repo_name
stringlengths
7
111
__id__
int64
16.6k
19,705B
blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
151
content_id
stringlengths
40
40
detected_licenses
list
license_type
stringclasses
2 values
repo_url
stringlengths
26
130
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
42
visit_date
timestamp[ns]
revision_date
timestamp[ns]
committer_date
timestamp[ns]
github_id
int64
14.6k
687M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
12 values
gha_fork
bool
2 classes
gha_event_created_at
timestamp[ns]
gha_created_at
timestamp[ns]
gha_updated_at
timestamp[ns]
gha_pushed_at
timestamp[ns]
gha_size
int64
0
10.2M
gha_stargazers_count
int32
0
178k
gha_forks_count
int32
0
88.9k
gha_open_issues_count
int32
0
2.72k
gha_language
stringlengths
1
16
gha_archived
bool
1 class
gha_disabled
bool
1 class
content
stringlengths
10
2.95M
src_encoding
stringclasses
5 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
10
2.95M
extension
stringclasses
19 values
num_repo_files
int64
1
202k
filename
stringlengths
4
112
num_lang_files
int64
1
202k
alphanum_fraction
float64
0.26
0.89
alpha_fraction
float64
0.2
0.89
hex_fraction
float64
0
0.09
num_lines
int32
1
93.6k
avg_line_length
float64
4.57
103
max_line_length
int64
7
931
unknownboyy/GUVI
2,293,512,539,827
32cbac996b68c775bed6fc8dd8b1a4e8e120ae3a
233f97c6f360d478bf975016dd9e9c2be4a64adb
/temp2.py
fa4f70167eab54a948ac4e5778896222ead255f2
[]
no_license
https://github.com/unknownboyy/GUVI
3dbd1bb2bc6b3db52f5f79491accd6c56a2dec45
d757dd473c4f5eef526a516cf64a1757eb235869
refs/heads/master
2020-03-27T00:07:12.449280
2019-03-19T12:57:03
2019-03-19T12:57:03
145,595,379
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from time import time # Recursion def fibo1(n): if n<=1: return n return fibo1(n-2)+fibo1(n-1) n = 33 f = [-1]*(n+1) call = 0 # Memoization def fibo2(n): if f[n]==-1: if n<=1: return n else: f[n]=fibo2(n-2)+fibo2(n-1) return f[n] # Tabulation def fibo3(n): ff = [0,1] for i in range(2,n+1): ff.append(ff[-1]+ff[-2]) return ff[n] start = time() fibo1(n) lap1 = time() fibo2(n) lap2 = time() fibo3(n) end = time() print('Time in Recursion',lap1-start) print('Time in Memoization',lap2-lap1) print('Time in Tabulation',end-lap2)
UTF-8
Python
false
false
595
py
358
temp2.py
335
0.571429
0.514286
0
36
15.555556
42
Vincc/snakeReinforcementLearning
15,659,450,774,219
52b88341a8ca86925dc2684b9c0456addb4cd5fb
4cf20e1247223281fb36c21a1dda8a921ba22647
/SnakeEnv/snake_Env/envs/snake_env.py
b7efbab5890e7439ffa566b0459027d2bc8a3345
[]
no_license
https://github.com/Vincc/snakeReinforcementLearning
8cc73f7a57816cc0cf293efe294145b9e3670b5e
04fb0913f7fa257f7ebb43884adb8223cf5db155
refs/heads/master
2022-12-31T15:58:05.539107
2020-10-28T04:11:22
2020-10-28T04:11:22
301,163,505
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import gym from gym import error, spaces, utils from gym.utils import seeding from gym.spaces import Discrete, Box from gym.envs.classic_control import rendering import pygame from time import sleep from random import randint import sys import numpy as np class SnakeEnv(gym.Env): metadata = {'render.modes': ['human', 'rgb_array']} def __init__(self): self.size = 500 self.numcell = 50 self.gamespeed = 0.05 pygame.init() self.done = False self.screen = pygame.display.set_mode((self.size, self.size)) self.carl = [(1, 1)] self.direc = (0, 0) self.foodp = False self.ap = False self.food = None self.reward = 0 self.state = [] self.add = [] self.viewer = None self.discrete_actions = [0, 1, 2, 3] self.action_space = Discrete(len(self.discrete_actions)) self.observation_space = Box(low=0, high=255, dtype=np.uint8 ,shape=( self.size, self.size, 3)) def getpos(self, pos): return (pos - 1) * (self.size / self.numcell) def step(self, action): self.screen.fill((0, 0, 0)) for event in pygame.event.get(): if event.type == pygame.QUIT: print("Over") return [self.get_state(), self.reward, self.done] # set direction if action == 0: self.direc = (-1, 0) elif action == 1: self.direc = (1, 0) elif action == 2: self.direc = (0, -1) elif action == 3: self.direc = (0, 1) # check presence of food ans spawn food if needed if not self.foodp: self.food = (randint(0, self.numcell), randint(0, self.numcell)) self.foodp = True # draw food pygame.draw.rect(self.screen, (255, 0, 0), (self.getpos(self.food[0]), self.getpos(self.food[1]), self.size / self.numcell, self.size / self.numcell)) # run snake updates self.carl.insert(0, tuple(map(sum, zip(self.carl[0], self.direc)))) if not self.ap: self.carl.pop() ap = False # draw carl for i in self.carl: pygame.draw.rect(self.screen, (255, 255, 255), (self.getpos(i[0]), self.getpos(i[1]), self.size / self.numcell, self.size / self.numcell)) # check death if self.getpos(self.carl[0][1]) < 0 or self.getpos(self.carl[0][0]) < 0 or self.getpos(self.carl[0][1]) > self.size or self.getpos(self.carl[0][0]) > self.size or \ self.carl[0] in self.carl[1:len(self.carl)]: self.done = True self.reward -= 100 print("Over") self.reset() # check food after position update if self.carl[0] == self.food: self.reward += 100 self.ap = True self.foodp = False sleep(self.gamespeed) pygame.display.update() return [self.get_state(), self.reward, self.done] def get_state(self): state = np.fliplr(np.flip(np.rot90(pygame.surfarray.array3d(pygame.display.get_surface()).astype(np.uint8)),axis=0)) return state def reset(self): self.screen.fill((0, 0, 0)) self.done = False self.carl = [(1, 1)] self.direc = (0, 0) self.foodp = False self.ap = False self.food = None for i in self.carl: pygame.draw.rect(self.screen, (255, 255, 255), (self.getpos(i[0]), self.getpos(i[1]), self.size / self.numcell, self.size / self.numcell)) pygame.display.update() return self.get_state() def render(self, mode='human', close=False): img = self.get_state() if mode == 'human': if self.viewer is None: self.viewer = rendering.SimpleImageViewer() self.viewer.imshow(img) elif mode == 'rgb_array': return img def sample(self): return np.random.choice(self.discrete_actions)
UTF-8
Python
false
false
4,011
py
7
snake_env.py
6
0.557218
0.531538
0
112
34.821429
172
gleekzorp/pyclinic
11,879,879,542,769
d78d6c0de870d3b1468c5eddae73d7ae9059f9a6
58f7cdfd4217c5199ce244ee68adfeee2339810d
/pyclinic/openapi.py
9a38520228584d0f8411c31827a025875f8686dd
[ "MIT" ]
permissive
https://github.com/gleekzorp/pyclinic
00fb7c6bd0ac2b00d01f9cd3a38c7fe3ad19139c
4e95d0a49b536bc08884b74668b833ab03c69c2a
refs/heads/main
2023-07-12T20:31:32.003003
2021-08-18T19:35:49
2021-08-18T19:35:49
395,820,298
0
0
MIT
true
2021-08-13T22:54:45
2021-08-13T22:54:45
2021-08-13T16:27:36
2021-08-13T16:27:34
157
0
0
0
null
false
false
import os import re import json import logging from typing import Dict, List, Optional, Tuple import yaml import requests from rich.console import Console from pyclinic.normalize import normalize_class_name, normalize_function_name console = Console() _logger = logging.getLogger(__name__) METHODS = [ "get", "post", "put", "patch", "delete", "head", "options", "trace", ] def load_openapi_spec_from_file(path) -> Dict: if not os.path.exists(path): raise FileNotFoundError(path) with open(path, "r") as f: if path.endswith(".yaml") or path.endswith(".yml"): return yaml.load(f, Loader=yaml.FullLoader) elif path.endswith(".json"): return json.load(f) else: raise ValueError("Unsupported file format: {}".format(path)) def extract_base_url_from_spec(spec: Dict) -> Tuple[str, Dict]: """Extract the server urls from the spec to be used when generating functions. Args: spec: The OpenAPI Spec dictionary to extract the urls from. Returns: A tuple of the first BASE_URL (as default) and a variables dictionary that sets the BASE_URL. Exceptions: ValueError: If the spec has no URLs in its "servers" section. """ if len(spec["servers"]) == 0: raise ValueError("No server URLs found in spec") base_urls = [s["url"] for s in spec["servers"]] variables = {"BASE_URL": base_urls[0]} return base_urls[0], variables def find_requests(spec: Dict) -> Dict: """ Returns a Dict like: { 'pets': { 'create_a_pet': {'method': 'POST', 'url': 'http://petstore.swagger.io/v1/pets'}, 'info_for_a_pet': {'method': 'GET', 'url': 'http://petstore.swagger.io/v1/pets/:petId'}, 'list_pets': {'method': 'GET', 'url': 'http://petstore.swagger.io/v1/pets?limit=-71686804'}, }, } """ url, _ = extract_base_url_from_spec(spec) paths = spec["paths"] folders = {} for path in paths.keys(): folder_name = path.split("/")[-1] folder_name = normalize_class_name(folder_name) folders[folder_name] = {} for method in [k for k in paths[path].keys() if k in METHODS]: function_name = normalize_function_name(paths[path][method]["summary"]) folders[folder_name][function_name] = {"method": method.upper(), "url": url + path} return folders # def replace_variables_with_actual_values(folders: Dict, variables: Dict) -> Dict: # """Replace OpenApi Variables in the given object with the actual values found in the variables dictionary.""" # OPENAPI_VARIABLE = r"\{([^}]+)\}" # {variable} # # TODO: Find a way to do this without 4 for loops # for folder_name, request in folders.items(): # for request_name, request_value in request.items(): # for key, value in request_value.items(): # for found_var in re.findall(OPENAPI_VARIABLE, string=value): # found_value = variables.get(found_var) # if found_value is None: # _logger.error(f"Variable <{found_var}> returned a None value") # found_value = "VARIABLE_VALUE_NOT_FOUND" # else: # pass # request_value[key] = value.replace("{" + found_var + "}", variables.get(found_var)) # return folders def build_request_to_send(request: Dict, variables: Dict) -> Dict: """ { "method": "GET", "url": "{BASE_URL}/Accounts/v1", } """ OPENAPI_VARIABLE = r"\{([^}]+)\}" # {variable} for key, value in request.items(): for found_var in re.findall(OPENAPI_VARIABLE, string=value): found_value = variables.get(found_var) if found_value is None: _logger.warning(f"Variable {{{found_var}}} was not found in the Variables provided") else: request[key] = value.replace("{" + found_var + "}", str(found_value)) return request class OpenApiExecutableRequest: def __init__(self, name: str, request: Dict): self.name = name self.request = request def __call__(self, variables: Dict = None, **kwargs): if kwargs: self.request.update(kwargs) if variables: self.request = build_request_to_send(self.request, variables) response = requests.request(**self.request) return response def help(self): print(), console.rule(f"[bold green]Request Dictionary for {self.name}[/bold green]") console.print(self.request) class OpenApiFolder: def __init__(self, folder_name: str, folder: Dict[str, OpenApiExecutableRequest]): """A flat dictionary with request names as keys and their executables as the values.""" self.name = folder_name self.folder = folder def __getattr__(self, name): if name not in self.folder: raise ValueError("OpenApi Spec doesn't have a request with the summary of: " + name) return self.folder[name] def help(self) -> List[str]: """Display all of the executable functions within this folder.""" print(), console.rule(f"[bold green]Function Names in {self.name} Path[/bold green]") if len(self.folder) == 0: console.print("No functions found!", style="bold red") return keys = [key for key in self.folder.keys()] for i, key in enumerate(keys): console.print(f"{str(i+1):5s} [light_sky_blue1]{key}[/light_sky_blue1]", style="white") console.print("\nExample Usage", style="bold u gold1") console.print(f"\nresponse = runner.{self.name}.{keys[-1]}()") return keys def map_requests_to_executable_functions(folders: Dict, variables: Dict) -> Dict: """Map requests to executable functions to be used by OpenApi runner. Returns a Dict like: { "Pets": OpenApiFolder({ "list_all_pets": OpenApiExecutableRequest(request_to_send), "create_a_pet": OpenApiExecutableRequest(request_to_send), }), "PetId": OpenApiFolder({ "info_for_a_pet": OpenApiExecutableRequest(request_to_send) }), } runner = OpenApiRunner(spec_path, variables) runner.Pets.list_all_pets() runner.PetId.info_for_a_pet(pet_id) """ for folder_name in folders.keys(): folder = folders[folder_name] for request_name in folder.keys(): request = build_request_to_send(folder[request_name], variables) folder[request_name] = OpenApiExecutableRequest(request_name, request) folders[folder_name] = OpenApiFolder(folder_name, folder) return folders class OpenApi: """Instance of a OpenAPI Spec Runner with executable request functions. Args: spec_path: The path to the OpenApi spec file (.yaml | .yml | .json) user_variables: An optional dict of variables to be used by OpenApi Format: OpenApi.OpenApiFolderRequest.OpenApiExecutableRequest(**kwargs) Examples: # Instantiate a OpenApi object runner = OpenApi(spec_path, user_variables={"USERNAME": "foo", "PASSWORD": "bar"}) # Then call the request function runner.Pets.list_all_pets() runner.Accounts.create_a_user(data={"username": "johndoe", "password": "secret"}) * You can override the Request that the endpoint function sends. Here are some common options: headers: A list of headers to send with the request. method: The HTTP method to use. url: The URL to send the request to. params: A dictionary of parameters to send with the request. data: The body of the request. """ def __init__( self, spec_path: str, user_variables: Optional[Dict] = None, ): self.spec = load_openapi_spec_from_file(spec_path) self.title = self.spec["info"]["title"] self.variables = user_variables or {} self.folders = self.__load() def __load(self): reqs = find_requests(self.spec) return map_requests_to_executable_functions(reqs, self.variables) def __getattr__(self, name): if name not in self.folders: raise ValueError("OpenApi Spec doesn't have a path named: " + name) folder = self.folders[name] return folder def show_folders(self): """Display all folders and functions found in this Postman Collection.""" print(), console.rule(f"[bold green]Folders (aka Paths) found in {self.title} Postman Collection[/bold green]") if len(self.folders) == 0: console.print("No folders found!", style="bold red") return folder_names = list(self.folders.keys()) for folder_name in folder_names: display = f"\n{folder_name}." if folder_name != "Root" else "\n*Root." console.print(display, style="bold light_green") for request_name in sorted(self.folders[folder_name].folder.keys()): console.print(f"\t{request_name}", style="light_sky_blue1") example_folder = folder_names[-1] example_function = list(self.folders[example_folder].folder.keys())[-1] console.print("\nExample Usage", style="bold u gold1") console.print(f"\nresponse = runner.{example_folder}.{example_function}()") def show_variables(self): """Display all variables that this instance of Postman was instantiated with.""" print(), console.rule(f"[bold green]{self.title} instantiated with these Variables[/bold green]") console.print(self.variables)
UTF-8
Python
false
false
9,734
py
9
openapi.py
4
0.610438
0.607458
0
266
35.593985
119
kms08452/CoroNet
6,425,271,092,689
a6b6338891c091f01c7b34a971e82fa5f97af29a
3363253c15a1c79f0dea133b7a0731f9d51f109d
/Corona_pmid/Corona_pmid.py
90b295939069a8303207e773c213ff9ba0854db2
[]
no_license
https://github.com/kms08452/CoroNet
d516f38f423b4276fb94c214ae6e649c5e689048
37cc036857ff31c1d0c927ffac8374af45a18e01
refs/heads/master
2021-05-20T00:43:16.489352
2020-07-27T07:24:13
2020-07-27T07:24:13
252,110,745
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import requests import io import json import sys import time import random def web_request(method_name, url, dict_data, is_urlencoded=True, timeout_seconds=3): """Web GET or POST request를 호출 후 그 결과를 dict형으로 반환 """ method_name = method_name.upper() # 메소드이름을 대문자로 바꾼다 if method_name not in ('GET', 'POST'): raise Exception('method_name is GET or POST plz...') if method_name == 'GET': # GET방식인 경우 response = requests.get(url=url, params=dict_data, timeout=timeout_seconds) elif method_name == 'POST': # POST방식인 경우 if is_urlencoded is True: response = requests.post(url=url, data=dict_data, \ timeout=timeout_seconds, headers={'Content-Type': 'application/x-www-form-urlencoded'}) else: response = requests.post(url=url, data=json.dumps(dict_data), \ timeout=timeout_seconds, headers={'Content-Type': 'application/json'}) dict_meta = {'status_code': response.status_code, 'ok': response.ok, 'encoding': response.encoding, 'Content-Type': response.headers['Content-Type']} if 'json' in str(response.headers['Content-Type']): # JSON 형태인 경우 return {**dict_meta, **response.json()} else: # 문자열 형태인 경우 return {**dict_meta, **{'text': response.text}} def web_request_retry(num_retry=3, sleep_seconds=1, **kwargs): """timeout발생 시 sleep_seconds쉬고 num_retyrp번 재시도 한다""" for n in range(num_retry): try: return web_request(**kwargs) except requests.exceptions.Timeout: print(str(n + 1) + ' Timeout') time.sleep(sleep_seconds) continue return None def SubmitPMIDList_BERN(Inputfile): json = {} headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36'} # # load pmids # f_in = open(Inputfile,"r") f2_out = open("error_log.txt", "w") cnt = 1 f_out = open("COVID19_pubmed_result.txt","w") while True: line = f_in.readline().rstrip("\n") if not line : break if (cnt <= 20129): cnt = cnt + 1 continue time.sleep(random.randint(10, 30)) try: r = requests.get("https://bern.korea.ac.kr/pubmed/" + line + "/pubtator",headers = headers, timeout = 60) except requests.exceptions.Timeout: print('Timeout Error : ' + line) time.sleep(60) try: r = requests.get("https://bern.korea.ac.kr/pubmed/" + line + "/pubtator", headers=headers, timeout = 60) except requests.exceptions.Timeout: print('Timeout Error : ' + line) time.sleep(60) try: r = requests.get("https://bern.korea.ac.kr/pubmed/" + line + "/pubtator", headers=headers, timeout=500) except requests.exceptions.Timeout: print('Timeout Error : ' + line) f2_out.write('Timeout Error : ' + line + '\n') f2_out.flush() print(cnt) cnt = cnt + 1 continue if r.status_code != 200: print("[Error]: HTTP code " + str(r.status_code)) f2_out.write("[Error]: HTTP code " + str(r.status_code) + ":" + line + '\n') f2_out.flush() else: f_out.write(r.text) f_out.write("!#$@!#$@!#$@!#$@\n") f_out.flush() print(cnt) cnt = cnt+1 f_out.close() f_in.close() f2_out.close() def SubmitPMIDList(Inputfile, Format, Bioconcept): json = {} # # load pmids # with io.open(Inputfile, 'r', encoding="utf-8") as file_input: json = {"pmids": [pmid.strip() for pmid in file_input.readlines()]} f = open("Chemical_result.txt","w") # # load bioconcepts # if Bioconcept != "": json["concepts"] = Bioconcept.split(",") # # request # r = requests.post("https://www.ncbi.nlm.nih.gov/research/pubtator-api/publications/export/" + Format, json=json) if r.status_code != 200: print("[Error]: HTTP code " + str(r.status_code)) else: text = r.text.split("\n") for i in text: if("Chemical" in i ): f.write(i) f.write("\n") f.close() if __name__ == "__main__": SubmitPMIDList_BERN("./COVID19_pubmed_list.txt") #SubmitPMIDList("./pmid_list_0325.txt", "pubtator", "") # # arg_count = 0 # for arg in sys.argv: # arg_count += 1 # if arg_count < 2 or (sys.argv[2] != "pubtator" and sys.argv[2] != "biocxml" and sys.argv[2] != "biocjson"): # print("\npython SubmitPMIDList.py [InputFile] [Format] [BioConcept]\n\n") # print("\t[Inputfile]: a file with a pmid list\n") # print("\t[Format]: pubtator (PubTator), biocxml (BioC-XML), and biocjson (JSON-XML)\n") # print( # "\t[Bioconcept]: gene, disease, chemical, species, proteinmutation, dnamutation, snp, and cellline. Default includes all.\n") # print("\t* All input are case sensitive.\n\n") # print("Eg., python SubmitPMIDList.py examples/ex.pmid pubtator gene,disease\n\n") # else: # Inputfile = sys.argv[1] # Format = sys.argv[2] # Bioconcept = "" # if arg_count >= 4: # Bioconcept = sys.argv[3] # #/home/yonsei/Documents/Corona19/ExampleCode.Python/examples/ex.pmid # #SubmitPMIDList(Inputfile, Format, Bioconcept) #
UTF-8
Python
false
false
5,825
py
26
Corona_pmid.py
22
0.547064
0.531464
0
155
35.812903
139
Ahmedabied/the-hole
7,327,214,225,538
e798b41fe5e4f107cbc82787dd5b72a4d6797bcc
5f18a128cc4bcbc04e6157db73cdf5647fd1ebe4
/uptohole.py
5db6f17b45f8640caf3c942dffbda71ec7bd7caf
[]
no_license
https://github.com/Ahmedabied/the-hole
a09ceda87c752976189196f77cdf80e00a417c05
0f1dad0772de14718ef629e19546373af6294240
refs/heads/master
2021-01-02T22:52:36.566710
2017-08-05T08:26:23
2017-08-05T08:26:23
99,372,414
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import ftplib,os,os.path,sys,zipfile,socket host="host" username="username" password="password" curdir=os.getcwd() try: ftp=ftplib.FTP(host,username,password) print("[#] Connected to : %s"%(str(ftp.host))) print("[#] Server current Dir : %s"%(ftp.pwd())) print("[#] Current Device Dir : %s"%(curdir)) print("[#] Server IP : %s"%(socket.gethostbyname(ftp.host))) print("[#] Current IP : %s"%(socket.gethostbyname(socket.gethostname()))) files=[i for i in ftp.nlst()] except Exception as e: print("[x] Cant Connect Right now!") print("[X] %s"%(e)) exit(0) def send(file): fname=file.split("\\")[::-1][0] if os.path.isdir(file.split(file.split("\\")[::-1][0])[0])==True: os.chdir(file.split(file.split("\\")[::-1][0])[0]) if os.path.exists(fname)==True: zipfile.ZipFile(str(fname.split(".")[0])+".zip",mode="w").write(fname) ftp.storbinary("STOR "+str(str(fname.split(".")[0])+".zip"),open(str(str(fname.split(".")[0])+".zip"), 'rb')) print("\n[#] Done Uploading\n");print(ftp.nlst()) os.chdir(curdir) if int(len(sys.argv))==int(2): send(sys.argv[1]) exit(0) while True: f1=os.path.normpath(input("\nEnter File Path To Upload -: ")) if os.path.exists(f1)==True: send(f1) else: print("\n[X] Cant Find The File Speefied! ")
UTF-8
Python
false
false
1,334
py
3
uptohole.py
2
0.593703
0.58021
0
44
28.181818
111
BinaryAlien/itemsetcopier
317,827,627,187
04a7c5cd4c78b2bddc515501925295e326183240
81fac885a73cf49de99728a56afc2204527dade3
/test.py
6e88f02e0a5e3a3fd7cb95a884a2db567a214175
[ "MIT" ]
permissive
https://github.com/BinaryAlien/itemsetcopier
cbef9fcbbc9bbc319a6d83651f3d3cb5b383fabe
b34842b1470dd02a00b1f3a958605a61f7a65d00
refs/heads/master
2021-07-22T18:17:23.186203
2021-01-23T15:51:37
2021-01-23T15:51:37
239,313,812
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from itemsetcopier import SET_NAME_MAX_LENGTH, Translator, ReturnCode, translate import unittest class MobafireTest(unittest.IsolatedAsyncioTestCase): async def _test(self, set_name, url, build_index, expected_code): res = await translate(Translator.MOBAFIRE, set_name=set_name, url=url, build_index=build_index) self.assertEqual(res['code'], expected_code) async def test_translator(self): # Valid inputs await self._test("Jax Top", 'https://www.mobafire.com/league-of-legends/build/10-13-ph45s-in-depth-guide-to-jax-the-grandmaster-503356', None, ReturnCode.CODE_OK) await self._test("Jax Top", 'https://www.mobafire.com/league-of-legends/build/10-13-ph45s-in-depth-guide-to-jax-the-grandmaster-503356', 1, ReturnCode.CODE_OK) await self._test("Jax Jgl", 'https://www.mobafire.com/league-of-legends/build/10-13-ph45s-in-depth-guide-to-jax-the-grandmaster-503356', 2, ReturnCode.CODE_OK) await self._test("Jax Jgl", 'https://www.mobafire.com/league-of-legends/build/10-13-ph45s-in-depth-guide-to-jax-the-grandmaster-503356', "2", ReturnCode.CODE_OK) await self._test("Jax Jgl", 'https://www.mobafire.com/league-of-legends/build/10-13-ph45s-in-depth-guide-to-jax-the-grandmaster-503356', 99999, ReturnCode.CODE_OK) await self._test("Jax Jgl", 'https://www.mobafire.com/league-of-legends/build/10-13-ph45s-in-depth-guide-to-jax-the-grandmaster-503356', -99999, ReturnCode.CODE_OK) await self._test("Jax Top", 'www.mobafire.com/league-of-legends/build/10-13-ph45s-in-depth-guide-to-jax-the-grandmaster-503356', 1, ReturnCode.CODE_OK) # Invalid set name await self._test("", 'https://www.mobafire.com/league-of-legends/build/10-13-ph45s-in-depth-guide-to-jax-the-grandmaster-503356', 1, ReturnCode.ERR_SET_NAME_LENGTH) await self._test(('t' * (SET_NAME_MAX_LENGTH + 1)), 'https://www.mobafire.com/league-of-legends/build/10-13-ph45s-in-depth-guide-to-jax-the-grandmaster-503356', 1, ReturnCode.ERR_SET_NAME_LENGTH) # Invalid URL await self._test("Jax Top", 'https://www.google.com', 1, ReturnCode.ERR_OTHER) await self._test("Jax Top", 'https://https://www.mobafire.com/league-of-legends/build/10-13-ph45s-in-depth-guide-to-jax-the-grandmaster-503356', 1, ReturnCode.ERR_OTHER) # Other await self._test(123, 'https://www.mobafire.com/league-of-legends/build/10-13-ph45s-in-depth-guide-to-jax-the-grandmaster-503356', 1, ReturnCode.ERR_INVALID_PARAM) await self._test(None, 'https://www.mobafire.com/league-of-legends/build/10-13-ph45s-in-depth-guide-to-jax-the-grandmaster-503356', None, ReturnCode.ERR_INVALID_PARAM) await self._test("Jax Top", 123, 1, ReturnCode.ERR_INVALID_PARAM), await self._test("Jax Top", None, 1, ReturnCode.ERR_INVALID_PARAM), await self._test("Jax Jgl", 'https://www.mobafire.com/league-of-legends/build/10-13-ph45s-in-depth-guide-to-jax-the-grandmaster-503356', "abc", ReturnCode.ERR_INVALID_PARAM) await self._test("Jax Top", 'https://www.mobafire.com/league-of-legends/build/10-13-ph45s-in-depth-guide-to-jax-the-grandmaster-000000', 1, ReturnCode.ERR_REMOTE_FAIL) class MobalyticsTest(unittest.IsolatedAsyncioTestCase): async def _test(self, champion_key, champion_name, role, expected_code): res = await translate(Translator.MOBALYTICS, champion_key=champion_key, champion_name=champion_name, role=role) self.assertEqual(res['code'], expected_code) async def test_translator(self): # Valid inputs await self._test(None, 'Ahri', 'mid', ReturnCode.CODE_OK) await self._test(103, None, 'mid', ReturnCode.CODE_OK) await self._test(103, 'Doesnt matter here', 'mid', ReturnCode.CODE_OK) await self._test(None, 'AhRi', 'mid', ReturnCode.CODE_OK) await self._test(None, 'AhRi', 'MiD', ReturnCode.CODE_OK) await self._test(103, None, 'MiD', ReturnCode.CODE_OK) await self._test("103", None, 'mid', ReturnCode.CODE_OK) await self._test("103", 'Doesnt matter here', 'mid', ReturnCode.CODE_OK) await self._test("103", None, 'MiD', ReturnCode.CODE_OK) # Invalid champion await self._test(None, 'ttttt', 'mid', ReturnCode.ERR_INVALID_CHAMP) await self._test(99999, None, 'mid', ReturnCode.ERR_INVALID_CHAMP) await self._test(99999, 'Ahri', 'mid', ReturnCode.ERR_INVALID_CHAMP) # Invalid role await self._test(None, 'Ahri', 'ttttt', ReturnCode.ERR_INVALID_PARAM) # Other await self._test(None, None, 'mid', ReturnCode.ERR_INVALID_PARAM) await self._test("abc", None, 'mid', ReturnCode.ERR_INVALID_PARAM) await self._test(None, 123, 'mid', ReturnCode.ERR_INVALID_PARAM) await self._test(None, 'Ahri', 123, ReturnCode.ERR_INVALID_PARAM) await self._test(None, 'Ahri', None, ReturnCode.ERR_INVALID_PARAM) class OpggTest(unittest.IsolatedAsyncioTestCase): async def _test(self, set_name, champion_key, champion_name, role, expected_code): res = await translate(Translator.OPGG, set_name=set_name, champion_key=champion_key, champion_name=champion_name, role=role) self.assertEqual(res['code'], expected_code) async def test_translator(self): # Valid inputs await self._test("Graves Jgl", None, 'Graves', 'jungle', ReturnCode.CODE_OK) await self._test("Graves Jgl", 104, None, 'jungle', ReturnCode.CODE_OK) await self._test("Graves Jgl", 104, 'Doesnt matter here', 'jungle', ReturnCode.CODE_OK) await self._test("Graves Jgl", "104", None, 'jungle', ReturnCode.CODE_OK) await self._test("Graves Jgl", "104", 'Doesnt matter here', 'jungle', ReturnCode.CODE_OK) # Invalid set name await self._test("", None, 'Graves', 'jungle', ReturnCode.ERR_SET_NAME_LENGTH) await self._test(('t' * (SET_NAME_MAX_LENGTH + 1)), None, 'Graves', 'jungle', ReturnCode.ERR_SET_NAME_LENGTH) # Invalid champion await self._test("Graves Jgl", None, 'ttttt', 'jungle', ReturnCode.ERR_INVALID_CHAMP) await self._test("Graves Jgl", 99999, None, 'jungle', ReturnCode.ERR_INVALID_CHAMP) await self._test("Graves Jgl", 99999, 'Graves', 'jungle', ReturnCode.ERR_INVALID_CHAMP) # Invalid role await self._test("Graves Jgl", 'Graves', None, 'ttttt', ReturnCode.ERR_INVALID_PARAM) # Other await self._test(None, 'Graves', None, 'jungle', ReturnCode.ERR_INVALID_PARAM) await self._test(123, 'Graves', None, 'jungle', ReturnCode.ERR_INVALID_PARAM) await self._test("Graves Jgl", "abc", None, 'jungle', ReturnCode.ERR_INVALID_PARAM) await self._test("Graves Jgl", None, 123, 'jungle', ReturnCode.ERR_INVALID_PARAM) await self._test("Graves Jgl", None, None, 'jungle', ReturnCode.ERR_INVALID_PARAM) await self._test("Graves Jgl", None, 'Graves', 123, ReturnCode.ERR_INVALID_PARAM) await self._test("Graves Jgl", None, 'Graves', None, ReturnCode.ERR_INVALID_PARAM) if __name__ == '__main__': unittest.main()
UTF-8
Python
false
false
6,644
py
4
test.py
2
0.724413
0.684828
0
102
64.137255
197
NageshRaykar/quality-analyzer
2,774,548,906,603
c1c4ef61ed301cccb90959d3917dc18a2faccce4
a3d7db054656de34db5fb1e8d68b09c14456afdb
/rapidplugin/tests/resources/pypi/p1/p1.py
cb4483169e33c22a173407a9c95d8c8aa8dcf84b
[ "Apache-2.0" ]
permissive
https://github.com/NageshRaykar/quality-analyzer
27ba09fe5a3a6296be14072f547282eae9959633
f8861865db0683ad37cc42ae858e9fcc004e6b17
refs/heads/master
2023-06-23T04:05:29.562209
2021-07-22T15:12:21
2021-07-22T15:12:21
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def c(): return
UTF-8
Python
false
false
20
py
27
p1.py
17
0.5
0.5
0
2
9
10
apalade/restaurants
11,879,879,553,455
0f88172e32606e4bd24846c401af1f6d5d6aa29f
13feefb4f28fcbb2532b33614b217f0c00aab4f2
/backend/resources/restaurant.py
d7a179c8c5156d96096c52d7250d16bd6e2c0882
[]
no_license
https://github.com/apalade/restaurants
ab94d89b8590195a42345fa3486cfea624733d20
c440aa2f1c8b220c5e664651b2045d2cfcf7ed5c
refs/heads/main
2023-01-03T07:51:51.189634
2020-10-29T09:40:59
2020-10-29T09:40:59
308,280,853
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
from typing import Optional, List from fastapi import HTTPException from fastapi_utils.cbv import cbv from fastapi_utils.inferring_router import InferringRouter from sqlalchemy import orm from resources._base import BaseLoggedInResource import schemas import models router = InferringRouter() @cbv(router) class RestaurantResource(BaseLoggedInResource): @router.get("/restaurants", response_model=List[schemas.Restaurant]) async def get(self, owner_id: Optional[int] = None): restaurants = self.db.query(models.Restaurant).\ filter(models.Restaurant.deleted.is_(False)) if owner_id is not None: restaurants = restaurants.filter( models.Restaurant.owner_id == owner_id) return restaurants.all() @router.post("/restaurant", response_model=schemas.Restaurant) async def create(self, data: schemas.RestaurantCreate): await self.verify_is_owner() params = data.dict() params['owner_id'] = self.user.id restaurant = models.Restaurant(**params) self.db.add(restaurant) self.db.commit() self.db.refresh(restaurant) return restaurant @router.put("/restaurant", response_model=schemas.Restaurant) async def update(self, data: schemas.RestaurantUpdate): await self.verify_is_owner() restaurant = self._get_one(data.id) if restaurant.owner_id != self.user.id: raise HTTPException(status_code=403, detail="You do not have access to" "edit this restaurant.") restaurant.name = data.name restaurant.description = data.description self.db.commit() self.db.refresh(restaurant) return restaurant @router.delete("/restaurant") async def delete(self, rid: int): await self.verify_is_owner() restaurant = self._get_one(rid) if restaurant.owner_id != self.user.id: raise HTTPException(status_code=403, detail="You do not have access" " to delete this restaurant.") restaurant.deleted = True #self.db.delete(restaurant) self.db.commit() def _get_one(self, id: int): try: restaurant = self.db.query(models.Restaurant).filter( models.Restaurant.id == id).one() except orm.exc.MultipleResultsFound: # This really shouldn't happen because of the unique constrain raise HTTPException(status_code=403, detail="Multiple restaurant IDs " "with same value.") except orm.exc.NoResultFound: raise HTTPException(status_code=403, detail="Invalid restaurant ID.") else: return restaurant
UTF-8
Python
false
false
2,908
py
39
restaurant.py
25
0.607978
0.603851
0
84
33.619048
74
Jaskaran23/Programming-for-big-data-1-cmpt-732
3,135,326,140,027
49329e25fa7afeb4569ee6ed588bd5054d4a3157
32fc071128fd7fd104a23fa60fbca0acf003faeb
/Assignment4/relative_score_bcast.py
050bd09504e1f350c94ffde3c537f6f2cafc1c3c
[]
no_license
https://github.com/Jaskaran23/Programming-for-big-data-1-cmpt-732
2b7f4a2741e3e95a5f46b0d772568e1bea2b8732
ac4446b43af669070be2aadc93ce5476cfcfe2a9
refs/heads/master
2020-04-21T03:23:29.085651
2019-02-05T18:01:24
2019-02-05T18:01:24
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from pyspark import SparkConf, SparkContext import sys import json assert sys.version_info >= (3, 5) # make sure we have Python 3.5+ def key_valuepair(dictvalue): reddit_key=dictvalue.get("subreddit") score_key=dictvalue.get("score") yield (reddit_key,(1,score_key)) def adding_pairs(i,j): sumone=0 scoresum=0 sumone = i[0]+j[0] scoresum = i[1]+j[1] return (sumone,scoresum) def dividing_pairs(k): average = 0.0 average = (k[1][1]/k[1][0]) return(k[0],average) def broadcast_func(broadcast_obj1,y): subreddit_val=y[0] return(y[1]['score'] / broadcast_obj1.value[y[0]],y[1]['author']) def main(inputs, output): text=sc.textFile(inputs).map(json.loads).cache() pairs=text.flatMap(key_valuepair) add_pair=pairs.reduceByKey(adding_pairs) avg_pair=add_pair.map(dividing_pairs).filter(lambda x: (x[1]>0)) avg_obj=dict(avg_pair.collect()) broadcast_obj=sc.broadcast(avg_obj) commentbysub = text.map(lambda c: (c['subreddit'],c)) result=commentbysub.map(lambda x: broadcast_func(broadcast_obj,x)).sortBy(lambda z: z,False) print(result.take(10)) #result=joined_rdd.map(lambda z: (z[0],z[1][0][0]/z[1][1],z[1][0][1])).sortBy(False) outdata=result.map(json.dumps) outdata.saveAsTextFile(output) if __name__ == '__main__': conf = SparkConf().setAppName('reddit average') sc = SparkContext(conf=conf) assert sc.version >= '2.3' # make sure we have Spark 2.3+ inputs = sys.argv[1] output = sys.argv[2] main(inputs, output)
UTF-8
Python
false
false
1,482
py
24
relative_score_bcast.py
24
0.682186
0.653171
0
59
24.118644
93
abos5/pythontutor
9,603,546,882,253
f11946ce30e0f8bd0260ca563b615e9e6326774f
7bc5f02dab36eb41e4245059b0830830f828b0fe
/dive/regression.py
4253cf075c4430e75e69f5d21bee894ed04e50bb
[ "MIT" ]
permissive
https://github.com/abos5/pythontutor
3380686cec0ce6a7000fdb0ad424227e8a489684
eba451700def8bd98d74668d1b6cc08c0ccc0d3c
refs/heads/master
2020-04-10T18:05:52.438924
2018-12-10T15:16:37
2018-12-10T15:16:37
70,141,475
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
"""Regression testing framework This module will search for scripts in the same directory named \ XYZtest.py. Each such script should be a test suit that tests a \ module through PyUnit. """ import sys import os import re import unittest from toolbox import exit def regressionTest(): path = os.path.abspath(os.path.dirname(sys.argv[0])) # obtain the required files files = os.listdir(path) test = re.compile('test\.py$', re.IGNORECASE) files = filter(test.search, files) # get rid of the extension filenameToModuleName = lambda f: os.path.splitext(f)[0] moduleNames = map(filenameToModuleName, files) modules = map(__import__, moduleNames) load = unittest.defaultTestLoader.loadTestsFromModule return unittest.TestSuite(map(load, modules)) exit() if __name__ == "__main__": unittest.main(defaultTest="regressionTest") # end of file
UTF-8
Python
false
false
894
py
124
regression.py
88
0.709172
0.706935
0
35
24.542857
65
majhar-nayem/Software-Engineering-Project
14,035,953,162,587
e73e2a8eaefcc3cb9e43e2a878af41afe8385fa5
7992752f110aceaa47fa1951c333a3cbb6209684
/smartmenu/food/urls.py
051965ae13806efd6365cf8f56cba25004cf8c0a
[ "MIT" ]
permissive
https://github.com/majhar-nayem/Software-Engineering-Project
42f48a29e44e2a3c2b94f11786cfddaaff812aea
e768cc738054d4df3453ee2d42ae03c4d6948152
refs/heads/master
2020-04-19T19:12:46.562875
2019-06-23T15:31:40
2019-06-23T15:31:40
168,382,824
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.urls import path, include from . import views from .views import FoodListView, FoodDetailsView, FoodCategoryView # api url handler urlpatterns = [ path('category/', FoodCategoryView.as_view(), name='food-category'), path('foodlist/', FoodListView.as_view(), name='food-list'), path('foodlist/<int:pk>/', FoodDetailsView.as_view(), name='food-details'), path('catlist/<int:pk>/', views.CatList, name='catlist'), ]
UTF-8
Python
false
false
455
py
20
urls.py
14
0.685714
0.685714
0
12
35.916667
79
alehlipka/TarotMG-server
6,012,954,263,639
daae6fec76d9cbb54f25f157326db290c84e7d0d
cab10378580423bd2f76407b773dc2a007eb16b6
/settings.py
4224924271cb9a9df6c8e6765a9fc21bee96c2eb
[]
no_license
https://github.com/alehlipka/TarotMG-server
4248f1a5464e566a0fa8132a3f49f6f22fafdddb
e9d5ba4c5b6cedaa8500ebfc5ad1eb225108fe73
refs/heads/master
2020-06-20T20:00:11.353538
2019-08-07T18:24:39
2019-08-07T18:24:39
197,230,396
0
1
null
false
2019-08-07T23:19:44
2019-07-16T16:32:11
2019-08-07T18:25:13
2019-08-07T18:25:12
58
0
1
1
Python
false
false
"""File for settings""" # for shuffle NUMBER_OF_SHUFFLE = 15 NUMBER_OF_CARDS = 78 # for Bot token=""
UTF-8
Python
false
false
105
py
13
settings.py
10
0.647619
0.609524
0
8
12.25
24
Catory/mumu_fruits
6,227,702,588,095
2d328309ca6a68eb6ffc69a72ff7aacbcb604071
b56017aa4f7a40671835688ef7abcc276e0b902b
/appOne/migrations/0008_order.py
9301f2f8d054e9f4a735017eaf997d53b93a8fb1
[]
no_license
https://github.com/Catory/mumu_fruits
f51ab10f5353eb578293ee522393bc5067526404
86439ec3e2571f429aa4a0eeb85702cc65e8e4d1
refs/heads/master
2021-05-11T01:39:00.443031
2017-12-23T10:02:59
2017-12-23T10:02:59
118,335,192
0
0
null
true
2018-01-21T13:01:37
2018-01-21T13:01:37
2017-12-23T10:03:49
2017-12-23T10:03:48
547
0
0
0
null
false
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.5 on 2017-10-06 06:00 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('appOne', '0007_user'), ] operations = [ migrations.CreateModel( name='Order', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('orderInfo', models.CharField(max_length=1000)), ('orderUser', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='appOne.User')), ], options={ 'db_table': 'axf_order', }, ), ]
UTF-8
Python
false
false
793
py
30
0008_order.py
13
0.566204
0.534678
0
27
28.37037
114
samarthvaru/FarmUp1
6,983,616,834,014
8e6be4e7c04bb1cf2eaf7ba1a4f290e4a09bff45
6b899d257d40365dc3ce09f6a286378432bd152e
/Backend/backend/api/product/serializers.py
9e5a35fb3ade1869dd7e9965643953adb918105d
[]
no_license
https://github.com/samarthvaru/FarmUp1
e0b663bcd0066dd183280cf4e4f670d16183488d
2d0fb358317339b754c55fb431035137b11959a7
refs/heads/master
2023-08-10T23:39:33.804508
2021-09-20T22:04:09
2021-09-20T22:04:09
408,607,002
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from rest_framework import serializers from api.customerProfile.serializers import FarmerSerializer from products.models import Product,Tag from api.customerProfile.serializers import FarmerSerializer class TagSerializer(serializers.ModelSerializer): class Meta: model = Tag fields = ['title', 'slug'] class ProductSerializer(serializers.HyperlinkedModelSerializer): tag_list = TagSerializer(many=True, read_only=True) sold_by= FarmerSerializer(read_only=True) class Meta: model = Product fields = ['id', 'image', 'title', 'slug', 'featured', 'description', 'original_price', 'price', 'tag_list','sold_by','timestamp'] ordering=['timestamp'] # class ProductListSerializer(serializers.ModelSerializer): # class Meta: # model = Product # fields = [ 'name', 'description', # 'sold_by'] # class ProductDetailSerializer(serializers.ModelSerializer): # class Meta: # model = Product # fields = ['name', 'description', 'price', # 'sold_by', 'date',]
UTF-8
Python
false
false
1,105
py
33
serializers.py
31
0.648869
0.648869
0
39
27.358974
105
DamonZCR/PythonStu
11,012,296,152,663
5dff900c193dd605ba5f2de56ae29e9d00b61916
caa72788fdae6b05c5ce4c132b45fc00d55bb607
/47Tkinter/Canvas画布/18-4Canvas画布画图形.py
15351acebbe878bea337f0e94b0e4238cf4d307b
[]
no_license
https://github.com/DamonZCR/PythonStu
dcc2ba49195f5859fd63227fe0f8f78b36ed46df
88fec97e3bccff47ba1c5f521f53a69af6ca2b2d
refs/heads/master
2023-07-05T06:29:53.300920
2021-08-13T12:22:30
2021-08-13T12:22:30
302,256,563
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from tkinter import * '''显画出一个椭圆''' root = Tk() w = Canvas(root, width=200, heigh=100) w.pack() # 前两个参数代表起点,后两个代表终点,dash代表线的样式,虚线 w.create_rectangle(40, 20, 160, 80, dash=(4, 4)) w.create_oval(40, 20, 160, 80, fill='pink') w.create_text(100, 50, text='Damon') w2 = Canvas(root, width=200, heigh=100) w2.pack() w2.create_rectangle(40, 20, 160, 80, dash=(4, 4)) w2.create_oval(70, 20, 130, 80, fill='pink') w2.create_text(100, 50, text='Damon') mainloop()
UTF-8
Python
false
false
522
py
237
18-4Canvas画布画图形.py
230
0.667401
0.519824
0
16
27.4375
49
bsmi021/eahub_shopco
1,494,648,643,497
3a1f75459e8eb5cbb45b29d5e415a53af37998d2
31c2ef1b6e999ebc0ca6b61ca03e20cc7701e1ff
/simulator/simulator.py
bd4144468340946747b63840530ddd194213e232
[]
no_license
https://github.com/bsmi021/eahub_shopco
a1c8e71e40bc507f2ded22fa2b56fbdfb3b17184
3f4c93c631e5d5b52acd2ce11e220ff3fbec07b6
refs/heads/master
2022-12-09T01:22:21.446915
2019-06-11T17:40:42
2019-06-11T17:40:42
175,206,709
0
0
null
false
2022-12-08T01:41:44
2019-03-12T12:29:56
2019-06-11T17:40:57
2022-12-08T01:41:44
16,596
0
0
13
Python
false
false
import requests from py_linq import Enumerable import random import json from werkzeug.security import generate_password_hash from faker import Faker from faker.providers import profile, person, address, phone_number, credit_card from uszipcode import SearchEngine import namesgenerator # using this for brands and products fake = Faker() fake.add_provider(profile) fake.add_provider(person) fake.add_provider(address) fake.add_provider(phone_number) fake.add_provider(credit_card) zip_search = SearchEngine(simple_zipcode=True) def get_random_city_zip(): state_abbr = fake.state_abbr(include_territories=False) #print (state_abbr) state_abbr = 'NY' #zip_code = fake.zipcode_in_state(state_abbr=state_abbr) #f_zip_code = zip_search.by_zipcode(zip_code) zip_code = random.randint(10000,99999) f_zip_code = zip_search.by_zipcode(zip_code) while f_zip_code.zipcode is None: zip_code = random.randint(10000,99999) f_zip_code = zip_search.by_zipcode(zip_code) print (f_zip_code) return f_zip_code uri = "http://10.104.87.133:5000/api" brand_uri = "{}/brands".format(uri) products_uri = "{}/products".format(uri) users_uri = "{}/user".format(uri) basket_uri = "{}/basket".format(uri) customers_uri = "{}/customers".format(uri) register_uri = f"{customers_uri}/register" sites_uri = f'{uri}/warehouse/sites' brand_count = 13 product_count = 555 customer_count = 45000 site_count = 12 order_count = 50000 print('Checking on customers, creating if necessary') customers = requests.get(customers_uri) if customers.json() is None or len(customers.json()) < customer_count: max_range = customer_count - len(customers.json()) print(f'Creating {max_range} Customers') for i in range(0, max_range): profile = fake.profile() person = { 'first_name': str.split(profile['name'])[0], 'last_name': str.split(profile['name'])[1] } # f_zip_code = get_random_city_zip() address = { 'street_1': fake.street_address(), 'street_2': "", 'city': f_zip_code.major_city, 'state': f_zip_code.state, 'country': 'US', 'zip_code': f_zip_code.zipcode } phone = fake.phone_number() # account = { 'user_name': profile['username'], 'password_hash': generate_password_hash(profile['username']), 'email': profile['mail'], 'name': person['first_name'], 'last_name': person['last_name'], 'street_1': address['street_1'], 'street_2': address['street_2'], 'city': address['city'], 'state': address['state'], 'zip_code': address['zip_code'], 'country': address['country'], 'phone': phone } # request_data = json.dumps(account) requests.post(register_uri, json=account) print("Checking on sites, creating if necessary") sites = requests.get(sites_uri) if sites.json() is None or len(sites.json()) < site_count: if len(sites.json()) == 0: max_range = site_count else: max_range = site_count - len(sites.json()) for i in range(0, max_range): zip_info = get_random_city_zip() site = {'name': zip_info.post_office_city, 'zip_code': zip_info.zipcode, 'type_id': 1} requests.post(sites_uri, json=site) print("Checking on brands, creating if necessary") brands = requests.get(brand_uri) if brands.json() is None or len(brands.json()) < brand_count: if brands.json() is None: max_range = brand_count else: max_range = brand_count - len(brands.json()) print(f'Creating {max_range} brands.') for i in range(0, max_range): brand = {'name': namesgenerator.get_random_name()} request_data = json.dumps(brand) response = requests.post(brand_uri, json=brand) brands = requests.get(brand_uri) brands = brands.json() print('Checking on products, creating if necessary') products = requests.get(products_uri) if products.json() is None or len(products.json()) < 300: colors = ['white', 'black', 'red', 'blue', 'yellow', 'titanium', 'steel-grey', 'grey', 'green', 'light-blue', 'pink', 'orange'] types = ['kitchen', 'outdoor', 'indoor', 'bedroom', 'living room'] if products.json() is None or len(products.json()) == 0: max_product_id = 0 max_range = 300 else: products = Enumerable(products.json()) max_product_id = products.max(lambda x: x['_id']) + 1 max_range = 300 - len(products.json()) print(f'Creating {max_range} products.') for i in range(max_product_id, max_product_id + max_range): brand_id = random.choice(brands)['_id'] product_name = namesgenerator.get_random_name(' ') sku = f"WR-{f'00000000{i + 1}'[-8:]}" max_stock_threshold = random.randint(105, 1050) restock_threshold = random.randint(10, 50) available_stock = random.randint(restock_threshold + 5, max_stock_threshold) product = { "name": product_name, "description": namesgenerator.get_random_name(), "price": float(random.randint(1, 255)) + .99, "product_brand_id": brand_id, "product_type_id": 1, "discontinued": False, "max_stock_threshold": max_stock_threshold, "sku": sku, "attributes": { "weight": random.randint(10, 100), "height": random.randint(1, 100), "width": random.randint(1, 100), "depth": random.randint(1, 100), "color": random.choice(colors), "type": random.choice(types) } } request_data = json.dumps(product) response = requests.post(products_uri, json=request_data) customers = requests.get(customers_uri) customers = customers.json() card_types = [{'id': 1, 'value': 'discover'}, {'id': 2, 'value': 'visa16'}, {'id': 3, 'value': 'amex'}, {'id': 4, 'value': 'mastercard'}] for customer in customers: provider = random.choice(card_types) customer['card_type_id'] = provider['id'] customer['card_provider'] = provider['value'] customer['expiration'] = fake.credit_card_expire(start='now', end="+4y", date_format='%m/%y') customer['card_number'] = fake.credit_card_number(card_type=customer['card_provider']) customer['security_number'] = fake.credit_card_security_code(card_type=customer['card_provider']) products = requests.get(products_uri) products = products.json() print(f'Creating {order_count} orders now, this may take a while...') for i in range(0, order_count): basket_item_ct = random.randint(1, 6) customer = random.choice(customers) items = [] for x in range(1, basket_item_ct): product = random.choice(products) while product in items: product = random.choice(products) items.append(product) quantity_gen = lambda p: random.randint(1, 5) if p < 20.99 else 1 basket = { 'buyer_id': customer['_id'], 'items': [ { 'product_id': product['_id'], 'product_name': product['name'], 'unit_price': product['price'], 'old_unit_price': product['price'], 'quantity': quantity_gen(product['price']) } for product in items] } response_data = requests.post(basket_uri, json=basket) if response_data.status_code == 201: checkout_basket = { 'buyer_id': str(customer['_id']), 'buyer': customer['full_name'], 'city': customer['city'], 'street_1': customer['street_1'], 'street_2': customer['street_2'], 'state': customer['state'], 'country': customer['country'], 'zip_code': customer['zip_code'], 'card_number': customer['card_number'], 'cardholder_name': customer['full_name'], 'expiration': customer['expiration'], 'security_number': customer['security_number'], 'card_type_id': int(customer['card_type_id']) } resp = requests.put(f'{basket_uri}/checkout', json=checkout_basket) if resp.status_code != 204: print(resp) else: print(f'Order sent for Customer {customer["_id"]}: {customer["full_name"]}') # # products = requests.get(products_uri)#.json() # #users = requests.get(users_uri) # products = products.json() # # for product in products: # print(product['_id']) # # buyer_id = 1 # buyer_name = 'Gordon Ramsay' # address = { # 'street_1':'1313 Mockingbird Ln', # 'street_2':None, # 'city':"Anytown", # 'state':'NY', # 'zip_code':'10010', # 'country':'US' # } # email = 'gordon@hellskitchen.com' # phone = '18005556666' # card_number='4525242422' # cardholder_name='Gordon Ramsay' # security_number='442' # expiration='01/99' # card_type_id=1 # # basket = { # 'buyer_id':buyer_id, # 'items':[ # { # 'product_id':product['_id'], # 'product_name':product['name'], # 'unit_price':product['price'], # 'old_unit_price':product['price'], # 'quantity': random.randint(1,10) # } for product in products] # } # # basket = json.dumps(basket) # # print(basket) # resp = requests.post(basket_uri, json=basket) # # if resp.status_code == 201: # checkout_basket={ # 'buyer_id':str(buyer_id), # 'buyer':buyer_name, # 'city':address['city'], # 'street_1':address['street_1'], # 'street_2':'', # 'state':address['state'], # 'country':address['country'], # 'zip_code':address['zip_code'], # 'card_number':card_number, # 'cardholder_name':cardholder_name, # 'expiration':expiration, # 'security_number':security_number, # 'card_type_id':int(card_type_id) # } # # checkout_basket = json.dumps(checkout_basket) # print (checkout_basket) # # resp = requests.put(f'{basket_uri}/checkout', json=checkout_basket) # # print(resp.status_code) # # #print(products)
UTF-8
Python
false
false
10,315
py
60
simulator.py
33
0.585167
0.565778
0
334
29.883234
101
srajsonu/LeetCode-Solutions-Python
5,506,148,107,909
878912ef1f22329f656c2f1adf5a80e5d3cf0d5c
e8199f1d424592affe19b50fd96a02815067d1b1
/Stacks/316. Remove Duplicate Letters.py
263e3329f37f52b66ca25d8db7df936ff29448e8
[]
no_license
https://github.com/srajsonu/LeetCode-Solutions-Python
39a809e4c6d555a3a3055ce03d59cfa40b93a287
8ec31c8df2885f3da533424ba13060b7d3e3af78
refs/heads/master
2023-03-19T10:05:42.578615
2021-03-13T17:21:36
2021-03-13T17:21:36
280,716,200
0
1
null
false
2020-10-06T09:54:02
2020-07-18T18:32:04
2020-10-02T14:54:51
2020-10-02T14:54:48
116
0
1
1
Python
false
false
class Solution: def solve(self, A): freq = {} for i in A: if i not in freq: freq[i] = 1 else: freq[i] += 1 ans = [] vis = set() for i in A: freq[i] -= 1 if i in vis: continue while ans and ans[-1] > i and freq[ans[-1]] > 0: vis.remove(ans.pop()) ans.append(i) vis.add(i) return ''.join(ans) if __name__ == '__main__': A = "cbacdcbc" B = Solution() print(B.solve(A))
UTF-8
Python
false
false
584
py
304
316. Remove Duplicate Letters.py
303
0.369863
0.359589
0
29
19.137931
60
ddtkra/atcoder
3,779,571,225,556
9d562ad42ef5ae47c00e3f8fa5669ba799dbe00a
0bb474290e13814c2498c086780da5096453da05
/abc129/D/main.py.1
0399bbd378d78ca41a5376c955960f39962963f3
[]
no_license
https://github.com/ddtkra/atcoder
49b6205bf1bf6a50106b4ae94d2206a324f278e0
eb57c144b5c2dbdd4abc432ecd8b1b3386244e30
refs/heads/master
2022-01-25T15:38:10.415959
2020-03-18T09:22:08
2020-03-18T09:22:08
208,825,724
1
0
null
false
2022-01-21T20:10:20
2019-09-16T14:51:01
2020-03-18T09:22:19
2022-01-21T20:10:20
1,657
0
0
2
Python
false
false
#!/usr/bin/env python3 import sys import re def solve(H: int, W: int, S: "List[str]"): L = [[0] * W for i in range(H)] R = [[0] * W for i in range(H)] U = [[0] * W for i in range(H)] D = [[0] * W for i in range(H)] for i in range(H): for j in range(W): # 左 if(S[i][j] =='#'): L[i][j] = 0 elif(j == 0): L[i][j] = 1 elif(j >= 1): L[i][j] = L[i][j-1] + 1 # 上 if(S[i][j] =='#'): U[i][j] = 0 elif(i == 0): U[i][j] = 1 else: U[i][j] = U[i-1][j] + 1 for i in range(H-1,-1,-1): for j in range(W-1,-1,-1): # 右 if(S[i][j] =='#'): R[i][j] = 0 elif(j == W-1): R[i][j] = 1 else: R[i][j] = R[i][j+1] + 1 # 下 if(S[i][j] =='#'): D[i][j] = 0 elif(i == H-1): D[i][j] = 1 else: D[i][j] = D[i+1][j] + 1 ans = 0 for i in range(H): for j in range(W): ans = max(ans, L[i][j] + R[i][j] + U[i][j] + D[i][j] - 3) print(ans) return # Generated by 1.1.4 https://github.com/kyuridenamida/atcoder-tools (tips: You use the default template now. You can remove this line by using your custom template) def main(): def iterate_tokens(): for line in sys.stdin: for word in line.split(): yield word tokens = iterate_tokens() H = int(next(tokens)) # type: int W = int(next(tokens)) # type: int S = [ next(tokens) for _ in range(H) ] # type: "List[str]" solve(H, W, S) if __name__ == '__main__': main()
UTF-8
Python
false
false
1,830
1
395
main.py.1
217
0.372667
0.35236
0
75
23.293333
165
kingdion/filmstarter-server
6,932,077,217,421
fad19d9b50ec0068744eca973d9a1c214d90660b
1e29104d1ed925af50c0e2f8867d8c48d7e9d8e0
/create_script.py
09da1f5f9f4d8db49f211c3e04b2900beb58d967
[]
no_license
https://github.com/kingdion/filmstarter-server
31f1bdea29d863104d2268e9d474ac7d5577f466
5f9cf86e58ca69f7b8f94b1f7b311f273a35d228
refs/heads/master
2020-05-27T14:28:18.187840
2019-06-03T04:30:44
2019-06-03T04:30:44
188,659,609
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import datetime import string import random from app import create_app from app.models import * from werkzeug.security import generate_password_hash, check_password_hash import uuid app = create_app() with app.app_context(): db.drop_all() db.create_all() user1 = Account("John", "Doe", "TestUser01", "testuser01@gmail.com", generate_password_hash("TestUser01", method='sha256')) user2 = Account("Jane", "Doe", "TestUser02", "testuser02@gmail.com", generate_password_hash("TestUser02", method='sha256')) user3 = Account("Writer", "Doe", "TestUser03", "testuser03@gmail.com", generate_password_hash("TestUser03", method='sha256')) user4 = Account("Cinematographer", "Doe", "TestUser04", "testuser04@gmail.com", generate_password_hash("TestUser04", method='sha256')) project1 = Project("Harry Potter", "Warner Brothers", "A movie about wizards", ''.join(random.choices(string.ascii_uppercase + string.digits, k=6))) project2 = Project("Star Wars", "Lucasfilms", "A movie about wizards with swords", ''.join(random.choices(string.ascii_uppercase + string.digits, k=6))) project3 = Project("The Avengers", "Marvel", "A movie about heroes n stuff", ''.join(random.choices(string.ascii_uppercase + string.digits, k=6))) project4 = Project("The Avengers: Endgame", "Marvel", "A movie about heroes n stuff and thanos", ''.join(random.choices(string.ascii_uppercase + string.digits, k=6))) db.session.add(user1) db.session.add(user2) db.session.add(user3) db.session.add(user4) db.session.add(project1) db.session.add(project2) db.session.add(project3) db.session.add(project4) db.session.commit() project_link = ProjectLink(user1.id, project1.id, "Director", True) project_link2 = ProjectLink(user2.id, project1.id, "Actor", True) project_link3 = ProjectLink(user3.id, project1.id, "Writer", True) project_link4 = ProjectLink(user4.id, project1.id, "Cinematographer", True) project_link5 = ProjectLink(user1.id, project2.id, "Writer", False) project_link6 = ProjectLink(user2.id, project2.id, "Director", False) project_link7 = ProjectLink(user1.id, project3.id, "Cinematographer", False) project_link8 = ProjectLink(user1.id, project4.id, "Director", False) db.session.add(project_link) db.session.add(project_link2) db.session.add(project_link3) db.session.add(project_link4) db.session.add(project_link5) db.session.add(project_link6) db.session.add(project_link7) db.session.add(project_link8) db.session.commit()
UTF-8
Python
false
false
2,704
py
6
create_script.py
6
0.670858
0.639053
0
53
50.037736
174
KaprianZ/IFPI
9,191,230,032,283
3930d61be8d24102f4fb09576b7511121fec430c
396886c96fe16f6bee2cfba4466d0a4d3df78044
/Python/Atividades - DOT/Ativ. Sem. 01/Peso Ideal.py
890d572351826012210474135396a77dc7424f94
[ "MIT" ]
permissive
https://github.com/KaprianZ/IFPI
198db256b62b0764ab33d0aae4fc56158fa1f40c
54ffea357073f03f70010670a88382bf06a0af1f
refs/heads/main
2023-07-15T20:08:43.453771
2021-08-27T16:40:59
2021-08-27T16:40:59
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def peso_ideal(a, s): if s == 1: return (62.1 * a) - 44.7 if s == 2: return (72.7 * a) - 58 def main(): h = float(input("Digite a sua altura: ")) s = int(input("Você é homen ou mulher? 1 - Mulher 2 - Homem ")) c = peso_ideal(h, s) print(f"Seu peso ideal é {c} kg.") if __name__ == "__main__": main()
UTF-8
Python
false
false
357
py
21
Peso Ideal.py
12
0.477401
0.435028
0
18
18.666667
67
drnodev/CSEPC110
10,084,583,229,656
05b40eb220e7302a73197723786bfb86d51f0bba
61e3974b8862606ef69953ed3cc745237de35e7b
/prove01_colors.py
c0d56146bc2ac797256402f2f3556883b62ac507
[]
no_license
https://github.com/drnodev/CSEPC110
23a7a1113a12fdb9af6bef94bff3858105073cd5
bc575262ac2f56864ebe6c4427433affc90efbb9
refs/heads/master
2023-05-26T03:16:16.731471
2021-06-08T03:02:20
2021-06-08T03:02:20
367,801,860
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" File: prove01_colors.py Author: NO Purpuse: This program ask your favorite color, and give you back """ color = input("Please type your favorite color: ") print("Your favorite color is: {} Woow!!!!! That color is gorgeous".format(color)) dislike = input("What color do you dislike? ") print(":( .... Oh!!!! No!!! {} is a nice color.".format(dislike)) print("Bye :P")
UTF-8
Python
false
false
373
py
7
prove01_colors.py
6
0.670241
0.664879
0
12
30.166667
82
vakulenkoannag/gloss
5,171,140,666,941
5fa5dca40fc9cf4c52bd9ddc1bf95288bbb79726
f892a1c6b5d82ab64aa284fe0696a812c4c3ede9
/hw9/hw9.py
edda968432b67c319544b27c8eae797a9ab3a7a7
[]
no_license
https://github.com/vakulenkoannag/gloss
8724431949c3c3755955681660aeb5ee6dff16fd
107937b92c3d0d30da7927fd6745d2be74eefa6c
refs/heads/master
2018-09-07T15:47:39.755998
2018-06-20T09:47:52
2018-06-20T09:47:52
103,251,849
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import re def nameinput(): filename = input('Введите название файла: ') return filename def gettext(filename): with open (filename, 'r', encoding='utf-8') as f: text = f.read().lower() for symbol in ['.', ',', ':', ';', '—', '!', '?', '*', '&', '"', '"', '«', '»', '…', '/', '(', ')']: if symbol in text: text = text.replace(symbol, ' ') return text def searchwords(text): found = {} allforms = ['найтис?ь?\s', 'найд[еёияу][штм]?[еь]?с?[ья]?\s', 'найден[оаы]?н?[а-я]?[а-я]?[а-я]?\s', 'наш[её]?л[аои]?с?[ья]?\s', 'нашедш[а-я][а-я]?с?[ья]?\s'] for form in allforms: foundforms = re.findall(form, text) for word in foundforms: word = word.strip() if word in found: found[word] += 1 else: found[word] = 1 return found def listforms(found): for key, value in found.items() : print(key) def checkfile(filename): try: with open(filename): pass except FileNotFoundError: return False def final(): filename = nameinput() while checkfile(filename) == False: print('Такого файла тут нет! Попробуйте ввести другое название.') filename = nameinput() else: print('Список встретившихся в тексте форм глагола «найти»: ') listforms(searchwords(gettext(filename))) final()
UTF-8
Python
false
false
1,596
py
65
hw9.py
41
0.529703
0.527581
0
49
27.857143
104
benti/Error-Pypagation
13,134,010,037,519
5ca30be7f3c5b54567833b5548148d43066d0f8b
d1011bcd64c5aae27738a877f2ab86b06395689c
/errorpro/core.py
c5bd46bfd295bac3a8eca1cb24cf0461b9bdbf78
[]
no_license
https://github.com/benti/Error-Pypagation
1f0c88b10f2b778c463bfb5c0c5a31d4f409d1cf
108feddc58a705da82fe6fdce658b419b589b533
refs/heads/master
2021-01-16T17:51:41.775271
2016-04-21T18:38:33
2016-04-21T18:38:33
41,669,639
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np from sympy import S, Expr, latex, Function, Symbol from errorpro.units import parse_unit from errorpro.quantities import Quantity, get_value, get_error, get_dimension from errorpro.dimensions.dimensions import Dimension from errorpro import pytex from IPython.display import Latex as render_latex def assign(value, error=None, unit=None, name=None, longname=None, value_unit=None, error_unit=None, ignore_dim=False): """ function to create a new quantity Args: value: number or string that can be parsed by numpy, or sympy expression. If it's a sympy expression containing quantities, it will perform the calculation, otherwise it just saves the value. error: number that is saved as the value's uncertainty. this will replace any error coming from a calculation. unit: sympy expression of Unit objects. This is used to convert and save value and error in base units. Replaces value_unit and error_unit if specified. name: short name of the quantity (usually one letter). If not specified, quantity will get a dummy name. longname: optional additional description of the quantity value_unit: unit of value. Use this if value and error have different units. error_unit: unit of error. ignore_dim: bool. Keeps function from raising an error even if calculated and given unit don't match. Then given unit is used instead. """ value_formula = None value_factor = 1 value_dim = Dimension() error_formula = None error_factor = 1 error_dim = Dimension() # parse units if unit is not None: # if one general unit is given value_factor, value_dim, value_unit = parse_unit(unit) error_factor = value_factor error_dim = value_dim error_unit = value_unit else: # if value unit is given if value_unit is not None: value_factor, value_dim, value_unit = parse_unit(value_unit) # if error unit is given if error_unit is not None: error_factor, error_dim, error_unit = parse_unit(error_unit) # check dimension consistency between value_dim and error_dim if value_unit is not None and not value_dim == error_dim: raise RuntimeError("dimension mismatch\n%s != %s" % (value_dim, error_dim)) # process value # if it's a calculation if isinstance(value, Expr) and not value.is_number: value_formula = value value = get_value(value_formula) if ignore_dim: # with ignore_dim=True, calculated value is converted to given unit value = np.float_(value_factor)*np.float_(value) else: # calculate dimension from dependency calculated_dim = get_dimension(value_formula) if value_unit is None: value_dim = calculated_dim else: if not calculated_dim == value_dim: raise RuntimeError("dimension mismatch \n%s != %s" % (value_dim, calculated_dim)) # if it's a number else: value=np.float_(value_factor)*np.float_(value) # process error if error is not None: error=np.float_(error_factor)*np.float_(error) # check value and error shapes and duplicate error in case if error.shape == () or value.shape[-len(error.shape):] == error.shape: error = np.resize(error, value.shape) else: raise RuntimeError("length of value and error don't match and "\ "can't be adjusted by duplicating.\n"\ "%s and %s" % (value.shape, error.shape)) # if error can be calculated elif value_formula is not None: error, error_formula = get_error(value_formula) if ignore_dim: # with ignore_dim=True, calculated error is converted to given unit error = np.float_(error_factor)*np.float_(error) q = Quantity(name, longname) q.value = value q.value_formula = value_formula q.error = error q.error_formula = error_formula if value_unit is not None: q.prefer_unit = value_unit else: q.prefer_unit = error_unit q.dim = value_dim return q def formula(quantity): """ returns error formula of quantity as latex code Args: quantity: Quantity object Return: latex code string of error formula """ assert isinstance(quantity, Quantity) if quantity.error_formula is None: raise ValueError("quantity '%s' doesn't have an error formula." % quantity.name) formula = quantity.error_formula if isinstance(formula,str): return formula else: # replace "_err" by sigma function sigma = Function("\sigma") for var in formula.free_symbols: if var.name[-4:] == "_err": formula = formula.subs(var, sigma( Symbol(var.name[:-4], **var._assumptions))) latex_code = latex(sigma(quantity)) + " = " + latex(formula) form_button, form_code = pytex.hide_div('Formula', '$%s$' % (latex_code) , hide = False) latex_button, latex_code = pytex.hide_div('LaTex', latex_code) res = 'Error Formula for %s<div width=20px/>%s%s<hr/>%s<br>%s' % ( '$%s$' % latex(quantity), form_button, latex_button, form_code, latex_code) return render_latex(res)
UTF-8
Python
false
false
5,465
py
20
core.py
17
0.627081
0.625984
0
148
35.925676
119
savethebeesandseeds/cuwacunu_dowaave
111,669,192,281
041eac041cc13828e739d0393dd5f2644d1e875a
451d5e3ed6f65bfe6b6918caa4a07ec5c2734de7
/cwcn_duuruva_piaabo.py
6bb1efe9d2ca28e1f87bafa0d8fbc6dc91f67297
[]
no_license
https://github.com/savethebeesandseeds/cuwacunu_dowaave
b75c40d236be23bedc8b1721d1c9303bfa6f94ff
836406874e59c97f97253c42fcbaca8c751dce1a
refs/heads/master
2023-08-30T01:22:41.742420
2021-10-25T05:43:23
2021-10-25T05:43:23
411,772,746
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# --- --- --- # cwcn_duuruva_piaabo.py # --- --- --- # a mayor TEHDUJCO to python fundation # --- --- --- # a mayor TEHDUJCO to the torch fundation # --- --- --- import math # --- --- --- import cwcn_dwve_client_config as dwvc # --- --- --- class DUURUVA: def __init__(self,_duuruva_vector_size : int,_wrapper_duuruva_normalize, _d_name : str=None): self._d_name=_d_name self._wrapper_duuruva_std_or_norm=_wrapper_duuruva_normalize self._duuruva_vector_size=_duuruva_vector_size self._reset_duuruva_() def _reset_duuruva_(self): self._d_count=0 self._duuruva=[] for _ in range(self._duuruva_vector_size): aux_d={} aux_d['value'] = 0 aux_d['diff_1'] = 0 aux_d['diff_2'] = 0 aux_d['max'] = 0 aux_d['min'] = 0 aux_d['variance'] = 0 aux_d['mean'] = 0 aux_d['M2'] = 0 aux_d['M3'] = 0 aux_d['M4'] = 0 aux_d['kurtosis'] = 0 aux_d['skewness'] = 0 self._duuruva.append(aux_d) def _is_duuruva_ready_(self): return dwvc.CWCN_DUURUVA_CONFIG.DUURUVA_READY_COUNT<=self._d_count def _duuruva_inverse_value_wrapper_(self,c_vect): for _v_idx in range(self._duuruva_vector_size): if(self._duuruva_vector_size==1): c_value = c_vect else: c_value = c_vect[_v_idx] try: if(self._wrapper_duuruva_std_or_norm == 'norm'): c_standar = (c_value)*(math.sqrt(self._duuruva[_v_idx]['variance']) + dwvc.CWCN_DUURUVA_CONFIG.MIN_STD) + self._duuruva[_v_idx]['mean'] elif(self._wrapper_duuruva_std_or_norm == 'std'): c_standar = (c_value - self._duuruva[_v_idx]['mean'])*(math.sqrt(self._duuruva[_v_idx]['variance']) + dwvc.CWCN_DUURUVA_CONFIG.MIN_STD) + self._duuruva[_v_idx]['mean'] elif(self._wrapper_duuruva_std_or_norm == 'mean'): c_standar = (c_value + self._duuruva[_v_idx]['mean']) elif(self._wrapper_duuruva_std_or_norm == 'not'): c_standar = c_value else: assert(False), "wrong wrapper_duuruva_std_or_norm configuration" except Exception as e: if(self._wrapper_duuruva_std_or_norm == 'not'): c_standar=c_value else: c_standar=0 if(self._is_duuruva_ready_()): raise Exception("Error processing duuruva : {}".format(e)) # --- --- --- --- --- if(self._is_duuruva_ready_() or self._wrapper_duuruva_std_or_norm == 'not'): if(self._duuruva_vector_size==1): c_vect = c_standar else: c_vect[_v_idx] = c_standar else: if(self._duuruva_vector_size==1): c_vect = 0 else: c_vect[_v_idx] = 0 def _duuruva_value_wrapper_(self,c_vect): self._d_count+=1 _n = min(self._d_count,dwvc.CWCN_DUURUVA_CONFIG.DUURUVA_MAX_COUNT) for _v_idx in range(self._duuruva_vector_size): if(self._duuruva_vector_size==1): c_value = c_vect else: c_value = c_vect[_v_idx] # --- --- --- --- --- --- --- --- --- --- a mayor TEHDUJCO to the WIKI # --- --- --- --- https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance self._duuruva[_v_idx]['value']=c_value self._duuruva[_v_idx]['max']=max(self._duuruva[_v_idx]['max'], self._duuruva[_v_idx]['value']) self._duuruva[_v_idx]['min']=min(self._duuruva[_v_idx]['min'], self._duuruva[_v_idx]['value']) _delta = self._duuruva[_v_idx]['value'] - self._duuruva[_v_idx]['mean'] _delta_n = _delta/_n _delta_n2 = _delta_n*_delta_n _term1 = _delta*_delta_n*(_n-1) self._duuruva[_v_idx]['mean'] += _delta_n self._duuruva[_v_idx]['M4'] += _term1*_delta_n2*(_n*_n-3*_n+3)+6*_delta_n2*self._duuruva[_v_idx]['M2']-4*_delta_n*self._duuruva[_v_idx]['M3'] self._duuruva[_v_idx]['M3'] += _term1*_delta_n*(_n-2)-3*_delta_n*self._duuruva[_v_idx]['M2'] self._duuruva[_v_idx]['M2'] += _term1 try: self._duuruva[_v_idx]['variance'] = self._duuruva[_v_idx]['M2']/(_n-1) self._duuruva[_v_idx]['kurtosis'] = (_n*self._duuruva[_v_idx]['M4'])/(self._duuruva[_v_idx]['M2']*self._duuruva[_v_idx]['M2'])-3 self._duuruva[_v_idx]['skewness'] = math.sqrt(_n)*self._duuruva[_v_idx]['M3']/(math.pow(self._duuruva[_v_idx]['M2'],3)*math.sqrt(self._duuruva[_v_idx]['M2'])) #FIXME check if is right if(self._wrapper_duuruva_std_or_norm == 'norm'): c_standar = (c_value - self._duuruva[_v_idx]['mean'])/(math.sqrt(self._duuruva[_v_idx]['variance']) + dwvc.CWCN_DUURUVA_CONFIG.MIN_STD) elif(self._wrapper_duuruva_std_or_norm == 'std'): c_standar = (c_value - self._duuruva[_v_idx]['mean'])/(math.sqrt(self._duuruva[_v_idx]['variance']) + dwvc.CWCN_DUURUVA_CONFIG.MIN_STD) + self._duuruva[_v_idx]['mean'] elif(self._wrapper_duuruva_std_or_norm == 'mean'): c_standar = (c_value - self._duuruva[_v_idx]['mean']) elif(self._wrapper_duuruva_std_or_norm == 'not'): c_standar = c_value else: assert(False), "wrong wrapper_duuruva_std_or_norm configuration" except Exception as e: if(self._wrapper_duuruva_std_or_norm == 'not'): c_standar=c_value else: c_standar=0 if(self._is_duuruva_ready_()): raise Exception("Error processing duuruva : {}".format(e)) # --- --- --- --- --- if(self._is_duuruva_ready_() or self._wrapper_duuruva_std_or_norm == 'not'): if(self._duuruva_vector_size==1): c_vect = c_standar else: c_vect[_v_idx] = c_standar else: if(self._duuruva_vector_size==1): c_vect = 0 else: c_vect[_v_idx] = 0 return c_vect
UTF-8
Python
false
false
6,471
py
21
cwcn_duuruva_piaabo.py
16
0.48586
0.476433
0
126
50.349206
199
schwt/bi_graph
12,068,858,131,806
99e99cc9d0569592c10421f05ac48d93b95482b5
98638a1b31c6ffe372c381e1ed7b7bf742e8b489
/src/print_result.py
7154708aea2f24b7dfed0e4c3ea6c084280890aa
[]
no_license
https://github.com/schwt/bi_graph
79e9afb54ed1e7ca2d7871469884971caaaa6021
56657dac5b1ef765a5cb33a6ef5f1bee93e2418a
refs/heads/master
2021-06-04T14:41:32.300563
2020-03-19T06:12:48
2020-03-19T06:12:48
103,367,097
1
2
null
false
2019-03-22T08:34:13
2017-09-13T07:20:09
2018-11-06T09:20:53
2019-03-22T08:34:13
125
1
0
0
C++
false
null
#!/usr/bin/python #encoding:utf-8 import sys s_sep = "\t" count = 0 f_src = sys.argv[1] f_dst = sys.argv[2] f_name = sys.argv[3] idc_id = int(sys.argv[4]) idc_name = int(sys.argv[5]) if len(sys.argv) >= 7: count = int(sys.argv[6]) d_name = {} for line in file(f_name): sep = line.strip().split(s_sep) if len(sep) < max(idc_id, idc_name): continue id = int(sep[idc_id]) d_name[id] = sep[idc_name] print "# item name:", len(d_name) wf = open(f_dst, "w") cnt0 = 0 cnt1 = 1 for line in file(f_src): cnt0 += 1 if 1: # try: id, recos = line.strip(" ,\t\n\r").split("\t") sep = recos.split(",") id = int(id) wf.write("[%d] \t m=%d \t len=%d \t\t %s\n" % (cnt1, id, len(sep), d_name.get(id, "null"))) cnt2 = 1 for kv in sep: k,v = kv.split(":") rid = int(k) wf.write("\t[%2d]\t %-9d\t %-8s\t %s\n" % (cnt2, rid, v, d_name.get(rid, "null"))) cnt2 += 1 cnt1 += 1 if count > 0 and cnt1 > count: break wf.write("\n") else: # except: print "error line: (%s)" % line.strip() continue wf.close() print "# src line:", cnt0 print "# dst line:", cnt1 -1
UTF-8
Python
false
false
1,249
py
42
print_result.py
35
0.486789
0.461169
0
55
21.709091
99
thaahtel/Toinen_kerta
16,750,372,456,086
63b3ea4b3ce346de19dfb0e5bac8722bdd7c33ce
46650a83f935d76c8556ae5d12c1994e4d8ff84a
/lukumaara1.py
66d5bf33bf760286da720415527514d49536c2ba
[]
no_license
https://github.com/thaahtel/Toinen_kerta
88289c7c51f00ffaafbab03399168cce42e09834
2ce2bf6648a984fcafade8f539f8847a2eae04ea
refs/heads/master
2022-11-06T12:42:26.492506
2020-06-15T11:00:12
2020-06-15T11:00:12
272,415,403
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
print("Syötä kokonaislukuja, 0 lopettaa:") luku = int(input("Luku: ")) lkm = 0 while luku != 0: luku = int(input("Luku: ")) lkm = lkm +1 print("Lukuja yhteensä " + str(lkm))
UTF-8
Python
false
false
187
py
7
lukumaara1.py
6
0.603261
0.581522
0
9
19.444444
42
Refragg/VMU-Bad-Apple
18,992,345,395,434
056075c1e011de1ca8f65223a06a7536530a319c
bdccfab594f79677936c14b8dd26a378c96cddfa
/converter.py
2100dd58371f667ba5b88854e6c8543bc8e069cc
[]
no_license
https://github.com/Refragg/VMU-Bad-Apple
5a66ad86a61b86f5c85267d0eb89639de5416bf1
bfd0db411000c906082f2a51e73b8474dbcf7afa
refs/heads/master
2023-04-02T13:42:47.457301
2021-04-13T19:00:41
2021-04-13T19:00:41
357,643,353
1
1
null
null
null
null
null
null
null
null
null
null
null
null
null
""" This script assumes you have a set of frames that are 48x32 in size and a bit-size of 1 or equivalent so that it can be converted correctly. """ from PIL import Image totalbytes = bytearray() for i in range(6073): # Iterate through all frames currentPath = "frames/frame" + str(i) + ".png" # Set Path to current frame (change filepath and extension accordingly) image = Image.open(currentPath) # Open Image at path curbyte = 0 # Initialise byte builder for i in range(31,-1,-1): # Iterate from the bottom right pixel (VMU format) for j in range(47,-1,-1): # Build the current byte (6 for each horizontal line) # Take the value at the current pixel and flip it by abusing python types # The value is shifted to it's relative position curbyte += (not image.getpixel((j,i))) << (j % 8) if 7 - (j % 8) == 7: # If the byte is finished, we add it to the bytearray totalbytes.append(curbyte) curbyte = 0 image.close() # Create a byte file and store everything in order for the dreamcast program to read finalfile = open('frames.bin', 'wb') finalfile.write(totalbytes) finalfile.close() ### String Formatting for one frame ### """ for i in range(0, len(curbs), 6): strbuild = "" for byte in range(6): hexbyte = hex(curbs[i + byte]) if len(hexbyte) == 3: strbuild += "0x0" + hexbyte[-1].upper() + ", " else: strbuild += hexbyte.upper() + ", " print(strbuild) """
UTF-8
Python
false
false
1,624
py
5
converter.py
3
0.589286
0.570197
0
49
31.142857
122
tojames/mobilesystem
11,184,094,839,430
79e96d8fe34092149f8f6504d62b2423fba96cd7
fc633b759fff244f1d753719d147e8553ccc231b
/mobile/apps/entry/urls/tags.py
53aeba7081299295eb4d3e3aa921278bc30a649c
[]
no_license
https://github.com/tojames/mobilesystem
99ef591e77e830a875eeeefb471848e5d4f856fa
ab30887bab69f46c93461ab550311fb1ed865d65
refs/heads/master
2019-07-05T13:21:44.239144
2011-12-18T11:06:03
2011-12-18T11:06:03
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
"""Urls for the entry tags""" from django.conf.urls.defaults import url from django.conf.urls.defaults import patterns from apps.entry.views.tags import tag_detail tag_conf = {'template_name': 'entry/tag_list.html'} urlpatterns = patterns('entry.views.tags', url(r'^$', 'tag_list', tag_conf, name='entry_tag_list'), url(r'^(?P<tag>[- \w]+)/$', tag_detail, {}, 'entry_tag_detail'), url(r'^(?P<tag>[- \w]+)/page/(?P<page>\d+)/$', tag_detail, {}, 'entry_tag_detail_paginated'), )
UTF-8
Python
false
false
570
py
300
tags.py
178
0.554386
0.554386
0
11
50.818182
116
yshlodha/multidb_router
10,067,403,360,483
020e733c9e884550d43c2b341cebf6129d819ed9
f01597b46110214c3823e762b0e46455d67930f7
/multidb_router_app/data_handler.py
2342ceb8375c703de4c8cc43cd9cb352d16d39ce
[]
no_license
https://github.com/yshlodha/multidb_router
3f128399391b7a40668117d60d29f7c34d805dc3
ce7769be4c2b0f10ccec375f72f5fd6dd5fe1e46
refs/heads/master
2020-03-10T00:03:13.877376
2018-04-11T12:24:58
2018-04-11T12:24:58
129,072,669
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from .models import * def get_product_list(user): """ :param user: :return: """ product_list = [] try: dbuser = DatabaseUser.objects.get(user__username=user.username) dbs = dbuser.databases.all() for db in dbs: products = Product.objects.using(db.name).filter(user__id=dbuser.id) if products: product_list.append({db.name: products}) except DatabaseUser.DoesNotExist: return [] return product_list def get_user_dbs(user): """ :param user: :return: """ try: dbuser = DatabaseUser.objects.get(user__username=user.username) db_list = [db.name for db in dbuser.databases.all()] except DatabaseUser.DoesNotExist: return [] return db_list def get_dbuser(username): """ :param username: :return: """ try: dbuser = DatabaseUser.objects.get(user__username=username) except DatabaseUser.DoesNotExist: return None return dbuser def add_product_to_db(user, name, category, database): """ :param user: :param name: :param category: :param database: :return: """ try: dbuser = DatabaseUser.objects.get(user__username=user.username) product_object = Product(user_id=dbuser.id, category=category, name=name) product_object.save(using=database) except DatabaseUser.DoesNotExist: return False return True def get_all_user_products(): """ :return: """ users = [] dbusers = DatabaseUser.objects.filter(user__is_superuser=False) for dbuser in dbusers: products = get_product_list(dbuser.user) if products: users.append({dbuser.user.username: products}) return users def delete_product(username, product_id, db): """ :param username: :param product_id: :param db: :return: """ try: dbuser = DatabaseUser.objects.get(user__username=username) except DatabaseUser.DoesNotExist: return False try: product = Product.objects.using(db).get(id=product_id, user__id=dbuser.id) except Product.DoesNotExist: return False product.delete() return True
UTF-8
Python
false
false
2,233
py
14
data_handler.py
7
0.61442
0.61442
0
90
23.822222
82
HsOjo/FlaskExamples
833,223,687,823
2df8260b025251870213a1ec3ff49382c6bd7d8a
acf2f17a28922f72b9ea792fedee57eb4a6c2b42
/FlaskChapter4/forms.py
0b3bcd020a941cd566268648371741e0e58d09d1
[]
no_license
https://github.com/HsOjo/FlaskExamples
1339246e7f07c2863451e5f48783bde772c8399c
24246d7f18fbcf4db8a1de7ad68b299fd54047c4
refs/heads/master
2020-06-22T20:26:52.375162
2020-05-15T17:23:34
2020-05-15T17:23:34
198,390,826
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, SubmitField, IntegerField, TextAreaField, SelectField, \ SelectMultipleField, RadioField from wtforms.validators import DataRequired, Email class LoginForm(FlaskForm): username = StringField(label='用户名', validators=[DataRequired()]) password = PasswordField(label='密码', validators=[DataRequired()]) submit = SubmitField(label='登录') class RegisterForm(FlaskForm): username = StringField(label='用户名', validators=[DataRequired()]) password = PasswordField(label='密码', validators=[DataRequired()]) age = IntegerField(label='年龄', validators=[DataRequired()]) phone = StringField(label='电话', validators=[DataRequired()]) email = StringField(label='邮箱', validators=[DataRequired(), Email()]) introduce = TextAreaField(label='自我介绍') education = SelectField(label='学历', coerce=int, choices=list( { 0: '保密', 1: '中专', 2: '高中', 3: '专科', 4: '本科', }.items() )) sex = RadioField(label='性别', validators=[DataRequired()], coerce=int, choices=list( { 1: '男', 2: '女', }.items() )) skill = SelectMultipleField(label='特长', validators=[DataRequired()], coerce=int, choices=list( { 1: '软件开发', 2: '系统运维', 3: '网络安全', }.items() )) submit = SubmitField(label='注册')
UTF-8
Python
false
false
1,566
py
100
forms.py
55
0.60631
0.599451
0
42
33.714286
104
Sagar2366/SPOJ-Python-Solutions
8,529,805,059,533
c7a065969920f2cf830a13da4deba2ba5a745248
8ae6d9b79ed1d18ce9677099225b17d99c64171d
/CANDY.py
f8e4953cb593af7f10f4b74f71741947e454b223
[]
no_license
https://github.com/Sagar2366/SPOJ-Python-Solutions
d0645ce08378da6220a1e03577c246a5aa7db841
3acc1431761d53b96dff9c49a2d9c785c377abe4
refs/heads/master
2020-05-09T13:42:47.887839
2016-05-30T11:54:23
2016-05-30T11:54:23
181,164,916
1
0
null
true
2019-04-13T12:03:50
2019-04-13T12:03:49
2017-07-21T01:36:37
2016-05-30T11:55:06
31
0
0
0
null
false
false
while True: noOfCase=int(raw_input()) if noOfCase<0: break else: series=[] for i in range(noOfCase): series.append(int(raw_input())) sum1=0 for i in series: sum1+=i if sum1%noOfCase==0: avg=sum1/noOfCase moves=0 for i in series: if (avg-i)<0: moves+=i-avg print(moves) else: print(-1)
UTF-8
Python
false
false
472
py
73
CANDY.py
71
0.427966
0.40678
0
20
22.65
43
somphorsngoun/graphic-1
670,014,922,131
37cd2d7a09ef0fa9f66b309a4aec4a017de7c251
21c5a502b9cba927d47e6989be10d9fe1e04b87d
/Homework/Import/Events-/event_1.py
40ee7b962f574456b68ad00afa4e91c50a13ad3f
[]
no_license
https://github.com/somphorsngoun/graphic-1
19e011c5ad9d45a574dc8f50e10d8a70510c274b
a3b50f6b948cfdf67b040c1eb85109b3f58bce86
refs/heads/main
2023-02-19T00:01:15.462078
2021-01-19T08:28:57
2021-01-19T08:28:57
330,911,479
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import tkinter as tk import random def doOnClick_1(event): print("class B") def doOnClick_2(event): print("class C") # Create an empty window root = tk.Tk() root.geometry("600x400") canvas = tk.Canvas(root) oval = canvas.create_oval(50, 50, 300, 300, fill="#F39118", tags="myTag") canvas.tag_bind("myTag", "<Button-1>", doOnClick_1) canvas.tag_bind("myTag", "<Button-3>", doOnClick_2)# Bind the click canvas.pack(expand=True, fill='both') root.mainloop()
UTF-8
Python
false
false
492
py
28
event_1.py
28
0.654472
0.599593
0
23
19.478261
73
malminhas/trello-utils
19,396,072,329,998
32174ed3bd92fee25621df31ab39a11889d76f3a
d95ca79b4341bc404e31d32760c7e91d39969131
/trelloDataProcessor.py
6752f32ede2a85b2a7f99d2f7e836bbe1a0111df
[ "Apache-2.0" ]
permissive
https://github.com/malminhas/trello-utils
08d2ffbfe960be2284a08ac1270d4305604c736b
49a011de1563a87a87e32523dc6d1c73f1fa2a66
refs/heads/master
2020-03-28T19:54:25.405050
2019-12-02T17:01:35
2019-12-02T17:01:35
149,020,339
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python # # trelloDataProcessor.py # ---------------------- # # Mal Minhas <mal@kano.me> # Copyright (c) 2018 Kano Computing. All Rights Reserved. # Licence: GPLv3 # import pandas as pd import matplotlib.pyplot as plt import matplotlib.ticker as ticker from matplotlib import cm import seaborn as sns # use Seaborn styles sns.set() import os import arrow import datetime formatDateTime = lambda s: arrow.get(s).format('YYYY-MM-DD HH:mm:ss') class TrelloDataProcessor(object): def __init__(self,force,verbose=False): self.verbose = verbose self.force = force self.start = None self.cards = pd.DataFrame() self.counts = pd.DataFrame() if os.path.exists('cards.csv'): self.cards = pd.read_csv('cards.csv') if os.path.exists('counts.csv'): self.counts = pd.read_csv('counts.csv') def getCards(self): return self.cards def getCounts(self): return self.counts def getStart(self): start = None if os.path.exists('.start'): with open('.start','r') as f: start = f.read() return start def setStart(self,start): with open('.start','w') as f: f.write(start) def createCardDistributionBarChart(self, cards, desc, colors=None, reverse=False, output=None): df = pd.DataFrame(cards) if self.force or not os.path.exists('cards.csv'): df.to_csv('cards.csv') print("{} rows, {} columns".format(df.shape[0],df.shape[1])) gps = df.groupby(['list']) longest = 0 for i,gp in enumerate(gps): self.verbose and print("{:02d} cards in '{}'".format(len(gp[1]),gp[0])) longest = max(longest,len(gp[1])) nrows = i+1 longest += int(longest/20) self.verbose and print("longest value={}".format(longest)) today = arrow.utcnow().format("YYYY-MM-DD") if reverse: buckets = df.groupby(['list']).size()[::-1] colors = colors[::-1] else: buckets = df.groupby(['list']).size() if (nrows != len(colors)): print("Mismatch between number of colors {} and number of rows {} in graph!".format(len(colors),nrows)) cmap = cm.get_cmap('jet') if longest > 50: if colors: ax = buckets.plot(kind='barh',color=colors,title='Current {} distribution {}'.format(desc,today),figsize=(18,9)) else: ax = buckets.plot(kind='barh',cmap=cmap,title='Current {} distribution {}'.format(desc,today),figsize=(18,9)) else: if colors: ax = buckets.plot(kind='barh',xticks=list(range(0,longest)),color=colors,title='Current {} distribution {}'.format(desc,today),figsize=(18,9)) else: ax = buckets.plot(kind='barh',xticks=list(range(0,longest)),cmap=cmap,title='Current {} distribution {}'.format(desc,today),figsize=(18,9)) ax.set_xticklabels(list(range(0,longest))) ax.set_ylabel('Trello List') ax.set_xlabel('count') if output: name = output else: name = '{}Snapshot_{}.png'.format(desc, today) plt.savefig(name) return name def createCardTimeSeriesStackedBarChart(self, counts, desc, selected, start, end=None, colors=None, output=None): df = pd.DataFrame(counts) if self.force or not os.path.exists('counts.csv'): df.to_csv('counts.csv') df.date = pd.to_datetime(df.date) datetimeArr = list(map(formatDateTime,df['date'].tolist())) # Set index of df to 'date' column and then delete df.index = df['date'] df = df.drop(columns=['date']) print("{} rows, {} columns".format(df.shape[0],df.shape[1])) print("Start date = {}".format(start)) print("Colors: {}".format(colors)) assert(len(counts) == df.shape[0]) today = arrow.utcnow().format("YYYY-MM-DD") if not len(selected): # We will select ALL lists selected = df.columns.values.tolist() #if not len(colors): # # We want to create a random distribution per discussion here: # # https://matplotlib.org/users/dflt_style_changes.html#colors-color-cycles-and-color-maps # #colors = 'bgrcmyk' # classic # colors = ['#1f77b4','#ff7f0e','#2ca02c','#d62728','#9467bd','#8c564b','#e377c2','#7f7f7f','#bcbd22','#17becf'] # v2.0 default if not colors: colors.append('cool') # default if colors[0] in ['summer','autumn','winter','spring','cool']: cmap = cm.get_cmap(colors[0]) colors = None if df.shape[0] > 50: print('Greater than 50 date values!') # More than 50 dates to plot => need to switch to default xaxis handling if colors: ax = df[selected].plot(kind='bar',stacked=True,color=colors,xticks=df.index, title='{} Board time series {}'.format(desc,today),figsize=(24,12)) else: ax = df[selected].plot(kind='bar',stacked=True,cmap=cmap,xticks=df.index, title='{} Board time series {}'.format(desc,today),figsize=(24,12)) #ax.xaxis_date() # Make most of the ticklabels empty so the labels don't get too crowded ticklabels = ['']*len(df.index) # Every 4th ticklable shows the month and day #ticklabels[::4] = [item.strftime('%b %d') for item in df.index[::4]] # Every 12th ticklabel includes the year ticklabels[::12] = [item.strftime('%d-%m-%Y') for item in df.index[::12]] ax.xaxis.set_major_formatter(ticker.FixedFormatter(ticklabels)) plt.xticks(rotation=90) #plt.gcf().autofmt_xdate() else: if colors: ax = df[selected].plot(kind='bar',stacked=True,color=colors,xticks=df.index, title='{} time series {}'.format(desc,today),figsize=(18,9)) else: ax = df[selected].plot(kind='bar',stacked=True,cmap=cmap,xticks=df.index, title='{} time series {}'.format(desc,today),figsize=(18,9)) # Not using this any more - going with ticklabels approach #ax.set_xticklabels(datetimeArr) # #ax.xaxis_date() # Make most of the ticklabels empty so the labels don't get too crowded ticklabels = ['']*len(df.index) # Every 4th ticklable shows the month and day #ticklabels[::4] = [item.strftime('%b %d') for item in df.index[::4]] # Every 12th ticklabel includes the year ticklabels = [item.strftime('%d-%m-%Y') for item in df.index] ax.xaxis.set_major_formatter(ticker.FixedFormatter(ticklabels)) plt.xticks(rotation=90) ax.set_ylabel('count') # TBD: handling of annotations #ax.annotate(selected[0], xy=(start,0), color=colors[0], xytext=(start,27),fontsize=12) #ax.annotate(selected[1], xy=(start,0), color=colors[1],xytext=(start,7),fontsize=12) #ax.annotate(selected[2], xy=(start,0), color=colors[2],xytext=(start,10),fontsize=12) #ax.annotate(selected[3], xy=(start,0), color=colors[3],xytext=(start,3),fontsize=12) #ax.annotate(selected[3], xy=(start,0), color=colors[3],xytext=(start,3),fontsize=12) # #featurecomplete = "2018-08-31 21:00:00" #ax.plot(kind='line') #ax.axvline(x=featurecomplete, ymin=0, ymax=40, linestyle=':',color='k') # if output: name = output else: name = '{}TimeSeries_{}.png'.format(desc,today) plt.subplots_adjust(top=0.8) # Provides margin at bottom to accommodate legend plt.subplots_adjust(bottom=0.2) # Provides margin at bottom to accommodate axis plt.savefig(name) return name def getCardCounts(self,df,dt): qfilter = "category=='updateCard' or category=='createCard' or category=='deleteCard' or category=='moveCardToBoard'" if not dt: dt = formatDateTime(datetime.datetime.now()) #today = arrow.utcnow().format("YYYY-MM-DD") candidates = df[df.date <= dt].query(qfilter) deduped = candidates.drop_duplicates(subset='card',keep='first').drop_duplicates(subset='date',keep='first') countsDico = deduped[deduped.closed==False].groupby(['after']).size().to_dict() return countsDico def generateDateRange(self,start,end=None): if not end: end = formatDateTime(datetime.datetime.now()) print(start,end) count = 0 drange = [] # convert start to a datetime dt = arrow.get(start).datetime et = arrow.get(end).datetime drange.append(start) while dt < et: dt = arrow.get(dt).datetime + datetime.timedelta(days=1) day = formatDateTime(dt) drange.append(formatDateTime(day)) count += 1 return drange def getActionCountsOverTime(self,actions,start,end=None): counts = [] df = pd.DataFrame(actions) print("{} rows, {} columns".format(df.shape[0],df.shape[1])) df.date = pd.to_datetime(df.date) df.card = df.card.fillna(-1).astype(int) #df.list = ndf.list.astype('category') df.category = df.category.astype('category') df.board = df.board.astype('category') df.after = df.after.astype('category') df.actor = df.actor.astype('category') dts = self.generateDateRange(start,end) for dt in dts: dico = self.getCardCounts(df,dt) dico['date'] = dt counts.append(dico) assert(len(counts) == len(dts)) return counts
UTF-8
Python
false
false
9,939
py
10
trelloDataProcessor.py
8
0.576718
0.559312
0
226
42.977876
158
broadinstitute/RVBLR
11,768,210,427,970
e4af970023334ec78b72a282f8420be0c2e9b0a1
daf017f502eb34fc697c366922925c4327ca1869
/util/RVBlr_examine_each_var_separately.py
de855098a21366981dcee623b50372a19b2e1051
[ "MIT" ]
permissive
https://github.com/broadinstitute/RVBLR
7453870127d4b04c674faa08f2374b1381e6d8b7
462848ab21c9352d2c18dbdb9005695e216b217f
refs/heads/master
2023-07-09T21:10:18.012773
2021-08-27T15:32:26
2021-08-27T15:32:26
346,779,782
0
1
MIT
false
2021-03-11T17:23:58
2021-03-11T17:15:27
2021-03-11T17:15:50
2021-03-11T17:23:58
0
0
1
0
null
false
false
#!/usr/bin/env python # -*- coding: utf-8 -*- import os, sys, re if sys.version_info[0] != 3: print("This script requires Python 3") exit(1) import datetime import subprocess import argparse import logging FORMAT = "%(asctime)-15s: %(levelname)s %(module)s.%(name)s.%(funcName)s %(message)s" logger = logging.getLogger('ctat_mutations') logging.basicConfig(stream=sys.stderr, format=FORMAT, level=logging.INFO) sys.path.insert(0, os.path.sep.join([os.path.dirname(os.path.realpath(__file__)), "../../../PyLib"])) from Pipeliner import Pipeliner, Command, run_cmd, ParallelCommandList SCRIPTDIR = os.path.dirname(os.path.realpath(__file__)) def main(): parser = argparse.ArgumentParser(description="wrapper for running rvboost", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--input_vcf", type=str, required=True, help="input vcf file") parser.add_argument("--output_dir", type=str, required=True, help="output directory name") parser.add_argument("--attributes", type=str, required=False, help="vcf info attributes to use for scoring purposes", default="DJ,PctExtPos,ReadPosRankSum,QD,FS,ED") parser.add_argument("--score_threshold", type=float, required=False, default=0.05, help="score threshold for filtering rvboost results") parser.add_argument("--num_threads", type=int, required=False, default=4, help="number of concurrent processes") args = parser.parse_args() ## prep for run output_dir = args.output_dir if not os.path.exists(output_dir): os.makedirs(output_dir) checkpts_dir = os.path.join(output_dir, "__chckpts") pipeliner = Pipeliner(checkpts_dir) ## build pipeline atts_list = args.attributes.split(",") cmd_list = [] for att in atts_list: cmd = " ".join([ os.path.join(SCRIPTDIR, "RVBoostLikeR_wrapper.py"), "--input_vcf", args.input_vcf, "--attributes", att, "--score_threshold {} ".format(args.score_threshold), "--work_dir {}/rvb-att-{}".format(args.output_dir, att), "--output_filename {}/rvb-att-{}.thresh{:.3f}.vcf".format(args.output_dir, att, args.score_threshold) ]) cmd_list.append(cmd) pipeliner.add_commands([ParallelCommandList(cmd_list, "all_atts-rvb.ok", args.num_threads)]) pipeliner.run() sys.exit(0) if __name__ == '__main__': main()
UTF-8
Python
false
false
2,538
py
7
RVBlr_examine_each_var_separately.py
6
0.631994
0.626478
0
79
31.063291
140
Jin-SukKim/Algorithm
455,266,545,077
fcddb626b46868e15d8d0cece7a60864343188d5
11130633fe59b222da0696dc05e72ac30871a573
/Problem_Solving/leetcode/Algorithm/Binary_Search/167_Two_Sum_II_Input_Array_is_Sorted/twoSumII_v2.py
bb4e1ccdf4274e82b90d536e5cafb4e3287d5144
[]
no_license
https://github.com/Jin-SukKim/Algorithm
024aa77c6bf63666910a1eb03407e808a05307ec
5f2a14fe1f64032126df55b1eadc1580a32735f3
refs/heads/master
2023-09-01T20:50:13.150780
2023-09-01T07:54:32
2023-09-01T07:54:32
263,555,962
4
0
null
false
2023-02-14T14:36:38
2020-05-13T07:24:51
2023-02-12T08:15:48
2023-02-14T14:36:37
3,011
1
0
0
C++
false
false
import bisect # 이진 검색으로 풀이하면 검색 log n을 n번 반복하므로 시간 복잡도가 O(n log n)이 된다. # 투 포인터 방식인 O(n)보다 이진 검색이 더 느리다. def twoSum(numbers: List[int], target: int) -> List[int]: for k, v in enumerate(numbers): left, right = k + 1, len(numbers) - 1 expected = target - v # 이진 검색으로 나머지 값 판별 while left <= right: mid = left + (right - left) // 2 if numbers[mid] < expected: left = mid + 1 elif numbers[mid] > expected: right = mid - 1 else: return k + 1, mid + 1 # 파이썬 내장 함수인 이진 검색으로 풀이 def twoSum(self, numbers: List[int], target: int) -> List[int]: for k, v in enumerate(numbers): expected = target - v # 왼쪽 범위를 제한 하는 파라미터 lo, 오른쪽 범위를 제한하는 hi # bisect.bisect_left(a, x, lo=0, hi=len(a)) i = bisect.bisect_left(numbers, expected, k + 1) if i < len(numbers) and numbers[i] == expected: return k + 1, i + 1
UTF-8
Python
false
false
1,177
py
400
twoSumII_v2.py
347
0.523906
0.512716
0
31
30.677419
63
justinsimonelli/Corkboard
10,419,590,664,004
4ccb7e56da1d88f9d12b781dd09f60262c772806
02be15f4120c4c29d6d354abe732e3d4cf0fb6a8
/routes.py
1a2e281ee09ebad33694aeb0f0cd174db447c6a8
[]
no_license
https://github.com/justinsimonelli/Corkboard
a2200f5f7a2330ab906300efcafe0bd9572f8069
c60000e624f1aea098e53be998b167a28fa3706f
refs/heads/master
2016-09-05T16:25:52.762740
2013-12-30T01:53:32
2013-12-30T01:53:32
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!flask/bin/python from flask import jsonify,make_response,request, render_template, abort import forecastio, dbUtil from app import app, models from config import FORECASTIO_KEY @app.route('/', methods = ['GET']) def render_home(): items = models.Todos.query.order_by(models.Todos.timestamp.desc()).all() return render_template("home.html", todos = items) @app.route('/corkboard/api/v1/todos', methods = ['GET']) def get_tasks(): return jsonify( { 'tasks': tasks } ) @app.route('/corkboard/api/v1/todos/add/', methods = ['POST']) def create_task(): if ((request.json is None)): abort(400) data = [dict(message=request.json['message'], latitude='105', longitude='108')] statusMsg = dbUtil.insert_new_msg(data) if( statusMsg['status'] == "OK" ): result = dbUtil.get_latest_record() record = result['item'][0] recordDict = { 'id': record.id, 'timestamp': record.timestamp, 'message': record.message, 'latitude': record.latitude, 'longitude': record.longitude } return make_response(jsonify( { 'status': statusMsg['status'], 'record': recordDict }), 201) else: return make_response(jsonify( { 'status': statusMsg['status'] } ), 400) @app.route('/corkboard/api/v1/weather/<lat>/<lng>/', methods = ['GET']) def get_weather(lat=None, lng=None): forecast = forecastio.load_forecast(FORECASTIO_KEY, lat, lng) currently = forecast.currently() dayInfo = {} for day in forecast.daily().data: dayInfo.update( generate_weather_dic( day ) ) return make_response(jsonify(dict(current=generate_weather_dic(currently), daily=dayInfo, status='OK')), 201) @app.route('/corkboard/api/v1/hello/') @app.route('/corkboard/api/v1/hello/<name>') def hello(name=None): return render_template('hello.html', name=name) @app.errorhandler(404) def not_found(error): return make_response(jsonify( { 'error': 'Not Found' } ), 404) @app.errorhandler(500) def server_error(error): return make_response(jsonify( {'error': 'Server error'} ), 500) def generate_weather_dic( object ): dayInfo = {} dateSt = None if not (object is None): try: dateSt = object.time.strftime("%m-%d-%Y") except Exception, e: dateSt = str(object.utime) dayInfo["data"] = { #order json properties alphabetically just to make things easier 'date' : dateSt, 'high' : object.temperatureMax, 'icon' : object.icon, 'low' : object.temperatureMin, 'precipAccum' : str(object.precipAccumulation), 'precipProbability' : formatFloatingPoint(object.precipProbability , 100), 'precipType' : object.precipType, 'summary' : object.summary, 'windSpeed' : object.windspeed } return dayInfo def formatFloatingPoint( val, multiplier = None ): if not ( val is None ): if not ( multiplier is None ): return ( "%0.2f" % (val * multiplier) ) else: return ( "%0.2f" % (val) ) if __name__ == '__main__': app.run(host = '0.0.0.0')
UTF-8
Python
false
false
3,244
py
12
routes.py
9
0.60111
0.586621
0
97
32.453608
113
FourColorsSuffice/FSND
7,026,566,529,563
726f85ee49432132743fad050fc209cd94144b84
53a3c152a91f2776f63b162281816d14334927e3
/projects/01_fyyur/starter_code/env/lib/python3.6/shutil.py
98633f8f8c005e897b6c57ea3372404d4f4cc112
[]
no_license
https://github.com/FourColorsSuffice/FSND
789bd8551756fc20fbae97d31230d31a73bf2e90
dd55b78d380836faa67d29855a64299cc60aa846
refs/heads/master
2020-12-02T13:11:02.484351
2020-01-02T06:47:37
2020-01-02T06:47:37
231,016,717
0
0
null
true
2019-12-31T03:09:26
2019-12-31T03:09:25
2019-12-30T19:18:06
2019-12-18T04:41:04
2,656
0
0
0
null
false
false
/Users/pnu/anaconda3/lib/python3.6/shutil.py
UTF-8
Python
true
false
44
py
43
shutil.py
41
0.818182
0.75
0
1
44
44
cryptk/pylight
17,721,035,083,803
b2a7a01e1423fdb780d7fd7678a01029d10c6914
284ed75e0ace87d53394c2f5a62629b66819e092
/pyqlight/command_line.py
57a911129d53f54ed646f5835aa17ff086cada28
[ "MIT" ]
permissive
https://github.com/cryptk/pylight
e2cd738ac686497e9abaf09908d36207f99742db
beb78662f8ff5ae0c9670ad6227de6cc87b381ed
refs/heads/master
2020-05-17T16:47:56.861992
2015-07-28T16:14:10
2015-07-28T16:14:10
39,591,012
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python from pyqlight import QLight from collections import OrderedDict from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter def main(): parser = ArgumentParser(description="control a Q-Light warning tower. " "All lamps should have red, yellow and green " "lights available. Blue and white lights may or " "may not be available depending on exact model.", epilog="Written by Chris Jowett, cryptk@gmail.com", formatter_class=ArgumentDefaultsHelpFormatter) lights = parser.add_argument_group('Light Controls', 'Valid states are ' '"off", "on", "blink", "pass"') light_choices = ['off','on','blink','pass'] lights.add_argument("-r", "--red", help="Desired state of red lamp.", type=str, nargs='?', default='pass', metavar='STATE', choices=light_choices) lights.add_argument("-y", "--yellow", help="Desired state of yellow lamp.", type=str, nargs='?', default='pass', metavar='STATE', choices=light_choices) lights.add_argument("-g", "--green", help="Desired state of green lamp.", type=str, nargs='?', default='pass', metavar='STATE', choices=light_choices) lights.add_argument("-b", "--blue", help="Desired state of blue lamp.", type=str, nargs='?', default='pass', metavar='STATE', choices=light_choices) lights.add_argument("-w", "--white", help="Desired state of white lamp.", type=str, nargs='?', default='pass', metavar='STATE', choices=light_choices) lights.add_argument("-a", "--all-lights", help="State of all lamps.", type=str, nargs='?', metavar='STATE', choices=light_choices) tone = parser.add_argument_group('Tone Controls', 'valid tone options are ' '"off", "tone_1", "tone_2", "tone_3", ' '"tone_4", "tone_5", "pass"') tone.add_argument("-t", "--tone", help="Desired tone to play.", type=str, nargs='?', metavar='TONE', default='pass', choices=['off', 'tone_1', 'tone_2', 'tone_3', 'tone_4', 'tone_5', 'pass']) tone.add_argument("-d", "--duration", help="Duration to play tone (in ms).", type=int, nargs='?', default=0) args = parser.parse_args() ql = QLight() if args.all_lights is not None: ql.set_all_lights(args.all_lights) else: ql.lights = OrderedDict([ ('red', args.red), ('yellow', args.yellow), ('green', args.green), ('blue', args.blue), ('white', args.white) ]) ql.update_lamp() if args.tone: ql.set_sound(args.tone, args.duration)
UTF-8
Python
false
false
3,294
py
4
command_line.py
3
0.480267
0.476928
0
63
51.285714
79
KC2004/sqlAlchemy-hw
4,939,212,443,340
40b0939c6a8ed35e0c9af739cbb5077de4540f4c
370ef4712d31285cab584196e1603ccf0f2ae2af
/query.py
5654be362c69feb6df75dff300d16a4e01550d5d
[]
no_license
https://github.com/KC2004/sqlAlchemy-hw
8663b46558c8c09f4150aa4386131d967e617384
1b2c65e0847c7283610221b6eb8da72d6e96b458
refs/heads/master
2021-01-22T02:21:47.181976
2017-02-07T22:29:54
2017-02-07T22:29:54
81,048,237
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" This file is the place to write solutions for the skills assignment called skills-sqlalchemy. Remember to consult the exercise instructions for more complete explanations of the assignment. All classes from model.py are being imported for you here, so feel free to refer to classes without the [model.]User prefix. """ from model import * init_app() # ------------------------------------------------------------------- # Part 2: Discussion Questions # 1. What is the datatype of the returned value of # ``Brand.query.filter_by(name='Ford')``? # # flask_sqlalchemy.BaseQuery object # 2. In your own words, what is an association table, and what type of # relationship (many to one, many to many, one to one, etc.) does an # association table manage? # # Association table manages two, many to many, tables. It # links those tables through foriegn keys. Association table # has a one to many relationship # to the tables. # ------------------------------------------------------------------- # Part 3: SQLAlchemy Queries # Get the brand with the ``id`` of "ram." q1 = "Brand.query.filter_by(brand_id='ram').all()" # Get all models with the name "Corvette" and the brand_id "che." q2 = "Model.query.filter(Model.name=='Corvette', Model.brand_id=='che').all()" # Get all models that are older than 1960. q3 = "Model.query.filter(Model.year < 1960).all()" # Get all brands that were founded after 1920. q4 = "Brand.query.filter(Brand.founded > 1920).all()" # Get all models with names that begin with "Cor." q5 = "Model.query.filter(Model.name.like('Cor%')).all()" # Get all brands that were founded in 1903 and that are not yet discontinued. q6 = "Brand.query.filter(Brand.founded=='1903', Brand.discontinued==None).all()" # Get all brands that are either 1) discontinued (at any time) or 2) founded # before 1950. q7 = "Brand.query.filter((Brand.founded < '1950') | (Brand.discontinued!=None)).all()" # Get any model whose brand_id is not "for." q8 = "Model.query.filter(Model.brand_id!='for').all()" # ------------------------------------------------------------------- # Part 4: Write Functions def get_model_info(year): """Takes in a year and prints out each model name, brand name, and brand headquarters for that year using only ONE database query.""" car_list = db.session.query(Model.name, Brand.brand_id, Brand.name, Brand.headquarters).filter(Model.year==year).\ join(Brand).all() for car in car_list: print "%s \t %s \t %s \t %s \n" % (car[0], car[1], car[2], car[3]) def get_brands_summary(): """Prints out each brand name and each model name with year for that brand using only ONE database query.""" car_list = db.session.query(Brand.name, Model.name).filter(Model.year).join(Brand).all() def search_brands_by_name(mystr): """Returns all Brand objects corresponding to brands whose names include the given string.""" brand_objs = Brand.query.filter(Brand.name.like('%mystr%')).all() return brand_objs def get_models_between(start_year, end_year): """Returns all Model objects corresponding to models made between start_year (inclusive) and end_year (exclusive).""" cars_in_range = Model.query.filter(Model.year > start_year, Model.year < end_year).all() return cars_in_range
UTF-8
Python
false
false
3,312
py
1
query.py
1
0.656099
0.6407
0
112
28.553571
118
wsgan001/data-mining-course
4,045,859,194,332
e726cbecbdf6be3a942e8808f0c684bc42791489
97b75306f4c7e2d366cbe58aa7c979c3c1fb2ff1
/assignment6/santander.py
ad272288b1a1d35cf051878b8eed679e9973cebf
[]
no_license
https://github.com/wsgan001/data-mining-course
0bd65ce954be28a1170dd3bd188ad0f2a01b66c9
4bd869b99a29933ce7304bf08f5f94aa87e95e9d
refs/heads/master
2020-03-27T00:47:40.383517
2016-12-22T07:53:11
2016-12-22T07:53:11
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Time : 16-12-1 下午1:10 # @Author : 骆克云 # @File : santander.py # @Software: PyCharm import pandas as pd import numpy as np import xgboost as xgb import csv from sklearn import preprocessing data_dir = "./data/" # 离散数据类型 mapping_dict = { # 雇佣状态 'ind_empleado': {-99: 0, 'N': 1, 'B': 2, 'F': 3, 'A': 4, 'S': 5}, # 性别 'sexo': {'V': 0, 'H': 1, -99: 2}, # 是否是新用户 'ind_nuevo': {'0': 0, '1': 1, -99: 2}, # 是否是主要客户 # 'indrel': {'1': 0, '99': 1, -99: 2}, # 月初的客户类型 # 'indrel_1mes': {-99: 0, '1.0': 1, '1': 1, '2.0': 2, '2': 2, '3.0': 3, '3': 3, '4.0': 4, '4': 4, 'P': 5}, # 月初的客户关系类型 # 'tiprel_1mes': {-99: 0, 'I': 1, 'A': 2, 'P': 3, 'R': 4, 'N': 5}, # 居住地与银行是否相同 # 'indresi': {-99: 0, 'S': 1, 'N': 2}, # 客户出生地与银行所在地是否相同 # 'indext': {-99: 0, 'S': 1, 'N': 2}, # 客户是否是员工的配偶 # 'conyuemp': {-99: 0, 'S': 1, 'N': 2}, # 客户是否已经死亡 # 'indfall': {-99: 0, 'S': 1, 'N': 2}, # 地址类型:全是1 # 'tipodom': {-99: 0, '1': 1}, # 省份 'nomprov': {'GIRONA': 0, 'ZAMORA': 1, 'BARCELONA': 2, 'SALAMANCA': 3, 'BURGOS': 4, 'HUESCA': 5, 'NAVARRA': 6, 'AVILA': 7, 'SEGOVIA': 8, 'LUGO': 9, 'LERIDA': 10, 'MADRID': 11, 'ALICANTE': 12, 'SORIA': 13, 'SEVILLA': 14, 'CANTABRIA': 15, 'BALEARS, ILLES': 16, 'VALLADOLID': 17, 'PONTEVEDRA': 18, 'VALENCIA': 19, 'TERUEL': 20, 'CORUÑA, A': 21, 'OURENSE': 22, 'JAEN': 23, 'CUENCA': 24, 'BIZKAIA': 25, 'CASTELLON': 26, 'RIOJA, LA': 27, 'ALBACETE': 28, 'BADAJOZ': 29, 'MURCIA': 30, 'CADIZ': 31, -99: 32, 'ALMERIA': 33, 'GUADALAJARA': 34, 'PALENCIA': 35, 'PALMAS, LAS': 36, 'CORDOBA': 37, 'HUELVA': 38, 'GRANADA': 39, 'ASTURIAS': 40, 'SANTA CRUZ DE TENERIFE': 41, 'MELILLA': 42, 'TARRAGONA': 43, 'ALAVA': 44, 'CEUTA': 45, 'MALAGA': 46, 'CIUDAD REAL': 47, 'ZARAGOZA': 48, 'TOLEDO': 49, 'LEON': 50, 'GIPUZKOA': 51, 'CACERES': 52}, # 是否是活跃客户 'ind_actividad_cliente': {'0': 0, '1': 1, -99: 2}, # 分割类型 'segmento': {'02 - PARTICULARES': 0, '03 - UNIVERSITARIO': 1, '01 - TOP': 2, -99: 2}, # 客户所居住的国家 'pais_residencia': {'LV': 102, 'BE': 12, 'BG': 50, 'BA': 61, 'BM': 117, 'BO': 62, 'JP': 82, 'JM': 116, 'BR': 17, 'BY': 64, 'BZ': 113, 'RU': 43, 'RS': 89, 'RO': 41, 'GW': 99, 'GT': 44, 'GR': 39, 'GQ': 73, 'GE': 78, 'GB': 9, 'GA': 45, 'GN': 98, 'GM': 110, 'GI': 96, 'GH': 88, 'OM': 100, 'HR': 67, 'HU': 106, 'HK': 34, 'HN': 22, 'AD': 35, 'PR': 40, 'PT': 26, 'PY': 51, 'PA': 60, 'PE': 20, 'PK': 84, 'PH': 91, 'PL': 30, 'EE': 52, 'EG': 74, 'ZA': 75, 'EC': 19, 'AL': 25, 'VN': 90, 'ET': 54, 'ZW': 114, 'ES': 0, 'MD': 68, 'UY': 77, 'MM': 94, 'ML': 104, 'US': 15, 'MT': 118, 'MR': 48, 'UA': 49, 'MX': 16, 'IL': 42, 'FR': 8, 'MA': 38, 'FI': 23, 'NI': 33, 'NL': 7, 'NO': 46, 'NG': 83, 'NZ': 93, 'CI': 57, 'CH': 3, 'CO': 21, 'CN': 28, 'CM': 55, 'CL': 4, 'CA': 2, 'CG': 101, 'CF': 109, 'CD': 112, 'CZ': 36, 'CR': 32, 'CU': 72, 'KE': 65, 'KH': 95, 'SV': 53, 'SK': 69, 'KR': 87, 'KW': 92, 'SN': 47, 'SL': 97, 'KZ': 111, 'SA': 56, 'SG': 66, 'SE': 24, 'DO': 11, 'DJ': 115, 'DK': 76, 'DE': 10, 'DZ': 80, 'MK': 105, -99: 1, 'LB': 81, 'TW': 29, 'TR': 70, 'TN': 85, 'LT': 103, 'LU': 59, 'TH': 79, 'TG': 86, 'LY': 108, 'AE': 37, 'VE': 14, 'IS': 107, 'IT': 18, 'AO': 71, 'AR': 13, 'AU': 63, 'AT': 6, 'IN': 31, 'IE': 5, 'QA': 58, 'MZ': 27}, # 客户加入的渠道 'canal_entrada': {'013': 49, 'KHP': 160, 'KHQ': 157, 'KHR': 161, 'KHS': 162, 'KHK': 10, 'KHL': 0, 'KHM': 12, 'KHN': 21, 'KHO': 13, 'KHA': 22, 'KHC': 9, 'KHD': 2, 'KHE': 1, 'KHF': 19, '025': 159, 'KAC': 57, 'KAB': 28, 'KAA': 39, 'KAG': 26, 'KAF': 23, 'KAE': 30, 'KAD': 16, 'KAK': 51, 'KAJ': 41, 'KAI': 35, 'KAH': 31, 'KAO': 94, 'KAN': 110, 'KAM': 107, 'KAL': 74, 'KAS': 70, 'KAR': 32, 'KAQ': 37, 'KAP': 46, 'KAW': 76, 'KAV': 139, 'KAU': 142, 'KAT': 5, 'KAZ': 7, 'KAY': 54, 'KBJ': 133, 'KBH': 90, 'KBN': 122, 'KBO': 64, 'KBL': 88, 'KBM': 135, 'KBB': 131, 'KBF': 102, 'KBG': 17, 'KBD': 109, 'KBE': 119, 'KBZ': 67, 'KBX': 116, 'KBY': 111, 'KBR': 101, 'KBS': 118, 'KBP': 121, 'KBQ': 62, 'KBV': 100, 'KBW': 114, 'KBU': 55, 'KCE': 86, 'KCD': 85, 'KCG': 59, 'KCF': 105, 'KCA': 73, 'KCC': 29, 'KCB': 78, 'KCM': 82, 'KCL': 53, 'KCO': 104, 'KCN': 81, 'KCI': 65, 'KCH': 84, 'KCK': 52, 'KCJ': 156, 'KCU': 115, 'KCT': 112, 'KCV': 106, 'KCQ': 154, 'KCP': 129, 'KCS': 77, 'KCR': 153, 'KCX': 120, 'RED': 8, 'KDL': 158, 'KDM': 130, 'KDN': 151, 'KDO': 60, 'KDH': 14, 'KDI': 150, 'KDD': 113, 'KDE': 47, 'KDF': 127, 'KDG': 126, 'KDA': 63, 'KDB': 117, 'KDC': 75, 'KDX': 69, 'KDY': 61, 'KDZ': 99, 'KDT': 58, 'KDU': 79, 'KDV': 91, 'KDW': 132, 'KDP': 103, 'KDQ': 80, 'KDR': 56, 'KDS': 124, 'K00': 50, 'KEO': 96, 'KEN': 137, 'KEM': 155, 'KEL': 125, 'KEK': 145, 'KEJ': 95, 'KEI': 97, 'KEH': 15, 'KEG': 136, 'KEF': 128, 'KEE': 152, 'KED': 143, 'KEC': 66, 'KEB': 123, 'KEA': 89, 'KEZ': 108, 'KEY': 93, 'KEW': 98, 'KEV': 87, 'KEU': 72, 'KES': 68, 'KEQ': 138, -99: 6, 'KFV': 48, 'KFT': 92, 'KFU': 36, 'KFR': 144, 'KFS': 38, 'KFP': 40, 'KFF': 45, 'KFG': 27, 'KFD': 25, 'KFE': 148, 'KFB': 146, 'KFC': 4, 'KFA': 3, 'KFN': 42, 'KFL': 34, 'KFM': 141, 'KFJ': 33, 'KFK': 20, 'KFH': 140, 'KFI': 134, '007': 71, '004': 83, 'KGU': 149, 'KGW': 147, 'KGV': 43, 'KGY': 44, 'KGX': 24, 'KGC': 18, 'KGN': 11} } # 离散特征 cat_cols = list(mapping_dict.keys()) # 预测的列 target_cols = ['ind_ahor_fin_ult1', 'ind_aval_fin_ult1', 'ind_deco_fin_ult1', 'ind_deme_fin_ult1', 'ind_cco_fin_ult1', 'ind_cder_fin_ult1', 'ind_cno_fin_ult1', 'ind_ctju_fin_ult1', 'ind_ctma_fin_ult1', 'ind_ctop_fin_ult1', 'ind_ctpp_fin_ult1', 'ind_dela_fin_ult1', 'ind_ecue_fin_ult1', 'ind_fond_fin_ult1', 'ind_hip_fin_ult1', 'ind_plan_fin_ult1', 'ind_pres_fin_ult1', 'ind_reca_fin_ult1', 'ind_tjcr_fin_ult1', 'ind_valo_fin_ult1', 'ind_viv_fin_ult1', 'ind_nomina_ult1', 'ind_nom_pens_ult1', 'ind_recibo_ult1'] target_cols = target_cols[4:] num_cols = ['age', 'renta', 'antiguedad'] feature_columns = cat_cols + num_cols def clean_data(file_train="train_ver2.csv", file_test="test_ver2.csv"): raw_file = pd.read_csv(data_dir + file_train, parse_dates=['fecha_dato', 'fecha_alta'], skipinitialspace=True, dtype=str) test_file = pd.read_csv(data_dir + file_test, parse_dates=['fecha_dato', 'fecha_alta'], skipinitialspace=True, dtype=str) # id raw_file["ncodpers"] = raw_file["ncodpers"].astype(int) test_file["ncodpers"] = test_file["ncodpers"].astype(int) test_id = test_file["ncodpers"] # time raw_file.dropna(subset=['fecha_alta'], inplace=True) raw_file['segmento'].fillna('01 - TOP', inplace=True) test_file['segmento'].fillna('01 - TOP', inplace=True) raw_file['ind_nomina_ult1'].fillna('0', inplace=True) raw_file['ind_nom_pens_ult1'].fillna('0', inplace=True) ## 连续型变量 raw_file['age'] = raw_file['age'].astype(float) raw_file['age'].fillna(raw_file['age'].mean(), inplace=True) test_file['age'] = test_file['age'].astype(float) test_file['age'].fillna(raw_file['age'].mean(), inplace=True) raw_file['renta'] = raw_file['renta'].astype(float) raw_file['renta'].fillna(raw_file['renta'].mean(), inplace=True) test_file['renta'] = test_file['renta'].astype(float) test_file['renta'].fillna(raw_file['renta'].mean(), inplace=True) raw_file['antiguedad'] = raw_file['antiguedad'].astype(float) raw_file['antiguedad'].fillna(raw_file['antiguedad'].mean(), inplace=True) test_file['antiguedad'] = test_file['antiguedad'].astype(float) test_file['antiguedad'].fillna(raw_file['antiguedad'].mean(), inplace=True) # 类型转换 for tar in target_cols: raw_file[tar] = raw_file[tar].astype(int) # 离散特征映射 raw_file.fillna(-99, inplace=True) test_file.fillna(-99, inplace=True) for col in cat_cols: raw_file[col] = raw_file[col].apply(lambda x: mapping_dict[col][x]) test_file[col] = test_file[col].apply(lambda x: mapping_dict[col][x]) date_train = pd.to_datetime(["2015-01-28", "2015-02-28", "2015-03-28", "2015-04-28", "2015-05-28"]) date_test = pd.to_datetime(["2016-01-28", "2016-02-28", "2016-03-28", "2016-04-28", "2016-05-28"]) data_train = raw_file.loc[raw_file["fecha_dato"].isin(date_train)] data_test = raw_file.loc[raw_file["fecha_dato"].isin(date_test)] train_file = raw_file.loc[raw_file["fecha_dato"] == pd.to_datetime("2015-06-28")] data_train.to_csv(data_dir + 'data_train_clean.csv', index=False) data_test.to_csv(data_dir + 'data_test_clean.csv', index=False) test_file.to_csv(data_dir + 'test_file_clean.csv', index=False) train_file.to_csv(data_dir + 'train_file_clean.csv', index=False) def had_in_past(*args): arr = np.array(args) sum_col = arr.sum(axis=0) already_had = np.ones(len(sum_col)) mask = np.where(sum_col < 1) already_had[mask] = 0 return list(already_had) def flattern(feature): feature_flattern = [] for item in feature: feature_flattern.extend(item) return feature_flattern def get_data_train(file_name, train_file): train_X = [] train_y = [] user_dict = [{} for _ in range(6)] target_len = len(target_cols) with open(file_name) as f: f_csv = csv.DictReader(f) for row in f_csv: # 用户特征 user_id = int(row['ncodpers']) i = int(row["fecha_dato"][6]) % 6 if i != 0: target_list = [int(float(row[target])) for target in target_cols] user_dict[i][user_id] = target_list[:] with open(train_file) as f: f_csv = csv.DictReader(f) for row in f_csv: user_id = int(row['ncodpers']) # 特征提取 X_feature = [] # 离散特征 X_feature.append([int(row[col]) for col in cat_cols]) # 连续特征 X_feature.append([int(float(row[col])) for col in num_cols]) X_feature = flattern(X_feature) if row['fecha_dato'] == '2015-06-28': user05 = user_dict[5].get(user_id, [0] * target_len) user01 = user_dict[1].get(user_id, [0] * target_len) user02 = user_dict[2].get(user_id, [0] * target_len) user03 = user_dict[3].get(user_id, [0] * target_len) user04 = user_dict[4].get(user_id, [0] * target_len) already_had = had_in_past(user05, user04, user03, user02, user01) user06 = [int(float(row[target])) for target in target_cols] new_products = [max(x6 - x5, 0) for (x6, x5) in zip(user06, user05)] # 仅6月份购买过商品的用户参与训练 if sum(new_products) > 0: for ind, prod in enumerate(new_products): if prod > 0: # assert len(user05) == target_len train_X.append( X_feature + user05 + user04 + user02 + user01 + user03 + already_had) train_y.append(ind) return np.array(train_X, dtype=int), np.array(train_y, dtype=int) def get_data_test(file_name, test_file): test_X = [] user_dict = [{} for _ in range(6)] user_05_had = [] target_len = len(target_cols) with open(file_name) as f: f_csv = csv.DictReader(f) for row in f_csv: # 用户特征 user_id = int(row['ncodpers']) i = int(row["fecha_dato"][6]) % 6 if i != 0: target_list = [int(float(row[target])) for target in target_cols] user_dict[i][user_id] = target_list[:] with open(test_file) as f: f_csv = csv.DictReader(f) for row in f_csv: # 用户 user_id = int(row['ncodpers']) # 特征提取 X_feature = [] # 离散特征 X_feature.append([int(row[col]) for col in cat_cols]) # 连续特征 X_feature.append([int(float(row[col])) for col in num_cols]) X_feature = flattern(X_feature) if row['fecha_dato'] == '2016-06-28': user05 = user_dict[5].get(user_id, [0] * target_len) user01 = user_dict[1].get(user_id, [0] * target_len) user02 = user_dict[2].get(user_id, [0] * target_len) user03 = user_dict[3].get(user_id, [0] * target_len) user04 = user_dict[4].get(user_id, [0] * target_len) already_had = had_in_past(user05, user04, user03, user02, user01) user_05_had.append(user05) test_X.append( X_feature + user05 + user04 + user02 + user01 + user03 + already_had) return np.array(test_X, dtype=int), np.array(user_05_had, dtype=int) def XGBModel(train_X, train_y, seed=2016): param = {} param['objective'] = 'multi:softprob' param['eta'] = 0.1 param['max_depth'] = 9 param['silent'] = 1 param['num_class'] = 20 param['eval_metric'] = "mlogloss" param['min_child_weight'] = 4 param['gamma'] = 3 param['subsample'] = 0.90 param['colsample_bytree'] = 0.9 param['seed'] = seed num_rounds = 80 plst = list(param.items()) xgtrain = xgb.DMatrix(train_X, label=train_y) model = xgb.train(plst, xgtrain, num_rounds) return model if __name__ == "__main__": print("开始清洗数据...") clean_data() print("清洗数据完成, 获取训练集...") train_X, train_y = get_data_train(data_dir + 'data_train_clean.csv', data_dir + 'train_file_clean.csv') print("训练集大小:", train_X.shape) print("获取预测数据...") test_X, user_05_had = get_data_test(data_dir + 'data_test_clean.csv', data_dir + 'test_file_clean.csv') print("预测集大小:", test_X.shape) print("开始构建模型...") model = XGBModel(train_X, train_y) print("开始预测...") xgtest = xgb.DMatrix(test_X) preds = model.predict(xgtest) print("得到预测结果...") target_cols = np.array(target_cols) # 取前7个值最大列 # 过滤掉5月份已经存在的商品 predictions = [] length = len(preds) assert length == len(user_05_had) for i in range(length): already = np.argwhere(user_05_had[i] == 1).flatten() if already.size != 0: preds[i][already] = 0 pred = np.argsort(-preds[i]) flag = 7 for j in range(7): if preds[i][pred[j]] == 0: flag = j break predictions.append(pred[:flag]) # 取测试集ID test_id = np.array(pd.read_csv(data_dir + "test_ver2.csv", usecols=['ncodpers'])['ncodpers']) final_preds = [" ".join(list(target_cols[pred])) for pred in predictions] result = pd.DataFrame({'ncodpers': test_id, 'added_products': final_preds}) result.to_csv('sub_xgb_12_19_3.csv', index=False)
UTF-8
Python
false
false
16,080
py
43
santander.py
31
0.500933
0.42654
0
333
45.663664
120
openstack/freezer-tempest-plugin
11,029,476,058,159
b1feb1a2c27cac8e34e8ac0cad1598457193bea6
4db753584b6d4dc4f2e594a79b4bab65b5aba80e
/freezer_tempest_plugin/tests/freezer_api/api/test_api_jobs.py
4edf5650239a116b386602b1ea4c32a1e4a075bd
[ "Apache-2.0" ]
permissive
https://github.com/openstack/freezer-tempest-plugin
03f5db6a8a5dcf79f8e1fcd57439e0decae5e4de
f8fe406aafb82878837706984b9a441a46aaf088
refs/heads/master
2023-09-03T22:11:35.113236
2023-02-14T01:58:32
2023-02-14T01:58:32
94,874,360
7
1
null
null
null
null
null
null
null
null
null
null
null
null
null
# (C) Copyright 2016 Hewlett Packard Enterprise Development Company LP # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from tempest.lib import decorators from tempest.lib import exceptions from oslo_serialization import jsonutils as json from freezer_tempest_plugin.tests.freezer_api.api import base fake_job = { "job_actions": [ { "freezer_action": { "action": "backup", "mode": "fs", "path_to_backup": "/home/tylerdurden/project_mayhem", "backup_name": "project_mayhem_backup", "container": "my_backup_container", }, "exit_status": "success", "max_retries": 1, "max_retries_interval": 1, "mandatory": True } ], "job_schedule": { "time_created": 1234, "time_started": 1234, "time_ended": 0, "status": "stop", "schedule_date": "2015-06-02T16:20:00", "schedule_month": "1-6, 9-12", "schedule_day": "mon, wed, fri", "schedule_hour": "03", "schedule_minute": "25", }, "job_id": "blabla", "client_id": "01b0f00a-4ce2-11e6-beb8-9e71128cae77_myhost.mydomain.mytld", "user_id": "blabla", "description": "scheduled one shot" } class TestFreezerApiJobs(base.BaseFreezerApiTest): @classmethod def resource_setup(cls): super(TestFreezerApiJobs, cls).resource_setup() @classmethod def resource_cleanup(cls): super(TestFreezerApiJobs, cls).resource_cleanup() @decorators.attr(type="gate") def test_api_jobs(self): resp, response_body = self.freezer_api_client.get_jobs() self.assertEqual(200, resp.status) response_body_json = json.loads(response_body) self.assertIn('jobs', response_body_json) jobs = response_body_json['jobs'] self.assertEmpty(jobs) @decorators.attr(type="gate") def test_api_jobs_get_limit(self): # limits > 0 should return successfully for valid_limit in [2, 1]: resp, body = self.freezer_api_client.get_jobs(limit=valid_limit) self.assertEqual(200, resp.status) # limits <= 0 should raise a bad request error # for bad_limit in [0, -1, -2]: # self.assertRaises(exceptions.BadRequest, # self.freezer_api_client.get_jobs, # limit=bad_limit) @decorators.attr(type="gate") def test_api_jobs_get_offset(self): # offsets >= 0 should return 200 for valid_offset in [1, 0]: resp, body = self.freezer_api_client.get_jobs(offset=valid_offset) self.assertEqual(200, resp.status) # offsets < 0 should return 400 # for bad_offset in [-1, -2]: # self.assertRaises(exceptions.BadRequest, # self.freezer_api_client.get_jobs, # offset=bad_offset) @decorators.attr(type="gate") def test_api_jobs_post(self): # Create the job with POST resp, response_body = self.freezer_api_client.post_jobs(fake_job) self.assertEqual(201, resp.status) self.assertIn('job_id', response_body) job_id = response_body['job_id'] # Check that the job has the correct values resp, response_body = self.freezer_api_client.get_jobs(job_id) self.assertEqual(200, resp.status) # Delete the job resp, response_body = self.freezer_api_client.delete_jobs( job_id) self.assertEqual(204, resp.status) @decorators.attr(type="gate") def test_api_jobs_with_invalid_client_project_id_fail(self): """Ensure that a job submitted with a bad client_id project id fails""" fake_bad_job = fake_job fake_bad_job['client_id'] = 'bad%project$id_host.domain.tld' # Create the job with POST self.assertRaises(exceptions.BadRequest, lambda: self.freezer_api_client.post_jobs( fake_bad_job)) @decorators.attr(type="gate") def test_api_jobs_with_invalid_client_host_fail(self): """Ensure that a job submitted with a bad client_id hostname fails""" fake_bad_job = fake_job fake_bad_job['client_id'] = ("01b0f00a-4ce2-11e6-beb8-9e71128cae77" "_bad_hostname.bad/domain.b") # Create the job with POST self.assertRaises(exceptions.BadRequest, lambda: self.freezer_api_client.post_jobs( fake_bad_job)) def test_api_jobs_with_only_fqdn_succeeds(self): """Ensure that a job submitted with only an FQDN succeeds""" fqdn_only_job = fake_job fqdn_only_job['client_id'] = 'padawan-ccp-c1-m1-mgmt' # Attempt to post the job, should succeed resp, response_body = self.freezer_api_client.post_jobs(fqdn_only_job) self.assertEqual(201, resp.status)
UTF-8
Python
false
false
5,685
py
27
test_api_jobs.py
19
0.585576
0.564116
0
154
35.915584
79
sztojfen/Euler
10,453,950,402,596
bd1d82fc8f6de0f385a5cdb335df40c550d722c6
09af8ebe9c02362f797dd9c4b132e68ba51f4860
/15.py
567b4f497a376588f7ab0b8cea6a87c76032664c
[]
no_license
https://github.com/sztojfen/Euler
5471f2fa13c32bddea1efb9526ab51c2d2489a03
9f36dc8d91ca0590ac48ed83583720f551ec3eca
refs/heads/master
2021-06-03T09:16:34.163012
2020-12-03T14:02:38
2020-12-03T14:02:38
145,708,684
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
__author__ = 'stefan' def silnia(n): if n==1: return 1 else: return n*silnia(n-1) print silnia(40)/(silnia(20)*silnia(20))
UTF-8
Python
false
false
151
py
47
15.py
47
0.536424
0.476821
0
9
15.555556
40
aynella/lab22
6,889,127,544,284
e5a7f5c5495040e516822eeca4589be8f0e9f8ae
8289e5c60547fba8ab56542f2f9a5e5bf1437e9d
/ex1.py
422adfa7ccb83547ed9162dfa5a90342f66d29b9
[]
no_license
https://github.com/aynella/lab22
ddc85832904d30021a6faa1cb80fd548071a744c
b1b5e794d1608777270c9e9f7c76a31837bc7d61
refs/heads/master
2021-01-06T11:29:56.112877
2020-02-18T08:47:24
2020-02-18T08:47:24
241,311,969
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def ex_1(n, i): return n[i] print(ex_1([10, 3, 4, 5, 9], 3)) print(ex_1([10, 3, 4, 5, 9], 4))
UTF-8
Python
false
false
98
py
14
ex1.py
14
0.469388
0.295918
0
4
23.5
32
ssgalitsky/pymm
5,557,687,719,936
e3afb3d62472a10313ec950ae812619696aebd64
ac81bb2c70a68dbc3e0403996e88def41cd9d11d
/setup.py
30b5094c630aa09ecb658f467a05453c5e803173
[ "MIT" ]
permissive
https://github.com/ssgalitsky/pymm
1596ec6c15d399211e45453c5491a93178d5674f
77f0cfc32a6819781cf61e3c311f1340406e3fba
refs/heads/master
2020-06-04T06:57:14.761501
2017-02-17T21:37:10
2017-02-17T21:37:10
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from distutils.core import setup # thanks to http://www.diveintopython3.net/packaging.html # for the excellent tutorial on packaging python modules classifiers = [ 'License :: OSI Approved :: MIT License', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3 :: Only', 'Operating System :: OS Independent', 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Text Processing :: Markup :: XML' # interpret xml-based mindmaps ] descr = ( 'python module to read / write Mindmap (.mm) files built with', 'Freemind and Freeplane', ) long_descr = """\ Module for reading, writing, editting, and creating Mind Maps. ---------------------------------------------------------------------------- This module builds on top of xml.etree.ElementTree to intrepret the xml structure of MindMaps, and presents the information in a clear and intuitive manner that mimicks how Freeplane and Freemind build their own. Building a mindmap is easy:: import pymm with pymm.Mindmap('output.mm', 'w') as mm: root = mm.root root.cloud = pymm.Cloud(SHAPE='STAR') root.text = 'space topics' for text in ['stars', 'planets', 'astroids']: root.children.append(pymm.Node(TEXT=text)) # on context-exit, mindmap is written to file Reading, editting, and writing a mindmap is also easy:: import pymm mm = pymm.Mindmap('docs/pymm_documentation.mm') root = mm.nodes[0] root.nodes.append(pymm.Node(TEXT='another child of root')) pymm.write('output2.mm', mm) """ setup( name='pymm', packages=['pymm'], version='0.3.5', author='Lance Kindle', author_email='lance.kindle@gmail.com', url='http://www.github.com/lancekindle/pymm', classifiers=classifiers, description=descr, long_description=long_descr )
UTF-8
Python
false
false
1,974
py
16
setup.py
10
0.650456
0.645897
0
52
36.961538
79
Julien-Kinderf/word-blitz-solver
6,700,149,007,520
5855309cd9f803b6c1dd4d5f9f0dac4bed9efa71
9b195cf355d4bba73feb6867d9eab1494933f5f4
/src/solver.py
c769ea7d26c818d69ddcc5d28ba0c51a722e7da4
[]
no_license
https://github.com/Julien-Kinderf/word-blitz-solver
e77fef6b1703638085a1b79f573284e74cadb992
4dcdf90de8fc3287822dbf7dc97b64931f42f1d7
refs/heads/master
2022-04-16T03:16:07.018372
2020-04-09T20:20:03
2020-04-09T20:20:03
250,363,984
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python3 """ This script """ import sys import os import time import ocr def neighboors(case): """ Returns the list of neighboors of the input node, following our grid convention """ # Switch case made with a dictionnary n = {0: [1, 4, 5], 1: [0, 2, 5, 6, 4], 2: [1, 3, 6, 7, 5], 3: [2, 7, 6], 4: [0, 1, 5, 9, 8], 5: [4, 6, 1, 9, 0, 10, 2, 8], 6: [5, 7, 2, 10, 1, 11, 3, 9], 7: [2, 3, 6, 10, 11], 8: [4, 5, 9, 12, 13], 9: [8, 10, 5, 13, 4, 14, 6, 12], 10: [9, 11, 6, 14, 5, 15, 7, 13], 11: [6, 7, 10, 14, 15], 12: [13, 8, 9], 13: [12, 14, 9, 8, 10], 14: [13, 15, 10, 9, 11], 15: [14, 11, 10, ]} return(n[case]) def getstring(chemin, grille): """Renvoie la chaine de caractères correspondant au chemin fourni en entrée""" s = "".join([grille[i] for i in chemin]) return(s) def cleandict(path, grid): """Nettoie le dictionnaire en retirant tous les mots non faisables""" with open(path, "r+") as textfile: text = textfile.read().split() dictionnaire = [] startsize = len(text) for mot in text: if not ((len(mot) == 1) or (len(mot) >= 17) or ("-" in mot) or not (set(mot) <= set(grid))): dictionnaire.append(mot) endsize = len(dictionnaire) return(dictionnaire) def solve(grid, path_to_dict): """ @parameter : a grid of letters @output : a dictionnary : keys are possible words and elements are the necessary moves """ motstrouves = {} # Récupération du dictionnaire dictionnaire = cleandict(path_to_dict, grid) # Initialisation des chemins de base : # (ce sont juste des numéros de cases) chemins = [] for i in range(16): chemins.append([i]) # On évalue tour à tour chaque chemin while len(chemins) > 0: chemin = chemins[0] # print(f"Etude du chemin {chemin}") # Pour chacun de ces chemins on regarde l'ensemble des voisins de sa dernière case # Naturellement, on en exclut les voisins qui sont déjà dans le chemin voisins = [v for v in neighboors(chemin[-1]) if v not in chemin] # On observe à présent chacun de ces voisins : for voisin in voisins: found = False # print(f"\tEtude du voisin {voisin} :") # On regarde le nouveau chemin potentiel et la chaine associée newchemin = chemin[:] newchemin.append(voisin) # ex: [0, 1] devient [0, 1, 2] newchaine = getstring(newchemin, grid) # print(f"\t\tchemin {newchemin} pour chaine {newchaine} : ", end="") # On compare à ce qu'on a dans le dictionnaire : # Si il y a un match c'est chouette if ((newchaine not in motstrouves.keys()) and (newchaine in dictionnaire)): chemins.append(newchemin) found = True motstrouves[newchaine] = newchemin # print("trouvé dans le dictionnaire") continue # Puisque la chaine est un mot il y a des bonnes chances qu'il existe aussi d'autres chaines qui commencent par ce mot # On peut quand même espérer un match si des mots commencent par cette chaine for mot in dictionnaire: if (mot.startswith(newchaine)): chemins.append(newchemin) found = True # print(f"Début de la chaine {mot}") break # Il suffit de trouver un mot qui commence par cette chaine pour que ça vaille le coup de la garder if not found: # print("pas dans le dictionnaire") pass # Après l'avoir analysé on supprime le chemin chemins.remove(chemin) return(motstrouves) """ solution = solve(grid) for mot in solution.keys(): print(f"{mot} : {solution[mot]}") print(f"Temps d'execution : {time.time() - start_time} secondes") """ if __name__ == "__main__": start_time = time.time() os.system('clear') if (len(sys.argv) != 2): print(f"Usage : python3 solver.py <path to your image>") exit(0) # Retrieving the input file relative_path_to_image = sys.argv[1] if (os.path.exists(relative_path_to_image)): absolute_path_to_image = os.path.abspath(relative_path_to_image) else: print(f"Cannot find {relative_path_to_image}") exit(1) # Retrieving the identified letter folder path absolute_path_to_letters = __file__.replace( "/src/solver.py", "/img/identified/") # Retrieving the identified letter folder path absolute_path_to_exec = __file__.replace( "/solver.py", "/executioner.sh") # Retrieving the path for the used dictionnary absolute_path_to_dictionnary = __file__.replace( "/src/solver.py", "/words/dictionnary.txt") # getting the grid grid = ocr.getGrid(absolute_path_to_image, absolute_path_to_letters) print( f"Detected the following grid in {round(time.time() - start_time, 2)} seconds :\n{' '.join(grid[0:4])}\n{' '.join(grid[4:8])}\n{' '.join(grid[8:12])}\n{' '.join(grid[12:16])}\n") # Beginning of the word research phase print("Starting the word research ...") research_start_time = time.time() solution = solve(grid, absolute_path_to_dictionnary) research_end_time = time.time() print( f"Found {len(solution)} possible words in {round(research_end_time - research_start_time, 2)} seconds :") for word in solution.keys(): print(f"{word} ({len(word)}): {solution[word]}") print( f"Found {len(solution)} words in {round(time.time() - start_time, 2)} seconds") # exit() # What follows is not ready yet print() typing_start = time.time() print(f"Starting to send words to the phone :") nbwords = 0 for word in sorted(solution.keys(), reverse=True, key=lambda w: len(w)): print(f"Entering word {word}") pattern = ' '.join([str(i) for i in solution[word]]) os.system(f"bash {absolute_path_to_exec} {pattern}") nbwords += 1 if ((time.time() - start_time) > 40): # Put this value to 78 to play all time break print( f"Entered {nbwords} words in {round(time.time() - typing_start, 2)} seconds")
UTF-8
Python
false
false
6,444
py
7
solver.py
5
0.577145
0.549899
0
189
32.984127
186
BhagyeshDudhediya/PythonPrograms
16,569,983,830,510
4df0cac6d76dda3a1af63e399d508cec7159e781
deea011bef7b656eb579a9769d07f14478a32690
/18-loop-cntl-statements.py
f64b5167af240ae2308968153e4842076985700f
[]
no_license
https://github.com/BhagyeshDudhediya/PythonPrograms
38abcfd94e21b7cc8c323760a313cf3930bb07b2
185152b7644462d9dc75a1c91aedf2cf13da5015
refs/heads/master
2021-04-30T15:09:54.311064
2018-10-31T09:50:57
2018-10-31T09:50:57
121,232,711
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python3 # The Loop control statements change the execution from its normal sequence. When the execution leaves a scope, # all automatic objects that were created in that scope are destroyed. # There are 3 loop control statements: # 1. break, 2. continue, 3. pass # BREAK STATEMENT # The break statement is used for premature termination of the current loop. After abandoning the loop, # execution at the next statement is resumed, just like the traditional break statement in C. # The most common use of break is when some external condition is triggered requiring a hasty exit from a loop. # The break statement can be used in both while and for loops. # If you are using nested loops, the break statement stops the execution of the innermost loop and # starts executing the next line of the code after the block. print ('Break Statement:'); my_num=int(input('any number: ')) numbers=[11,33,55,39,55,75,37,21,23,41,13] print ('list', numbers); for num in numbers: if num==my_num: print ('number',my_num,'found in list') break else: print ('number',my_num,'not found in list') # CONTINUE STATEMENT # The continue statement in Python returns the control to the beginning of the current loop. # When encountered, the loop starts next iteration without executing the remaining statements in the current iteration. # The continue statement can be used in both while and for loops. print ('\nContinue Statement:'); var = 10 # Second Example while var > 0: var = var - 1; if var == 5: print ("var == 5, so continue..") continue print ('Current variable value :', var) # PASS STATEMENT # It is used when a statement is required syntactically but you do not want any command or code to execute. # The pass statement is a null operation; nothing happens when it executes. The pass statement is also # useful in places where your code will eventually go, but has not been written yet i.e. in stubs). print ('\nPass Statement') for letter in 'Python': if letter == 'h': pass print ('This is pass block') print ('Current Letter :', letter)
UTF-8
Python
false
false
2,145
py
55
18-loop-cntl-statements.py
53
0.715152
0.699767
0
48
43.583333
119
tfmorris/wrangler
17,403,207,492,564
12c5eb3299d16a40d256bef5ea583d2df0235951
fa96af5a7b13ef0c79c134f0f38e0c8beb2ad4ac
/runtime/python/setup.py
e702f0502cbad601b0e56cec8a3eae338e062094
[]
no_license
https://github.com/tfmorris/wrangler
0eda4610207128047187be427d53d90958860021
0ae804edd84cb8040e1c93cc42222e0a41a4e94a
refs/heads/master
2021-01-24T00:24:50.076635
2013-06-18T20:55:05
2013-06-18T20:55:05
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from setuptools import setup, find_packages setup( name = "DataWrangler", version = "0.2", packages = find_packages(), url = 'http://www.stanford.edu/~skandel/platform/python/DataWrangler-0.1.tar.gz', download_url = 'http://www.stanford.edu/~skandel/platform/python/DataWrangler-0.1.tar.gz', )
UTF-8
Python
false
false
307
py
45
setup.py
27
0.70684
0.687296
0
8
37.5
91
Jiongxiao/Leetcode
11,020,886,095,455
37aae13cee1e1b21016556550145d08b04f9069f
4c67533d6d5183ed985288a55631fe1c99b5ae21
/413_Arithmetic_Slices.py
36793499a7ff658d7a1d929d67303960379edaa1
[]
no_license
https://github.com/Jiongxiao/Leetcode
546f789a0d892fe56d7f53a41aa97ccb2a8e1813
641775f750a1197f9aaa23e5122b0add2ae064ee
refs/heads/master
2021-01-17T01:11:35.970423
2017-09-21T07:04:52
2017-09-21T07:04:52
56,422,836
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
class Solution(object): def numberOfArithmeticSlices(self, A): """ :type A: List[int] :rtype: int """ n=len(A) if n<3: return 0 res=0 tail=[0]*n if A[2]+A[0]==A[1]<<1: tail[2]=1 res+=1 for i in range(3,n): if A[i]+A[i-2]==A[i-1]<<1: tail[i]=tail[i-1]+1 res+=tail[i] return res
UTF-8
Python
false
false
450
py
128
413_Arithmetic_Slices.py
128
0.375556
0.337778
0
20
21.5
42
leftomelas/funny-morse
14,078,902,827,192
5c67387916db086ba3198bdb25fadefb9379c0e8
fb82083e434c42ed6220a866183488aa8a7807cf
/funny_morse/show.py
e37ec4d4b824397c4bf0c1685282299851b2f77a
[ "MIT" ]
permissive
https://github.com/leftomelas/funny-morse
6d4c7b35fb4f1b7f588c499cb61e9cab61e485ce
c50c9165ff739bd6da45cdc486e597742d8a1fea
refs/heads/master
2023-08-11T15:46:40.680829
2020-07-15T08:10:44
2020-07-15T08:10:44
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import tkinter import morse TITLE = "funny-morse" GEOMETRY = "" # Default WPM = morse.WPM FS = morse.FS def info(title=-1, geometry=-1): title = TITLE if title == -1 else title geometry = GEOMETRY if geometry == -1 else geometry print("Window :") print(" Title =", title) print(" Geometry =", repr(geometry)) def main(message, wpm=-1, fs=-1, title=-1, geometry=-1): wpm = WPM if wpm == -1 else wpm fs = FS if fs == -1 else fs title = TITLE if title == -1 else title geometry = GEOMETRY if geometry == -1 else geometry code = morse.stringToMorse(message) flip_intervals = morse.morseToFlipIntervals(code, wpm, fs) window = Window(flip_intervals, title, geometry) window.mainloop() class Window(tkinter.Tk): def __init__(self, flip_intervals, title=-1, geometry=-1): title = TITLE if title == -1 else title geometry = GEOMETRY if geometry == -1 else geometry self.flip_intervals = flip_intervals self.end = len(flip_intervals) self.i = 0 self.previous = False super().__init__() self.title(title) self.geometry(geometry) self.configure(bg="#000000") self.update() def flip(self): self.configure(bg="#000000" if self.previous else "#ffffff") self.previous = not self.previous self.i += 1 self.update() def update(self): if self.i >= self.end: self.destroy() else: sleep = self.flip_intervals[self.i] self.after(sleep, self.flip)
UTF-8
Python
false
false
1,597
py
10
show.py
8
0.589856
0.571071
0
56
27.517857
68
avvarga/Lab206
12,910,671,731,985
bb0f7a0e59fc30032433c0742202386778cc65cf
9ee644fdb3b0a5ae7887ecb1f4a9013b3abbcb8b
/Python/OOP/car.py
17104afd7deeb4c779ff70c423641f088128c5fc
[]
no_license
https://github.com/avvarga/Lab206
0aa0bf7f1e0340466c5e120e7c1a8726f9385567
c55fae4044625355ec392f3de58442b2767f7916
refs/heads/master
2021-04-15T15:42:11.700351
2018-04-13T23:07:25
2018-04-13T23:07:25
126,499,170
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
class car(object): def __init__ (self,price,speed,fuel,mileage): self.price=price self.speed=speed self.fuel=fuel self.mileage=mileage if price>10000: self.tax= 0.15 else: self.tax= 0.12 print self.display_all() def display_all(self): print "Price:",self.price print "Speed:",self.speed,"mph" print "Fuel:",self.fuel print "Mileage:",self.mileage,"mpg" print "Tax:",self.tax # return self car1= car(2000,35,"Full",15) car2= car(2000,5,"Not Full",105) car3= car(2000,15,"Kind of Full",95) car4= car(2000,25,"Full",25) car5= car(2000,45,"Empty",25) car6= car(2000000,35,"Empty",15)
UTF-8
Python
false
false
725
py
124
car.py
76
0.569655
0.475862
0
34
20.352941
49
romonzaman/piphone
13,417,477,860,831
8dacd17c3195da5ab5fd83175d402f0b9cb18291
75d270d2a1f52a5977707f012dc6ff460e4689f5
/oled_test.py
7c7fd502751b953a8d9ac28e58e3a1a1c38a792e
[]
no_license
https://github.com/romonzaman/piphone
b8570dd6ce7ddfdbccd81f035085994c685d99f0
398098813f9aa609f4009f9dc35a956e93cfee4d
refs/heads/main
2023-08-17T06:30:57.047861
2021-09-12T03:41:49
2021-09-12T03:41:49
405,401,976
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import board import busio from PIL import Image, ImageDraw, ImageFont import adafruit_ssd1306 import time i2c = busio.I2C(board.SCL, board.SDA) oled = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c) def oled_white(): oled.fill(250) oled.show() def oled_black(): oled.fill(0) oled.show() oled_black() oled_white() time.sleep(2) oled_black() time.sleep(1) oled_white() time.sleep(2) oled_black() time.sleep(1) oled_white() time.sleep(2) oled_black() time.sleep(1) oled_white() time.sleep(2) oled_black() time.sleep(1) oled_white()
UTF-8
Python
false
false
548
py
3
oled_test.py
2
0.698905
0.638686
0
39
13.051282
49
jpgil/logdelay
14,894,946,588,601
ca5130b09cca4c724ab1557d0fd089f8f53ec49c
5ce28e39b5971e9c80b0c03456f304691effc847
/src/helpers.py
68ab687fe6ecef72d2a4b2aa3f42eb83190c7a6a
[ "Apache-2.0" ]
permissive
https://github.com/jpgil/logdelay
0aefbf9efdbebc9cb028cbe7fc1d3ba27e7af029
788e9402d63cecc732822ac49a39dd961b63219f
refs/heads/master
2022-09-09T20:24:55.507441
2021-06-02T07:41:33
2021-06-02T07:41:33
228,706,066
0
0
Apache-2.0
false
2022-08-10T18:58:07
2019-12-17T21:38:21
2021-06-02T07:41:42
2022-08-10T18:58:06
13,961
0
0
6
Jupyter Notebook
false
false
from networkx.drawing.nx_agraph import write_dot from networkx.drawing.nx_agraph import to_agraph from IPython.display import Image import pygraphviz as pgv def graph(G, color="#cccccc", filename="/tmp/simple.png"): for u, v in G.edges: if "weight" in G[u][v]: G[u][v]["label"] = G[u][v]["weight"] G.graph['graph']={'rankdir':'TD'} G.graph['node']={'shape':'circle'} G.graph['edges']={'arrowsize':'1.0'} A = to_agraph(G) A.layout('dot') A.draw(filename) display(Image(filename)) def count_successor_pairs( T ): logger.debug("Extracting pairs for %d elements in T=%s" % ( len(T), T[:20]) ) pairs = [] partial_subtrace = T[:] while len(partial_subtrace): s_i = partial_subtrace.pop(0) pairs += [ (s_i, s_i) ] + [ (s_i, s_j) for s_j in partial_subtrace ] logger.debug("Pairs for found = %d" % ( len(pairs) ) ) return pairs
UTF-8
Python
false
false
1,011
py
55
helpers.py
14
0.541048
0.536103
0
34
28.764706
84
roniwinik/Drivers
9,766,755,642,504
b68eab1631b483e8e69cacf6e406dfc0e77e2778
b7de4effae566d88add33a9cd9656283167c960c
/Noise_Generator/Noise_Generator.py
a7b9ce29425325123e5a466d5e3622c7eff9e974
[ "MIT" ]
permissive
https://github.com/roniwinik/Drivers
3212122ffe52aa801223bbf2ed0f4f2ad047c828
ba473bc21d1b5321da1e6caadec5b4d624282edc
refs/heads/master
2021-06-25T06:54:26.563656
2020-03-23T21:45:13
2020-03-23T21:45:13
134,781,611
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python import pickle import InstrumentDriver import numpy as np import ast import sys, os from scipy.fftpack import fft, ifft import scipy.io as sio def loadData(file_path): """ Load a log file. (Use the built-in pickle module) Parameters ---------- file_path: str path of the log file Returns ------- - data: arbitrary object arbitrary Python object which contains data """ import pickle with open(file_path, 'rb') as _input: data = pickle.load(_input) return data def white(w, S0=1.): return S0 * np.ones_like(w) def lorentz(w, S0=1., wc=1., w0=0.): """ Lorentzian spectrum. """ return S0/(2*np.pi*wc)*(1./(1+((w-w0)/wc)**2) + 1./(1+((w+w0)/wc)**2)) def genProcess(times, spectrum, T0): """ Generate one realization of a Gaussian random process. """ # times: numpy array containing all the times for which to generate the process # spectrum: numpy array containing the spectrum at all the harmonics omega_k = 2*pi*k/T0 # T0: period of the noise process. Has to be much longer than the duration of an # experimental run # returns: numpy array containing all the values of the random process for the times # specified in input # Check that T0 is longer than the largest specified time if (T0 < max(times)): print("WARNING: T0 should be the longest timescale.") # Number of frequencies and times nfreqs = max(np.shape(spectrum)) ntimes = max(np.shape(times)) # Generation of harmonics and random Fourier coefficients vec_omega = 2*np.pi/T0 * np.arange(1,nfreqs+1) vec_sigma = np.sqrt(2.*spectrum/T0) vec_a = vec_sigma * np.random.normal(size=nfreqs) vec_b = vec_sigma * np.random.normal(size=nfreqs) # Matrix with times in rows mat_times = np.array(np.repeat(times[np.newaxis],nfreqs,0)) # Matrix with frequencies in columns mat_freqs = np.array(np.repeat(np.transpose(vec_omega[np.newaxis]),ntimes,1)) # Sum up the Fourier series mat_cos = np.cos(mat_freqs * mat_times); cos_term = np.dot(np.reshape(vec_a,(1,nfreqs)), mat_cos) mat_sin = np.sin(mat_freqs * mat_times); sin_term = np.dot(np.reshape(vec_b,(1,nfreqs)), mat_sin) return (cos_term + sin_term)[0] class Driver(InstrumentDriver.InstrumentWorker): """ This class implements a Single-qubit pulse generator""" def performOpen(self, options={}): self.vEnvelope = np.array([], dtype=float) self.vNoise_Time = np.array([], dtype=float) self.vNoise_Time_Modulated = np.array([], dtype=float) self.vNoise_Freq = np.array([], dtype=float) self.vNoise_Freq_FFT = np.array([], dtype=float) self.vTime = np.array([], dtype=float) self.vFreq = np.array([], dtype=float) self.vFreq_AWG_frame = np.array([], dtype=float) self.vBinEdges = np.array([], dtype=float) self.vHistogram = np.array([], dtype=float) self.PrevNoiseIndex = -9.99e-9 self.saved_data = None self.original_S0 = 0 def performSetValue(self, quant, value, sweepRate=0.0, options={}): """Perform the Set Value instrument operation. This function should return the actual value set by the instrument""" # do nothing, just return value if quant.name == 'Read file': self.Readfile() elif quant.name == 'Read file when start': if (value == True): self.Readfile() return value def Readfile(self): # self.log('Read File') file_path = self.getValue("File path") self.saved_data = loadData(file_path) self.setValue("T0", self.saved_data["T0"]) self.setValue("High Cutoff Freq.", self.saved_data["High Cutoff Freq."]) self.original_S0 = self.saved_data["S0"] self.setValue("Noise Power", self.saved_data["S0"]) self.setValue("Center Freq.", self.saved_data["Center Freq."]) self.setValue("HWHM", self.saved_data["HWHM"]) self.reportStatus('Successfully Read Data File!') def performGetValue(self, quant, options={}): """Perform the Get Value instrument operation""" # check type of quantity if quant.isVector(): noise_indx = self.getValue("Noise Index") self.calculateNoise() # if self.PrevNoiseIndex != noise_indx: # self.calculateNoise() # self.PrevNoiseIndex = noise_indx # traces, check if waveform needs to be re-calculated if self.isConfigUpdated(): self.calculateWaveform() # if ((quant.name == 'Trace - Modulated Noise (Time-Domain)') & (len(self.vEnvelope) != len(self.vNoise_Time))): # self.calculateNoise() # get correct data and return as trace dict vData = self.getWaveformFromMemory(quant) length = len(vData) if (self.getValue("Turn Off Noise") == True): vData = np.zeros(length) if quant.name == 'Trace - Noise (Histogram)': value = quant.getTraceDict(vData, x=self.vBinEdges) elif quant.name == 'Trace - Noise (Freq-Domain, FFT)': value = quant.getTraceDict(vData, x=self.vFreq_AWG_frame) elif quant.name == 'Trace - Noise (Freq-Domain, Original)': value = quant.getTraceDict(vData, x=self.vFreq) # elif quant.name == 'Trace - Envelope': # dt = 1/self.getValue('Sample rate') # value = quant.getTraceDict(self.vEnvelope, dt = dt) else: dt = 1/self.getValue('Sample rate') value = quant.getTraceDict(vData, dt=dt) else: # for all other cases, do nothing value = quant.getValue() return value def getWaveformFromMemory(self, quant): dTrace = { 'Trace - Noise (Time-Domain)': self.vNoise_Time, 'Trace - Noise (Freq-Domain, Original)': self.vNoise_Freq, # 'Trace - Noise (Time-Domain, RAW)': self.vNoise_Time_RAW, 'Trace - Noise (Freq-Domain, FFT)': self.vNoise_Freq_FFT, 'Trace - Noise (Histogram)': self.vHistogram, 'Trace - Envelope': self.vEnvelope, 'Trace - Modulated Noise (Time-Domain)': self.vNoise_Time * self.vEnvelope if (len(self.vNoise_Time) == len(self.vEnvelope)) else [] # 'Trace - Noise (Time-Domain, Histogram, RAW)': self.vTime_Histogram_RAW, } vData = dTrace[quant.name] return vData def generateNoise(self): """Get the waveform of a given noise""" # get params nPoints = float(self.getValue('Number of points')) dSampleRate = self.getValue('Sample rate') str_NoiseType = self.getValue('Noise type') index = int(self.getValue('Noise Index')) use_interpolation = self.getValue('Use Interpolation') if (str_NoiseType == 'Custom'): vec_time = np.linspace(0, (nPoints-1)*1/dSampleRate,nPoints) vec_freq_AWG_frame = np.linspace(0.0, 1.0/(2.0/dSampleRate), nPoints*0.5) if (self.saved_data is None): self.reportStatus('No Data Available') return vec_T_noise = np.zeros_like(vec_time) index = np.clip(index, 0, len(self.saved_data['mat_T_noise'])-1) self.log('shape of mat_T_noise: ' + str(self.saved_data['mat_T_noise'].shape)) vec_T_noise_data = np.copy(self.saved_data['mat_T_noise'][index]) * np.sqrt(self.getValue('Noise Power')/self.original_S0) self.log( self.saved_data['mat_T_noise'][index]) if (len(vec_T_noise_data) >= len(vec_time)): vec_T_noise = vec_T_noise_data[:len(vec_time)] else: N_copy = int(len(vec_time) / len(vec_T_noise_data)) for i in range(N_copy): vec_T_noise[i*len(vec_T_noise_data):(i+1)*len(vec_T_noise_data)] = vec_T_noise_data vec_T_noise[(i+1)*len(vec_T_noise_data):] = vec_T_noise_data[0:len(vec_time)-(i+1)*len(vec_T_noise_data)] vec_F_noise = self.saved_data['vec_F_noise'] vec_freq = self.saved_data['vec_freq'] else: np.random.seed(int(index)) T0 = self.getValue('T0') dHighCutoffFreq = self.getValue('High Cutoff Freq.') if use_interpolation: interval = self.getValue('Interpolation Interval') dSampleRate = int(dSampleRate / interval) nPoints = int(nPoints / self.getValue('Sample rate') * dSampleRate) # self.log(T0, dSampleRate, nPoints) vec_time = np.linspace(0, (nPoints-1)*1/dSampleRate,nPoints) vec_freq_AWG_frame = np.linspace(0.0, 1.0/(2.0/dSampleRate), nPoints*0.5) S0 = self.getValue('S0') freq_step = 1/T0 N_freq = int(dHighCutoffFreq / freq_step) vec_freq = np.linspace(freq_step, dHighCutoffFreq, N_freq) if str_NoiseType == 'White': """Generate Gaussian Noise Signal(mean = 0, sigma = sqrt(Power Spectral Density))""" vec_F_noise = white(2 * np.pi * vec_freq, S0= S0) vec_T_noise = genProcess(vec_time, vec_F_noise, T0) elif str_NoiseType == 'Squared-Gaussian': """Generate Squared Gaussian Noise Signal""" vec_F_noise = white(2 * np.pi * vec_freq, S0= S0) vec_T_noise = genProcess(vec_time, vec_F_noise, T0) **2 elif str_NoiseType == 'Lorentzian': f0 = self.getValue('Center Freq.') fwidth = self.getValue('HWHM') vec_F_noise = lorentz(2 * np.pi * vec_freq , S0= S0, wc = 2 * np.pi * fwidth , w0 = 2 * np.pi * f0) vec_T_noise = genProcess(vec_time, vec_F_noise, T0) #Filter noise in Time-Window dNoiseStart = self.getValue('Noise Start Time') dNoiseEnd = self.getValue('Noise End Time') index_Empty = np.where((vec_time < dNoiseStart) | (vec_time > dNoiseEnd)) vec_T_noise[index_Empty] = 0 bln_hist_FFT = self.getValue('Generate Histogram and FFT') d_bincounts = self.getValue('Histogram Bin Counts') vec_F_noise_FFT = [] vec_histogram = [] vec_binedges = [] if (use_interpolation == True): nPoints = float(self.getValue('Number of points')) dSampleRate = self.getValue('Sample rate') vec_time_interp = np.linspace(0, (nPoints-1)*1/dSampleRate,nPoints) vec_freq_AWG_frame = np.linspace(0.0, 1.0/(2.0/dSampleRate), nPoints*0.5) interp_T_noise = np.interp(vec_time_interp, vec_time, vec_T_noise) vec_time = np.copy(vec_time_interp) vec_T_noise = np.copy(interp_T_noise) if (bln_hist_FFT): vec_histogram, vec_binedges = np.histogram(vec_T_noise, bins = int(d_bincounts)) vec_F_noise_FFT = 2.0 / len(vec_time) * np.abs(fft(vec_T_noise).flatten()) else: vec_F_noise_FFT = np.zeros_like(vec_freq_AWG_frame) return ({ "vec_time": vec_time, "vec_freq": vec_freq, "vec_freq_AWG_frame": vec_freq_AWG_frame, "vec_T_noise": vec_T_noise, "vec_F_noise_FFT": vec_F_noise_FFT[:len(vec_time)//2], "vec_F_noise":vec_F_noise, "vec_histogram": vec_histogram, "vec_binedges": vec_binedges[0:int(d_bincounts)], }) def calculateNoise(self): """Generate noise waveform""" # get config values nPoints = int(self.getValue('Number of points')) sampleRate = self.getValue('Sample rate') # start with allocating time and amplitude vectors self.vTime = np.arange(nPoints, dtype=float)/sampleRate # get noise waveform result= self.generateNoise() if (result is None): return self.vTime = result["vec_time"] self.vFreq = result["vec_freq"] self.vFreq_AWG_frame = result["vec_freq_AWG_frame"] self.vBinEdges = result["vec_binedges"] self.vNoise_Time = result["vec_T_noise"] self.vNoise_Freq = result["vec_F_noise"] self.vNoise_Freq_FFT = result["vec_F_noise_FFT"] self.vHistogram = result["vec_histogram"] def calculateWaveform(self): """Generate waveforms, including pre-pulses, readout and gates""" # get config values nPoints = int(self.getValue('Number of points')) sampleRate = self.getValue('Sample rate') firstDelay = self.getValue('First pulse delay') # start with allocating time and amplitude vectors self.vTime = np.arange(nPoints, dtype=float)/sampleRate # create list of output vectors self.vEnvelope = np.zeros_like(self.vTime) # go on depending on with sequence self.generateSequence(startTime=firstDelay) def generateSequence(self, startTime): # get config values sSequence = self.getValue('Sequence') nPulses = int(self.getValue('# of pulses')) seqPeriod = self.getValue('Pulse period') # go on depending on waveform if sSequence == 'CP/CPMG': # get length of actual pulses dPulseT1 = self.getPulseDuration(1) dPulseT2 = self.getPulseDuration(2) dPulseTot = 2*dPulseT1 + dPulseT2*nPulses # add the first pi/2 pulses self.addPulse(1, startTime + dPulseT1/2) # add more pulses if nPulses <= 0: # no pulses = ramsey vTimePi = [] # second pi/2 pulse self.addPulse(1, startTime + seqPeriod + dPulseTot - dPulseT1/2) elif nPulses == 1: # one pulse, echo experiment vTimePi = [startTime + dPulseT1 + seqPeriod/2 + dPulseT2/2] # second pi/2 pulse self.addPulse(1, startTime + seqPeriod + dPulseTot - dPulseT1/2) elif nPulses > 1: # figure out timing of pi pulses vTimePi = startTime + dPulseT1 + seqPeriod/2 + dPulseT2/2 + \ (seqPeriod + dPulseT2)*np.arange(nPulses) # second pi/2 pulse self.addPulse(1, startTime + nPulses*seqPeriod + dPulseTot - dPulseT1/2) # add pi pulses, one by one for dTimePi in vTimePi: self.addPulse(2, dTimePi) elif sSequence == 'Generic sequence': # generic pulse sequence, add the pulses specified in the pulse list t = startTime for n in range(nPulses): pulseType = 1 + (n % 8) # get length of current pulse dPulseT = self.getPulseDuration(pulseType) self.addPulse(pulseType, t + dPulseT/2) # add spacing as defined for this pulse t += dPulseT + self.getValue('Spacing #%d' % (pulseType)) def addPulse(self, nType, dTime, nOutput=None, bTimeStart=False, phase=None): """Add pulse to waveform""" vTime, vPulse, vIndx = self.getPulseEnvelope(nType, dTime, bTimeStart) if len(vTime) == 0: return self.vEnvelope[vIndx] += vPulse def getPulseEnvelope(self, nType, dTime, bTimeStart=False): """Get pulse envelope for a given pulse""" sPulseType = self.getValue('Pulse type') dSampleRate = self.getValue('Sample rate') truncRange = self.getValue('Truncation range') start_at_zero = self.getValue('Start at zero') # get pulse params dAmp = self.getValue('Amplitude #%d' % nType) dWidth = self.getValue('Width #%d' % nType) dPlateau = self.getValue('Plateau #%d' % nType) # get pulse width if sPulseType == 'Square': dTotTime = dWidth+dPlateau elif sPulseType == 'Ramp': dTotTime = 2*dWidth+dPlateau elif sPulseType == 'Gaussian': dTotTime = truncRange*dWidth + dPlateau # shift time to mid point if user gave start point if bTimeStart: dTime = dTime + dTotTime/2 # get the range of indices in use vIndx = np.arange(max(np.round((dTime-dTotTime/2)*dSampleRate), 0), min(np.round((dTime+dTotTime/2)*dSampleRate), len(self.vTime))) vIndx = np.int0(vIndx) self.log(len(vIndx), len(self.vTime)) # calculate time values for the pulse indices vTime = vIndx/dSampleRate # calculate the actual value for the selected indices if sPulseType == 'Square': vPulse = (vTime >= (dTime-(dWidth+dPlateau)/2)) & \ (vTime < (dTime+(dWidth+dPlateau)/2)) elif sPulseType == 'Ramp': # rising and falling slopes vRise = (vTime-(dTime-dPlateau/2-dWidth))/dWidth vRise[vRise<0.0] = 0.0 vRise[vRise>1.0] = 1.0 vFall = ((dTime+dPlateau/2+dWidth)-vTime)/dWidth vFall[vFall<0.0] = 0.0 vFall[vFall>1.0] = 1.0 vPulse = vRise * vFall # vPulse = np.min(1, np.max(0, (vTime-(dTime-dPlateau/2-dWidth))/dWidth)) * \ # np.min(1, np.max(0, ((dTime+dPlateau/2+dWidth)-vTime)/dWidth)) elif sPulseType == 'Gaussian': # width is two times std #dStd = dWidth/2; # alternate def; std is set to give total pulse area same as a square dStd = dWidth/np.sqrt(2*np.pi) # cut the tail part and increase the amplitude, if necessary dOffset = 0 if dPlateau > 0: # add plateau vPulse = (vTime >= (dTime-dPlateau/2)) & \ (vTime < (dTime+dPlateau/2)) if dStd > 0: # before plateau vPulse = vPulse + (vTime < (dTime-dPlateau/2)) * \ (np.exp(-(vTime-(dTime-dPlateau/2))**2/(2*dStd**2))-dOffset)/(1-dOffset) # after plateau vPulse = vPulse + (vTime >= (dTime+dPlateau/2)) * \ (np.exp(-(vTime-(dTime+dPlateau/2))**2/(2*dStd**2))-dOffset)/(1-dOffset) else: if dStd > 0: vPulse = (np.exp(-(vTime-dTime)**2/(2*dStd**2))-dOffset)/(1-dOffset) else: vPulse = np.zeros_like(vTime) # # add the pulse to the previous ones # vY[iPulse] = vY[iPulse] + dAmp * vPulse vPulse = dAmp * vPulse if start_at_zero: vPulse = vPulse - vPulse.min() vPulse = vPulse/vPulse.max()*dAmp # return both time, envelope, and indices return (vTime, vPulse, vIndx) def getPulseDuration(self, nType): """Get total pulse duration waveform, for timimg purposes""" # check if edge-to-edge if self.getValue('Edge-to-edge pulses'): width = self.getValue('Width #%d' % nType) plateau = self.getValue('Plateau #%d' % nType) pulseEdgeWidth = self.getValue('Edge position') return pulseEdgeWidth * width + plateau else: return 0.0
UTF-8
Python
false
false
19,576
py
5
Noise_Generator.py
4
0.566152
0.554914
0
454
42.118943
150
aitoralmeida/intellidata
14,697,378,121,820
b4fffaacc784f07ba742820aa58e3b97738836bd
3f16f572ab972792be2cff2789fb6a0629088564
/mongo_import.py
ed2b5f0d8118f7cd0dc4261243452fad02a13ff6
[ "Apache-2.0" ]
permissive
https://github.com/aitoralmeida/intellidata
13512827fb73cbb762345b6e5331c6d0a1b863b4
7a0ebdb9f9097aae4410e589646312ad3e24e66a
refs/heads/master
2021-01-13T01:54:14.315721
2014-02-10T11:15:10
2014-02-10T11:15:10
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import os import json import glob from bbvalib import create_mongoclient DELETE_ALL = True TOP_CLIENTS = True SHOP_ZIPCODE_SUMMARY = True ############################################################################# # # # Import flat data (regular tables) # # def process_origin_flat(): db = create_mongoclient() db.drop_collection('top_clients_week') db.drop_collection('top_clients_month') origin_files = glob.glob("data/scraped/origin-*.json") for f in origin_files: _, by, category, shop_zipcode = os.path.basename(f)[:-5].split('-') contents = json.load(open(f)) stats = contents['data']['stats'] for period in stats: cur_date = period['date'] for home_zipcode_data in period['zipcodes']: cur_data = dict( category = category, shop_zipcode = shop_zipcode, home_zipcode = home_zipcode_data['label'], incomes = home_zipcode_data['incomes'], num_cards = home_zipcode_data['num_cards'], num_payments = home_zipcode_data['num_payments'], ) cur_data[by] = cur_date if by == 'week': db.top_clients_week.insert(cur_data) elif by == 'month': db.top_clients_month.insert(cur_data) else: print "Error: %s is not (month, key)" % by def process_cube_flat(): db = create_mongoclient() db.drop_collection('cube_week') db.drop_collection('cube_month') genders = { 'U' : 'unknown', 'F' : 'female', 'M' : 'male', 'E' : 'enterprise' } ages = { '0' : { 'min_age' : 0, 'max_age' : 18, }, '1' : { 'min_age' : 19, 'max_age' : 25 }, '2' : { 'min_age' : 26, 'max_age' : 35 }, '3' : { 'min_age' : 36, 'max_age' : 45 }, '4' : { 'min_age' : 46, 'max_age' : 55, }, '5' : { 'min_age' : 56, 'max_age' : 65 }, '6' : { 'min_age' : 66, 'max_age' : 100 }, 'U' : { 'min_age' : 0, 'max_age' : 100 } } origin_files = glob.glob("data/scraped/cube-*.json") for f in origin_files: # cube-week-es_auto-28004.json _, by, category, shop_zipcode = os.path.basename(f)[:-5].split('-') contents = json.load(open(f)) stats = contents['data']['stats'] for period in stats: cur_date = period['date'] for cube in period['cube']: gender_code, age_code = cube['hash'].split('#') cur_data = dict( category = category, shop_zipcode = shop_zipcode, hash = cube['hash'], gender = genders[gender_code], age_code = age_code, min_age = ages[age_code]['min_age'], max_age = ages[age_code]['max_age'], avg = cube['avg'], num_cards = cube['num_cards'], num_payments = cube['num_payments'], ) cur_data[by] = cur_date if by == 'week': db.cube_week.insert(cur_data) elif by == 'month': db.cube_month.insert(cur_data) else: print "Error: %s is not in (week, month)" % by def process_patterns_flat(): db = create_mongoclient() db.drop_collection('patterns_month') origin_files = glob.glob("data/scraped/patterns-*.json") for f in origin_files: # patterns-month-es_barsandrestaurants-28004.json _, by, category, shop_zipcode = os.path.basename(f)[:-5].split('-') if by != 'month': print "Error: %s is not in (month)" % by continue contents = json.load(open(f)) stats = contents['data']['stats'] for period in stats: for day_data in period['days']: cur_data = dict( month = period['date'], category = category, shop_zipcode = shop_zipcode, key = '%s#%s' % (day_data['day'].lower(), period['date']), day = day_data['day'].lower(), mode = day_data['mode'], num_payments = day_data['num_payments'], avg = day_data['avg'], std = day_data['std'], min = day_data['min'], max = day_data['max'], num_cards = day_data['num_cards'], hours = day_data['hours'], ) db.patterns_month.insert(cur_data) if DELETE_ALL: print "Recreating origin flat" process_origin_flat() print "Recreating cube flat" process_cube_flat() print "Recreating patterns flat" process_patterns_flat() ############################################################################# # # # Aggregate data (map reduce) # # def top_clients_summary(): from bson.code import Code from bson.son import SON db = create_mongoclient() db.drop_collection('top_clients_summary') categories = db.top_clients_week.find().distinct('category') categories = json.dumps(categories) map_func = Code("""function () { // Create the summaries (one with the data, the other empty) var summary = { 'incomes' : this.incomes, 'num_cards' : this.num_cards, 'num_payments' : this.num_payments }; var empty_summary = { 'incomes' : 0, 'num_cards' : 0, 'num_payments' : 0 }; // self will be useful in inner functions var self = this; // Select by (per_week, per_month) and the current date (the week or the month) var by, date, empty_by; if (this.week === undefined) { if (this.month === undefined ) { throw new Error("this.month or this.week must exist"); } else { // Month exists; week doesn't by = 'per_month'; empty_by = 'per_week'; date = this.month; } } else { // Week exists by = 'per_week'; empty_by = 'per_month'; date = this.week; } // Start adding data // Create the basic infrastructure, and add the register with this zipcode var value = { 'home_zipcodes' : {} }; value['home_zipcodes'][this.home_zipcode] = { 'per_week' : { 'total' : { // Later on, it will have this: // total: (incomes, num_cards, num_payments) // category1 : (incomes, num_cards, num_payments) // category2 : (incomes, num_cards, num_payments) } }, 'per_month' : { 'total' : { // Later on, it will have this: // total: (incomes, num_cards, num_payments) // category1 : (incomes, num_cards, num_payments) // category2 : (incomes, num_cards, num_payments) } } }; // Right now, we don't have added any data. We start now. // Fill all the categories (except for "total") of total with zeros %(CATEGORIES)s.forEach(function(category) { value['home_zipcodes'][self.home_zipcode]['per_week']['total'][category] = empty_summary; value['home_zipcodes'][self.home_zipcode]['per_month']['total'][category] = empty_summary; }); // Add the total value value['home_zipcodes'][self.home_zipcode][by]['total']['total'] = summary; value['home_zipcodes'][self.home_zipcode][empty_by]['total']['total'] = empty_summary; // Add the category value (it existed, but was initialized to empty) value['home_zipcodes'][self.home_zipcode][by]['total'][this.category] = summary; // // Now, total has been filled. We start with each week (or month) // value['home_zipcodes'][self.home_zipcode][by][date] = { 'total' : summary // It will also be filled with: // category1: (incomes, num_cards, num_payments) // category2: (incomes, num_cards, num_payments) }; // First, we clear all the categories (except for total): %(CATEGORIES)s.forEach(function(category) { value['home_zipcodes'][self.home_zipcode][by][date][category] = empty_summary; }); // Then, we add the category data value['home_zipcodes'][this.home_zipcode][by][date][this.category] = summary; emit(this.shop_zipcode, value); }""" % dict( CATEGORIES = categories, )) reduce_func = Code("""function (key, values) { var deepcopy = function (obj) { return JSON.parse(JSON.stringify(obj)); } var return_value = { 'home_zipcodes' : {} }; var return_home_zipcodes = return_value['home_zipcodes']; values.forEach(function(value) { /* Each value has the following structure: { 'home_zipcodes' : { '28004' : { 'per_week' : { 'total' : { 'category1' : { income, num_cards, num_payments }, 'category2' : { income, num_cards, num_payments }, 'total' : { income, num_cards, num_payments } }, '201301' : { 'category1' : { income, num_cards, num_payments }, 'category2' : { income, num_cards, num_payments }, 'total' : { income, num_cards, num_payments } } } 'per_month' : (same as in per_week) } } } */ // For each zipcode in the value for (var home_zipcode in value['home_zipcodes']) { // If that zipcode was previously unknown, just copy the data. if (return_home_zipcodes[home_zipcode] == undefined) { return_home_zipcodes[home_zipcode] = deepcopy(value['home_zipcodes'][home_zipcode]); } else { // If it existed, the merge it. "me" is the current zipcode data, other is the // existing zipcode data. var me = value['home_zipcodes'][home_zipcode]; var other = return_home_zipcodes[home_zipcode]; // We're gonna sum everything. 'total' is just yet another category for us var categories = %(CATEGORIES)s; categories.push('total'); ['per_week', 'per_month'].forEach(function(by) { // First, the total numbers // Both in per_week and per_month, sum the existing total data for // every category (including total). categories.forEach(function(category) { other[by]['total'][category]['incomes'] += me[by]['total'][category]['incomes']; other[by]['total'][category]['num_cards'] += me[by]['total'][category]['num_cards']; other[by]['total'][category]['num_payments'] += me[by]['total'][category]['num_payments']; }); // Second, the week / month numbers // For each date in the current data (the existing data does not need any change) for (var date in me[by]) { if (date == 'total') continue; // If this new data is not present in the existing data, just copy it. if (other[by][date] == undefined) { // Those only in me (and not in other) other[by][date] = deepcopy(me[by][date]); } else { // If it exists in both, merge it. cur_other and cur_me are the particular data. // e.g. other = 'home_zipcodes' / '28004'; // cur_other = 'home_zipcodes' / '28004' / 'per_week' / '201301' var cur_other = other[by][date]; var cur_me = me[by][date]; // For each category (including total), sum the data categories.forEach(function(category) { cur_other[category]['incomes'] += cur_me[category]['incomes']; cur_other[category]['num_cards'] += cur_me[category]['num_cards']; cur_other[category]['num_payments'] += cur_me[category]['num_payments']; }); } } }); } } }); if ( key == "28760" ) { var cur_zipcode = return_value['home_zipcodes']['28760']; if (cur_zipcode != undefined ) { var cur_data = cur_zipcode['per_week']['201301']; if (cur_data != undefined ) { if (cur_zipcode['per_week']['total']['es_home']['incomes'] != 0) { print("---------------------------------------------------------------------"); printjson(cur_zipcode['per_week']['total']['es_home']); print(""); print("=>"); print(""); printjson(cur_data['es_home']); print(""); print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"); print("++++++++++++++++++V A L U E S++++++++++++++++++++++++++++++++++++++++"); print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"); printjson(values); print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"); print("++++++++++++++++++R E T U R N I N G++++++++++++++++++++++++++++++++++"); print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"); printjson(return_value); } } } } return return_value; }""" % dict( CATEGORIES = categories )) # print map_func # print reduce_func nonAtomic = False print "Procesando 1" db.top_clients_week.map_reduce( map_func, reduce_func, out=SON([("reduce", "top_clients_summary"), ('nonAtomic', nonAtomic)])) print "Procesando 2" db.top_clients_month.map_reduce( map_func, reduce_func, out=SON([("reduce", "top_clients_summary"), ('nonAtomic', nonAtomic)])) print "Hecho" if TOP_CLIENTS: print "Creating top clients summary" top_clients_summary() def shop_zipcode_summary(): from bson.code import Code from bson.son import SON db = create_mongoclient() db.drop_collection('shop_zipcode_summary') categories = db.cube_month.find().distinct('category') categories = json.dumps(categories) shared_code = """ var MIN = 100000000000; var deepcopy = function (obj) { return JSON.parse(JSON.stringify(obj)); } // Auxiliar data var self = this; var empty_summary = function() { return { 'avg' : 0.0, 'num_payments' : 0, 'min' : MIN, 'max' : 0, 'total' : 0.0, 'hours' : { // 08 : ... } }; }; var empty_cube_data = function() { return { 'avg' : 0, 'num_cards' : 0, 'num_payments' : 0, 'total' : 0 }; }; var empty_total_cube_data = function() { return { 'avg' : 0, 'num_payments' : 0, 'total' : 0 }; }; var empty_cube = function() { return { 'total' : { 'per_age' : { '0' : empty_total_cube_data(), '1' : empty_total_cube_data(), '2' : empty_total_cube_data(), '3' : empty_total_cube_data(), '4' : empty_total_cube_data(), '5' : empty_total_cube_data(), '6' : empty_total_cube_data(), 'U' : empty_total_cube_data() }, 'per_gender' : { 'male' : empty_total_cube_data(), 'female' : empty_total_cube_data(), 'enterprise' : empty_total_cube_data(), 'unknown' : empty_total_cube_data() } }, 'cubes' : { 'male' : { '0' : empty_cube_data(), '1' : empty_cube_data(), '2' : empty_cube_data(), '3' : empty_cube_data(), '4' : empty_cube_data(), '5' : empty_cube_data(), '6' : empty_cube_data(), 'U' : empty_cube_data() }, 'female' : { '0' : empty_cube_data(), '1' : empty_cube_data(), '2' : empty_cube_data(), '3' : empty_cube_data(), '4' : empty_cube_data(), '5' : empty_cube_data(), '6' : empty_cube_data(), 'U' : empty_cube_data() }, 'unknown' : { '0' : empty_cube_data(), '1' : empty_cube_data(), '2' : empty_cube_data(), '3' : empty_cube_data(), '4' : empty_cube_data(), '5' : empty_cube_data(), '6' : empty_cube_data(), 'U' : empty_cube_data() }, 'enterprise' : { 'U' : empty_cube_data() } } }; }; // // We have an empty value // var value = {}; // // We fill the fields (empty categories) // value['categories'] = {}; %(CATEGORIES)s.forEach(function(category){ value['categories'][category] = { 'months' : {}, 'weeks' : {}, 'total' : { 'days' : {}, 'total' : empty_summary() } } }); // // We fill the fields (total) value['total'] = { 'days' : {}, 'weeks' : {}, 'total' : empty_summary() }; """ % dict(CATEGORIES = categories) map_patterns_func = Code("""function () { %(SHARED)s // Precalculation of hours var hours_data = {}; this.hours.forEach(function(hour_data) { hours_data[hour_data['hour']] = { 'std' : hour_data['std'], 'min' : hour_data['min'], 'max' : hour_data['max'], 'num_cards' : hour_data['num_cards'], 'mode' : hour_data['mode'], 'num_payments' : hour_data['num_payments'], 'avg' : hour_data['avg'], 'total' : hour_data['num_payments'] * hour_data['avg'] } }); // And now, we fill the real data. value['categories'][self.category]['months'][self.month] = { 'days' : {}, 'cubes' : empty_cube(), 'total' : empty_summary() }; value['categories'][self.category]['months'][self.month]['days'][self.day] = { 'avg' : self.avg, 'std' : self.std, 'num_payments' : self.num_payments, 'min' : self.min, 'max' : self.max, 'num_cards' : self.num_cards, 'mode' : self.mode, 'hours' : hours_data, 'total' : self.avg * self.num_payments }; value['categories'][self.category]['months'][self.month]['total'] = { 'avg' : self.avg, 'num_payments' : self.num_payments, 'min' : self.min, 'max' : self.max, 'total' : self.avg * self.num_payments, 'hours' : {} }; for (var hour in hours_data) { var cur_hour_data = hours_data[hour]; value['categories'][self.category]['months'][self.month]['total']['hours'][hour] = { 'min' : cur_hour_data['min'], 'max' : cur_hour_data['max'], 'num_payments' : cur_hour_data['num_payments'], 'avg' : cur_hour_data['avg'], 'total' : cur_hour_data['num_payments'] * cur_hour_data['avg'] }; } value['categories'][self.category]['total']['days'][self.day] = { 'avg' : self.avg, 'num_payments' : self.num_payments, 'min' : self.min, 'max' : self.max, 'hours' : hours_data, 'total' : self.avg * self.num_payments }; var summary_total = function() { return { 'avg' : self.avg, 'num_payments' : self.num_payments, 'min' : self.min, 'max' : self.max, 'hours' : hours_data, 'total' : self.avg * self.num_payments }; }; value['categories'][self.category]['total']['total'] = summary_total(); value['total']['days'][self.day] = summary_total(); value['total']['total'] = summary_total(); emit(this.shop_zipcode, value); }""" % dict( CATEGORIES = categories, SHARED = shared_code )) map_cube_month_func = Code("""function () { %(SHARED)s // Basic structure value['categories'][self.category]['months'][self.month] = { 'days' : {}, 'cubes' : empty_cube(), 'total' : empty_summary() }; // Monthly, category data // Individual data value['categories'][self.category]['months'][self.month]['cubes']['cubes'][self.gender][self.age_code]['avg'] = self.avg; value['categories'][self.category]['months'][self.month]['cubes']['cubes'][self.gender][self.age_code]['num_cards'] = self.num_cards; value['categories'][self.category]['months'][self.month]['cubes']['cubes'][self.gender][self.age_code]['num_payments'] = self.num_payments; value['categories'][self.category]['months'][self.month]['cubes']['cubes'][self.gender][self.age_code]['total'] = self.num_payments * self.avg; // total per_age value['categories'][self.category]['months'][self.month]['cubes']['total']['per_age'][self.age_code]['avg'] = self.avg; value['categories'][self.category]['months'][self.month]['cubes']['total']['per_age'][self.age_code]['num_payments'] = self.num_payments; value['categories'][self.category]['months'][self.month]['cubes']['total']['per_age'][self.age_code]['total'] = self.num_payments * self.avg; // total per_gender value['categories'][self.category]['months'][self.month]['cubes']['total']['per_gender'][self.gender]['avg'] = self.avg; value['categories'][self.category]['months'][self.month]['cubes']['total']['per_gender'][self.gender]['num_payments'] = self.num_payments; value['categories'][self.category]['months'][self.month]['cubes']['total']['per_gender'][self.gender]['total'] = self.num_payments * self.avg; // TODO: there should be category-level totals and category-independent monthly totals and non monthly totals // Category level total data. Individual // value['categories'][self.category]['total']['cubes']['cubes'][self.gender][self.age_code]['avg'] = self.avg; // value['categories'][self.category]['total']['cubes']['cubes'][self.gender][self.age_code]['num_payments'] = self.num_payments; // value['categories'][self.category]['total']['cubes']['cubes'][self.gender][self.age_code]['total'] = self.avg * self.num_payments; emit(this.shop_zipcode, value); }""" % dict( CATEGORIES = categories, SHARED = shared_code )) map_cube_week_func = Code("""function () { %(SHARED)s // Basic structure value['categories'][self.category]['weeks'][self.week] = { 'cubes' : empty_cube(), }; // Monthly, category data // Individual data value['categories'][self.category]['weeks'][self.week]['cubes']['cubes'][self.gender][self.age_code]['avg'] = self.avg; value['categories'][self.category]['weeks'][self.week]['cubes']['cubes'][self.gender][self.age_code]['num_cards'] = self.num_cards; value['categories'][self.category]['weeks'][self.week]['cubes']['cubes'][self.gender][self.age_code]['num_payments'] = self.num_payments; value['categories'][self.category]['weeks'][self.week]['cubes']['cubes'][self.gender][self.age_code]['total'] = self.num_payments * self.avg; // total per_age value['categories'][self.category]['weeks'][self.week]['cubes']['total']['per_age'][self.age_code]['avg'] = self.avg; value['categories'][self.category]['weeks'][self.week]['cubes']['total']['per_age'][self.age_code]['num_payments'] = self.num_payments; value['categories'][self.category]['weeks'][self.week]['cubes']['total']['per_age'][self.age_code]['total'] = self.num_payments * self.avg; // total per_gender value['categories'][self.category]['weeks'][self.week]['cubes']['total']['per_gender'][self.gender]['avg'] = self.avg; value['categories'][self.category]['weeks'][self.week]['cubes']['total']['per_gender'][self.gender]['num_payments'] = self.num_payments; value['categories'][self.category]['weeks'][self.week]['cubes']['total']['per_gender'][self.gender]['total'] = self.num_payments * self.avg; // // total outside category // value['total']['weeks'][self.week] = empty_cube(); // // total / total / per_age value['total']['weeks'][self.week]['total']['per_age'][self.age_code]['avg'] = self.avg; value['total']['weeks'][self.week]['total']['per_age'][self.age_code]['num_payments'] = self.num_payments; value['total']['weeks'][self.week]['total']['per_age'][self.age_code]['total'] = self.avg * self.num_payments; // total / total / per_gender value['total']['weeks'][self.week]['total']['per_gender'][self.gender]['avg'] = self.avg; value['total']['weeks'][self.week]['total']['per_gender'][self.gender]['num_payments'] = self.num_payments; value['total']['weeks'][self.week]['total']['per_gender'][self.gender]['total'] = self.avg * self.num_payments; // total / cubes / gender / age_code delete value['total']['weeks'][self.week]['cubes'][self.gender][self.age_code]['num_cards']; value['total']['weeks'][self.week]['cubes'][self.gender][self.age_code]['avg'] = self.avg; value['total']['weeks'][self.week]['cubes'][self.gender][self.age_code]['num_payments'] = self.num_payments; value['total']['weeks'][self.week]['cubes'][self.gender][self.age_code]['total'] = self.num_payments * self.avg; // summary value['total']['weeks'][self.week]['summary'] = { 'avg' : self.avg, 'num_payments' : self.num_payments, 'total' : self.num_payments * self.avg }; // TODO: there should be category-level totals and category-independent weekly totals and non weekly totals // Category level total data. Individual // value['categories'][self.category]['total']['cubes']['cubes'][self.gender][self.age_code]['avg'] = self.avg; // value['categories'][self.category]['total']['cubes']['cubes'][self.gender][self.age_code]['num_payments'] = self.num_payments; // value['categories'][self.category]['total']['cubes']['cubes'][self.gender][self.age_code]['total'] = self.avg * self.num_payments; emit(this.shop_zipcode, value); }""" % dict( CATEGORIES = categories, SHARED = shared_code )) reduce_func = Code("""function (key, values) { %(SHARED)s // Take the initial value, and fill it with the easy data var reduced_value = value; var mergeBasicTotal = function (other_total, me_total) { // First, the basic data var total = other_total['total'] + me_total['total']; var num_payments = other_total['num_payments'] + me_total['num_payments']; var avg; if (num_payments == 0) avg = 0.0; else avg = 1.0 * total / num_payments; other_total['total'] = total; other_total['avg'] = avg; other_total['num_payments'] = num_payments; }; var mergeTotalTotal = function (other_total, me_total) { if (other_total['hours'] == undefined ) { print("Expected total structure as first argument. Got:"); printjson(other_total); throw new Error("Expected total structure as first argument. See the logs."); } else if (me_total['hours'] == undefined ) { print("Expected total structure as second argument. Got:"); printjson(me_total); throw new Error("Expected total structure as second argument. See the logs."); } mergeBasicTotal(other_total, me_total); if (me_total['min'] < other_total['min']) other_total['min'] = me_total['min']; if (me_total['max'] > other_total['max']) other_total['max'] = me_total['max']; // And now the hours: for (var hour in me_total['hours'] ){ // If the hours do no exist, copy them if (other_total['hours'][hour] == undefined) { other_total['hours'][hour] = deepcopy(me_total['hours'][hour]); } else { // Otherwise, merge var other_hour = other_total['hours'][hour]; var me_hour = me_total['hours'][hour]; var total = other_hour['total'] + me_hour['total']; var num_payments = other_hour['num_payments'] + me_hour['num_payments']; var avg; if (num_payments == 0) avg = 0.0; else avg = 1.0 * total / num_payments; other_hour['total'] = total; other_hour['avg'] = avg; other_hour['num_payments'] = num_payments; if (me_hour['min'] < other_hour['min']) other_hour['min'] = me_hour['min']; if (me_hour['max'] > other_hour['max']) other_hour['max'] = me_hour['max']; } } }; var mergeTotalDays = function(other_days, me_days) { for (var day in me_days) { // If the day does not exist, copy it if (other_days[day] == undefined) { other_days[day] = deepcopy(me_days[day]); } else { // Otherwise, merge each day mergeTotalTotal(other_days[day], me_days[day]); } } }; var mergeCubeTotals = function(other_cubes_total, me_cubes_total){ // Then, cubes/total. First cubes/total/per_age var other_per_age = other_cubes_total['per_age']; var me_per_age = me_cubes_total['per_age']; for (var age in me_per_age) { // If the existing is empty or does not exist, copy it if (other_per_age[age] == undefined) { other_per_age[age] = deepcopy(me_per_age[age]); } else { // Otherwise, merge var total = other_per_age[age]['total'] + me_per_age[age]['total']; var num_payments = other_per_age[age]['num_payments'] + me_per_age[age]['num_payments']; var avg; if (num_payments == 0) avg = 0.0; else avg = 1.0 * total / num_payments; other_per_age[age]['total'] = total; other_per_age[age]['num_payments'] = num_payments; other_per_age[age]['avg'] = avg; } } // Then cubes/total/per_gender var other_per_gender = other_cubes_total['per_gender']; var me_per_gender = me_cubes_total['per_gender']; for (var gender in me_per_gender) { // If the existing is empty or does not exist, copy it if (other_per_gender[gender] == undefined) { other_per_gender[gender] = deepcopy(me_per_gender[gender]); } else { // Otherwise, merge var total = other_per_gender[gender]['total'] + me_per_gender[gender]['total']; var num_payments = other_per_gender[gender]['num_payments'] + me_per_gender[gender]['num_payments']; var avg; if (num_payments == 0) avg = 0.0; else avg = 1.0 * total / num_payments; other_per_gender[gender]['total'] = total; other_per_gender[gender]['num_payments'] = num_payments; other_per_gender[gender]['avg'] = avg; } } } var processCubes = function(other, me, category, month, week) { // First cubes/cubes for (var gender in me['cubes']['cubes']) { // If the gender doesn't exist, copy it if (other['cubes']['cubes'][gender] == undefined) { other['cubes']['cubes'][gender] = deepcopy(me['cubes']['cubes'][gender]); continue; } else { // Merge a gender, age (except for total) for (var age in me['cubes']['cubes'][gender]) { // If the age doesn't exist or it's empty, copy it if (other['cubes']['cubes'][gender][age] == undefined || other['cubes']['cubes'][gender][age]['num_cards'] < 1) { other['cubes']['cubes'][gender][age] = deepcopy(me['cubes']['cubes'][gender][age]); continue; } else { // If the existing data has something and the // current data is empty, just skip this one. if (me['cubes']['cubes'][gender][age]['num_cards'] < 1) { continue; } // It's impossible that this particular exist is replicated // since for a zipcode::category::month::cubes::gender::age there is a // single registry. print("Replicated data found. shop_zipcode " + key + ", category " + category + ", month " + month + " or week " + week + ", cube (gender = " + gender + ", age = " + age + ") already had data. See the logs for comparison"); printjson(other['cubes']['cubes'][gender][age]); printjson(me['cubes']['cubes'][gender][age]); throw new Error("Replicated data found. shop_zipcode " + key + ", category " + category + ", month " + month + " or week " + week + ", cube (gender = " + gender + ", age = " + age + ") already had data. See the logs for comparison"); } } } } mergeCubeTotals(other['cubes']['total'], me['cubes']['total']); }; var mergeCubes = function(other, me) { for (var gender in me) { for (var age_code in me[gender]) { var other_data = other[gender][age_code]; var me_data = me[gender][age_code]; if (me_data['num_payments'] >= 1) { other_data['num_payments'] += me_data['num_payments']; other_data['total'] += me_data['total']; other_data['avg'] += other_data['total'] / other_data['num_payments']; } } } } // Take all values, and merge them one by one in reduced_value values.forEach(function(value) { // First, merge categories %(CATEGORIES)s.forEach(function(category) { // Take the data to be merged var me_category = value['categories'][category]; var other_category = reduced_value['categories'][category]; // First, merge months for (var month in me_category['months']) { // If the month doesn't exist in reduced_value, copy it if (other_category['months'][month] == undefined) { other_category['months'][month] = deepcopy(me_category['months'][month]); continue; } // Otherwise, merge. var me_month = me_category['months'][month]; var other_month = other_category['months'][month]; // First, days for (var day in me_month['days']) { // If day does not exist, or it exists but it's empty, copy it if (other_month['days'][day] == undefined || other_month['days'][day]['num_cards'] < 1) { other_month['days'][day] = deepcopy(me_month['days'][day]); continue; } else { // If the other data is not empty but this data is // empty, skip it. if (me_month['days'][day]['num_cards'] < 1) { continue; } // It's impossible that the days are replicated, since // for a zipcode::category::month::day, there is a single set // of data. If this happens, we're summing information // twice, which is an error. print("Replicated data found. shop_zipcode " + key + ", category " + category + ", month " + month + ", day " + day + " already had data. See the logs for comparison."); printjson(other_month['days'][day]); printjson(me_month['days'][day]); throw new Error("Replicated data found. shop_zipcode " + key + ", category " + category + ", month " + month + ", day " + day + " already had data. See the logs for comparison."); } } // Then, cubes. processCubes(other_month, me_month, category, month, 'none'); // Then, merge month/total. // print("Calling total from category/month/total/total"); mergeTotalTotal(other_month['total'], me_month['total']); } // Then, merge weeks for (var week in me_category['weeks']) { // If the week doesn't exist in reduced_value, copy it if (other_category['weeks'][week] == undefined) { other_category['weeks'][week] = deepcopy(me_category['weeks'][week]); continue; } // Otherwise, merge. var me_week = me_category['weeks'][week]; var other_week = other_category['weeks'][week]; // Only cubes are available here. processCubes(other_week, me_week, category, 'none', week); // TODO: totals } // Then, merge category/total: // print("Calling days from category/total/days"); mergeTotalDays(other_category['total']['days'], me_category['total']['days']); // print("Calling total from category/total/total"); mergeTotalTotal(other_category['total']['total'], me_category['total']['total']); }); // Then, merge total // print("Calling days from total"); mergeTotalDays(reduced_value['total']['days'], value['total']['days']); // print("Calling total from total"); mergeTotalTotal(reduced_value['total']['total'], value['total']['total']); // merge weeks summary for (var week in value['total']['weeks']) { if (reduced_value['total']['weeks'][week] == undefined) { reduced_value['total']['weeks'][week] = deepcopy(value['total']['weeks'][week]); } else { mergeCubes(reduced_value['total']['weeks'][week]['cubes'], value['total']['weeks'][week]['cubes']); mergeCubeTotals(reduced_value['total']['weeks'][week]['total'], value['total']['weeks'][week]['total']); mergeBasicTotal(reduced_value['total']['weeks'][week]['summary'], value['total']['weeks'][week]['summary']); } }; }); return reduced_value; }""" % dict( CATEGORIES = categories, SHARED = shared_code )) # dummy_reduce = Code("""function(key, values) { return values[0] }""") # reduce_func = dummy_reduce # print map_patterns_func # print reduce_func nonAtomic = False PATTERNS = True CUBE_MONTH = True CUBE_WEEK = True if PATTERNS: print "Procesando patterns_month" db.patterns_month.map_reduce( map_patterns_func, reduce_func, out=SON([("reduce", "shop_zipcode_summary"), ('nonAtomic', nonAtomic)])) if CUBE_MONTH: print "Procesando cube_month" db.cube_month.map_reduce( map_cube_month_func, reduce_func, out=SON([("reduce", "shop_zipcode_summary"), ('nonAtomic', nonAtomic)])) if CUBE_WEEK: print "Procesando cube_week" db.cube_week.map_reduce( map_cube_week_func, reduce_func, out=SON([("reduce", "shop_zipcode_summary"), ('nonAtomic', nonAtomic)])) print "Hecho" if SHOP_ZIPCODE_SUMMARY: print "Creating shop zipcode summary" shop_zipcode_summary()
UTF-8
Python
false
false
46,439
py
4,764
mongo_import.py
23
0.442645
0.438511
0
1,114
40.685817
261
xiepeiheng/Visualization-of-machine-maintenance-data
13,322,988,581,719
80b2827dc7b2d9e545226b50d4eeca45ecc0a9e9
cb7edf68504f88cee8313d1ebc12190528242ae5
/Visualization of machine maintenance data/view/person/parse.py
828bd1c2a3aa6a2e7037fb638383917afdc90dab
[ "MIT" ]
permissive
https://github.com/xiepeiheng/Visualization-of-machine-maintenance-data
894d292e25ca46dceae6e004ba72452366713c7c
02bd235f21d2fe429c701929a3938fbc15385272
refs/heads/main
2023-08-16T14:45:35.131025
2021-10-20T15:19:19
2021-10-20T15:19:19
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from flask import Blueprint, render_template, request from function.sqlite_function import * import sqlite3 from settings import DATABASE_PATH _person = Blueprint('person', __name__, url_prefix='/') @_parse.route('/parse', defaults={'time': '2021-06-292021-07-29'}) @_parse.route('/parse/<time>') def parse1(time): start_time = time[0:10] stop_time = time[10:] table = zfh(start_time, stop_time) time = [start_time, stop_time] return render_template('down_and_fault/parse/template_parse.html', time=time, table=table) @_parse.route('/parse/ajax', methods=['POST']) def parse2(): start_time = request.form['start'] stop_time = request.form['stop'] table = zfh(start_time, stop_time) return render_template('down_and_fault/parse/parse.html', table=table) def zfh(start_time, stop_time): con, cur = db_open() # 日期范围限制 hxy_r = f'''日期 >= "{start_time}" and 日期 <= "{stop_time}"''' # 返回日期横坐标数组 time = sqliteObject_to_list_a(cur, f''' select distinct 日期 from parse where {hxy_r} ''') # 返回机组数据 crew = sqliteObject_to_list_a(cur, f''' select distinct 机组 from parse where {hxy_r} ''') # 表格内容顺序,机组编号,成材率,人均吨钢,吨电耗,单位产量,吨备件 table = sqliteObject_to_list_h(cur, f''' select 机组,ifnull(ROUND(sum(正品)/sum(原料),2),''),ifnull(ROUND(sum(正品)/sum(人数),2),''),ifnull(ROUND(sum(耗电)/sum(正品),2),''),ifnull(ROUND(sum(正品)/sum(开机),2),''),ifnull(ROUND(sum(备件金额)/sum(正品),2),'') from parse2 where {hxy_r} GROUP BY 机组 ''') # # 图表内容顺序 人均吨钢,吨电耗,单位产量 吨备件和成材率不显示趋势,直接看最上面的总量即可 # # 图表的title文字,同时也可用于搜索 # pic_name = ['人均吨钢', '吨电耗', '单位产量'] # for i in pic_name: # temp = sqliteObject_to_list_h(cur, f''' # select 机组,{i} # from parse1 # where {hxy_r} # GROUP BY 机组 # ''') # # # # # # hxy1 = sqliteObject_to_list_h(cur, f''' # select 机组,ROUND(sum(人均吨钢),2),ROUND(sum(吨电耗),2),ROUND(sum(单位产量),2),ROUND(sum(吨备件),2) # from parse1 # where {hxy_r} # GROUP BY 机组 # ''') # # hxy2 = sqliteObject_to_list_a(cur, f''' # select 机组,ROUND(sum(正品)/sum(原料),2) # from parse # where {hxy_r} # GROUP BY 机组 # ''') # 每日趋势区域 db_close(con, cur) return table
UTF-8
Python
false
false
2,697
py
37
parse.py
17
0.574082
0.557235
0
88
25.306818
199
xenomarz/advanced-topics-in-deep-learning-236605-hw1
11,252,814,356,323
221e494744f3510ac9cc7a5a7f5dbc66ce85d58c
86b9d66b4bae1098f99c1673e33af05bf3d3b3cc
/train_feature_extractor.py
c3514154dad1dddf86c7eeaf477b75fde6d3a4a1
[]
no_license
https://github.com/xenomarz/advanced-topics-in-deep-learning-236605-hw1
c5f33601f4556ca8bd650132a70b42812073ed22
f5af0cd23da666bab391de7aee1e9baf00cdda74
refs/heads/main
2023-05-07T19:17:10.330984
2021-06-04T22:23:50
2021-06-04T22:23:50
372,843,482
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from torchvision.datasets.utils import download_url import os import sys import tarfile import hashlib import torchvision import torch from torchvision.transforms import transforms import numpy as np import matplotlib.pyplot as plt from augmentation import TwoCropsTransform from moco import KeyEncoder from moco import QueryEncoder from moco import LinearClassifier from datetime import datetime from pathlib import Path from moco import MoCo from logger import Logger # https://github.com/fastai/imagenette dataset_url = 'https://s3.amazonaws.com/fast-ai-imageclas/imagenette2.tgz' dataset_filename = dataset_url.split('/')[-1] dataset_foldername = dataset_filename.split('.')[0] data_path = './data' results_base_path = './results' dataset_filepath = os.path.join(data_path,dataset_filename) dataset_folderpath = os.path.join(data_path,dataset_foldername) if __name__ == '__main__': ##################################### # Download Dataset ##################################### # https://github.com/fastai/imagenette dataset_url = 'https://s3.amazonaws.com/fast-ai-imageclas/imagenette2.tgz' dataset_filename = dataset_url.split('/')[-1] dataset_foldername = dataset_filename.split('.')[0] data_path = './data' dataset_filepath = os.path.join(data_path, dataset_filename) dataset_folderpath = os.path.join(data_path, dataset_foldername) os.makedirs(data_path, exist_ok=True) download = False if not os.path.exists(dataset_filepath): download = True else: md5_hash = hashlib.md5() file = open(dataset_filepath, "rb") content = file.read() md5_hash.update(content) digest = md5_hash.hexdigest() if digest != 'fe2fc210e6bb7c5664d602c3cd71e612': download = True if download: download_url(dataset_url, data_path) with tarfile.open(dataset_filepath, 'r:gz') as tar: tar.extractall(path=data_path) ##################################### # Create DataLoader ##################################### size = 224 ks = (int(0.1 * size) // 2) * 2 + 1 # should be odd __imagenet_stats = {'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225]} train_transform_features_extractor = TwoCropsTransform(transforms.Compose([ transforms.RandomResizedCrop(scale=(0.2, 1), size=size), transforms.RandomApply([transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8), transforms.RandomGrayscale(p=0.2), transforms.RandomApply([transforms.GaussianBlur(kernel_size=ks)]), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(**__imagenet_stats)])) dataset_train_features_extractor = torchvision.datasets.ImageFolder(os.path.join(dataset_folderpath, 'train'), train_transform_features_extractor) # settings t = 0.07 feature_extractor_train_epochs = 2000 feature_extractor_train_batch_size = 220 classifier_train_epochs = 5 momentum = 0.9 weight_decay = 1e-4 lr = 1e-4 k = 10000 checkpoint_granularity = 50 train_dataloader_features_extractor = torch.utils.data.DataLoader( dataset_train_features_extractor, batch_size=feature_extractor_train_batch_size, num_workers=20, drop_last=True, shuffle=True, pin_memory=True, prefetch_factor=20) ##################################### # Train ##################################### moco = MoCo(k=k).cuda() moco.train() loss_features_extractor = torch.nn.CrossEntropyLoss().cuda() optimizer_features_extractor = torch.optim.Adam( moco.parameters(), lr=lr) results_dir_path = os.path.normpath(os.path.join(results_base_path, datetime.now().strftime('%Y-%m-%d-%H-%M-%S'))) Path(results_dir_path).mkdir(parents=True, exist_ok=True) results_filepath = os.path.normpath(os.path.join(results_dir_path, 'feature_extractor_loss_results.npy')) sys.stdout = Logger(filepath=os.path.join(results_dir_path, 'feature_extractor_training.log')) feature_extractor_train_loss_array = np.array([]) for epoch_index in range(feature_extractor_train_epochs): # -------------------------------------- # Train features extractor for one epoch # -------------------------------------- feature_extractor_batch_loss_array = np.array([]) feature_extractor_epoch_loss = 0 print(f'Feature Extractor Epoch #{epoch_index + 1}') print('------------------------------------------') for batch_index, ((queries, keys), _) in enumerate(train_dataloader_features_extractor): logits, labels, queries_features, keys_features = moco.forward(queries=queries.cuda(), keys=keys.cuda()) loss_output = loss_features_extractor(logits / t, labels) optimizer_features_extractor.zero_grad() loss_output.backward() optimizer_features_extractor.step() moco.update_key_encoder(keys=keys_features) loss_item = loss_output.item() feature_extractor_batch_loss_array = np.append(feature_extractor_batch_loss_array, [loss_item]) feature_extractor_epoch_loss = np.mean(feature_extractor_batch_loss_array) print(f'Epoch: #{(epoch_index + 1):{" "}{"<"}{5}}| Batch: #{(batch_index + 1):{" "}{"<"}{5}}| Batch Loss: {loss_output.item():{" "}{"<"}{30}}| Epoch Loss: {feature_extractor_epoch_loss:{" "}{"<"}{30}}') print('') feature_extractor_train_loss_array = np.append(feature_extractor_train_loss_array, [feature_extractor_epoch_loss]) if (epoch_index + 1) % checkpoint_granularity == 0: results = { 'feature_extractor_train_loss_array': feature_extractor_train_loss_array, 'feature_extractor_train_epochs': feature_extractor_train_epochs, 'feature_extractor_train_batch_size': feature_extractor_train_batch_size } np.save(file=results_filepath, arr=results, allow_pickle=True) lastest_moco_filepath = os.path.normpath(os.path.join(results_dir_path, f'moco_{epoch_index + 1}.pt')) torch.save(moco.state_dict(), lastest_moco_filepath)
UTF-8
Python
false
false
6,305
py
10
train_feature_extractor.py
6
0.618715
0.599841
0
153
40.20915
214
ParamitaDhyana/python-demo
7,335,804,178,100
b35712ce412c2a9e0d7f37f2d83ee555577ac5c9
e18508d7b29ca29537198fe86e39fd445426a28b
/20181017/io/PickleDemo.py
343b5a8e413aa746f75c32d483877943ed60865f
[]
no_license
https://github.com/ParamitaDhyana/python-demo
e417bed4f2e95588dbee5957b926e14ff0c9d427
1e7d7f1cad449a7b1c88a61cf85d3db6387feb6a
refs/heads/master
2020-03-18T14:28:05.496021
2018-11-07T04:29:08
2018-11-07T04:29:08
134,849,555
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import pickle import os import json d = dict(name='Bob', age=20, score=99) # print(pickle.dumps(d)) # with open('c:/GitHub/python-demo/20181017/io/dump.txt', 'wb') as f: # pickle.dump(d, f) # print(json.dumps(d)) # json_str = '{"age":20,"name":"daniel","score":100}' # j =json.loads(json_str) # print(j['age']) class Student(object): def __init__(self,name,age,score): self.name=name self.age=age self.score=score def student2dict(std): return { 'name':std.name, 'age':std.age, 'score':std.score } s=Student('小明',20,69) print(json.dumps(s,default=student2dict))
UTF-8
Python
false
false
640
py
59
PickleDemo.py
51
0.602201
0.566038
0
31
19.548387
69
ryan-way-leetcode/python
13,022,340,846,249
af5912ca997e82f990a9dee72e18417817dfada0
55d8050c64c95af7315ac2585e745ecd485ab125
/242_ValidAnagram/solution.py
c7c16fbcb1b0a7abff39978159dc77d142d9ae74
[]
no_license
https://github.com/ryan-way-leetcode/python
bf6db483048be95b85d347401917fe2335618054
aa210e56d9953ce2c4084ec7bfc953e52efcb8f1
refs/heads/main
2023-08-18T21:19:39.693588
2021-10-19T19:50:26
2021-10-19T19:50:26
419,070,851
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
class Solution: def isAnagram(self, s: str, t: str) -> bool: d_s = {} d_t = {} for c in s: if c not in d_s: d_s[c] = 0 d_s[c] += 1 for c in t: if c not in d_t: d_t[c] = 0 d_t[c] += 1 return d_t == d_s
UTF-8
Python
false
false
327
py
19
solution.py
19
0.321101
0.308869
0
16
19.5
48
denotepython/pythonbook
13,254,269,118,451
f9a92e78ee81153d7b998fb9877c80ce64d885ba
1688cf63a2513238f3afdccdbb080aa0cca4004e
/learn python without code knowledge-- Craig Richardson/冒险一:太空飞船.py
45ebea97dd038eb3d5ca5832498c3e95ac8bc0ce
[]
no_license
https://github.com/denotepython/pythonbook
34910dd1379e5b5b9dce07c2126d02363af1ac0a
885179a8ca67262c4db7fcb9b2673a3313a3ec92
refs/heads/master
2021-01-22T03:39:21.549355
2016-07-31T07:30:25
2016-07-31T07:30:25
58,024,965
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#raw_input()函数:使用户在提示符后面输入字符串 import time shipname = "LQ_ship" captain = "LQ" location = "earth" password = "1234" password_temp = raw_input("Enter the password: ") while password_temp != password: print "password wrong" password_temp = raw_input("Enter the password: ") print "password right, weclome to the " + shipname print "" print "The spaceship " + shipname + " is visiting " + location choice = "" while choice != "/exit": print "What would you like to do?" print "" print "a. Travel to another planet" print "b. Fire" print "c. self-destory" print "input /exit to exit" print "" choice = raw_input("Enter your choice ") if choice == "a": destination = raw_input("Where do you want to go?") print "leave " + location print "travlling to " + destination time.sleep(5) print "arrived at " + destination location = destination elif choice == "b": print "Fire" time.sleep(3) elif choice == "c": confirm = raw_input("Are you sure to destory the space?") if confirm == "y": print "ship will self-destory in 3" time.sleep(1) print "2" time.sleep(1) print "1" time.sleep(1) print "Boom!" else: print "invalid input.please select a, b, or c."
UTF-8
Python
false
false
1,235
py
57
冒险一:太空飞船.py
56
0.662781
0.652789
0
48
24.041667
62
AloneRoad/ElasticLog
15,874,199,141,755
3b574b4abd35c73f3d4bf4f4bdb4535888433e5f
46a23a57a6e94a588b9f211e672390717cdf65a4
/src/web.py
c285fa1e15b353810320f5deba0a335f950a5395
[]
no_license
https://github.com/AloneRoad/ElasticLog
00c671dc1d6dc293ac4225f158571af783331da2
7c3a750a1cd18356464f0752488a51cc5f026e26
refs/heads/master
2021-01-22T11:20:25.702760
2012-04-04T18:20:40
2012-04-04T18:20:40
3,931,705
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
#! coding: utf-8 # pylint: disable-msg=W0311 """ - Hiển thị giao diện: + 1 ô nhập truy vấn + 1 vùng biểu đồ + 1 vùng các kết quả tìm thấy - Nhận truy vấn + Tìm trong ElasticSearch + Tổng hợp kết quả, vẽ biểu đồ theo thời gian hoặc các tham số đã tách ở bước phân tích """ from flask import Flask, request, render_template, make_response, abort from pyelasticsearch import ElasticSearch from mimetypes import guess_type from datetime import datetime, timedelta from redis import Redis import os import settings try: from collections import OrderedDict as odict except ImportError: from ordereddict import OrderedDict as odict host, port = settings.CACHE.split(':') CACHE = Redis(host=host, port=int(port)) INDEX = ElasticSearch('http://' + settings.ES_SERVERS[0]) app = Flask(__name__) @app.route('/', methods=['GET', 'POST']) def main(): if request.method == 'GET': query = '*' graph_by = 'minute' start = datetime.strftime(datetime.now() - timedelta(hours=1), '%Y-%m-%dT%H:%M:%S') end = datetime.strftime(datetime.now(), '%Y-%m-%dT%H:%M:%S') else: query = request.form.get('query', '*') if '*' not in query: query = '*' + query + '*' graph_by = request.form.get('graph_by', 'second') start = request.form.get('start') end = request.form.get('end') key = graph_by query_dsl = {} query_dsl['query'] = { "filtered" : { "query" : { "query_string" : {"query" : query} }, "filter" : { "numeric_range" : { "time" : { "lt" : end, "gte" : start } } } } } if key in ['second', 'minute', 'hour', 'day', 'week', 'month', 'year']: query_dsl['facets'] = { "counters": { "date_histogram": { "field" : "time", "interval" : key } } } else: query_dsl["facets"] = { "counters" : { "terms" : { "script_field" : "_source.%s" % key } } } resp = INDEX.search(query=None, body=query_dsl, indexes=['log']) results = resp.get('hits').get('hits') records = [] for i in results: record = {} for k in i.get('_source').keys(): if not k.startswith('_'): record[k] = i['_source'][k] records.append(record) counters = odict() delta = timedelta(hours=7) # utc offset if key in ['second', 'minute', 'hour', 'day', 'week', 'month', 'year']: entries = resp.get('facets').get('counters').get('entries') for i in entries: counters[datetime.fromtimestamp(i['time'] / 1000) - delta] = i['count'] else: for i in resp.get('facets').get('counters').get('terms'): counters[i['term']] = i['count'] return render_template('home.html', start=start, end=end, query=query, graph_by=graph_by, records=records, counters=counters) @app.route('/public/<filename>') def public_files(filename): path = 'public/' + filename if not os.path.exists(path): abort(404, 'File not found') filedata = open(path).read() response = make_response(filedata) response.headers['Content-Length'] = len(filedata) response.headers['Content-Type'] = guess_type(filename)[0] response.headers['Cache-Control'] = 'public' response.headers['Expires'] = '31 December 2037 23:59:59 GMT' return response if __name__ == '__main__': app.run(host='0.0.0.0', debug=False)
UTF-8
Python
false
false
3,837
py
11
web.py
10
0.528352
0.519078
0
132
27.598485
89
Umbrella-Digital/DataStream_Cookbook
12,386,685,682,300
5b5cdd0dd8d430ec1bdd49364380105939c45789
ee67ab08aac3a9c10d0e0c87888f46a1899be71a
/Recipes/lib/lotame.properties
e5c82a23a33cdc352d98755cc6c79bbf61c1bacc
[ "MIT" ]
permissive
https://github.com/Umbrella-Digital/DataStream_Cookbook
f7e2474d741aaa5e41999ca04164dafced289fcc
feceb9cffd87696f3bcd0e24a66a5b5c7c244617
refs/heads/master
2022-11-15T22:33:21.678522
2020-07-07T17:36:54
2020-07-07T17:36:54
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python # # Filename: # # lotame.properties # # # Basic Usage: # # 1. populate the following fields: # username # password # client_id # # [default] auth_url=https://crowdcontrol.lotame.com/auth/v1/tickets base_url=https://api.lotame.com/2 username=<username> password=<password> client_id=<client_id>
UTF-8
Python
false
false
353
properties
1
lotame.properties
1
0.631728
0.623229
0
24
13.75
56
rakesht2499/ip_model
77,309,446,584
4510c090e44bc650fe1d07ae5056fe89fde64bc8
e040bdc04bf124cfcd693b3add2786d9137d7367
/Ip.py
3028acac6e08ea4882200497cf49713e0cd4d67c
[ "Apache-2.0", "Python-2.0" ]
permissive
https://github.com/rakesht2499/ip_model
feea51ad8562e9e6614d555cecb39732937c0a84
951bef164fed2ae9142bff0f9f5b98b45e0fc2a1
refs/heads/master
2022-09-21T16:50:25.327634
2020-06-06T14:35:06
2020-06-06T16:24:32
251,326,314
5
0
Apache-2.0
false
2020-06-03T22:19:12
2020-03-30T14:14:17
2020-06-03T18:51:09
2020-06-03T22:19:11
2,380
6
0
0
Python
false
false
from ipaddress import ip_address, IPv4Address, IPv4Network, ip_network from ip_model.IpObject import IpObject from ip_model.Ipv4 import Ipv4 from ip_model.Ipv6 import Ipv6 class Ip(IpObject): def __init__(self): self.ipv4 = Ipv4() self.ipv6 = Ipv6() def __ip_decider(self, ip): if isinstance(ip_address(ip), IPv4Address): return self.ipv4 else: return self.ipv6 def __cidr_decider(self, ip): if isinstance(ip_network(ip), IPv4Network): return self.ipv4 else: return self.ipv6 def add(self, ip: str): """ Adds the given valid IP :param ip: An Ip as String :returns: True for every new addition :raises :class:`ip_model.Exceptions.InvalidIpException` for invalid IP """ ipObject = self.__ip_decider(ip) return ipObject.add(ip) def remove(self, ip: str): """ Removed the given valid IP :param ip: An Ip as String :returns: str: The IP which is removed :raises :class:`ip_model.Exceptions.InvalidIpException` for invalid IP """ ipObject = self.__ip_decider(ip) return ipObject.remove(ip) def is_present(self, ip: str): """ Checks if a given valid IP is present or not :param ip: An Ip as String :returns: True, if the element is present False, if the element is not present :raises :class:`ip_model.Exceptions.InvalidIpException` for invalid IP """ ipObject = self.__ip_decider(ip) return ipObject.is_present(ip) def add_cidr(self, cidr: str): """ Adds the given valid IP CIDR :param cidr: String in CIDR notation :return: True :raises :class:`ip_model.Exceptions.InvalidIpException` for invalid IP CIDR """ ipObject = self.__cidr_decider(cidr) return ipObject.add_cidr(cidr) def remove_cidr(self, cidr: str): """ Removes the given valid IP CIDR :param cidr: String in CIDR notation :return: str: CIDR range which is removed :raises :class:`ip_model.Exceptions.InvalidIpException` for invalid IP CIDR """ ipObject = self.__cidr_decider(cidr) return ipObject.remove_cidr(cidr)
UTF-8
Python
false
false
2,357
py
19
Ip.py
17
0.595248
0.58846
0
78
29.217949
84
bituka/e-eleksyon
1,743,756,757,702
e964be86e85fd852ce2fd924a825d40c098a818f
b0856bad0d28d74eac160bea58aabe37fe16f941
/backend/vote/serializers.py
b86cc228a67b3bf87be8056519a9279ac2c2afc0
[]
no_license
https://github.com/bituka/e-eleksyon
90ab025c5aa5ec74f18776374e8376933216d26a
ecd494df83ecdfdd134c69213841051138ea32a3
refs/heads/master
2023-06-28T03:15:14.638512
2021-07-19T00:36:54
2021-07-19T00:36:54
364,792,939
0
3
null
false
2021-07-26T11:49:45
2021-05-06T05:17:50
2021-07-19T00:37:21
2021-07-20T05:59:44
3,264
0
1
0
Vue
false
false
from rest_framework import serializers from vote.models import Position, Candidate class CandidateSerializer(serializers.ModelSerializer): class Meta: model = Candidate fields = ['name', 'position', 'votes'] class PositionSerializer(serializers.ModelSerializer): class Meta: model = Position fields = ['title']
UTF-8
Python
false
false
352
py
15
serializers.py
4
0.707386
0.707386
0
12
28.416667
55
Developing-Community/Developing-Community-Web
17,892,833,756,271
4eb3a92c9bd1f3edd898bcb62755fef1040a447b
c63baadbefa9ff9800553487c4e3a0c125f13b72
/users/urls.py
b1be075cdd2f27a8bb8f133dccb52cf2debf8734
[ "MIT" ]
permissive
https://github.com/Developing-Community/Developing-Community-Web
306245eafb857ee13c9f8e71ad38a23139681a03
733233da20148ae1affc33067c332f3619daa176
refs/heads/master
2018-09-17T05:39:15.940850
2018-09-15T10:27:25
2018-09-15T10:27:25
135,051,348
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.urls import path from .views import ( UserCreateAPIView, ProfileUpdateAPIView, ProfileRetrieveAPIView) from rest_framework_jwt.views import obtain_jwt_token, refresh_jwt_token, verify_jwt_token urlpatterns = [ path('auth/refresh_token/', refresh_jwt_token), path('auth/verify_token/', verify_jwt_token), path('auth/obtain_token/', obtain_jwt_token), path('register/', UserCreateAPIView.as_view(), name='register'), path('profile/', ProfileRetrieveAPIView.as_view(), name='view-profile'), path('profile/<int:id>/update/', ProfileUpdateAPIView.as_view(), name='edit-profile'), ]
UTF-8
Python
false
false
627
py
44
urls.py
43
0.714514
0.714514
0
16
38.1875
90
claudiospro/neointel_proyecto01
6,528,350,307,297
42310db0a9991ed30343166066fd224a460ccd57
e5381fbb04c325818abc44d7c97ad0792c380014
/docs/analisis/muestra02/proceso.py
5e782e41272bc9667214138aa4e091335701938b
[]
no_license
https://github.com/claudiospro/neointel_proyecto01
4b64d0a77d5c39fd11fc499e4a70b3b3468b0f1b
f6f13f038b7b759511958885eb2e3681220b0980
refs/heads/master
2016-08-11T16:36:49.915964
2016-01-08T21:43:10
2016-01-08T21:43:10
49,088,342
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import sys import re import time from openpyxl import load_workbook from openpyxl import Workbook from openpyxl.cell import column_index_from_string import config.cols cols = config.cols.huecos wb10 = load_workbook(sys.argv[1]) ws11 = wb10['X'] wb20 = Workbook() ws21 = wb20.active ws21['A1'] = 'municipio' ws21['B1'] = 'direccion' list_21 = list() i = j = 1 # print ws11.max_row for row in ws11.rows: if i == 1: i+=1 j+=1 continue index_21 = '' municipio1 = ws11.cell(row = i, column = cols['municipio']) direcion1 = ws11.cell(row = i, column = cols['direccion']) if (municipio1.value is not None and direcion1.value is not None): index_21+=municipio1.value index_21+=direcion1.value # print index_21 if ( (index_21 in list_21) == False ): list_21.append(index_21) municipio2 = ws21.cell(row = j, column = 1) direcion2 = ws21.cell(row = j, column = 2) municipio2.value = municipio1.value municipio2.value = municipio2.value.decode('utf-8') print type(municipio2.value) direcion2.value = direcion1.value print type(direcion2.value) j+=1 i+=1 wb20.save(filename = 'procesado_calle_'+sys.argv[1])
UTF-8
Python
false
false
1,315
py
97
proceso.py
85
0.601521
0.542966
0
53
23.811321
70
BertrandBordage/Titelouze
6,219,112,656,622
1d34db9c0c965eacacd0a60287f25fcd0bd39d12
7f7f09dc32c5e8bac7cedd9b56782f882e671fee
/setup.py
56c7ba0b4db2c5267f13ea642903163696c55633
[]
no_license
https://github.com/BertrandBordage/Titelouze
5509f858ccc7daf0bec0bac5cae50d0b385dc672
178b8e26d16a38993d0d252e1de2300f6513bec2
refs/heads/master
2021-01-21T09:59:25.304895
2013-04-17T15:54:44
2013-04-17T15:54:44
3,545,692
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#! /usr/bin/env python # coding: utf-8 from distutils.core import setup setup( name='Titelouze', version='0.1.2', author='Bertrand Bordage', author_email='bordage.bertrand@gmail.com', url='https://github.com/BertrandBordage/Titelouze', packages=('titelouze',), package_data={'titelouze': ['templates/*.ily']}, license='Creative Commons Attribution Non-Commercial Share Alike', description='Framework to easily build LilyPond books.', long_description=open('README.rst').read(), classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: End Users/Desktop', 'Intended Audience :: Developers', 'License :: Free for non-commercial use', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Artistic Software', ], )
UTF-8
Python
false
false
859
py
18
setup.py
9
0.6461
0.640279
0
26
32.038462
70
eahmedali2005/GTM-DSM2
4,054,449,160,348
1a1fd7667b1d83fe79d5a5a42d0914663e02162a
404d14312f008f9648b51b16dcca9716ab865d36
/input_storage/component.py
471cac379cc06710f1963b312c0c1938304f0b50
[]
no_license
https://github.com/eahmedali2005/GTM-DSM2
898bee7019d800a8f70f0944fb8b58815c71bcc9
6aa949eed7ca44d3cef2847c082cb52d0cb18d90
refs/heads/master
2020-03-27T09:28:45.469432
2018-08-27T19:34:13
2018-08-27T19:34:13
146,344,871
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import sys import string def component_order(): return["envvar",\ "scalar",\ "channel",\ "xsect",\ "xsect_layer",\ "reservoir",\ "reservoir_connection",\ "gate",\ "gate_pipe_device",\ "gate_weir_device",\ "transfer",\ "io_file",\ "tidefile",\ "group",\ "group_member",\ "channel_ic",\ "reservoir_ic",\ "operating_rule",\ "oprule_expression",\ "oprule_time_series",\ "rate_coefficient",\ "group_variable",\ "group_variable_sed",\ "particle_insertion",\ "particle_filter",\ "particle_res_filter",\ "particle_flux_output",\ "particle_group_output",\ "input_climate",\ "input_transfer_flow",\ "input_gate",\ "boundary_stage",\ "boundary_flow",\ "source_flow",\ "source_flow_reservoir",\ "node_concentration",\ "reservoir_concentration",\ "input_time_series",\ "output_channel",\ "output_reservoir",\ "output_channel_source_track",\ "output_reservoir_source_track",\ "output_gate",\ "suspended_sediment_type",\ "suspended_sediment_boundary"] def component_members(): return {"envvar":["name","value"],\ "scalar":["name","value"],\ "channel":["chan_no","length","manning","dispersion","upnode","downnode"],\ "xsect":["chan_no","dist","file"],\ "xsect_layer":["chan_no","dist","elev","area","width","wet_perim"],\ "reservoir":["name","area","bot_elev"],\ "reservoir_connection":["res_name","node","coef_in","coef_out"],\ "gate":["name","from_obj","from_identifier","to_node"],\ "gate_pipe_device":["gate_name","device","nduplicate","radius","elev","cf_from_node","cf_to_node","default_op"],\ "gate_weir_device":["gate_name","device","nduplicate","width","elev","height","cf_from_node","cf_to_node","default_op"],\ "transfer":["name","from_obj","from_identifier","to_obj","to_identifier"],\ "io_file":["model","type","io","interval","file"],\ "tidefile":["start_date","end_date","file"],\ "group":["name"],\ "group_member":["group_name","member_type","pattern"],\ "channel_ic":["chan_no","distance","stage","flow"],\ "reservoir_ic":["res_name","stage"],\ "operating_rule":["name","action","trigger"],\ "oprule_expression":["name","definition"],\ "oprule_time_series":["name","fillin","file","path"],\ "rate_coefficient":["group_name","constituent","variable","value"],\ "group_variable":["group_name","constituent","variable","value"],\ "group_variable_sed":["group_name","sed_zone","sed_layer","variable","value"],\ "particle_insertion":["node","nparts","delay","duration"],\ "particle_filter":["name","node","at_wb","fillin","file","path"],\ "particle_res_filter":["name","res_name","at_wb","fillin","file","path"],\ "particle_flux_output":["name","from_wb","to_wb","interval","file"],\ "particle_group_output":["name","group_name","interval","file"],\ "input_climate":["name","variable","fillin","file","path"],\ "input_transfer_flow":["transfer_name","fillin","file","path"],\ "input_gate":["gate_name","device","variable","fillin","file","path"],\ "boundary_stage":["name","node","fillin","file","path"],\ "boundary_flow":["name","node","sign","fillin","file","path"],\ "source_flow":["name","node","sign","fillin","file","path"],\ "source_flow_reservoir":["name","res_name","sign","fillin","file","path"],\ "node_concentration":["name","node_no","variable","fillin","file","path"],\ "reservoir_concentration":["name","res_name","variable","fillin","file","path"],\ "input_time_series":["group_name","variable","fillin","file","path"],\ "output_channel":["name","chan_no","distance","variable","interval","period_op","file"],\ "output_reservoir":["name","res_name","node","variable","interval","period_op","file"],\ "output_channel_source_track":["name","chan_no","distance","variable","source_group","interval","period_op","file"],\ "output_reservoir_source_track":["name","res_name","variable","source_group","interval","period_op","file"],\ "output_gate":["name","gate_name","device","variable","interval","period_op","file"],\ "suspended_sediment_type":["composition"],\ "suspended_sediment_boundary":["name","composition","percent"]} def include_block(): return {\ "reservoir":"hydro_time_series", "particle_flux_output":"particle", "xsect":"grid", "output_gate":"output_time_series", "scalar":"parameter", "boundary_stage":"hydro_time_series", "node_concentration":"gtm_time_series", "gate_pipe_device":"hydro_time_series", "xsect_layer":"grid", "group_variable":"gtm_spatial", "group_member":"groups", "oprule_expression":"operation", "input_transfer_flow":"hydro_time_series", "group":"groups", "output_channel":"output_time_series", "particle_group_output":"particle", "transfer":"hydro_time_series", "input_climate":"gtm_time_series", "oprule_time_series":"operation", "particle_insertion":"particle", "channel":"grid", "boundary_flow":"hydro_time_series", "input_gate":"hydro_time_series", "operating_rule":"operation", "reservoir_concentration":"gtm_time_series", "reservoir_ic":"initial_condition", "output_channel_source_track":"output_time_series", "gate":"hydro_time_series", "output_reservoir_source_track":"output_time_series", "particle_res_filter":"particle", "rate_coefficient":"qual_spatial", "input_time_series":"gtm_time_series", "reservoir_connection":"hydro_time_series", "source_flow":"hydro_time_series", "gate_weir_device":"hydro_time_series", "particle_filter":"particle", "source_flow_reservoir":"hydro_time_series", "channel_ic":"initial_condition", "envvar":"configuration", "output_reservoir":"output_time_series"} def include_block_order(): return[\ "configuration",\ "parameter",\ "grid",\ "initial_condition",\ "hydro_time_series",\ "operation",\ "groups",\ "qual_time_series",\ "qual_spatial",\ "gtm_time_series",\ "gtm_spatial",\ "output_time_series",\ "particle"] def ordered_print(items): """Given a sequence of items, prints them in order with number then item""" for i,item in zip(range(len(items)),items): print "%s: %s" % (i,item) def generateNotepad(): """ Generates a Notepad++ user defined language file with syntax highlights for the keywords """ tablelist=component_order() includes = set(include_block().values()) folds = string.join([x.upper() for x in tablelist+list(includes)]," ") member_dict=component_members() keys=[] for key in member_dict: keys+=member_dict[key] keywords = string.join([key.upper() for key in keys]," ") userfile = open("userDefineLangTemplate.xml",'r') usertxt = userfile.read() userfile.close() usertxt=usertxt.replace("@FOLDS",folds) usertxt=usertxt.replace("@KEYS",keywords) userfile = open("userDefineLang.xml","w") userfile.write(usertxt) userfile.close() if (__name__=="__main__"): if len(sys.argv) == 1: print "Usage: component order" print " or: component members [table]" else: arg=sys.argv[1] if arg == "order": corder = component_order() ordered_print(corder) if arg == "members": members = component_members() if len(sys.argv)==2: for key in component_order(): print "%s" % key morder = members[key] ordered_print(morder) print "\n" else: ordered_print(component_members()[sys.argv[2]]) if arg == "notepad": generateNotepad()
UTF-8
Python
false
false
8,081
py
235
component.py
29
0.582972
0.582477
0
208
37.841346
127
karebearvfx/cspath-datastructures-capstone-project
13,572,096,674,561
a137360ebb521839774fca076b2502edfb9e9b22
57a6a0750f1015ebda6b7dbe7d47666581982073
/finalcodes/script.py
673aa8dfcc9075445e9e37ed043b728113b46065
[]
no_license
https://github.com/karebearvfx/cspath-datastructures-capstone-project
2865aeaa69a19f2ac8f42ea12638b322028b73a8
4b1b895aba4503534af47743139d62d248dfea5e
refs/heads/master
2020-04-07T21:58:06.264145
2018-11-23T07:49:37
2018-11-23T07:49:37
158,748,618
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
##import functions### from data import * from welcome import * from hashmap import HashMap from linkedlist import LinkedList ##GOAL:To retrieve a list of restaurants given a single input of what food type user enters ## ####variables### #copy existing data food_types = types restaurants_list = restaurant_data ###functions#### ##create a list of dictionary keys for array ##O(N) def char_keys(lists): char_keys = [] for item in lists: if item[0] not in char_keys: char_keys.append(item[0]) else: pass return char_keys ##create a list of values for keys starting with the first letter #if there is more than one value, it is added to the values list O(N) def find_values(key,value_list): key_value_list = [] for item in value_list: if item[0] == key: key_value_list.append(item) return key_value_list ##create hashmap {first letter: food_types}, runtime = O (N^2) during map generation ##Runtime = O(1) when searching food_types_keys = char_keys(food_types) food_types_hashmap = HashMap(len(food_types_keys)) for i in food_types_keys: values_list = find_values(i,food_types) food_types_hashmap.assign(i,values_list) """ ###TEST CHECK for i in food_types_keys: values = food_types_hashmap.retrieve(i) print("values at {0} are {1}".format(i,values)) """ ##return list of food_types for user_input def food_type_output(user_input): return food_types_hashmap.retrieve(user_input) #search_food_types(input_char) #takes user_input and result from food_type_output #check char match at each list position #return search_food_type #O(N)runtime ##not working like I want it to.... ##assumes input of >1 char def search_food_types(input_char, food_list): word_list = food_list len_list = len(word_list) list_idx = 0 word_idx = len(input_char) while len_list > 0: if word_list[list_idx][0:word_idx] == input_char: return word_list[list_idx] break else: len_list -= 1 list_idx += 1 return("Option not found, please try again.") ##GENERATE restaurant_data_hashmap, runtime O(N^2) ##runtime for hashmap is O(1) restaurant_data_hashmap = HashMap( len(food_types) ) for i in food_types: restaurant_values_list = find_values(i,restaurants_list) restaurant_data_hashmap.assign(i,restaurant_values_list) """ ##TEST for i in food_types: shop_values = restaurant_data_hashmap.retrieve(i) print("values at {0} are {1}".format(i,shop_values)) """ def get_restaurant_data(search_food_types): return restaurant_data_hashmap.retrieve(search_food_types) """ ##TEST## italian = get_restaurant_data('italian') print (italian) """ def restaurants_sort_print(restaurants): separator = "*******=======*******" print("\n\nThe following restaurants found are:\n") for item in restaurants: print (separator) print("\nName: {0}\n" "Price: {1}/5\n" "Rating: {2}/5\n" "Address: {3}\n".format(item[1],item[2],item[3],item[4])) """ ##TEST## pizza = get_restaurant_data('pizza') print (restaurants_sort_print(pizza)) """ #Printing the Welcome Message print_welcome() ##user interaction while True: user_input = str(input("\nWhat type of food would you like to eat?\nType the beginning of that food type and press enter to see if it's here.\n")).lower() #Search for user_input in food types data structure here ##CONDITIONS ##must be valid string input, string length ## if user_input not in food_types_keys: print("Sorry, there's no food type beginning with '{0}'.\nPlease try another letter.".format(user_input)) else: #user_input in food_types_keys food_output = food_type_output(user_input) ##for condition when there is only one type for the char if len(food_output) == 1: print ("The food choice beginning with '{0}' is: {1}".format(user_input,food_output[0])) yn_input = str(input("\nWould you like to see the list of restaurants? y/n \n")) if yn_input == 'y': data = food_output[0] print_data = restaurant_data_hashmap.retrieve(data) restaurants_sort_print(print_data) else: pass ##for when there is a need to search the list through else: print ("The food choice beginning with '{0}' are: {1}".format(user_input,food_output)) user_input2 = (str(input("Please enter the first letters of the food you want. \n\n"))) data = search_food_types(user_input2, food_output) print (data) print ("The food choice beginning with '{0}' is: {1}".format(user_input2,data)) yn_input = str(input("\nWould you like to see the list of restaurants? y/n \n")) if yn_input == 'y': print_data = restaurant_data_hashmap.retrieve(data) restaurants_sort_print(print_data) else: pass
UTF-8
Python
false
false
5,491
py
1
script.py
1
0.585139
0.577855
0
211
23.805687
158
Yunshan-Liu/gdplib
3,298,534,895,144
fd61aed0c403d641327db7e1b84d24388fb78937
f5e8a25d5585fc7a08a713760485627926a49dd7
/gdplib/mod_hens/modular_integer.py
b0b7308f743af0bdd471ee3e0179720e2d350a8c
[ "BSD-3-Clause" ]
permissive
https://github.com/Yunshan-Liu/gdplib
a408921745c4f5797ab9ecfd5e371f6d4cdd3a95
f453abcde1906018635c2245414b707b69fa110c
refs/heads/master
2023-03-06T04:29:29.078550
2021-02-10T04:19:05
2021-02-10T04:19:05
298,096,123
0
0
BSD-3-Clause
true
2020-09-23T21:15:04
2020-09-23T21:15:03
2020-09-23T20:10:34
2020-09-23T20:10:32
393
0
0
0
null
false
false
"""Heat integration case study. This is example 1 of the Yee & Grossmann, 1990 paper "Simultaneous optimization models for heat integration--II". DOI: 10.1016/0098-1354(90)85010-8 This is a modification to support the incorporation of standardized exchanger modules using integer variables for module selection. """ from __future__ import division from pyomo.environ import (Constraint, Integers, log, Var) from pyomo.gdp import Disjunct, Disjunction from gdplib.mod_hens import common def build_single_module(cafaro_approx, num_stages): m = build_model(cafaro_approx, num_stages) # Require modular for hot, cold, stg in m.valid_matches * m.stages: disj = m.exchanger_exists[hot, cold, stg] disj.modular.indicator_var.fix(1) disj.conventional.deactivate() # Must choose only one type of module @m.Disjunct(m.module_sizes) def module_type(disj, size): """Disjunct for selection of one module type.""" disj.no_other_module_types = Constraint( expr=sum(m.num_modules[hot, cold, stage, area] for hot, cold in m.valid_matches for stage in m.stages for area in m.module_sizes if area != size) == 0) m.select_one_module_type = Disjunction( expr=[m.module_type[area] for area in m.module_sizes]) return m def build_require_modular(cafaro_approx, num_stages): m = build_model(cafaro_approx, num_stages) # Require modular for hot, cold, stg in m.valid_matches * m.stages: m.exchanger_exists[hot, cold, stg].conventional.deactivate() return m def build_modular_option(cafaro_approx, num_stages): return build_model(cafaro_approx, num_stages) def build_model(use_cafaro_approximation, num_stages): """Build the model.""" m = common.build_model(use_cafaro_approximation, num_stages) m.num_modules = Var( m.valid_matches, m.stages, m.module_sizes, doc="The number of modules of each size at each exchanger.", domain=Integers, bounds=(0, 100), initialize=0) # improve quality of bounds for size in m.module_sizes: for var in m.num_modules[:, :, :, size]: var.setub(m.max_num_modules[size]) for hot, cold, stg in m.valid_matches * m.stages: disj = m.exchanger_exists[hot, cold, stg] disj.conventional = Disjunct() if not use_cafaro_approximation: disj.conventional.exchanger_area_cost = Constraint( expr=m.exchanger_area_cost[stg, hot, cold] * 1E-3 >= m.exchanger_area_cost_factor[hot, cold] * 1E-3 * m.exchanger_area[stg, hot, cold] ** m.area_cost_exponent) else: disj.conventional.exchanger_area_cost = Constraint( expr=m.exchanger_area_cost[stg, hot, cold] * 1E-3 >= m.exchanger_area_cost_factor[hot, cold] * 1E-3 * m.cafaro_k * log(m.cafaro_b * m.exchanger_area[stg, hot, cold] + 1) ) m.BigM[disj.conventional.exchanger_area_cost] = 100 disj.conventional.exchanger_fixed_cost = Constraint( expr=m.exchanger_fixed_cost[stg, hot, cold] == m.exchanger_fixed_unit_cost[hot, cold]) @disj.conventional.Constraint(m.module_sizes) def no_modules(_, area): return m.num_modules[hot, cold, stg, area] == 0 disj.modular = Disjunct() disj.modular.exchanger_area_cost = Constraint( expr=m.exchanger_area_cost[stg, hot, cold] * 1E-3 == sum(m.module_area_cost[hot, cold, area] * m.num_modules[hot, cold, stg, area] for area in m.module_sizes) * 1E-3) disj.modular.exchanger_fixed_cost = Constraint( expr=m.exchanger_fixed_cost[stg, hot, cold] == m.module_fixed_unit_cost * sum(m.num_modules[hot, cold, stg, area] for area in m.module_sizes)) disj.modular.exchanger_area = Constraint( expr=m.exchanger_area[stg, hot, cold] == sum(area * m.num_modules[hot, cold, stg, area] for area in m.module_sizes)) disj.modular_or_not = Disjunction( expr=[disj.modular, disj.conventional]) # Area requirement disj.exchanger_required_area = Constraint( expr=m.exchanger_area[stg, hot, cold] * ( m.U[hot, cold] * m.LMTD[hot, cold, stg]) >= m.heat_exchanged[hot, cold, stg]) m.BigM[disj.exchanger_required_area] = 5000 return m
UTF-8
Python
false
false
4,607
py
63
modular_integer.py
38
0.610593
0.598654
0
119
37.714286
79
RaulRC/genetic-neural-optimizer
14,044,543,074,586
ef41af978a0cf35a5d252a2b0ac29fc5a8a6f331
ce983badab44f2fe35ab63ad2da0612611657b32
/src/config_mnist_regularization.py
3a022b3559bc5c8509730f7e5c21bbf8d703fd38
[ "MIT" ]
permissive
https://github.com/RaulRC/genetic-neural-optimizer
c4e3cf9c7bd08ee9394205fc245a8c492e976e28
fa169cdc9b43c58470c3e7a7214185d56e61579a
refs/heads/master
2023-02-16T17:25:43.938905
2019-09-19T17:11:43
2019-09-19T17:11:43
209,153,737
1
0
MIT
false
2023-02-02T06:39:38
2019-09-17T20:48:27
2021-04-30T09:07:15
2023-02-02T06:39:38
504
1
0
7
Python
false
false
iterations = 10 generations_list = [200] populations_list = [6] elitism_list = [0.5] mutables_list = [1] EPOCHS = 3 MODE = None
UTF-8
Python
false
false
128
py
26
config_mnist_regularization.py
18
0.679688
0.601563
0
7
17.285714
24
outlaw6/AdventOfCode2020
8,718,783,650,071
64c9e258dfd6464d08bb912467556168620e148d
6cffbac77a72ce5fb84bc530d654b5bbec8e4b10
/TreeTobboganProblem.py
4545bb02868f638e6e6b74065d357298485efd8f
[]
no_license
https://github.com/outlaw6/AdventOfCode2020
8ca30b5f757c1d72eca3d76ba72ded32eb49787d
f5a3c75d0fcff10316255eaa18b1a940b91a92b4
refs/heads/master
2023-03-08T00:07:47.623887
2021-02-15T18:22:29
2021-02-15T18:22:29
322,637,242
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
lista1 = [] list_of_list = [] #print(lista1)\ f = open('input.txt.txt', 'r') temp_list = [] c=0 for x in f: temp_list.append(x.strip('\n')) steps = 3 counter = 0 treeLine = 1 while treeLine <= len(temp_list) - 1: if temp_list[treeLine][steps % 31] == '#': print("Correct: ", treeLine, steps, len(temp_list[treeLine])) counter+=1 steps+=7 treeLine+=1 else: steps+=3 treeLine+=1 #print(x) print(counter, steps, steps%31, treeLine)
UTF-8
Python
false
false
450
py
18
TreeTobboganProblem.py
17
0.62
0.584444
0
26
16.269231
63
jmzhao/foo.bar
14,671,608,311,671
75a52e4dcf648fa2a7b3dd97f95bc7942726395b
675337d68d87f121f65e5e322c2a5fe7c9b7d717
/save_beta_rabbit/solution.py
dbb381fb1dcfae250113325a578d0802978e070a
[]
no_license
https://github.com/jmzhao/foo.bar
48490b70d9ca5538f05f4e78c6fb11d78592b150
f5d9f690096e3a3dfc79c1ef3d207991fabca553
refs/heads/master
2020-12-06T11:27:17.613193
2016-09-12T05:34:09
2016-09-12T05:34:09
66,224,006
2
1
null
null
null
null
null
null
null
null
null
null
null
null
null
def answer(food, grid): costs = all_possible_cost(grid) try : m = max(x for x in costs if x <= food) except ValueError : return -1 return food - m def all_possible_cost(grid) : n = len(grid) a = [[set() for _ in range(n)] for _ in range(n)] for i in range(n) : for j in range(n) : if i == 0 : if j == 0 : a[i][j] = set([0]) else : a[i][j] = set(x + grid[i][j] for x in a[i][j-1]) else : if j == 0 : a[i][j] = set(x + grid[i][j] for x in a[i-1][j]) else : a[i][j] = set(x + grid[i][j] for x in a[i-1][j] | a[i][j-1]) return a[n-1][n-1]
UTF-8
Python
false
false
760
py
31
solution.py
26
0.389474
0.375
0
24
30.666667
80
StevenLu2004/code-x-code-for-china-2019
12,421,045,430,874
6ec5095e102743e8cdb05ff06322a26c8cdd1863
7e1e61987e3e5b660a6605aea25a303265550314
/practice/drawWindowsPane.py
9fa09e93fd30fe54d6ee76e598e42b793160609e
[]
no_license
https://github.com/StevenLu2004/code-x-code-for-china-2019
ad4dc08324e59485652995b027cd6d22aac85724
aac7397e6a4d3e5e0731b81f5c1932873c579488
refs/heads/master
2020-06-19T18:43:35.335510
2019-09-06T18:44:19
2019-09-06T18:44:19
196,827,801
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python3.5 import turtle import random screen = turtle.Screen() t = turtle.Turtle() screen.colormode(255) screen.tracer(0) t.speed(0) t.hideturtle() def f1(a, b, k): return a * k + b * (1 - k) def line(x1, y1, x2, y2): t.penup() t.goto(x1, y1) t.pendown() t.goto(x2, y2) t.penup() def singlePane(x, y, L, l, q, cnt, fRefresh = False): q %= 4 if q == 0: fx = fy = 1 elif q == 1: fx = -1; fy = 1 elif q == 2: fx = fy = -1 else: fx = 1; fy = -1 line(x, y, x + fx * L, y) line(x, y, x, y + fy * L) for i in range(cnt): line(x + fx * f1(L, l, i / (cnt - 1)), y, x + fx * f1(L, l, i / (cnt - 1)), y + fy * f1(L, l, i / (cnt - 1))) line(x, y + fy * f1(L, l, i / (cnt - 1)), x + fx * f1(L, l, i / (cnt - 1)), y + fy * f1(L, l, i / (cnt - 1))) if fRefresh: screen.update() def windowsPane(x, y, L, l, cnt, variation = 0, fRefresh = True): v = [1 + (random.random() - .5) * variation for _ in range(4)] t.color("green") singlePane(x, y, L * v[0], l * v[0], 0, cnt) t.color("red") singlePane(x, y, L * v[1], l * v[1], 1, cnt) t.color("blue") singlePane(x, y, L * v[2], l * v[2], 2, cnt) t.color("yellow") singlePane(x, y, L * v[3], l * v[3], 3, cnt) if fRefresh: screen.update() def main(): windowsPane(0, 0, 200, 100, 3, 0) screen.onkey(turtle.bye, "Escape") screen.listen() return 0 if __name__ == "__main__": main() screen.mainloop()
UTF-8
Python
false
false
1,390
py
28
drawWindowsPane.py
27
0.531655
0.484173
0
61
21.786885
111
mbroihier/tennisball
377,957,149,865
76a8fe5f82a9866895f7505f65e0afedb5b1c55a
0659564ac57fe2aae239199aea57db967e9e2fb6
/tennisball.py
680ef225291de0ef903ec57e074d9236c0b6feeb
[ "MIT" ]
permissive
https://github.com/mbroihier/tennisball
4455f866cf44a9d86a13f117820b79779b6d1b22
e91efa7d60be056f2f6bf3461c6a8bb19043eac4
refs/heads/master
2020-07-12T11:15:03.706775
2020-03-13T21:49:47
2020-03-13T21:49:47
204,803,475
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
''' Created on Aug 19, 2019 @author: broihier ''' import LED import Ping class TennisBall(): ''' Tennis Ball class ''' def __init__(self): self.ping = Ping.Ping() self.led = LED.LED() def run_tennisball(self): ''' run_tennisball - send pings and reports time between ping detections ''' print("Starting IO") average = self.ping.start() while True: try: currentDistance = self.ping.pulse() print("Delta: ", currentDistance) if currentDistance < average: self.led.on() else: self.led.off() except KeyboardInterrupt: print("Terminating via keyboard stop") self.ping.stop() self.led.stop() break except Exception as err: print(err) if __name__ == "__main__": BALL = TennisBall() BALL.run_tennisball()
UTF-8
Python
false
false
1,015
py
8
tennisball.py
5
0.48867
0.482759
0
43
22.604651
76
TJJTJJTJJ/pytorch_CycleGAN_frame
1,142,461,336,566
4ea08c7661fd3b85a7e21bc8ff5398cd69f9d674
a5401a19c810f83188d706083b32c6733f252182
/utils/util.py
b220d42460a5bb3e453e84bf616c3a78570d358d
[]
no_license
https://github.com/TJJTJJTJJ/pytorch_CycleGAN_frame
556fd42c35461e12337a3a2645bf3a61d87e96c3
08e40983688ead674fcb4c00f4e29517b8c41ab8
refs/heads/master
2020-04-04T20:14:54.105230
2018-11-05T15:29:19
2018-11-05T15:29:19
156,239,442
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#! /usr/bin/python3 # -*- coding:utf-8 -*- # @Time : 18-10-30 下午11:41 # Author : TJJ __all__ = ['mkdirs', 'mkdir', 'tensor2im'] def mkdirs(paths): """ 根据paths生成文件夹 :param paths: list或者str :return: """ if isinstance(paths, list) and not isinstance(paths, str): for path in paths: mkdir(path) else: mkdir(paths) def mkdir(path): if not os.path.exists(path): os.makedirs(path) # Converts a Tensor into an image array (numpy) # |imtype|: the desired type of the converted numpy array def tensor2im(input_image, imtype=np.uint8): if isinstance(input_image, torch.Tensor): image_tensor = input_image.data else: return input_image image_numpy = image_tensor[0].cpu().float().numpy() if image_numpy.shape[0] == 1: image_numpy = np.tile(image_numpy, (3, 1, 1)) image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 return image_numpy.astype(imtype)
UTF-8
Python
false
false
1,001
py
12
util.py
10
0.608784
0.57712
0
37
25.486486
74
Gracewx/MouseBrainHierarchy
5,446,018,579,604
618bf63538e8b7b9061947afd1296ac8637c3112
82cfed2d1f933c52689e11a462f5b5e5670ebdb8
/run_TCCT_module.py
68e805e6222e91c86c9f102d1ea5c78e56ca596c
[ "BSD-2-Clause" ]
permissive
https://github.com/Gracewx/MouseBrainHierarchy
9db9fff39fe4643d152296ed30523a70d6f5d246
8e4e0dd271fab84a745d8101aef2f995eb07a2bc
refs/heads/master
2023-03-18T18:47:28.558214
2019-10-10T22:28:41
2019-10-10T22:28:41
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from __future__ import division import logging import numpy as np import matplotlib.pyplot as plt import pandas as pd from IterativeMethod import iterativeTCCT """ Created on Mon Jun 24 16:04:07 2019 @author: Hannah Choi """ """ This code finds intra- or inter-module hierarchies of cortical network, based on the cortico-cortical (CC), thalamo-cortical (TC), and cortico-thalamic (CT) connectivity data. """ # In[]: CreConf = 1 # 1 if using CC hierarhcy with Cre-confidence; 0 if not input_dir = r'./Input/' # Directory with the file "CC_TC_CT_clusters.xlsx" & "clustermapping.xlsx" output_dir = r'./Output/module/' # Directory to save the ouputs from the experimental data # In[]: Define the module. module = 'VisualMedial' #'VisualMedial' #'inter_predefined' # In the paper, we used the following: 'VisualMedial' & 'inter_predefined' # Possible modules: 'VisualMedial', 'Visual', 'Medial', 'Auditory', 'Somatomotor', 'PFC', 'Lateral', 'inter_predefined', 'inter' # In[]: 9 clusters of cortico-cortico & thalamo-courtical source-line-target pairs xls=pd.ExcelFile(input_dir+"CC_TC_CT_clusters.xlsx") df=pd.read_excel(xls,'CC+TC clusters with MD avged') df=df[(df.hemi == "ipsi")&(df.creline != "C57BL/6J / Emx1")&(df.target != "VISC")&(df.source != "SSp-un")&(df.target != "SSp-un")&(df.source != "VISC")] list_module = df["Cortical Target Module"].unique() clu_ffb=pd.read_excel(input_dir+"clustermapping.xlsx") # In[]: If inter-module, change all the target & source area names to the module name if (module == 'inter') or (module == 'inter_predefined'): for i_module in range(0,len(list_module)): df.loc[df["Cortical Target Module"] == list_module[i_module],'target']= list_module[i_module] df.loc[df["Cortical Source Module"] == list_module[i_module],'source'] = list_module[i_module] # In[]: Cortical and thalamic hierarchy from CC+TC iteration if CreConf == 1: h_CC_TC=pd.read_excel(output_dir+"TC_CCconf_iter_"+module+".xls") elif CreConf == 0: h_CC_TC=pd.read_excel(output_dir+"TC_CCnoconf_iter_"+module+".xls") C_areas = h_CC_TC[h_CC_TC["CortexThalamus"]=="C"]["areas"].unique() T_areas = h_CC_TC[h_CC_TC["CortexThalamus"]=="T"]["areas"].unique() # In[]: 2 clusters (FF/FB) based on LDA of cortico-thalamic source-line-target pairs (dfCT) dfCT = pd.read_excel(input_dir+"CT_sourcelayer_FFB.xls") dfCT=dfCT[['source','target','FFB_LDA','Cortical Source Module']] dfCT = dfCT.rename(columns={"FFB_LDA":"ffb"}) # In[]: For intra medial, select only the areas within the chosen module for cortico-thalamic connections (dfCT) if (module != 'inter') and (module != 'inter_predefined'): if module == 'VisualMedial': dfCT.loc[((dfCT["Cortical Source Module"] == "Visual")|(dfCT["Cortical Source Module"] == "Medial")),"Cortical Source Module"]='VisualMedial' dfCT = dfCT[(dfCT["Cortical Source Module"] == module)] dfCT = dfCT[(dfCT["source"]!='RSPagl')&(dfCT["target"]!='RSPagl')&(dfCT["source"]!='RSPd')&(dfCT["target"]!='RSPd') &(dfCT["source"]!='RSPv')&(dfCT["target"]!='RSPv')] else: dfCT = dfCT[(dfCT["Cortical Source Module"] == module)] # In[]: For intra medial, select only the areas within the chosen module for thalamo-cortical source-line-target pairs (dfTC) dfTC=pd.read_excel(output_dir+"inputexpanded_TC9_"+module+".xls") dfTC = dfTC.rename(columns={"ffb_c":"ffb"}) if (module != 'inter') and (module != 'inter_predefined'): if module == 'VisualMedial': dfTC.loc[((dfTC["Cortical Target Module"] == "Visual")|(dfTC["Cortical Target Module"] == "Medial")),"Cortical Target Module"]='VisualMedial' dfTC = dfTC[(dfTC["Cortical Target Module"] == module)] dfTC = dfTC[(dfTC["source"]!='RSPagl')&(dfTC["target"]!='RSPagl')&(dfTC["source"]!='RSPd')&(dfTC["target"]!='RSPd') &(dfTC["source"]!='RSPv')&(dfTC["target"]!='RSPv')] else: dfTC = dfTC[(dfTC["Cortical Target Module"] == module)] # In[]: Merge dataframes of CT and TC connections if (module == 'inter') or (module == 'inter_predefined'): dfCT = dfCT[['Cortical Source Module','target','ffb']] dfCT = dfCT.rename(columns={"Cortical Source Module": "source"}) else: dfCT = dfCT[['source','target','ffb']] dfTC = dfTC[['source','target','ffb']] dfVT = pd.concat([dfTC, dfCT], ignore_index=True) # In[]: Produce expanded data frame with FF/FB, hierarchy values as source & target for each pair of TC+CT connections source_areas = dfVT["source"].unique() target_areas = dfVT["target"].unique() num_TC = np.shape(dfTC)[0] num_CT = np.shape(dfCT)[0] dfVT.to_excel(output_dir+'inputexpanded_TC9CT2_'+module+'.xls') # In[ ]: Find initial hierarchy scores of thalamic areas (21) n_T_areas=len(T_areas) # 21 thalamic regions hrs=range(0,n_T_areas) hrt=range(0,n_T_areas) hrc=range(0,n_T_areas) for i in range(0,n_T_areas): hrs[i]=-np.mean(dfVT[dfVT.source == T_areas[i]].ffb) if len(dfVT[dfVT.target == T_areas[i]]) != 0: hrt[i]=np.mean(dfVT[dfVT.target == T_areas[i]].ffb) else: hrt[i]=0 hrc[i]=(hrs[i]+hrt[i])/2 data=[T_areas,hrc] data=np.transpose(data) columns = ['areas','h'] dfiT = pd.DataFrame(data,columns=columns) #dfiT.to_excel(output_dir+'initialhierarchy_TC9CT2_'+module+'.xls') #dfiT.head() # In[ ]: Iterate thalamic + cortical hierarhcy scores n_iter = 20 if CreConf == 1: dfiC = pd.read_excel(output_dir+"CC_conf_iter_"+module+".xls") elif CreConf == 0: dfiC = pd.read_excel(output_dir+"CC_noconf_iter_"+module+".xls") dfiC['h'] = dfiC[n_iter] dfVC = pd.read_excel(output_dir+"inputexpanded_CC9_"+module+".xls") dfVC = dfVC[["source","target","ffb_nc","ffb_c"]] if CreConf == 1: dfVC["ffb"] = dfVC["ffb_c"] elif CreConf == 0: dfVC["ffb"] = dfVC["ffb_nc"] dfiT = dfiT[["areas","h"]] dfiC = dfiC[["areas","h"]] dfVT = dfVT[["source","target","ffb"]] dfVC = dfVC[["source","target","ffb"]] hr_iter = iterativeTCCT(dfiC, dfVC, dfiT, dfVT, n_iter) iteration=np.arange(0,n_iter+1,1) n_area=np.shape(hr_iter)[0] allareas = hr_iter["areas"].unique() ########################################################## """ Figure of hierarchy score iterations """ fig,ax=plt.subplots() for i in range(0,n_area): y=np.squeeze(np.asarray(hr_iter[hr_iter.areas==allareas[i]].ix[:,1::1])) ax.plot(iteration,y) ax.set_xlim([0, n_iter]) ax.set_xticks(np.arange(0, n_iter, step=5)) ax.set_xlabel('iter') ax.set_ylabel('hierarchy value') ax.set_title('confidence adjusted') plt.show() #fig.savefig(output_dir+"TCCT_CCnoconf_iter_"+module+".pdf", bbox_inches='tight') ########################################################## ########################################################## """ Figure showing correlation between hierarchy scores before & after iterations""" hr_final = hr_iter[:][n_iter] hr_initial = hr_iter[:][0] f = plt.figure() plt.plot(hr_initial,hr_final,'ro') plt.xlabel('initial hierarchy') plt.ylabel('final hierarchy') plt.title('r='+str(np.corrcoef(hr_initial, hr_final)[0, 1])) plt.show() #f.savefig(output_dir+"TCCT_init_vs_fin_CCnoconf_"+module+".pdf", bbox_inches='tight') ########################################################## ########################################################## '''Save hierarchy scores before and after iteration''' for i_area in range(0,n_area): if hr_iter['areas'][i_area] in list(dfiC['areas']): hr_iter.loc[i_area,'CortexThalamus'] = 'C' else: hr_iter.loc[i_area,'CortexThalamus'] = 'T' hr_iter = hr_iter[['areas','CortexThalamus', 0,n_iter] ] hr_iter_save = hr_iter[(hr_iter.CortexThalamus=='C')] if CreConf == 1: hr_iter_save.to_excel(output_dir+'TCCT_CCconf_iter_'+module+'.xls') elif CreConf == 0: hr_iter_save.to_excel(output_dir+'TCCT_CCnoconf_iter_'+module+'.xls') ########################################################## # In[]: Print out global hierarchy scores of CC+TC+CT connectivity data dfi_TCCT = hr_iter[["CortexThalamus","areas",0,n_iter]] dfi_TCCT = dfi_TCCT.rename(columns={0: "h0", n_iter:"h_iter"}) dfV_CC = dfVC[['source','target','ffb']] dfV_TCCT = dfVT[["source","target","ffb"]] dfi_cortex1 = dfi_TCCT[(dfi_TCCT.CortexThalamus == 'C')] dfi_cortex1 = dfi_cortex1[['areas','h_iter']] dfV_CC = dfV_CC.join(dfi_cortex1.set_index('areas'), on ='source') dfV_CC=dfV_CC.rename(columns={"h_iter": "hs"}) dfV_CC = dfV_CC.join(dfi_cortex1.set_index('areas'), on ='target') dfV_CC=dfV_CC.rename(columns={"h_iter": "ht"}) dfV_CC = dfV_CC.dropna() hg_CC_1 = dfV_CC.ffb*(dfV_CC.ht- dfV_CC.hs) dfi_thalamus1=dfi_TCCT[(dfi_TCCT.CortexThalamus == 'T')] dfi_thalamus1 = dfi_thalamus1[['areas','h_iter']] dfV_TCCT = dfV_TCCT.join(dfi_thalamus1.set_index('areas'), on ='source') dfV_TCCT=dfV_TCCT.rename(columns={"h_iter": "hs"}) dfV_TCCT = dfV_TCCT.join(dfi_cortex1.set_index('areas'), on ='target') dfV_TCCT=dfV_TCCT.rename(columns={"h_iter": "ht"}) dfV_TCCT = dfV_TCCT.dropna() hg_TCCT_1 = dfV_TCCT.ffb*(dfV_TCCT.ht- dfV_TCCT.hs) hg_cortex_TCCT_iter = np.mean(hg_CC_1) hg_TCCT_iter = np.mean(hg_CC_1.append(hg_TCCT_1)) ######################################### dfV_CC = dfVC[['source','target','ffb']] dfV_TCCT = dfVT[["source","target","ffb"]] dfi_cortex1 = dfi_TCCT[(dfi_TCCT.CortexThalamus == 'C')] dfi_cortex1 = dfi_cortex1[['areas','h0']] dfV_CC = dfV_CC.join(dfi_cortex1.set_index('areas'), on ='source') dfV_CC=dfV_CC.rename(columns={"h0": "hs"}) dfV_CC = dfV_CC.join(dfi_cortex1.set_index('areas'), on ='target') dfV_CC=dfV_CC.rename(columns={"h0": "ht"}) dfV_CC = dfV_CC.dropna() hg_CC_1 = dfV_CC.ffb*(dfV_CC.ht- dfV_CC.hs) dfi_thalamus1=dfi_TCCT[(dfi_TCCT.CortexThalamus == 'T')] dfi_thalamus1 = dfi_thalamus1[['areas','h0']] dfV_TCCT = dfV_TCCT.join(dfi_thalamus1.set_index('areas'), on ='source') dfV_TCCT=dfV_TCCT.rename(columns={"h0": "hs"}) dfV_TCCT = dfV_TCCT.join(dfi_cortex1.set_index('areas'), on ='target') dfV_TCCT=dfV_TCCT.rename(columns={"h0": "ht"}) dfV_TCCT = dfV_TCCT.dropna() hg_TCCT_1 = dfV_TCCT.ffb*(dfV_TCCT.ht- dfV_TCCT.hs) hg_cortex_TCCT_init = np.mean(hg_CC_1) hg_TCCT_init = np.mean(hg_CC_1.append(hg_TCCT_1)) print('hg of CC+TC+CT before iterate cortex & thalamus='+str(hg_TCCT_init)) print('hg of CC+TC+CT iterate cortex='+str(hg_cortex_TCCT_iter)) print('hg of CC+TC+CT iterate cortex & thalamus='+str(hg_TCCT_iter)) '''Save global hierarchy scores''' newDF= pd.DataFrame([]) newDF=newDF.append(pd.DataFrame({'hg_TCCT_init':hg_TCCT_init, 'hg_cortex_TCCT_iter':hg_cortex_TCCT_iter, 'hg_TCCT_iter':hg_TCCT_iter},index=[0])) newDF.to_excel(output_dir+'ghs_TCCT_'+module+'.xls')
UTF-8
Python
false
false
10,942
py
13
run_TCCT_module.py
12
0.616158
0.60647
0
285
36.385965
152
RyanPoy/sweet_orm
8,272,107,045,055
a298952dd1b730f93682cff9b03ad1a94430f61d
ba6c148c63179fda44e366c7b0752a54fee5838a
/tests/integration/for_sqlite/test_relation_has_one_sqlite.py
88720a5ee86d1772b12fa12328ffa403b4a8ed8f
[]
no_license
https://github.com/RyanPoy/sweet_orm
b706731cbfd97f1c4fb5a61132305b8b3785de04
bd19c5218d02b706e5ebe92d0771c9ee8dade006
refs/heads/master
2023-05-07T01:02:02.964371
2021-05-08T03:35:14
2021-05-08T03:35:14
266,485,666
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#coding: utf8 import sys import os sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..', '..')) import unittest from tests.integration.for_sqlite.helper import User, Mobile, Car class TestHasOneToSQLite(unittest.TestCase): def setUp(self): self.remove_record() def tearDown(self): self.remove_record() def remove_record(self): Car.delete_all() User.delete_all() def test_query(self): u = User.create(name="Jon", age=31) Car.create(name="Benz", user_id=u.id) c = User.first().car self.assertEqual(Car, type(c)) self.assertEqual('Benz', c.name) self.assertEqual(u.id, c.user_id) def test_query_with_include(self): u = User.create(name="Jon", age=31) Car.create(name="Benz", user_id=u.id) c = User.include('car').first().car self.assertEqual(Car, type(c)) self.assertEqual('Benz', c.name) self.assertEqual(u.id, c.user_id) def test_create(self): u = User.create(name="Jon", age=31) car_id = Car.create(name="Benz", user=u).id c = Car.find(car_id) self.assertEqual(u.id, c.user_id) u = c.user self.assertEqual("Jon", u.name) self.assertEqual(31, u.age) def test_save(self): u = User.create(name="Jon", age=31) car_id = Car(name="Benz", user=u).save().id c = Car.find(car_id) self.assertEqual(u.id, c.user_id) u = c.user self.assertEqual("Jon", u.name) self.assertEqual(31, u.age) def test_update(self): u1 = User.create(name="Jon", age=31) u2 = User.create(name="Lily", age=21) c = Car(name="Benz", user=u1).save() self.assertEqual(u1.id, c.user_id) c.update(user=u2) self.assertEqual(u2.id, c.user_id) c = Car.where(name='Benz').first() self.assertEqual(u2.id, c.user_id) def test_delete_cascade(self): user_id1 = User.create(name="Jon", age=31).id Car.create(name="Benz", user_id=user_id1) user_id2 = User.create(name="Jon", age=31).id Car.create(name="Mazda", user_id=user_id2) self.assertEqual(2, Car.count()) User.where(id=user_id1).delete() self.assertEqual(1, Car.count()) User.find(user_id2).delete() self.assertEqual(0, Car.count()) def test_delete_all_cascade(self): user_id1 = User.create(name="Jon", age=31).id Car.create(name="Benz", user_id=user_id1) user_id2 = User.create(name="Jon", age=31).id Car.create(name="Mazda", user_id=user_id2) self.assertEqual(2, Car.count()) User.delete_all() self.assertEqual(0, Car.count()) if __name__ == '__main__': unittest.main()
UTF-8
Python
false
false
2,797
py
65
test_relation_has_one_sqlite.py
59
0.574187
0.557383
0
99
27.252525
74
Peteliuk/practicebot
3,616,362,474,339
f673b8b921f3edb07a23c83964c3715f07286000
b23c962bb77ddd424e0e6723b0ebb6adc3a51d46
/bot/constants/variables.py
859478eaa3837aaf43dc8146699779e5d3e3d871
[]
no_license
https://github.com/Peteliuk/practicebot
82bbd0b17fdae98608c8b56b9bc7f19ff2c76ce3
d588516465499b1b36b253ab8b717cbfe6132050
refs/heads/master
2020-12-27T15:57:04.220563
2020-10-02T14:08:47
2020-10-02T14:08:47
237,960,372
0
0
null
false
2020-10-02T14:08:49
2020-02-03T12:31:32
2020-02-05T09:56:39
2020-10-02T14:08:48
96
0
0
1
Python
false
false
STATUS_VARIANTS = [ (1, 'created'), (2, 'rejected'), (3, 'accepted'), (4, 'completed'), ]
UTF-8
Python
false
false
126
py
37
variables.py
35
0.396825
0.365079
0
6
20
25
nullpass/grocerylist
1,614,907,734,196
78ee524f76d2920764f3cf1ddfe78e57a9cd5c0e
afd11578be01987c999597685ee8ad81ccf6be60
/items/forms.py
549b0f1dfbf7276b43a4f28a3c446e5c24970c31
[]
no_license
https://github.com/nullpass/grocerylist
daa284cfc9280012bbef1bf6a7468f79c1181627
b254b48cb85f43b5863acbed384d9a774af2e944
refs/heads/master
2021-01-21T08:01:40.043083
2015-08-22T17:23:01
2015-08-22T17:23:01
21,701,763
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
# items/forms.py from django.forms import ModelForm, CheckboxSelectMultiple, RadioSelect from . import models class EmbedItemForm(ModelForm): """ The item-add form that is embedded in StoreDetailView.html """ class Meta: fields = ( 'name', 'price', 'from_isle', ) model = models.Item def __init__(self, *args, **kwargs): super(EmbedItemForm, self).__init__(*args, **kwargs) self.fields['from_isle'].empty_label = None self.fields['name'].widget.attrs['size'] = 20 self.fields['from_isle'].widget.attrs['style'] = 'width: 150px;' class ItemForm(ModelForm): """ A standard item create form """ class Meta: fields = ( 'name', 'price', 'from_isle', ) model = models.Item widgets = {'from_isle': RadioSelect() } def __init__(self, *args, **kwargs): super(ItemForm, self).__init__(*args, **kwargs) self.fields['from_isle'].empty_label = None
UTF-8
Python
false
false
1,062
py
50
forms.py
38
0.546139
0.541431
0
40
25.55
72
atom-chen/myCode
6,141,803,280,441
bac04b55281f103da60ea3324ba0bd3bcb13f406
6a0dec28e7d606075c86c3f43b527cd04112347b
/tool/sdk_tools/scripts/tool_splash.py
74e1da8a1d6ab6fd3d09a3c12d92f2406db565ab
[]
no_license
https://github.com/atom-chen/myCode
8b8af86f2c98255174b26fba3c819aba973f33e7
ebecd0af139ffb4caf0d3c7f603b27c461f0839f
refs/heads/master
2020-12-04T13:31:54.251342
2017-02-28T02:20:43
2017-02-28T02:20:43
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- import sys import file_utils import config_utils import os import os.path import time from xml.etree import ElementTree as ET from xml.etree.ElementTree import SubElement from xml.etree.ElementTree import Element from xml.etree.ElementTree import ElementTree import xml.dom.minidom import subprocess import shutil def copyAndRenameImg(demoName, demoDir): splashDir = file_utils.curDir + '/_splashes/' + demoName demoResDir = demoDir + '/res/drawable-hdpi' #找图片,重命名,复制到destDir for i in range(1, 6): splashFullPath = demoResDir + '/' + 'game_splash_' + str(i) + '.png' if os.path.exists(splashFullPath): os.remove(splashFullPath) img_path = splashDir + '/' + str(i) + '.png' if os.path.exists(img_path): if not os.path.exists(demoResDir): os.makedirs(demoResDir) shutil.copy(img_path, splashFullPath) file_utils.printF("copy splash : %s", demoName + ': game_splash_' + str(i)) def main(): file_utils.printF("-------------------------copy splashes start------------------------") configFile = file_utils.getFullPath("channels_config.xml") dom = xml.dom.minidom.parse(configFile) root = dom.documentElement channellist = root.getElementsByTagName('channel') for channel in channellist: sdk_name = "" params = channel.getElementsByTagName("param") for param in params: if "sdk_name" == param.getAttribute("name"): sdk_name = param.getAttribute("value") break demoDir = os.path.dirname(file_utils.curDir) + "/" + channel.getAttribute('path') if os.path.exists( demoDir ): copyAndRenameImg(sdk_name, demoDir) #else: # file_utils.printF("can not find dir: %s", demoDir) file_utils.printF("-------------------------copy splashes over------------------------\r\n\r\n") if __name__ == '__main__': main()
UTF-8
Python
false
false
2,087
py
223
tool_splash.py
108
0.579507
0.578057
0
61
32.934426
101
ponkbrown/flaskBlog
6,253,472,394,659
f985d81d854a7e5b64247224158fba8695718308
a9a13a0b2636c6f7ba97352fc7eaf2e043a734a4
/app.py
ba291d3eea77b9b5a9271939dda3a7ce6272832a
[]
no_license
https://github.com/ponkbrown/flaskBlog
8bc351c19f26d19d40e9cc6c90976f8e2c08b897
80bd82cd88421bf9db2852f05b8deba3b66347a4
refs/heads/master
2016-08-09T13:11:27.832163
2016-03-18T22:08:03
2016-03-18T22:08:03
54,070,894
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#! /usr/bin/env python3 from flask import Flask, render_template from flask.ext.script import Manager from flask.ext.bootstrap import Bootstrap app = Flask(__name__) manager = Manager(app) bootstrap = Bootstrap(app) @app.route('/') def main(): return render_template('index.html') @app.route('/showSignin') def showSignin(): return render_template('signin.html') @app.route('/showSignup') def showSignUp(): return render_template('signup.html') if __name__ == "__main__": manager.run()
UTF-8
Python
false
false
507
py
5
app.py
2
0.696252
0.69428
0
23
21.043478
41
hanyiwen/imooc-django-ref
15,264,313,777,357
5ddf4f33639e1cc98f2cdc02cb5180ede01da99f
092d3ba8db5cebafda6a2699ec746439ceea7faa
/apps/courses/__init__.py
c4597a391ed4008f32c095bf87b8e747e7b1bef9
[]
no_license
https://github.com/hanyiwen/imooc-django-ref
b12eb8552da144e3186383c6d4d106ed7559cf84
2f717fda56d276671f4ab94d2a46f0b33ab0810f
refs/heads/master
2020-04-04T17:14:41.564562
2018-11-15T16:57:34
2018-11-15T16:57:34
156,113,001
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# 新建app时并没有引用apps的配置 因此需要 default_app_config = "courses.apps.CoursesConfig"
UTF-8
Python
false
false
106
py
5
__init__.py
3
0.815789
0.815789
0
2
37
49
ritazchen/AAIA
11,630,771,467,456
a340de99528b061ffaa3d6e47e48adf85b04348a
85cf4fedfcf301467e62d46f9926d557be7c28b1
/AA/Programa.py
f8eeae331688b742846ccec2e8bb75266f228741
[]
no_license
https://github.com/ritazchen/AAIA
96439b8f6a2e443862927f024b5769ee8e00bf0e
92fdb1c251440c0acd21289773b59d2574a272af
refs/heads/master
2020-09-14T05:13:16.844399
2019-12-06T11:26:34
2019-12-06T11:26:34
223,029,250
0
0
null
true
2019-11-20T21:17:47
2019-11-20T21:17:46
2019-11-20T19:49:24
2019-11-20T19:49:22
204
0
0
0
null
false
false
#import pygame import sys #from AA.configuracoes import * from AA.Pacman import * from AA.Fantasma import * pygame.init() vec = pygame.math.Vector2 class Programa: def __init__(self): self.janela = pygame.display.set_mode((LARGURA, ALTURA)) # Criacao da janela (dimensoes) self.clock = pygame.time.Clock() # Define o clock pro fps self.executando = True self.state = 'tela de inicio' # Quando começa o programa, aparece a tela de inicio #28 pygame.display.set_caption("Pac Man by: Rita Chen & Vitor Queiroz") # Titulo do programa self.icon = pygame.image.load("imagens/pacman_32px.png") pygame.display.set_icon(self.icon) # Coloca na janela o desenho do pacman (no cabeçalho) self.largura_quadradoGrid = LARGURA_LAB // COLS self.altura_quadradoGrid = ALTURA_LAB // ROWS self.paredes = [] self.moedas = [] self.fantasmas = [] self.jogador_posicao = None self.fantasma_posicao = [] self.recorde = 0 self.pt = 0 self.load() self.jogador = Pacman(self, vec(self.jogador_posicao)) self.cria_inimigos() self.passei = 0 def run(self): while self.executando: #enquanto o programa estiver executando... if self.state == 'tela de inicio': #se estiver na tela inicial (antes de jogar) self.telaInicio_eventos() self.telaInicio_atualiza() self.telaInicio_desenha() elif self.state == 'jogando': #se estiver na tela de jogo self.jogo_eventos() self.jogo_atualiza() self.jogo_desenha() elif self.state == 'game over': #se estiver na tela de jogo self.gameover_eventos() self.gameover_atualiza() self.gameover_desenha() else: self.executando = False self.clock.tick(FPS) pygame.quit() # fecha o programa sys.exit() def escreve_texto(self, texto, janela, posicao, tamanhoFonte, cor, nomeFonte, centralizado=False): # Escreve texto na tela fonte = pygame.font.SysFont(nomeFonte, tamanhoFonte) text = fonte.render(texto, False, cor) text_size = text.get_size() #Para centralizar o texto na tela if centralizado: posicao[0] = posicao[0] - text_size[0]//2 posicao[1] = posicao[1] - text_size[1]//2 janela.blit(text, posicao) def load(self): self.inicio = pygame.image.load('imagens/tela_inicio.png') self.aperta_jogar = pygame.image.load('imagens/tela_inicio_aperta.png') self.background = pygame.image.load('imagens/labirinto_fechado.png') self.perdeu = pygame.image.load('imagens/tela_perdeu.png') self.aperta_jogar_dnv = pygame.image.load('imagens/tela_perdeu_aperta.png') #self.background = pygame.transform.scale(self.background, (LARGURA_LAB, ALTURA_LAB)) #transforma o background de forma a caber na janel #faz leitura das coisas existentes with open("coisas.txt", 'r') as arquivo: for indice_y, linha in enumerate(arquivo): for indice_x, objeto in enumerate(linha): if objeto == 'P': self.paredes.append(vec(indice_x, indice_y)) #passa as coordenadas de cada parede para a lista paredes elif objeto == 'M': self.moedas.append(vec(indice_x, indice_y)) #passa as coordenadas de cada moeda para a lista moedas elif objeto == 'J': self.jogador_posicao = [indice_x, indice_y] #passa as coordenadas de cada moeda para a lista moedas elif objeto in ["1", "2", "3", "4"]: self.fantasma_posicao.append(vec(indice_x, indice_y)) #passa as coordenadas de inicio dos inimigos arquivo.close() with open("recorde.txt", 'r') as arquivo: self.recorde = int(arquivo.read()) arquivo.close() def cria_inimigos(self): #cria um inimigo em cada posição for indice_x, posicao in enumerate(self.fantasma_posicao): self.fantasmas.append(Fantasma(self, vec(posicao), indice_x)) def desenha_grid(self): #matriz de posicoes para demarcar onde o jogador poderá andar, paredes, moedas.. for x in range(LARGURA//self.largura_quadradoGrid): pygame.draw.line(self.janela, CINZA, (x*self.largura_quadradoGrid, 0), (x*self.largura_quadradoGrid, ALTURA)) for x in range(ALTURA//self.altura_quadradoGrid): pygame.draw.line(self.janela, CINZA, (0, x*self.altura_quadradoGrid), (LARGURA, x*self.altura_quadradoGrid)) #for parede in self.paredes: #pygame.draw.rect(self.background, AQUAMARINE, (parede.x*self.largura_quadradoGrid, parede.y*self.altura_quadradoGrid, #self.largura_quadradoGrid, self.altura_quadradoGrid)) #for moeda in self.moedas: #pygame.draw.rect(self.background, LARANJA, (moeda.x*self.largura_quadradoGrid, moeda.y*self.altura_quadradoGrid, #self.largura_quadradoGrid, self.altura_quadradoGrid)) def reset(self): if int(self.recorde) < self.jogador.pontuacao: with open("recorde.txt", 'w') as arquivo: arquivo.write(str(self.jogador.pontuacao)) arquivo.close() with open("recorde.txt", 'r') as arquivo: self.recorde = int(arquivo.read()) arquivo.close() self.jogador.vidas = 3 self.jogador.pontuacao = 0 self.pt = 0 self.jogador.grid_pos = vec(self.jogador.starting_pos) self.jogador.pix_pos = self.jogador.get_pix_pos() self.jogador.direcao *= 0 for fantasma in self.fantasmas: fantasma.grid_pos = vec(fantasma.starting_pos) fantasma.pix_pos = fantasma.get_pix_pos() fantasma.direcao *= 0 self.moedas = [] with open("coisas.txt", 'r') as arquivo: for indice_y, linha in enumerate(arquivo): for indice_x, objeto in enumerate(linha): if objeto == 'M': self.moedas.append(vec(indice_x, indice_y)) arquivo.close() self.state = "jogando" def telaInicio_eventos(self): for evento in pygame.event.get(): if evento.type == pygame.QUIT: # Se apertar o X, encerra o programa self.executando = False else: #print(pygame.mouse.get_pos()) if pygame.mouse.get_pos()[0] >= 160 and pygame.mouse.get_pos()[0] <= 343: if pygame.mouse.get_pos()[1] >= 328 and pygame.mouse.get_pos()[1] <= 442: #arrumar self.passei = 1 else: self.passei = 0 if evento.type == pygame.MOUSEBUTTONDOWN and self.passei == 1: self.state = 'jogando' def telaInicio_atualiza(self): pass def telaInicio_desenha(self): #O que vai ter na tela de inicio self.janela.fill(PRETO) if self.passei == 0: self.janela.blit(self.inicio, (0, 0)) else: self.janela.blit(self.aperta_jogar, (0, 0)) pygame.display.update() def jogo_eventos(self): for evento in pygame.event.get(): up = 0 down = 0 left = 0 right = 0 if evento.type == pygame.QUIT: # Se apertar o X, encerra o programa self.executando = False if evento.type == pygame.KEYDOWN: for parede in self.paredes: #se o proximo mov bater numa parede, nao deixar movimentar if [int(self.jogador.get_grid_posX()), int(self.jogador.get_grid_posY() - 1)] != [int(parede[0]), int(parede[1])]: up += 1 if up == len(self.paredes) and (evento.key == pygame.K_UP or evento.key == pygame.K_w): self.jogador.move(vec(0,-1)) self.jogador.angulo = 90 if [int(self.jogador.get_grid_posX()), int(self.jogador.get_grid_posY() + 1)] != [int(parede[0]), int(parede[1])]: down += 1 if down == len(self.paredes) and (evento.key == pygame.K_DOWN or evento.key == pygame.K_s): self.jogador.angulo = 270 self.jogador.move(vec(0, 1)) if [int(self.jogador.get_grid_posX() - 1), int(self.jogador.get_grid_posY())] != [int(parede[0]), int(parede[1])]: left += 1 if left == len(self.paredes) and (evento.key == pygame.K_LEFT or evento.key == pygame.K_a): self.jogador.angulo = 180 self.jogador.move(vec(-1, 0)) if [int(self.jogador.get_grid_posX() + 1), int(self.jogador.get_grid_posY())] != [int(parede[0]), int(parede[1])]: right += 1 if right == len(self.paredes) and (evento.key == pygame.K_RIGHT or evento.key == pygame.K_d): self.jogador.angulo = 0 self.jogador.move(vec(1, 0)) def jogo_atualiza(self): self.pt = self.jogador.get_pontuacao() self.jogador.atualiza() for fantasma in self.fantasmas: fantasma.atualiza() for fantasma in self.fantasmas: if fantasma.grid_pos == self.jogador.grid_pos: self.perde_vida() def jogo_desenha(self): self.janela.fill(PRETO) self.janela.blit(self.background, (ESPACOS_JOGO//2, ESPACOS_JOGO//2)) self.desenha_moedas() #self.desenha_grid() self.escreve_texto('SCORE: {}'.format(self.jogador.pontuacao), self.janela, [10,2], TAMANHO_FONTEJOGO, BRANCO, FONTE, centralizado=False) self.escreve_texto('HIGH SCORE: {}'.format(self.recorde), self.janela, [LARGURA-160, 2], TAMANHO_FONTEJOGO, BRANCO, FONTE, centralizado=False) self.jogador.desenha() for fantasma in self.fantasmas: fantasma.desenha() pygame.display.update() def perde_vida(self): self.jogador.vidas -= 1 if self.jogador.vidas == 0: self.state = "game over" else: self.jogador.grid_pos = vec(self.jogador.starting_pos) self.jogador.pix_pos = self.jogador.get_pix_pos() self.jogador.direcao *= 0 for fantasma in self.fantasmas: fantasma.grid_pos = vec(fantasma.starting_pos) fantasma.pix_pos = fantasma.get_pix_pos() fantasma.direcao *= 0 #fantasma.pix_pos.x += 11 #fantasma.pix_pos.y += 10 def desenha_moedas(self): for moeda in self.moedas: pygame.draw.circle(self.janela, AMARELO, (int(ESPACOS_JOGO//2 + self.largura_quadradoGrid//2 + moeda.x*self.largura_quadradoGrid), int(ESPACOS_JOGO//2 + self.altura_quadradoGrid//2 + moeda.y*self.altura_quadradoGrid)), 4) def gameover_eventos(self): for evento in pygame.event.get(): if evento.type == pygame.QUIT: # Se apertar o X, encerra o programa self.executando = False else: if pygame.mouse.get_pos()[0] >= 107 and pygame.mouse.get_pos()[0] <= 494: if pygame.mouse.get_pos()[1] >= 365 and pygame.mouse.get_pos()[1] <= 575: #arrumar self.passei = 1 else: self.passei = 0 if evento.type == pygame.MOUSEBUTTONDOWN and self.passei == 1: self.reset() def gameover_atualiza(self): pass def gameover_desenha(self): #O que vai ter na tela de inicio self.janela.fill(PRETO) if self.passei == 0: self.janela.blit(self.perdeu, (0, 0)) else: self.janela.blit(self.aperta_jogar_dnv, (0, 0)) pygame.display.update() def get_pt(self): return self.pt
UTF-8
Python
false
false
12,555
py
7
Programa.py
6
0.551873
0.541195
0
263
45.726236
150
DanRuckz/pacman
11,811,160,076,912
99b9003e98fa6c5a449037c7fa6915ec85ae3aba
e0017d5824f124115266944e94e3fce7303e745c
/LoadFile.py
81c09c37243ef468ae6f855f5384dc0dda040e30
[]
no_license
https://github.com/DanRuckz/pacman
ffb120a78f7378cbca4f84e51a3be5963e1be636
7973cb1004c9e218f22726f42b7729f26887fbe0
refs/heads/main
2023-07-06T03:50:59.899213
2021-07-26T20:15:15
2021-07-26T20:15:15
342,968,039
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import pygame map = pygame.image.load("spritesheet/30x30-tiles.png") #Pacman = pygame.image.load("pacman.png") #ghost = pygame.image.load("assets_old/ghost.png") spritesheet = pygame.image.load("spritesheet/pacman.png")
UTF-8
Python
false
false
223
py
17
LoadFile.py
9
0.748879
0.730942
0
7
30.714286
57
alvinkwekel/gpio-playground
867,583,434,975
2a655a28370ea83a9b62091b572f8d9b50b12621
52dc7b0e126547e210c343a9aa1571a49878e4c7
/led_board.py
19c7d74a1901ae7aa980377b6023354c0d47ee02
[]
no_license
https://github.com/alvinkwekel/gpio-playground
6f3516eef4eb85a592cab3633af1f9b06f68978b
f1c2d4c4da59fff848f81c998427fdf676135ce7
refs/heads/master
2020-05-29T21:54:49.697919
2019-05-30T10:53:44
2019-05-30T10:53:44
189,397,012
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from gpiozero import LEDBoard from time import sleep leds = LEDBoard(26, 19, 13, 6, 5) while True: leds.value = (1, 0, 0, 0, 0) sleep(.1) leds.value = (0, 1, 0, 0, 0) sleep(.1) leds.value = (0, 0, 1, 0, 0) sleep(.1) leds.value = (0, 0, 0, 1, 0) sleep(.1) leds.value = (0, 0, 0, 0, 1) sleep(.1) leds.value = (0, 0, 0, 0, 1) sleep(.1) leds.value = (0, 0, 0, 1, 0) sleep(.1) leds.value = (0, 0, 1, 0, 0) sleep(.1) leds.value = (0, 1, 0, 0, 0) sleep(.1) leds.value = (1, 0, 0, 0, 0) sleep(.1)
UTF-8
Python
false
false
577
py
3
led_board.py
3
0.47487
0.357019
0
28
19.607143
33
balajitummala/sagemaker-python-sdk
10,393,820,901,781
c9aa31f48f46387221cdb945097b2170cbb1fd0c
417aa7cefaa3d14a23f9484b1cb2f41105bfbc21
/src/sagemaker/clarify.py
dba978a209eca212863518f17505ee04a5497148
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
https://github.com/balajitummala/sagemaker-python-sdk
4816244918cb27f7beaaf722c4be0ed817c1cea3
2594ffb3eaefaf55936b71ea0c38442135223602
refs/heads/master
2023-08-18T16:04:57.091104
2021-10-04T16:45:55
2021-10-04T16:45:55
256,359,718
0
0
Apache-2.0
true
2021-10-05T22:07:10
2020-04-17T00:18:26
2020-05-04T22:33:36
2020-08-06T20:49:38
59,275
0
0
1
Python
false
false
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. """This module configures the SageMaker Clarify bias and model explainability processor job.""" from __future__ import print_function, absolute_import import copy from abc import ABC, abstractmethod import json import os import tempfile import re from sagemaker.processing import ProcessingInput, ProcessingOutput, Processor from sagemaker import image_uris, s3, utils class DataConfig: """Config object related to configurations of the input and output dataset.""" def __init__( self, s3_data_input_path, s3_output_path, label=None, headers=None, features=None, dataset_type="text/csv", s3_data_distribution_type="FullyReplicated", s3_compression_type="None", ): """Initializes a configuration of both input and output datasets. Args: s3_data_input_path (str): Dataset S3 prefix/object URI. s3_output_path (str): S3 prefix to store the output. label (str): Target attribute of the model required by bias metrics (optional for SHAP) Specified as column name or index for CSV dataset, or as JSONPath for JSONLines. headers (list[str]): A list of column names in the input dataset. features (str): JSONPath for locating the feature columns for bias metrics if the dataset format is JSONLines. dataset_type (str): Format of the dataset. Valid values are "text/csv" for CSV, "application/jsonlines" for JSONLines, and "application/x-parquet" for Parquet. s3_data_distribution_type (str): Valid options are "FullyReplicated" or "ShardedByS3Key". s3_compression_type (str): Valid options are "None" or "Gzip". """ if dataset_type not in ["text/csv", "application/jsonlines", "application/x-parquet"]: raise ValueError( f"Invalid dataset_type '{dataset_type}'." f" Please check the API documentation for the supported dataset types." ) self.s3_data_input_path = s3_data_input_path self.s3_output_path = s3_output_path self.s3_data_distribution_type = s3_data_distribution_type self.s3_compression_type = s3_compression_type self.label = label self.headers = headers self.features = features self.analysis_config = { "dataset_type": dataset_type, } _set(features, "features", self.analysis_config) _set(headers, "headers", self.analysis_config) _set(label, "label", self.analysis_config) def get_config(self): """Returns part of an analysis config dictionary.""" return copy.deepcopy(self.analysis_config) class BiasConfig: """Config object related to bias configurations of the input dataset.""" def __init__( self, label_values_or_threshold, facet_name, facet_values_or_threshold=None, group_name=None, ): """Initializes a configuration of the sensitive groups in the dataset. Args: label_values_or_threshold (Any): List of label values or threshold to indicate positive outcome used for bias metrics. facet_name (str or [str]): String or List of strings of sensitive attribute(s) in the input data for which we like to compare metrics. facet_values_or_threshold (list): Optional list of values to form a sensitive group or threshold for a numeric facet column that defines the lower bound of a sensitive group. Defaults to considering each possible value as sensitive group and computing metrics vs all the other examples. If facet_name is a list, this needs to be None or a List consisting of lists or None with the same length as facet_name list. group_name (str): Optional column name or index to indicate a group column to be used for the bias metric 'Conditional Demographic Disparity in Labels - CDDL' or 'Conditional Demographic Disparity in Predicted Labels - CDDPL'. """ if isinstance(facet_name, str): facet = {"name_or_index": facet_name} _set(facet_values_or_threshold, "value_or_threshold", facet) facet_list = [facet] elif facet_values_or_threshold is None or len(facet_name) == len(facet_values_or_threshold): facet_list = [] for i, single_facet_name in enumerate(facet_name): facet = {"name_or_index": single_facet_name} if facet_values_or_threshold is not None: _set(facet_values_or_threshold[i], "value_or_threshold", facet) facet_list.append(facet) else: raise ValueError("Wrong combination of argument values passed") self.analysis_config = { "label_values_or_threshold": label_values_or_threshold, "facet": facet_list, } _set(group_name, "group_variable", self.analysis_config) def get_config(self): """Returns part of an analysis config dictionary.""" return copy.deepcopy(self.analysis_config) class ModelConfig: """Config object related to a model and its endpoint to be created.""" def __init__( self, model_name, instance_count, instance_type, accept_type=None, content_type=None, content_template=None, custom_attributes=None, accelerator_type=None, endpoint_name_prefix=None, ): r"""Initializes a configuration of a model and the endpoint to be created for it. Args: model_name (str): Model name (as created by 'CreateModel'). instance_count (int): The number of instances of a new endpoint for model inference. instance_type (str): The type of EC2 instance to use for model inference, for example, 'ml.c5.xlarge'. accept_type (str): The model output format to be used for getting inferences with the shadow endpoint. Valid values are "text/csv" for CSV and "application/jsonlines". Default is the same as content_type. content_type (str): The model input format to be used for getting inferences with the shadow endpoint. Valid values are "text/csv" for CSV and "application/jsonlines". Default is the same as dataset format. content_template (str): A template string to be used to construct the model input from dataset instances. It is only used when "model_content_type" is "application/jsonlines". The template should have one and only one placeholder $features which will be replaced by a features list for to form the model inference input. custom_attributes (str): Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components ( https://tools.ietf.org/html/rfc7230#section-3.2.6) of the Hypertext Transfer Protocol (HTTP/1.1). accelerator_type (str): The Elastic Inference accelerator type to deploy to the model endpoint instance for making inferences to the model, see https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html. endpoint_name_prefix (str): The endpoint name prefix of a new endpoint. Must follow pattern "^[a-zA-Z0-9](-\*[a-zA-Z0-9]". """ self.predictor_config = { "model_name": model_name, "instance_type": instance_type, "initial_instance_count": instance_count, } if endpoint_name_prefix is not None: if re.search("^[a-zA-Z0-9](-*[a-zA-Z0-9])", endpoint_name_prefix) is None: raise ValueError( "Invalid endpoint_name_prefix." " Please follow pattern ^[a-zA-Z0-9](-*[a-zA-Z0-9])." ) self.predictor_config["endpoint_name_prefix"] = endpoint_name_prefix if accept_type is not None: if accept_type not in ["text/csv", "application/jsonlines"]: raise ValueError( f"Invalid accept_type {accept_type}." f" Please choose text/csv or application/jsonlines." ) self.predictor_config["accept_type"] = accept_type if content_type is not None: if content_type not in ["text/csv", "application/jsonlines"]: raise ValueError( f"Invalid content_type {content_type}." f" Please choose text/csv or application/jsonlines." ) self.predictor_config["content_type"] = content_type if content_template is not None: if "$features" not in content_template: raise ValueError( f"Invalid content_template {content_template}." f" Please include a placeholder $features." ) self.predictor_config["content_template"] = content_template _set(custom_attributes, "custom_attributes", self.predictor_config) _set(accelerator_type, "accelerator_type", self.predictor_config) def get_predictor_config(self): """Returns part of the predictor dictionary of the analysis config.""" return copy.deepcopy(self.predictor_config) class ModelPredictedLabelConfig: """Config object to extract a predicted label from the model output.""" def __init__( self, label=None, probability=None, probability_threshold=None, label_headers=None, ): """Initializes a model output config to extract the predicted label or predicted score(s). The following examples show different parameter configurations depending on the endpoint: * Regression Task: The model returns the score, e.g. 1.2. we don't need to specify anything. For json output, e.g. {'score': 1.2} we can set 'label='score''. * Binary classification: * The model returns a single probability and we would like to classify as 'yes' those with a probability exceeding 0.2. We can set 'probability_threshold=0.2, label_headers='yes''. * The model returns {'probability': 0.3}, for which we would like to apply a threshold of 0.5 to obtain a predicted label in {0, 1}. In this case we can set 'label='probability''. * The model returns a tuple of the predicted label and the probability. In this case we can set 'label=0'. * Multiclass classification: * The model returns {'labels': ['cat', 'dog', 'fish'], 'probabilities': [0.35, 0.25, 0.4]}. In this case we would set the 'probability='probabilities'' and 'label='labels'' and infer the predicted label to be 'fish.' * The model returns {'predicted_label': 'fish', 'probabilities': [0.35, 0.25, 0.4]}. In this case we would set the 'label='predicted_label''. * The model returns [0.35, 0.25, 0.4]. In this case, we can set 'label_headers=['cat','dog','fish']' and infer the predicted label to be 'fish.' Args: label (str or int): Index or JSONPath location in the model output for the prediction. In case, this is a predicted label of the same type as the label in the dataset, no further arguments need to be specified. probability (str or int): Index or JSONPath location in the model output for the predicted score(s). probability_threshold (float): An optional value for binary prediction tasks in which the model returns a probability, to indicate the threshold to convert the prediction to a boolean value. Default is 0.5. label_headers (list): List of label values - one for each score of the ``probability``. """ self.label = label self.probability = probability self.probability_threshold = probability_threshold if probability_threshold is not None: try: float(probability_threshold) except ValueError: raise TypeError( f"Invalid probability_threshold {probability_threshold}. " f"Please choose one that can be cast to float." ) self.predictor_config = {} _set(label, "label", self.predictor_config) _set(probability, "probability", self.predictor_config) _set(label_headers, "label_headers", self.predictor_config) def get_predictor_config(self): """Returns probability_threshold, predictor config.""" return self.probability_threshold, copy.deepcopy(self.predictor_config) class ExplainabilityConfig(ABC): """Abstract config class to configure an explainability method.""" @abstractmethod def get_explainability_config(self): """Returns config.""" return None class SHAPConfig(ExplainabilityConfig): """Config class of SHAP.""" def __init__( self, baseline, num_samples, agg_method, use_logit=False, save_local_shap_values=True, seed=None, ): """Initializes config for SHAP. Args: baseline (None or str or list): None or S3 object Uri or A list of rows (at least one) to be used asthe baseline dataset in the Kernel SHAP algorithm. The format should be the same as the dataset format. Each row should contain only the feature columns/values and omit the label column/values. If None a baseline will be calculated automatically by using K-means or K-prototypes in the input dataset. num_samples (int): Number of samples to be used in the Kernel SHAP algorithm. This number determines the size of the generated synthetic dataset to compute the SHAP values. agg_method (str): Aggregation method for global SHAP values. Valid values are "mean_abs" (mean of absolute SHAP values for all instances), "median" (median of SHAP values for all instances) and "mean_sq" (mean of squared SHAP values for all instances). use_logit (bool): Indicator of whether the logit function is to be applied to the model predictions. Default is False. If "use_logit" is true then the SHAP values will have log-odds units. save_local_shap_values (bool): Indicator of whether to save the local SHAP values in the output location. Default is True. seed (int): seed value to get deterministic SHAP values. Default is None. """ if agg_method not in ["mean_abs", "median", "mean_sq"]: raise ValueError( f"Invalid agg_method {agg_method}." f" Please choose mean_abs, median, or mean_sq." ) self.shap_config = { "baseline": baseline, "num_samples": num_samples, "agg_method": agg_method, "use_logit": use_logit, "save_local_shap_values": save_local_shap_values, } if seed is not None: self.shap_config["seed"] = seed def get_explainability_config(self): """Returns config.""" return copy.deepcopy({"shap": self.shap_config}) class SageMakerClarifyProcessor(Processor): """Handles SageMaker Processing task to compute bias metrics and explain a model.""" _CLARIFY_DATA_INPUT = "/opt/ml/processing/input/data" _CLARIFY_CONFIG_INPUT = "/opt/ml/processing/input/config" _CLARIFY_OUTPUT = "/opt/ml/processing/output" def __init__( self, role, instance_count, instance_type, volume_size_in_gb=30, volume_kms_key=None, output_kms_key=None, max_runtime_in_seconds=None, sagemaker_session=None, env=None, tags=None, network_config=None, job_name_prefix=None, version=None, ): """Initializes a ``Processor`` instance, computing bias metrics and model explanations. Args: role (str): An AWS IAM role name or ARN. Amazon SageMaker Processing uses this role to access AWS resources, such as data stored in Amazon S3. instance_count (int): The number of instances to run a processing job with. instance_type (str): The type of EC2 instance to use for processing, for example, 'ml.c4.xlarge'. volume_size_in_gb (int): Size in GB of the EBS volume to use for storing data during processing (default: 30). volume_kms_key (str): A KMS key for the processing volume (default: None). output_kms_key (str): The KMS key ID for processing job outputs (default: None). max_runtime_in_seconds (int): Timeout in seconds (default: None). After this amount of time, Amazon SageMaker terminates the job, regardless of its current status. If `max_runtime_in_seconds` is not specified, the default value is 24 hours. sagemaker_session (:class:`~sagemaker.session.Session`): Session object which manages interactions with Amazon SageMaker and any other AWS services needed. If not specified, the processor creates one using the default AWS configuration chain. env (dict[str, str]): Environment variables to be passed to the processing jobs (default: None). tags (list[dict]): List of tags to be passed to the processing job (default: None). For more, see https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html. network_config (:class:`~sagemaker.network.NetworkConfig`): A :class:`~sagemaker.network.NetworkConfig` object that configures network isolation, encryption of inter-container traffic, security group IDs, and subnets. job_name_prefix (str): Processing job name prefix. version (str): Clarify version want to be used. """ container_uri = image_uris.retrieve("clarify", sagemaker_session.boto_region_name, version) self.job_name_prefix = job_name_prefix super(SageMakerClarifyProcessor, self).__init__( role, container_uri, instance_count, instance_type, None, # We manage the entrypoint. volume_size_in_gb, volume_kms_key, output_kms_key, max_runtime_in_seconds, None, # We set method-specific job names below. sagemaker_session, env, tags, network_config, ) def run(self, **_): """Overriding the base class method but deferring to specific run_* methods.""" raise NotImplementedError( "Please choose a method of run_pre_training_bias, run_post_training_bias or " "run_explainability." ) def _run( self, data_config, analysis_config, wait, logs, job_name, kms_key, experiment_config, ): """Runs a ProcessingJob with the Sagemaker Clarify container and an analysis config. Args: data_config (:class:`~sagemaker.clarify.DataConfig`): Config of the input/output data. analysis_config (dict): Config following the analysis_config.json format. wait (bool): Whether the call should wait until the job completes (default: True). logs (bool): Whether to show the logs produced by the job. Only meaningful when ``wait`` is True (default: True). job_name (str): Processing job name. kms_key (str): The ARN of the KMS key that is used to encrypt the user code file (default: None). experiment_config (dict[str, str]): Experiment management configuration. Optionally, the dict can contain three keys: 'ExperimentName', 'TrialName', and 'TrialComponentDisplayName'. The behavior of setting these keys is as follows: * If `ExperimentName` is supplied but `TrialName` is not a Trial will be automatically created and the job's Trial Component associated with the Trial. * If `TrialName` is supplied and the Trial already exists the job's Trial Component will be associated with the Trial. * If both `ExperimentName` and `TrialName` are not supplied the trial component will be unassociated. * `TrialComponentDisplayName` is used for display in Studio. """ analysis_config["methods"]["report"] = {"name": "report", "title": "Analysis Report"} with tempfile.TemporaryDirectory() as tmpdirname: analysis_config_file = os.path.join(tmpdirname, "analysis_config.json") with open(analysis_config_file, "w") as f: json.dump(analysis_config, f) s3_analysis_config_file = _upload_analysis_config( analysis_config_file, data_config.s3_output_path, self.sagemaker_session, kms_key, ) config_input = ProcessingInput( input_name="analysis_config", source=s3_analysis_config_file, destination=self._CLARIFY_CONFIG_INPUT, s3_data_type="S3Prefix", s3_input_mode="File", s3_compression_type="None", ) data_input = ProcessingInput( input_name="dataset", source=data_config.s3_data_input_path, destination=self._CLARIFY_DATA_INPUT, s3_data_type="S3Prefix", s3_input_mode="File", s3_data_distribution_type=data_config.s3_data_distribution_type, s3_compression_type=data_config.s3_compression_type, ) result_output = ProcessingOutput( source=self._CLARIFY_OUTPUT, destination=data_config.s3_output_path, output_name="analysis_result", s3_upload_mode="EndOfJob", ) super().run( inputs=[data_input, config_input], outputs=[result_output], wait=wait, logs=logs, job_name=job_name, kms_key=kms_key, experiment_config=experiment_config, ) def run_pre_training_bias( self, data_config, data_bias_config, methods="all", wait=True, logs=True, job_name=None, kms_key=None, experiment_config=None, ): """Runs a ProcessingJob to compute the pre-training bias methods of the input data. Computes the requested methods that compare 'methods' (e.g. fraction of examples) for the sensitive group vs the other examples. Args: data_config (:class:`~sagemaker.clarify.DataConfig`): Config of the input/output data. data_bias_config (:class:`~sagemaker.clarify.BiasConfig`): Config of sensitive groups. methods (str or list[str]): Selector of a subset of potential metrics: ["`CI <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-bias-metric-class-imbalance.html>`_", "`DPL <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-data-bias-metric-true-label-imbalance.html>`_", "`KL <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-data-bias-metric-kl-divergence.html>`_", "`JS <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-data-bias-metric-jensen-shannon-divergence.html>`_", "`LP <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-data-bias-metric-lp-norm.html>`_", "`TVD <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-data-bias-metric-total-variation-distance.html>`_", "`KS <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-data-bias-metric-kolmogorov-smirnov.html>`_", "`CDDL <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-data-bias-metric-cddl.html>`_"]. Defaults to computing all. wait (bool): Whether the call should wait until the job completes (default: True). logs (bool): Whether to show the logs produced by the job. Only meaningful when ``wait`` is True (default: True). job_name (str): Processing job name. When ``job_name`` is not specified, if ``job_name_prefix`` in :class:`SageMakerClarifyProcessor` specified, the job name will be composed of ``job_name_prefix`` and current timestamp; otherwise use "Clarify-Pretraining-Bias" as prefix. kms_key (str): The ARN of the KMS key that is used to encrypt the user code file (default: None). experiment_config (dict[str, str]): Experiment management configuration. Optionally, the dict can contain three keys: 'ExperimentName', 'TrialName', and 'TrialComponentDisplayName'. The behavior of setting these keys is as follows: * If `ExperimentName` is supplied but `TrialName` is not a Trial will be automatically created and the job's Trial Component associated with the Trial. * If `TrialName` is supplied and the Trial already exists the job's Trial Component will be associated with the Trial. * If both `ExperimentName` and `TrialName` are not supplied the trial component will be unassociated. * `TrialComponentDisplayName` is used for display in Studio. """ # noqa E501 analysis_config = data_config.get_config() analysis_config.update(data_bias_config.get_config()) analysis_config["methods"] = {"pre_training_bias": {"methods": methods}} if job_name is None: if self.job_name_prefix: job_name = utils.name_from_base(self.job_name_prefix) else: job_name = utils.name_from_base("Clarify-Pretraining-Bias") self._run(data_config, analysis_config, wait, logs, job_name, kms_key, experiment_config) def run_post_training_bias( self, data_config, data_bias_config, model_config, model_predicted_label_config, methods="all", wait=True, logs=True, job_name=None, kms_key=None, experiment_config=None, ): """Runs a ProcessingJob to compute the post-training bias methods of the model predictions. Spins up a model endpoint, runs inference over the input example in the 's3_data_input_path' to obtain predicted labels. Computes a the requested methods that compare 'methods' (e.g. accuracy, precision, recall) for the sensitive group vs the other examples. Args: data_config (:class:`~sagemaker.clarify.DataConfig`): Config of the input/output data. data_bias_config (:class:`~sagemaker.clarify.BiasConfig`): Config of sensitive groups. model_config (:class:`~sagemaker.clarify.ModelConfig`): Config of the model and its endpoint to be created. model_predicted_label_config (:class:`~sagemaker.clarify.ModelPredictedLabelConfig`): Config of how to extract the predicted label from the model output. methods (str or list[str]): Selector of a subset of potential metrics: ["`DPPL <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-dppl.html>`_" , "`DI <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-di.html>`_", "`DCA <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-dca.html>`_", "`DCR <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-dcr.html>`_", "`RD <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-rd.html>`_", "`DAR <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-dar.html>`_", "`DRR <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-drr.html>`_", "`AD <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-ad.html>`_", "`CDDPL <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-cddpl.html>`_ ", "`TE <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-te.html>`_", "`FT <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-ft.html>`_"]. Defaults to computing all. wait (bool): Whether the call should wait until the job completes (default: True). logs (bool): Whether to show the logs produced by the job. Only meaningful when ``wait`` is True (default: True). job_name (str): Processing job name. When ``job_name`` is not specified, if ``job_name_prefix`` in :class:`SageMakerClarifyProcessor` specified, the job name will be composed of ``job_name_prefix`` and current timestamp; otherwise use "Clarify-Posttraining-Bias" as prefix. kms_key (str): The ARN of the KMS key that is used to encrypt the user code file (default: None). experiment_config (dict[str, str]): Experiment management configuration. Optionally, the dict can contain three keys: 'ExperimentName', 'TrialName', and 'TrialComponentDisplayName'. The behavior of setting these keys is as follows: * If `ExperimentName` is supplied but `TrialName` is not a Trial will be automatically created and the job's Trial Component associated with the Trial. * If `TrialName` is supplied and the Trial already exists the job's Trial Component will be associated with the Trial. * If both `ExperimentName` and `TrialName` are not supplied the trial component will be unassociated. * `TrialComponentDisplayName` is used for display in Studio. """ analysis_config = data_config.get_config() analysis_config.update(data_bias_config.get_config()) ( probability_threshold, predictor_config, ) = model_predicted_label_config.get_predictor_config() predictor_config.update(model_config.get_predictor_config()) analysis_config["methods"] = {"post_training_bias": {"methods": methods}} analysis_config["predictor"] = predictor_config _set(probability_threshold, "probability_threshold", analysis_config) if job_name is None: if self.job_name_prefix: job_name = utils.name_from_base(self.job_name_prefix) else: job_name = utils.name_from_base("Clarify-Posttraining-Bias") self._run(data_config, analysis_config, wait, logs, job_name, kms_key, experiment_config) def run_bias( self, data_config, bias_config, model_config, model_predicted_label_config=None, pre_training_methods="all", post_training_methods="all", wait=True, logs=True, job_name=None, kms_key=None, experiment_config=None, ): """Runs a ProcessingJob to compute the requested bias methods. It computes the metrics of both the pre-training methods and the post-training methods. To calculate post-training methods, it needs to spin up a model endpoint, runs inference over the input example in the 's3_data_input_path' to obtain predicted labels. Args: data_config (:class:`~sagemaker.clarify.DataConfig`): Config of the input/output data. bias_config (:class:`~sagemaker.clarify.BiasConfig`): Config of sensitive groups. model_config (:class:`~sagemaker.clarify.ModelConfig`): Config of the model and its endpoint to be created. model_predicted_label_config (:class:`~sagemaker.clarify.ModelPredictedLabelConfig`): Config of how to extract the predicted label from the model output. pre_training_methods (str or list[str]): Selector of a subset of potential metrics: ["`CI <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-bias-metric-class-imbalance.html>`_", "`DPL <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-data-bias-metric-true-label-imbalance.html>`_", "`KL <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-data-bias-metric-kl-divergence.html>`_", "`JS <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-data-bias-metric-jensen-shannon-divergence.html>`_", "`LP <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-data-bias-metric-lp-norm.html>`_", "`TVD <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-data-bias-metric-total-variation-distance.html>`_", "`KS <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-data-bias-metric-kolmogorov-smirnov.html>`_", "`CDDL <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-data-bias-metric-cddl.html>`_"]. Defaults to computing all. post_training_methods (str or list[str]): Selector of a subset of potential metrics: ["`DPPL <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-dppl.html>`_" , "`DI <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-di.html>`_", "`DCA <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-dca.html>`_", "`DCR <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-dcr.html>`_", "`RD <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-rd.html>`_", "`DAR <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-dar.html>`_", "`DRR <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-drr.html>`_", "`AD <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-ad.html>`_", "`CDDPL <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-cddpl.html>`_ ", "`TE <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-te.html>`_", "`FT <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-ft.html>`_"]. Defaults to computing all. wait (bool): Whether the call should wait until the job completes (default: True). logs (bool): Whether to show the logs produced by the job. Only meaningful when ``wait`` is True (default: True). job_name (str): Processing job name. When ``job_name`` is not specified, if ``job_name_prefix`` in :class:`SageMakerClarifyProcessor` specified, the job name will be composed of ``job_name_prefix`` and current timestamp; otherwise use "Clarify-Bias" as prefix. kms_key (str): The ARN of the KMS key that is used to encrypt the user code file (default: None). experiment_config (dict[str, str]): Experiment management configuration. Optionally, the dict can contain three keys: 'ExperimentName', 'TrialName', and 'TrialComponentDisplayName'. The behavior of setting these keys is as follows: * If `ExperimentName` is supplied but `TrialName` is not a Trial will be automatically created and the job's Trial Component associated with the Trial. * If `TrialName` is supplied and the Trial already exists the job's Trial Component will be associated with the Trial. * If both `ExperimentName` and `TrialName` are not supplied the trial component will be unassociated. * `TrialComponentDisplayName` is used for display in Studio. """ # noqa E501 analysis_config = data_config.get_config() analysis_config.update(bias_config.get_config()) analysis_config["predictor"] = model_config.get_predictor_config() if model_predicted_label_config: ( probability_threshold, predictor_config, ) = model_predicted_label_config.get_predictor_config() if predictor_config: analysis_config["predictor"].update(predictor_config) if probability_threshold is not None: analysis_config["probability_threshold"] = probability_threshold analysis_config["methods"] = { "pre_training_bias": {"methods": pre_training_methods}, "post_training_bias": {"methods": post_training_methods}, } if job_name is None: if self.job_name_prefix: job_name = utils.name_from_base(self.job_name_prefix) else: job_name = utils.name_from_base("Clarify-Bias") self._run(data_config, analysis_config, wait, logs, job_name, kms_key, experiment_config) def run_explainability( self, data_config, model_config, explainability_config, model_scores=None, wait=True, logs=True, job_name=None, kms_key=None, experiment_config=None, ): """Runs a ProcessingJob computing for each example in the input the feature importance. Currently, only SHAP is supported as explainability method. Spins up a model endpoint. For each input example in the 's3_data_input_path' the SHAP algorithm determines feature importance, by creating 'num_samples' copies of the example with a subset of features replaced with values from the 'baseline'. Model inference is run to see how the prediction changes with the replaced features. If the model output returns multiple scores importance is computed for each of them. Across examples, feature importance is aggregated using 'agg_method'. Args: data_config (:class:`~sagemaker.clarify.DataConfig`): Config of the input/output data. model_config (:class:`~sagemaker.clarify.ModelConfig`): Config of the model and its endpoint to be created. explainability_config (:class:`~sagemaker.clarify.ExplainabilityConfig`): Config of the specific explainability method. Currently, only SHAP is supported. model_scores(str|int|ModelPredictedLabelConfig): Index or JSONPath location in the model output for the predicted scores to be explained. This is not required if the model output is a single score. Alternatively, an instance of ModelPredictedLabelConfig can be provided. wait (bool): Whether the call should wait until the job completes (default: True). logs (bool): Whether to show the logs produced by the job. Only meaningful when ``wait`` is True (default: True). job_name (str): Processing job name. When ``job_name`` is not specified, if ``job_name_prefix`` in :class:`SageMakerClarifyProcessor` specified, the job name will be composed of ``job_name_prefix`` and current timestamp; otherwise use "Clarify-Explainability" as prefix. kms_key (str): The ARN of the KMS key that is used to encrypt the user code file (default: None). experiment_config (dict[str, str]): Experiment management configuration. Optionally, the dict can contain three keys: 'ExperimentName', 'TrialName', and 'TrialComponentDisplayName'. The behavior of setting these keys is as follows: * If `ExperimentName` is supplied but `TrialName` is not a Trial will be automatically created and the job's Trial Component associated with the Trial. * If `TrialName` is supplied and the Trial already exists the job's Trial Component will be associated with the Trial. * If both `ExperimentName` and `TrialName` are not supplied the trial component will be unassociated. * `TrialComponentDisplayName` is used for display in Studio. """ analysis_config = data_config.get_config() predictor_config = model_config.get_predictor_config() if isinstance(model_scores, ModelPredictedLabelConfig): probability_threshold, predicted_label_config = model_scores.get_predictor_config() _set(probability_threshold, "probability_threshold", analysis_config) predictor_config.update(predicted_label_config) else: _set(model_scores, "label", predictor_config) analysis_config["methods"] = explainability_config.get_explainability_config() analysis_config["predictor"] = predictor_config if job_name is None: if self.job_name_prefix: job_name = utils.name_from_base(self.job_name_prefix) else: job_name = utils.name_from_base("Clarify-Explainability") self._run(data_config, analysis_config, wait, logs, job_name, kms_key, experiment_config) def _upload_analysis_config(analysis_config_file, s3_output_path, sagemaker_session, kms_key): """Uploads the local analysis_config_file to the s3_output_path. Args: analysis_config_file (str): File path to the local analysis config file. s3_output_path (str): S3 prefix to store the analysis config file. sagemaker_session (:class:`~sagemaker.session.Session`): Session object which manages interactions with Amazon SageMaker and any other AWS services needed. If not specified, the processor creates one using the default AWS configuration chain. kms_key (str): The ARN of the KMS key that is used to encrypt the user code file (default: None). Returns: The S3 uri of the uploaded file. """ return s3.S3Uploader.upload( local_path=analysis_config_file, desired_s3_uri=s3_output_path, sagemaker_session=sagemaker_session, kms_key=kms_key, ) def _set(value, key, dictionary): """Sets dictionary[key] = value if value is not None.""" if value is not None: dictionary[key] = value
UTF-8
Python
false
false
45,118
py
30
clarify.py
17
0.616827
0.613724
0
846
52.330969
130
dkristensen/IFT-6135-HW-3
11,089,605,577,887
c64f1e6c77c4f1ec5701169aef61d524a6636963
fec407156dd2ca4c345c578518dada406cede8fa
/question_2.py
676b4cc134db573dfca5018644ad6e063f3c794f
[]
no_license
https://github.com/dkristensen/IFT-6135-HW-3
07768357afc047689c36803d80843cf105667b78
d8f5b085c3455306b4c7402e41405553427b6b6b
refs/heads/master
2020-05-16T08:41:05.170371
2019-04-26T12:49:01
2019-04-26T12:49:01
182,922,022
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import torch import numpy as np import utils import matplotlib.pyplot as plt from models import q2_VAE as VAE import time def train_epoch(model, train_dataloader, optimizer, loss_fn): """Train the given model for one epoch. Longer Summary Args: model (torch.nn.Module): Module to use for the training process train_dataloader (torch.utils.data.DataLoader): Dataset which we use to train the model optimizer (torch.optim.Optimizer): Optimizer for the model's parameters utilizing backprop loss_fn (any loss function): The loss function we use to optimize the model """ model.train() total_training_loss = 0 for batch_index, batch in enumerate(train_dataloader): batch = batch[0].view(-1,1,28,28).float() output_batch = model(batch) loss = loss_fn(batch, output_batch, model.prev_means, model.prev_vars) optimizer.zero_grad() loss.backward() optimizer.step() total_training_loss += loss def validate(model,val_dataloader,loss_fn): """Computes the ELBO for a model. Args: model (torch.nn.Module): Module to use for computing the ELBO val_dataloader (torch.utils.data.DataLoader): Dataset which we use to compute the ELBO loss_fn (any loss function): The loss function, in our case, the ELBO, we use to check our model Returns: float: The ELBO of our model for the given dataset """ model.eval() total_loss = 0 for batch_index, batch in enumerate(val_dataloader): batch = batch[0].view(-1,1,28,28).float() output_batch = model(batch) total_loss += loss_fn(batch, output_batch, model.prev_means, model.prev_vars) total_loss *= float(val_dataloader.batch_size) / len(val_dataloader.dataset) return total_loss def importance_sampling_function(model, xs, zs): """Computes the log probabilities of data given samples and a model Args: model (torch.nn.Module): Model to use for our importance sampling estimations xs (torch.Tensor): Tensor holding real inputs from our dataset zs (torch.Tensor): Samples of noise to use with our generator Returns: list: List of log probabilities of the input data given our model """ M = xs.shape[0] D = xs.shape[1] K = zs.shape[1] L = zs.shape[2] assert(xs.shape[0] is zs.shape[0]) importance_probabilities = [] BCE_error = torch.nn.BCELoss(reduction='none') with torch.no_grad(): for datum,latent_data in zip(xs,zs): datum = datum.float() # Run the datum through the network to set the values model_output = model(datum.view(1,1,28,28)) # Get the parameters of the distribution from the model's encoder est_mean, est_logvar = model.prev_means, model.prev_vars est_var = torch.exp(est_logvar/2) ## Compute the probability for the datum ## # Get the result of our sample model_output = model.decode(latent_data.view(-1,L)).view(-1,28**2) # Compare the latent sample with the gaussian our model predicts model_prob = torch.sum(utils.compute_log_normal_density(latent_data, est_mean, est_var),dim=1)#normal_for_comparison.log_prob(latent_data) # Compare with an isotropic gaussian for importance sample iso_prob = torch.sum(utils.compute_log_normal_density(latent_data,torch.zeros(est_mean.shape[0]),torch.ones(est_mean.shape[0])),dim=1) # Get the error of our sample with the datum stacked_datum = torch.stack([datum for position in range(K)]) prob_given_latent = -torch.sum(BCE_error(model_output,stacked_datum),dim=1) unscaled_p_datum = prob_given_latent + model_prob - iso_prob max_p_datum = torch.max(unscaled_p_datum) # Since all of these are log probs, we add them up and then exponentiate p_datum = max_p_datum + torch.log(torch.sum(torch.exp(unscaled_p_datum-max_p_datum))) # Take the average prob and get the log (as per instructions_) importance_probabilities.append(-p_datum) return importance_probabilities def log_likelihood(model, dataloader, K=200): """Estimates the log likelihood of our model given a dataloader using importance sampling. Args: model (torch.nn.Module): Our model to find the log-likhood of dataloader (torch.utils.data.DataLoader): Dataset to test with Returns: float: the log likelihood estimate of our model over the dataset """ total_sum = 0 importance_values = [] zs_batch = torch.randn((dataloader.batch_size, K, 100)) for i, minibatch in enumerate(dataloader): minibatch = minibatch[0] importance_values += importance_sampling_function(model, minibatch, zs_batch[:len(minibatch)]) return torch.mean(torch.stack(importance_values)) if __name__ == "__main__": start_time = time.time() print("Creating Model ... ") my_VAE = VAE() optimizer = torch.optim.Adam(my_VAE.parameters(), lr=3e-4) loss_fn = utils.ELBO print("Loading Data ... ") loaders = utils.get_BMNIST_dataloaders() data_points = [[],[]] print("Starting Training ... ") for i in range(20): train_epoch(my_VAE,loaders['train'],optimizer,loss_fn) val_loss = validate(my_VAE,loaders['valid'],loss_fn).item() print("Epoch: {}\t ELBO: {}".format(i+1,-val_loss)) data_points[0].append(i+1) data_points[1].append(-val_loss) plt.figure() plt.plot(data_points[0],data_points[1],label='Validation ELBO') plt.plot(data_points[0],[-96]*len(data_points[0]),label='Q2 Min Elbo') plt.legend() plt.show() print("Testing Model ...") print("Validation ELBO: {}".format(-validate(my_VAE,loaders['valid'],loss_fn))) print("Test ELBO: {}".format(-validate(my_VAE,loaders['test'],loss_fn))) print("Validation LL: {}".format(log_likelihood(my_VAE,loaders['valid']))) print("Test LL: {}".format(log_likelihood(my_VAE,loaders['test']))) print("Running Time of Script: {}".format(time.time()-start_time))
UTF-8
Python
false
false
6,228
py
9
question_2.py
8
0.645472
0.635356
0
148
41.054054
150
sharonmaswai/edsa_analyse_project
9,801,115,399,556
66c1c0f4f62ea17d0526c19bf357732ce63fa1d5
afaad81ae999850a65fbeb8a95e8654cfe5e7c64
/tests/test.py
272694f35405d10e8c674f218c507e0d02bdbe87
[]
no_license
https://github.com/sharonmaswai/edsa_analyse_project
dd08572892f0ab5bfa56b217fabe5ab5d437c233
0537e10ff55986b9934123760cd4168cedd54e26
refs/heads/master
2022-12-22T23:05:23.856239
2020-09-12T17:48:39
2020-09-12T17:48:39
293,762,793
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from analyse import analyse def test_metrics_dict(): assert analyse.dictionary_of_metrics(gauteng)=={'max': 39660.0, 'mean': 26244.42, 'median': 24403.5, 'min': 8842.0, 'std': 10400.01, 'var': 108160153.17}, 'Failed' def test_summary(): assert analyse.five_num_summary(gauteng)=={'max': 39660.0, 'median': 24403.5,'min': 8842.0,'q1': 18653.0,'q3': 36372.0}, 'Failed' def test_date_parse(): assert date_parser([:3])==['2019-11-29', '2019-11-29', '2019-11-29'], 'Failed' assert date_parser([:-3])== ['2019-11-20', '2019-11-20', '2019-11-20'], 'Failed'
UTF-8
Python
false
false
567
py
5
test.py
3
0.634921
0.417989
0
10
55.8
167
rhiju/rhiju_python
3,487,513,455,165
533aa35c30faf9ae91d29f3be338f5a36b0ad9b6
3dcc44bf8acd3c6484b57578d8c5595d8119648d
/extract_spreadscore_decoys_outfile.py
a02f2f5de4c5108b3e79c9da62314ef83e94dddd
[]
no_license
https://github.com/rhiju/rhiju_python
f0cab4dfd4dd75b72570db057a48e3d65e1d92c6
eeab0750fb50a3078a698d190615ad6684dc2411
refs/heads/master
2022-10-29T01:59:51.848906
2022-10-04T21:28:41
2022-10-04T21:28:41
8,864,938
0
3
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python from sys import argv,exit from os import popen, system from os.path import basename import string def Help(): print print 'Usage: '+argv[0]+' <silent out file 1> < silent file 2> ... <N> ' print ' Will extract N decoys with lowest score from each silent file.' print ' If you want to select based on another column, say 12 (Rg), the' print ' last arguments should be -12 <N> (for lowest Rg) or +12 <N>' print ' (for highest Rg).' print exit() if len(argv)<2: Help() try: NSTRUCT = int(argv[-1]) del(argv[-1]) except: NSTRUCT = 2 scorecol_defined = 0 try: SCORECOL = int(argv[-1]) del(argv[-1]) scorecol_defined = 1 except: SCORECOL = -1 REVERSE = '' if SCORECOL > 0: REVERSE = ' --reverse ' #Another possibility... user supplies -rms or +rms scorecol_name_defined = 0 if not scorecol_defined: scorecol_name = argv[-1] if scorecol_name[0] == '-': scorecol_name_defined = 1 scorecol_name = scorecol_name[1:] del( argv[-1] ) REVERSE = '' if scorecol_name[0] == '+': scorecol_name_defined = 1 scorecol_name = scorecol_name[1:] REVERSE = '--reverse' del( argv[-1] ) infiles = argv[1:] for infile in infiles: tags = [] scoretags = string.split( popen('head -n 2 '+infile).readlines()[1] ) scoretag='' if scorecol_defined: scoretag = scoretags[ abs(SCORECOL) ] if scorecol_name_defined: assert( scoretags.count( scorecol_name )) SCORECOL = scoretags.index( scorecol_name ) scoretag = scorecol_name assert(infile[-3:] == 'out') # print 'grep SCORE '+infile+' | sort -k %d -n %s | head -n %d' % (abs(SCORECOL)+1, REVERSE, NSTRUCT+1) lines = popen('grep SCORE '+infile+' | grep -v NATIVE | sort -k %d -n %s ' % (abs(SCORECOL)+1, REVERSE)).readlines() templist_name = 'temp.%s.list'% basename(infile) fid = open(templist_name,'w') count = 0 numlines = len(lines) for n in range(NSTRUCT): cols = string.split(lines[ numlines*n/NSTRUCT] ) tag = cols[-1] if tag.find('desc') < 0: fid.write(tag+'\n') tags.append(tag) count = count+1 if count >= NSTRUCT: break outfilename = infile fid.close() command = 'head -n 2 '+infile system(command) count = 1 fid = open( infile ) line = fid.readline() writeout = 0 while line: cols = string.split(line) if (len(cols)>1 and cols[0]=='SCORE:'): if tags.count(cols[-1]) > 0: writeout = 1 else: writeout = 0 if writeout: print line[:-1] line = fid.readline() command = 'rm '+templist_name print(command) system(command)
UTF-8
Python
false
false
2,809
py
340
extract_spreadscore_decoys_outfile.py
340
0.571378
0.553578
0
124
21.637097
120
vaibhav0077/To-Do-ListApp-django
16,192,026,745,221
63216ed6c9a90488793c15c520bf0cf3f8b89c6f
cdc542c2ce0ff784f4593968c98e9f213757a4fa
/base/forms.py
e6a1cbd0d90d4df7efe5ef911270c769b9c3a77b
[]
no_license
https://github.com/vaibhav0077/To-Do-ListApp-django
95e89d366627727232316a6828179ef53b737f93
690d2dc47cd857dc4145cd8d56a42471fb33d5bc
refs/heads/master
2023-08-31T12:41:52.408689
2021-10-29T03:20:48
2021-10-29T03:20:48
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# from To_Do_List.base.models import TODO from django.contrib.auth import forms from django.contrib.auth import models from django.contrib.auth.models import User from django.contrib.auth.forms import UserCreationForm from django.forms import fields, widgets, ModelForm from django import forms from django.forms.forms import Form from base.models import TODO class DateInput(forms.DateInput): input_type = 'date' class SignUpform(UserCreationForm): password2 = forms.CharField(label='Confirm Password(again)', widget=forms.widgets.PasswordInput) class Meta: model = User fields = ['first_name', 'last_name', 'username', 'email'] labels = {'email': 'Email'} class LoginUpform(UserCreationForm): class Meta: model = User fields = ['username'] class TODOForm(ModelForm): # start_date = forms.DateField(widget=DateInput) end_date = forms.DateField(widget=DateInput) class Meta: model = TODO fields = ['title', 'priority', 'end_date'] # labels = {'end_date':'End date(yyyy-mm-dd)'} class UserUpdateForm(forms.ModelForm): email = forms.EmailField() class Meta: model = User # fields=['username','email'] fields = ['first_name', 'last_name', 'username', 'email'] class viewTodoForm(TODOForm): class Meta: model = TODO fields = ['title', 'status', 'priority', 'end_date'] # label = {'end_date':'end_date(yyyy-mm-dd)'} class changePassForm(forms.ModelForm): currentPassword = forms.CharField( label='Current Password', widget=forms.widgets.PasswordInput) newPassword = forms.CharField( label='New Password', widget=forms.widgets.PasswordInput) confirmPassword = forms.CharField( label='Confirm Password', widget=forms.widgets.PasswordInput) class Meta: model = User fields = ['currentPassword', 'newPassword', 'confirmPassword']
UTF-8
Python
false
false
1,981
py
29
forms.py
12
0.661787
0.661282
0
70
27.3
70
sunnycia/pima-classifier-tf
6,193,342,872,386
a75404442f13f1416762498f4dc1ec82066528a0
ea865843b65416f60204fee03380562feedfc428
/input_data.py
f4f2cb7319dffb17110a2abadeac7c90e95567d7
[]
no_license
https://github.com/sunnycia/pima-classifier-tf
55ed3d2c10fd7d4629ee7fe882dc1e619280f288
ca2d4d9ca9557b13f7b6133f77f6111fcd129c1e
refs/heads/master
2020-04-16T18:00:10.476301
2019-01-15T06:40:10
2019-01-15T06:40:10
165,798,898
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np import os def dense_to_one_hot(labels_dense, num_classes=2): """Convert class labels from scalars to one-hot vectors.""" num_labels = labels_dense.shape[0] index_offset = np.arange(num_labels) * num_classes labels_one_hot = np.zeros((num_labels, num_classes)) labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 return labels_one_hot class DataSet(object): def __init__(self, datas, labels): assert datas.shape[0] == labels.shape[0], ( "datas.shape: %s labels.shape: %s" % (datas.shape, labels.shape)) self._num_examples = datas.shape[0] self._datas = datas.astype(np.float32) self._labels = labels self._epochs_completed = 0 self._index_in_epoch = 0 @property def datas(self): return self._datas @property def labels(self): return self._labels @property def num_examples(self): return self._num_examples @property def epochs_completed(self): return self._epochs_completed def next_batch(self, batch_size): start = self._index_in_epoch self._index_in_epoch += batch_size if self._index_in_epoch > self._num_examples: # Finished epoch # print "A epoch is complete. Now shuffle the set and begin next epoch" self._epochs_completed += 1 # Shuffle the data perm = np.arange(self._num_examples) np.random.shuffle(perm) self._datas = self._datas[perm] self._labels = self._labels[perm] # Start next epoch start = 0 self._index_in_epoch = batch_size end = self._index_in_epoch return self._datas[start:end], self._labels[start:end] filePath = "Pima-training-set.txt" def read_dataset(filePath): f = open(filePath) line = f.readline() count = 0 labellist = [] while line: linelist = line.split() dat_arr = np.array(linelist)[:8] lbl = int(linelist[8]) - 1 # print lbl;exit() # print dat_arr.shape if not count == 0: data = np.concatenate((data, dat_arr[np.newaxis, ...]), axis=0) # print type(labellist) labellist.append(lbl) else: data = dat_arr[np.newaxis, ...] labellist = [lbl] print type(labellist),labellist; count += 1 line = f.readline() label = dense_to_one_hot(np.array(labellist)) # print label.shape; # print label;exit() perm = np.arange(len(data)) np.random.shuffle(perm) data = data[perm] label = label[perm] # print data.shape # print label.shape return DataSet(data, label) # read_dataset(filePath)
UTF-8
Python
false
false
2,934
py
6
input_data.py
4
0.549761
0.543286
0
89
30.988764
83
ouceduxzk/kaggle-ndsb2
6,330,781,822,067
afe0b80f5d1054dd7f052672b3951f7f6f108e85
46cd9164abc0c7383ec26503583ca42bb3763761
/model.py
5f0f110600e4ce6df37bf43ce2a60390514d3459
[]
no_license
https://github.com/ouceduxzk/kaggle-ndsb2
ddf93add3fd03c13df9787d89d449abc8f911ee5
45a4af0157f8a883cd987ac4a07414480afd8ff8
refs/heads/master
2016-08-09T14:49:08.857944
2016-02-13T21:21:52
2016-02-13T21:21:52
51,666,049
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from __future__ import print_function from keras.models import Sequential from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D from keras.layers.core import Activation, Dense, Flatten, Dropout from keras.optimizers import Adam from keras.regularizers import l2 from keras import backend as K def center_normalize(x): """ Custom activation for online sample-wise center and std. normalization """ return (x - K.mean(x)) / K.std(x) def get_model(): model = Sequential() model.add(Activation(activation=center_normalize, input_shape=(30, 64, 64))) model.add(Convolution2D(64, 3, 3, border_mode='same')) model.add(Activation('relu')) model.add(Convolution2D(64, 3, 3, border_mode='valid')) model.add(Activation('relu')) model.add(ZeroPadding2D(padding=(1, 1))) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Dropout(0.25)) model.add(Convolution2D(96, 3, 3, border_mode='same')) model.add(Activation('relu')) model.add(Convolution2D(96, 3, 3, border_mode='valid')) model.add(Activation('relu')) model.add(ZeroPadding2D(padding=(1, 1))) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Dropout(0.25)) model.add(Convolution2D(128, 2, 2, border_mode='same')) model.add(Activation('relu')) model.add(Convolution2D(128, 2, 2, border_mode='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(1024, W_regularizer=l2(1e-3))) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(1)) adam = Adam(lr=0.0001) model.compile(optimizer=adam, loss='rmse') return model def VGG_16_112(weights_path=None): model = Sequential() model.add(ZeroPadding2D((1,1),input_shape=(30,112,112))) model.add(Convolution2D(64, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(64, 3, 3, activation='relu')) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(128, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(128, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(128, 3, 3, activation='relu')) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(256, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(256, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(256, 3, 3, activation='relu')) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(Flatten()) model.add(Dense(4096, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(4096, activation='relu')) model.add(Dropout(0.5)) #model.add(Dense(1024, W_regularizer=l2(1e-3))) model.add(Dense(1 , W_regularizer=l2(1e-3))) adam = Adam(lr=0.0001) model.compile(optimizer=adam, loss='rmse') if weights_path: model.load_weights(weights_path) return model def VGG_16_112_2(weights_path=None): model = Sequential() model.add(ZeroPadding2D((1,1),input_shape=(15,112,112))) model.add(Convolution2D(64, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(64, 3, 3, activation='relu')) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(128, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(128, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(128, 3, 3, activation='relu')) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(256, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(256, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(256, 3, 3, activation='relu')) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(Flatten()) model.add(Dense(4096, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(4096, activation='relu')) model.add(Dropout(0.5)) #model.add(Dense(1024, W_regularizer=l2(1e-3))) model.add(Dense(1 , W_regularizer=l2(1e-3))) adam = Adam(lr=0.0001) model.compile(optimizer=adam, loss='rmse') if weights_path: model.load_weights(weights_path) return model def VGG_16(weights_path=None): model = Sequential() model.add(ZeroPadding2D((1,1),input_shape=(30,224,224))) model.add(Convolution2D(64, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(64, 3, 3, activation='relu')) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(128, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(128, 3, 3, activation='relu')) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(256, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(256, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(256, 3, 3, activation='relu')) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(Flatten()) model.add(Dense(4096, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(4096, activation='relu')) model.add(Dropout(0.5)) #model.add(Dense(1024, W_regularizer=l2(1e-3))) model.add(Dense(1 , W_regularizer=l2(1e-3))) adam = Adam(lr=0.0001) model.compile(optimizer=adam, loss='rmse') if weights_path: model.load_weights(weights_path) return model def VGG_19(weights_path=None): model = Sequential() model.add(ZeroPadding2D((1,1),input_shape=(30,224,224))) model.add(Convolution2D(64, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(64, 3, 3, activation='relu')) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(128, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(128, 3, 3, activation='relu')) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(256, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(256, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(256, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(256, 3, 3, activation='relu')) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(Flatten()) model.add(Dense(4096, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(4096, activation='relu')) model.add(Dropout(0.5)) #model.add(Dense(1000, activation='softmax')) model.add(Dense(1 , W_regularizer=l2(1e-3))) adam = Adam(lr=0.0001) model.compile(optimizer=adam, loss='rmse') if weights_path: model.load_weights(weights_path) return model
UTF-8
Python
false
false
9,600
py
7
model.py
6
0.656979
0.575313
0
262
35.637405
81
netmanchris/pykanyerest
17,351,667,901,245
c521282a6250e4ff227d53b2602557e5b2e8071a
55d78df9898e3f698ff7abb405569d0ae4d7c3d8
/pykanyerest/quotes.py
531ef54ce14e3df6cadc97ee16a22e1a7e7e0437
[ "Apache-2.0" ]
permissive
https://github.com/netmanchris/pykanyerest
9943229e77ca5547f744619772266f08c363069e
223e264c9d0bb8756448c4687130d5d0f6ea2e46
refs/heads/master
2020-12-21T19:20:09.849010
2020-01-27T16:19:21
2020-01-27T16:19:21
236,533,692
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import requests, json def get_new_quote(): url= 'https://api.kanye.rest' r = requests.get(url) quote = json.loads(r.text) print ("New Kanye Quote coming up!") return quote
UTF-8
Python
false
false
193
py
3
quotes.py
2
0.637306
0.637306
0
8
23.125
40
YYN117/Demo
4,964,982,228,490
40371be35d77d37a98c98ed67ab673b320edefe8
aa28417be8935d6fa369fcb526174f9e1e30479a
/qianfeng/day11/ATM/银行自助提款机.py
662a6a89eefcd47ab68ce4d00317d3fcdf0a1d92
[]
no_license
https://github.com/YYN117/Demo
d6fca95ed8a1a433ef06f1f3fc2e768414e863cb
40690040a7422fd5d8f03a0d68f20f1be5d4a836
refs/heads/master
2020-04-14T12:29:30.129709
2019-01-02T13:31:10
2019-01-02T13:31:10
163,841,708
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
''' 人 类名:Person 属性:姓名,身份证,电话,卡 行为 卡 类名:Card 属性:卡号,密码,余额 行为 提款机 类名:ATM 属性: 行为:开户,查询,取款,存款,转账,改密码,锁定,解锁,读卡,销户,退出 界面类 类名:View 属性: 行为:管理员界面 管理员登录 系统功能界面 ''' from view import View from atm import ATM import time import pickle import os def main(): #用户数据 allUsers = {} #界面 view = View() view.printAdminView() #管理员开机 if view.adminOption(): return -1 filepath = os.path.join(os.getcwd(), 'allusers.txt') f = open(filepath ,'rb') allUsers = pickle.load(f) print(allUsers) atm = ATM(allUsers) while True: view.printSysFunctionView() #等待用户操作 option = input('输入你的操作:') if option == '1': atm.createUser() elif option == '2': atm.searchUserInfo() elif option == '3': print('取款') elif option == '4': print('存款') elif option == '5': print('转账') elif option == '6': print('改密') elif option == '7': atm.lockUser() elif option == '8': atm.unlockUser() elif option == '9': print('补卡') elif option == '0': print('销户') elif option == 't': if not view.adminOption(): f = open(filepath,'wb') pickle.dump(atm.allUsers,f) f.close() print(filepath) return -1 time.sleep(2) if __name__ == '__main__': main()
UTF-8
Python
false
false
1,777
py
296
银行自助提款机.py
276
0.483502
0.474747
0
80
17.575
56
nanersmariee/Labs_AnnaMarie
5,514,738,051,288
caf2e6aa6575548b214e5272d309b9121d49d79d
385ba6b52414042ccc1a44fb5c143fee86a7d194
/calculator1.py
c76e2f99649bcbaf2cc768f6627f19fc0a0341d9
[]
no_license
https://github.com/nanersmariee/Labs_AnnaMarie
b5cdb2c95a90e35169d038c68284e154f74ee21e
75de2327d11aa8e6963ecd7dab290ed646883477
refs/heads/master
2022-12-09T03:35:50.411671
2020-01-19T00:12:28
2020-01-19T00:12:28
216,278,357
0
0
null
false
2021-06-02T00:42:47
2019-10-19T22:30:35
2020-01-19T00:12:45
2021-06-02T00:42:45
16,850
0
0
16
TSQL
false
false
"""repeat forever""" from arithmetic1 import * """import arithmetic functions for calculator""" while True: """read input""" input_string = input("Please enter parameters> ") print(input_string) """tokenize input""" tokens = (input_string.split(" ")) print(tokens) """If token is Q - quitting""" if tokens[0] == "q": print("You are quitting") break # elif len(tokens) < 2: # print("Not enough parameters entered") """Assigned token indexes (operators and num)""" if len(tokens) == 2: operator = tokens[0] num1 = tokens[1] num2 = 0 print(operator, num1, num2) elif len(tokens) == 3: operator = tokens[0] num1 = float(tokens[1]) num2 = float(tokens[2]) if operator == "+": result = add(num1,num2) elif operator == "-": result = subtract(num1,num2) elif operator == "*": result = multiply(num1, num2) elif operator == "/": result = divide(num1, num2) elif operator == "pow" : result = power(num1,num2) elif operator == "mod": result = mod(num1,num2) print(result) # add(float, float) → float # Return the sum of the two inputs. # subtract(float, float) → float # Return the second number subtracted from the first. # multiply(float, float) → float # Multiply the two inputs together and return the result. # divide(float, float) → float # Divide the first input by the second and return the result. # square(float) → float # Return the square of the input. # cube(float) → float # Return the cube of the input. # power(float, float) → float # Raise the first input to the power of the second and return the result. # mod(float, float) → float # Divide the first input by the second input and return the remainder. # """assign 0 to token [3] if less than 2 numbers""" # elif len(tokens) < 3: # num2 = 0 # else: # num2 = (tokens[2]) # elif tokens[0] == "+": # print(add(tokens[1], tokens[2])) # elif tokens[0] == "-": # print(tokens[1] - tokens[2]) # else: # # # decide which math function to call based on first token # """A prefix-notation calculator.""" # from arithmetic1 import * # while True: # user_input = input("> ") # tokens = user_input.split(" ") # if "q" in tokens: # print("You will exit.") # break # elif len(tokens) < 2: # print("Not enough inputs.") # continue # operator = tokens[0] # num1 = tokens[1] # if len(tokens) < 3: # num2 = "0" # else: # num2 = tokens[2] # if len(tokens) > 3: # num3 = tokens[3] # # A place to store the return value of the math function we call, # # to give us one clear place where that result is printed. # result = None # if not num1.isdigit() or not num2.isdigit(): # print("Those aren't numbers!") # continue # # We have to cast each value we pass to an arithmetic function from a # # a string into a numeric type. If we use float across the board, all # # results will have decimal points, so let's do that for consistency. # elif operator == "+": # result = add(float(num1), float(num2)) # elif operator == "-": # result = subtract(float(num1), float(num2)) # elif operator == "*": # result = multiply(float(num1), float(num2)) # elif operator == "/": # result = divide(float(num1), float(num2)) # elif operator == "square": # result = square(float(num1)) # elif operator == "cube": # result = cube(float(num1)) # elif operator == "pow": # result = power(float(num1), float(num2)) # elif operator == "mod": # result = mod(float(num1), float(num2)) # elif operator == "x+": # result = add_mult(float(num1), float(num2), float(num3)) # elif operator == "cubes+": # result = add_cubes(float(num1), float(num2)) # else: # result = "Please enter an operator followed by two integers." # print(result)
UTF-8
Python
false
false
4,266
py
5
calculator1.py
3
0.558118
0.54
0
208
19.408654
75
nguyenletan/python2
11,209,864,664,000
c383f311b3bd331176c088dc2ad5aab1dd8f03d6
c9540e808ac6c30c21f8a825293fa981f474aedb
/a2_task1.py
39a71715b99202aedbd4e34553d1406bff1a71a7
[]
no_license
https://github.com/nguyenletan/python2
47560f643911cf81198d37791e3845bec2e9e438
7b52d09a9886dd8885290950eb943cb442196e81
refs/heads/master
2022-10-02T02:00:49.652519
2020-05-21T11:35:06
2020-05-21T11:35:06
265,832,395
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Task 1 code template for FIT9136 Assignment 2. # Instructions to students: # 1. Where required, replace the *pass* statements with your own method and # function definitions. Your submission must comply with the specification: # do not rename specified functions or change the number or type of arguments # or return values; otherwise you will be deemed not to have demonstrated # clear comprehension of the specified instructions. (You may define # your own additional functions and instance variables if you wish, as long # as these don't contradict the specified requirements. You may also # import any libraries allowed by the assignment specification.) # 2. Complete task 1 within the framework of this template file. # 3. Modify the filename (AND import statement(s), where required) to replace # the xxxxxxxx with your student ID number. # 4. Complete tasks 2 and 3 within the other template files. The finished # program is split into three files, linked together by import statements. # 5. In this file, you may define your own testing code within the 'main' # block to check if your simulation is working when running this script file # directly. Code in the main block will not be run by the auto marker algorithm, # which will instead test the specified functions/methods by attempting to # call them directly according to how they are defined in the assignment # requirements specification. # 6. Before submission, you should remove these instructions from this # template file and add your own program comments instead. This template file # has omitted program comments, which are your responsibility to add. Any # other 'placeholder' comments should be removed from your final submission. import pandas as pd class Person: # all with unique names => use Set instead of List def __init__(self, first_name, last_name): self.friends = [] self.first_name = first_name self.last_name = last_name def add_friend(self, friend_person): self.friends.append(friend_person) def get_name(self): return self.first_name + ' ' + self.last_name def get_friends(self): # returns a list of Person objects for the social connections that have been added. return list(self.friends) def __repr__(self): result = self.get_name() + ': ' for f in self.friends: result += f.get_name() + ',' return result + '\n' def __str__(self): return self.get_name() def get_firstname(name): return name.split()[0] def get_lastname(name): return name.split()[1] def load_people2(): # pd.set_option('display.max_rows', 1000) df = pd.read_csv('a2_sample_set.txt', header=None, sep='[:]', index_col=0, names=['person', 'friends'], engine='python') # data = df.to_numpy() friends = df['friends'] df['friends'] = friends.str.split(',') people = {} for index, value in df.iterrows(): person = Person(get_firstname(index), get_lastname(index)) people[person.get_name().strip()] = person for index, value in df.iterrows(): person = people[index] for friend_name in value[0]: person.add_friend(people[friend_name.strip()]) print(type([v for k, v in people.items()])) return [v for k, v in people.items()] # def load_people(): # file = open('a2_sample_set.txt', 'r') # for line in file: # name_and_friends = line.split(':') # person = Person(get_firstname(name_and_friends[0]), get_lastname(name_and_friends[0])) # print(person) def main(): print(load_people2()) # load_people2() if __name__ == '__main__': main() # placeholder only. You may add your own testing code within this # main block to check if the code is working the way you expect. # do not add code here (outside the main block). # columns = df.columns # print(columns) # print(df.describe()) # print(data[0]) # for d in data: # print(d) # print(d.str.split(',')) # friends = df['friends'] # print(friends.str.split(',')) # df['friends'] = friends.str.split(',') # print(df) # print(tabulate(df, tablefmt="pipe", headers="keys")) # friends = df.friends # print(friends) # df.head() # print(type(df.values)) # print(df.columns) # print(df.loc['Jom Tones']) # for _ in df: # print(_) # for _ in df: # print(type(_)) # for i in range(2): # print(df.iloc[i]) # for index, value in df.iterrows(): # print(index) # print(value) # print(type(_)) # print(type(df.iterrows())) # for i in range(df.shape[0]): # print(df.iloc[i]) # # For printing more than one columns # # print(df.iloc[i, [0, 2]])
UTF-8
Python
false
false
4,832
py
3
a2_task1.py
3
0.642798
0.635555
0
146
32.09589
96
jamesgleave/neat
2,216,203,172,621
f866479cc68aa20fd9a1688dd66a5ce95899f7d0
f3f1ca77e428be31fce79108ca45dad03cb8217c
/plot_racetrack.py
171558811e69e30f3ceb456719eeba4a7022de5f
[ "MIT" ]
permissive
https://github.com/jamesgleave/neat
11b7e1f6dbb33de3cfd604c4c96781546adf5f3e
f0776d1f0dc68e391b8bb97b82a42bf13605898a
refs/heads/master
2021-09-12T08:48:47.192433
2018-04-15T17:50:41
2018-04-15T17:50:41
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python import numpy as np import matplotlib #matplotlib.use('Agg',warn=False) import matplotlib.pyplot as plt import scipy.io def angle(v1, v2): """ Returns the angle in radians between vectors 'v1' and 'v2' """ c = np.dot(v1, v2) s = np.linalg.norm(np.cross(v1, v2)) return np.arctan2(s, c) def angle2(v1, v2): """ Returns the angle in radians between vectors 'v1' and 'v2' with sign """ return np.arccos(np.dot(v1,v2)/(np.linalg.norm(v1)*np.linalg.norm(v2))) * np.sign(np.cross(v1,v2)) v1 = np.array([ 1, 1]) v2 = np.array([ 1, -1]) fig = plt.figure() mat = scipy.io.loadmat('racetrack.mat') t_l = mat['t_l'] t_r = mat['t_r'] t_m = (t_l+t_r)/2 n = 1800 print(t_l.shape) p = np.array([10*np.random.random()-8, 10*np.random.random()+250]) idx = 0 d_mp = 1e10 while np.linalg.norm(p-t_m[idx+1,:]) <= d_mp: mp = p - t_m[idx+1,:] d_mp = np.linalg.norm(mp) idx += 1 lr = t_r[idx,:] - t_l[idx,:] lr_n = np.array([-lr[1],lr[0]]) d_lr = np.dot(mp.T,lr) / np.dot(lr,lr) * lr # rename this d = np.linalg.norm(d_lr) d_sign = np.sign(np.cross(mp,lr_n)) print(d*d_sign) print( d <= 5/2. ) plt.plot(t_l[:n,0],t_l[:n,1], 'b-') plt.plot(t_r[:n,0],t_r[:n,1], 'b-') plt.plot(t_m[:n,0],t_m[:n,1], 'y-') plt.plot(p[0], p[1], 'rx') plt.plot((t_m[idx,0],p[0]),(t_m[idx,1],p[1]), 'r-') plt.plot((t_m[idx,0],t_m[idx,0]+d_lr[0]),(t_m[idx,1],t_m[idx,1]+d_lr[1]), 'g-') plt.plot((t_m[idx,0],t_m[idx,0]+lr_n[0]),(t_m[idx,1],t_m[idx,1]+lr_n[1]), 'c-') # horizon old idx = 200 l = 10 # numbe of points k = 10 # distance in steps x_red = t_m[idx:idx+(l+1)*k:k,:] a_red = [] for i in range(l): a_red.append(angle2(x_red[i],x_red[i+1])) a_red = np.array(a_red) a_red *= 100 print(x_red) print(a_red) # horizon new idx = 200 n = 10 # number of points h = 10 # distance between points in m x_last = t_m[idx] x_red = [x_last] i = j = 0 while True: while True: i += 1 x_tmp = t_m[idx+i] if np.linalg.norm(x_tmp-x_last) > h: x_red.append(x_tmp) x_last = x_tmp break j += 1 if j == n: break x_red = np.array(x_red) a_red = [] for i in range(n): a_red.append(angle2(x_red[i],x_red[i+1])) a_red = np.array(a_red) # angel between horizon points a_red *= 100/3. print(x_red) print(a_red) plt.plot(x_red[:,0], x_red[:,1], 'k.') ax = plt.axes() ax.set_aspect('equal', 'datalim') #ax.set_xlim(-20,10); ax.set_ylim(230,260) ax.set_xlim(-40,30); ax.set_ylim(190,290) plt.show()
UTF-8
Python
false
false
2,490
py
21
plot_racetrack.py
13
0.565863
0.515663
0
113
21.035398
102
chuanqin1230/network-science
13,675,175,920,514
bb1fad38392727c100693810726fffda43895602
dcb30fc270fda8fd63c0851e29bbcd91c6726040
/codes/louvain.py
59d03915a620d2314a3df0055fb25971ece384f8
[]
no_license
https://github.com/chuanqin1230/network-science
3c6a9bfc68a9c02a850fa253bbeb0e4027e71e1d
a6797a77f3766d5f0ee70356f415a91c92cbe446
refs/heads/master
2022-06-30T05:50:07.560434
2020-05-06T03:56:02
2020-05-06T03:56:02
261,643,062
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- """ Created on Mon Apr 16 13:50:33 2018 @author: Jinglin """ import os from pygrid import * import random import matplotlib.pyplot as plt import numpy as np from sklearn import cluster, datasets, mixture import modification def louvain(graph_silm,SQV): #set default weight value graph_silm.es['weight'] = 1.0 edge_weight = graph_silm.es['weight'] #print graph_silm.es['weight'] #get adjacency matrix of weighted graph adjacency_matrix = graph_silm.get_adjacency(attribute='weight') #print adjacency_matrix #node value/weight: the edges connected to the node node_value = [] for node in graph_silm.vs: node_value.append(sum(adjacency_matrix[node.index])) graph_silm.vs["node_value"] = node_value #print node_value #calculate total edge weight #resolution = 1/total_edge_weight total_edge_weight = 0.0 for i in range(graph_silm.vcount()): total_edge_weight += sum(adjacency_matrix[i]) print total_edge_weight ''' IGraph library. Copyright (C) 2006-2012 Gabor Csardi <csardi.gabor@gmail.com> 334 Harvard street, Cambridge, MA 02139 USA ''' #the level of alg multi_level = 1 #3 resolution1 = 1.0 resolution2 = resolution1/total_edge_weight #use standard modularity function random_starts_number = 1 #10 #New graph with all nodes from graph_silm #Initial network each node as a cluster copy_graph_silm = graph_silm.as_undirected() copy_graph_silm.delete_edges(None) #print copy_graph_silm.vcount() #get the initial clusters, 1 node as 1 clusters initial_clusters = copy_graph_silm.clusters() #print initial_clusters #node_list has the node order, node neighbors has its neighbors' list node_list = graph_silm.vs['name'] node_neighbors = [] for i in node_list: node_neighbors.append(graph_silm.neighbors(i)) #print node_neighbors #Louvain begin for level in range(multi_level): clusters_weight = np.zeros(len(initial_clusters)) for one_cluster in initial_clusters: #print one_cluster for vertex_index in one_cluster: clusters_weight[one_cluster] += node_value[vertex_index] #print copy_graph_silm.vs.select(vertex_index)['name'] #print node_value[vertex_index] #print clusters_weight''' #max modularity max_modularity = -10000 #random seed 0, each time random the same value random.seed(10) random_value = random.random() for i in range(random_starts_number): if (random_starts_number > 1): print 'No.' + (i+1) + ' Random Start' #New graph with all nodes from graph_silm #Initial network each node as a cluster new_copy_graph_silm = graph_silm.as_undirected() new_copy_graph_silm.delete_edges(None) #print copy_graph_silm.vcount() #get the initial clusters, 1 node as 1 clusters new_initial_clusters = copy_graph_silm.clusters() #print initial_clusters j = 0 update_flag = 1 #True #into the the multi-level loop while ((j < multi_level) and update_flag): if (multi_level > 1): print 'No.' + (multi_level+1) + 'multilevel' #update the update_flag update_flag = update_flag_with_random(graph_silm, new_initial_clusters, random_value) #print update_flag def update_flag_with_random(graph_silm, new_initial_clusters, random_value): if (graph_silm.vcount() == 1): return 0 update_flag = local_moving_alg(graph_silm, new_initial_clusters, random_value) if (clustering_n_clusters < n_nodes): update_flag2 = local_moving_alg(graph_silm, new_initial_clusters, random_value) if (update_flag2 == 1): update_flag = 1 clustering.merge_clusters(clustering) return update def local_moving_alg(graph_silm, new_initial_clusters, random_value): if (graph_silm.vcount() == 1): return 0 update_flag = 0 clusters_weight = np.zeros(len(new_initial_clusters)) for one_cluster in new_initial_clusters: #print one_cluster for vertex_index in one_cluster: clusters_weight[one_cluster] += graph_silm.vs.select(vertex_index)['node_value'] print list(clusters_weight) #absent for unused clusters #get an index of random list of node random_node_T = [] for i in graph_silm.vs: random_node_T.append(i.index) #print list(random_node_T) random.shuffle(random_node_T) #print random_node_T #first neighbor index first_neighbor_index = [] temp_edges = 0 for i in graph_silm.vs: first_neighbor_index[i] = temp_edges stable_nodes_number = 0 index = 0 while(stable_nodes_number < graph_silm.vcount()): j = random_node_T[index] neighbor_clusters_number = 0 for k in range(first_neighbor_index[j]): if (k < first_neighbor_index[j + 1]): l = clustering_cluster[network_neighbor[k]] if (edgeWeightPerCluster[l] == 0): neighboring_cluster[n_neighboring_clusters] = l n_neighboring_clusters++ edge_weightPer_cluster[l] += edge_weight[k] cluster_weight[clustering_cluster[j]] -= node_weight[j] n_nodes_per_cluster[clustering_cluster[j]]= n_nodes_per_cluster[clustering_cluster[j]] - 1 if (n_nodes_per_cluster[clustering-cluster[j]] == 0): unusedCluster[n_unused_clusters] = clustering_cluster[j] n_unused_clusters = n_unused_clusters + 1 best_cluster = -1 max_quality_function = 0 for k in range(n_neighboring_clusters[j]): l = neighboring_cluster[k] quality_function = edge_weight_per_cluster[l] - node_weight[j] * cluster_weight[l] if ((quality_function > max_quality_function) or ((quality_function == max_quality_function) and (l < best_cluster))): best_cluster = l max_quality_function = quality_function edge_weight_per_cluster[l] = 0 if (max_quality_function == 0): best_cluster = unused_cluster[n_unused_clusters - 1] n_unused_clusters-- cluster_weight[best_cluster] += node_weight[j] n_nodes_per_cluster[best_cluster]++ if (best_cluster == clustering_cluster[j]): stable_nodes_number++ else: clustering_cluster[j] = best_cluster stable_nodes_number = 1 update_flag = 1 new_cluster = new int[n_nodes] clustering_n_clusters = 0 for i in range(n_nodes): if (n_nodes_per_cluster[i] > 0): new_cluster[i] = clustering_n_clusters n_clusters++ for i in range(n_nodes): clustering_cluster[i] = new_cluster[clustering_cluster[i]] return update_flag
UTF-8
Python
false
false
7,278
py
15
louvain.py
4
0.599615
0.587387
0
214
33.014019
134
chan-p/DSP
12,120,397,716,020
fc0c48d15c0c34d7d2db8161998e889890972f72
f938f9f16a7efc52991beb1dd0371b1af6e9d47e
/parse.py
e97b05529c874a8d0bd43744c9d113a2952e734c
[]
no_license
https://github.com/chan-p/DSP
2de354251713c3040089012b234531907f7081a1
2f5111b5f71eb642cb8abcc8f1f1598d8efde9b1
refs/heads/master
2016-09-26T16:53:50.188139
2016-09-14T07:30:01
2016-09-14T07:30:01
68,183,914
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
f = open("/Users/TomonotiHayshi/Desktop/haihu/training.csv") count = 0 count1 = 0 g12 = open("/Users/TomonotiHayshi/GitHub/DSP/data/data12.csv","w") g34 = open("/Users/TomonotiHayshi/GitHub/DSP/data/data34.csv","w") g56 = open("/Users/TomonotiHayshi/GitHub/DSP/data/data56.csv","w") g78 = open("/Users/TomonotiHayshi/GitHub/DSP/data/data67.csv","w") g910 = open("/Users/TomonotiHayshi/GitHub/DSP/data/data78.csv","w") g1112 = open("/Users/TomonotiHayshi/GitHub/DSP/data/data910.csv","w") g1314 = open("/Users/TomonotiHayshi/GitHub/DSP/data/data1112.csv","w") g1516 = open("/Users/TomonotiHayshi/GitHub/DSP/data/data1314.csv","w") g1718 = open("/Users/TomonotiHayshi/GitHub/DSP/data/data1516.csv","w") g1920 = open("/Users/TomonotiHayshi/GitHub/DSP/data/data1718.csv","w") count=0 for aa in f: line = aa.split(",") if line[8] == "1" or line[9] == "1": g12.write(aa) if line[10] == "1" or line[11] == "1": g34.write(aa) if line[12] == "1" or line[13] == "1": g56.write(aa) if line[14] == "1" or line[15] == "1": g78.write(aa) if line[16] == "1" or line[17] == "1": g910.write(aa) if line[18] == "1" or line[19] == "1": g1112.write(aa) if line[20] == "1" or line[21] == "1": g1314.write(aa) if line[22] == "1" or line[23] == "1": g1516.write(aa) if line[24] == "1" or line[25] == "1": g1718.write(aa) if line[26] == "1" or line[27] == "1": g1920.write(aa) g12.close() g34.close() g56.close() g78.close() g910.close() g1112.close() g1314.close() g1516.close() g1314.close() g1516.close() g1718.close() g1920.close()
UTF-8
Python
false
false
1,636
py
240
parse.py
11
0.608191
0.490831
0
48
33.083333
70
HuLiangHu/Spiders
17,325,898,078,413
bdb84d7e70fb1fe938e3dc3669fa4207adc55a96
cfab1c4e501d4a45e8e21e94244b878350fd032d
/DoubanSpiders/douban/spiders/movie.py
a924428b9457cbb39aaae1be644241e85b1dbbf4
[]
no_license
https://github.com/HuLiangHu/Spiders
85f2317f6a5342c6921dd32fa212eb0170396449
0e809279eff2584b73557cd9d51ad2e4c148a5cf
refs/heads/master
2021-06-16T03:35:12.560845
2020-01-29T14:05:23
2020-01-29T14:05:23
182,927,044
1
1
null
false
2021-03-25T22:37:02
2019-04-23T03:52:22
2020-01-29T14:05:57
2021-03-25T22:36:59
64,393
1
1
6
Python
false
false
# -*- coding: utf-8 -*- import scrapy import json import re import random from datetime import datetime from scrapy.utils.project import get_project_settings #import pymysql import random #from scrapy_redis import connection class DoubanNewTVSpider(scrapy.Spider): name = "newtv2" start_urls = ['https://movie.douban.com/j/new_search_subjects?sort=U&range=1,10&tags=电视剧&start=0&countries='] apikeys = ['088acf79cc38fde819a06e6d64aaf9b8', '01e1232b205f406405a36981611dc12c', '03405aad00de230c09c11007029a6924'] def start_requests(self): #self.server = connection.from_settings(self.settings) for item in ['美国','台湾','日本','韩国','英国','法国','德国','意大利','西班牙','印度','泰国','俄罗斯','伊朗','加拿大','澳大利亚','爱尔兰','瑞典','巴西','丹麦']: yield scrapy.Request('https://movie.douban.com/j/new_search_subjects?sort=U&range=1,10&tags=电视剧&start=0&countries=%s' %item) def parse(self, response): subjects = json.loads(response.body_as_unicode()) for subject in subjects['data']: yield subject ''' url = 'https://api.douban.com/v2/movie/subject/%s?apikey=%s' % ( subject['id'], random.choice(self.apikeys)) yield scrapy.Request(url,callback = self.parse_info) ''' if len(subjects['data'])>0: start = int(re.search('start=(\d+)',response.url).group(1)) start = start + 20 url = re.sub('start=\d+','start=%s'%start,response.url) yield scrapy.Request(url) #self.server.lpush('doubanmovieinfo:start_urls', subject['id']) def parse_info(self,response): info = json.loads(response.body_as_unicode()) info['createdtime'] = str(datetime.now()) info['updatedtime'] = str(datetime.now()) info['_sys_collection'] = 'douban_movieinfo' info['_sys_upset_fields'] = ['rating', 'wish_count','updatedtime'] return info
UTF-8
Python
false
false
2,055
py
244
movie.py
211
0.618024
0.576549
0
47
40.574468
136