content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
from typing import List
import hashlib
def hashes() -> List[str]:
"""
Return a list of available hashing algorithms.
:rtype: list of strings
"""
t = []
if 'md5' in dir(hashlib):
t = ['MD5']
if 'md2' in dir(hashlib):
t += ['MD2']
hashes = ['SHA-' + h[3:] for h in dir(hashlib) if h.startswith('sha')]
return t + hashes
|
4077694caa1200e923821515a3ec77e720fe755c
| 37,096 |
from math import sqrt, ceil
def grid_shape(i, max_x=4):
"""Return a good grid shape, in x,y, for a number if items i"""
x = round(sqrt(i))
if x > max_x:
x = max_x
y = ceil(i / x)
return x, y
|
e0f5109dc410f2dae632e002600e1c0094585b29
| 37,097 |
def scene_element_slicer(r_i, c_i, scene_element_position_dict, scene_element_dimension, as_slice=False):
"""
Returns the starting and ending row and column indices needed to slice pixels from a scene element.
Parameters
----------
r_i
Scene element row
c_i
Scene element column
scene_element_position_dict
Lookup table
scene_element_dimension
Size of scene element
as_slice
Whether to return as an actual slice, or just the start/end indices
Returns
-------
row, col slices
"""
dx = scene_element_dimension // 2
row, col = scene_element_position_dict[r_i, c_i]
r1, r2 = int(row) - dx, int(row) + dx + 1
c1, c2 = int(col) - dx, int(col) + dx + 1
if as_slice:
return slice(r1, r2), slice(c1, c2)
else:
return r1, r2, c1, c2
|
0dfa1611eb56865507e6be78dd5a31b72c95d7a7
| 37,100 |
def psfScale(D, wavelength, pixSize):
"""
Return the PSF scale appropriate for the required pixel size, wavelength and telescope diameter
The aperture is padded by this amount; resultant pix scale is lambda/D/psf_scale, so for instance full frame 256 pix
for 3.5 m at 532 nm is 256*5.32e-7/3.5/3 = 2.67 arcsec for psf_scale = 3
Args:
D (real): telescope diameter in m
wavelength (real): wavelength in Angstrom
pixSize (real): pixel size in arcsec
Returns:
real: psf scale
"""
DInCm = D * 100.0
wavelengthInCm = wavelength * 1e-8
return 206265.0 * wavelengthInCm / (DInCm * pixSize)
|
cbd98743f8716bfe935daeaa0a11f87daeb873f3
| 37,105 |
def _render_namespace_prefix(namespace):
"""Returns namespace rendered as a prefix, like ::foo::bar::baz."""
return "".join(["::" + n for n in namespace])
|
68e20189cdfd47872b9e9db34451da15b036d280
| 37,107 |
from typing import FrozenSet
import dateutil
def get_known_timezones() -> FrozenSet[str]:
"""
Return a cached set of the known timezones.
This actually pulls its list from the internal database inside `dateutil`
as there doesn't seem to be a nice way to pull the data from the system.
These are expected to change sufficiently infrequently that this is ok. In
any case, `dateutil` falls back to using this data source anyway, so at
worst this is a strict subset of the available timezones.
"""
# Get a non-cached copy of the `ZoneInfoFile`, not because we care about
# the cache being out of date, but so that we're not stuck with a MB of
# redundant memory usage.
# ignore types because `dateutil.zoneinfo` isn't present in the typeshed
info = dateutil.zoneinfo.ZoneInfoFile( # type: ignore
dateutil.zoneinfo.getzoneinfofile_stream(), # type: ignore
)
return frozenset(info.zones.keys())
|
ad149814bf72ea8dd13eebd9c0affc4eabf90c76
| 37,110 |
def _checkNconvertStr(texts):
"""
Checks whether input is a string or if it can be casted into one
:param texts: A string or a type which can be converted into one
:return: Text as a string if successful otherwise nothing (exception)
"""
concatTextLst = []
for text in texts:
# Test texts elements
tempText = str(text)
if type(tempText) is not str:
raise TypeError("Input type must be a string or convertible into a string")
concatTextLst.append(str(text))
return " ".join(concatTextLst) # Preserve whitespaces when using multiple text elements
|
430157ecf0f404f77fef497c39d4b0525b1b4f71
| 37,113 |
from typing import List
from typing import Any
def getListDifference(listOne: List[Any], listTwo: List[Any]) -> List[Any]:
""" Return difference (items that are unique just to a one of given lists)
of a given lists.
Note:
Operation does not necessary maintain items order!
Args:
listOne: first list to compare.
listTwo: second list to compare.
"""
difference = list(set(listOne).symmetric_difference(set(listTwo)))
return difference
|
5839988761a8f242828c8526d75e2b7ea8aea2f3
| 37,114 |
def _get(isamAppliance, id):
"""
Internal function to get data using "id" - used to avoid extra calls
:param isamAppliance:
:param id:
:return:
"""
return isamAppliance.invoke_get("Retrieve a specific mapping rule",
"/iam/access/v8/mapping-rules/{0}".format(id))
|
fbaccf5cf8a0b1b8f4be12e07d0ac2bf7dd20463
| 37,118 |
from typing import Iterable
def dedupe(iterable: Iterable) -> Iterable:
"""
Removes duplicates.
In python 3.6+, this algorithm preserves order of the underlying
iterable.
"""
return iter(dict.fromkeys(iterable))
|
67c46849b279a1423f81aaa64e0e2d80c4900aa5
| 37,119 |
import time
def create_export_file(converted_posts):
"""
Create a Ghost import json from a list of Ghost post documents.
:param converted_posts: Ghost formatted python docs.
:return: A Dict representation of a ghost export file you can dump to json.
"""
return {
"db": [
{
"meta": {
"exported_on": int(time.time()),
"version": "2.18.3"
},
"data": {
"posts": converted_posts
}
}
]
}
|
e0ee20a9b61ea6e86e3efb96fbe95085a2a9b2d0
| 37,124 |
def get_prots(docked_prot_file):
"""
gets list of all protein, target ligands, and starting ligands in the index file
:param docked_prot_file: (string) file listing proteins to process
:return: process (list) list of all protein, target ligands, and starting ligands to process
"""
process = []
with open(docked_prot_file) as fp:
for line in fp:
if line[0] == '#': continue
protein, target, start = line.strip().split()
process.append((protein, target, start))
return process
|
17b31a045004d19f5b79345cb53eded38df1a8e5
| 37,126 |
from pathlib import Path
def relative_to(path: Path, root: Path) -> Path:
"""Returns a path to `path` relative to `root`
Postcondition: (root / relative_to(path, root)).resolve() = path.resolve()
"""
while True:
try:
return path.relative_to(root)
except ValueError:
return ".." / relative_to(path, (root / "..").resolve())
|
5a1091ba87d45917302778b4cee8b30a6d9f6bf9
| 37,127 |
def strip_quotes(arg):
""" Strip outer quotes from a string.
Applies to both single and double quotes.
:param arg: str - string to strip outer quotes from
:return str - same string with potentially outer quotes stripped
"""
quote_chars = '"' + "'"
if len(arg) > 1 and arg[0] == arg[-1] and arg[0] in quote_chars:
arg = arg[1:-1]
return arg
|
97c8cefe2d0de2b3cecb8b6ed94a40ce4be89b94
| 37,134 |
import math
def BytesPerRowBMP(width, bpp):
"""Computes the number of bytes per row in a Windows BMP image."""
# width * bpp / 8, rounded up to the nearest multiple of 4.
return int(math.ceil(width * bpp / 32.0)) * 4
|
72f0df2951a27905bbf5b612d3f328696b6434f4
| 37,135 |
def str_to_bool(str_):
"""Convert string to bool."""
if str_ == "True":
return True
elif str_ == "False":
return False
else:
raise TypeError(str_)
|
929a2fe459e43751a90f1bd918ef6447eb2b68c2
| 37,137 |
def generate_name(route, deployment):
"""
Generate the name for a route in a given deployment
:param route: the id of the route
:param deployment: the id of the route
:return: the unique name for the route
"""
return f"{route}_{deployment}"
|
4f957cea79e5dc05af7cef5a490a56c2690c09ed
| 37,138 |
def limit(val: int) -> int:
"""
= min(max(val, 0), 255)
"""
tmp = 255 if val>255 else val
return 0 if tmp<0 else tmp
|
d69f236f4635d1a91a253dfe614e8a786c08753d
| 37,147 |
import itertools
def normalize_padding(padding, rank):
"""
normalized format of padding should have length equal to rank+2
And the order should follow the order of dimension
ex. Conv2d (rank=2) it's normalized format length:2+2 ==>(left, right,top bottom)
Args:
padding (None, int, tuple):
rank (int):
Returns:
the normalized format of padding
Examples:
>>> normalize_padding(((1,0),(1,0)),2)
(1, 0, 1, 0)
>>> normalize_padding((1,0),2)
(0, 0, 1, 1)
"""
if padding is None:
padding = (0,) * (2 * rank)
elif isinstance(padding, int):
padding = (padding,) * (2 * rank)
elif isinstance(padding, (list, tuple)) and len(padding) == 1:
padding = padding * (2 * rank)
elif isinstance(padding, (list, tuple)) and len(padding) == rank and isinstance(padding[0], int):
# rank=2 (1,1)=>(1,1,1,1) (1,0)=>(0,0,1,1)
reversed_padding = list(padding)
reversed_padding.reverse()
return_padding = []
for i in range(rank):
return_padding.append(reversed_padding[i])
return_padding.append(reversed_padding[i])
padding = tuple(return_padding)
elif isinstance(padding, (list, tuple)) and len(padding) == rank and isinstance(padding[0], (list, tuple)):
# rank=2 ((1,0),(1,0)=>(1,0,1,0)
padding = tuple(list(itertools.chain(*list(padding))))
elif isinstance(padding, (list, tuple)) and len(padding) == 2 * rank and isinstance(padding[0], int):
padding = padding
return padding
|
6e67d1a7ff408c013fe7fc122a0b0320025e2373
| 37,154 |
import string
import secrets
def get_alphanumeric_unique_tag(tag_length: int) -> str:
"""Generates a random alphanumeric string (a-z0-9) of a specified length"""
if tag_length < 1:
raise ValueError("Unique tag length should be 1 or greater.")
use_chars = string.ascii_lowercase + string.digits
short_id = "".join([secrets.choice(use_chars) for i in range(tag_length)])
return short_id
|
098c9888790faf6b771062e13a31f5e8f6eba4e0
| 37,156 |
from typing import Any
from typing import TypeGuard
import numbers
def is_complex(x: Any) -> TypeGuard[complex]:
"""Return true if x is complex."""
return isinstance(x, numbers.Complex)
|
fc1c98d9d8074ce5ffc1729a44d4daf463052e69
| 37,157 |
def is_obj(x):
"""
A quick (but maybe not perfect) check for object types
Returns:
bool: True if the object has __dict__ attribute, otherwise False
"""
try:
getattr(x, '__dict__')
return True
except:
return False
|
324dccfd2d2c436940e5347055ec1b5aa5f021c0
| 37,158 |
from typing import Any
from typing import Callable
def verify_operands_classes_and_forward_to_callable(
x_operand: Any,
y_operand: Any,
operand_class: type,
function: Callable[[Any, Any], Any],
) -> Any:
"""
verify_operands_classes_and_forward_to_callable verifies both operands are
of type operand_class before calling function.
:param x_operand: First operand.
:type x_operand: Any
:param y_operand: Second operand.
:type y_operand: Any
:param operand_class: type to compare against.
:type operand_class: type
:param function: callable to call.
:type function: Callable[[Any, Any], Any]
:raises TypeError: if either operand is not of operand_class.
:return: The return value of the callable, in any.
:rtype: Any
"""
if isinstance(x_operand, operand_class) and isinstance(y_operand, operand_class):
return function(x_operand, y_operand)
raise TypeError("x_operand and y_operand are not both ", operand_class)
|
8553b0ae796641226724cc9b0557b59dfe7a8fbf
| 37,161 |
from typing import List
def staircase(size: int) -> List[str]:
"""
>>> staircase(4)
[' #', ' ##', ' ###', '####']
"""
# ret = [f"{'#' * i:>{size}}" for i in range(1, size+1)]
ret = [('#' * i).rjust(size) for i in range(1, size+1)]
return ret
|
e75508019be90223a49aa5161876e34018b387e5
| 37,165 |
from pathlib import Path
def load_groups(input_path: Path) -> list:
"""
Load in the customs quesetionarre response data into a buffer and group
together the responses that are associated with a single group.
Responses belonging to a single group are on contiguous lines,
and groups are separated by a blank line. Splitting by "\n\n" will
break apart the responses from separate groups, and then removing
the "\n" characters from in-group responses should then just give
us the specific responses void of whitespace characters.
Remove empty characters per line and also empty groups.
Args:
input_path [pathlib.Path]: path to input data
Returns:
list of lists: [ [group-responses] ]
"""
with open(input_path, "r") as infile:
groups = list(
filter(
None,
[
list(
filter(
None,
[line.strip() for line in group.split("\n") if line != ""],
)
)
for group in infile.read().split("\n\n")
],
)
)
return groups
|
f23eb0398757e749786a7ba1fdcb8dede18736fd
| 37,170 |
def get_trip_distance(distances_matrix, path):
"""
:param distances_matrix: Matrix of distances between cities
:param path: List of city indices
:return: Trip distance
"""
distance = 0
for index in range(len(path))[1:]:
distance += distances_matrix[path[index - 1], path[index]]
return distance
|
aabb74cb8b876911e384eceb86c33f4114327fb2
| 37,175 |
def gift_list(number):
"""Generates the list of gifts for a given verse
Parameters
----------
number: Integer
The number of the verse we want the list for
Returns
-------
string
The list of gifts
"""
gifts = {
1: 'a Partridge in a Pear Tree',
2: 'two Turtle Doves',
3: 'three French Hens',
4: 'four Calling Birds',
5: 'five Gold Rings',
6: 'six Geese-a-Laying',
7: 'seven Swans-a-Swimming',
8: 'eight Maids-a-Milking',
9: 'nine Ladies Dancing',
10: 'ten Lords-a-Leaping',
11: 'eleven Pipers Piping',
12: 'twelve Drummers Drumming'
}
return gifts[1] if number == 1 \
else ', '.join([gifts[n] for n in reversed(range(2, number+1))]) + \
f', and {gifts[1]}'
|
20c9cf10f80e8ee0650721253b31554ed0cda6a4
| 37,179 |
def get_adjusted_unsuccessful(row, outcome_col, num_unsuccess_col):
"""
Returns adjusted number of unsuccesful contacts given column of outcome and num_unsuccess
"""
outcome = row[outcome_col]
num_unsuccess = row[num_unsuccess_col]
if outcome == 0:
adj_num_unsuccess = num_unsuccess - 3 if num_unsuccess >= 3 else 0
else:
adj_num_unsuccess = num_unsuccess
return adj_num_unsuccess
|
77f0b0d46269bfe299d8791c04a152a1d2df27ed
| 37,180 |
def triangular_force(t_start, t_max, t_end, f_max):
"""
Returns a triangular force:
f_max at t_max
/\
/ \
/ \
/ \
---- -----
| |
| |__ t_end
|__ t_start
Parameters
----------
t_start: float
time where triangular force starts to raise
t_max: float
time where force reaches maximum
t_end: float
time where force is gone to zero again
f_max: float
maximum value of force
Returns
-------
f: callable
function f(t)
"""
def f(t):
if t_start < t <= t_max:
return f_max * (t-t_start) / (t_max-t_start)
elif t_max < t < t_end:
return f_max * (1.0 - (t - t_max) / (t_end - t_max))
else:
return 0.0
return f
|
91a69292b9ff641a9b47c280438f64c13ba89bc9
| 37,181 |
from datetime import datetime
def FormattedTime(DateTimeObject = None) -> str:
"""Returns a formatted time string."""
if DateTimeObject == None:
DateTimeObject = datetime.now()
return DateTimeObject.strftime("%H:%M:%S")
|
51d431e40691371579530419aebd19de4655455c
| 37,185 |
import re
import click
def parse_port(port: str) -> str:
"""Check if port is valid.
Parameters
----------
port : str
Possible port name.
Returns
-------
port : str
Valid port name
Raises
------
click.BadParameter
If ``port`` is not a four-digit number not starting with zero.
"""
if re.fullmatch(r'^[1-9][0-9]{,3}', port):
return port
else:
raise click.BadParameter(
'ERROR: Use up to four digits not starting with zero.')
|
e6acb439117f0d30ec161875371aa7e7b9f10c76
| 37,187 |
def get_nlp_bib_neotoma(nlp_sentences, bibliography, neotoma_summary):
"""
Uses all main datasets to create preprocessed_df dataframe
Parameters
----------
nlp_sentences : pd.DataFrame
pd.DataFrame with all NLP Sentences database information
bibliography : pd.DataFrame
pd.DataFrame with all Bibliography database information
neotoma_summary : pd.DataFrame
pd.DataFrame with all neotoma_summary database information
Returns
-------
nlp_bib : pd.DataFrame
pd.DataFrame with summarized merged nlp sentences and bibliography
information
preprocessed_df : pd.DataFrame
pd.DataFrame with summarized NLP, Bibliography and Neotoma database
information
"""
nlp_bib = nlp_sentences.merge(bibliography, on='gddid')
preprocessed_df = nlp_bib.merge(neotoma_summary, on='doi')
return nlp_bib, preprocessed_df
|
0c706502b79de5e10736192dfd6e6aa05593e61d
| 37,196 |
def find_link_joints(model, link_name):
"""Find the joints attached to a given link
Parameters
----------
model : <ModelSDF>
SDF model
link_name : <str>
Name of the link in the sdf
Returns
-------
out : <tuple>
Tuple of joint names attached to the link
"""
return tuple([
joint.name
for joint in model.joints
if joint.parent == link_name
])
|
1d09cdf09889e19b7d8b911686ce90765d772a1c
| 37,203 |
def polyfill_filename(api):
"""Gets the filename associated with an API polyfill.
Args:
api: String name of API.
Returns:
Filename of API polyfill.
"""
return "{}.polyfill.js".format(api)
|
efb54fddafb846985c77e44837f7a24c57596581
| 37,204 |
def standardize_survey_list(row):
"""This function takes in a list for a given row of a survey result and will
lower-case it and strip out white space from left and right of the string.
Args:
row (list): A list of survey results
Returns:
list: standardized survey results
"""
# lowers all strings and strips whitespace
clean_row = [x.lower().strip() for x in row]
return list(set(clean_row))
|
cf1e627e25a1dc98d8748a8bc1e0b78e420eb043
| 37,205 |
def make_ucsc_chr(interval):
"""
Converts interval from ENSEMBL chroms to UCSC chroms
(appends str to each chrom)
"""
interval.chrom = "chr" + interval.chrom
return interval
|
d5878670494dc51e29922d43a605634f26cd8e00
| 37,207 |
from typing import Any
def verbatim(text: Any) -> str:
"""
Returns the main string argument as-is.
It produces a TypeError if input text is not a string.
"""
if not isinstance(text, str):
raise TypeError("argument to verbatim must be string")
return text
|
0f735833f1514f0f5bd45efc07af783ffc72cbd3
| 37,210 |
def format_bool(value):
"""Converts boolean to yes/no string."""
return 'bez dat' if value is None else ('Ano' if value else 'Ne')
|
04aa58c8d280bc90c52169bf563650075963d6a2
| 37,211 |
def get_mappings(all_tweets_itr):
"""Returns a tuple with two dictionaries.
The first is a mapping username -> userid, where username is the one @foo, with @.
The second is a mapping tweetid -> userid of the creator"""
map_usrname_usrid = {}
map_twtid_usrid = {}
print(" [*] Extracting user mappings")
for tweet in all_tweets_itr:
map_usrname_usrid["@"+tweet["user"]["screen_name"]] = tweet["user"]["id"]
map_twtid_usrid[tweet["id"]] = tweet["user"]["id"]
return map_usrname_usrid, map_twtid_usrid
|
7794676f45a9610b48e569c2c115faa04dc48904
| 37,214 |
def get_message_source_from_event(event):
"""
Helper function to get the message source from an EventHub message
"""
return event.message.annotations["iothub-message-source".encode()].decode()
|
37d8c0aa2304f930c8e1507bf5a2355e3ccb66e9
| 37,215 |
def recover_bps(delt, bps, bps_star):
"""
delt, bps, bps_star - seqlen+1 x bsz x K
returns:
bsz-length list of lists with (start_idx, end_idx, label) entries
"""
seqlenp1, bsz, K = delt.size()
seqlen = seqlenp1 - 1
seqs = []
for b in range(bsz):
seq = []
_, last_lab = delt[seqlen][b].max(0)
last_lab = last_lab.item()
curr_idx = seqlen # 1-indexed
while True:
last_len = bps[curr_idx][b][last_lab]
last_len = int(last_len)
seq.append((curr_idx-last_len, curr_idx, last_lab)) # start_idx, end_idx, label, 0-idxd
# print((curr_idx-last_len, curr_idx, last_lab))
curr_idx -= last_len
if curr_idx == 0:
break
last_lab = bps_star[curr_idx][b][last_lab]
seqs.append(seq[::-1])
return seqs
|
1f0adca5aa25ae818b8738ef0bfefb0a6f44fe6c
| 37,220 |
def _ops_equal(op1, op2):
"""Checks if two operators are equal up to class, data, hyperparameters, and wires"""
return (
op1.__class__ is op2.__class__
and (op1.data == op2.data)
and (op1.hyperparameters == op2.hyperparameters)
and (op1.wires == op2.wires)
)
|
dd73cc9f89ec0fc8540043b7982a6c5b6fc8609b
| 37,222 |
import requests
def extract_wiki_text(wikipedia_title, language='en'):
"""Get the text of the given wikipedia article."""
base_url = ('https://' + language + '.wikipedia.org/w/api.php?action=query'
+ '&prop=extracts&format=json&explaintext='
+ '&exsectionformat=plain&titles=')
text = ''
r = requests.get(base_url + wikipedia_title)
if r.status_code == 200:
pages = r.json()['query']['pages']
for (id, page) in pages.items():
text += page['extract']
return text
|
231bfec347c0a92b19081bb852feb3b6c7674413
| 37,225 |
from typing import Dict
from typing import Any
import torch
def load_to_cpu(path: str) -> Dict[str, Any]:
"""
This is just fairseq's utils.load_checkpoint_to_cpu(), except we don't try
to upgrade the state dict for backward compatibility - to make cases
where we only care about loading the model params easier to unit test.
"""
state = torch.load(
path,
map_location=(
lambda s, _: torch.serialization.default_restore_location(s, "cpu")
),
)
return state
|
aa30621b7230a3f22afbfd3db50f74d8f385493a
| 37,226 |
def bootstrap_predictions(train_x, train_y, test_x, model, boot_idx=None, permute_idx=None):
"""
fits a model to training data and predicts output using test data. features are selected with boot_idx.
Optional permutation of rows for significant testing.
train_x, test_x: dataframes containing train and test data
train_y: target value for model fitting
model: sklearn regressor object, or Pipeline
boot_idx: features to use for model
permute_idx: permutation index to shuffle training data
returns:
pred: bootstrapped predictions of test data
"""
# fit model with bootstrapped genes
if boot_idx is None:
if permute_idx is None:
model.fit(train_x, train_y)
else:
model.fit(train_x.iloc[permute_idx,:], train_y)
pred = model.predict(test_x)
else:
if permute_idx is None:
model.fit(train_x.iloc[:,boot_idx], train_y)
pred = model.predict(test_x.iloc[:,boot_idx])
else:
model.fit(train_x.iloc[permute_idx,boot_idx], train_y)
pred = model.predict(test_x.iloc[:,boot_idx])
return pred
|
dbe328094a2eda06a048f0d3cdcee182e8558db2
| 37,232 |
def bag_of_words(text):
"""Returns bag-of-words representation of the input text.
Args:
text: A string containing the text.
Returns:
A dictionary of strings to integers.
"""
bag = {}
for word in text.lower().split():
bag[word] = bag.get(word, 0) + 1
return bag
|
75993f3bd5fb20e3015afee499a14bf1574902ca
| 37,234 |
def find_list_string(name, str_list, case_sensitive=True, as_prefix=False, first_matched=False):
"""
Find `name` in the string list.
Comparison parameters are defined in :func:`string_equal`.
If ``first_matched==True``, stop at the first match; otherwise if multiple occurrences happen, raise :exc:`ValueError`.
Returns:
tuple ``(index, value)``.
"""
if not case_sensitive:
lookup_name=name.lower()
else:
lookup_name=name
found_name=None
for i,s in enumerate(str_list):
if not case_sensitive:
lookup_s=s.lower()
else:
lookup_s=s
if as_prefix:
sat=lookup_s.startswith(lookup_name)
else:
sat=(lookup_s==lookup_name)
if sat:
if found_name is None:
found_name=(i,s)
if first_matched:
break
else:
raise ValueError("{0} and {1} both satisfy name {2}".format(found_name[1],s,name))
if found_name is None:
raise KeyError("can't find name in the container: {0}".format(name))
return found_name
|
f485ae3cdebcee9e4cfe85378c38f7f27d737b96
| 37,236 |
def rmRTs(tokens) :
"""Remove RTs"""
return [x for x in tokens if x != "rt"]
|
00df94bcfba29784bae736bb41c964cea7589657
| 37,237 |
def test_attr(attr, typ, name):
"""Tests attribute.
This function tests if the attribute ``attr`` belongs to the type ``typ``,
if not it gives an error message informing the name of the variable.
"""
try:
return typ(attr)
except:
raise TypeError('"{}" keyword must be a {} object'.format(name, typ))
|
28e0bdad00117cca25a67057db2f1525387cf39d
| 37,241 |
def get_phylogenetic_weight(node):
"""Calculate the weight at a phylogenetic node.
Args:
node (`Node`): The phylogenetic node.
Returns:
float: (weight of the parent) / (number of siblings + 1).
"""
if node.parent is None:
return 1.0
return 1.0*get_phylogenetic_weight(node.parent)/len(node.parent.children)
|
2a57eb9cac2f5939d13552ea1e99e8dc99313db9
| 37,242 |
import json
def create_button(action,
payload,
label,
display_mode='popup',
disabled=False):
"""
This function creates an HTML button the user can interact with from
a CloudWatch custom widget.
Parameters:
action (string):
The ARN of a lambda function to call when clicking on this button
payload (string):
A JSON formatted string that will be passed as argument to the
lambda function used as endpoint for this button
label (string):
The label to use on the button
display_mode (string):
Can either be `popup` (display the result in a popup) or `widget`
(to replace the content of the current widget by the output of the
Lambda function used as endpoint). Defaults to `popup`
disabled (boolean):
Set to True to display a disabled button
Returns:
string: an HTML string with the button to display
"""
if disabled:
button_style = 'awsui-button-disabled'
disabled = 'disabled=""'
else:
button_style = 'awsui-button awsui-button-variant-primary'
disabled = ""
button = (
f'<a class="btn {button_style}" {disabled}>{label}</a>\n'
'<cwdb-action '
f'action="call" '
f'endpoint="{action}" '
f'display="{display_mode}">'
f'{json.dumps(payload)}'
'</cwdb-action>\n'
)
return button
|
33d7255888b956275e9783ee91c297b81fdc6ae7
| 37,246 |
def order_validation(order):
"""
Validate the order. If it's under 2 then raise a ValueError
"""
if order < 2:
raise ValueError("An order lower than two is not allowed.")
else:
return order
|
ee9f9c64c30a9625246d5e139c94a53d144270db
| 37,247 |
import requests
import io
import zipfile
def download_zip(url, to_path):
"""Download zipfile from url and extract it to to_path.
Returns the path of extraction.
"""
filename = url.split('/')[-1]
r = requests.get(url)
r.raise_for_status()
content = io.BytesIO(r.content)
with zipfile.ZipFile(content) as z:
z.extractall(to_path)
return to_path
|
904a4a0082040ec40e09f8cac8275c36943a3acc
| 37,251 |
def to_gib(bytes, factor=2**30, suffix="GiB"):
""" Convert a number of bytes to Gibibytes
Ex : 1073741824 bytes = 1073741824/2**30 = 1GiB
"""
return "%0.2f%s" % (bytes / factor, suffix)
|
1006d69275c212d978b06ab248f02ea966f1490e
| 37,255 |
def fn_middleware(get_response):
"""Function factory middleware."""
def mw(request):
response = get_response(request)
return response
return mw
|
e4261f99c2acd939dfb6198f1e253a680c2d9184
| 37,258 |
def include_key_in_value_list(dictio):
"""
Returns a list that contains the cases in the log,
starting from the dictionary returned by PM4Py
Parameters
---------------
dictio
Dictionary of cases
Returns
---------------
list_cases
List of cases
"""
ret = []
for key in dictio:
val = dictio[key]
val["caseId"] = key
ret.append(val)
return ret
|
917cf7a280daad5372ff9ac312d96dc46fdcc5e6
| 37,259 |
def var_number(i, j, d, k):
"""
Convert possible values into propositional vars
:param i: row number 1 - 9
:param j: col number 1 - 9
:param d: digit 1 - 9
:param k: size of suduko
:return: variable number 1- 729
"""
return (k ** 2 * k ** 2) * (i - 1) + (k ** 2) * (j - 1) + d
|
676bd8c4e67466926b21542bad96c9864ca6da2c
| 37,261 |
import pickle
def load(input_filename):
"""unpickle an object from a file"""
with open(input_filename, "rb") as input_file:
res = pickle.load(input_file)
return res
|
7401114353e671fa52a035159dd564882b771bc3
| 37,266 |
def s3_object_exists(s3):
"""Provide a function to verify that a particular object exists in an
expected bucket."""
def check(bucket_name, key):
bucket_names = [
bucket_info["Name"] for bucket_info in s3.list_buckets()["Buckets"]
]
if not bucket_names:
return False
object_names = [
contents["Key"]
for contents in s3.list_objects(Bucket=bucket_name)["Contents"]
]
return key in object_names
return check
|
a0f549de4b2acc3fbbc4077d31f4feca9eec5cae
| 37,272 |
def binary(i, width):
"""
>>> binary(0, 5)
[0, 0, 0, 0, 0]
>>> binary(15, 4)
[1, 1, 1, 1]
>>> binary(14, 4)
[1, 1, 1, 0]
"""
bs = bin(i)[2:]
bs = ("0" * width + bs)[-width:]
b = [int(c) for c in bs]
return b
|
0a9ee440d14cc0fccc8b3d7c83c36582a4583749
| 37,280 |
def price_index(price_of_product_x, price_of_product_y):
"""Return the price index of product X over product Y.
Args:
price_of_product_x (float): Price of product X.
price_of_product_y (float): Price of product Y.
Returns:
price_index (float): Price of X / Price of Y
"""
return (price_of_product_x / price_of_product_y) * 100
|
e3f6eeec3395cf039e037eca97bca5e1b7eb55ca
| 37,281 |
def kelvin_to_level(kelvin):
"""Convert kelvin temperature to a USAI level."""
if kelvin < 2200:
return 0
if kelvin > 6000:
return 100.0
return (kelvin-2200)/(6000-2200) * 100
|
993cce9c7b85dea718a0eb21fd1e20a088a403f9
| 37,286 |
def hexinv(hexstring):
"""
Convenience function to calculate the inverse color (opposite on the color wheel).
e.g.: hexinv('#FF0000') = '#00FFFF'
Parameters
----------
hexstring : str
Hexadecimal string such as '#FF0000'
Returns
-------
str
Hexadecimal string such as '#00FFFF'
"""
if hexstring[0]=='#': hexstring=hexstring.lstrip('#')
hexcolor=int(hexstring,16)
color_comp=0xFFFFFF^hexcolor
hexcolor_comp="#%06X"%color_comp
return hexcolor_comp
|
a38f1bc031ddc7f15fa462c32de4af93fa42a6c3
| 37,290 |
def has_changes(statements):
""" See if a list of SQL statements has any lines that are not just comments """
for stmt in statements:
if not stmt.startswith('--') and not stmt.startswith('\n\n--'):
return True
return False
|
d357443e34a575af2cb1827064fa372668097895
| 37,296 |
def disconnect(signal, slot):
"""Disconnect a Qt signal from a slot.
This method augments Qt's Signal.disconnect():
* Return bool indicating whether disconnection was successful, rather than
raising an exception
* Attempt to disconnect prior versions of the slot when using pg.reload
"""
try:
signal.disconnect(slot)
return True
except (TypeError, RuntimeError):
return False
|
6aee43431c153a48111f21541448009496f27dd3
| 37,297 |
from typing import Dict
from typing import List
from typing import Optional
import queue
def find_node_distance(
i: int, vertex_connections: Dict[int, List[int]], target: Optional[int] = None
):
"""
Finds the distances from one node to all others.
Args:
i: starting vertex idx
vertex_connections: expects the vertices to be in a range starting from zero.
target:
Returns: distance between vertex i and target, if target is not None.
Otherwise the distance to every other node.
"""
# visited[n] for keeping track of visited node in BFS
visited = [False] * len(vertex_connections.keys())
# Initialize distances as 0
distance = [0] * len(vertex_connections.keys())
# queue to do BFS
queue_: queue.Queue = queue.Queue()
distance[i] = 0
queue_.put(i)
visited[i] = True
while not queue_.empty():
x = queue_.get()
for i in range(len(vertex_connections[x])):
if visited[vertex_connections[x][i]]:
continue
# update distance for i
distance[vertex_connections[x][i]] = distance[x] + 1
queue_.put(vertex_connections[x][i])
visited[vertex_connections[x][i]] = True
if target is not None:
return distance[target]
else:
return distance
|
38f68e536d1863e1f00d5b429ce1ba359ff65977
| 37,301 |
import _warnings
def discard_short_fixations(fixation_sequence, threshold=50):
"""
Deprecated in 0.4. Use `eyekit.fixation.FixationSequence.discard_short_fixations()`.
"""
_warnings.warn(
"eyekit.tools.discard_short_fixations() is deprecated, use FixationSequence.discard_short_fixations() instead",
FutureWarning,
)
return fixation_sequence.discard_short_fixations(threshold)
|
dfd09cc1db421e480e569d94caf479c4d496906b
| 37,304 |
def sort_notes_into_folders(notes, folders):
"""
sorts notes into a dictionary with the folder names as the key
:param notes:
A list of notes objects
:param folders:
a list of tuples with each tuple holding (folder_id, folder_name)
:return:
a dictionary with all the notes, sorted into their folders as well
as a all key which stores all the notes
Note 1: the values in the keys is a list of note objects that is correlated
to the folder name
Eg. {
'test_folder': [Note_obj_1, Note_obj_2, ...],
'all': [all_note_objs]
}
"""
# so that when the note gets appended to the dictionary, it will already be sorted
notes.sort(key=lambda note: note.last_edited, reverse=True)
folders = dict(folders)
notes_sorted_by_folders = {'All':[]}
# to store all the folder_names even when it has no notes
for folder_id in folders:
folder_name = folders[folder_id]
notes_sorted_by_folders.setdefault(folder_name, [])
for note in notes:
if note.parent_folder_id != 0: # note has a folder
folder_name = folders[str(note.parent_folder_id)]
notes_sorted_by_folders[folder_name].append(note)
notes_sorted_by_folders['All'].append(note)
return notes_sorted_by_folders
|
fb4d788e59b2796c6a01a0b9ad132f44bb1693c1
| 37,305 |
def get_url(post):
"""
Gets the url of the actual JPG file from the post object.
"""
url = post['data']['url']
if url.endswith == 'jpg':
return url
elif url.endswith == '/':
return url.strip('/') + '.jpg'
else:
return url + '.jpg'
|
f4a953a1602e80fff50e0e2730f4976ffb79ff78
| 37,308 |
def cleanString(s):
"""converts a string with leading and trailing and
intermittent whitespace into a string that is stripped
and has only single spaces between words
>>> cleanString('foo bar')
u'foo bar'
>>> cleanString('foo bar')
u'foo bar'
>>> cleanString('\\n foo \\n\\n bar ')
u'foo bar'
>>> cleanString('')
u''
"""
return ' '.join(map(lambda x: x.strip(), s.split()))
|
5a816b6bb0b93e869b2ce144cf8aaed305c0e9e8
| 37,310 |
def get_short_name(full_path):
"""
Returns the short name of an operation or service,
without the full path to it.
"""
return full_path.rsplit('/')[-1]
|
820a2e8444cecbd7f164563ecd8887dc122bd126
| 37,315 |
from typing import Any
from typing import OrderedDict
def getvalue(object: Any, key: Any) -> Any:
"""Access a dict or class instance attribute value in a unified way"""
if type(object) == dict or type(object) == OrderedDict:
# Dict or OrderedDict
return object.get(key)
else:
# Class instance
if hasattr(object, key):
return getattr(object, key)
else:
return None
|
e9e278c184771efa3505d266b6b7f2b50a8217f0
| 37,316 |
def parse_test_id(test_id):
"""
Parse a test ID into useful parts.
Takes a test ID and parses out useful parts of it::
> parse_test_id('foo.bar.baz.test_mod.MyTestClass.test_method')
{
'scope': 'foo',
'type': 'bar',
'accreditation': 'baz',
'file': 'test_mod',
'class': 'MyTestClass',
'method': 'test_method',
'class_path': 'foo.bar.baz.test_mod.MyTestClass.test_method'
}
Note: scope/type/accreditation might not be returned if your
path structure is different from the suggested one.
"""
parts = test_id.split('.')
full_path = len(parts) == 6
return {
'scope': full_path and parts[0],
'type': full_path and parts[1],
'accreditation': full_path and parts[2],
'file': parts[-3],
'class': parts[-2],
'method': parts[-1],
'class_path': '.'.join(parts[0:-1])
}
|
facd326fb5e31b72369fa1fc0dc17506ce128af1
| 37,322 |
def parse_cellType(file_name):
"""
Parsing file_name and extracting cell-type
input file must be EXPERIMENT_AREA_CELL-TYPE.bam so bamtools create
EXPERIMENT_AREA_CELL-TYPE.REF_chrN.PEAK
:param file_name:
:return: cell_type
"""
parse = file_name.split('.')[0].rsplit('_')
return parse[len(parse)-1]
|
872886d5f267452b105794e6befc9c88946350b0
| 37,325 |
def point_num_to_text(num_fita):
""" Transform point's order number into text """
num_fita = int(num_fita)
num_fita_str = str(num_fita)
if len(num_fita_str) == 1:
num_fita_txt = "00" + num_fita_str
elif len(num_fita_str) == 2:
num_fita_txt = "0" + num_fita_str
else:
num_fita_txt = num_fita_str
return num_fita_txt
|
5042a7c200c4987748f825213f08788b44b091c1
| 37,326 |
def merge_dictionaries(dictionaries):
""" Merge a sequence of dictionaries safely.
This function merges dictionaries together, but ensures that there are
not same keys which point to different values. That is,
merge_dictionaries({'alpha':True}, {'alpha':True}) is OK, but
merge_dictionaries({'alpha':True}, {'alpha':False}) will raise an
exception
"""
res = {}
for dct in dictionaries:
for (k, v) in dct.iteritems():
if k in res:
assert res[k] == v
res[k] = v
return res
|
b536f68d79e1e55d2d1fa8f2ed4e26c5452003ad
| 37,327 |
import asyncio
async def my_task(seconds):
"""
A task to do for a number of seconds
"""
print('This task is taking {} seconds to complete'.format(seconds))
await asyncio.sleep(seconds)
return 'task finished'
|
25decc9efbbd47a99cfe698a5565a689f9cc5a00
| 37,331 |
def hash_to_dir(hash):
"""
Transforms a given hash to a relative path and filename
ex: '002badb952000339cdcf1b61a3205b221766bf49' ->
'00/2badb952000339cdcf1b61a3205b221766bf49'
:param hash: the hash to split
:rtype: string
"""
return hash[:2]+'/'+hash[2:]
|
c3800e89da7ab6319076e45cbd051a84a55ff9f7
| 37,332 |
def ReadBBoxPredictFile(file_path):
"""
Args:
file path : str
File format:
image_name:<image_name.jpg>
(percentage) (abs)
<class_name>,<confidence>,<x1>,<y1>,<x2>,<y2>
...
end
example:
image_name:a.jpg
full,98%,19,30,37,50
...
end
Returns:
imgs_bbox : dict
{img_name1: [bbox1, bbox2, ...],
img_name2: [bbox1, bbox2, ...],
...
}
"""
f = open(file_path, 'r')
imgs_bbox = {}
img_bbox = []
imgs_name = []
for l in f:
if 'image_name:' in l or 'end' in l:
if len(img_bbox) != 0:
img_bbox.sort(key = lambda x: x['conf'], reverse=True)
imgs_bbox[l] = img_bbox.copy()
img_bbox = []
# record image name
img_name = l.split(':')[-1]
imgs_name.append(img_name)
else:
# Read bboxes!
l = l.split(',')
bbox = dict()
bbox['label'] = l[0]
bbox['conf'] = float(l[1].split('%')[0])
bbox['x1'] = int(l[2])
bbox['y1'] = int(l[3])
bbox['x2'] = int(l[4])
bbox['y2'] = int(l[5])
img_bbox.append(bbox)
return imgs_bbox
|
086865ca68bd3387f090ffd5cdedac659cd10bbf
| 37,333 |
def element_to_set_distance(v, s):
"""Returns shortest distance of some value to any element of a set."""
return min([abs(v-x) for x in s])
|
af77a125773312fd815cbad639b81601c427cf6b
| 37,338 |
import re
def find(seq, pattern, matcher=re.match):
"""
Search pattern in each element in sequence and return the first
element that matches the pattern. (Like re.search but for lists.)
"""
for elem in seq:
if matcher(pattern, elem) is not None:
return elem
|
956c640d52ab2161cf4cf8f5b270511fb514d4a8
| 37,339 |
def _get_shading(idf):
"""Get the shading surfaces from the IDF."""
shading_types = ["SHADING:ZONE:DETAILED", "SHADING:SITE:DETAILED"]
shading = []
for shading_type in shading_types:
shading.extend(idf.idfobjects[shading_type])
return shading
|
48a212035dae232265a1bb7979d11a0cd1b70d41
| 37,341 |
def compute_taw(fc, pwp, depth, fraction):
"""
Compute total available water
:param fc: Field capacity
:param pwp: permanent wilting point
:param depth: depth of soil in mm
:param fraction: float value
:return: a float value for TAW
"""
return depth * fraction * (fc - pwp)
|
d97a1e4cc918228fc7b0e457f1fac3ce2502f62e
| 37,346 |
def parse_list_arg(args):
"""
Parse a list of newline-delimited arguments, returning a list of strings with leading and
trailing whitespace stripped.
Parameters
----------
args : str
the arguments
Returns
-------
list[str]
the parsed arguments
"""
return [u.strip() for u in args.split("\n") if u.strip()]
|
5df3a59b4ced466e4107f494b8ed0e2fc6de917c
| 37,349 |
def after_n_iterations(n):
"""Return a stop criterion that stops after `n` iterations.
Internally, the ``n_iter`` field of the climin info dictionary is
inspected; if the value in there exceeds ``n`` by one, the criterion
returns ``True``.
Parameters
----------
n : int
Number of iterations to perform.
Returns
-------
f : function
Stopping criterion function.
Examples
--------
>>> S.after_n_iterations(10)({'n_iter': 10})
True
>>> S.after_n_iterations(10)({'n_iter': 5})
False
>>> S.after_n_iterations(10)({'n_iter': 9})
True
"""
def inner(info):
return info['n_iter'] >= n - 1
return inner
|
134da90fa5890055417a3f89d185f74b082906d1
| 37,350 |
def _encode_asn1_str(backend, data):
"""
Create an ASN1_OCTET_STRING from a Python byte string.
"""
s = backend._lib.ASN1_OCTET_STRING_new()
res = backend._lib.ASN1_OCTET_STRING_set(s, data, len(data))
backend.openssl_assert(res == 1)
return s
|
2b673060b2793c740b0111e8280fd92a9b291fec
| 37,353 |
import re
def ignore_template_file(filename):
"""
Ignore these files in template dir
"""
pattern = re.compile('^\..*|.*\.cache$|.*~$')
return pattern.match(filename)
|
0a9402e968cd3cc8a2ca7839c7d7100206ee663f
| 37,354 |
from typing import List
def dna_union(
start, end, audio_length: int, do_not_align_segments: List[dict],
) -> List[dict]:
""" Return the DNA list to include [start,end] and exclude do_not_align_segments
Given time range [start, end] to keep, and a list of do-not-align-segments to
exclude, calculate the equivalent do-not-align-segment list to keeping only
what's in [start, end], and removing both what's outside [start, end] and
do_not_align_segments.
Args:
start (Optional[int]): the start time of the range to keep, None meaning 0,
i.e., the beginning of the audio file
end (Optional[int]): the end of the range to keep, None meaning the end of the audio file
audio_length (int): the full length of the audio file
do_not_align_segments (List[dict]): the original list of DNA segments
Returns:
List[dict]:
the union of DNA lists [[0, start], [end, audio_length]] and do_not_align_segments
"""
current_list = do_not_align_segments
if start:
new_list = []
new_list.append({"begin": 0, "end": start})
for seg in current_list:
if seg["end"] <= start:
pass # dna segments that end before start are subsumed by [0,start)
elif seg["begin"] <= start:
start = seg["end"]
new_list[0]["end"] = start
else:
new_list.append(seg)
current_list = new_list
if end:
new_list = []
for seg in current_list:
if seg["begin"] >= end:
pass # dna segments after end are subsumed by [end, audio_length)
elif seg["end"] >= end:
end = seg["begin"]
else:
new_list.append(seg)
new_list.append({"begin": end, "end": audio_length})
current_list = new_list
return current_list
|
efabb0391187500cb157bae20b2720028676c50b
| 37,359 |
def dict_updater(source: dict, dest: dict) -> dict:
"""
Updates source dict with target dict values creating
new dict and returning it
"""
target = dest.copy()
for k, v in source.items():
if isinstance(v, dict) and k in dest:
target[k] = dict_updater(v, dest[k])
else:
target[k] = v
return target
|
cf2aa4aa238b4d7a8057fc8c29fd6755eaf02ff4
| 37,361 |
def function_star(list):
"""Call a function (first item in list) with a list of arguments.
The * will unpack list[1:] to use in the actual function
"""
fn = list.pop(0)
return fn(*list)
|
5ff784703b9238bf5d99dd4a0e1313ed8f97df88
| 37,362 |
def _pdf_url_to_filename(url: str) -> str:
"""
Convert a PDF URL like 'https://www.mass.gov/doc/weekly-inmate-count-4202020/download'
into a filename like 'weekly-inmate-count-4202020.pdf'
"""
name_part = url[25:-9]
return f"{name_part}.pdf"
|
45d4e6608813161227a19bbc29b611d6568c8d23
| 37,364 |
def get_freq_weights(label_freq):
"""
Goal is to give more weight to the classes with less samples
so as to match the ones with the higher frequencies. We achieve this by
dividing the total frequency by the freq of each label to calculate its weight.
"""
total_size = 0
for lf in label_freq.values():
total_size += lf
weighted_slots = {label: (total_size / (len(label_freq) * freq)) for label, freq in label_freq.items()}
return weighted_slots
|
7e0275365eb014806a6cf7c8f69415f243301d35
| 37,365 |
def subtract_number(x, y):
"""This function will subtract 2 numbers"""
return x - y
|
32868ec101c36f5fb7267361a6da4eb017e38a47
| 37,367 |
def nearest(array, pivot):
"""find the nearest value to a given one
Args:
array (np.array): sorted array with values
pivot: value to find
Returns:
value with smallest distance
"""
return min(array, key=lambda x: abs(x - pivot))
|
75d468613a766425346ae980cef3ab0bd19d5e1c
| 37,373 |
import logging
def get_builder_log(name):
"""Get a logging object, in the right place in the
hierarchy, for a given builder.
:param name: Builder name, e.g. 'my_builder'
:type name: str
:returns: New logger
:rtype: logging.Logger
"""
return logging.getLogger("mg.builders." + name)
|
2a158c3cff310f005fd42f8b9ee9ad61d68e08be
| 37,374 |
def replace_redundant_grammemes(tag_str):
""" Replace 'loc1', 'gen1' and 'acc1' grammemes in ``tag_str`` """
return tag_str.replace('loc1', 'loct').replace('gen1', 'gent').replace('acc1', 'accs')
|
5469efb333a8c0174d4696d6559442f77a1fb6da
| 37,376 |
def seating_rule(max_neighbours):
"""
If a seat is empty (L) and there are no occupied seats adjacent to it,
the seat becomes occupied.
If a seat is occupied (#) and max_neighbours or more seats adjacent to it
are also occupied, the seat becomes empty.
Otherwise, the seat's state does not change.
Floor (.) never changes; seats don't move, and nobody sits on the floor.
"""
def rule(state, neighbours):
occupied_neighbours = sum(n == '#' for n in neighbours)
if state == 'L' and not occupied_neighbours:
return '#'
if state == '#' and occupied_neighbours >= max_neighbours:
return 'L'
return state
return rule
|
7011b060d8ccfb378ccf15225af081ae09454e7f
| 37,380 |
def crossProduct(p1, p2, p3):
"""
Cross product implementation: (P2 - P1) X (P3 - P2)
:param p1: Point #1
:param p2: Point #2
:param p3: Point #3
:return: Cross product
"""
v1 = [p2[0] - p1[0], p2[1] - p1[1]]
v2 = [p3[0] - p2[0], p3[1] - p2[1]]
return v1[0] * v2[1] - v1[1] * v2[0]
|
4faf8f1d63192913c6a3abf726e343e377e9622a
| 37,383 |
from datetime import datetime
def date_passed(value):
""" Checks if the embargoded date is greater than the current date
args:
value (str): Date in the format yyy-mm-dd that needs to be checked
returns:
(bool): If the given date is less than the current date or not
"""
value_date = datetime.strptime(value, "%Y-%m-%d")
current_date = datetime.now()
return value_date.date() < current_date.date()
|
fa3b3a47265dd15c6a9a6ba1820a3e7e61bbe945
| 37,385 |
from typing import Dict
from typing import Any
def value_from_dot_notation(data: Dict[str, Any], path: str) -> Any:
"""Take a dictionary `data` and get keys by the `path` parameter,
this path parameter will use the dots (.) as delimiter.
"""
for key in path.split('.'):
data = data[key]
return data
|
847f08c3132d17da9923d5a78a06f6f831be34c8
| 37,389 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.