repo_name
stringlengths
7
111
__id__
int64
16.6k
19,705B
blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
151
content_id
stringlengths
40
40
detected_licenses
list
license_type
stringclasses
2 values
repo_url
stringlengths
26
130
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
42
visit_date
timestamp[ns]
revision_date
timestamp[ns]
committer_date
timestamp[ns]
github_id
int64
14.6k
687M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
12 values
gha_fork
bool
2 classes
gha_event_created_at
timestamp[ns]
gha_created_at
timestamp[ns]
gha_updated_at
timestamp[ns]
gha_pushed_at
timestamp[ns]
gha_size
int64
0
10.2M
gha_stargazers_count
int32
0
178k
gha_forks_count
int32
0
88.9k
gha_open_issues_count
int32
0
2.72k
gha_language
stringlengths
1
16
gha_archived
bool
1 class
gha_disabled
bool
1 class
content
stringlengths
10
2.95M
src_encoding
stringclasses
5 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
10
2.95M
extension
stringclasses
19 values
num_repo_files
int64
1
202k
filename
stringlengths
4
112
num_lang_files
int64
1
202k
alphanum_fraction
float64
0.26
0.89
alpha_fraction
float64
0.2
0.89
hex_fraction
float64
0
0.09
num_lines
int32
1
93.6k
avg_line_length
float64
4.57
103
max_line_length
int64
7
931
conleydg/kanban-django
6,201,932,810,431
ae73a922817dc4e3684e3ae3b1712b5456f621c3
8c1a4b848a4262da55b9ae7290bbd4f76acfca99
/tasks/views.py
160e0ab4bdcc710fccbeb0d89c050fe2feee152f
[]
no_license
https://github.com/conleydg/kanban-django
f96ac69c343723e0730d303ab08e959304d4a0cc
40cf1f27ae7df894fa0652c232be52b2c37669f4
refs/heads/master
2016-09-12T09:32:35.842397
2016-05-17T00:17:27
2016-05-17T00:17:27
58,590,809
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.contrib.auth.models import User, Group from rest_framework import viewsets, permissions from .models import Task from .serializers import TaskSerializer, UserSerializer, GroupSerializer from django.contrib.auth.decorators import login_required from django.contrib.auth.models import Permission, User from django.shortcuts import render def index(request): return render(request, 'tasks/index.html') class TaskViewSet(viewsets.ModelViewSet): # queryset = Task.objects.all().order_by('priority') serializer_class = TaskSerializer def get_queryset(self): user = self.request.user qs = Task.objects.filter(auth_u_id=user.id) return qs.order_by('priority') # return Task.objects.all().order_by('priority') # return self.request.user.task.all() # user = self.request.user # return Task.objects.filter(auth_u_id=user.auth_u_id) # permission_classes = (permissions.IsAuthenticated) def perform_create(self, serializer): serializer.save(auth_u=self.request.user) # def users_task(self): # queryset = Task.object.all() # # return class UserViewSet(viewsets.ModelViewSet): queryset = User.objects.all().order_by('-date_joined') serializer_class = UserSerializer class GroupViewSet(viewsets.ModelViewSet): queryset = Group.objects.all() serializer_class = GroupSerializer
UTF-8
Python
false
false
1,409
py
7
views.py
6
0.713272
0.713272
0
45
30.311111
72
DanielRJohansen/DumbLesion
14,834,817,073,761
ae25db9e1bf3d5a470c70c209e84494757eec43c
26d6af68056ef62dbf8e543d5b073f51d0ef2050
/Toolbox.py
26e63514e4685fecb33b6847c7548cadd5809316
[]
no_license
https://github.com/DanielRJohansen/DumbLesion
c7992249aba1c6e26767bf7530564584e72c7e51
2cb2007e215f593ad216d1d36055328ede8eabec
refs/heads/master
2022-11-24T23:29:55.279664
2020-07-26T13:09:58
2020-07-26T13:09:58
272,507,533
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from glob import glob import os import torch import cv2 import numpy as np import csv import Constants def get_subs(folder): return glob(folder + r"\*") def min_images(folder): fewest = 9999 bins = [0]*1000 for sf in get_subs(folder): num_images = len(get_subs(sf)) bins[num_images] += 1 if num_images < fewest: fewest = num_images print(sf, fewest) print("Fewest images in all folders:", fewest) print(bins) def delete_files(folder, f_format=".csv", suffix_len=4): print("Removing {} files from {}".format(f_format, folder)) for sf in get_subs(folder): for file in get_subs(sf): if file[-suffix_len:] == f_format: os.remove(file) def save_tensor(tensor, file_name): torch.save(tensor, file_name + ".pt") def highest_lowest(path): im = torch.load(path) print(path) print("Lowest: ", torch.min(im)) print("Highest ", torch.max(im)) def getFolderAndCenter(string): i = len(string)-1 while True: if string[i] == '_': break i -= 1 folder = string[:i] center = string[i+1:] return folder, center def makeSectionList(folder, center): ims = get_subs(folder) i = 0 while i < len(ims): if ims[i] == center: break i += 1 section = ims[i-3:i+4] return section from matplotlib import pyplot as plt def loadSection(section_paths, im_size): section = [] for path in section_paths: im = cv2.imread(path, cv2.CV_16U) im = cv2.resize(im, (im_size, im_size), interpolation=cv2.INTER_CUBIC) section.append(np.asarray(im)) section = torch.tensor(section, dtype=torch.float32) section = section.type(torch.float32) section = torch.sub(section, 32768) im = section.numpy() hist, bins = np.histogram(im.ravel(), 400, [-1000, 3000]) # Use hist return section, hist def saveSectionAndHist(section, hist, folder, name): name = name[:-4] name = os.path.join(folder, name) if not os.path.isdir(folder): os.makedirs(folder) hist = torch.tensor(hist, dtype=torch.float32) torch.save(section, name + "_section.pt") torch.save(hist, name + "_hist.pt") def makeAOC(src, dst, data_file, im_size): with open(data_file) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') count = 0 for row in csv_reader: if count == 0: count += 1 continue sf, center = getFolderAndCenter(row[0]) print(sf) sf_path = os.path.join(src, sf) center_path = os.path.join(src, sf, center) dst_path = os.path.join(dst, sf) section = makeSectionList(sf_path, center_path) if len(section) != 7: continue section, hist = loadSection(section, im_size=im_size) saveSectionAndHist(section, hist, dst_path, center) import ast def toList(string): list = ast.literal_eval(string) return list def drawBB(im_path, AOC_label): pass def getRelativeBoxPosition(row, num_areas): box = toList(row[6]) size = toList(row[13])[0] box = np.multiply(box, num_areas/size) box = np.round(box) return box def makeAOCLabel(box, num_areas): label = np.zeros((num_areas, num_areas), dtype=np.float32) for y in range(num_areas): for x in range(num_areas): if y >= box[1] and y <= box[3] and x >= box[0] and x <= box[2]: label[y][x] = 1 return torch.tensor(label) def makeAOCLabels(dst, data_file, num_areas): with open(data_file) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') count = 0 for row in csv_reader: if count == 0: count += 1 continue sf, center = getFolderAndCenter(row[0]) print(sf) if elementExists(dst, sf, center[:-4]): box = getRelativeBoxPosition(row, num_areas) label = makeAOCLabel(box, num_areas) name = os.path.join(dst, sf, center[:-4]) torch.save(label, name + "_AOCLabel.pt") def cleanElement(string): index = 0 while index < len(string): if string[index] == '_': break index += 1 return string[:index] def elementExists(f, sf, name): if not os.path.isdir(os.path.join(f, sf)): return False elemsinfolder = os.listdir(os.path.join(f, sf)) elemsinfolder = list(set(list(map(cleanElement, elemsinfolder)))) # Stackoverflow, obviously.. for e in elemsinfolder: if name == e: return True return False def makeZLabels(dst, data_file): with open(data_file) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') count = 0 for row in csv_reader: if count == 0: count += 1 continue sf, center = getFolderAndCenter(row[0]) print(sf) name = center[:-4] path = os.path.join(dst, sf, name) if elementExists(dst, sf, name): z = torch.tensor(toList(row[8])[2], dtype=torch.float32) torch.save(z, path + "_zlabel.pt") def visualizeLabel(im_path, label_path): label = torch.load(label_path) im = cv2.imread(im_path, cv2.CV_16U) print(im.shape) label = torch.add(label, 1) label = torch.div(label, 2).numpy() #label = label.astype(np.uint16) label = cv2.resize(label, (512, 512)) im = cv2.normalize(im, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F) im = cv2.multiply(im, label) cv2.imshow("result", im) cv2.waitKey() def visualizePrediction(inputs, predictions): for i in range(Constants.section_depth): print(predictions[i]) input = inputs[i][0][3].numpy() prediction = predictions[i] input = cv2.resize(input, (512, 512)) input = cv2.normalize(input, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F) prediction = torch.add(prediction, 1.) prediction = torch.div(prediction, 3.).cpu().detach().numpy() prediction = cv2.resize(prediction, (512, 512)) im = cv2.multiply(input, prediction) cv2.imshow("Prediction", im) cv2.waitKey() def printJpegs(): #No need, all is png :) for sf in get_subs(r"D:\DumbLesion\NIH_scans\Images_png"): for im in get_subs(sf): if im[-3:] != "png": print(im)
UTF-8
Python
false
false
6,626
py
14
Toolbox.py
13
0.57712
0.556746
0
228
28.065789
104
BIGKINGS10/demos
3,659,312,141,879
5f357a8c0700d350c7afc723fa8e52c66258ce93
725c9ea87a1561daa00c104cdc056fc92cdaba18
/DataAnalyticsRobot.py
60bc29513192926c7efdee018cc76ee74671dcc7
[]
no_license
https://github.com/BIGKINGS10/demos
4f888d2b386a28d3968585a0e992257e3b82e49f
cadaa51cfc7ae2789fa9707843c82817d0883a1c
refs/heads/main
2023-04-08T21:46:03.198388
2021-04-02T17:28:38
2021-04-02T17:28:38
343,210,180
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import streamlit as st #import plotly_express as px import pandas as pd import numpy as np #title of the app st.title("Data Analytics Robot") #Add a sidebar st.sidebar.subheader("Visualization Settings") #setup file upload uploaded_file = st.sidebar.file_uploader(label="Upload your CSV or Excel File.", type=['csv','xlsx']) global df if uploaded_file is not None: print(uploaded_file) print("hello") try: df = pd.read_csv(uploaded_file) except Exception as e: print(e) df = pd.read_excel(uploaded_file) try: st.write(df) col= list(df.columns.values) #col= list(df.select_dtypes.('number').columns) option = st.sidebar.selectbox("Choose a field",(col)) #st.header(option) #st.write(df.isnull().sum()) st.write(df[col].corr()) if st.sidebar.checkbox('Show dataframe'): st.write("This is for testing the checkbox") except Exception as e: print(e) st.write("Please upload file to the application.")
UTF-8
Python
false
false
947
py
1
DataAnalyticsRobot.py
1
0.703273
0.703273
0
45
20
101
dhenry314/gleanomatic
16,286,515,999,371
2453a71d7b6256da31f11cab0ca199f1200478ef
3fb61cb2da8cad71b214a7faadffc27bcd1a5315
/gleanomatic/scripts/deleteByNamespace.py
cb4e4edfabe204bb7ab67933c48726b32d43db76
[]
no_license
https://github.com/dhenry314/gleanomatic
4ed0ed80836e4aa622392ec804e6ca2a95336a7b
9c9c8ab9a6da83d4a1fc429289c7450bf606005b
refs/heads/master
2021-07-06T02:55:43.571032
2019-04-15T18:21:12
2019-04-15T18:21:12
148,791,398
0
1
null
false
2018-10-04T21:35:10
2018-09-14T13:19:57
2018-10-04T19:40:00
2018-10-04T21:35:10
40
0
1
0
Python
false
null
import sys import json from datetime import datetime from gleanomatic import Utils import gleanomatic.gleanomaticLogger as gl from gleanomatic.RSRestClient import RSRestClient if len(sys.argv) < 2: print("USAGE: deleteByNamespace.py {sourceNamespace}/{setNamespace}\n") exit() localhost = "http://localhost:81/" argParts = sys.argv[1].split("/") sourceNamespace = argParts[0] setNamespace = argParts[1] now = datetime.now() batchTag = str(now.year)+str(now.month).zfill(2)+str(now.day).zfill(2)+ "_deletion" logger = gl.gleanomaticLogger(sourceNamespace,setNamespace,batchTag) rc = RSRestClient('http://resourcesync',logger) ResURL = 'http://resourcesync/RS/' + str(sourceNamespace) + "/" + str(setNamespace) + "/resourcelistindex.json" ResListContents = Utils.getContent(ResURL) resList = json.loads(ResListContents) for res in resList['sitemapindex']['sitemap']: if 'rs:ln' in res: if '@type' in res['rs:ln']: if str(res['rs:ln']['@type']).lower() == 'application/json': subResListURL = res['rs:ln']['@href'] subResListURL = subResListURL.replace(localhost,'http://resourcesync/') #DEBUG print(subResListURL) subResContents = Utils.getContent(subResListURL) subResList = json.loads(subResContents) for url in subResList['urlset']['url']: if 'rs:ln' in url: if '/resource/' in url['rs:ln']['href']: resPath = url['rs:ln']['href'] uri = 'http://resourcesync' + str(resPath) rc.deleteResource(uri) print("deleted: " + str(uri))
UTF-8
Python
false
false
1,744
py
46
deleteByNamespace.py
38
0.603211
0.598624
0
46
36.913043
111
zwc662/CARLA
11,381,663,353,526
e6b4acaee539ede53d6f19d4f04586718b3071f0
3178c199a3a6f5805fc45c8791204259bcb39125
/PythonAPI/synchronous_mode/synchronous_mode_client_control.py
ae9abb39fe68210649993c9cbc145dd7b6b9a213
[]
no_license
https://github.com/zwc662/CARLA
e3550d6fa2b07036c69d10a9f1642cc975ce5e2e
ec32181c67417c56d93d3d7afd22946c50e78a6c
refs/heads/master
2021-07-21T14:12:52.241222
2020-08-21T01:20:37
2020-08-21T01:20:37
207,066,345
1
1
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python # Copyright (c) 2019 Computer Vision Center (CVC) at the Universitat Autonoma de # Barcelona (UAB). # # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. import glob import os import sys import pickle try: sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % ( sys.version_info.major, sys.version_info.minor, 'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0]) except IndexError: pass import carla import random try: import pygame except ImportError: raise RuntimeError('cannot import pygame, make sure pygame package is installed') try: import numpy as np except ImportError: raise RuntimeError('cannot import numpy, make sure numpy package is installed') try: import queue except ImportError: import Queue as queue #sys.path.insert(0,'/home/ruihan/UnrealEngine_4.22/carla/Dist/CARLA_0.9.5-428-g0ce908db/LinuxNoEditor/PythonAPI/carla') # print(sys.path) from model_predicative_control_new import MPCController from agents.navigation.my_basic_agent import BasicAgent from ilqr.ilqr import ILQRController from synchronous_mode_client_control_test_NN import spawn_trolley class CarlaSyncMode(object): """ Context manager to synchronize output from different sensors. Synchronous mode is enabled as long as we are inside this context with CarlaSyncMode(world, sensors) as sync_mode: while True: data = sync_mode.tick(timeout=1.0) """ def __init__(self, world, *sensors, **kwargs): self.world = world self.sensors = sensors self.frame = None self.delta_seconds = 1.0 / kwargs.get('fps', 20) self._queues = [] self._settings = None def __enter__(self): self._settings = self.world.get_settings() self.frame = self.world.apply_settings(carla.WorldSettings( no_rendering_mode=False, synchronous_mode=True, fixed_delta_seconds=self.delta_seconds)) def make_queue(register_event): q = queue.Queue() register_event(q.put) self._queues.append(q) make_queue(self.world.on_tick) for sensor in self.sensors: make_queue(sensor.listen) return self def tick(self, timeout, vehicle=None, control=None): self.frame = self.world.tick() data = [self._retrieve_data(q, timeout, vehicle, control) for q in self._queues] assert all(x.frame == self.frame for x in data) return data def __exit__(self, *args, **kwargs): self.world.apply_settings(self._settings) def _retrieve_data(self, sensor_queue, timeout, vehicle=None, control=None): # counter = 0 while True: data = sensor_queue.get(timeout=timeout) # if vehicle is not None: # print(counter, "control", control.throttle, control.steer) # vehicle.apply_control(control) # counter += 1 if data.frame == self.frame: return data def draw_image(surface, image, blend=False): array = np.frombuffer(image.raw_data, dtype=np.dtype("uint8")) array = np.reshape(array, (image.height, image.width, 4)) array = array[:, :, :3] array = array[:, :, ::-1] image_surface = pygame.surfarray.make_surface(array.swapaxes(0, 1)) if blend: image_surface.set_alpha(100) surface.blit(image_surface, (0, 0)) def get_font(): fonts = [x for x in pygame.font.get_fonts()] default_font = 'ubuntumono' font = default_font if default_font in fonts else fonts[0] font = pygame.font.match_font(font) return pygame.font.Font(font, 14) def should_quit(): for event in pygame.event.get(): if event.type == pygame.QUIT: return True elif event.type == pygame.KEYUP: if event.key == pygame.K_ESCAPE: return True return False # ================================= # RH: customized methods # =============================== class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self def get_mpc_control(world, vehicle, m, controller, actor_list, blueprint_library): # TODO: add more params in the dict, # which can be automatically converted (to replace args) params_dict = {'target_speed': 10} params = AttrDict(params_dict) # get current "measurements" t = vehicle.get_transform() v = vehicle.get_velocity() c = vehicle.get_control() measurements_dict = {"v": v, "t": t} # TODO: create a dict that return the world&vehicle data similar as 0.8 API measurements = AttrDict(measurements_dict) cur_wp = m.get_waypoint(t.location) local_interval = 0.5 horizon = 30 # initiate a series of waypoints future_wps = [] future_wps.append(cur_wp) for i in range(horizon): # TODO: check whether "next" works here future_wps.append(random.choice(future_wps[-1].next(local_interval))) # # save data for testing # print("future_wps") # print(future_wps) # print("measurements") # print(measurements) # data = [] # for waypoint in future_wps: # data.append({"waypoint": transform_to_arr(waypoint.transform)}) # actor_list.append(spawn_trolley(world, blueprint_library, x=waypoint.transform.location.x, y=waypoint.transform.location.y)) # print("transform") # data.append({"measurements.t": transform_to_arr(measurements.t)}) # print(transform_to_arr(measurements.t)) # print("velocity") # data.append({"measurements.v": np.array([measurements.v.x, measurements.v.y, measurements.v.z])}) # print(np.array([measurements.v.x, measurements.v.y, measurements.v.z])) # print("full data") # print(data) # for MPCController # one_log_dict = controller.control(future_wps, measurements) # for ILQRController # Build target waypoints array future_wps_np = [] for waypoint in list(future_wps)[:controller.steps_ahead]: future_wps_np.append(transform_to_arr(waypoint.transform)[0:2]) future_wps_np = np.array(future_wps_np) xs, us = controller.control(future_wps_np, measurements) # print("one_log_dict in run_carla_client")x # print(one_log_dict) control = carla.VehicleControl() # control.throttle, control.steer = one_log_dict['throttle'], one_log_dict['steer'] control.throttle, control.steer = us[0][0], us[0][1] return control def reach_destiny(destiny_loc, vehicle): veh_loc = vehicle.get_transform().location dist_vec = np.array([destiny_loc.x-veh_loc.x, destiny_loc.y-veh_loc.y]) print("dist", dist_vec, np.linalg.norm(dist_vec)) return np.linalg.norm(dist_vec) def transform_to_arr(tf): return np.array([tf.location.x, tf.location.y, tf.location.z, tf.rotation.pitch, tf.rotation.yaw, tf.rotation.roll]) # =============================== # main function # =============================== def main(): pygame.init() actor_list = [] display = pygame.display.set_mode( (800, 600), pygame.HWSURFACE | pygame.DOUBLEBUF) font = get_font() clock = pygame.time.Clock() client = carla.Client('localhost', 2000) client.set_timeout(2.0) world = client.get_world() # actor_list = world.get_actors() # can get actors like traffic lights, stop signs, and spectator # set a clear weather # weather = carla.WeatherParameters(cloudyness=0.0, precipitation=0.0, sun_altitude_angle=90.0) # world.set_weather(weather) world.set_weather(carla.WeatherParameters.ClearNoon) try: m = world.get_map() spawn_points = m.get_spawn_points() print("total number of spawn_points", len(spawn_points)) destiny = carla.Location(x=-2.419357, y=204.005676, z=1.843104) start_pose = carla.Transform(location=carla.Location(x=-6.446170, y=-79.055023)) wps_file = "wps_at_plant_rotary_01.pt" load_wps = pickle.load(open(wps_file, 'rb')) print(load_wps) recovered_wps = [] for wp in load_wps: recovered_wps.append(m.get_waypoint(carla.Location(x=wp[0], y=wp[1]))) print("recovered_wps") print(recovered_wps) start_pose = recovered_wps[0].transform print("start_pose", start_pose) # start_pose = random.choice(spawn_points) print("car start_pose", start_pose.location) waypoint = m.get_waypoint(start_pose.location) blueprint_library = world.get_blueprint_library() # set a constant vehicle vehicle_bp = random.choice(blueprint_library.filter('vehicle.lincoln.mkz2017')) vehicle = world.spawn_actor(vehicle_bp, start_pose) actor_list.append(vehicle) vehicle.set_simulate_physics(True) camera_rgb = world.spawn_actor( blueprint_library.find('sensor.camera.rgb'), carla.Transform(carla.Location(x=-5.5, z=2.8), carla.Rotation(pitch=-15)), attach_to=vehicle) actor_list.append(camera_rgb) camera_semseg = world.spawn_actor( blueprint_library.find('sensor.camera.semantic_segmentation'), carla.Transform(carla.Location(x=-5.5, z=2.8), carla.Rotation(pitch=-15)), attach_to=vehicle) actor_list.append(camera_semseg) vehicle_agent = BasicAgent(vehicle, target_speed=30) destiny = spawn_points[94] destiny_loc = destiny.location vehicle_agent.set_destination((destiny_loc.x, destiny_loc.y, destiny_loc.z)) target_speed = 10 # controller = MPCController(target_speed) controller = ILQRController(target_speed, steps_ahead=25) # try to spawn a static actor at destination # for attr in blueprint: # if attr.is_modifiable: # blueprint.set_attribute(attr.id, random.choice(attr.recommended_values)) # trolley_bp = random.choice(blueprint_library.filter('static.prop.shoppingtrolley')) # vehicle.toyota.prius static.prop.shoppingtrolley # trolley_tf = carla.Transform(location=carla.Location(x=destiny_loc.x, y=destiny_loc.y, z=5)) # print("trolley_bp", trolley_bp, trolley_tf.location) # trolley = world.spawn_actor(trolley_bp, trolley_tf) # actor_list.append(trolley) # trolley.set_simulate_physics(False) # pt_loc = carla.Location(x=destiny_loc.x, y=destiny_loc.y, z=0.5) # print("debug", world.debug) # world.debug.draw_string(pt_loc, 'O') # world.debug.draw_point(pt_loc, 100) # vehicle.set_autopilot(True) # TODO: store this as pts_2D DF # distance = 1 # waypoints = m.generate_waypoints(distance) # print("waypoints length", len(waypoints)) # for wp in waypoints: # print("waypoint", wp.transform.location) # world.debug.draw_string(wp.transform.location, 'X', draw_shadow=False, # color=carla.Color(r=255, g=0, b=0), life_time=120.0, # persistent_lines=True) # Create a synchronous mode context. with CarlaSyncMode(world, camera_rgb, camera_semseg, fps=30) as sync_mode: while True: if should_quit(): return if reach_destiny(destiny_loc, vehicle)<0: return clock.tick(30) # Choose the next waypoint and update the car location. waypoint = random.choice(waypoint.next(1.5)) # vehicle.set_transform(waypoint.transform) # TODO: instead of set_transform, pass the waypoint info to controller and use the controller output to drive the vehicle # TODO: the semseg is useful for later perception module # BasicAgent use PD control # control = vehicle_agent.run_step(debug=True) control = get_mpc_control(world, vehicle, m, controller, actor_list, blueprint_library) # put controlller outside syncmode # control = carla.VehicleControl(throttle=1, steer=0) print("control", control.throttle, control.steer) vehicle.apply_control(control) # Advance the simulation and wait for the data. snapshot, image_rgb, image_semseg = sync_mode.tick(timeout=2.0, vehicle=vehicle, control=control) image_semseg.convert(carla.ColorConverter.CityScapesPalette) fps = round(1.0 / snapshot.timestamp.delta_seconds) # Draw the display. draw_image(display, image_rgb) draw_image(display, image_semseg, blend=True) display.blit( font.render('% 5d FPS (real)' % clock.get_fps(), True, (255, 255, 255)), (8, 10)) display.blit( font.render('% 5d FPS (simulated)' % fps, True, (255, 255, 255)), (8, 28)) pygame.display.flip() # raise ValueError("stop here") print('destroying local actors.') for actor in actor_list: actor.destroy() finally: print('destroying actors.') for actor in actor_list: actor.destroy() pygame.quit() print('done.') if __name__ == '__main__': try: main() except KeyboardInterrupt: print('\nCancelled by user. Bye!')
UTF-8
Python
false
false
13,751
py
331
synchronous_mode_client_control.py
22
0.610428
0.595593
0
385
34.716883
144
edublancas/pipeline
1,666,447,328,613
6ba66db85ba97ce3ae4d0bfb9983e2d86d6af46c
98a936d5372294ed892a9bf9cf98646c72af515c
/pipeline/lab/FrozenJSON.py
4982ba1a31619c7f158f6658a42fa7939e4ac706
[ "MIT" ]
permissive
https://github.com/edublancas/pipeline
f6d22ad07b134be98c139d1de6ca7d8321072ba8
5bef04d77fdadc1dc4ec22b9b346f0a062cca1ce
refs/heads/master
2021-05-15T01:09:50.072378
2016-12-29T05:45:48
2016-12-29T05:45:48
59,692,708
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from collections import Mapping, MutableSequence import keyword class FrozenJSON(object): """A read-only facade for navigating a JSON-like object using attribute notation. Based on FrozenJSON from 'Fluent Python' """ def __new__(cls, arg): if isinstance(arg, Mapping): return super(FrozenJSON, cls).__new__(cls) elif isinstance(arg, MutableSequence): return [cls(item) for item in arg] else: return arg def __init__(self, mapping): self._data = {} for key, value in mapping.items(): if keyword.iskeyword(key): key += '_' self._data[key] = value def __getattr__(self, name): if hasattr(self._data, name): return getattr(self._data, name) else: return FrozenJSON(self._data[name]) def __dir__(self): return self._data.keys() def __getitem__(self, key): return self._data[key]
UTF-8
Python
false
false
994
py
27
FrozenJSON.py
24
0.561368
0.561368
0
35
27.4
59
lexuanthien/python-django-basic
8,306,466,766,573
91bdd117fc2f71cea5dff51d7ebdc8c2677b5b26
94cc1a151b1a6e72522407a3241647182ce1528f
/issue/serializers.py
26ec48976b27f88ec64eb8efa6ba47d90182269f
[]
no_license
https://github.com/lexuanthien/python-django-basic
5a155d722cd206f4bd09024ff0dea607bfff1462
b56d4b72b8c1529679751e93b48eb846ff8e48a4
refs/heads/master
2023-06-11T06:10:40.946499
2021-06-28T08:39:06
2021-06-28T08:39:06
380,962,866
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from rest_framework import serializers from .models import Task class TaskSerializer(serializers.ModelSerializer): title = serializers.CharField() content = serializers.CharField(max_length=10) type = serializers.IntegerField(default=1) class Meta: model = Task fields = ['title', 'content', 'type', 'created_at', 'updated_at'] # class TaskSerializer(serializers.Serializer): # title = serializers.CharField() # content = serializers.CharField(max_length=10) # type = serializers.IntegerField(default=1)
UTF-8
Python
false
false
551
py
17
serializers.py
9
0.713249
0.702359
0
17
31.470588
73
j-towns/ssm-code
3,040,836,885,446
0fc3fb560e605fa069f23d10294c30767fb5b30a
d0772e49724cb282e8435784053cbdd6cf05ae67
/generate_model_plot.py
c439166b2b9101e29aeecf376e884e25f247a1fb
[ "MIT" ]
permissive
https://github.com/j-towns/ssm-code
6bd4ad1a89483b029a6b8dd53eb1bfc816b317ef
4255ac0f7801779e3511a8d9c64b9ee846c26e21
refs/heads/master
2023-03-27T10:15:37.360335
2021-03-19T11:13:30
2021-03-19T11:13:30
349,015,928
9
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Based on examples/hmm_em.py, from the Autograd repository. from __future__ import division, print_function from dataclasses import replace import autograd.numpy as np import autograd.numpy.random as npr from autograd.scipy.special import logsumexp from autograd import value_and_grad as vgrad from functools import partial from os.path import join, dirname import string import craystack as cs import hmm_codec def EM(init_params, data, callback=None): def EM_update(params): natural_params = list(map(np.log, params)) # E step: loglike, E_stats = vgrad(log_partition_function)(natural_params, data) if callback: callback(loglike, params) return list(map(normalize, E_stats)) # M step def fixed_point(f, x0, max_iter=50): x1 = f(x0) # while different(x0, x1): # x0, x1 = x1, f(x1) for _ in range(max_iter): x0, x1 = x1, f(x1) return x1 # def different(params1, params2): # allclose = partial(np.allclose, atol=5e-2, rtol=5e-2) # return not all(map(allclose, params1, params2)) return fixed_point(EM_update, init_params) def normalize(a): def replace_zeros(a): return np.where(a > 0., a, 1.) return a / replace_zeros(a.sum(-1, keepdims=True)) def log_partition_function(natural_params, data): if isinstance(data, list): return sum(map(partial(log_partition_function, natural_params), data)) log_pi, log_A, log_B = natural_params log_alpha = log_pi for y in data: log_alpha = logsumexp(log_alpha[:,None] + log_A, axis=0) + log_B[:,y] return logsumexp(log_alpha) def initialize_hmm_parameters(num_states, num_outputs): init_pi = normalize(npr.rand(num_states)) init_A = normalize(npr.rand(num_states, num_states)) init_B = normalize(npr.rand(num_states, num_outputs)) return init_pi, init_A, init_B def build_dataset(filename, max_lines=-1): """Loads a text file, and turns each line into an encoded sequence.""" encodings = dict(list(map(reversed, enumerate(string.printable)))) digitize = lambda char: (encodings[char] if char in encodings else len(encodings)) encode_line = lambda line: np.array(list(map(digitize, line))) nonblank_line = lambda line: len(line) > 2 with open(filename) as f: lines = f.readlines() encoded_lines = list(map( encode_line, list(filter(nonblank_line, lines))[:max_lines])) num_outputs = len(encodings) + 1 return encoded_lines, num_outputs if __name__ == '__main__': np.random.seed(0) np.seterr(divide='ignore') train_size, test_size, compress_size = 100, 20, 100 # callback to print log likelihoods during training print_loglike = lambda loglike, params: print( loglike / train_size, log_partition_function(list(map(np.log, params)), test_inputs) / test_size) # load training data lstm_filename = join(dirname(__file__), 'war_and_peace.txt') inputs, num_outputs = build_dataset( lstm_filename, max_lines=train_size + test_size + compress_size) train_inputs, test_inputs, compress_inputs = ( inputs[:train_size], inputs[train_size:train_size + test_size], inputs[train_size + test_size:] ) # train with EM num_states = 32 init_params = initialize_hmm_parameters(num_states, num_outputs) print('Training hmm_codec with EM...') a0, a, b = EM(init_params, train_inputs, print_loglike) from matplotlib import pyplot as plt from matplotlib import ticker plt.rcParams.update({"text.usetex": True}) h = hmm_codec.HyperParams(num_states, num_outputs, T=1 << 9) print('Hyperparameter settings:') print(h) xs = np.concatenate(compress_inputs)[:h.T] params = list(map(partial(hmm_codec.quantized_cdf, h), (a0, a, b))) rng = np.random.default_rng(1) lengths = [] hs = [] message_lengths = [] l = 4 while l <= h.T: codec = hmm_codec.hmm_codec(replace(h, T=l), params) lengths.append(l) hs.append(-hmm_codec.hmm_logpmf(h, params, xs[:l]) / l) message = cs.base_message(1) message = codec.push(message, xs[:l]) message_lengths.append(len(cs.flatten(message)) * 32 / l) l = 2 * l fig, ax = plt.subplots(figsize=[2.7,1.8]) ax.plot(lengths, np.divide(message_lengths, hs), color='black', lw=.5) ax.set_yscale('log') ax.yaxis.set_minor_locator(ticker.FixedLocator([1., 2., 3., 6., 10.])) ax.yaxis.set_major_locator(ticker.NullLocator()) ax.yaxis.set_minor_formatter(ticker.ScalarFormatter()) ax.hlines(y=1, xmin=0, xmax=h.T + 1, color='gray', lw=.5) ax.set_xlim(0, h.T) ax.set_xlabel('$T$') ax.spines['top'].set_visible(False) ax.spines['bottom'].set_linewidth(0.5) ax.spines['right'].set_visible(False) ax.spines['left'].set_linewidth(0.5) ax.tick_params(width=.5) plt.tight_layout() plt.savefig('em_model.pdf')
UTF-8
Python
false
false
5,022
py
5
generate_model_plot.py
3
0.638192
0.623656
0
148
32.932432
78
DayGitH/Python-Challenges
7,894,149,913,220
9c07989fe2d9c7f6bf2f7f8c5222161cdf9734f6
f1961c86e6da14f35c21d7235f4fc8a89fabdcad
/DailyProgrammer/DP20130118C.py
160f08637796b83bdedb555ed267c1057285d4c5
[ "MIT" ]
permissive
https://github.com/DayGitH/Python-Challenges
d4930bdd85cd1a977d8f6192775ca956a375fcde
bc32f1332a92fcc2dfa6f5ea4d95f8a8d64c3edf
refs/heads/master
2021-01-17T13:01:03.784523
2018-06-29T23:49:04
2018-06-29T23:49:04
58,497,683
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" [01/18/13] Challenge #117 [Hard] Verify Your Language! https://www.reddit.com/r/dailyprogrammer/comments/16t2sx/011813_challenge_117_hard_verify_your_language/ # [](#HardIcon) *(Hard)*: Verify Your Language! [Context-free grammar](http://en.wikipedia.org/wiki/Context-free_grammar) is a tool heavily used in programming language design, verification, compiling, and execution. It is, essentially, a formal language used to define a grammar (i.e. another language). CFG are "more powerful" (in that they can verify more complex languages) than other grammars, such as regular-expressions. Programming language expressions are generally validated through CFGs. This is done by applying several products on an expression, subdividing the statement into known components, and finally into "terminal" components (i.e. parts of an expression that cannot be more subdivided). An example could be a CFG that only accepts addition expressions, such as "123 + 456". Such a CFG would have two rules that could be applied to verify if this expression was valid: A -> Int + Int, and Int -> '0123456789'Int | NULL It is ** extremely important** that the reader understands CFG and the formal language associated with it - the above is simply a refresher / casual introduction to the subject. Your goal is to write a program that accepts a CFG definition and a series of expressions, printing true or false for each expression if it is a valid expression of the given CFG. *Author: nint22* # Formal Inputs & Outputs ## Input Description First, your program must accept an integer N, where there will be N products, one per line, right below this integer. To keep things simple, products must be a single upper-case letter, such as "S". The letter "E" is reserved as the null-terminator. The equal-character "=" is reserved as the product definition operator. Finally, the pipe-character "|" is reserved for defining sets of possible products. This syntax is similar to the "on-paper" definition, with the small difference of substituting "E" and "->" for the greek-letter and arrow symbols. Assume that the grammar is valid; you do not have to error-check or handle "bad" CFG definitions. Next, you program must accept an integer M, where there will be M expressions, one per line, that must be tested by the above-defined grammar. ## Output Description For each expression M, print true or false, based on wether or not the expression is a valid expression of the given CFG. # Sample Inputs & Outputs ## Sample Input 3 S = SS S = (S) S = () 4 () ((())) (()(())) (() ## Sample Output True True True False # Challenge Input 8 S = x S = y S = z S = S + S S = S - S S = S * S S = S / S S = ( S ) 3 ( x + y ) * x - z * y / ( x + x ) (xx - zz + x / z) x + y * x - z * y / x + x ## Challenge Input Solution True False False # Note Some grammars may be ambiguous! Make sure to research what that means, though it should not affect your solution - I mention this simply to give you a warning if you see odd parsing behavior while debugging. *Bonus*: A short-hand method of having multiple products from one function-name is the "pipe operator", such as "S = x | y | z", instead of three separate "S = x", "S = y", "S = z". Support this notation system as a bonus. """ def main(): pass if __name__ == "__main__": main()
UTF-8
Python
false
false
3,430
py
922
DP20130118C.py
921
0.708163
0.695627
0
82
40.829268
119
sousajmr/ptpy
9,311,489,120,173
5fbf25023f9ba420a1c9b9078d8daba96209a727
531ed2d580fd389cb472af8344ed0caf9e241a89
/tornado/demos/lihuashu/docs/common_bak/toto.py
471e34816d90197016e3c994ad63f2aee6bc323d
[]
no_license
https://github.com/sousajmr/ptpy
dee83971973ce0069b1b27aeab16bca4a3a6504a
f35169ecf410240e7569ff0195524f874ca6660e
refs/heads/master
2021-01-10T20:08:15.848115
2013-04-05T05:23:02
2013-04-05T05:23:02
10,300,362
1
3
null
null
null
null
null
null
null
null
null
null
null
null
null
#coding:utf8 #from fdfs import Fdfs #fs=Fdfs() #fs.open() from kyototycoon import KyotoTycoon k=KyotoTycoon() k.open() po=k.set("编解码;编解码","编码编码编码编码编码",60) print(po) ''' p=k.remove('jia') print(p) ''' p=k.get_str("编解码;编解码") print(p)
UTF-8
Python
false
false
289
py
345
toto.py
237
0.640816
0.628571
0
15
14.466667
35
fazeVaib/Zephyr
7,954,279,454,840
5aa58e12a9fc9c11a85ca4709872488cd3716305
b9c78fe1f197be8e99b0a89c52aec2a9a36e4ce1
/src/app_zephyr/views.py
77df1a01570fd6e2e523ee882b62146466a2e564
[]
no_license
https://github.com/fazeVaib/Zephyr
54d7009b5622b485e32d863cb9a810449d37023b
27729b1dc2772d268a4797938e605a09b66f514a
refs/heads/master
2022-12-10T15:40:45.603656
2020-06-07T15:06:16
2020-06-07T15:06:16
175,456,694
7
1
null
false
2022-06-21T21:46:35
2019-03-13T16:15:33
2022-05-05T08:48:33
2022-06-21T21:46:35
57,030
7
1
5
JavaScript
false
false
from django.shortcuts import render from django.http import HttpResponse, JsonResponse from django.views.decorators.csrf import csrf_exempt from django.views import View from .stats import get_stat_data from .daily_predicted_data_delhi import get_daily_delhi_pred from .monthly_predicted_data import get_monthly_pred from .yearly_predicted_data import get_yearly_pred from .live_data import get_live_data from pprint import pprint from .models import CityName from zephyr.settings import BASE_DIR from zephyr_api.models import ZephyrDailyAPI, ZephyrMonthlyAPI, ZephyrYearlyAPI import os import pandas as pd BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # class Index(View): # def get(self, request, *args, **kwargs): # context = {} # return render(requests, "app_zephyr/index.html", context) # # def post(self, requests, *args, **kwargs): # city_n = requests.POST.get("clickedCity") # print(city_n) # q_set = CityName.objects.filter(id=1) # if q_set.count() != 0: # obj = q_set.first() # obj.city = city_n # obj.save() # context = {} # return render(request, "app_zephyr/index.html", context) @csrf_exempt def indexView(request, *args, **kwargs): if request.method == "GET": context = {} print(BASE_DIR) return render(request, "app_zephyr/index.html", context) elif request.method == "POST": city_n = request.POST.get("clickedCity") print(city_n) q_set = CityName.objects.filter(id=1) if q_set.count() != 0: obj = q_set.first() obj.city = city_n obj.save() context = {} return render(request, "app_zephyr/index.html", context) @csrf_exempt def dataPageView(request, *args, **kwargs): if request.method == "GET": q_set = CityName.objects.filter(id=1) if q_set.count() != 0: obj = q_set.first() city = obj.city print("City Name Received: " + city) live_data = get_live_data(city) print(live_data) context = { "city_name": city, "data": live_data } return render(request, "app_zephyr/second.html", context) elif request.method == "POST": pass class LiveDataView(View): def get(self, request, *args, **kwargs): q_set = CityName.objects.filter(id=1) if q_set.count() != 0: obj = q_set.first() city = obj.city print("City Name Received: " + city) live_data = get_live_data(city) # pprint(stat_data) return JsonResponse(live_data, safe=False) class DailyDataView(View): def get(self, request, *args, **kwargs): daily_delhi_pred = get_daily_delhi_pred(BASE_DIR) # pprint(daily_delhi_pred) return JsonResponse(daily_delhi_pred) class MonthlyDataView(View): def get(self, request, *args, **kwargs): q_set = CityName.objects.filter(id=1) if q_set.count() != 0: obj = q_set.first() city = obj.city print("City Name Received: " + city) monthly_data = get_monthly_pred(city, BASE_DIR) # pprint(monthly_data) return JsonResponse(monthly_data) class YearlyDataView(View): def get(self, request, *args, **kwargs): q_set = CityName.objects.filter(id=1) if q_set.count() != 0: obj = q_set.first() city = obj.city print("City Name Received: " + city) # monthly_data = get_monthly_pred(city) yearly_data = get_yearly_pred(city, BASE_DIR) # pprint(yearly_data) return JsonResponse(yearly_data) class StatisticsDataView(View): def get(self, request, *args, **kwargs): # return HttpResponse("<h1> This is the Home Page. </h1>") stat_data = get_stat_data(BASE_DIR) # pprint(stat_data) return JsonResponse(stat_data) class StatisticsView(View): def get(self, request, *args, **kwargs): # return HttpResponse("<h1> This is the Home Page. </h1>") stat_data = get_stat_data(BASE_DIR) # pprint(stat_data) return render(request, "app_zephyr/sidebar.html", stat_data) class DatabaseDailyPredictedDatafill(View): def get(self, request, *args, **kwargs): # qs = ZephyrDailyAPI.objects.all() # for i in qs: # print(i, type(i), i.daily_updated) # i.delete() # print("Object deleted") # df = pd.read_csv("/media/rishi/01D3D31D70AD1520/MINOR_PROJECT/zephyr_project/src/app_zephyr/daily_predicted_data_delhi/predicted_delhi.csv") # print(df.count()) # print(df.values) # c = 0 # for j in df.values: # print(j[0], j[1]) # obj = ZephyrDailyAPI() # obj.daily_city = "Delhi" # obj.daily_date = j[0] # obj.daily_aqi = j[1] # obj.save() # print(c) # print("================================") # c += 1 # print(c) return HttpResponse("<h1> This is the Database Daily Predicted Data Fill Page. </h1>") class DatabaseMonthlyPredictedDatafill(View): def get(self, request, *args, **kwargs): # qs = ZephyrMonthlyAPI.objects.all() # for i in qs: # # print(i, type(i), i.daily_updated) # i.delete() # # print("Object deleted") # folder_path = "/media/rishi/01D3D31D70AD1520/MINOR_PROJECT/zephyr_project/src/app_zephyr/monthly_predicted_data/" # dirs = os.listdir( # "/media/rishi/01D3D31D70AD1520/MINOR_PROJECT/zephyr_project/src/app_zephyr/monthly_predicted_data") # # print(dirs) # # c = 0 # for i in dirs: # # print(folder_path+i) # df = pd.read_csv(folder_path + i) # # print(i[5:-4]) # # print(df.count()) # # print(df.values) # for j in df.values: # # print(j[0], j[6], i[5:-4]) # obj = ZephyrMonthlyAPI() # obj.monthly_city = i[5:-4] # obj.monthly_date = j[0] # obj.monthly_aqi = j[6] # obj.save() # # print(c) # # print("================================") # # c += 1 # # print(c) return HttpResponse("<h1> This is the Database Monthly Predicted Data Fill Page. </h1>") class DatabaseYearlyPredictedDatafill(View): def get(self, request, *args, **kwargs): # qs = ZephyrYearlyAPI.objects.all() # for i in qs: # # print(i, type(i), i.daily_updated) # i.delete() # # print("Object deleted") # folder_path = "/media/rishi/01D3D31D70AD1520/MINOR_PROJECT/zephyr_project/src/app_zephyr/yearly_predicted_data/" # dirs = os.listdir( # "/media/rishi/01D3D31D70AD1520/MINOR_PROJECT/zephyr_project/src/app_zephyr/yearly_predicted_data") # # print(dirs) # # c = 0 # for i in dirs: # # print(folder_path+i) # df = pd.read_csv(folder_path + i) # # print(i[5:-4]) # # print(df.count()) # # print(df.values) # for j in df.values: # # print(j[0], j[6], i[5:-4]) # obj = ZephyrYearlyAPI() # obj.yearly_city = i[5:-4] # obj.yearly_date = j[0] # obj.yearly_aqi = j[6] # obj.save() # # print(c) # # print("================================") # # c += 1 # # print(c) return HttpResponse("<h1> This is the Database Yearly Predicted Data Fill Page. </h1>")
UTF-8
Python
false
false
7,768
py
209
views.py
28
0.550206
0.536432
0
221
34.149321
150
jofrankiewicz/AZ
429,496,770,326
e999ae780f36ac516419280204079bc0e888f837
f1d115e44e22e2cc45619edf681451feda3e5f74
/run.py
e6df99891f99a54346218602646f9a769fd3a47c
[]
no_license
https://github.com/jofrankiewicz/AZ
f66186d6e4f4dd2ac4cb5cf2e1b21510c36b1784
43e08ec75d0e53e26bcff3a6f3f3a23fabe434d2
refs/heads/master
2023-05-02T22:07:07.898205
2021-05-17T14:36:18
2021-05-17T14:36:18
349,590,548
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import argparse import time import glob import argparse import random from alghoritms import Graph from generate_files import random_graphs def main(): print('Rozpoczęcie działania programu rozwiązującego problem TSP') parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('-g', '--generation', dest='generation', type=bool, default=False, help='generate graph data') parser.add_argument('-nv', '--n_val', dest='n_val', type=int, default=600, help='number of vertices') parser.add_argument('-mv', '--max_val', dest='max_val', type=int, default=10000, help='maximum value in graph data') random.seed(34) args = vars(parser.parse_args()) if args['generation']: random_graphs(args['n_val'], args['max_val']) mylist = [f for f in glob.glob("graph*")] for filename in mylist: g = Graph(-1, filename) name_details=filename.split('_') methods = [(g.twoApproximation,"2_Approximation"), (g.christofide, "Christofides")] f = open("results.txt", "a") for i, (method, name) in enumerate(methods): start = time.time() method() result = g.tourValue() end = time.time() result_time = end-start print("Ilość wierzchołków: {}, Max waga: {}, Algorytm: {}, Wartość cyklu: {}, Czas: {}".format(name_details[1], name_details[2], name, result, result_time)) f.write(str(name_details[1])) f.write(" ") f.write(str(name_details[2])) f.write(" ") f.write(str(name_details[3])) f.write(" ") f.write(name) f.write(" ") f.write(str(result)) f.write(" ") f.write(str(result_time)) f.write('\n') f.close() main()
UTF-8
Python
false
false
1,971
py
103
run.py
6
0.551759
0.54309
0
63
30.142857
168
yasmin2496/DSA_Quick_Reference
8,615,704,420,111
77d525217897bdfe4f3f91dea0086ef51f7b4168
d28c0ef18e7a341e15be98359f4480b5e20e2363
/solutions/singly_linked_list.py
b31b974eca20d4b367c9ad94b239e1267082f0f0
[ "MIT" ]
permissive
https://github.com/yasmin2496/DSA_Quick_Reference
7d71d609a0e50b65b31b69d86904f9fc4b3a7243
827a7d3331d9224e8bb21feb9151a89fc637a649
refs/heads/main
2023-04-16T14:24:11.801530
2021-04-27T16:15:36
2021-04-27T16:15:36
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
class Node: def __init__(self, value): self.value = value self.next = None class LinkedList: def __init__(self): self.head = None def append(self, value): if self.head is None: self.head = Node(value) return node = self.head while node.next: node = node.next node.next = Node(value) def to_list(self): out_list = [] node = self.head while node: out_list.append(node.value) node = node.next return out_list def size(self): count = 1 node = self.head if node == None: return 0 while node.next: count += 1 node = node.next return count def iter(self): node = self.head while node: val = node.value node = node.next yield val def delete(self, value): node = self.head prev = self.head while node: if node.value == value: if node == self.head: self.head == node.next else: prev.next = node.next return prev = node node = node.next def search(self, value): node = self.head while node: if node.value == value: return True node = node.next return False # Test Case linked_list = LinkedList() linked_list.append(5) linked_list.append(7) linked_list.append(-1) linked_list.append(0.9) linked_list.append(71) iter_test = [] for value in linked_list.iter(): iter_test.append(value) print ("Pass" if (linked_list.to_list() == [5, 7, -1, 0.9, 71]) else "Fail") print ("Pass" if (linked_list.size() == 5) else "Fail") print ("Pass" if (iter_test == [5, 7, -1, 0.9, 71]) else "Fail") linked_list.delete(-1) print ("Pass" if (linked_list.to_list() == [5, 7, 0.9, 71]) else "Fail") print ("Pass" if (linked_list.search(99) == False) else "Fail") print ("Pass" if (linked_list.search(7) == True) else "Fail")
UTF-8
Python
false
false
2,142
py
46
singly_linked_list.py
20
0.50747
0.49113
0
94
21.765957
76
AotY/char-lstm
1,013,612,294,154
241f4af055f70070536254f6fedae596b99c765b
6a4a1875e5f8cff0112e6f45e34b25f909d3d034
/data_set.py
c775330f56009c2435450ed5354affd7774f0cd5
[]
no_license
https://github.com/AotY/char-lstm
bcc35fe15ad9b1b5d915ba770cabacfb0164155d
0bb9be96e3af1380609b95ae81651ec74125086e
refs/heads/master
2020-04-01T20:06:57.319229
2018-10-18T09:38:12
2018-10-18T09:38:12
153,589,069
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#! /usr/bin/env python # -*- coding: utf-8 -*- # Copyright © 2018 LeonTao # # Distributed under terms of the MIT license. """ """ from __future__ import unicode_literals, print_function, division from io import open import glob import os import unicodedata import string import random import torch import torch.nn as nn # sos: - , eos: < all_letters = '-' + string.ascii_letters + " .,;'<" n_letters = len(all_letters) + 1 # Plus EOS marker def findFiles(path): return glob.glob(path) # Turn a Unicode string to plain ASCII, thanks to http://stackoverflow.com/a/518232/2809427 def unicodeToAscii(s): return ''.join( c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' and c in all_letters ) # Read a file and split into lines def readLines(filename): lines = open(filename, encoding='utf-8').read().strip().split('\n') return [unicodeToAscii(line) for line in lines] # Build the category_lines dictionary, a list of lines per category category_lines = {} all_categories = [] for filename in findFiles('data/names/*.txt'): category = os.path.splitext(os.path.basename(filename))[0] all_categories.append(category) lines = readLines(filename) category_lines[category] = lines n_categories = len(all_categories) if n_categories == 0: raise RuntimeError('Data not found. Make sure that you downloaded data ' 'from https://download.pytorch.org/tutorial/data.zip and extract it to ' 'the current directory.') # Random item from a list def randomChoice(l): return l[random.randint(0, len(l) - 1)] # Get a random category and random line from that category def randomTrainingPair(): category = randomChoice(all_categories) line = randomChoice(category_lines[category]) return category, line # One-hot vector for category def categoryTensor(category, device): li = all_categories.index(category) tensor = torch.zeros(1, n_categories, dtype=torch.long, device=device) tensor[0][li] = 1 return tensor # One-hot matrix of first to last letters (not including EOS) for input def inputTensor(line, device): tensor = torch.zeros(len(line), dtype=torch.long, device=device) for li in range(len(line)): letter = line[li] tensor[li] = all_letters.find(letter) return tensor # LongTensor of second letter to end (EOS) for target def targetTensor(line, device): letter_indexes = [all_letters.find(line[li]) for li in range(1, len(line))] letter_indexes.append(n_letters - 1) # EOS return torch.LongTensor(letter_indexes, device=device) # Make category, input, and target tensors from a random category, line pair def randomTrainingExample(device): category, line = randomTrainingPair() category_tensor = categoryTensor(category, device) input = inputIndex(line) target = targetIndex(line) return category_tensor, input, target def next_batch(max_len, batch_size, device=None): categories = torch.empty((batch_size, n_categories), dtype=torch.long, device=device) inputs = torch.empty((max_len, batch_size), dtype=torch.long, device=device) targets = torch.empty((max_len, batch_size), dtype=torch.long, device=device) inputs_length = [] for i in range(batch_size): category_tensor, input, target = randomTrainingPair(device) inputs_length.append(len(input)) categories[i] = category_tensor for j, (i_index, t_index) in enumerate(zip(input, target)): inputs[j, i] = i_index targets[j, i] = t_index inputs_length = torch.LongTensor(inputs_length, device=device) return categories, inputs, inputs_length, targets
UTF-8
Python
false
false
3,702
py
5
data_set.py
3
0.691975
0.684139
0
116
30.887931
91
boo9305/python
16,123,307,238,248
1353e2a2577cf85b0646e0e01f88c0939f277396
e980207805af1d868a1418527d0be25727c9c878
/selenium/tving_contents_parser.py
a7408100b23bafcc531a8fc7277463200131b467
[]
no_license
https://github.com/boo9305/python
3b279899825e788386f610918c15fd68893ad138
1bd689e3182da6bbeda61d2a22de4372a37e57db
refs/heads/master
2023-02-23T00:38:39.948478
2021-01-25T07:07:12
2021-01-25T07:07:12
328,588,500
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import sys, time, atexit, json, requests import settings from bs4 import BeautifulSoup from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from pyvirtualdisplay import Display from parser import Parser class TvingParser(Parser): main_url = 'https://www.tving.com/vod/genre' contents_list = [] def __init__(self): super().__init__() def __del__(self): super().__del__() def login(self): ## 1. move start url self.driver.get(url='https://user.tving.com/pc/user/login.tving?returnUrl=https%3A%2F%2Fuser.tving.com%2Fpc%2Fuser%2Flogin.tving') print(self.driver.current_url) ## 2. login id = self.driver.find_element_by_id('a') pw = self.driver.find_element_by_id('b') id.send_keys('zoflr9305') pw.send_keys('qls0926!') sm = self.driver.find_element_by_id('doLoginBtn') sm.click() time.sleep(1) print(self.driver.current_url) profile = self.driver.find_element_by_class_name('profile-icon') profile.click() time.sleep(1) print(self.driver.current_url) def search_contents_detail(self): for item in self.contents_list: self.driver.get(url=item['url']) soup = BeautifulSoup(self.driver.page_source, 'html.parser') print(soup.p) def search_contents_list(self): self.driver.get(url=self.main_url) pheight = self.driver.execute_script('return document.body.scrollHeight') nheight = 0 ; print(self.driver.current_url) # scrolling ... while pheight != nheight: print('doing scrolling %d' % nheight) self.driver.execute_script('window.scrollTo(0, document.body.scrollHeight);') time.sleep(0.3) pheight = nheight nheight = self.driver.execute_script('return document.body.scrollHeight') items = self.driver.find_elements_by_class_name('program-item__info') link_list = [] # get url list print('getting url list') total = 0 for item in items: item_a = item.find_element(By.TAG_NAME, 'a') a = item_a.get_attribute('href') link_list.append(a) total += 1; item_a = None; # write logfile about content f = open('./logfile', 'w') for idx, item in enumerate(link_list): print('running... %s \t %d/%d' % (item, idx, total)) content_dic = {} self.driver.get(url=item) try : content_dic['title'] = self.driver.find_element_by_class_name('title').text except : pass try : summary = self.driver.find_element_by_class_name('summary').text except : pass try : content_dic['genre'] = self.driver.find_element_by_class_name('under').text except : pass try : dds = self.driver.find_elements_by_tag_name('dd') c = 0; actor = "" director = "" for idx2, dd in enumerate(dds): if idx2 == 1: content_dic['actor'] = dd.text elif idx2 == 2: content_dic['director'] = dd.text except: pass; content_dic['url'] = item f.write(str(content_dic) + "\n") f.close() ## move netfilx movie genre url #self.driver.get(url=self.movie_korea_url) #print(self.driver.current_url) ## get movie list by BeautifulSoup #soup = BeautifulSoup(self.driver.page_source, 'html.parser') #data =soup.find('script', type='application/ld+json') #for el in json.loads(data.string)['itemListElement'] : ## print(el) # item = el['item'] # d = {} # d['name'] = item['name'] # d['url'] = item['url'] # self.contents_list.append(d) #return self.contents_list; def test(self): self.driver.get(url='https://www.tving.com/movie/player/M000331735') print(self.driver.current_url) title = "" try : dt = self.driver.find_elements_by_css_selector('.info > dt') dt_dd = self.driver.find_elements_by_css_selector('.info > dt ~ dd') print("??") for idx, xx in enumerate(dt) : print('%s : %s ' %(dt[idx].text, dt_dd[idx].text)) except : print("error") genre = "" try : genre = self.driver.find_element_by_class_name('under').text except : print("error") print(title, genre) if __name__ == '__main__': tool = TvingParser(); tool.test() # tool.login() # tool.search_contents_list()
UTF-8
Python
false
false
5,175
py
17
tving_contents_parser.py
14
0.529469
0.521739
0
164
30.54878
138
hungphatsource/HungPhatSourceCode
15,212,774,163,305
b008bc087343aa21cd86d44362ab4c4eb06074a3
06598dfdde0cb0ecdd0af6b5aaab57b26aa9d23c
/hpusa_kpis_manufacturing/wizard/wizard_hp_report_kpis_chart.py
a03fc44c50445923b21e795da3907a792b42dd07
[]
no_license
https://github.com/hungphatsource/HungPhatSourceCode
98f99d87f0a07ffbf7c622037ea6e87e162c763d
11141af1fdd397590a1a5a7f7d8dd65abf53a59a
refs/heads/master
2021-01-21T13:57:40.494472
2016-05-13T07:34:35
2016-05-13T07:34:35
53,999,296
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from osv import fields, osv from tools.translate import _ from dateutil.relativedelta import relativedelta import time from datetime import datetime from datetime import timedelta from openerp.addons.pxgo_openoffice_reports import openoffice_report from openerp.report import report_sxw class wizard_hp_report_chart_kpis(osv.osv_memory): _name = "wizard.hp.report.chart.kpis" _columns = { 'type': fields.selection([ ('3d', '3D Design'), ('casting', 'Casting'), ('assembling', 'Assembling'), ('setting', 'Setting'), ], 'Report Type',select=True,required=True), 'option': fields.selection([ ('month', 'Month Report'), ('year', 'Year Report'), ], 'Option',select=True), 'month': fields.many2one('account.period', 'Month'), 'month_from': fields.many2one('account.period', 'Month From'), 'month_to': fields.many2one('account.period', 'Month To'), 'type_report': fields.selection([ ('synthetic', 'Synthetic chart'), ('productivity', 'Productivity chart'), ('productivity_worker', 'Productivity chart of worker'), ('compare', 'Comparing synthesis workers'), ], 'Chart Type',select=True,required=True), 'employee_id': fields.many2one('hr.employee', 'Worker'), } _defaults={ 'option': 'month' } wizard_hp_report_chart_kpis() class wizard_hp_report_chart_kpis_3d(osv.osv_memory): _name = "wizard.hp.report.chart.kpis.3d" _table = "wizard_hp_report_chart_kpis" _inherit = "wizard.hp.report.chart.kpis" def action_view_chart(self, cr, uid, ids, context): mod_obj = self.pool.get('ir.model.data') act_obj = self.pool.get('ir.actions.act_window') obj = self.browse(cr, uid, ids[0], context) if obj.type_report == 'synthetic': _3d_ids = self.pool.get('hp.kpis.view.chart.3d').search(cr, uid, []) if(_3d_ids): self.pool.get('hp.kpis.view.chart.3d').unlink(cr, uid, _3d_ids) if obj.option == 'month': date_to = datetime.strptime(obj.month.date_start, '%Y-%m-%d') for i in range(1, 5): #tinh ngay cua tung tuan if(i == 1): date_from = date_to else: date_from = date_to + relativedelta(days=1) date_to = date_from + relativedelta(days=6) #get report 3d line _3d_report_ids = self.pool.get('hpusa.3d.report.line').search(cr, uid, [('parent_id.report_date','>=',date_from),('parent_id.report_date','<=',date_to),('parent_id.state','=','confirmed')]) point = 0 qty = 0 for _3d_report_id in _3d_report_ids: line = self.pool.get('hpusa.3d.report.line').browse(cr, uid, _3d_report_id) point += line.point qty += 1 * line.complete self.pool.get('hp.kpis.view.chart.3d').create(cr, uid, {'name': 'Week '+str(i),'point': point, 'quantity': qty}) else: #get month list month_ids = self.pool.get('account.period').search(cr, uid, [('date_start','>=',obj.month_from.date_start),('date_stop','<=',obj.month_to.date_stop)]) for i in month_ids: # month month = self.pool.get('account.period').browse(cr, uid, i, context) if month.date_start != month.date_stop: #get report 3d line _3d_report_ids = self.pool.get('hpusa.3d.report.line').search(cr, uid, [('parent_id.report_date','>=',month.date_start),('parent_id.report_date','<=',month.date_stop),('parent_id.state','=','confirmed')]) point = 0 qty = 0 for _3d_report_id in _3d_report_ids: line = self.pool.get('hpusa.3d.report.line').browse(cr, uid, _3d_report_id) point += line.point qty += 1 * line.complete self.pool.get('hp.kpis.view.chart.3d').create(cr, uid, {'name': month.name,'point': point, 'quantity': qty}) #open action res = mod_obj.get_object_reference(cr, uid, 'hpusa_kpis_manufacturing', 'action_hp_kpis_view_chart_3d_graph') elif obj.type_report == 'productivity' or obj.type_report == 'productivity_worker': _3d_ids = self.pool.get('hp.kpis.view.chart.3d.productivity').search(cr, uid, []) if(_3d_ids): self.pool.get('hp.kpis.view.chart.3d.productivity').unlink(cr, uid, _3d_ids) if obj.option == 'month': date_to = datetime.strptime(obj.month.date_start, '%Y-%m-%d') for i in range(1, 5): #khoi tao cot cho moi tuan self.pool.get('hp.kpis.view.chart.3d.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'1', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.3d.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'2', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.3d.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'3', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.3d.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'4', 'point': 0, 'quantity': 0}) #tinh ngay cua tung tuan if i == 1: date_from = date_to date_to = date_from + relativedelta(days=6) else: date_from = date_to + relativedelta(days=1) if i == 4: date_to = obj.month.date_stop elif i !=1 : date_to = date_from + relativedelta(days=7) #get report 3d line if(not obj.employee_id): _3d_report_ids = self.pool.get('hpusa.3d.report.line').search(cr, uid, [('parent_id.report_date','>=',date_from),('parent_id.report_date','<=',date_to),('parent_id.state','=','confirmed')]) else: _3d_report_ids = self.pool.get('hpusa.3d.report.line').search(cr, uid, [('parent_id.report_date','>=',date_from),('parent_id.report_date','<=',date_to),('parent_id.designer_id','=',obj.employee_id.id),('parent_id.state','=','confirmed')]) for _3d_report_id in _3d_report_ids: _3d_report = self.pool.get('hpusa.3d.report.line').browse(cr, uid, _3d_report_id) if _3d_report.product_id._3d_design_times: times = _3d_report.product_id._3d_design_times.name if times > 3: self.pool.get('hp.kpis.view.chart.3d.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'4', 'point': _3d_report.point, 'quantity': 1 * _3d_report.complete}) else: self.pool.get('hp.kpis.view.chart.3d.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type': str(times), 'point': _3d_report.point, 'quantity': 1 * _3d_report.complete}) else: month_ids = self.pool.get('account.period').search(cr, uid, [('date_start','>=',obj.month_from.date_start),('date_stop','<=',obj.month_to.date_stop)]) for i in month_ids: # month month = self.pool.get('account.period').browse(cr, uid, i, context) if month.date_start != month.date_stop: self.pool.get('hp.kpis.view.chart.3d.productivity').create(cr, uid, {'name': month.name, 'type':'1', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.3d.productivity').create(cr, uid, {'name': month.name, 'type':'2', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.3d.productivity').create(cr, uid, {'name': month.name, 'type':'3', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.3d.productivity').create(cr, uid, {'name': month.name, 'type':'4', 'point': 0, 'quantity': 0}) #get report 3d line _3d_report_ids = self.pool.get('hpusa.3d.report.line').search(cr, uid, [('parent_id.report_date','>=',month.date_start),('parent_id.report_date','<=',month.date_stop),('parent_id.state','=','confirmed')]) for _3d_report_id in _3d_report_ids: _3d_report = self.pool.get('hpusa.3d.report.line').browse(cr, uid, _3d_report_id) if _3d_report.product_id._3d_design_times: times = _3d_report.product_id._3d_design_times.name if times > 3: self.pool.get('hp.kpis.view.chart.3d.productivity').create(cr, uid, {'name': month.name, 'type':'4', 'point': _3d_report.point, 'quantity': 1 * _3d_report.complete}) else: self.pool.get('hp.kpis.view.chart.3d.productivity').create(cr, uid, {'name': month.name, 'type': str(times), 'point': _3d_report.point, 'quantity': 1 * _3d_report.complete}) res = mod_obj.get_object_reference(cr, uid, 'hpusa_kpis_manufacturing', 'action_hp_kpis_view_chart_3d_productivity_graph') elif obj.type_report == 'compare': _3d_ids = self.pool.get('hp.kpis.view.chart.3d.compare').search(cr, uid, []) if(_3d_ids): self.pool.get('hp.kpis.view.chart.3d.compare').unlink(cr, uid, _3d_ids) if obj.option == 'month': date_to = datetime.strptime(obj.month.date_start, '%Y-%m-%d') for i in range(1, 5): #tinh ngay cua tung tuan if i == 1: date_from = date_to date_to = date_from + relativedelta(days=6) else: date_from = date_to + relativedelta(days=1) if i == 4: date_to = obj.month.date_stop elif i !=1 : date_to = date_from + relativedelta(days=7) #get report 3d line _3d_report_ids = self.pool.get('hpusa.3d.report.line').search(cr, uid, [('parent_id.report_date','>=',date_from),('parent_id.report_date','<=',date_to),('parent_id.state','=','confirmed')]) for _3d_report_id in _3d_report_ids: _3d_report = self.pool.get('hpusa.3d.report.line').browse(cr, uid, _3d_report_id) self.pool.get('hp.kpis.view.chart.3d.compare').create(cr, uid, {'name': 'Week '+str(i),'employee_id':_3d_report.parent_id.designer_id.id,'point': _3d_report.point, 'quantity': 1 * _3d_report.complete}) else: #get month list month_ids = self.pool.get('account.period').search(cr, uid, [('date_start','>=',obj.month_from.date_start),('date_stop','<=',obj.month_to.date_stop)]) for i in month_ids: # month month = self.pool.get('account.period').browse(cr, uid, i, context) if month.date_start != month.date_stop: #get report 3d line _3d_report_ids = self.pool.get('hpusa.3d.report.line').search(cr, uid, [('parent_id.report_date','>=',month.date_start),('parent_id.report_date','<=',month.date_stop),('parent_id.state','=','confirmed')]) for _3d_report_id in _3d_report_ids: _3d_report = self.pool.get('hpusa.3d.report.line').browse(cr, uid, _3d_report_id) self.pool.get('hp.kpis.view.chart.3d.compare').create(cr, uid, {'name': month.name,'employee_id':_3d_report.parent_id.designer_id.id,'point': _3d_report.point, 'quantity': 1 * _3d_report.complete}) #open action res = mod_obj.get_object_reference(cr, uid, 'hpusa_kpis_manufacturing', 'action_hp_kpis_view_chart_3d_compare_graph') id = res and res[1] or False result = act_obj.read(cr, uid, [id], context=context)[0] result['target'] = 'current' return result wizard_hp_report_chart_kpis_3d() class wizard_hp_report_chart_kpis_casting(osv.osv_memory): _name = "wizard.hp.report.chart.kpis.casting" _table = "wizard_hp_report_chart_kpis" _inherit = "wizard.hp.report.chart.kpis" def action_view_chart(self, cr, uid, ids, context): obj = self.browse(cr, uid, ids[0], context) #open action mod_obj = self.pool.get('ir.model.data') act_obj = self.pool.get('ir.actions.act_window') if obj.type_report == 'synthetic': _casting_ids = self.pool.get('hp.kpis.view.chart.casting').search(cr, uid, []) if(_casting_ids): self.pool.get('hp.kpis.view.chart.casting').unlink(cr, uid, _casting_ids) if(obj.option == 'month'): date_to = datetime.strptime(obj.month.date_start, '%Y-%m-%d') for i in range(1, 5): #tinh ngay cua tung tuan if(i == 1): date_from = date_to else: date_from = date_to + relativedelta(days=1) date_to = date_from + relativedelta(days=6) print date_from, date_to #get report 3d line _casting_report_ids = self.pool.get('hpusa.casting.report.line').search(cr, uid, [('parent_id.report_date','>=',date_from),('parent_id.report_date','<=',date_to),('parent_id.state','=','confirmed')]) point = 0 qty = 0 for _casting_report_id in _casting_report_ids: line = self.pool.get('hpusa.casting.report.line').browse(cr, uid, _casting_report_id) point += line.point qty += line.complete self.pool.get('hp.kpis.view.chart.casting').create(cr, uid, {'name': 'Week '+str(i),'point': point, 'quantity': qty}) else: #get month list month_ids = self.pool.get('account.period').search(cr, uid, [('date_start','>=',obj.month_from.date_start),('date_stop','<=',obj.month_to.date_stop)]) for i in month_ids: # month month = self.pool.get('account.period').browse(cr, uid, i, context) if month.date_start != month.date_stop: #get report 3d line _casting_report_ids = self.pool.get('hpusa.casting.report.line').search(cr, uid, [('parent_id.report_date','>=',month.date_start),('parent_id.report_date','<=',month.date_stop),('parent_id.state','=','confirmed')]) point = 0 qty = 0 for _casting_report_id in _casting_report_ids: line = self.pool.get('hpusa.casting.report.line').browse(cr, uid, _casting_report_id) point += line.point qty += line.complete self.pool.get('hp.kpis.view.chart.casting').create(cr, uid, {'name': month.name,'point': point, 'quantity': qty}) res = mod_obj.get_object_reference(cr, uid, 'hpusa_kpis_manufacturing', 'action_hp_kpis_view_chart_casting_graph') elif obj.type_report == 'productivity' or obj.type_report == 'productivity_worker': _casting_ids = self.pool.get('hp.kpis.view.chart.casting.productivity').search(cr, uid, []) if(_casting_ids): self.pool.get('hp.kpis.view.chart.casting.productivity').unlink(cr, uid, _casting_ids) if obj.option == 'month': date_to = datetime.strptime(obj.month.date_start, '%Y-%m-%d') for i in range(1, 5): #khoi tao cot cho moi tuan self.pool.get('hp.kpis.view.chart.casting.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'1', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.casting.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'2', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.casting.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'3', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.casting.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'4', 'point': 0, 'quantity': 0}) #tinh ngay cua tung tuan if i == 1: date_from = date_to date_to = date_from + relativedelta(days=6) else: date_from = date_to + relativedelta(days=1) if i == 4: date_to = obj.month.date_stop elif i !=1 : date_to = date_from + relativedelta(days=7) #get report 3d line if(not obj.employee_id): _casting_report_ids = self.pool.get('hpusa.casting.report.line').search(cr, uid, [('parent_id.report_date','>=',date_from),('parent_id.report_date','<=',date_to),('parent_id.state','=','confirmed')]) else: _casting_report_ids = self.pool.get('hpusa.casting.report.line').search(cr, uid, [('parent_id.report_date','>=',date_from),('parent_id.report_date','<=',date_to),('worker','=',obj.employee_id.id),('parent_id.state','=','confirmed')]) for _casting_report_id in _casting_report_ids: _casting_report = self.pool.get('hpusa.casting.report.line').browse(cr, uid, _casting_report_id) if _casting_report.product_id.casting_times: times = _casting_report.product_id.casting_times.name if times > 3: self.pool.get('hp.kpis.view.chart.casting.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'4', 'point': _casting_report.point, 'quantity': 1 * _casting_report.complete}) else: self.pool.get('hp.kpis.view.chart.casting.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type': str(times), 'point': _casting_report.point, 'quantity': 1 * _casting_report.complete}) else: month_ids = self.pool.get('account.period').search(cr, uid, [('date_start','>=',obj.month_from.date_start),('date_stop','<=',obj.month_to.date_stop)]) for i in month_ids: # month month = self.pool.get('account.period').browse(cr, uid, i, context) if month.date_start != month.date_stop: self.pool.get('hp.kpis.view.chart.casting.productivity').create(cr, uid, {'name': month.name, 'type':'1', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.casting.productivity').create(cr, uid, {'name': month.name, 'type':'2', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.casting.productivity').create(cr, uid, {'name': month.name, 'type':'3', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.casting.productivity').create(cr, uid, {'name': month.name, 'type':'4', 'point': 0, 'quantity': 0}) #get report 3d line _casting_report_ids = self.pool.get('hpusa.casting.report.line').search(cr, uid, [('parent_id.report_date','>=',month.date_start),('parent_id.report_date','<=',month.date_stop),('parent_id.state','=','confirmed')]) for _casting_report_id in _casting_report_ids: _casting_report = self.pool.get('hpusa.casting.report.line').browse(cr, uid, _casting_report_id) if _casting_report.product_id._casting_design_times: times = _casting_report.product_id._casting_design_times.name if times > 3: self.pool.get('hp.kpis.view.chart.casting.productivity').create(cr, uid, {'name': month.name, 'type':'4', 'point': _casting_report.point, 'quantity': 1 * _casting_report.complete}) else: self.pool.get('hp.kpis.view.chart.casting.productivity').create(cr, uid, {'name': month.name, 'type': str(times), 'point': _casting_report.point, 'quantity': 1 * _casting_report.complete}) res = mod_obj.get_object_reference(cr, uid, 'hpusa_kpis_manufacturing', 'action_hp_kpis_view_chart_casting_productivity_graph') elif obj.type_report == 'compare': _casting_ids = self.pool.get('hp.kpis.view.chart.casting.compare').search(cr, uid, []) if(_casting_ids): self.pool.get('hp.kpis.view.chart.casting.compare').unlink(cr, uid, _casting_ids) if obj.option == 'month': date_to = datetime.strptime(obj.month.date_start, '%Y-%m-%d') for i in range(1, 5): #tinh ngay cua tung tuan if i == 1: date_from = date_to date_to = date_from + relativedelta(days=6) else: date_from = date_to + relativedelta(days=1) if i == 4: date_to = obj.month.date_stop elif i !=1 : date_to = date_from + relativedelta(days=7) #get report 3d line _casting_report_ids = self.pool.get('hpusa.casting.report.line').search(cr, uid, [('parent_id.report_date','>=',date_from),('parent_id.report_date','<=',date_to),('parent_id.state','=','confirmed')]) for _casting_report_id in _casting_report_ids: _casting_report = self.pool.get('hpusa.casting.report.line').browse(cr, uid, _casting_report_id) self.pool.get('hp.kpis.view.chart.casting.compare').create(cr, uid, {'name': 'Week '+str(i),'employee_id':_casting_report.worker.id,'point': _casting_report.point, 'quantity': 1 * _casting_report.complete}) else: #get month list month_ids = self.pool.get('account.period').search(cr, uid, [('date_start','>=',obj.month_from.date_start),('date_stop','<=',obj.month_to.date_stop)]) for i in month_ids: # month month = self.pool.get('account.period').browse(cr, uid, i, context) if month.date_start != month.date_stop: #get report 3d line _casting_report_ids = self.pool.get('hpusa.casting.report.line').search(cr, uid, [('parent_id.report_date','>=',month.date_start),('parent_id.report_date','<=',month.date_stop),('parent_id.state','=','confirmed')]) for _casting_report_id in _casting_report_ids: _casting_report = self.pool.get('hpusa.casting.report.line').browse(cr, uid, _casting_report_id) self.pool.get('hp.kpis.view.chart.casting.compare').create(cr, uid, {'name': month.name,'employee_id':_casting_report.worker.id,'point': _casting_report.point, 'quantity': 1 * _casting_report.complete}) #open action res = mod_obj.get_object_reference(cr, uid, 'hpusa_kpis_manufacturing', 'action_hp_kpis_view_chart_casting_compare_graph') id = res and res[1] or False result = act_obj.read(cr, uid, [id], context=context)[0] result['target'] = 'current' return result wizard_hp_report_chart_kpis_casting() class wizard_hp_report_chart_kpis_assembling(osv.osv_memory): _name = "wizard.hp.report.chart.kpis.assembling" _table = "wizard_hp_report_chart_kpis" _inherit = "wizard.hp.report.chart.kpis" def action_view_chart(self, cr, uid, ids, context): obj = self.browse(cr, uid, ids[0], context) mod_obj = self.pool.get('ir.model.data') act_obj = self.pool.get('ir.actions.act_window') if(obj.type_report == 'synthetic'): _assembling_ids = self.pool.get('hp.kpis.view.chart.assembling').search(cr, uid, []) if(_assembling_ids): self.pool.get('hp.kpis.view.chart.assembling').unlink(cr, uid, _assembling_ids) if(obj.option == 'month'): date_to = datetime.strptime(obj.month.date_start, '%Y-%m-%d') for i in range(1, 5): #tinh ngay cua tung tuan if i == 1: date_from = date_to date_to = date_from + relativedelta(days=6) else: date_from = date_to + relativedelta(days=1) if i == 4: date_to = obj.month.date_stop elif i !=1 : date_to = date_from + relativedelta(days=7) #get report 3d line _assembling_report_ids = self.pool.get('hpusa.assembling.report.line').search(cr, uid, [('parent_id.report_date','>=',date_from),('parent_id.report_date','<=',date_to),('parent_id.state','=','confirmed')]) point = 0 qty = 0 for _assembling_report_id in _assembling_report_ids: line = self.pool.get('hpusa.assembling.report.line').browse(cr, uid, _assembling_report_id) point += line.point qty += 1 * line.complete self.pool.get('hp.kpis.view.chart.assembling').create(cr, uid, {'name': 'Week '+str(i),'point': point, 'quantity': qty}) else: #get month list month_ids = self.pool.get('account.period').search(cr, uid, [('date_start','>=',obj.month_from.date_start),('date_stop','<=',obj.month_to.date_stop)]) for i in month_ids: # month month = self.pool.get('account.period').browse(cr, uid, i, context) if month.date_start != month.date_stop: #get report 3d line _assembling_report_ids = self.pool.get('hpusa.assembling.report.line').search(cr, uid, [('parent_id.report_date','>=',month.date_start),('parent_id.report_date','<=',month.date_stop),('parent_id.state','=','confirmed')]) point = 0 qty = 0 for _assembling_report_id in _assembling_report_ids: line = self.pool.get('hpusa.assembling.report.line').browse(cr, uid, _assembling_report_id) point += line.point qty += 1 * line.complete self.pool.get('hp.kpis.view.chart.assembling').create(cr, uid, {'name': month.name,'point': point, 'quantity': qty}) #open action res = mod_obj.get_object_reference(cr, uid, 'hpusa_kpis_manufacturing', 'action_hp_kpis_view_chart_assembling_graph') elif obj.type_report == 'productivity' or obj.type_report == 'productivity_worker': _assembling_ids = self.pool.get('hp.kpis.view.chart.assembling.productivity').search(cr, uid, []) if(_assembling_ids): self.pool.get('hp.kpis.view.chart.assembling.productivity').unlink(cr, uid, _assembling_ids) if obj.option == 'month': date_to = datetime.strptime(obj.month.date_start, '%Y-%m-%d') for i in range(1, 5): #khoi tao cot cho moi tuan self.pool.get('hp.kpis.view.chart.assembling.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'1', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.assembling.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'2', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.assembling.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'3', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.assembling.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'4', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.assembling.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'5', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.assembling.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'6', 'point': 0, 'quantity': 0}) #tinh ngay cua tung tuan if i == 1: date_from = date_to date_to = date_from + relativedelta(days=6) else: date_from = date_to + relativedelta(days=1) if i == 4: date_to = obj.month.date_stop elif i !=1 : date_to = date_from + relativedelta(days=7) #get report 3d line if(not obj.employee_id): _assembling_report_ids = self.pool.get('hpusa.assembling.report.line').search(cr, uid, [('parent_id.report_date','>=',date_from),('parent_id.report_date','<=',date_to),('parent_id.state','=','confirmed')]) else: _assembling_report_ids = self.pool.get('hpusa.assembling.report.line').search(cr, uid, [('parent_id.report_date','>=',date_from),('parent_id.report_date','<=',date_to),('worker','=',obj.employee_id.id),('parent_id.state','=','confirmed')]) for _assembling_report_id in _assembling_report_ids: _assembling_report = self.pool.get('hpusa.assembling.report.line').browse(cr, uid, _assembling_report_id) if _assembling_report.product_id.ass_difficulty_level: level = _assembling_report.product_id.ass_difficulty_level.name if level == 'I': self.pool.get('hp.kpis.view.chart.assembling.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'1', 'point': _assembling_report.point, 'quantity': 1 * _assembling_report.complete}) elif level == 'II': self.pool.get('hp.kpis.view.chart.assembling.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'2', 'point': _assembling_report.point, 'quantity': 1 * _assembling_report.complete}) elif level == 'III': self.pool.get('hp.kpis.view.chart.assembling.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'3', 'point': _assembling_report.point, 'quantity': 1 * _assembling_report.complete}) elif level == 'IV': self.pool.get('hp.kpis.view.chart.assembling.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'4', 'point': _assembling_report.point, 'quantity': 1 * _assembling_report.complete}) elif level == 'V': self.pool.get('hp.kpis.view.chart.assembling.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'5', 'point': _assembling_report.point, 'quantity': 1 * _assembling_report.complete}) elif level == 'VI': self.pool.get('hp.kpis.view.chart.assembling.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'6', 'point': _assembling_report.point, 'quantity': 1 * _assembling_report.complete}) else: month_ids = self.pool.get('account.period').search(cr, uid, [('date_start','>=',obj.month_from.date_start),('date_stop','<=',obj.month_to.date_stop)]) for i in month_ids: # month month = self.pool.get('account.period').browse(cr, uid, i, context) if month.date_start != month.date_stop: self.pool.get('hp.kpis.view.chart.assembling.productivity').create(cr, uid, {'name': month.name, 'type':'1', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.assembling.productivity').create(cr, uid, {'name': month.name, 'type':'2', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.assembling.productivity').create(cr, uid, {'name': month.name, 'type':'3', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.assembling.productivity').create(cr, uid, {'name': month.name, 'type':'4', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.assembling.productivity').create(cr, uid, {'name': month.name, 'type':'5', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.assembling.productivity').create(cr, uid, {'name': month.name, 'type':'6', 'point': 0, 'quantity': 0}) #get report 3d line _assembling_report_ids = self.pool.get('hpusa.assembling.report.line').search(cr, uid, [('parent_id.report_date','>=',month.date_start),('parent_id.report_date','<=',month.date_stop),('parent_id.state','=','confirmed')]) for _assembling_report_id in _assembling_report_ids: _assembling_report = self.pool.get('hpusa.assembling.report.line').browse(cr, uid, _casting_report_id) if _assembling_report.product_id.ass_difficulty_level: level = _assembling_report.product_id.ass_difficulty_level.name if level == 'I': self.pool.get('hp.kpis.view.chart.assembling.productivity').create(cr, uid, {'name': month.name, 'type':'1', 'point': _assembling_report.point, 'quantity': 1 * _assembling_report.complete}) elif level == 'II': self.pool.get('hp.kpis.view.chart.assembling.productivity').create(cr, uid, {'name': month.name, 'type':'2', 'point': _assembling_report.point, 'quantity': 1 * _assembling_report.complete}) elif level == 'III': self.pool.get('hp.kpis.view.chart.assembling.productivity').create(cr, uid, {'name': month.name, 'type':'3', 'point': _assembling_report.point, 'quantity': 1 * _assembling_report.complete}) elif level == 'IV': self.pool.get('hp.kpis.view.chart.assembling.productivity').create(cr, uid, {'name': month.name, 'type':'4', 'point': _assembling_report.point, 'quantity': 1 * _assembling_report.complete}) elif level == 'V': self.pool.get('hp.kpis.view.chart.assembling.productivity').create(cr, uid, {'name': month.name, 'type':'5', 'point': _assembling_report.point, 'quantity': 1 * _assembling_report.complete}) elif level == 'VI': self.pool.get('hp.kpis.view.chart.assembling.productivity').create(cr, uid, {'name': month.name, 'type':'6', 'point': _assembling_report.point, 'quantity': 1 * _assembling_report.complete}) res = mod_obj.get_object_reference(cr, uid, 'hpusa_kpis_manufacturing', 'action_hp_kpis_view_chart_assembling_productivity_graph') elif obj.type_report == 'compare': _assembling_ids = self.pool.get('hp.kpis.view.chart.assembling.compare').search(cr, uid, []) if(_assembling_ids): self.pool.get('hp.kpis.view.chart.assembling.compare').unlink(cr, uid, _assembling_ids) if obj.option == 'month': date_to = datetime.strptime(obj.month.date_start, '%Y-%m-%d') for i in range(1, 5): #tinh ngay cua tung tuan if i == 1: date_from = date_to date_to = date_from + relativedelta(days=6) else: date_from = date_to + relativedelta(days=1) if i == 4: date_to = obj.month.date_stop elif i !=1 : date_to = date_from + relativedelta(days=7) #get report 3d line _assembling_report_ids = self.pool.get('hpusa.assembling.report.line').search(cr, uid, [('parent_id.report_date','>=',date_from),('parent_id.report_date','<=',date_to),('parent_id.state','=','confirmed')]) for _assembling_report_id in _assembling_report_ids: _assembling_report = self.pool.get('hpusa.assembling.report.line').browse(cr, uid, _assembling_report_id) self.pool.get('hp.kpis.view.chart.assembling.compare').create(cr, uid, {'name': 'Week '+str(i),'employee_id':_assembling_report.worker.id,'point': _assembling_report.point, 'quantity': 1 * _assembling_report.complete}) else: #get month list month_ids = self.pool.get('account.period').search(cr, uid, [('date_start','>=',obj.month_from.date_start),('date_stop','<=',obj.month_to.date_stop)]) for i in month_ids: # month month = self.pool.get('account.period').browse(cr, uid, i, context) if month.date_start != month.date_stop: #get report 3d line _assembling_report_ids = self.pool.get('hpusa.assembling.report.line').search(cr, uid, [('parent_id.report_date','>=',month.date_start),('parent_id.report_date','<=',month.date_stop),('parent_id.state','=','confirmed')]) for _assembling_report_id in _assembling_report_ids: _assembling_report = self.pool.get('hpusa.assembling.report.line').browse(cr, uid, _assembling_report_id) self.pool.get('hp.kpis.view.chart.assembling.compare').create(cr, uid, {'name': month.name,'employee_id':_assembling_report.worker.id,'point': _assembling_report.point, 'quantity': 1 * _assembling_report.complete}) #open action res = mod_obj.get_object_reference(cr, uid, 'hpusa_kpis_manufacturing', 'action_hp_kpis_view_chart_assembling_compare_graph') id = res and res[1] or False result = act_obj.read(cr, uid, [id], context=context)[0] result['target'] = 'current' return result wizard_hp_report_chart_kpis_assembling() class wizard_hp_report_chart_kpis_setting(osv.osv_memory): _name = "wizard.hp.report.chart.kpis.setting" _table = "wizard_hp_report_chart_kpis" _inherit = "wizard.hp.report.chart.kpis" def action_view_chart(self, cr, uid, ids, context): obj = self.browse(cr, uid, ids[0], context) mod_obj = self.pool.get('ir.model.data') act_obj = self.pool.get('ir.actions.act_window') if(obj.type_report == 'synthetic'): _setting_ids = self.pool.get('hp.kpis.view.chart.setting').search(cr, uid, []) if(_setting_ids): self.pool.get('hp.kpis.view.chart.setting').unlink(cr, uid, _setting_ids) if(obj.option == 'month'): date_to = datetime.strptime(obj.month.date_start, '%Y-%m-%d') for i in range(1, 5): #tinh ngay cua tung tuan if i == 1: date_from = date_to date_to = date_from + relativedelta(days=6) else: date_from = date_to + relativedelta(days=1) if i == 4: date_to = obj.month.date_stop elif i !=1 : date_to = date_from + relativedelta(days=7) #get report 3d line _setting_report_ids = self.pool.get('hpusa.setting.report.line').search(cr, uid, [('parent_id.report_date','>=',date_from),('parent_id.report_date','<=',date_to),('parent_id.state','=','confirmed')]) point = 0 qty = 0 for _setting_report_id in _setting_report_ids: line = self.pool.get('hpusa.setting.report.line').browse(cr, uid, _setting_report_id) point += line.point qty += 1 * line.complete self.pool.get('hp.kpis.view.chart.setting').create(cr, uid, {'name': 'Week '+str(i),'point': point, 'quantity': qty}) else: #get month list month_ids = self.pool.get('account.period').search(cr, uid, [('date_start','>=',obj.month_from.date_start),('date_stop','<=',obj.month_to.date_stop)]) for i in month_ids: # month month = self.pool.get('account.period').browse(cr, uid, i, context) if month.date_start != month.date_stop: #get report 3d line _setting_report_ids = self.pool.get('hpusa.setting.report.line').search(cr, uid, [('parent_id.report_date','>=',month.date_start),('parent_id.report_date','<=',month.date_stop),('parent_id.state','=','confirmed')]) point = 0 qty = 0 for _setting_report_id in _setting_report_ids: line = self.pool.get('hpusa.setting.report.line').browse(cr, uid, _setting_report_id) point += line.point qty += 1 * line.complete self.pool.get('hp.kpis.view.chart.setting').create(cr, uid, {'name': month.name,'point': point, 'quantity': qty}) res = mod_obj.get_object_reference(cr, uid, 'hpusa_kpis_manufacturing', 'action_hp_kpis_view_chart_setting_graph') elif obj.type_report == 'productivity' or obj.type_report == 'productivity_worker': _setting_ids = self.pool.get('hp.kpis.view.chart.setting.productivity').search(cr, uid, []) if(_setting_ids): self.pool.get('hp.kpis.view.chart.setting.productivity').unlink(cr, uid, _setting_ids) if obj.option == 'month': date_to = datetime.strptime(obj.month.date_start, '%Y-%m-%d') for i in range(1, 5): #khoi tao cot cho moi tuan self.pool.get('hp.kpis.view.chart.setting.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'1', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.setting.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'2', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.setting.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'3', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.setting.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'4', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.setting.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'5', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.setting.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'6', 'point': 0, 'quantity': 0}) #tinh ngay cua tung tuan if i == 1: date_from = date_to date_to = date_from + relativedelta(days=6) else: date_from = date_to + relativedelta(days=1) if i == 4: date_to = obj.month.date_stop elif i !=1 : date_to = date_from + relativedelta(days=7) #get report 3d line if(not obj.employee_id): _setting_report_ids = self.pool.get('hpusa.setting.report.line').search(cr, uid, [('parent_id.report_date','>=',date_from),('parent_id.report_date','<=',date_to),('parent_id.state','=','confirmed')]) else: _setting_report_ids = self.pool.get('hpusa.setting.report.line').search(cr, uid, [('parent_id.report_date','>=',date_from),('parent_id.report_date','<=',date_to),('worker','=',obj.employee_id.id),('parent_id.state','=','confirmed')]) for _setting_report_id in _setting_report_ids: _setting_report = self.pool.get('hpusa.setting.report.line').browse(cr, uid, _setting_report_id) if _setting_report.product_id.setting_difficulty_level: level = _setting_report.product_id.setting_difficulty_level.name if level == 'I': self.pool.get('hp.kpis.view.chart.setting.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'1', 'point': _setting_report.point, 'quantity': 1 * _setting_report.complete}) elif level == 'II': self.pool.get('hp.kpis.view.chart.setting.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'2', 'point': _setting_report.point, 'quantity': 1 * _setting_report.complete}) elif level == 'III': self.pool.get('hp.kpis.view.chart.setting.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'3', 'point': _setting_report.point, 'quantity': 1 * _setting_report.complete}) elif level == 'IV': self.pool.get('hp.kpis.view.chart.setting.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'4', 'point': _setting_report.point, 'quantity': 1 * _setting_report.complete}) elif level == 'V': self.pool.get('hp.kpis.view.chart.setting.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'5', 'point': _setting_report.point, 'quantity': 1 * _setting_report.complete}) elif level == 'VI': self.pool.get('hp.kpis.view.chart.setting.productivity').create(cr, uid, {'name': 'Week '+str(i), 'type':'6', 'point': _setting_report.point, 'quantity': 1 * _setting_report.complete}) else: month_ids = self.pool.get('account.period').search(cr, uid, [('date_start','>=',obj.month_from.date_start),('date_stop','<=',obj.month_to.date_stop)]) for i in month_ids: # month month = self.pool.get('account.period').browse(cr, uid, i, context) if month.date_start != month.date_stop: self.pool.get('hp.kpis.view.chart.setting.productivity').create(cr, uid, {'name': month.name, 'type':'1', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.setting.productivity').create(cr, uid, {'name': month.name, 'type':'2', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.setting.productivity').create(cr, uid, {'name': month.name, 'type':'3', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.setting.productivity').create(cr, uid, {'name': month.name, 'type':'4', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.setting.productivity').create(cr, uid, {'name': month.name, 'type':'5', 'point': 0, 'quantity': 0}) self.pool.get('hp.kpis.view.chart.setting.productivity').create(cr, uid, {'name': month.name, 'type':'6', 'point': 0, 'quantity': 0}) #get report 3d line _setting_report_ids = self.pool.get('hpusa.setting.report.line').search(cr, uid, [('parent_id.report_date','>=',month.date_start),('parent_id.report_date','<=',month.date_stop),('parent_id.state','=','confirmed')]) for _setting_report_id in _assembling_report_ids: _setting_report = self.pool.get('hpusa.setting.report.line').browse(cr, uid, _casting_report_id) if _setting_report.product_id.setting_difficulty_level: level = _setting_report.product_id.setting_difficulty_level.name if level == 'I': self.pool.get('hp.kpis.view.chart.setting.productivity').create(cr, uid, {'name': month.name, 'type':'1', 'point': _setting_report.point, 'quantity': 1 * _setting_report.complete}) elif level == 'II': self.pool.get('hp.kpis.view.chart.setting.productivity').create(cr, uid, {'name': month.name, 'type':'2', 'point': _setting_report.point, 'quantity': 1 * _setting_report.complete}) elif level == 'III': self.pool.get('hp.kpis.view.chart.setting.productivity').create(cr, uid, {'name': month.name, 'type':'3', 'point': _setting_report.point, 'quantity': 1 * _setting_report.complete}) elif level == 'IV': self.pool.get('hp.kpis.view.chart.setting.productivity').create(cr, uid, {'name': month.name, 'type':'4', 'point': _setting_report.point, 'quantity': 1 * _setting_report.complete}) elif level == 'V': self.pool.get('hp.kpis.view.chart.setting.productivity').create(cr, uid, {'name': month.name, 'type':'5', 'point': _setting_report.point, 'quantity': 1 * _setting_report.complete}) elif level == 'VI': self.pool.get('hp.kpis.view.chart.setting.productivity').create(cr, uid, {'name': month.name, 'type':'6', 'point': _setting_report.point, 'quantity': 1 * _setting_report.complete}) res = mod_obj.get_object_reference(cr, uid, 'hpusa_kpis_manufacturing', 'action_hp_kpis_view_chart_setting_productivity_graph') else: _setting_ids = self.pool.get('hp.kpis.view.chart.setting.compare').search(cr, uid, []) if(_setting_ids): self.pool.get('hp.kpis.view.chart.setting.compare').unlink(cr, uid, _setting_ids) if(obj.option == 'month'): date_to = datetime.strptime(obj.month.date_start, '%Y-%m-%d') for i in range(1, 5): #tinh ngay cua tung tuan if i == 1: date_from = date_to date_to = date_from + relativedelta(days=6) else: date_from = date_to + relativedelta(days=1) if i == 4: date_to = obj.month.date_stop elif i !=1 : date_to = date_from + relativedelta(days=7) #get report 3d line _setting_report_ids = self.pool.get('hpusa.setting.report.line').search(cr, uid, [('parent_id.report_date','>=',date_from),('parent_id.report_date','<=',date_to),('parent_id.state','=','confirmed')]) for _setting_report_id in _setting_report_ids: setting = self.pool.get('hpusa.setting.report.line').browse(cr, uid, _setting_report_id) self.pool.get('hp.kpis.view.chart.setting.compare').create(cr, uid, {'name': 'Week '+str(i),'point': setting.point, 'quantity': 1 * setting.complete,'employee_id': setting.worker.id}) else: #get month list month_ids = self.pool.get('account.period').search(cr, uid, [('date_start','>=',obj.month_from.date_start),('date_stop','<=',obj.month_to.date_stop)]) for i in month_ids: # month month = self.pool.get('account.period').browse(cr, uid, i, context) if month.date_start != month.date_stop: #get report 3d line _setting_report_ids = self.pool.get('hpusa.setting.report.line').search(cr, uid, [('parent_id.report_date','>=',month.date_start),('parent_id.report_date','<=',month.date_stop),('parent_id.state','=','confirmed')]) for _setting_report_id in _setting_report_ids: setting = self.pool.get('hpusa.setting.report.line').browse(cr, uid, _setting_report_id) self.pool.get('hp.kpis.view.chart.setting.compare').create(cr, uid, {'name': month.name,'point': setting.point, 'quantity': 1 * setting.complete, 'employee_id': setting.worker.id}) res = mod_obj.get_object_reference(cr, uid, 'hpusa_kpis_manufacturing', 'action_hp_kpis_view_chart_setting_compare_graph') id = res and res[1] or False result = act_obj.read(cr, uid, [id], context=context)[0] result['target'] = 'current' return result wizard_hp_report_chart_kpis_setting()
UTF-8
Python
false
false
54,504
py
89
wizard_hp_report_kpis_chart.py
47
0.522567
0.514366
0
701
76.74465
263
alexmlucas/i1
12,824,772,355,851
f080f88cd75f5556828288bbad3e329c4116e3da
66e7978eb51f74ddd9b5f8d9ecbf35617b982da3
/rpi_script/parameter_manager.py
8c41a765184115a80fd59cd976740882cbe0539a
[]
no_license
https://github.com/alexmlucas/i1
aa0ef1b98d5f2449bc69a14f7822beca9c3628f4
154fcc72b2ab87c1bf3f1f5ba2baf20b025223f2
refs/heads/master
2021-10-10T10:31:20.236306
2019-09-12T13:54:17
2019-09-12T13:54:17
158,238,900
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import serial import csv from subprocess import call class Parameter_Manager: def __init__(self, port, baud_rate): self.port = port self.baud_rate = baud_rate self.song_data_path = "/home/pi/i1/rpi_script/song_data.txt" self.global_data_path = "/home/pi/i1/rpi_script/global_data.txt" # Initalise class variables from saved parameter values self.current_song = self.get_global_parameter('b') self.master_level = self.float_value_generator(self.get_global_parameter('a')) self.backing_level = self.float_value_generator(self.get_song_parameter('e')) self.guitar_level = self.midi_value_generator(self.get_song_parameter('d')) # Intialise serial port self.control_board = serial.Serial(self.port, self.baud_rate, timeout = 0.1) # Flush inputs and outputs self.control_board.flushInput() self.control_board.flushOutput() # Flag for indicating that bluetooth reconnection has been requested. # Initialise with a value of True to ensure wristband connection is attempted on program start. self.reconnect_wristband_flag = True def midi_value_generator(self, value_to_convert): # convert values between 0 - 10 to vaues between 0 - 127 return (value_to_convert / 10) * 127 def float_value_generator(self, value_to_convert): return value_to_convert / 10 def set_song_player(self, song_player): # Create a local reference to the song player. self.song_player = song_player # Now that a reference to the song player is available, set the song... self.song_player.set_song(self.get_global_parameter('b')) # ...and set its level self.song_player.set_level(self.backing_level * self.master_level) def set_guitar(self, guitar): # Create a local reference to the guitar. self.guitar = guitar # Now that a reference to the guitar is available, set its path... self.guitar.set_sound_font(self.get_song_parameter('c')) # ... and its level self.guitar.set_level(int(self.guitar_level * self.master_level)) #### Set scales #### # Red scale self.guitar.set_zone_notes(0, self.get_song_parameter('f')) # Green scale self.guitar.set_zone_notes(1, self.get_song_parameter('g')) # Blue scale self.guitar.set_zone_notes(2, self.get_song_parameter('h')) #### Set transpositions #### # Red transposition self.guitar.set_transposition(0, self.get_song_parameter('i')) # Green transposition self.guitar.set_transposition(1, self.get_song_parameter('j')) # Blue transposition self.guitar.set_transposition(2, self.get_song_parameter('k')) def check_incoming(self): # Read data from the serial port incoming_serial = self.control_board.readline().rstrip().decode() # Flush the serial port self.control_board.flushInput() if incoming_serial: print(incoming_serial) if incoming_serial[0] is 'a': # Master level (Global Parameter) # Convert incoming string to a float value value_as_float = self.float_value_generator(self.get_number_from_string(incoming_serial)) # Set the master level self.master_level = value_as_float # Change the level of the song player self.song_player.set_level(self.backing_level * self.master_level) # Change the level of the guitar self.guitar.set_level(int(self.guitar_level * self.master_level)) # Write the parameter self.write_global_parameter(incoming_serial) elif incoming_serial[0] is 'b': # Song (Global Parameter) # Write the parameter self.write_global_parameter(incoming_serial) # Update the current song self.current_song = int(incoming_serial[2]) # Update local variables self.backing_level = self.float_value_generator(self.get_song_parameter('e')) self.guitar_level = self.midi_value_generator(self.get_song_parameter('d')) # Act on changes to parameter values self.song_player.set_song(self.current_song) self.song_player.set_level(self.backing_level * self.master_level) self.guitar.set_level(int(self.guitar_level * self.master_level)) self.guitar.set_sound_font(self.get_song_parameter('c')) self.guitar.set_zone_notes(0, self.get_song_parameter('f')) self.guitar.set_zone_notes(1, self.get_song_parameter('g')) self.guitar.set_zone_notes(2, self.get_song_parameter('h')) self.guitar.set_transposition(0, self.get_song_parameter('i')) self.guitar.set_transposition(1, self.get_song_parameter('j')) self.guitar.set_transposition(2, self.get_song_parameter('k')) # Transmit the song data self.song_data_requested() elif incoming_serial[0] is 'c': # Guitar # Set the sound font by removing the first two characters from the incoming serial string and converting to int self.guitar.set_sound_font(int(incoming_serial[1:])) # Write the parameter self.write_song_parameter(incoming_serial) elif incoming_serial[0] is 'd': # Guitar Level # convert incoming string to midi value midi_value = self.midi_value_generator(self.get_number_from_string(incoming_serial)) # Set the backing level local value self.guitar_level = midi_value # actually change the volume self.guitar.set_level(int(self.guitar_level * self.master_level)) # Write the parameter self.write_song_parameter(incoming_serial) elif incoming_serial[0] is 'e': # Backing Level # convert incoming string to float value value_as_float = self.float_value_generator(self.get_number_from_string(incoming_serial)) # Set the backing level local value self.backing_level = value_as_float # actually change the volume self.song_player.set_level(self.backing_level * self.master_level) # Write the parameter self.write_song_parameter(incoming_serial) elif incoming_serial[0] is 'f': # Red Scale # Get the scale value scale_value = int(incoming_serial[2]) + (int(incoming_serial[1]) * 10) # Set the scale self.guitar.set_zone_notes(0, scale_value) # Write the parameter self.write_song_parameter(incoming_serial) elif incoming_serial[0] is 'g': # Green Scale # Get the scale value scale_value = int(incoming_serial[2]) + (int(incoming_serial[1]) * 10) # Set the scale self.guitar.set_zone_notes(1, scale_value) # Write the parameter self.write_song_parameter(incoming_serial) elif incoming_serial[0] is 'h': # Blue Scale # Get the scale value scale_value = int(incoming_serial[2]) + (int(incoming_serial[1]) * 10) # Set the scale self.guitar.set_zone_notes(2, scale_value) # Write the parameter self.write_song_parameter(incoming_serial) elif incoming_serial[0] is 'i': # Red Root # Get the value transposition_value = int(incoming_serial[2]) + (int(incoming_serial[1]) * 10) # Set the scale self.guitar.set_transposition(0, transposition_value) # Write the parameter self.write_song_parameter(incoming_serial) elif incoming_serial[0] is 'j': # Green Root # Get the value transposition_value = int(incoming_serial[2]) + (int(incoming_serial[1]) * 10) # Set the scale self.guitar.set_transposition(1, transposition_value) # Write the parameter self.write_song_parameter(incoming_serial) elif incoming_serial[0] is 'k': # Blue Root # Get the value transposition_value = int(incoming_serial[2]) + (int(incoming_serial[1]) * 10) # Set the scale self.guitar.set_transposition(2, transposition_value) # Write the parameter self.write_song_parameter(incoming_serial) elif incoming_serial[0] is 'l': # Zone # Write the parameter self.write_song_parameter(incoming_serial) elif incoming_serial[0] is 'm': # Reconnect Request self.reconnect_wristband_flag = True elif incoming_serial[0] is 'n': # Power # Local action self.shutdown_device(incoming_serial) elif incoming_serial[0] is 'o': # Play self.song_player.set_play_state(int(incoming_serial[2])) elif incoming_serial[0] is 'r': # Initial data request. # Send the global parameters self.global_data_requested() # Send the song data self.song_data_requested() def shutdown_device(self, incoming_serial): print('Shutting down') #call("sudo shutdown -h now", shell=True) def write_song_parameter(self, incoming_serial): # Indicates whether or not a parameter has been found in the list. write_flag = False # Creates a list containing 5 lists, each of 8 items, all set to 0 w, h = 4, 9; song_data_as_list = [[0 for x in range(w)] for y in range(h)] '''print("before data added") with open('song_data.txt') as csv_file: song_data = csv.reader(csv_file, delimiter = ',') for row in song_data: print(row[current_song])''' with open(self.song_data_path) as csv_file: song_data_reader = csv.reader(csv_file, delimiter = ',') # Convert the song data to a list so that we can easily work with it. song_data_as_list = list(song_data_reader) # Initialise an index variable for use with the following for loop index = 0 # Interate through the song data list for index, row in enumerate(song_data_as_list): # Isolate the parameter associated with the currently selected song cell_string = row[self.current_song] # If the first character matches that of the incoming serial... if(incoming_serial[0] == cell_string[0]): #... indicate that we need to overwrite the parameter in this position. write_flag = True break # If the write flag is true... if write_flag == True: #... overwrite the parameter in the array. song_data_as_list[index][self.current_song] = incoming_serial # and write the data to the song data text file. with open(self.song_data_path, mode='w') as csv_file: song_data_writer = csv.writer(csv_file, delimiter = ',') song_data_writer.writerows(song_data_as_list) '''print("after data added") with open('song_data.txt') as csv_file: song_data = csv.reader(csv_file, delimiter = ',') for row in song_data: print(row[current_song])''' def write_global_parameter(self, incoming_serial): # Indicates whether or not a parameter has been found in the list. write_flag = False # Create a 2 x 1 array, initialised to 0 w, h = 2, 1; global_data_as_list = [[0 for x in range(w)] for y in range(h)] '''print("before data added") with open('global_data.txt') as csv_file: global_data_reader = csv.reader(csv_file, delimiter = ',') global_data_as_list = list(global_data_reader) print(global_data_as_list)''' with open(self.global_data_path) as csv_file: global_data_reader = csv.reader(csv_file, delimiter = ',') # Convert the global data to a list so that we can easily work with it. global_data_as_list = list(global_data_reader) # initialise index's for iterating through the following for loop. row_index = 0 cell_index = 0 for row_index, row in enumerate(global_data_as_list): for cell_index, cell_string in enumerate(row): # If the first character matches that of the incoming serial... if(incoming_serial[0] == cell_string[0]): #... indicate that we need to overwrite the parameter in this position. write_flag = True break # Exit the parent for loop if(write_flag == True): break # If the write flag is true... if write_flag == True: #... overwrite the parameter in the array. global_data_as_list[row_index][cell_index] = incoming_serial # and write the data to the song data text file. with open(self.global_data_path, mode='w') as csv_file: global_data_writer = csv.writer(csv_file, delimiter = ',') global_data_writer.writerows(global_data_as_list) '''print("after data added") with open('global_data.txt') as csv_file: global_data_reader = csv.reader(csv_file, delimiter = ',') global_data_as_list = list(global_data_reader) print(global_data_as_list)''' def global_data_requested(self): with open(self.global_data_path) as csv_file: global_data = csv.reader(csv_file, delimiter = ',') # Nasty hack to get global data sent. # Will need to be changed if more data is added to the text file for row in global_data: byte_array = bytes(row[0], 'utf-8') self.control_board.write(byte_array) byte_array = bytes(row[1], 'utf-8') self.control_board.write(byte_array) def song_data_requested(self): with open(self.song_data_path) as csv_file: song_data = csv.reader(csv_file, delimiter = ',') for row in song_data: byte_array = bytes(row[self.current_song], 'utf-8') byte_array1 = row[self.current_song] print(byte_array1) self.control_board.write(byte_array1.encode()) '''def get_last_selected_song(self): # create a 2 x 1 array w, h = 2, 1; global_data_as_list = [[0 for x in range(w)] for y in range(h)] with open('global_data.txt') as csv_file: global_data_reader = csv.reader(csv_file, delimiter = ',') global_data_as_list = list(global_data_reader) row_index = 0 cell_index = 0 for row_index, row in enumerate(global_data_as_list): for cell_index, cell_string in enumerate(row): if(cell_string[0] == 'b'): # song parameter found return int(cell_string[2])''' def get_global_parameter(self, parameter_character): # create a 2 x 1 array w, h = 2, 1; global_data_as_list = [[0 for x in range(w)] for y in range(h)] with open(self.global_data_path) as csv_file: global_data_reader = csv.reader(csv_file, delimiter = ',') global_data_as_list = list(global_data_reader) row_index = 0 cell_index = 0 for row_index, row in enumerate(global_data_as_list): for cell_index, cell_string in enumerate(row): # If the first character matches... if(parameter_character == cell_string[0]): #... return the value return int(cell_string[2]) + (int(cell_string[1]) * 10) def get_song_parameter(self, parameter_character): # Indicates whether or not a parameter has been found in the list. write_flag = False # Creates a list containing 5 lists, each of 8 items, all set to 0 w, h = 4, 9; song_data_as_list = [[0 for x in range(w)] for y in range(h)] '''print("before data added") with open('song_data.txt') as csv_file: song_data = csv.reader(csv_file, delimiter = ',') for row in song_data: print(row[current_song])''' with open(self.song_data_path) as csv_file: song_data_reader = csv.reader(csv_file, delimiter = ',') # Convert the song data to a list so that we can easily work with it. song_data_as_list = list(song_data_reader) # Initialise an index variable for use with the following for loop index = 0 # Interate through the song data list for index, row in enumerate(song_data_as_list): # Isolate the parameter associated with the currently selected song cell_string = row[self.current_song] # If the first character matches... if(parameter_character == cell_string[0]): #... return the value return int(cell_string[2]) + (int(cell_string[1]) * 10) def get_number_from_string(self, string_value): return int(string_value[2]) + (int(string_value[1]) * 10) def tx_wristband_connection_attempt(self): character_to_transmit = 'p00' self.control_board.write(character_to_transmit.encode()) def tx_wristband_success(self): character_to_transmit = 'q00' self.control_board.write(character_to_transmit.encode()) def tx_wristband_failure(self): character_to_transmit = 'r00' self.control_board.write(character_to_transmit.encode())
UTF-8
Python
false
false
15,850
py
49
parameter_manager.py
37
0.67123
0.66183
0
463
33.226782
115
kyrs/hackerank-solution
12,206,297,088,703
f3a005badda087592dccd0c572e82ac986771aa2
4265c94c924f0086a8541d7d768db1b73a9982ed
/Artificial Intelligence/save_princess_2/princess2.py
c5938aa2073bd2e208d9086dcecf2d4e5375296d
[]
no_license
https://github.com/kyrs/hackerank-solution
f27972af9d234a48102f187fc23d7d4bd06f15bb
8c3ba62802dcc8a487b91f19961839af14a26984
refs/heads/master
2021-01-10T08:04:39.980852
2016-01-17T14:30:55
2016-01-17T14:30:55
49,046,311
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
''' Coded by Kumar Shubham Date : 6-Jan-2016''' #!/bin/python class SavePrincess(object): def __init__(self,m, grid): self.SizeMatrix = m self.GridMatrix = grid self.PrincessCordinate = None self.BotCordinate = None self.PrincessMarker = "p" self.BotMarker = "m" def ValidRow(self): return self.SizeMatrix == len(self.GridMatrix) def ValidCol(self): CorrectFlag =True for row in self.GridMatrix: if not len(row) == self.SizeMatrix: Exception("Wrong column !!") CorrectFlag = False break return CorrectFlag def ValidMatrix(self): RowValid = self.ValidRow() ColumnValid = self.ValidCol() return (RowValid and ColumnValid) def FindCoordinate(self, marker) : CoordPoint =[] for i,row in enumerate(self.GridMatrix): for j,col in enumerate(row): if col == marker : CoordPoint = [i,j] if len(CoordPoint) == 0 : Exception("%s Marker not Found "%(marker)) return CoordPoint def PrincessCoordinate(self): return self.FindCoordinate(self.PrincessMarker) def BotCoordinate(self): return self.FindCoordinate(self.BotMarker) def nextMove(n,r,c,grid): Grid = SavePrincess(n,grid) Grid.BotCoordinate = [r,c] BotPosition = [r,c] if not Grid.ValidMatrix() : Exception ("Matrix is invalid !!!") else: PrincessPosition = Grid.PrincessCoordinate() PrincessPosition[0] = BotPosition[0]-PrincessPosition[0] PrincessPosition[1] = BotPosition[1]-PrincessPosition[1] #BotPosition = [0,0] BotX = 0 BotY = 0 PrincessY = PrincessPosition[0] PrincessX = PrincessPosition[1] #Xdepth = BotX-PrincessX #Ydepth = BotY-PrincessY PathDistance = [abs(PrincessX),abs(PrincessY)] PathChoose = min(PathDistance) IndexMinPath = PathDistance.index(PathChoose) if (PathChoose == 0): IndexMinPath = not IndexMinPath if IndexMinPath == False : if (PrincessX>0): Turn = "LEFT" else : Turn = "RIGHT" if IndexMinPath== True : if (PrincessY>0): Turn = "UP" else: Turn = "DOWN" return Turn n = input() r,c = [int(i) for i in raw_input().strip().split()] grid = [] for i in xrange(0, n): grid.append(raw_input()) print nextMove(n,r,c,grid)
UTF-8
Python
false
false
2,676
py
9
princess2.py
8
0.548954
0.540732
0
122
20.942623
64
iamsaptorshe07/TRAVMAKS-Old
15,547,781,648,692
7ccaafb941555a508caa36e70a4cf3a85ff36cf4
6596113cfc5a4d19a1edbb1bc93cb0d43af67a6d
/travelagency/urls.py
74ad76a2e5f25837ff7cd7ab06ac51b454d2a68d
[]
no_license
https://github.com/iamsaptorshe07/TRAVMAKS-Old
3fe7cbb603264ab3513439a42eec8843af859daa
e0159ae8e7cd1c77e6475df77cc9dc769c7d4bd2
refs/heads/main
2023-07-01T21:08:36.931079
2021-07-31T08:26:11
2021-07-31T08:26:11
333,350,933
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.urls import path from .views import * from .tests import * urlpatterns = [ path('myagency/<agid>',travelagency_home,name='travelAgencyHome'), path('myagency/addtour/<int:uid>/<str:agid>',addTour,name='addTour'), path('agencytours/<int:uid>/<str:agid>',agencyTours,name='agencyTour'), path('agencytours/edit-tour/<str:agentId>/<str:tourId>',editTours,name='editTours'), path('agencytours/delete-tour/<agentId>/<tourId>',deleteteTour,name='deleteteTour'), path('booking-history/<agentId>',booking_history,name='bookingHistory'), path('upcoming-tours/<agentId>',upcoming_tours,name='upcomingTours'), path('ongoing-tours/<agentId>',ongoing_tours,name='ongoingTours'), path('notifications',bookingNotification,name='bookingNotification'), path('accept-package-booking-order/<orderId>',acceptOrder,name='acceptOrder'), path('decline-package-booking-order/<orderId>',declineOrder,name='declineOrder'), path('travmaks-partner/<agencyID>',agencyTourShare,name='AgencyPage'), path('test-url',testpage,name='testURL'), ]
UTF-8
Python
false
false
1,073
py
123
urls.py
60
0.730662
0.730662
0
18
58.666667
88
anhnda/gformstats
13,056,700,599,124
82902775297df8b311c39ac01468ff48e2a0d9f9
622eea38f1fb1c4bedddf26c1c5904c078339eef
/data/final_responses/IT4866_20132546/20132546_RR.py
e04cdcc1d11de7650748039ac8d4c556d13ce4db
[]
no_license
https://github.com/anhnda/gformstats
4aec7ee2d325caabbf65cd5b72fdb4eab9d13c25
5e1ae2a600464f50185b887c7efa906e85b4cad6
refs/heads/master
2019-03-20T05:29:10.599530
2018-03-05T07:28:22
2018-03-05T07:28:22
105,976,418
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from sklearn.preprocessing import scale from sklearn import metrics import numpy import csv # Trích ma trận X và vector y từ file dữ liệu đã cho Xy = numpy.loadtxt("/home/mable/Desktop/python/training-data.csv", dtype=float ,delimiter=",", skiprows=1) Xy1 = numpy.loadtxt("/home/mable/Desktop/python/20132546-test.csv", dtype=float ,delimiter=",") X = Xy[:, 0:-1] X = scale(X) y = Xy[:, -1] y -= y.mean() X_train = X y_train = y X_test = Xy1[:, 0:-1] X_test = scale(X_test) # Tính w với alpha = 0.5 với Ridge from sklearn.linear_model import Ridge rreg = Ridge(alpha=0.5, normalize=True) rreg.fit(X_train, y_train) rreg.coef_ preds = rreg.predict(X_test) # print 'RMSE (Ridge reg.) =', np.sqrt(metrics.mean_squared_error(y_test, preds)) # sử dụng RidgeCV để tìm alpha tốt nhất from sklearn.linear_model import RidgeCV alpha_range = 10.**np.arange(-2, 3) rregcv = RidgeCV(normalize=True, scoring='mean_squared_error', alphas=alpha_range) rregcv.fit(X_train, y_train) rregcv.alpha_ preds = rregcv.predict(X_test) # print 'RMSE (Ridge CV reg.) =', np.sqrt(metrics.mean_squared_error(y_test, preds)) # Giá trị y_test print preds # in ra giá trị alpha tốt nhất print rregcv.alpha_ # GHi giá trị y_test vào file csv r = csv.reader(open('/home/mable/Desktop/python/20132546-test.csv')) # Here your csv file lines = [l for l in r] for i in range(0,10): lines[i][8] = preds[i] writer = csv.writer(open('/home/mable/Desktop/python/20132546test.csv', 'w')) writer.writerows(lines)
UTF-8
Python
false
false
1,540
py
503
20132546_RR.py
109
0.700067
0.670675
0
49
29.55102
106
marcelopederiva/CodeSignal
12,481,174,963,129
8cb856cc2e73a3cd1d64a5bac63968fe5be30103
6372a2de8c0d904504cc004b5bddddf47e6ae44b
/Arcade_Intro/checkPalindrome.py
04632dedbd0d641450c08652e6e371373017e58f
[]
no_license
https://github.com/marcelopederiva/CodeSignal
8d9fee5908403316b72adfa44c01daefd80501e9
b5006caa47cbe4dbaf05f175abd7cb75ba81ee83
refs/heads/master
2021-05-21T19:00:23.046352
2020-04-03T14:58:27
2020-04-03T14:58:27
252,754,653
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def checkPalindrome(inputString): if list(inputString) == list(inputString)[::-1]: return True else: return False
UTF-8
Python
false
false
149
py
57
checkPalindrome.py
57
0.583893
0.577181
0
5
26.6
52
zzlyzq/speeding
9,002,251,489,632
52a68bb591bfd7fdfcf6ab8057a3d2d04e68b8f4
c5c71eb1011f53a6e878b91ca02eebdba5e06c37
/funcs/mgmt.py
e50a5c87fc11b064517954c5c6022b20805fd07a
[]
no_license
https://github.com/zzlyzq/speeding
4458dc4443ed5f548952a874f9aa8d1dd75f19c6
fc8f61660910c9cba8979b368f146efb76d5810b
refs/heads/master
2021-01-19T13:49:52.179935
2017-04-13T01:43:09
2017-04-13T01:43:09
88,112,397
1
1
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -* from fabric.api import * from fabric.context_managers import * from fabric.contrib.console import confirm from fabric.contrib.files import * from fabric.contrib.project import rsync_project import fabric.operations import time,os import logging import base64 from getpass import getpass import json import sys # 定义一些常量 ## 本地软件目录 env.local_softdir="/opt/software/" ## 远端软件目录 env.remote_softdir="/opt/software/" ## 远端家目录 env.remote_dir="/opt/machtalk/" ############# MGMT START 管理机器部署 @task @roles('mgmt') def files_upload(): #filenames=[ 'addons.tar.gz', 'erlang.tar.gz', 'haproxy.tar.gz', 'mariadb-10.1.16-linux-x86_64.tar.gz', 'mq.tar.gz', 'openfalcon.tar.gz', 'rd.tar.gz', 'solrcloud.tar.gz', 'cloudera-manager-el6-cm5.5.0_x86_64.tar.gz', 'fastdfs.tar.gz', 'kafka_2.12-0.10.2.0.tar.gz', 'mongodb-linux-x86_64-2.6.11.tar.gz', 'nginx.tar.gz', 'rabbitmq_server-3.6.5.tar.gz', 'redis-2.8.23.tar.gz', 'zookeeper-3.4.7.tar.gz', 'CDH-5.5.0-1.cdh5.5.0.p0.8-el6.parcel', 'CDH-5.5.0-1.cdh5.5.0.p0.8-el6.parcel.sha', 'others' ] filenames=[ 'addons.tar.gz' ] for filename in filenames: # TODO 如果dst dir 不存在,那么就自动创建 put(env.local_softdir+filename,env.remote_softdir)
UTF-8
Python
false
false
1,297
py
21
mgmt.py
20
0.702391
0.64798
0
33
35.787879
496
mattf4171/ComputerNetworks
17,506,286,700,518
1ce68967663adcbf5a8a7bcb9e5e8e42e54d7918
684407cc2a451ae36aa996bdc35eb52d27339b73
/TCP_threadedServer/serverTCP.py
3d42ae53fc61e145ed94105db4add2ee612c92f9
[]
no_license
https://github.com/mattf4171/ComputerNetworks
bc1162979b84c7521f67b5a14b507301ad71dcc1
06adc719f38867120682feca4268277d680c4f7c
refs/heads/main
2023-04-09T18:39:50.840666
2021-04-05T00:04:01
2021-04-05T00:04:01
354,667,527
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Apr 4 16:27:09 2021 @author: matthewfernandez """ from socket import * import threading ​ i = 0 sentences = [] # will append the messages in the empty array then dispay them in the order they were received ​ def catch_msg(socket, name): global i, sentences sentences.append(socket.recv(1024).decode()) msg = name + " Sent message: " + sentences[i] # format for each client program running print(msg) i += 1 ​ ​ ​ serverPort = 12000 serverSocket = socket(AF_INET, SOCK_STREAM) serverSocket.bind(("",serverPort)) serverSocket.listen(2) # listen for 2 client connections print("The server is ready to receive") ​ while True: connectionSocketX,addrX = serverSocket.accept() # First connection print("Accepted first connection, calling it connection X") connectionSocketX.send("Client X connected".encode()) connectionSocketY,addrY = serverSocket.accept() # Second connection print("Accepted second connection, calling it connection Y") connectionSocketY.send("Client Y connected".encode()) ​ print("\nWaiting to receive messages from client X and client Y\n") ​ t1 = threading.Thread(target=catch_msg,args = (connectionSocketX,"Client X")) t2 = threading.Thread(target=catch_msg,args = (connectionSocketY,"Client Y")) t1.start() t2.start() t2.join() t1.join() ​ msg = sentences[0] + " received before " + sentences[1] connectionSocketX.send(msg.encode()) connectionSocketY.send(msg.encode()) ​ connectionSocketX.close() # free up the ports since we no longer need them connectionSocketY.close()
UTF-8
Python
false
false
1,608
py
2
serverTCP.py
2
0.732368
0.710957
0
54
28.407407
109
Starenesha/django-prj-test
7,267,084,687,475
b051db1e23c63cd872bcc9487204cd93249d6119
1ad01cf671ec81155e470030999b5fdd13919d58
/meter/migrations/0002_csvupload_meter.py
d3514d24289cfb11152288e62438f58c752a988c
[]
no_license
https://github.com/Starenesha/django-prj-test
affa250087b6ffb2783c654b32ab54ac3686799b
c5ceaca4fb997eb541b8dded36c72c8e98e50730
refs/heads/master
2023-04-27T10:49:43.645172
2021-08-08T16:16:44
2021-08-08T16:16:44
199,383,673
0
0
null
false
2023-04-21T20:34:53
2019-07-29T05:23:35
2021-08-08T16:16:47
2023-04-21T20:34:51
37
0
0
5
Python
false
false
# Generated by Django 2.2.3 on 2019-08-06 02:37 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('meter', '0001_initial'), ] operations = [ migrations.AddField( model_name='csvupload', name='meter', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='meter.Meter'), ), ]
UTF-8
Python
false
false
467
py
13
0002_csvupload_meter.py
7
0.620985
0.5803
0
19
23.578947
111
krishna0512/drf
6,236,292,515,787
37eedf304e2e412c25aeb2aab1d9b2fff6828b0c
5fbc48cb9d5ff7688be323434e8879563c97256e
/mysite/polls/migrations/0008_auto_20150926_1129.py
123b7be296f8fa84471c13a480514885acf20841
[]
no_license
https://github.com/krishna0512/drf
c92defb47420f2ef124fa6964e7e78e327fdd2dd
2516e069d88466c5fce2252d5c4eedc3d07920a1
refs/heads/master
2021-01-10T19:54:16.282489
2015-10-01T11:15:23
2015-10-01T11:15:23
37,807,772
0
2
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('polls', '0007_student'), ] operations = [ migrations.AddField( model_name='question', name='correct', field=models.CharField(default='', max_length=20000, verbose_name=b'list of users given correct answers.'), preserve_default=False, ), migrations.AddField( model_name='question', name='incorrect', field=models.CharField(default='', max_length=20000, verbose_name=b'list of users given incorrect ans...'), preserve_default=False, ), ]
UTF-8
Python
false
false
756
py
24
0008_auto_20150926_1129.py
18
0.587302
0.56746
0
26
28.076923
119
WaterH2P/Algorithm
2,070,174,270,608
37d995362378bdad21e9b2d4bffa124cb0871cf4
9cc3dfb89e7243595d0a76c6e0a4e77a04230eb2
/Python/Sort/insert.py
4cf279863488f506e1687a1158e2e980cf6dca75
[]
no_license
https://github.com/WaterH2P/Algorithm
a369f5013eb52108402b6d8ab97cdbbdfb75cf35
35e18c8b81342a84dec4a5fdbb5ddf4b6447ae3d
refs/heads/master
2022-11-28T18:19:57.145915
2020-08-04T12:12:13
2020-08-04T12:12:13
211,606,354
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def sort_insert(l): index, maxI = 0, len(l) while index < maxI - 1 : i = index + 1 while i > 0 and l[i] < l[i-1] : l[i], l[i-1] = l[i-1], l[i] i -= 1 index += 1 return l L = [2, 5, 7, 1, 4, 3, 0] L2 = sort_insert(L) print(L2)
UTF-8
Python
false
false
286
py
147
insert.py
146
0.412587
0.34965
0
13
21.076923
39
thisispratt/hacktoberfest_2020
455,266,563,392
b445abee05726edd70673fd34d75cb119a92a70d
7b59cba866493d8c4a57c4b48e53a266b118e07a
/Python/1.py
205d4a934a1d82d86d87514c19c0d67016288171
[]
no_license
https://github.com/thisispratt/hacktoberfest_2020
afa3d5f80da76865b35494b6f424c9995a58cc14
c31937273d815715e38d6123d130c8f4e93968f3
refs/heads/master
2023-04-20T02:39:47.333188
2021-10-23T20:31:20
2021-10-23T20:31:20
212,836,169
52
106
null
null
null
null
null
null
null
null
null
null
null
null
null
#command used to print something print("Hello world")
UTF-8
Python
false
false
56
py
61
1.py
48
0.75
0.75
0
2
26
32
KaiOWhatmore/PE-Algorithms
10,376,640,997,859
5a86dc52e7907f6f5e44437a91014918f617b791
226ff10abebba77f5367a7d5a1ee2d127d53da1b
/Project Euler/PE_P17_Sum Of Letters_RadiiofCircle.py
ea12d5803a56856ab41bbfeda72a0b2705bb102b
[]
no_license
https://github.com/KaiOWhatmore/PE-Algorithms
3f69108af5cccd639c26f1981d8517ef5ce396b0
1758ea7e089916c14846cdd2112dd65b69e04fd1
refs/heads/master
2023-06-01T14:25:51.312242
2021-06-16T09:33:22
2021-06-16T09:33:22
377,435,785
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# dictionary to store the values dic = {n: 0 for n in range(0, 1001)} # intial values given manually dic[0] = 0 # '' dic[1] = 3 # 'one' dic[2] = 3 # 'two' dic[3] = 5 # 'three' dic[4] = 4 # 'four' dic[5] = 4 # 'five' dic[6] = 3 # 'six' dic[7] = 5 # 'seven' dic[8] = 5 # 'eight' dic[9] = 4 # 'nine' dic[10] = 3 # 'ten' dic[11] = 6 # 'eleven' dic[12] = 6 # 'twelve' dic[13] = 8 # 'thirteen' dic[14] = 8 # 'fourteen' dic[15] = 7 # 'fifteen' dic[16] = 7 # 'sixteen' dic[17] = 9 # 'seventeen' dic[18] = 8 # 'eighteen' dic[19] = 8 # 'nineteen' dic[20] = 6 # 'twenty' dic[30] = 6 # 'thirty' dic[40] = 5 # 'forty' dic[50] = 5 # 'fifty' dic[60] = 5 # 'sixty' dic[70] = 7 # 'seventy' dic[80] = 6 # 'eighty' dic[90] = 6 # 'ninety' # for loop to generate the values for 21-99 # as we have alreay entered the values under # 20 manually for i in range(21, 100): tens = int(i / 10) * 10 ones = i - tens dic[i] = dic[tens] + dic[ones] # for loop to generate values for 100-999 for i in range(100, 1000): hundreds = int(i / 100) tens_ones = i - hundreds * 100 # if the value of tens and ones place is 0 # just use 'hundred' instead of 'and hundred' if tens_ones == 0: dic[i] = dic[hundreds] + 7 # 'hundred' else: # 10 refers - 'and hundred' dic[i] = dic[hundreds] + 10 + dic[tens_ones] dic[1000] = 11 # 'one thousand' # printing the value of each letter digit sum print(sum(dic.values()))
UTF-8
Python
false
false
1,493
py
23
PE_P17_Sum Of Letters_RadiiofCircle.py
21
0.5499
0.464836
0
84
16.77381
52
vnleonenko/EPDE
8,323,646,649,874
c35e9e79dc5c961ff927e255612b41416dbab9f7
af562c3070916266bfce0b31fe094aef9e4d7ac7
/tests/system/ode_textbook_interfaced.py
9abe3bd32ed296fb9a81bd0006272af01c1c0328
[ "BSD-3-Clause" ]
permissive
https://github.com/vnleonenko/EPDE
fb9cfc29cec24caa9c69a7688974e50fb7dacd7d
c9f5f4a3c593dbd17987576bfcabf5554c41ed66
refs/heads/main
2023-08-15T02:36:05.622484
2021-09-30T10:40:59
2021-09-30T10:40:59
417,873,275
0
0
NOASSERTION
true
2021-10-16T15:46:12
2021-10-16T15:46:12
2021-10-15T15:18:18
2021-10-14T16:01:06
583
0
0
0
null
false
false
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jul 13 14:45:14 2021 @author: mike_ubuntu """ import numpy as np import epde.interface.interface as epde_alg from epde.interface.prepared_tokens import Custom_tokens, Trigonometric_tokens, Cache_stored_tokens from epde.evaluators import Custom_Evaluator if __name__ == '__main__': t = np.linspace(0, 4*np.pi, 1000) u = np.load('/media/mike_ubuntu/DATA/EPDE_publication/tests/system/Test_data/fill366.npy') # loading data with the solution of ODE # Trying to create population for mulit-objective optimization with only # derivatives as allowed tokens. Spoiler: only one equation structure will be # discovered, thus MOO algorithm will not be launched. dimensionality = t.ndim - 1 epde_search_obj = epde_alg.epde_search() ''' -------------------------------------------------------------------------------------------------------------------------------- Так как в этом примере мы будем использовать собственноручно-заданные семейства токенов, то для начала нужно ввести функцию для получения значений токенов на сетке, определяющей область, для которой ищется дифф. уравнение, при фиксированных прочих параметрах. В случае, если семейство "порождено" одним токеном (как, например, функции, обратные значениям сетки вида 1/x^n), то можно задать одиночную лямба-, или обычную функцию. В случае, когда в семействе предполагается несколько функций, нужно использовать словарь с ключами - названиями функций, значениями - соответсвующими лямбда-, или обычными функциями. Формат задания функции для оценки: не должно быть обозначенных аргументов, *args, и **kwargs. В kwargs будут передаваться все параметры функций, а в *args - значения аргументов (координаты на сетке). ''' custom_trigonometric_eval_fun = {'cos' : lambda *grids, **kwargs: np.cos(kwargs['freq'] * grids[int(kwargs['dim'])]) ** kwargs['power'], 'sin' : lambda *grids, **kwargs: np.sin(kwargs['freq'] * grids[int(kwargs['dim'])]) ** kwargs['power']} ''' -------------------------------------------------------------------------------------------------------------------------------- Задаём объект для оценки значений токенов в эволюционном алгоритме. Аргументы - заданная выше функция/функции оценки значений токенов и лист с названиями параметров. ''' custom_trig_evaluator = Custom_Evaluator(custom_trigonometric_eval_fun, eval_fun_params_labels = ['freq', 'dim', 'power']) ''' -------------------------------------------------------------------------------------------------------------------------------- Задам через python-словарь диапазоны, в рамках которых могут браться параметры функций оценки токенов. Ключи должны быть в формате str и соотноситься с аргументами лямда-функций для оценки значения токенов. Так, для введённой выше функции для оценки значений тригонометрических функций, необходимы значения частоты, степени функции и измерения сетки, по которому берётся аргумент с ключами соответственно 'freq', 'power' и 'dim'. Значения, соответствующие этим ключам, должны быть границы, в пределах которых будут искаться значения параметров функции при оптимизации, заданные в формате python-tuple из 2-ух элементов: левой и правой границы. Целочисленное значение границ соответствует дискретным значеням (например, при 'power' : (1, 3), будут браться степени со значениями 1, 2 и 3); при действительных значениях (типа float) значения параметров берутся из равномерного распределения с границами из значения словаря. Так, например, при значении 'freq' : (1., 3.), значения будут выбираться из np.random.uniform(low = 1., high = 3.), например, 2.7183... ''' trig_params_ranges = {'power' : (1, 1), 'freq' : (0.95, 1.05), 'dim' : (0, dimensionality)} ''' -------------------------------------------------------------------------------------------------------------------------------- Далее необходимо определить различия в значениях параметров, в пределах которых функции считаются идентичными, чтобы строить уникальные структуры уравнений и слагаемых в них. Например, для эволюционного алгоритма можно считать, что различия между sin(3.135 * x) и sin(3.145 * x) незначительны и их можно считать равными. Задание значений выполняется следующим образом: ключ словаря - название параметра, значение - максимальный интервал, при котором токены счиатются идентичными. По умолчанию, для дискретных параметров равенство выполняется только при полном соответствии, а для действительно-значных аргументов равенство выполняется при разнице меньше, чем 0.05 * (max_param_value - min_param_value). ''' trig_params_equal_ranges = {'freq' : 0.05} custom_trig_tokens = Custom_tokens(token_type = 'trigonometric', # Выбираем название для семейства токенов. token_labels = ['sin', 'cos'], # Задаём названия токенов семейства в формате python-list'a. # Названия должны соответствовать тем, что были заданы в словаре с лямбда-ф-циями. evaluator = custom_trig_evaluator, # Используем заранее заданный инициализированный объект для функции оценки токенов. params_ranges = trig_params_ranges, # Используем заявленные диапазоны параметров params_equality_ranges = trig_params_equal_ranges) # Используем заявленные диапазоны "равенства" параметров ''' Расширим допустимый пулл токенов, добавив функции, обратные значениям координат (вида 1/x, 1/t, и т.д.). Для получения их значений зададим единую лямбда-функцию `custom_inverse_eval_fun`, и далее соответствующее семейство токенов. ''' custom_inverse_eval_fun = lambda *grids, **kwargs: np.power(grids[int(kwargs['dim'])], - kwargs['power']) custom_inv_fun_evaluator = Custom_Evaluator(custom_inverse_eval_fun, eval_fun_params_labels = ['dim', 'power'], use_factors_grids = True) inv_fun_params_ranges = {'power' : (1, 2), 'dim' : (0, dimensionality)} custom_inv_fun_tokens = Custom_tokens(token_type = 'inverse', # Выбираем название для семейства токенов - обратных функций. token_labels = ['1/x_{dim}',], # Задаём названия токенов семейства в формате python-list'a. # Т.к. у нас всего один токен такого типа, задаём лист из 1 элемента evaluator = custom_inv_fun_evaluator, # Используем заранее заданный инициализированный объект для функции оценки токенов. params_ranges = inv_fun_params_ranges, # Используем заявленные диапазоны параметров params_equality_ranges = None) # Используем None, т.к. значения по умолчанию # (равенство при лишь полном совпадении дискретных параметров) # нас устраивает. boundary = 10 custom_grid_tokens = Cache_stored_tokens(token_type = 'grid', boundary = boundary, token_labels = ['t'], token_tensors={'t' : t}, params_ranges = {'power' : (1, 1)}, params_equality_ranges = None) epde_search_obj.fit(data = u, boundary=boundary, equation_factors_max_number = 2, coordinate_tensors = [t,], additional_tokens = [custom_trig_tokens, custom_inv_fun_tokens, custom_grid_tokens], field_smooth = False, memory_for_cache=5, data_fun_pow = 2) epde_search_obj.equation_search_results(only_print = True, level_num = 1) # showing the Pareto-optimal set of discovered equations
UTF-8
Python
false
false
11,038
py
53
ode_textbook_interfaced.py
49
0.608216
0.598651
0
118
68.110169
168
bitmapup/patricia_trie
14,714,557,999,374
50436488b9dc1024dccc7c8fcf1d1d66d0fd99a4
3b372f7d4e2cd18c5481a0602393c221a152665a
/coppredict/evaluation.py
e52e4e0e5127a85de0dddfec47ce15a32e5f30a6
[ "MIT" ]
permissive
https://github.com/bitmapup/patricia_trie
462b1785138efef937f7b6af414c1044151f5299
59a82dd04f82030c9f0995859e5dfcb75ab54476
refs/heads/main
2023-08-11T03:46:41.848163
2021-09-26T05:02:14
2021-09-26T05:02:14
363,258,444
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- import os import psutil import time def get_process_memory(): process = psutil.Process(os.getpid()) return process.memory_info().rss def get_time(): time_v = time.time() return time_v def get_time_build(time_start, time_end, message): if time_start != -1 and time_end != -1: return "Time execution: " + message + str(time_end - time_start) + ' seconds' + '\n' def get_memory_build(mem_start, mem_end, message): if mem_start != -1 and mem_end != -1: return "Memory Used: " + message + str((mem_end - mem_start)/1024) + ' Bytes' + '\n'
UTF-8
Python
false
false
607
py
12
evaluation.py
7
0.609555
0.594728
0
25
23.28
92
yaelBrown/Codewars
14,989,435,908,468
59b87522b345b6710fe2c5bd82bac49319b13b2e
ee9655d3ffcdb70ae68692f400096b479b39d0f7
/Python/MovingZerosToEnd.py
3a1fab93c3ba875b155df0058b8756cfcad6250a
[]
no_license
https://github.com/yaelBrown/Codewars
4f123387b8c4ea6e55ec1ff5d2ae9b1d674c06cf
efa10770b593e48579c256b9d6b69deede64e9ba
refs/heads/master
2020-11-27T16:02:43.409465
2020-03-20T00:59:49
2020-03-20T00:59:49
229,521,981
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" Write an algorithm that takes an array and moves all of the zeros to the end, preserving the order of the other elements. move_zeros([false,1,0,1,2,0,1,3,"a"]) # returns[false,1,1,2,1,3,"a",0,0] """ def move_zeros(l): out = [] count = 0 for x in l: if x == 0 and not type(x) == bool: count += 1 continue out.append(x) if count > 0: for y in range(count): out.append(0) return out print(move_zeros([False,1,0,1,2,0,1,3,"a"])) # print(0 == False)
UTF-8
Python
false
false
498
py
51
MovingZerosToEnd.py
50
0.586345
0.532129
0
28
16.821429
121
Gincral/cp468-artificial-intelligence
11,098,195,505,341
3d31db510398dcf922c0433ffc1f478ab5f805a5
2cde2eb5b828745f2bce2ec11b99ce08b41b4256
/asgn01/8-puzzle.py
d10447d99bc0c08e692f77bb4ab7e08a935a3964
[]
no_license
https://github.com/Gincral/cp468-artificial-intelligence
d9ba5b561f3b543fed617a8de682a3ffd32d258e
9a4c4a969ce03100dd1c63e9101ef5ef79504f02
refs/heads/main
2023-02-01T02:54:50.225748
2020-12-11T20:44:02
2020-12-11T20:44:02
300,418,950
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np import random import heapq import sys import csv class node: def __init__(self, state, action, pathCost, heuristicCost): self.state=state #state/data, position of all tiles self.action=action #action required to get to this state from parent self.pathCost=pathCost #cost from initial state to this node self.heuristicCost = heuristicCost #informed heuristic cost class N_Puzzle: absolute=abs #locally saving absolute function to increase speed of heuristic calculations def __init__(self, goalState, size): self.goal=goalState self.goalIndex={} for i in range(size): self.goalIndex[goalState[i]]=i self.size=size #length of array, 9 for 8 puzzle, 16 for 15 puzzle 25, for 24 puzzle self.numRows=int(np.sqrt(size)) #number of rows/columns def findTile(self,puzzle,tile): for index in range(self.size): if puzzle[index]==tile: return index def calculateHeuristicCost(self, puzzle): if self.heuristic == "h1": # Calculation for h1: Number of misplaced tiles h1 = 0 for tile in range(self.size): if puzzle[tile] != 0 and puzzle[tile] != self.goal[tile]: h1 += 1 return h1 elif self.heuristic == "h2": # Calculation for h2: Total Manhattan distance h2 = 0 for row in range(self.size): if puzzle[row] != 0: tile = puzzle[row] goalPos = self.goalIndex[tile] manhattan = self.absolute(row//self.numRows - goalPos//self.numRows) + self.absolute(row%self.numRows - goalPos%self.numRows) h2 += manhattan return h2 elif self.heuristic == "h3": # Linear Conflict + Manhattan Distance/Taxicab geometry h3 = 0 conflictCount = 0 for index in range(self.size): if puzzle[index] != 0: tile = puzzle[index] goalPos = self.goalIndex[tile] manhattan = self.absolute(index//self.numRows - goalPos//self.numRows) + self.absolute(index%self.numRows - goalPos%self.numRows) h3 += manhattan conflictCount = self.linearConflict(index, tile, puzzle,self.goal) h3 += conflictCount*2 #every conflict requires at least 2 moves to fix return h3 #count how many times two tiles are in the same row but must pass each other to reach their goal positions def linearConflict(self, index, tile, puzzle, goal): conflictCount = 0 tileGoal = self.goalIndex[tile] if (index//self.numRows==tileGoal//self.numRows and (tileGoal%self.numRows-index%self.numRows)>0): #right row for i in range((index%self.numRows)+1, self.numRows): target = puzzle[self.numRows*(index//self.numRows)+i] if target!=0: targetGoal = self.goalIndex[target] if (targetGoal//self.numRows==tileGoal//self.numRows and targetGoal%self.numRows<tileGoal%self.numRows): conflictCount+=1 if (index//self.numRows==tileGoal//self.numRows and (tileGoal%self.numRows-index%self.numRows)>0): for i in range(index//self.numRows+1, self.numRows): target = puzzle[i%self.numRows+self.numRows*(index//self.numRows)] if target!=0: targetGoal = self.goalIndex[target] if (targetGoal%self.numRows==index%self.numRows and targetGoal//self.numRows<tileGoal//self.numRows): conflictCount+=1 return conflictCount def calcInversions(self,puzzle): size=self.size inversions = 0 for i in range(size): for j in range(i+1,size): tile1=puzzle[i] tile2=puzzle[j] #Make sure not to count the empty tile if(tile1 != 0 and tile2 != 0 and tile1 > tile2): inversions+=1 return inversions #generate random Puzzle and check that it is solvable before setting the data def generateRandomPuzzle(self): solvable=False puzzle=[0,*range(1,self.size)] while (not solvable): random.shuffle(puzzle) solvable=self.checkIfSolvable(puzzle) self.data=puzzle def checkIfSolvable(self,puzzle): size=self.size inversions = self.calcInversions(puzzle) if (size%2==1 ): return inversions%2 == 0 else: row=self.findTile(puzzle,0)//self.numRows if (row%2==1 and inversions%2==1) or (row%2==0 and inversions%2==0): return True else: return False def setHeuristic(self, heuristic): self.heuristic = heuristic def expandNode(self, parentNode): emptyTilePos = self.findTile(parentNode.state,0) row = int(emptyTilePos//self.numRows) col = int(emptyTilePos%self.numRows) children = [] # Try to create up to 3 new possible states by moving a tile into the empty space, avoiding reversing previous move # Move tile up if int(row) > 0 and parentNode.action!="DOWN": newState = parentNode.state.copy() newState[self.numRows*row+col] = parentNode.state[self.numRows*(row-1)+col] newState[self.numRows*(row-1)+col] = 0 children.append(node( newState, "UP", parentNode.pathCost + 1, self.calculateHeuristicCost(newState))) # Move tile down if int(row) < self.numRows - 1 and parentNode.action!="UP": newState = parentNode.state.copy() newState[self.numRows*row+col] = parentNode.state[self.numRows*(row+1)+col] newState[self.numRows*(row+1)+col] = 0 children.append(node( newState, "DOWN", parentNode.pathCost + 1, self.calculateHeuristicCost(newState))) # Move tile right if int(col) > 0 and parentNode.action!="RIGHT": newState = parentNode.state.copy() newState[self.numRows*row+col] = parentNode.state[self.numRows*row+col-1] newState[self.numRows*row+col-1] = 0 children.append(node( newState, "LEFT", parentNode.pathCost + 1, self.calculateHeuristicCost(newState))) # Move tile left if int(col) < self.numRows - 1 and parentNode.action!="LEFT": newState = parentNode.state.copy() newState[self.numRows*row+col] = parentNode.state[self.numRows*row+col+1] newState[self.numRows*row+col+1] = 0 children.append(node( newState, "RIGHT", parentNode.pathCost + 1, self.calculateHeuristicCost(newState))) return children def solve(self): root = (self.calculateHeuristicCost(self.data),0,node(self.data, None, 0, self.calculateHeuristicCost(self.data))) frontier = [] heapq.heappush(frontier,root) #adds root to frontier using heap method which always keeps smallest node in index 0 reached = {} #stores the nodes that have already been searched i=0 # ensures every node has unique priority without ordering the states outside of heuristic and path cost nodesExpanded = 0 newNode = None while (frontier) and nodesExpanded<15000000: #continue until frontier is empty or nodes expanded reaches 15 million newNode = heapq.heappop(frontier)[2] # Retrives first Node in priority Queue if (newNode.state==self.goal): return nodesExpanded, newNode.pathCost childNodes = self.expandNode(newNode) #find children node nodesExpanded += 1 for child in childNodes: key = str(child.state) if key in reached: reachedCost = reached[key].pathCost + reached[key].heuristicCost if key not in reached or reachedCost>child.heuristicCost+child.pathCost: reached[key] = child childTuple=(child.heuristicCost+child.pathCost,i,child) heapq.heappush(frontier,childTuple) #pushes child into heap queue i+=1 #no solution found in 15million states return (nodesExpanded,-1) def main(): if len(sys.argv) == 1 or sys.argv[1] == '0': print("Please enter a valid puzzle size") print("Enter 3, 4, 5 for 8, 15 and 24 puzzle respectively") sys.exit() size=int(sys.argv[1]) # 3, 4, 5 for 8, 15 and 24 puzzle respectively goal = [*range(size*size)] myFile = open('PreSubTest.csv', 'w', newline='\n') #File that the nodes expanded and moves are saved too for each puzzle writer = csv.writer(myFile) writer.writerows([["H1 Nodes","H1 Moves","H2 Nodes","H2 Moves","H3 Nodes","H3 Moves",]]) for i in range(100): puzzle = N_Puzzle(goal,size*size) puzzle.generateRandomPuzzle() print("Puzzle #"+str(i+1)) print(puzzle.data) puzzle.setHeuristic("h1") resulth1=puzzle.solve() puzzle.setHeuristic("h2") resulth2=puzzle.solve() puzzle.setHeuristic("h3") resulth3=puzzle.solve() results=[[resulth1[0],resulth1[1],resulth2[0],resulth2[1],resulth3[0],resulth3[1]]] writer.writerows(results) if __name__ == "__main__": main()
UTF-8
Python
false
false
9,511
py
7
8-puzzle.py
3
0.603932
0.587005
0
198
47.040404
149
hongtao510/u_tool
9,792,525,471,320
a00ee5aa0a8b2a97d2494d3a5341ad8517b4a60e
d89a482aaf3001bbc4515f39af9ba474e1ae6062
/ubertool/ecosystem_inputs_db.py
283bfbca15444b837a0a946d0d6a4130679a39f9
[]
no_license
https://github.com/hongtao510/u_tool
2925e3694aba81714cf83018c3f8520a7b503228
98c962cfb1f53c4971fb2b9ae22c882c0fae6497
refs/heads/master
2021-01-10T20:40:24.793531
2014-03-14T22:57:37
2014-03-14T22:57:37
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- """ Created on Tue Jan 31 11:55:40 2012 @author: jharston """ import os os.environ['DJANGO_SETTINGS_MODULE']='settings' from django import forms from django.db import models from google.appengine.ext.webapp.util import run_wsgi_app from google.appengine.ext.webapp import template from google.appengine.api import users from google.appengine.ext import db from ecosystem_inputs import EcosystemInputs import datetime #YN = (('Yes','Yes'),('No','No')) class EcoInp(forms.Form): user_ecosystem_configuration = forms.ChoiceField(label="User Saved Ecosystem Inputs Configuration",required=True) config_name = forms.CharField(label="EcosystemInputs Configuration Name", initial="eco-config-%s"%datetime.datetime.now()) x_poc = forms.FloatField(label='Concentration of particulate organic carbon (kg OC/L)', initial='0') x_doc = forms.FloatField(label='Concentration of dissolved organic carbon (kg OC/L)', initial='0') c_ox = forms.FloatField(label='Concentration of dissolved oxygen (mg O2/L)', initial='5.0') w_t = forms.FloatField(label='Water temperature (degrees Celsius)') c_ss = forms.FloatField(label='Concentration of suspended solids (kg/L)') oc = forms.FloatField(label='Sediment organic Carbon (%)')
UTF-8
Python
false
false
1,264
py
740
ecosystem_inputs_db.py
166
0.744462
0.730222
0
27
45.851852
126
Holomoro/django_chase_comic
1,082,331,771,419
9162fddfccad8e90cca3b1e6e41b66f718a24d7f
ad463ed0176e6ec4cdc3ca361879ea9f5d05a8b9
/kahz_comic/comics/migrations/0003_auto_20150220_1201.py
7ec5e33213fecc132cb5a52bf1e80777ba0c9b04
[]
no_license
https://github.com/Holomoro/django_chase_comic
53c0c76241a6bb7d4473765992dfa53623c29661
6065aa27d9cd7df110d0e76a020e8e4bae734000
refs/heads/master
2016-09-11T13:36:37.658299
2015-03-18T14:01:55
2015-03-18T14:01:55
31,089,554
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('comics', '0002_auto_20150220_0026'), ] operations = [ migrations.RemoveField( model_name='comic', name='comic_image', ), migrations.AddField( model_name='comic', name='comic_link', field=models.URLField(default='http://i.imgur.com/ZXFbo4L.jpg'), preserve_default=False, ), ]
UTF-8
Python
false
false
571
py
5
0003_auto_20150220_1201.py
2
0.558669
0.527145
0
24
22.791667
76
eunh1107/StudyRaspberry-Pi
14,439,680,095,404
90f15e2f8a35e122b91bc93f84caad4ed0baca56
ff6cc81031d8cbe4d538b218a5da0dfb2f3b02be
/StudyPython/210705_003/210705_003/list05.py
6291cfae0a950bc124e58e4b290e72520afe8941
[]
no_license
https://github.com/eunh1107/StudyRaspberry-Pi
ff19b87da861f07a963f28899db73adff31ec971
679af2f61b90bd6b7fcf3fe0a5fe7ad6ee5ce676
refs/heads/main
2023-07-04T00:07:37.453850
2021-08-12T17:24:14
2021-08-12T17:24:14
382,286,335
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
aa = [30, 10, 20] print("현재의 리스트 : %s" % aa) # aa 리스트 전체 출력은 문자열로 인식하므로 %s는 aa 리스트를 대입 aa.append(40) # 요소를 하나 추가 print("append 후의 리스트 : %s" % aa) # 요소 추가 후에 aa 리스트를 출력 aa.pop() # stack 알고리즘 적용(마지막 1개를 꺼냄) # aa 리스트의 제일 마지막 요소를 뺀다. print("pop 후의 리스트 : %s" % aa) # 추가 후에 다시 요소를 빼고 나서 출력 aa.sort() # 리스트 요소 값들을 오름차순으로 정렬 print("sort 후의 리스트 : %s" % aa) # 정렬 후에 출력 aa.reverse() # 리스트 요소 값들을 역순으로 정렬 print("reverse 후의 리스트 : %s" % aa) # 역순 정렬 후에 출력 aa.insert(2, 222) # aa 리스트에 세 번째 위치에 222값을 추가 print("insert(2, 222) 후의 리스트 : %s" % aa) # 세 번째 위치에 추가 후에 출력 print("20값의 위치 : %d" % aa.index(20)) # 20이라는 요소 값이 있는 위치에 출력 aa.remove(222) # 222 요소 값을 리스트에서 삭제 print("remove(222) 후의 리스트 : %s" % aa) # 222 요소 값을 삭제 후에 출력 aa.extend([77,88,77]) # 다른 리스트를 확장 print("extend([77,88,77]) 후의 리스트 : %s" % aa) # 리스트 확장 후에 출력 print("77값의 개수 : %d" % aa.count(77)) # aa리스트에 77 요소 값이 몇 개 있는지 출력
UTF-8
Python
false
false
1,488
py
57
list05.py
50
0.557082
0.497886
0
19
48.842105
67
junyechen/PAT-Advanced-Level-Practice
11,321,533,827,375
a4e036874e5db5d808af41b11f5b575f2063d539
556da038494ad93b03923577b48f89dd6d70fb48
/1154 Vertex Coloring.py
c09e6112712bb0fa2d5489c29a08c7fbee5999f0
[]
no_license
https://github.com/junyechen/PAT-Advanced-Level-Practice
f5c9f604c458965c2165960aaac714f69ce1057b
401c9d3040a0273c0e2461c963b781bcebd33667
refs/heads/master
2020-06-19T10:55:19.564725
2020-05-12T10:21:14
2020-05-12T10:21:14
196,684,047
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" A proper vertex coloring is a labeling of the graph's vertices with colors such that no two vertices sharing the same edge have the same color. A coloring using at most k colors is called a (proper) k-coloring. Now you are supposed to tell if a given coloring is a proper k-coloring. Input Specification: Each input file contains one test case. For each case, the first line gives two positive integers N and M (both no more than 10​4​​), being the total numbers of vertices and edges, respectively. Then M lines follow, each describes an edge by giving the indices (from 0 to N−1) of the two ends of the edge. After the graph, a positive integer K (≤ 100) is given, which is the number of colorings you are supposed to check. Then K lines follow, each contains N colors which are represented by non-negative integers in the range of int. The i-th color is the color of the i-th vertex. Output Specification: For each coloring, print in a line k-coloring if it is a proper k-coloring for some positive k, or No if not. Sample Input: 10 11 8 7 6 8 4 5 8 4 8 1 1 2 1 4 9 8 9 1 1 0 2 4 4 0 1 0 1 4 1 0 1 3 0 0 1 0 1 4 1 0 1 0 0 8 1 0 1 4 1 0 5 3 0 1 2 3 4 5 6 7 8 8 9 Sample Output: 4-coloring No 6-coloring No """ ###################################################### """ 非常简单,一次通过 """ ###################################################### n, m = map(int, input().split()) edges = [] for _ in range(m): edges.append(list(map(int, input().split()))) for _ in range(int(input())): coloring = list(map(int, input().split())) for a, b in edges: if coloring[a] == coloring[b]: print('No') break else: print('%d-coloring' % len(set(coloring)))
UTF-8
Python
false
false
1,735
py
155
1154 Vertex Coloring.py
155
0.643234
0.598125
0
58
28.431034
305
maretec/MOHID_python_tools
19,464,791,790,474
703d88fd031488b7b5fd28c0fa24bbcddb6b60bb
282f44c3f10564489c3338f95295812fb9176a4e
/MapasDeCampos_by_hidromod/src/ModuloTimeSeriesDraw.py
1a94d03bf6f6fc2bf17a2838bbbde252c34f015d
[ "MIT" ]
permissive
https://github.com/maretec/MOHID_python_tools
92eebc44be3b01bda57cfe76ac974abf5c113f58
c69c03294e7e371be86cf980133bd8ae6829df60
refs/heads/master
2023-02-07T14:10:16.411017
2020-03-11T13:38:57
2020-03-11T13:38:57
151,395,700
8
11
MIT
false
2023-01-25T11:10:54
2018-10-03T10:27:13
2020-12-17T20:01:41
2023-01-25T11:09:54
242,146
8
7
0
Python
false
false
import matplotlib.pyplot as plt import matplotlib.pyplot as plt_date import matplotlib.dates as datesMat import logging import sys from matplotlib import gridspec import matplotlib as mpl from matplotlib.offsetbox import AnchoredText import numpy as np import ModuloTimeSeriesFunctions as MTSF class Draw_timeseries: def __init__(plottype,Timeseries,options): if options.plot_image_type == 'timeseries': if plottype == 1: Draw_timeseries.drawplot_solo(options,serie1y) elif plottype == 2: Draw_timeseries.drawplot2(Timeseries,options) elif plottype == 3: DRAW.drawplot_solo(options,serie1y) elif plottype == 4: Draw_timeseries.drawpscatter(options,serie1y) elif plottype == 5: Draw_timeseries.drawplot5(Timeseries,options) if options.plot_image_type == 'maps': if plottype == 2: Draw_timeseries.drawplot2Maps(Timeseries,options) def drawplot2(Timeseries,options): import matplotlib.pyplot as plt import matplotlib.pyplot as plt_date import matplotlib.dates as datesMat import logging import sys try: logging.info(': A desenhar o Grafico') fig = plt.figure() ax1 = fig.add_subplot(111) if options.xpixel is not None and options.ypixel is not None: fig.set_size_inches(float(options.xpixel)/float(options.dpi),float(options.ypixel)/float(options.dpi),forward=True) fig.subplots_adjust(bottom=0.07,left=0.07, right=0.99, top=0.99) ax1.set_title(options.title,fontsize=options.fontsize) ax1.set_xlabel(options.xlabel,fontsize=options.fontsize-1) if options.xlabel is None: ax1.set_xlabel('',fontsize=options.fontsize-1) else: ax1.set_xlabel(options.xlabel,fontsize=options.fontsize-1) if options.ylabel is None: ax1.set_ylabel('',fontsize=options.fontsize-1) else: ax1.set_ylabel(options.ylabel,fontsize=options.fontsize-1) ax1.tick_params(labelsize=options.fontsize-1) ax1.hold(True) for x in range(0,len(options.files_list)): linestyle1= options.files_list_type[x].strip('"\'') try: plt_date.plot_date(datesMat.date2num(Timeseries[x].ValuesX_datenum), Timeseries[x].ValuesY, color =options.files_list_color[x].strip('"\''), label =options.files_list_name[x], linestyle = linestyle1, linewidth =options.linewidth, xdate =True, ydate =False, marker =None) except Exception as ex: logging.info(': Modulo TimeSeries Draw : Error 001 : Failed to draw TimeSerie Plot "' + options.files_list_name[0] + '"'+ ex) logging.shutdown() sys.exit() fig.tight_layout() # Valor maximo da serie if options.Ymax is None: options.Ymax = max(Timeseries.Serie1.ValuesY) if options.Ymin is None: options.Ymax = min(Timeseries.Serie1.ValuesY) leg = ax1.legend(fontsize=options.fontsize-1) ax1.set_ylim([options.Ymin, options.Ymax]) fig.autofmt_xdate() except Exception as ex: logging.info(': Error 008 : Cant plot the data') logging.shutdown() sys.exit() try: logging.info(': A salvar a figura') fig.savefig(options.figureOutName, facecolor='w', edgecolor='w', orientation='portrait', papertype=None, format=None, transparent=True, bbox_inches='tight', pad_inches=0.01, dpi=options.dpi) except Exception as ex: logging.info(': Modulo TimeSeries Draw : Error 001 : Error Saving the Figure') logging.shutdown() sys.exit() def drawplot_solo(serie1x,serie1y,serie2x,serie2y,options): logging.info('Trying to plot a single timeserie, not configured to') logging.shutdown() sys.exit() def drawpscatter(Timeseries,options): logging.info('Trying to plot a scatter plot, not configured to') logging.shutdown() sys.exit() def drawmultiplot(serie1x,serie1y,serie2x,serie2y,options): logging.info('Trying to plot a multi plot, not configured to') logging.shutdown() sys.exit() def drawplot5(Timeseries,options): try: logging.info(': A desenhar o Grafico') fig = plt.figure() gs = gridspec.GridSpec(1, 2, width_ratios=[5, 1]) ax1 = plt.subplot(gs[0]) # plot das séries ax2 = plt.subplot(gs[1]) # lista de validaçoes if options.xpixel is not None and options.ypixel is not None: fig.set_size_inches(float(options.xpixel)/float(options.dpi),float(options.ypixel)/float(options.dpi),forward=True) try: ax1.set_title(options.title,fontsize=options.fontsize) except: logging.info(': Modulo TimeSeries Draw : Error 002 : Erro no titulo/resumo erros') logging.shutdown() sys.exit() ax1.set_xlabel(options.xlabel,fontsize=options.fontsize-1) if options.xlabel is None: ax1.set_xlabel('',fontsize=options.fontsize-1) else: ax1.set_xlabel(options.xlabel,fontsize=options.fontsize-1) if options.ylabel is None: ax1.set_ylabel('',fontsize=options.fontsize-1) else: ax1.set_ylabel(options.ylabel,fontsize=options.fontsize-1) ax1.tick_params(labelsize=options.fontsize-1) ax1.hold(True) # reduz o tamanho da série em função da primeira série max_plot_number = 1000 plot_every_x_points = [] try: if len(Timeseries.Serie1.ValuesX_datenum) <= max_plot_number: plot_every_x_points = 1 else: for x in range(1,1000): if round(len(Timeseries.Serie1.ValuesX_datenum) / max_plot_number) <= max_plot_number: plot_every_x_points = x break except Exception as ex: logging.info(': Modulo TimeSeries Draw : Error 003 : Erro do limite de pontos a ser desenhado'+ str(ex)) logging.shutdown() sys.exit() # Desenha Plot 1 try: plot1=ax1.plot_date(datesMat.date2num(Timeseries.Serie1.ValuesX_datenum[::plot_every_x_points]), [x for x in Timeseries.Serie1.ValuesY[::plot_every_x_points]], marker='*', color='r', markersize=2, label=options.files_list_name[0], xdate=True, ydate=False, markeredgecolor ='r') except Exception as ex: logging.info(': Modulo TimeSeries Draw : Error 004 : Erro a desenhar o Plot 1'+ str(ex)) logging.shutdown() sys.exit() # Desenha Plot 2 try: plot2=ax1.plot_date(datesMat.date2num(Timeseries.Serie2.ValuesX_datenum[::plot_every_x_points]), [x for x in Timeseries.Serie2.ValuesY[::plot_every_x_points]], '-', color='k', linewidth=options.linewidth, label=options.files_list_name[1], xdate=True, ydate=False) except Exception as ex: logging.info(': Modulo TimeSeries Draw : Error 005 : Erro a desenhar o Plot 2 ' + str(ex)) logging.shutdown() sys.exit() # Valor maximo da serie try: limits=[min(Timeseries.Serie1.ValuesY),min(Timeseries.Serie2.ValuesY),max(Timeseries.Serie1.ValuesY),max(Timeseries.Serie2.ValuesY)] if options.Ymax is None: options.Ymax = max(limits)+0.15*(max(limits)-min(limits)) except Exception as ex: logging.info(': Modulo TimeSeries Draw : Error 006 : Não consegui implemtnar os limites YMAX pedido ' + str(ex)) logging.shutd # Valor minimo da serie try: limits=[min(Timeseries.Serie1.ValuesY),min(Timeseries.Serie2.ValuesY),max(Timeseries.Serie1.ValuesY),max(Timeseries.Serie2.ValuesY)] if options.Ymin is None: options.Ymin = round(min(limits)-0.15*(max(limits)-min(limits)),1) if round(options.Ymin,1) == 0: options.Ymin = 0 elif min(limits) >0 or options.Ymin < 0: options.Ymin = 0 except Exception as ex: logging.info(': Modulo TimeSeries Draw : Error 007 : Não consegui implementar os limites YMIN pedido ' + str(ex)) logging.shutdown() sys.exit() ax1.set_ylim([options.Ymin, options.Ymax]) # Desenhar Legenda try: mpl.rcParams['legend.numpoints'] = 1 leg= ax1.legend(fontsize=options.fontsize-1, loc='upper center',ncol=3, fancybox=True, shadow=True) except Exception as ex: logging.info(': Modulo TimeSeries Draw : Error 008 : Problemas a desenhar a Legenda do grafico ' + str(ex)) logging.shutdown() sys.exit() # Formatar a caixa de erros. try: xxx=list() numero_casas_decimais=3 if options.stdev_obs == 1: xxx.append('Stdev Obs = '+ str(format(round(Timeseries.Serie1.rmse,numero_casas_decimais))) + ' ' + options.parameter + '\n') if options.average_obs == 1: xxx.append('Average Obs = '+ str(format(round(Timeseries.Serie1.average_obs,numero_casas_decimais))) + ' ' + options.parameter + '\n') if options.bias == 1: xxx.append('BIAS = '+ str(format(round(Timeseries.Serie1.bias,numero_casas_decimais))) + ' ' + options.parameter + '\n') if options.rmse == 1: xxx.append('RMSE = '+ str(format(round(Timeseries.Serie1.rmse,numero_casas_decimais))) + ' ' + options.parameter + '\n') if options.normalise_rmse == 1: xxx.append('Normalise RMSE = '+ str(format(round(Timeseries.Serie1.normalise_rmse,numero_casas_decimais))) + '%\n') if options.unbias_rmse == 1: xxx.append('Unbias RMSE = '+ str(format(round(Timeseries.Serie1.unbias_rmse,numero_casas_decimais))) + ' ' + options.parameter + '\n') if options.normalise_unbias_rmse == 1: xxx.append('Normalise Unbias RMSE = '+ str(format(round(Timeseries.Serie1.normalise_unbias_rmse,numero_casas_decimais))) + '%\n') if options.rcorr == 1: xxx.append('R = '+ str(format(round(Timeseries.Serie1.rcorr,numero_casas_decimais))) + '\n') if options.nash_sutcliffe == 1: xxx.append('Nash-Sutcliff = '+ str(format(round(Timeseries.Serie1.nash_sutcliffe,numero_casas_decimais))) + '\n') if options.skill == 1: xxx.append('SKILL = '+ str(format(round(Timeseries.Serie1.skill,numero_casas_decimais))) + '\n') if options.rcorr_quad == 1: xxx.append('Rcorr Quad = '+ str(format(round(Timeseries.Serie1.rcorr_quad,numero_casas_decimais))) + '\n') if options.z_fisher == 1: xxx.append('Z-Fisher = '+ str(format(round(Timeseries.Serie1.z_fisher,numero_casas_decimais))) + '\n') if options.alfa == 1: xxx.append('Alfa = '+ str(format(round(Timeseries.Serie1.alfa,numero_casas_decimais))) + '\n') if options.beta_1 == 1: xxx.append('Beta 1 = '+ str(format(round(Timeseries.Serie1.beta_1,numero_casas_decimais))) + '\n') if options.am == 1: xxx.append('Am = '+ str(format(round(Timeseries.Serie1.am,numero_casas_decimais))) + ' ' + options.parameter + '\n') if options.bm == 1: xxx.append('Bm = '+ str(format(round(Timeseries.Serie1.bm,numero_casas_decimais))) + ' ' + options.parameter + '\n') except Exception as ex: logging.info(': Modulo TimeSeries Draw : Error 009 : Erro criar string de validação com ' + str(ex) + '\n') logging.shutdown() sys.exit() # Desenha a caixa dos erros try: ax2.axis('off') anchored_text = AnchoredText(('\n'.join(xxx)),loc=7,prop=dict(size=options.fontsize),frameon=False) ax2.add_artist(anchored_text) except Exception as ex: logging.info(': Modulo TimeSeries Draw : Error 010 : Erro a desenhar string de erros ' + str(ex)) logging.shutdown() sys.exit() fig.autofmt_xdate() #try: #fig.tight_layout() #except Exception as ex: #logging.info(': Error 008 : Falha a fazer o tight layout') #logging.shutdown() #sys.exit() except Exception as ex: logging.info(': Modulo TimeSeries Draw : Error 011 : Cant plot the data') logging.shutdown() sys.exit() try: logging.info(': A salvar a figura') fig.savefig(options.figureOutName, facecolor='w', edgecolor='w', orientation='portrait',bbox_inches='tight', papertype=None, format=None, transparent=True, pad_inches=0.1, dpi=options.dpi) logging.info(': SUCESSO : figura salva') except Exception as ex: logging.info(': Modulo TimeSeries Draw : Error 012 : Error Saving the Figure') logging.shutdown() sys.exit() def drawplot2Maps(Timeseries,options): try: logging.info(': Ploting TimeSerie Graph') ax = plt.subplot(str(options.validation_grid[0])+str(options.validation_grid[1])+str(int(options.maps_validation_parameters[options.subplot_index][1]))) #ax.set_aspect(1.0) a=['','','','','','','',''] #ax.set_yticks([]) for x in range(len(options.timeseries_validation_parameters)): try: aux=0 rot=90 auxlabelpad=0 if x is not 0: if int(options.timeseries_validation_parameters[x-1][6]) is not int((options.timeseries_validation_parameters[x][6])): ax=ax.twinx() rot=270 auxlabelpad=8 else: aux =1 linestyle1 = None; if aux == 1: linestyle1= '--' del aux else: linestyle1= '-' a[x]=ax.plot_date(datesMat.date2num(Timeseries[x].ValuesX_datenum), Timeseries[x].ValuesY, color =options.timeseries_validation_parameters[x][3].strip(' ')[1], label =options.timeseries_validation_parameters[x][7], linestyle = linestyle1, xdate =True, ydate =False, marker =None) try: if options.dynamic_limits == 1: MTSF.TS._Dynamic_plot_limit(Timeseries,ax, options, x) else: ax.set(ylim=[float(options.timeseries_validation_parameters[x][4]),float(options.timeseries_validation_parameters[x][5])]) except Exception as ex: logging.info(': Modulo TimeSeries Functions : Error 012a : Dynamic plot timeseries limits' + ex) logging.shutdown() sys.exit() plt.ylabel(options.timeseries_validation_parameters[x][8].strip(), rotation=rot, labelpad=auxlabelpad, color=options.timeseries_validation_parameters[x][3].strip(' ')[1]) plt.setp( ax.xaxis.get_majorticklabels(), rotation=20, horizontalalignment='right' ) ax.xaxis.set_major_locator(datesMat.AutoDateLocator()) ax.xaxis.set_major_formatter(datesMat.DateFormatter('%Y %m %d')) for tl in ax.get_yticklabels(): tl.set_color(options.timeseries_validation_parameters[x][3].strip(' ')[1]) #ax.set_ylim([0,100]) except Exception as ex: logging.info(': Modulo TimeSeries Draw : Error 013 : Erro a desenhar o Plot '+ options.timeseries_validation_parameters[x][7] + str(ex)) logging.shutdown() sys.exit() # Desenhar Legenda try: #mpl.rcParams['legend.numpoints'] = 2 plt.subplots_adjust() b=[] for x in range(len(options.timeseries_validation_parameters)): b=b+a[x] labs = [l.get_label() for l in b] for x in range(len(labs)): labs[x]=labs[x].strip() leg= ax.legend(b, labs, fontsize=options.fontsize, loc='upper center', ncol=3, fancybox=False, shadow=False, handlelength=4) except Exception as ex: logging.info(': Modulo TimeSeries Draw : Error 014 : Problemas a desenhar a Legenda do grafico ' + str(ex)) logging.shutdown() sys.exit() #fig = plt.gcf() #fig.autofmt_xdate() except Exception as ex: logging.info(': Modulo TimeSeries Draw : Error 015 : Cant plot the ') logging.shutdown() sys.exit()
UTF-8
Python
false
false
20,104
py
73
ModuloTimeSeriesDraw.py
41
0.497611
0.483378
0
432
45.506944
164
mmweber2/reps
18,906,446,050,038
7227bfc4431107a9ca11b8ef0536ecd594872ec0
570089a94cc1ee992eb4325998c84c697850ce15
/codefights/possibleSums.py
5dbcd5dfd12de382eaf0d260b0d86b4d378d6351
[]
no_license
https://github.com/mmweber2/reps
a707e2ad192267a6b4137437cccc817eb27f2903
8ce26b21f0898ebfc0784261393efad7b1b99d76
refs/heads/master
2020-05-21T16:45:27.338269
2017-12-10T02:23:55
2017-12-10T02:23:55
62,955,968
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def possibleSums(coins, quantity): sums = set() sums.add(0) for coin, quant in zip(coins, quantity): new_sums = set() # Don't confuse new and old values for coin_total in xrange(0, (coin * quant) + 1, coin): for s in sums: new_sums.add(s + coin_total) sums = new_sums return len(sums) - 1 # Account for 0
UTF-8
Python
false
false
372
py
61
possibleSums.py
60
0.564516
0.551075
0
10
36.3
62
WalkingMachine/sara_commun
1,254,130,466,044
4449d19e1e54cac9e7e06b143879c2adbf6356c2
12bd6522cee8dba32e1ef0dd1d012226ed572874
/wm_ork/transparent_objects/src/apps/runExperiments.py
a4781b0adaa4b3cfed31a7253257470de6bde0d8
[]
no_license
https://github.com/WalkingMachine/sara_commun
55a42ffc0f37821b2d678bedf2df87309227da61
79585904ded31eca418614f0306a7308b24ccd0e
refs/heads/master
2019-07-14T17:47:48.126153
2016-10-28T15:37:28
2016-10-28T15:37:27
58,494,906
9
1
null
null
null
null
null
null
null
null
null
null
null
null
null
import subprocess import os import sys import psutil import time import re runner='/home/ilysenkov/ecto_fuerte/build/bin/transparentExperiments' #runner='/home/ilysenkov/itseezMachine/home/ilysenkov/ecto/server_build/bin/transparentExperiments' runnerName = 'transparentExperiments' trainedModelsPath='/media/2Tb/transparentBases/trainedModels/' experimentsCoresCount = 7 #dataset='/media/2Tb/transparentBases/different_clutter/base_3/' #datasetName = 'different_clutter_3' #allObjects = ['bank', 'bucket', 'bottle', 'glass', 'wineglass'] #dataset='/media/2Tb/transparentBases/different_clutter/base_ocl/' #datasetName = 'different_clutter_ocl' #allObjects = ['bank', 'bucket', 'bottle', 'glass', 'wineglass'] #dataset='/media/2Tb/transparentBases/good_clutter/base/' #datasetName = 'good_clutter' #allObjects = ['bank', 'bucket', 'bottle', 'glass', 'wineglass', 'sourCream'] #dataset='/media/2Tb/transparentBases/fixedOnTable/base/' #datasetName = 'fixed_on_table' #allObjects = ['bank', 'bucket', 'bottle', 'glass', 'wineglass', 'sourCream'] dataset='/media/2Tb/transparentBases/finalClutter/base/' datasetName = 'finalClutter' allObjects = ['bank', 'bucket', 'bottle', 'glass'] baseLogsPath = '/home/ilysenkov/results/occlusions/' bigSleepTime = 10 smallSleepTime = 1 def getRunProcessesCount(): processes = psutil.get_process_list() runProcessesCount = 0 for proc in processes: match = re.match(runnerName, proc.name) if (match != None): runProcessesCount += 1 return runProcessesCount if __name__ == '__main__': assert len(sys.argv) == 2, sys.argv[0] + ' <experimentsName>' baseLogsPath += sys.argv[1] logsPath = baseLogsPath + '/' + datasetName if not os.path.exists(baseLogsPath): os.makedirs(baseLogsPath) if not os.path.exists(logsPath): os.makedirs(logsPath) for obj in allObjects: runProcessesCount = getRunProcessesCount() while (runProcessesCount >= experimentsCoresCount): time.sleep(bigSleepTime) runProcessesCount = getRunProcessesCount() logFilename = logsPath + '/' + obj logFile = open(logFilename, 'w') command = [runner, trainedModelsPath, dataset, obj] process = subprocess.Popen(command, stdout=logFile, stderr=logFile) print obj time.sleep(smallSleepTime) #process = subprocess.Popen(command, stdout=subprocess.PIPE) #print process.stdout.read()
UTF-8
Python
false
false
2,477
py
390
runExperiments.py
225
0.698426
0.691562
0
77
31.168831
99
ehubbard/templates-aws
2,611,340,148,233
220c3edfdd52b6dc1f4c108337af451691da7580
2a67dc681af4c4b9ef7a8e18c2ff75377dc5b44f
/aws.apigatewayv2.Authorizer.basic-http-api-python/__main__.py
a429a9be0ee4ec94913ed63b5db33be1e7c13990
[]
no_license
https://github.com/ehubbard/templates-aws
e323b693a18234defe6bd56ffcc64095dc58e3a1
2ae2e7a5d05490078017fed6d132dcdde1f21c63
refs/heads/master
2022-11-17T13:53:14.531872
2020-07-10T21:56:27
2020-07-10T21:56:27
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import pulumi import pulumi_aws as aws example = aws.apigatewayv2.Authorizer("example", api_id=aws_apigatewayv2_api["example"]["id"], authorizer_type="JWT", identity_sources=["$request.header.Authorization"], jwt_configuration={ "audience": ["example"], "issuer": f"https://{aws_cognito_user_pool['example']['endpoint']}", })
UTF-8
Python
false
false
364
py
2,779
__main__.py
2,048
0.651099
0.645604
0
11
32
76
Jlevjean/SFT-Protocol
15,719,580,307,957
4bf4e20078b0028f3f2acd9e8d807a6f560dc216
0e7514552dfc05b63738228e99d0b5333b8e9d41
/tests/security_token/transfer/investor_counts.py
9d7efec93cc3cb98d46296e4ed0e39576c8c5a4d
[ "Apache-2.0" ]
permissive
https://github.com/Jlevjean/SFT-Protocol
cd6161c2087f5ed1000a533df18c2209d043c280
bbfaf94df448bf9e653ae2f7d8a1edbf9d693a46
refs/heads/master
2020-05-17T23:20:52.137990
2019-04-28T21:38:21
2019-04-28T21:38:21
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python3 from brownie import * from scripts.deployment import main def setup(): config['test']['always_transact'] = False main(SecurityToken) global token, issuer token = SecurityToken[0] issuer = IssuingEntity[0] token.mint(issuer, 1000000, {'from': a[0]}) def issuer_to_investor(): '''investor counts - issuer/investor transfers''' _check_countries() token.transfer(a[1], 1000, {'from': a[0]}) _check_countries(one=(1, 1, 0)) token.transfer(a[1], 1000, {'from': a[0]}) token.transfer(a[2], 1000, {'from': a[0]}) token.transfer(a[3], 1000, {'from': a[0]}) _check_countries(one=(2, 1, 1), two=(1, 1, 0)) token.transfer(a[1], 996000, {'from': a[0]}) _check_countries(one=(2, 1, 1), two=(1, 1, 0)) token.transfer(a[0], 1000, {'from': a[1]}) _check_countries(one=(2, 1, 1), two=(1, 1, 0)) token.transfer(a[0], 997000, {'from': a[1]}) _check_countries(one=(1, 0, 1), two=(1, 1, 0)) token.transfer(a[0], 1000, {'from': a[2]}) token.transfer(a[0], 1000, {'from': a[3]}) _check_countries() def investor_to_investor(): '''investor counts - investor/investor transfers''' token.transfer(a[1], 1000, {'from': a[0]}) token.transfer(a[2], 1000, {'from': a[0]}) token.transfer(a[3], 1000, {'from': a[0]}) token.transfer(a[4], 1000, {'from': a[0]}) token.transfer(a[5], 1000, {'from': a[0]}) token.transfer(a[6], 1000, {'from': a[0]}) _check_countries(one=(2, 1, 1), two=(2, 1, 1), three=(2, 1, 1)) token.transfer(a[2], 500, {'from': a[1]}) _check_countries(one=(2, 1, 1), two=(2, 1, 1), three=(2, 1, 1)) token.transfer(a[2], 500, {'from': a[1]}) _check_countries(one=(1, 0, 1), two=(2, 1, 1), three=(2, 1, 1)) token.transfer(a[3], 2000, {'from': a[2]}) _check_countries(two=(2, 1, 1), three=(2, 1, 1)) token.transfer(a[3], 1000, {'from': a[4]}) _check_countries(two=(1, 1, 0), three=(2, 1, 1)) token.transfer(a[4], 500, {'from': a[3]}) _check_countries(two=(2, 1, 1), three=(2, 1, 1)) def _check_countries(one=(0,0,0),two=(0,0,0),three=(0,0,0)): check.equal( issuer.getInvestorCounts()[0][:3], ( one[0]+two[0]+three[0], one[1]+two[1]+three[1], one[2]+two[2]+three[2] ) ) check.equal(issuer.getCountry(1)[1][:3], one) check.equal(issuer.getCountry(2)[1][:3], two) check.equal(issuer.getCountry(3)[1][:3], three)
UTF-8
Python
false
false
2,460
py
50
investor_counts.py
48
0.555285
0.460569
0
68
35.191176
67
moki/aoc2015
14,018,773,299,498
90a431a2c8633638cab7ae5c535d73d6f0c35ae0
1f28dd28e049cd0a9af1259b3213ba13fed8cb69
/day/day_03/solution.py
0621340bef611cfc69ab0795e022249ccfc59d31
[ "BSD-3-Clause" ]
permissive
https://github.com/moki/aoc2015
615b40e21a701d78afc2b38aa91e2cd6e95a5cdc
da43fccd20d154840161c022d1f3c0f70035d604
refs/heads/main
2023-03-09T13:08:50.663737
2021-02-27T13:47:59
2021-02-27T13:47:59
342,246,538
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def _hash(x, y): return hash(str(x) + "," + str(y)) def part_1(input): x, y = 0, 0 move_map = {"^": (0, 1), ">": (1, 0), "<": (-1, 0), "v": (0, -1)} house_map = dict() house_map[_hash(x, y)] = 1 for c in input: _x, _y = move_map.get(c, (0, 0)) x += _x y += _y house_map[_hash(x, y)] = 1 return len(house_map) def part_2(input): hx, hy = 0, 0 rx, ry = 0, 0 move_map = {"^": (0, 1), ">": (1, 0), "<": (-1, 0), "v": (0, -1)} house_map = dict() house_map[_hash(0, 0)] = 1 i = 0 for c in input: _x, _y = move_map.get(c, (0, 0)) if i % 2 == 0: _x += hx _y += hy hx = _x hy = _y else: _x += rx _y += ry rx = _x ry = _y house_map[_hash(_x, _y)] = 1 i = i + 1 return len(house_map)
UTF-8
Python
false
false
923
py
9
solution.py
8
0.339112
0.297941
0
57
15.192982
69
JensGutow/AdventOfCode2020
12,309,376,297,589
1cd05dce127d982649967690329ccdca8a411136
b54ed58e5a6e9d8f468c1f36544d6782b276f3be
/tag_09.py
f96ddb9a8c1d8159f4a9791378d5326cbf8e2324
[]
no_license
https://github.com/JensGutow/AdventOfCode2020
c69ff3d1be5ff6cf399c4a3ecb14fa1c70323d74
9e116175f0042dacdde182424f1286801e7da131
refs/heads/main
2023-02-08T10:00:43.584837
2020-12-31T06:57:18
2020-12-31T06:57:18
322,389,060
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import itertools import time def get_puzzle(file_name): pre_Length = 5 p = [] with open(file_name) as f: p = [int(i) for i in f.read().split()] return p def check(text, p_len, i): check = [sum(x) for x in itertools.combinations(set(text[i-p_len: i]),2)] return text[i] in check text = get_puzzle("tag_09.txt") start = time.perf_counter() p_len = 25 last = current = 0 for i in range(p_len, len(text)): if not check(text, p_len, i): break print(i, text[i], time.perf_counter() - start) start = time.perf_counter() th = text[i] i0 = i1 = 0 s = 2 * text[i0] check = False result = None for i0 in range(len(text)): if result: break for i1 in range(i0+1, len(text)): s = sum(text[i0:i1]) if s > th: break if s == th: seq = text[i0:i1] min_ = min(seq) max_ = max(seq) result = min_ + max_ print (result) break print (result, time.perf_counter() - start)
UTF-8
Python
false
false
1,027
py
28
tag_09.py
25
0.538462
0.518987
0
48
20.375
77
benzyp/lakewoodSimcha
19,292,993,121,140
f120e0e49e80a0831eed4c49b6af757f69ca47bc
fd2774da9a9a9d311169685eee8331aa034f4ecd
/LakewoodSimcha/app/forms.py
1a163e065c352a27176f14e71288f1908c5883b8
[]
no_license
https://github.com/benzyp/lakewoodSimcha
0d54bd343943d583347879bad971aade3eb3ef9a
02b9995eef46677f749e8ac4e29a576acf56fb3f
refs/heads/master
2020-03-13T23:31:15.342130
2018-06-19T02:55:36
2018-06-19T02:55:36
131,336,852
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" Definition of forms. """ from django import forms from django.contrib.auth.forms import AuthenticationForm from django.utils.translation import ugettext_lazy as _ from django.forms import Form from app.models import Event,Venue,Customer from datetimewidget.widgets import DateTimeWidget class BootstrapAuthenticationForm(AuthenticationForm): """Authentication form which uses boostrap CSS.""" username = forms.CharField(max_length=254, widget=forms.TextInput({ 'class': 'form-control', 'placeholder': 'User name'})) password = forms.CharField(label=_("Password"), widget=forms.PasswordInput({ 'class': 'form-control', 'placeholder':'Password'})) class EventForm(forms.ModelForm): class Meta: model = Event fields = ('start','event_type', 'title', 'venue', 'description') dateTimeOptions = { 'showMeridian':True } widgets = {#Use localization and bootstrap 3 'start': DateTimeWidget(attrs={'id':"start"}, usel10n = True, bootstrap_version=3, options=dateTimeOptions) } def __init__(self, venue, *args, **kwargs): super(EventForm, self).__init__(*args, **kwargs) #set the venue field to only include venues for the booking at hand self.fields['venue'].queryset = Venue.objects.filter(venue_type=venue) class CustomerForm(forms.ModelForm): class Meta: model = Customer exclude = () class AdminEventForm(forms.ModelForm): class Meta: model = Event fields = ('start','confirmed','venue') dateTimeOptions = { 'showMeridian':True } widgets = {'venue': forms.HiddenInput(),'start':DateTimeWidget(attrs={'id':"start"},usel10n = True, bootstrap_version=3, options=dateTimeOptions)} labels = {'venue':_('')} class EditDateForm(forms.Form): phone = forms.CharField(max_length=10) dateTimeOptions = { 'showMeridian':True } edit_event_start = forms.DateTimeField(label = 'New Date', widget=DateTimeWidget(attrs={'id':"start"},usel10n = True, bootstrap_version=3, options=dateTimeOptions)) class UploadFileForm(forms.Form): venue = forms.IntegerField(widget = forms.HiddenInput(), label = '') file = forms.FileField()
UTF-8
Python
false
false
2,409
py
29
forms.py
16
0.626816
0.620589
0
57
41.280702
168
AmolPachpute/RightArm
2,130,303,821,066
ba1d0cd3ce5e70824d711bf85e884f9b8cbbb3ad
624e0e8d61887303c257c93ac77d799ed8518af5
/Projects/models.py
4ea6f2d77147cf5aaffd7d4effb51e54f1c37ecc
[]
no_license
https://github.com/AmolPachpute/RightArm
9b5f94802f669c6cc3051d8b698b0e1f400694ba
6d8cabdd9d6c2d46987935d770367a722a3274ed
refs/heads/master
2021-01-23T03:33:33.179099
2014-08-26T09:52:08
2014-08-26T09:52:08
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.db import models from django.contrib.auth.models import User from django.utils.translation import ugettext_lazy as _ from django.contrib.contenttypes.models import ContentType from django.contrib.contenttypes import generic from thumbs import ImageWithThumbsField from ckeditor.fields import RichTextField from Member.models import Member, Skills from django.contrib.auth.models import User from basemodule.models import * import datetime # Create your models here. STATUS_CHOICES = ((0, u'Inception/New'), (1, u'In Progress'), (2, u'Completed' )) POST_TYPE_CHOICES = ( (0, u'Text'), (1, u'Image'), (2, u'Video'), (3, u'Link'), (4, u'Audio'), (5, u'Doc/Pdf'), ) PROJECT_RELATION_TYPE_CHOICES = ((0, u'Owner'), (1, u'Moderator'), (2, u'Giver'), (3, u'Member')) TASK_PRIORITY_CHOICES = ((0, u'High'), (1, u'Medium'), (2, u'Low')) TASK_STATUS_CHOICES = ( (0, u'Complete'), (1, u'Incomplete'), (2, u'Inprogress'), (3, u'Not Yet Started'), (4, u'Onhold'), (5, u'Pending'), ) OFFERED_TYPES = ((0, u'Physical'), (1, u'Virtual')) class Beneficiary(Base): """ Class describes beneficiaries for particular project """ name = models.CharField(max_length=100, blank=True, null=True) description = RichTextField(blank=True, null = True) def __unicode__(self): return '%s' % self.name class Goals(Base): """ Class describes goals of the project """ name = models.CharField(max_length=100) description = RichTextField(blank=True, null = True) def __unicode__(self): return '%s' % self.name class Transact(Base): """ Class describes project requirement types """ name = models.CharField(max_length=100) description = RichTextField(blank=True, null = True) def __unicode__(self): return '%s' % self.name class Project(Base): """ This class Stores information about Project """ project_category = models.ForeignKey(Project_Category) name = models.CharField(max_length=100) image = ImageWithThumbsField(upload_to='static/%Y/%m/%d', sizes=((90, 120), (120, 120), (180, 240), (360, 480)), blank=True, null=True) summary = models.CharField('Project Objective', blank=True, null=True, max_length=150) description = RichTextField(blank=True, null = True) requirement = RichTextField(blank=True, null = True) target_amount = models.PositiveIntegerField('Target Amt', blank=True, null=True) status = models.IntegerField(choices=STATUS_CHOICES, default=0) created_by = models.ForeignKey(Member, related_name='Project_CreatedBy') beneficiaries = models.ManyToManyField(Beneficiary, blank=True, null=True) transactions = models.ManyToManyField(Transact, blank=True, null=True) goals = models.ManyToManyField(Goals, blank=True, null=True) start_date = models.DateField(max_length=20, blank=True, null=True) end_date = models.DateField(max_length=20, blank=True, null=True) peoples = models.ManyToManyField(Member, through = 'Project_Member_Relationship', blank = True, null = True) def __unicode__(self): return '%s' % self.name class Project_Member_Relationship(models.Model): """ Class describes project member relationship """ relation_type = \ models.IntegerField(choices=PROJECT_RELATION_TYPE_CHOICES, default=0) project = models.ForeignKey(Project) member = models.ForeignKey(Member) def __unicode__(self): return '%s' % self.project.name class Offer_Time(Base): """ Class describes members who offered time for the projects """ offered_by = models.ForeignKey(Member) project = models.ForeignKey(Project) offered_type = models.IntegerField(choices=OFFERED_TYPES, default=0) start_date = models.DateField(max_length=20, blank=True, null=True) end_date = models.DateField(max_length=20, blank=True, null=True) description = RichTextField(blank=True, null = True) def __unicode__(self): return self.offered_by class Goods_Required_For_Project(Base): """ Class describes goods required for the projects """ name = models.CharField(max_length=100) description = RichTextField(blank=True, null = True) url = models.URLField(blank=True) qty = models.CharField(max_length=100, blank=True, null=True) created_by = models.ForeignKey(Member, related_name='GoodsCreatedBy') project = models.ForeignKey(Project) def __unicode__(self): return self.name class Goods_Given_From_Member_To_Project(Base): """ Class describes goods given from members to givers in the projects """ goods = models.ForeignKey(Goods_Required_For_Project) given_by = models.ForeignKey(Member) description = RichTextField(blank=True, null = True) url = models.URLField(blank=True) qty = models.CharField(max_length=100, blank=True, null=True) def __unicode__(self): return self.given_by class Member_Skills(Base): """ Class describes member skills to be used in the projects """ created_by = models.ForeignKey(Member, related_name='SkillsCreatedBy') project = models.ForeignKey(Project) skills = models.ManyToManyField(Skills, blank = True, null = True) def __unicode__(self): return self.project.name class Influence(Base): """ Class describes members who influence who for what purpose for \ the project """ influenced_by = models.ForeignKey(Member, related_name='InfluencedBy') project = models.ForeignKey(Project) description = RichTextField(blank=True, null = True) def __unicode__(self): return self.volunteer class Post(Base): """ Class describes posts of the projects """ post_type = models.IntegerField(choices=POST_TYPE_CHOICES, default=0) project = models.ForeignKey(Project) image = ImageWithThumbsField(upload_to='static/%Y/%m/%d', sizes=((90, 120), (180, 240), (360, 480)), blank=True, null=True) URL = models.CharField('Link url', max_length=200, blank=True) description = RichTextField(blank=True, null = True) video_file = models.FileField(upload_to='static/%Y/%m/%d', blank=True, null=True) audio_file = models.FileField(upload_to='static/%Y/%m/%d', blank=True, null=True) doc = models.FileField(upload_to='static/%Y/%m/%d', blank=True, null=True) tags = models.ManyToManyField(Member, blank=True, null=True) featured = models.BooleanField(default=False) def __unicode__(self): return self.post_type class Task(Base): """ Class describes project tasks """ name = models.CharField(max_length=100) description = RichTextField(blank=True, null = True) associated_goal = models.ForeignKey(Goals, blank=True, null=True) assign_to = models.ManyToManyField(Member, blank=True, null=True) priority = models.IntegerField(choices=TASK_PRIORITY_CHOICES, default=1) status = models.IntegerField(choices=TASK_STATUS_CHOICES, default=3) content_type = models.ForeignKey(ContentType, verbose_name=_('content type'), related_name='TaskCPTM') object_id = models.TextField(_('object ID')) from_date = models.DateField(max_length=20, blank=True, null=True) to_date = models.DateField(max_length=20) parent = models.ForeignKey('self', blank=True, null=True) def __unicode__(self): return self.name
UTF-8
Python
false
false
7,712
py
37
models.py
35
0.653786
0.639263
0
224
33.428571
112
staccDOTsol/GitHubScraper
1,932,735,295,260
2850f500c5ad2ee9dfefa0eb2eff7493b7ea02ea
63910ef32836751a8cf24d8b8e9ec17b2fd2757c
/python.py
5cb5782ff8569cd4bd9a360f2d405bc30b9a4efe
[]
no_license
https://github.com/staccDOTsol/GitHubScraper
8222810cfc2f099df90095bfec9d45e776081d00
5fb145ca2f5a0102a8e6c36a6a5d4d8f75be6b32
refs/heads/master
2023-01-22T06:45:42.058551
2020-12-04T07:52:05
2020-12-04T07:52:05
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import requests from urllib3.contrib import pyopenssl import json import re import smtplib import lxml.html as html import numpy import time import os from subprocess import * import subprocess from compiler.pycodegen import EXCEPT from multiprocessing.dummy import Pool as ThreadPool bannedIps = [] xyz = 221875000 requests.adapters.DEFAULT_RETRIES = 1 def newpool(num): try: global xyz repos = [] x = xyz - (num * 5000) pool = ThreadPool(num) xyzs = [] i = 0 y = num while i <= num: xyzs.append(xyz / y * i) i = i + 1 i = 0 while i <= y: repos.append('https://api.github.com/repositories?since=' + str(int(xyzs[i]) + 1)) print str(int(xyzs[i]) + 1) i = i + 1 #print i #print repos results = pool.map(getContrib, repos) #close the pool and wait for the work to finish print 'waiting... xyz=' + str(xyz) pool.close() pool.join() except Exception as e: newpool(1) #getContrib(repos, shake) def getCommits(url, shake): import urllib2 global bannedIps import json #print url page = requests.get('https://free-proxy-list.net/') webpage = html.fromstring(page.content) proxy = [] i = 0 proxies = webpage.xpath("//tbody/tr/td[1]/text()") ports = webpage.xpath("//tbody/tr/td[2]/text()") secure = webpage.xpath("//td[7]/text()") for proxyy in proxies: if secure[i] == 'yes': proxy.append((proxyy) + ":" + (ports[i])) #print proxy[i] i = i + 1 #proxy.append('198.100.158.142:3128') #proxy.append('192.95.4.14:8080') #proxy.append('167.114.23.80:8080') #proxy.append('167.114.47.242:8080') #proxy.append('158.69.31.45:3128') #proxy.append('198.50.212.32:8799') #proxy.append('149.56.147.46:80') #proxy.append('144.217.31.225:3128') page = requests.get('https://hidemy.name/en/proxy-list/?type=s') webpage = html.fromstring(page.content) i = 0 proxies = webpage.xpath("//tbody/tr/td[1]/text()") ports = webpage.xpath("//tbody/tr/td[2]/text()") for proxyy in proxies: proxy.append((proxyy) + ":" + (ports[i])) #print proxy[i] i = i + 1 page = requests.get('https://www.socks-proxy.net/') webpage = html.fromstring(page.content) i = 0 proxies = webpage.xpath("//tbody/tr/td[1]/text()") ports = webpage.xpath("//tbody/tr/td[2]/text()") secure = webpage.xpath("//td[7]/text()") for proxyy in proxies: if secure[i] == 'yes': proxy.append((proxyy) + ":" + (ports[i])) #print proxy[i] i = i + 1 from random import randint from random import seed import random import uuid rand = numpy.random.randint(0, len(proxy)) #print rand #print proxy[rand] done = False while done == False: if 'https://' + proxy[rand] not in bannedIps: proxyDict = { 'https':'https://' + proxy[rand] #'https':'https://168.235.64.108:8081' } done = True print proxyDict try: time.sleep(0.5) #req = requests.get(url, proxies=proxyDict) req = requests.get(url + "?" + shake, proxies=proxyDict, timeout = 40) print url json = json.loads(req.content) for item in json: print item['sha'] try: f = open("logs.txt", "a+b") f.write(item['sha'] + "\n") f.close() print item['sha'] getUrl(url[:-8] + '/contents/?ref=' + item['sha'], shake) except Exception as e: f = open("logs.txt", "a+b") f.write('getBranch: ' + str(e) + ': ' + req.content +'\n') f.close() print 'getBranch: ' + str(e) + ': ' + req.content getCommits(url, shake) except Exception as e: print e getCommits(url, shake) #print req.content def getUrl(url, shake): import urllib2 global bannedIps import json #print url page = requests.get('https://free-proxy-list.net/') webpage = html.fromstring(page.content) proxy = [] i = 0 proxies = webpage.xpath("//tbody/tr/td[1]/text()") ports = webpage.xpath("//tbody/tr/td[2]/text()") secure = webpage.xpath("//td[7]/text()") for proxyy in proxies: if secure[i] == 'yes': proxy.append((proxyy) + ":" + (ports[i])) #print proxy[i] i = i + 1 #proxy.append('198.100.158.142:3128') #proxy.append('192.95.4.14:8080') #proxy.append('167.114.23.80:8080') #proxy.append('167.114.47.242:8080') #proxy.append('158.69.31.45:3128') #proxy.append('198.50.212.32:8799') #proxy.append('149.56.147.46:80') #proxy.append('144.217.31.225:3128') page = requests.get('https://hidemy.name/en/proxy-list/?type=s') webpage = html.fromstring(page.content) i = 0 proxies = webpage.xpath("//tbody/tr/td[1]/text()") ports = webpage.xpath("//tbody/tr/td[2]/text()") for proxyy in proxies: proxy.append((proxyy) + ":" + (ports[i])) #print proxy[i] i = i + 1 page = requests.get('https://www.socks-proxy.net/') webpage = html.fromstring(page.content) i = 0 proxies = webpage.xpath("//tbody/tr/td[1]/text()") ports = webpage.xpath("//tbody/tr/td[2]/text()") secure = webpage.xpath("//td[7]/text()") for proxyy in proxies: if secure[i] == 'yes': proxy.append((proxyy) + ":" + (ports[i])) #print proxy[i] i = i + 1 from random import randint from random import seed import random import uuid rand = numpy.random.randint(0, len(proxy)) #print rand #print proxy[rand] done = False while done == False: if 'https://' + proxy[rand] not in bannedIps: proxyDict = { 'https':'https://' + proxy[rand] #'https':'https://168.235.64.108:8081' } done = True print proxyDict try: print url #req = requests.get(url, proxies=proxyDict) time.sleep(0.5) req = requests.get(url + "&" + shake, proxies=proxyDict, timeout = 40) f = open("logs.txt", "a+b") f.write(url + "&" + shake + '\n') f.close() print url + "&" + shake json = json.loads(req.content) print json for item in json: #time.sleep(.8) try: for attribute, value in item.iteritems(): if attribute == 'type': if value == 'dir': f = open("logs.txt", "a+b") f.write('dir: ' + item['name'] + '\n') f.close() print 'dir: ' + item['name'] #print attribute, value # example usage if url.split("?ref=",1)[1]: contentsDir = url.split("/?ref=",1)[0] + '/' + item['name'] + '/?ref=' + url.split("?ref=",1)[1] else: contentsDir = url + '/' + item['name'] getUrl(contentsDir, shake) elif value == 'file': f = open("logs.txt", "a+b") f.write(item['download_url'] + '\n') f.close() print item['download_url'] #content2 = requests.get(item['download_url'], proxies=proxyDict).content content2 = requests.get(item['download_url']).content id = re.search(r'(?<![A-Z0-9])[A-Z0-9]{20}(?![A-Z0-9])', content2) #if (id): # print "id: " + id.group() #print 'searching...' key = re.search(r'(?<![A-Za-z0-9/+=])[A-Za-z0-9/+=]{40}(?![A-Za-z0-9/+=])', content2) if (key): if (id): p = Popen( ["sh"], stdin=PIPE, stdout=PIPE ) time.sleep(1) p.stdin.write("aws configure\n") time.sleep(4) p.stdin.write(id.group() + "\n") time.sleep(1) p.stdin.write(key.group() + "\n") time.sleep(1) p.stdin.write("\n") time.sleep(1) p.stdin.write("\n") time.sleep(1) def awsdescribe(): p = subprocess.Popen(["aws", "ec2", "describe-instances"], stdout=subprocess.PIPE, stderr=subprocess.PIPE) output = p.stderr.read() return output out = awsdescribe() print out if 'AuthFailure' in out: print 'authfailure!' else: msg = "\r\n".join([ "From: jarettrsdunn@gmail.com", "To: jarettrsdunn@gmail.com", "Subject: new match", "", "id: " + id.group() + "\nkey: " + key.group() + '\n\n' ]) username = 'jarettrsdunn@gmail.com' password = 'yarite' server = smtplib.SMTP('smtp.gmail.com:587') server.ehlo() server.starttls() fromaddr = "jarettrsdunn@gmail.com" toaddrs = ["jarettrsdunn@gmail.com"] server.login(username,password) server.sendmail(fromaddr, toaddrs, msg) server.quit() f = open("output.txt", "a+b") f.write("id: " + id.group() + "\nkey: " + key.group() + '\n\n') f.close() print "id: " + id.group() + "key: " + key.group() except Exception as e: f = open("logs.txt", "a+b") f.write('geturl: url=' + url + ' : ' + str(e) + ': ' + req.content + '\n') f.close() if 'good news' in req.content: print 'goodnews, geturl: url=' + url + ' : ' + str(e) + ': ' + req.content getUrl(url, shake) else: print 'geturl: url=' + url + ' : ' + str(e) + ': ' + req.content except Exception as e: #bannedIps.append(proxyDict['https']) #print bannedIps f = open("logs.txt", "a+b") f.write('exception ip: ' + str(proxyDict) + ' & geturl: ' + str(e) + '\n') f.close() print 'exception ip: ' + str(proxyDict) + ' & geturl: ' + str(e) getUrl(url, shake) #print req.content def getContrib(url): global bannedIps print 'start...' shake = 'client_id=e3e911583253bb372cf1&client_secret=ee07a00c62b08be09ce29db876865af37ec5c1d1' import urllib2 import json #print url page = requests.get('https://free-proxy-list.net/') webpage = html.fromstring(page.content) proxy = [] i = 0 proxies = webpage.xpath("//tbody/tr/td[1]/text()") ports = webpage.xpath("//tbody/tr/td[2]/text()") secure = webpage.xpath("//td[7]/text()") for proxyy in proxies: if secure[i] == 'yes': proxy.append((proxyy) + ":" + (ports[i])) #print proxy[i] i = i + 1 page = requests.get('https://hidemy.name/en/proxy-list/?type=s') webpage = html.fromstring(page.content) i = 0 proxies = webpage.xpath("//tbody/tr/td[1]/text()") ports = webpage.xpath("//tbody/tr/td[2]/text()") for proxyy in proxies: proxy.append((proxyy) + ":" + (ports[i])) #print proxy[i] i = i + 1 page = requests.get('https://www.socks-proxy.net/') webpage = html.fromstring(page.content) i = 0 proxies = webpage.xpath("//tbody/tr/td[1]/text()") ports = webpage.xpath("//tbody/tr/td[2]/text()") secure = webpage.xpath("//td[7]/text()") for proxyy in proxies: if secure[i] == 'yes': proxy.append((proxyy) + ":" + (ports[i])) #print proxy[i] i = i + 1 #proxy.append('198.100.158.142:3128') #proxy.append('192.95.4.14:8080') #proxy.append('167.114.23.80:8080') #proxy.append('167.114.47.242:8080') #roxy.append('158.69.31.45:3128') #proxy.append('198.50.212.32:8799') #proxy.append('149.56.147.46:80') #proxy.append('144.217.31.225:3128') from random import randint from random import seed import random import uuid rand = numpy.random.randint(0, len(proxy)) #print rand #print proxy[rand] done = False while done == False: if 'https://' + proxy[rand] not in bannedIps: proxyDict = { 'https':'https://' + proxy[rand] #'https':'https://168.235.64.108:8081' } done = True print proxyDict try: print url #req = requests.get(url, proxies=proxyDict) #rand = numpy.random.randint(1, 11) from random import randint time.sleep(randint(1, 16)) req = requests.get(url + "&" + shake, proxies=proxyDict, timeout = 40) json = json.loads(req.content) #print req.content first = True #for item in json: print str(json[0]['id']) + ": " + str(json[0]['full_name']) #print item['id'] if first == True: #print item['id'] first = False commits = 'https://api.github.com/repos/' + json[0]['full_name'] + '/commits' branches = 'https://api.github.com/repos/' + json[0]['full_name'] + '/branches' #print contents id = json[0]['id'] found = False for line in open('ids.txt').readlines(): found = False #print line if line.startswith(str(id)): found = True print 'found id already friend' break if not found: getCommits(commits, shake) f = open("ids.txt", "a+b") f.write(str(id) + "\n") f.close() #print id repos = 'https://api.github.com/repositories?since=' + str(id) print str(id) getContrib(repos) except Exception as e: print e getContrib(url) print 'DONE!' repos = [] newpool(1) #print req.content import time print 'lala' if 1: msg = "\r\n".join([ "From: jarettrsdunn@gmail.com", "To: jarettrsdunn@gmail.com", "Subject: new match", "", "id: wooo\n\n" ]) username = 'jarettrsdunn@gmail.com' password = 'w0rdp4ss1' server = smtplib.SMTP('smtp.gmail.com:587') server.ehlo() server.starttls() fromaddr = "jarettrsdunn@gmail.com" toaddrs = ["jarettrsdunn@gmail.com"] server.login(username,password) server.sendmail(fromaddr, toaddrs, msg) server.quit() newpool(10)
UTF-8
Python
false
false
15,731
py
2
python.py
1
0.481724
0.446507
0
455
33.540659
129
wegnerce/python_scripting
10,909,216,957,227
b5c001ccdc0616b195ad670b297cb018b5906171
b4b900170acb702b12aa77c2708f59ec2107fa49
/metagenomics/filter_blast.py
39da08b29dfad936d74df09eef601d0177df0075
[]
no_license
https://github.com/wegnerce/python_scripting
cf6435d0fa2ad41615c6ff06d44f28449904272c
6230d3f0489c67af18db5b13e48e888018b2cceb
refs/heads/main
2023-04-11T23:28:39.990998
2021-04-28T06:43:17
2021-04-28T06:43:17
362,132,027
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- """ Created on Tue Jan 19 10:50:17 2016 @author: calle """ # needed modules import csv import taxman as tx # required paths blast_out = "/media/STORAGE1/Stasja_pro/to_filter/mRNA_assemblies/total/total_mRNA_contigs_trans.faa.out" blast_out_filtered = "/media/STORAGE1/Stasja_pro/to_filter/mRNA_assemblies/total/total_mRNA_contigs_trans_out_filtered.out" # process blast output, filter hits originating from plants with open(blast_out, "rb") as infile, open(blast_out_filtered, "wb") as outfile: blast_reader = csv.reader(infile, delimiter = "\t") for line in blast_reader: gi_hit = line[1].split("|")[1] if not 33090 in tx.getPathByTaxid(tx.getTaxidByGi(gi_hit)): print tx.getPathByTaxid(tx.getTaxidByGi(gi_hit)) outfile.write("\t".join(line)+"\n")
UTF-8
Python
false
false
826
py
156
filter_blast.py
155
0.690073
0.663438
0
24
33.416667
123
lovro-sinda/dretveno_programiranje
6,451,040,888,938
f858c1a43d44bc603f16436ce7386ff0cfb805a1
6862d9d91b40de9e15c932131d8b9cb2641c1ee2
/Moneyball/web_scraping/test.py
c6dca9bd5314587e2612c8243fd7e17eb28f6eef
[]
no_license
https://github.com/lovro-sinda/dretveno_programiranje
fdfbb0e7b00cb95b463fc75726dfb02c5a41df4a
4d972e1f50e89f5d760ae834f7075a009f2888f9
refs/heads/master
2020-05-02T04:06:29.744638
2019-09-14T09:34:31
2019-09-14T09:34:31
177,742,455
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import pandas as pd df = pd.read_csv("dr1.csv") df['new_column'] = 'some_value' df.to_csv('dr1.csv')
UTF-8
Python
false
false
101
py
32
test.py
6
0.653465
0.633663
0
4
24.25
31
ajeldorado/falco-python
17,274,358,496,634
87d49f54cba853fa5b4ae5b1dfda2630acea5e3b
7650c4b0404ff25c26ed5c29e544ed00e259ca50
/falco/mkl_fft.py
3a3b144cffc57e2157e2196d261aa5c0284de8a9
[ "Apache-2.0" ]
permissive
https://github.com/ajeldorado/falco-python
b32e1ab24d521a6790b4c18a96a4fa9d239c7882
406ccf60392542630a7f1f629fc020b8c8e613d2
refs/heads/master
2022-11-06T03:27:12.604912
2022-10-07T15:22:19
2022-10-07T15:22:19
137,521,218
5
2
Apache-2.0
false
2022-10-07T15:22:58
2018-06-15T18:43:56
2022-06-13T03:06:15
2022-10-07T15:22:19
7,116
5
4
0
Python
false
false
""" Wrapper for the MKL FFT routines. This implements very fast FFT on Intel processors, much faster than the stock fftpack routines in numpy/scipy. """ from __future__ import division, print_function import numpy as np import ctypes as _ctypes import os from dftidefs import * def load_libmkl(): r"""Loads the MKL library if it can be found in the library load path. Raises ------ ValueError If the MKL library cannot be found. """ if os.name == 'posix': try: lib_mkl = os.getenv('LIBMKL') if lib_mkl is None: raise ValueError('LIBMKL environment variable not found') return _ctypes.cdll.LoadLibrary(lib_mkl) except: pass try: return _ctypes.cdll.LoadLibrary("libmkl_rt.dylib") except: raise ValueError('MKL Library not found') else: try: return _ctypes.cdll.LoadLibrary("mkl_rt.dll") except: raise ValueError('MKL Library not found') mkl = load_libmkl() def mkl_rfft(a, n=None, axis=-1, norm=None, direction='forward', out=None, scrambled=False): r"""Forward/backward 1D double-precision real-complex FFT. Uses the Intel MKL libraries distributed with Anaconda Python. Normalisation is different from Numpy! By default, allocates new memory like 'a' for output data. Returns the array containing output data. See Also -------- rfft, irfft """ if axis == -1: axis = a.ndim-1 # This code only works for 1D and 2D arrays assert a.ndim < 3 assert (axis < a.ndim and axis >= -1) assert (direction == 'forward' or direction == 'backward') # Convert input to complex data type if real (also memory copy) if direction == 'forward' and a.dtype != np.float32 and a.dtype != np.float64: if a.dtype == np.int64 or a.dtype == np.uint64: a = np.array(a, dtype=np.float64) else: a = np.array(a, dtype=np.float32) elif direction == 'backward' and a.dtype != np.complex128 and a.dtype != np.complex64: if a.dtype == np.int64 or a.dtype == np.uint64 or a.dtype == np.float64: a = np.array(a, dtype=np.complex128) else: a = np.array(a, dtype=np.complex64) order = 'C' if a.flags['F_CONTIGUOUS'] and not a.flags['C_CONTIGUOUS']: order = 'F' # Add zero padding or truncate if needed (incurs memory copy) if n is not None: m = n if direction == 'forward' else (n // 2 + 1) if a.shape[axis] < m: # pad axis with zeros pad_width = np.zeros((a.ndim, 2), dtype=np.int) pad_width[axis,1] = m - a.shape[axis] a = np.pad(a, pad_width, mode='constant') elif a.shape[axis] > m: # truncate along axis b = np.swapaxes(a, axis, 0)[:m,] a = np.swapaxes(b, 0, axis).copy() elif direction == 'forward': n = a.shape[axis] elif direction == 'backward': n = 2*(a.shape[axis]-1) # determine output type if direction == 'backward': out_type = np.float64 if a.dtype == np.complex64: out_type = np.float32 elif direction == 'forward': out_type = np.complex128 if a.dtype == np.float32: out_type = np.complex64 # Configure output array assert a is not out if out is not None: assert out.dtype == out_type for i in range(a.ndim): if i != axis: assert a.shape[i] == out.shape[i] if direction == 'forward': assert (n // 2 + 1) == out.shape[axis] else: assert out.shape[axis] == n assert not np.may_share_memory(a, out) else: size = list(a.shape) size[axis] = n // 2 + 1 if direction == 'forward' else n out = np.empty(size, dtype=out_type, order=order) # Define length, number of transforms strides length = _ctypes.c_int(n) n_transforms = _ctypes.c_int(np.prod(a.shape) // a.shape[axis]) # For strides, the C type used *must* be long strides = (_ctypes.c_long*2)(0, a.strides[axis] // a.itemsize) if a.ndim == 2: if axis == 0: distance = _ctypes.c_int(a.strides[1] // a.itemsize) out_distance = _ctypes.c_int(out.strides[1] // out.itemsize) else: distance = _ctypes.c_int(a.strides[0] // a.itemsize) out_distance = _ctypes.c_int(out.strides[0] // out.itemsize) double_precision = True if (direction == 'forward' and a.dtype == np.float32) or (direction == 'backward' and a.dtype == np.complex64): double_precision = False # Create the description handle Desc_Handle = _ctypes.c_void_p(0) if not double_precision: mkl.DftiCreateDescriptor(_ctypes.byref(Desc_Handle), DFTI_SINGLE, DFTI_REAL, _ctypes.c_int(1), length) else: mkl.DftiCreateDescriptor(_ctypes.byref(Desc_Handle), DFTI_DOUBLE, DFTI_REAL, _ctypes.c_int(1), length) # set the storage type mkl.DftiSetValue(Desc_Handle, DFTI_CONJUGATE_EVEN_STORAGE, DFTI_COMPLEX_COMPLEX) # set normalization factor if norm == 'ortho': scale = _ctypes.c_double(1 / np.sqrt(n)) mkl.DftiSetValue(Desc_Handle, DFTI_FORWARD_SCALE, scale) mkl.DftiSetValue(Desc_Handle, DFTI_BACKWARD_SCALE, scale) elif norm is None: scale = _ctypes.c_double(1. / n) s = mkl.DftiSetValue(Desc_Handle, DFTI_BACKWARD_SCALE, scale) # set all values if necessary if a.ndim != 1: mkl.DftiSetValue(Desc_Handle, DFTI_NUMBER_OF_TRANSFORMS, n_transforms) mkl.DftiSetValue(Desc_Handle, DFTI_INPUT_DISTANCE, distance) mkl.DftiSetValue(Desc_Handle, DFTI_OUTPUT_DISTANCE, out_distance) mkl.DftiSetValue(Desc_Handle, DFTI_INPUT_STRIDES, _ctypes.byref(strides)) mkl.DftiSetValue(Desc_Handle, DFTI_OUTPUT_STRIDES, _ctypes.byref(strides)) if scrambled: s = mkl.DftiSetValue(Desc_Handle, DFTI_ORDERING, DFTI_BACKWARD_SCRAMBLED) if direction == 'forward': fft_func = mkl.DftiComputeForward elif direction == 'backward': fft_func = mkl.DftiComputeBackward else: assert False # Not-in-place FFT mkl.DftiSetValue(Desc_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE) mkl.DftiCommitDescriptor(Desc_Handle) fft_func(Desc_Handle, a.ctypes.data_as(_ctypes.c_void_p), out.ctypes.data_as(_ctypes.c_void_p) ) mkl.DftiFreeDescriptor(_ctypes.byref(Desc_Handle)) return out def mkl_fft(a, n=None, axis=-1, norm=None, direction='forward', out=None, scrambled=False): r"""Forward/backward 1D single- or double-precision FFT. Uses the Intel MKL libraries distributed with Anaconda Python. Normalisation is different from Numpy! By default, allocates new memory like 'a' for output data. Returns the array containing output data. See Also -------- fft, ifft """ # This code only works for 1D and 2D arrays assert a.ndim < 3 assert axis < a.ndim and axis >= -1 # Add zero padding if needed (incurs memory copy) ''' if n is not None and n != a.shape[axis]: pad_width = np.zeros((a.ndim, 2), dtype=np.int) pad_width[axis,1] = n - a.shape[axis] a = np.pad(a, pad_width, mode='constant') ''' if n is not None: if a.shape[axis] < n: # pad axis with zeros pad_width = np.zeros((a.ndim, 2), dtype=np.int) pad_width[axis,1] = n - a.shape[axis] a = np.pad(a, pad_width, mode='constant') elif a.shape[axis] > n: # truncate along axis b = np.swapaxes(a, axis, -1)[...,:n] a = np.swapaxes(b, -1, axis).copy() # Convert input to complex data type if real (also memory copy) if a.dtype != np.complex128 and a.dtype != np.complex64: if a.dtype == np.int64 or a.dtype == np.uint64 or a.dtype == np.float64: a = np.array(a, dtype=np.complex128) else: a = np.array(a, dtype=np.complex64) # Configure in-place vs out-of-place inplace = False if out is a: inplace = True elif out is not None: assert out.dtype == a.dtype assert a.shape == out.shape assert not np.may_share_memory(a, out) else: out = np.empty_like(a) # Define length, number of transforms strides length = _ctypes.c_int(a.shape[axis]) n_transforms = _ctypes.c_int(np.prod(a.shape) // a.shape[axis]) # For strides, the C type used *must* be long strides = (_ctypes.c_long*2)(0, a.strides[axis] // a.itemsize) if a.ndim == 2: if axis == 0: distance = _ctypes.c_int(a.strides[1] // a.itemsize) else: distance = _ctypes.c_int(a.strides[0] // a.itemsize) # Create the description handle Desc_Handle = _ctypes.c_void_p(0) if a.dtype == np.complex64: mkl.DftiCreateDescriptor(_ctypes.byref(Desc_Handle), DFTI_SINGLE, DFTI_COMPLEX, _ctypes.c_int(1), length) elif a.dtype == np.complex128: mkl.DftiCreateDescriptor(_ctypes.byref(Desc_Handle), DFTI_DOUBLE, DFTI_COMPLEX, _ctypes.c_int(1), length) # Set normalization factor if norm == 'ortho': if a.dtype == np.complex64: scale = _ctypes.c_float(1 / np.sqrt(a.shape[axis])) else: scale = _ctypes.c_double(1 / np.sqrt(a.shape[axis])) mkl.DftiSetValue(Desc_Handle, DFTI_FORWARD_SCALE, scale) mkl.DftiSetValue(Desc_Handle, DFTI_BACKWARD_SCALE, scale) elif norm is None: if a.dtype == np.complex64: scale = _ctypes.c_float(1. / a.shape[axis]) else: scale = _ctypes.c_double(1. / a.shape[axis]) mkl.DftiSetValue(Desc_Handle, DFTI_BACKWARD_SCALE, scale) # set all values if necessary if a.ndim != 1: mkl.DftiSetValue(Desc_Handle, DFTI_NUMBER_OF_TRANSFORMS, n_transforms) mkl.DftiSetValue(Desc_Handle, DFTI_INPUT_DISTANCE, distance) mkl.DftiSetValue(Desc_Handle, DFTI_OUTPUT_DISTANCE, distance) mkl.DftiSetValue(Desc_Handle, DFTI_INPUT_STRIDES, _ctypes.byref(strides)) mkl.DftiSetValue(Desc_Handle, DFTI_OUTPUT_STRIDES, _ctypes.byref(strides)) if scrambled: s = mkl.DftiSetValue(Desc_Handle, DFTI_ORDERING, DFTI_BACKWARD_SCRAMBLED) DftiErrorMessage(s) if direction == 'forward': fft_func = mkl.DftiComputeForward elif direction == 'backward': fft_func = mkl.DftiComputeBackward else: assert False if inplace: # In-place FFT mkl.DftiCommitDescriptor(Desc_Handle) fft_func(Desc_Handle, a.ctypes.data_as(_ctypes.c_void_p) ) else: # Not-in-place FFT mkl.DftiSetValue(Desc_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE) mkl.DftiCommitDescriptor(Desc_Handle) fft_func(Desc_Handle, a.ctypes.data_as(_ctypes.c_void_p), out.ctypes.data_as(_ctypes.c_void_p) ) mkl.DftiFreeDescriptor(_ctypes.byref(Desc_Handle)) return out def proper_fft2(a, norm=None, direction='forward', mkl_dir=None, fft_nthreads=0): r"""Forward/backward 2D single- or double-precision FFT. Uses the Intel MKL libraries distributed with Enthought Python. Normalisation is different from Numpy! By default, allocates new memory like 'a' for output data. Returns the array containing output data. See Also -------- fft2, ifft2 """ # input must be complex! Not exceptions if a.dtype != np.complex128 and a.dtype != np.complex64: raise ValueError('prop_fftw: Unsupported data type. Must be complex64 or complex128.') # Create the description handle Desc_Handle = _ctypes.c_void_p(0) dims = (_ctypes.c_int64*2)(*a.shape) if a.dtype == np.complex64: mkl.DftiCreateDescriptor(_ctypes.byref(Desc_Handle), DFTI_SINGLE, DFTI_COMPLEX, _ctypes.c_int(2), dims) elif a.dtype == np.complex128: mkl.DftiCreateDescriptor(_ctypes.byref(Desc_Handle), DFTI_DOUBLE, DFTI_COMPLEX, _ctypes.c_int(2), dims) # Set normalization factor if norm == 'ortho': if a.dtype == np.complex64: scale = _ctypes.c_float(1.0 / np.sqrt(np.prod(a.shape))) else: scale = _ctypes.c_double(1.0 / np.sqrt(np.prod(a.shape))) mkl.DftiSetValue(Desc_Handle, DFTI_FORWARD_SCALE, scale) mkl.DftiSetValue(Desc_Handle, DFTI_BACKWARD_SCALE, scale) elif norm is None: if a.dtype == np.complex64: scale = _ctypes.c_float(1.0 / np.prod(a.shape)) else: scale = _ctypes.c_double(1.0 / np.prod(a.shape)) mkl.DftiSetValue(Desc_Handle, DFTI_BACKWARD_SCALE, scale) # Set input strides if necessary if not a.flags['C_CONTIGUOUS']: in_strides = (_ctypes.c_int*3)(0, a.strides[0] // a.itemsize, a.strides[1] // a.itemsize) mkl.DftiSetValue(Desc_Handle, DFTI_INPUT_STRIDES, _ctypes.byref(in_strides)) if direction == 'forward': fft_func = mkl.DftiComputeForward elif direction == 'backward': fft_func = mkl.DftiComputeBackward else: assert False mkl.DftiSetValue( Desc_Handle, DFTI_THREAD_LIMIT, _ctypes.c_int(fft_nthreads) ) # In-place FFT mkl.DftiCommitDescriptor( Desc_Handle ) fft_func( Desc_Handle, a.ctypes.data_as(_ctypes.c_void_p) ) mkl.DftiFreeDescriptor( _ctypes.byref(Desc_Handle) ) return def mkl_fft2(a, norm=None, direction='forward', out=None): r"""Forward/backward 2D single- or double-precision FFT. Uses the Intel MKL libraries distributed with Enthought Python. Normalisation is different from Numpy! By default, allocates new memory like 'a' for output data. Returns the array containing output data. See Also -------- fft2, ifft2 """ # convert input to complex data type if real (also memory copy) if a.dtype != np.complex128 and a.dtype != np.complex64: if a.dtype == np.int64 or a.dtype == np.uint64 or a.dtype == np.float64: a = np.array(a, dtype=np.complex128) else: a = np.array(a, dtype=np.complex64) # Configure in-place vs out-of-place inplace = False if out is a: inplace = True elif out is not None: assert out.dtype == a.dtype assert a.shape == out.shape assert not np.may_share_memory(a, out) else: out = np.empty_like(a) # Create the description handle Desc_Handle = _ctypes.c_void_p(0) dims = (_ctypes.c_long*2)(*a.shape) if a.dtype == np.complex64: mkl.DftiCreateDescriptor(_ctypes.byref(Desc_Handle), DFTI_SINGLE, DFTI_COMPLEX, _ctypes.c_int(2), dims) elif a.dtype == np.complex128: mkl.DftiCreateDescriptor(_ctypes.byref(Desc_Handle), DFTI_DOUBLE, DFTI_COMPLEX, _ctypes.c_int(2), dims) # Set normalization factor if norm == 'ortho': scale = _ctypes.c_double(1.0 / np.sqrt(np.prod(a.shape))) mkl.DftiSetValue(Desc_Handle, DFTI_FORWARD_SCALE, scale) mkl.DftiSetValue(Desc_Handle, DFTI_BACKWARD_SCALE, scale) elif norm is None: scale = _ctypes.c_double(1.0 / np.prod(a.shape)) mkl.DftiSetValue(Desc_Handle, DFTI_FORWARD_SCALE, _ctypes.c_double(1.0)) mkl.DftiSetValue(Desc_Handle, DFTI_BACKWARD_SCALE, scale) scale = _ctypes.c_float(0.) mkl.DftiGetValue(Desc_Handle, DFTI_BACKWARD_SCALE, _ctypes.byref(scale)) # Set input strides if necessary if not a.flags['C_CONTIGUOUS']: in_strides = (_ctypes.c_long*3)(0, a.strides[0] // a.itemsize, a.strides[1] // a.itemsize) mkl.DftiSetValue(Desc_Handle, DFTI_INPUT_STRIDES, _ctypes.byref(in_strides)) if direction == 'forward': fft_func = mkl.DftiComputeForward elif direction == 'backward': fft_func = mkl.DftiComputeBackward else: assert False if inplace: # In-place FFT mkl.DftiCommitDescriptor(Desc_Handle) fft_func(Desc_Handle, a.ctypes.data_as(_ctypes.c_void_p) ) else: # Not-in-place FFT mkl.DftiSetValue(Desc_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE) # Set output strides if necessary if not out.flags['C_CONTIGUOUS']: out_strides = (_ctypes.c_long*3)(0, out.strides[0] // out.itemsize, out.strides[1] // out.itemsize) mkl.DftiSetValue(Desc_Handle, DFTI_OUTPUT_STRIDES, _ctypes.byref(out_strides)) mkl.DftiCommitDescriptor(Desc_Handle) fft_func(Desc_Handle, a.ctypes.data_as(_ctypes.c_void_p), out.ctypes.data_as(_ctypes.c_void_p) ) mkl.DftiFreeDescriptor(_ctypes.byref(Desc_Handle)) return out def cce2full(A): # Assume all square for now N = A.shape N_half = N[0]//2 + 1 out = np.empty((A.shape[0], A.shape[0]), dtype=A.dtype) out[:, :N_half] = A out[1:, N_half:] = np.rot90(A[1:, 1:-1], 2).conj() # Complete the first row out[0, N_half:] = A[0, -2:0:-1].conj() return out def mkl_rfft2(a, norm=None, direction='forward', out=None): r"""Forward/backward single- or double-precision real-complex 2D FFT. For more details: See Also -------- rfft2, irfft2 """ assert (a.dtype == np.float32) or (a.dtype == np.float64) out_type = np.complex128 if a.dtype == np.float32: out_type = np.complex64 n = a.shape[1] # Allocate memory if needed if out is not None: assert out.dtype == out_type assert out.shape[1] == n // 2 + 1 assert not np.may_share_memory(a, out) else: size = list(a.shape) size[1] = n // 2 + 1 out = np.empty(size, dtype=out_type) # Create the description handle Desc_Handle = _ctypes.c_void_p(0) dims = (_ctypes.c_long*2)(*a.shape) if a.dtype == np.float32: mkl.DftiCreateDescriptor(_ctypes.byref(Desc_Handle), DFTI_SINGLE, DFTI_REAL, _ctypes.c_int(2), dims) elif a.dtype == np.float64: mkl.DftiCreateDescriptor(_ctypes.byref(Desc_Handle), DFTI_DOUBLE, DFTI_REAL, _ctypes.c_int(2), dims) # Set the storage type mkl.DftiSetValue(Desc_Handle, DFTI_CONJUGATE_EVEN_STORAGE, DFTI_COMPLEX_COMPLEX) # Set normalization factor if norm == 'ortho': if a.dtype == np.float32: scale = _ctypes.c_float(1.0 / np.sqrt(np.prod(a.shape))) else: scale = _ctypes.c_double(1.0 / np.sqrt(np.prod(a.shape))) mkl.DftiSetValue(Desc_Handle, DFTI_FORWARD_SCALE, scale) mkl.DftiSetValue(Desc_Handle, DFTI_BACKWARD_SCALE, scale) elif norm is None: if a.dtype == np.float64: scale = _ctypes.c_float(1.0 / np.prod(a.shape)) else: scale = _ctypes.c_double(1.0 / np.prod(a.shape)) mkl.DftiSetValue(Desc_Handle, DFTI_BACKWARD_SCALE, scale) # For strides, the C type used *must* be long in_strides = (_ctypes.c_long*3)(0, a.strides[0] // a.itemsize, a.strides[1] // a.itemsize) out_strides = (_ctypes.c_long*3)(0, out.strides[0] // out.itemsize, out.strides[1] // out.itemsize) # mkl.DftiSetValue(Desc_Handle, DFTI_INPUT_STRIDES, _ctypes.byref(in_strides)) mkl.DftiSetValue(Desc_Handle, DFTI_OUTPUT_STRIDES, _ctypes.byref(out_strides)) if direction == 'forward': fft_func = mkl.DftiComputeForward elif direction == 'backward': fft_func = mkl.DftiComputeBackward else: assert False # Not-in-place FFT mkl.DftiSetValue(Desc_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE) # Set output strides if necessary if not out.flags['C_CONTIGUOUS']: out_strides = (_ctypes.c_int*3)(0, out.strides[0] // out.itemsize, out.strides[1] // out.itemsize) mkl.DftiSetValue(Desc_Handle, DFTI_OUTPUT_STRIDES, _ctypes.byref(out_strides)) mkl.DftiCommitDescriptor(Desc_Handle) fft_func(Desc_Handle, a.ctypes.data_as(_ctypes.c_void_p), out.ctypes.data_as(_ctypes.c_void_p) ) mkl.DftiFreeDescriptor(_ctypes.byref(Desc_Handle)) return out def rfft(a, n=None, axis=-1, norm=None, out=None, scrambled=False): r"""Computes the forward real-complex FFT using Intel's MKL routines. Faster than mkl_fft.fft for real arrays. Parameters ---------- a : ndarray Input array to transform. It must be real. n : int Size of the transform. axis : int Axis along which the transform is computed (default is -1, summation over the last axis). norm : {None, 'ortho'} Normalization of the transform. None (default) is same as numpy; 'ortho' gives an orthogonal (norm-preserving) transform. out : ndarray Points to the output array. Used when the array is preallocated or an in-place transform is desired. Default is None, meaning that the memory is allocated for the output array of the same shape as a. scrambled: bool, optional (default False) Allows the output of the FFT to be out of order if set to true. This can sometimes lead to better performance. Returns ------- The transformed output array. """ return mkl_rfft(a, n=n, axis=axis, norm=norm, direction='forward', out=out, scrambled=scrambled) def irfft(a, n=None, axis=-1, norm=None, out=None, scrambled=False): r"""Computes the inverse complex-real FFT using Intel's MKL routines. Faster than mkl_fft.ifft for conjugate-even arrays. Parameters ---------- a : ndarray Input array to transform. It should be stored in the conjugate-even format (i.e. like output of rfft). n : int Size of the transform. axis : int Axis along which the transform is computed (default is -1, summation over the last axis). norm : {None, 'ortho'} Normalization of the transform. None (default) is same as numpy; 'ortho' gives an orthogonal (norm-preserving) transform. out : ndarray Points to the output array. Used when the array is preallocated or an in-place transform is desired. Default is None, meaning that the memory is allocated for the output array of the same shape as a. scrambled: bool, optional (default False) Allows the input of the iFFT to be out of order if set to true. This can sometimes lead to better performance. Returns ------- The transformed output array. """ return mkl_rfft(a, n=n, axis=axis, norm=norm, direction='backward', out=out, scrambled=scrambled) def fft(a, n=None, axis=-1, norm=None, out=None, scrambled=False): r"""Computes the forward FFT using Intel's MKL routines. Parameters ---------- a : ndarray Input array to transform. n : int Size of the transform. axis : int Axis along which the transform is computed (default is -1, summation over the last axis). norm : {None, 'ortho'} Normalization of the transform. None (default) is same as numpy; 'ortho' gives an orthogonal (norm-preserving) transform. out : ndarray Points to the output array. Used when the array is preallocated or an in-place transform is desired. Default is None, meaning that the memory is allocated for the output array of the same shape as a. scrambled: bool, optional (default False) Allows the output of the FFT to be out of order if set to true. This can sometimes lead to better performance. Returns ------- The transformed output array. """ return mkl_fft(a, n=n, axis=axis, norm=norm, direction='forward', out=out, scrambled=scrambled) def ifft(a, n=None, axis=-1, norm=None, out=None, scrambled=False): r"""Computes the inverse FFT using Intel's MKL routines. Parameters ---------- a : ndarray Input array to transform. n : int Size of the transform. axis : int Axis along which the transform is computed (default is -1, summation over the last axis). norm : {None, 'ortho'} Normalization of the transform. None (default) is same as numpy; 'ortho' gives an orthogonal (norm-preserving) transform. out : ndarray Points to the output array. Used when the array is preallocated or an in-place transform is desired. Default is None, meaning that the memory is allocated for the output array of the same shape as a. scrambled: bool, optional (default False) Allows the input of the iFFT to be out of order if set to true. This can sometimes lead to better performance. Returns ------- The transformed output array. """ return mkl_fft(a, n=n, axis=axis, norm=norm, direction='backward', out=out, scrambled=scrambled) def fft2(a, norm=None, out=None): r"""Computes the forward 2D FFT using Intel's MKL routines. Parameters ---------- a : ndarray Input array to transform. norm : {None, 'ortho'} Normalization of the transform. None (default) is same as numpy; 'ortho' gives an orthogonal (norm-preserving) transform. out : ndarray Points to the output array. Used when the array is preallocated or an in-place transform is desired. Default is None, meaning that the memory is allocated for the output array of the same shape as a. Returns ------- The transformed output array. """ proper_fft2(a, norm=norm, direction='forward') return fftshift(a) #return mkl_fft2(a, norm=norm, direction='forward', out=out) def ifft2(a, norm=None, out=None): r"""Computes the inverse 2D FFT using Intel's MKL routines. Parameters ---------- a : ndarray Input array to transform. norm : {None, 'ortho'} Normalization of the transform. None (default) is same as numpy; 'ortho' gives an orthogonal (norm-preserving) transform. out : ndarray Points to the output array. Used when the array is preallocated or an in-place transform is desired. Default is None, meaning that the memory is allocated for the output array of the same shape as a. Returns ------- The transformed output array. """ proper_fft2(a, norm=norm, direction='backward') return fftshift(a) #return mkl_fft2(a, norm=norm, direction='backward', out=out) def rfft2(a, norm=None, out=None): r"""Computes the forward real -> complex conjugate-even 2D FFT using Intel's MKL routines. Faster than mkl_fft.fft2 for real arrays. Parameters ---------- a : ndarray Input array to transform. It must be real. norm : {None, 'ortho'} Normalization of the transform. None (default) is same as numpy; 'ortho' gives an orthogonal (norm-preserving) transform. out : ndarray Points to the output array. Used when the array is preallocated or an in-place transform is desired. Default is None, meaning that the memory is allocated for the output array of the same shape as a. Returns ------- The transformed output array. """ return mkl_rfft2(a, norm=None, direction='forward', out=None) def irfft2(a, norm=None, out=None): r"""Computes the forward conjugate-even -> real 2D FFT using Intel's MKL routines. Faster than mkl_fft.ifft2 for conjugate-even arrays. Parameters ---------- a : ndarray Input array to transform. It should be stored in the conjugate-even format (i.e. like output of rfft2). norm : {None, 'ortho'} Normalization of the transform. None (default) is same as numpy; 'ortho' gives an orthogonal (norm-preserving) transform. out : ndarray Points to the output array. Used when the array is preallocated or an in-place transform is desired. Default is None, meaning that the memory is allocated for the output array of the same shape as a. Returns ------- The transformed output array. """ return mkl_rfft2(a, norm=None, direction='backward', out=None) def fftshift(x, additional_shift=None, axes=None): """ Shift the zero-frequency component to the center of the spectrum, or with some additional offset from the center. This is a more generic fork of `~numpy.fft.fftshift`, which doesn't support additional shifts. Parameters ---------- x : array_like Input array. additional_shift : list of length ``M`` Desired additional shifts in ``x`` and ``y`` directions respectively axes : int or shape tuple, optional Axes over which to shift. Default is None, which shifts all axes. Returns ------- y : `~numpy.ndarray` The shifted array. """ tmp = np.asarray(x) ndim = len(tmp.shape) if axes is None: axes = list(range(ndim)) elif isinstance(axes, integer_types): axes = (axes,) # If no additional shift is supplied, reproduce `numpy.fft.fftshift` result if additional_shift is None: additional_shift = [0, 0] y = tmp for k, extra_shift in zip(axes, additional_shift): n = tmp.shape[k] if (n+1)//2 - extra_shift < n: p2 = (n+1)//2 - extra_shift else: p2 = abs(extra_shift) - (n+1)//2 mylist = np.concatenate((np.arange(p2, n), np.arange(0, p2))) y = np.take(y, mylist, k) return y if __name__ == "__main__": import time n_iter = 200 N = 256 np.seterr(all='raise') algos = { 'Numpy fft2 complex128': {'transform': np.fft.fft2, 'dtype': np.complex128}, 'MKL fft2 complex128': {'transform': fft2, 'dtype': np.complex128}, 'Numpy fft2 complex64': {'transform': np.fft.fft2, 'dtype': np.complex64}, 'MKL fft2 complex64': {'transform': fft2, 'dtype': np.complex64}, 'Numpy fft complex128': {'transform': np.fft.fft, 'dtype': np.complex128}, 'MKL fft complex128': {'transform': fft, 'dtype': np.complex128}, 'Numpy fft complex64': {'transform': np.fft.fft, 'dtype': np.complex64}, 'MKL fft complex64': {'transform': fft, 'dtype': np.complex64}, 'Numpy rfft float64': {'transform': np.fft.rfft, 'dtype': np.float64}, 'MKL rfft float64': {'transform': rfft, 'dtype': np.float64}, 'Numpy rfft float32': {'transform': np.fft.rfft, 'dtype': np.float32}, 'MKL rfft float32': {'transform': rfft, 'dtype': np.float32}, } for algo in algos.keys(): A = algos[algo]['dtype'](np.random.randn(N, N)) #C = np.zeros((N, N), dtype='complex128') start_time = time.time() for i in range(n_iter): algos[algo]['transform'](A) total = time.time() - start_time print(algo,":") print("--- %s seconds ---" % total)
UTF-8
Python
false
false
30,947
py
82
mkl_fft.py
74
0.620836
0.607943
0
891
33.73064
115
AntKazakovv/GeoJsonAnalyzer
12,189,117,210,718
8598f43192d604ea459dfb5dc7b0c14704c7bcb1
636419f778f1551e8a3744be0192a88037093352
/src/geo_tools.py
e80e4cdb218e4f50bd5e326d67ddb37203c2ec39
[]
no_license
https://github.com/AntKazakovv/GeoJsonAnalyzer
6c2537214bdc6229dbea5a93017115999c613418
9d7fdbca5202d0f52e993c67791c5d554aab4977
refs/heads/master
2023-03-24T17:37:20.081178
2020-06-03T09:24:09
2020-06-03T09:24:09
269,043,003
0
0
null
false
2021-03-20T04:11:16
2020-06-03T09:16:25
2020-06-03T09:24:20
2021-03-20T04:11:15
2
0
0
1
Python
false
false
# def checkCoordsPoint(list): import geojson dump = """{ "type": "FeatureCollection", "crs": { "type": "name", "properties": { "name": "EPSG:3857" } }, "features": [{ "type": "Feature", "geometry": { "type": "Point", "coordinates": [0, 0] } }, { "type": "Feature", "geometry": { "type": "LineString", "coordinates": [[4e6, -2e6], [8e6, 2e6]] } }, { "type": "Feature", "geometry": { "type": "LineString", "coordinates": [[4e6, 2e6], [8e6, -2e6]] } }, { "type": "Feature", "geometry": { "type": "Polygon", "coordinates": [[[-5e6, -1e6], [-4e6, 1e6], [-3e6, -1e6]]] } }, { "type": "Feature", "geometry": { "type": "MultiLineString", "coordinates": [ [[-1e6, -7.5e5], [-1e6, 7.5e5]], [[1e6, -7.5e5], [1e6, 7.5e5]], [[-7.5e5, -1e6], [7.5e5, -1e6]], [[-7.5e5, 1e6], [7.5e5, 1e6]] ] } }, { "type": "Feature", "geometry": { "type": "MultiPolygon", "coordinates": [ [[[-5e6, 6e6], [-5e6, 8e6], [-3e6, 8e6], [-3e6, 6e6]]], [[[-2e6, 6e6], [-2e6, 8e6], [0, 8e6], [0, 6e6]]], [[[1e6, 6e6], [1e6, 8e6], [3e6, 8e6], [3e6, 6e6]]] ] } }, { "type": "Feature", "geometry": { "type": "GeometryCollection", "geometries": [{ "type": "LineString", "coordinates": [[-5e6, -5e6], [0, -5e6]] }, { "type": "Point", "coordinates": [4e6, -5e6] }, { "type": "Polygon", "coordinates": [[[1e6, -6e6], [2e6, -4e6], [3e6, -6e6]]] }] } }] }""" def toGeoJson(obj): try: return geojson.loads(obj) except TypeError as e: return {"error": "не удалось загрузить geoJson, документ не валиден"} def getNumberObjects(geoJson): if geoJson.get("error") and geoJson["error"]: return geoJson features = geoJson.features finalStruct = {} for item in features: if finalStruct.get(item.geometry.type): finalStruct[item.geometry.type] += 1 else: finalStruct[item.geometry.type] = 1 try: item.geometry.geometries for i in item.geometry.geometries: if finalStruct.get(i.type): finalStruct[i.type] += 1 else: finalStruct[i.type] = 1 except: pass return finalStruct if __name__ == "__main__": f = toGeoJson(dump) print(getNumberObjects(f))
UTF-8
Python
false
false
2,604
py
3
geo_tools.py
2
0.464772
0.407552
0
106
23.245283
77
folkol/tutorials
13,048,110,691,827
e0bc41ce8635bfbfe483d9b8abfd771b5c81901b
81ec35443bc2567118aece66254c021e73f960d1
/python3/5.5.dictionaries.py
ed9c74be7c6566ccce9fafab234d7bea865f1114
[]
no_license
https://github.com/folkol/tutorials
95f1d641843cc26c04a79f74270721c7de4ac628
962b0fd89dac244e7f9dcb03773a25d96413fb0b
refs/heads/master
2023-08-17T18:50:18.358911
2023-08-02T20:46:53
2023-08-02T20:47:35
66,833,956
0
0
null
false
2023-09-05T03:40:46
2016-08-29T10:26:01
2021-11-24T09:15:13
2023-09-05T03:40:45
9,057
0
0
57
JavaScript
false
false
empty_dict = {} d = {'foo': 1, 'bar': 'baz', 'quz': []} print(d) print('foo' in d) # is key in dict. Sugar for b.__contains__(a) del d['foo'] # Remove key from dict print('foo' in d) # is key in dict d['foo'] = 1 print(d['foo']) d['foo'] = 2 print(d['foo']) print(list(d.keys())) # print(d['asdf']) # KeyError # d[('my', ['list'])] = 'foo' # List is not hashable, so this tuple is not hashable... d['asdf'] = 'wut' print(d) for k, v in d.items(): print(k, v) print('for k in d.keys()') for k in d.keys(): print(k) print('for k in d') # loop over keys for k in d: print(k) print('for v in d.values()') for v in d.values(): print(v) print(dict([(1, 2), ('a', 'b')])) # dict from list of pairs print({x: x ** x for x in range(10)}) # dict comprehension print(dict(key1=1234, key2=122, key3='foo')) # dict from kwargs from collections import defaultdict def recursive_defaultdict(): return defaultdict(recursive_defaultdict) dd = recursive_defaultdict() dd['foo']['bar']['baz'] = 'qux' print(dd) print(dd['foo']['bar']['baz']) print(dd.items())
UTF-8
Python
false
false
1,087
py
188
5.5.dictionaries.py
115
0.593376
0.577737
0
54
19.12963
87
Faiznurullah/HacktoberFest-Python
2,044,404,454,916
542250becb021947a302004cea48bbc457d08618
a7b4e777e5e08194112594b6d4cde029c181f5a3
/codes/django-url-shortener-rest-api/api/views.py
651162451958997531ed639e7cf762d7f022bd73
[]
no_license
https://github.com/Faiznurullah/HacktoberFest-Python
b1407248d95e178a131c7f350ecccf7ae8aa7e5a
b3615869f98696de784dcc5335d9e070e05bfb00
refs/heads/main
2023-08-26T14:14:32.576035
2021-10-01T14:41:45
2021-10-01T14:41:45
412,502,808
1
1
null
true
2021-10-10T01:25:37
2021-10-01T14:38:11
2021-10-01T14:41:53
2021-10-01T14:41:45
222,376
0
1
1
Jupyter Notebook
false
false
from django.http.response import Http404, HttpResponseRedirect from django.http import HttpResponse, JsonResponse from django.views.decorators.csrf import csrf_exempt from rest_framework.parsers import JSONParser from .models import ShortenedURL from .serializers import ShortenedURLSerializer def home(request): """Get Status of the API""" response_status = {'text': "API is up"} return JsonResponse(response_status, status=200) @csrf_exempt def shortenedURL_list(request): """List all shortenedURLs, or create a new shortenedURL.""" if request.method == 'GET': shortenedURLs = ShortenedURL.objects.all() serializer = ShortenedURLSerializer(shortenedURLs, many=True) return JsonResponse(serializer.data, safe=False) if request.method == 'POST': data = JSONParser().parse(request) serializer = ShortenedURLSerializer(data=data) if serializer.is_valid(): serializer.save() return JsonResponse(serializer.data, status=201) return JsonResponse(serializer.errors, status=400) return HttpResponse(status=400) @csrf_exempt def shortenedURL_detail(request, short_url): """Retrieve, update or delete a code shortenedURL.""" try: shortenedURL = ShortenedURL.objects.get(short_url=short_url) if request.method == 'GET': serializer = ShortenedURLSerializer(shortenedURL) return JsonResponse(serializer.data) if request.method == 'PUT': data = JSONParser().parse(request) serializer = ShortenedURLSerializer(shortenedURL, data=data) if serializer.is_valid(): serializer.save() return JsonResponse(serializer.data) return JsonResponse(serializer.errors, status=400) if request.method == 'DELETE': shortenedURL.delete() return HttpResponse(status=204) except ShortenedURL.DoesNotExist: return HttpResponse(status=404) def redirect_view(request, short_url): """Redirect the short URL to link URL""" try: if request.method == 'GET': shortener = ShortenedURL.objects.get(short_url=short_url) shortener.times_visited += 1 shortener.save() return HttpResponseRedirect(shortener.long_url) except ShortenedURL.DoesNotExist: return HttpResponse(status=404)
UTF-8
Python
false
false
2,410
py
50
views.py
22
0.675104
0.663485
0
66
35.515152
72
JKK5/BOJ
2,568,390,460,288
1e22c6afb4494747972cb31a371fece51e5f7b42
0291d961a1406802e4ff52a5dd742f08b9030583
/lv5/2.py
930c949318e72fea5c37ca1478690b3a16113d35
[]
no_license
https://github.com/JKK5/BOJ
d607a2a8d4adc498345fb62ef1cd10c39c4c5c2f
0ef1d302c14cd4514647ea23dd8b650af6bca6c8
refs/heads/main
2023-02-16T07:09:42.586297
2021-01-17T13:17:46
2021-01-17T13:17:46
328,104,093
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# lst = [] # for i in range(9): # lst.append(int(input())) # print(max(lst), lst.index(max(lst)) + 1) lst = [int(input()) for i in range(9)] print(max(lst), lst.index(max(lst)) + 1)
UTF-8
Python
false
false
189
py
26
2.py
26
0.566138
0.544974
0
9
20
42
Est17256/LAB2-Redes-Deteccion-Errores
13,056,700,621,192
88fb264a29eeeab89e3fe6565ed3a360b7aea574
60a26ca7fb99965fc572146d4e60d2134f71d5f6
/emisor.py
f9d0b3a6e70683901a1c3267d4d4450289244054
[]
no_license
https://github.com/Est17256/LAB2-Redes-Deteccion-Errores
299f08fdbe737a49bd715ae0131ceafde61dffdc
31e482ae6c2dcb6e2d45b3a02d586cf85e00891e
refs/heads/master
2022-11-26T05:42:29.646040
2020-08-06T21:08:27
2020-08-06T21:08:27
284,817,363
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
### Emisor del mensaje import re import socket import pickle ### Funciones utilizadas para la implementacion de Hamming def VerRdn(m): for i in range(m): if(2**i >= m + i + 1): return i def PosRdn(data, r): j = 0 k = 1 m = len(data) res = '' for i in range(1, m + r+1): if(i == 2**j): res = res + '0' j += 1 else: res = res + data[-1 * k] k += 1 return res[::-1] def VerPrd(dat, r): n = len(dat) for i in range(r): val = 0 for j in range(1, n + 1): if(j & (2**i) == (2**i)): val = val ^ int(dat[-1 * j]) dat = dat[:n-(2**i)] + str(val) + dat[n-(2**i)+1:] return dat def VerFnl(dat, nr): n = len(dat) res = 0 for i in range(nr): val = 0 for j in range(1, n + 1): if(j & (2**i) == (2**i)): val = val ^ int(dat[-1 * j]) res = res + val*(10**i) return int(str(res), 2) ### Funciones utilizadas para la implementacion de checksum def sumarSegmentos(segmento1, segmento2): carrier = '0' suma = '' for item in range(7,-1,-1): a = int(segmento1[item]) b = int(segmento2[item]) resultadoAB = a + b + int(carrier) if resultadoAB == 0: suma = '0' + suma carrier = '0' elif resultadoAB == 1: suma = '1' + suma carrier = '0' elif resultadoAB == 2: suma = '0' + suma carrier = '1' elif resultadoAB == 3: suma = '1' + suma carrier = '1' if carrier != '0': suma = carrier + suma return suma def emisionCheckSum(binario): n = 8 arrayBinary = [binario[i:i+n] for i in range(0, len(binario), n)] sumaSegmentos = '00000000' for i in arrayBinary: sumaSegmentos = sumarSegmentos(sumaSegmentos, i) if len(sumaSegmentos) > 8: sumaSegmentos = sumaSegmentos[1:] sumaSegmentos = sumarSegmentos(sumaSegmentos, '00000001') return xor(sumaSegmentos) def xor(segmento): resultado = '' for i in segmento: if i == '0': resultado = resultado + '1' else: resultado = resultado + '0' return resultado ### Conexion por Socket sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.bind(('127.0.0.1',9000)) sock.listen(1) conexion, direccion = sock.accept() print("Conexion relaizada con exito de la direccion", str(direccion)) ### Procesamiento de capas del mensaje a enviar Mensaje=input("Ingrese el mensaje: ") mensajeEnviar = '' ### Convertir mensaje de STR -> BIN Binario=' '.join(map(bin,bytearray(Mensaje,'utf8'))) Binario=Binario.replace("b","") Binario=Binario.replace(" ","") print("Mensaje en binario:", Binario) binarioDeteccion = Binario opcionita=int(input("Cual algoritmo desea probar, 1.Hamming 2.Checksum (Seleccion un numero): ")) if opcionita == 1: m = len(Binario) r = VerRdn(m) dat = PosRdn(Binario, r) dat = VerPrd(dat, r) print(dat) print(dat) ### Se ingresa el ruido al mensaje ruido=int(input("Desea agregar ruido al mensaje, 1.Si 2.No (Seleccion un numero): ")) if ruido==1: Lista=list(dat) lista2=[] print(Lista) intervalo=int(input("Ingrese el intervalo del ruido: ")) intervalo2=0 for i in range(len(dat)): intervalo2+=1 if intervalo2==intervalo: lista2.append("1") intervalo2=0 else: lista2.append(Lista[i]) objeto="" objeto=objeto.join(lista2) print("Ruido") print(objeto) print("Ruido") dat = objeto ### Utilizamos pickle para hacer provecho del uso del paquete bitarray dat = '0' + dat + ',' + str(r) mensajeEnviar = pickle.dumps(dat) else: dat = Binario ### Se ingresa el ruido al mensaje ruido=int(input("Desea agregar ruido al mensaje, 1.Si 2.No (Seleccion un numero): ")) if ruido==1: Lista=list(Binario) lista2=[] print(Lista) intervalo=int(input("Ingrese el intervalo del ruido: ")) intervalo2=0 for i in range(len(Binario)): intervalo2+=1 if intervalo2==intervalo: lista2.append("1") intervalo2=0 else: lista2.append(Lista[i]) objeto="" objeto=objeto.join(lista2) print("Ruido") print(objeto) print("Ruido") dat = objeto complemento = emisionCheckSum(dat) mensaje = '1' + Binario + complemento ### Utilizamos pickle para hacer provecho del uso del paquete bitarray mensajeEnviar = pickle.dumps(mensaje) ### Se envia el objeto mensaje conexion.send(mensajeEnviar) conexion.close()
UTF-8
Python
false
false
4,945
py
4
emisor.py
3
0.542164
0.517492
0
181
26.320442
97
dortania/Opencore-Legacy-Patcher
15,607,911,165,855
dd39415c7c57ca212c8a644e3939c8c6423c8ee6
7d13c03810d893447ca5b2b59c3cf46d835abad0
/resources/build/build.py
07615dafd78e3ee90b14b48d4e8c6a87628dc8c2
[]
no_license
https://github.com/dortania/Opencore-Legacy-Patcher
fdcd3dfec0ce59e9cd8f5a0a1108c9d264b28843
961c9c7a683ea9860b704523cc04d65dc4fa440c
refs/heads/main
2023-03-20T03:22:15.819393
2023-03-19T17:35:14
2023-03-19T17:35:14
315,490,189
64
15
null
null
null
null
null
null
null
null
null
null
null
null
null
# Class for generating OpenCore Configurations tailored for Macs # Copyright (C) 2020-2022, Dhinak G, Mykola Grymalyuk import copy import pickle import plistlib import shutil import zipfile from pathlib import Path from datetime import date import logging from resources import constants, utilities from resources.build import bluetooth, firmware, graphics_audio, support, storage, smbios, security, misc from resources.build.networking import wired, wireless def rmtree_handler(func, path, exc_info): if exc_info[0] == FileNotFoundError: return raise # pylint: disable=misplaced-bare-raise class build_opencore: def __init__(self, model, versions): self.model = model self.config = None self.constants: constants.Constants = versions def build_efi(self): utilities.cls() if not self.constants.custom_model: logging.info(f"Building Configuration on model: {self.model}") else: logging.info(f"Building Configuration for external model: {self.model}") self.generate_base() self.set_revision() # Set Lilu and co. support.build_support(self.model, self.constants, self.config).enable_kext("Lilu.kext", self.constants.lilu_version, self.constants.lilu_path) self.config["Kernel"]["Quirks"]["DisableLinkeditJettison"] = True # Call support functions firmware.build_firmware(self.model, self.constants, self.config).build() wired.build_wired(self.model, self.constants, self.config).build() wireless.build_wireless(self.model, self.constants, self.config).build() graphics_audio.build_graphics_audio(self.model, self.constants, self.config).build() bluetooth.build_bluetooth(self.model, self.constants, self.config).build() storage.build_storage(self.model, self.constants, self.config).build() smbios.build_smbios(self.model, self.constants, self.config).build() security.build_security(self.model, self.constants, self.config).build() misc.build_misc(self.model, self.constants, self.config).build() # Work-around ocvalidate if self.constants.validate is False: logging.info("- Adding bootmgfw.efi BlessOverride") self.config["Misc"]["BlessOverride"] += ["\\EFI\\Microsoft\\Boot\\bootmgfw.efi"] def generate_base(self): # Generate OpenCore base folder and config if not Path(self.constants.build_path).exists(): logging.info("Creating build folder") Path(self.constants.build_path).mkdir() else: logging.info("Build folder already present, skipping") if Path(self.constants.opencore_zip_copied).exists(): logging.info("Deleting old copy of OpenCore zip") Path(self.constants.opencore_zip_copied).unlink() if Path(self.constants.opencore_release_folder).exists(): logging.info("Deleting old copy of OpenCore folder") shutil.rmtree(self.constants.opencore_release_folder, onerror=rmtree_handler, ignore_errors=True) logging.info("") logging.info(f"- Adding OpenCore v{self.constants.opencore_version} {self.constants.opencore_build}") shutil.copy(self.constants.opencore_zip_source, self.constants.build_path) zipfile.ZipFile(self.constants.opencore_zip_copied).extractall(self.constants.build_path) # Setup config.plist for editing logging.info("- Adding config.plist for OpenCore") shutil.copy(self.constants.plist_template, self.constants.oc_folder) self.config = plistlib.load(Path(self.constants.plist_path).open("rb")) def set_revision(self): # Set revision in config self.config["#Revision"]["Build-Version"] = f"{self.constants.patcher_version} - {date.today()}" if not self.constants.custom_model: self.config["#Revision"]["Build-Type"] = "OpenCore Built on Target Machine" computer_copy = copy.copy(self.constants.computer) computer_copy.ioregistry = None self.config["#Revision"]["Hardware-Probe"] = pickle.dumps(computer_copy) else: self.config["#Revision"]["Build-Type"] = "OpenCore Built for External Machine" self.config["#Revision"]["OpenCore-Version"] = f"{self.constants.opencore_version} - {self.constants.opencore_build} - {self.constants.opencore_commit}" self.config["#Revision"]["Original-Model"] = self.model self.config["NVRAM"]["Add"]["4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102"]["OCLP-Version"] = f"{self.constants.patcher_version}" self.config["NVRAM"]["Add"]["4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102"]["OCLP-Model"] = self.model def save_config(self): plistlib.dump(self.config, Path(self.constants.plist_path).open("wb"), sort_keys=True) def build_opencore(self): # Generate OpenCore Configuration self.build_efi() if self.constants.allow_oc_everywhere is False or self.constants.allow_native_spoofs is True or (self.constants.custom_serial_number != "" and self.constants.custom_board_serial_number != ""): smbios.build_smbios(self.model, self.constants, self.config).set_smbios() support.build_support(self.model, self.constants, self.config).cleanup() self.save_config() # Post-build handling support.build_support(self.model, self.constants, self.config).sign_files() support.build_support(self.model, self.constants, self.config).validate_pathing() logging.info("") logging.info(f"Your OpenCore EFI for {self.model} has been built at:") logging.info(f" {self.constants.opencore_release_folder}") logging.info("") if self.constants.gui_mode is False: input("Press [Enter] to continue\n")
UTF-8
Python
false
false
5,856
py
16
build.py
12
0.677083
0.669399
0
125
45.848
200
webclinic017/asyncdb
13,443,247,637,179
6afb4dcff5918cb756481051c96d8b99d3a3cece
f50598c605d8299c8093a8c4eba6006c7616912d
/asyncdb/providers/mysql.py
c008acfa4cf5ddbc4e2c473f359e1909de590dd0
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
https://github.com/webclinic017/asyncdb
5e87bd8bce6780fdcfa6ef9dfc9129b299a49425
2fe94c719c88397d42b38cd8e2954be8eec3eee9
refs/heads/master
2023-08-31T09:17:32.841163
2021-10-20T17:34:38
2021-10-20T17:34:38
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python3 import asyncio import json import time from datetime import datetime import aiomysql from asyncdb.exceptions import ( ConnectionTimeout, DataError, EmptyStatement, NoDataFound, ProviderError, StatementError, TooManyConnections, ) from asyncdb.providers import ( BasePool, BaseProvider, registerProvider, ) from asyncdb.utils import ( EnumEncoder, SafeDict, ) class mysqlPool(BasePool): _max_queries = 300 # _dsn = 'mysql://{user}:{password}@{host}:{port}/{database}' loop = asyncio.get_event_loop() def __init__(self, loop=None, params={}): self._logger.debug("Ready") super(mysqlPool, self).__init__(loop=loop, params=params) def get_event_loop(self): return self._loop """ __init async db initialization """ # Create a database connection pool async def connect(self): self._logger.debug("aioMysql: Connecting to {}".format(self._params)) self._logger.debug("Start connection") try: # TODO: pass a setup class for set_builtin_type_codec and a setup for add listener self._pool = await aiomysql.create_pool( host=self._params["host"], user=self._params["user"], password=self._params["password"], db=self._params["database"], loop=self._loop, ) except TimeoutError as err: raise ConnectionTimeout( "Unable to connect to database: {}".format(str(err)) ) except ConnectionRefusedError as err: raise ProviderError( "Unable to connect to database, connection Refused: {}".format(str(err)) ) except Exception as err: raise ProviderError("Unknown Error: {}".format(str(err))) return False # is connected if self._pool: self._connected = True self._initialized_on = time.time() """ Take a connection from the pool. """ async def acquire(self): self._logger.debug("Acquire") db = None self._connection = None # Take a connection from the pool. try: self._connection = await self._pool.acquire() except Exception as err: raise ProviderError("Close Error: {}".format(str(err))) if self._connection: db = mysql(pool=self) db.set_connection(self._connection) return db """ Release a connection from the pool """ async def release(self, connection=None, timeout=10): self._logger.debug("Release") if not connection: conn = self._connection else: conn = connection try: await self._pool.release(conn) # print('r', r) # release = asyncio.create_task(r) # await self._pool.release(connection, timeout = timeout) # release = asyncio.ensure_future(release, loop=self._loop) # await asyncio.wait_for(release, timeout=timeout, loop=self._loop) # await release except Exception as err: raise ProviderError("Release Error: {}".format(str(err))) """ close Close Pool Connection """ async def wait_close(self, gracefully=True): if self._pool: self._logger.debug("aioMysql: Closing Pool") # try to closing main connection try: if self._connection: await self._pool.release(self._connection, timeout=2) except Exception as err: raise ProviderError("Release Error: {}".format(str(err))) # at now, try to closing pool try: await self._pool.close() # await self._pool.terminate() except Exception as err: print("Pool Error: {}".format(str(err))) await self._pool.terminate() raise ProviderError("Pool Error: {}".format(str(err))) finally: self._pool = None """ Close Pool """ async def close(self): # try: # if self._connection: # print('self._pool', self._pool) # await self._pool.release(self._connection) # except Exception as err: # raise ProviderError("Release Error: {}".format(str(err))) try: await self._pool.close() except Exception as err: print("Pool Closing Error: {}".format(str(err))) self._pool.terminate() def terminate(self, gracefully=True): self._loop.run_until_complete(asyncio.wait_for(self.close(), timeout=5)) """ Execute a connection into the Pool """ async def execute(self, sentence, *args): if self._pool: try: result = await self._pool.execute(sentence, *args) return result except Exception as err: raise ProviderError("Execute Error: {}".format(str(err))) class mysql(BaseProvider): _provider = "mysql" _syntax = "sql" _test_query = "SELECT 1" _dsn = "mysql://{user}:{password}@{host}:{port}/{database}" _loop = None _pool = None _connection = None _connected = False _prepared = None _parameters = () _cursor = None _transaction = None _initialized_on = None _query_raw = "SELECT {fields} FROM {table} {where_cond}" def __init__(self, loop=None, pool=None, params={}): super(mysql, self).__init__(loop=loop, params=params) asyncio.set_event_loop(self._loop) async def close(self): """ Closing a Connection """ try: if self._connection: if not self._connection.closed: self._logger.debug("Closing Connection") try: if self._pool: self._pool.close() else: self._connection.close() except Exception as err: self._pool.terminate() self._connection = None raise ProviderError( "Connection Error, Terminated: {}".format(str(err)) ) except Exception as err: raise ProviderError("Close Error: {}".format(str(err))) finally: self._connection = None self._connected = False def terminate(self): self._loop.run_until_complete(self.close()) async def connection(self): """ Get a connection """ self._connection = None self._connected = False self._cursor = None try: if not self._pool: self._pool = await aiomysql.create_pool( host=self._params["host"], user=self._params["user"], password=self._params["password"], db=self._params["database"], loop=self._loop, ) self._connection = await self._pool.acquire() self._cursor = await self._connection.cursor() if self._connection: self._connected = True self._initialized_on = time.time() except Exception as err: self._connection = None self._cursor = None raise ProviderError("connection Error, Terminated: {}".format(str(err))) finally: return self._connection """ Release a Connection """ async def release(self): try: if not await self._connection.closed: if self._pool: release = asyncio.create_task( self._pool.release(self._connection, timeout=10) ) asyncio.ensure_future(release, loop=self._loop) return await release else: await self._connection.close(timeout=5) except Exception as err: raise ProviderError("Release Interface Error: {}".format(str(err))) return False finally: self._connected = False self._connection = None def prepared_statement(self): return self._prepared @property def connected(self): if self._pool: return not self._pool._closed elif self._connection: return not self._connection.closed """ Preparing a sentence """ async def prepare(self, sentence=""): error = None if not sentence: raise EmptyStatement("Sentence is an empty string") try: if not self._connection: await self.connection() try: stmt = await asyncio.shield(self._connection.prepare(sentence)) try: # print(stmt.get_attributes()) self._columns = [a.name for a in stmt.get_attributes()] self._prepared = stmt self._parameters = stmt.get_parameters() except TypeError: self._columns = [] except RuntimeError as err: error = "Prepare Runtime Error: {}".format(str(err)) raise StatementError(error) except Exception as err: error = "Unknown Error: {}".format(str(err)) raise ProviderError(error) finally: return [self._prepared, error] async def query(self, sentence="", size=100000000000): # self._logger.debug("Start Query function") error = None if not sentence: raise EmptyStatement("Sentence is an empty string") if not self._connection: await self.connection() try: startTime = datetime.now() await self._cursor.execute(sentence) self._result = await self.fetchmany(size) if not self._result: raise NoDataFound("Mysql: No Data was Found") return [None, "Mysql: No Data was Found"] except RuntimeError as err: error = "Runtime Error: {}".format(str(err)) raise ProviderError(error) except Exception as err: error = "Error on Query: {}".format(str(err)) raise Exception(error) finally: # self._generated = datetime.now() - startTime # await self.close() return [self._result, error] async def queryrow(self, sentence=""): error = None if not sentence: raise EmptyStatement("Sentence is an empty string") if not self._connection: await self.connection() try: # stmt = await self._connection.prepare(sentence) # self._columns = [a.name for a in stmt.get_attributes()] await self._cursor.execute(sentence) self._result = await self.fetchone() except RuntimeError as err: error = "Runtime on Query Row Error: {}".format(str(err)) raise ProviderError(error) except Exception as err: error = "Error on Query Row: {}".format(str(err)) raise Exception(error) # finally: # await self.close() return [self._result, error] async def execute(self, sentence=""): """Execute a transaction get a SQL sentence and execute returns: results of the execution """ error = None result = None if not sentence: raise EmptyStatement("Sentence is an empty string") if not self._connection: await self.connection() try: result = await self._cursor.execute(sentence) return [result, None] return [None, error] except Exception as err: error = "Error on Execute: {}".format(str(err)) raise [None, error] finally: return [result, error] async def executemany(self, sentence="", args=[]): error = None if not sentence: raise EmptyStatement("Sentence is an empty string") if not self._connection: await self.connection() try: await self.begin() await self._cursor.executemany(sentence, args) await self.commit() return False except Exception as err: await self.rollback() error = "Error on Execute: {}".format(str(err)) raise Exception(error) finally: return error """ Transaction Context """ async def begin(self): if not self._connection: await self.connection() await self._connection.begin() return self async def commit(self): if not self._connection: await self.connection() await self._connection.commit() return self async def rollback(self): if not self._connection: await self.connection() await self._connection.rollback() return self """ Cursor Context """ async def cursor(self, sentence=""): self._logger.debug("Cursor") if not self._connection: await self.connection() return self._cursor async def forward(self, number): try: return await self._cursor.scroll(number) except Exception as err: error = "Error forward Cursor: {}".format(str(err)) raise Exception(error) async def fetchall(self): try: return await self._cursor.fetchall() except Exception as err: error = "Error FetchAll Cursor: {}".format(str(err)) raise Exception(error) async def fetchmany(self, size=None): try: return await self._cursor.fetchmany(size) except Exception as err: error = "Error FetchMany Cursor: {}".format(str(err)) raise Exception(error) async def fetchone(self): try: return await self._cursor.fetchone() except Exception as err: error = "Error FetchOne Cursor: {}".format(str(err)) raise Exception(error) """ Cursor Iterator Context """ def __aiter__(self): return self async def __anext__(self): data = await self._cursor.fetchrow() if data is not None: return data else: raise StopAsyncIteration """ COPY Functions type: [ text, csv, binary ] """ async def copy_from_table( self, table="", schema="public", output=None, type="csv", columns=None ): """table_copy get a copy of table data into a file, file-like object or a coroutine passed on "output" returns: num of rows copied. example: COPY 1470 """ if not self._connection: await self.connection() try: result = await self._connection.copy_from_table( table_name=table, schema_name=schema, columns=columns, format=type, output=output, ) print(result) return result except Exception as err: error = "Error on Table Copy: {}".format(str(err)) raise Exception(error) async def copy_to_table( self, table="", schema="public", source=None, type="csv", columns=None ): """copy_to_table get data from a file, file-like object or a coroutine passed on "source" and copy into table returns: num of rows copied. example: COPY 1470 """ if not self._connection: await self.connection() try: result = await self._connection.copy_to_table( table_name=table, schema_name=schema, columns=columns, format=type, source=source, ) print(result) return result except Exception as err: error = "Error on Table Copy: {}".format(str(err)) raise Exception(error) async def copy_into_table( self, table="", schema="public", source=None, columns=None ): """copy_into_table get data from records (any iterable object) and save into table returns: num of rows copied. example: COPY 1470 """ if not self._connection: await self.connection() try: result = await self._connection.copy_records_to_table( table_name=table, schema_name=schema, columns=columns, records=source ) print(result) return result except Exception as err: error = "Error on Table Copy: {}".format(str(err)) raise Exception(error) """ Meta-Operations """ def table(self, table): try: return self._query_raw.format_map(SafeDict(table=table)) except Exception as e: print(e) return False def fields(self, sentence, fields=None): _sql = False if not fields: _sql = sentence.format_map(SafeDict(fields="*")) elif type(fields) == str: _sql = sentence.format_map(SafeDict(fields=fields)) elif type(fields) == list: _sql = sentence.format_map(SafeDict(fields=",".join(fields))) return _sql """ where add WHERE conditions to SQL """ def where(self, sentence, where): sql = "" if sentence: where_string = "" if not where: sql = sentence.format_map(SafeDict(where_cond="")) elif type(where) == dict: where_cond = [] for key, value in where.items(): # print("KEY {}, VAL: {}".format(key, value)) if type(value) == str or type(value) == int: if value == "null" or value == "NULL": where_string.append("%s IS NULL" % (key)) elif value == "!null" or value == "!NULL": where_string.append("%s IS NOT NULL" % (key)) elif key.endswith("!"): where_cond.append("%s != %s" % (key[:-1], value)) else: if ( type(value) == str and value.startswith("'") and value.endswith("'") ): where_cond.append("%s = %s" % (key, "{}".format(value))) elif type(value) == int: where_cond.append("%s = %s" % (key, "{}".format(value))) else: where_cond.append( "%s = %s" % (key, "'{}'".format(value)) ) elif type(value) == bool: val = str(value) where_cond.append("%s = %s" % (key, val)) else: val = ",".join(map(str, value)) if type(val) == str and "'" not in val: where_cond.append("%s IN (%s)" % (key, "'{}'".format(val))) else: where_cond.append("%s IN (%s)" % (key, val)) # if 'WHERE ' in sentence: # where_string = ' AND %s' % (' AND '.join(where_cond)) # else: where_string = " WHERE %s" % (" AND ".join(where_cond)) print("WHERE cond is %s" % where_string) sql = sentence.format_map(SafeDict(where_cond=where_string)) elif type(where) == str: where_string = where if not where.startswith("WHERE"): where_string = " WHERE %s" % where sql = sentence.format_map(SafeDict(where_cond=where_string)) else: sql = sentence.format_map(SafeDict(where_cond="")) del where del where_string return sql else: return False def limit(self, sentence, limit=1): """ LIMIT add limiting to SQL """ if sentence: return "{q} LIMIT {limit}".format(q=sentence, limit=limit) return self def orderby(self, sentence, ordering=[]): """ LIMIT add limiting to SQL """ if sentence: if type(ordering) == str: return "{q} ORDER BY {ordering}".format(q=sentence, ordering=ordering) elif type(ordering) == list: return "{q} ORDER BY {ordering}".format( q=sentence, ordering=", ".join(ordering) ) return self def get_query(self, sentence): """ get_query Get formmated query """ sql = sentence try: # remove fields and where_cond sql = sentence.format_map(SafeDict(fields="*", where_cond="")) if not self.connected: self._loop.run_until_complete(self.connection()) prepared, error = self._loop.run_until_complete(self.prepare(sql)) if not error: self._columns = self.get_columns() else: print("Error in Get Query", error) return False except (ProviderError, StatementError) as err: print("ProviderError or StatementError Exception in Get Query", e) return False except Exception as e: print("Exception in Get Query", e) return False return sql def column_info(self, table): """ column_info get column information about a table """ discover = "SELECT attname AS column_name, atttypid::regtype AS data_type FROM pg_attribute WHERE attrelid = '{}'::regclass AND attnum > 0 AND NOT attisdropped ORDER BY attnum".format( table ) try: result, error = self._loop.run_until_complete(self.query(discover)) if result: return result except (NoDataFound, ProviderError): print(err) return False except Exception as err: print(err) return False def insert(self, table, data, **kwargs): """ insert insert the result onto a table """ sql = "INSERT INTO {table} ({fields}) VALUES ({values})" sql = sql.format_map(SafeDict(table=table)) # set columns sql = sql.format_map(SafeDict(fields=",".join(data.keys()))) values = ",".join(str(v) for v in data.values()) sql = sql.format_map(SafeDict(values=values)) try: result = self._loop.run_until_complete(self._connection.execute(sql)) if not result: print(result) return False else: return result except Exception as err: # print(sql) print(err) return False """ Registering this Provider """ registerProvider(mysql)
UTF-8
Python
false
false
23,819
py
77
mysql.py
61
0.513288
0.51165
0
722
31.990305
193
skrla/OOP_JAVA_PHP_PYTHON_SWIFT
4,346,506,951,515
59a9f2bcfb761f6125af7c045b6fd8876cb2998c
7dd0b989cb4915f9a04361da49f0c10775209c86
/Python/model/Partija.py
bee25d69f4a22a311c7baf1f38921d379ce532bf
[]
no_license
https://github.com/skrla/OOP_JAVA_PHP_PYTHON_SWIFT
aa55771ccbb1406bcd2ac6b6699145403835cc75
ecb79d79cf8c6e78f8e330f73a4d7a6f438a925a
refs/heads/master
2023-03-29T05:57:05.824323
2021-03-28T12:20:03
2021-03-28T12:20:03
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from model.Entitet import Entitet from model.Igrac import Igrac from model.Lokacija import Lokacija from model.Rezultat import Rezultat class Partija(Entitet): def __init__(self, sifra=None): super().__init__(sifra) self._do_koliko_se_igra = 501 self._lokacija = Lokacija() self._unosi = Igrac() self._mjesanja = [] self._igraci = [] def get_rezultat(self) -> Rezultat: rezultat = Rezultat() rezultat.prvi = sum(mjesanje.get_rezultat().prvi for mjesanje in self.mjesanja) rezultat.drugi = sum(mjesanje.get_rezultat().drugi for mjesanje in self.mjesanja) return rezultat @property def is_igra_gotova(self) -> bool: rezultat = self.get_rezultat() if rezultat.is_pocetak(): return False if rezultat.treci == 0: return False if rezultat.prvi == rezultat.drugi else rezultat.prvi > self.do_koliko_se_igra or \ rezultat.drugi > self.do_koliko_se_igra else: return rezultat.prvi > self.do_koliko_se_igra or rezultat.drugi > self.do_koliko_se_igra or \ rezultat.treci > self.do_koliko_se_igra return False @property def do_koliko_se_igra(self): return self._do_koliko_se_igra @do_koliko_se_igra.setter def do_koliko_se_igra(self, do_koliko_se_igra): self._do_koliko_se_igra = do_koliko_se_igra @property def lokacija(self): return self._lokacija @lokacija.setter def lokacija(self, lokacija): self._lokacija = lokacija @property def unosi(self): return self._unosi @unosi.setter def unosi(self, unosi): self._unosi = unosi @property def mjesanja(self): return self._mjesanja @mjesanja.setter def mjesanja(self, mjesanja): self._mjesanja = mjesanja @property def igraci(self): return self._igraci @igraci.setter def igraci(self, igraci): self._igraci = igraci
UTF-8
Python
false
false
2,082
py
88
Partija.py
67
0.599904
0.597983
0
74
27.135135
108
FujitaHirotaka/djangoruler3
17,471,926,973,275
0cf324e4784b2b933bec45adc7129823a054d5df
c1c7214e1f9230f19d74bb9776dac40d820da892
/examples/css辞書/dropshadow/box-shadow/project/app/forms.py
1bc8d7ad974bab511d23f93c0df35a2810c133de
[]
no_license
https://github.com/FujitaHirotaka/djangoruler3
cb326c80d9413ebdeaa64802c5e5f5daadb00904
9a743fbc12a0efa73dbc90f93baddf7e8a4eb4f8
refs/heads/master
2020-04-01T13:32:28.078110
2018-12-13T00:39:56
2018-12-13T00:39:56
153,256,642
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django import forms from .models import * from django.urls import reverse from django.urls import reverse_lazy from pathlib import Path bathpath=Path.cwd()/"app"/"static"/"app"/"images" class CssForm(forms.Form): value1=forms.IntegerField(label="第一パラメーター(水平方向の影のオフセット距離 px)", help_text="正負の値可") value2=forms.IntegerField(label="第二パラメーター(垂直方向の影のオフセット距離 px)", help_text="正負の値可") value3=forms.IntegerField(label="第三パラメーター(ぼかし距離)px", help_text="正の値のみ可") value4=forms.IntegerField(label="第四パラメーター(広がり距離)px", help_text="正の値のみ可") inset=forms.BooleanField(label="第五パラメーター(inset)", required=False)
UTF-8
Python
false
false
840
py
300
forms.py
136
0.753226
0.746774
0
14
43.071429
85
ivanAbregu/ci
15,710,990,396,127
487d2767a1308b1f1cbd958c84ab804f6b6a03a9
3931c14aca58e2149a6440245e363807732a17fd
/test_sum.py
c4dbe8a85463e9df1aabb1a9a1cfaa49c34d5307
[]
no_license
https://github.com/ivanAbregu/ci
830ee297a5b469cdd2e05583ac3fe85ea34ee179
5d473b17a7a15223acbda50bf993254b40977aff
refs/heads/master
2020-12-31T10:10:04.149824
2020-03-09T02:10:50
2020-03-09T02:10:50
238,993,606
0
0
null
false
2020-06-04T18:07:20
2020-02-07T18:08:56
2020-03-09T02:10:53
2020-03-09T02:13:35
18
0
0
1
Python
false
false
import unittest from sum import custom_sum class MyTestCase(unittest.TestCase): def test_custom_sum(self): self.assertEqual(custom_sum(1, 1), 2) def test_sum_big(self): self.assertEqual(custom_sum(5000, 5000), 10000) if __name__ == '__main__': unittest.main()
UTF-8
Python
false
false
291
py
3
test_sum.py
2
0.652921
0.597938
0
12
23.25
55
mtianyan/LeetcodePython
18,674,517,806,581
c0487f6a371675ec41070859ac5475b0471ef670
7f57c1bc457f693d1e2b482bd92180b5f619d3bb
/easy/7-0706/160-intersection-of-two-linked-lists.py
4322be9e165f9c752b96f7f5c1db0975101f5fbf
[]
no_license
https://github.com/mtianyan/LeetcodePython
17694eed256886a075208264904ac1533df71d03
6880de6f92d8b6bf9223656f356831fb2b475202
refs/heads/master
2023-07-11T19:46:54.388781
2023-07-06T15:59:34
2023-07-06T15:59:34
331,367,286
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
class Solution: def getIntersectionNode(self, headA: ListNode, headB: ListNode) -> ListNode: A, B = headA, headB while A != B: A = A.next if A else headB B = B.next if B else headA return A class Solution: def getIntersectionNode(self, headA: ListNode, headB: ListNode) -> ListNode: s = set() p, q = headA, headB while p: s.add(p) p = p.next while q: if q in s: return q q = q.next return None # Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def getIntersectionNode(self, headA: ListNode, headB: ListNode) -> Optional[ListNode]: hash_set = set() i, j = headA, headB while i: hash_set.add(i) i = i.next while j: if j in hash_set: return j hash_set.add(j) j = j.next return None
UTF-8
Python
false
false
1,064
py
138
160-intersection-of-two-linked-lists.py
137
0.496241
0.496241
0
42
24.333333
90
specialkgb/StudyCrawl
14,242,111,602,883
33da6bd239094245c160d5dca801e3f4008d257d
0cb2a54f19435afb72181500979f53c6edc15ca2
/apart/boardpage.py
7aa35503b71e18f812ce494f0cc2dd45d6a3ce41
[]
no_license
https://github.com/specialkgb/StudyCrawl
3c1ba953fdc234a7bbf1a5de6c1bef34c270d410
8385cafde8883d9e49eef162a39fb31e1e75f88c
refs/heads/master
2022-11-10T15:30:49.187134
2020-06-18T07:29:39
2020-06-18T07:29:39
273,171,856
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import requests from bs4 import BeautifulSoup cnt = 0 for page in range(1, 6): list_url = 'http://news.sarangbang.com/bbs.html?tab=free&p={}'.format(page) resp = requests.get(list_url) if resp.status_code != 200: print('WARNING: 잘못된 URL 접근') soup = BeautifulSoup(resp.text, 'html.parser') board_list = soup.select('tbody#bbsResult a#gLsbj_578015') for i in range(0, 20): # print(i, href) # 1건의 게시글의 제목, 내용, 작성자, 작성일자 수집하는 코드 url = 'http://news.sarangbang.com{}'.format(board_list[i]['href']) print('>>>>>>>>>>', url) resp = requests.get(url) # if resp.status_code != 200: # print('WARNING: 잘못된 URL 접근') soup = BeautifulSoup(resp.text, 'html.parser') title = soup.select('h3.tit_view')[0].text.strip() cnt += 1 print('TITLE ▶▶', title) writer = soup.select('a.name_more')[0].text.strip() print('WRITER ▶▶', writer) date = soup.select('span.tit_cat')[1].text.strip()[:10] print('DATE ▶▶', date) contents = soup.select('div.bbs_view p') + soup.select('div.bbs_view div') #태그명 p의 데이터가 없을 경우 div 태그의 내용을 붙여넣기 content = '' for i in contents: content += i.text.strip() print(content) print('사랑방 부동산에서 {}건의 게시글을 수집하였습니다.'.format(cnt))
UTF-8
Python
false
false
1,501
py
5
boardpage.py
5
0.570681
0.550486
0
43
30.116279
118
pratik-ingle/Planar-VTOL
14,259,291,427,562
d986ed67dd4ba10df9921c088f86c0fa2e1cb724
e18409e0455d020e536d87e68fd8e115aedb7a8f
/Observers:Disturbance/hw13/vtolController.py
586314cef67f8f96822bbe69b495b5a0c82a3b4b
[]
no_license
https://github.com/pratik-ingle/Planar-VTOL
28c8d8ca13200c37cc5880b81a4acc0435afd55f
82a8c8a608d4a438fd847d7c42d11fcf81319475
refs/heads/main
2023-04-25T00:27:13.900226
2021-05-19T17:35:47
2021-05-19T17:35:47
321,948,258
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np import vtolParamhw13 as P import vtolParam as P1 class PDController: def __init__(self): self.x1_hat = np.array([ [0.0], # initial estimate for z_hat [0.0], # initial estimate for theta_hat [0.0], # initial estimate for z_hat_dot [0.0]]) # initial estimate for theta_hat_dot self.x2_hat =np.array([ [0.0], # initial estimate for h_hat [0.0]]) # initial estimate for h_hat_dot self.F_lat = 0.0 # Computed latral Force, delayed by one sample self.F_lon = 0.0 # Computed longitudinal Force, delayed by one sample self.integrator = 0.0 # integrator self.error_d1 = 0.0 # error signal delayed by 1 sample self.K_z = P.K_z # state feedback gain self.K_h = P.K_h # state feedback gain self.ki_z = P.ki_z # integrator gain self.ki_h = P.ki_h # integrator gain self.L_z = P.L_z # observer gain self.L_h = P.L_h # observer gain self.A_z = P.A_z # system model lat self.B_z = P.B_z self.C_z = P.C_z self.A_h = P.A_h # system model long self.B_h = P.B_h self.C_h = P.C_h self.limit = P.F_max # Maximum force self.Ts = P.Ts # sample rate of controller #------------------------------------------------------------------------------ # def update_lat(self, zref,state): # # Compute the state feedback controller # z = state # error = zref - z # self.integrateError(error) # F_unsat = self.K_z @ z + self.ki_z *self.integrator # # tau = self.saturate(F_unsat[0]) # return tau.item(0) def update_lat(self, z_r, y): # update the observer and extract z_hat x1_hat = self.update_observer_z(y) z_hat = x1_hat.item(0) # integrate error error = z_r - z_hat self.integrate_error(error) # Compute the state feedback controller F_unsat = -self.K_z*x1_hat - self.ki_z*self.integrator F_sat = self.saturate(F_unsat.item(0)) self.F_lat= F_sat return F_sat, x1_hat def update_observer_z(self, y_m): # update the observer using RK4 integration F1 = self.observer_f_lat(self.x1_hat, y_m) F2 = self.observer_f_lat(self.x1_hat + self.Ts / 2 * F1, y_m) F3 = self.observer_f_lat(self.x1_hat + self.Ts / 2 * F2, y_m) F4 = self.observer_f_lat(self.x1_hat + self.Ts * F3, y_m) self.x1_hat += self.Ts / 6 * (F1 + 2 * F2 + 2 * F3 + F4) return self.x1_hat def observer_f_lat(self, x1_hat, y_m): # xhatdot = A*xhat + B*u + L(y-C*xhat) x1hat_dot = self.A_z @ x1_hat \ + self.B_z * self.F_lat \ + self.L_z @ (y_m-self.C_z @ x1_hat) return x1hat_dot #------------------------------------------------------------------------------ # def update_lon(self,ref,state): # x = state # # #F = (P.mc+P.ml+P.mr)*P.g + self.kp * (ref - x) - self.kd * xdot # # x = state # # integrate error # error = ref - x # self.integrateError(error) # # Compute the state feedback controller # F_unsat = (P1.mc+P1.ml+P1.mr)*P1.g -self.K_h @ x + self.ki_h*self.integrator # F = self.saturate(F_unsat[0]) # return F.item(0) def update_lon(self, h_r, y): # update the observer and extract z_hat x2_hat = self.update_observer_h(y) h_hat = x2_hat.item(0) # integrate error error = h_r - h_hat self.integrate_error(error) # Compute the state feedback controller F_unsat = (P1.mc+P1.ml+P1.mr)*P1.g -self.K_h*x2_hat - self.ki_h*self.integrator F_sat = self.saturate(F_unsat.item(0)) self.F_lon= F_sat return F_sat, x2_hat def update_observer_h(self, y_m): # update the observer using RK4 integration F1 = self.observer_f_lon(self.x2_hat, y_m) F2 = self.observer_f_lon(self.x2_hat + self.Ts / 2 * F1, y_m) F3 = self.observer_f_lon(self.x2_hat + self.Ts / 2 * F2, y_m) F4 = self.observer_f_lon(self.x2_hat + self.Ts * F3, y_m) self.x2_hat += self.Ts / 6 * (F1 + 2 * F2 + 2 * F3 + F4) return self.x2_hat def observer_f_lon(self, x2_hat, y_m): # xhatdot = A*xhat + B*u + L(y-C*xhat) print(self.x2_hat,y_m) x2hat_dot = self.A_h @ x2_hat \ + self.B_h * self.F_lon \ + self.L_h @ (y_m-self.C_h @ x2_hat) return x2hat_dot #------------------------------------------------------------------------------ def saturate(self,u): if abs(u) > self.limit: u = self.limit*np.sign(u) return u def integrateError(self, error): self.integrator = self.integrator \ + (self.Ts/2.0)*(error + self.error_d1) self.error_d1 = error #------------------------------------------------------------------------------------- ''' import numpy as np import pendulumParamHW13 as P class pendulumController: def __init__(self): self.x_hat = np.array([ [0.0], # initial estimate for z_hat [0.0], # initial estimate for theta_hat [0.0], # initial estimate for z_hat_dot [0.0]]) # initial estimate for theta_hat_dot self.F_d1 = 0.0 # Computed Force, delayed by one sample self.integrator = 0.0 # integrator self.error_d1 = 0.0 # error signal delayed by 1 sample self.K = P.K # state feedback gain self.ki = P.ki # integrator gain self.L = P.L # observer gain self.A = P.A # system model self.B = P.B self.C = P.C self.limit = P.F_max # Maximum force self.Ts = P.Ts # sample rate of controller def update(self, z_r, y): # update the observer and extract z_hat x_hat = self.update_observer(y) z_hat = x_hat.item(0) # integrate error error = z_r - z_hat self.integrate_error(error) # Compute the state feedback controller F_unsat = -self.K*x_hat - self.ki*self.integrator F_sat = self.saturate(F_unsat.item(0)) self.F_d1 = F_sat return F_sat, x_hat def update_observer(self, y_m): # update the observer using RK4 integration F1 = self.observer_f(self.x_hat, y_m) F2 = self.observer_f(self.x_hat + self.Ts / 2 * F1, y_m) F3 = self.observer_f(self.x_hat + self.Ts / 2 * F2, y_m) F4 = self.observer_f(self.x_hat + self.Ts * F3, y_m) self.x_hat += self.Ts / 6 * (F1 + 2 * F2 + 2 * F3 + F4) return self.x_hat def observer_f(self, x_hat, y_m): # xhatdot = A*xhat + B*u + L(y-C*xhat) xhat_dot = self.A @ x_hat \ + self.B * self.F_d1 \ + self.L @ (y_m-self.C @ x_hat) return xhat_dot def integrate_error(self, error): self.integrator = self.integrator \ + (self.Ts/2.0)*(error + self.error_d1) self.error_d1 = error def saturate(self,u): if abs(u) > self.limit: u = self.limit*np.sign(u) return u '''
UTF-8
Python
false
false
7,378
py
22
vtolController.py
21
0.504608
0.483464
0
213
33.633803
87
OpenHack-Eyes/Eyes_WebServer
17,480,516,921,188
af5ec875f82ee7f58f9908259a0fa76cfeb33b73
363811bab819cde2d1ea0e6793db48a46b69032d
/app/ObjectMapper.py
e363a393d347403b6776e2c28487d945e3ef4bf3
[]
no_license
https://github.com/OpenHack-Eyes/Eyes_WebServer
6342166887fa168976fd138a07165a20afb6a1dc
8a7ecbfadd094762b116ca73e6760c680a6019bb
refs/heads/master
2020-03-21T20:45:27.571508
2018-06-30T02:55:39
2018-06-30T02:55:39
139,026,174
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
from app.Model import HistoryVO, PatientVO def get_histories(histories): history_list = [] for history in histories: # a에서 안쪽 리스트를 꺼냄 history = HistoryVO.HistoryVO(history[0], history[1], history[2], history[3], history[4], history[5], history[6]) history_list.append(history.serialize()) return history_list def get_patient(patient_info): return PatientVO.PatientVO(patient_info)
UTF-8
Python
false
false
437
py
11
ObjectMapper.py
7
0.702638
0.685851
0
13
31.153846
121
gavin0430/Visual-Recognition-using-Deep-Learning
5,677,946,791,583
6cd84677367ecde58444705dfa7c4fd0aa940d06
0b9f931ad846b7d75aba1895251223ef5874cbd9
/lab1/HW1.py
c271a6915fc8b47b014ac3454e7c4f5192b78b0f
[]
no_license
https://github.com/gavin0430/Visual-Recognition-using-Deep-Learning
89486064fb1a3b0b47f87ceb933f42b879bfccc1
1a96329e65a9850adf797ef6922417266b018fe8
refs/heads/master
2020-08-07T22:03:46.756427
2019-12-25T15:47:31
2019-12-25T15:47:31
213,599,424
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python # coding: utf-8 # In[1]: import os import time import numpy as np import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader from torchvision import datasets from torchvision import transforms import torchvision.models as models import matplotlib.pyplot as plt from PIL import Image #os.environ['CUDA_LAUNCH_BLOCKING'] = "1" # In[2]: NUM_CLASSES = 13 BATCH_SIZE = 20 LEARNING_RATE = 0.001 NUM_EPOCHS = 300 DEVICE = 'cuda:1' device = torch.device('cuda') # In[3]: #####Load Data########### data_transform = transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.Grayscale(num_output_channels=3), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225]) ]) training_data = datasets.ImageFolder(root='./train',transform=data_transform) train_loader = torch.utils.data.DataLoader(training_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=4) for images, labels in train_loader: print('Image batch dimensions:', images.shape) print('Image label dimensions:', labels.shape) #print(images) #images = images.cuda() break # In[ ]: ###Using different model model = models.resnet50(pretrained=True, progress=True) model.fc = nn.Linear(2048, NUM_CLASSES) #print(torch.device('cuda')) #model.to(device) model = model.cuda() print(model) optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) # In[4]: model = models.resnext101_32x8d(pretrained=True, progress=True) model.fc = nn.Linear(2048, NUM_CLASSES) print(model) model = model.cuda() optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) # In[ ]: model = models.wide_resnet101_2(pretrained=True, progress=False) model.fc = nn.Linear(2048, NUM_CLASSES) print(model) model = model.cuda() optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) # In[5]: #model = torch.load('./resnext101_32x8d') def compute_accuracy(model, data_loader, device): correct_pred, num_examples = 0, 0 for i, (features, targets) in enumerate(data_loader): #features = features.to(device) #targets = targets.to(device) features = features.cuda() targets = targets.cuda() #logits, probas = model(features) logits = model(features) probas = F.softmax(logits, dim=1) _, predicted_labels = torch.max(probas, 1) num_examples += targets.size(0) correct_pred += (predicted_labels == targets).sum() return correct_pred.float()/num_examples * 100 def adjust_learning_rate(optimizer, epoch): """Sets the learning rate to the initial LR decayed by 10 every 20 epochs""" lr = LEARNING_RATE * (0.1 ** (epoch // 20)) for param_group in optimizer.param_groups: param_group['lr'] = lr best_acc = 0.93 start_time = time.time() for epoch in range(NUM_EPOCHS): model.train() for batch_idx, (features, targets) in enumerate(train_loader): #features = features.to(DEVICE) #targets = targets.to(DEVICE) features = features.cuda() targets = targets.cuda() ### FORWARD AND BACK PROP #logits, probas = model(features) logits = model(features) probas = F.softmax(logits, dim=1) #print(logits) cost = F.cross_entropy(logits, targets) optimizer.zero_grad() cost.backward() ### UPDATE MODEL PARAMETERS optimizer.step() adjust_learning_rate(optimizer, epoch) ### LOGGING if not batch_idx % 30: print ('Epoch: %03d/%03d | Batch %04d/%04d | Cost: %.4f' %(epoch+1, NUM_EPOCHS, batch_idx, len(train_loader), cost)) model.eval() with torch.set_grad_enabled(False): # save memory during inference acc = compute_accuracy(model, train_loader, device=DEVICE) print('Epoch: %03d/%03d | Train: %.3f%%' % ( epoch+1, NUM_EPOCHS, acc)) if acc > best_acc: torch.save(model, './resnext101_32x8d_300') best_acc = acc print("model save at acc = ",acc) print('Time elapsed: %.2f min' % ((time.time() - start_time)/60)) print('Total Training Time: %.2f min' % ((time.time() - start_time)/60)) # In[8]: ###Testing############## import csv model = torch.load('./resnext101_32x8d_300') testing_data = datasets.ImageFolder(root='./test1',transform=data_transform) test_loader = torch.utils.data.DataLoader(testing_data, batch_size=1, shuffle=False, num_workers=4) label = ['bedroom','coast','forest','highway','insidecity','kitchen','livingroom','mountain','office','opencountry','street','suburb','tallbuilding'] #print(testing_data[1039]) k = 0 with open('output5.csv', 'w', newline='') as csvfile: writer = csv.writer(csvfile) writer.writerow(['id','label']) for i, (images, labels) in enumerate(test_loader): images = images.cuda() model.eval() logits = model(images) probas = F.softmax(logits, dim=1) _, predicted_labels = torch.max(probas, 1) #print(predicted_labels) image_id = 'image_' + "%04d" % k #print(image_id) print(image_id,label[predicted_labels[0].item()]) writer.writerow([image_id,label[predicted_labels[0].item()]]) #break k+=1 ''' with open('output.csv', 'w', newline='') as csvfile: writer = csv.writer(csvfile) writer.writerow(['id','label']) for i, (images, labels) in enumerate(test_loader): images = images.cuda() model.eval() logits = model(images) probas = F.softmax(logits, dim=1) _, predicted_labels = torch.max(probas, 1) #print(predicted_labels[0].item()) image_id = 'image_' + "%04d" % i print() for j in range(10): writer.writerow([image_id,label[]]) break ''' # In[7]: torch.save(model, './resnext101_32x8d_300_last') #rr = torch.load('./resnet50_first_try') #rr.eval() #print(rr)
UTF-8
Python
false
false
6,221
py
5
HW1.py
2
0.621926
0.593634
0
222
27.018018
149
MinseokJGit/dd-klee
2,370,821,967,776
cc849ea8f4fbeb04f69171d84ac1889c7b913a13
880451e55a554b4e730fb838faedbec4f6be8037
/paradyse/subscripts/check_w.py
038572f150e07051d08450c547463c68e55a0de4
[]
no_license
https://github.com/MinseokJGit/dd-klee
a61c09bbd3fb3cedda651fa65a96f4b62c9417b0
eb23ae83b5f8432ee693e43ab98d22311d359d4a
refs/heads/master
2023-09-01T15:31:12.648356
2021-01-14T11:41:14
2021-01-14T11:41:14
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from multiprocessing import Process, Value, Queue import signal import subprocess import os import sys import random import json import argparse import datetime import shutil import re import glob import subprocess from subprocess import Popen, PIPE import time from threading import Timer import math start_time = datetime.datetime.now() date = start_time.strftime('%m') __run_count = Value('i', 0) configs = { 'script_path': os.path.abspath(os.getcwd()), 'date': date, 'b_dir': os.path.abspath('../build/'), 'top_dir': os.path.abspath('../experiments/') } def Timeout_Checker(total_time, init_time): init_time=datetime.datetime.strptime(init_time,'%Y-%m-%d %H:%M:%S.%f') current_time = datetime.datetime.now() elapsed_time = (current_time-init_time).total_seconds() if total_time < elapsed_time: os.chdir(configs['script_path']) print ("#############################################") print ("################Time Out!!!!!################") print ("#############################################") return 100 else: return 0 def load_pgm_config(config_file): with open(config_file, 'r') as f: parsed = json.load(f) return parsed def gen_run_cmd(pgm, weight_idx, trial, a_budget, idx): argv = "--sym-args 0 1 10 --sym-args 0 2 2 --sym-files 1 8 --sym-stdin 8 --sym-stdout" log = "logs/" + "__".join([pgm+"check"+trial, str(weight_idx), "ours", str(idx)]) + ".log" weight = configs['script_path'] +"/"+trial+ "_weights/" + str(weight_idx) + ".weight" run_cmd = " ".join([configs['b_dir']+"/bin/klee", "-only-output-states-covering-new", "--simplify-sym-indices", "--output-module=false", "--output-source=false", "--output-stats=false", "--disable-inlining", "--optimize", "--use-forked-solver", "--use-cex-cache", "--libc=uclibc", "--posix-runtime", "-env-file="+configs['b_dir']+"/../test.env", "--max-sym-array-size=4096", "--max-memory-inhibit=false", "--switch-type=internal", "--use-batching-search", "--batch-instructions=10000", "--watchdog -max-time="+a_budget, "-search=param", "-weight="+weight, pgm+".bc", argv]) return (run_cmd, log) def Cal_Coverage(cov_file): coverage=0 with open(cov_file, 'r') as f: lines= f.readlines() for line in lines: if "Taken at least" in line: data=line.split(':')[1] percent=float(data.split('% of ')[0]) total=int((data.split('% of ')[1]).strip()) cov=int(percent*total/100) coverage=coverage+cov return coverage def Kill_Process(process, testcase): with open(configs['script_path']+"/killed_history", 'a') as f: f.write(testcase+"\n") os.killpg(os.getpgid(process.pid), signal.SIGTERM) print("timeover!") def run_all(pconfig, n_parallel, pgm, n_iter, weights, trial, total_time, init_time, a_budget, ith_trial): top_dir = "/".join([configs['top_dir'], ith_trial+"__check"+trial, pgm]) log_dir = top_dir + "/" + "__".join([pgm,"check"+trial, "logs"]) if not os.path.exists(log_dir): os.makedirs(log_dir) Tasks=[] for w_idx in weights: for i in range(1,n_iter+1): Tasks.append((w_idx,i)) A_core_task = int(math.floor(len(Tasks)/n_parallel)) remain_tasks= len(Tasks)%n_parallel idx_list=[0] acc_idx=0 for i in range(0,n_parallel): if i < remain_tasks: acc_idx=acc_idx+A_core_task+1 else: acc_idx=acc_idx+A_core_task idx_list.append(acc_idx) procs = [] rets = [] q = Queue() for group_id in range(0,n_parallel): subTask=Tasks[idx_list[group_id]:idx_list[group_id+1]] procs.append(Process(target=running_function, args=(pconfig, pgm, top_dir, log_dir, subTask, group_id+1, trial, total_time, a_budget, init_time, q))) for p in procs: p.start() for p in procs: ret = q.get() rets.append(ret) if 100 in rets: sys.exit(100) def running_function(pconfig, pgm, top_dir, log_dir, subTask, group_id, trial, total_time, a_budget, init_time, queue): instance_dir = top_dir + "/" + str(group_id) dir_cp_cmd = " ".join(["cp -r", pconfig['pgm_dir'], instance_dir]) os.system(dir_cp_cmd) tc_location=instance_dir+"/"+pconfig['exec_dir'] os.chdir(tc_location) if not os.path.exists("logs"): os.mkdir("logs") cnt=0 rc=0 for task in subTask: weight_idx=task[0] idx=task[1] os.chdir(tc_location) (run_cmd, log) = gen_run_cmd(pgm, weight_idx, trial, a_budget, idx) rc=Timeout_Checker(total_time, init_time) if rc==100: break os.system(run_cmd) klee_dir ="klee-out-"+str(cnt) os.chdir(klee_dir) testcases= glob.glob("*.ktest") testcases.sort(key=lambda x:float((x.split('.ktest')[0]).split('test')[1])) gcov_location="/".join([configs['script_path'], pconfig['gcov_path']+str(group_id), pconfig['exec_dir']]) os.chdir(gcov_location) rm_cmd = " ".join(["rm", pconfig['gcov_file'], pconfig['gcda_file'], "cov_result"]) os.system(rm_cmd) log_name = pgm+trial+"__check"+str(weight_idx)+"__"+str(idx)+".log" klee_dir_location="/".join([tc_location, klee_dir]) for tc in testcases: run_cmd=[configs['b_dir']+"/bin/klee-replay", "./"+pgm, klee_dir_location+"/"+tc] proc = subprocess.Popen(run_cmd, preexec_fn=os.setsid, stdout=PIPE, stderr=PIPE) my_timer = Timer(0.1, Kill_Process, [proc, tc_location+"/"+tc]) try: my_timer.start() stdout, stderr = proc.communicate() lines = stderr.splitlines() finally: my_timer.cancel() gcov_file="cov_result" gcov_cmd=" ".join(["gcov", "-b", pconfig['gcda_file'], "> "+gcov_file]) os.system(gcov_cmd) coverage=Cal_Coverage(gcov_file) with open(log_name, "a") as tf: tf.write(str(weight_idx)+": "+str(coverage)+"\n") cnt = cnt+1 mv_cmd = " ".join(["mv", log_name, log_dir]) os.system(mv_cmd) os.chdir(tc_location) os.chdir(configs['script_path']) queue.put(rc) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("pgm_config") parser.add_argument("n_parallel") parser.add_argument("n_iter") parser.add_argument("trial") parser.add_argument("-l", type=lambda s:[int(item) for item in s.split(',')]) parser.add_argument("total_time") parser.add_argument("init_time") parser.add_argument("a_budget") parser.add_argument("ith_trial") args = parser.parse_args() pconfig = load_pgm_config(args.pgm_config) n_parallel = int(args.n_parallel) pgm = pconfig['pgm_name'] n_iter = int(args.n_iter) trial = args.trial weights = args.l total_time = int(args.total_time) init_time = args.init_time a_budget = args.a_budget ith_trial= args.ith_trial run_all(pconfig, n_parallel, pgm, n_iter, weights, trial, total_time, init_time, a_budget, ith_trial)
UTF-8
Python
false
false
7,562
py
39
check_w.py
27
0.554351
0.546681
0
217
33.847926
157
zzf-technion/EduParser
3,298,534,930,244
b0676d44d1c5d2cf44cb8da28eebca6614f64bba
0140dbcd57d17ba82f32ead44cebe61f0e25a91a
/eduParser/out/ustc/信息科学技术学院/MyHandler.py
2415afb07658ff4a31c2e2e7c194bf4ee7f39f8b
[]
no_license
https://github.com/zzf-technion/EduParser
03b59d1e614c2cb21fdaf8339c6c06090545f4ae
05f17dbc7e5eb3d063eeac01e266646b5d073556
refs/heads/master
2020-06-16T14:52:48.288113
2016-01-06T00:50:27
2016-01-06T00:50:27
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# coding=utf-8 import os from models import Employee from bs4 import BeautifulSoup from config import Config from mparser import ProfileParser from mparser import get_doc_bySelenium import re # @brief: 函数将过滤结果转化为Employee数据 # @tag: 输入为待处理的BeautifulSoup的tag对象 # @output:输出employee def handler(tag): tds = tag.find_all(name='td') if not tds or len(tds) < 5: return None department = tds[0].get_text() if not department or len(department) == 0: return None department = department.strip() name = tds[1].get_text().strip() name = ''.join(name.split()) url = '' ass = tds[1].find_all('a') if ass: url = ass[0]['href'] title = tds[2].get_text() or '' title = title.strip() email = '' research = '' tel = '' if len(tds) == 5: email = tds[3].get_text() or '' email = email.strip() tel = tds[4].get_text() or '' tel = tel.strip() elif len(tds) == 6: research = tds[3].get_text() or '' research = research.strip() email = tds[4].get_text() or '' email = email.strip() tel = tds[5].get_text() or '' tel = tel.strip() return Employee(name=name, email=email, tel=tel, research = research, departments=department)
UTF-8
Python
false
false
1,338
py
176
MyHandler.py
21
0.584496
0.572093
0
54
22.888889
97
luqiang6q/mobile_detect
10,402,410,814,467
dc4468e93e8cf6581bfe4e32f8d2ba26c9b265c6
923a0c9396169f9c7831efe943a3637b63a4085c
/configs/mbv3_config.py
b9e3fac701f296f648f37f20bd0fcc5e020f431c
[]
no_license
https://github.com/luqiang6q/mobile_detect
00e6bef9405a8010f6072c1a61422326d88eafaa
eceda8d262744932eac7eff1d98972c785419e3a
refs/heads/master
2022-04-05T06:32:03.657194
2020-02-21T03:12:36
2020-02-21T03:12:36
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#-*-coding:utf-8-*- import os import numpy as np from easydict import EasyDict as edict config = edict() os.environ["CUDA_VISIBLE_DEVICES"] = "0" ##if u use muti gpu set them visiable there and then set config.TRAIN.num_gpu config.TRAIN = edict() #### below are params for dataiter config.TRAIN.process_num = 5 ### process_num for data provider config.TRAIN.prefetch_size = 20 ### prefect Q size for data provider config.TRAIN.num_gpu = 1 ##match with os.environ["CUDA_VISIBLE_DEVICES"] config.TRAIN.batch_size = 32 ###A big batch size may achieve a better result, but the memory is a problem config.TRAIN.log_interval = 10 config.TRAIN.epoch = 300 ###just keep training , evaluation shoule be take care by yourself, ### generally 10,0000 iters is enough config.TRAIN.train_set_size=13000 ###widerface train size config.TRAIN.val_set_size=3200 ###widerface val size config.TRAIN.iter_num_per_epoch = config.TRAIN.train_set_size // config.TRAIN.num_gpu // config.TRAIN.batch_size config.TRAIN.val_iter=config.TRAIN.val_set_size// config.TRAIN.num_gpu // config.TRAIN.batch_size config.TRAIN.lr_value_every_step = [0.00001,0.0001,0.001,0.0001,0.00001,0.000001] ##warm up is used config.TRAIN.lr_decay_every_step = [500,1000,60000,80000,100000] config.TRAIN.opt='adam' config.TRAIN.weight_decay_factor = 5.e-4 ##l2 regular config.TRAIN.vis=False ##check data flag config.TRAIN.norm='BN' ##'GN' OR 'BN' config.TRAIN.lock_basenet_bn=False config.TRAIN.frozen_stages=-1 ##no freeze config.DATA = edict() config.DATA.root_path='' config.DATA.train_txt_path='train.txt' config.DATA.val_txt_path='val.txt' config.DATA.num_category=1 ###face 1 voc 20 coco 80 config.DATA.num_class = config.DATA.num_category + 1 # +1 background config.DATA.PIXEL_MEAN = [127.] ###rgb config.DATA.PIXEL_STD = [127.] config.DATA.hin = 480 # input size config.DATA.win = 480 config.DATA.channel = 3 config.DATA.max_size=[config.DATA.hin,config.DATA.win] ##h,w config.DATA.cover_small_face=10 ###cover the small faces config.DATA.mutiscale=False #if muti scale set False then config.DATA.MAX_SIZE will be the inputsize config.DATA.scales=(320,640) # anchors ------------------------- config.ANCHOR = edict() config.ANCHOR.rect=True config.ANCHOR.rect_longer=False #### make anchor h/w=1.5 config.ANCHOR.ANCHOR_STRIDE = 16 config.ANCHOR.ANCHOR_SIZES = (32,128,512) # sqrtarea of the anchor box config.ANCHOR.ANCHOR_STRIDES = (8, 16, 32) # strides for each FPN level. Must be the same length as ANCHOR_SIZES config.ANCHOR.ANCHOR_RATIOS = (1., 4.) ###### 1:2 in size, config.ANCHOR.POSITIVE_ANCHOR_THRESH = 0.35 config.ANCHOR.NEGATIVE_ANCHOR_THRESH = 0.35 config.ANCHOR.AVG_MATCHES=20 config.ANCHOR.super_match=True ##mobilenetv3 as basemodel config.MODEL = edict() config.MODEL.continue_train=False ### revover from a trained model config.MODEL.model_path = './model/' # save directory config.MODEL.net_structure='MobilenetV3' ######'resnet_v1_50,resnet_v1_101,MobilenetV2 config.MODEL.pretrained_model='./v3-small-minimalistic_224_1.0_float/ema/model-498000' config.MODEL.fpn_dims=[128,128,128] config.MODEL.cpm_dims=[128,128,128] config.MODEL.focal_loss=True config.MODEL.fpn=True config.MODEL.max_negatives_per_positive= 3.0 config.MODEL.deployee= None ### tensorflow, mnn, coreml if config.MODEL.deployee: config.TRAIN.batch_size = 1 config.MODEL.iou_thres= 0.5 config.MODEL.score_thres= 0.5 config.MODEL.max_box= 10
UTF-8
Python
false
false
3,788
py
9
mbv3_config.py
7
0.667371
0.615892
0
93
39.741935
127
gloriamaris/designsouth-reg
5,841,155,544,621
f15be12ae2341b7bea6195dc0ba486785528f751
45a81062272778f3da70f1a00e39913527e93d1f
/designsouthreg/local/__init__.py
6cb49dceec514f1006a65c832dadfd8849c7e632
[]
no_license
https://github.com/gloriamaris/designsouth-reg
b92d69fd8a280aaf8525eec7056981482368967e
dc86214a41fec548c91469ae393a6a45e2144811
refs/heads/master
2020-04-08T19:52:19.163144
2018-11-30T15:39:55
2018-11-30T15:39:55
159,674,159
1
0
null
false
2018-11-29T16:12:47
2018-11-29T13:55:49
2018-11-29T15:02:28
2018-11-29T16:12:46
12
0
0
0
Python
false
null
/home/monique/Documents/Projects/Personal/designsouthreg/designsouthreg/__init__.py
UTF-8
Python
false
false
83
py
7
__init__.py
6
0.843373
0.843373
0
1
83
83
nguyenduchien1994/Secret_Sharing
14,774,687,530,419
b2766cbcd1a960b582b8f6b31b69dd101957d938
0c0b8edd6947cf0fcd66ff74d8f0242e9182645f
/SecretRecon.py
aed365eabc293e5f1933cdf0c5f7fa87e97baa8d
[]
no_license
https://github.com/nguyenduchien1994/Secret_Sharing
ae806a85b736574a5e734a5f2be5808d8066fa3d
d3ea632113f7d17c925d98f7062e69078712ecb3
refs/heads/master
2020-04-05T11:22:30.706424
2017-07-07T16:47:45
2017-07-07T16:47:45
81,397,311
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import sys sys.path.append("/ad/eng/users/h/e/heinous/Desktop/Research/Secret_Sharing/Finite-Field") sys.path.append("/home/heinous/Desktop/Research/SecretSharing/Secret_Sharing/Finite-Field") import ffield class SecretRecon(): def __init__(self,f): self.f = f self.F = ffield.FField(self.f) def recon_2(self,chosen): denom = self.F.Add(int(chosen.keys()[0],2),int(chosen.keys()[1],2)) nom = self.F.Add(int(chosen.values()[0],2),int(chosen.values()[1],2)) E = self.F.Multiply(nom,self.F.Inverse(denom)) return ('{0:0'+str(self.f)+'b}').format(E) def recon_3(self,chosen): E = 0 for x in chosen.keys(): D = chosen[x] nom = int(D,2) denom = 1 for y in chosen.keys(): if y != x: denom = self.F.Multiply(denom,self.F.Add(int(x,2),int(y,2))) E = self.F.Add(E,self.F.Multiply(nom,self.F.Inverse(denom))) return ('{0:0'+str(self.f)+'b}').format(E)
UTF-8
Python
false
false
1,029
py
16
SecretRecon.py
7
0.559767
0.541302
0
32
31.15625
91
ibraaaa/news-credibility
644,245,096,681
55aac651386100719cf558f569cfd58c4d796867
e914c69576b89833b7ead49569701f4a97958f3a
/src/python/parsers/html_parser.py
dacff6c95db50c53c959775baed79d8b0bc734bb
[ "Apache-2.0" ]
permissive
https://github.com/ibraaaa/news-credibility
3c439be20db18d3f364f3e19b460d952ae1272b8
cae1009d9def17c058342c3dee969f2babcd0c9e
refs/heads/master
2020-04-15T08:14:50.190724
2019-01-07T00:20:35
2019-01-07T00:20:35
164,347,496
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- import lxml.html import os.path import threading import traceback import util.const as CONST import util.db as db import util.helper as helper from multiprocessing import Pool class HTMLParser(object): def __parse_shorouk(self, html_): page_ = lxml.html.fromstring(html_) title_ = page_.find_class('right') data_ = [] # Get article title. for x in title_: text_nodes_ = x.xpath('h1/child::text() | h3/child::text()') title_text_ = '' for text_node_ in text_nodes_: if text_node_: title_text_ += text_node_.encode('utf-8').lstrip() + ' ' if title_text_: data_.append(title_text_) #CHECK: ../data/rss/html/shorouknews/accidents/67/2013-02-21%2020:10:00%2367a7c33d-ace1-4fa9-aa3c-a227a53714ec.html # Fixed manual for now body_ = page_.find_class('rightContent-newSize') # Get article body. for x in body_: text_nodes_ = x.xpath('p/descendant::text()') for text_node_ in text_nodes_: if text_node_: data_.append(text_node_.encode('utf-8')) # helper.WRITE_FILE('/home/ibraaaa/Desktop/test_1.txt', '\n'.join(data_)) return '\n'.join(data_) def __parse_cnn_arabic(self, html_): page_ = lxml.html.fromstring(html_) title_ = page_.xpath("//div[@class='cnn_storyarea']/h1/child::text()") data_ = [] for text_ in title_: if text_: data_.append(text_.encode('utf-8')) body_ = page_.xpath("//div[@class='cnn_strycntntrgt']/p/descendant::text()") for text_ in body_: if text_: data_.append(text_.encode('utf-8')) #helper.WRITE_FILE('/home/ibraaaa/Desktop/test_1.txt', '\n'.join(data_)) return '\n'.join(data_) def __parse_akhbarelyomgate(self, html_): """Parses HTML from 'Akhbar El-Yom'. Articles are laid out in tables. Article title can be found near by an element with CSS class name 'articleTitle', we get this and then go up one step typically to the parent row including the element with this CSS class and then get all text nodes in the descendants Similar approach is done for the article body but the CSS class is 'articleBody' """ page_ = lxml.html.fromstring(html_) elements_ = page_.find_class('articleTitle') data_ = [] for e in elements_: title_ = e.xpath('parent::node()/descendant::text()') for text_ in title_: text_ = text_.encode('utf-8').strip() if text_: data_.append(text_) break; elements_ = page_.find_class('articleBody') for e in elements_: body_ = e.xpath('parent::node()/descendant::text()') for text_ in body_: text_ = text_.encode('utf-8').strip() if text_: data_.append(text_) break; return '\n'.join(data_) def __parse_almasryalyoum(self, html_): page_ = lxml.html.fromstring(html_) elements_ = page_.find_class('custom-article-title') data_ = [] for e in elements_: title_ = e.xpath('descendant-or-self::text()') for text_ in title_: text_ = text_.encode('utf-8').strip() if text_: data_.append(text_) #elements_ = page_.find_class('panel-pane pane-node-body') #for e in elements_: # body_ = e.xpath("descendant-or-self::text()") # for text_ in body_: # text_ = text_.encode('utf-8').strip() # if text_: data_.append(text_) body_ = page_.xpath("//div[@class='panel-pane pane-node-body']/div[@class='pane-content']/div | //div[@class='panel-pane pane-node-body']/div[@class='pane-content']/p") for b in body_: ignore = False for attribute in b.xpath("@*"): if 'embeded-read-also' in attribute: ignore = True if ignore: continue data_.extend([t.encode('utf-8').strip() for t in b.xpath("descendant-or-self::text()") if t]) #helper.WRITE_FILE('/home/ibraaaa/Desktop/test_1.txt', '\n'.join(data_)) return '\n'.join(data_) def __parse_elfagr(self, html_): page_ = lxml.html.fromstring(html_) elements_ = page_.get_element_by_id("ctl00_ContentPlaceHolder1_maintd") if not elements_: elements_ = page_.find_class('DetailsPageContent') # the check seems wrong data_ = [] for e in elements_: text_ = e.text_content().encode('utf-8').strip() if text_ and text_[-2:] != 'PM' and text_[-2:] != 'AM': data_.append(text_) #helper.WRITE_FILE('/home/ibraaaa/Desktop/test_1.txt', '\n'.join(data_)) return '\n'.join(data_) def __parse_english_ahram(self, html_): page_ = lxml.html.fromstring(html_) exp = "//div[@id='ctl00_ContentPlaceHolder1_divLeftTitle']"; # Title elements_ = page_.xpath(exp + "/div[@id='ctl00_ContentPlaceHolder1_hd']/descendant::text()") # Brief elements_.extend(page_.xpath(exp + "/div[@id='ctl00_ContentPlaceHolder1_bref']/descendant::text()")) data_ = [] for e in elements_: e = e.encode('utf-8').strip() if e: data_.append(e) exp = "//div[@id='ctl00_ContentPlaceHolder1_divContent']/" elements_ = page_.xpath(exp + "child::text()") elements_.extend(page_.xpath(exp + "p/descendant::text()")) for e in elements_: e = e.encode('utf-8').strip() if "short link:" in e.lower(): continue if e: data_.append(e) #helper.WRITE_FILE('/home/ibraaaa/Desktop/test_1.txt', '\n'.join(data_)) return '\n'.join(data_) def __parse_fjp(self, html_): page_ = lxml.html.fromstring(html_) title_ = page_.xpath("//div[@id='PressRTitles']/descendant::text()") data_ = [] for t in title_: t = t.encode('utf-8').strip() if t: data_.append(t) body_ = page_.xpath("//div[@id='PressRContent']/p/descendant::text()") body_.extend(page_.xpath("//div[@id='PressRContent']/child::text()")) # Added recently for b in body_: b = b.encode('utf-8').strip() if b: data_.append(b) # Add text from all div elements except those with attribute named 'PressRDateAdded' or 'fonts', # which correspond to the date and author, respectively. body_ = page_.xpath("//div[@id='PressRContent']/div") for node in body_: ignore = False for attribute in node.xpath("@*"): if 'PressRDateAdded' in attribute or 'fonts' in attribute: ignore = True break if ignore: continue data_.extend([t.encode('utf-8').strip() for t in node.xpath("descendant-or-self::text()") if t]) #helper.WRITE_FILE('/home/ibraaaa/Desktop/test_1.txt', '\n'.join(data_)) return '\n'.join(data_) def __parse_masrawy(self, html_): page_ = lxml.html.fromstring(html_) title_ = page_.xpath("//div[@id='mclip']/div[@id='artical']/h1/descendant::text()") data_ = [] for t in title_: t = t.encode('utf-8').strip() if t: data_.append(t) body_ = page_.xpath("//div[@id='mclip']/div[@id='artical']/div[@id='content']/child::text()") #Added recently body_.extend(page_.xpath("//div[@id='mclip']/div[@id='artical']/div[@id='content']/p/descendant::text()")) for b in body_: b = b.encode('utf-8').strip() #print b # Break if the text "2kra2 2ydan:" if u'\u0627\u0642\u0631\u0623 \u0623\u064A\u0636\u0627:'.encode('utf-8') in b: break if b: data_.append(b) #helper.WRITE_FILE('/home/ibraaaa/Desktop/test_1.txt', '\n'.join(data_)) return '\n'.join(data_) def __parse_ahram(self, html_): # AHRAM update this site, this is not used anymore, only for old data. page_ = lxml.html.fromstring(html_) exp = "//div[@id='ArticlePrintVersion']/div[@class='bbbody']/" title_ = page_.xpath(exp + "div[@id='headDiv']/div[@id='divtitle']/span[@id='txtTitle']/descendant::text()") data_ = [] for t in title_: t = t.encode('utf-8').strip() if t: data_.append(t) body_ = page_.xpath(exp + "div[@id='abstractDiv']/descendant::text()") body_.extend(page_.xpath(exp + "descendant-or-self::node()/div[@id='bodyDiv']/descendant::text()")) for b in body_: b = b.encode('utf-8').strip() if b: data_.append(b) #helper.WRITE_FILE('/home/ibraaaa/Desktop/test_1.txt', '\n'.join(data_)) return '\n'.join(data_) def __parse_ahram_NEW_SITE(self, html_): page_ = lxml.html.fromstring(html_) data_ = [] title_ = page_.xpath("//div[@id='ctl00_ContentPlaceHolder1_divTitle']/descendant::text()") title_.extend(page_.xpath("//div[@id='ctl00_ContentPlaceHolder1_hd']/descendant::text()")) for t in title_: t = t.encode('utf-8').strip() if t: data_.append(t) body_ = page_.xpath("//div[@id='ctl00_ContentPlaceHolder1_divContent']/descendant::text()") for b in body_: b = b.encode('utf-8').strip() if b and not u'رابط دائم'.encode('utf-8') in b: data_.append(b) return '\n'.join(data_) def __parse_bbcarabic(self, html_): page_ = lxml.html.fromstring(html_) data_ = [] exp = "//div[@class=' g-w20 g-first']/div[@class='g-container']/h1/descendant-or-self::text()" for t in page_.xpath(exp): t = t.encode('utf-8').strip() if t: data_.append(t) exp = "//div[@class=' g-w20 g-first']/div[@class='g-container story-body']/div[@class='bodytext']/p/descendant::text() | " exp += "//div[@class=' g-w20 g-first']/div[@class='g-container']/div[@class='bodytext']/p/descendant::text()" for t in page_.xpath(exp): t = t.encode('utf-8').strip() if t: data_.append(t) #for node in page_.xpath(exp): #if node.xpath("attribute::class") == "module inline-contextual-links": # continue # text_ = node.xpath("descendant-or-self::text()") # for t in text_: # t = t.encode('utf-8').strip() # if t: data_.append(t) #helper.WRITE_FILE('/home/ibraaaa/Desktop/test_1.txt', '\n'.join(data_)) return '\n'.join(data_) def __parse_dostorasly(self, html_): page_ = lxml.html.fromstring(html_) data_ = [] exp = "//div[@class='contentMain']/div[@class='rightArea']/" title_ = page_.xpath(exp + "div[@class='sectionTitle']/descendant::text()") for t in title_: t = t.encode('utf-8').strip() if t: data_.append(t) body_ = page_.xpath(exp + "div[@class='authorArticleContent']/descendant::text()") for b in body_: b = b.encode('utf-8').strip() if b: data_.append(b) #helper.WRITE_FILE('/home/ibraaaa/Desktop/test_1.txt', '\n'.join(data_)) return '\n'.join(data_) def __parse_elwatannews(self, html_): page_ = lxml.html.fromstring(html_) data_ = [] exp = "//div[@class='main_content_ip']/h1[@class='article_title']/descendant-or-self::text()" title_ = page_.xpath(exp) for t in title_: t = t.encode('utf-8').strip() if t: data_.append(t) exp = "//div[@class='main_content_ip']/span[@class='SubTitle']/descendant::text()" exp += " | //div[@class='main_content_ip']/p/descendant::text()" body_ = page_.xpath(exp) for b in body_: b = b.encode('utf-8').strip() if b: data_.append(b) #helper.WRITE_FILE('/home/ibraaaa/Desktop/test_1.txt', '\n'.join(data_)) return '\n'.join(data_) def __parse_english_fjp(self, html_): page_ = lxml.html.fromstring(html_) data_ = [] exp = "//div[@id='leftcontent']/table" title_ = page_.xpath(exp + "/tr[3]/td/div/child::text()") for t in title_: t = t.encode('utf-8').strip() if t: data_.append(t) body_ = page_.xpath(exp + "/tr[7]/descendant::text()") for b in body_: b = b.encode('utf-8').strip() if b: data_.append(b) #helper.WRITE_FILE('/home/ibraaaa/Desktop/test_1.txt', '\n'.join(data_)) return '\n'.join(data_) def __parse_youm7(self, html_): page_ = lxml.html.fromstring(html_) data_ = [] exp = "//div[@id='newsStory']/div[@id='newsStoryHeader']/" title_ = page_.xpath(exp + 'h1/descendant::text() | ' + exp + 'h2/descendant::text() | ' + exp + 'h3/descendant::text()') for t in title_: t = t.encode('utf-8').strip() if t: data_.append(t) exp = "//div[@id='newsStory']/div[@id='newsStoryContent']/div[@id='newsStoryTxt']/p/descendant::text()" #changed child to descendant body_ = page_.xpath(exp) for b in body_: b = b.encode('utf-8').strip() if b: data_.append(b) #helper.WRITE_FILE('/home/ibraaaa/Desktop/test_1.txt', '\n'.join(data_)) return '\n'.join(data_) def __parse_tahrir(self, html_): page_ = lxml.html.fromstring(html_) data_ = [] title_ = page_.xpath("//div[@class='eventTitle']/descendant::text()") for t in title_: t = t.encode('utf-8').strip() if t: data_.append(t) body_ = page_.xpath("//div[@class='eventInner']/descendant::text()") for b in body_: b = b.encode('utf-8').strip() if b: data_.append(b) return '\n'.join(data_) #helper.WRITE_FILE('/home/ibraaaa/Desktop/test_1.txt', '\n'.join(data_)) def __parse_akhbar_masr(self, html_): page_ = lxml.html.fromstring(html_) data_ = [] title_ = page_.xpath("//div[@class='content-header tr']/h2/descendant::text()") for t in title_: t = t.encode('utf-8').strip() if t: data_.append(t) body_ = page_.xpath("//div[@class='main-section user-content']/p/descendant::text()") for b in body_: b = b.encode('utf-8').strip() if b: data_.append(b) return '\n'.join(data_) def __parse_rasd(self, html_): page_ = lxml.html.fromstring(html_) data_ = [] title_ = page_.xpath("//div[@class='page_news_right']/h1/descendant::text()") title_.extend(page_.xpath("//div[@class='page_news_right']/h3/descendant::text()")) for t in title_: t = t.encode('utf-8').strip() if t: data_.append(t) body_ = page_.xpath("//div[@class='page_news_right']/div[@class='news_artical']/p/descendant::text()") body_.extend(page_.xpath("//div[@class='page_news_right']/div[@class='news_artical']/div/descendant::text()")) for b in body_: b = b.encode('utf-8').strip() if b: data_.append(b) return '\n'.join(data_) def __parse_almasryoon(self, html_): page_ = lxml.html.fromstring(html_) data_ = [] title_ = page_.xpath("//div[@id='news_shows']/div[@id='data_content_show2']/div[@id='head_topic']/div[@id='3nwan_cell']/descendant::text()") for t in title_: t = t.encode('utf-8').strip() if t: data_.append(t) body_ = page_.xpath("//div[@id='news_shows']/p/descendant::text()") body_.extend(page_.xpath("//div[@id='news_shows']/div[@style='direction: rtl;']/descendant::text()")) for b in body_: b = b.encode('utf-8').strip() if b: data_.append(b) return '\n'.join(data_) def __parse_alwafd(self, html_): # don't decode html from this website page_ = lxml.html.fromstring(html_) data_ = [] title_ = page_.xpath("//div[@class='article_title']/descendant::text()") for t in title_: t = t.encode('utf-8').strip() if t: data_.append(t) body_ = page_.xpath("//div[@class='inside impress maincom']/p/descendant::text()") for b in body_: b = b.encode('utf-8').strip() if b: data_.append(b) return '\n'.join(data_) def __parse_akhbar_elyom(self, html_): page_ = lxml.html.fromstring(html_) data_ = [] title_ = page_.xpath("//div[@id='ctl00_ContentPlaceHolder1_newsPlaceHolder']/table/tbody/tr[1]/descendant::text()") for t in title_: t = t.encode('utf-8').strip() if t: data_.append(t) body_ = page_.xpath("//div[@id='ctl00_ContentPlaceHolder1_newsPlaceHolder']/table/tbody/tr/td[@class='articleBody']/descendant::text()") for b in body_: b = b.encode('utf-8').strip() if b: data_.append(b) ###################################################NEW FORMAT##################################### title_ = page_.xpath("//h4[@class='topicTitle']/descendant::text()") for t in title_: t = t.encode('utf-8').strip() if t: data_.append(t) body_ = page_.xpath("//p[@class='postTopicP']/descendant::text()") for b in body_: b = b.encode('utf-8').strip() if b: data_.append(b) return '\n'.join(data_) def __parse_elbadil(self, html_): page_ = lxml.html.fromstring(html_) data_ = [] title_ = page_.xpath("//div[@id='content-region-inner']/h1/descendant::text()") for t in title_: t = t.encode('utf-8').strip() if t: data_.append(t) body_ = page_.xpath("//div[@class='field field-name-body field-type-text-with-summary field-label-hidden']/descendant::text()") for b in body_: b = b.encode('utf-8').strip() if b: data_.append(b) return '\n'.join(data_) def __parse_dostor(self, html_): page_ = lxml.html.fromstring(html_) data_ = [] title_ = page_.xpath("//table[@class='contentpaneopen']/descendant::*/td[@class='contentheading']/descendant::text()") for t in title_: t = t.encode('utf-8').strip() if t: data_.append(t) body_ = page_.xpath("//table[@class='contentpanebody']/descendant::*/div[@class='article_text']/descendant::text()") for b in body_: b = b.encode('utf-8').strip() if b and not 'pdf' in b and not u'تصفح جريدة الدستور اليوم'.encode('utf-8') in b: data_.append(b) return '\n'.join(data_) def __parse(self, news_site_, html_): if news_site_ == CONST.AKHBAR: return self.__parse_akhbarelyomgate(html_) elif news_site_ == CONST.SHOROUK: return self.__parse_shorouk(html_) elif news_site_ == CONST.CNN_ARABIC: return self.__parse_cnn_arabic(html_) elif news_site_ == CONST.ALMASRY_ELYOM: return self.__parse_almasryalyoum(html_) elif news_site_ == CONST.FAGR: return self.__parse_elfagr(html_) elif news_site_ == CONST.ENGLISH_AHRAM: return self.__parse_english_ahram(html_) elif news_site_ == CONST.FJP: return self.__parse_fjp(html_) elif news_site_ == CONST.MASRAWY: return self.__parse_masrawy(html_) elif news_site_ == CONST.AHRAM: return self.__parse_ahram_NEW_SITE(html_) elif news_site_ == CONST.BBC_ARABIC: return self.__parse_bbcarabic(html_) elif news_site_ == CONST.DOSTOR_ASLY: return self.__parse_dostorasly(html_) elif news_site_ == CONST.WATAN: return self.__parse_elwatannews(html_) elif news_site_ == CONST.ENGLISH_FJP: return self.__parse_english_fjp(html_) elif news_site_ == CONST.YOUM7: return self.__parse_youm7(html_) elif news_site_ == CONST.TAHRIR: return self.__parse_tahrir(html_) elif news_site_ == CONST.AKHBAR_MASR: return self.__parse_akhbar_masr(html_) elif news_site_ == CONST.RASD: return self.__parse_rasd(html_) elif news_site_ == CONST.MASRYOON: return self.__parse_almasryoon(html_) elif news_site_ == CONST.WAFD: return self.__parse_alwafd(html_) elif news_site_ == CONST.AKHBAR_ELYOM: return self.__parse_akhbar_elyom(html_) elif news_site_ == CONST.BADIL: return self.__parse_elbadil(html_) elif news_site_ == CONST.DOSTOR: return self.__parse_dostor(html_) else: print "Wrong News Site Name" def __parse_news_site(self, news_site_, json_index_): for path, v in json_index_.items(): if v.has_key('parsed') and v['parsed'] == True: continue if news_site_ == CONST.YOUM7: text_ = self.__parse(news_site_, helper.READ_FILE(path).decode('windows-1256')) else: text_ = self.__parse(news_site_, helper.READ_FILE(path).decode('utf-8')) text_dir_ = os.path.dirname(path).replace('html', 'txt') if not os.path.exists(text_dir_): os.makedirs(text_dir_) file_ = "{0}.txt".format(os.path.basename(path)[:-5]) text_file_ = os.path.join(text_dir_, file_) self._logger.log_info(text_file_) helper.WRITE_FILE(text_file_, text_) json_index_[path]['parsed'] = True helper.UPDATE_JSON_FILE(self._index_path, path, json_index_[path]) # TODO: DELETE json_index_, will not use it anymore. DONE def __parse_news_site_db(self, news_site_): for index in self._db.select_unparsed_by_label(self._rss_label): path = index.file_path #assert path in json_index_.keys() #assert not json_index_[path].has_key('parsed') or not json_index_[path]['parsed'] if news_site_ == CONST.YOUM7: text_ = self.__parse(news_site_, helper.READ_FILE(path).decode('windows-1256')) else: text_ = self.__parse(news_site_, helper.READ_FILE(path).decode('utf-8')) text_dir_ = os.path.dirname(path).replace('html', 'txt') if not os.path.exists(text_dir_): os.makedirs(text_dir_) file_ = "{0}.txt".format(os.path.basename(path)[:-5]) text_file_ = os.path.join(text_dir_, file_) self._logger.log_info(text_file_) helper.WRITE_FILE(text_file_, text_) #json_index_[path]['parsed'] = True self._db.set_parsed(path) #helper.UPDATE_JSON_FILE(self._index_path, path, json_index_[path]) def __parse_news_from_mce(self, news_site_): for record in self._db.get_unparsed_html(news_site_): if news_site_ == CONST.WAFD: text_ = self.__parse(news_site_, helper.READ_FILE(record.news_html_filepath)) elif news_site_ == CONST.YOUM7 or news_site_ == CONST.FAGR: text_ = self.__parse(news_site_, helper.READ_FILE(record.news_html_filepath).decode('windows-1256')) else: text_ = self.__parse(news_site_, helper.READ_FILE(record.news_html_filepath).decode('utf-8')) text_dir_ = os.path.dirname(record.news_html_filepath).replace('html', 'txt') with threading.Lock(): if not os.path.exists(text_dir_): os.makedirs(text_dir_) file_ = "{0}.txt".format(os.path.basename(record.news_html_filepath)[:-5]) text_file_ = os.path.join(text_dir_, file_) self._logger.log_info(text_file_) helper.WRITE_FILE(text_file_, text_) self._db.set_news_html_parsed(record.id) def parse_news_site(self): self._logger.log_info(self._rss_label) try: news_site_ = self._rss_label if '-' in news_site_: news_site_ = news_site_.split('-')[0] if self._is_mce_news: self.__parse_news_from_mce(news_site_) else: self.__parse_news_site_db(news_site_) except: self._logger.log_error(self._rss_label, traceback.format_exc()) def __init__(self, rss_label_, is_mce_news = False): self._logger = helper.Logger(CONST.HTML_PARSER_LOG_DIR) self._rss_label = rss_label_ self._index_path = os.path.join(CONST.RSS_HTML_INDEX_DIR, "{0}.json".format(self._rss_label)) self._db = db.IndexOperation() if not is_mce_news else db.MceWatchIndexOperation() self._is_mce_news = is_mce_news #if not os.path.exists(self._index_path): # raise ValueError("Index: '{0}' doesn't exist.".format(self._index_path)) def PARSE(rss_labels_, is_mce_news = False): parsers_ = [] for label in rss_labels_: try: parsers_.append(HTMLParser(label, is_mce_news)) except: print traceback.format_exc() if not parsers_: print "Nothing to do." return #RUN_PARSER(parsers_[0]) pool = Pool(processes=16) pool.map(RUN_PARSER, parsers_) pool.close() pool.join() print "Done" def RUN_PARSER(parser_): parser_.parse_news_site() if __name__ == '__main__': PARSE(CONST.RSS_LABELS) def correct_index_format(rss_label_): try: index_path_ = os.path.join(CONST.RSS_HTML_INDEX_DIR, "{0}.json".format(rss_label_)) index_ = helper.READ_JSON_FILE(index_path_) for k, v in index_.items(): if type(v) == dict: continue index_[k] = {'url':v[0], 'data':v[1]} index_path_ = index_path_.replace('index', 'new_index') helper.WRITE_JSON_FILE(index_path_, index_) except: print rss_label_, '\n\n', traceback.format_exc() def correct_index(rss_label_): try: index_path_ = os.path.join(CONST.RSS_HTML_INDEX_DIR, "{0}.json".format(rss_label_)) index_ = helper.READ_JSON_FILE(index_path_) for k, v in index_.items(): v['date'] = v['data'] del v['data'] index_[k] = v index_path_ = index_path_.replace('index', 'new_index') helper.WRITE_JSON_FILE(index_path_, index_) except: print rss_label_, '\n', traceback.format_exc()
UTF-8
Python
false
false
27,039
py
155,526
html_parser.py
19
0.535839
0.527212
0
634
41.602524
176
omkar6644/Python-Training
14,886,356,656,142
b7b4f9f8aa35d2dc887efa3948f09a1cbfb7bb76
cd91d4c2cef458ef0d82f4daed3fad0247e2d3c5
/Doubly_Linked_List.py
9dec6399b1d07a41abc290b8ff0e9f1bb08a06ca
[]
no_license
https://github.com/omkar6644/Python-Training
bde04eeffd0853d01d966eeeec8cc44300edda78
f8212dccf2dddd6acc6cff4164d2d27324bf9564
refs/heads/main
2023-05-28T10:58:41.427295
2021-06-11T12:01:39
2021-06-11T12:01:39
364,865,236
0
0
null
false
2021-05-11T11:53:27
2021-05-06T10:03:23
2021-05-11T11:52:14
2021-05-11T11:53:26
12
0
0
1
Python
false
false
class Node: #Node class constructor to initialize data, next, prev def __init__(self, value): self.value = value self.next = None self.prev = None class DoublyLinkedList: #Linkedlist class constructor to initialize head def __init__(self): self.head = None #adding elements to the list def add(self, data): new_node = Node(data) new_node.next = self.head if self.head is not None: self.head.prev = new_node self.head = new_node #adding element at beginning of list def addAtBegin(self, data): new_node = Node(data) new_node.next = self.head self.head.prev = new_node self.head = new_node #deleting node from list def deleteNode(self, x): if self.head is None: return if self.head == x: self.head = x.next if x.next is not None: x.next.prev=x.prev if x.prev is not None: x.prev.next=x.next #adding element at end of list def addAtEnd(self, data): new_node = Node(data) if self.head is None: self.head = new_node else: n = self.head while n.next is not None: n = n.next n.next = new_node new_node.prev = n #getting node after specified value def getNodeAfterValue(self,data): val = self.head while val: if val.value==data: val = val.next res1=val.value break val = val.next return res1 #getting node before specified value def getNodeBefore(self,data): n=self.head while n is not None: if n.value==data: res=n.prev res1=res.value n=n.next return res1 #reversing the list def reverseLinkedlist(self): prev = None while self.head: next = self.head.next self.head.next = prev prev = self.head self.head = next self.head = prev #counting the number of elements in the list def count(self): temp=self.head count=0 while temp is not None: count=count+1 temp=temp.next return count #printing elements of the list def printList(self): if self.head is None: return else: n=self.head while n is not None: print(n.value) n=n.next d = DoublyLinkedList() d.add(10) d.add(20) print("adding at beginning") d.addAtBegin(1) d.addAtBegin(2) d.addAtBegin(3) d.printList() print() print("after deleting") d.deleteNode(d.head.next) d.printList() print() print() print("adding at end") d.addAtEnd(1000) d.printList() print() print() print(d.getNodeAfterValue(1)) print() print() print(d.getNodeBefore(1)) print() d.reverseLinkedlist() d.printList() print() print() print("No of elements in list is: ",d.count())
UTF-8
Python
false
false
3,246
py
49
Doubly_Linked_List.py
40
0.520025
0.514171
0
130
22.969231
58
Mokona/La-Grille
8,074,538,565,302
53fb81a0503e849c9bc543c48e1bb45ebbb70016
81ea71bd0cd9eba88abccfa1b112d7bd7dba661e
/build/site_scons/UnitTestBuilder.py
872fd43be2528c7bacf43d619726e075d7b398fb
[]
no_license
https://github.com/Mokona/La-Grille
83751b5a25a21d3dc71b02f9a36e3038f159ab15
6a1d1d15601e04eed8b62fce287e16be16dd5157
refs/heads/master
2016-08-03T12:42:11.787930
2010-02-12T22:25:09
2010-02-12T22:25:09
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Unit testing builder import os import os.path def builder_unit_test(target, source, env): app = str(source[0].abspath) if os.spawnl(os.P_WAIT, app, app)==0: open(str(target[0]),'w').write("PASSED\n") else: return 1
UTF-8
Python
false
false
258
py
126
UnitTestBuilder.py
119
0.593023
0.577519
0
10
23.6
50
1068171/CSE-Novello-Final
3,917,010,187,549
b6e09fafd327a140387683fccf1e0fb8d9bf4a52
8d5523b0b049246475e8bca1af4cd043c612a18c
/Compare_Factors_Final.py
1ac38b86e19b217590001038780cd9c901f522ad
[]
no_license
https://github.com/1068171/CSE-Novello-Final
08c3ee43d4015204a7a4e93b692d2fcb47ef2a7d
7c8c568ec9aefacaeb712aee64fb60102d528fc5
refs/heads/master
2016-09-14T18:53:15.432698
2016-05-25T00:06:21
2016-05-25T00:06:21
59,050,028
0
10
null
false
2016-05-24T16:42:05
2016-05-17T18:52:15
2016-05-19T20:13:45
2016-05-24T16:42:05
29
0
9
1
Python
null
null
def compare_factors(list1, list2): length_1 = len(list1) length_2 = len(list2) list_1_factors = [] list_2_factors = [] factors_length_1 = len(list_1_factors) factors_length_2 = len(list_2_factors) longer_factors_list = list_1_factors shorter_factors_list = list_2_factors overlap = [] # A map of where the first number of the pair matches between the two lists final_value = 0 # Number of common numbers if factors_length_1 > factors_length_2: # Finds list with more factors longer_factors_list = list_1_factors shorter_factors_list = list_2_factors elif factors_length_2 > factors_length_1: longer_factors_list = list_2_factors shorter_factors_list = list_1_factors else: longer_list = list_1_factors shorter_list = list_2_factors for x in range(length_1): # Puts the first number in list1 in a list list_1_factors.append(list1[x][0]) x += 1 for x in range(length_2): # Puts the first number in list2 in a list list_2_factors.append(list2[x][0]) x += 1 for x in range(len(shorter_factors_list)): # If the first number in each tuple is the same in both lists, write true flag = False # Evaluate false after loop for y in range(len(longer_factors_list)): if shorter_list[x] == longer_list[y]: # Compares numbers overlap.append(y) flag = True if flag == False: overlap.append("no") # Can't use 'False' or '0' because they are used interchangeably in python for index in range(len(overlap)): # Finds how many times there is a common number between the lists if overlap[index] != "no": if list1[index][1] < list2[overlap[index]][1]: # Looks at where overlap points in the second list final_value += list1[index][1] else: final_value += list2[overlap[index]][1] total_nums = 0 for pair in list1: # Finds the total number of numbers total_nums += pair[1] for pair in list2: total_nums += pair[1] output = float(final_value)/float(total_nums) # Divides the number of common numbers by the total number of numbers output = round(output, 2) return output
UTF-8
Python
false
false
2,302
py
5
Compare_Factors_Final.py
4
0.620765
0.598175
0
61
36.754098
121
openvinotoolkit/nncf
455,266,542,980
b228e6de6f116ff601e35b2f332a21a20ba1765e
62179a165ec620ba967dbc20016e890978fbff50
/examples/torch/classification/main.py
2854c894f0a8a93f854d8900b264aa0339c1ade8
[ "Apache-2.0" ]
permissive
https://github.com/openvinotoolkit/nncf
91fcf153a96f85da166aacb7a70ca4941e4ba4a4
c027c8b43c4865d46b8de01d8350dd338ec5a874
refs/heads/develop
2023-08-24T11:25:05.704499
2023-08-23T14:44:05
2023-08-23T14:44:05
263,687,600
558
157
Apache-2.0
false
2023-09-14T17:06:41
2020-05-13T16:41:05
2023-09-14T12:38:03
2023-09-14T17:06:41
39,847
659
176
65
Python
false
false
# Copyright (c) 2023 Intel Corporation # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os.path as osp import sys import time import warnings from copy import deepcopy from functools import partial from pathlib import Path from shutil import copyfile from typing import Any import torch import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed from torch import nn from torch.backends import cudnn from torch.cuda.amp.autocast_mode import autocast from torch.nn.modules.loss import _Loss from torch.optim.lr_scheduler import ReduceLROnPlateau from torchvision import datasets from torchvision import models from torchvision import transforms from torchvision.datasets import CIFAR10 from torchvision.datasets import CIFAR100 from torchvision.models import InceptionOutputs from examples.common.paths import configure_paths from examples.common.sample_config import SampleConfig from examples.common.sample_config import create_sample_config from examples.torch.common.argparser import get_common_argument_parser from examples.torch.common.argparser import parse_args from examples.torch.common.example_logger import logger from examples.torch.common.execution import ExecutionMode from examples.torch.common.execution import get_execution_mode from examples.torch.common.execution import prepare_model_for_execution from examples.torch.common.execution import set_seed from examples.torch.common.execution import start_worker from examples.torch.common.export import export_model from examples.torch.common.model_loader import COMPRESSION_STATE_ATTR from examples.torch.common.model_loader import MODEL_STATE_ATTR from examples.torch.common.model_loader import extract_model_and_compression_states from examples.torch.common.model_loader import load_model from examples.torch.common.model_loader import load_resuming_checkpoint from examples.torch.common.optimizer import get_parameter_groups from examples.torch.common.optimizer import make_optimizer from examples.torch.common.utils import MockDataset from examples.torch.common.utils import NullContextManager from examples.torch.common.utils import SafeMLFLow from examples.torch.common.utils import configure_device from examples.torch.common.utils import configure_logging from examples.torch.common.utils import create_code_snapshot from examples.torch.common.utils import get_run_name from examples.torch.common.utils import is_pretrained_model_requested from examples.torch.common.utils import is_staged_quantization from examples.torch.common.utils import log_common_mlflow_params from examples.torch.common.utils import make_additional_checkpoints from examples.torch.common.utils import print_args from examples.torch.common.utils import write_metrics from nncf.api.compression import CompressionStage from nncf.common.accuracy_aware_training import create_accuracy_aware_training_loop from nncf.common.utils.tensorboard import prepare_for_tensorboard from nncf.config.utils import is_accuracy_aware_training from nncf.torch import create_compressed_model from nncf.torch.checkpoint_loading import load_state from nncf.torch.dynamic_graph.graph_tracer import create_input_infos from nncf.torch.initialization import default_criterion_fn from nncf.torch.initialization import register_default_init_args from nncf.torch.structures import ExecutionParameters from nncf.torch.utils import is_main_process from nncf.torch.utils import safe_thread_call model_names = sorted( name for name, val in models.__dict__.items() if name.islower() and not name.startswith("__") and callable(val) ) def get_argument_parser(): parser = get_common_argument_parser() parser.add_argument("--dataset", help="Dataset to use.", choices=["imagenet", "cifar100", "cifar10"], default=None) parser.add_argument( "--test-every-n-epochs", default=1, type=int, help="Enables running validation every given number of epochs" ) parser.add_argument( "--mixed-precision", dest="mixed_precision", help="Enables torch.cuda.amp autocasting during training and validation steps", action="store_true", ) return parser def main(argv): parser = get_argument_parser() args = parse_args(parser, argv) config = create_sample_config(args, parser) if config.dist_url == "env://": config.update_from_env() configure_paths(config, get_run_name(config)) copyfile(args.config, osp.join(config.log_dir, "config.json")) source_root = Path(__file__).absolute().parents[2] # nncf root create_code_snapshot(source_root, osp.join(config.log_dir, "snapshot.tar.gz")) if config.seed is not None: warnings.warn( "You have chosen to seed training. " "This will turn on the CUDNN deterministic setting, " "which can slow down your training considerably! " "You may see unexpected behavior when restarting " "from checkpoints." ) config.execution_mode = get_execution_mode(config) if config.metrics_dump is not None: write_metrics(0, config.metrics_dump) if not is_staged_quantization(config): start_worker(main_worker, config) else: from examples.torch.classification.staged_quantization_worker import ( staged_quantization_main_worker, # pylint: disable=cyclic-import ) start_worker(staged_quantization_main_worker, config) def inception_criterion_fn(model_outputs: Any, target: Any, criterion: _Loss) -> torch.Tensor: # From https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958 output, aux_outputs = model_outputs loss1 = criterion(output, target) loss2 = criterion(aux_outputs, target) return loss1 + 0.4 * loss2 # pylint:disable=too-many-branches,too-many-statements def main_worker(current_gpu, config: SampleConfig): configure_device(current_gpu, config) config.mlflow = SafeMLFLow(config) if is_main_process(): configure_logging(logger, config) print_args(config) else: config.tb = None set_seed(config) # define loss function (criterion) criterion = nn.CrossEntropyLoss() criterion = criterion.to(config.device) model_name = config["model"] train_criterion_fn = inception_criterion_fn if "inception" in model_name else default_criterion_fn train_loader = train_sampler = val_loader = None resuming_checkpoint_path = config.resuming_checkpoint_path nncf_config = config.nncf_config pretrained = is_pretrained_model_requested(config) is_export_only = "export" in config.mode and ("train" not in config.mode and "test" not in config.mode) if is_export_only: assert pretrained or (resuming_checkpoint_path is not None) else: # Data loading code train_dataset, val_dataset = create_datasets(config) train_loader, train_sampler, val_loader, init_loader = create_data_loaders(config, train_dataset, val_dataset) def train_steps_fn(loader, model, optimizer, compression_ctrl, train_steps): train_epoch( loader, model, criterion, train_criterion_fn, optimizer, compression_ctrl, 0, config, train_iters=train_steps, log_training_info=False, ) def validate_model_fn(model, eval_loader): top1, top5, loss = validate(eval_loader, model, criterion, config, log_validation_info=False) return top1, top5, loss def model_eval_fn(model): top1, _, _ = validate(val_loader, model, criterion, config) return top1 execution_params = ExecutionParameters(config.cpu_only, config.current_gpu) nncf_config = register_default_init_args( nncf_config, init_loader, criterion=criterion, criterion_fn=train_criterion_fn, train_steps_fn=train_steps_fn, validate_fn=lambda *x: validate_model_fn(*x)[::2], autoq_eval_fn=lambda *x: validate_model_fn(*x)[1], val_loader=val_loader, model_eval_fn=model_eval_fn, device=config.device, execution_parameters=execution_params, ) # create model model = load_model( model_name, pretrained=pretrained, num_classes=config.get("num_classes", 1000), model_params=config.get("model_params"), weights_path=config.get("weights"), ) model.to(config.device) if "train" in config.mode and is_accuracy_aware_training(config): uncompressed_model_accuracy = model_eval_fn(model) resuming_checkpoint = None if resuming_checkpoint_path is not None: resuming_checkpoint = load_resuming_checkpoint(resuming_checkpoint_path) model_state_dict, compression_state = extract_model_and_compression_states(resuming_checkpoint) compression_ctrl, model = create_compressed_model(model, nncf_config, compression_state) if model_state_dict is not None: load_state(model, model_state_dict, is_resume=True) if is_export_only: export_model(compression_ctrl, config.to_onnx, config.no_strip_on_export) logger.info(f"Saved to {config.to_onnx}") return model, _ = prepare_model_for_execution(model, config) if config.distributed: compression_ctrl.distributed() # define optimizer params_to_optimize = get_parameter_groups(model, config) optimizer, lr_scheduler = make_optimizer(params_to_optimize, config) best_acc1 = 0 # optionally resume from a checkpoint if resuming_checkpoint_path is not None: if "train" in config.mode: config.start_epoch = resuming_checkpoint["epoch"] best_acc1 = resuming_checkpoint["best_acc1"] optimizer.load_state_dict(resuming_checkpoint["optimizer"]) logger.info( "=> loaded checkpoint '{}' (epoch: {}, best_acc1: {:.3f})".format( resuming_checkpoint_path, resuming_checkpoint["epoch"], best_acc1 ) ) else: logger.info("=> loaded checkpoint '{}'".format(resuming_checkpoint_path)) log_common_mlflow_params(config) if config.execution_mode != ExecutionMode.CPU_ONLY: cudnn.benchmark = True if is_main_process(): statistics = compression_ctrl.statistics() logger.info(statistics.to_str()) if "train" in config.mode: if is_accuracy_aware_training(config): # validation function that returns the target metric value # pylint: disable=E1123 def validate_fn(model, epoch): top1, _, _ = validate(val_loader, model, criterion, config, epoch=epoch) return top1 # training function that trains the model for one epoch (full training dataset pass) # it is assumed that all the NNCF-related methods are properly called inside of # this function (like e.g. the step and epoch_step methods of the compression scheduler) def train_epoch_fn(compression_ctrl, model, epoch, optimizer, **kwargs): return train_epoch( train_loader, model, criterion, train_criterion_fn, optimizer, compression_ctrl, epoch, config ) # function that initializes optimizers & lr schedulers to start training def configure_optimizers_fn(): params_to_optimize = get_parameter_groups(model, config) optimizer, lr_scheduler = make_optimizer(params_to_optimize, config) return optimizer, lr_scheduler acc_aware_training_loop = create_accuracy_aware_training_loop( nncf_config, compression_ctrl, uncompressed_model_accuracy ) model = acc_aware_training_loop.run( model, train_epoch_fn=train_epoch_fn, validate_fn=validate_fn, configure_optimizers_fn=configure_optimizers_fn, tensorboard_writer=config.tb, log_dir=config.log_dir, ) logger.info(f"Compressed model statistics:\n{acc_aware_training_loop.statistics.to_str()}") else: train( config, compression_ctrl, model, criterion, train_criterion_fn, lr_scheduler, model_name, optimizer, train_loader, train_sampler, val_loader, best_acc1, ) if "test" in config.mode: val_model = model validate(val_loader, val_model, criterion, config) config.mlflow.end_run() if "export" in config.mode: export_model(compression_ctrl, config.to_onnx, config.no_strip_on_export) logger.info(f"Saved to {config.to_onnx}") def train( config, compression_ctrl, model, criterion, criterion_fn, lr_scheduler, model_name, optimizer, train_loader, train_sampler, val_loader, best_acc1=0, ): best_compression_stage = CompressionStage.UNCOMPRESSED for epoch in range(config.start_epoch, config.epochs): # update compression scheduler state at the begin of the epoch compression_ctrl.scheduler.epoch_step() if config.distributed: train_sampler.set_epoch(epoch) # train for one epoch train_epoch(train_loader, model, criterion, criterion_fn, optimizer, compression_ctrl, epoch, config) # Learning rate scheduling should be applied after optimizer’s update lr_scheduler.step(epoch if not isinstance(lr_scheduler, ReduceLROnPlateau) else best_acc1) # compute compression algo statistics statistics = compression_ctrl.statistics() acc1 = best_acc1 if epoch % config.test_every_n_epochs == 0: # evaluate on validation set acc1, _, _ = validate(val_loader, model, criterion, config, epoch=epoch) compression_stage = compression_ctrl.compression_stage() # remember best acc@1, considering compression stage. If current acc@1 less then the best acc@1, checkpoint # still can be best if current compression stage is larger than the best one. Compression stages in ascending # order: UNCOMPRESSED, PARTIALLY_COMPRESSED, FULLY_COMPRESSED. is_best_by_accuracy = acc1 > best_acc1 and compression_stage == best_compression_stage is_best = is_best_by_accuracy or compression_stage > best_compression_stage if is_best: best_acc1 = acc1 config.mlflow.safe_call("log_metric", "best_acc1", best_acc1) best_compression_stage = max(compression_stage, best_compression_stage) acc = best_acc1 / 100 if config.metrics_dump is not None: write_metrics(acc, config.metrics_dump) if is_main_process(): logger.info(statistics.to_str()) checkpoint_path = osp.join(config.checkpoint_save_dir, get_run_name(config) + "_last.pth") checkpoint = { "epoch": epoch + 1, "arch": model_name, MODEL_STATE_ATTR: model.state_dict(), COMPRESSION_STATE_ATTR: compression_ctrl.get_compression_state(), "best_acc1": best_acc1, "acc1": acc1, "optimizer": optimizer.state_dict(), } torch.save(checkpoint, checkpoint_path) make_additional_checkpoints(checkpoint_path, is_best, epoch + 1, config) for key, value in prepare_for_tensorboard(statistics).items(): config.mlflow.safe_call("log_metric", "compression/statistics/{0}".format(key), value, epoch) config.tb.add_scalar("compression/statistics/{0}".format(key), value, len(train_loader) * epoch) def get_dataset(dataset_config, config, transform, is_train): if dataset_config == "imagenet": prefix = "train" if is_train else "val" return datasets.ImageFolder(osp.join(config.dataset_dir, prefix), transform) # For testing purposes num_images = config.get("num_mock_images", 1000) if dataset_config == "mock_32x32": return MockDataset(img_size=(32, 32), transform=transform, num_images=num_images) if dataset_config == "mock_299x299": return MockDataset(img_size=(299, 299), transform=transform, num_images=num_images) return create_cifar(config, dataset_config, is_train, transform) def create_cifar(config, dataset_config, is_train, transform): create_cifar_fn = None if dataset_config in ["cifar100", "cifar100_224x224"]: create_cifar_fn = partial(CIFAR100, config.dataset_dir, train=is_train, transform=transform) if dataset_config == "cifar10": create_cifar_fn = partial(CIFAR10, config.dataset_dir, train=is_train, transform=transform) if create_cifar_fn: return safe_thread_call(partial(create_cifar_fn, download=True), partial(create_cifar_fn, download=False)) return None def create_datasets(config): dataset_config = config.dataset if config.dataset is not None else "imagenet" dataset_config = dataset_config.lower() assert dataset_config in [ "imagenet", "cifar100", "cifar10", "cifar100_224x224", "mock_32x32", "mock_299x299", ], "Unknown dataset option" if dataset_config == "imagenet": normalize = transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) elif dataset_config in ["cifar100", "cifar100_224x224"]: normalize = transforms.Normalize(mean=(0.5071, 0.4865, 0.4409), std=(0.2673, 0.2564, 0.2761)) elif dataset_config == "cifar10": normalize = transforms.Normalize(mean=(0.4914, 0.4822, 0.4465), std=(0.2471, 0.2435, 0.2616)) elif dataset_config in ["mock_32x32", "mock_299x299"]: normalize = transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) input_info_list = create_input_infos(config) image_size = input_info_list[0].shape[-1] size = int(image_size / 0.875) if dataset_config in ["cifar10", "cifar100_224x224", "cifar100"]: list_val_transforms = [transforms.ToTensor(), normalize] if dataset_config == "cifar100_224x224": list_val_transforms.insert(0, transforms.Resize(image_size)) val_transform = transforms.Compose(list_val_transforms) list_train_transforms = [ transforms.RandomCrop(image_size, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ] if dataset_config == "cifar100_224x224": list_train_transforms.insert(0, transforms.Resize(image_size)) train_transforms = transforms.Compose(list_train_transforms) elif dataset_config in ["mock_32x32", "mock_299x299"]: val_transform = transforms.Compose( [ transforms.Resize(size), transforms.CenterCrop(image_size), transforms.ToTensor(), normalize, ] ) train_transforms = transforms.Compose( [ transforms.Resize(size), transforms.CenterCrop(image_size), transforms.ToTensor(), normalize, ] ) else: val_transform = transforms.Compose( [ transforms.Resize(size), transforms.CenterCrop(image_size), transforms.ToTensor(), normalize, ] ) train_transforms = transforms.Compose( [ transforms.RandomResizedCrop(image_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ] ) val_dataset = get_dataset(dataset_config, config, val_transform, is_train=False) train_dataset = get_dataset(dataset_config, config, train_transforms, is_train=True) return train_dataset, val_dataset def create_data_loaders(config, train_dataset, val_dataset): pin_memory = config.execution_mode != ExecutionMode.CPU_ONLY # When using a single GPU per process and per # DistributedDataParallel, we need to divide the batch size # ourselves based on the total number of GPUs we have batch_size = int(config.batch_size) workers = int(config.workers) batch_size_val = int(config.batch_size_val) if config.batch_size_val is not None else int(config.batch_size) if config.execution_mode == ExecutionMode.MULTIPROCESSING_DISTRIBUTED: batch_size //= config.ngpus_per_node batch_size_val //= config.ngpus_per_node workers //= config.ngpus_per_node val_sampler = torch.utils.data.SequentialSampler(val_dataset) val_loader = torch.utils.data.DataLoader( val_dataset, batch_size=batch_size_val, shuffle=False, num_workers=workers, pin_memory=pin_memory, sampler=val_sampler, drop_last=False, ) train_sampler = None if config.distributed: sampler_seed = 0 if config.seed is None else config.seed dist_sampler_shuffle = config.seed is None train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset, seed=sampler_seed, shuffle=dist_sampler_shuffle ) train_shuffle = train_sampler is None and config.seed is None def create_train_data_loader(batch_size_): return torch.utils.data.DataLoader( train_dataset, batch_size=batch_size_, shuffle=train_shuffle, num_workers=workers, pin_memory=pin_memory, sampler=train_sampler, drop_last=True, ) train_loader = create_train_data_loader(batch_size) if config.batch_size_init: init_loader = create_train_data_loader(config.batch_size_init) else: init_loader = deepcopy(train_loader) return train_loader, train_sampler, val_loader, init_loader def train_epoch( train_loader, model, criterion, criterion_fn, optimizer, compression_ctrl, epoch, config, train_iters=None, log_training_info=True, ): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() compression_losses = AverageMeter() criterion_losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() if train_iters is None: train_iters = len(train_loader) compression_scheduler = compression_ctrl.scheduler casting = autocast if config.mixed_precision else NullContextManager # switch to train mode model.train() end = time.time() for i, (input_, target) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) compression_scheduler.step() input_ = input_.to(config.device) target = target.to(config.device) # compute output with casting(): output = model(input_) criterion_loss = criterion_fn(output, target, criterion) # compute compression loss compression_loss = compression_ctrl.loss() loss = criterion_loss + compression_loss if isinstance(output, InceptionOutputs): output = output.logits # measure accuracy and record loss acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), input_.size(0)) comp_loss_val = compression_loss.item() if isinstance(compression_loss, torch.Tensor) else compression_loss compression_losses.update(comp_loss_val, input_.size(0)) criterion_losses.update(criterion_loss.item(), input_.size(0)) top1.update(acc1, input_.size(0)) top5.update(acc5, input_.size(0)) # compute gradient and do SGD step optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % config.print_freq == 0 and log_training_info: logger.info( "{rank}: " "Epoch: [{0}][{1}/{2}] " "Lr: {3:.3} " "Time: {batch_time.val:.3f} ({batch_time.avg:.3f}) " "Data: {data_time.val:.3f} ({data_time.avg:.3f}) " "CE_loss: {ce_loss.val:.4f} ({ce_loss.avg:.4f}) " "CR_loss: {cr_loss.val:.4f} ({cr_loss.avg:.4f}) " "Loss: {loss.val:.4f} ({loss.avg:.4f}) " "Acc@1: {top1.val:.3f} ({top1.avg:.3f}) " "Acc@5: {top5.val:.3f} ({top5.avg:.3f})".format( epoch, i, len(train_loader), get_lr(optimizer), batch_time=batch_time, data_time=data_time, ce_loss=criterion_losses, cr_loss=compression_losses, loss=losses, top1=top1, top5=top5, rank="{}:".format(config.rank) if config.multiprocessing_distributed else "", ) ) if is_main_process() and log_training_info: global_step = train_iters * epoch config.tb.add_scalar("train/learning_rate", get_lr(optimizer), i + global_step) config.tb.add_scalar("train/criterion_loss", criterion_losses.val, i + global_step) config.tb.add_scalar("train/compression_loss", compression_losses.val, i + global_step) config.tb.add_scalar("train/loss", losses.val, i + global_step) config.tb.add_scalar("train/top1", top1.val, i + global_step) config.tb.add_scalar("train/top5", top5.val, i + global_step) statistics = compression_ctrl.statistics(quickly_collected_only=True) for stat_name, stat_value in prepare_for_tensorboard(statistics).items(): config.tb.add_scalar("train/statistics/{}".format(stat_name), stat_value, i + global_step) if i >= train_iters: break def validate(val_loader, model, criterion, config, epoch=0, log_validation_info=True): batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() # switch to evaluate mode model.eval() casting = autocast if config.mixed_precision else NullContextManager with torch.no_grad(): end = time.time() for i, (input_, target) in enumerate(val_loader): input_ = input_.to(config.device) target = target.to(config.device) # compute output with casting(): output = model(input_) loss = default_criterion_fn(output, target, criterion) # measure accuracy and record loss acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), input_.size(0)) top1.update(acc1, input_.size(0)) top5.update(acc5, input_.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % config.print_freq == 0 and log_validation_info: logger.info( "{rank}" "Test: [{0}/{1}] " "Time: {batch_time.val:.3f} ({batch_time.avg:.3f}) " "Loss: {loss.val:.4f} ({loss.avg:.4f}) " "Acc@1: {top1.val:.3f} ({top1.avg:.3f}) " "Acc@5: {top5.val:.3f} ({top5.avg:.3f})".format( i, len(val_loader), batch_time=batch_time, loss=losses, top1=top1, top5=top5, rank="{}:".format(config.rank) if config.multiprocessing_distributed else "", ) ) if is_main_process() and log_validation_info: config.tb.add_scalar("val/loss", losses.avg, len(val_loader) * epoch) config.tb.add_scalar("val/top1", top1.avg, len(val_loader) * epoch) config.tb.add_scalar("val/top5", top5.avg, len(val_loader) * epoch) config.mlflow.safe_call("log_metric", "val/loss", float(losses.avg), epoch) config.mlflow.safe_call("log_metric", "val/top1", float(top1.avg), epoch) config.mlflow.safe_call("log_metric", "val/top5", float(top5.avg), epoch) if log_validation_info: logger.info(" * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}\n".format(top1=top1, top5=top5)) acc = top1.avg / 100 if config.metrics_dump is not None: write_metrics(acc, config.metrics_dump) return top1.avg, top5.avg, losses.avg class AverageMeter: """Computes and stores the average and current value""" def __init__(self): self.val = None self.avg = None self.sum = None self.count = None self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].reshape(-1).sum(0, keepdim=True) res.append(correct_k.float().mul_(100.0 / batch_size).item()) return res def get_lr(optimizer): return optimizer.param_groups[0]["lr"] if __name__ == "__main__": main(sys.argv[1:])
UTF-8
Python
false
false
30,918
py
1,665
main.py
873
0.630709
0.616121
0
793
37.986129
119
nocproject/noc
11,063,835,788,638
e81994eeab9846d29b19f3ff5ad1469a97ac2ea2
2337351b228818e41be3002bd38f68f77c2aa074
/bi/models/reboots.py
4478010291c1ef641e77583dd04377b38e0474ba
[ "BSD-3-Clause" ]
permissive
https://github.com/nocproject/noc
57d40c680a1499374463e472434f9595ed6d1374
6e6d71574e9b9d822bec572cc629a0ea73604a59
refs/heads/master
2023-08-31T01:11:33.544573
2023-08-30T17:31:11
2023-08-30T17:31:11
107,815,776
105
33
BSD-3-Clause
false
2023-07-31T07:57:45
2017-10-21T21:04:33
2023-07-18T16:58:03
2023-07-31T07:46:42
91,288
103
29
14
Python
false
false
# ---------------------------------------------------------------------- # Reboots model # ---------------------------------------------------------------------- # Copyright (C) 2007-2017 The NOC Project # See LICENSE for details # ---------------------------------------------------------------------- # NOC modules from noc.core.clickhouse.model import Model from noc.core.clickhouse.fields import ( DateField, DateTimeField, Float64Field, ReferenceField, IPv4Field, ) from noc.core.clickhouse.engines import MergeTree from noc.core.bi.dictionaries.managedobject import ManagedObject from noc.core.bi.dictionaries.vendor import Vendor from noc.core.bi.dictionaries.platform import Platform from noc.core.bi.dictionaries.version import Version from noc.core.bi.dictionaries.profile import Profile from noc.core.bi.dictionaries.objectprofile import ObjectProfile from noc.core.bi.dictionaries.administrativedomain import AdministrativeDomain from noc.core.bi.dictionaries.networksegment import NetworkSegment from noc.core.bi.dictionaries.container import Container from noc.core.bi.dictionaries.pool import Pool from noc.sa.models.useraccess import UserAccess from noc.sa.models.administrativedomain import AdministrativeDomain as AdministrativeDomainM from noc.core.translation import ugettext as _ class Reboots(Model): class Meta: db_table = "reboots" engine = MergeTree("date", ("ts", "managed_object"), primary_keys=("ts", "managed_object")) date = DateField(description=_("Date")) ts = DateTimeField(description=_("Created")) last = DateTimeField(description=_("Last register")) managed_object = ReferenceField(ManagedObject, description=_("Object Name")) pool = ReferenceField(Pool, description=_("Pool Name")) ip = IPv4Field(description=_("IP Address")) profile = ReferenceField(Profile, description=_("Profile")) object_profile = ReferenceField(ObjectProfile, description=_("Object Profile")) vendor = ReferenceField(Vendor, description=_("Vendor Name")) platform = ReferenceField(Platform, description=_("Platform")) version = ReferenceField(Version, description=_("Version")) administrative_domain = ReferenceField(AdministrativeDomain, description=_("Admin. Domain")) segment = ReferenceField(NetworkSegment, description=_("Network Segment")) container = ReferenceField(Container, description=_("Container")) # Coordinates x = Float64Field(description=_("Longitude")) y = Float64Field(description=_("Latitude")) @classmethod def transform_query(cls, query, user): if not user or user.is_superuser: return query # No restrictions # Get user domains domains = UserAccess.get_domains(user) # Resolve domains against dict domain_ids = [x.bi_id for x in AdministrativeDomainM.objects.filter(id__in=domains)] filter = query.get("filter", {}) dl = len(domain_ids) if not dl: return None elif dl == 1: q = {"$eq": [{"$field": "administrative_domain"}, domain_ids[0]]} else: q = {"$in": [{"$field": "administrative_domain"}, domain_ids]} if filter: query["filter"] = {"$and": [query["filter"], q]} else: query["filter"] = q return query
UTF-8
Python
false
false
3,339
py
10,368
reboots.py
4,525
0.656484
0.651093
0
76
42.934211
99
lucther/akshare
16,363,825,398,911
0589c0d67b0bb192647136ec65f32950eaf726c0
894d085e3c19d0eb052d7fceaa668ab326e7a64b
/akshare/stock_feature/stock_three_report_em.py
e1ec3569b3839753dd0e57578230303976862245
[ "MIT" ]
permissive
https://github.com/lucther/akshare
cf7cf750716d9c7f118f6bb72aed11c3bb690d2b
b4fbceaa7fcb9cc26936ddb448a212468b3a02ba
refs/heads/master
2023-09-02T01:25:53.760317
2023-08-22T08:48:32
2023-08-22T08:48:32
249,578,209
0
0
null
true
2020-03-24T00:52:30
2020-03-24T00:52:30
2020-03-23T13:49:48
2020-03-23T12:37:01
258,348
0
0
0
null
false
false
# -*- coding:utf-8 -*- # !/usr/bin/env python """ Date: 2023/8/22 14:20 Desc: 东方财富-股票-财务分析 """ from functools import lru_cache import pandas as pd import requests from bs4 import BeautifulSoup from tqdm import tqdm @lru_cache() def _stock_balance_sheet_by_report_ctype_em(symbol: str = "SH600519") -> str: """ 东方财富-股票-财务分析-资产负债表-按报告期-公司类型判断 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh601878#zcfzb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 东方财富-股票-财务分析-资产负债表-按报告期-公司类型判断 :rtype: str """ url = f"https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index" params = {"type": "web", "code": symbol.lower()} r = requests.get(url, params=params) soup = BeautifulSoup(r.text, "lxml") company_type = soup.find(attrs={"id": "hidctype"})["value"] return company_type def stock_balance_sheet_by_report_em(symbol: str = "SH600519") -> pd.DataFrame: """ 东方财富-股票-财务分析-资产负债表-按报告期 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 资产负债表-按报告期 :rtype: pandas.DataFrame """ company_type = _stock_balance_sheet_by_report_ctype_em(symbol=symbol) url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/zcfzbDateAjaxNew" params = { "companyType": company_type, "reportDateType": "0", "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["REPORT_DATE"] = pd.to_datetime(temp_df["REPORT_DATE"]).dt.date temp_df["REPORT_DATE"] = temp_df["REPORT_DATE"].astype(str) need_date = temp_df["REPORT_DATE"].tolist() sep_list = [",".join(need_date[i : i + 5]) for i in range(0, len(need_date), 5)] big_df = pd.DataFrame() for item in tqdm(sep_list, leave=False): url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/zcfzbAjaxNew" params = { "companyType": company_type, "reportDateType": "0", "reportType": "1", "dates": item, "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) return big_df def stock_balance_sheet_by_yearly_em(symbol: str = "SH600036") -> pd.DataFrame: """ 东方财富-股票-财务分析-资产负债表-按年度 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 资产负债表-按年度 :rtype: pandas.DataFrame """ url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/zcfzbDateAjaxNew" company_type = _stock_balance_sheet_by_report_ctype_em(symbol) params = { "companyType": company_type, "reportDateType": "1", "code": symbol, } r = requests.get(url, params=params) data_json = r.json() try: temp_df = pd.DataFrame(data_json["data"]) except: company_type = 3 params.update({"companyType": company_type}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["REPORT_DATE"] = pd.to_datetime(temp_df["REPORT_DATE"]).dt.date temp_df["REPORT_DATE"] = temp_df["REPORT_DATE"].astype(str) need_date = temp_df["REPORT_DATE"].tolist() sep_list = [",".join(need_date[i : i + 5]) for i in range(0, len(need_date), 5)] big_df = pd.DataFrame() for item in tqdm(sep_list, leave=False): url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/zcfzbAjaxNew" params = { "companyType": company_type, "reportDateType": "1", "reportType": "1", "dates": item, "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) return big_df def stock_profit_sheet_by_report_em(symbol: str = "SH600519") -> pd.DataFrame: """ 东方财富-股票-财务分析-利润表-报告期 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 利润表-报告期 :rtype: pandas.DataFrame """ company_type = _stock_balance_sheet_by_report_ctype_em(symbol=symbol) url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/lrbDateAjaxNew" params = { "companyType": company_type, "reportDateType": "0", "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["REPORT_DATE"] = pd.to_datetime(temp_df["REPORT_DATE"]).dt.date temp_df["REPORT_DATE"] = temp_df["REPORT_DATE"].astype(str) need_date = temp_df["REPORT_DATE"].tolist() sep_list = [",".join(need_date[i : i + 5]) for i in range(0, len(need_date), 5)] big_df = pd.DataFrame() for item in tqdm(sep_list, leave=False): url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/lrbAjaxNew" params = { "companyType": company_type, "reportDateType": "0", "reportType": "1", "code": symbol, "dates": item, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) return big_df def stock_profit_sheet_by_yearly_em(symbol: str = "SH600519") -> pd.DataFrame: """ 东方财富-股票-财务分析-利润表-按年度 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 利润表-按年度 :rtype: pandas.DataFrame """ company_type = _stock_balance_sheet_by_report_ctype_em(symbol=symbol) url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/lrbDateAjaxNew" params = { "companyType": company_type, "reportDateType": "1", "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["REPORT_DATE"] = pd.to_datetime(temp_df["REPORT_DATE"]).dt.date temp_df["REPORT_DATE"] = temp_df["REPORT_DATE"].astype(str) need_date = temp_df["REPORT_DATE"].tolist() sep_list = [",".join(need_date[i : i + 5]) for i in range(0, len(need_date), 5)] big_df = pd.DataFrame() for item in tqdm(sep_list, leave=False): url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/lrbAjaxNew" params = { "companyType": company_type, "reportDateType": "1", "reportType": "1", "dates": item, "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) return big_df def stock_profit_sheet_by_quarterly_em( symbol: str = "SH600519", ) -> pd.DataFrame: """ 东方财富-股票-财务分析-利润表-按单季度 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 利润表-按单季度 :rtype: pandas.DataFrame """ company_type = _stock_balance_sheet_by_report_ctype_em(symbol=symbol) url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/lrbDateAjaxNew" params = { "companyType": company_type, "reportDateType": "2", "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["REPORT_DATE"] = pd.to_datetime(temp_df["REPORT_DATE"]).dt.date temp_df["REPORT_DATE"] = temp_df["REPORT_DATE"].astype(str) need_date = temp_df["REPORT_DATE"].tolist() sep_list = [",".join(need_date[i : i + 5]) for i in range(0, len(need_date), 5)] big_df = pd.DataFrame() for item in tqdm(sep_list, leave=False): url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/lrbAjaxNew" params = { "companyType": company_type, "reportDateType": "0", "reportType": "2", "dates": item, "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) return big_df def stock_cash_flow_sheet_by_report_em( symbol: str = "SH600519", ) -> pd.DataFrame: """ 东方财富-股票-财务分析-现金流量表-按报告期 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 现金流量表-按报告期 :rtype: pandas.DataFrame """ company_type = _stock_balance_sheet_by_report_ctype_em(symbol=symbol) url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/xjllbDateAjaxNew" params = { "companyType": company_type, "reportDateType": "0", "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["REPORT_DATE"] = pd.to_datetime(temp_df["REPORT_DATE"]).dt.date temp_df["REPORT_DATE"] = temp_df["REPORT_DATE"].astype(str) need_date = temp_df["REPORT_DATE"].tolist() sep_list = [",".join(need_date[i : i + 5]) for i in range(0, len(need_date), 5)] big_df = pd.DataFrame() for item in tqdm(sep_list, leave=False): url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/xjllbAjaxNew" params = { "companyType": company_type, "reportDateType": "0", "reportType": "1", "dates": item, "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) return big_df def stock_cash_flow_sheet_by_yearly_em( symbol: str = "SH600519", ) -> pd.DataFrame: """ 东方财富-股票-财务分析-现金流量表-按年度 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 现金流量表-按年度 :rtype: pandas.DataFrame """ company_type = _stock_balance_sheet_by_report_ctype_em(symbol=symbol) url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/xjllbDateAjaxNew" params = { "companyType": company_type, "reportDateType": "1", "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["REPORT_DATE"] = pd.to_datetime(temp_df["REPORT_DATE"]).dt.date temp_df["REPORT_DATE"] = temp_df["REPORT_DATE"].astype(str) need_date = temp_df["REPORT_DATE"].tolist() sep_list = [",".join(need_date[i : i + 5]) for i in range(0, len(need_date), 5)] big_df = pd.DataFrame() for item in tqdm(sep_list, leave=False): url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/xjllbAjaxNew" params = { "companyType": company_type, "reportDateType": "1", "reportType": "1", "dates": item, "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) return big_df def stock_cash_flow_sheet_by_quarterly_em( symbol: str = "SH600519", ) -> pd.DataFrame: """ 东方财富-股票-财务分析-现金流量表-按单季度 https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/Index?type=web&code=sh600519#lrb-0 :param symbol: 股票代码; 带市场标识 :type symbol: str :return: 现金流量表-按单季度 :rtype: pandas.DataFrame """ company_type = _stock_balance_sheet_by_report_ctype_em(symbol=symbol) url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/xjllbDateAjaxNew" params = { "companyType": company_type, "reportDateType": "2", "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) temp_df["REPORT_DATE"] = pd.to_datetime(temp_df["REPORT_DATE"]).dt.date temp_df["REPORT_DATE"] = temp_df["REPORT_DATE"].astype(str) need_date = temp_df["REPORT_DATE"].tolist() sep_list = [",".join(need_date[i : i + 5]) for i in range(0, len(need_date), 5)] big_df = pd.DataFrame() for item in tqdm(sep_list, leave=False): url = "https://emweb.securities.eastmoney.com/PC_HSF10/NewFinanceAnalysis/xjllbAjaxNew" params = { "companyType": company_type, "reportDateType": "0", "reportType": "2", "dates": item, "code": symbol, } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) return big_df if __name__ == "__main__": stock_balance_sheet_by_report_em_df = stock_balance_sheet_by_report_em( symbol="SH600519" ) print(stock_balance_sheet_by_report_em_df) stock_balance_sheet_by_yearly_em_df = stock_balance_sheet_by_yearly_em( symbol="SH601318" ) print(stock_balance_sheet_by_yearly_em_df) stock_profit_sheet_by_report_em_df = stock_profit_sheet_by_report_em( symbol="SH600519" ) print(stock_profit_sheet_by_report_em_df) stock_profit_sheet_by_report_em_df = stock_profit_sheet_by_report_em( symbol="SZ000001" ) print(stock_profit_sheet_by_report_em_df) stock_profit_sheet_by_yearly_em_df = stock_profit_sheet_by_yearly_em( symbol="SH600519" ) print(stock_profit_sheet_by_yearly_em_df) stock_profit_sheet_by_quarterly_em_df = stock_profit_sheet_by_quarterly_em( symbol="SH600519" ) print(stock_profit_sheet_by_quarterly_em_df) stock_cash_flow_sheet_by_report_em_df = stock_cash_flow_sheet_by_report_em( symbol="SH600519" ) print(stock_cash_flow_sheet_by_report_em_df) stock_cash_flow_sheet_by_yearly_em_df = stock_cash_flow_sheet_by_yearly_em( symbol="SH601398" ) print(stock_cash_flow_sheet_by_yearly_em_df) stock_cash_flow_sheet_by_quarterly_em_df = stock_cash_flow_sheet_by_quarterly_em( symbol="SH601398" ) print(stock_cash_flow_sheet_by_quarterly_em_df)
UTF-8
Python
false
false
15,845
py
21
stock_three_report_em.py
20
0.616166
0.597361
0
412
35.783981
107
sushku/leetcode-py
5,411,658,841,195
3d1d6935880a9739f6059449538c84554c9af892
d141d6a9507c864ad335c56070882d4c5bf8b04c
/0011-container-with-most-water.py
a09edce72a035b7b0f92689d31900f4f41486756
[]
no_license
https://github.com/sushku/leetcode-py
c692d0850c7cc175ae663ddbe6f682fec47dabaf
997b89c985c1dcf8c4c6e3c607d6b1f0ac730a8b
refs/heads/master
2021-01-19T02:40:58.322798
2017-03-26T06:24:56
2017-03-26T06:24:56
65,436,658
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
class Solution(object): def maxArea(self, height): """ :type height: List[int] :rtype: int """ i = 0 j = len(height) - 1 max_area = 0 while i < j: h = min(height[i], height[j]) area = h * (j - i) max_area = max(area, max_area) while height[i] <= h and i < j: i += 1 while height[j] <= h and i < j: j -= 1 return max_area s = Solution() print(s.maxArea([1,2,4,5,3,2]))
UTF-8
Python
false
false
537
py
17
0011-container-with-most-water.py
16
0.407821
0.387337
0
21
24.571429
43
csesoumita/TwitterDataAnalysis
7,086,696,086,691
9b7edc305a0b8d4f7338797ea0f1f68a68913eef
33ed6bf1f503e073ad1946216f337ec3caa9e3dd
/REST_API_Twitter.py
d1c90d5e055e495bd3612c9d51091868be18a706
[]
no_license
https://github.com/csesoumita/TwitterDataAnalysis
f4a10311bdead268aa6b3438edba41453b98c4bc
776cacc29b199bfa62b9e63dad77c5daa73650b2
refs/heads/master
2021-08-17T09:29:07.034056
2020-06-22T03:44:42
2020-06-22T03:44:42
195,810,180
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
# Program for Twitter Data Crawling via REST API using tweepy Start import tweepy from pymongo.mongo_client import MongoClient class filter_Twitter: # Accessing the Authentication Keys API_key="" API_secret_key = "" Access_token = "" Access_token_secret = "" # Passing objects for Twitter Authentication auth = tweepy.OAuthHandler(API_key, API_secret_key) auth.set_access_token(Access_token, Access_token_secret) api=tweepy.API(auth,wait_on_rate_limit=True) #Insertion in Local Mongo DB MONGO_HOST= 'mongodb://localhost/webscience' client=MongoClient(MONGO_HOST) db=client.webscience #Tweets from own twitter account public_tweets=api.home_timeline() for tweet in public_tweets: #db.twitter_search.insert(tweet._json) print(tweet) # Displaying own Twitter Details user= api.me() print("Name: "+user.name) print ("Location:"+user.location) print ("Screen Name:"+user.screen_name) #Search tweets via specific twiiter user : Narendra Modi search=api.user_timeline(screen_name='NarendraModi',languages=['en']) for status in search: db.twitter_search.insert(status._json) #Search tweets based on specific hastags hash_tag='Brexit','weather' tweet_keyword=api.search(q=hash_tag,languages=['en']) for keywords in tweet_keyword: db.twitter_search.insert(keywords._json)
UTF-8
Python
false
false
1,456
py
9
REST_API_Twitter.py
7
0.675824
0.675824
0
40
34.25
73
consaceves/csc210-project
5,274,219,841,875
bdc2e80cd37f4a2346c5a19dfee71fe87be77f7b
2f4640dfec53a65a26d61b17b3684a34552374b2
/tests/__init__.py
1a6f474ad2169c94a7d392bda710adcd68c282d5
[]
no_license
https://github.com/consaceves/csc210-project
e472242cdad81f643c18e471d204048f74de0939
a199a0759f5939189de73ade60ef2cd4b2a94ae6
refs/heads/master
2022-12-11T11:32:03.041038
2019-12-11T00:41:12
2019-12-11T00:41:12
218,378,045
0
0
null
false
2022-12-08T01:50:18
2019-10-29T20:31:56
2019-12-11T00:41:21
2022-12-08T01:50:18
5,262
0
0
10
HTML
false
false
import unittest from app import create_app, db class BaseTest(unittest.TestCase): def create_app(self): return create_app() def setUp(self): self.app = self.create_app() self.client = self.app.test_client with self.app.app_context(): from app import models db.drop_all() db.create_all() def tearDown(self): with self.app.app_context(): from app import models db.session.remove() db.drop_all() if __name__ == '__main__': unittest.main()
UTF-8
Python
false
false
571
py
28
__init__.py
15
0.556918
0.556918
0
26
20.961538
42
sreejithev/pythoncodes
627,065,248,120
ab256fb06856c39f20bd0ab6481f67057ca71a48
5a4436884af5341ce855c0e84866b972a0f61c05
/day4/classes/tests/a.py
9bd7ba8bf794a4dc3d74485131ffd21b4c76d0be
[]
no_license
https://github.com/sreejithev/pythoncodes
74a420c4f025b893e27f17ba85632a4a096f17fd
70df14871a9687916d1c4ada76c055607f13e8ce
refs/heads/master
2021-01-21T20:59:47.056167
2017-06-19T09:43:17
2017-06-19T09:43:17
92,292,259
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
dec = 567 print ("decimal value is",dec) print (bin(dec),"in binary")
UTF-8
Python
false
false
70
py
376
a.py
344
0.671429
0.628571
0
3
22.333333
30
uktrade/lite-exporter-frontend
8,839,042,700,040
dd64151b73b505878895f85493ff5089db3b982c
a402fc7de174d6610063e087ba2f82b658dca5f2
/end_users/urls.py
41f3d1f3cd830c88bbd2b064cf20dfbc115197d2
[ "MIT" ]
permissive
https://github.com/uktrade/lite-exporter-frontend
bdd8e1c3a40bbc82076f1253cab408974e23632d
cf42ac37a21236486aa303c8935c44a7eba91ef5
refs/heads/master
2021-07-15T04:32:22.105366
2020-07-24T09:47:31
2020-07-24T09:47:31
175,791,659
3
1
MIT
false
2020-08-05T10:20:10
2019-03-15T09:41:41
2020-07-24T09:47:35
2020-07-24T10:22:18
2,646
3
1
0
Python
false
false
from django.urls import path from end_users import views app_name = "end_users" urlpatterns = [ path("", views.EndUsersList.as_view(), name="end_users"), path("<uuid:pk>/", views.EndUserDetailEmpty.as_view(), name="end_user"), path("<uuid:pk>/copy-advisory/", views.CopyAdvisory.as_view(), name="copy"), path("apply-for-an-advisory/", views.ApplyForAnAdvisory.as_view(), name="apply"), path("<uuid:pk>/<str:type>/", views.EndUserDetail.as_view(), name="end_user_detail"), ]
UTF-8
Python
false
false
497
py
320
urls.py
210
0.67002
0.67002
0
13
37.230769
89
judithnat/shoppingList
15,427,522,530,844
289c8a38f78a20c758b5878a624ad02112d3288c
262308480e2f7052592ee95580be672b54f03a8e
/shoplistapp/urls.py
274a3f3e989db8753b78801e7ea088b239dafe5b
[]
no_license
https://github.com/judithnat/shoppingList
9e2d930c6366b41df886623a5211f8be5476c04d
a1ab38c4f5b2bac1abb5fb2f37dccb63ef7cadec
refs/heads/master
2020-03-24T15:31:04.064567
2018-07-29T21:46:08
2018-07-29T21:46:08
142,792,405
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.conf.urls import url from . import views urlpatterns = [ url(r'^$', views.ItemList.as_view(), name='shop_list'), url(r'^item/(?P<pk>\d+)/$', views.item_detail, name='item_detail'), url(r'^item/new/$', views.ItemCreate.as_view(), name='item_new'), url(r'^item/(?P<pk>\d+)/edit/$', views.item_edit, name='item_edit'), ] """ NB: r' its regex ^ beginning $end <pk> assign result of this group to variable name (here pk) """
UTF-8
Python
false
false
454
py
12
urls.py
6
0.618943
0.618943
0
15
29.333333
72
krakowiakpawel9/live-python
15,522,011,823,062
8fa34951c61966a497c4f2333451009ea35148ae
1ab52d160b72f4b5bc6776175c1a8aaf3cb86e0a
/fb-posts/02_pathlib/18_pathlib.py
f1196f7066b3aa6b58c5d09aaacf5bcf6207dbec
[]
no_license
https://github.com/krakowiakpawel9/live-python
ea3598ceeafca827b53efdf71a6d3156a6fa25b4
237b186b48b51f58450290f5ed0146041e0a1135
refs/heads/master
2021-04-17T06:10:53.141136
2021-03-06T09:53:47
2021-03-06T09:53:47
249,418,666
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from pathlib import Path base_dir = Path.cwd() / 'reports' if not base_dir.is_dir(): base_dir.mkdir() fnames = [f'{str(i).zfill(2)}_sales.txt' for i in range(1, 13)] paths = [Path.cwd() / base_dir / f'{fname}' for fname in fnames] for path in paths: path.touch()
UTF-8
Python
false
false
276
py
70
18_pathlib.py
68
0.630435
0.615942
0
11
23.909091
64
elvesmrodrigues/Kcore_Expert_Finding
7,387,343,788,475
ff0f2ee460cd14ccfd86536ba89b58dde549d51d
f9efe2ce2325ad3d5d3c5762f3c85e51a2612ea8
/expert_finding/script/content_embedding.py
365ace7ec2d69b2eca78c26dd26881e380cbc565
[]
no_license
https://github.com/elvesmrodrigues/Kcore_Expert_Finding
3e3347fa77b51d81999fcac12ac9a7324568763e
c03174640f62771492805fb6cbb08f3d2ba6f88f
refs/heads/main
2023-06-25T03:42:15.155785
2021-07-26T12:57:22
2021-07-26T12:57:22
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import expert_finding.script.finding_pipline as expert import expert_finding.finetuning.network as net_model import os current_dir = os.path.dirname(os.path.abspath(__file__)) work_dir = os.path.join(current_dir, "output/data") def content_embedding_finding(): models = ["tfidf", "GloVe", "sci_bert_nil_sts"] for model in models: finder = ExpertFind("V1", work_dir, communities_path, "0", model) finder.preprocess() finder.offline_embedding(encoder_name="GloVe") finder.evalutation(index=True, m=1000, encoder_name=model) finder = ExpertFind("V2", "/ddisk/lj/DBLP/data/", "/ddisk/lj/triples", "0", "GloVe") finder.preprocess() # finder.offline_embedding(encoder_name="GloVe") finder.evalutation(index=True, k=1000, encoder_name="GloVe") # finder = ExpertFind("V3", "/ddisk/lj/DBLP/data/", "/ddisk/lj/triples", "0", "sci_bert_nil_sts") finder.preprocess() # finder.offline_embedding(encoder_name="sci_bert_nil_sts") finder.evalutation(index=True, k=1000, encoder_name="sci_bert_nil_sts")
UTF-8
Python
false
false
1,067
py
61
content_embedding.py
42
0.682287
0.665417
0
25
41.68
99
Aasthaengg/IBMdataset
2,705,829,421,953
db028e48eabea08f1691ba7f712dd730e9fdd144
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03167/s904500920.py
57bd79e056e177c6d9f615c4ea73ddc64ad7fde5
[]
no_license
https://github.com/Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import sys from collections import defaultdict readline = sys.stdin.buffer.readline sys.setrecursionlimit(10**8) def geta(fn=lambda s: s.decode()): return map(fn, readline().split()) def gete(fn=lambda s: s.decode()): return fn(readline().rstrip()) def main(): mod = 10**9 + 7 H, W = geta(int) g = [] for _ in range(H): g.append(gete()) dp = [[0] * W for _ in range(H)] for i, gi in enumerate(g): if i == 0: w = gi.index("#") if "#" in gi else W dp[0] = [1 if j < w else 0 for j in range(W)] else: for j, gij in enumerate(gi): if gij == "#": dp[i][j] = 0 else: dp[i][j] = (dp[i - 1][j] + (dp[i][j - 1] if j > 0 else 0)) % mod print(dp[H - 1][W - 1]) if __name__ == "__main__": main()
UTF-8
Python
false
false
898
py
202,060
s904500920.py
202,055
0.447661
0.426503
0
40
21.475
69
CUUATS/geojson-vt-py
6,279,242,206,438
aadeeb66ab4ba49a900f49a452b515e2a322516a
05610a560d95ceec420600e4e001aa6614283a0d
/tests/test_full.py
dbbf0aa2d398d9663623f2c258c5e7b609b02d5d
[ "ISC" ]
permissive
https://github.com/CUUATS/geojson-vt-py
301b646ceda9bccf024f66ff962d89378a99a98e
e7b2d68a460679690375a034aae12553fea953dc
refs/heads/master
2021-10-02T20:41:46.389173
2018-11-30T17:03:26
2018-11-30T17:03:26
119,899,784
0
2
null
null
null
null
null
null
null
null
null
null
null
null
null
import unittest from .gen_tiles import genTiles from .utils import load_json, json_str class TestFull(unittest.TestCase): def _tiles_equal(self, inputFile, expectedFile, maxZoom=0, maxPoints=10000): tiles = genTiles(load_json(inputFile), maxZoom, maxPoints) expected = load_json(expectedFile) self.assertEqual(json_str(tiles), json_str(expected)) def test_tiles_us_states(self): self._tiles_equal('us-states.json', 'us-states-tiles.json', 7, 200) def test_tiles_dateline(self): self._tiles_equal('dateline.json', 'dateline-tiles.json') def test_tiles_feature(self): self._tiles_equal('feature.json', 'feature-tiles.json') def test_tiles_collection(self): self._tiles_equal('collection.json', 'collection-tiles.json') def test_tiles_single_geom(self): self._tiles_equal('single-geom.json', 'single-geom-tiles.json') def test_invalid_geojson(self): with self.assertRaises(ValueError) as context: genTiles({'type': 'Pologon'}) self.assertTrue('not a valid GeoJSON object' in str(context.exception)) def test_empty_geojson(self): self.assertEqual(json_str(genTiles(load_json('empty.json'))), '{}') def test_null_geometry(self): # should ignore features with null geometry self.assertEqual(json_str(genTiles( load_json('feature-null-geometry.json'))), '{}') if __name__ == '__main__': unittest.main()
UTF-8
Python
false
false
1,499
py
20
test_full.py
19
0.650434
0.643763
0
45
32.311111
79
marcosanchezdenis/laborapp-uc-back
4,707,284,171,757
7e78ae807b5eab53aa2fdd96c0872b2ab988ac61
5c23d7c8c2ede17698c7a0111138ec6de7a9d315
/network/migrations/0003_auto_20190210_1432.py
9b25b5ec78a5c341aa9654aa3308952142657f35
[]
no_license
https://github.com/marcosanchezdenis/laborapp-uc-back
90d9326514292955901e2e90d099b42472da4475
0eb2b7843b36cc9666acd675b4badfe715692eee
refs/heads/master
2020-05-07T21:19:02.759391
2019-04-12T00:32:52
2019-04-12T00:32:52
180,899,633
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Generated by Django 2.1.5 on 2019-02-10 14:32 from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('network', '0002_customer_user'), ] operations = [ migrations.AddField( model_name='contacttype', name='created_at', field=models.DateTimeField(auto_now_add=True, default=django.utils.timezone.now), preserve_default=False, ), migrations.AddField( model_name='contacttype', name='deleted_at', field=models.DateTimeField(blank=True, default=None, null=True), ), migrations.AddField( model_name='contacttype', name='updated_at', field=models.DateTimeField(auto_now=True), ), migrations.AddField( model_name='request', name='message', field=models.TextField(default=''), preserve_default=False, ), migrations.AddField( model_name='request', name='requested_date', field=models.DateTimeField(default=django.utils.timezone.now), preserve_default=False, ), migrations.AddField( model_name='request', name='state', field=models.ForeignKey(default=0, on_delete=django.db.models.deletion.CASCADE, to='network.RequestState'), preserve_default=False, ), migrations.AddField( model_name='scoresystemvalue', name='system', field=models.ForeignKey(default=0, on_delete=django.db.models.deletion.CASCADE, to='network.ScoreSystem'), preserve_default=False, ), ]
UTF-8
Python
false
false
1,806
py
59
0003_auto_20190210_1432.py
59
0.581949
0.570321
0
55
31.836364
119
rephus/django-rest-template
17,428,977,297,311
044729e53fb2c4a1b340c76dde51db947d81118c
bfbf35361169bdd0daae677570aab5ef498eb99c
/project/todo/models.py
cfa4bff064905c02e1133f80595e633fabe9d8f4
[]
no_license
https://github.com/rephus/django-rest-template
306e29a5108874efcdabd8c38457a79029da7f61
a088dd426fed3733ed7b1153919545a5cccd997c
refs/heads/master
2020-04-15T14:42:55.913531
2019-01-11T00:56:45
2019-01-11T00:56:45
164,764,315
3
8
null
null
null
null
null
null
null
null
null
null
null
null
null
import uuid from django.db import models from django_extensions.db.models import TimeStampedModel class Task(TimeStampedModel, models.Model): id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) title = models.CharField(max_length=200) description = models.CharField(max_length=200, default=None, null=True, blank=True) completed = models.BooleanField(default=False) due = models.DateTimeField(default=None, blank=True, null=True)
UTF-8
Python
false
false
476
py
12
models.py
8
0.771008
0.756303
0
11
42.272727
87
simtol/EffectivePython2nd
19,198,503,821,466
ddc334e16aea80888c1e77238eedcf958323bd3f
a0bd18d49044bcb38bb8b0f9d5983cad0cf5461a
/master/chapter8/item72.py
5ea606e27bde285136fc18b7a631f0e26b9edcb3
[]
no_license
https://github.com/simtol/EffectivePython2nd
40d14256cbbfcd041427611bfcd54fd521046c3c
913782212ec0952f59d6ded8566fe797b3ac7978
refs/heads/main
2023-03-01T09:21:29.987291
2021-02-12T02:06:12
2021-02-12T02:06:12
338,195,148
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# # 아이템 72 # data = list(range(10**5)) index = data.index(91234) assert index == 91234 def find_closest(sequence, goal): for index, value in enumerate(sequence): if goal < value: return index raise ValueError(f'범위를 벗어남: {goal}') index = find_closest(data, 91234.56) assert index == 91235 from bisect import bisect_left index = bisect_left(data, 91234) # 정확히 일치 assert index == 91234 index = bisect_left(data, 91234.56) # 근접한 값과 일치 assert index == 91235 index = bisect_left(data, 91234.23) # 근접한 값과 일치(찾는 값 이상의 값 중 근접한 값을 찾음) assert index == 91235 import random import timeit size = 10 ** 5 iterations = 1000 data = list(range(size)) to_lookup = [random.randint(0, size) for _ in range(iterations)] def run_linear(data, to_lookup): for index in to_lookup: data.index(index) def run_bisect(data, to_lookup): for index in to_lookup: bisect_left(data, index) baseline = timeit.timeit( stmt='run_linear(data, to_lookup)', globals=globals(), number=10) print(f'선형 검색: {baseline:.6f}초') comparison = timeit.timeit( stmt='run_bisect(data, to_lookup)', globals=globals(), number=10) print(f'이진 검색: {comparison:.6f}초') slowdown = 1 + ((baseline - comparison) / comparison) print(f'선형검색이 {slowdown:.1f}배 더 걸림')
UTF-8
Python
false
false
1,488
py
58
item72.py
52
0.627566
0.571114
0
59
21.084746
71
YirongMao/COSONet
14,233,521,655,833
e10aba3ec6524571f8d505584a2c747e28c36302
05844d09831bd2b816d9a4b3f3001d04705e601f
/read_utils.py
075de1f13c0687f9b662d3cd77a09623d90854d3
[]
no_license
https://github.com/YirongMao/COSONet
78dba9e9501889d794e97d1b73a658159fc944d6
20e92c577ff448588e82c603f4bcc785be90f615
refs/heads/master
2020-04-08T04:23:18.762943
2018-12-27T07:00:25
2018-12-27T07:00:25
159,014,162
11
2
null
null
null
null
null
null
null
null
null
null
null
null
null
from PIL import Image import PIL import os import os.path import torch.utils.data as data import numpy as np import torchvision.transforms as transforms import time # input_image_size = 224 webface_train_transforms = transforms.Compose([ transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5409566, 0.41063643, 0.3478864), (0.27481332, 0.23811759, 0.22841948)) ]) def default_loader(path, smaller_side_size=256): r_img = Image.open(path).convert('RGB') size = r_img.size h = size[0] w = size[1] if h > w: scale = smaller_side_size/w else: scale = smaller_side_size/h new_h = round(scale*h) new_w = round(scale*w) r_img = r_img.resize((new_h, new_w), PIL.Image.BILINEAR) return r_img class ImageFilelist(data.Dataset): def __init__(self, fname, root_dir=None, transform=None, loader=default_loader, five_crop=False): self.root_dir = root_dir self.transform = transform self.loader = loader self.five_crop = five_crop fid = open(fname, 'r') lines = fid.readlines() imgs = [] classes = set() for line in lines: file, label = line.strip().split(' ') label = int(label) item = (file, label) imgs.append(item) classes.add(label) self.imgs = imgs self.classes = list(classes) def __getitem__(self, index): file, label = self.imgs[index] if self.root_dir is not None: path = os.path.join(self.root_dir, file) else: path = file if not self.five_crop: img = self.loader(path) if self.transform is not None: img = self.transform(img) label = int(label) return img, label, path else: imgs = self.loader(path) lst_img = [] for img in imgs: if self.transform is not None: img = self.transform(img) lst_img.append(img) label = int(label) return lst_img, label, path def __len__(self): return len(self.imgs)
UTF-8
Python
false
false
2,248
py
12
read_utils.py
10
0.564947
0.536922
0
83
26.084337
101
zaheerkhancs/QuantumNeuralNetwork
13,735,305,460,930
9170e311838d86c5c155750a147dbb659def9a53
4eeee252acc1a6b55fbb981ed08110047bd3d017
/data_processor.py
adcfa97b4393d7230c3037db1ce06af7bed21b08
[]
no_license
https://github.com/zaheerkhancs/QuantumNeuralNetwork
58e58d044ca4389438ca4c370bb6dbb7760cf392
ce5654c36d45868cf5a7a53bef460f41e19e6c5d
refs/heads/master
2022-02-20T22:08:07.618034
2019-09-17T04:32:21
2019-09-17T04:32:21
208,957,603
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Copyright 2018 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """For processing data from https://www.kaggle.com/mlg-ulb/creditcardfraud""" import csv import numpy as np import random # creditcard.csv downloaded from https://www.kaggle.com/mlg-ulb/creditcardfraud with open('creditcard.csv', 'r') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') data = list(csv_reader) data = data[1:] data_genuine = [] data_fraudulent = [] # Splitting genuine and fraudulent data for i in range(len(data)): if int(data[i][30]) == 0: data_genuine.append([float(i) for i in data[i]]) if int(data[i][30]) == 1: data_fraudulent.append([float(i) for i in data[i]]) fraudulent_data_points = len(data_fraudulent) # We want the genuine data points to be 3x the fraudulent ones undersampling_ratio = 3 genuine_data_points = fraudulent_data_points * undersampling_ratio random.shuffle(data_genuine) random.shuffle(data_fraudulent) # Fraudulent and genuine transactions are split into two datasets for cross validation data_fraudulent_1 = data_fraudulent[:int(fraudulent_data_points / 2)] data_fraudulent_2 = data_fraudulent[int(fraudulent_data_points / 2):] data_genuine_1 = data_genuine[:int(genuine_data_points / 2)] data_genuine_2 = data_genuine[int(genuine_data_points / 2):genuine_data_points] data_genuine_remaining = data_genuine[genuine_data_points:] random.shuffle(data_fraudulent_1) random.shuffle(data_fraudulent_2) random.shuffle(data_genuine_1) random.shuffle(data_genuine_2) np.savetxt('creditcard_genuine_1.csv', data_genuine_1, delimiter=',') np.savetxt('creditcard_genuine_2.csv', data_genuine_2, delimiter=',') np.savetxt('creditcard_fraudulent_1.csv', data_fraudulent_1, delimiter=',') np.savetxt('creditcard_fraudulent_2.csv', data_fraudulent_2, delimiter=',') # Larger datasets are used for testing, including genuine transactions unseen in training np.savetxt('creditcard_combined_1_big.csv', data_fraudulent_1 + data_genuine_1 + data_genuine_remaining, delimiter=',') np.savetxt('creditcard_combined_2_big.csv', data_fraudulent_2 + data_genuine_2 + data_genuine_remaining, delimiter=',')
UTF-8
Python
false
false
2,675
py
5
data_processor.py
2
0.748037
0.731963
0
66
39.530303
119
mst-solar-car/kicad-bom-generator
19,653,770,369,592
c85a270c8bc7c2726c29efd2adc067c938ca2ed9
cbc5e26bb47ae69e80a3649c90275becf25ce404
/Formatter/excel_formatter.py
8f93a89358022a62fa75644c8f7ab99664d2e7da
[ "MIT" ]
permissive
https://github.com/mst-solar-car/kicad-bom-generator
c3549409c3139f787ad28391372b5cb03791694a
2aae905056d06f3d25343a8d784049c141d05640
refs/heads/master
2021-09-07T14:00:40.759486
2018-02-23T23:21:13
2018-02-23T23:21:13
107,868,801
3
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import os import Arguments import Formatter import Config import Logger from Utils import * import xlsxwriter args = Arguments.Parse() cfg = Config.Get() @Formatter.Register("xlsx") def excel_formatter(components): """ Formats a list of components into an excel spreadsheet """ save_path = args.output_file workbook = xlsxwriter.Workbook(save_path) ws = workbook.add_worksheet('BOM') # Create styling for the header titles header_style = workbook.add_format({ 'font_size': 16, 'bold': True, 'align': 'center', 'bottom': 2, 'right': 1, }) # Create styling for general row row_style = workbook.add_format({ 'right': 1, 'bottom': 1 }) columns = cfg['columns'] # List of columns # Add the columns to the file for col in range(0, len(columns)): ws.write(0, col, denormalizeStr(columns[col]), header_style) # Add a row for each component for row in range(0, len(components)): for col in range(0, len(columns)): try: ws.write(row + 1, col, components[row][columns[col]], row_style) except: ws.write(row + 1, col, cfg['emptyValue'], row_style) # Close the file workbook.close() return save_path
UTF-8
Python
false
false
1,200
py
42
excel_formatter.py
36
0.655833
0.645833
0
54
21.203704
72
braskin/pd
12,927,851,587,101
707ded8c96202e033b67a264c2bbe5badf06861e
bbc8fbbdd40665af61fedf69962b38c1d5939683
/apps/account/templatetags/util_tags.py
5e479f6c5d6e6ee59165db6a697af2f8568c6308
[]
no_license
https://github.com/braskin/pd
64b299ad8058e8d3939bc9778fd1576522f786b0
df32f96b432c2f07e1a20bcbd84df3eccad5e29a
refs/heads/master
2021-01-10T22:10:34.318229
2013-01-23T11:50:37
2013-01-23T11:50:37
7,773,119
0
1
null
false
2020-07-25T19:53:06
2013-01-23T11:09:43
2013-10-11T06:04:48
2013-01-23T11:52:07
7,088
0
1
1
Python
false
false
from django import template from django.conf import settings from mydebug import * register = template.Library() @register.filter def key(d, key_name): try: value = d[key_name] except KeyError: value = '' return value key = register.filter('key', key) def raw(parser, token): # Whatever is between {% raw %} and {% endraw %} will be preserved as # raw, unrendered template code. text = [] parse_until = 'endraw' tolog("in raw tag") tag_mapping = { template.TOKEN_TEXT: ('', ''), template.TOKEN_VAR: ('{{', '}}'), template.TOKEN_BLOCK: ('{%', '%}'), template.TOKEN_COMMENT: ('{#', '#}'), } # By the time this template tag is called, the template system has already # lexed the template into tokens. Here, we loop over the tokens until # {% endraw %} and parse them to TextNodes. We have to add the start and # end bits (e.g. "{{" for variables) because those have already been # stripped off in a previous part of the template-parsing process. while parser.tokens: token = parser.next_token() if token.token_type == template.TOKEN_BLOCK and token.contents == parse_until: return template.TextNode(u''.join(text)) start, end = tag_mapping[token.token_type] text.append(u'%s%s%s' % (start, token.contents, end)) parser.unclosed_block_tag(parse_until) raw = register.tag(raw) class VerbatimNode(template.Node): def __init__(self, text): self.text = text def render(self, context): return self.text def verbatim(parser, token): text = [] while 1: token = parser.tokens.pop(0) if token.contents == 'endverbatim': break if token.token_type == template.TOKEN_VAR: text.append('{{') elif token.token_type == template.TOKEN_BLOCK: text.append('{%') text.append(token.contents) if token.token_type == template.TOKEN_VAR: text.append('}}') elif token.token_type == template.TOKEN_BLOCK: text.append('%}') return VerbatimNode(''.join(text)) verbatim = register.tag(verbatim) def google_anal_account(): return settings.GOOGLE_ANAL_ACCOUNT def www_host(): return settings.WWW_HOST def fb_app_id(): return settings.FB_API_KEY register.simple_tag(google_anal_account) register.simple_tag(www_host) register.simple_tag(fb_app_id)
UTF-8
Python
false
false
2,456
py
256
util_tags.py
172
0.619707
0.618893
0
84
28.238095
86
friendlywhales/lineup-web
13,554,916,819,735
03e418d102519b3d0fb405af44a27dcbb8caa459
b066191ce947eb7ca4acebd021070ee46eae4d05
/backend/apiserver/settings.py
8135742c0fa2c9e35d61fec3c9eb2cd8977112eb
[]
no_license
https://github.com/friendlywhales/lineup-web
17624b8c17678eb1abd380fa603d5559ece83115
ed06227b14a57791449a4c134c5a0955fc5b9f27
refs/heads/master
2022-12-04T20:08:13.482782
2020-09-01T07:59:49
2020-09-01T07:59:49
291,615,047
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import os from corsheaders.defaults import default_headers BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) SECRET_KEY = '' DEBUG = True ALLOWED_HOSTS = ['*'] INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django_mysql', 'rest_framework', 'rest_framework.authtoken', 'dry_rest_permissions', 'silk', 'drf_yasg', 'corsheaders', 'social_django', 'accounts', 'currencies', 'contents', 'messaging', 'operations', ] MIDDLEWARE = [ 'corsheaders.middleware.CorsMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'accounts.social.middlewares.SocialAuthExceptionMiddleware', 'silk.middleware.SilkyMiddleware', ] ROOT_URLCONF = 'apiserver.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'apiserver.wsgi.application' DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': '', 'USER': '', 'PASSWORD': '', 'OPTIONS': { 'charset': 'utf8mb4', }, 'HOST': '127.0.0.1', 'PORT': '23306', } } AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] AUTH_USER_MODEL = 'accounts.User' LANGUAGE_CODE = 'ko-kr' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True STATIC_URL = '/static/' STATIC_ROOT = os.path.join(os.path.dirname(BASE_DIR), 'staticfiles') AUTHENTICATION_BACKENDS = ( 'steemconnect.backends.SteemConnectOAuth2', 'django.contrib.auth.backends.ModelBackend', ) REST_FRAMEWORK = { 'DEFAULT_PERMISSION_CLASSES': [ 'rest_framework.permissions.DjangoModelPermissionsOrAnonReadOnly' ], 'DEFAULT_AUTHENTICATION_CLASSES': ( # 'rest_framework.authentication.BasicAuthentication', 'rest_framework.authentication.SessionAuthentication', 'rest_framework.authentication.TokenAuthentication', ), 'TEST_REQUEST_DEFAULT_FORMAT': 'json', 'DEFAULT_PAGINATION_CLASS': 'apiserver.helpers.rest_framework.paginations.DefaultCursorPaginationClass', 'PAGE_SIZE': 4, } MAX_USER_PROMOTION_CODE_NUMBER = 3 MEDIA_ROOT = os.path.join(os.path.dirname(BASE_DIR), 'uploads') MEDIA_URL = '/media/' CORS_ORIGIN_ALLOW_ALL = True # only for DEBUG mode # CORS_ORIGIN_WHITELIST = ( # 'line-up.me', # 'localhost:8080', # 'localhost:8081', # 'localhost:8082', # ) CORS_EXPOSE_HEADERS = [ 'LineUp-Total-Number', 'LineUp-Page-Next-Link', 'LineUp-Page-Previous-Link', ] SOCIAL_AUTH_PIPELINE = ( 'social_core.pipeline.social_auth.social_details', 'social_core.pipeline.social_auth.social_uid', 'social_core.pipeline.social_auth.auth_allowed', # 'social_core.pipeline.social_auth.social_user', 'accounts.social.pipeline.steem.social_user', 'social_core.pipeline.user.get_username', 'social_core.pipeline.social_auth.associate_by_email', 'social_core.pipeline.user.create_user', 'accounts.social.pipeline.issue_signup_point', 'social_core.pipeline.social_auth.associate_user', 'social_core.pipeline.debug.debug', 'social_core.pipeline.social_auth.load_extra_data', 'social_core.pipeline.user.user_details', 'social_core.pipeline.debug.debug', 'accounts.social.pipeline.steem.user_info', ) NICKNAME_LENGTH_RANGE = (2, 50, ) SOCIAL_AUTH_STEEMCONNECT_KEY = 'lineup.app' SOCIAL_AUTH_STEEMCONNECT_DEFAULT_SCOPE = ['vote', 'comment'] LOGIN_REDIRECT_URL = '/social-auth/login/done/' STEEMCONNECT_SOCIAL_AUTH_RAISE_EXCEPTIONS = True SOCIAL_AUTH_RAISE_EXCEPTIONS = True RAISE_EXCEPTIONS = True SOCIAL_AUTH_SANITIZE_REDIRECTS = False FRONT_HOSTNAME = 'http://127.0.0.1:8084' FRONTEND_LOGIN_REDIRECT_URL = f'{FRONT_HOSTNAME}/social-auth/login/done' FRONTEND_LOGIN_URL = f'{FRONT_HOSTNAME}/login' INACTIVE_USER_URL = f'{FRONT_HOSTNAME}/login?status=inactive-user' LOGIN_ERROR_URL = f'{FRONT_HOSTNAME}/login?status=error' # SESSION_COOKIE_DOMAIN = "127.0.0.1" # DEFAULT_USER_LEVEL = 'associate' # 회원 가입시 기본 등급 DEFAULT_USER_LEVEL = 'author' # 6월 2일 only 전 한정. DEFAULT_ASSET_REDIRECT_CACHE = 60 * 60 * 24 CORS_ALLOW_CREDENTIALS = False CORS_ALLOW_HEADERS = default_headers + ( 'access-control-allow-origin', 'access-control-allow-credentials', ) CSRF_TRUSTED_ORIGINS = ['beta.line-up.me', 'www.line-up.me', 'line-up.me'] FILE_UPLOAD_PERMISSIONS = 0o644 SERVICE_ROOT_USERNAME = 'lineup' SERVICE_TOKEN_SYMBOL = 'lineup' LIMITATION_POINT_PER_DAY = 1_000 AVAILABLE_DELETION_PERIOD = 7 # days MINIMUM_IMAGE_SIZE = 500 # px. # AMAZON S3 settings--------------------------------------------------- AWS_STORAGE_BUCKET_NAME = 'lineup-user-assets' AWS_ACCESS_KEY_ID = None AWS_SECRET_ACCESS_KEY = None AWS_REGION = 'ap-northeast-2' AWS_S3_HOST = f's3-{AWS_REGION}.amazonaws.com' S3_USE_SIGV4 = True AWS_S3_FILE_OVERWRITE = False AWS_S3_KEY_PREFIX = 'uploads' # DEFAULT_FILE_STORAGE = 'apiserver.storages.aws_s3.MediaStorage' AWS_S3_URL_EXPIRIATION = 60 * 60 * 24 * 30 # seconds DATA_UPLOAD_MAX_MEMORY_SIZE = 1024 * 1024 * 8 FCM_API_KEY = os.environ['LINEUP_FCM_APIKEY'] # celery settings--------------------------------------------------- CELERY_BROKER_URL = 'redis://localhost:26379/0' CELERY_RESULT_BACKEND = 'redis://localhost:26379/2' CELERY_ACCEPT_CONTENT = ['application/json'] CELERY_RESULT_SERIALIZER = 'json' CELERY_TASK_SERIALIZER = 'json' CELERY_TIMEZONE = 'Asia/Seoul' CELERY_BEAT_SCHEDULE = { } BEZANT_ENDPOINT = 'testnet' BEZANT_APIKEY = os.environ.get('BEZANT_APIKEY') FRONTEND_PATH = os.path.join( os.path.dirname(BASE_DIR), 'frontend', 'production-dist', )
UTF-8
Python
false
false
6,912
py
196
settings.py
130
0.669378
0.653399
0
266
24.87594
108
AsymmetricVentures/mypy-django
9,440,338,167,999
6bdc0fcb841b438d6597fcef20480cb446f3a419
7942342d457276bb266228d0236af647b3d55477
/django/utils/synch.pyi
ede96fb9f738a990f466541050a1b8acaa2a6c48
[ "MIT" ]
permissive
https://github.com/AsymmetricVentures/mypy-django
847c4e521ce4dec9a10a1574f9c32b234dafd00b
f6e489f5cf5672ecede323132665ccc6306f50b8
refs/heads/master
2020-06-30T01:53:44.434394
2016-12-22T22:45:50
2016-12-22T22:45:50
74,397,884
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Stubs for django.utils.synch (Python 3.6) # # NOTE: This dynamically typed stub was automatically generated by stubgen. from typing import Any class RWLock: mutex = ... # type: Any can_read = ... # type: Any can_write = ... # type: Any active_readers = ... # type: int active_writers = ... # type: int waiting_readers = ... # type: int waiting_writers = ... # type: int def __init__(self) -> None: ... def reader_enters(self): ... def reader_leaves(self): ... def reader(self): ... def writer_enters(self): ... def writer_leaves(self): ... def writer(self): ...
UTF-8
Python
false
false
629
pyi
404
synch.pyi
404
0.578696
0.575517
0
21
28.952381
75
a1403951401/PyDaMo
11,407,433,172,134
079f6fd86973155e3cb16931dd2ac39e6513766f
6ff56a0d34ef5d3577852f39ec400208d5046855
/DaMo/err.py
a4fe498f177e82aaf11cdc6f9b905b36b5c2fd96
[]
no_license
https://github.com/a1403951401/PyDaMo
d4c3536cd5855682950d286ec6db8d23412a3701
a880758ec28ff6c51920e302c3c30f20084da146
refs/heads/master
2020-08-25T08:22:13.128489
2019-10-22T06:30:41
2019-10-22T06:30:41
216,986,996
4
1
null
null
null
null
null
null
null
null
null
null
null
null
null
# 请求错误的类型 class VIP_Err(Exception): code = { -1: "无法连接网络, (可能防火墙拦截, 如果可以正常访问大漠插件网站,那就可以肯定是被防火墙拦截)", -2: "进程没有以管理员方式运行.(出现在win7 win8 vista 2008.建议关闭uac)", 0: "失败(未知错误)", 1: "大漠注册成功", 2: "余额不足", 3: "绑定了本机器,但是账户余额不足50元.", 4: "注册码错误", 5: "你的机器或者IP在黑名单列表中或者不在白名单列表中", 6: "非法使用插件", 7: "你的帐号因为非法使用被封禁. (如果是在虚拟机中使用插件,必须使用Reg或者RegEx,不能使用RegNoMac或者RegExNoMac, 否则可能会造成封号,或者封禁机器)", 8: "ver_info不在你设置的附加白名单中", 77: "机器码或者IP因为非法使用,而被封禁. (如果是在虚拟机中使用插件,必须使用Reg或者RegEx,不能使用RegNoMac或者RegExNoMac, 否则可能会造成封号,或者封禁机器)封禁是全局的,如果使用了别人的软件导致77,也一样会导致所有注册码均无法注册。解决办法是更换IP,更换MAC", -8: "版本附加信息长度超过了20", -9: "版本附加信息里包含了非法字母", } def __init__(self, messge): if messge in self.code: self.leng = self.code[messge] else: self.leng = messge def __str__(self): return self.leng
UTF-8
Python
false
false
1,585
py
10
err.py
9
0.598691
0.569248
0
27
32.962963
161
recuraki/PythonJunkTest
16,535,624,092,381
155485641ed77e32116d99460907bb3787bfe9ff
4a8c1f7d9935609b780aff95c886ef7781967be0
/atcoder/_codeforces/1359_b.py
3a9bbb603bd1f49ffcf55d202be404d0821ed4c6
[]
no_license
https://github.com/recuraki/PythonJunkTest
d5e5f5957ac5dd0c539ef47759b1fe5ef7a2c52a
2556c973d468a6988d307ce85c5f2f8ab15e759a
refs/heads/master
2023-08-09T17:42:21.875768
2023-07-18T23:06:31
2023-07-18T23:06:31
13,790,016
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import sys from io import StringIO import unittest import logging logging.basicConfig(level=logging.DEBUG) def resolve(): from pprint import pprint import sys q = int(input()) for _ in range(q): n, m, x, y = map(int, input().split()) maze = [] for i in range(n): s = input() maze.append(list(s)) if x * 2 <= y: # 1x1 is best! cnt = 0 for i in range(n): cnt += maze[i].count(".") print(cnt * x) else: # 1x2 can use cost = 0 for i in range(n): j = 0 while j < m: if maze[i][j] == "*": j += 1 continue nj = j + 1 if nj >= m: cost += x # use 1x1 j += 1 continue if maze[i][nj] == ".": # use 1x2 cost += y j += 2 continue cost += x j += 1 print(cost) class TestClass(unittest.TestCase): def assertIO(self, input, output): stdout, stdin = sys.stdout, sys.stdin sys.stdout, sys.stdin = StringIO(), StringIO(input) resolve() sys.stdout.seek(0) out = sys.stdout.read()[:-1] sys.stdout, sys.stdin = stdout, stdin self.assertEqual(out, output) def test_input_1(self): print("test_input_1") input = """5 1 1 10 1 . 1 2 10 1 .. 2 1 10 1 . . 3 3 3 7 ..* *.. .*. 3 3 7 3 ... ... ...""" output = """10 1 20 18 30""" self.assertIO(input, output) if __name__ == "__main__": unittest.main()
UTF-8
Python
false
false
1,789
py
1,170
1359_b.py
1,143
0.406372
0.376188
0
81
21.098765
59
Aasthaengg/IBMdataset
10,651,518,894,575
e073dbedb29021f87d5224dd1c78aaa0e64e11bf
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02632/s292618205.py
e3e76f22e4c3ca5583413714aa64de5463e69964
[]
no_license
https://github.com/Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import sys input = sys.stdin.readline K = int(input()) S = list(input())[: -1] N = len(S) mod = 10 ** 9 + 7 class Factorial: def __init__(self, n, mod): self.f = [1] for i in range(1, n + 1): self.f.append(self.f[-1] * i % mod) self.i = [pow(self.f[-1], mod - 2, mod)] for i in range(1, n + 1)[: : -1]: self.i.append(self.i[-1] * i % mod) self.i.reverse() def factorial(self, i): return self.f[i] def ifactorial(self, i): return self.i[i] def combi(self, n, k): return self.f[n] * self.i[n - k] % mod * self.i[k] % mod f = Factorial(N + K + 1, mod) res = 0 for l in range(K + 1): r = K - l res += f.combi(l + N - 1, l) * pow(25, l, mod) % mod * pow(26, r, mod) % mod res %= mod print(res)
UTF-8
Python
false
false
749
py
202,060
s292618205.py
202,055
0.523364
0.492657
0
31
23.193548
78
smallsunsun1/Cascade-RCNN
9,457,518,015,982
ccab8b9ce5ac7e58f22c1233b7d4c36ca6818e65
3f4467e4501e8cee2c22d31784b05b10acee2fb7
/train.py
1dbb4537f9355e8903ee297586d901e2dfe79280
[]
no_license
https://github.com/smallsunsun1/Cascade-RCNN
7babbefd22d3be506773dc2204612c58b21f059e
7a0bc01bddb4547523f8b490e4a16cdd4c77d746
refs/heads/master
2020-12-03T12:40:16.743165
2020-02-07T15:08:34
2020-02-07T15:08:34
231,319,366
7
4
null
null
null
null
null
null
null
null
null
null
null
null
null
import argparse import numpy as np import tensorflow as tf import os import cv2 import json import re import time from tensorflow import keras from tensorflow.contrib import distribute from config.config import _C from model import model_frcnn from model.basemodel import resnet_c4_backbone, resnet_conv5, resnet_fpn_backbone from model.model_rpn import rpn_head, generate_rpn_proposals, rpn_losses, RPNHead from model.model_fpn import fpn_model, generate_fpn_proposals, multilevel_roi_align, multilevel_rpn_losses, \ slice_feature_and_anchors from model.model_box import RPNAnchors, clip_boxes, roi_align, decoded_output_boxes from model.model_frcnn import BoxProposals, FastRCNNHead, fastrcnn_outputs, fastrcnn_predictions, \ sample_fast_rcnn_targets, fastrcnn_predictions_v2 from model.model_cascade import CascadeRCNNHead from util.common import image_preprocess from util.data import tf_get_all_anchors, tf_get_all_anchors_fpn from util.data_loader import input_fn, test_input_fn, eval_input_fn tf.logging.set_verbosity(tf.logging.INFO) def map_boxes_back(boxes, features): h_pre = features['h_pre'] w_pre = features['w_pre'] h_now = features['h_now'] w_now = features['w_now'] scale = features['scale'] if scale > 1: true_h = w_now / scale pad_h_top = (h_now - true_h) // 2 pad_w_left = 0 true_w = w_now else: true_w = h_now * scale pad_w_left = (w_now - true_w) // 2 pad_h_top = 0 true_h = h_now boxes[:, 0] = boxes[:, 0] - pad_w_left boxes[:, 1] = boxes[:, 1] - pad_h_top boxes[:, 2] = boxes[:, 2] - pad_w_left boxes[:, 3] = boxes[:, 3] - pad_h_top boxes[:, 0] = boxes[:, 0] / true_w * w_pre boxes[:, 1] = boxes[:, 1] / true_h * h_pre boxes[:, 2] = boxes[:, 2] / true_w * w_pre boxes[:, 3] = boxes[:, 3] / true_h * h_pre return boxes def resnet_c4_model_fn(features, labels, mode, params): """parameter defination part""" is_train = (mode == tf.estimator.ModeKeys.TRAIN) resnet_num_blocks = params["RESNET_NUM_BLOCKS"] num_anchors = params["num_anchors"] head_dim = params["head_dim"] resolution = params["resolution"] num_classes = params["num_classes"] bbox_reg_weights = params["bbox_reg_weights"] weight_decay = params["weight_decay"] learning_rate = params["learning_rate"] lr_schedule = params["lr_schedule"] """model definition part""" image = image_preprocess(features['image']) featuremap = resnet_c4_backbone(image, resnet_num_blocks[:3], is_train) image_shape2d = tf.shape(image)[1:3] rpn_label_logits, rpn_box_logits = rpn_head(featuremap, head_dim, num_anchors) if mode != tf.estimator.ModeKeys.PREDICT: anchors = RPNAnchors(tf_get_all_anchors(), features['anchor_labels'], features['anchor_boxes']) else: anchors = RPNAnchors(tf_get_all_anchors(), None, None) anchors = anchors.narrow_to(featuremap) pred_boxes_decoded = anchors.decode_logits(rpn_box_logits) # x1y1x2y2 proposals, proposal_scores = generate_rpn_proposals( tf.reshape(pred_boxes_decoded, [-1, 4]), tf.reshape(rpn_label_logits, [-1]), image_shape2d, _C.RPN.TRAIN_PRE_NMS_TOPK if mode == tf.estimator.ModeKeys.TRAIN else _C.RPN.TEST_PRE_NMS_TOPK, _C.RPN.TRAIN_POST_NMS_TOPK if mode == tf.estimator.ModeKeys.TRAIN else _C.RPN.TEST_POST_NMS_TOPK) # rpn_size = tf.shape(proposals)[0] # rpn_boxes = tf.gather(proposals, tf.where(tf.greater(proposals, 0.5))) proposals = BoxProposals(proposals) if mode != tf.estimator.ModeKeys.PREDICT: rpn_loss = rpn_losses(anchors.gt_labels, anchors.encoded_gt_boxes(), rpn_label_logits, rpn_box_logits) # targets = [features[k] for k in ['boxes', 'gt_labels', 'gt_masks'] if k in features.keys()] # gt_boxes, gt_labels, *_ = targets gt_boxes = features['boxes'] gt_labels = features['gt_labels'] proposals = sample_fast_rcnn_targets(proposals.boxes, gt_boxes, gt_labels) boxes_on_featuremap = proposals.boxes * (1.0 / _C.RPN.ANCHOR_STRIDE) roi_resized = roi_align(featuremap, boxes_on_featuremap, resolution) feature_fastrcnn = resnet_conv5(roi_resized, resnet_num_blocks[-1], is_train) # Keep C5 feature to be shared with mask branch feature_gap = keras.layers.GlobalAveragePooling2D()(feature_fastrcnn) fastrcnn_label_logits, fastrcnn_box_logits = fastrcnn_outputs(feature_gap, num_classes) bbox_reg_weights_tensor = tf.convert_to_tensor(bbox_reg_weights, tf.float32) if mode != tf.estimator.ModeKeys.PREDICT: fastrcnn_head = FastRCNNHead(proposals, fastrcnn_box_logits, fastrcnn_label_logits, gt_boxes, bbox_reg_weights_tensor) all_loss = fastrcnn_head.losses() label_scores = tf.nn.softmax(fastrcnn_label_logits) decoded_boxes = decoded_output_boxes(proposals, num_classes, fastrcnn_box_logits, bbox_reg_weights_tensor) decoded_boxes = clip_boxes(decoded_boxes, image_shape2d) final_boxes, final_scores, final_labels, valid_detections = fastrcnn_predictions_v2(decoded_boxes, label_scores) # final_boxes, final_scores, final_labels = fastrcnn_predictions(decoded_boxes, label_scores) global_step = tf.train.get_or_create_global_step() if mode != tf.estimator.ModeKeys.PREDICT: trainable_weights = tf.trainable_variables() weight_loss = 0.0 for i, ele in enumerate(trainable_weights): if re.search('.*/kernel', ele.name): weight_loss += tf.reduce_sum(tf.square(ele) * weight_decay) total_cost = tf.add_n(rpn_loss + all_loss, 'total_cost') tf.summary.scalar('total_cost', total_cost) if is_train: learning_rate = tf.train.piecewise_constant(global_step, lr_schedule, values=[tf.convert_to_tensor(0.01 * 0.33, tf.float32)] + [ learning_rate * (0.1 ** i) for i in range(len(lr_schedule))]) opt = tf.train.MomentumOptimizer(learning_rate, 0.9) # opt = tf.train.AdamOptimizer(learning_rate) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_op = opt.minimize(total_cost, global_step) return tf.estimator.EstimatorSpec(mode, loss=total_cost, train_op=train_op) else: return tf.estimator.EstimatorSpec(mode, loss=total_cost) else: predictions = {'boxes': final_boxes[0, :valid_detections[0]], 'labels': final_labels[0, :valid_detections[0]], 'scores': final_scores[0, :valid_detections[0]], 'image': features['image'], # 'rpn_boxes': rpn_boxes, # 'rpn_size': rpn_size, 'valid_detection': valid_detections} return tf.estimator.EstimatorSpec(mode, predictions) def resnet_fpn_model_fn(features, labels, mode, params): """parameter definition part""" is_train = (mode == tf.estimator.ModeKeys.TRAIN) resnet_num_blocks = params["RESNET_NUM_BLOCKS"] num_anchors = params["num_anchors"] head_dim = params["head_dim"] resolution = params["resolution"] num_classes = params["num_classes"] bbox_reg_weights = params["bbox_reg_weights"] weight_decay = params["weight_decay"] learning_rate = params["learning_rate"] lr_schedule = params["lr_schedule"] """model definition part""" image = image_preprocess(features["image"]) c2345 = resnet_fpn_backbone(image, resnet_num_blocks, is_train) p23456 = fpn_model(c2345) image_shape2d = tf.shape(image)[1:3] all_anchors_fpn = tf_get_all_anchors_fpn() model_rpn_head = RPNHead(_C.FPN.NUM_CHANNEL, len(_C.RPN.ANCHOR_RATIOS)) rpn_outputs = [model_rpn_head(pi) for pi in p23456] multilevel_label_logits = [k[0] for k in rpn_outputs] multilevel_box_logits = [k[1] for k in rpn_outputs] #debug_op = tf.print({"debug_inf": tf.convert_to_tensor("now in here")}) #with tf.control_dependencies([debug_op]): # image_shape2d = tf.identity(image_shape2d) if mode != tf.estimator.ModeKeys.PREDICT: multilevel_anchors = [RPNAnchors(all_anchors_fpn[i], features['anchor_labels_lvl{}'.format(i + 2)], features['anchor_boxes_lvl{}'.format(i+2)]) for i in range(len(all_anchors_fpn))] else: multilevel_anchors = [RPNAnchors(all_anchors_fpn[i], None, None) for i in range(len(all_anchors_fpn))] slice_feature_and_anchors(p23456, multilevel_anchors) # Multi-Level RPN Proposals multilevel_pred_boxes = [anchor.decode_logits(logits) for anchor, logits in zip(multilevel_anchors, multilevel_box_logits)] proposal_boxes, proposal_scores = generate_fpn_proposals(multilevel_pred_boxes, multilevel_label_logits, image_shape2d, is_train) proposals = BoxProposals(proposal_boxes) gt_boxes = None gt_labels = None if mode != tf.estimator.ModeKeys.PREDICT: losses = multilevel_rpn_losses(multilevel_anchors, multilevel_label_logits, multilevel_box_logits) gt_boxes = features['boxes'] gt_labels = features['gt_labels'] proposals = sample_fast_rcnn_targets(proposals.boxes, gt_boxes, gt_labels) fastrcnn_head_func = getattr(model_frcnn, _C.FPN.FRCNN_HEAD_FUNC) if not _C.FPN.CASCADE: roi_feature_fastrcnn = multilevel_roi_align(p23456[:4], proposals.boxes, 7) head_feature = fastrcnn_head_func(roi_feature_fastrcnn) fastrcnn_label_logits, fastrcnn_box_logits = fastrcnn_outputs(head_feature, num_classes) fastrcnn_head = FastRCNNHead(proposals, fastrcnn_box_logits, fastrcnn_label_logits, gt_boxes, tf.convert_to_tensor(bbox_reg_weights, tf.float32)) else: def roi_func(boxes): return multilevel_roi_align(p23456[:4], boxes, 7) fastrcnn_head = CascadeRCNNHead(proposals, roi_func, fastrcnn_head_func, (gt_boxes, gt_labels), image_shape2d, num_classes, mode != tf.estimator.ModeKeys.PREDICT) decoded_boxes = fastrcnn_head.decoded_output_boxes() decoded_boxes = clip_boxes(decoded_boxes, image_shape2d) label_scores = fastrcnn_head.output_scores() # final_boxes, final_scores, final_labels = fastrcnn_predictions(decoded_boxes, label_scores) final_boxes, final_scores, final_labels, valid_detections = fastrcnn_predictions_v2(decoded_boxes, label_scores) global_step = tf.train.get_or_create_global_step() if mode != tf.estimator.ModeKeys.PREDICT: all_losses = fastrcnn_head.losses() trainable_weights = tf.trainable_variables() weight_loss = 0.0 for i, ele in enumerate(trainable_weights): if re.search('.*/kernel', ele.name): weight_loss += tf.reduce_sum(tf.square(ele) * weight_decay) #print_op = tf.print({'rpn_loss': tf.add_n(losses), # 'frcnn_loss': tf.add_n(all_losses)}) #with tf.control_dependencies([print_op]): total_cost = tf.add_n(losses + all_losses, "total_cost") total_cost = tf.add(total_cost, weight_loss, 'all_total_cost') if is_train: learning_rate = tf.train.piecewise_constant(global_step, lr_schedule, values=[tf.convert_to_tensor(0.01 * 0.33 * 0.375, tf.float32)] + [ learning_rate * (0.1 ** i) for i in range(len(lr_schedule))]) tf.summary.scalar("learning_rate", learning_rate) opt = tf.train.MomentumOptimizer(learning_rate, 0.9) # opt = tf.train.AdamOptimizer(learning_rate) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) print(update_ops) with tf.control_dependencies(update_ops): train_op = opt.minimize(total_cost, global_step) return tf.estimator.EstimatorSpec(mode, loss=total_cost, train_op=train_op) else: return tf.estimator.EstimatorSpec(mode, loss=total_cost) else: predictions = {'boxes': final_boxes[0, :valid_detections[0]], 'labels': final_labels[0, :valid_detections[0]], 'scores': final_scores[0, :valid_detections[0]], 'image': features['image'], 'original_image': features['original_image'], 'h_pre': features['h_pre'], 'w_pre': features['w_pre'], 'h_now': features['h_now'], 'w_now': features['w_now'], 'scale': features['scale'], 'image_id': features.get('image_id', tf.convert_to_tensor(0)), 'valid_detection': valid_detections} # predictions = {'boxes': final_boxes, # 'labels': final_labels, # 'scores': final_scores, # 'image': features['image'], # 'original_image': features['original_image'], # 'h_pre': features['h_pre'], # 'w_pre': features['w_pre'], # 'h_now': features['h_now'], # 'w_now': features['w_now'], # 'scale': features['scale'], # 'image_id': features.get('image_id', tf.convert_to_tensor(0)) # } return tf.estimator.EstimatorSpec(mode, predictions) model_dict = {"rpn": resnet_c4_model_fn, "fpn": resnet_fpn_model_fn} # input = tf.placeholder(dtype=tf.float32, shape=[None, None, 3], # name="input") # input = tf.squeeze(input, axis=0) def serve_input_fn(): string_input_data = tf.placeholder(dtype=tf.string, shape=(), name="input") string_input = tf.io.decode_base64(string_input_data) input = tf.image.decode_jpeg(string_input) image_shape = tf.shape(input) shape2d = image_shape[:2] h = shape2d[0] w = shape2d[1] scale = tf.cast(w / h, tf.float32) SHORT_IMAGE_EDGE = 800 def true_fn(h, w): scale = tf.cast(h / w, tf.float32) new_w = SHORT_IMAGE_EDGE new_h = tf.minimum(new_w * scale // 32 * 32, 1312) return tf.cast(new_h, tf.int32), tf.cast(new_w, tf.int32) def false_fn(h, w): scale = tf.cast(w / h, tf.float32) new_h = SHORT_IMAGE_EDGE new_w = tf.minimum(new_h * scale // 32 * 32, 1312) return tf.cast(new_h, tf.int32), tf.cast(new_w, tf.int32) new_height, new_width = tf.cond(tf.greater(h, w), lambda: true_fn(h, w), lambda: false_fn(h, w)) image = tf.image.resize_image_with_pad(input, new_height, new_width) features = {} features['image'] = tf.expand_dims(image, 0) features['image'].set_shape([1, None, None, 3]) features['original_image'] = image_shape features['h_pre'] = h features['w_pre'] = w features['h_now'] = new_height features['w_now'] = new_width features['scale'] = scale return tf.estimator.export.ServingInputReceiver(features, string_input_data) if __name__ == "__main__": # tf.enable_eager_execution() parser = argparse.ArgumentParser() parser.add_argument('--model', default='rpn', help='training_model') parser.add_argument('--model_dir', default='./rpn_model_v2', help='where to store the model') parser.add_argument("--train_filename", default="/home/admin-seu/sss/master_work/data/train.record", help='train filename') parser.add_argument("--eval_filename", default="/home/admin-seu/sss/master_work/data/eval.record", help='eval filename') parser.add_argument("--test_filename", default="/home/admin-seu/sss/yolo-V3/data/test.txt", help="test_filename") parser.add_argument("--gpus", default=2, help='num_of_gpus', type=int) args = parser.parse_args() params = {} params["RESNET_NUM_BLOCKS"] = _C.BACKBONE.RESNET_NUM_BLOCKS params["num_anchors"] = _C.RPN.NUM_ANCHOR params["head_dim"] = _C.RPN.HEAD_DIM params["resolution"] = 14 params["num_classes"] = _C.DATA.NUM_CLASS params["bbox_reg_weights"] = _C.FRCNN.BBOX_REG_WEIGHTS params["weight_decay"] = _C.TRAIN.WEIGHT_DECAY params["learning_rate"] = _C.TRAIN.BASE_LR params["lr_schedule"] = [_C.TRAIN.WARMUP] + _C.TRAIN.LR_SCHEDULE #dataset = input_fn(args.train_filename, True, _C.MODE_FPN) #for idx, element in enumerate(dataset): # print(idx) # print(element) # if idx == 10: # break if args.gpus > 0: strategy = distribute.MirroredStrategy(num_gpus=args.gpus) session_configs = tf.ConfigProto(allow_soft_placement=True) session_configs.gpu_options.allow_growth = True config = tf.estimator.RunConfig(train_distribute=strategy, session_config=session_configs, log_step_count_steps=100, save_checkpoints_steps=40000, eval_distribute=strategy, save_summary_steps=1000) estimator = tf.estimator.Estimator(model_dict[args.model], args.model_dir, config, params) else: config = tf.estimator.RunConfig(save_checkpoints_steps=40000, save_summary_steps=1000, log_step_count_steps=100) estimator = tf.estimator.Estimator(model_dict[args.model], args.model_fir, config, params) train_spec = tf.estimator.TrainSpec(lambda: input_fn(args.train_filename, True, _C.MODE_FPN), max_steps=None) eval_spec = tf.estimator.EvalSpec(lambda: input_fn(args.eval_filename, False, _C.MODE_FPN), steps=1000) # tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec) estimator.export_saved_model("./export_model_0126", serve_input_fn) """ res = estimator.predict(lambda: eval_input_fn(args.test_filename), yield_single_examples=False) # res = estimator.predict(lambda :input_fn(args.eval_filename, False), yield_single_examples=False) score_thresh = 0.5 total_steps = 5000 start = time.time() output_json_file = "./result.json" json_file = open(output_json_file, 'w') total_res = [] for idx, ele in enumerate(res): # image = ele["original_image"].astype(np.uint8) # image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) print("current image index: ", idx) # print("boxes: ", ele["boxes"]) # print("labels: ", ele["labels"]) # print("scores: ", ele["scores"]) ele["boxes"] = map_boxes_back(ele["boxes"], ele) for num_idx, box in enumerate(ele["boxes"]): # if ele["scores"][num_idx] < score_thresh: # continue info_dict = {} info_dict["image_id"] = int(ele["image_id"]) info_dict["category_id"] = int(ele["labels"][num_idx]) info_dict["bbox"] = [float(box[0]), float(box[1]), float(box[2] - box[0]), float(box[3] - box[1])] info_dict["score"] = float(ele["scores"][num_idx]) total_res.append(info_dict) # cv2.rectangle(image, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (255, 0, 0), 2) # cv2.putText(image, '{}: {:.2}'.format(ele["labels"][num_idx], round(ele["scores"][num_idx], 2)), (int(box[0]), int(box[1])), cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 255), 1) # cv2.imwrite("./detect_result/{}.jpg".format(idx), image) #print("boxes: ", ele["boxes"]) #print("labels: ", ele["labels"]) #print("scores: ", ele["scores"]) # print("rpn_boxes: ", ele["rpn_boxes"]) # print("rpn_size: ", ele["rpn_size"]) #print('valid_detection: ', ele["valid_detection"]) if idx == total_steps: break json.dump(total_res, json_file) end = time.time() print((end - start) / total_steps) """
UTF-8
Python
false
false
20,332
py
39
train.py
32
0.604859
0.591039
0
398
50.080402
185
Neo31415/django_learn
3,255,585,257,799
2c036d73ed7735b3737fe87497bed0392fe338f1
2f5447b8ef6e9759b512ad2a0c54d2b9528d0ac4
/intro_to_models_in_django/model_playground/relationship_playground/migrations/0001_initial.py
08fb405b3515767de877d5a6bf59438d96738630
[]
no_license
https://github.com/Neo31415/django_learn
4a39ea62328a56774faffb9d454d352481d21cb6
df57a554cedba27f8fafc5708eb9c6ca21a4de0b
refs/heads/main
2023-04-06T00:32:41.686543
2021-04-17T19:18:20
2021-04-17T19:18:20
302,133,051
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Generated by Django 3.1.5 on 2021-02-13 11:27 import django.core.validators from django.db import migrations, models import re class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Testing', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('roll_number', models.IntegerField(unique=True)), ('address', models.TextField(null=True)), ('phone_number', models.CharField(blank=True, max_length=15, null=True)), ('email', models.CharField(max_length=100, null=True, validators=[django.core.validators.EmailValidator('Invalid Email Adderss')])), ('gender', models.CharField(choices=[('f', 'Female'), ('m', 'Male'), ('u', 'Undesclosed')], max_length=1, null=True)), ('slug', models.CharField(max_length=100, null=True, validators=[django.core.validators.RegexValidator(re.compile('^[-a-zA-Z0-9_]+\\Z'), 'Enter a valid “slug” consisting of letters, numbers, underscores or hyphens.', 'invalid')])), ], ), ]
UTF-8
Python
false
false
1,278
py
33
0001_initial.py
25
0.605965
0.583203
0
29
42.931034
247