive(int(__SCREAMING_SNAKE_CASE ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
23
0
from math import factorial def snake_case__ ( __SCREAMING_SNAKE_CASE = 20 ) -> int: UpperCAmelCase_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... UpperCAmelCase_ = n // 2 return int(factorial(__SCREAMING_SNAKE_CASE ) / (factorial(__SCREAMING_SNAKE_CASE ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: SCREAMING_SNAKE_CASE = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number.")
717
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ): UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=lowerCAmelCase ).to(lowerCAmelCase ) UpperCAmelCase_ = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase_ = tokenizer("Hello there" , return_tensors="pt" ).input_ids UpperCAmelCase_ = tokenizer("Hi I am" , return_tensors="pt" ).input_ids UpperCAmelCase_ = model(input_ids.to(lowerCAmelCase ) , labels=labels.to(lowerCAmelCase ) ).loss UpperCAmelCase_ = -(labels.shape[-1] * loss.item()) UpperCAmelCase_ = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
23
0
from __future__ import annotations def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> dict[str, float]: if (voltage, current, resistance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance < 0: raise ValueError("Resistance cannot be negative" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
718
def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ = 0 while b > 0: if b & 1: UpperCAmelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
23
0
'''simple docstring''' import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE = "▁" SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class lowerCamelCase ( lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : str = BigBirdTokenizer lowerCAmelCase_ : Union[str, Any] = BigBirdTokenizerFast lowerCAmelCase_ : Optional[int] = True lowerCAmelCase_ : Union[str, Any] = True def A__ ( self ): super().setUp() UpperCAmelCase_ = self.tokenizer_class(lowerCAmelCase , keep_accents=lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self ): UpperCAmelCase_ = "<s>" UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase ) , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "[MASK]" ) self.assertEqual(len(lowerCAmelCase ) , 1004 ) def A__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def A__ ( self ): if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = "I was born in 92000, and this is falsé." UpperCAmelCase_ = tokenizer.tokenize(lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.encode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = BigBirdTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [285, 46, 10, 170, 382] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(lowerCAmelCase ) self.assertListEqual( lowerCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase ) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def A__ ( self ): return BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) @slow def A__ ( self ): UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = [65, 1_8536, 2260, 101, 66] self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase ) ) @slow def A__ ( self ): UpperCAmelCase_ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) # fmt: off UpperCAmelCase_ = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase ) ) @require_torch @slow def A__ ( self ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase_ = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase_ = " ".join(lowerCAmelCase ) UpperCAmelCase_ = self.big_tokenizer.encode_plus(lowerCAmelCase , return_tensors="pt" , return_token_type_ids=lowerCAmelCase ) UpperCAmelCase_ = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=lowerCAmelCase ) UpperCAmelCase_ = BigBirdConfig(attention_type="original_full" ) UpperCAmelCase_ = BigBirdModel(lowerCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCAmelCase ) model(**lowerCAmelCase ) @slow def A__ ( self ): UpperCAmelCase_ = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) UpperCAmelCase_ = tokenizer.decode(tokenizer("Paris is the [MASK]." ).input_ids ) self.assertTrue(decoded_text == "[CLS] Paris is the[MASK].[SEP]" ) @slow def A__ ( self ): # fmt: off UpperCAmelCase_ = {"input_ids": [[65, 3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114, 66], [65, 448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name="google/bigbird-roberta-base" , revision="215c99f1600e06f83acce68422f2035b2b5c3510" , )
719
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> List[List[ImageInput]]: if isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[Any] = ['pixel_values'] def __init__( self , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = PILImageResampling.BILINEAR , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = True , lowerCAmelCase = 1 / 255 , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ): super().__init__(**lowerCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = PILImageResampling.BILINEAR , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(lowerCAmelCase , size["shortest_edge"] , default_to_square=lowerCAmelCase ) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(lowerCAmelCase , size=(size["height"], size["width"]) , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): return rescale(lowerCAmelCase , scale=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): return normalize(lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = to_numpy_array(lowerCAmelCase ) if do_resize: UpperCAmelCase_ = self.resize(image=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase ) if do_center_crop: UpperCAmelCase_ = self.center_crop(lowerCAmelCase , size=lowerCAmelCase ) if do_rescale: UpperCAmelCase_ = self.rescale(image=lowerCAmelCase , scale=lowerCAmelCase ) if do_normalize: UpperCAmelCase_ = self.normalize(image=lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase ) UpperCAmelCase_ = to_channel_dimension_format(lowerCAmelCase , lowerCAmelCase ) return image def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = ChannelDimension.FIRST , **lowerCAmelCase , ): UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="crop_size" ) if not valid_images(lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase_ = make_batched(lowerCAmelCase ) UpperCAmelCase_ = [ [ self._preprocess_image( image=lowerCAmelCase , do_resize=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , do_center_crop=lowerCAmelCase , crop_size=lowerCAmelCase , do_rescale=lowerCAmelCase , rescale_factor=lowerCAmelCase , do_normalize=lowerCAmelCase , image_mean=lowerCAmelCase , image_std=lowerCAmelCase , data_format=lowerCAmelCase , ) for img in video ] for video in videos ] UpperCAmelCase_ = {"pixel_values": videos} return BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase )
23
0
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def snake_case__ ( __SCREAMING_SNAKE_CASE = 3 ) -> qiskit.result.counts.Counts: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(__SCREAMING_SNAKE_CASE ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) UpperCAmelCase_ = QuantumRegister(__SCREAMING_SNAKE_CASE , "qr" ) UpperCAmelCase_ = ClassicalRegister(__SCREAMING_SNAKE_CASE , "cr" ) UpperCAmelCase_ = QuantumCircuit(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = number_of_qubits for i in range(__SCREAMING_SNAKE_CASE ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(__SCREAMING_SNAKE_CASE ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(__SCREAMING_SNAKE_CASE , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # simulate with 10000 shots UpperCAmelCase_ = Aer.get_backend("qasm_simulator" ) UpperCAmelCase_ = execute(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , shots=1_0000 ) return job.result().get_counts(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print( f'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
720
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = 1 for i in range(1 , num + 1 ): fact *= i return fact def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = 0 while number > 0: UpperCAmelCase_ = number % 10 sum_of_digits += last_digit UpperCAmelCase_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def snake_case__ ( __SCREAMING_SNAKE_CASE = 100 ) -> int: UpperCAmelCase_ = factorial(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = split_and_add(__SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
23
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Any: # initialize config if "resnet-50" in model_name: UpperCAmelCase_ = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: UpperCAmelCase_ = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) UpperCAmelCase_ = DetrConfig(use_timm_backbone=__SCREAMING_SNAKE_CASE , backbone_config=__SCREAMING_SNAKE_CASE ) # set label attributes UpperCAmelCase_ = "panoptic" in model_name if is_panoptic: UpperCAmelCase_ = 250 else: UpperCAmelCase_ = 91 UpperCAmelCase_ = "huggingface/label-files" UpperCAmelCase_ = "coco-detection-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} return config, is_panoptic def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Tuple: # here we list all keys to be renamed (original name on the left, our name on the right) UpperCAmelCase_ = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ = state_dict.pop(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = val def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ) -> Optional[Any]: UpperCAmelCase_ = "" if is_panoptic: UpperCAmelCase_ = "detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase_ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:256, :] UpperCAmelCase_ = in_proj_bias[:256] UpperCAmelCase_ = in_proj_weight[256:512, :] UpperCAmelCase_ = in_proj_bias[256:512] UpperCAmelCase_ = in_proj_weight[-256:, :] UpperCAmelCase_ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase_ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase_ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:256, :] UpperCAmelCase_ = in_proj_bias[:256] UpperCAmelCase_ = in_proj_weight[256:512, :] UpperCAmelCase_ = in_proj_bias[256:512] UpperCAmelCase_ = in_proj_weight[-256:, :] UpperCAmelCase_ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention UpperCAmelCase_ = state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) UpperCAmelCase_ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCAmelCase_ = in_proj_weight_cross_attn[:256, :] UpperCAmelCase_ = in_proj_bias_cross_attn[:256] UpperCAmelCase_ = in_proj_weight_cross_attn[256:512, :] UpperCAmelCase_ = in_proj_bias_cross_attn[256:512] UpperCAmelCase_ = in_proj_weight_cross_attn[-256:, :] UpperCAmelCase_ = in_proj_bias_cross_attn[-256:] def snake_case__ ( ) -> str: UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False ) -> str: UpperCAmelCase_ , UpperCAmelCase_ = get_detr_config(__SCREAMING_SNAKE_CASE ) # load original model from torch hub UpperCAmelCase_ = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(f'''Converting model {model_name}...''' ) UpperCAmelCase_ = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=__SCREAMING_SNAKE_CASE ).eval() UpperCAmelCase_ = detr.state_dict() # rename keys for src, dest in create_rename_keys(__SCREAMING_SNAKE_CASE ): if is_panoptic: UpperCAmelCase_ = "detr." + src rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # query, key and value matrices need special treatment read_in_q_k_v(__SCREAMING_SNAKE_CASE , is_panoptic=__SCREAMING_SNAKE_CASE ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): UpperCAmelCase_ = state_dict.pop(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase_ = state_dict.pop(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: UpperCAmelCase_ = state_dict.pop(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): UpperCAmelCase_ = state_dict.pop(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = val # finally, create HuggingFace model and load state dict UpperCAmelCase_ = DetrForSegmentation(__SCREAMING_SNAKE_CASE ) if is_panoptic else DetrForObjectDetection(__SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) model.eval() # verify our conversion on an image UpperCAmelCase_ = "coco_panoptic" if is_panoptic else "coco_detection" UpperCAmelCase_ = DetrImageProcessor(format=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = processor(images=prepare_img() , return_tensors="pt" ) UpperCAmelCase_ = encoding["pixel_values"] UpperCAmelCase_ = detr(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = model(__SCREAMING_SNAKE_CASE ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(f'''nielsr/{model_name}''' ) processor.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( "--model_name", default="detr-resnet-50", type=str, choices=["detr-resnet-50", "detr-resnet-101"], help="Name of the DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to the hub or not.") SCREAMING_SNAKE_CASE = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
721
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , ) -> int: if config_name_or_path is None: UpperCAmelCase_ = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: UpperCAmelCase_ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: UpperCAmelCase_ = question_encoder_name_or_path UpperCAmelCase_ = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. UpperCAmelCase_ = RagConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = gen_config UpperCAmelCase_ = question_encoder_config UpperCAmelCase_ = model_class.from_pretrained_question_encoder_generator( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE ) rag_model.save_pretrained(__SCREAMING_SNAKE_CASE ) # Sanity check. model_class.from_pretrained(__SCREAMING_SNAKE_CASE ) # Save tokenizers. UpperCAmelCase_ = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) UpperCAmelCase_ = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) SCREAMING_SNAKE_CASE = parser.parse_args() SCREAMING_SNAKE_CASE = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
700
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: # Initialise PyTorch model UpperCAmelCase_ = MobileBertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase_ = MobileBertForPreTraining(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint UpperCAmelCase_ = load_tf_weights_in_mobilebert(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
23
0
'''simple docstring''' import requests def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None: UpperCAmelCase_ = {"Content-Type": "application/json"} UpperCAmelCase_ = requests.post(__SCREAMING_SNAKE_CASE , json={"text": message_body} , headers=__SCREAMING_SNAKE_CASE ) if response.status_code != 200: UpperCAmelCase_ = ( "Request to slack returned an error " f'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
701
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase ): UpperCAmelCase_ = str(id_ ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = [] UpperCAmelCase_ = {} # {vertex:distance} def __lt__( self , lowerCAmelCase ): return self.key < other.key def __repr__( self ): return self.id def A__ ( self , lowerCAmelCase ): self.neighbors.append(lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = weight def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __SCREAMING_SNAKE_CASE ) graph[b - 1].add_edge(graph[a - 1] , __SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> list: UpperCAmelCase_ = [] for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = graph[:] while q: UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE ) q.remove(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Iterator[tuple]: for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = list(__SCREAMING_SNAKE_CASE ) hq.heapify(__SCREAMING_SNAKE_CASE ) while h: UpperCAmelCase_ = hq.heappop(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] hq.heapify(__SCREAMING_SNAKE_CASE ) for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def snake_case__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
23
0
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead." , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase )
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): UpperCAmelCase_ = inspect.getfile(accelerate.test_utils ) UpperCAmelCase_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) UpperCAmelCase_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) UpperCAmelCase_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def A__ ( self ): print(f'''Found {torch.cuda.device_count()} devices.''' ) UpperCAmelCase_ = ["torchrun", f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase , env=os.environ.copy() ) @require_multi_gpu def A__ ( self ): print(f'''Found {torch.cuda.device_count()} devices.''' ) UpperCAmelCase_ = ["torchrun", f'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(f'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase , env=os.environ.copy() ) @require_multi_gpu def A__ ( self ): UpperCAmelCase_ = ["torchrun", f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase , env=os.environ.copy() ) @require_multi_gpu def A__ ( self ): print(f'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) UpperCAmelCase_ = ["torchrun", f'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(lowerCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = Accelerator() SCREAMING_SNAKE_CASE = (accelerator.state.process_index + 2, 10) SCREAMING_SNAKE_CASE = torch.randint(0, 10, shape).to(accelerator.device) SCREAMING_SNAKE_CASE = "" SCREAMING_SNAKE_CASE = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." SCREAMING_SNAKE_CASE = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." SCREAMING_SNAKE_CASE = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
703
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE = { "yjernite/retribert-base-uncased": 512, } SCREAMING_SNAKE_CASE = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase_ : int = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Dict = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : List[str] = RetriBertTokenizer lowerCAmelCase_ : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**lowerCAmelCase ) UpperCAmelCase_ = do_lower_case def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
23
0
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): UpperCAmelCase_ = inspect.getfile(accelerate.test_utils ) UpperCAmelCase_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) UpperCAmelCase_ = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def A__ ( self ): UpperCAmelCase_ = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() UpperCAmelCase_ = [sys.executable] + distributed_args execute_subprocess_async(lowerCAmelCase , env=os.environ.copy() )
704
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } SCREAMING_SNAKE_CASE = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Any = VOCAB_FILES_NAMES lowerCAmelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : int = ['input_ids', 'attention_mask'] lowerCAmelCase_ : str = DistilBertTokenizer def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**lowerCAmelCase ) UpperCAmelCase_ = do_lower_case def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
23
0
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = nn.functional.normalize(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = nn.functional.normalize(__SCREAMING_SNAKE_CASE ) return torch.mm(__SCREAMING_SNAKE_CASE , normalized_text_embeds.t() ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Any = CLIPConfig lowerCAmelCase_ : List[Any] = ['CLIPEncoderLayer'] def __init__( self , lowerCAmelCase ): super().__init__(lowerCAmelCase ) UpperCAmelCase_ = CLIPVisionModel(config.vision_config ) UpperCAmelCase_ = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase ) UpperCAmelCase_ = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase ) UpperCAmelCase_ = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase ) UpperCAmelCase_ = nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase ) UpperCAmelCase_ = nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase ) @torch.no_grad() def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = self.vision_model(lowerCAmelCase )[1] # pooled_output UpperCAmelCase_ = self.visual_projection(lowerCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase_ = cosine_distance(lowerCAmelCase , self.special_care_embeds ).cpu().float().numpy() UpperCAmelCase_ = cosine_distance(lowerCAmelCase , self.concept_embeds ).cpu().float().numpy() UpperCAmelCase_ = [] UpperCAmelCase_ = image_embeds.shape[0] for i in range(lowerCAmelCase ): UpperCAmelCase_ = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images UpperCAmelCase_ = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): UpperCAmelCase_ = special_cos_dist[i][concept_idx] UpperCAmelCase_ = self.special_care_embeds_weights[concept_idx].item() UpperCAmelCase_ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]} ) UpperCAmelCase_ = 0.01 for concept_idx in range(len(cos_dist[0] ) ): UpperCAmelCase_ = cos_dist[i][concept_idx] UpperCAmelCase_ = self.concept_embeds_weights[concept_idx].item() UpperCAmelCase_ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase ) result.append(lowerCAmelCase ) UpperCAmelCase_ = [len(res["bad_concepts"] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = self.vision_model(lowerCAmelCase )[1] # pooled_output UpperCAmelCase_ = self.visual_projection(lowerCAmelCase ) UpperCAmelCase_ = cosine_distance(lowerCAmelCase , self.special_care_embeds ) UpperCAmelCase_ = cosine_distance(lowerCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images UpperCAmelCase_ = 0.0 UpperCAmelCase_ = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) UpperCAmelCase_ = torch.any(special_scores > 0 , dim=1 ) UpperCAmelCase_ = special_care * 0.01 UpperCAmelCase_ = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) UpperCAmelCase_ = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) UpperCAmelCase_ = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
705
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> np.array: UpperCAmelCase_ = f'''{sampling_rate}''' UpperCAmelCase_ = "1" UpperCAmelCase_ = "f32le" UpperCAmelCase_ = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: UpperCAmelCase_ = ffmpeg_process.communicate(__SCREAMING_SNAKE_CASE ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error UpperCAmelCase_ = output_stream[0] UpperCAmelCase_ = np.frombuffer(__SCREAMING_SNAKE_CASE , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "f32le" , ) -> Dict: UpperCAmelCase_ = f'''{sampling_rate}''' UpperCAmelCase_ = "1" if format_for_conversion == "s16le": UpperCAmelCase_ = 2 elif format_for_conversion == "f32le": UpperCAmelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) UpperCAmelCase_ = platform.system() if system == "Linux": UpperCAmelCase_ = "alsa" UpperCAmelCase_ = "default" elif system == "Darwin": UpperCAmelCase_ = "avfoundation" UpperCAmelCase_ = ":0" elif system == "Windows": UpperCAmelCase_ = "dshow" UpperCAmelCase_ = "default" UpperCAmelCase_ = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample UpperCAmelCase_ = _ffmpeg_stream(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for item in iterator: yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "f32le" , ) -> int: if stream_chunk_s is not None: UpperCAmelCase_ = stream_chunk_s else: UpperCAmelCase_ = chunk_length_s UpperCAmelCase_ = ffmpeg_microphone(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , format_for_conversion=__SCREAMING_SNAKE_CASE ) if format_for_conversion == "s16le": UpperCAmelCase_ = np.intaa UpperCAmelCase_ = 2 elif format_for_conversion == "f32le": UpperCAmelCase_ = np.floataa UpperCAmelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: UpperCAmelCase_ = chunk_length_s / 6 UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): UpperCAmelCase_ = [stride_length_s, stride_length_s] UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample UpperCAmelCase_ = datetime.datetime.now() UpperCAmelCase_ = datetime.timedelta(seconds=__SCREAMING_SNAKE_CASE ) for item in chunk_bytes_iter(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=(stride_left, stride_right) , stream=__SCREAMING_SNAKE_CASE ): # Put everything back in numpy scale UpperCAmelCase_ = np.frombuffer(item["raw"] , dtype=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) UpperCAmelCase_ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False ) -> Dict: UpperCAmelCase_ = B"" UpperCAmelCase_ , UpperCAmelCase_ = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) UpperCAmelCase_ = 0 for raw in iterator: acc += raw if stream and len(__SCREAMING_SNAKE_CASE ) < chunk_len: UpperCAmelCase_ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__SCREAMING_SNAKE_CASE ) >= chunk_len: # We are flushing the accumulator UpperCAmelCase_ = (_stride_left, stride_right) UpperCAmelCase_ = {"raw": acc[:chunk_len], "stride": stride} if stream: UpperCAmelCase_ = False yield item UpperCAmelCase_ = stride_left UpperCAmelCase_ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__SCREAMING_SNAKE_CASE ) > stride_left: UpperCAmelCase_ = {"raw": acc, "stride": (_stride_left, 0)} if stream: UpperCAmelCase_ = False yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ = 2**24 # 16Mo try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE , bufsize=__SCREAMING_SNAKE_CASE ) as ffmpeg_process: while True: UpperCAmelCase_ = ffmpeg_process.stdout.read(__SCREAMING_SNAKE_CASE ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
23
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter SCREAMING_SNAKE_CASE = "Create a default config file for Accelerate with only a few flags set." def snake_case__ ( __SCREAMING_SNAKE_CASE="no" , __SCREAMING_SNAKE_CASE = default_json_config_file , __SCREAMING_SNAKE_CASE = False ) -> Optional[Any]: UpperCAmelCase_ = Path(__SCREAMING_SNAKE_CASE ) path.parent.mkdir(parents=__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) if path.exists(): print( f'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False UpperCAmelCase_ = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) UpperCAmelCase_ = { "compute_environment": "LOCAL_MACHINE", "mixed_precision": mixed_precision, } if torch.cuda.is_available(): UpperCAmelCase_ = torch.cuda.device_count() UpperCAmelCase_ = num_gpus UpperCAmelCase_ = False if num_gpus > 1: UpperCAmelCase_ = "MULTI_GPU" else: UpperCAmelCase_ = "NO" elif is_xpu_available() and use_xpu: UpperCAmelCase_ = torch.xpu.device_count() UpperCAmelCase_ = num_xpus UpperCAmelCase_ = False if num_xpus > 1: UpperCAmelCase_ = "MULTI_XPU" else: UpperCAmelCase_ = "NO" elif is_npu_available(): UpperCAmelCase_ = torch.npu.device_count() UpperCAmelCase_ = num_npus UpperCAmelCase_ = False if num_npus > 1: UpperCAmelCase_ = "MULTI_NPU" else: UpperCAmelCase_ = "NO" else: UpperCAmelCase_ = 0 UpperCAmelCase_ = True UpperCAmelCase_ = 1 UpperCAmelCase_ = "NO" UpperCAmelCase_ = ClusterConfig(**__SCREAMING_SNAKE_CASE ) config.to_json_file(__SCREAMING_SNAKE_CASE ) return path def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = parser.add_parser("default" , parents=__SCREAMING_SNAKE_CASE , help=__SCREAMING_SNAKE_CASE , formatter_class=__SCREAMING_SNAKE_CASE ) parser.add_argument( "--config_file" , default=__SCREAMING_SNAKE_CASE , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , dest="save_location" , ) parser.add_argument( "--mixed_precision" , choices=["no", "fp16", "bf16"] , type=__SCREAMING_SNAKE_CASE , help="Whether or not to use mixed precision training. " "Choose between FP16 and BF16 (bfloat16) training. " "BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later." , default="no" , ) parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) return parser def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(f'''accelerate configuration saved at {config_file}''' )
706
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowerCamelCase ( lowercase__, lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCAmelCase = 768 , ): super().__init__() UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(torch.ones(1 , lowerCAmelCase ) ) def A__ ( self , lowerCAmelCase = None , lowerCAmelCase = None , ): UpperCAmelCase_ = nn.Parameter(self.mean.to(lowerCAmelCase ).to(lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(self.std.to(lowerCAmelCase ).to(lowerCAmelCase ) ) return self def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (embeds * self.std) + self.mean return embeds
23
0
'''simple docstring''' def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: if index == number_of_items: return 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = knapsack(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , index + 1 ) if weights[index] <= max_weight: UpperCAmelCase_ = values[index] + knapsack( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 ) return max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
707
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): super().__init__(*lowerCAmelCase , **lowerCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def A__ ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None ): UpperCAmelCase_ = {} UpperCAmelCase_ = {} if prompt is not None: UpperCAmelCase_ = prompt if generate_kwargs is not None: UpperCAmelCase_ = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: UpperCAmelCase_ = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one" ) UpperCAmelCase_ = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , lowerCAmelCase , **lowerCAmelCase ): return super().__call__(lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = load_image(lowerCAmelCase ) if prompt is not None: if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(lowerCAmelCase )} - but expected a single string. ''' "Note also that one single text can be provided for conditional image to text generation." ) UpperCAmelCase_ = self.model.config.model_type if model_type == "git": UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) UpperCAmelCase_ = self.tokenizer(text=lowerCAmelCase , add_special_tokens=lowerCAmelCase ).input_ids UpperCAmelCase_ = [self.tokenizer.cls_token_id] + input_ids UpperCAmelCase_ = torch.tensor(lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"input_ids": input_ids} ) elif model_type == "pix2struct": UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , header_text=lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) UpperCAmelCase_ = self.tokenizer(lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: UpperCAmelCase_ = None return model_inputs def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , lowerCAmelCase ) and all(x is None for x in model_inputs["input_ids"] ) ): UpperCAmelCase_ = None if generate_kwargs is None: UpperCAmelCase_ = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. UpperCAmelCase_ = model_inputs.pop(self.model.main_input_name ) UpperCAmelCase_ = self.model.generate(lowerCAmelCase , **lowerCAmelCase , **lowerCAmelCase ) return model_outputs def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = [] for output_ids in model_outputs: UpperCAmelCase_ = { "generated_text": self.tokenizer.decode( lowerCAmelCase , skip_special_tokens=lowerCAmelCase , ) } records.append(lowerCAmelCase ) return records
23
0
from bisect import bisect from itertools import accumulate def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ = sorted(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , key=lambda __SCREAMING_SNAKE_CASE : x[0] / x[1] , reverse=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ , UpperCAmelCase_ = [i[0] for i in r], [i[1] for i in r] UpperCAmelCase_ = list(accumulate(__SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ = bisect(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
708
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCamelCase ( lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : int = TextToVideoSDPipeline lowerCAmelCase_ : Dict = TEXT_TO_IMAGE_PARAMS lowerCAmelCase_ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. lowerCAmelCase_ : Optional[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def A__ ( self ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCAmelCase_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) UpperCAmelCase_ = CLIPTextModel(lowerCAmelCase ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def A__ ( self , lowerCAmelCase , lowerCAmelCase=0 ): if str(lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(lowerCAmelCase ) else: UpperCAmelCase_ = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) UpperCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def A__ ( self ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = TextToVideoSDPipeline(**lowerCAmelCase ) UpperCAmelCase_ = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs(lowerCAmelCase ) UpperCAmelCase_ = "np" UpperCAmelCase_ = sd_pipe(**lowerCAmelCase ).frames UpperCAmelCase_ = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) UpperCAmelCase_ = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCAmelCase , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCAmelCase , expected_max_diff=1e-2 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def A__ ( self ): pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def A__ ( self ): pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def A__ ( self ): pass def A__ ( self ): return super().test_progress_bar() @slow @skip_mps class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy" ) UpperCAmelCase_ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ = pipe.to("cuda" ) UpperCAmelCase_ = "Spiderman is surfing" UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=25 , output_type="pt" ).frames UpperCAmelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def A__ ( self ): UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy" ) UpperCAmelCase_ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) UpperCAmelCase_ = pipe.to("cuda" ) UpperCAmelCase_ = "Spiderman is surfing" UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=2 , output_type="pt" ).frames UpperCAmelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
23
0
from typing import List from .keymap import KEYMAP, get_character def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Any: def decorator(__SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = getattr(__SCREAMING_SNAKE_CASE , "handle_key" , [] ) handle += [key] setattr(__SCREAMING_SNAKE_CASE , "handle_key" , __SCREAMING_SNAKE_CASE ) return func return decorator def snake_case__ ( *__SCREAMING_SNAKE_CASE ) -> str: def decorator(__SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = getattr(__SCREAMING_SNAKE_CASE , "handle_key" , [] ) handle += keys setattr(__SCREAMING_SNAKE_CASE , "handle_key" , __SCREAMING_SNAKE_CASE ) return func return decorator class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __new__( cls , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = super().__new__(cls , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if not hasattr(lowerCAmelCase , "key_handler" ): setattr(lowerCAmelCase , "key_handler" , {} ) setattr(lowerCAmelCase , "handle_input" , KeyHandler.handle_input ) for value in attrs.values(): UpperCAmelCase_ = getattr(lowerCAmelCase , "handle_key" , [] ) for key in handled_keys: UpperCAmelCase_ = value return new_cls @staticmethod def A__ ( cls ): UpperCAmelCase_ = get_character() if char != KEYMAP["undefined"]: UpperCAmelCase_ = ord(lowerCAmelCase ) UpperCAmelCase_ = cls.key_handler.get(lowerCAmelCase ) if handler: UpperCAmelCase_ = char return handler(cls ) else: return None def snake_case__ ( cls ) -> str: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
709
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = [1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 0, 0, 0 UpperCAmelCase_ = ugly_nums[ia] * 2 UpperCAmelCase_ = ugly_nums[ia] * 3 UpperCAmelCase_ = ugly_nums[ia] * 5 for _ in range(1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ugly_nums.append(__SCREAMING_SNAKE_CASE ) if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(200) = }''')
23
0
import tensorflow as tf from ...tf_utils import shape_list class lowerCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=1 , lowerCAmelCase=False , **lowerCAmelCase ): super().__init__(**lowerCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = d_embed UpperCAmelCase_ = d_proj UpperCAmelCase_ = cutoffs + [vocab_size] UpperCAmelCase_ = [0] + self.cutoffs UpperCAmelCase_ = div_val UpperCAmelCase_ = self.cutoffs[0] UpperCAmelCase_ = len(self.cutoffs ) - 1 UpperCAmelCase_ = self.shortlist_size + self.n_clusters UpperCAmelCase_ = keep_order UpperCAmelCase_ = [] UpperCAmelCase_ = [] def A__ ( self , lowerCAmelCase ): if self.n_clusters > 0: UpperCAmelCase_ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="zeros" , trainable=lowerCAmelCase , name="cluster_weight" ) UpperCAmelCase_ = self.add_weight( shape=(self.n_clusters,) , initializer="zeros" , trainable=lowerCAmelCase , name="cluster_bias" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: UpperCAmelCase_ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="zeros" , trainable=lowerCAmelCase , name=f'''out_projs_._{i}''' , ) self.out_projs.append(lowerCAmelCase ) else: self.out_projs.append(lowerCAmelCase ) UpperCAmelCase_ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="zeros" , trainable=lowerCAmelCase , name=f'''out_layers_._{i}_._weight''' , ) UpperCAmelCase_ = self.add_weight( shape=(self.vocab_size,) , initializer="zeros" , trainable=lowerCAmelCase , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): UpperCAmelCase_ , UpperCAmelCase_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase_ = self.d_embed // (self.div_val**i) UpperCAmelCase_ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="zeros" , trainable=lowerCAmelCase , name=f'''out_projs_._{i}''' ) self.out_projs.append(lowerCAmelCase ) UpperCAmelCase_ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="zeros" , trainable=lowerCAmelCase , name=f'''out_layers_._{i}_._weight''' , ) UpperCAmelCase_ = self.add_weight( shape=(r_idx - l_idx,) , initializer="zeros" , trainable=lowerCAmelCase , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(lowerCAmelCase ) @staticmethod def A__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = x if proj is not None: UpperCAmelCase_ = tf.einsum("ibd,ed->ibe" , lowerCAmelCase , lowerCAmelCase ) return tf.einsum("ibd,nd->ibn" , lowerCAmelCase , lowerCAmelCase ) + b @staticmethod def A__ ( lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = shape_list(lowerCAmelCase ) UpperCAmelCase_ = tf.range(lp_size[0] , dtype=target.dtype ) UpperCAmelCase_ = tf.stack([r, target] , 1 ) return tf.gather_nd(lowerCAmelCase , lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=True , lowerCAmelCase=False ): UpperCAmelCase_ = 0 if self.n_clusters == 0: UpperCAmelCase_ = self._logit(lowerCAmelCase , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: UpperCAmelCase_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=lowerCAmelCase , logits=lowerCAmelCase ) UpperCAmelCase_ = tf.nn.log_softmax(lowerCAmelCase , axis=-1 ) else: UpperCAmelCase_ = shape_list(lowerCAmelCase ) UpperCAmelCase_ = [] UpperCAmelCase_ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): UpperCAmelCase_ , UpperCAmelCase_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: UpperCAmelCase_ = (target >= l_idx) & (target < r_idx) UpperCAmelCase_ = tf.where(lowerCAmelCase ) UpperCAmelCase_ = tf.boolean_mask(lowerCAmelCase , lowerCAmelCase ) - l_idx if self.div_val == 1: UpperCAmelCase_ = self.out_layers[0][0][l_idx:r_idx] UpperCAmelCase_ = self.out_layers[0][1][l_idx:r_idx] else: UpperCAmelCase_ = self.out_layers[i][0] UpperCAmelCase_ = self.out_layers[i][1] if i == 0: UpperCAmelCase_ = tf.concat([cur_W, self.cluster_weight] , 0 ) UpperCAmelCase_ = tf.concat([cur_b, self.cluster_bias] , 0 ) UpperCAmelCase_ = self._logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , self.out_projs[0] ) UpperCAmelCase_ = tf.nn.log_softmax(lowerCAmelCase ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: UpperCAmelCase_ = tf.boolean_mask(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = self._gather_logprob(lowerCAmelCase , lowerCAmelCase ) else: UpperCAmelCase_ = self._logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , self.out_projs[i] ) UpperCAmelCase_ = tf.nn.log_softmax(lowerCAmelCase ) UpperCAmelCase_ = self.cutoffs[0] + i - 1 # No probability for the head cluster UpperCAmelCase_ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(lowerCAmelCase ) if target is not None: UpperCAmelCase_ = tf.boolean_mask(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = tf.boolean_mask(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = self._gather_logprob(lowerCAmelCase , lowerCAmelCase ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(lowerCAmelCase , -cur_logprob , shape_list(lowerCAmelCase ) ) UpperCAmelCase_ = tf.concat(lowerCAmelCase , axis=-1 ) if target is not None: if return_mean: UpperCAmelCase_ = tf.reduce_mean(lowerCAmelCase ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(lowerCAmelCase ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(lowerCAmelCase , name=self.name , aggregation="mean" if return_mean else "" ) return out
710
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=3 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=224 , lowerCAmelCase=1000 , lowerCAmelCase=[3, 3, 6, 4] , lowerCAmelCase=[48, 56, 112, 220] , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = num_labels UpperCAmelCase_ = image_size UpperCAmelCase_ = layer_depths UpperCAmelCase_ = embed_dims def A__ ( self ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def A__ ( self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCAmelCase , layer_scale_init_value=1e-5 , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = SwiftFormerModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) UpperCAmelCase_ = SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self ): ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = self.prepare_config_and_inputs() UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase__, lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowerCAmelCase_ : int = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : int = False lowerCAmelCase_ : str = False lowerCAmelCase_ : Optional[Any] = False def A__ ( self ): UpperCAmelCase_ = SwiftFormerModelTester(self ) UpperCAmelCase_ = ConfigTester( self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def A__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def A__ ( self ): pass def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def A__ ( self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = SwiftFormerModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def A__ ( self ): pass def A__ ( self ): def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 8 self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): def _config_zero_init(lowerCAmelCase ): UpperCAmelCase_ = copy.deepcopy(lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCAmelCase , lowerCAmelCase , 1e-1_0 ) if isinstance(getattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ): UpperCAmelCase_ = _config_zero_init(getattr(lowerCAmelCase , lowerCAmelCase ) ) setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return configs_no_init UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = _config_zero_init(lowerCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(config=lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A__ ( self ): pass def snake_case__ ( ) -> str: UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def A__ ( self ): UpperCAmelCase_ = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(lowerCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=lowerCAmelCase , return_tensors="pt" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase_ = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1e-4 ) )
23
0
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = dataset UpperCAmelCase_ = process UpperCAmelCase_ = params def __len__( self ): return len(self.dataset ) def __getitem__( self , lowerCAmelCase ): UpperCAmelCase_ = self.dataset[i] UpperCAmelCase_ = self.process(lowerCAmelCase , **self.params ) return processed class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = loader UpperCAmelCase_ = infer UpperCAmelCase_ = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether UpperCAmelCase_ = None UpperCAmelCase_ = loader_batch_size # Internal bookkeeping UpperCAmelCase_ = None UpperCAmelCase_ = None def __len__( self ): return len(self.loader ) def __iter__( self ): UpperCAmelCase_ = iter(self.loader ) return self def A__ ( self ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice UpperCAmelCase_ = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) UpperCAmelCase_ = {} for k, element in self._loader_batch_data.items(): if isinstance(lowerCAmelCase , lowerCAmelCase ): # Convert ModelOutput to tuple first UpperCAmelCase_ = element.to_tuple() if isinstance(element[0] , torch.Tensor ): UpperCAmelCase_ = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): UpperCAmelCase_ = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(lowerCAmelCase , lowerCAmelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): UpperCAmelCase_ = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): UpperCAmelCase_ = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around UpperCAmelCase_ = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCAmelCase_ = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCAmelCase_ = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. UpperCAmelCase_ = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 UpperCAmelCase_ = self._loader_batch_data.__class__(lowerCAmelCase ) self._loader_batch_index += 1 return result def A__ ( self ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch UpperCAmelCase_ = next(self.iterator ) UpperCAmelCase_ = self.infer(lowerCAmelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(lowerCAmelCase , torch.Tensor ): UpperCAmelCase_ = processed else: UpperCAmelCase_ = list(processed.keys() )[0] UpperCAmelCase_ = processed[key] if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = len(lowerCAmelCase ) else: UpperCAmelCase_ = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCAmelCase_ = observed_batch_size # Setting internal index to unwrap the batch UpperCAmelCase_ = processed UpperCAmelCase_ = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None ): super().__init__(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def __iter__( self ): UpperCAmelCase_ = iter(self.loader ) UpperCAmelCase_ = None return self def A__ ( self ): if self.subiterator is None: UpperCAmelCase_ = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item UpperCAmelCase_ = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators UpperCAmelCase_ = self.infer(next(self.iterator ) , **self.params ) UpperCAmelCase_ = next(self.subiterator ) return processed class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __iter__( self ): UpperCAmelCase_ = iter(self.loader ) return self def A__ ( self ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. UpperCAmelCase_ = False UpperCAmelCase_ = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: UpperCAmelCase_ = self.loader_batch_item() UpperCAmelCase_ = item.pop("is_last" ) accumulator.append(lowerCAmelCase ) if is_last: return accumulator while not is_last: UpperCAmelCase_ = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(lowerCAmelCase , torch.Tensor ): UpperCAmelCase_ = processed else: UpperCAmelCase_ = list(processed.keys() )[0] UpperCAmelCase_ = processed[key] if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = len(lowerCAmelCase ) else: UpperCAmelCase_ = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCAmelCase_ = observed_batch_size UpperCAmelCase_ = processed UpperCAmelCase_ = 0 while self._loader_batch_index < self.loader_batch_size: UpperCAmelCase_ = self.loader_batch_item() UpperCAmelCase_ = item.pop("is_last" ) accumulator.append(lowerCAmelCase ) if is_last: return accumulator else: UpperCAmelCase_ = processed UpperCAmelCase_ = item.pop("is_last" ) accumulator.append(lowerCAmelCase ) return accumulator class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = dataset UpperCAmelCase_ = key def __len__( self ): return len(self.dataset ) def __getitem__( self , lowerCAmelCase ): return self.dataset[i][self.key] class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = dataset UpperCAmelCase_ = keya UpperCAmelCase_ = keya def __len__( self ): return len(self.dataset ) def __getitem__( self , lowerCAmelCase ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
711
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available SCREAMING_SNAKE_CASE = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ , UpperCAmelCase_ = len(__SCREAMING_SNAKE_CASE ), len(grid[0] ) if ( min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) UpperCAmelCase_ = 0 count += depth_first_search(__SCREAMING_SNAKE_CASE , row + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) count += depth_first_search(__SCREAMING_SNAKE_CASE , row - 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) count += depth_first_search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , col + 1 , __SCREAMING_SNAKE_CASE ) count += depth_first_search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , col - 1 , __SCREAMING_SNAKE_CASE ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
712
import math def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> list[int]: UpperCAmelCase_ = [] UpperCAmelCase_ = 2 UpperCAmelCase_ = int(math.sqrt(__SCREAMING_SNAKE_CASE ) ) # Size of every segment UpperCAmelCase_ = [True] * (end + 1) UpperCAmelCase_ = [] while start <= end: if temp[start] is True: in_prime.append(__SCREAMING_SNAKE_CASE ) for i in range(start * start , end + 1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = False start += 1 prime += in_prime UpperCAmelCase_ = end + 1 UpperCAmelCase_ = min(2 * end , __SCREAMING_SNAKE_CASE ) while low <= n: UpperCAmelCase_ = [True] * (high - low + 1) for each in in_prime: UpperCAmelCase_ = math.floor(low / each ) * each if t < low: t += each for j in range(__SCREAMING_SNAKE_CASE , high + 1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = False for j in range(len(__SCREAMING_SNAKE_CASE ) ): if temp[j] is True: prime.append(j + low ) UpperCAmelCase_ = high + 1 UpperCAmelCase_ = min(high + end , __SCREAMING_SNAKE_CASE ) return prime print(sieve(10**6))
23
0
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(lowercase__ ), 'Tatoeba directory does not exist.' ) class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self ): UpperCAmelCase_ = tempfile.mkdtemp() return TatoebaConverter(save_dir=lowerCAmelCase ) @slow def A__ ( self ): self.resolver.convert_models(["heb-eng"] ) @slow def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.resolver.write_model_card("opus-mt-he-en" , dry_run=lowerCAmelCase ) assert mmeta["long_pair"] == "heb-eng"
713
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : torch.FloatTensor class lowerCamelCase ( lowercase__, lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCAmelCase = 32 , lowerCAmelCase = 64 , lowerCAmelCase = 20 , lowerCAmelCase = 768 , lowerCAmelCase=77 , lowerCAmelCase=4 , lowerCAmelCase = 0.0 , lowerCAmelCase = "silu" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "linear" , lowerCAmelCase = "prd" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ): super().__init__() UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = attention_head_dim UpperCAmelCase_ = num_attention_heads * attention_head_dim UpperCAmelCase_ = additional_embeddings UpperCAmelCase_ = time_embed_dim or inner_dim UpperCAmelCase_ = embedding_proj_dim or embedding_dim UpperCAmelCase_ = clip_embed_dim or embedding_dim UpperCAmelCase_ = Timesteps(lowerCAmelCase , lowerCAmelCase , 0 ) UpperCAmelCase_ = TimestepEmbedding(lowerCAmelCase , lowerCAmelCase , out_dim=lowerCAmelCase , act_fn=lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if embedding_proj_norm_type is None: UpperCAmelCase_ = None elif embedding_proj_norm_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if encoder_hid_proj_type is None: UpperCAmelCase_ = None elif encoder_hid_proj_type == "linear": UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCAmelCase ) ) if added_emb_type == "prd": UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , 1 , lowerCAmelCase ) ) elif added_emb_type is None: UpperCAmelCase_ = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) UpperCAmelCase_ = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , dropout=lowerCAmelCase , activation_fn="gelu" , attention_bias=lowerCAmelCase , ) for d in range(lowerCAmelCase ) ] ) if norm_in_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) elif norm_in_type is None: UpperCAmelCase_ = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) UpperCAmelCase_ = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask" , lowerCAmelCase , persistent=lowerCAmelCase ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def A__ ( self ): UpperCAmelCase_ = {} def fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): UpperCAmelCase_ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return processors def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = len(self.attn_processors.keys() ) if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(lowerCAmelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): if not isinstance(lowerCAmelCase , lowerCAmelCase ): module.set_processor(lowerCAmelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): self.set_attn_processor(AttnProcessor() ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = True , ): UpperCAmelCase_ = hidden_states.shape[0] UpperCAmelCase_ = timestep if not torch.is_tensor(lowerCAmelCase ): UpperCAmelCase_ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCAmelCase ) and len(timesteps.shape ) == 0: UpperCAmelCase_ = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase_ = timesteps * torch.ones(lowerCAmelCase , dtype=timesteps.dtype , device=timesteps.device ) UpperCAmelCase_ = self.time_proj(lowerCAmelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. UpperCAmelCase_ = timesteps_projected.to(dtype=self.dtype ) UpperCAmelCase_ = self.time_embedding(lowerCAmelCase ) if self.embedding_proj_norm is not None: UpperCAmelCase_ = self.embedding_proj_norm(lowerCAmelCase ) UpperCAmelCase_ = self.embedding_proj(lowerCAmelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: UpperCAmelCase_ = self.encoder_hidden_states_proj(lowerCAmelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" ) UpperCAmelCase_ = self.proj_in(lowerCAmelCase ) UpperCAmelCase_ = self.positional_embedding.to(hidden_states.dtype ) UpperCAmelCase_ = [] UpperCAmelCase_ = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCAmelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: UpperCAmelCase_ = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: UpperCAmelCase_ = hidden_states[:, None, :] UpperCAmelCase_ = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: UpperCAmelCase_ = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCAmelCase , -1 , -1 ) additional_embeds.append(lowerCAmelCase ) UpperCAmelCase_ = torch.cat( lowerCAmelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens UpperCAmelCase_ = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: UpperCAmelCase_ = F.pad( lowerCAmelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) UpperCAmelCase_ = hidden_states + positional_embeddings if attention_mask is not None: UpperCAmelCase_ = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 UpperCAmelCase_ = F.pad(lowerCAmelCase , (0, self.additional_embeddings) , value=0.0 ) UpperCAmelCase_ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) UpperCAmelCase_ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: UpperCAmelCase_ = self.norm_in(lowerCAmelCase ) for block in self.transformer_blocks: UpperCAmelCase_ = block(lowerCAmelCase , attention_mask=lowerCAmelCase ) UpperCAmelCase_ = self.norm_out(lowerCAmelCase ) if self.prd_embedding is not None: UpperCAmelCase_ = hidden_states[:, -1] else: UpperCAmelCase_ = hidden_states[:, additional_embeddings_len:] UpperCAmelCase_ = self.proj_to_clip_embeddings(lowerCAmelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
23
0
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=30 , lowerCAmelCase=2 , lowerCAmelCase=3 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=32 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=37 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=10 , lowerCAmelCase=0.02 , lowerCAmelCase=3 , lowerCAmelCase=None , lowerCAmelCase=2 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCAmelCase_ = (image_size // patch_size) ** 2 UpperCAmelCase_ = num_patches + 2 def A__ ( self ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def A__ ( self ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = DeiTModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = DeiTForMaskedImageModeling(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = DeiTForMaskedImageModeling(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = self.type_sequence_label_size UpperCAmelCase_ = DeiTForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = DeiTForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self ): UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase__, lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) lowerCAmelCase_ : Optional[Any] = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : int = False lowerCAmelCase_ : Dict = False def A__ ( self ): UpperCAmelCase_ = DeiTModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 ) def A__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def A__ ( self ): pass def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ): UpperCAmelCase_ = super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def A__ ( self ): if not self.model_tester.is_training: return UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCAmelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue UpperCAmelCase_ = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.train() UpperCAmelCase_ = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) UpperCAmelCase_ = model(**lowerCAmelCase ).loss loss.backward() def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase_ = False UpperCAmelCase_ = True for model_class in self.all_model_classes: if model_class in get_values(lowerCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue UpperCAmelCase_ = model_class(lowerCAmelCase ) model.gradient_checkpointing_enable() model.to(lowerCAmelCase ) model.train() UpperCAmelCase_ = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) UpperCAmelCase_ = model(**lowerCAmelCase ).loss loss.backward() def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCAmelCase ), *get_values(lowerCAmelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'''Testing {model_class} with {problem_type['title']}''' ): UpperCAmelCase_ = problem_type["title"] UpperCAmelCase_ = problem_type["num_labels"] UpperCAmelCase_ = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.train() UpperCAmelCase_ = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) if problem_type["num_labels"] > 1: UpperCAmelCase_ = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) UpperCAmelCase_ = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCAmelCase ) as warning_list: UpperCAmelCase_ = model(**lowerCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def A__ ( self ): for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = DeiTModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def snake_case__ ( ) -> Any: UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self ): return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def A__ ( self ): UpperCAmelCase_ = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ).to( lowerCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=lowerCAmelCase , return_tensors="pt" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase_ = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def A__ ( self ): UpperCAmelCase_ = DeiTModel.from_pretrained( "facebook/deit-base-distilled-patch16-224" , torch_dtype=torch.floataa , device_map="auto" ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=lowerCAmelCase , return_tensors="pt" ) UpperCAmelCase_ = inputs.pixel_values.to(lowerCAmelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): UpperCAmelCase_ = model(lowerCAmelCase )
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = 1 for i in range(1 , num + 1 ): fact *= i return fact def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = 0 while number > 0: UpperCAmelCase_ = number % 10 sum_of_digits += last_digit UpperCAmelCase_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def snake_case__ ( __SCREAMING_SNAKE_CASE = 100 ) -> int: UpperCAmelCase_ = factorial(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = split_and_add(__SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
715
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = 'xlm-roberta' def __init__( self , lowerCAmelCase=3_0522 , lowerCAmelCase=768 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=3072 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-1_2 , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase="absolute" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class lowerCamelCase ( lowercase__ ): '''simple docstring''' @property def A__ ( self ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
23
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCamelCase ( datasets.BeamBasedBuilder ): '''simple docstring''' def A__ ( self ): return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=lowerCAmelCase , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def A__ ( self , lowerCAmelCase , lowerCAmelCase ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowerCAmelCase ) class lowerCamelCase ( datasets.BeamBasedBuilder ): '''simple docstring''' def A__ ( self ): return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=lowerCAmelCase , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def A__ ( self , lowerCAmelCase , lowerCAmelCase ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowerCAmelCase ) def snake_case__ ( ) -> Tuple: return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def snake_case__ ( ) -> Any: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class lowerCamelCase ( lowercase__ ): '''simple docstring''' @require_beam def A__ ( self ): UpperCAmelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase_ = DummyBeamDataset(cache_dir=lowerCAmelCase , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowerCAmelCase , builder.name , "default" , "0.0.0" , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase_ = builder.as_dataset() self.assertEqual(dset["train"].num_rows , lowerCAmelCase ) self.assertEqual(dset["train"].info.splits["train"].num_examples , lowerCAmelCase ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def A__ ( self ): import apache_beam as beam UpperCAmelCase_ = beam.io.parquetio.WriteToParquet UpperCAmelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase_ = DummyBeamDataset(cache_dir=lowerCAmelCase , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: UpperCAmelCase_ = partial(lowerCAmelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( lowerCAmelCase , builder.name , "default" , "0.0.0" , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertTrue( os.path.exists( os.path.join( lowerCAmelCase , builder.name , "default" , "0.0.0" , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase_ = builder.as_dataset() self.assertEqual(dset["train"].num_rows , lowerCAmelCase ) self.assertEqual(dset["train"].info.splits["train"].num_examples , lowerCAmelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def A__ ( self ): with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase_ = DummyBeamDataset(cache_dir=lowerCAmelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def A__ ( self ): UpperCAmelCase_ = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase_ = NestedBeamDataset(cache_dir=lowerCAmelCase , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowerCAmelCase , builder.name , "default" , "0.0.0" , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) UpperCAmelCase_ = builder.as_dataset() self.assertEqual(dset["train"].num_rows , lowerCAmelCase ) self.assertEqual(dset["train"].info.splits["train"].num_examples , lowerCAmelCase ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
716
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = int(__SCREAMING_SNAKE_CASE ) if decimal in (0, 1): # Exit cases for the recursion return str(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ , UpperCAmelCase_ = divmod(__SCREAMING_SNAKE_CASE , 2 ) return binary_recursive(__SCREAMING_SNAKE_CASE ) + str(__SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = str(__SCREAMING_SNAKE_CASE ).strip() if not number: raise ValueError("No input value was provided" ) UpperCAmelCase_ = "-" if number.startswith("-" ) else "" UpperCAmelCase_ = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f'''{negative}0b{binary_recursive(int(__SCREAMING_SNAKE_CASE ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
23
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger() @dataclass class lowerCamelCase : '''simple docstring''' lowerCAmelCase_ : nn.Module lowerCAmelCase_ : List[nn.Module] = field(default_factory=lowercase__ ) lowerCAmelCase_ : list = field(default_factory=lowercase__ ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = len(list(m.modules() ) ) == 1 or isinstance(lowerCAmelCase , nn.Convad ) or isinstance(lowerCAmelCase , nn.BatchNormad ) if has_not_submodules: self.traced.append(lowerCAmelCase ) def __call__( self , lowerCAmelCase ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowerCAmelCase ) [x.remove() for x in self.handles] return self @property def A__ ( self ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda lowerCAmelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCamelCase : '''simple docstring''' lowerCAmelCase_ : nn.Module lowerCAmelCase_ : nn.Module lowerCAmelCase_ : int = 1 lowerCAmelCase_ : List = field(default_factory=lowercase__ ) lowerCAmelCase_ : List = field(default_factory=lowercase__ ) lowerCAmelCase_ : bool = True def __call__( self , lowerCAmelCase ): UpperCAmelCase_ = Tracker(self.dest )(lowerCAmelCase ).parametrized UpperCAmelCase_ = Tracker(self.src )(lowerCAmelCase ).parametrized UpperCAmelCase_ = list(filter(lambda lowerCAmelCase : type(lowerCAmelCase ) not in self.src_skip , lowerCAmelCase ) ) UpperCAmelCase_ = list(filter(lambda lowerCAmelCase : type(lowerCAmelCase ) not in self.dest_skip , lowerCAmelCase ) ) if len(lowerCAmelCase ) != len(lowerCAmelCase ) and self.raise_if_mismatch: raise Exception( f'''Numbers of operations are different. Source module has {len(lowerCAmelCase )} operations while''' f''' destination module has {len(lowerCAmelCase )}.''' ) for dest_m, src_m in zip(lowerCAmelCase , lowerCAmelCase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'''Transfered from={src_m} to={dest_m}''' ) class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowerCAmelCase ): super().__init__() UpperCAmelCase_ = [] # - get the stem feature_blocks.append(("conv1", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("block" ), f'''Unexpected layer name {k}''' UpperCAmelCase_ = len(lowerCAmelCase ) + 1 feature_blocks.append((f'''res{block_index}''', v) ) UpperCAmelCase_ = nn.ModuleDict(lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): return get_trunk_forward_outputs( lowerCAmelCase , out_feat_keys=lowerCAmelCase , feature_blocks=self._feature_blocks , ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = x.split("-" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self , lowerCAmelCase ): # default to timm! if x not in self: UpperCAmelCase_ = self.convert_name_to_timm(lowerCAmelCase ) UpperCAmelCase_ = partial(lambda: (timm.create_model(lowerCAmelCase , pretrained=lowerCAmelCase ).eval(), None) ) else: UpperCAmelCase_ = super().__getitem__(lowerCAmelCase ) return val class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __getitem__( self , lowerCAmelCase ): if "seer" in x and "in1k" not in x: UpperCAmelCase_ = RegNetModel else: UpperCAmelCase_ = RegNetForImageClassification return val def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: for from_key, to_key in keys: UpperCAmelCase_ = from_state_dict[from_key].clone() print(f'''Copied key={from_key} to={to_key}''' ) return to_state_dict def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True , ) -> Optional[Any]: print(f'''Converting {name}...''' ) with torch.no_grad(): UpperCAmelCase_ , UpperCAmelCase_ = from_model_func() UpperCAmelCase_ = our_model_func(__SCREAMING_SNAKE_CASE ).eval() UpperCAmelCase_ = ModuleTransfer(src=__SCREAMING_SNAKE_CASE , dest=__SCREAMING_SNAKE_CASE , raise_if_mismatch=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = torch.randn((1, 3, 224, 224) ) module_transfer(__SCREAMING_SNAKE_CASE ) if from_state_dict is not None: UpperCAmelCase_ = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: UpperCAmelCase_ = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")] UpperCAmelCase_ = manually_copy_vissl_head(__SCREAMING_SNAKE_CASE , our_model.state_dict() , __SCREAMING_SNAKE_CASE ) our_model.load_state_dict(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = our_model(__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = ( our_outputs.logits if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else our_outputs.last_hidden_state ) UpperCAmelCase_ = from_model(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = from_output[-1] if type(__SCREAMING_SNAKE_CASE ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: UpperCAmelCase_ = our_outputs.hidden_states[-1] assert torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add model" , use_temp_dir=__SCREAMING_SNAKE_CASE , ) UpperCAmelCase_ = 224 if "seer" not in name else 384 # we can use the convnext one UpperCAmelCase_ = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" , size=__SCREAMING_SNAKE_CASE ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add image processor" , use_temp_dir=__SCREAMING_SNAKE_CASE , ) print(f'''Pushed {name}''' ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True ) -> int: UpperCAmelCase_ = "imagenet-1k-id2label.json" UpperCAmelCase_ = 1000 UpperCAmelCase_ = (1, num_labels) UpperCAmelCase_ = "huggingface/label-files" UpperCAmelCase_ = num_labels UpperCAmelCase_ = json.load(open(cached_download(hf_hub_url(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type="dataset" ) ) , "r" ) ) UpperCAmelCase_ = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} UpperCAmelCase_ = partial(__SCREAMING_SNAKE_CASE , num_labels=__SCREAMING_SNAKE_CASE , idalabel=__SCREAMING_SNAKE_CASE , labelaid=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = { "regnet-x-002": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="x" ), "regnet-x-004": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="x" ), "regnet-x-006": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="x" ), "regnet-x-008": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="x" ), "regnet-x-016": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="x" ), "regnet-x-032": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="x" ), "regnet-x-040": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="x" ), "regnet-x-064": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="x" ), "regnet-x-080": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="x" ), "regnet-x-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="x" ), "regnet-x-160": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="x" ), "regnet-x-320": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="x" ), # y variant "regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), "regnet-y-004": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), "regnet-y-006": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), "regnet-y-008": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), "regnet-y-016": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), "regnet-y-032": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), "regnet-y-040": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), "regnet-y-064": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), "regnet-y-080": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), "regnet-y-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), "regnet-y-160": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), "regnet-y-320": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 "regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), # finetuned on imagenet "regnet-y-320-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), } UpperCAmelCase_ = NameToOurModelFuncMap() UpperCAmelCase_ = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple[nn.Module, Dict]: UpperCAmelCase_ = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , model_dir=str(__SCREAMING_SNAKE_CASE ) , map_location="cpu" ) UpperCAmelCase_ = model_func() # check if we have a head, if yes add it UpperCAmelCase_ = files["classy_state_dict"]["base_model"]["model"] UpperCAmelCase_ = model_state_dict["trunk"] model.load_state_dict(__SCREAMING_SNAKE_CASE ) return model.eval(), model_state_dict["heads"] # pretrained UpperCAmelCase_ = partial( __SCREAMING_SNAKE_CASE , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ = partial( __SCREAMING_SNAKE_CASE , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ = partial( __SCREAMING_SNAKE_CASE , "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCAmelCase_ = partial( __SCREAMING_SNAKE_CASE , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned UpperCAmelCase_ = partial( __SCREAMING_SNAKE_CASE , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ = partial( __SCREAMING_SNAKE_CASE , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ = partial( __SCREAMING_SNAKE_CASE , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCAmelCase_ = partial( __SCREAMING_SNAKE_CASE , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( __SCREAMING_SNAKE_CASE , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __SCREAMING_SNAKE_CASE , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) return config, expected_shape if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) SCREAMING_SNAKE_CASE = parser.parse_args() SCREAMING_SNAKE_CASE = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
717
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ): UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=lowerCAmelCase ).to(lowerCAmelCase ) UpperCAmelCase_ = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase_ = tokenizer("Hello there" , return_tensors="pt" ).input_ids UpperCAmelCase_ = tokenizer("Hi I am" , return_tensors="pt" ).input_ids UpperCAmelCase_ = model(input_ids.to(lowerCAmelCase ) , labels=labels.to(lowerCAmelCase ) ).loss UpperCAmelCase_ = -(labels.shape[-1] * loss.item()) UpperCAmelCase_ = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
23
0
import re def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> list: return [char.split() for char in re.split(R"[^ a-z A-Z 0-9 \s]" , str_ )] def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = split_input(str_ ) return "".join( ["".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: try: UpperCAmelCase_ = split_input(__SCREAMING_SNAKE_CASE ) if upper: UpperCAmelCase_ = "".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: UpperCAmelCase_ = "".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: return to_simple_case(__SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: try: UpperCAmelCase_ = to_simple_case(__SCREAMING_SNAKE_CASE ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: return to_complex_case(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "_" ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: return to_complex_case(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "-" ) if __name__ == "__main__": __import__("doctest").testmod()
718
def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ = 0 while b > 0: if b & 1: UpperCAmelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
23
0
'''simple docstring''' import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = inspect.getfile(accelerate.test_utils ) lowerCAmelCase_ : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_cli.py'] ) lowerCAmelCase_ : Dict = ['accelerate', 'launch'] lowerCAmelCase_ : int = Path.home() / '.cache/huggingface/accelerate' lowerCAmelCase_ : str = 'default_config.yaml' lowerCAmelCase_ : Dict = config_folder / config_file lowerCAmelCase_ : Tuple = config_folder / '_default_config.yaml' lowerCAmelCase_ : Dict = Path('tests/test_configs' ) @classmethod def A__ ( cls ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def A__ ( cls ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def A__ ( self ): UpperCAmelCase_ = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def A__ ( self ): for config in sorted(self.test_config_path.glob("**/*.yaml" ) ): with self.subTest(config_file=lowerCAmelCase ): execute_subprocess_async( self.base_cmd + ["--config_file", str(lowerCAmelCase ), self.test_file_path] , env=os.environ.copy() ) def A__ ( self ): execute_subprocess_async(["accelerate", "test"] , env=os.environ.copy() ) class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Any = 'test-tpu' lowerCAmelCase_ : List[Any] = 'us-central1-a' lowerCAmelCase_ : int = 'ls' lowerCAmelCase_ : Optional[int] = ['accelerate', 'tpu-config'] lowerCAmelCase_ : str = 'cd /usr/share' lowerCAmelCase_ : Optional[int] = 'tests/test_samples/test_command_file.sh' lowerCAmelCase_ : List[str] = 'Running gcloud compute tpus tpu-vm ssh' def A__ ( self ): UpperCAmelCase_ = run_command( self.cmd + ["--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug"] , return_stdout=lowerCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , lowerCAmelCase , ) def A__ ( self ): UpperCAmelCase_ = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ] , return_stdout=lowerCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , lowerCAmelCase , ) def A__ ( self ): UpperCAmelCase_ = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--debug"] , return_stdout=lowerCAmelCase ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , lowerCAmelCase , ) def A__ ( self ): UpperCAmelCase_ = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--debug"] , return_stdout=lowerCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , lowerCAmelCase , ) def A__ ( self ): UpperCAmelCase_ = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--command", "echo \"Hello World\"", "--debug", ] , return_stdout=lowerCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , lowerCAmelCase , ) def A__ ( self ): UpperCAmelCase_ = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command_file", self.command_file, "--debug"] , return_stdout=lowerCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , lowerCAmelCase , ) def A__ ( self ): UpperCAmelCase_ = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command_file", self.command_file, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ] , return_stdout=lowerCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , lowerCAmelCase , ) def A__ ( self ): UpperCAmelCase_ = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--debug"] , return_stdout=lowerCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , lowerCAmelCase , ) def A__ ( self ): UpperCAmelCase_ = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--accelerate_version", "12.0.0", "--debug", ] , return_stdout=lowerCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , lowerCAmelCase , )
719
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> List[List[ImageInput]]: if isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[Any] = ['pixel_values'] def __init__( self , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = PILImageResampling.BILINEAR , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = True , lowerCAmelCase = 1 / 255 , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ): super().__init__(**lowerCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = PILImageResampling.BILINEAR , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(lowerCAmelCase , size["shortest_edge"] , default_to_square=lowerCAmelCase ) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(lowerCAmelCase , size=(size["height"], size["width"]) , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): return rescale(lowerCAmelCase , scale=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): return normalize(lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = to_numpy_array(lowerCAmelCase ) if do_resize: UpperCAmelCase_ = self.resize(image=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase ) if do_center_crop: UpperCAmelCase_ = self.center_crop(lowerCAmelCase , size=lowerCAmelCase ) if do_rescale: UpperCAmelCase_ = self.rescale(image=lowerCAmelCase , scale=lowerCAmelCase ) if do_normalize: UpperCAmelCase_ = self.normalize(image=lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase ) UpperCAmelCase_ = to_channel_dimension_format(lowerCAmelCase , lowerCAmelCase ) return image def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = ChannelDimension.FIRST , **lowerCAmelCase , ): UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="crop_size" ) if not valid_images(lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase_ = make_batched(lowerCAmelCase ) UpperCAmelCase_ = [ [ self._preprocess_image( image=lowerCAmelCase , do_resize=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , do_center_crop=lowerCAmelCase , crop_size=lowerCAmelCase , do_rescale=lowerCAmelCase , rescale_factor=lowerCAmelCase , do_normalize=lowerCAmelCase , image_mean=lowerCAmelCase , image_std=lowerCAmelCase , data_format=lowerCAmelCase , ) for img in video ] for video in videos ] UpperCAmelCase_ = {"pixel_values": videos} return BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase )
23
0
from __future__ import annotations def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> list[int]: UpperCAmelCase_ = 2 UpperCAmelCase_ = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__SCREAMING_SNAKE_CASE ) if n > 1: factors.append(__SCREAMING_SNAKE_CASE ) return factors if __name__ == "__main__": import doctest doctest.testmod()
720
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = 1 for i in range(1 , num + 1 ): fact *= i return fact def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = 0 while number > 0: UpperCAmelCase_ = number % 10 sum_of_digits += last_digit UpperCAmelCase_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def snake_case__ ( __SCREAMING_SNAKE_CASE = 100 ) -> int: UpperCAmelCase_ = factorial(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = split_and_add(__SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
23
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
721
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> tuple: return (data["data"], data["target"]) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> XGBClassifier: UpperCAmelCase_ = XGBClassifier() classifier.fit(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return classifier def snake_case__ ( ) -> None: UpperCAmelCase_ = load_iris() UpperCAmelCase_ , UpperCAmelCase_ = data_handling(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_test_split( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , test_size=0.25 ) UpperCAmelCase_ = iris["target_names"] # Create an XGBoost Classifier from the training data UpperCAmelCase_ = xgboost(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , display_labels=__SCREAMING_SNAKE_CASE , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
700
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: # Initialise PyTorch model UpperCAmelCase_ = MobileBertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase_ = MobileBertForPreTraining(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint UpperCAmelCase_ = load_tf_weights_in_mobilebert(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
23
0
'''simple docstring''' def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> bool: UpperCAmelCase_ = 0 for ch in input_str: UpperCAmelCase_ = ord(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = pow(2 , __SCREAMING_SNAKE_CASE ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
701
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase ): UpperCAmelCase_ = str(id_ ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = [] UpperCAmelCase_ = {} # {vertex:distance} def __lt__( self , lowerCAmelCase ): return self.key < other.key def __repr__( self ): return self.id def A__ ( self , lowerCAmelCase ): self.neighbors.append(lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = weight def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __SCREAMING_SNAKE_CASE ) graph[b - 1].add_edge(graph[a - 1] , __SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> list: UpperCAmelCase_ = [] for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = graph[:] while q: UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE ) q.remove(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Iterator[tuple]: for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = list(__SCREAMING_SNAKE_CASE ) hq.heapify(__SCREAMING_SNAKE_CASE ) while h: UpperCAmelCase_ = hq.heappop(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] hq.heapify(__SCREAMING_SNAKE_CASE ) for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def snake_case__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
23
0
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = FlaxStableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2" , revision="bf16" , dtype=jnp.bfloataa , ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = jax.device_count() UpperCAmelCase_ = num_samples * [prompt] UpperCAmelCase_ = sd_pipe.prepare_inputs(lowerCAmelCase ) UpperCAmelCase_ = replicate(lowerCAmelCase ) UpperCAmelCase_ = shard(lowerCAmelCase ) UpperCAmelCase_ = jax.random.PRNGKey(0 ) UpperCAmelCase_ = jax.random.split(lowerCAmelCase , jax.device_count() ) UpperCAmelCase_ = sd_pipe(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , num_inference_steps=25 , jit=lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) UpperCAmelCase_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCAmelCase_ = images[0, 253:256, 253:256, -1] UpperCAmelCase_ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCAmelCase_ = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def A__ ( self ): UpperCAmelCase_ = "stabilityai/stable-diffusion-2" UpperCAmelCase_ , UpperCAmelCase_ = FlaxDPMSolverMultistepScheduler.from_pretrained(lowerCAmelCase , subfolder="scheduler" ) UpperCAmelCase_ , UpperCAmelCase_ = FlaxStableDiffusionPipeline.from_pretrained( lowerCAmelCase , scheduler=lowerCAmelCase , revision="bf16" , dtype=jnp.bfloataa , ) UpperCAmelCase_ = scheduler_params UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = jax.device_count() UpperCAmelCase_ = num_samples * [prompt] UpperCAmelCase_ = sd_pipe.prepare_inputs(lowerCAmelCase ) UpperCAmelCase_ = replicate(lowerCAmelCase ) UpperCAmelCase_ = shard(lowerCAmelCase ) UpperCAmelCase_ = jax.random.PRNGKey(0 ) UpperCAmelCase_ = jax.random.split(lowerCAmelCase , jax.device_count() ) UpperCAmelCase_ = sd_pipe(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , num_inference_steps=25 , jit=lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) UpperCAmelCase_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCAmelCase_ = images[0, 253:256, 253:256, -1] UpperCAmelCase_ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCAmelCase_ = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ = 0 while b > 0: if b & 1: UpperCAmelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
703
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE = { "yjernite/retribert-base-uncased": 512, } SCREAMING_SNAKE_CASE = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase_ : int = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Dict = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : List[str] = RetriBertTokenizer lowerCAmelCase_ : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**lowerCAmelCase ) UpperCAmelCase_ = do_lower_case def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
23
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCamelCase ( lowercase__, lowercase__, lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Dict = StableUnCLIPImgaImgPipeline lowerCAmelCase_ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowerCAmelCase_ : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase_ : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase_ : Optional[int] = frozenset([] ) def A__ ( self ): UpperCAmelCase_ = 32 UpperCAmelCase_ = embedder_hidden_size # image encoding components UpperCAmelCase_ = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCAmelCase , projection_dim=lowerCAmelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) UpperCAmelCase_ = StableUnCLIPImageNormalizer(embedding_dim=lowerCAmelCase ) UpperCAmelCase_ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCAmelCase , layers_per_block=1 , upcast_attention=lowerCAmelCase , use_linear_projection=lowerCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase_ = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL() UpperCAmelCase_ = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def A__ ( self , lowerCAmelCase , lowerCAmelCase=0 , lowerCAmelCase=True ): if str(lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(lowerCAmelCase ) else: UpperCAmelCase_ = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) UpperCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) if pil_image: UpperCAmelCase_ = input_image * 0.5 + 0.5 UpperCAmelCase_ = input_image.clamp(0 , 1 ) UpperCAmelCase_ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ = DiffusionPipeline.numpy_to_pil(lowerCAmelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def A__ ( self ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = StableUnCLIPImgaImgPipeline(**lowerCAmelCase ) UpperCAmelCase_ = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs(lowerCAmelCase ) inputs.update({"image_embeds": None} ) UpperCAmelCase_ = sd_pipe(**lowerCAmelCase ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ): UpperCAmelCase_ = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowerCAmelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCAmelCase ) @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) UpperCAmelCase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , "anime turle" , generator=lowerCAmelCase , output_type="np" ) UpperCAmelCase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) UpperCAmelCase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , "anime turle" , generator=lowerCAmelCase , output_type="np" ) UpperCAmelCase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) UpperCAmelCase_ = pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase_ = pipe( lowerCAmelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
704
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } SCREAMING_SNAKE_CASE = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Any = VOCAB_FILES_NAMES lowerCAmelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : int = ['input_ids', 'attention_mask'] lowerCAmelCase_ : str = DistilBertTokenizer def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**lowerCAmelCase ) UpperCAmelCase_ = do_lower_case def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
23
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase=7 , lowerCAmelCase=3 , lowerCAmelCase=30 , lowerCAmelCase=400 , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase=[0.5, 0.5, 0.5] , lowerCAmelCase=[0.5, 0.5, 0.5] , lowerCAmelCase=True , lowerCAmelCase=1 / 255 , lowerCAmelCase=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p UpperCAmelCase_ = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_pad def A__ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def A__ ( self , lowerCAmelCase , lowerCAmelCase=False ): if not batched: UpperCAmelCase_ = image_inputs[0] if isinstance(lowerCAmelCase , Image.Image ): UpperCAmelCase_ , UpperCAmelCase_ = image.size else: UpperCAmelCase_ , UpperCAmelCase_ = image.shape[1], image.shape[2] if w < h: UpperCAmelCase_ = int(self.size["shortest_edge"] * h / w ) UpperCAmelCase_ = self.size["shortest_edge"] elif w > h: UpperCAmelCase_ = self.size["shortest_edge"] UpperCAmelCase_ = int(self.size["shortest_edge"] * w / h ) else: UpperCAmelCase_ = self.size["shortest_edge"] UpperCAmelCase_ = self.size["shortest_edge"] else: UpperCAmelCase_ = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase_ = max(lowerCAmelCase , key=lambda lowerCAmelCase : item[0] )[0] UpperCAmelCase_ = max(lowerCAmelCase , key=lambda lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase ( lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = ConditionalDetrImageProcessor if is_vision_available() else None def A__ ( self ): UpperCAmelCase_ = ConditionalDetrImageProcessingTester(self ) @property def A__ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self ): UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase , "image_mean" ) ) self.assertTrue(hasattr(lowerCAmelCase , "image_std" ) ) self.assertTrue(hasattr(lowerCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase , "size" ) ) def A__ ( self ): UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase ) UpperCAmelCase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase ) def A__ ( self ): pass def A__ ( self ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(lowerCAmelCase , batched=lowerCAmelCase ) UpperCAmelCase_ = image_processing(lowerCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(lowerCAmelCase , return_tensors="pt" ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(lowerCAmelCase , batched=lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(lowerCAmelCase , return_tensors="pt" ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(lowerCAmelCase , batched=lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def A__ ( self ): # prepare image and target UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: UpperCAmelCase_ = json.loads(f.read() ) UpperCAmelCase_ = {"image_id": 3_9769, "annotations": target} # encode them UpperCAmelCase_ = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) UpperCAmelCase_ = image_processing(images=lowerCAmelCase , annotations=lowerCAmelCase , return_tensors="pt" ) # verify pixel values UpperCAmelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , lowerCAmelCase ) UpperCAmelCase_ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCAmelCase , atol=1e-4 ) ) # verify area UpperCAmelCase_ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCAmelCase ) ) # verify boxes UpperCAmelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCAmelCase ) UpperCAmelCase_ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCAmelCase , atol=1e-3 ) ) # verify image_id UpperCAmelCase_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCAmelCase ) ) # verify is_crowd UpperCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCAmelCase ) ) # verify class_labels UpperCAmelCase_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCAmelCase ) ) # verify orig_size UpperCAmelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCAmelCase ) ) # verify size UpperCAmelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCAmelCase ) ) @slow def A__ ( self ): # prepare image, target and masks_path UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: UpperCAmelCase_ = json.loads(f.read() ) UpperCAmelCase_ = {"file_name": "000000039769.png", "image_id": 3_9769, "segments_info": target} UpperCAmelCase_ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them UpperCAmelCase_ = ConditionalDetrImageProcessor(format="coco_panoptic" ) UpperCAmelCase_ = image_processing(images=lowerCAmelCase , annotations=lowerCAmelCase , masks_path=lowerCAmelCase , return_tensors="pt" ) # verify pixel values UpperCAmelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , lowerCAmelCase ) UpperCAmelCase_ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCAmelCase , atol=1e-4 ) ) # verify area UpperCAmelCase_ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCAmelCase ) ) # verify boxes UpperCAmelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCAmelCase ) UpperCAmelCase_ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCAmelCase , atol=1e-3 ) ) # verify image_id UpperCAmelCase_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCAmelCase ) ) # verify is_crowd UpperCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCAmelCase ) ) # verify class_labels UpperCAmelCase_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCAmelCase ) ) # verify masks UpperCAmelCase_ = 82_2873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , lowerCAmelCase ) # verify orig_size UpperCAmelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCAmelCase ) ) # verify size UpperCAmelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCAmelCase ) )
705
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> np.array: UpperCAmelCase_ = f'''{sampling_rate}''' UpperCAmelCase_ = "1" UpperCAmelCase_ = "f32le" UpperCAmelCase_ = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: UpperCAmelCase_ = ffmpeg_process.communicate(__SCREAMING_SNAKE_CASE ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error UpperCAmelCase_ = output_stream[0] UpperCAmelCase_ = np.frombuffer(__SCREAMING_SNAKE_CASE , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "f32le" , ) -> Dict: UpperCAmelCase_ = f'''{sampling_rate}''' UpperCAmelCase_ = "1" if format_for_conversion == "s16le": UpperCAmelCase_ = 2 elif format_for_conversion == "f32le": UpperCAmelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) UpperCAmelCase_ = platform.system() if system == "Linux": UpperCAmelCase_ = "alsa" UpperCAmelCase_ = "default" elif system == "Darwin": UpperCAmelCase_ = "avfoundation" UpperCAmelCase_ = ":0" elif system == "Windows": UpperCAmelCase_ = "dshow" UpperCAmelCase_ = "default" UpperCAmelCase_ = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample UpperCAmelCase_ = _ffmpeg_stream(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for item in iterator: yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "f32le" , ) -> int: if stream_chunk_s is not None: UpperCAmelCase_ = stream_chunk_s else: UpperCAmelCase_ = chunk_length_s UpperCAmelCase_ = ffmpeg_microphone(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , format_for_conversion=__SCREAMING_SNAKE_CASE ) if format_for_conversion == "s16le": UpperCAmelCase_ = np.intaa UpperCAmelCase_ = 2 elif format_for_conversion == "f32le": UpperCAmelCase_ = np.floataa UpperCAmelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: UpperCAmelCase_ = chunk_length_s / 6 UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): UpperCAmelCase_ = [stride_length_s, stride_length_s] UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample UpperCAmelCase_ = datetime.datetime.now() UpperCAmelCase_ = datetime.timedelta(seconds=__SCREAMING_SNAKE_CASE ) for item in chunk_bytes_iter(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=(stride_left, stride_right) , stream=__SCREAMING_SNAKE_CASE ): # Put everything back in numpy scale UpperCAmelCase_ = np.frombuffer(item["raw"] , dtype=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) UpperCAmelCase_ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False ) -> Dict: UpperCAmelCase_ = B"" UpperCAmelCase_ , UpperCAmelCase_ = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) UpperCAmelCase_ = 0 for raw in iterator: acc += raw if stream and len(__SCREAMING_SNAKE_CASE ) < chunk_len: UpperCAmelCase_ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__SCREAMING_SNAKE_CASE ) >= chunk_len: # We are flushing the accumulator UpperCAmelCase_ = (_stride_left, stride_right) UpperCAmelCase_ = {"raw": acc[:chunk_len], "stride": stride} if stream: UpperCAmelCase_ = False yield item UpperCAmelCase_ = stride_left UpperCAmelCase_ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__SCREAMING_SNAKE_CASE ) > stride_left: UpperCAmelCase_ = {"raw": acc, "stride": (_stride_left, 0)} if stream: UpperCAmelCase_ = False yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ = 2**24 # 16Mo try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE , bufsize=__SCREAMING_SNAKE_CASE ) as ffmpeg_process: while True: UpperCAmelCase_ = ffmpeg_process.stdout.read(__SCREAMING_SNAKE_CASE ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
23
0
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=99 , lowerCAmelCase=64 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=37 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=16 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=3 , lowerCAmelCase=4 , lowerCAmelCase=None , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_labels UpperCAmelCase_ = num_choices UpperCAmelCase_ = scope UpperCAmelCase_ = vocab_size - 1 def A__ ( self ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, input_ids, input_mask, token_labels def A__ ( self ): return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ = True return config, input_ids, input_mask, token_labels def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = GPTNeoXModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase , attention_mask=lowerCAmelCase ) UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = True UpperCAmelCase_ = GPTNeoXModel(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase , attention_mask=lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = GPTNeoXForCausalLM(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = GPTNeoXForQuestionAnswering(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase , attention_mask=lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = GPTNeoXForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = GPTNeoXForTokenClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = True UpperCAmelCase_ = GPTNeoXForCausalLM(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() # first forward pass UpperCAmelCase_ = model(lowerCAmelCase , attention_mask=lowerCAmelCase , use_cache=lowerCAmelCase ) UpperCAmelCase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase_ = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase_ = model(lowerCAmelCase , attention_mask=lowerCAmelCase , output_hidden_states=lowerCAmelCase ) UpperCAmelCase_ = output_from_no_past["hidden_states"][0] UpperCAmelCase_ = model( lowerCAmelCase , attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase , output_hidden_states=lowerCAmelCase , )["hidden_states"][0] # select random slice UpperCAmelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1e-3 ) ) def A__ ( self ): UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase__, lowercase__, lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : List[Any] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase_ : str = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCAmelCase_ : Union[str, Any] = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : int = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : Any = False def A__ ( self ): UpperCAmelCase_ = GPTNeoXModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=64 , num_attention_heads=8 ) def A__ ( self ): self.config_tester.run_common_tests() def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): # This regression test was failing with PyTorch < 1.3 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase_ = None self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase ) @unittest.skip(reason="Feed forward chunking is not implemented" ) def A__ ( self ): pass @parameterized.expand([("linear",), ("dynamic",)] ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_ = GPTNeoXModel(lowerCAmelCase ) original_model.to(lowerCAmelCase ) original_model.eval() UpperCAmelCase_ = original_model(lowerCAmelCase ).last_hidden_state UpperCAmelCase_ = original_model(lowerCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_ = {"type": scaling_type, "factor": 10.0} UpperCAmelCase_ = GPTNeoXModel(lowerCAmelCase ) scaled_model.to(lowerCAmelCase ) scaled_model.eval() UpperCAmelCase_ = scaled_model(lowerCAmelCase ).last_hidden_state UpperCAmelCase_ = scaled_model(lowerCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1e-5 ) ) @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ): UpperCAmelCase_ = AutoTokenizer.from_pretrained("EleutherAI/pythia-410m-deduped" ) for checkpointing in [True, False]: UpperCAmelCase_ = GPTNeoXForCausalLM.from_pretrained("EleutherAI/pythia-410m-deduped" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCAmelCase ) UpperCAmelCase_ = tokenizer("My favorite food is" , return_tensors="pt" ).to(lowerCAmelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 UpperCAmelCase_ = "My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure" UpperCAmelCase_ = model.generate(**lowerCAmelCase , do_sample=lowerCAmelCase , max_new_tokens=20 ) UpperCAmelCase_ = tokenizer.batch_decode(lowerCAmelCase )[0] self.assertEqual(lowerCAmelCase , lowerCAmelCase )
706
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowerCamelCase ( lowercase__, lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCAmelCase = 768 , ): super().__init__() UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(torch.ones(1 , lowerCAmelCase ) ) def A__ ( self , lowerCAmelCase = None , lowerCAmelCase = None , ): UpperCAmelCase_ = nn.Parameter(self.mean.to(lowerCAmelCase ).to(lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(self.std.to(lowerCAmelCase ).to(lowerCAmelCase ) ) return self def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (embeds * self.std) + self.mean return embeds
23
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
707
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): super().__init__(*lowerCAmelCase , **lowerCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def A__ ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None ): UpperCAmelCase_ = {} UpperCAmelCase_ = {} if prompt is not None: UpperCAmelCase_ = prompt if generate_kwargs is not None: UpperCAmelCase_ = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: UpperCAmelCase_ = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one" ) UpperCAmelCase_ = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , lowerCAmelCase , **lowerCAmelCase ): return super().__call__(lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = load_image(lowerCAmelCase ) if prompt is not None: if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(lowerCAmelCase )} - but expected a single string. ''' "Note also that one single text can be provided for conditional image to text generation." ) UpperCAmelCase_ = self.model.config.model_type if model_type == "git": UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) UpperCAmelCase_ = self.tokenizer(text=lowerCAmelCase , add_special_tokens=lowerCAmelCase ).input_ids UpperCAmelCase_ = [self.tokenizer.cls_token_id] + input_ids UpperCAmelCase_ = torch.tensor(lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"input_ids": input_ids} ) elif model_type == "pix2struct": UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , header_text=lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) UpperCAmelCase_ = self.tokenizer(lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: UpperCAmelCase_ = None return model_inputs def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , lowerCAmelCase ) and all(x is None for x in model_inputs["input_ids"] ) ): UpperCAmelCase_ = None if generate_kwargs is None: UpperCAmelCase_ = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. UpperCAmelCase_ = model_inputs.pop(self.model.main_input_name ) UpperCAmelCase_ = self.model.generate(lowerCAmelCase , **lowerCAmelCase , **lowerCAmelCase ) return model_outputs def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = [] for output_ids in model_outputs: UpperCAmelCase_ = { "generated_text": self.tokenizer.decode( lowerCAmelCase , skip_special_tokens=lowerCAmelCase , ) } records.append(lowerCAmelCase ) return records
23
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ): UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=lowerCAmelCase ).to(lowerCAmelCase ) UpperCAmelCase_ = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase_ = tokenizer("Hello there" , return_tensors="pt" ).input_ids UpperCAmelCase_ = tokenizer("Hi I am" , return_tensors="pt" ).input_ids UpperCAmelCase_ = model(input_ids.to(lowerCAmelCase ) , labels=labels.to(lowerCAmelCase ) ).loss UpperCAmelCase_ = -(labels.shape[-1] * loss.item()) UpperCAmelCase_ = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
708
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCamelCase ( lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : int = TextToVideoSDPipeline lowerCAmelCase_ : Dict = TEXT_TO_IMAGE_PARAMS lowerCAmelCase_ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. lowerCAmelCase_ : Optional[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def A__ ( self ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCAmelCase_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) UpperCAmelCase_ = CLIPTextModel(lowerCAmelCase ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def A__ ( self , lowerCAmelCase , lowerCAmelCase=0 ): if str(lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(lowerCAmelCase ) else: UpperCAmelCase_ = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) UpperCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def A__ ( self ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = TextToVideoSDPipeline(**lowerCAmelCase ) UpperCAmelCase_ = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs(lowerCAmelCase ) UpperCAmelCase_ = "np" UpperCAmelCase_ = sd_pipe(**lowerCAmelCase ).frames UpperCAmelCase_ = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) UpperCAmelCase_ = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCAmelCase , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCAmelCase , expected_max_diff=1e-2 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def A__ ( self ): pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def A__ ( self ): pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def A__ ( self ): pass def A__ ( self ): return super().test_progress_bar() @slow @skip_mps class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy" ) UpperCAmelCase_ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ = pipe.to("cuda" ) UpperCAmelCase_ = "Spiderman is surfing" UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=25 , output_type="pt" ).frames UpperCAmelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def A__ ( self ): UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy" ) UpperCAmelCase_ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) UpperCAmelCase_ = pipe.to("cuda" ) UpperCAmelCase_ = "Spiderman is surfing" UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=2 , output_type="pt" ).frames UpperCAmelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
23
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
709
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = [1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 0, 0, 0 UpperCAmelCase_ = ugly_nums[ia] * 2 UpperCAmelCase_ = ugly_nums[ia] * 3 UpperCAmelCase_ = ugly_nums[ia] * 5 for _ in range(1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ugly_nums.append(__SCREAMING_SNAKE_CASE ) if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(200) = }''')
23
0
def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) UpperCAmelCase_ = str(bin(__SCREAMING_SNAKE_CASE ) )[2:] # remove the leading "0b" UpperCAmelCase_ = str(bin(__SCREAMING_SNAKE_CASE ) )[2:] UpperCAmelCase_ = max(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(__SCREAMING_SNAKE_CASE ) , b_binary.zfill(__SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
710
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=3 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=224 , lowerCAmelCase=1000 , lowerCAmelCase=[3, 3, 6, 4] , lowerCAmelCase=[48, 56, 112, 220] , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = num_labels UpperCAmelCase_ = image_size UpperCAmelCase_ = layer_depths UpperCAmelCase_ = embed_dims def A__ ( self ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def A__ ( self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCAmelCase , layer_scale_init_value=1e-5 , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = SwiftFormerModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) UpperCAmelCase_ = SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self ): ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = self.prepare_config_and_inputs() UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase__, lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowerCAmelCase_ : int = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : int = False lowerCAmelCase_ : str = False lowerCAmelCase_ : Optional[Any] = False def A__ ( self ): UpperCAmelCase_ = SwiftFormerModelTester(self ) UpperCAmelCase_ = ConfigTester( self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def A__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def A__ ( self ): pass def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def A__ ( self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = SwiftFormerModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def A__ ( self ): pass def A__ ( self ): def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 8 self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): def _config_zero_init(lowerCAmelCase ): UpperCAmelCase_ = copy.deepcopy(lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCAmelCase , lowerCAmelCase , 1e-1_0 ) if isinstance(getattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ): UpperCAmelCase_ = _config_zero_init(getattr(lowerCAmelCase , lowerCAmelCase ) ) setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return configs_no_init UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = _config_zero_init(lowerCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(config=lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A__ ( self ): pass def snake_case__ ( ) -> str: UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def A__ ( self ): UpperCAmelCase_ = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(lowerCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=lowerCAmelCase , return_tensors="pt" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase_ = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1e-4 ) )
23
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE = { "configuration_pegasus_x": ["PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusXConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST", "PegasusXForConditionalGeneration", "PegasusXModel", "PegasusXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
711
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available SCREAMING_SNAKE_CASE = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def snake_case__ ( __SCREAMING_SNAKE_CASE = 8 ) -> str: UpperCAmelCase_ = ascii_letters + digits + punctuation return "".join(secrets.choice(__SCREAMING_SNAKE_CASE ) for _ in range(__SCREAMING_SNAKE_CASE ) ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = i // 3 UpperCAmelCase_ = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) UpperCAmelCase_ = ( chars_incl + random(__SCREAMING_SNAKE_CASE , quotient + remainder ) + random(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) + random(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ = list(__SCREAMING_SNAKE_CASE ) shuffle(__SCREAMING_SNAKE_CASE ) return "".join(__SCREAMING_SNAKE_CASE ) # random is a generalised function for letters, characters and numbers def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: return "".join(secrets.choice(__SCREAMING_SNAKE_CASE ) for _ in range(__SCREAMING_SNAKE_CASE ) ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: pass # Put your code here... def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: pass # Put your code here... def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: pass # Put your code here... def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 8 ) -> bool: if len(__SCREAMING_SNAKE_CASE ) < min_length: # Your Password must be at least 8 characters long return False UpperCAmelCase_ = any(char in ascii_uppercase for char in password ) UpperCAmelCase_ = any(char in ascii_lowercase for char in password ) UpperCAmelCase_ = any(char in digits for char in password ) UpperCAmelCase_ = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def snake_case__ ( ) -> Optional[Any]: UpperCAmelCase_ = int(input("Please indicate the max length of your password: " ).strip() ) UpperCAmelCase_ = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(__SCREAMING_SNAKE_CASE ) ) print( "Alternative Password generated:" , alternative_password_generator(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
712
import math def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> list[int]: UpperCAmelCase_ = [] UpperCAmelCase_ = 2 UpperCAmelCase_ = int(math.sqrt(__SCREAMING_SNAKE_CASE ) ) # Size of every segment UpperCAmelCase_ = [True] * (end + 1) UpperCAmelCase_ = [] while start <= end: if temp[start] is True: in_prime.append(__SCREAMING_SNAKE_CASE ) for i in range(start * start , end + 1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = False start += 1 prime += in_prime UpperCAmelCase_ = end + 1 UpperCAmelCase_ = min(2 * end , __SCREAMING_SNAKE_CASE ) while low <= n: UpperCAmelCase_ = [True] * (high - low + 1) for each in in_prime: UpperCAmelCase_ = math.floor(low / each ) * each if t < low: t += each for j in range(__SCREAMING_SNAKE_CASE , high + 1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = False for j in range(len(__SCREAMING_SNAKE_CASE ) ): if temp[j] is True: prime.append(j + low ) UpperCAmelCase_ = high + 1 UpperCAmelCase_ = min(high + end , __SCREAMING_SNAKE_CASE ) return prime print(sieve(10**6))
23
0
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def snake_case__ ( ) -> List[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__SCREAMING_SNAKE_CASE ): requests.request("GET" , "https://huggingface.co" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("GET" , "https://huggingface.co" , timeout=1.0 ) @pytest.mark.integration def snake_case__ ( ) -> int: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("GET" , "https://huggingface.co" ) def snake_case__ ( ) -> List[Any]: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__SCREAMING_SNAKE_CASE ): http_head("https://huggingface.co" )
713
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : torch.FloatTensor class lowerCamelCase ( lowercase__, lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCAmelCase = 32 , lowerCAmelCase = 64 , lowerCAmelCase = 20 , lowerCAmelCase = 768 , lowerCAmelCase=77 , lowerCAmelCase=4 , lowerCAmelCase = 0.0 , lowerCAmelCase = "silu" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "linear" , lowerCAmelCase = "prd" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ): super().__init__() UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = attention_head_dim UpperCAmelCase_ = num_attention_heads * attention_head_dim UpperCAmelCase_ = additional_embeddings UpperCAmelCase_ = time_embed_dim or inner_dim UpperCAmelCase_ = embedding_proj_dim or embedding_dim UpperCAmelCase_ = clip_embed_dim or embedding_dim UpperCAmelCase_ = Timesteps(lowerCAmelCase , lowerCAmelCase , 0 ) UpperCAmelCase_ = TimestepEmbedding(lowerCAmelCase , lowerCAmelCase , out_dim=lowerCAmelCase , act_fn=lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if embedding_proj_norm_type is None: UpperCAmelCase_ = None elif embedding_proj_norm_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if encoder_hid_proj_type is None: UpperCAmelCase_ = None elif encoder_hid_proj_type == "linear": UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCAmelCase ) ) if added_emb_type == "prd": UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , 1 , lowerCAmelCase ) ) elif added_emb_type is None: UpperCAmelCase_ = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) UpperCAmelCase_ = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , dropout=lowerCAmelCase , activation_fn="gelu" , attention_bias=lowerCAmelCase , ) for d in range(lowerCAmelCase ) ] ) if norm_in_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) elif norm_in_type is None: UpperCAmelCase_ = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) UpperCAmelCase_ = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask" , lowerCAmelCase , persistent=lowerCAmelCase ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def A__ ( self ): UpperCAmelCase_ = {} def fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): UpperCAmelCase_ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return processors def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = len(self.attn_processors.keys() ) if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(lowerCAmelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): if not isinstance(lowerCAmelCase , lowerCAmelCase ): module.set_processor(lowerCAmelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): self.set_attn_processor(AttnProcessor() ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = True , ): UpperCAmelCase_ = hidden_states.shape[0] UpperCAmelCase_ = timestep if not torch.is_tensor(lowerCAmelCase ): UpperCAmelCase_ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCAmelCase ) and len(timesteps.shape ) == 0: UpperCAmelCase_ = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase_ = timesteps * torch.ones(lowerCAmelCase , dtype=timesteps.dtype , device=timesteps.device ) UpperCAmelCase_ = self.time_proj(lowerCAmelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. UpperCAmelCase_ = timesteps_projected.to(dtype=self.dtype ) UpperCAmelCase_ = self.time_embedding(lowerCAmelCase ) if self.embedding_proj_norm is not None: UpperCAmelCase_ = self.embedding_proj_norm(lowerCAmelCase ) UpperCAmelCase_ = self.embedding_proj(lowerCAmelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: UpperCAmelCase_ = self.encoder_hidden_states_proj(lowerCAmelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" ) UpperCAmelCase_ = self.proj_in(lowerCAmelCase ) UpperCAmelCase_ = self.positional_embedding.to(hidden_states.dtype ) UpperCAmelCase_ = [] UpperCAmelCase_ = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCAmelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: UpperCAmelCase_ = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: UpperCAmelCase_ = hidden_states[:, None, :] UpperCAmelCase_ = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: UpperCAmelCase_ = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCAmelCase , -1 , -1 ) additional_embeds.append(lowerCAmelCase ) UpperCAmelCase_ = torch.cat( lowerCAmelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens UpperCAmelCase_ = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: UpperCAmelCase_ = F.pad( lowerCAmelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) UpperCAmelCase_ = hidden_states + positional_embeddings if attention_mask is not None: UpperCAmelCase_ = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 UpperCAmelCase_ = F.pad(lowerCAmelCase , (0, self.additional_embeddings) , value=0.0 ) UpperCAmelCase_ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) UpperCAmelCase_ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: UpperCAmelCase_ = self.norm_in(lowerCAmelCase ) for block in self.transformer_blocks: UpperCAmelCase_ = block(lowerCAmelCase , attention_mask=lowerCAmelCase ) UpperCAmelCase_ = self.norm_out(lowerCAmelCase ) if self.prd_embedding is not None: UpperCAmelCase_ = hidden_states[:, -1] else: UpperCAmelCase_ = hidden_states[:, additional_embeddings_len:] UpperCAmelCase_ = self.proj_to_clip_embeddings(lowerCAmelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
23
0
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class lowerCamelCase : '''simple docstring''' lowerCAmelCase_ : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase_ : Optional[str] = field( default=lowercase__, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase_ : Optional[str] = field( default=lowercase__, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase_ : Optional[str] = field( default=lowercase__, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) lowerCAmelCase_ : bool = field( default=lowercase__, metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'}, ) lowerCAmelCase_ : str = field( default='main', metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'}, ) lowerCAmelCase_ : bool = field( default=lowercase__, metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) }, ) @dataclass class lowerCamelCase : '''simple docstring''' lowerCAmelCase_ : Optional[str] = field(default=lowercase__, metadata={'help': 'The input training data file (a text file).'} ) lowerCAmelCase_ : Optional[str] = field( default=lowercase__, metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'}, ) lowerCAmelCase_ : bool = field( default=lowercase__, metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase_ : Optional[int] = field( default=lowercase__, metadata={'help': 'The number of processes to use for the preprocessing.'}, ) lowerCAmelCase_ : Optional[int] = field( default=lowercase__, metadata={ 'help': ( 'The maximum total input sequence length after tokenization. If passed, sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) lowerCAmelCase_ : bool = field( default=lowercase__, metadata={ 'help': ( 'Whether to pad all samples to the maximum sentence length. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch. More ' 'efficient on GPU but very bad for TPU.' ) }, ) lowerCAmelCase_ : Optional[int] = field( default=lowercase__, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) }, ) lowerCAmelCase_ : Optional[int] = field( default=lowercase__, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) }, ) def A__ ( self ): if self.train_file is not None: UpperCAmelCase_ = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCAmelCase_ = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowerCamelCase : '''simple docstring''' lowerCAmelCase_ : PreTrainedTokenizerBase lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = True lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : Optional[int] = None def __call__( self , lowerCAmelCase ): UpperCAmelCase_ = "label" if "label" in features[0].keys() else "labels" UpperCAmelCase_ = [feature.pop(lowerCAmelCase ) for feature in features] UpperCAmelCase_ = len(lowerCAmelCase ) UpperCAmelCase_ = len(features[0]["input_ids"] ) UpperCAmelCase_ = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase )] for feature in features ] UpperCAmelCase_ = list(chain(*lowerCAmelCase ) ) UpperCAmelCase_ = self.tokenizer.pad( lowerCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten UpperCAmelCase_ = {k: v.view(lowerCAmelCase , lowerCAmelCase , -1 ) for k, v in batch.items()} # Add back labels UpperCAmelCase_ = torch.tensor(lowerCAmelCase , dtype=torch.intaa ) return batch def snake_case__ ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag" , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase_ = training_args.get_process_log_level() logger.setLevel(__SCREAMING_SNAKE_CASE ) datasets.utils.logging.set_verbosity(__SCREAMING_SNAKE_CASE ) transformers.utils.logging.set_verbosity(__SCREAMING_SNAKE_CASE ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCAmelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCAmelCase_ = {} if data_args.train_file is not None: UpperCAmelCase_ = data_args.train_file if data_args.validation_file is not None: UpperCAmelCase_ = data_args.validation_file UpperCAmelCase_ = data_args.train_file.split("." )[-1] UpperCAmelCase_ = load_dataset( __SCREAMING_SNAKE_CASE , data_files=__SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCAmelCase_ = load_dataset( "swag" , "regular" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCAmelCase_ = [f'''ending{i}''' for i in range(4 )] UpperCAmelCase_ = "sent1" UpperCAmelCase_ = "sent2" if data_args.max_seq_length is None: UpperCAmelCase_ = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) UpperCAmelCase_ = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCAmelCase_ = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = [[context] * 4 for context in examples[context_name]] UpperCAmelCase_ = examples[question_header_name] UpperCAmelCase_ = [ [f'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(__SCREAMING_SNAKE_CASE ) ] # Flatten out UpperCAmelCase_ = list(chain(*__SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ = list(chain(*__SCREAMING_SNAKE_CASE ) ) # Tokenize UpperCAmelCase_ = tokenizer( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding="max_length" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) UpperCAmelCase_ = raw_datasets["train"] if data_args.max_train_samples is not None: UpperCAmelCase_ = min(len(__SCREAMING_SNAKE_CASE ) , data_args.max_train_samples ) UpperCAmelCase_ = train_dataset.select(range(__SCREAMING_SNAKE_CASE ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): UpperCAmelCase_ = train_dataset.map( __SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) UpperCAmelCase_ = raw_datasets["validation"] if data_args.max_eval_samples is not None: UpperCAmelCase_ = min(len(__SCREAMING_SNAKE_CASE ) , data_args.max_eval_samples ) UpperCAmelCase_ = eval_dataset.select(range(__SCREAMING_SNAKE_CASE ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): UpperCAmelCase_ = eval_dataset.map( __SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCAmelCase_ = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__SCREAMING_SNAKE_CASE ): UpperCAmelCase_ , UpperCAmelCase_ = eval_predictions UpperCAmelCase_ = np.argmax(__SCREAMING_SNAKE_CASE , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCAmelCase_ = Trainer( model=__SCREAMING_SNAKE_CASE , args=__SCREAMING_SNAKE_CASE , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__SCREAMING_SNAKE_CASE , data_collator=__SCREAMING_SNAKE_CASE , compute_metrics=__SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: UpperCAmelCase_ = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase_ = last_checkpoint UpperCAmelCase_ = trainer.train(resume_from_checkpoint=__SCREAMING_SNAKE_CASE ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCAmelCase_ = train_result.metrics UpperCAmelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ) trainer.log_metrics("train" , __SCREAMING_SNAKE_CASE ) trainer.save_metrics("train" , __SCREAMING_SNAKE_CASE ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCAmelCase_ = trainer.evaluate() UpperCAmelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ) trainer.log_metrics("eval" , __SCREAMING_SNAKE_CASE ) trainer.save_metrics("eval" , __SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**__SCREAMING_SNAKE_CASE ) else: trainer.create_model_card(**__SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> np.ndarray: UpperCAmelCase_ = cva.getAffineTransform(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return cva.warpAffine(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , (rows, cols) ) if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value SCREAMING_SNAKE_CASE = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = gray_img.shape # set different points to rotate image SCREAMING_SNAKE_CASE = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) SCREAMING_SNAKE_CASE = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) SCREAMING_SNAKE_CASE = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) SCREAMING_SNAKE_CASE = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list SCREAMING_SNAKE_CASE = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations SCREAMING_SNAKE_CASE = plt.figure(1) SCREAMING_SNAKE_CASE = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
715
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = 'xlm-roberta' def __init__( self , lowerCAmelCase=3_0522 , lowerCAmelCase=768 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=3072 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-1_2 , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase="absolute" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class lowerCamelCase ( lowercase__ ): '''simple docstring''' @property def A__ ( self ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
23
0
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass(frozen=lowercase__ ) class lowerCamelCase : '''simple docstring''' lowerCAmelCase_ : str lowerCAmelCase_ : str lowerCAmelCase_ : Optional[str] = None lowerCAmelCase_ : Optional[str] = None lowerCAmelCase_ : Optional[str] = None @dataclass(frozen=lowercase__ ) class lowerCamelCase : '''simple docstring''' lowerCAmelCase_ : List[int] lowerCAmelCase_ : Optional[List[int]] = None lowerCAmelCase_ : Optional[List[int]] = None lowerCAmelCase_ : Optional[Union[int, float]] = None lowerCAmelCase_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[InputFeatures] def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase=False , lowerCAmelCase = False , ): UpperCAmelCase_ = hans_processors[task]() UpperCAmelCase_ = os.path.join( lowerCAmelCase , "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(lowerCAmelCase ) , lowerCAmelCase , ) , ) UpperCAmelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_ = label_list[2], label_list[1] UpperCAmelCase_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase_ = cached_features_file + ".lock" with FileLock(lowerCAmelCase ): if os.path.exists(lowerCAmelCase ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) UpperCAmelCase_ = torch.load(lowerCAmelCase ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) UpperCAmelCase_ = ( processor.get_dev_examples(lowerCAmelCase ) if evaluate else processor.get_train_examples(lowerCAmelCase ) ) logger.info("Training examples: %s" , len(lowerCAmelCase ) ) UpperCAmelCase_ = hans_convert_examples_to_features(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) logger.info("Saving features into cached file %s" , lowerCAmelCase ) torch.save(self.features , lowerCAmelCase ) def __len__( self ): return len(self.features ) def __getitem__( self , lowerCAmelCase ): return self.features[i] def A__ ( self ): return self.label_list if is_tf_available(): import tensorflow as tf class lowerCamelCase : '''simple docstring''' lowerCAmelCase_ : List[InputFeatures] def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 128 , lowerCAmelCase=False , lowerCAmelCase = False , ): UpperCAmelCase_ = hans_processors[task]() UpperCAmelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_ = label_list[2], label_list[1] UpperCAmelCase_ = label_list UpperCAmelCase_ = processor.get_dev_examples(lowerCAmelCase ) if evaluate else processor.get_train_examples(lowerCAmelCase ) UpperCAmelCase_ = hans_convert_examples_to_features(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ): if ex_index % 1_0000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(lowerCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase_ = tf.data.Dataset.from_generator( lowerCAmelCase , ( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ) , ( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def A__ ( self ): return self.dataset def __len__( self ): return len(self.features ) def __getitem__( self , lowerCAmelCase ): return self.features[i] def A__ ( self ): return self.label_list class lowerCamelCase ( lowercase__ ): '''simple docstring''' def A__ ( self , lowerCAmelCase ): return self._create_examples(self._read_tsv(os.path.join(lowerCAmelCase , "heuristics_train_set.txt" ) ) , "train" ) def A__ ( self , lowerCAmelCase ): return self._create_examples(self._read_tsv(os.path.join(lowerCAmelCase , "heuristics_evaluation_set.txt" ) ) , "dev" ) def A__ ( self ): return ["contradiction", "entailment", "neutral"] def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = [] for i, line in enumerate(lowerCAmelCase ): if i == 0: continue UpperCAmelCase_ = "%s-%s" % (set_type, line[0]) UpperCAmelCase_ = line[5] UpperCAmelCase_ = line[6] UpperCAmelCase_ = line[7][2:] if line[7].startswith("ex" ) else line[7] UpperCAmelCase_ = line[0] examples.append(InputExample(guid=lowerCAmelCase , text_a=lowerCAmelCase , text_b=lowerCAmelCase , label=lowerCAmelCase , pairID=lowerCAmelCase ) ) return examples def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) -> int: UpperCAmelCase_ = {label: i for i, label in enumerate(__SCREAMING_SNAKE_CASE )} UpperCAmelCase_ = [] for ex_index, example in tqdm.tqdm(enumerate(__SCREAMING_SNAKE_CASE ) , desc="convert examples to features" ): if ex_index % 1_0000 == 0: logger.info("Writing example %d" % (ex_index) ) UpperCAmelCase_ = tokenizer( example.text_a , example.text_b , add_special_tokens=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding="max_length" , truncation=__SCREAMING_SNAKE_CASE , return_overflowing_tokens=__SCREAMING_SNAKE_CASE , ) UpperCAmelCase_ = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase_ = int(example.pairID ) features.append(InputFeatures(**__SCREAMING_SNAKE_CASE , label=__SCREAMING_SNAKE_CASE , pairID=__SCREAMING_SNAKE_CASE ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(f'''guid: {example}''' ) logger.info(f'''features: {features[i]}''' ) return features SCREAMING_SNAKE_CASE = { "hans": 3, } SCREAMING_SNAKE_CASE = { "hans": HansProcessor, }
716
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = int(__SCREAMING_SNAKE_CASE ) if decimal in (0, 1): # Exit cases for the recursion return str(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ , UpperCAmelCase_ = divmod(__SCREAMING_SNAKE_CASE , 2 ) return binary_recursive(__SCREAMING_SNAKE_CASE ) + str(__SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = str(__SCREAMING_SNAKE_CASE ).strip() if not number: raise ValueError("No input value was provided" ) UpperCAmelCase_ = "-" if number.startswith("-" ) else "" UpperCAmelCase_ = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f'''{negative}0b{binary_recursive(int(__SCREAMING_SNAKE_CASE ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
23
0
import logging from transformers.configuration_utils import PretrainedConfig SCREAMING_SNAKE_CASE = logging.getLogger(__name__) class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = 'masked_bert' def __init__( self , lowerCAmelCase=3_0522 , lowerCAmelCase=768 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=3072 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-1_2 , lowerCAmelCase=0 , lowerCAmelCase="topK" , lowerCAmelCase="constant" , lowerCAmelCase=0.0 , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = pruning_method UpperCAmelCase_ = mask_init UpperCAmelCase_ = mask_scale
717
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ): UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=lowerCAmelCase ).to(lowerCAmelCase ) UpperCAmelCase_ = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase_ = tokenizer("Hello there" , return_tensors="pt" ).input_ids UpperCAmelCase_ = tokenizer("Hi I am" , return_tensors="pt" ).input_ids UpperCAmelCase_ = model(input_ids.to(lowerCAmelCase ) , labels=labels.to(lowerCAmelCase ) ).loss UpperCAmelCase_ = -(labels.shape[-1] * loss.item()) UpperCAmelCase_ = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
23
0
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase=14 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=99 , lowerCAmelCase=32 , lowerCAmelCase=4 , lowerCAmelCase=4 , lowerCAmelCase=4 , lowerCAmelCase=37 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=0.02 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = rotary_dim UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = initializer_range UpperCAmelCase_ = None UpperCAmelCase_ = vocab_size - 1 UpperCAmelCase_ = vocab_size - 1 UpperCAmelCase_ = vocab_size - 1 def A__ ( self ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def A__ ( self ): UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = 20 UpperCAmelCase_ = model_class_name(lowerCAmelCase ) UpperCAmelCase_ = model.init_cache(input_ids.shape[0] , lowerCAmelCase ) UpperCAmelCase_ = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="i4" ) UpperCAmelCase_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCAmelCase_ = model( input_ids[:, :-1] , attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase , position_ids=lowerCAmelCase , ) UpperCAmelCase_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCAmelCase_ = model( input_ids[:, -1:] , attention_mask=lowerCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=lowerCAmelCase , ) UpperCAmelCase_ = model(lowerCAmelCase ) UpperCAmelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = 20 UpperCAmelCase_ = model_class_name(lowerCAmelCase ) UpperCAmelCase_ = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) UpperCAmelCase_ = model.init_cache(input_ids.shape[0] , lowerCAmelCase ) UpperCAmelCase_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCAmelCase_ = model( input_ids[:, :-1] , attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase , position_ids=lowerCAmelCase , ) UpperCAmelCase_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCAmelCase_ = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCAmelCase , position_ids=lowerCAmelCase , ) UpperCAmelCase_ = model(lowerCAmelCase , attention_mask=lowerCAmelCase ) UpperCAmelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class lowerCamelCase ( lowercase__, lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () lowerCAmelCase_ : Dict = (FlaxGPTJForCausalLM,) if is_flax_available() else () def A__ ( self ): UpperCAmelCase_ = FlaxGPTJModelTester(self ) def A__ ( self ): for model_class_name in self.all_model_classes: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): for model_class_name in self.all_model_classes: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) @tooslow def A__ ( self ): UpperCAmelCase_ = GPTaTokenizer.from_pretrained("gpt2" , pad_token="<|endoftext|>" , padding_side="left" ) UpperCAmelCase_ = tokenizer(["Hello this is a long string", "Hey"] , return_tensors="np" , padding=lowerCAmelCase , truncation=lowerCAmelCase ) UpperCAmelCase_ = FlaxGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B" ) UpperCAmelCase_ = False UpperCAmelCase_ = model.config.eos_token_id UpperCAmelCase_ = jax.jit(model.generate ) UpperCAmelCase_ = jit_generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , pad_token_id=tokenizer.pad_token_id ).sequences UpperCAmelCase_ = tokenizer.batch_decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) UpperCAmelCase_ = [ "Hello this is a long string of text.\n\nI'm trying to get the text of the", "Hey, I'm a little late to the party. I'm going to", ] self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) @is_pt_flax_cross_test def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCAmelCase_ = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCAmelCase_ = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase_ = getattr(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = pt_inputs["input_ids"].shape UpperCAmelCase_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCAmelCase ): UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 UpperCAmelCase_ = pt_model_class(lowerCAmelCase ).eval() UpperCAmelCase_ = model_class(lowerCAmelCase , dtype=jnp.floataa ) UpperCAmelCase_ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase ) UpperCAmelCase_ = fx_state with torch.no_grad(): UpperCAmelCase_ = pt_model(**lowerCAmelCase ).to_tuple() UpperCAmelCase_ = fx_model(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(lowerCAmelCase , lowerCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCAmelCase ) UpperCAmelCase_ = model_class.from_pretrained(lowerCAmelCase , from_pt=lowerCAmelCase ) UpperCAmelCase_ = fx_model_loaded(**lowerCAmelCase ).to_tuple() self.assertEqual( len(lowerCAmelCase ) , len(lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(lowerCAmelCase , lowerCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCAmelCase_ = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCAmelCase_ = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase_ = getattr(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = pt_model_class(lowerCAmelCase ).eval() UpperCAmelCase_ = model_class(lowerCAmelCase , dtype=jnp.floataa ) UpperCAmelCase_ = load_flax_weights_in_pytorch_model(lowerCAmelCase , fx_model.params ) UpperCAmelCase_ , UpperCAmelCase_ = pt_inputs["input_ids"].shape UpperCAmelCase_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCAmelCase ): UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): UpperCAmelCase_ = pt_model(**lowerCAmelCase ).to_tuple() UpperCAmelCase_ = fx_model(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(lowerCAmelCase , lowerCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCAmelCase ) UpperCAmelCase_ = pt_model_class.from_pretrained(lowerCAmelCase , from_flax=lowerCAmelCase ) with torch.no_grad(): UpperCAmelCase_ = pt_model_loaded(**lowerCAmelCase ).to_tuple() self.assertEqual( len(lowerCAmelCase ) , len(lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(lowerCAmelCase , lowerCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def A__ ( self ): for model_class_name in self.all_model_classes: UpperCAmelCase_ = model_class_name.from_pretrained("EleutherAI/gpt-j-6B" ) UpperCAmelCase_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase )
718
def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ = 0 while b > 0: if b & 1: UpperCAmelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
23
0
'''simple docstring''' # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = [False] * len(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = [-1] * len(__SCREAMING_SNAKE_CASE ) def dfs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = True UpperCAmelCase_ = c for u in graph[v]: if not visited[u]: dfs(__SCREAMING_SNAKE_CASE , 1 - c ) for i in range(len(__SCREAMING_SNAKE_CASE ) ): if not visited[i]: dfs(__SCREAMING_SNAKE_CASE , 0 ) for i in range(len(__SCREAMING_SNAKE_CASE ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph SCREAMING_SNAKE_CASE = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
719
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> List[List[ImageInput]]: if isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[Any] = ['pixel_values'] def __init__( self , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = PILImageResampling.BILINEAR , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = True , lowerCAmelCase = 1 / 255 , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ): super().__init__(**lowerCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = PILImageResampling.BILINEAR , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(lowerCAmelCase , size["shortest_edge"] , default_to_square=lowerCAmelCase ) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(lowerCAmelCase , size=(size["height"], size["width"]) , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): return rescale(lowerCAmelCase , scale=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): return normalize(lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = to_numpy_array(lowerCAmelCase ) if do_resize: UpperCAmelCase_ = self.resize(image=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase ) if do_center_crop: UpperCAmelCase_ = self.center_crop(lowerCAmelCase , size=lowerCAmelCase ) if do_rescale: UpperCAmelCase_ = self.rescale(image=lowerCAmelCase , scale=lowerCAmelCase ) if do_normalize: UpperCAmelCase_ = self.normalize(image=lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase ) UpperCAmelCase_ = to_channel_dimension_format(lowerCAmelCase , lowerCAmelCase ) return image def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = ChannelDimension.FIRST , **lowerCAmelCase , ): UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="crop_size" ) if not valid_images(lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase_ = make_batched(lowerCAmelCase ) UpperCAmelCase_ = [ [ self._preprocess_image( image=lowerCAmelCase , do_resize=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , do_center_crop=lowerCAmelCase , crop_size=lowerCAmelCase , do_rescale=lowerCAmelCase , rescale_factor=lowerCAmelCase , do_normalize=lowerCAmelCase , image_mean=lowerCAmelCase , image_std=lowerCAmelCase , data_format=lowerCAmelCase , ) for img in video ] for video in videos ] UpperCAmelCase_ = {"pixel_values": videos} return BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase )
23
0
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg" UpperCAmelCase_ = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ).convert("RGB" ) UpperCAmelCase_ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073) , (0.26_862_954, 0.26_130_258, 0.27_577_711) ), ] ) UpperCAmelCase_ = transform(__SCREAMING_SNAKE_CASE ).unsqueeze(0 ).to(__SCREAMING_SNAKE_CASE ) return image def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: if "visual_encoder" in key: UpperCAmelCase_ = re.sub("visual_encoder*" , "vision_model.encoder" , __SCREAMING_SNAKE_CASE ) if "blocks" in key: UpperCAmelCase_ = re.sub(R"blocks" , "layers" , __SCREAMING_SNAKE_CASE ) if "attn" in key: UpperCAmelCase_ = re.sub(R"attn" , "self_attn" , __SCREAMING_SNAKE_CASE ) if "norm1" in key: UpperCAmelCase_ = re.sub(R"norm1" , "layer_norm1" , __SCREAMING_SNAKE_CASE ) if "norm2" in key: UpperCAmelCase_ = re.sub(R"norm2" , "layer_norm2" , __SCREAMING_SNAKE_CASE ) if "encoder.norm" in key: UpperCAmelCase_ = re.sub(R"encoder.norm" , "post_layernorm" , __SCREAMING_SNAKE_CASE ) if "encoder.patch_embed.proj" in key: UpperCAmelCase_ = re.sub(R"encoder.patch_embed.proj" , "embeddings.patch_embedding" , __SCREAMING_SNAKE_CASE ) if "encoder.pos_embed" in key: UpperCAmelCase_ = re.sub(R"encoder.pos_embed" , "embeddings.position_embedding" , __SCREAMING_SNAKE_CASE ) if "encoder.cls_token" in key: UpperCAmelCase_ = re.sub(R"encoder.cls_token" , "embeddings.class_embedding" , __SCREAMING_SNAKE_CASE ) if "self_attn" in key: UpperCAmelCase_ = re.sub(R"self_attn.proj" , "self_attn.projection" , __SCREAMING_SNAKE_CASE ) return key @torch.no_grad() def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) -> Optional[Any]: if config_path is not None: UpperCAmelCase_ = BlipConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) UpperCAmelCase_ = BlipForConditionalGeneration(__SCREAMING_SNAKE_CASE ).eval() UpperCAmelCase_ = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth" UpperCAmelCase_ = blip_decoder(pretrained=__SCREAMING_SNAKE_CASE , image_size=384 , vit="base" ) UpperCAmelCase_ = pt_model.eval() UpperCAmelCase_ = pt_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase_ = modified_state_dict.pop(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = rename_key(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = value hf_model.load_state_dict(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = 384 UpperCAmelCase_ = load_demo_image(image_size=__SCREAMING_SNAKE_CASE , device="cpu" ) UpperCAmelCase_ = BertTokenizer.from_pretrained("bert-base-uncased" ) UpperCAmelCase_ = tokenizer(["a picture of"] ).input_ids UpperCAmelCase_ = hf_model.generate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] UpperCAmelCase_ = hf_model.generate(__SCREAMING_SNAKE_CASE ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(__SCREAMING_SNAKE_CASE ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' UpperCAmelCase_ = ( "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth" ) UpperCAmelCase_ = blip_vqa(pretrained=__SCREAMING_SNAKE_CASE , image_size=__SCREAMING_SNAKE_CASE , vit="base" ) vqa_model.eval() UpperCAmelCase_ = vqa_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase_ = modified_state_dict.pop(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = rename_key(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = value UpperCAmelCase_ = BlipForQuestionAnswering(__SCREAMING_SNAKE_CASE ) hf_vqa_model.load_state_dict(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = ["How many dogs are in this image?"] UpperCAmelCase_ = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors="pt" ).input_ids UpperCAmelCase_ = hf_vqa_model.generate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + "_vqa" ) UpperCAmelCase_ = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth" UpperCAmelCase_ = blip_itm(pretrained=__SCREAMING_SNAKE_CASE , image_size=__SCREAMING_SNAKE_CASE , vit="base" ) itm_model.eval() UpperCAmelCase_ = itm_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase_ = modified_state_dict.pop(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = rename_key(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = value UpperCAmelCase_ = BlipForImageTextRetrieval(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = ["A picture of a woman with a dog sitting in a beach"] UpperCAmelCase_ = tokenizer( __SCREAMING_SNAKE_CASE , return_tensors="pt" , padding="max_length" , truncation=__SCREAMING_SNAKE_CASE , max_length=35 , ).input_ids hf_itm_model.load_state_dict(__SCREAMING_SNAKE_CASE ) hf_itm_model.eval() UpperCAmelCase_ = hf_itm_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_itm_head=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = hf_itm_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_itm_head=__SCREAMING_SNAKE_CASE ) assert out[0].item() == 0.2_110_687_494_277_954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45_698_845_386_505_127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + "_itm" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") SCREAMING_SNAKE_CASE = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
720
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = 1 for i in range(1 , num + 1 ): fact *= i return fact def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = 0 while number > 0: UpperCAmelCase_ = number % 10 sum_of_digits += last_digit UpperCAmelCase_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def snake_case__ ( __SCREAMING_SNAKE_CASE = 100 ) -> int: UpperCAmelCase_ = factorial(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = split_and_add(__SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
23
0
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case__ ( ) -> int: UpperCAmelCase_ = HfArgumentParser(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ = TensorFlowBenchmark(args=__SCREAMING_SNAKE_CASE ) try: UpperCAmelCase_ = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ = "Arg --no_{0} is no longer used, please use --no-{0} instead." UpperCAmelCase_ = " ".join(str(__SCREAMING_SNAKE_CASE ).split(" " )[:-1] ) UpperCAmelCase_ = "" UpperCAmelCase_ = eval(str(__SCREAMING_SNAKE_CASE ).split(" " )[-1] ) UpperCAmelCase_ = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: UpperCAmelCase_ = full_error_msg + begin_error_msg + str(__SCREAMING_SNAKE_CASE ) raise ValueError(__SCREAMING_SNAKE_CASE ) benchmark.run() if __name__ == "__main__": main()
721
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class lowercase__ : '''simple docstring''' def __init__( self , snake_case = "cpu" , snake_case = "openai/clip-vit-large-patch14" ) -> None: _UpperCAmelCase = device _UpperCAmelCase = CLIPTokenizerFast.from_pretrained(snake_case ) _UpperCAmelCase = [0.48145466, 0.4578275, 0.40821073] _UpperCAmelCase = [0.26862954, 0.26130258, 0.27577711] _UpperCAmelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) _UpperCAmelCase = torchvision.transforms.Resize(224 ) _UpperCAmelCase = torchvision.transforms.CenterCrop(224 ) def lowerCamelCase_ ( self , snake_case ) -> Optional[Any]: _UpperCAmelCase = self.resize(snake_case ) _UpperCAmelCase = self.center_crop(snake_case ) _UpperCAmelCase = self.normalize(snake_case ) return images def __call__( self , snake_case=None , snake_case=None , **snake_case ) -> List[Any]: _UpperCAmelCase = self.tokenizer(text=snake_case , **snake_case ) _UpperCAmelCase = self.preprocess_img(snake_case ) _UpperCAmelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case=10 , snake_case=0.01 , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=False , snake_case=True , snake_case="image" , snake_case=True , snake_case=False , snake_case=False , snake_case=False , ) -> None: super().__init__() _UpperCAmelCase = None _UpperCAmelCase = device if device else get_device() if vqgan: _UpperCAmelCase = vqgan else: _UpperCAmelCase = load_vqgan(self.device , conf_path=snake_case , ckpt_path=snake_case ) self.vqgan.eval() if clip: _UpperCAmelCase = clip else: _UpperCAmelCase = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' ) self.clip.to(self.device ) _UpperCAmelCase = ProcessorGradientFlow(device=self.device ) _UpperCAmelCase = iterations _UpperCAmelCase = lr _UpperCAmelCase = log _UpperCAmelCase = make_grid _UpperCAmelCase = return_val _UpperCAmelCase = quantize _UpperCAmelCase = self.vqgan.decoder.z_shape def lowerCamelCase_ ( self , snake_case=None , snake_case=None , snake_case=5 , snake_case=True ) -> int: _UpperCAmelCase = [] if output_path is None: _UpperCAmelCase = './animation.gif' if input_path is None: _UpperCAmelCase = self.save_path _UpperCAmelCase = sorted(glob(input_path + '/*' ) ) if not len(snake_case ): raise ValueError( 'No images found in save path, aborting (did you pass save_intermediate=True to the generate' ' function?)' ) if len(snake_case ) == 1: print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' ) _UpperCAmelCase = total_duration / len(snake_case ) _UpperCAmelCase = [frame_duration] * len(snake_case ) if extend_frames: _UpperCAmelCase = 1.5 _UpperCAmelCase = 3 for file_name in paths: if file_name.endswith('.png' ): images.append(imageio.imread(snake_case ) ) imageio.mimsave(snake_case , snake_case , duration=snake_case ) print(f'gif saved to {output_path}' ) def lowerCamelCase_ ( self , snake_case=None , snake_case=None ) -> Optional[Any]: if not (path or img): raise ValueError('Input either path or tensor' ) if img is not None: raise NotImplementedError _UpperCAmelCase = preprocess(Image.open(snake_case ) , target_image_size=256 ).to(self.device ) _UpperCAmelCase = preprocess_vqgan(snake_case ) _UpperCAmelCase , *_UpperCAmelCase = self.vqgan.encode(snake_case ) return z def lowerCamelCase_ ( self , snake_case ) -> Any: _UpperCAmelCase = self.latent.detach().requires_grad_() _UpperCAmelCase = base_latent + transform_vector if self.quantize: _UpperCAmelCase , *_UpperCAmelCase = self.vqgan.quantize(snake_case ) else: _UpperCAmelCase = trans_latent return self.vqgan.decode(snake_case ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case=None ) -> Optional[Any]: _UpperCAmelCase = self.clip_preprocessor(text=snake_case , images=snake_case , return_tensors='pt' , padding=snake_case ) _UpperCAmelCase = self.clip(**snake_case ) _UpperCAmelCase = clip_outputs.logits_per_image if weights is not None: _UpperCAmelCase = similarity_logits * weights return similarity_logits.sum() def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Union[str, Any]: _UpperCAmelCase = self._get_clip_similarity(pos_prompts['prompts'] , snake_case , weights=(1 / pos_prompts['weights']) ) if neg_prompts: _UpperCAmelCase = self._get_clip_similarity(neg_prompts['prompts'] , snake_case , weights=neg_prompts['weights'] ) else: _UpperCAmelCase = torch.tensor([1] , device=self.device ) _UpperCAmelCase = -torch.log(snake_case ) + torch.log(snake_case ) return loss def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Dict: _UpperCAmelCase = torch.randn_like(self.latent , requires_grad=snake_case , device=self.device ) _UpperCAmelCase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _UpperCAmelCase = self._add_vector(snake_case ) _UpperCAmelCase = loop_post_process(snake_case ) _UpperCAmelCase = self._get_CLIP_loss(snake_case , snake_case , snake_case ) print('CLIP loss' , snake_case ) if self.log: wandb.log({'CLIP Loss': clip_loss} ) clip_loss.backward(retain_graph=snake_case ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Any: wandb.init(reinit=snake_case , project='face-editor' ) wandb.config.update({'Positive Prompts': positive_prompts} ) wandb.config.update({'Negative Prompts': negative_prompts} ) wandb.config.update({'lr': self.lr, 'iterations': self.iterations} ) if image_path: _UpperCAmelCase = Image.open(snake_case ) _UpperCAmelCase = image.resize((256, 256) ) wandb.log('Original Image' , wandb.Image(snake_case ) ) def lowerCamelCase_ ( self , snake_case ) -> Optional[int]: if not prompts: return [] _UpperCAmelCase = [] _UpperCAmelCase = [] if isinstance(snake_case , snake_case ): _UpperCAmelCase = [prompt.strip() for prompt in prompts.split('|' )] for prompt in prompts: if isinstance(snake_case , (tuple, list) ): _UpperCAmelCase = prompt[0] _UpperCAmelCase = float(prompt[1] ) elif ":" in prompt: _UpperCAmelCase , _UpperCAmelCase = prompt.split(':' ) _UpperCAmelCase = float(snake_case ) else: _UpperCAmelCase = prompt _UpperCAmelCase = 1.0 processed_prompts.append(snake_case ) weights.append(snake_case ) return { "prompts": processed_prompts, "weights": torch.tensor(snake_case , device=self.device ), } def lowerCamelCase_ ( self , snake_case , snake_case=None , snake_case=None , snake_case=True , snake_case=False , snake_case=True , snake_case=True , snake_case=None , ) -> Optional[Any]: if image_path: _UpperCAmelCase = self._get_latent(snake_case ) else: _UpperCAmelCase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(snake_case , snake_case , snake_case ) assert pos_prompts, "You must provide at least one positive prompt." _UpperCAmelCase = self.process_prompts(snake_case ) _UpperCAmelCase = self.process_prompts(snake_case ) if save_final and save_path is None: _UpperCAmelCase = os.path.join('./outputs/' , '_'.join(pos_prompts['prompts'] ) ) if not os.path.exists(snake_case ): os.makedirs(snake_case ) else: _UpperCAmelCase = save_path + '_' + get_timestamp() os.makedirs(snake_case ) _UpperCAmelCase = save_path _UpperCAmelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print('Original Image' ) show_pil(custom_to_pil(snake_case ) ) _UpperCAmelCase = loop_post_process(snake_case ) for iter, transformed_img in enumerate(self._optimize_CLIP(snake_case , snake_case , snake_case ) ): if show_intermediate: show_pil(snake_case ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f'iter_{iter:03d}.png' ) ) if self.log: wandb.log({'Image': wandb.Image(snake_case )} ) if show_final: show_pil(snake_case ) if save_final: transformed_img.save(os.path.join(self.save_path , f'iter_{iter:03d}_final.png' ) )
24
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''beit''' def __init__( self , snake_case=8192 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1E-12 , snake_case=224 , snake_case=16 , snake_case=3 , snake_case=False , snake_case=False , snake_case=False , snake_case=False , snake_case=0.1 , snake_case=0.1 , snake_case=True , snake_case=[3, 5, 7, 11] , snake_case=[1, 2, 3, 6] , snake_case=True , snake_case=0.4 , snake_case=256 , snake_case=1 , snake_case=False , snake_case=255 , **snake_case , ) -> str: super().__init__(**snake_case ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = use_mask_token _UpperCAmelCase = use_absolute_position_embeddings _UpperCAmelCase = use_relative_position_bias _UpperCAmelCase = use_shared_relative_position_bias _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) _UpperCAmelCase = out_indices _UpperCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = semantic_loss_ignore_index class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
24
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case , snake_case=7 , snake_case=3 , snake_case=18 , snake_case=30 , snake_case=400 , snake_case=True , snake_case=None , snake_case=True , snake_case=None , snake_case=True , ) -> Dict: _UpperCAmelCase = size if size is not None else {'shortest_edge': 20} _UpperCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_flip_channel_order def lowerCamelCase_ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = MobileViTImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = MobileViTImageProcessingTester(self ) @property def lowerCamelCase_ ( self ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , 'do_resize' ) ) self.assertTrue(hasattr(snake_case , 'size' ) ) self.assertTrue(hasattr(snake_case , 'do_center_crop' ) ) self.assertTrue(hasattr(snake_case , 'center_crop' ) ) self.assertTrue(hasattr(snake_case , 'do_flip_channel_order' ) ) def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowerCamelCase_ ( self ) -> Union[str, Any]: pass def lowerCamelCase_ ( self ) -> Tuple: # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCamelCase_ ( self ) -> List[str]: # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCamelCase_ ( self ) -> Dict: # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
24
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowercase = logging.getLogger(__name__) if __name__ == "__main__": lowercase = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_05_22, type=int) lowercase = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: lowercase = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') lowercase = Counter() for tk_ids in data: counter.update(tk_ids) lowercase = [0] * args.vocab_size for k, v in counter.items(): lowercase = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
24
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
"""simple docstring""" from itertools import permutations def UpperCAmelCase ( A : tuple ): '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _UpperCAmelCase = [7, 11, 13, 17] for i, test in enumerate(A ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase ( A : int = 10 ): '''simple docstring''' return sum( int(''.join(map(A , A ) ) ) for num in permutations(range(A ) ) if is_substring_divisible(A ) ) if __name__ == "__main__": print(F'''{solution() = }''')
24
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def UpperCAmelCase ( A : Optional[int] , A : Any , A : str=None , A : Tuple=None ): '''simple docstring''' if attention_mask is None: _UpperCAmelCase = tf.cast(tf.math.not_equal(A , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowercase__ : '''simple docstring''' _UpperCAmelCase = OPTConfig _UpperCAmelCase = {} _UpperCAmelCase = '''gelu''' def __init__( self , snake_case , snake_case=13 , snake_case=7 , snake_case=True , snake_case=False , snake_case=99 , snake_case=16 , snake_case=2 , snake_case=4 , snake_case=4 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=20 , snake_case=2 , snake_case=1 , snake_case=0 , snake_case=16 , snake_case=16 , ) -> Optional[int]: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = eos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = bos_token_id _UpperCAmelCase = embed_dim _UpperCAmelCase = word_embed_proj_dim _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=snake_case , **self.config_updates , ) _UpperCAmelCase = prepare_opt_inputs_dict(snake_case , snake_case ) return config, inputs_dict def lowerCamelCase_ ( self , snake_case , snake_case ) -> Optional[Any]: _UpperCAmelCase = TFOPTModel(config=snake_case ) _UpperCAmelCase = inputs_dict['input_ids'] _UpperCAmelCase = input_ids[:1, :] _UpperCAmelCase = inputs_dict['attention_mask'][:1, :] _UpperCAmelCase = 1 # first forward pass _UpperCAmelCase = model(snake_case , attention_mask=snake_case , use_cache=snake_case ) _UpperCAmelCase , _UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) _UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _UpperCAmelCase = model(snake_case , attention_mask=snake_case )[0] _UpperCAmelCase = model(snake_case , attention_mask=snake_case , past_key_values=snake_case )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx] _UpperCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case , snake_case , rtol=1E-3 ) @require_tf class lowercase__ ( A, A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () _UpperCAmelCase = (TFOPTForCausalLM,) if is_tf_available() else () _UpperCAmelCase = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = 10 def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = TFOPTModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case ) def lowerCamelCase_ ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case ) def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(snake_case , snake_case ): if hasattr(snake_case , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(snake_case , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _UpperCAmelCase = model_class(config=snake_case ) _UpperCAmelCase = _get_word_embedding_weight(snake_case , model.get_input_embeddings() ) _UpperCAmelCase = _get_word_embedding_weight(snake_case , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(snake_case ) _UpperCAmelCase = _get_word_embedding_weight(snake_case , model.get_input_embeddings() ) _UpperCAmelCase = _get_word_embedding_weight(snake_case , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _UpperCAmelCase = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , snake_case ) # check that weights remain the same after resizing _UpperCAmelCase = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _UpperCAmelCase = False self.assertTrue(snake_case ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , snake_case ) _UpperCAmelCase = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _UpperCAmelCase = False self.assertTrue(snake_case ) def UpperCAmelCase ( A : Any ): '''simple docstring''' return tf.constant(A , dtype=tf.intaa ) @require_tf class lowercase__ ( unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = 99 def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _UpperCAmelCase = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _UpperCAmelCase = input_ids.shape[0] _UpperCAmelCase = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowercase__ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = TFOPTModel.from_pretrained('facebook/opt-350m' ) _UpperCAmelCase = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _UpperCAmelCase = tf.not_equal(snake_case , model.config.pad_token_id ) with tf.GradientTape(): _UpperCAmelCase = model(input_ids=snake_case , attention_mask=snake_case ).last_hidden_state _UpperCAmelCase = (1, 11, 512) self.assertEqual(output.shape , snake_case ) _UpperCAmelCase = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , snake_case , atol=4E-3 ) ) _UpperCAmelCase = tf.function(snake_case , jit_compile=snake_case ) _UpperCAmelCase = xla_generate(snake_case , snake_case )[0] self.assertTrue(np.allclose(output[:, :3, :3] , snake_case , atol=4E-2 ) ) @require_tf @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Any: super().setUp() _UpperCAmelCase = 'facebook/opt-350m' def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = TFOPTForCausalLM.from_pretrained(self.path_model ) _UpperCAmelCase = GPTaTokenizer.from_pretrained(self.path_model ) _UpperCAmelCase = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _UpperCAmelCase = tokenizer(snake_case , return_tensors='tf' , padding=snake_case , add_special_tokens=snake_case ) _UpperCAmelCase = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _UpperCAmelCase = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(snake_case , snake_case , atol=1E-4 ) ) _UpperCAmelCase = tf.function(snake_case , jit_compile=snake_case ) _UpperCAmelCase = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(snake_case , snake_case , atol=1E-4 ) ) @require_tf @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' @property def lowerCamelCase_ ( self ) -> str: return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = 'facebook/opt-125m' _UpperCAmelCase = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _UpperCAmelCase = [] _UpperCAmelCase = GPTaTokenizer.from_pretrained(snake_case ) _UpperCAmelCase = TFOPTForCausalLM.from_pretrained(snake_case ) for prompt in self.prompts: _UpperCAmelCase = tokenizer(snake_case , return_tensors='tf' ).input_ids _UpperCAmelCase = model.generate(snake_case , max_length=10 ) _UpperCAmelCase = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case ) predicted_outputs += generated_string self.assertListEqual(snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = 'facebook/opt-350m' _UpperCAmelCase = GPTaTokenizer.from_pretrained(snake_case ) _UpperCAmelCase = TFOPTForCausalLM.from_pretrained(snake_case ) _UpperCAmelCase = 'left' # use different length sentences to test batching _UpperCAmelCase = [ 'Hello, my dog is a little', 'Today, I', ] _UpperCAmelCase = tokenizer(snake_case , return_tensors='tf' , padding=snake_case ) _UpperCAmelCase = inputs['input_ids'] _UpperCAmelCase = model.generate(input_ids=snake_case , attention_mask=inputs['attention_mask'] ) _UpperCAmelCase = tokenizer(sentences[0] , return_tensors='tf' ).input_ids _UpperCAmelCase = model.generate(input_ids=snake_case ) _UpperCAmelCase = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) _UpperCAmelCase = tokenizer(sentences[1] , return_tensors='tf' ).input_ids _UpperCAmelCase = model.generate(input_ids=snake_case , max_length=model.config.max_length - num_paddings ) _UpperCAmelCase = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case ) _UpperCAmelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case ) _UpperCAmelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case ) _UpperCAmelCase = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(snake_case , snake_case ) self.assertListEqual(snake_case , [non_padded_sentence, padded_sentence] ) def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = 'facebook/opt-350m' _UpperCAmelCase = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _UpperCAmelCase = [] _UpperCAmelCase = GPTaTokenizer.from_pretrained(snake_case ) _UpperCAmelCase = TFOPTForCausalLM.from_pretrained(snake_case ) for prompt in self.prompts: _UpperCAmelCase = tokenizer(snake_case , return_tensors='tf' ).input_ids _UpperCAmelCase = model.generate(snake_case , max_length=10 ) _UpperCAmelCase = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case ) predicted_outputs += generated_string self.assertListEqual(snake_case , snake_case )
24
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
1
"""simple docstring""" from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def UpperCAmelCase ( A : str , A : complex , A : str = "x" , A : float = 10**-10 , A : int = 1 , ): '''simple docstring''' _UpperCAmelCase = symbols(A ) _UpperCAmelCase = lambdify(A , A ) _UpperCAmelCase = lambdify(A , diff(A , A ) ) _UpperCAmelCase = starting_point while True: if diff_function(A ) != 0: _UpperCAmelCase = prev_guess - multiplicity * func(A ) / diff_function( A ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial # Find fourth Root of 5 print(F'''The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}''') # Find value of e print( '''The root of log(y) - 1 = 0 is ''', F'''{newton_raphson('log(y) - 1', 2, variable='y')}''', ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', F'''{newton_raphson('exp(x) - 1', 10, precision=0.005)}''', ) # Find root of cos(x) print(F'''The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}''')
24
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
1
"""simple docstring""" import math import os import sys def UpperCAmelCase ( A : str ): '''simple docstring''' _UpperCAmelCase = '' try: with open(A , 'rb' ) as binary_file: _UpperCAmelCase = binary_file.read() for dat in data: _UpperCAmelCase = f'{dat:08b}' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase ( A : dict[str, str] , A : str , A : int , A : str ): '''simple docstring''' lexicon.pop(A ) _UpperCAmelCase = last_match_id if math.loga(A ).is_integer(): for curr_key in lexicon: _UpperCAmelCase = '0' + lexicon[curr_key] _UpperCAmelCase = bin(A )[2:] def UpperCAmelCase ( A : str ): '''simple docstring''' _UpperCAmelCase = {'0': '0', '1': '1'} _UpperCAmelCase , _UpperCAmelCase = '', '' _UpperCAmelCase = len(A ) for i in range(len(A ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _UpperCAmelCase = lexicon[curr_string] result += last_match_id add_key_to_lexicon(A , A , A , A ) index += 1 _UpperCAmelCase = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": _UpperCAmelCase = lexicon[curr_string] result += last_match_id return result def UpperCAmelCase ( A : str , A : str ): '''simple docstring''' _UpperCAmelCase = os.path.getsize(A ) _UpperCAmelCase = bin(A )[2:] _UpperCAmelCase = len(A ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCAmelCase ( A : str , A : str ): '''simple docstring''' _UpperCAmelCase = 8 try: with open(A , 'wb' ) as opened_file: _UpperCAmelCase = [ to_write[i : i + byte_length] for i in range(0 , len(A ) , A ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(A , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase ( A : str , A : str ): '''simple docstring''' _UpperCAmelCase = read_file_binary(A ) _UpperCAmelCase = compress_data(A ) _UpperCAmelCase = add_file_length(A , A ) write_file_binary(A , A ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
24
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowercase__ ( A, A ): '''simple docstring''' _UpperCAmelCase = '''swin''' _UpperCAmelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , snake_case=224 , snake_case=4 , snake_case=3 , snake_case=96 , snake_case=[2, 2, 6, 2] , snake_case=[3, 6, 12, 24] , snake_case=7 , snake_case=4.0 , snake_case=True , snake_case=0.0 , snake_case=0.0 , snake_case=0.1 , snake_case="gelu" , snake_case=False , snake_case=0.02 , snake_case=1E-5 , snake_case=32 , snake_case=None , snake_case=None , **snake_case , ) -> List[Any]: super().__init__(**snake_case ) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = len(snake_case ) _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase = int(embed_dim * 2 ** (len(snake_case ) - 1) ) _UpperCAmelCase = ['stem'] + [f'stage{idx}' for idx in range(1 , len(snake_case ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names ) class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
24
1
"""simple docstring""" def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = abs(A ) _UpperCAmelCase = 0 while n > 0: res += n % 10 n //= 10 return res def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = abs(A ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def UpperCAmelCase ( A : int ): '''simple docstring''' return sum(int(A ) for c in str(abs(A ) ) ) def UpperCAmelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(A : Callable , A : int ) -> None: _UpperCAmelCase = f'{func.__name__}({value})' _UpperCAmelCase = timeit(f'__main__.{call}' , setup='import __main__' ) print(f'{call:56} = {func(A )} -- {timing:.4f} seconds' ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(A , A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
24
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case = 16 , snake_case = 88 , snake_case = None , snake_case = 1 , snake_case = 0.0 , snake_case = 32 , snake_case = None , snake_case = False , snake_case = None , snake_case = None , snake_case = "geglu" , snake_case = None , ) -> str: super().__init__() _UpperCAmelCase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=snake_case , attention_head_dim=snake_case , in_channels=snake_case , num_layers=snake_case , dropout=snake_case , norm_num_groups=snake_case , cross_attention_dim=snake_case , attention_bias=snake_case , sample_size=snake_case , num_vector_embeds=snake_case , activation_fn=snake_case , num_embeds_ada_norm=snake_case , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _UpperCAmelCase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _UpperCAmelCase = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _UpperCAmelCase = [1, 0] def lowerCamelCase_ ( self , snake_case , snake_case , snake_case=None , snake_case=None , snake_case=None , snake_case = True , ) -> Any: _UpperCAmelCase = hidden_states _UpperCAmelCase = [] _UpperCAmelCase = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _UpperCAmelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _UpperCAmelCase = self.transformer_index_for_condition[i] _UpperCAmelCase = self.transformers[transformer_index]( snake_case , encoder_hidden_states=snake_case , timestep=snake_case , cross_attention_kwargs=snake_case , return_dict=snake_case , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _UpperCAmelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _UpperCAmelCase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=snake_case )
24
1
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( A : int , A : int ): '''simple docstring''' if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) _UpperCAmelCase = number_of_bytes // partitions _UpperCAmelCase = [] for i in range(A ): _UpperCAmelCase = i * bytes_per_partition + 1 _UpperCAmelCase = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
24
"""simple docstring""" import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case , 'embed_dim' ) ) self.parent.assertTrue(hasattr(snake_case , 'num_heads' ) ) class lowercase__ : '''simple docstring''' def __init__( self , snake_case , snake_case=13 , snake_case=64 , snake_case=3 , snake_case=[16, 48, 96] , snake_case=[1, 3, 6] , snake_case=[1, 2, 10] , snake_case=[7, 3, 3] , snake_case=[4, 2, 2] , snake_case=[2, 1, 1] , snake_case=[2, 2, 2] , snake_case=[False, False, True] , snake_case=[0.0, 0.0, 0.0] , snake_case=0.02 , snake_case=1E-12 , snake_case=True , snake_case=True , snake_case=2 , ) -> Tuple: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_sizes _UpperCAmelCase = patch_stride _UpperCAmelCase = patch_padding _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = num_labels _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = num_heads _UpperCAmelCase = stride_kv _UpperCAmelCase = depth _UpperCAmelCase = cls_token _UpperCAmelCase = attention_drop_rate _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self ) -> List[str]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Optional[int]: _UpperCAmelCase = CvtModel(config=snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case ) _UpperCAmelCase = (self.image_size, self.image_size) _UpperCAmelCase , _UpperCAmelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): _UpperCAmelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _UpperCAmelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Optional[Any]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = CvtForImageClassification(snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase__ ( A, A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = (CvtModel, CvtForImageClassification) if is_torch_available() else () _UpperCAmelCase = ( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = CvtModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def lowerCamelCase_ ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self ) -> Union[str, Any]: return @unittest.skip(reason='Cvt does not output attentions' ) def lowerCamelCase_ ( self ) -> str: pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def lowerCamelCase_ ( self ) -> int: pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def lowerCamelCase_ ( self ) -> Union[str, Any]: pass def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: def check_hidden_states_output(snake_case , snake_case , snake_case ): _UpperCAmelCase = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case , snake_case ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = len(self.model_tester.depth ) self.assertEqual(len(snake_case ) , snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(snake_case , snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase_ ( self ) -> Dict: pass @slow def lowerCamelCase_ ( self ) -> Dict: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = CvtModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase_ ( self ) -> List[Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(snake_case ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=snake_case , return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**snake_case ) # verify the logits _UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case ) _UpperCAmelCase = torch.tensor([0.9285, 0.9015, -0.3150] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1E-4 ) )
24
1
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowercase = '''<<<<<<< This should probably be modified because it mentions: ''' lowercase = '''======= >>>>>>> ''' lowercase = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] lowercase = [ # (pattern, replacement) # Order is important here for some replacements (r'''tfds\.core''', r'''datasets'''), (r'''tf\.io\.gfile\.GFile''', r'''open'''), (r'''tf\.([\w\d]+)''', r'''datasets.Value(\'\1\')'''), (r'''tfds\.features\.Text\(\)''', r'''datasets.Value(\'string\')'''), (r'''tfds\.features\.Text\(''', r'''datasets.Value(\'string\'),'''), (r'''features\s*=\s*tfds.features.FeaturesDict\(''', r'''features=datasets.Features('''), (r'''tfds\.features\.FeaturesDict\(''', r'''dict('''), (r'''The TensorFlow Datasets Authors''', r'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (r'''tfds\.''', r'''datasets.'''), (r'''dl_manager\.manual_dir''', r'''self.config.data_dir'''), (r'''self\.builder_config''', r'''self.config'''), ] def UpperCAmelCase ( A : Namespace ): '''simple docstring''' return ConvertCommand(args.tfds_path , args.datasets_directory ) class lowercase__ ( A ): '''simple docstring''' @staticmethod def lowerCamelCase_ ( snake_case ) -> str: _UpperCAmelCase = parser.add_parser( 'convert' , help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' , ) train_parser.add_argument( '--tfds_path' , type=snake_case , required=snake_case , help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' , ) train_parser.add_argument( '--datasets_directory' , type=snake_case , required=snake_case , help='Path to the HuggingFace Datasets folder.' ) train_parser.set_defaults(func=snake_case ) def __init__( self , snake_case , snake_case , *snake_case ) -> Any: _UpperCAmelCase = get_logger('datasets-cli/converting' ) _UpperCAmelCase = tfds_path _UpperCAmelCase = datasets_directory def lowerCamelCase_ ( self ) -> Optional[Any]: if os.path.isdir(self._tfds_path ): _UpperCAmelCase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): _UpperCAmelCase = os.path.dirname(self._tfds_path ) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' ) _UpperCAmelCase = os.path.abspath(self._datasets_directory ) self._logger.info(f'Converting datasets from {abs_tfds_path} to {abs_datasets_path}' ) _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = {} if os.path.isdir(self._tfds_path ): _UpperCAmelCase = os.listdir(snake_case ) else: _UpperCAmelCase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'Looking at file {f_name}' ) _UpperCAmelCase = os.path.join(snake_case , snake_case ) _UpperCAmelCase = os.path.join(snake_case , snake_case ) if not os.path.isfile(snake_case ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file' ) continue with open(snake_case , encoding='utf-8' ) as f: _UpperCAmelCase = f.readlines() _UpperCAmelCase = [] _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = [] for line in lines: _UpperCAmelCase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: _UpperCAmelCase = 'import datasets\n' elif "import tensorflow" in out_line: # order is important here _UpperCAmelCase = '' continue elif "from absl import logging" in out_line: _UpperCAmelCase = 'from datasets import logging\n' elif "getLogger" in out_line: _UpperCAmelCase = out_line.replace('getLogger' , 'get_logger' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): _UpperCAmelCase = True _UpperCAmelCase = list(filter(lambda snake_case : e in out_line , snake_case ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(snake_case ) + '\n' ) out_lines.append(snake_case ) out_lines.append(snake_case ) continue else: for pattern, replacement in TO_CONVERT: _UpperCAmelCase = re.sub(snake_case , snake_case , snake_case ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: _UpperCAmelCase = re.match(r'from\stensorflow_datasets.*import\s([^\.\r\n]+)' , snake_case ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) ) _UpperCAmelCase = 'from . import ' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'Error converting {out_line.strip()}' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: _UpperCAmelCase = True out_lines.append(snake_case ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset _UpperCAmelCase = f_name.replace('.py' , '' ) _UpperCAmelCase = os.path.join(snake_case , snake_case ) _UpperCAmelCase = os.path.join(snake_case , snake_case ) os.makedirs(snake_case , exist_ok=snake_case ) self._logger.info(f'Adding directory {output_dir}' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(snake_case ) if needs_manual_update: with_manual_update.append(snake_case ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.writelines(snake_case ) self._logger.info(f'Converted in {output_file}' ) for utils_file in utils_files: try: _UpperCAmelCase = os.path.basename(snake_case ) _UpperCAmelCase = imports_to_builder_map[f_name.replace('.py' , '' )] self._logger.info(f'Moving {dest_folder} to {utils_file}' ) shutil.copy(snake_case , snake_case ) except KeyError: self._logger.error(f'Cannot find destination folder for {utils_file}. Please copy manually.' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.' )
24
"""simple docstring""" from __future__ import annotations from cmath import sqrt def UpperCAmelCase ( A : int , A : int , A : int ): '''simple docstring''' if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) _UpperCAmelCase = b * b - 4 * a * c _UpperCAmelCase = (-b + sqrt(A )) / (2 * a) _UpperCAmelCase = (-b - sqrt(A )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = quadratic_roots(a=5 , b=6 , c=1 ) print(f'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
24
1
"""simple docstring""" lowercase = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
24
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = BarthezTokenizer _UpperCAmelCase = BarthezTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True def lowerCamelCase_ ( self ) -> Optional[int]: super().setUp() _UpperCAmelCase = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case ) _UpperCAmelCase = tokenizer def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = '<pad>' _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case ) , snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case ) , snake_case ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case ) , 101122 ) def lowerCamelCase_ ( self ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _UpperCAmelCase = [0, 57, 3018, 70307, 91, 2] _UpperCAmelCase = self.tokenizer( snake_case , max_length=len(snake_case ) , padding=snake_case , truncation=snake_case , return_tensors='pt' ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Optional[Any]: if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = 'I was born in 92000, and this is falsé.' _UpperCAmelCase = tokenizer.tokenize(snake_case ) _UpperCAmelCase = rust_tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) _UpperCAmelCase = tokenizer.encode(snake_case , add_special_tokens=snake_case ) _UpperCAmelCase = rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(snake_case ) _UpperCAmelCase = rust_tokenizer.encode(snake_case ) self.assertListEqual(snake_case , snake_case ) @slow def lowerCamelCase_ ( self ) -> Optional[int]: # fmt: off _UpperCAmelCase = {'input_ids': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=snake_case , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=snake_case , )
24
1
"""simple docstring""" import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def UpperCAmelCase ( A : int , A : int , A : Any ): '''simple docstring''' _UpperCAmelCase = AlbertConfig.from_json_file(A ) print(f'Building PyTorch model from configuration: {config}' ) _UpperCAmelCase = AlbertForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_albert(A , A , A ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , A ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--albert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained ALBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
24
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = DiTPipeline _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> str: torch.manual_seed(0 ) _UpperCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=snake_case , activation_fn='gelu-approximate' , num_embeds_ada_norm=1000 , norm_type='ada_norm_zero' , norm_elementwise_affine=snake_case , ) _UpperCAmelCase = AutoencoderKL() _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def lowerCamelCase_ ( self , snake_case , snake_case=0 ) -> Optional[Any]: if str(snake_case ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(snake_case ) else: _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(snake_case ) _UpperCAmelCase = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case ) _UpperCAmelCase = pipe(**snake_case ).images _UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _UpperCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case , 1E-3 ) def lowerCamelCase_ ( self ) -> Any: self._test_inference_batch_single_identical(relax_max_difference=snake_case , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowerCamelCase_ ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella', 'white shark', 'white wolf'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=40 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( f'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1E-2 def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=25 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1E-1
24
1
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal lowercase = logging.get_logger(__name__) lowercase = TypeVar('''DatasetType''', Dataset, IterableDataset) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[List[float]] = None , A : Optional[int] = None , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) else: return _interleave_iterable_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : int = 0 , ): '''simple docstring''' if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(A , info=A , split=A , axis=A ) else: return _concatenate_iterable_datasets(A , info=A , split=A , axis=A )
24
"""simple docstring""" def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = abs(A ) _UpperCAmelCase = 0 while n > 0: res += n % 10 n //= 10 return res def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = abs(A ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def UpperCAmelCase ( A : int ): '''simple docstring''' return sum(int(A ) for c in str(abs(A ) ) ) def UpperCAmelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(A : Callable , A : int ) -> None: _UpperCAmelCase = f'{func.__name__}({value})' _UpperCAmelCase = timeit(f'__main__.{call}' , setup='import __main__' ) print(f'{call:56} = {func(A )} -- {timing:.4f} seconds' ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(A , A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
24
1
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase ( A : Union[List, PIL.Image.Image, torch.Tensor] ): '''simple docstring''' warnings.warn( 'The preprocess method is deprecated and will be removed in a future version. Please' ' use VaeImageProcessor.preprocess instead' , A , ) if isinstance(A , torch.Tensor ): return image elif isinstance(A , PIL.Image.Image ): _UpperCAmelCase = [image] if isinstance(image[0] , PIL.Image.Image ): _UpperCAmelCase , _UpperCAmelCase = image[0].size _UpperCAmelCase , _UpperCAmelCase = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 _UpperCAmelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _UpperCAmelCase = np.concatenate(A , axis=0 ) _UpperCAmelCase = np.array(A ).astype(np.floataa ) / 255.0 _UpperCAmelCase = image.transpose(0 , 3 , 1 , 2 ) _UpperCAmelCase = 2.0 * image - 1.0 _UpperCAmelCase = torch.from_numpy(A ) elif isinstance(image[0] , torch.Tensor ): _UpperCAmelCase = torch.cat(A , dim=0 ) return image def UpperCAmelCase ( A : Union[List, PIL.Image.Image, torch.Tensor] ): '''simple docstring''' if isinstance(A , torch.Tensor ): return mask elif isinstance(A , PIL.Image.Image ): _UpperCAmelCase = [mask] if isinstance(mask[0] , PIL.Image.Image ): _UpperCAmelCase , _UpperCAmelCase = mask[0].size _UpperCAmelCase , _UpperCAmelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _UpperCAmelCase = [np.array(m.convert('L' ).resize((w, h) , resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask] _UpperCAmelCase = np.concatenate(A , axis=0 ) _UpperCAmelCase = mask.astype(np.floataa ) / 255.0 _UpperCAmelCase = 0 _UpperCAmelCase = 1 _UpperCAmelCase = torch.from_numpy(A ) elif isinstance(mask[0] , torch.Tensor ): _UpperCAmelCase = torch.cat(A , dim=0 ) return mask class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = 42 _UpperCAmelCase = 42 def __init__( self , snake_case , snake_case ) -> Union[str, Any]: super().__init__() self.register_modules(unet=snake_case , scheduler=snake_case ) @torch.no_grad() def __call__( self , snake_case , snake_case , snake_case = 250 , snake_case = 0.0 , snake_case = 10 , snake_case = 10 , snake_case = None , snake_case = "pil" , snake_case = True , ) -> Union[ImagePipelineOutput, Tuple]: _UpperCAmelCase = image _UpperCAmelCase = _preprocess_image(snake_case ) _UpperCAmelCase = original_image.to(device=self.device , dtype=self.unet.dtype ) _UpperCAmelCase = _preprocess_mask(snake_case ) _UpperCAmelCase = mask_image.to(device=self.device , dtype=self.unet.dtype ) _UpperCAmelCase = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(snake_case , snake_case ) and len(snake_case ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(snake_case )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) _UpperCAmelCase = original_image.shape _UpperCAmelCase = randn_tensor(snake_case , generator=snake_case , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(snake_case , snake_case , snake_case , self.device ) _UpperCAmelCase = eta _UpperCAmelCase = self.scheduler.timesteps[0] + 1 _UpperCAmelCase = generator[0] if isinstance(snake_case , snake_case ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual _UpperCAmelCase = self.unet(snake_case , snake_case ).sample # compute previous image: x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ).prev_sample else: # compute the reverse: x_t-1 -> x_t _UpperCAmelCase = self.scheduler.undo_step(snake_case , snake_case , snake_case ) _UpperCAmelCase = t _UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case )
24
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( A : int , A : int ): '''simple docstring''' _UpperCAmelCase = [] create_all_state(1 , A , A , [] , A ) return result def UpperCAmelCase ( A : int , A : int , A : int , A : list[int] , A : list[list[int]] , ): '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(A , total_number - level + 2 ): current_list.append(A ) create_all_state(i + 1 , A , level - 1 , A , A ) current_list.pop() def UpperCAmelCase ( A : list[list[int]] ): '''simple docstring''' for i in total_list: print(*A ) if __name__ == "__main__": lowercase = 4 lowercase = 2 lowercase = generate_all_combinations(n, k) print_all_state(total_list)
24
1
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all BART models at https://huggingface.co/models?filter=bart lowercase = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, } lowercase = { '''facebook/bart-base''': 10_24, '''facebook/bart-large''': 10_24, '''facebook/bart-large-mnli''': 10_24, '''facebook/bart-large-cnn''': 10_24, '''facebook/bart-large-xsum''': 10_24, '''yjernite/bart_eli5''': 10_24, } @lru_cache() def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _UpperCAmelCase = bs[:] _UpperCAmelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(A ) cs.append(2**8 + n ) n += 1 _UpperCAmelCase = [chr(A ) for n in cs] return dict(zip(A , A ) ) def UpperCAmelCase ( A : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCAmelCase = char return pairs class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , snake_case , snake_case , snake_case="replace" , snake_case="<s>" , snake_case="</s>" , snake_case="</s>" , snake_case="<s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case="<mask>" , snake_case=False , **snake_case , ) -> Optional[int]: _UpperCAmelCase = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else bos_token _UpperCAmelCase = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else eos_token _UpperCAmelCase = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else sep_token _UpperCAmelCase = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else cls_token _UpperCAmelCase = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else unk_token _UpperCAmelCase = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token super().__init__( errors=snake_case , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , cls_token=snake_case , pad_token=snake_case , mask_token=snake_case , add_prefix_space=snake_case , **snake_case , ) with open(snake_case , encoding='utf-8' ) as vocab_handle: _UpperCAmelCase = json.load(snake_case ) _UpperCAmelCase = {v: k for k, v in self.encoder.items()} _UpperCAmelCase = errors # how to handle errors in decoding _UpperCAmelCase = bytes_to_unicode() _UpperCAmelCase = {v: k for k, v in self.byte_encoder.items()} with open(snake_case , encoding='utf-8' ) as merges_handle: _UpperCAmelCase = merges_handle.read().split('\n' )[1:-1] _UpperCAmelCase = [tuple(merge.split() ) for merge in bpe_merges] _UpperCAmelCase = dict(zip(snake_case , range(len(snake_case ) ) ) ) _UpperCAmelCase = {} _UpperCAmelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _UpperCAmelCase = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def lowerCamelCase_ ( self ) -> Optional[int]: return len(self.encoder ) def lowerCamelCase_ ( self ) -> List[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase_ ( self , snake_case ) -> Union[str, Any]: if token in self.cache: return self.cache[token] _UpperCAmelCase = tuple(snake_case ) _UpperCAmelCase = get_pairs(snake_case ) if not pairs: return token while True: _UpperCAmelCase = min(snake_case , key=lambda snake_case : self.bpe_ranks.get(snake_case , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _UpperCAmelCase , _UpperCAmelCase = bigram _UpperCAmelCase = [] _UpperCAmelCase = 0 while i < len(snake_case ): try: _UpperCAmelCase = word.index(snake_case , snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _UpperCAmelCase = j if word[i] == first and i < len(snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCAmelCase = tuple(snake_case ) _UpperCAmelCase = new_word if len(snake_case ) == 1: break else: _UpperCAmelCase = get_pairs(snake_case ) _UpperCAmelCase = ' '.join(snake_case ) _UpperCAmelCase = word return word def lowerCamelCase_ ( self , snake_case ) -> List[Any]: _UpperCAmelCase = [] for token in re.findall(self.pat , snake_case ): _UpperCAmelCase = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case ).split(' ' ) ) return bpe_tokens def lowerCamelCase_ ( self , snake_case ) -> List[str]: return self.encoder.get(snake_case , self.encoder.get(self.unk_token ) ) def lowerCamelCase_ ( self , snake_case ) -> List[str]: return self.decoder.get(snake_case ) def lowerCamelCase_ ( self , snake_case ) -> int: _UpperCAmelCase = ''.join(snake_case ) _UpperCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def lowerCamelCase_ ( self , snake_case , snake_case = None ) -> Tuple[str]: if not os.path.isdir(snake_case ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _UpperCAmelCase = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case , ensure_ascii=snake_case ) + '\n' ) _UpperCAmelCase = 0 with open(snake_case , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) _UpperCAmelCase = token_index writer.write(' '.join(snake_case ) + '\n' ) index += 1 return vocab_file, merge_file def lowerCamelCase_ ( self , snake_case , snake_case = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] _UpperCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self , snake_case , snake_case = None , snake_case = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) if token_ids_a is None: return [1] + ([0] * len(snake_case )) + [1] return [1] + ([0] * len(snake_case )) + [1, 1] + ([0] * len(snake_case )) + [1] def lowerCamelCase_ ( self , snake_case , snake_case = None ) -> List[int]: _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self , snake_case , snake_case=False , **snake_case ) -> List[str]: _UpperCAmelCase = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case ) > 0 and not text[0].isspace()): _UpperCAmelCase = ' ' + text return (text, kwargs)
24
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowercase = logging.getLogger() def UpperCAmelCase ( A : Path , A : list ): '''simple docstring''' _UpperCAmelCase = '\n'.join(A ) Path(A ).open('w' ).writelines(A ) lowercase = '''patrickvonplaten/t5-tiny-random''' lowercase = '''sshleifer/bart-tiny-random''' lowercase = '''sshleifer/tiny-mbart''' lowercase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case ) -> str: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(snake_case , snake_case ) _UpperCAmelCase = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(snake_case , 'argv' , snake_case ): run_generate() assert Path(snake_case ).exists() # os.remove(Path(output_file_name)) def lowerCamelCase_ ( self ) -> str: self.run_eval_tester(snake_case ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> List[Any]: self.run_eval_tester(snake_case ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> Dict: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) _UpperCAmelCase = str(tmp_dir / 'scores.json' ) _UpperCAmelCase = str(tmp_dir / 'val.target' ) _dump_articles(snake_case , text['en'] ) _dump_articles(snake_case , text['de'] ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {str(snake_case )}\n {str(snake_case )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(snake_case , 'argv' , snake_case ): with CaptureStdout() as cs: run_search() _UpperCAmelCase = [' num_beams | length_penalty', model, 'Best score args'] _UpperCAmelCase = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(snake_case ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(snake_case ).exists() os.remove(Path(snake_case ) )
24
1
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class lowercase__ : '''simple docstring''' _UpperCAmelCase = 42 _UpperCAmelCase = None _UpperCAmelCase = None def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = Node(1 ) _UpperCAmelCase = Node(2 ) _UpperCAmelCase = Node(3 ) _UpperCAmelCase = Node(4 ) _UpperCAmelCase = Node(5 ) return tree def UpperCAmelCase ( A : Node | None ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCAmelCase ( A : Node | None ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCAmelCase ( A : Node | None ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCAmelCase ( A : Node | None ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def UpperCAmelCase ( A : Node | None ): '''simple docstring''' _UpperCAmelCase = [] if root is None: return output _UpperCAmelCase = deque([root] ) while process_queue: _UpperCAmelCase = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCAmelCase ( A : Node | None , A : int ): '''simple docstring''' _UpperCAmelCase = [] def populate_output(A : Node | None , A : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(A , A ) return output def UpperCAmelCase ( A : Node | None , A : int ): '''simple docstring''' _UpperCAmelCase = [] def populate_output(A : Node | None , A : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(A , A ) return output def UpperCAmelCase ( A : Node | None ): '''simple docstring''' if root is None: return [] _UpperCAmelCase = [] _UpperCAmelCase = 0 _UpperCAmelCase = height(A ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(A , A ) ) _UpperCAmelCase = 1 else: output.append(get_nodes_from_right_to_left(A , A ) ) _UpperCAmelCase = 0 return output def UpperCAmelCase ( ): # Main function for testing. '''simple docstring''' _UpperCAmelCase = make_tree() print(f'In-order Traversal: {inorder(A )}' ) print(f'Pre-order Traversal: {preorder(A )}' ) print(f'Post-order Traversal: {postorder(A )}' , '\n' ) print(f'Height of Tree: {height(A )}' , '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(A ) , '\n' ) print('Level-wise order Traversal: ' ) for level in range(1 , height(A ) + 1 ): print(f'Level {level}:' , get_nodes_from_left_to_right(A , level=A ) ) print('\nZigZag order Traversal: ' ) print(zigzag(A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
24
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal lowercase = logging.get_logger(__name__) lowercase = TypeVar('''DatasetType''', Dataset, IterableDataset) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[List[float]] = None , A : Optional[int] = None , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) else: return _interleave_iterable_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : int = 0 , ): '''simple docstring''' if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(A , info=A , split=A , axis=A ) else: return _concatenate_iterable_datasets(A , info=A , split=A , axis=A )
24
1
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('''.''') def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' f'{test_file} instead.' ) _UpperCAmelCase = components[-1] if not test_fn.endswith('py' ): raise ValueError(f'`test_file` should be a python file. Got {test_fn} instead.' ) if not test_fn.startswith('test_modeling_' ): raise ValueError( f'`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.' ) _UpperCAmelCase = components[:-1] + [test_fn.replace('.py' , '' )] _UpperCAmelCase = '.'.join(A ) return test_module_path def UpperCAmelCase ( A : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = get_module_path(A ) _UpperCAmelCase = importlib.import_module(A ) return test_module def UpperCAmelCase ( A : Dict ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = get_test_module(A ) for attr in dir(A ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(A , A ) ) # sort with class names return sorted(A , key=lambda A : x.__name__ ) def UpperCAmelCase ( A : Optional[int] ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = get_test_module(A ) for attr in dir(A ): _UpperCAmelCase = getattr(A , A ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _UpperCAmelCase = getattr(A , 'all_model_classes' , [] ) if len(A ) > 0: test_classes.append(A ) # sort with class names return sorted(A , key=lambda A : x.__name__ ) def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = get_test_classes(A ) _UpperCAmelCase = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(A , key=lambda A : x.__name__ ) def UpperCAmelCase ( A : Dict ): '''simple docstring''' _UpperCAmelCase = test_class() if hasattr(A , 'setUp' ): test.setUp() _UpperCAmelCase = None if hasattr(A , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _UpperCAmelCase = test.model_tester.__class__ return model_tester def UpperCAmelCase ( A : Any , A : int ): '''simple docstring''' _UpperCAmelCase = get_test_classes(A ) _UpperCAmelCase = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(A ) # sort with class names return sorted(A , key=lambda A : x.__name__ ) def UpperCAmelCase ( A : str , A : Dict ): '''simple docstring''' _UpperCAmelCase = get_test_classes_for_model(A , A ) _UpperCAmelCase = [] for test_class in test_classes: _UpperCAmelCase = get_model_tester_from_test_class(A ) if tester_class is not None: tester_classes.append(A ) # sort with class names return sorted(A , key=lambda A : x.__name__ ) def UpperCAmelCase ( A : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = get_test_classes(A ) _UpperCAmelCase = {test_class: get_model_tester_from_test_class(A ) for test_class in test_classes} return test_tester_mapping def UpperCAmelCase ( A : Any ): '''simple docstring''' _UpperCAmelCase = get_model_classes(A ) _UpperCAmelCase = { model_class: get_test_classes_for_model(A , A ) for model_class in model_classes } return model_test_mapping def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = get_model_classes(A ) _UpperCAmelCase = { model_class: get_tester_classes_for_model(A , A ) for model_class in model_classes } return model_to_tester_mapping def UpperCAmelCase ( A : List[Any] ): '''simple docstring''' if isinstance(A , A ): return o elif isinstance(A , A ): return o.__name__ elif isinstance(A , (list, tuple) ): return [to_json(A ) for x in o] elif isinstance(A , A ): return {to_json(A ): to_json(A ) for k, v in o.items()} else: return o
24
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase__ ( unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Dict: _UpperCAmelCase = TextaTextGenerationPipeline(model=snake_case , tokenizer=snake_case ) return generator, ["Something to write", "Something else"] def lowerCamelCase_ ( self , snake_case , snake_case ) -> Dict: _UpperCAmelCase = generator('Something there' ) self.assertEqual(snake_case , [{'generated_text': ANY(snake_case )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) _UpperCAmelCase = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) _UpperCAmelCase = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) with self.assertRaises(snake_case ): generator(4 ) @require_torch def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] ) _UpperCAmelCase = 3 _UpperCAmelCase = generator( 'Something there' , num_return_sequences=snake_case , num_beams=snake_case , ) _UpperCAmelCase = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(snake_case , snake_case ) _UpperCAmelCase = generator('This is a test' , do_sample=snake_case , num_return_sequences=2 , return_tensors=snake_case ) self.assertEqual( snake_case , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) _UpperCAmelCase = generator.model.config.eos_token_id _UpperCAmelCase = '<pad>' _UpperCAmelCase = generator( ['This is a test', 'This is a second test'] , do_sample=snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=snake_case , ) self.assertEqual( snake_case , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] )
24
1
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase__ : '''simple docstring''' def __init__( self , snake_case , snake_case=13 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=99 , snake_case=32 , snake_case=2 , snake_case=4 , snake_case=37 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=16 , snake_case=2 , snake_case=0.02 , snake_case=3 , snake_case=4 , snake_case=None , ) -> Dict: _UpperCAmelCase = parent _UpperCAmelCase = 13 _UpperCAmelCase = 7 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = 99 _UpperCAmelCase = 384 _UpperCAmelCase = 2 _UpperCAmelCase = 4 _UpperCAmelCase = 37 _UpperCAmelCase = 'gelu' _UpperCAmelCase = 0.1 _UpperCAmelCase = 0.1 _UpperCAmelCase = 512 _UpperCAmelCase = 16 _UpperCAmelCase = 2 _UpperCAmelCase = 0.02 _UpperCAmelCase = 3 _UpperCAmelCase = 4 _UpperCAmelCase = 128 _UpperCAmelCase = 2 _UpperCAmelCase = 9 _UpperCAmelCase = 1 _UpperCAmelCase = None def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Any: _UpperCAmelCase = TFConvBertModel(config=snake_case ) _UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(snake_case ) _UpperCAmelCase = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> List[str]: _UpperCAmelCase = TFConvBertForMaskedLM(config=snake_case ) _UpperCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _UpperCAmelCase = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> str: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFConvBertForSequenceClassification(config=snake_case ) _UpperCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _UpperCAmelCase = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> int: _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFConvBertForMultipleChoice(config=snake_case ) _UpperCAmelCase = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _UpperCAmelCase = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> List[Any]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFConvBertForTokenClassification(config=snake_case ) _UpperCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _UpperCAmelCase = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Optional[int]: _UpperCAmelCase = TFConvBertForQuestionAnswering(config=snake_case ) _UpperCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _UpperCAmelCase = model(snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowercase__ ( A, A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _UpperCAmelCase = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = TFConvBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def lowerCamelCase_ ( self ) -> int: self.config_tester.run_common_tests() def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case ) def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) @slow def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True _UpperCAmelCase = True if hasattr(snake_case , 'use_cache' ): _UpperCAmelCase = True _UpperCAmelCase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) _UpperCAmelCase = getattr(self.model_tester , 'key_length' , snake_case ) for model_class in self.all_model_classes: _UpperCAmelCase = self._prepare_for_class(snake_case , snake_case ) _UpperCAmelCase = model_class(snake_case ) _UpperCAmelCase = len(model(snake_case ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case , saved_model=snake_case ) _UpperCAmelCase = os.path.join(snake_case , 'saved_model' , '1' ) _UpperCAmelCase = tf.keras.models.load_model(snake_case ) _UpperCAmelCase = model(snake_case ) if self.is_encoder_decoder: _UpperCAmelCase = outputs['encoder_hidden_states'] _UpperCAmelCase = outputs['encoder_attentions'] else: _UpperCAmelCase = outputs['hidden_states'] _UpperCAmelCase = outputs['attentions'] self.assertEqual(len(snake_case ) , snake_case ) _UpperCAmelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case ) , snake_case ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(snake_case ) def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True _UpperCAmelCase = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) _UpperCAmelCase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) _UpperCAmelCase = getattr(self.model_tester , 'key_length' , snake_case ) _UpperCAmelCase = getattr(self.model_tester , 'key_length' , snake_case ) def check_decoder_attentions_output(snake_case ): _UpperCAmelCase = len(snake_case ) self.assertEqual(out_len % 2 , 0 ) _UpperCAmelCase = outputs.decoder_attentions self.assertEqual(len(snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(snake_case ): _UpperCAmelCase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = model_class(snake_case ) _UpperCAmelCase = model(self._prepare_for_class(snake_case , snake_case ) ) _UpperCAmelCase = len(snake_case ) self.assertEqual(config.output_hidden_states , snake_case ) check_encoder_attentions_output(snake_case ) if self.is_encoder_decoder: _UpperCAmelCase = model_class(snake_case ) _UpperCAmelCase = model(self._prepare_for_class(snake_case , snake_case ) ) self.assertEqual(config.output_hidden_states , snake_case ) check_decoder_attentions_output(snake_case ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _UpperCAmelCase = True _UpperCAmelCase = model_class(snake_case ) _UpperCAmelCase = model(self._prepare_for_class(snake_case , snake_case ) ) self.assertEqual(config.output_hidden_states , snake_case ) check_encoder_attentions_output(snake_case ) # Check attention is always last and order is fine _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(snake_case ) _UpperCAmelCase = model(self._prepare_for_class(snake_case , snake_case ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case ) ) self.assertEqual(model.config.output_hidden_states , snake_case ) check_encoder_attentions_output(snake_case ) @require_tf class lowercase__ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(snake_case )[0] _UpperCAmelCase = [1, 6, 768] self.assertEqual(output.shape , snake_case ) _UpperCAmelCase = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case , atol=1E-4 )
24
"""simple docstring""" def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = [[0 for _ in range(A )] for _ in range(m + 1 )] for i in range(m + 1 ): _UpperCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , A ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: lowercase = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: lowercase = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
24
1
"""simple docstring""" def UpperCAmelCase ( A : float , A : float ): '''simple docstring''' if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(A ) * abs(A ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
24
"""simple docstring""" import os lowercase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} def UpperCAmelCase ( A : str ): '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = 0 while index < len(A ) - 1: _UpperCAmelCase = SYMBOLS[numerals[index]] _UpperCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = '' _UpperCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 _UpperCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _UpperCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase ( A : str = "/p089_roman.txt" ): '''simple docstring''' _UpperCAmelCase = 0 with open(os.path.dirname(A ) + roman_numerals_filename ) as filea: _UpperCAmelCase = filea.readlines() for line in lines: _UpperCAmelCase = line.strip() _UpperCAmelCase = parse_roman_numerals(A ) _UpperCAmelCase = generate_roman_numerals(A ) savings += len(A ) - len(A ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
24
1
"""simple docstring""" class lowercase__ : '''simple docstring''' def __init__( self ) -> Dict: _UpperCAmelCase = {} def lowerCamelCase_ ( self ) -> None: print(self.vertex ) for i in self.vertex: print(snake_case , ' -> ' , ' -> '.join([str(snake_case ) for j in self.vertex[i]] ) ) def lowerCamelCase_ ( self , snake_case , snake_case ) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(snake_case ) else: # else make a new vertex _UpperCAmelCase = [to_vertex] def lowerCamelCase_ ( self ) -> None: # visited array for storing already visited nodes _UpperCAmelCase = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(snake_case , snake_case ) def lowerCamelCase_ ( self , snake_case , snake_case ) -> None: # mark start vertex as visited _UpperCAmelCase = True print(snake_case , end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(snake_case , snake_case ) if __name__ == "__main__": lowercase = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('''DFS:''') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
24
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } _UpperCAmelCase = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(snake_case ) , snake_case ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(snake_case ) , x.transpose() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , transpose(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , transpose(snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , transpose(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , transpose(snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , np.asarray(transpose(snake_case ) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(snake_case , axes=(1, 2, 0) ) ) ) ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , np.reshape(snake_case , (4, 3) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , np.reshape(snake_case , (12, 5) ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , reshape(snake_case , (4, 3) ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , reshape(snake_case , (12, 5) ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , reshape(snake_case , (4, 3) ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , reshape(snake_case , (12, 5) ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , np.asarray(reshape(snake_case , (4, 3) ) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , np.asarray(reshape(snake_case , (12, 5) ) ) ) ) def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(snake_case ) , np.squeeze(snake_case ) ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , np.squeeze(snake_case , axis=2 ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , squeeze(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , squeeze(snake_case , axis=2 ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , squeeze(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , squeeze(snake_case , axis=2 ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , np.asarray(squeeze(snake_case ) ) ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , np.asarray(squeeze(snake_case , axis=2 ) ) ) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , np.expand_dims(snake_case , axis=1 ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , expand_dims(snake_case , axis=1 ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , expand_dims(snake_case , axis=1 ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , np.asarray(expand_dims(snake_case , axis=1 ) ) ) )
24
1
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def UpperCAmelCase ( A : float , A : float , A : bool = False ): '''simple docstring''' if radian_mode: return [magnitude * cos(A ), magnitude * sin(A )] return [magnitude * cos(radians(A ) ), magnitude * sin(radians(A ) )] def UpperCAmelCase ( A : NDArray[floataa] , A : NDArray[floataa] , A : float = 10**-1 ): '''simple docstring''' _UpperCAmelCase = cross(A , A ) _UpperCAmelCase = sum(A ) return abs(A ) < eps if __name__ == "__main__": # Test to check if it works lowercase = array( [ polar_force(718.4, 1_80 - 30), polar_force(879.54, 45), polar_force(1_00, -90), ] ) lowercase = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowercase = array( [ polar_force(30 * 9.81, 15), polar_force(2_15, 1_80 - 45), polar_force(2_64, 90 - 30), ] ) lowercase = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowercase = array([[0, -20_00], [0, -12_00], [0, 1_56_00], [0, -1_24_00]]) lowercase = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
24
"""simple docstring""" import os def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = os.path.join(os.path.dirname(A ) , 'num.txt' ) with open(A ) as file_hand: return str(sum(int(A ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
24
1
"""simple docstring""" import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase__ ( A ): '''simple docstring''' def __init__( self , *snake_case , snake_case=None , snake_case=None , **snake_case ) -> Optional[Any]: super().__init__(*snake_case , **snake_case ) _UpperCAmelCase = eval_examples _UpperCAmelCase = post_process_function def lowerCamelCase_ ( self , snake_case = None , snake_case=None , snake_case = None , snake_case = "eval" , **snake_case , ) -> Dict[str, float]: _UpperCAmelCase = gen_kwargs.copy() _UpperCAmelCase = ( gen_kwargs['max_length'] if gen_kwargs.get('max_length' ) is not None else self.args.generation_max_length ) _UpperCAmelCase = ( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams' ) is not None else self.args.generation_num_beams ) _UpperCAmelCase = gen_kwargs _UpperCAmelCase = self.eval_dataset if eval_dataset is None else eval_dataset _UpperCAmelCase = self.get_eval_dataloader(snake_case ) _UpperCAmelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _UpperCAmelCase = self.compute_metrics _UpperCAmelCase = None _UpperCAmelCase = time.time() _UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _UpperCAmelCase = eval_loop( snake_case , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=snake_case , metric_key_prefix=snake_case , ) finally: _UpperCAmelCase = compute_metrics _UpperCAmelCase = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( snake_case , snake_case , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _UpperCAmelCase = self.post_process_function(snake_case , snake_case , snake_case ) _UpperCAmelCase = self.compute_metrics(snake_case ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _UpperCAmelCase = metrics.pop(snake_case ) metrics.update(output.metrics ) else: _UpperCAmelCase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(snake_case ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _UpperCAmelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , snake_case ) return metrics def lowerCamelCase_ ( self , snake_case , snake_case , snake_case=None , snake_case = "test" , **snake_case ) -> Optional[int]: _UpperCAmelCase = gen_kwargs.copy() _UpperCAmelCase = self.get_test_dataloader(snake_case ) # Temporarily disable metric computation, we will do it in the loop here. _UpperCAmelCase = self.compute_metrics _UpperCAmelCase = None _UpperCAmelCase = time.time() _UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _UpperCAmelCase = eval_loop( snake_case , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=snake_case , metric_key_prefix=snake_case , ) finally: _UpperCAmelCase = compute_metrics _UpperCAmelCase = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( snake_case , snake_case , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _UpperCAmelCase = self.post_process_function(snake_case , snake_case , snake_case , 'predict' ) _UpperCAmelCase = self.compute_metrics(snake_case ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _UpperCAmelCase = metrics.pop(snake_case ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=snake_case )
24
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
1
"""simple docstring""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowercase = logging.get_logger(__name__) lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowercase = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } lowercase = { '''allenai/led-base-16384''': 1_63_84, } class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = LEDTokenizer _UpperCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , snake_case=None , snake_case=None , snake_case=None , snake_case="replace" , snake_case="<s>" , snake_case="</s>" , snake_case="</s>" , snake_case="<s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case="<mask>" , snake_case=False , snake_case=True , **snake_case , ) -> Optional[int]: super().__init__( snake_case , snake_case , tokenizer_file=snake_case , errors=snake_case , bos_token=snake_case , eos_token=snake_case , sep_token=snake_case , cls_token=snake_case , unk_token=snake_case , pad_token=snake_case , mask_token=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case , **snake_case , ) _UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case ) != add_prefix_space: _UpperCAmelCase = getattr(snake_case , pre_tok_state.pop('type' ) ) _UpperCAmelCase = add_prefix_space _UpperCAmelCase = pre_tok_class(**snake_case ) _UpperCAmelCase = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _UpperCAmelCase = 'post_processor' _UpperCAmelCase = getattr(self.backend_tokenizer , snake_case , snake_case ) if tokenizer_component_instance: _UpperCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _UpperCAmelCase = tuple(state['sep'] ) if "cls" in state: _UpperCAmelCase = tuple(state['cls'] ) _UpperCAmelCase = False if state.get('add_prefix_space' , snake_case ) != add_prefix_space: _UpperCAmelCase = add_prefix_space _UpperCAmelCase = True if state.get('trim_offsets' , snake_case ) != trim_offsets: _UpperCAmelCase = trim_offsets _UpperCAmelCase = True if changes_to_apply: _UpperCAmelCase = getattr(snake_case , state.pop('type' ) ) _UpperCAmelCase = component_class(**snake_case ) setattr(self.backend_tokenizer , snake_case , snake_case ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowerCamelCase_ ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self , snake_case ) -> str: _UpperCAmelCase = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else value _UpperCAmelCase = value def lowerCamelCase_ ( self , *snake_case , **snake_case ) -> BatchEncoding: _UpperCAmelCase = kwargs.get('is_split_into_words' , snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*snake_case , **snake_case ) def lowerCamelCase_ ( self , *snake_case , **snake_case ) -> BatchEncoding: _UpperCAmelCase = kwargs.get('is_split_into_words' , snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*snake_case , **snake_case ) def lowerCamelCase_ ( self , snake_case , snake_case = None ) -> Tuple[str]: _UpperCAmelCase = self._tokenizer.model.save(snake_case , name=snake_case ) return tuple(snake_case ) def lowerCamelCase_ ( self , snake_case , snake_case=None ) -> List[Any]: _UpperCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self , snake_case , snake_case = None ) -> List[int]: _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self , snake_case , snake_case = None , snake_case = PaddingStrategy.DO_NOT_PAD , snake_case = None , snake_case = None , ) -> dict: _UpperCAmelCase = super()._pad( encoded_inputs=snake_case , max_length=snake_case , padding_strategy=snake_case , pad_to_multiple_of=snake_case , return_attention_mask=snake_case , ) # Load from model defaults if return_attention_mask is None: _UpperCAmelCase = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _UpperCAmelCase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _UpperCAmelCase = len(encoded_inputs['global_attention_mask'] ) != len(snake_case ) if needs_to_be_padded: _UpperCAmelCase = len(snake_case ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _UpperCAmelCase = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": _UpperCAmelCase = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
24
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowercase = logging.get_logger(__name__) class lowercase__ ( A ): '''simple docstring''' def __init__( self , *snake_case , **snake_case ) -> None: warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , snake_case , ) super().__init__(*snake_case , **snake_case )
24
1
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowercase = logging.getLogger() def UpperCAmelCase ( A : Path , A : list ): '''simple docstring''' _UpperCAmelCase = '\n'.join(A ) Path(A ).open('w' ).writelines(A ) lowercase = '''patrickvonplaten/t5-tiny-random''' lowercase = '''sshleifer/bart-tiny-random''' lowercase = '''sshleifer/tiny-mbart''' lowercase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case ) -> str: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(snake_case , snake_case ) _UpperCAmelCase = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(snake_case , 'argv' , snake_case ): run_generate() assert Path(snake_case ).exists() # os.remove(Path(output_file_name)) def lowerCamelCase_ ( self ) -> str: self.run_eval_tester(snake_case ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> List[Any]: self.run_eval_tester(snake_case ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> Dict: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) _UpperCAmelCase = str(tmp_dir / 'scores.json' ) _UpperCAmelCase = str(tmp_dir / 'val.target' ) _dump_articles(snake_case , text['en'] ) _dump_articles(snake_case , text['de'] ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {str(snake_case )}\n {str(snake_case )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(snake_case , 'argv' , snake_case ): with CaptureStdout() as cs: run_search() _UpperCAmelCase = [' num_beams | length_penalty', model, 'Best score args'] _UpperCAmelCase = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(snake_case ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(snake_case ).exists() os.remove(Path(snake_case ) )
24
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''beit''' def __init__( self , snake_case=8192 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1E-12 , snake_case=224 , snake_case=16 , snake_case=3 , snake_case=False , snake_case=False , snake_case=False , snake_case=False , snake_case=0.1 , snake_case=0.1 , snake_case=True , snake_case=[3, 5, 7, 11] , snake_case=[1, 2, 3, 6] , snake_case=True , snake_case=0.4 , snake_case=256 , snake_case=1 , snake_case=False , snake_case=255 , **snake_case , ) -> str: super().__init__(**snake_case ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = use_mask_token _UpperCAmelCase = use_absolute_position_embeddings _UpperCAmelCase = use_relative_position_bias _UpperCAmelCase = use_shared_relative_position_bias _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) _UpperCAmelCase = out_indices _UpperCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = semantic_loss_ignore_index class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
24
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = UnCLIPImageVariationPipeline _UpperCAmelCase = IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''guidance_scale'''} _UpperCAmelCase = IMAGE_VARIATION_BATCH_PARAMS _UpperCAmelCase = [ '''generator''', '''return_dict''', '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] _UpperCAmelCase = False @property def lowerCamelCase_ ( self ) -> List[Any]: return 32 @property def lowerCamelCase_ ( self ) -> Union[str, Any]: return 32 @property def lowerCamelCase_ ( self ) -> int: return self.time_input_dim @property def lowerCamelCase_ ( self ) -> Any: return self.time_input_dim * 4 @property def lowerCamelCase_ ( self ) -> Tuple: return 100 @property def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowerCamelCase_ ( self ) -> Any: torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(snake_case ) @property def lowerCamelCase_ ( self ) -> int: torch.manual_seed(0 ) _UpperCAmelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(snake_case ) @property def lowerCamelCase_ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _UpperCAmelCase = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } _UpperCAmelCase = UnCLIPTextProjModel(**snake_case ) return model @property def lowerCamelCase_ ( self ) -> Tuple: torch.manual_seed(0 ) _UpperCAmelCase = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } _UpperCAmelCase = UNetaDConditionModel(**snake_case ) return model @property def lowerCamelCase_ ( self ) -> Tuple: return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def lowerCamelCase_ ( self ) -> List[str]: torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def lowerCamelCase_ ( self ) -> List[str]: # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) _UpperCAmelCase = UNetaDModel(**self.dummy_super_res_kwargs ) return model def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = self.dummy_decoder _UpperCAmelCase = self.dummy_text_proj _UpperCAmelCase = self.dummy_text_encoder _UpperCAmelCase = self.dummy_tokenizer _UpperCAmelCase = self.dummy_super_res_first _UpperCAmelCase = self.dummy_super_res_last _UpperCAmelCase = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1000 , ) _UpperCAmelCase = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1000 , ) _UpperCAmelCase = CLIPImageProcessor(crop_size=32 , size=32 ) _UpperCAmelCase = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def lowerCamelCase_ ( self , snake_case , snake_case=0 , snake_case=True ) -> int: _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case ) ).to(snake_case ) if str(snake_case ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(snake_case ) else: _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(snake_case ) if pil_image: _UpperCAmelCase = input_image * 0.5 + 0.5 _UpperCAmelCase = input_image.clamp(0 , 1 ) _UpperCAmelCase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _UpperCAmelCase = DiffusionPipeline.numpy_to_pil(snake_case )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**snake_case ) _UpperCAmelCase = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case , pil_image=snake_case ) _UpperCAmelCase = pipe(**snake_case ) _UpperCAmelCase = output.images _UpperCAmelCase = self.get_dummy_inputs(snake_case , pil_image=snake_case ) _UpperCAmelCase = pipe( **snake_case , return_dict=snake_case , )[0] _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array( [ 0.9997, 0.0002, 0.9997, 0.9997, 0.9969, 0.0023, 0.9997, 0.9969, 0.9970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**snake_case ) _UpperCAmelCase = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case , pil_image=snake_case ) _UpperCAmelCase = pipe(**snake_case ) _UpperCAmelCase = output.images _UpperCAmelCase = self.get_dummy_inputs(snake_case , pil_image=snake_case ) _UpperCAmelCase = pipe( **snake_case , return_dict=snake_case , )[0] _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**snake_case ) _UpperCAmelCase = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case , pil_image=snake_case ) _UpperCAmelCase = [ pipeline_inputs['image'], pipeline_inputs['image'], ] _UpperCAmelCase = pipe(**snake_case ) _UpperCAmelCase = output.images _UpperCAmelCase = self.get_dummy_inputs(snake_case , pil_image=snake_case ) _UpperCAmelCase = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] _UpperCAmelCase = pipe( **snake_case , return_dict=snake_case , )[0] _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) _UpperCAmelCase = np.array( [ 0.9997, 0.9989, 0.0008, 0.0021, 0.9960, 0.0018, 0.0014, 0.0002, 0.9933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = torch.device('cpu' ) class lowercase__ : '''simple docstring''' _UpperCAmelCase = 1 _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**snake_case ) _UpperCAmelCase = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(0 ) _UpperCAmelCase = pipe.decoder.dtype _UpperCAmelCase = 1 _UpperCAmelCase = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) _UpperCAmelCase = pipe.prepare_latents( snake_case , dtype=snake_case , device=snake_case , generator=snake_case , latents=snake_case , scheduler=DummyScheduler() ) _UpperCAmelCase = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) _UpperCAmelCase = pipe.prepare_latents( snake_case , dtype=snake_case , device=snake_case , generator=snake_case , latents=snake_case , scheduler=DummyScheduler() ) _UpperCAmelCase = self.get_dummy_inputs(snake_case , pil_image=snake_case ) _UpperCAmelCase = pipe( **snake_case , decoder_latents=snake_case , super_res_latents=snake_case ).images _UpperCAmelCase = self.get_dummy_inputs(snake_case , pil_image=snake_case ) # Don't pass image, instead pass embedding _UpperCAmelCase = pipeline_inputs.pop('image' ) _UpperCAmelCase = pipe.image_encoder(snake_case ).image_embeds _UpperCAmelCase = pipe( **snake_case , decoder_latents=snake_case , super_res_latents=snake_case , image_embeddings=snake_case , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor _UpperCAmelCase = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=snake_case , expected_max_diff=snake_case ) @skip_mps def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = torch_device == 'cpu' _UpperCAmelCase = True _UpperCAmelCase = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=snake_case , relax_max_difference=snake_case , additional_params_copy_to_batched_inputs=snake_case , ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes _UpperCAmelCase = [2, 3] self._test_inference_batch_consistent( batch_sizes=snake_case , additional_params_copy_to_batched_inputs=snake_case , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=snake_case ) @skip_mps def lowerCamelCase_ ( self ) -> int: return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowerCamelCase_ ( self ) -> List[Any]: return super().test_save_load_local() @skip_mps def lowerCamelCase_ ( self ) -> List[Any]: return super().test_save_load_optional_components() @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) _UpperCAmelCase = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) _UpperCAmelCase = pipeline.to(snake_case ) pipeline.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) _UpperCAmelCase = pipeline( snake_case , generator=snake_case , output_type='np' , ) _UpperCAmelCase = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(snake_case , snake_case , 15 )
24
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowercase = logging.getLogger(__name__) if __name__ == "__main__": lowercase = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_05_22, type=int) lowercase = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: lowercase = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') lowercase = Counter() for tk_ids in data: counter.update(tk_ids) lowercase = [0] * args.vocab_size for k, v in counter.items(): lowercase = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
24
1
"""simple docstring""" import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def UpperCAmelCase ( *A : Any , A : Optional[Union[Dict, Any]] = None , A : str=True , A : Any=2 ): '''simple docstring''' from .. import __version__ _UpperCAmelCase = take_from _UpperCAmelCase = () if not isinstance(args[0] , A ): _UpperCAmelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(A ).base_version ) >= version.parse(A ): raise ValueError( f'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'' f' version {__version__} is >= {version_name}' ) _UpperCAmelCase = None if isinstance(A , A ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(A ),) _UpperCAmelCase = f'The `{attribute}` argument is deprecated and will be removed in version {version_name}.' elif hasattr(A , A ): values += (getattr(A , A ),) _UpperCAmelCase = f'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.' elif deprecated_kwargs is None: _UpperCAmelCase = f'`{attribute}` is deprecated and will be removed in version {version_name}.' if warning is not None: _UpperCAmelCase = warning + ' ' if standard_warn else '' warnings.warn(warning + message , A , stacklevel=A ) if isinstance(A , A ) and len(A ) > 0: _UpperCAmelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCAmelCase = call_frame.filename _UpperCAmelCase = call_frame.lineno _UpperCAmelCase = call_frame.function _UpperCAmelCase , _UpperCAmelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' ) if len(A ) == 0: return elif len(A ) == 1: return values[0] return values
24
"""simple docstring""" from itertools import permutations def UpperCAmelCase ( A : tuple ): '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _UpperCAmelCase = [7, 11, 13, 17] for i, test in enumerate(A ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase ( A : int = 10 ): '''simple docstring''' return sum( int(''.join(map(A , A ) ) ) for num in permutations(range(A ) ) if is_substring_divisible(A ) ) if __name__ == "__main__": print(F'''{solution() = }''')
24
1
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowercase = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCAmelCase ( A : int ): '''simple docstring''' from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(A ) def UpperCAmelCase ( A : Any ): '''simple docstring''' from diffusers.utils.testing_utils import pytest_terminal_summary_main _UpperCAmelCase = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(A , id=A )
24
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
1
"""simple docstring""" import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = VideoToVideoSDPipeline _UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'''video'''} ) - {'''image''', '''width''', '''height'''} _UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''video'''} ) - {'''image'''} _UpperCAmelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} _UpperCAmelCase = False # No `output_type`. _UpperCAmelCase = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def lowerCamelCase_ ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) _UpperCAmelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case , set_alpha_to_one=snake_case , ) torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) _UpperCAmelCase = CLIPTextModel(snake_case ) _UpperCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _UpperCAmelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def lowerCamelCase_ ( self , snake_case , snake_case=0 ) -> Tuple: # 3 frames _UpperCAmelCase = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(snake_case ) ).to(snake_case ) if str(snake_case ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(snake_case ) else: _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(snake_case ) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = VideoToVideoSDPipeline(**snake_case ) _UpperCAmelCase = sd_pipe.to(snake_case ) sd_pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case ) _UpperCAmelCase = 'np' _UpperCAmelCase = sd_pipe(**snake_case ).frames _UpperCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) _UpperCAmelCase = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowerCamelCase_ ( self ) -> str: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case , expected_max_diff=5E-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def lowerCamelCase_ ( self ) -> int: pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def lowerCamelCase_ ( self ) -> Any: pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def lowerCamelCase_ ( self ) -> List[Any]: pass def lowerCamelCase_ ( self ) -> str: return super().test_progress_bar() @slow @skip_mps class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames _UpperCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) _UpperCAmelCase = torch.randn((1, 10, 3, 1024, 576) , generator=snake_case ) _UpperCAmelCase = video.to('cuda' ) _UpperCAmelCase = 'Spiderman is surfing' _UpperCAmelCase = pipe(snake_case , video=snake_case , generator=snake_case , num_inference_steps=3 , output_type='pt' ).frames _UpperCAmelCase = np.array([-1.0458984, -1.1279297, -0.9663086, -0.91503906, -0.75097656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
24
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
1
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = BarthezTokenizer _UpperCAmelCase = BarthezTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True def lowerCamelCase_ ( self ) -> Optional[int]: super().setUp() _UpperCAmelCase = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case ) _UpperCAmelCase = tokenizer def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = '<pad>' _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case ) , snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case ) , snake_case ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case ) , 101122 ) def lowerCamelCase_ ( self ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _UpperCAmelCase = [0, 57, 3018, 70307, 91, 2] _UpperCAmelCase = self.tokenizer( snake_case , max_length=len(snake_case ) , padding=snake_case , truncation=snake_case , return_tensors='pt' ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Optional[Any]: if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = 'I was born in 92000, and this is falsé.' _UpperCAmelCase = tokenizer.tokenize(snake_case ) _UpperCAmelCase = rust_tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) _UpperCAmelCase = tokenizer.encode(snake_case , add_special_tokens=snake_case ) _UpperCAmelCase = rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(snake_case ) _UpperCAmelCase = rust_tokenizer.encode(snake_case ) self.assertListEqual(snake_case , snake_case ) @slow def lowerCamelCase_ ( self ) -> Optional[int]: # fmt: off _UpperCAmelCase = {'input_ids': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=snake_case , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=snake_case , )
24
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowercase__ ( A, A ): '''simple docstring''' _UpperCAmelCase = '''swin''' _UpperCAmelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , snake_case=224 , snake_case=4 , snake_case=3 , snake_case=96 , snake_case=[2, 2, 6, 2] , snake_case=[3, 6, 12, 24] , snake_case=7 , snake_case=4.0 , snake_case=True , snake_case=0.0 , snake_case=0.0 , snake_case=0.1 , snake_case="gelu" , snake_case=False , snake_case=0.02 , snake_case=1E-5 , snake_case=32 , snake_case=None , snake_case=None , **snake_case , ) -> List[Any]: super().__init__(**snake_case ) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = len(snake_case ) _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase = int(embed_dim * 2 ** (len(snake_case ) - 1) ) _UpperCAmelCase = ['stem'] + [f'stage{idx}' for idx in range(1 , len(snake_case ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names ) class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
24
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class lowercase__ ( unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = StableDiffusionLDMaDPipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase_ ( self ) -> str: torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) _UpperCAmelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case , set_alpha_to_one=snake_case , ) torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _UpperCAmelCase = CLIPTextModel(snake_case ) _UpperCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _UpperCAmelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCamelCase_ ( self , snake_case , snake_case=0 ) -> Dict: if str(snake_case ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(snake_case ) else: _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(snake_case ) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionLDMaDPipeline(**snake_case ) _UpperCAmelCase = ldmad_pipe.to(snake_case ) ldmad_pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case ) _UpperCAmelCase = ldmad_pipe(**snake_case ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = rgb[0, -3:, -3:, -1] _UpperCAmelCase = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) _UpperCAmelCase = np.array( [0.37338176, 0.70247, 0.74203193, 0.51643604, 0.58256793, 0.60932136, 0.4181095, 0.48355877, 0.46535262] ) _UpperCAmelCase = np.array([103.46727, 85.812004, 87.849236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionLDMaDPipeline(**snake_case ) _UpperCAmelCase = ldmad_pipe.to(snake_case ) ldmad_pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case ) _UpperCAmelCase = 3 * [inputs['prompt']] # forward _UpperCAmelCase = ldmad_pipe(**snake_case ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = rgb_slice_a[0, -3:, -3:, -1] _UpperCAmelCase = depth_slice_a[0, -3:, -1] _UpperCAmelCase = self.get_dummy_inputs(snake_case ) _UpperCAmelCase = 3 * [inputs.pop('prompt' )] _UpperCAmelCase = ldmad_pipe.tokenizer( snake_case , padding='max_length' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=snake_case , return_tensors='pt' , ) _UpperCAmelCase = text_inputs['input_ids'].to(snake_case ) _UpperCAmelCase = ldmad_pipe.text_encoder(snake_case )[0] _UpperCAmelCase = prompt_embeds # forward _UpperCAmelCase = ldmad_pipe(**snake_case ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = rgb_slice_a[0, -3:, -3:, -1] _UpperCAmelCase = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = PNDMScheduler(skip_prk_steps=snake_case ) _UpperCAmelCase = StableDiffusionLDMaDPipeline(**snake_case ) _UpperCAmelCase = ldmad_pipe.to(snake_case ) ldmad_pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case ) _UpperCAmelCase = 'french fries' _UpperCAmelCase = ldmad_pipe(**snake_case , negative_prompt=snake_case ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = rgb[0, -3:, -3:, -1] _UpperCAmelCase = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) _UpperCAmelCase = np.array( [0.37044, 0.71811503, 0.7223251, 0.48603675, 0.5638391, 0.6364948, 0.42833704, 0.4901315, 0.47926217] ) _UpperCAmelCase = np.array([107.84738, 84.62802, 89.962135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self , snake_case , snake_case="cpu" , snake_case=torch.floataa , snake_case=0 ) -> Union[str, Any]: _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(snake_case ) _UpperCAmelCase = np.random.RandomState(snake_case ).standard_normal((1, 4, 64, 64) ) _UpperCAmelCase = torch.from_numpy(snake_case ).to(device=snake_case , dtype=snake_case ) _UpperCAmelCase = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ) _UpperCAmelCase = ldmad_pipe.to(snake_case ) ldmad_pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_inputs(snake_case ) _UpperCAmelCase = ldmad_pipe(**snake_case ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = rgb[0, -3:, -3:, -1].flatten() _UpperCAmelCase = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) _UpperCAmelCase = np.array( [0.53805465, 0.56707305, 0.5486515, 0.57012236, 0.5814511, 0.56253487, 0.54843014, 0.55092263, 0.6459706] ) _UpperCAmelCase = np.array( [0.9263781, 0.6678672, 0.5486515, 0.92202145, 0.67831135, 0.56253487, 0.9241694, 0.7551478, 0.6459706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self , snake_case , snake_case="cpu" , snake_case=torch.floataa , snake_case=0 ) -> List[str]: _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(snake_case ) _UpperCAmelCase = np.random.RandomState(snake_case ).standard_normal((1, 4, 64, 64) ) _UpperCAmelCase = torch.from_numpy(snake_case ).to(device=snake_case , dtype=snake_case ) _UpperCAmelCase = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ).to(snake_case ) ldmad_pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_inputs(snake_case ) _UpperCAmelCase = ldmad_pipe(**snake_case ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = 0.495586 _UpperCAmelCase = 0.33795515 _UpperCAmelCase = 112.48518 _UpperCAmelCase = 98.489746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d-4c' ).to(snake_case ) ldmad_pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_inputs(snake_case ) _UpperCAmelCase = ldmad_pipe(**snake_case ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = 0.4194127 _UpperCAmelCase = 0.35375586 _UpperCAmelCase = 0.5638502 _UpperCAmelCase = 0.34686103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
24
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case = 16 , snake_case = 88 , snake_case = None , snake_case = 1 , snake_case = 0.0 , snake_case = 32 , snake_case = None , snake_case = False , snake_case = None , snake_case = None , snake_case = "geglu" , snake_case = None , ) -> str: super().__init__() _UpperCAmelCase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=snake_case , attention_head_dim=snake_case , in_channels=snake_case , num_layers=snake_case , dropout=snake_case , norm_num_groups=snake_case , cross_attention_dim=snake_case , attention_bias=snake_case , sample_size=snake_case , num_vector_embeds=snake_case , activation_fn=snake_case , num_embeds_ada_norm=snake_case , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _UpperCAmelCase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _UpperCAmelCase = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _UpperCAmelCase = [1, 0] def lowerCamelCase_ ( self , snake_case , snake_case , snake_case=None , snake_case=None , snake_case=None , snake_case = True , ) -> Any: _UpperCAmelCase = hidden_states _UpperCAmelCase = [] _UpperCAmelCase = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _UpperCAmelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _UpperCAmelCase = self.transformer_index_for_condition[i] _UpperCAmelCase = self.transformers[transformer_index]( snake_case , encoder_hidden_states=snake_case , timestep=snake_case , cross_attention_kwargs=snake_case , return_dict=snake_case , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _UpperCAmelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _UpperCAmelCase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=snake_case )
24
1
"""simple docstring""" from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def UpperCAmelCase ( A : Optional[int] , A : Dict ): '''simple docstring''' _UpperCAmelCase = [] for part_id in partition_order: _UpperCAmelCase = df.where(f'SPARK_PARTITION_ID() = {part_id}' ).collect() for row_idx, row in enumerate(A ): expected_row_ids_and_row_dicts.append((f'{part_id}_{row_idx}', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() _UpperCAmelCase = spark.range(100 ).repartition(1 ) _UpperCAmelCase = Spark(A ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() _UpperCAmelCase = spark.range(10 ).repartition(2 ) _UpperCAmelCase = [1, 0] _UpperCAmelCase = _generate_iterable_examples(A , A ) # Reverse the partitions. _UpperCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(A , A ) for i, (row_id, row_dict) in enumerate(generate_fn() ): _UpperCAmelCase , _UpperCAmelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() _UpperCAmelCase = spark.range(10 ).repartition(1 ) _UpperCAmelCase = SparkExamplesIterable(A ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(A ): assert row_id == f'0_{i}' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() _UpperCAmelCase = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('numpy.random.Generator' ) as generator_mock: _UpperCAmelCase = lambda A : x.reverse() _UpperCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(A , [2, 1, 0] ) _UpperCAmelCase = SparkExamplesIterable(A ).shuffle_data_sources(A ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(A ): _UpperCAmelCase , _UpperCAmelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() _UpperCAmelCase = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 _UpperCAmelCase = SparkExamplesIterable(A ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 _UpperCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(A , [0, 2] ) for i, (row_id, row_dict) in enumerate(A ): _UpperCAmelCase , _UpperCAmelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 _UpperCAmelCase = SparkExamplesIterable(A ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 _UpperCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(A , [1, 3] ) for i, (row_id, row_dict) in enumerate(A ): _UpperCAmelCase , _UpperCAmelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() _UpperCAmelCase = spark.range(100 ).repartition(1 ) _UpperCAmelCase = Spark(A ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
24
"""simple docstring""" import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case , 'embed_dim' ) ) self.parent.assertTrue(hasattr(snake_case , 'num_heads' ) ) class lowercase__ : '''simple docstring''' def __init__( self , snake_case , snake_case=13 , snake_case=64 , snake_case=3 , snake_case=[16, 48, 96] , snake_case=[1, 3, 6] , snake_case=[1, 2, 10] , snake_case=[7, 3, 3] , snake_case=[4, 2, 2] , snake_case=[2, 1, 1] , snake_case=[2, 2, 2] , snake_case=[False, False, True] , snake_case=[0.0, 0.0, 0.0] , snake_case=0.02 , snake_case=1E-12 , snake_case=True , snake_case=True , snake_case=2 , ) -> Tuple: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_sizes _UpperCAmelCase = patch_stride _UpperCAmelCase = patch_padding _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = num_labels _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = num_heads _UpperCAmelCase = stride_kv _UpperCAmelCase = depth _UpperCAmelCase = cls_token _UpperCAmelCase = attention_drop_rate _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self ) -> List[str]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Optional[int]: _UpperCAmelCase = CvtModel(config=snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case ) _UpperCAmelCase = (self.image_size, self.image_size) _UpperCAmelCase , _UpperCAmelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): _UpperCAmelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _UpperCAmelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Optional[Any]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = CvtForImageClassification(snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase__ ( A, A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = (CvtModel, CvtForImageClassification) if is_torch_available() else () _UpperCAmelCase = ( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = CvtModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def lowerCamelCase_ ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self ) -> Union[str, Any]: return @unittest.skip(reason='Cvt does not output attentions' ) def lowerCamelCase_ ( self ) -> str: pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def lowerCamelCase_ ( self ) -> int: pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def lowerCamelCase_ ( self ) -> Union[str, Any]: pass def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: def check_hidden_states_output(snake_case , snake_case , snake_case ): _UpperCAmelCase = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case , snake_case ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = len(self.model_tester.depth ) self.assertEqual(len(snake_case ) , snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(snake_case , snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase_ ( self ) -> Dict: pass @slow def lowerCamelCase_ ( self ) -> Dict: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = CvtModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase_ ( self ) -> List[Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(snake_case ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=snake_case , return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**snake_case ) # verify the logits _UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case ) _UpperCAmelCase = torch.tensor([0.9285, 0.9015, -0.3150] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1E-4 ) )
24
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = tempfile.mkdtemp() # fmt: off _UpperCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest'] # fmt: on _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) _UpperCAmelCase = { 'do_resize': True, 'size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.5, 0.5, 0.5], 'image_std': [0.5, 0.5, 0.5], } _UpperCAmelCase = os.path.join(self.tmpdirname , snake_case ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(snake_case , snake_case ) def lowerCamelCase_ ( self , **snake_case ) -> Union[str, Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **snake_case ) def lowerCamelCase_ ( self , **snake_case ) -> int: return ViTImageProcessor.from_pretrained(self.tmpdirname , **snake_case ) def lowerCamelCase_ ( self ) -> List[str]: shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _UpperCAmelCase = [Image.fromarray(np.moveaxis(snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _UpperCAmelCase = self.get_image_processor(do_normalize=snake_case , padding_value=1.0 ) _UpperCAmelCase = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case ) def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case ) _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = image_processor(snake_case , return_tensors='np' ) _UpperCAmelCase = processor(images=snake_case , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case ) _UpperCAmelCase = 'lower newer' _UpperCAmelCase = processor(text=snake_case ) _UpperCAmelCase = tokenizer(snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case ) _UpperCAmelCase = 'lower newer' _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(text=snake_case , images=snake_case ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with self.assertRaises(snake_case ): processor() def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case ) _UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase = processor.batch_decode(snake_case ) _UpperCAmelCase = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case , snake_case ) def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case ) _UpperCAmelCase = 'lower newer' _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(text=snake_case , images=snake_case ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
24
"""simple docstring""" from __future__ import annotations from cmath import sqrt def UpperCAmelCase ( A : int , A : int , A : int ): '''simple docstring''' if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) _UpperCAmelCase = b * b - 4 * a * c _UpperCAmelCase = (-b + sqrt(A )) / (2 * a) _UpperCAmelCase = (-b - sqrt(A )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = quadratic_roots(a=5 , b=6 , c=1 ) print(f'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
24
1
"""simple docstring""" def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = [[0 for _ in range(A )] for _ in range(m + 1 )] for i in range(m + 1 ): _UpperCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , A ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: lowercase = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: lowercase = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
24
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = BarthezTokenizer _UpperCAmelCase = BarthezTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True def lowerCamelCase_ ( self ) -> Optional[int]: super().setUp() _UpperCAmelCase = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case ) _UpperCAmelCase = tokenizer def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = '<pad>' _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case ) , snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case ) , snake_case ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case ) , 101122 ) def lowerCamelCase_ ( self ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _UpperCAmelCase = [0, 57, 3018, 70307, 91, 2] _UpperCAmelCase = self.tokenizer( snake_case , max_length=len(snake_case ) , padding=snake_case , truncation=snake_case , return_tensors='pt' ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Optional[Any]: if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = 'I was born in 92000, and this is falsé.' _UpperCAmelCase = tokenizer.tokenize(snake_case ) _UpperCAmelCase = rust_tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) _UpperCAmelCase = tokenizer.encode(snake_case , add_special_tokens=snake_case ) _UpperCAmelCase = rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(snake_case ) _UpperCAmelCase = rust_tokenizer.encode(snake_case ) self.assertListEqual(snake_case , snake_case ) @slow def lowerCamelCase_ ( self ) -> Optional[int]: # fmt: off _UpperCAmelCase = {'input_ids': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=snake_case , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=snake_case , )
24
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class lowercase__ ( A, A ): '''simple docstring''' _UpperCAmelCase = '''resnet''' _UpperCAmelCase = ['''basic''', '''bottleneck'''] def __init__( self , snake_case=3 , snake_case=64 , snake_case=[256, 512, 1024, 2048] , snake_case=[3, 4, 6, 3] , snake_case="bottleneck" , snake_case="relu" , snake_case=False , snake_case=None , snake_case=None , **snake_case , ) -> Optional[int]: super().__init__(**snake_case ) if layer_type not in self.layer_types: raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) _UpperCAmelCase = num_channels _UpperCAmelCase = embedding_size _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = layer_type _UpperCAmelCase = hidden_act _UpperCAmelCase = downsample_in_first_stage _UpperCAmelCase = ['stem'] + [f'stage{idx}' for idx in range(1 , len(snake_case ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names ) class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-3
24
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = DiTPipeline _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> str: torch.manual_seed(0 ) _UpperCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=snake_case , activation_fn='gelu-approximate' , num_embeds_ada_norm=1000 , norm_type='ada_norm_zero' , norm_elementwise_affine=snake_case , ) _UpperCAmelCase = AutoencoderKL() _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def lowerCamelCase_ ( self , snake_case , snake_case=0 ) -> Optional[Any]: if str(snake_case ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(snake_case ) else: _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(snake_case ) _UpperCAmelCase = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case ) _UpperCAmelCase = pipe(**snake_case ).images _UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _UpperCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case , 1E-3 ) def lowerCamelCase_ ( self ) -> Any: self._test_inference_batch_single_identical(relax_max_difference=snake_case , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowerCamelCase_ ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella', 'white shark', 'white wolf'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=40 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( f'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1E-2 def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=25 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1E-1
24
1
"""simple docstring""" import pprint import requests lowercase = '''https://zenquotes.io/api''' def UpperCAmelCase ( ): '''simple docstring''' return requests.get(API_ENDPOINT_URL + '/today' ).json() def UpperCAmelCase ( ): '''simple docstring''' return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": lowercase = random_quotes() pprint.pprint(response)
24
"""simple docstring""" def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = abs(A ) _UpperCAmelCase = 0 while n > 0: res += n % 10 n //= 10 return res def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = abs(A ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def UpperCAmelCase ( A : int ): '''simple docstring''' return sum(int(A ) for c in str(abs(A ) ) ) def UpperCAmelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(A : Callable , A : int ) -> None: _UpperCAmelCase = f'{func.__name__}({value})' _UpperCAmelCase = timeit(f'__main__.{call}' , setup='import __main__' ) print(f'{call:56} = {func(A )} -- {timing:.4f} seconds' ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(A , A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
24
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case , snake_case=7 , snake_case=3 , snake_case=18 , snake_case=30 , snake_case=400 , snake_case=True , snake_case=None , snake_case=True , snake_case=None , snake_case=True , snake_case=[0.5, 0.5, 0.5] , snake_case=[0.5, 0.5, 0.5] , ) -> Optional[int]: _UpperCAmelCase = size if size is not None else {'shortest_edge': 18} _UpperCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def lowerCamelCase_ ( self ) -> Union[str, Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = LevitImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = LevitImageProcessingTester(self ) @property def lowerCamelCase_ ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , 'image_mean' ) ) self.assertTrue(hasattr(snake_case , 'image_std' ) ) self.assertTrue(hasattr(snake_case , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case , 'do_resize' ) ) self.assertTrue(hasattr(snake_case , 'do_center_crop' ) ) self.assertTrue(hasattr(snake_case , 'size' ) ) def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowerCamelCase_ ( self ) -> Tuple: pass def lowerCamelCase_ ( self ) -> Optional[int]: # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCamelCase_ ( self ) -> Tuple: # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCamelCase_ ( self ) -> Tuple: # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
24
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( A : int , A : int ): '''simple docstring''' _UpperCAmelCase = [] create_all_state(1 , A , A , [] , A ) return result def UpperCAmelCase ( A : int , A : int , A : int , A : list[int] , A : list[list[int]] , ): '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(A , total_number - level + 2 ): current_list.append(A ) create_all_state(i + 1 , A , level - 1 , A , A ) current_list.pop() def UpperCAmelCase ( A : list[list[int]] ): '''simple docstring''' for i in total_list: print(*A ) if __name__ == "__main__": lowercase = 4 lowercase = 2 lowercase = generate_all_combinations(n, k) print_all_state(total_list)
24
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowercase = logging.get_logger(__name__) class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = ['''pixel_values'''] def __init__( self , snake_case = True , snake_case = None , snake_case = PILImageResampling.BICUBIC , snake_case = True , snake_case = True , snake_case = 1 / 255 , snake_case = None , snake_case = True , snake_case = None , snake_case = None , **snake_case , ) -> None: super().__init__(**snake_case ) _UpperCAmelCase = size if size is not None else {'height': 224, 'width': 224} _UpperCAmelCase = get_size_dict(snake_case ) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224} _UpperCAmelCase = get_size_dict(snake_case , default_to_square=snake_case , param_name='crop_size' ) _UpperCAmelCase = do_resize _UpperCAmelCase = do_rescale _UpperCAmelCase = do_normalize _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowerCamelCase_ ( self , snake_case , snake_case , snake_case = PILImageResampling.BILINEAR , snake_case = None , **snake_case , ) -> np.ndarray: _UpperCAmelCase = get_size_dict(snake_case ) if "shortest_edge" in size: _UpperCAmelCase = get_resize_output_image_size(snake_case , size=size['shortest_edge'] , default_to_square=snake_case ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCAmelCase = (size['height'], size['width']) else: raise ValueError(f'Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}' ) return resize(snake_case , size=snake_case , resample=snake_case , data_format=snake_case , **snake_case ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case = None , **snake_case , ) -> np.ndarray: _UpperCAmelCase = get_size_dict(snake_case ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(snake_case , size=(size['height'], size['width']) , data_format=snake_case , **snake_case ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case = None , **snake_case ) -> np.ndarray: return rescale(snake_case , scale=snake_case , data_format=snake_case , **snake_case ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case = None , **snake_case , ) -> np.ndarray: return normalize(snake_case , mean=snake_case , std=snake_case , data_format=snake_case , **snake_case ) def lowerCamelCase_ ( self , snake_case , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = ChannelDimension.FIRST , **snake_case , ) -> BatchFeature: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(snake_case , param_name='crop_size' , default_to_square=snake_case ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(snake_case ) if not is_batched(snake_case ): _UpperCAmelCase = [images] if not valid_images(snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(snake_case ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=snake_case , size=snake_case , resample=snake_case ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=snake_case , size=snake_case ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=snake_case , scale=snake_case ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=snake_case , mean=snake_case , std=snake_case ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(snake_case , snake_case ) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=snake_case , tensor_type=snake_case )
24
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowercase = logging.getLogger() def UpperCAmelCase ( A : Path , A : list ): '''simple docstring''' _UpperCAmelCase = '\n'.join(A ) Path(A ).open('w' ).writelines(A ) lowercase = '''patrickvonplaten/t5-tiny-random''' lowercase = '''sshleifer/bart-tiny-random''' lowercase = '''sshleifer/tiny-mbart''' lowercase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case ) -> str: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(snake_case , snake_case ) _UpperCAmelCase = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(snake_case , 'argv' , snake_case ): run_generate() assert Path(snake_case ).exists() # os.remove(Path(output_file_name)) def lowerCamelCase_ ( self ) -> str: self.run_eval_tester(snake_case ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> List[Any]: self.run_eval_tester(snake_case ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> Dict: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) _UpperCAmelCase = str(tmp_dir / 'scores.json' ) _UpperCAmelCase = str(tmp_dir / 'val.target' ) _dump_articles(snake_case , text['en'] ) _dump_articles(snake_case , text['de'] ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {str(snake_case )}\n {str(snake_case )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(snake_case , 'argv' , snake_case ): with CaptureStdout() as cs: run_search() _UpperCAmelCase = [' num_beams | length_penalty', model, 'Best score args'] _UpperCAmelCase = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(snake_case ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(snake_case ).exists() os.remove(Path(snake_case ) )
24
1
"""simple docstring""" from functools import reduce lowercase = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCAmelCase ( A : str = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda A , A : str(int(A ) * int(A ) ) , n[i : i + 13] ) ) for i in range(len(A ) - 12 ) ) if __name__ == "__main__": print(F'''{solution() = }''')
24
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal lowercase = logging.get_logger(__name__) lowercase = TypeVar('''DatasetType''', Dataset, IterableDataset) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[List[float]] = None , A : Optional[int] = None , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) else: return _interleave_iterable_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : int = 0 , ): '''simple docstring''' if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(A , info=A , split=A , axis=A ) else: return _concatenate_iterable_datasets(A , info=A , split=A , axis=A )
24
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase__ ( unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Dict: _UpperCAmelCase = TextaTextGenerationPipeline(model=snake_case , tokenizer=snake_case ) return generator, ["Something to write", "Something else"] def lowerCamelCase_ ( self , snake_case , snake_case ) -> Dict: _UpperCAmelCase = generator('Something there' ) self.assertEqual(snake_case , [{'generated_text': ANY(snake_case )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) _UpperCAmelCase = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) _UpperCAmelCase = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) with self.assertRaises(snake_case ): generator(4 ) @require_torch def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] ) _UpperCAmelCase = 3 _UpperCAmelCase = generator( 'Something there' , num_return_sequences=snake_case , num_beams=snake_case , ) _UpperCAmelCase = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(snake_case , snake_case ) _UpperCAmelCase = generator('This is a test' , do_sample=snake_case , num_return_sequences=2 , return_tensors=snake_case ) self.assertEqual( snake_case , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) _UpperCAmelCase = generator.model.config.eos_token_id _UpperCAmelCase = '<pad>' _UpperCAmelCase = generator( ['This is a test', 'This is a second test'] , do_sample=snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=snake_case , ) self.assertEqual( snake_case , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] )
24
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase__ ( unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Dict: _UpperCAmelCase = TextaTextGenerationPipeline(model=snake_case , tokenizer=snake_case ) return generator, ["Something to write", "Something else"] def lowerCamelCase_ ( self , snake_case , snake_case ) -> Dict: _UpperCAmelCase = generator('Something there' ) self.assertEqual(snake_case , [{'generated_text': ANY(snake_case )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) _UpperCAmelCase = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) _UpperCAmelCase = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) with self.assertRaises(snake_case ): generator(4 ) @require_torch def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] ) _UpperCAmelCase = 3 _UpperCAmelCase = generator( 'Something there' , num_return_sequences=snake_case , num_beams=snake_case , ) _UpperCAmelCase = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(snake_case , snake_case ) _UpperCAmelCase = generator('This is a test' , do_sample=snake_case , num_return_sequences=2 , return_tensors=snake_case ) self.assertEqual( snake_case , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) _UpperCAmelCase = generator.model.config.eos_token_id _UpperCAmelCase = '<pad>' _UpperCAmelCase = generator( ['This is a test', 'This is a second test'] , do_sample=snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=snake_case , ) self.assertEqual( snake_case , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] )
24
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowercase = logging.get_logger(__name__) lowercase = { '''post_extract_proj''': '''feature_projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.upsample.0''': '''encoder.upsample.projection''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def UpperCAmelCase ( A : Optional[int] , A : Optional[Any] , A : str , A : Optional[int] , A : Dict ): '''simple docstring''' for attribute in key.split('.' ): _UpperCAmelCase = getattr(A , A ) if weight_type is not None: _UpperCAmelCase = getattr(A , A ).shape else: _UpperCAmelCase = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _UpperCAmelCase = value elif weight_type == "weight_g": _UpperCAmelCase = value elif weight_type == "weight_v": _UpperCAmelCase = value elif weight_type == "bias": _UpperCAmelCase = value else: _UpperCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def UpperCAmelCase ( A : Optional[Any] , A : str , A : List[Any] ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = fairseq_model.state_dict() _UpperCAmelCase = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( A , A , A , A , hf_model.config.feat_extract_norm == 'group' , ) _UpperCAmelCase = True else: for key, mapped_key in MAPPING.items(): _UpperCAmelCase = 'sew.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: _UpperCAmelCase = True if "*" in mapped_key: _UpperCAmelCase = name.split(A )[0].split('.' )[-2] _UpperCAmelCase = mapped_key.replace('*' , A ) if "weight_g" in name: _UpperCAmelCase = 'weight_g' elif "weight_v" in name: _UpperCAmelCase = 'weight_v' elif "weight" in name: _UpperCAmelCase = 'weight' elif "bias" in name: _UpperCAmelCase = 'bias' else: _UpperCAmelCase = None set_recursively(A , A , A , A , A ) continue if not is_used: unused_weights.append(A ) logger.warning(f'Unused weights: {unused_weights}' ) def UpperCAmelCase ( A : List[Any] , A : List[str] , A : List[str] , A : List[str] , A : List[str] ): '''simple docstring''' _UpperCAmelCase = full_name.split('conv_layers.' )[-1] _UpperCAmelCase = name.split('.' ) _UpperCAmelCase = int(items[0] ) _UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _UpperCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(A ) def UpperCAmelCase ( A : Dict , A : Any ): '''simple docstring''' _UpperCAmelCase = SEWConfig() if is_finetuned: _UpperCAmelCase = model.wav_encoder.wav_model.cfg else: _UpperCAmelCase = model.cfg _UpperCAmelCase = fs_config.conv_bias _UpperCAmelCase = eval(fs_config.conv_feature_layers ) _UpperCAmelCase = [x[0] for x in conv_layers] _UpperCAmelCase = [x[1] for x in conv_layers] _UpperCAmelCase = [x[2] for x in conv_layers] _UpperCAmelCase = 'gelu' _UpperCAmelCase = 'layer' if fs_config.extractor_mode == 'layer_norm' else 'group' _UpperCAmelCase = 0.0 _UpperCAmelCase = fs_config.activation_fn.name _UpperCAmelCase = fs_config.encoder_embed_dim _UpperCAmelCase = 0.02 _UpperCAmelCase = fs_config.encoder_ffn_embed_dim _UpperCAmelCase = 1e-5 _UpperCAmelCase = fs_config.encoder_layerdrop _UpperCAmelCase = fs_config.encoder_attention_heads _UpperCAmelCase = fs_config.conv_pos_groups _UpperCAmelCase = fs_config.conv_pos _UpperCAmelCase = len(A ) _UpperCAmelCase = fs_config.encoder_layers _UpperCAmelCase = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _UpperCAmelCase = model.cfg _UpperCAmelCase = fs_config.final_dropout _UpperCAmelCase = fs_config.layerdrop _UpperCAmelCase = fs_config.activation_dropout _UpperCAmelCase = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _UpperCAmelCase = fs_config.attention_dropout _UpperCAmelCase = fs_config.dropout_input _UpperCAmelCase = fs_config.dropout _UpperCAmelCase = fs_config.mask_channel_length _UpperCAmelCase = fs_config.mask_channel_prob _UpperCAmelCase = fs_config.mask_length _UpperCAmelCase = fs_config.mask_prob _UpperCAmelCase = 'Wav2Vec2FeatureExtractor' _UpperCAmelCase = 'Wav2Vec2CTCTokenizer' return config @torch.no_grad() def UpperCAmelCase ( A : List[Any] , A : Any , A : Optional[Any]=None , A : Tuple=None , A : Union[str, Any]=True ): '''simple docstring''' if is_finetuned: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _UpperCAmelCase = SEWConfig.from_pretrained(A ) else: _UpperCAmelCase = convert_config(model[0] , A ) _UpperCAmelCase = model[0].eval() _UpperCAmelCase = True if config.feat_extract_norm == 'layer' else False _UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=A , return_attention_mask=A , ) if is_finetuned: if dict_path: _UpperCAmelCase = Dictionary.load(A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCAmelCase = target_dict.pad_index _UpperCAmelCase = target_dict.bos_index _UpperCAmelCase = target_dict.pad_index _UpperCAmelCase = target_dict.bos_index _UpperCAmelCase = target_dict.eos_index _UpperCAmelCase = len(target_dict.symbols ) _UpperCAmelCase = os.path.join(A , 'vocab.json' ) if not os.path.isdir(A ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(A ) ) return os.makedirs(A , exist_ok=A ) with open(A , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , A ) _UpperCAmelCase = WavaVecaCTCTokenizer( A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=A , ) _UpperCAmelCase = WavaVecaProcessor(feature_extractor=A , tokenizer=A ) processor.save_pretrained(A ) _UpperCAmelCase = SEWForCTC(A ) else: _UpperCAmelCase = SEWModel(A ) feature_extractor.save_pretrained(A ) recursively_load_weights(A , A , A ) hf_model.save_pretrained(A ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--is_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowercase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
24
"""simple docstring""" def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = [[0 for _ in range(A )] for _ in range(m + 1 )] for i in range(m + 1 ): _UpperCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , A ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: lowercase = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: lowercase = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
24
1
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = FunnelTokenizer _UpperCAmelCase = FunnelTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True def lowerCamelCase_ ( self ) -> int: super().setUp() _UpperCAmelCase = [ '<unk>', '<cls>', '<sep>', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowerCamelCase_ ( self , **snake_case ) -> Any: return FunnelTokenizer.from_pretrained(self.tmpdirname , **snake_case ) def lowerCamelCase_ ( self , **snake_case ) -> Union[str, Any]: return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **snake_case ) def lowerCamelCase_ ( self , snake_case ) -> int: _UpperCAmelCase = 'UNwant\u00E9d,running' _UpperCAmelCase = 'unwanted, running' return input_text, output_text def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.tokenizer_class(self.vocab_file ) _UpperCAmelCase = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(snake_case , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) , [7, 4, 5, 10, 8, 9] ) def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = self.get_tokenizers(do_lower_case=snake_case ) for tokenizer in tokenizers: _UpperCAmelCase = tokenizer('UNwant\u00E9d,running' ) _UpperCAmelCase = len(inputs['input_ids'] ) - 1 self.assertListEqual(inputs['token_type_ids'] , [2] + [0] * sentence_len ) _UpperCAmelCase = tokenizer('UNwant\u00E9d,running' , 'UNwant\u00E9d,running' ) self.assertListEqual(inputs['token_type_ids'] , [2] + [0] * sentence_len + [1] * sentence_len )
24
"""simple docstring""" import os lowercase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} def UpperCAmelCase ( A : str ): '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = 0 while index < len(A ) - 1: _UpperCAmelCase = SYMBOLS[numerals[index]] _UpperCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = '' _UpperCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 _UpperCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _UpperCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase ( A : str = "/p089_roman.txt" ): '''simple docstring''' _UpperCAmelCase = 0 with open(os.path.dirname(A ) + roman_numerals_filename ) as filea: _UpperCAmelCase = filea.readlines() for line in lines: _UpperCAmelCase = line.strip() _UpperCAmelCase = parse_roman_numerals(A ) _UpperCAmelCase = generate_roman_numerals(A ) savings += len(A ) - len(A ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
24
1
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging lowercase = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class lowercase__ ( A ): '''simple docstring''' def __init__( self , snake_case = 101 ) -> Union[str, Any]: _UpperCAmelCase = length def __len__( self ) -> List[str]: return self.length def __getitem__( self , snake_case ) -> int: return i class lowercase__ : '''simple docstring''' def __call__( self , snake_case ) -> Dict: return {"input_ids": torch.tensor(snake_case ), "labels": torch.tensor(snake_case )} class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self ) -> Union[str, Any]: super().__init__() # Add some (unused) params otherwise DDP will complain. _UpperCAmelCase = nn.Linear(120 , 80 ) def lowerCamelCase_ ( self , snake_case , snake_case=None ) -> int: if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class lowercase__ ( A ): '''simple docstring''' @require_torch_neuroncore def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = f'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f'--output_dir {output_dir}'.split() _UpperCAmelCase = ['torchrun'] + distributed_args + args execute_subprocess_async(snake_case , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class lowercase__ ( A ): '''simple docstring''' @require_torch_multi_gpu def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = f'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f'--output_dir {output_dir}'.split() _UpperCAmelCase = ['torchrun'] + distributed_args + args execute_subprocess_async(snake_case , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py lowercase = HfArgumentParser((TrainingArguments,)) lowercase = parser.parse_args_into_dataclasses()[0] logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' F'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_01, 40, 7]: lowercase = DummyDataset(dataset_length) def UpperCAmelCase ( A : EvalPrediction ): '''simple docstring''' _UpperCAmelCase = list(range(len(A ) ) ) _UpperCAmelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( 'Predictions and/or labels do not match expected results:\n - predictions: ' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} lowercase = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) lowercase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowercase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowercase = 2 lowercase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowercase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowercase = None
24
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } _UpperCAmelCase = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(snake_case ) , snake_case ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(snake_case ) , x.transpose() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , transpose(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , transpose(snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , transpose(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , transpose(snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , np.asarray(transpose(snake_case ) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(snake_case , axes=(1, 2, 0) ) ) ) ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , np.reshape(snake_case , (4, 3) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , np.reshape(snake_case , (12, 5) ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , reshape(snake_case , (4, 3) ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , reshape(snake_case , (12, 5) ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , reshape(snake_case , (4, 3) ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , reshape(snake_case , (12, 5) ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , np.asarray(reshape(snake_case , (4, 3) ) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , np.asarray(reshape(snake_case , (12, 5) ) ) ) ) def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(snake_case ) , np.squeeze(snake_case ) ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , np.squeeze(snake_case , axis=2 ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , squeeze(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , squeeze(snake_case , axis=2 ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , squeeze(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , squeeze(snake_case , axis=2 ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , np.asarray(squeeze(snake_case ) ) ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , np.asarray(squeeze(snake_case , axis=2 ) ) ) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , np.expand_dims(snake_case , axis=1 ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , expand_dims(snake_case , axis=1 ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , expand_dims(snake_case , axis=1 ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , np.asarray(expand_dims(snake_case , axis=1 ) ) ) )
24
1