content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def entity_emiss_o(x, n_lbs, tp, exp_term=2):
"""
The function that calculates the emission prior of entity labels to the non-entity label 'O'
according to the diagonal values of the emission prior
Parameters
----------
x: diagonal values
n_lbs: number of entity labels (2e+1)
tp: turning point
exp_term: the exponential term that controls the slope of the function
Returns
-------
non-diagonal emission priors
"""
# separating piecewise function
low = x < tp
high = x >= tp
# parameters for the first piece
a = (2 - n_lbs) / ((exp_term - 1) * tp ** exp_term - exp_term * tp ** (exp_term - 1))
b = 1 - n_lbs
# parameter for the second piece
f_tp = a * tp ** exp_term + b * tp + 1
c = f_tp / (tp - 1)
# piecewise result
y = low * (a * x ** exp_term + b * x + 1) + high * (c * x - c)
return y
|
34b9473e5799d7beddd20bea81a6fe926b8fde3f
| 37,759 |
def mssql_sql_utcnow(element, compiler, **kw):
"""MS SQL provides a function for the UTC datetime."""
return 'GETUTCDATE()'
|
5f3fed9f95de23069bd13b6a26cdf21f916a15b7
| 37,764 |
import re
def validate_fs_path(path):
"""Checks if the specified file system path is valid
Arguments:
path {string} -- the file system path to check
Returns:
True if the specified path matches the regex (is a valid path),
False if otherwise
"""
is_valid_path = re.search(r"(\w:)?([\\\/]{1}[a-zA-Z-_ ]*)*", path)
return bool(is_valid_path)
|
c34f451fd3e74167fc6aa1b72862378878da7b6e
| 37,769 |
import copy
def get_added_dicts(a, b):
"""Add two dictionaries together, return new dictionary.
if key in B already exists in A, do not override. None destructive.
Args:
a (dict): dictionary you want to ADD to
b (dict): dict you want to add from, the new keys
Returns:
dict: copied from a, with b keys added
"""
tmp = copy.deepcopy(a)
for key, val in b.iteritems():
if key not in tmp:
tmp[key] = val
return tmp
|
f2a015dddcd1442ec556a71cb13e9da6b2950805
| 37,772 |
def format_uuid(uuid: str):
"""
Returns UUID formatted according to https://tools.ietf.org/html/rfc4122#section-3 (8-4-4-4-12)
Parameters
----------
module_name : str
unformatted UUID
"""
return f'{uuid[0:8]:s}-{uuid[8:12]:s}-{uuid[12:16]:s}-{uuid[16:20]:s}-{uuid[20:32]:s}'
|
c3383cab2bbcafb9d67c4535c6369f3646faafea
| 37,781 |
from typing import List
import re
def extract_cve_references(text: str) -> List[str]:
"""
Extract CVE identifiers
"""
return [result.group(0) for result in re.finditer(r"CVE-\d{4}-\d{4,8}", text)]
|
8d32525bc04077a418e3f9fd334ab4e8dd905376
| 37,789 |
import math
def ordinal(n):
"""Output the ordinal representation ("1st", "2nd", "3rd", etc.) of any number."""
# https://stackoverflow.com/a/20007730/404321
suffix = "tsnrhtdd"[(math.floor(n / 10) % 10 != 1) * (n % 10 < 4) * n % 10::4]
return f'{n}{suffix}'
|
fa7f5cadd1c684e048a1bf1557014e37ad69c930
| 37,790 |
def parse_string(string, *, remove):
"""
Return a parsed string
Args:
:string: (str) string to parse
:remove: (list) characters to remove
Returns:
:parsed_string: (str) parsed string
"""
parsed_string = string
for char in remove:
parsed_string = parsed_string.replace(char, '')
return parsed_string
|
641feb61ff5ad918fefe14b618863e4b5164ddbf
| 37,791 |
def build_message(history_record, game):
"""Builds the endpoint message from the game and current history record"""
msg = ""
if history_record[0].result == 'Good guess':
msg += "Good guess! | "
else:
msg += "Wrong guess... | "
msg += game.current_game + " | "
msg += "Strike(s) left: " + str(game.strikes_left) + " | "
if game.game_over is False:
msg += "Carry on!"
if game.game_over is True:
if game.game_won is True:
msg += "YOU WON!"
else:
msg += "YOU LOST!"
return msg
|
ff3c9dd193de67f1879a4ffe3e9f859993bdef6f
| 37,794 |
def decompose_two(p):
"""Decomposes p into p - 1 = q * 2^s
Args:
p: an integer representing a prime number
Results:
p: an integer representing q above
k: an integer representing the exponent of 2
"""
k = 0
while p % 2 == 0:
k += 1
p //= 2
return p, k
|
19934989b53707c836c1fb6864365c1828800229
| 37,795 |
def create_node(id, shape, size, label):
"""Auxiliary function that creates a Node in Vis.js format
:return: Dict with Node attributes
"""
node = {
"id": id,
"shape": shape,
"size": size,
"label": label,
"color": {"background": "#FBD20B"},
}
return node
|
007c3d1d42e981aa378664683903caecc898c7c6
| 37,801 |
from typing import Union
import torch
from typing import Tuple
from typing import Any
from typing import Optional
from typing import Dict
from typing import List
def split_non_tensors(
mixed: Union[torch.Tensor, Tuple[Any, ...]]
) -> Tuple[Tuple[torch.Tensor, ...], Optional[Dict[str, List[Any]]]]:
"""
Split a tuple into a list of tensors and the rest with information
for later reconstruction.
Usage::
x = torch.Tensor([1])
y = torch.Tensor([2])
tensors, packed_non_tensors = split_non_tensors((x, y, None, 3))
assert tensors == (x, y)
assert packed_non_tensors == {
"is_tensor": [True, True, False, False],
"objects": [None, 3],
}
recon = unpack_non_tensors(tensors, packed_non_tensors)
assert recon == (x, y, None, 3)
"""
if isinstance(mixed, torch.Tensor):
return (mixed,), None
tensors: List[torch.Tensor] = []
packed_non_tensors: Dict[str, List[Any]] = {"is_tensor": [], "objects": []}
for o in mixed:
if isinstance(o, torch.Tensor):
packed_non_tensors["is_tensor"].append(True)
tensors.append(o)
else:
packed_non_tensors["is_tensor"].append(False)
packed_non_tensors["objects"].append(o)
return tuple(tensors), packed_non_tensors
|
9b63e940bccd4e0bfabe618d2986d11f3b16ef93
| 37,804 |
def split_url(url):
"""Splits the given URL into a tuple of (protocol, host, uri)"""
proto, rest = url.split(':', 1)
rest = rest[2:].split('/', 1)
host, uri = (rest[0], rest[1]) if len(rest) == 2 else (rest[0], "")
return (proto, host, uri)
|
67b09e52d2e3e321d5f1d1effb7f2ac5163e3d29
| 37,808 |
def underscorify(name):
"""Replace ``-`` and ``/`` with ``_``."""
return name.replace("-", "_").replace("/", "_")
|
a5dcddb62119ea5863522cdffcbc44dc7381a0d6
| 37,809 |
import re
def is_date_index(index):
"""
Checks whether the index is of the agreed upon date format.
In this case YYYY.MM.DD. This is a very 'EU' centric date.
Would have preferred YYYY-MM-DD which is more ISO, however
there are dates which exist in the 'EU' format already (topbeat).
Note that match is very fast. It is faster than doing search and
pulling groups. Using this method helps decouple using a single
regex pattern for all things. While using this method along with
get_date_from_index() below is 2n, we can ensure cognitive load
is low - which is a secondary goal of this repo.
:param index:
:return:
"""
date_pattern = '.*?-\d{4}[-/:.]\d{2}[-/:.]\d{2}'
match = re.match(date_pattern, index)
if match is not None:
return True
return False
|
b53bb6a58350d6ada8e5fce91c6191296bb93c15
| 37,811 |
from typing import TextIO
from typing import Dict
def parse_percepta_txt_output(
result_file: TextIO, offset: int = 0
) -> Dict[str, Dict[str, str]]:
"""
Parses text output file from perceptabat_cv.
Returns a nested dictionary {compound ID: {property name: value}}.
"""
parsed_output = {}
for line in result_file:
if line.split()[0].isdigit() and line.split()[1] != "ID:":
cp_id = str(int(line.split()[0]) + offset)
col_name = line.split()[1].rstrip(":").lower()
value = line.split(": ")[1].rstrip("\n")
if not cp_id in parsed_output:
parsed_output[cp_id] = {}
parsed_output[cp_id][col_name] = value
else:
continue
return parsed_output
|
030af92661e38c7f8e84164639c2bb82da71485c
| 37,813 |
def mapValue(value, minValue, maxValue, minResultValue, maxResultValue):
"""
Maps value from a given source range, i.e., (minValue, maxValue),
to a new destination range, i.e., (minResultValue, maxResultValue).
The result will be converted to the result data type (int, or float).
"""
# check if value is within the specified range
if value < minValue or value > maxValue:
raise ValueError("value, " + str(value) + ", is outside the specified range, " \
+ str(minValue) + " to " + str(maxValue) + ".")
# we are OK, so let's map
value = float(value) # ensure we are using float (for accuracy)
normal = (value - minValue) / (maxValue - minValue) # normalize source value
# map to destination range
result = normal * (maxResultValue - minResultValue) + minResultValue
destinationType = type(minResultValue) # find expected result data type
result = destinationType(result) # and apply it
return result
|
339268c09e99db9294dc1c30871b6c03f9fca776
| 37,814 |
def opt_bool(opt):
""" Convert bool ini strings to actual boolean values
"""
return opt.lower() in ['yes', 'y', 'true', '1']
|
9f321363cb96b08a122c9437c028cbe142de5881
| 37,815 |
def read_length(data):
"""Read length from a list of bytes, starting at the first byte.
Returns the length, plus the number of bytes read from the list.
EMV 4.3 Book 3 Annex B2
"""
i = 0
length = data[i]
i += 1
if length & 0x80:
length_bytes_count = length & 0x7F
length = 0
for j in range(length_bytes_count):
length = (length << 8) + data[i + j]
i += length_bytes_count
return length, i
|
79ebf734ff863a567727ef0469e37f74327ee6e0
| 37,825 |
def parse_range(s):
"""Parse a string "a-b" describing a range of integers a <= x <= b, returning the bounds a, b."""
return tuple(map(int, s.split("-")))
|
b17314dc729bec8130384a71ee10cf32e60da9c1
| 37,828 |
def get_page_id(title, query_results):
"""
Extracts the title's pageid from the query results.
Assumes queries of the form query:pages:id,
and properly handle the normalized method.
Returns -1 if it cannot find the page id
"""
if 'normalized' in query_results['query'].keys():
for normalized in query_results['query']['normalized']:
if title == normalized['from']:
title = normalized['to']
for page in query_results['query']['pages']:
if title == query_results['query']['pages'][page]['title']:
return str(query_results['query']['pages'][page]['pageid'])
return str(-1)
|
8ddce8c95b4a312b7478dc53d5b3a7fb53bba39e
| 37,830 |
def get_gt(variant_call):
"""Returns the genotypes of the VariantCall.
Args:
variant_call: VariantCall proto. The VariantCall for which to return GTs.
Returns:
A list of ints representing the genotype indices of this call.
"""
return variant_call.genotype
|
865c1954d24c43ee5545dc0f477e66eba8c22a46
| 37,831 |
def find_video_attachments(document_attachments):
"""This function identifies any attached videos in a collection of document attachments.
:param document_attachments: Attachments associated with a document
:type document_attachments: list, dict
:returns: A list of dictionaries containing info on any video attachments
"""
if isinstance(document_attachments, dict):
document_attachments = [document_attachments]
video_info_list = []
for collection in document_attachments:
if "video" in collection['contentType']:
size = round(collection['size']/1048576, 2)
video_info_list.append({"download_url": collection['url'], "size": size})
return video_info_list
|
471e0366279711784d0b628cbd38527e5f15c836
| 37,839 |
def getBytesSize(bytesIn=0, suffix="B"):
"""
Scale bytes to its proper format
e.g:
1253656 => '1.20MB'
1253656678 => '1.17GB'
"""
bytesValue = bytesIn
if bytesValue is None or 0:
return int(0)
elif (isinstance(bytesValue, int) or isinstance(bytesValue, float)) and (int(bytesValue) > 0):
factor = 1024
for unit in ["", "K", "M", "G", "T", "P"]:
if bytesValue < factor:
return f"{bytesValue:.2f}{unit}{suffix}"
bytesValue /= factor
return bytesValue
return int(0)
|
1e6e2ad83a13ddc0cd35f82925f7617c09e229dc
| 37,841 |
def _CreateChartStats(loss_stats):
"""Creates the Chart object to interface with Google Charts drawChart method.
https://developers.google.com/chart/interactive/docs/reference#google.visualization.drawchart
Args:
loss_stats: A dictionary of years paired to square meters.
Returns:
A Python dictionary with all of the parameters required to draw a Chart.
"""
chart_data = {
'type': 'area',
'options': {},
}
columns = [
{'id': 'name', 'label': 'Year', 'type': 'string'},
{'id': 'year', 'label': 'Loss (sq. km)', 'type': 'number'}]
rows = []
for loss_year in sorted(loss_stats.keys()):
entry = {
# The loss stats are in m2; convert them to km2.
'c': [{'v': loss_year}, {'v': loss_stats[loss_year]/1000/1000}]
}
rows.append(entry)
chart_data['data'] = {'cols': columns, 'rows': rows}
return chart_data
|
384623ad5cd3c3ee81cf25c00402bd8d65396f59
| 37,842 |
def extract_channel_platform(url):
"""Returns last two elements in URL: (channel/platform-arch)
"""
parts = [x for x in url.split('/')]
result = '/'.join(parts[-2:])
return result
|
73c71ed879f07e8eedf2730db174e1cb81177276
| 37,844 |
def is_same_class(obj, a_class):
"""return true if obj is the exact class a_class, otherwise false"""
return (type(obj) == a_class)
|
029b12b101b53cc960f72994ae082df5f0fd9d0e
| 37,845 |
import hashlib
import six
import base64
def CalculateMd5Hash(file_path):
"""Calculate base64 encoded md5hash for a local file.
Args:
file_path: the local file path
Returns:
md5hash of the file.
"""
m = hashlib.md5()
with open(file_path, 'rb') as f:
m.update(f.read())
return six.ensure_text(base64.b64encode(m.digest()))
|
2a24ce3dd4f6e5f9d9a5d9be5632e6d481fd690b
| 37,851 |
def read_connection_data_from_external_file(filepath, separator="="):
"""Reads SQL server connection information from an external file.
Keeping this information external is potentially important for security reasons.
The format of this file should be:
server = [server_name]
database = [database_name]
Arguments:
filepath -- the location of the connection file (e.g. "C:/connection_data/server_connection_data.txt")
separator -- the delimiter (default "=")
Returns:
The server, database as strings
"""
with open(filepath, 'r') as f:
connection_data = f.readlines()
connection_data_dict = dict()
# clean strings and split on delimiter
for entry in connection_data:
entry_cleaned = entry.replace(" ", "").strip("\n") # strip whitespace and trailing new lines
split_string = entry_cleaned.split(separator)
connection_data_dict[ split_string[0] ] = split_string[1]
if "server" not in connection_data_dict or "database" not in connection_data_dict:
raise ValueError(
"""Connection data file must contain server and database_name, formated like:
server = server_name
database = database_name\n""")
exit(0)
server = connection_data_dict["server"]
database = connection_data_dict["database"]
print("Server={}\nDatabase={}".format(server, database))
return server, database
|
f12a659f302f7a8252f29673fa916b6ac997663f
| 37,852 |
import json
def load_filename(loc: str) -> dict:
"""Open a filename, parse it as JSON."""
with open(loc) as fh:
return json.load(fh)
|
9b8984926573dbcbff16a7fcee4b20e5e85fe6e0
| 37,853 |
def lin_poly_solve(L, M):
"""
Return the point defined as the intersection of two lines
(given as degree-one polynomials in some field).
"""
x0,x1,x2 = M.parent().gens()
a0 = L.coefficient(x0)
a1 = L.coefficient(x1)
a2 = L.coefficient(x2)
b0 = M.coefficient(x0)
b1 = M.coefficient(x1)
b2 = M.coefficient(x2)
# a0 a1 a2
# b0 b1 b2
return [a1*b2-a2*b1, -a0*b2+a2*b0, a0*b1-a1*b0]
|
5ebacff94b80dd4b1b54ac7742d0c9a37db596c8
| 37,854 |
def toRGB(hex_color_str):
"""
transform hex color string to integer tuple.
e.g. r,g,b = toRGB('0xFFFFFF')
"""
return int(hex_color_str[2:4],16)/255., int(hex_color_str[4:6],16)/255., int(hex_color_str[6:8],16)/255.
|
5821d5f0d42d1a53982eb81739fe81e47d75fa23
| 37,855 |
def lookup_object(spec):
"""
Looks up a module or object from a some.module:func_name specification.
To just look up a module, omit the colon and everything after it.
"""
parts, target = spec.split(':') if ':' in spec else (spec, None)
module = __import__(parts)
for part in parts.split('.')[1:] + ([target] if target else []):
module = getattr(module, part)
return module
|
e09c30d1cf3f523b790208dec60ec9fc1a309b1d
| 37,856 |
def default(d, k, i, default=None):
"""Returns d[k][i], defaults to default if KeyError or IndexError is raised."""
try:
return d[k][i]
except (KeyError, IndexError):
return default
|
c48c57b7698f23e075d45043917e2427e1b39c2d
| 37,858 |
def line_1d(x, slope, offset):
"""Return the value of a line with given slope and offset.
Parameters
----------
x : float or iterable of floats
The x-value to calculate the value of the line at.
slope : float
The slope of the line. Must be finite.
offset : float
The y-offset of the line.
Returns
-------
float or iterable of floats
The value at the given `x`, or values if len(x) > 1, in which case it
will be an array with length = len(x).
"""
return slope * x + offset
|
9befd9fdd13db12e27be4e000501c09a51c231e8
| 37,860 |
def decimal_all_finite(x_dec_list):
"""Check if all elements in list of decimals are finite.
Parameters
----------
x_dec_list : iterable of Decimal
List of decimal objects.
Returns
-------
y : bool
True if all elements are finite.
"""
y = all(x.is_finite() for x in x_dec_list)
return y
|
610f95d7022047a8b020d5af48ceb3923d168e5d
| 37,877 |
def coord_shift180(lon):
"""Enforce coordinate longiude to range from -180 to 180.
Sometimes longitudes are 0-360. This simple function will subtract
360 from those that are above 180 to get the more user-friendly
[-180, 180], since slicing is a lot easier.
Parameters
----------
lon: numpy.ndarray
Array of longitudes with values in range [0, 360].
Returns
-------
numpy.ndarray with longitudes in range [-180, 180].
""" # noqa
nlon = len(lon)
# change those above 180.0 to negative
for i in range(nlon):
x = lon[i]
if x > 180:
lon[i] = x - 360
return lon
|
cdf4ccbfc0e0dbb0201012826b88720934231d32
| 37,881 |
def temperature_over_total_temperature(
mach,
gamma=1.4
):
"""
Gives T/T_t, the ratio of static temperature to total temperature.
Args:
mach: Mach number [-]
gamma: The ratio of specific heats. 1.4 for air across most temperature ranges of interest.
"""
return (1 + (gamma - 1) / 2 * mach ** 2) ** -1
|
a1fea37f80df9eff21716f273b6270cfa7fcd302
| 37,882 |
from functools import reduce
def words_in_chapters(chapters: list) -> list:
"""
Returns all words in the given chapters, without any special characters (no punctuation or quotation characters)
:param chapters: Chapter objects
:return: all words in the given Chapters as a list of words
"""
return reduce(lambda c1, c2: c1 + c2, map(lambda c: c.words(), chapters))
|
ef30472d3096f7b5cf58cab2ab7bdeed41c9fa85
| 37,885 |
import json
def htmlsafe_json_dumps(obj, dumper=None, **kwargs):
"""Works exactly like :func:`dumps` but is safe for use in ``<script>``
tags. It accepts the same arguments and returns a JSON string. Note that
this is available in templates through the ``|tojson`` filter which will
also mark the result as safe. Due to how this function escapes certain
characters this is safe even if used outside of ``<script>`` tags.
The following characters are escaped in strings:
- ``<``
- ``>``
- ``&``
- ``'``
This makes it safe to embed such strings in any place in HTML with the
notable exception of double quoted attributes. In that case single
quote your attributes or HTML escape it in addition.
"""
if dumper is None:
dumper = json.dumps
rv = dumper(obj, **kwargs) \
.replace(u'<', u'\\u003c') \
.replace(u'>', u'\\u003e') \
.replace(u'&', u'\\u0026') \
.replace(u"'", u'\\u0027')
return rv
|
d3cdff425da3a7a01369ae89890d1d00ab7fe000
| 37,888 |
def slices_overlap(slice_a, slice_b):
"""Test if the ranges covered by a pair of slices overlap."""
assert slice_a.step is None
assert slice_b.step is None
return max(slice_a.start, slice_b.start) \
< min(slice_a.stop, slice_b.stop)
|
db9cfc0dcfa64f6c7c52f2410a140088f9d03b13
| 37,890 |
def get_requirements(fname):
"""
Extracts requirements from requirements-file <fname>
"""
reqs = open(fname, "rt").read().strip("\r").split("\n")
requirements = [
req for req in reqs
if req and not req.startswith("#") and not req.startswith("--")
]
return requirements
|
1b091b89cf6835f544560eb8e2235d9bb02f2952
| 37,892 |
def camelcase(name):
"""Converts a string to CamelCase.
Args:
name (str): String to convert.
Returns:
str: `name` in CamelCase.
"""
return ''.join(x.capitalize() for x in name.split('_'))
|
2a0052d52faf1aabb45ae9909f76482c927ba395
| 37,901 |
def completed(lines):
"""
Check if the output file shows successful completion
"""
return lines[-1][:14] == 'TOTAL RUN TIME'
|
2dcb9ff850086f4e7496a46a82c510297f0488d6
| 37,905 |
import torch
import random
def create_sample_batch(speaker_data, batch_size, vector_dim):
"""
Return torch tensors ((input1, input2), target) for siamese
network training (for mutual information).
Constructs each batch to have roughly equal amount of target
and non-target samples to keep training balanced
"""
input1_tensor = torch.zeros(batch_size, vector_dim).float()
input2_tensor = torch.zeros(batch_size, vector_dim).float()
target_tensor = torch.zeros(batch_size, 1).float()
speaker_ids = list(speaker_data.keys())
for i in range(batch_size):
# Throw a coin if we add target or non-target sample
input1 = None
input2 = None
target = None
if random.random() < 0.5:
# Target sample:
# Pick speaker, and then pick two separate vectors
# from that speaker
random_speaker_id = random.choice(speaker_ids)
speaker_vectors = speaker_data[random_speaker_id]
# random.sample takes two unique vectors
input1, input2 = random.sample(speaker_vectors, 2)
target = 1
else:
# Non-target sample
# Pick two different speakers and one vector from
# each
speaker1, speaker2 = random.sample(speaker_ids, 2)
input1 = random.choice(speaker_data[speaker1])
input2 = random.choice(speaker_data[speaker2])
target = 0
# Put sampled vectors to batch
input1_tensor[i] = torch.from_numpy(input1).float()
input2_tensor[i] = torch.from_numpy(input2).float()
target_tensor[i, 0] = target
input1_tensor = input1_tensor.cuda()
input2_tensor = input2_tensor.cuda()
target_tensor = target_tensor.cuda()
return ((input1_tensor, input2_tensor), target_tensor)
|
71edfa9f239b84a8414a645d391330f929cd2e2d
| 37,909 |
import six
def safe_shadow(text):
"""
Shadow string to first and last char
:param text:
:return:
>>> safe_shadow(None)
'None'
>>>safe_shadow("s")
'******'
>>>safe_shadow("sssssss")
's******s'
>>> safe_shadow(1)
'******'
>>> safe_shadow([1, 2])
'******'
"""
if not text:
return "None"
elif not isinstance(text, six.string_types):
return "******"
elif len(text) > 2:
return "%s******%s" % (text[0], text[-1])
else:
return "******"
|
46d63b4a598bbc45ae32335e105539f7c43f1c9e
| 37,910 |
def _merge_notebooks_feedback(notebook_ids, checksums):
"""
Returns a list of dictionaries with 'notebook_id' and 'feedback_checksum'.
``notebook_ids`` - A list of notebook IDs.
``checksum`` - A dictionary mapping notebook IDs to checksums.
"""
merged = []
for nb_id in notebook_ids:
if nb_id not in checksums.keys():
checksum = None
else:
checksum = checksums[nb_id]
merged.append({'notebook_id': nb_id, 'feedback_checksum': checksum})
return merged
|
6e45fa2f5889b94b9dd6e0164ab7554e284fa3b9
| 37,912 |
import random
def generate_random(power: int) -> list:
"""
Generate list with 2 ** power random elemnts.
"""
array = [random.random() for i in range(2 ** power)]
return array
|
b822277c6f4ca0a28339ef2feddfcec485e4d686
| 37,918 |
def findmax(L):
"""
>>> L1 = [ 1, 4, 5, 10 ]
>>> findmax(L1)
10
>>> L2 = [ 1, 3, 9, 33, 81 ]
>>> findmax(L2)
81
"""
return max(L)
|
3fbb99b5189ee8a4a4867642ec4ebc73f06c04f0
| 37,920 |
def dayOfWeek(julian):
"""Get day of week from a julian day
:param `julian`: the julian day
:returns: the day of week as an integer and Monday = 1
"""
return int((julian + 1) % 7)
|
0aa478cb8d597097a73f998cb6d4de128a06611c
| 37,922 |
def recall(tp_count, targets_count):
"""Calculates recall.
:param tp_count: Number of true positives.
:param targets_count: Number of targets.
:return: The recall rate.
"""
if targets_count == 0:
return 0.0
else:
return tp_count / float(targets_count)
|
985c5c4567c9be12e4bd248d2a3054a2def1f29f
| 37,926 |
def intersect_interval(interval1, interval2):
"""Computes the intersection of two intervals.
Parameters
----------
interval1: tuple[int]
Should be `(x1_min, x1_max)`
interval2: tuple[int]
Should be `(x2_min, x2_max)`
Returns
-------
x_intersect: tuple[int]
Should be the intersection. If the intersection is empty returns
`(0, 0)` to represent the empty set. Otherwise is `(max(x1_min,
x2_min), min(x1_max, x2_max))`.
"""
x1_min, x1_max = interval1
x2_min, x2_max = interval2
if x1_max < x2_min:
# If interval1 < interval2 entirely
return (0, 0)
elif x2_max < x1_min:
# If interval2 < interval1 entirely
return (0, 0)
x_min = max(x1_min, x2_min)
x_max = min(x1_max, x2_max)
return (x_min, x_max)
|
5db8daefa083b680c89a970224e2fc67a07beb5e
| 37,928 |
def get_order_by_from_request(request):
"""
Retrieve field used for sorting a queryset
:param request: HTTP request
:return: the sorted field name, prefixed with "-" if ordering is descending
"""
sort_direction = request.GET.get("dir")
field_name = (request.GET.get("sort") or "") if sort_direction else ""
sort_sign = "-" if sort_direction == "desc" else ""
return f"{sort_sign}{field_name}"
|
9324e8e03bb8b5a48cd37f3daf6807712b57ad97
| 37,933 |
def turn_strat_into_label(stratum):
"""
Convert age stratification string into a string that describes it more clearly.
Args:
stratum: String used in the model
Returns:
label: String that can be used in plotting
"""
if 'up' in stratum:
return stratum[4: -2] + ' and up'
elif 'to' in stratum:
to_index = stratum.find('to')
return stratum[4: to_index] + ' to ' + stratum[to_index+2:]
elif stratum == '':
return 'All ages'
else:
return ''
|
fb2ce3810359a150948905913ba48e7627875769
| 37,934 |
def diff(prev_snapshot, next_snapshot):
"""Return a dict containing changes between two snapshots."""
snapshot_diff = {
'left_only': [],
'right_only': [],
'changed': [],
'common': [],
}
for path in set(prev_snapshot.keys()) | set(next_snapshot.keys()):
if path in prev_snapshot and path not in next_snapshot:
snapshot_diff['left_only'].append(path)
elif path not in prev_snapshot and path in next_snapshot:
snapshot_diff['right_only'].append(path)
elif next_snapshot[path].mtime != prev_snapshot[path].mtime:
if next_snapshot[path].isfile:
snapshot_diff['changed'].append(path)
else:
snapshot_diff['common'].append(path)
return snapshot_diff
|
040be0018e4b517cfc884a1e4a0f9cc030032fa9
| 37,936 |
def make_table_row(contents, tag="td"):
"""Given an iterable of string contents, make a table row.
Args:
contents: An iterable yielding strings.
tag: The tag to place contents in. Defaults to 'td', you might want 'th'.
Returns:
A string containing the content strings, organized into a table row.
Example: make_table_row(['one', 'two', 'three']) == '''
<tr>
<td>one</td>
<td>two</td>
<td>three</td>
</tr>'''
"""
columns = ("<%s>%s</%s>\n" % (tag, s, tag) for s in contents)
return "<tr>\n" + "".join(columns) + "</tr>\n"
|
346301a77954829f6869a47ace6c1de52d787ffa
| 37,938 |
def typical_price(data, high_col='High', low_col='Low', close_col='Close'):
"""
Typical Price
Source: https://en.wikipedia.org/wiki/Typical_price
Params:
data: pandas DataFrame
high_col: the name of the HIGH values column
low_col: the name of the LOW values column
close_col: the name of the CLOSE values column
Returns:
copy of 'data' DataFrame with 'typical_price' column added
"""
data['typical_price'] = (
data[high_col] + data[low_col] + data[close_col]) / 3
return data
|
3c47cb01d4bd02351269f00c394d73abca862bc8
| 37,940 |
def get_family_name_from(seq_name_and_family):
"""Get family accession from concatenated sequence name and family string.
Args:
seq_name_and_family: string. Of the form `sequence_name`_`family_accession`,
like OLF1_CHICK/41-290_PF00001.20. Assumes the family does not have an
underscore.
Returns:
string. PFam family accession.
"""
return seq_name_and_family.split('_')[-1]
|
d75d48c72ebee14ef43edf9d0ab42b2f85999713
| 37,943 |
from bs4 import BeautifulSoup
def extract_html_links(text):
"""
Grab any GOV.UK domain-specific links from page text.
:param text: Text within a details sub-section, refer to filtered for keys.
:return: list of links
"""
links = []
try:
soup = BeautifulSoup(text, "html5lib")
links = [link.get('href') for link in soup.findAll('a', href=True)]
except Exception:
print("error")
return [l.replace("https://www.gov.uk/", "/") for l in links
if l.startswith("/") or l.startswith("https://www.gov.uk/")]
|
c7debea7ef2b3c8d239cde39b40913d9f141d3fb
| 37,946 |
def pow(a, b):
"""
Finds a^b using recursion.
Params:
a (float) - Base
b (int) - Exponent
Returns:
Value of a^b (float)
"""
if(type(b) != int):
print("ERROR: pow() not callable with doubles!")
return 0
if(b == 0):
return 1
else:
return a * pow(a, b-1)
|
e903a8a430453cc57460a124a2485b7de57473e2
| 37,948 |
def twr(rors):
"""The Time-Weighted Return (also called the
Geometric Average Return) is a way of calculating
the rate of return for an investment when there are
deposits and withdrawals (cash flows) during the period.
You often want to exclude these cash flows so that we can
find out how well the underlying investment has performed.
Args:
rors: List of all rors over multiple time periods
Returns:
The time-weighted return of a given investment
Example:
By providing a list of rate of returns you can
calculate the time-weighted return based on that
list:
>>> import malee
>>> malee.aar([.10, -.05, .12])
0.056666666666666664
"""
Rtw = 1
for ror in rors:
Rtw *= 1 + ror
return Rtw - 1
|
d9346efca7f8db311643818a8f13f30ab0ee12f5
| 37,951 |
def NoEmbedding(X):
"""Return X without changes."""
return X
|
c33dd4175999dab4eb3568753f8d4980c809b294
| 37,952 |
def bytes_split(bytes_, length):
"""Split bytes into pieces of equal size."""
n_pieces, excess = divmod(len(bytes_), length)
if excess:
raise ValueError('Bytes of length {} cannot be equally divided into '
'pieces of length {}'.format(len(bytes_), length))
return [bytes_[i * length : (i + 1) * length] for i in range(n_pieces)]
|
7c70146e4ebbef70371e7cfb3ce3a1abe6df3c97
| 37,955 |
def diamag_correction(H, H0, Mp, Mpp, m_sample, M_sample, Xd_sample, constant_terms=[], paired_terms=[]):
"""
Calculates a diamagnetic correction of the data in Mp and Mpp and calculates
the corresponding values of Xp and Xpp
Input
H: amplitude of AC field (unit: Oe)
H0: strength of applied DC field (unit: Oe)
Mp: in-phase magnetization (unit: emu)
Mpp: out-of-phase magnetization (unit: emu)
m_sample: sample mass in (unit: mg)
M_sample: sample molar mass (unit: g/mol)
Xd_sample: sample diamagnetic susceptibility in emu/(Oe*mol) from DOI: 10.1021/ed085p532
constant_terms: terms to be subtracted directly from magnetization (unit: emu/Oe)
paired_terms: list of tuples (tup) to be subtracted pairwise from magnetization
The terms must pairwise have the unit emu/Oe when multiplied,
fx. unit of tup[0] is emu/(Oe*<amount>) and unit of tup[1] is <amount>
Output
Mp_molar: molar in-phase magnetization, corrected for diamagnetic contribution (unit: emu/mol)
Mpp_molar: molar out-of-phase magnetization, corrected for diamagnetic contribution (unit: emu/mol)
Xp_molar: molar in-phase susceptibility, corrected for diamagnetic contribution (unit: emu/(Oe*mol))
Xpp_molar: molar out-of-phase susceptibility, corrected for diamagnetic contribution (unit: emu/(Oe*mol))
"""
# Old
#Xp = (Mp - self.Xd_capsule*H - self.Xd_film*film_mass*H)*molar_mass/(sample_mass*H) - Xd_sample*molar_mass
#Xpp = Mpp/(sample_mass*H)*molar_mass
# NEW (documentation in docs with eklahn@chem.au.dk)
# ---------------------------
# Recalculate sample mass into g
m_sample *= 10**-3
# Calculate the molar amount of the sample
n_sample = m_sample/M_sample
sum_of_constants = sum(constant_terms)
sum_of_pairwise = sum([tup[0]*tup[1] for tup in paired_terms])
Mp_molar = (Mp - (sum_of_constants + sum_of_pairwise)*H - Xd_sample*H*n_sample)/n_sample
Mpp_molar = Mpp/n_sample
Xp_molar = Mp_molar/H
Xpp_molar = Mpp_molar/H
return Mp_molar, Mpp_molar, Xp_molar, Xpp_molar
|
6b29fd46ff6fd2457b6b3572efc544c3d84956c1
| 37,956 |
def rearange_base_link_list(table, base_link_index):
"""Rarange base link to beginning of table"""
value = table[base_link_index]
del table[base_link_index]
table.insert(0, value)
return table
|
08d94b515d6c1e1fcaf47fecdda7816d7fcb6470
| 37,963 |
import html
def decode_html_entities(v):
"""Decodes HTML entities from a value, converting them to the respective
Unicode characters/strings."""
if isinstance(v, int):
v = str(v)
return html.unescape(v)
|
852fa968ab99e0618eb1d845b6ef74322e137a42
| 37,964 |
def exe_success(return_code: int) -> bool:
"""Check if **return_code** is 0
Args:
return_code (int): Return code of a process.
Returns:
bool: True if return code is equal to 0
"""
return return_code == 0
|
cfea5a87f750c3629714832cb0758fcd3c18ad9a
| 37,966 |
def extract_pairs_from_lines(lines):
"""Extract pairs from raw lines."""
collected_pairs = []
for i in range(len(lines) - 1):
first_line = lines[i].strip()
second_line = lines[i+1].strip()
if first_line and second_line:
collected_pairs.append([first_line, second_line])
return collected_pairs
|
071d75bf422fa2ef61daff301837c85c0e0f3af6
| 37,967 |
def _replace_nan_with_none(
plot_data,
plot_keys):
"""Replaces all instances of nan with None in plot data.
This is necessary for Colab integration where we serializes the data into json
string as NaN is not supported by json standard. Turning nan into None will
make the value null once parsed. The visualization already handles falsy
values by setting them to zero.
Args:
plot_data: The original plot data
plot_keys: A dictionary containing field names of plot data.
Returns:
Transformed plot data where all nan has been replaced with None.
"""
output_metrics = {}
for plot_type in plot_keys:
metric_name = plot_keys[plot_type]['metricName']
if metric_name in plot_data:
data_series_name = plot_keys[plot_type]['dataSeries']
if data_series_name in plot_data[metric_name]:
data_series = plot_data[metric_name][data_series_name]
outputs = []
for entry in data_series:
output = {}
for key in entry:
value = entry[key]
# When converting protocol buffer into dict, float value nan is
# automatically converted into the string 'NaN'.
output[key] = None if value == 'NaN' else value
outputs.append(output)
output_metrics[metric_name] = {data_series_name: outputs}
return output_metrics
|
887fff7f110945f8444f5ffec205828edf63f1f6
| 37,968 |
def bytearray_to_long(byte_array):
"""
Converts a byte array to long.
:param byte_array:
The byte array.
:returns:
Long.
"""
total = 0
multiplier = 1
for count in range(len(byte_array) - 1, -1, -1):
byte_val = byte_array[count]
total += multiplier * byte_val
multiplier *= 256
return total
|
7dee1685dacd7e693a6cc50bf0ac704f78aa42bd
| 37,974 |
def identity(*args):
"""
Return whatever is passed in
"""
return args if len(args) > 1 else args[0]
|
f0f1276beb43a13c49311974013caa330588e734
| 37,975 |
def WordStartWithUppercase(word):
"""Return whether a word starts with uppercase letter"""
if len(word) == 0:
return False
firstChar = word[0]
return firstChar == firstChar.upper()
|
71b775fa9168abac586470e2a454194ce9103efe
| 37,976 |
def heading_level(line):
"""Return heading level of line (1, 2, 3, or 0 for normal)"""
for i in range(4):
if line[i] != '#':
return i
return 3
|
47a21dd52d827b33dc467c02a31ce16c85b2b41b
| 37,980 |
def validate_sequence_length(sequence):
"""
Validates that the sequence passed into it has a minimum length of 100 n.t.
"""
try:
assert len(sequence) >= 100
return True
except AssertionError:
return False
|
3f9aecbd050e52a6d264a4753acc4215e6227c9e
| 37,985 |
def obtain_valid_painter(painter_class, **kwargs):
"""Returns a valid painter whose class is <painter_class>. You can try any
argument you want ; only arguments existing in painter's __init__ method
will be used.
"""
try:
painter = painter_class(**kwargs)
except TypeError:
painter = painter_class()
args_okay = {}
for arg in kwargs:
if hasattr(painter, arg):
args_okay[arg] = kwargs[arg]
painter = painter_class(**args_okay)
return painter
|
259f36dc3f75de608dfb53c3db23cf018df07adb
| 37,997 |
def percent_diff(value1: float, value2: float, frac: bool = False) -> float:
""" Return the percentage difference between two values. The denominator
is the average of value1 and value2.
value1: float, first value
value2: float, second value
frac: bool, Default is False. Set to True returns a fraction
instead of percentages. This is useful for performing
calculations on spreadsheets.
return: float, absolute value of the difference in percentages
Usage
-----
>>> percent_diff(5, 7)
33.33333333333333
>>> percent_diff(5, 7, frac=True)
0.3333333333333333
"""
assert value1 >= 0 and value2 >= 0, 'Values must not be negative'
perdiff = abs(value1 - value2)/((value1 + value2)/2.0)
if frac is False:
perdiff *= 100
return perdiff
|
cffe298fb4218adc60bf75ff659090c41ae86922
| 37,999 |
def scheduler(epoch):
"""
Learning rate scheduler
"""
lr = 0.0001
if epoch > 25:
lr = 0.00001
elif epoch > 60:
lr = 0.000001
print('Using learning rate', lr)
return lr
|
c65e57cc31926c4eb911c312e709f3209102e92a
| 38,002 |
def occurs_once_in_sets(set_sequence):
"""Returns the elements that occur only once in the sequence of sets set_sequence.
The elements are returned as a set."""
occuronce = set()
deleted = set()
for setx in set_sequence:
for sety in setx:
if (sety in occuronce):
deleted.add(sety)
occuronce.remove(sety)
elif (sety not in deleted):
occuronce.add(sety)
return occuronce
|
21344df038bf3af83584a9a1ef2dda1d6642af72
| 38,003 |
def allow_guess(number):
"""
Input: Takes in the number which the user is to guess
Gets user input and tells the user whether the number is too high
or too low
Returns false if the guess is wrong and True if correct
"""
print('Guess a number')
guess = input()
guess = int(guess)
if guess < number:
print('Your guess is too low.')
return False
elif guess > number:
print('Your guess is too high.')
return False
else: # If guess is equal to number
return True
|
be3f97b8118c6a80bf0cc907fcc946bf89f0e9a0
| 38,009 |
def check_def_file(universe, res_name, atoms_name):
"""Check if atoms from the definition file are present in the structure in `universe`.
This function return false if there is one missing in the structure.
Print also an error message.
Parameters
----------
universe : MDAnalysis universe instance
res_name : str
lipid residue name
atoms_name : list of str
list of atom names
Returns
-------
Bool
True if all atoms are found in the structure. False otherwise.
"""
# get all atom names of the res_name in the system
all_names = set(universe.select_atoms(f"resname {res_name}").names)
if not set(atoms_name).issubset(all_names):
miss_atoms = ",".join(set(atoms_name) - all_names)
print(f"Some atoms ({miss_atoms}) of residue {res_name} from definition "
"file are not found in your system.")
return False
return True
|
f2cff1286aca9a3be7e71b1d2f2d5cd810a93838
| 38,010 |
import re
import logging
def GetChromeosVersion(str_obj):
"""Helper method to parse output for CHROMEOS_VERSION_STRING.
Args:
str_obj: a string, which may contain Chrome OS version info.
Returns:
A string, value of CHROMEOS_VERSION_STRING environment variable set by
chromeos_version.sh. Or None if not found.
"""
if str_obj is not None:
match = re.search(r'CHROMEOS_VERSION_STRING=([0-9_.]+)', str_obj)
if match and match.group(1):
logging.info('CHROMEOS_VERSION_STRING = %s' % match.group(1))
return match.group(1)
logging.info('CHROMEOS_VERSION_STRING NOT found')
return None
|
d0dc48eb6c5f9c501024f155535e6e9adb1061c0
| 38,011 |
def JavaFileForUnitTest(test):
"""Returns the Java file name for a unit test."""
return 'UT_{}.java'.format(test)
|
6a524204c50084188b5144ba10434b586f2bc735
| 38,012 |
def get_descendant(node, desc_id):
"""Search the descendants of the given node in a scipy tree.
Parameters
----------
node : scipy.cluster.hierarchy.ClusterNode
The ancestor node to search from.
desc_id : int
The ID of the node to search for.
Returns
-------
desc : scipy.cluster.hierarchy.ClusterNode
If a node with the given ID is not found, returns None.
"""
if node.id == desc_id:
return node
if node.is_leaf():
return None
if node.left.id == desc_id:
return node.left
if node.right.id == desc_id:
return node.right
# search left
l = get_descendant(node.left, desc_id)
if l is not None:
return l
# search right
r = get_descendant(node.right, desc_id)
return r
|
99e081b2ee8dce513aad8fccbadb6cd94a017365
| 38,014 |
def length(x):
"""Calculate the length of a vector.
This function is equivalent to the `length` function in GLSL.
Args:
x (:class:`~taichi.Matrix`): The vector of which to calculate the length.
Returns:
The Euclidean norm of the vector.
Example::
>>> x = ti.Vector([1, 1, 1])
>>> length(x)
1.732051
"""
return x.norm()
|
bab7dfde88c3cb7d9dc4a2f697dfe2443e9acabd
| 38,017 |
import hashlib
def hash_csv(csv_path):
"""Calculates a SHA-256 hash of the CSV file for data integrity checking.
Args:
csv_path (path-like) : Path the CSV file to hash.
Returns:
str: the hexdigest of the hash, with a 'sha256:' prefix.
"""
# how big of a bit should I take?
blocksize = 65536
# sha256 is the fastest relatively secure hashing algorith.
hasher = hashlib.sha256()
# opening the file and eat it for lunch
with open(csv_path, 'rb') as afile:
buf = afile.read(blocksize)
while len(buf) > 0:
hasher.update(buf)
buf = afile.read(blocksize)
# returns the hash
return f"sha256:{hasher.hexdigest()}"
|
690c7c281d6c2f74c37195462f89dc75bf227fc1
| 38,018 |
import requests
def retrieve_info(url, apidata):
"""
Return a dictionary from the HTSworkflow API
"""
web = requests.get(url, params=apidata)
if web.status_code != 200:
raise requests.HTTPError(
"Failed to access {} error {}".format(url, web.status_code))
result = web.json()
if "result" in result:
result = result["result"]
return result
|
c30cdc0bc8b556062195da0dc43d836446652a6b
| 38,020 |
def pvct(pv: float, compr_total: float):
""" Pore Volume times Total Compressibility
Parameters
---
pv : float
pore volume
compr_total : float
total compressibility
Return
pvct : float
pore volume total compressibility
"""
return pv*compr_total
|
31c84e4dc94cb2f1c78c9e26ba02cec4c81f0800
| 38,022 |
def format_datestr(v):
""" Formats a datetime or date object into the string format shared by xml and notation serializations."""
if hasattr(v, 'microsecond'):
return v.isoformat() + 'Z'
else:
return v.strftime('%Y-%m-%dT%H:%M:%SZ')
|
3f149e3babf7703281583d5b31b56e2b1d261fcb
| 38,024 |
def betterFib(n):
"""
Better implementation of nth Fibonacci number generator
Time complexity - O(n)
Space complexity - O(n)
:param n: The nth term
:return: The nth fibonnaci number
"""
fib = [None] * n
#print fib
if n == 0:
return 0
elif n == 1:
return 1
elif fib[n-1] is not None:
return fib[n-1]
else :
fib[n-1] = betterFib(n-1) + betterFib(n-2)
return fib[n-1]
|
9374446b2f63943862b5b07c24d087c0083b319f
| 38,025 |
def top_level(symbol):
"""A rule that matches top-level symbols."""
return (symbol and ('.' not in symbol)) or None
|
71a80314e80e2242d7b505a19939e26eb060dded
| 38,026 |
def _seq_id_filter(id: str) -> str:
"""
Replaces underscores and semicolons with dashes in the sequence IDs.
This is needed to have nice output filename templates with underscore
as a delimiter for parameters
"""
result = id.replace("_", "-")
return result.replace(";", "-")
|
e6355b1f94e76d255a1052072706619299ea4b51
| 38,028 |
import hashlib
def _md5_hash_as_long(input_value):
"""Return the hash of the input value converted to a long."""
hex_hash = hashlib.md5(str(input_value).encode('utf-8')).hexdigest()
return int(hex_hash, 16)
|
748cf6d783a17f07c3ea25280b9faae3d76211be
| 38,032 |
def _get_name(f):
"""Gets the name of underlying objects."""
if hasattr(f, '__name__'):
return f.__name__
# Next clause handles functools.partial objects.
if hasattr(f, 'func') and hasattr(f.func, '__name__'):
return f.func.__name__
return repr(f)
|
c6f5c35b004afea321d981b5db9dd7be52b5efa6
| 38,036 |
def if_none(obj, default):
"""
Returns `obj`, unless it's `None`, in which case returns `default`.
>>> if_none(42, "Hello!")
42
>>> if_none(None, "Hello!")
'Hello!'
"""
return default if obj is None else obj
|
fd851c9eb1eaa0048e3a0ac2d45b15fb208080a3
| 38,043 |
def _swiftmodule_for_cpu(swiftmodule_files, cpu):
"""Select the cpu specific swiftmodule."""
# The paths will be of the following format:
# ABC.framework/Modules/ABC.swiftmodule/<arch>.swiftmodule
# Where <arch> will be a common arch like x86_64, arm64, etc.
named_files = {f.basename: f for f in swiftmodule_files}
module = named_files.get("{}.swiftmodule".format(cpu))
if not module and cpu == "armv7":
module = named_files.get("arm.swiftmodule")
return module
|
59e978f22f4b1959ef32b0f2d68b0d92ec7fabe0
| 38,046 |
from typing import Dict
def get_bags_inside(color: str, dependency_dict: Dict[str, Dict[str, int]]) -> int:
"""Recursively count the bags stored wthin color, including itself"""
count = 1
inner_bags = dependency_dict[color]
for bag_color, bag_count in inner_bags.items():
count += bag_count * get_bags_inside(bag_color, dependency_dict)
return count
|
b97da4a194d3aba89f7eec9ac684812e139d116b
| 38,052 |
def pick(seq, func, maxobj=None):
"""Picks the object obj where func(obj) has the highest value."""
maxscore = None
for obj in seq:
score = func(obj)
if maxscore is None or maxscore < score:
(maxscore, maxobj) = (score, obj)
return maxobj
|
707f9534fdec3b66bd311238689e2fe8e3456fbd
| 38,060 |
from typing import BinaryIO
from typing import List
def _create_test_file(tfile: BinaryIO, nlines=10) -> List[str]:
"""Helper function for populating a testing temp file with numbered example lines for comparison"""
lines = [f"This is an example line {i}\n".encode('utf-8') for i in range(1, nlines+1)]
tfile.writelines(lines)
tfile.flush()
return [l.decode().strip("\n") for l in lines]
|
4eac8c5e351c415ddc5734fa93e7e2aed0e61e2e
| 38,061 |
import ntpath
import base64
def send_file(path, filename=None, mime_type=None):
"""
Convert a file into the format expected by the Download component.
:param path: path to the file to be sent
:param filename: name of the file, if not provided the original filename is used
:param mime_type: mime type of the file (optional, passed to Blob in the javascript layer)
:return: dict of file content (base64 encoded) and meta data used by the Download component
"""
# If filename is not set, read it from the path.
if filename is None:
filename = ntpath.basename(path)
# Read the file into a base64 string.
with open(path, 'rb') as f:
content = base64.b64encode(f.read()).decode()
# Wrap in dict.
return dict(content=content, filename=filename, mime_type=mime_type, base64=True)
|
efd32f249f292ec5e15924b6e30f5b107029e90b
| 38,062 |
import re
def extract_bibtex_items(latex_source):
"""Extract all bibtex items in a LaTeX file which are not commented out."""
bibtex_item_regex = re.compile(r"""(?<!%) # Lookbehind to check that the bibtex item is not commented out.
(\\bibitem{.*?}.+?) # Match the entire bibtex item.
(?=\\bibitem{|\\end{thebibliography}|$) # Match only until the next bibtex item, end of bibliography or end of line.
""", re.DOTALL | re.VERBOSE)
return bibtex_item_regex.findall(latex_source)
|
995a9d9559a6da564af010254fd466a8b729beb2
| 38,065 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.