repo_name
stringlengths
7
111
__id__
int64
16.6k
19,705B
blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
151
content_id
stringlengths
40
40
detected_licenses
list
license_type
stringclasses
2 values
repo_url
stringlengths
26
130
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
42
visit_date
timestamp[ns]
revision_date
timestamp[ns]
committer_date
timestamp[ns]
github_id
int64
14.6k
687M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
12 values
gha_fork
bool
2 classes
gha_event_created_at
timestamp[ns]
gha_created_at
timestamp[ns]
gha_updated_at
timestamp[ns]
gha_pushed_at
timestamp[ns]
gha_size
int64
0
10.2M
gha_stargazers_count
int32
0
178k
gha_forks_count
int32
0
88.9k
gha_open_issues_count
int32
0
2.72k
gha_language
stringlengths
1
16
gha_archived
bool
1 class
gha_disabled
bool
1 class
content
stringlengths
10
2.95M
src_encoding
stringclasses
5 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
10
2.95M
extension
stringclasses
19 values
num_repo_files
int64
1
202k
filename
stringlengths
4
112
num_lang_files
int64
1
202k
alphanum_fraction
float64
0.26
0.89
alpha_fraction
float64
0.2
0.89
hex_fraction
float64
0
0.09
num_lines
int32
1
93.6k
avg_line_length
float64
4.57
103
max_line_length
int64
7
931
JanaRankova/pyladies
16,217,796,512,512
9c56992d10b6aeef854ae5854a83f784dc90a02f
f44a783125105e858843082a2b526d613ba0be01
/06_ulohy/piskvorky1.py
c0bb4690257fe908ae8c14d872fd0f3744ca9f9c
[]
no_license
https://github.com/JanaRankova/pyladies
ab09f1392212f72f2952e73525a93be0ede2484d
ef034b63fbafc5fc76c580fb4999dcf500e1feb8
refs/heads/master
2020-08-15T15:07:46.326357
2019-12-30T18:04:58
2019-12-30T18:04:58
215,361,294
0
0
null
false
2019-12-30T18:05:00
2019-10-15T17:47:29
2019-12-30T18:02:58
2019-12-30T18:04:59
42
0
0
0
Python
false
false
hracie_pole = '--------------------' def vyhodnot(hracie_pole): """Vezme momentalny stav hracieho pola a podla podmienok vo funkcii, urci vyhercu.""" stav = '' if 'xxx' in hracie_pole: stav = 'x' elif 'ooo' in hracie_pole: stav = 'o' elif '-' not in hracie_pole: stav = '!' else: stav = '-' return stav print(vyhodnot(hracie_pole))
UTF-8
Python
false
false
393
py
38
piskvorky1.py
33
0.536896
0.536896
0
16
23.625
89
emaballarin/RADLER
14,439,680,063,489
6ea02a30b241e7e2f6833b124fe912327aa2d328
a5b8bc5953b5205419554e0c7e8853cc4ba9a124
/src/radler_ae_pretrain.py
b106376787f535942082637b04c5aef76002ca8d
[ "MIT" ]
permissive
https://github.com/emaballarin/RADLER
c2d8595d72f6465418a34d0f8cacd1db22cdca22
5a059939a2ddb02c49689bd9d867aa9935589faa
refs/heads/master
2020-06-28T18:26:01.567885
2020-06-08T03:28:56
2020-06-08T03:28:56
200,308,007
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# ---------------------------------------------------------------------------- # # # # RADLER ~ (adversarially) Robust Adversarial Distributional LEaRner # # # # |> Pretraining through AutoEncoding <| # # # # (C) 2019-* Emanuele Ballarin <emanuele@ballarin.cc> # # (C) 2019-* AI-CPS@UniTS Laboratory (a.k.a. Bortolussi Group) # # # # Distribution: MIT License # # (Full text: https://github.com/emaballarin/RADLER/blob/master/LICENSE) # # # # Eventually-updated version: https://github.com/emaballarin/RADLER # # # # ---------------------------------------------------------------------------- # # Adapted from W. Falcon: # https://towardsdatascience.com/from-pytorch-to-pytorch-lightning-a-gentle-introduction-b371b7caaf09 # ------- # # IMPORTS # # ------- # from __future__ import print_function import torch import torch as th from torch.utils.data import DataLoader from torch.utils.data.dataset import Dataset import pytorch_lightning as pl if __name__ == "__main__": import architectures as myarchs import weights_util as wutil else: from src import architectures as myarchs from src import weights_util as wutil # -------------------- # # NETWORK ARCHITECTURE # # -------------------- # # Building blocks implemented in another module # ------------------- # # DATASET BOILERPLATE # # ------------------- # # A fake dataset composed all of the same in-out pair, which is the only example (to be autoencoded) class MyStupidDataset(Dataset): def __init__(self): # Such example: self.my_single_example = ( wutil.dictmodel_flatten(th.load("mnist_cnn_small.pt"), th_device="cuda") .clone() .detach() ) def __getitem__(self, index): return self.my_single_example, self.my_single_example def __len__(self): return 1000 # AUTOENCODER (PyTorch Lightning module; just by putting E & D scaffolds together) class Autoencoder(pl.LightningModule): def __init__(self, data_size=20522, code_size=2): super(Autoencoder, self).__init__() self.data_size = data_size self.code_size = code_size self.encoder = myarchs.AE_Encoder(data_size, code_size) self.decoder = myarchs.AE_Decoder(code_size, data_size) def forward(self, x): # Encoding module x = self.encoder(x) # Decoding module x = self.decoder(x) return x def encode(self, x): return self.encoder(x) def decode(self, code): return self.decoder(code) def MSE_loss(self, given_in, given_out): return (torch.nn.MSELoss(reduction="sum"))(given_in, given_out) def training_step(self, train_batch, batch_idx): x, y = train_batch copied_input = self.forward(x) loss = self.MSE_loss(copied_input, y) logs = {"train_loss": loss} return {"loss": loss, "log": logs} # def validation_step(self, val_batch, batch_idx): # x, y = val_batch # copied_input = self.forward(x) # loss = self.MSE_loss(copied_input, y) # return {"val_loss": loss} # # def validation_end(self, outputs): # avg_loss = torch.stack([x["val_loss"] for x in outputs]).mean() # tensorboard_logs = {"val_loss": avg_loss} # return {"avg_val_loss": avg_loss, "log": tensorboard_logs} def train_dataloader(self): my_dataset = MyStupidDataset() my_train = DataLoader(my_dataset, shuffle=False, batch_size=64) return my_train # def val_dataloader(self): # my_dataset = MyStupidDataset() # my_val = DataLoader(my_dataset, shuffle=False, batch_size=64) # return my_val # def test_dataloader(self): # my_dataset = MyStupidDataset() # my_test = DataLoader(my_dataset, shuffle=False, batch_size=64) # return my_test def configure_optimizers(self): # The lightningModule HAS the parameters # (remember that we had the __init__ and forward method but we're just not showing it here) optimizer = torch.optim.Adam(self.parameters(), lr=1e-3, weight_decay=1e-5) return optimizer # train model = Autoencoder() trainer = pl.Trainer( # We are forcing pure overfitting here; still # we don't want too much of it. max_epochs=15, # Autostopped, eventually (but it's balanced after all) gpus=1, ) trainer.fit(model) # For some curious reason (a.k.a. purposeful overfitting), the decoding part is # almost centered at [0.0, 0.0] to produce the best replication of the in-out # Save model (decoding part) th.save(model.decoder.state_dict(), "bottleneck.pt")
UTF-8
Python
false
false
5,265
py
19
radler_ae_pretrain.py
17
0.535613
0.527825
0
155
32.967742
101
Tecplot/handyscripts
5,720,896,458,849
6386954e4995350c85cf6cec422c709145b3531f
4ad94b71e30883d6df07a3277265bd6fb7457ba7
/python/examples/doc_examples/data/dataset_variable_names_tuple.py
aa42eef38f35393f479285754263ab374bdbd3a5
[ "MIT" ]
permissive
https://github.com/Tecplot/handyscripts
7cb1d4c80f323c785d06b0c8d37aeb0acb67f58c
84a89bfecff5479a0319f08eb8aa9df465283830
refs/heads/master
2023-08-22T15:29:22.629644
2023-08-12T01:19:59
2023-08-12T01:19:59
149,826,165
89
64
MIT
false
2022-01-13T01:11:02
2018-09-21T22:47:23
2022-01-12T19:41:56
2022-01-13T01:11:01
12,260
58
47
1
Jupyter Notebook
false
false
from os import path import tecplot as tp examples_dir = tp.session.tecplot_examples_directory() datafile = path.join(examples_dir,'SimpleData','DownDraft.plt') dataset = tp.data.load_tecplot(datafile) result = tp.data.query.probe_at_position(0,0.1,0.3) data = dataset.VariablesNamedTuple(*result.data) # prints: (RHO, E) = (1.17, 252930.37) msg = '(RHO, E) = ({:.2f}, {:.2f})' print(msg.format(data.RHO, data.E))
UTF-8
Python
false
false
415
py
314
dataset_variable_names_tuple.py
287
0.706024
0.662651
0
12
33.583333
63
qingshangithub/Smart-car-tracking-with-opencv
19,026,705,149,551
458c9de713b120f8e0d9a237eea7de21fa71b2fb
c5e2ca3242cf86c4d6d9e5cff65763784aaaa708
/NNCProject/Lower/motor_multiPro/speedsensor/test.py
48db76f53a3cb325a45c095b83a8b459520f291c
[]
no_license
https://github.com/qingshangithub/Smart-car-tracking-with-opencv
bed8a3417102572963dc35bd6bdb80e226a93142
9d11d9b3f22acfc0f24002e6b420cbdc5d95f9cf
refs/heads/master
2021-04-26T22:57:11.912021
2018-03-05T10:35:30
2018-03-05T10:35:30
123,901,874
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import pigpio from time import sleep from multiprocessing import Process p = pigpio.pi() p.set_mode(17, pigpio.INPUT) def cbf(g, l, tick): print(tick) cb = p.callback(17, pigpio.RISING_EDGE, cbf) if __name__ == '__main__': sleep(20)
UTF-8
Python
false
false
244
py
40
test.py
23
0.668033
0.643443
0
13
17.769231
44
usyyy/python
17,557,826,309,209
8a4bf4df04f08e0b9b6458f4ae30f9f027d76afb
80cc3be9871b9d306dcebb1df7ddcbf9284a9524
/fluent-python/my-code/01-python-data-model/01-a-pythonic-deck.py
dbcb61a4ef3eb3acadb3506cfc408f0ae2e4ecac
[]
no_license
https://github.com/usyyy/python
c4d79cb4211eaece960d64649a83db1060df30fa
9532c5b95036342d9345c4ed2d55b16f507dade6
refs/heads/master
2020-01-23T22:01:02.662730
2017-12-06T22:37:02
2017-12-06T22:37:02
74,713,627
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import collections from random import choice from math import hypot # Example 1.1 - A deck as a sequence of cards Card = collections.namedtuple('Card', ['rank', 'suit']) class FrenchDeck: ranks = [str(n) for n in range(2, 11)] + list('JQKA') suits = 'spades diamonds clubs hearts'.split() def __init__(self): self._cards = [Card(rank, suit) for suit in self.suits for rank in self.ranks] def __len__(self): return len(self._cards) def __getitem__(self, position): return self._cards[position] # beer_card = Card('7', 'diamonds') beer_card # deck = FrenchDeck() len(deck) # deck[0] deck[-1] # choice(deck) choice(deck) choice(deck) # deck[:3] deck[12::13] # pick the aces by starting on 12 and skipping 13 cards at a time # for card in deck: print(card) for card in reversed(deck): print(card) # Card('Q', 'hearts') in deck Card('7', 'beasts') in deck # suit_values = dict(spades=3, hearts=2, diamonds=1, clubs=0) def spades_high(card): rank_value = FrenchDeck.ranks.index(card.rank) return rank_value * len(suit_values) + suit_values[card.suit] for card in sorted(deck, key=spades_high): print(card) # Example 1.2 - A Simple 2d vector class class Vector: def __init__(self, x=0, y=0): self.x = x self.y = y # string representation of the object # %r returns 1 not '1' since they are needed as integers def __repr__(self): return 'Vector (%r, %r)' % (self.x, self.y) def __abs__(self): return hypot(self.x, self.y) def __bool__(self): # TODO: How does abs(self) return 0.0 (I've checked that it does) return bool(abs(self)) def __add__(self, other): x = self.x + other.y y = self.y + other.y return Vector(x, y) def __mul__(self, scalar): return Vector(self.x * scalar, self.y * scalar)
UTF-8
Python
false
false
1,892
py
59
01-a-pythonic-deck.py
53
0.609937
0.593552
0
94
19.12766
86
detian08/mcl
3,547,642,993,752
ecf7afa8cc47355febbf1968a8783586d0099af2
99e57f00fcaf4469c1c1b79f2d17176aaef9a790
/loan/wizard/__init__.py
73594a5199bed8d87c64e42931c7ccf1dc9fa32c
[]
no_license
https://github.com/detian08/mcl
d007ffd0e869f3bd9a8c74bc8473119901f0de2a
32d61148326c931aca0107c3894061773f287e33
refs/heads/master
2022-03-23T19:36:29.608645
2019-12-11T10:15:50
2019-12-11T10:15:50
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from . import hr_loan_wizard
UTF-8
Python
false
false
29
py
287
__init__.py
188
0.758621
0.758621
0
1
28
28
akbarlintang/perumahan
16,449,724,778,184
e981ad2971bf95bb5ad26fb4b7a1eb93a1732c2b
73f6ba42a793d18ad5b4c44cfdc278e51aa1b9b0
/perum/views.py
e8828e9cea66ce406f19303c074bfd490595440b
[]
no_license
https://github.com/akbarlintang/perumahan
e14eb922a86c76581d8faae5700ff21e83ba13ee
66c908a382bc32e9b9abc69b3a6f22eab12d8d2c
refs/heads/main
2022-12-30T08:11:23.856824
2020-10-22T15:33:30
2020-10-22T15:33:30
306,377,878
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.shortcuts import render, redirect from django.http import HttpResponse from django.db.models import Sum from django.forms import inlineformset_factory from django.contrib.auth.forms import UserCreationForm from django.contrib.auth import authenticate, login, logout from django.contrib.auth.decorators import login_required from django.contrib.auth.models import Group from django.contrib import messages from .models import * from .forms import * from .filters import * from .decorators import * import datetime # Create your views here. @unauthenticated_user def loginPage(request): if request.method == 'POST': username = request.POST.get('username') password = request.POST.get('password') user = authenticate(request, username=username, password=password) if user is not None: login(request, user) return redirect('home') else: messages.info(request, 'Username atau Password salah!') context = {} return render(request, 'perum/login.html', context) def logoutUser(request): logout(request) return redirect('login') @unauthenticated_user def registerPage(request): form = CreateUserForm() if request.method == 'POST': form = CreateUserForm(request.POST) if form.is_valid(): user = form.save() username = form.cleaned_data.get('username') group = Group.objects.get(name='customer') user.groups.add(group) Pelanggan.objects.create( user=user, ) messages.success(request, 'Akun berhasil dibuat untuk ' + username) return redirect('login') context = {'form':form} return render(request, 'perum/register.html', context) @login_required(login_url='login') @admin_only def home(request): pelanggans = Pelanggan.objects.all() administrasis = Administrasi.objects.all() today = datetime.date.today() bulan = Administrasi.objects.filter(tanggal__year=today.year, tanggal__month=today.month).aggregate(Sum('biaya_angsur'))['biaya_angsur__sum'] tahun = Administrasi.objects.filter(tanggal__year=today.year).aggregate(Sum('biaya_angsur'))['biaya_angsur__sum'] context = {'pelanggans':pelanggans, 'bulan':bulan, 'tahun':tahun, 'administrasis':administrasis} return render(request, 'perum/dashboard.html', context) @login_required(login_url='login') def unit(request): units = Unit.objects.all().order_by('no_unit') unitFilter = UnitFilter(request.GET, queryset=units) units = unitFilter.qs context = {'units':units, 'unitFilter':unitFilter} return render(request, 'perum/unit.html', context) @login_required(login_url='login') @allowed_users(allowed_roles=['admin']) def pelanggan(request): pelanggans = Pelanggan.objects.all() pelangganFilter = PelangganFilter(request.GET, queryset=pelanggans) pelanggans = pelangganFilter.qs context = {'pelanggans':pelanggans, 'pelangganFilter':pelangganFilter} return render(request, 'perum/pelanggan.html', context) @login_required(login_url='login') @allowed_users(allowed_roles=['admin']) def administrasi(request): administrasis = Administrasi.objects.all() administrasiFilter = AdministrasiFilter(request.GET, queryset=administrasis) administrasis = administrasiFilter.qs context = {'administrasis':administrasis, 'administrasiFilter':administrasiFilter} return render(request, 'perum/administrasi.html', context) def pemesanan(request): pemesanan = Booking.objects.all().order_by('tanggal') context = {'pemesanan':pemesanan} return render(request, 'perum/pemesanan.html', context) def akun(request, pk): akun = Pelanggan.objects.get(id=pk) pelanggans = Pelanggan.objects.filter(id=pk) adm = Administrasi.objects.filter(nama_id=pk) context = {'pelanggans':pelanggans, 'akun':akun, 'adm':adm} return render(request, 'perum/akun.html', context) @login_required(login_url='login') @allowed_users(allowed_roles=['customer']) def profil(request): nama = request.user.profile.nama no_telp = request.user.profile.no_telp email = request.user.profile.email no_unit = request.user.profile.no_unit context = {'nama':nama, 'no_telp':no_telp, 'email':email, 'no_unit':no_unit} return render(request, 'perum/profil.html', context) @login_required(login_url='login') def angsuran(request, pk): adm = Administrasi.objects.filter(nama_id=pk) context = {'adm':adm} return render(request, 'perum/angsuran.html', context) def infoUnit(request, pk): unit = Unit.objects.filter(id=pk) context = {'unit':unit} return render(request, 'perum/info_unit.html', context) def createBooking(request, pk): unit = Booking.objects.filter(id=pk) form = BookingForm() if request.method == 'POST': form = BookingForm(request.POST) if form.is_valid(): form.save() return redirect('/unit') context = {'form':form, 'unit':unit} return render(request, 'perum/form_booking.html', context) def createPelanggan(request): form = PelangganForm() if request.method == 'POST': form = PelangganForm(request.POST) if form.is_valid(): form.save() return redirect('home') context = {'form':form} return render(request, 'perum/form_pelanggan.html', context) def ubahPelanggan(request, pk): pelanggan = Pelanggan.objects.get(id=pk) form = PelangganForm(instance=pelanggan) if request.method == 'POST': form = PelangganForm(request.POST, instance=pelanggan) if form.is_valid(): form.save() return redirect('home') context = {'form':form} return render(request, 'perum/form_pelanggan.html', context) def hapusPelanggan(request, pk): pelanggan = Pelanggan.objects.get(id=pk) if request.method == "POST": pelanggan.delete() return redirect('pelanggan') context = {'pelanggan':pelanggan} return render(request, 'perum/hapus_pelanggan.html', context) def createUnit(request): form = UnitForm() if request.method == 'POST': form = UnitForm(request.POST) if form.is_valid(): form.save() return redirect('/unit') context = {'form':form} return render(request, 'perum/form_unit.html', context) def ubahUnit(request, pk): unit = Unit.objects.get(id=pk) form = UnitForm(instance=unit) if request.method == 'POST': form = UnitForm(request.POST, instance=unit) if form.is_valid(): form.save() return redirect('/unit') context = {'form':form} return render(request, 'perum/form_unit.html', context) def hapusUnit(request, pk): unit = Unit.objects.get(id=pk) if request.method == "POST": unit.delete() return redirect('/unit') context = {'unit':unit} return render(request, 'perum/hapus_unit.html', context) def hapusPemesanan(request, pk): pemesanan = Booking.objects.get(id=pk) if request.method == "POST": pemesanan.delete() return redirect('/pemesanan') context = {'pemesanan':pemesanan} return render(request, 'perum/hapus_pemesanan.html', context) def createAdministrasi(request): form = AdministrasiForm() if request.method == 'POST': form = AdministrasiForm(request.POST) if form.is_valid(): form.save() return redirect('/administrasi') context = {'form':form} return render(request, 'perum/form_administrasi.html', context) def pembayaran(request, pk): administrasis = Administrasi.objects.filter(id=pk) context = {'administrasis':administrasis} return render(request, 'perum/pembayaran.html', context) def pemasukan(request): today = datetime.datetime.today() bulan = Administrasi.objects.filter(tanggal__year=today.year).filter(tanggal__month=today.month).aggregate(Sum('biaya_angsur')) tahun = Administrasi.objects.filter(tanggal__year=today.year).aggregate(Sum('biaya_angsur')) hari = Administrasi.objects.filter(tanggal__year=today, tanggal__month=today, tanggal__date=today).aggregate(Sum('biaya_angsur'))
UTF-8
Python
false
false
7,587
py
52
views.py
36
0.734282
0.734282
0
261
28.068966
142
andrebola/main-recsys-cocoplaya
9,191,230,041,151
7bab7a800ddfcf61447566dcc560e4cf4e55df45
245540330cbfe32b2431dd655632c6b0c6200f69
/model_main.py
0f76e4280c19f3e2488e9e0508b02a748bfc80e7
[ "Apache-2.0" ]
permissive
https://github.com/andrebola/main-recsys-cocoplaya
eec1f05186d7acaaebb72a40030126b95ccdb1ce
02df2bebac5ea75006ddbc86404f3ff886af396e
refs/heads/master
2022-12-14T23:42:16.614712
2018-06-30T13:32:09
2018-06-30T13:32:09
139,248,485
3
0
Apache-2.0
false
2021-06-01T22:20:20
2018-06-30T12:40:58
2019-04-18T06:01:25
2021-06-01T22:20:18
8
3
0
1
Python
false
false
import pickle import os import re import json import numpy as np import datetime from sklearn.feature_extraction.text import CountVectorizer, HashingVectorizer from sklearn.feature_extraction import DictVectorizer from sklearn.preprocessing import MinMaxScaler, QuantileTransformer, LabelBinarizer from sklearn.decomposition import TruncatedSVD from scipy import sparse from lightfm import LightFM from collections import defaultdict SEED = 10 def normalize_name(name): name = name.lower() name = re.sub(r"[.,\/#!$%\^\*;:{}=\_`~()@]", ' ', name) name = re.sub(r'\s+', ' ', name).strip() return name def process_mpd(playlists_path, target_playlists, output_file, prev_songs_window): max_prev_song = 0 previous_tracks = defaultdict(lambda: defaultdict(int)) playlists_tracks = [] playlists = [] playlists_extra = {'name': []} filenames = os.listdir(playlists_path) for filename in sorted(filenames): if filename.startswith("mpd.slice.") and filename.endswith(".json"): fullpath = os.sep.join((playlists_path, filename)) f = open(fullpath) js = f.read() f.close() mpd_slice = json.loads(js) for playlist in mpd_slice['playlists']: nname = normalize_name(playlist['name']) playlists_extra['name'].append(nname) tracks = defaultdict(int) sorted_tracks = sorted(playlist['tracks'], key=lambda k: k['pos']) prev_track = [] for track in sorted_tracks: tracks[track['track_uri']] += 1 curr_prev_tracks = len(prev_track) for i, song_in_window in enumerate(prev_track): previous_tracks[song_in_window][track['track_uri']] += (i+1)/curr_prev_tracks previous_tracks[track['track_uri']][song_in_window] += (i+1)/curr_prev_tracks #previous_tracks[song_in_window][track['track_uri']] += 1 #previous_tracks[track['track_uri']][song_in_window] += 1 max_prev_song = max(max_prev_song, previous_tracks[track['track_uri']][song_in_window]) max_prev_song = max(max_prev_song, previous_tracks[song_in_window][track['track_uri']]) if len(prev_track) == prev_songs_window: prev_track.pop(0) prev_track.append(track['track_uri']) playlists_tracks.append(tracks) playlists.append(str(playlist['pid'])) top_pop = [] for i in previous_tracks.keys(): top_pop.append((i, np.sum(list(previous_tracks[i].values())))) top_pop = sorted(top_pop, key=lambda x:x[1], reverse=True)[:10000] top_pop = [t[0] for t in top_pop] # Add playlists on testing set test_playlists = [] test_playlists_tracks = [] target = json.load(open(target_playlists)) train_playlists_count = len(playlists) test_playlists_recommended_sum = [] for playlist in target["playlists"]: nname = "" if 'name' in playlist: nname = normalize_name(playlist['name']) playlists_extra['name'].append(nname) playlists.append(str(playlist['pid'])) test_playlists.append(str(playlist['pid'])) if len(playlist['tracks']) == 0: test_playlists_recommended_sum.append(top_pop) test_playlists_tracks.append({}) continue tracks = defaultdict(int) for track in playlist['tracks']: tracks[track['track_uri']] += 1 #playlists_tracks.append(tracks) test_playlists_tracks.append(tracks) recommended_pop = defaultdict(list) for t in tracks.keys(): for pt in previous_tracks[t].keys(): if pt not in tracks: recommended_pop[pt].append(previous_tracks[t][pt] /max_prev_song) recommended_pop_sum = [(t, np.sum(recommended_pop[t])) for t in recommended_pop.keys()] recommended_pop_sum = sorted(recommended_pop_sum, key=lambda x:x[1], reverse=True) recommended_pop_sum = [t[0] for t in recommended_pop_sum] test_playlists_recommended_sum.append(recommended_pop_sum) print ("Data loaded. Creating features matrix") dv = DictVectorizer() interaction_matrix = dv.fit_transform(playlists_tracks+[{}]*10000) lb = LabelBinarizer(sparse_output=True) pfeat_train = lb.fit_transform(playlists_extra['name'][:1000000]+[""]*10000) pfeat_test = lb.transform(playlists_extra['name']) print ("pfeat_train", pfeat_train.shape) print ("pfeat_test", pfeat_test.shape) playlist_features = pfeat_train # Need to hstack playlist_features eye = sparse.eye(playlist_features.shape[0], playlist_features.shape[0]).tocsr() playlist_features_concat = sparse.hstack((eye, playlist_features)) print ("Features matrix created. Training model") model = LightFM(loss='warp', no_components=200, max_sampled=30, item_alpha=1e-06, user_alpha=1e-06, random_state=SEED) model = model.fit(interaction_matrix, user_features=playlist_features_concat, epochs=150, num_threads=32) # freeze the gradient and optimize held-out users model.item_embedding_gradients = np.finfo(np.float32).max * np.ones_like(model.item_embedding_gradients) model.item_bias_gradients = np.finfo(np.float32).max * np.ones_like(model.item_bias_gradients) model.item_alpha = 0.0 model.user_alpha = 0.0 model.user_embedding_gradients[:1000000,:] = np.finfo(np.float32).max * np.ones_like(model.user_embedding_gradients[:1000000,:]) model.user_bias_gradients[:1000000] = np.finfo(np.float32).max * np.ones_like(model.user_bias_gradients[:1000000]) # Use the trained model to get a representation of the playlists on challenge set interaction_matrix = dv.transform(playlists_tracks+test_playlists_tracks) playlist_features = pfeat_test playlist_features_concat = sparse.hstack((eye, playlist_features)) model.user_embeddings[-10000:] = ((model.random_state.rand(10000, model.no_components) - 0.5) / model.no_components).astype(np.float32) model = model.fit_partial(interaction_matrix, user_features=playlist_features_concat, epochs=150, num_threads=32) print ("Model Trained") user_biases, user_embeddings = model.get_user_representations(playlist_features_concat) item_biases, item_embeddings = model.get_item_representations() fuse_perc = 0.7 with open(output_file, 'w') as fout: print('team_info,cocoplaya,main,andres.ferraro@upf.edu', file=fout) for i, playlist in enumerate(test_playlists): playlist_pos = train_playlists_count+i y_pred = user_embeddings[playlist_pos].dot(item_embeddings.T) + item_biases topn = np.argsort(-y_pred)[:len(test_playlists_tracks[i])+4000] rets = [(dv.feature_names_[t], float(y_pred[t])) for t in topn] songids = [s for s, _ in rets if s not in test_playlists_tracks[i]] songids_dict = {s:1 for s in songids} max_score = max(len(songids), len(test_playlists_recommended_sum[i])) pop_sum = {s:(max_score - p) for p,s in enumerate(test_playlists_recommended_sum[i])} fuse_sum = [] for p, s in enumerate(songids): pop_val_sum = 0 if s in pop_sum: pop_val_sum = pop_sum[s] fuse_sum.append((s,((max_score - p)*fuse_perc + pop_val_sum*(1-fuse_perc) ) / 2)) for s in pop_sum.keys(): if s not in songids_dict: fuse_sum.append((s,(pop_sum[s]*(1-fuse_perc) ) / 2)) fuse_sum = sorted(fuse_sum, key=lambda x:x[1], reverse=True) print(' , '.join([playlist] + [x[0] for x in fuse_sum[:500]]), file=fout) if __name__ == '__main__': playlists_file = './mpd/data/' target_playlists = 'eval_data/challenge_set.json' output_file = 'output/output_main_final_sum_window_10.csv' process_mpd(playlists_file, target_playlists, output_file, 10)
UTF-8
Python
false
false
8,148
py
2
model_main.py
1
0.624325
0.607757
0
173
46.098266
139
mwouts/jupytext
6,150,393,177,714
c3b973b70edb356c3f74bcbd0908401f4f680729
6950d17118b97259e181cfc1e6ba3becf6fab753
/tests/notebooks/mirror/ipynb_to_sphinx/sample_rise_notebook_66.py
7de7c1af489b6441c5ac9ea88e3bd9d5f01be008
[ "MIT" ]
permissive
https://github.com/mwouts/jupytext
8f38d974320e17d9bfdc02a91707b5d7cba999cc
28cc7de53d403838caf24c3470df95e94a82d132
refs/heads/main
2023-09-04T04:20:37.143750
2023-08-26T20:39:32
2023-08-26T21:01:59
137,444,487
6,292
451
MIT
false
2023-09-12T14:41:06
2018-06-15T05:25:36
2023-09-12T09:31:00
2023-09-12T14:41:05
24,266
6,135
381
115
Python
false
false
# --- # jupyter: # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- """ A markdown cell """ 1+1 ############################################################################### # Markdown cell two
UTF-8
Python
false
false
242
py
433
sample_rise_notebook_66.py
162
0.371901
0.355372
0
16
14.125
79
niryRemyNimbol/masterarbeit
13,821,204,767,087
759f2070fbcb3e0d26074a24bde9e9152a8e9e33
94bc505d5c9117ab6cae344274dc3391f32856d7
/mrf_lstm_run.py
ebe475508777077742d38835c0079c54a685e19a
[]
no_license
https://github.com/niryRemyNimbol/masterarbeit
3bd6cffe2cf7bc47651c2e23dd2e8819cd541f09
31fe9821ae7957583f723773e09831716c59b254
refs/heads/master
2020-04-05T04:39:47.855887
2019-05-21T12:45:05
2019-05-21T12:45:05
156,560,515
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import tensorflow as tf import numpy as np import dic import rnn_functions import display_functions import matplotlib.pyplot as plt from sklearn.metrics import r2_score as r2 data_path = '../recon_q_examples/data/Exam52004/Series5/recon_data' mask_path = '../recon_q_examples/data/Exam52004/Series5/mask.dat' map_path = '../recon_q_examples/data/Exam52004/Series5/dm_qmaps.dat' dl_path = '../recon_q_examples/data/Exam52004/Series5/nn_qmaps.dat' size = 200 Nreps = 1000 series = dic.read_mrf_data(data_path, Nreps, size) mask = dic.load_relaxation_times_map(mask_path, size, method=2) dm_map = dic.load_relaxation_times_map(map_path, size, method=0) dl_map = dic.load_relaxation_times_map(dl_path, size, method=1) num_in = 100 num_fc = 64 timesteps = 10 num_hidden = 8 num_out = 2 times_max = np.array([4., .6]) #times_max = np.array([4., 1.]) X = tf.placeholder("float", [None, timesteps, num_in]) net = rnn_functions.LSTM(X, timesteps, num_hidden, num_out, activation=tf.sigmoid, fc=True, tr=True) #out = times_max * net out = [times_max * net_ for net_ in net] saver = tf.train.Saver() epoch = 1940 with tf.Session() as sess: rnn_functions.load_lstm(saver, sess, epoch, '_sigmoid_mape_tr') times = sess.run(out, feed_dict={X: series[:timesteps*num_in, :].T.reshape((series.shape[1], timesteps, num_in))}) img = times[9].reshape((size, size, 2), order='C') #img = times.reshape((size, size, 2), order='C') img[:, :, 0] *= mask * 1e3 img[:, :, 1] *= mask * 1e3 img_dl = dl_map * 1e3 img_dl[:, :, 0] = mask * img_dl[:, :, 0].T img_dl[:, :, 1] = mask * img_dl[:, :, 1].T img_dm = dm_map * 1e3 img_dm[:, :, 0] = img_dm[:, :, 0].T img_dm[:, :, 1] = img_dm[:, :, 1].T true_t1 = np.array([604, 596,1448, 1262, 444, 754, 903, 1276, 1034, 745, 1160, 966]) true_t2 = np.array([95, 136, 390, 184, 154, 116, 137, 204, 167, 157, 214, 224]) corners = display_functions.detect_phantom_tubes(img, mask, 28, 2) img_gt, _, _ = display_functions.compare_to_gt(img, mask, corners, 28, true_t1, true_t2) fig_t1, ax_t1, fig_t2, ax_t2 = display_functions.plot_results(img, phantom=True, gt=img_gt) fig_t1_dm, ax_t1_dm, fig_t2_dm, ax_t2_dm = display_functions.plot_comparison_method(img_dm, img, phantom=True, gt=img_gt) fig_t1_dl, ax_t1_dl, fig_t2_dl, ax_t2_dl = display_functions.plot_comparison_method(img_dl, img, phantom=True, gt=img_gt, method=1) #display_functions.draw_bounding_boxes(ax_t1, corners, 28) #display_functions.draw_bounding_boxes(ax_t2, corners, 28) plt.rc('xtick', labelsize=16) plt.rc('ytick', labelsize=16) imgs = [] for k in range(len(times)): img = times[k].reshape((size, size, 2), order='C') img[:, :, 0] *= mask * 1e3 img[:, :, 1] *= mask * 1e3 imgs.append(img) #fig_tr, ax_tr = plt.subplots(10, 6, figsize=(18, 30)) #for k in range(len(imgs)): # t1 = ax_tr[k][0].imshow(imgs[k][:, :, 0], cmap='hot', vmax=4000, vmin=0) # t1_err = ax_tr[k][1].imshow(np.abs(imgs[k][:, :, 0] - img_dm[:, :, 0])/(img_dm[:, :, 0] + 1e-6) * 1e2, cmap='Reds', vmax=100, vmin=0) # ax_tr[k][2].scatter(img_dm[:, :, 0], imgs[k][:, :, 0], c='b', marker='.', alpha=0.1) # t2 = ax_tr[k][3].imshow(imgs[k][:, :, 1], cmap='copper', vmax=300, vmin=0) # t2_err = ax_tr[k][4].imshow(np.abs(imgs[k][:, :, 1] - img_dm[:, :, 1])/(img_dm[:, :, 1] + 1e-6) * 1e2, cmap='Reds', vmax=100, vmin=0) # ax_tr[k][5].scatter(img_dm[:, :, 1], imgs[k][:, :, 1], c='b', marker='.', alpha=0.1) # r2_t1 = r2(img_dm[:, :, 0], imgs[k][:, :, 0]) # r2_t2 = r2(img_dm[:, :, 1], imgs[k][:, :, 1]) # ax_tr[k][0].text(-35, 100, r'\Huge {:d}'.format((k+1))) # ax_tr[k][2].text(1, 3550, r'\Large R2 = {:5f}'.format(r2_t1)) # ax_tr[k][2].set_xlabel(r'\Large DM (ms)') # ax_tr[k][2].set_ylabel(r'\Large LSTM (ms)') # ax_tr[k][2].set_xbound(lower=0, upper=4000) # ax_tr[k][2].set_ybound(lower=0, upper=4000) # ax_tr[k][2].plot([x for x in range(4000)], [x for x in range(4000)], 'g--') # asp = np.diff(ax_tr[k][2].get_xlim())[0] / np.diff(ax_tr[k][2].get_ylim())[0] # ax_tr[k][2].set_aspect(asp) # ax_tr[k][2].ticklabel_format(style='sci', axis='both', scilimits=(3, 3)) # ax_tr[k][0].set_axis_off() # ax_tr[k][1].set_axis_off() # ax_tr[k][5].text(1, 550, r'\Large R2 = {:5f}'.format(r2_t2)) # ax_tr[k][5].set_xlabel(r'\Large DM (ms)') # ax_tr[k][5].set_ylabel(r'\Large LSTM (ms)') # ax_tr[k][5].set_xbound(lower=0, upper=600) # ax_tr[k][5].set_ybound(lower=0, upper=600) # ax_tr[k][5].plot([x for x in range(600)], [x for x in range(600)], 'g--') # asp = np.diff(ax_tr[k][5].get_xlim())[0] / np.diff(ax_tr[k][5].get_ylim())[0] # ax_tr[k][5].set_aspect(asp) # ax_tr[k][5].ticklabel_format(style='sci', axis='both', scilimits=(2, 2)) # ax_tr[k][5].set_xticks(ax_tr[k][5].get_yticks()[1:-1]) # ax_tr[k][3].set_axis_off() # ax_tr[k][4].set_axis_off() #fig_tr.colorbar(t1, fraction=0.05, pad=-0.05, ax=ax_tr[9][0], orientation='horizontal') #fig_tr.colorbar(t1_err, fraction=0.05, pad=-0.05, ax=ax_tr[9][1], orientation='horizontal') #fig_tr.colorbar(t2, fraction=0.05, pad=-0.05, ax=ax_tr[9][3], orientation='horizontal') #fig_tr.colorbar(t2_err, fraction=0.05, pad=-0.05, ax=ax_tr[9][4], orientation='horizontal') #ax_tr[0][0].set_title(r'\Huge \textbf{T1 (ms)}') #ax_tr[0][3].set_title(r'\Huge \textbf{T2 (ms)}') #ax_tr[0][1].set_title(r'\Huge \textbf{T1 Error (\%)') #ax_tr[0][4].set_title(r'\Huge \textbf{T2 Error (\%)') #fig_comp, ax_comp = plt.subplots(2, 4, figsize=(20, 10)) #t1 = ax_comp[0][0].imshow(imgs[9][:, :, 0], cmap='hot', vmax=4000, vmin=0) #t1_err = ax_comp[0][2].imshow(np.abs(imgs[9][:, :, 0] - img_dm[:, :, 0])/(img_dm[:, :, 0] + 1e-6) * 1e2, cmap='Reds', vmax=100, vmin=0) #t1_dm = ax_comp[0][1].imshow(img_dm[:, :, 0], cmap='hot', vmax=4000, vmin=0) #ax_comp[0][3].scatter(img_dm[:, :, 0], imgs[9][:, :, 0], c='b', marker='.', alpha=0.1) #t2 = ax_comp[1][0].imshow(imgs[9][:, :, 1], cmap='copper', vmax=300, vmin=0) #t2_err = ax_comp[1][2].imshow(np.abs(imgs[9][:, :, 1] - img_dm[:, :, 1])/(img_dm[:, :, 1] + 1e-6) * 1e2, cmap='Reds', vmax=100, vmin=0) #t2_dm = ax_comp[1][1].imshow(img_dm[:, :, 1], cmap='copper', vmax=300, vmin=0) #ax_comp[1][3].scatter(img_dm[:, :, 1], imgs[9][:, :, 1], c='b', marker='.', alpha=0.1) #r2_t1 = r2(img_dm[:, :, 0], imgs[9][:, :, 0]) #r2_t2 = r2(img_dm[:, :, 1], imgs[9][:, :, 1]) #ax_comp[0][3].text(1, 3550, r'\huge R2 = {:5f}'.format(r2_t1)) #ax_comp[0][3].set_xlabel(r'\huge DM (ms)') #ax_comp[0][3].set_ylabel(r'\huge LSTM (ms)') #ax_comp[0][3].set_xbound(lower=0, upper=4000) #ax_comp[0][3].set_ybound(lower=0, upper=4000) #ax_comp[0][3].plot([x for x in range(4000)], [x for x in range(4000)], 'g--') #ax_comp[0][0].set_axis_off() #ax_comp[0][1].set_axis_off() #ax_comp[0][2].set_axis_off() #ax_comp[1][3].text(1, 550, r'\huge R2 = {:5f}'.format(r2_t2)) #ax_comp[1][3].set_xlabel(r'\huge Dictionary matching (ms)') #ax_comp[1][3].set_ylabel(r'\huge LSTM (ms)') #ax_comp[1][3].set_xbound(lower=0, upper=600) #ax_comp[1][3].set_ybound(lower=0, upper=600) #ax_comp[1][3].plot([x for x in range(600)], [x for x in range(600)], 'g--') #ax_comp[1][0].set_axis_off() #ax_comp[1][1].set_axis_off() #ax_comp[1][2].set_axis_off() #fig_comp.colorbar(t1, fraction=0.05, pad=-0.05, ax=ax_comp[0][0], orientation='horizontal') #fig_comp.colorbar(t1_dm, fraction=0.05, pad=-0.05, ax=ax_comp[0][1], orientation='horizontal') #fig_comp.colorbar(t1_err, fraction=0.05, pad=-0.05, ax=ax_comp[0][2], orientation='horizontal') #fig_comp.colorbar(t2, fraction=0.05, pad=-0.05, ax=ax_comp[1][0], orientation='horizontal') #fig_comp.colorbar(t2_dm, fraction=0.05, pad=-0.05, ax=ax_comp[1][1], orientation='horizontal') #fig_comp.colorbar(t2_err, fraction=0.05, pad=-0.05, ax=ax_comp[1][2], orientation='horizontal') #ax_comp[0][0].text(-80, 100, r'\Huge \textbf{T1 (ms)}') #ax_comp[1][0].text(-80, 100, r'\Huge \textbf{T2 (ms)}') #ax_comp[0][0].set_title(r'\Huge \textbf{LSTM}') #ax_comp[0][1].set_title(r'\Huge \textbf{DM}') #ax_comp[0][2].set_title(r'\Huge \textbf{Absolute Percentage Error')
UTF-8
Python
false
false
8,009
py
22
mrf_lstm_run.py
21
0.602697
0.520664
0
156
50.339744
138
Godys05/smartSlideshow
3,624,952,447,062
102b441762f07e2ca2a8d64db28192bd7b10c082
548f0a265ddff2199a6a3de98218209bf348c504
/Weather.py
62cf01ff4435be296b4f107063ceddc2020cb583
[]
no_license
https://github.com/Godys05/smartSlideshow
d611707ac5276ee4917ec3d5f37584f603d33a19
397220995a45f60f3cbae31653f943622b3ccb2f
refs/heads/master
2022-04-22T18:13:33.256990
2020-04-23T18:09:26
2020-04-23T18:09:26
258,274,945
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import math class Weather: def __init__(self, main='s'): self.main = main
UTF-8
Python
false
false
85
py
6
Weather.py
5
0.588235
0.588235
0
4
20.5
33
PGCodehub/Image_Classification_Project
13,804,024,913,357
d22ede76ed32e301286fa03ffdb7cf029b40ecf8
a41dd194efad4407fae4ffb646b84e4222cd487d
/predict.py
24ad1d3b01e3218f46950b614af4dc0b577a12af
[]
no_license
https://github.com/PGCodehub/Image_Classification_Project
f457c6eb7f88f953b9cf3f6409001abe3d0b5dd6
af1646588abda01f1a43f999ae5c9db3a31ccc2a
refs/heads/master
2020-04-25T12:05:41.235293
2019-02-26T19:04:58
2019-02-26T19:04:58
172,767,284
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#Created by pramod G #All imports from time import time,sleep import argparse import torch from torch import nn, optim import torch.nn.functional as F from torchvision import datasets, transforms, models import numpy as np import matplotlib.pyplot as plt from PIL import Image import json #for keeping workspace live during non activity from workspace_utils import active_session # Main program function defined below def main(): start_time = time() #taking the input in_arg = get_input_args() #print(in_arg.hidden_units, in_arg.dir) #Set which device to run on if in_arg.gpu: if torch.cuda.is_available(): device = torch.device("cuda:0") else: print("Sorry but there is no gpu available" ) print("Program is terminated") exit() else: device = torch.device("cpu") #Load the desired model loaded_model = loadCheckpoint(in_arg.checkpointpath,device) #print("Accuracy of newly loaded model :") #Acurracy(loaded_model,device) #read catagories names catnames = in_arg.category_names with open(catnames, 'r') as f: cat_to_name = json.load(f) #preprocess the data probs, classes = predict(in_arg.img, loaded_model, device , in_arg.top_k ) probs = probs.cpu() probs = probs.numpy() Topprob = probs.argmax() print("The most likely image class is {} and it's associated probability is {}".format(classes[Topprob],probs[0][Topprob])) print("The top {} classes along with associated probabilities are {}, {}".format(in_arg.top_k ,classes,probs)) TopKClasses = [cat_to_name[clas] for clas in classes] for i,clas in enumerate(TopKClasses): print(" The top {} class probably is {}".format(i+1,clas)) end_time = time() ttime = end_time - start_time hh = round(ttime/(3600)) mm = round((ttime%3600)/60) ss = round((ttime%3600)%60) tot_time = "{}:{}:{}".format(hh,mm,ss) print("\n** Total Elapsed Runtime:", tot_time) def get_input_args(): parser = argparse.ArgumentParser(description = " This program is for predicting when given a image by specifying path to Imagefile and a checkpoint to create model from ") parser.add_argument( 'img',type = str, default = 'flowers/test/100/image_07899.jpg', metavar='' , help = 'This is to specify Path to the imagefile need to be predicted (default if running from workspace- \'paind-project/flowers/test/100/image_07899.jpg\')') parser.add_argument( 'checkpointpath', type = str, default = 'CLcheckpoint.pth', metavar='' , help = 'This is to specify checkpoint from which tained model will be loaded (default-\'CLcheckpoint.pth\')') parser.add_argument( '----category_names',type = str, default = 'cat_to_name.json', metavar='' , help = 'This is to specify to load a JSON file that maps the class values to other category names (default-\'cat_to_name.json.pth\')') parser.add_argument( '--top_k', type = int, default = 5, metavar='' , help = 'This is to specify no of top probabilities you want to predict (default-\'5\')') #for flags like to be trained on gpu or not like that group = parser.add_mutually_exclusive_group() group.add_argument( '--gpu', action = 'store_true' , help = 'This is to set the flag if you want to use gpu or not(default if not specified-\'cpu\'') arg = parser.parse_args() return arg def preprocess(dir): #transforms for testing sets Pre_transforms = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])]) image = Image.open(dir) # Load the datasets with ImageFolder PreImage = Pre_transforms(image)[:3,:,:] return PreImage def predict(image_path, model , device ,topk): ''' Predict the class (or classes) of an image using a trained deep learning model. ''' # TODO: Implement the code to predict the class from an image file image = preprocess(image_path) #print(image.shape) image.unsqueeze_(0) #print(image.shape) image = image image = image.to(device) #model.type(torch.DoubleTensor) model.to(device) model.eval() with torch.no_grad(): output = model.forward(image) prob = torch.exp(output) probs , indices = torch.topk(prob , topk) indice = indices.cpu() indice = indice.numpy()[0] # Convert indices to classes idx_to_class = {val: key for key, val in model.class_to_idx.items()} #print(idx_to_class) classes = [idx_to_class[index] for index in indice] return probs , classes #function that loads a checkpoint and rebuilds the model def loadCheckpoint(filepath,device): if device == 'cuda:0': checkpoint = torch.load(filepath) else: checkpoint = torch.load(filepath, map_location=lambda storage, loc: storage) arch = checkpoint['model'] model = models.__dict__[arch](pretrained=True) if(arch == 'resnet50'): model.fc = checkpoint['classifier'] if(arch == 'densenet121'): model.classifier = checkpoint['classifier'] if(arch == 'vgg16'): model.classifier = checkpoint['classifier'] model.load_state_dict(checkpoint['state_Dict']) #optimizer = checkpoint['optimizer_state_dict'] epochs = checkpoint['epochs'] model.class_to_idx = checkpoint['class_to_idx'] for param in model.parameters(): param.requires_grad = False #model.to() return model print("The model is loaded from {} file..".format(filepath)) #Defining Classifier with network class style class Network(nn.Module): def __init__(self,input_size, hiddenlayers, output_size, drop_p = 0.5): super().__init__() self.hidden_layers = nn.ModuleList([nn.Linear(input_size, hiddenlayers[0])]) layersizes = zip(hiddenlayers[:-1],hiddenlayers[1:]) #print(layersizes) self.hidden_layers.extend([nn.Linear(h1,h2) for h1,h2 in layersizes]) self.output = nn.Linear(hiddenlayers[-1],output_size) self.dropout = nn.Dropout(p = drop_p) def forward(self , x): for lin in self.hidden_layers: x = F.relu(lin(x)) x = self.dropout(x) x = self.output(x) return F.log_softmax(x, dim= 1) if __name__ == "__main__": main()
UTF-8
Python
false
false
6,961
py
3
predict.py
2
0.601063
0.588278
0
216
31.226852
262
ByteLorde/RSEnterprise
13,958,643,741,172
044256da2e98d9101c671edc4e7b257061064509
f4fcceabcadc8dfb4d06cad2e8a5a6535253c0b5
/src/base/modules/Drawable/Label/Label.py
b2484e6d65d936cdc802b29239a121b3ca8e94ea
[]
no_license
https://github.com/ByteLorde/RSEnterprise
7fa56ce9a78ed6e6609a1045cc2c805ab277000d
7ceb1e46339dc6c8f0e212fcfc95edf25aac7fcf
refs/heads/master
2020-03-23T14:15:37.691099
2019-09-04T18:15:16
2019-09-04T18:15:16
141,665,879
0
1
null
false
2018-08-08T02:14:01
2018-07-20T05:05:32
2018-07-25T01:05:42
2018-08-08T02:14:01
1,679
0
1
0
Python
false
null
import cv2 from src.base.modules.Drawable.Color.Color import Color class Label: HERSHEY_SIMPLEX = 0 HERSHEY_PLAIN = 1 HERSHEY_DUPLEX = 2 HERSHEY_COMPLEX = 3 HERSHEY_TRIPLEX = 4 HERSHEY_COMPLEX_SMALL = 5 HERSHEY_SCRIPT_SIMPLEX = 6 HERSHEY_SCRIPT_COMPLEX = 7 FONT_ITALIC = 16 def __init__(self, text, color=Color.GREEN, style=HERSHEY_SIMPLEX, scale=1, thickness=1): self.text = text self.color = color self.style = style self.scale = scale self.thickness = thickness def getText(self): return self.text def setText(self, text): self.text = text def getTextSize(self): return cv2.getTextSize(self.text, self.style, self.scale, self.thickness) def drawComponent(self, image): cv2.putText(image, self.text, (x, y), self.style, self.scale, self.color, self.thickness) def getThickness(self): return self.thickness def setThickness(self, thickness): self.thickness = thickness def getScale(self): return self.scale def setScale(self, scale): self.scale = scale def getStyle(self): return self.style def setStyle(self, style): self.style = style def getColor(self): return self.color def setColor(self, color): self.color = color
UTF-8
Python
false
false
1,380
py
33
Label.py
32
0.621739
0.61087
0
59
22.389831
97
typemegan/Python
18,124,762,005,692
bfb6cdd76314a13dba63f9e91d7096ff7d8805fe
af4d2a0cefb304b5f38a4f0c170b799d7bb8f059
/CorePythonProgramming_2nd/ch02_start/print_test.py
839073f2c92b972766270b7df77ae28380b530b7
[]
no_license
https://github.com/typemegan/Python
e577842447c81dcb980198b33f844b4fab888517
9bfc48ddc3b050e629a9b84b41df57f35f990d2e
refs/heads/master
2020-12-13T18:25:13.379953
2019-06-07T04:01:24
2019-06-07T04:01:24
37,420,605
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#coding:utf-8 num = 10 decorate = '*'*num + 'ex%d' + '*'*num #-----------------ex8:逗号----------------- title = decorate % 8 print title print "Mary had a little lamb." print "Its fleece was white as %s." % 'snow' print "And everywhere that Mary went." print "."*10 end1 = 'C' end2 = 'h' end3 = 'e' end4 = 'e' end5 = 's' end6 = 'e' end7 = 'B' end8 = 'u' end9 = 'r' end10 = 'g' end11 = 'e' end12 = 'r' #不换行输出,print后跟逗号 #当要print内容过长时,可用逗号‘,’来换行输入 print end1 + end2 + end3 + end4 + end5 + end6, #末尾的逗号表示不换行,空格后继续输出下一行 print end7 + end8 + end9 + end10 + end11 + end12 print "hello", print "Python", print "!" print "" #------------------ex9:三引号--------------- title = decorate % 9 print title days = "Mon Tue Wed Thu Fri Sat Sun" months = "\nJan\nFeb\nMar\nApr\nMay\nJun\nJul\nAug" print "Here are the days:",days print "Here are the months:",months print "Here are the months:%r" % months #输出:'\nJan\nFeb\nMar\nApr\nMay\nJun\nJul\nAug' #%r只输出原始数据,不对转义符后内容进行转换 #多行输入并多行输出 #成对三双引号包含所有内容"""xxx""" print """ There's something on here. With the three double-quotes. We'll be able to type as much as we like. Even 4 lines if we want,or 5, or 6. """ #多行输入但输出一行 print( "test", "example", "is right?" ) #加‘\n’后仍是只输出一行 print( "hello\n", "Python\n", "how are you today\n" ) print "" #-----------------ex10 转义符--------------- title = decorate % 10 print title #转义单/双引号 print "single quote 'i'" #‘i’ print "double quote -"u"." #u没有打印出来 print "single quote \'i\'" #‘i’ print "double quote -\"u\"." #-"u". print "" print "I am 6'2\" tall." print 'I am 6\'2" tall.' print "" tabby_cat = "\tI'm tabbed in." persian_cat = "I'm split\na line." backslash_cat = "I'm \\ a \\ cat." #在三引号中可以不对引号转义 #三单引号或三双引号:效果一样 fat_cat = ''' I'll do a list: \t* Cat food \t* Fishies \t* Ca[nip\n\t* Grass \t* 'cake' \t* 'dessert:"chocolate"' \t* "drinks:'milk'" \t* "..." ''' print tabby_cat print persian_cat print backslash_cat print fat_cat quote_escape = "escape single:\'%s\'\rescape double:\"my little %s.\"\n" print '%%r-:%r' % (quote_escape % ("cat","cat")) print "%%s-:%s" % (quote_escape % ("dog",'dog')) #while True: # for i in ["/","-","|","\\","|"]: # print "%s\r" % i,
UTF-8
Python
false
false
2,511
py
274
print_test.py
263
0.591264
0.568276
0
122
16.819672
72
fossabot/Airflow-DAG
7,679,401,533,495
dbfc6c003c1468115b1a63beb9d9a4ba791f5b70
09eebd3cadc58f0765602d29f603db4528f2873e
/dags/bash_test_triggers.py
b49ffb5cc86d228aae535787c603cbac57da3517
[ "Apache-2.0" ]
permissive
https://github.com/fossabot/Airflow-DAG
ef52675b770870e36e579e8816a19626f00deac9
feb015251093afbb2d51325e56f7764a1ad8cdc9
refs/heads/master
2020-06-17T07:02:04.223922
2019-07-08T15:22:39
2019-07-08T15:22:39
195,838,983
0
0
Apache-2.0
true
2019-07-08T15:22:34
2019-07-08T15:22:34
2019-07-06T21:17:41
2019-07-06T21:17:40
45
0
0
0
null
false
false
from airflow import DAG from airflow.operators.bash_operator import BashOperator from datetime import datetime, timedelta # Define the DAG... # Create the default arguments from airflow.operators.dagrun_operator import TriggerDagRunOperator default_args = { 'owner': 'hashmap-airflow', 'depends_on_past': False, 'start_date': datetime(2019, 7, 3), 'retries': 0, 'retry_delay': timedelta(minutes=1), } # create the DAG instance dag_layer_1 = DAG(dag_id='hw_bash_layer_1', default_args=default_args, schedule_interval=timedelta(1)) dag_layer_2 = DAG(dag_id='hw_bash_layer_2', default_args=default_args, schedule_interval=None) dag_layer_3 = DAG(dag_id='hw_bash_layer_3', default_args=default_args, schedule_interval=None) # Set start data # These are passed in as args. Seems that they aren't sent that way is a bug. dag_layer_1.start_date = default_args['start_date'] dag_layer_2.start_date = default_args['start_date'] dag_layer_3.start_date = default_args['start_date'] # This path is used in the code below. This should identify where the code is # being executed from. path = '/Users/johnaven/Sandbox/bash_dag_example' # STDOUT 'Hello World' with redirect to out.txt create_file= BashOperator( task_id='save-bash', bash_command='echo "Hello John" > {path}/out_tr.txt'.format(path=path) ) # print the contents of out.txt to STDOUT print_file=BashOperator( task_id='print-file', bash_command='cat {path}/out_tr.txt'.format(path=path) ) # clone/copy the data into another file copy_file=BashOperator( task_id='copy-file', bash_command='cp {path}/out_tr.txt {path}/out_tr_copy.txt'.format(path=path) ) # delete the files that were created delete_files = BashOperator( task_id='delete-files', bash_command='rm -f {path}/out_tr.txt && rm -f {path}/out_tr_copy.txt'.format(path=path) ) # Create Triggers trigger_layer_2 = TriggerDagRunOperator( task_id='trigger-layer2', trigger_dag_id='hw_bash_layer_2' ) trigger_layer_3 = TriggerDagRunOperator( task_id='trigger-layer-3', trigger_dag_id='hw_bash_layer_3' ) # Assign the operators to a DAG create_file.dag = dag_layer_1 trigger_layer_2.dag = dag_layer_1 print_file.dag = dag_layer_2 copy_file.dag = dag_layer_2 trigger_layer_3.dag = dag_layer_2 delete_files.dag = dag_layer_3 # Set any upstream requirements - e.g. especially for the triggers trigger_layer_2.set_upstream(task_or_task_list=[create_file]) trigger_layer_3.set_upstream(task_or_task_list=[print_file, copy_file])
UTF-8
Python
false
false
2,667
py
5
bash_test_triggers.py
2
0.67754
0.664792
0
90
28.633333
92
DaiJitao/web_spammer_detection
15,693,810,537,107
2a9d6814c583645399bdfb8a9f75b5443eb5a202
a04c62fe53387f41e893c86d3603f65ff1a70ae0
/server/data_annotation/semantic_similarity.py
bf6650eda6d2ef46c5bf211ce9ba7427dc9d9551
[]
no_license
https://github.com/DaiJitao/web_spammer_detection
233f2b228cff6a1c71745179ee313f9daaf287cb
5d6c72dbdabdbb97ae0bf05468838a435dc4b3a5
refs/heads/master
2020-05-25T23:29:21.309615
2019-07-22T01:01:07
2019-07-22T01:01:07
188,034,797
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from conf.config import stop_words_file, fanChengCheng_db, redis_host, redis_port, incsv_fanChengCheng, zhaiTianLin_db, \ incsv_haiTianLin, jueDiQiuSheng_db, incsv_jueDiQiuSheng, zhangDanFeng_db, incsv_zhangDanFeng import jieba_fast as jieba from tools.utils import list_all_users_text, RedisClient, list_all_users, Indicators import redis import pickle ''' 链接redis ''' client = redis.Redis(host=redis_host, port=redis_port, db=fanChengCheng_db, decode_responses=True) ''' 数据标注 ''' class SemanticSimilarity(object): def __init__(self): pass def cut(self, text): ''' 分词 :param text: :return: ''' try: d = [line.rstrip() for line in open(stop_words_file, mode='r', encoding='utf-8')] # 停用词 stop_words = {}.fromkeys(d) cut_words = jieba.cut(text) except Exception as e: print(e) cut_words_clean = [] for seg in cut_words: if seg not in stop_words: cut_words_clean.append(seg) # 去除停用词 return cut_words_clean def common_words(self, cutwds_lst1, cutwds_lst2): ''' 找出共现词 :param cutwds_lst1: :param cutwds_lst2: :return: [] ''' cmn_words = [] tmp = {}.fromkeys(cutwds_lst2) for words in cutwds_lst1: if words in tmp: cmn_words.append(words) return cmn_words def short_words_num(self, lst1, lst2): return min(len(lst1), len(lst2)) def ratio(self, texts, thred=0.8): ''' 计算语义重复率 :param texts: [ doc, doc ] :return: ''' cut_texts = [] # 对所有文本进行分词 for text in texts: seg = self.cut(text) cut_texts.append(seg) ratios = [] # 该用户的比率 size = len(cut_texts) for i in range(size): for j in range(i + 1, size): common_words_ = self.common_words(cut_texts[i], cut_texts[j]) n = self.short_words_num(cut_texts[i], cut_texts[j]) if n != 0: ratio = len(common_words_) / n else: ratio = 0.0 if ratio > thred: ratio = float("%.3f" % ratio) ratios.append(ratio) return ratios class EventSemanticSim(): ''' 统计每个事件的语义重复率 ''' def __init__(self, user_file, user_db): self.user_file = user_file self.user_client = RedisClient(host=redis_host, port=redis_port, db=user_db) def save_redis(self): ss = SemanticSimilarity() # 初始化 all_users = list_all_users(self.user_file) for key in all_users: texts = list_all_users_text(self.user_file, key) # 获取所有文本 rs = ss.ratio(texts) if len(rs) > 0: rs = [str(i) for i in rs] # 转换为字符串 temp = ",".join(rs) else: temp = "低于80%" uid = str(key) + "_" + Indicators.semantic # print(uid, " rs:", rs, " temp:", temp) self.user_client.set(uid, temp) print("写入语义重复率redis成功!") if __name__ == "__main__": # event = EventSemanticSim(user_file=incsv_fanChengCheng, user_db=fanChengCheng_db) # event.save_redis() event = EventSemanticSim(user_file=incsv_zhangDanFeng, user_db=zhangDanFeng_db) event.save_redis() event = EventSemanticSim(user_file=incsv_haiTianLin, user_db=zhaiTianLin_db) event.save_redis() event = EventSemanticSim(user_file=incsv_jueDiQiuSheng, user_db=jueDiQiuSheng_db) event.save_redis()
UTF-8
Python
false
false
3,808
py
27
semantic_similarity.py
18
0.546652
0.540889
0
117
30.153846
121
sanyamjain335/SNS-Assignment
14,293,651,166,186
0bf98e82a9de440af428448c3e633aee30776ad0
5d2c6c4072510d1883ee30ddf7da2c263598c47c
/serverlib.py
503371a426ed80babb4ebb5ea28fca97cfb24437
[]
no_license
https://github.com/sanyamjain335/SNS-Assignment
0ce1f3d2433872b9b4d97d0f3ca1e4684d826654
3e5d4b39eba7b8c6f46f5ce5676570bcd50487e8
refs/heads/main
2023-02-25T02:46:41.875400
2021-01-27T13:34:51
2021-01-27T13:34:51
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import clientlib import socket,pickle import json import random import crypto import time HOST = '127.0.0.1' PORT = 54005 class group: def __init__(self,name): self.grname = name self.membercount=0 self.memberdic = {} self.nounce=str(random.randint(0,655365)) def addmember(self,name,port): self.memberdic[name]=port self.membercount=self.membercount+1 return self.nounce def getportlist(self): return [self.memberdic[name] for name in self.memberdic.keys()] def message(self,conn,data): if data['type'] =='file': chunk_array=[] while(True): msg=conn.recv(1024) if not msg: break chunk_array.append(msg) for port in self.getportlist(): if port==data['initiator-port']: continue client_sock= socket.socket(socket.AF_INET,socket.SOCK_STREAM) client_sock.connect(('127.0.0.1',port)) messageObj={} messageObj['groupname'] = self.grname if data['type'] =='text': messageObj['type'] = 'text' messageObj['encrypted'] = data['msg'] client_sock.sendall(pickle.dumps(messageObj)) else: messageObj['type'] = 'file' messageObj['filename']=data['filename'] client_sock.sendall(pickle.dumps(messageObj)) for item in chunk_array: time.sleep(1) client_sock.sendall(item) if data['type']=='file': chunk_array.clear() client_sock.close() class server: def __init__(self): self.s= socket.socket(socket.AF_INET,socket.SOCK_STREAM) self.s.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR, 1) self.s.bind((HOST,PORT)) self.clientlist={} self.grouplist={} self.s.listen() while True: conn,addr=self.s.accept() data = pickle.loads(conn.recv(1024)) if data['choice']=='signin': if data['name'] in self.clientlist.keys() and self.clientlist[data['name']]['pswd']==data['pswd'] and 'online' not in self.clientlist[data['name']].keys(): self.clientlist[data['name']]['online']=1 conn.send(b"1") else: conn.send(b"0") if data['choice']=='signup': if(data['name'] in self.clientlist.keys()): conn.send(b'0') else: self.clientlist[data['name']]=data print(data['name']) conn.send(b"1") if data['choice']=='get-client-port': print(data['name']) print(self.clientlist[data['name']]) data['port'] = self.clientlist[data['name']]['port'] conn.sendall(pickle.dumps(data)) if data['choice']=='join-group': if data['groupname'] in self.grouplist.keys(): self.grouplist[data['groupname']].addmember(data['name'],data['port']) conn.sendall(self.grouplist[data['groupname']].nounce.encode()) else: g = group(data['groupname']) g.addmember(data['name'],data['port']) self.grouplist[data['groupname']]=g conn.sendall(g.nounce.encode()) print([name for name in self.grouplist.keys()]) if data['choice']=='list-group': print([name for name in self.grouplist.keys()]) groupstring = [[self.grouplist[name].grname,self.grouplist[name].membercount] for name in self.grouplist.keys()] conn.sendall(str(groupstring).encode()) if data['choice']=='message-group': print(data) g = self.grouplist[data['groupname']] if(data['name'] in g.memberdic.keys()): g.message(conn,data) conn.close()
UTF-8
Python
false
false
4,170
py
11
serverlib.py
6
0.509353
0.49952
0
103
39.31068
171
GuilhermeVBeira/Aulas-Django
5,076,651,351,419
6edfb7e032f7c49a38e8e464c7e6e7df6747afe3
af3eae2d55e83622bdbeb2188079d2feb98eb617
/aula11/apps.py
3fe432c7a4d3917373e18b06eb82b338d9f30f86
[]
no_license
https://github.com/GuilhermeVBeira/Aulas-Django
16d1582040d83dd5b6b8f6194a8261be63a95569
80e784fdc2d8a6903b44463f8b4ade514bd809f1
refs/heads/master
2022-12-06T09:03:27.858413
2021-06-09T19:32:36
2021-06-09T19:32:36
240,728,073
2
2
null
false
2022-11-22T05:26:37
2020-02-15T14:36:02
2021-06-09T19:32:39
2022-11-22T05:26:34
981
2
0
2
Python
false
false
from django.apps import AppConfig class Aula11Config(AppConfig): name = "aula11" def ready(self): import aula11.signals
UTF-8
Python
false
false
139
py
87
apps.py
75
0.690647
0.647482
0
8
16.375
33
massimo-nocentini/microkanrenpy
10,024,453,677,728
63eb372d08729adb11b5de4c71f5968728509e00
6960e497327f51d99e82acf899fa45b4bc38af62
/src/sexp_test.py
afba8136c973807a09072b3644012801ad5ef273
[]
no_license
https://github.com/massimo-nocentini/microkanrenpy
6a635f02d6bb645e1d0eb0b2abc5282934a49589
62c71ae015c0ecc0330d70a2eeb6084430a5bb47
refs/heads/master
2021-06-07T06:02:06.137934
2020-12-04T10:47:31
2020-12-04T10:48:03
90,005,342
11
2
null
null
null
null
null
null
null
null
null
null
null
null
null
import unittest from functools import partialmethod from muk.sexp import * class sexp_tests(unittest.TestCase): def test_null_list(self): self.isomorphism(l=[], c=[]) def test_singleton_proper_list_to_cons(self): self.isomorphism(l=[1], c=cons(1, [])) def test_plain_proper_list_to_cons(self): self.isomorphism(l=[1,2,3], c=cons(1, cons(2, cons(3, [])))) def test_plain_improper_list_to_cons(self): self.isomorphism(l=(1,2,3), c=cons(1, cons(2, 3))) def test_nested_improper_list_to_cons(self): self.isomorphism(l=(1,[2,3], 4), c=cons(1, cons(cons(2, cons(3, [])), 4))) def test_more_nested_improper_list_to_cons(self): self.isomorphism(l=([3],(4,5), 6), c=cons(cons(3, []), cons(cons(4, 5), 6))) def test_shadow_proper_list_using_improper_list_notation(self): # pay attention, this is not an isomorphism, the next test shows the # natural way of writing, without shadowing. The broken direction is # represented by function `cons_to_list` which doesn't shadow objs it # produces. self.assertEqual(list_to_cons(([3],(4,5), [6])), cons(cons(3, []), cons(cons(4, 5), cons(6, [])))) def test_more_nested_improper_lists_into_proper_list_to_cons(self): self.isomorphism(l=[[3],(4,5), 6], c=cons(cons(3, []), cons(cons(4, 5), cons(6, [])))) def test_invalid_improper_list(self): with self.assertRaises(ImproperListError): list_to_cons(l=(3,)) def test_invalid_improper_cons(self): with self.assertRaises(ImproperListError): cons_to_list(c=cons(3, ())) def isomorphism(self, l, c): self.assertEqual(c, list_to_cons(l)) self.assertEqual(l, cons_to_list(c)) def test_tuple_wrapping_and_ctor_call(self): class A(tuple): __int__ = partialmethod(sum) a = (1,2,3,4) # vanilla tuple obj self.assertEqual(tuple, type(a)) self.assertEqual(A, type(A(a))) self.assertEqual(10, int(A(a)))
UTF-8
Python
false
false
2,061
py
21
sexp_test.py
7
0.60165
0.575449
0
56
35.714286
106
yuexishuihan/yuexishuihan.github.io
6,030,134,100,921
590f0e66f61cbc5d93a1d95342fe1e31b0a6c6fc
0d437f1bcedbdf4e5e0e85d325062d6dc09825d6
/Socket通信/udp聊天_1.py
62b1fba846d6337957fd982ea6f082e5f2632ae3
[]
no_license
https://github.com/yuexishuihan/yuexishuihan.github.io
dbe862cea471d756d7770168aab9b82794c63a96
ad9af9cc9481e0fdd4695b8c872f5c2ddd9ea51b
refs/heads/master
2020-04-09T06:31:27.285478
2019-02-27T08:31:31
2019-02-27T08:31:31
160,116,540
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import socket def send_msg(udp_socket): '''发送消息''' # 获取对方的IP/PORT dest_ip = input("请输入对方IP:") dest_port = int(input("请输入对方端口号:")) # socket套接字可以同时进行收发数据 # 2.使用套接字发送数据 # 从键盘获取数据 send_date = input("请输入要发送的内容:") udp_socket.sendto(send_date.encode("utf-8"),(dest_ip,dest_port)) def recv_msg(udp_socket): '''接收消息''' # 3.使用套接字接收数据 recv_data = udp_socket.recvfrom(1024) print("%s:%s" % (str(recv_data[1]),recv_data[0].decode("utf-8"))) def main(): # 1.创建udp套接字 udp_socket = socket.socket(socket.AF_INET,socket.SOCK_DGRAM) # 绑定信息 udp_socket.bind("",8080) # 循环处理 while True: print("-----xx聊天室------") print("1.发送消息") print("2.接收消息") print("0.退出聊天室") op = input("请输入功能序号:") if op == "1": # 发送 send_msg(udp_socket) elif op == "2" # 接收并显示 recv_msg(udp_socket) elif op == "0": break else: print("输入有误请重新输入。。。") # 4.关闭套接字 udp_socket.close() if __name__ == "__main__": main()
UTF-8
Python
false
false
1,382
py
57
udp聊天_1.py
55
0.506318
0.486462
0
55
19.163636
69
wlWarren/mail_classifizer
3,530,463,141,284
207730e79a2c2a57bfa23dd338c0c3b309663b9a
959983112b37db56c0ee7f0e3940f9aad99fd169
/word_vector.py
037ae9ef56a1b2ee2667adb855c53c546f2fbea5
[]
no_license
https://github.com/wlWarren/mail_classifizer
3e102d89e02e241faf2be78fb84cc3e274ee6716
68202f7b88d229e22a309cfe24501fa81a5006be
refs/heads/master
2021-08-30T05:36:09.306868
2017-12-16T06:28:00
2017-12-16T06:28:00
114,438,000
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# encoding:utf-8 import jieba import jieba.posseg as pseg import sklearn.feature_extraction.text import json from scipy import sparse, io from sklearn.externals import joblib # 非 tf-idf 词向量 class Counter_Vectorizer(sklearn.feature_extraction.text.CountVectorizer): def build_analyzer(self): def analyzer(doc): # 去标点 words = pseg.cut(doc) new_doc = ''.join(w.word for w in words if w.flag != 'x') words = jieba.cut(new_doc) return words return analyzer # 用tf-idf生成词向量 class TfidfVectorizer(sklearn.feature_extraction.text.TfidfVectorizer): def build_analyzer(self): # 生成词向量前需要进行切词 def analyzer(doc): # 将标点符号去掉 words = pseg.cut(doc) new_doc = ''.join(w.word for w in words if w.flag != 'x') words = jieba.cut(new_doc) return words return analyzer # 生成词向量并进行存储 def vector_word(): with open('RawData/train_content_5000.json', 'r') as f: content = json.load(f) with open('RawData/train_label_5000.json', 'r') as f: label = json.load(f) vec_tfidf = TfidfVectorizer(min_df=2, max_df=0.8,max_features=2000) tfidf = vec_tfidf.fit(content) # 存储分词模型 # joblib.dump(tfidf,'model/word_vector_model_60w.pkl') data_tfidf = tfidf.transform(content) data_tfidf_dense = data_tfidf.todense() name_tfidf_feature = vec_tfidf.get_feature_names() io.mmwrite('XGBoost/word_vector/word_vector.mtx', data_tfidf) ''' # 稀疏矩阵存储 io.mmwrite('word_vector/word_vector.mtx', data_tfidf) with open('word_vector/train_label.json', 'w') as f: json.dump(label, f) # 存入特征词 with open('word_vector/vector_type.json', 'w') as f: json.dump(name_tfidf_feature, f) ''' def dispose_new_doc(): tfidf = joblib.load('word_vector_model.pkl') doc = '您好!紫荆x号本周日x日妇女节有活动,女士到场都有花送,小孩有礼物,下午x:xx还会有抽奖活动哦,有兴趣可过来玩噢!联系人:黄秀秀。x' transform_document = [doc] new_data_tfidf = (tfidf.transform(transform_document)).todense() print (new_data_tfidf) if '__main__' == __name__: vector_word() print ('word_vector Finish') # dispose_new_doc()
UTF-8
Python
false
false
2,415
py
13
word_vector.py
8
0.633318
0.625057
0
68
31.044118
79
dellielo/katatest
3,221,225,484,093
272dd0edf4b41ad62cb7879172ffc613beb7ed51
b882ffe25d7aadd0286bb9f00d8d7df0b3ad29db
/tests/test_katatest.py
b53c014cb0fdbbfb13fde097d480c2874c57b8f3
[ "MIT" ]
permissive
https://github.com/dellielo/katatest
36a503a0fa5790fa11f567bb11c9fd939f210aaa
83f4499a0e3f9d950ebc6c8bd02604181836d23a
refs/heads/master
2020-09-09T15:07:34.091054
2019-11-18T13:09:46
2019-11-18T13:09:46
221,474,622
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from katatest.cli import main def test_basics(): assert_equal(0, price([])) assert_equal(8, price([1])) assert_equal(8, price([2])) assert_equal(8, price([3])) assert_equal(8, price([4])) assert_equal(8 * 3, price([1, 1, 1])) def test_simple_discount(): assert_equal(8 * 2 * 0.95, price([0, 1])) assert_equal(8 * 3 * 0.9, price([0, 2, 4])) assert_equal(8 * 4 * 0.8, price([0, 1, 2, 4])) assert_equal(8 * 5 * 0.75, price([0, 1, 2, 3, 4])) def test_several_discount(): assert_equal(8 + (8 * 2 * 0.95), price([0, 0, 1])) assert_equal(2 * (8 * 2 * 0.95), price([0, 0, 1, 1])) assert_equal((8 * 4 * 0.8) + (8 * 2 * 0.95), price([0, 0, 1, 2, 2, 3])) assert_equal(8 + (8 * 5 * 0.75), price([0, 1, 1, 2, 3, 4])) def test_edge_cases(): assert_equal(2 * (8 * 4 * 0.8), price([0, 0, 1, 1, 2, 2, 3, 4])) assert_equal(3 * (8 * 5 * 0.75) + 2 * (8 * 4 * 0.8), price([0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4])) def test_main(): main([])
UTF-8
Python
false
false
1,048
py
5
test_katatest.py
1
0.483779
0.351145
0
37
27.297297
73
caiwjohn/embedded_pred
8,615,704,428,635
7a955cc141a044f71276acf6f740b228647d0cc6
ec2dd6cb985439bd8f70be558900a8e2f119f691
/get_embeddings.py
141cea5b62e6ec098b67801c32f265d16e9ecfa3
[ "MIT" ]
permissive
https://github.com/caiwjohn/embedded_pred
5512c758fe5715ea14fce2131c563c85bab2879d
89c2d2bfb9db4589afc26dbb74faf5926fe36b84
refs/heads/master
2022-07-17T22:46:51.432284
2020-05-18T19:09:29
2020-05-18T19:09:29
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from keras.models import Model, load_model from load_data import load_csv, get_onehot import numpy as np import csv #Saves <ex_per_class> sample embeddings per class #EDIT THESE PARAMETERS (see README)------------------------------------- model_name = 'my_model' num_classes = 100 ex_per_class = 100 data_file = 'my_dir/test.csv' name_file = 'my_dir/dna_100class_names.csv' #a csv of (class number, name) for each class out_file = 'my_dir/embed_'+model_name+'.csv' is_dna_data = True mask = True mask_len = 113 seq_len = 4500 model_file = 'model_dir/'+model_name+'.h5' #---------------------------------------------------------------------- model = load_model(model_file) embed_model = Model(inputs=model.input, outputs=model.get_layer("lstm_2").output) embed_model.summary() counts = np.zeros(num_classes) data = load_csv(data_file) chosen_data = [] for (x, y) in data: if counts[y] < ex_per_class: chosen_data.append((x,y)) counts[y] += 1 x, y, m = get_onehot(chosen_data, None, is_dna_data=is_dna_data, seq_len=seq_len, mask_len=mask_len if mask else None) embed = embed_model.predict([x,m] if mask else x) print(embed.shape) names = dict() with open(name_file, 'r') as infile: r = csv.reader(infile) for row in r: y = int(row[0]) names[y] = row[1] with open(out_file, 'w') as outfile: w = csv.writer(outfile) for (i, (x, y)) in enumerate(chosen_data): w.writerow([y,names[y]]+embed[i].tolist())
UTF-8
Python
false
false
1,425
py
10
get_embeddings.py
9
0.633684
0.618947
0
52
26.403846
118
ten2net/Leetcode-solution
13,365,938,256,520
9bc64a4a24b73344f6206f6ba0ffc58b8e991bb8
51f7752df6a6e2b4dcee7ea585bacf7b9cb5ea14
/116. Populating Next Right Pointers in Each Node.py
7a45110922629443243db1374ea90bb47eb2f6ff
[ "MIT" ]
permissive
https://github.com/ten2net/Leetcode-solution
a9ba7235987c0fdd1860d88ae461a4ea1fb979e4
97e84daa2926a9cd2036e0dee36dfe5773114b15
refs/heads/master
2021-01-21T20:29:42.570931
2016-12-06T10:29:18
2016-12-06T10:29:18
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Definition for binary tree with next pointer. # class TreeLinkNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None # self.next = None class Solution(object): def connect(self, root): """ :type root: TreeLinkNode :rtype: nothing """ level_order = [] from collections import deque queue = deque() if root is not None: queue.append(root) while len(queue) > 0: top = queue.popleft() level_order.append(top) if top.left is not None: queue.append(top.left) if top.right is not None: queue.append(top.right) cnt = 1 level = 1 for i in range(len(level_order)): node = level_order[i] cnt -= 1 if cnt == 0: node.next = None level *= 2 cnt = level else: node.next = level_order[i+1]
UTF-8
Python
false
false
992
py
223
116. Populating Next Right Pointers in Each Node.py
222
0.497984
0.490927
0
37
25.837838
47
TKhyarn/flappy_unity_api
2,920,577,769,163
8dd117641619382947a46c962849336b3359c824
f0dad14660be9c32208cbeaeae287504cad11b68
/run.py
3de91072667b5c1a96f16d85a74c00e1303bd17c
[]
no_license
https://github.com/TKhyarn/flappy_unity_api
477d68f075eb6f4e1144fb09506a4718d201b1aa
3c786b315fe09a3e2a9329a67f6287086165d0cc
refs/heads/master
2021-08-16T22:53:34.155948
2017-11-20T13:27:58
2017-11-20T13:27:58
110,249,040
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!flask/bin/python from app import app # not suitable for prod environment app.run(host='0.0.0.0', debug=True)
UTF-8
Python
false
false
110
py
5
run.py
4
0.745455
0.709091
0
4
26.75
35
we333/python_study
11,381,663,368,173
7edc62dd1e5049e3842667052381353ed2050d3e
cf5c2fde7dc38e33457f063b807a728d137bd92e
/sql/__init__.py
7a2f90013ec1c083a73cbae13ff989b9a2dcc909
[]
no_license
https://github.com/we333/python_study
bde9b5f5f6953c49fba2588ceafdb31401e612de
a1c4a87c28f545b205d7d3a64393649637ab1f18
refs/heads/master
2018-09-10T03:33:54.635543
2016-07-17T10:53:57
2016-07-17T10:53:57
62,631,352
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!usr/bin/env python #_*_ coding:utf-8 _*_ ''' Created on 2016年7月12日 @author: wantone '''
UTF-8
Python
false
false
108
py
39
__init__.py
32
0.558824
0.480392
0
8
10.5
21
archit-dwevedi/parking_lot
13,907,104,130,496
3f3e328804aff3eb5ee034e8fa65260baca9627f
e33c8af70e79622b0f4818854c13e5e55aaab437
/parking/managers.py
a91f0d05a24d78e084a31797a37db0e7f2241e17
[]
no_license
https://github.com/archit-dwevedi/parking_lot
a4f275b147e5cdba2a7cc364e0537815582d2737
e6b5244ec6740b0b32c67ec2434713dcf0312931
refs/heads/main
2023-07-17T05:13:47.097863
2021-08-09T13:50:59
2021-08-09T13:50:59
394,254,205
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.db import models class ParkingQuerySet(models.QuerySet): def get_empty_parking_space(self, parking, vechile_type): from .models import ParkingSpace return ParkingSpace.objects.filter( parking=parking, vechile_type=vechile_type, parked_car__isnull=True ).first() def get_parked_car_space(self, parking, vechile): from .models import ParkingSpace return ParkingSpace.objects.filter(parking=parking, parked_car=vechile).first() class ParkingManager(models.Manager): def get_queryset(self): return ParkingQuerySet(self.model, using=self._db) def park_car(self, parking, vechile): if not parking: raise Exception("Parking not found") if not vechile: raise Exception("Vechile is not found") parked_space = self.all().get_parked_car_space(parking, vechile) if parked_space: raise Exception("Car is already parked") space = self.all().get_empty_parking_space(parking, vechile.vechile_type) if not space: raise Exception("No Parking spots are empty") space.parked_car = vechile space.save() return space def exit_car(self, parking, vechile): if not parking: raise Exception("Parking not found") if not vechile: raise Exception("Vechile is not found") parked_space = self.all().get_parked_car_space(parking, vechile) if not parked_space: raise Exception("Car is not parked") parked_space.parked_car = None parked_space.save() return parked_space class RateManager(models.Manager): def get_price_for_parked_car(self, parking, vechile_type, hours): rate = self.filter( parking=parking, vechile_type=vechile_type, start_hours__lte=hours, end_hours__gte=hours ).first() if not rate: return 100 return rate.price
UTF-8
Python
false
false
2,037
py
22
managers.py
20
0.617084
0.615611
0
66
29.863636
87
tzyl/hackerrank-python
9,783,935,517,607
2d483fb7e5ec427defd4b0112eaa2737113c7a59
8862efe34f13477aafe388d30e3b8a5fc8bab253
/week_of_code/30/candy_replenishing_robot.py
a505f80439fd9717a6e06f4686f09ffe22b588f2
[]
no_license
https://github.com/tzyl/hackerrank-python
71a80cbd1a0c931e5112e7c0cdb2e339c4e50eb3
f3f2990de738403bccaedd4005368aa3456b94d3
refs/heads/master
2021-05-14T11:32:44.268500
2018-01-05T12:49:59
2018-01-05T12:49:59
116,384,579
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
n, t = input().strip().split(' ') n, t = [int(n), int(t)] c = [int(s) for s in input().strip().split()] candies = n added = 0 for i in range(t - 1): candies -= c[i] if candies < 5: added += n - candies candies = n print(added)
UTF-8
Python
false
false
262
py
44
candy_replenishing_robot.py
44
0.496183
0.484733
0
11
21.818182
45
leocvml/chatBot
9,594,956,951,913
fdf963d0fcadf4c018a8720e7e819ac0ef2a9721
be45b42dae8f1654051fed2187f1dabffaf132cb
/chatbotFinalProject/discriminator.py
1975fd8724a8b23fae44ac0ff26c4e577ca1b476
[]
no_license
https://github.com/leocvml/chatBot
a97198e83ecdb59bacd7481d56119ecc6bf548fc
38863f7fa737e4dfb762d186d215dda75c921955
refs/heads/master
2021-07-05T06:04:58.287319
2019-01-24T03:12:10
2019-01-24T03:12:10
131,238,684
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import sys sys.path.append('..') import collections import mxnet as mx from mxnet import autograd, gluon, init, metric, nd from mxnet.gluon import loss as gloss, nn, rnn from mxnet.contrib import text import os import random import zipfile demo = True if demo: with zipfile.ZipFile('data/aclImdb_tiny.zip', 'r') as zin: zin.extractall('data/') def readIMDB(dir_url, seg='train'): pos_or_neg = ['pos', 'neg'] data = [] for label in pos_or_neg: files = os.listdir( 'data/' + dir_url + '/' + seg + '/' + label + '/') for file in files: with open('data/' + dir_url + '/' + seg + '/' + label + '/' + file, 'r', encoding='utf8') as rf: review = rf.read().replace('\n', '') if label == 'pos': data.append([review, 1]) elif label == 'neg': data.append([review, 0]) return data if demo: train_data = readIMDB('aclImdb_tiny/', 'train') test_data = readIMDB('aclImdb_tiny/', 'test') else: train_data = readIMDB('aclImdb/', 'train') test_data = readIMDB('aclImdb/', 'test') random.shuffle(train_data) random.shuffle(test_data) def tokenizer(text): return [tok.lower() for tok in text.split(' ')] train_tokenized = [] for review, score in train_data: train_tokenized.append(tokenizer(review)) test_tokenized = [] for review, score in test_data: test_tokenized.append(tokenizer(review)) token_counter = collections.Counter() def count_token(train_tokenized): for sample in train_tokenized: for token in sample: if token not in token_counter: token_counter[token] = 1 else: token_counter[token] += 1 count_token(train_tokenized) vocab = text.vocab.Vocabulary(token_counter, unknown_token='<unk>', reserved_tokens=None) def encode_samples(tokenized_samples, vocab): features = [] for sample in tokenized_samples: feature = [] for token in sample: if token in vocab.token_to_idx: feature.append(vocab.token_to_idx[token]) else: feature.append(0) features.append(feature) return features def pad_samples(features, maxlen=500, padding=0): padded_features = [] for feature in features: if len(feature) > maxlen: padded_feature = feature[:maxlen] else: padded_feature = feature # 添加 PAD 符号使每个序列等长(长度为 maxlen )。 while len(padded_feature) < maxlen: padded_feature.append(padding) padded_features.append(padded_feature) return padded_features ctx = mx.gpu() train_features = encode_samples(train_tokenized, vocab) test_features = encode_samples(test_tokenized, vocab) train_features = nd.array(pad_samples(train_features, 500, 0), ctx=ctx) test_features = nd.array(pad_samples(test_features, 500, 0), ctx=ctx) train_labels = nd.array([score for _, score in train_data], ctx=ctx) test_labels = nd.array([score for _, score in test_data], ctx=ctx) # print(train_features[0]) # print(train_labels[0]) glove_embedding = text.embedding.create( 'glove', pretrained_file_name='glove.6B.100d.txt', vocabulary=vocab) class SentimentNet(nn.Block): def __init__(self, vocab, embed_size, num_hiddens, num_layers, bidirectional, **kwargs): super(SentimentNet, self).__init__(**kwargs) with self.name_scope(): self.embedding = nn.Embedding(len(vocab), embed_size) self.encoder = rnn.LSTM(num_hiddens, num_layers=num_layers, bidirectional=bidirectional, input_size=embed_size) self.decoder = nn.Dense(num_outputs, flatten=False) def forward(self, inputs, begin_state=None): embeddings = self.embedding(inputs) states = self.encoder(embeddings) # 连结初始时间步和最终时间步的隐藏状态。 encoding = nd.concat(states[0], states[-1]) outputs = self.decoder(encoding) return outputs num_outputs = 2 lr = 0.1 num_epochs = 100 batch_size = 10 embed_size = 100 num_hiddens = 100 num_layers = 2 bidirectional = True net = SentimentNet(vocab, embed_size, num_hiddens, num_layers, bidirectional) net.initialize(init.Xavier(), ctx=ctx) # 设置 embedding 层的 weight 为预训练的词向量。 net.embedding.weight.set_data(glove_embedding.idx_to_vec.as_in_context(ctx)) # 训练中不迭代词向量(net.embedding中的模型参数)。 net.embedding.collect_params().setattr('grad_req', 'null') trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr}) loss = gloss.SoftmaxCrossEntropyLoss() # def eval_model(features, labels): # l_sum = 0 # l_n = 0 # accuracy = metric.Accuracy() # for i in range(features.shape[0] // batch_size): # X = features[i*batch_size : (i+1)*batch_size].as_in_context(ctx).T # y = labels[i*batch_size :(i+1)*batch_size].as_in_context(ctx).T # output = net(X) # l = loss(output, y) # l_sum += l.sum().asscalar() # l_n += l.size # accuracy.update(preds=nd.argmax(output, axis=1), labels=y) # return l_sum / l_n, accuracy.get()[1] # net.load_params('classfication.params') # for epoch in range(1, num_epochs + 1): # for i in range(train_features.shape[0] // batch_size): # X = train_features[i*batch_size : (i+1)*batch_size].as_in_context( # ctx).T # y = train_labels[i*batch_size : (i+1)*batch_size].as_in_context( # ctx).T # with autograd.record(): # l = loss(net(X), y) # l.backward() # trainer.step(batch_size) # train_loss, train_acc = eval_model(train_features, train_labels) # test_loss, test_acc = eval_model(test_features, test_labels) # print('epoch %d, train loss %.6f, acc %.2f; test loss %.6f, acc %.2f' # % (epoch, train_loss, train_acc, test_loss, test_acc)) # net.save_params('classfication.params') # def inference(set): # feature = [] # for token in set: # if token in vocab.token_to_idx: # feature.append(vocab.token_to_idx[token]) # else: # feature.append(0) # return feature # # # review = ['i', 'think', 'it', 'is','low'] # inf_data = inference(review) # # # print(nd.argmax(net(nd.reshape( # nd.array( inf_data, ctx=ctx), # shape=(-1, 1))), axis=1).asscalar())
UTF-8
Python
false
false
6,820
py
5
discriminator.py
3
0.58271
0.573587
0
197
31.949239
77
atlpatchin/bookstore
8,366,596,340,691
60aa8196c85ed44311b592a47e30552a63ac0ace
50e60e5343561cc660624b6966e52c5d78480a71
/bookstores/comments/urls.py
62fb6bb1773bdc9a469dc173b7bdcb4779cbcf98
[]
no_license
https://github.com/atlpatchin/bookstore
25917c4b70c706a4d5a2230ec9ed6a0e93a43248
7ef2c10af63197a1cf0d66fb1533bbf431a48066
refs/heads/master
2020-04-23T21:16:19.343309
2019-02-20T06:01:35
2019-02-20T06:01:35
171,464,859
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.conf.urls import url from cart import views urlpatterns = [ ]
UTF-8
Python
false
false
77
py
10
urls.py
7
0.74026
0.74026
0
6
11.666667
32
Perf-Org-5KRepos/aerial_wildlife_detection
1,752,346,666,487
3757784b54d55727e45c921df668a8e44aa14091
a5ca5b46535d3db0a9490c9f476db4da755540c7
/projectCreation/migrate_aide.py
882d485b92c2d3297fb0c9d4f92604e3653b0b15
[ "LicenseRef-scancode-generic-cla", "MIT" ]
permissive
https://github.com/Perf-Org-5KRepos/aerial_wildlife_detection
a6f33d3c64878373dbee7b305ad735e1ec829a78
7f9fc9236dd89b9ff73902e7001b5fd40d428971
refs/heads/master
2022-10-19T16:38:20.584294
2020-06-08T17:41:29
2020-06-08T17:41:29
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
''' Run this file whenever you update AIDE to bring your existing project setup up-to-date with respect to changes due to newer versions. 2019-20 Benjamin Kellenberger ''' import os import argparse MODIFICATIONS_sql = [ 'ALTER TABLE {schema}.annotation ADD COLUMN IF NOT EXISTS meta VARCHAR; ALTER TABLE {schema}.image_user ADD COLUMN IF NOT EXISTS meta VARCHAR;', 'ALTER TABLE {schema}.labelclass ADD COLUMN IF NOT EXISTS keystroke SMALLINT UNIQUE;', 'ALTER TABLE {schema}.image ADD COLUMN IF NOT EXISTS last_requested TIMESTAMPTZ;', 'ALTER TABLE {schema}.image_user ADD COLUMN IF NOT EXISTS num_interactions INTEGER NOT NULL DEFAULT 0;', 'ALTER TABLE {schema}.annotation ADD COLUMN IF NOT EXISTS autoConverted boolean;', 'ALTER TABLE {schema}.image_user ADD COLUMN IF NOT EXISTS first_checked TIMESTAMPTZ;', 'ALTER TABLE {schema}.image_user ADD COLUMN IF NOT EXISTS total_time_required BIGINT;' ] if __name__ == '__main__': parser = argparse.ArgumentParser(description='Update AIDE database structure.') parser.add_argument('--settings_filepath', type=str, default='config/settings.ini', const=1, nargs='?', help='Manual specification of the directory of the settings.ini file; only considered if environment variable unset (default: "config/settings.ini").') args = parser.parse_args() if not 'AIDE_CONFIG_PATH' in os.environ: os.environ['AIDE_CONFIG_PATH'] = str(args.settings_filepath) from util.configDef import Config from modules import Database config = Config() dbConn = Database(config) if dbConn.connectionPool is None: raise Exception('Error connecting to database.') dbSchema = config.getProperty('Database', 'schema') # make modifications one at a time for mod in MODIFICATIONS_sql: dbConn.execute(mod.format(schema=dbSchema), None, None) print('Project {} is now up-to-date for the latest changes in AIDE.'.format(config.getProperty('Project', 'projectName')))
UTF-8
Python
false
false
2,030
py
55
migrate_aide.py
39
0.713793
0.709852
0
48
41.3125
171
StanfordAHA/lake
7,610,682,053,653
2a85bfdce47b70abdd79d002247bcbd94a1c99e7
c648f20f35a37f0330cf2cbb0cb58ff99e2dc77f
/run_lake.py
c449dc4f5971558dff857f9163c61faefb339b35
[ "BSD-3-Clause" ]
permissive
https://github.com/StanfordAHA/lake
8aeef4d7d627137de96e70fa5dc2c9e27c1158da
7ba7e047af450545636b669bb368e0cfaf3a2eb4
refs/heads/master
2023-09-01T02:39:32.676499
2023-08-07T18:25:36
2023-08-07T18:25:36
199,787,393
15
2
BSD-3-Clause
false
2023-08-29T18:21:26
2019-07-31T05:45:32
2022-10-13T13:09:43
2023-08-29T18:21:26
4,235
14
2
18
Python
false
false
import kratos from lake.modules.passthru import * from lake.top.lake_top import * from lake.modules.sram_stub import * #lake_top = LakeTop(16) #lake_top_src = kratos.verilog(lake_top, optimize_passthrough=False) #print(lake_top_src["LakeTop"]) sramstub = SRAMStub(16, 512) sramstub_src = kratos.verilog(sramstub, optimize_passthrough=False) print(sramstub_src["SRAMStub"])
UTF-8
Python
false
false
375
py
209
run_lake.py
202
0.765333
0.746667
0
12
30.25
68
echo9527git/jpress_selenium
10,333,691,361,336
0cf61cda33a3a0f7dcb2ab2a66bcdb64634d7383
fdd70d7c0b293d66ca88d47ba2a3d2437db051d5
/util/my_js_utils.py
d6d5c7f1a5dc429c429b1bfb03094486b6e76da0
[]
no_license
https://github.com/echo9527git/jpress_selenium
aa88c2cf72c606fe65cc697859c96f2ec46987a8
a7bc4f71520de3fa8754a686f16d0e975b4cf3df
refs/heads/master
2022-12-08T07:36:56.767594
2020-08-31T00:03:56
2020-08-31T00:03:56
284,938,976
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from selenium import webdriver from time import sleep,strftime,localtime,time import os def _set_index(index=None): """ index判断赋值 :param index: :return: """ if index is None: index = 0 else: index = index return index def clear(driver: webdriver, css,index=None, describe=None): """ 用途:用来清除输入框的内容 :param driver: webdriver :param css: css选择器 :param index: 列表的下标 :param describe: 描述信息 :return: """ js = """var elm = document.querySelectorAll("{css}")[{index}]; elm.style.border="2px solid red"; elm.value = "";""".format(css=css, index=_set_index(index)) driver.execute_script(js) def input(value,driver: webdriver, css,index=None, describe=None): """ 用途:输入框中输入内容 :param self: :param value:待输入的数据 :param driver: webdriver :param css: css选择器 :param index: 列表的下标 :param describe: 描述信息 :return: """ js = """var elm = document.querySelectorAll("{css}")[{index}]; elm.style.border="2px solid red"; elm.value = "{value}";""".format(css=css, index=_set_index(index), value=value) driver.execute_script(js) def click(driver: webdriver, css,index=None, describe=None): """ 用途:由于web自动化的最大问题就是稳定性比较差,有些时候使用selenium无法点击元素,因此我们可以使用JS实现元素的点击操作 :param self: :param driver: webdriver :param css: css选择器 :param index: 列表的下标 :param describe: 描述信息 :return: """ js = """var elm = document.querySelectorAll("{css}")[{index}]; elm.style.border="2px solid red"; elm.click();""".format(css=css, index=_set_index(index)) driver.execute_script(js) def remove_attribute(attribute,driver: webdriver, css,index=None, describe=None): """ 用途:以下方法可以删除元素的任何属性,主要用来移除时间控件的readonly属性 :param attribute:元素的某个属性,比如readonly,value,name等 :param driver: webdriver :param css: css选择器 :param index: 列表的下标 :param describe: 描述信息 :return: """ # _index_(index) js = """ var elm = document.querySelectorAll("{css}")[{index}]; elm.removeAttribute("{attr}"); """.format(css=css, index=_set_index(index), attr=attribute) driver.execute_script(js) def remove_attr(element, attribute,driver: webdriver): """ 用途:以下方法可以删除元素的任何属性 :param element: 需要被删除属性的控件 :param attribute: 需要删除的属性 :param driver: webdriver :return: """ js = """ arguments[0].removeAttribute("{attr}"); """.format(attr=attribute) driver.execute_script(js, element) def scroll_to_xy(driver: webdriver,x, y): ''' 用途:通过制定xy坐标来滑动web页面 :param driver: webdriver :param x:屏幕向右移动的距离 :param y:屏幕向下移动的距离 :return: 1、滚动到文档中的某个坐标 window.scrollTo(x-coord,y-coord ) window.scrollTo(options) ·x-coord 是文档中的横轴坐标。 ·y-coord 是文档中的纵轴坐标。 ·options 是一个包含三个属性的对象: ·top 等同于 y-coord ·left 等同于 x-coord ·behavior 类型String,表示滚动行为,支持参数 smooth(平滑滚动),instant(瞬间滚动),默认值auto,实测效果等同于instant 例子: window.scrollTo( 0, 1000 ); // 设置滚动行为改为平滑的滚动 window.scrollTo({ top: 1000, behavior: "smooth" }); ''' js = """ window.scrollTo("{}", "{}") """.format(x, y) driver.execute_script(js) # TODO:没整明白到底怎么个滑动法 def window_scroll(driver: webdriver,element, x, y): """ 用途:指定元素移动的某位置 :param driver: webdriver :param element: 指定元素 :param x:屏幕向右移动的距离 :param y:屏幕向下移动的距离 :return: """ js = """ arguments[0].scrollTo("{}", "{}") """.format(x, y) driver.execute_script(js, element) def scroll_to_element(driver: webdriver,element): """ 用途:滚动屏幕使得元素上下、左右居中 :param driver: :param element: :return: """ js = "arguments[0].scrollIntoView({behavior: 'smooth', block: 'center', inline: 'center'});" driver.execute_script(js, element) def height_light(driver: webdriver, css,index=0): """ 用途:方便用户查看当前操作的是哪个页面元素,也方便测试人员定位问题 :param driver: webdriver :param css: css选择器 :param index: 列表的下标 :return: """ js = """ var element = document.querySelectorAll("{css}")[{index}]; element.style.border="4px solid red"; """.format(css=css, index=index) driver.execute_script(js) def height_lig(driver: webdriver,element): """ 用途:指定元素高亮 :param driver: webdriver :param element: 需要高亮的元素 :return: """ js = """ arguments[0].style.border="2px solid red"; """ driver.execute_script(js, element) def save_screenshot(driver: webdriver,sub_filename,element,describe=None): """ 用途:对当前屏幕截图并保存到当前路径,同时标记被操作的元素为高亮,图片文件名格式为:当前时间+sub_filename.png :param driver: webdriver :param sub_filename: 文件的部分名称,为了区分建议用selector命名 :param element: 需要被高亮的元素 :param describe: 方法的描述,同时也作为png图片文件名的一部分 :return: """ name = os.path.abspath('screenshot')+'/' # name = "C:/Users/Administrator/PycharmProjects/haige_selenium/screenshot/" st = strftime("%Y-%m-%d-%H-%M-%S",localtime(time())) file_name = name+st+'-'+sub_filename+describe+".png" height_lig(driver,element) driver.save_screenshot(file_name);
UTF-8
Python
false
false
6,338
py
11
my_js_utils.py
9
0.615517
0.611494
0
195
25.774359
96
miruts-xz/BeXAI
472,446,420,844
f98af63fa28b95cc3790a5f7142cfadc77aa96bf
48e73339e7c99b452dcdeef901ece52be3a7ac57
/src/method.py
4bdfb2ecbf1c3439bc3a6b97a3922abdc825decd
[]
no_license
https://github.com/miruts-xz/BeXAI
d154b035384b93a913cc963f4f15650cdccfa5b3
8ee51a2befc8b1d65cad17fa006d3014a03ffcaa
refs/heads/master
2023-06-19T18:27:17.563681
2021-07-21T14:00:32
2021-07-21T14:00:32
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Created by mire on 7/21/21. Copyright 2021, All rights reserved. import shap import methods supported_methods = { 'shap': methods.Shape, 'lime': methods.Lime, 'kernelshap': methods.KernelShap } class Explainer: def __init__(self, name): assert (name in supported_methods[name].keys(), f'This Method is not supported at the moment. Methods support are {list(supported_methods.keys())}') self.name = name self.method = lambda clf, data: supported_methods[name](clf, data)
UTF-8
Python
false
false
532
py
9
method.py
9
0.659774
0.642857
0
18
28.555556
116
Meet2147/yt_download
17,428,977,288,062
8665f739effb25f94d6a7ca36a6da44cb0228227
8973cce5e27e44c13505f08b69e57dc906d2a0b9
/app.py
bd62b2eb11659b4a8ee772a676b2583ddac96a78
[ "MIT" ]
permissive
https://github.com/Meet2147/yt_download
236557468f0200c454c394193eb8b1c9ded08a1d
3277a1d682dcb57ca30f268b0e6486762f643f09
refs/heads/main
2023-04-30T08:48:23.971366
2021-05-09T03:30:30
2021-05-09T03:30:30
365,654,704
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from flask import Flask, render_template, request, session, redirect, send_file, url_for from pytube import YouTube app = Flask(__name__) app.config['SECRET_KEY'] = "AlmastYogi" def download(url): video = url.streams.first() filepath = video.download() return filepath @app.route("/", methods=['GET', 'POST']) def index(): if request.method == 'POST': session['link'] = request.form.get('url') url = YouTube(session['link']) return render_template("see_video.html",url=url) return render_template("index.html") @app.route("/see_video", methods=['GET','POST']) def see_video(): if request.method == 'POST': url = YouTube(session['link']) itag = request.form.get('itag') video = url.streams.get_by_itag(itag) filename = video.download() return send_file(filename, as_attachment=True) return redirect(url_for('index'))
UTF-8
Python
false
false
922
py
2
app.py
1
0.631236
0.631236
0
30
29.733333
88
cliftonpalmer/python-diff
11,647,951,328,977
aeb6403fb6424bc725671b1a2407adc5583744b2
c4d3f09408c7bbd46e8e72e063239edc0f0d9c22
/diff.py
bff8f17954c3013729ff36b7cc9e2690b59e9866
[]
no_license
https://github.com/cliftonpalmer/python-diff
da6fabd2499f4c70d3b7012b088b5a69bdc0bf01
445c4c36b15b35553988c1a8c99790e330511ffc
refs/heads/master
2020-04-12T12:28:31.423480
2019-10-18T01:43:36
2019-10-18T01:43:36
162,492,760
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def index_by_newlines(a, sign): return [ [i, v, sign] for i,v in enumerate(a.split("\n")) ] def diff(a, b): # separate left and right into arrays indexed by line a = index_by_newlines(a, '-') b = index_by_newlines(b, '+') # remove matching lines for va in a[:]: for vb in b: if va[1] == vb[1]: a.remove(va) b.remove(vb) continue # print in line index order with right or left symbols, + or - c = a + b c.sort(key=lambda v: v[0]) return c a = """a b c""" b = """a a x b""" for v in diff(a,b): print(v[2] + v[1])
UTF-8
Python
false
false
630
py
2
diff.py
1
0.5
0.492063
0
33
18.090909
66
JayjeetAtGithub/spack
523,986,051,252
4669b07c5b5df14e9a0812549dc24c2162cc2826
fb2cc597f319380d228fc15c4008760a82203687
/var/spack/repos/builtin/packages/py-geocube/package.py
123a8149e46cb1582260f56f466cffcc25657712
[ "Apache-2.0", "MIT", "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause", "LGPL-2.1-only" ]
permissive
https://github.com/JayjeetAtGithub/spack
c41b5debcbe139abb2eab626210505b7f930d637
6c2df00443a2cd092446c7d84431ae37e64e4296
refs/heads/develop
2023-03-21T02:35:58.391230
2022-10-08T22:57:45
2022-10-08T22:57:45
205,764,532
0
0
MIT
true
2019-09-02T02:44:48
2019-09-02T02:44:47
2019-07-12T08:48:51
2019-07-12T08:48:49
15
0
0
0
null
false
false
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack.package import * class PyGeocube(PythonPackage): """Tool to convert geopandas vector data into rasterized xarray data.""" homepage = "https://github.com/corteva/geocube" pypi = "geocube/geocube-0.0.17.tar.gz" maintainers = ["adamjstewart"] version("0.3.2", sha256="71ff0228f1ef44e3a649d29a045ff7e2a2094a5cfca30fadab8f88f4ec23a41d") version("0.3.1", sha256="5c97131010cd8d556a5fad2a3824452120640ac33a6a45b6ca9ee3c28f2e266f") version("0.0.17", sha256="bf8da0fa96d772ebaea0b98bafa0ba5b8639669d5feb07465d4255af177bddc0") depends_on("python@3.7:", type=("build", "run")) depends_on("python@3.8:", when="@0.1.1:", type=("build", "run")) depends_on("py-setuptools", type="build") depends_on("py-appdirs", type=("build", "run")) depends_on("py-click@6.0:", type=("build", "run")) depends_on("py-datacube", when="@:0.1", type=("build", "run")) depends_on("py-geopandas@0.7:", type=("build", "run")) depends_on("py-odc-geo", when="@0.2:", type=("build", "run")) depends_on("py-rasterio", type=("build", "run")) depends_on("py-rioxarray@0.4:", type=("build", "run")) depends_on("py-scipy", when="@0.0.18:", type=("build", "run")) depends_on("py-xarray@0.17:", type=("build", "run")) depends_on("py-pyproj@2:", type=("build", "run")) depends_on("py-numpy@1.20:", when="@0.3:", type=("build", "run"))
UTF-8
Python
false
false
1,587
py
8,218
package.py
6,591
0.659735
0.550725
0
34
45.676471
96
creedasaurus/stoopclub_Chat
7,310,034,383,448
be14609a6755c502f1b7798f4ede942b793dff64
98d7ba89d515f3abd8ad0812d61baf3063a166ba
/hello_stoopers.py
f13c6206a2aaf34ae4ebaf1d01ff03826e990be7
[]
no_license
https://github.com/creedasaurus/stoopclub_Chat
ff5b6c57d61bb05c59e4bcc360d1c3c272c0a4e9
042011b5523170a8d732f4c6e42357acf9cefa07
refs/heads/master
2016-08-11T14:56:34.252603
2015-11-04T08:16:55
2015-11-04T08:16:55
45,523,127
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
newNumber = 26 print "Hello Stoop Troopers"
UTF-8
Python
false
false
43
py
2
hello_stoopers.py
1
0.790698
0.744186
0
2
21
28
dimonrtm/ml_
17,308,718,214,466
4629581944a644b721714440da8b32d62a774bc9
9f6b2cf2a8a12c3cfa97dabf548973837eaf9043
/Программирование на Python/Погружение в Python/Задания/Неделя1/Задание1/solution.py
d9c47ef1c8b312b76f425b3f4e98c74bef5688e9
[]
no_license
https://github.com/dimonrtm/ml_
56b242caed4d60d40befb3f5235e43ac40f6a139
49e211ec83115bfc90ad44854b7759df31d3de33
refs/heads/master
2020-08-31T05:20:43.477108
2020-07-04T18:22:21
2020-07-04T18:22:21
218,602,334
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import sys digit_string=sys.argv[1] sum=0 for number in digit_string: sum+=int(number) print(sum)
UTF-8
Python
false
false
101
py
88
solution.py
24
0.732673
0.712871
0
6
16
27
Plavit/cs50ai
3,075,196,620,010
53f373ae815bff538628576a6b3b332c4ec599ea
5053e4440b8c31ab65a35497da279399f03cb359
/Project 2a - Pagerank/pagerank.py
86ee864b3f2de49b511946ebd9bbdc24bc06a2ba
[]
no_license
https://github.com/Plavit/cs50ai
b8770b86e25774bf9b45abd85a60e90476ca9cf0
ef1024ee0b36bbceaaebe443915fb0498752221b
refs/heads/master
2023-02-10T12:12:37.347996
2021-01-03T19:12:17
2021-01-03T19:12:17
323,460,918
8
1
null
false
2021-01-02T11:09:22
2020-12-21T22:21:31
2021-01-02T11:09:11
2021-01-02T11:09:22
23,804
0
0
3
Python
false
false
import copy import os import random import re import sys DAMPING = 0.85 SAMPLES = 10000 def main(): if len(sys.argv) != 2: sys.exit("Usage: python pagerank.py corpus") corpus = crawl(sys.argv[1]) ranks = sample_pagerank(corpus, DAMPING, SAMPLES) print(f"PageRank Results from Sampling (n = {SAMPLES})") for page in sorted(ranks): print(f" {page}: {ranks[page]:.4f}") ranks = iterate_pagerank(corpus, DAMPING) print(f"PageRank Results from Iteration") for page in sorted(ranks): print(f" {page}: {ranks[page]:.4f}") def crawl(directory): """ Parse a directory of HTML pages and check for links to other pages. Return a dictionary where each key is a page, and values are a list of all other pages in the corpus that are linked to by the page. """ pages = dict() # Extract all links from HTML files for filename in os.listdir(directory): if not filename.endswith(".html"): continue with open(os.path.join(directory, filename)) as f: contents = f.read() links = re.findall(r"<a\s+(?:[^>]*?)href=\"([^\"]*)\"", contents) pages[filename] = set(links) - {filename} # Only include links to other pages in the corpus for filename in pages: pages[filename] = set( link for link in pages[filename] if link in pages ) return pages def transition_model(corpus, page, damping_factor): """ Return a probability distribution over which page to visit next, given a current page. With probability `damping_factor`, choose a link at random linked to by `page`. With probability `1 - damping_factor`, choose a link at random chosen from all pages in the corpus. """ # Variable setup target = {} links = corpus[page] # Without links, each page has same probability if not links: for x in corpus: target[x] = 1.0 / len(corpus) else: # Otherwise, with probability `1 - damping_factor`, choose # a link at random chosen from all pages in the corpus. for x in corpus: target[x] = (1 - damping_factor) / len(corpus) # plus, add another probability per link: with probability `damping_factor`, choose a link at random # linked to by `page` for x in links: target[x] += damping_factor / len(links) # Debug - total sum # total=0 # for y in corpus: # total+=target[y] # print(total) # Return a probability distribution over which page to visit next return target def sample_pagerank(corpus, damping_factor, n): """ Return PageRank values for each page by sampling `n` pages according to transition model, starting with a page at random. Return a dictionary where keys are page names, and values are their estimated PageRank value (a value between 0 and 1). All PageRank values should sum to 1. """ # Variable setup page_ranks = {}.fromkeys(corpus.keys(), 0) target_page = random.choices(list(corpus.keys()))[0] # For n pages as defined by input for i in range(1, n): # Sample transition model, starting with random target page initialized before current_dist = transition_model(corpus, target_page, damping_factor) for page in page_ranks: # For each page, add pagerank value page_ranks[page] = (((i - 1) * page_ranks[page]) + current_dist[page]) / i target_page = random.choices(list(page_ranks.keys()), weights=list(page_ranks.values()), k=1)[0] # Debug - total sum total = 0 for page in page_ranks: total += page_ranks[page] print("Debug 1, total sum: ", total) # Return a dictionary where keys are page names, and values are # their estimated PageRank value (a value between 0 and 1). All # PageRank values should sum to 1. return page_ranks def iterate_pagerank(corpus, damping_factor): """ Return PageRank values for each page by iteratively updating PageRank values until convergence. Return a dictionary where keys are page names, and values are their estimated PageRank value (a value between 0 and 1). All PageRank values should sum to 1. """ # Variable setup total_pages = len(corpus) page_ranks = {}.fromkeys(corpus.keys(), 1.0 / total_pages) too_rough = True # Until reaching set precision threshold, iterate while too_rough: old_distribution = copy.deepcopy(page_ranks) # PageRank values for each page by iteratively updating # PageRank values until convergence, with same rules as previous function for page in corpus: # Determine link weight for page link_weight = 0 for p in corpus: if page in corpus[p]: link_weight += page_ranks[p] / len(corpus[p]) # Iteratively add pagerank to pages page_ranks[page] = ((1 - damping_factor) / total_pages) + (damping_factor * link_weight) # Until estimate is precise enough too_rough = (abs(old_distribution[page] - page_ranks[page]) > 0.0001) # Debug - total sum total = 0 for page in page_ranks: total += page_ranks[page] print("Debug 2, total sum: ", total) # Return a dictionary where keys are page names, and values are # their estimated PageRank value (a value between 0 and 1). All # PageRank values should sum to 1. (should be very similar in results to previous function) return page_ranks if __name__ == "__main__": main()
UTF-8
Python
false
false
5,690
py
7
pagerank.py
6
0.627592
0.618981
0
173
31.890173
108
yomhub/Tensorflow_research
4,174,708,258,760
baf840af748c2230fef4231bff5f47bedaa51311
de86f9f9dd620212c96fc3bbc28bdbc7432aa237
/lib/tflib/log_tools.py
7fc6066e1c69ff10ecfe8c364bac1338fc3ec9fa
[]
no_license
https://github.com/yomhub/Tensorflow_research
235fa5513abeea64e44291e6705fb136cf108af4
2f8102039168ade5481745e4aa59c7e6a0cba59b
refs/heads/master
2022-11-24T05:08:11.009741
2020-06-14T01:21:54
2020-06-14T01:21:54
280,804,212
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from matplotlib import colors as mcolors from matplotlib.collections import PolyCollection from datetime import datetime from mpl_toolkits.mplot3d import Axes3D __DEF_LINE_STY = [ 'solid', # _____ 'dotted', # ....... 'dashdot', # __.__.__. 'dashed', # __ __ __ ] __DEF_COLORS = [ 'r','b','g','c','y','m'] def str2time(instr): ymd,hms=instr.split('-') return datetime(int(ymd[:4]), int(ymd[4:6]), int(ymd[6:]), int(hms[:2]), int(hms[2:4]), int(hms[4:6])) def str2num(instr): return [int(s) for s in instr.split() if s.isdigit()] def auto_scalar(dic_data, step=0, logname=None): if(type(dic_data)==list): if(logname==None): logname="auto_scalar" cont = 0 for itm in dic_data: tf.summary.scalar(logname+"_list_{}".format(cont),itm,step=step) cont += 1 elif(type(dic_data)==dict): for itname in dic_data: tf.summary.scalar(itname,dic_data[itname],step=step) else: if(logname==None): logname="auto_scalar" tf.summary.scalar(logname,dic_data,step=step) def auto_image(img_data, name=None, step=0, max_outputs=None, description=None): """ Args: img_data: tensor with shape (h,w,3 or 1) or (N,h,w,3 or 1) name: log name step: int of step max_outputs: int of max_outputs """ if(len(img_data)==3): img_data = tf.reshape(img_data,[1,]+img_data.shape) if(tf.reduce_max(img_data)>1.0): img_data = img_data / 256.0 max_outputs = img_data.shape[0] if max_outputs==None else max_outputs name = "auto_image" if name==None else name tf.summary.image(name,img_data,step,max_outputs,description) def auto_histogram(dic_data, step=0, logname=None): if(type(dic_data)==list): if(logname==None): logname="auto_scalar" cont = 0 for itm in dic_data: tf.summary.histogram(logname+"_list_{}".format(cont),itm,step=step) cont += 1 elif(type(dic_data)==dict): for itname in dic_data: tf.summary.histogram(itname,dic_data[itname],step=step) else: if(logname==None): logname="auto_scalar" tf.summary.histogram(logname,dic_data,step=step) def save_image(img, savedir): if(len(img.shape)==4): img = tf.reshape(img,img.shape[1:]) tf.io.write_file(savedir,tf.io.encode_jpeg(tf.cast(img,tf.uint8))) def plt_func_lines(funcs,xarry=None,cols=None,figure=None,fig_size=None,save_name=None): """ Draw plt by function Args: fig_size: width, height """ fg = plt.figure(figsize=fig_size) if(figure==None)else figure if(xarry==None): xarry=np.range(-5.0,5.0,100) if(type(funcs)!=list): funcs = [funcs] for i in range(len(funcs)): fg.plot( xarry,funcs[i](xarry), color=__DEF_COLORS[i%len(__DEF_COLORS)], linewidth=1.0, linestyle=__DEF_LINE_STY[i%len(__DEF_LINE_STY)]) if(save_name!=None):fg.savefig(save_name) return fg def plt_points_lines(points,xarry=None,xcfg=None,figure=None,fig_size=None,save_name=None): """ Draw plt by function Args: points: 1D array (Ny,) with [y0,y1...]: if xarry is [x0,x1...], use xarry. Or calculate xarry by xcfg 2D array (2,Nyx) with [[y0,y1...],[x0,x1...]] List of 1D/2D arrays: draw multi lines in figure xarry: 1D array (Nx,) with [x0,x1...] xcfg: if points is 1D and xarry==None, (start,end) will be use """ fg = plt.figure(figsize=fig_size) if(figure==None)else figure if(type(points)!=list): points = [points] for i in range(len(points)): if(len(points[i].shape)==1): if(xarry!=None and xarry.shape[0]==points[i].shape[0]): xs = xarry elif(xcfg!=None): xs = np.linspace(xcfg[0],xcfg[1],points[i].shape[0]) ys = points[i] else: xs = points[i][1] ys = points[i][0] fg.plot(xs,ys, color=__DEF_COLORS[i%len(__DEF_COLORS)], linewidth=1.0, linestyle=__DEF_LINE_STY[i%len(__DEF_LINE_STY)]) if(save_name!=None):fg.savefig(save_name) return fg def rf_helper(net_list,ord_len,panding=True): """ Args: net_list: list pramaters of network [kernel size, stride size] ord_num: int, coordinate range panding: True or False Print coordinate in each layer """ if(type(net_list)!=list or len(net_list)<2):return panding = bool(panding) ord_len = int(ord_len) rf_st = [[1,1]] cod_table = np.arange(ord_len,dtype=np.int) cod_table = np.stack((cod_table,cod_table),axis=-1) cod_table = [cod_table.tolist()] for i in range(len(net_list)): rf,st = rf_st[i] ksize,strsize = net_list[i] crf = rf + (ksize-1)*st cst = st*strsize rf_st.append([crf,cst]) p_harf_k = int(ksize/2) if((ksize-int(ksize/2)*2)!=0)else int(ksize/2)-1 harf_k = ksize - 1 - p_harf_k max_cod = len(cod_table[i])-1 stp = 0 if panding else p_harf_k edp = max_cod if panding else max_cod - harf_k tmp = [] while(stp<edp): c_ctp = max(0,stp-p_harf_k) c_edp = min(max_cod,stp + harf_k) tmp.append([cod_table[i][c_ctp][0],cod_table[i][c_edp][1]]) stp+=strsize cod_table.append(tmp) return rf_st,cod_table def resize_visualize_helper(img,model,gtbox=None,mask=None): """ Helper for feature part in unet in resize task. Args: img: input image gtbox: (N,4) with [y1,x1,y2,x2] in [0,1] mask: pixel mask module: model with output {} """ linewidth = 1.3 plt.figure(figsize=(8,4)) # fg = plt.figure(figsize=(8,4)) plt.subplot(3,3,1, # figure=fg ) divnum = 3*3-1 base_scale = 32 # vgg net based scale if(type(img)!=list):img=[img] if(gtbox!=None and type(gtbox)!=list):gtbox=[gtbox] if(mask!=None and type(mask)!=list):mask=[mask] for j in range(divnum): plt.subplot(3,3,j+1, # figure=fg ) plt.xlabel('layer', # figure=fg ) plt.ylabel('energy', # figure=fg ) plt.title('Scaler {}/{}'.format(j+1,divnum), # figure=fg ) dx=np.arange(5) for i in range(len(img)): coe_x = int(max(int(img[i].shape[-2]/base_scale),divnum)/divnum) coe_y = int(max(int(img[i].shape[-3]/base_scale),divnum)/divnum) for j in range(divnum): img_size = [coe_y*base_scale,coe_x*base_scale] tmp = tf.image.resize(img[i],img_size) rt = model(tmp) mp = tf.cast(rt['scr'][:,:,:,1]>rt['scr'][:,:,:,0],tf.float32) mp = tf.reshape(mp,mp.shape+[1]) mp = tf.broadcast_to(mp,mp.shape[:-1]+[3]) mp = tf.concat([mp,tf.image.resize(tmp,mp.shape[-3:-1])/255.0],axis=2) tf.summary.image( name = 'Score|Img image size {}.'.format(img_size), data = mp,step=0) # if(dx==None):dx=np.arange(len(rt['ftlist'])) dmin = [] dmean = [] dmax = [] for o in range(len(rt['ftlist'])): dmin += [tf.reduce_min(rt['ftlist'][o]).numpy()] dmax += [tf.reduce_max(rt['ftlist'][o]).numpy()] dmean += [tf.reduce_mean(rt['ftlist'][o]).numpy()] dmin = np.asarray(dmin) dmean = np.asarray(dmean) dmax = np.asarray(dmax) plt.subplot(3,3,j+1, # figure=fg ) plt.plot(dx,dmean, color=__DEF_COLORS[i%len(__DEF_COLORS)], linewidth=linewidth, linestyle=__DEF_LINE_STY[0], label='mean', # figure=fg ) plt.plot(dx,dmin, color=__DEF_COLORS[i%len(__DEF_COLORS)], linewidth=linewidth, linestyle=__DEF_LINE_STY[1], label='min', # figure=fg ) plt.plot(dx,dmax, color=__DEF_COLORS[i%len(__DEF_COLORS)], linewidth=linewidth, linestyle=__DEF_LINE_STY[2], label='max', # figure=fg ) plt.show() plt.savefig('logfig.png') # fg.show() print("") def sequence_visualize_helper(img,model,gtbox=None,mask=None): """ Helper for feature part in unet in sequence task. Args: img: list of image sequence gtbox: (N,4) with [y1,x1,y2,x2] in [0,1] mask: pixel mask module: model with output {} """ def polygon_under_graph(xlist, ylist): ''' Construct the vertex list which defines the polygon filling the space under the (xlist, ylist) line graph. Assumes the xs are in ascending order. ''' return [(xlist[0], 0.)] + list(zip(xlist, ylist)) + [(xlist[-1], 0.)] def cc(arg): ''' Shorthand to convert 'named' colors to rgba format at 60% opacity. ''' return mcolors.to_rgba(arg, alpha=0.6) fig_min = plt.figure(num='min') fig_max = plt.figure(num='max') fig_mean = plt.figure(num='mean') # mean, min, max ax_min = fig_min.gca(projection='3d') ax_max = fig_max.gca(projection='3d') ax_mean = fig_mean.gca(projection='3d') # ax1 = fig.add_subplot(1,3,1,projection='3d') # ax2 = fig.add_subplot(1,3,2,projection='3d') # ax3 = fig.add_subplot(1,3,3,projection='3d') linewidth = 1.3 if(type(img)!=list):img=[img] if(gtbox!=None and type(gtbox)!=list):gtbox=[gtbox] if(mask!=None and type(mask)!=list):mask=[mask] dmin = [] dmean = [] dmax = [] for i in range(len(img)): rt = model(img[i]) mp = tf.cast(rt['scr'][:,:,:,1]>rt['scr'][:,:,:,0],tf.float32) mp = tf.reshape(mp,mp.shape+[1]) mp = tf.broadcast_to(mp,mp.shape[:-1]+[3]) mp = tf.concat([ mp, # tf.broadcast_to(rt['mask'],rt['mask'].shape[:-1]+[3]), tf.image.resize(img[i],mp.shape[-3:-1])/255.0], axis=2) tf.summary.image( name = 'Score|Edg|Img image.', data = mp,step = i, max_outputs=20 ) tf.keras.preprocessing.image.save_img( path='fg{}.jpg'.format(i), x=tf.reshape(mp,mp.shape[1:]).numpy(), # scale=False, ) tmp_dmin = [] tmp_dmax = [] tmp_dmean = [] for j in range(len(rt['ftlist'])): tmp_dmin += [tf.reduce_min(rt['ftlist'][j]).numpy()] tmp_dmax += [tf.reduce_max(rt['ftlist'][j]).numpy()] tmp_dmean += [tf.reduce_mean(rt['ftlist'][j]).numpy()] dmin += [tmp_dmin] dmax += [tmp_dmax] dmean += [tmp_dmean] # convert d[img][layer] to d[layer][img] dmin = np.asarray(dmin).transpose((1,0)) dmax = np.asarray(dmax).transpose((1,0)) dmean = np.asarray(dmean).transpose((1,0)) zs = range(dmin.shape[0]) # layers num xs = np.arange(len(img)) verts_min = [] verts_max = [] verts_mean = [] cols = [] for i in zs: verts_min.append(polygon_under_graph(xs,dmin[i])) verts_max.append(polygon_under_graph(xs,dmax[i])) verts_mean.append(polygon_under_graph(xs,dmean[i])) cols += [cc(__DEF_COLORS[i%len(__DEF_COLORS)])] poly_min = PolyCollection(verts_min, facecolors=cols) poly_max = PolyCollection(verts_max, facecolors=cols) poly_mean = PolyCollection(verts_mean, facecolors=cols) ax_min.add_collection3d(poly_min, zs=zs, zdir='y') ax_min.set_xlabel('Images') ax_min.set_xlim(0, len(img)) ax_min.set_ylabel('Layers') ax_min.set_ylim(0, dmin.shape[0]) ax_min.set_zlabel('Mean') ax_min.set_zlim(dmin.min()-1.0, dmin.max()+1.0) ax_max.add_collection3d(poly_max, zs=zs, zdir='y') ax_max.set_xlabel('Images') ax_max.set_xlim(0, len(img)) ax_max.set_ylabel('Layers') ax_max.set_ylim(0, dmin.shape[0]) ax_max.set_zlabel('Max') ax_max.set_zlim(dmax.min()-1.0, dmax.max()+1.0) ax_mean.add_collection3d(poly_mean, zs=zs, zdir='y') ax_mean.set_xlabel('Images') ax_mean.set_xlim(0, len(img)) ax_mean.set_ylabel('Layers') ax_mean.set_ylim(0, dmin.shape[0]) ax_mean.set_zlabel('Mean') ax_mean.set_zlim(dmean.min()-1.0, dmean.max()+1.0) # plt.show() # plt.savefig('logfig.png') # fg.show() print("")
UTF-8
Python
false
false
11,644
py
31
log_tools.py
27
0.594297
0.575146
0
384
29.325521
104
luoxuwei/Compiler
13,572,096,656,598
e798e369bd133ee0e0a105ffe477eccbf6551d0c
7588f030cb6f5c2692c14ec3caedf9f11a312cb1
/pythonvm/test_case/27_test_allocate_instance.py
e44cfaa1d69dcdaaa1380f617f85f94bb2905ad8
[]
no_license
https://github.com/luoxuwei/Compiler
cceee6af426ba9d9b2f13d22fcf6e06a692953ba
d11da97ab9ef2f1a61d0244d0080c6b3f90fd475
refs/heads/master
2022-12-12T12:20:27.988873
2022-11-26T16:29:00
2022-11-26T16:29:00
252,653,543
4
2
null
null
null
null
null
null
null
null
null
null
null
null
null
a = int() print(a) b = str() print(b) c = list() print(c) d = dict() print(d)
UTF-8
Python
false
false
78
py
271
27_test_allocate_instance.py
217
0.538462
0.538462
0
8
8.75
10
ajevnisek/FederatedLearning
10,144,712,802,245
857d19b5a0240b13be940fe037d5d78f1c15582f
5e6895248c79c6f5860e371edb9d325aa26f92f2
/models/influence.py
8f0427a4c3780fd17d901050b4d16f2634a05511
[]
no_license
https://github.com/ajevnisek/FederatedLearning
c613e743ef1368b75e77d0cd69419745e3e40e8e
6330befb1629a5f652bc1c1fea80f1830aec00a0
refs/heads/master
2022-04-13T16:29:10.895522
2019-12-21T08:12:05
2019-12-21T08:12:05
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import six import torch from torch.autograd import grad from torch.autograd import Variable import torch.nn.functional as F from models import utility import argparse import copy import numpy as np from utils.options import args_parser import pickle from torch.utils import data from torch.utils.data import Dataset from torch.autograd import Variable import torch.nn.functional as F import random def hvp(y, w, v): first_grads = grad(y, w, retain_graph=True, create_graph=True) grad_v = 0 for g, v in six.moves.zip(first_grads, v): grad_v += torch.sum(g * v) grad(grad_v, w, create_graph=True) return grad(grad_v, w, create_graph=True) def grad_z(z, t, model, gpu=-,create_graph=True): device = torch.device('cuda:{}'.format(gpu) if torch.cuda.is_available() and gpu != -1 else 'cpu') model.eval() z, t = Variable(z, volatile=False).to(device), Variable(t, volatile=False).to(device) y = model(z) loss = F.nll_loss(y, t, weight=None, reduction='mean') return list(grad(loss, list(model.parameters()), create_graph=create_graph)) def stest(v,model,z_loader,gpu,damp=0.01,scale=25.0,repeat=5): h_estimate=v.copy() train_set=z_loader device = torch.device('cuda:{}'.format(gpu) if torch.cuda.is_available() and gpu != -1 else 'cpu') for i in utility.create_progressbar(repeat, desc='s_test'): j=random.randint(0,len(z_loader)) data, target= train_set.dataset[j] data = train_set.collate_fn([data]) target= train_set.collate_fn([target]) x, t = Variable(data, volatile=False).to(device), Variable(target, volatile=False).to(device) y = model(x) loss = F.nll_loss(y, t, weight=None, reduction='mean') hv = hvp(loss, list(model.parameters()), h_estimate) h_estimate = [_v + (1 - damp) * h_estimate - _hv / scale for _v, h_estimate, _hv in six.moves.zip(v, h_estimate, hv)] return h_estimate
UTF-8
Python
false
false
1,987
py
13
influence.py
12
0.65224
0.6462
0
48
39.354167
125
codingpurush/class11python
6,021,544,187,161
a2103a25913f074a8715c7f50b2ad8ef97d51033
48eb7ce8a065e4b851bd0eefa70d14a91af2d800
/fibonnacci_Nth.py
d5bd0b8fee5516792da25fb3758d5c0627f14282
[]
no_license
https://github.com/codingpurush/class11python
c67d03048684e1cf4e28e4d7c0708abe31bf0f5d
66255e7ba597eb369bea920deb901875b19a8613
refs/heads/master
2020-12-29T06:10:17.134618
2020-02-06T13:15:24
2020-02-06T13:15:24
238,485,561
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#PRINT Nth FIBONACCI NUMBER x=int(input()) a=-1 b=1 c=a+b for i in range(2,x+1): #print(c) a=b b=c c=a+b if(i==x): print(c)
UTF-8
Python
false
false
129
py
10
fibonnacci_Nth.py
10
0.589147
0.55814
0
12
9.75
27
marikapartyka/lungs
3,083,786,523,044
77ff5618a1d32611022a7c2d0cc659d3b34d89e4
1c4c31e86e4b9f92d558722d04d9f436e4b078ef
/explain.py
fff593ead9d3586c5e0b2aa59c022f8ce22999a8
[]
no_license
https://github.com/marikapartyka/lungs
fc2b2213cb6033c23327ae686e65a3e12735f609
6589b1a606d0a0b5ec0966e1bef87dec0a15f7fc
refs/heads/master
2023-01-09T14:31:12.279023
2020-11-11T19:17:07
2020-11-11T19:17:07
312,063,687
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python # coding: utf-8 from _train import data, X, y, pipeline, pipeline_for_encoded_data,encoded_X import pandas as pd import sklearn import numpy as np from lime import lime_tabular import dalex as dx model = pipeline X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(X, y, train_size=0.80) model.fit(X_train, y_train) # create an explainer for the model: exp = dx.Explainer(model, X, y, label = "Lung's Cancer MLP Pipeline") # BreakDown and BreakDownInt methods def BreakDown(number_of_observation): bd = exp.predict_parts(pd.DataFrame(X_test.iloc[number_of_observation,:]).T, type='break_down') bd.plot() def BreakDownI(number_of_observation): bd_interactions = exp.predict_parts(pd.DataFrame(X_test.iloc[number_of_observation,:]).T, type='break_down_interactions') bd_interactions.plot() #SHAP def Shap(number_of_observation): sh = exp.predict_parts(pd.DataFrame(X_test.iloc[number_of_observation,:]).T, type='shap', B = 10) sh.plot(bar_width = 16) Shap(4) # sh.result.loc[sh.result.B == 0, ] # #lime # # preparing categorical_features for lime method # categorical_features = [3,7,9,10] # categorical_names = {} # categorical_names = {} # for feature in categorical_features: # Y = X.copy() # le = sklearn.preprocessing.LabelEncoder() # Y.iloc[:, feature] = Y.iloc[:, feature].astype(str) # le.fit(Y.iloc[:, feature]) # # Y.iloc[:, feature] = le.transform(Y.iloc[:, feature]) # categorical_names[feature] = le.classes_ # stadia = [float('nan'), 'IA1', 'IA2', 'IA3', 'IB', 'IIA', 'IIB', 'IIIA', 'IIIB', 'IVA', 'IVB'] # categorical_names.update({11:np.array(stadia, dtype=object)}) # categorical_features2 = [3,7,9,10,11] # encoder = lambda x: model.named_steps["encoder"].transform(x) # scaler = lambda x: model.named_steps["scaler"].transform(x) # predict_fn = lambda x: model.named_steps["nn"].predict_proba(x) # X_train_enc = encoder(X_train) # X_test_enc = encoder(X_test) # X_train_sc = scaler(X_train_enc) # X_test_sc = scaler(X_test_enc) # explainer_lime = lime_tabular.LimeTabularExplainer(X_train_sc,class_names=["NO", "YES"], # feature_names=X_train.columns, # categorical_features=categorical_features2, # categorical_names=categorical_names, # verbose=False) # def Lime(number_of_observation): # exp_lime = explainer_lime.explain_instance(X_test_sc[number_of_observation],predict_fn) # exp_lime.show_in_notebook(show_table=True, show_all=False) # Lime(4) def CeterisParibus(number_of_observation): cp = exp.predict_profile(pd.DataFrame(X_test.iloc[number_of_observation,:]).T) cp.plot() CeterisParibus(4) def VariableImp(): vi = exp.model_parts() vi.plot(max_vars=10) VariableImp() def PartialDp(): pdp_num = exp.model_profile(type = 'partial') pdp_num.result["_label_"] = 'pdp' pdp_num.plot() PartialDp()
UTF-8
Python
false
false
3,170
py
9
explain.py
4
0.623659
0.613249
0
111
27.495495
101
Alpine-DAV/ascent
17,669,495,464,138
a3aed1e909ae3a9ef53150b14bb9af503f9c5445
5de7df0be411b4bad61f927cae845bdb8223308f
/src/examples/tutorial/ascent_intro/python/conduit_example2.py
cfd0910e805659a8284114c8ba8d540e08153dec
[ "BSD-3-Clause", "Zlib" ]
permissive
https://github.com/Alpine-DAV/ascent
cb40429167a93c62f78fe650a0121258be279162
e52b7bb8c9fd131f2fd49edf58037cc5ef77a166
refs/heads/develop
2023-09-06T07:57:11.558238
2023-08-25T16:05:31
2023-08-25T16:05:31
81,366,855
151
61
NOASSERTION
false
2023-09-13T19:31:09
2017-02-08T19:21:22
2023-09-10T23:54:29
2023-09-13T19:31:09
111,927
155
58
166
C++
false
false
############################################################################### # Copyright (c) Lawrence Livermore National Security, LLC and other Ascent # Project developers. See top-level LICENSE AND COPYRIGHT files for dates and # other details. No copyright assignment is required to contribute to Ascent. ############################################################################### import conduit import numpy as np # # Using hierarchical paths imposes a tree structure # n = conduit.Node() n["dir1/dir2/val1"] = 100.5; print(n.to_yaml())
UTF-8
Python
false
false
551
py
1,345
conduit_example2.py
1,035
0.540835
0.528131
0
15
35.666667
79
enverygtlr/simple-Ray-tracer-in-webgl
12,756,052,870,415
c85bb8a7144c6d363bdadc2d288269339a40cee1
d5c10a5e222e5e6bee50d6d296e129986384ea02
/new/untitled folder/untitled folder/pythonscript.py
13e65853240c0a99cbbd02df3d18bfde1c97b337
[]
no_license
https://github.com/enverygtlr/simple-Ray-tracer-in-webgl
37c48210e3a7e4e6de52d3bc25c62836ec2e06b6
5604e3910954d91c1cf2c9db22e9bda1c8162fbc
refs/heads/master
2023-02-24T15:58:39.122964
2021-01-27T11:49:07
2021-01-27T11:49:07
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def genPairs(n): for i in range(0, n): for j in range(i+1, n): yield (i, j) for p in genPairs(5): print(p)
UTF-8
Python
false
false
135
py
8
pythonscript.py
5
0.496296
0.474074
0
6
21.5
31
williamy1996/AutoExpression
6,777,458,418,199
022def6b9f8db5e3774a404aab43580159ac681f
aa0bdafb61b8ea16e21daf4f9bfc2d87044eb57e
/solnml/utils/saveloadmodel.py
6344380279173b2bbbc26da96dfa9e85fa5d2018
[ "MIT" ]
permissive
https://github.com/williamy1996/AutoExpression
c32b5105aa9ba71d14269d04745b5fbf8e75c646
b470d9ff67074c8b076abbc1dce359db9a36f921
refs/heads/master
2022-12-14T20:22:37.529136
2020-09-03T10:04:10
2020-09-03T10:04:10
292,527,971
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import argparse import os import sys import time import pickle import numpy as np import pandas as pd import json import pickle as pkl from sklearn.datasets import load_iris from sklearn.metrics import balanced_accuracy_score from sklearn.model_selection import train_test_split from solnml.utils.data_manager import DataManager from solnml.estimators import Classifier class Ensemble_models: def __init__(self,ensemble_info,mdl_list): self.ensemble_info = ensemble_info self.model_list = mdl_list def predict_proba(self,test_x): #ONLY FOR CLF MODEL if(self.ensemble_info['task_type'] == 'RGS'): print('Regression model does not have \'predict_proba\'.') return 'Regression model does not have \'predict_proba\'.' if(self.ensemble_info['ensemble_method']=='none'): femdl = self.model_list[0] y_predict = predict_proba_from_path(femdl,test_x) return y_predict if(self.ensemble_info['ensemble_method']=='bagging'): y_predict = [] for femdl in self.model_list: y_predict.append(predict_proba_from_path(femdl,test_x)) y_predict = np.array(y_predict) return np.average(y_predict,axis=0) if(self.ensemble_info['ensemble_method']=='ensemble_selection'): y_predict = [] weights = np.array(pd.read_json(self.ensemble_info['ensemble_weights']))[:,0] i = 0 for femdl in self.model_list: y_predict.append(predict_proba_from_path(femdl,test_x)*weights[i]) i+=1 y_predict = np.array(y_predict) return np.sum(y_predict,axis=0) if(self.ensemble_info['ensemble_method']=='stacking'): meta_learner = pickle.load(open(self.ensemble_info['meta_learner_path'],'rb')) kfold = self.ensemble_info['kfold'] femdl = self.model_list[0] y_predict = predict_proba_from_path(femdl,test_x) n_dim = y_predict.shape[1] sample_dim = y_predict.shape[0] y_predict = [] if(n_dim==2): n_dim = 1 i=0 for femdl in self.model_list: if(i == 0): new_sumpredict = np.zeros([sample_dim,n_dim]) new_predict = predict_proba_from_path(femdl,test_x) if(n_dim==1): new_predict = new_predict[:,1:] new_sumpredict = new_sumpredict + new_predict/kfold i+=1 if(i==kfold): i=0 y_predict.append(new_sumpredict) y_predict = np.hstack(y_predict) y_pred = meta_learner.predict_proba(y_predict) return y_pred if(self.ensemble_info['ensemble_method']=='blending'): meta_learner = pickle.load(open(self.ensemble_info['meta_learner_path'],'rb')) femdl = self.model_list[0] y_predict = predict_proba_from_path(femdl,test_x) n_dim = y_predict.shape[1] if(n_dim==2): n_dim = 1 y_predict = [] for femdl in self.model_list: new_predict = predict_proba_from_path(femdl,test_x) if(n_dim==1): new_predict = new_predict[:,1:] y_predict.append(new_predict) y_predict = np.hstack(y_predict) y_pred = meta_learner.predict_proba(y_predict) return y_pred def predict(self,test_x): if(self.ensemble_info['task_type'] == 'CLF'): return np.argmax(self.predict_proba(test_x),axis=1) if(self.ensemble_info['ensemble_method']=='none'): femdl = self.model_list[0] y_predict = predict_from_path(femdl,test_x) return y_predict if(self.ensemble_info['ensemble_method']=='bagging'): y_predict = [] for femdl in self.model_list: y_predict.append(predict_from_path(femdl,test_x)) y_predict = np.array(y_predict) return np.average(y_predict,axis=0) if(self.ensemble_info['ensemble_method']=='ensemble_selection'): y_predict = [] weights = np.array(pd.read_json(self.ensemble_info['ensemble_weights']))[:,0] i = 0 for femdl in self.model_list: y_predict.append(predict_from_path(femdl,test_x)*weights[i]) i+=1 y_predict = np.array(y_predict) return np.sum(y_predict,axis=0) if(self.ensemble_info['ensemble_method']=='stacking'): meta_learner = pickle.load(open(self.ensemble_info['meta_learner_path'],'rb')) kfold = self.ensemble_info['kfold'] femdl = self.model_list[0] y_predict = predict_from_path(femdl,test_x) n_dim = y_predict.shape[1] sample_dim = y_predict.shape[0] y_predict = [] if(n_dim==2): n_dim = 1 i=0 for femdl in self.model_list: if(i == 0): new_sumpredict = np.zeros([sample_dim,n_dim]) new_predict = predict_from_path(femdl,test_x) if(n_dim==1): new_predict = new_predict[:,1:] new_sumpredict = new_sumpredict + new_predict/kfold i+=1 if(i==kfold): i=0 y_predict.append(new_sumpredict) y_predict = np.hstack(y_predict) y_pred = meta_learner.predict(y_predict) return y_pred if(self.ensemble_info['ensemble_method']=='blending'): meta_learner = pickle.load(open(self.ensemble_info['meta_learner_path'],'rb')) femdl = self.model_list[0] y_predict = predict_from_path(femdl,test_x) n_dim = y_predict.shape[1] if(n_dim==2): n_dim = 1 y_predict = [] for femdl in self.model_list: new_predict = predict_from_path(femdl,test_x) if(n_dim==1): new_predict = new_predict[:,1:] y_predict.append(new_predict) y_predict = np.hstack(y_predict) y_pred = meta_learner.predict(y_predict) return y_pred def save_model(mdl,save_dir): mdl_list = '' fe_list = '' if not os.path.exists(save_dir): os.makedirs(save_dir) info = mdl.get_ens_model_info() if(info is None): f_ens_info = open(save_dir +'/ens_info','w') ens_dict = {} ens_dict['ensemble_method'] = 'none' f_ens_info.write(json.dumps(ens_dict)) f_ens_info.close() os.system('cp '+ mdl.best_algo_path + ' '+save_dir +'/') os.system('cp '+ mdl.best_fe_path + ' '+save_dir +'/') f_mdl_list = open(save_dir +'/model_list','w') f_mdl_list.write(os.path.basename(mdl.best_algo_path)) f_mdl_list.close() f_fe_list = open(save_dir +'/fe_list','w') f_fe_list.write(os.path.basename(mdl.best_fe_path)) f_fe_list.close() return f_ens_info = open(save_dir +'/ens_info','w') ens_dict = {} if(mdl.task_type == 4): ens_dict['task_type'] = 'RGS' else: ens_dict['task_type'] = 'CLF' ens_met = info['ensemble_method'] ens_dict['ensemble_method'] = ens_met if(ens_met=='bagging'): f_ens_info.write(json.dumps(ens_dict)) if(ens_met=='ensemble_selection'): ens_dict['ensemble_weights'] = pd.DataFrame(info['ensemble_weights']).to_json() f_ens_info.write(json.dumps(ens_dict)) if(ens_met=='stacking'): meta_learner_path = save_dir +'/'+os.path.basename(info['meta_learner_path']) os.system('cp '+ info['meta_learner_path'] + ' '+save_dir +'/') ens_dict['meta_learner_path'] = meta_learner_path ens_dict['kfold'] = info['kfold'] f_ens_info.write(json.dumps(ens_dict)) if(ens_met=='blending'): meta_learner_path = save_dir +'/'+os.path.basename(info['meta_learner_path']) os.system('cp '+ info['meta_learner_path'] + ' '+save_dir +'/') ens_dict['meta_learner_path'] = meta_learner_path f_ens_info.write(json.dumps(ens_dict)) f_ens_info.close() if(ens_met=='stacking'): for conf in info['config']: for partpath in conf[-2]: os.system('cp '+ partpath + ' '+save_dir +'/') mdl_list += (os.path.basename(partpath)+'\n') for partpath in conf[-1]: os.system('cp '+ partpath + ' '+save_dir +'/') fe_list += (os.path.basename(partpath)+'\n') else: for conf in info['config']: os.system('cp '+ conf[-2] + ' '+save_dir +'/') os.system('cp '+ conf[-1] + ' '+save_dir +'/') mdl_list += (os.path.basename(conf[-2])+'\n') fe_list += (os.path.basename(conf[-1])+'\n') f_mdl_list = open(save_dir +'/model_list','w') f_mdl_list.write(mdl_list) f_mdl_list.close() f_fe_list = open(save_dir +'/fe_list','w') f_fe_list.write(fe_list) f_fe_list.close() def predict_proba_from_path(femdl,test_x): fe = femdl[0].replace('\n','') base_fe = pickle.load(open(fe,'rb')) test_x_tf = base_fe.operate(test_x) mdl = femdl[1].replace('\n','') base_model = pickle.load(open(mdl,'rb')) return base_model.predict_proba(test_x_tf) def predict_from_path(femdl,test_x): fe = femdl[0].replace('\n','') base_fe = pickle.load(open(fe,'rb')) test_x_tf = base_fe.operate(test_x) mdl = femdl[1].replace('\n','') base_model = pickle.load(open(mdl,'rb')) return base_model.predict(test_x_tf) def load_model(save_dir): f_ens_info = open(save_dir +'/ens_info','r') ens_info = json.loads(f_ens_info.read()) f_ens_info.close() mdl_list = [] f_mdl_list = open(save_dir +'/model_list','r') for mdl in f_mdl_list: mdl.replace('\n','') mdl_list.append(save_dir +'/'+mdl) f_mdl_list.close() fe_list = [] f_fe_list = open(save_dir +'/fe_list','r') for fe in f_fe_list: fe.replace('\n','') fe_list.append(save_dir +'/'+fe) f_fe_list.close() mdl_list = [[fe_list[i],mdl_list[i]] for i in range(len(mdl_list))] return Ensemble_models(ens_info,mdl_list) class bio_models(): def __init__(self,ensemble_info, mdl_list, imp_ope_list, fb): self.ensemble_info = ensemble_info self.mdl_list = mdl_list self.fb = fb self.imp_ope_list = imp_ope_list def predict_proba(self,test_x): #ONLY FOR CLF MODEL if self.ensemble_info['task_type'] == 'RGS': print('Regression model does not have \'predict_proba\'.') return 'Regression model does not have \'predict_proba\'.' if self.fb is not None: test_x = self.fb.transform(test_x) y_pred = None for key in self.mdl_list: if(np.sum(np.isnan(test_x)) > 0): test_x_filled = self.imp_ope_list[key].fit_transform(test_x) else: test_x_filled = test_x if y_pred is None: y_pred = self.mdl_list[key].predict_proba(test_x_filled) else: y_pred += self.mdl_list[key].predict_proba(test_x_filled) y_pred = y_pred/len(self.mdl_list) return y_pred def predict(self,test_x): if self.ensemble_info['task_type'] == 'CLF': return np.argmax(self.predict_proba(test_x),axis=1) if self.fb is not None: test_x = self.fb.transform(test_x) y_pred = None for key in self.mdl_list: if(np.sum(np.isnan(test_x)) > 0): test_x_filled = self.imp_ope_list[key].fit_transform(test_x) else: test_x_filled = test_x if y_pred is None: y_pred = self.mdl_list[key].predict(test_x_filled) else: y_pred += self.mdl_list[key].predict(test_x_filled) y_pred = y_pred/len(self.mdl_list) return y_pred def save(biomdl, save_dir, task_type): print("PLEASE SAVE THE MODEL IN A NEW FOLDER OR AN EMPTY FOLDER") if not os.path.exists(save_dir): os.makedirs(save_dir) f_ens_info = open(save_dir +'/ens_info','w') ens_dict = {} ens_dict['task_type'] = task_type ens_dict['impute_method'] = biomdl.impute_method f_ens_info.write(json.dumps(ens_dict)) if not os.path.exists(save_dir): os.makedirs(save_dir) if biomdl.fb_operator is not None: pkl.dump(biomdl.fb_operator,open(save_dir+'/fb.pkl','wb')) for key in biomdl.impute_method: pkl.dump(biomdl.impute_operator[key],open(save_dir+'/'+key+'.pkl','wb')) save_model(biomdl.mdl[key],save_dir+'/'+key+'_models') def load(save_dir): f_ens_info = open(save_dir +'/ens_info','r') ens_info = json.loads(f_ens_info.read()) f_ens_info.close() mdl_list = {} imp_ope_list = {} if os.path.exists(save_dir+'/fb.pkl'): fb = pkl.load(open(save_dir+'/fb.pkl','rb')) else: fb = None for method in ens_info['impute_method']: mdl_list[method] = load_model(save_dir+'/'+method+'_models') imp_ope_list[method] = pkl.load(open(save_dir+'/'+method+'.pkl','rb')) return bio_models(ens_info,mdl_list,imp_ope_list,fb)
UTF-8
Python
false
false
13,740
py
70
saveloadmodel.py
33
0.537918
0.533479
0
364
36.747253
90
feifeizhuge/data-analysis-with-pandas
11,312,943,899,243
9b85704fc7c624610cf97ca1a5b987e935cf05b8
d8e1421132868213806326dba7001f3aea6e8a51
/data-cleaning/data_load_bus.py
0cb760e05747c08c6b79808c17c617806a75b479
[]
no_license
https://github.com/feifeizhuge/data-analysis-with-pandas
28d0eacf9ab249e7a24fec148ccbc3de7e5e7257
952fb7946a4525c40016b27c6ad013a30c3458bd
refs/heads/master
2020-06-14T18:57:31.014431
2019-09-22T18:49:29
2019-09-22T18:49:29
195,094,370
3
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon May 6 20:18:30 2019 @author: hechen """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import os current_path = os.path.dirname(__file__) csv_path = current_path + '/2016_02_10_0000_1687_export.csv' Data = pd.read_csv(csv_path, ';') """ ['Unix Timestamp [ms]', 'Time [Europe/Amsterdam]', 'Battery - Avg cell voltage [mV]', 'Battery - Avg cell temp [°C]', 'Battery - Max. charge current [A]', 'Battery - Max. discharge current [A]', 'Battery - Cell nr. max volt', 'Battery - Max cell voltage [mV]', 'Battery - Cell nr. min volt', 'Battery - Min cell voltage [mV]', 'Battery - Max. charge voltage [V]', 'Battery - Current [A]', 'Battery - Battery power [kW]', 'Battery - Voltage [V]', 'Battery - State of Charge [%]', 'Battery - State of Health [%]', 'Primove - Charger wayside present', 'Primove - Charging state', 'Primove - Charging current [A]', 'Primove - Pick-up temp [°C]', 'Primove - Rectrifier temp [°C]', 'Primove - Charging voltage [V]', 'Primove - Pick-up position [mm]', 'Primove - Pick-up position control', 'Battery - TCU compressor status', 'Battery - TCU heater status', 'Vehicle - Accelerator pedal position [%]', 'Vehicle - Accelerator pedal switch', 'Engine - Actual Engine Torque [%]', 'Vehicle - Ambient Air Temperature [°C]', 'Air pressure - Pressure front axle left [bar]', 'Air pressure - Pressure front axle right [bar]', 'Air pressure - Pressure rear axle left [bar]', 'Air pressure - Pressure rear axle right [bar]', 'Air pressure - Pressure brake circuit 1 [bar]', 'Air pressure - Pressure brake circuit 2 [bar]', 'Vehicle - Brake pedal switch', 'Vehicle - Current Gear', 'Engine - Driver Engine Torque demand [%]', 'Doors - Enable status Doors 1', 'Doors - Enable status Doors 2', 'Doors - Enable status Doors 3', 'Doors - Enable status Doors 4', 'Doors - Enable status Doors 5', 'Engine - Motor Speed RPM [RPM]', 'Vehicle - High resolution vehicle distance [km]', 'Doors - Lock status Doors 1', 'Doors - Lock status Doors 2', 'Doors - Lock status Doors 3', 'Doors - Lock status Doors 4', 'Doors - Lock status Doors 5', 'Doors - Open status Doors 1', 'Doors - Open status Doors 2', 'Doors - Open status Doors 3', 'Doors - Open status Doors 4', 'Doors - Open status Doors 5', 'Doors - Positions Doors', 'Doors - Status Doors', 'Vehicle - Tachograph Speed [km/h]', 'Vehicle - Wheel based Speed [km/h]', 'IVH - Altitude [m]', 'IVH - GPS Course [°]', 'IVH - GPS position', 'IVH - GPS speed [km/h]', 'IVH - Satellites', 'IVH - 24V Battery [V]', 'IVH - Online status', 'HVAC - AC compressor state [%]', 'Auxiliary - Air compressor state', 'Vehicle - Brake pedal position [%]', 'HVAC - Cabin air temp [°C]', 'HVAC - Cabin air temp setpoint [°C]', 'HVAC - Condenser fan state', 'HVAC - Evaporator fan state', 'HVAC - Floor air heater state', 'Vehicle - Ignition State', 'HVAC - Outlet air temperature floor unit [°C]', 'HVAC - Outlet air temperature roof unit [°C]', 'HVAC - Recirculation Air flap position [%]', 'Auxiliary - Steering pump state', 'HVAC - Water heater outlet temp [°C]', 'Auxiliary - Total Power 24V [kW]', 'Auxiliary - Total Power HV [kW]', 'Powertrain - Inverter temperature [°C]', 'Powertrain - Motor temperatur status', 'Powertrain - Traction Power [kW]', 'Vehicle - Vehicle state'], dtype='object') """ #%% obversation # Modifications to the data or indices of the copy will # not be reflected in the original object X = Data.copy(deep=True) # feststellen simpling frequency print(X['Time [Europe/Amsterdam]'][0:40]) #%% # slice operation, simple every 20 points X = X[0::20] ''' print(X['Time [Europe/Amsterdam]'][0:40]) X = X[0::20] print(X['Time [Europe/Amsterdam]'][0:50]) X['Unix Timestamp [ms]'][0:20] sjdada X['Unix Timestamp [ms]'][0:20] pd.to_datetime(1455072686227) pd.to_datetime(1455072686) pd.to_datetime(1455072686227,unit='s') pd.to_datetime(1455072686227,unit='ms') X['Unix Timestamp [ms]'][0:20] pd.to_datetime(1455072686227,unit='ms') print(X['Time [Europe/Amsterdam]'][0:50]) pd.to_datetime(1455072686227,unit='ms') pd.to_datetime(1455072686227/1000,unit='s') 1455072686227/1000 int(1455072686227/1000) pd.to_datetime(1455072686227//1000,unit='s') pd.to_datetime(X['Unix Timestamp [ms]'][0:30]//1000,unit='s') ''' #%% #time = Data['seconds'] #time = (time-time.iloc[0]) / 60 #my_x_ticks = np.arange(time.iloc[0], time.iloc[-1], 1) # #plt.plot(time, Data['GPS Speed']) #plt.grid(axis='x') #plt.xticks(my_x_ticks)
UTF-8
Python
false
false
4,958
py
3
data_load_bus.py
2
0.614918
0.567415
0
131
36.732824
78
huyanhai/spider-music
6,906,307,414,796
ba43709f4da2e19307b3ba604caaeb92b52b38ba
42fb81f32a776809079aa343e4dd7d521b1998b0
/sider_scrapy/spiders/music.py
c8ceb5fc3d5d4892b9da50491bb83772320901fc
[]
no_license
https://github.com/huyanhai/spider-music
8849d1ebbc4060219ad70fde2268d00c55330a4b
cfc87b6daadfc9ecc238e835e1f1079fa866d94d
refs/heads/master
2020-06-28T09:28:09.290872
2019-08-05T08:57:16
2019-08-05T08:57:16
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- import scrapy import requests import json from scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider, Rule from sider_scrapy.items import QqmusicItem class MusicSpider(CrawlSpider): name = 'music' allowed_domains = ['y.qq.com'] start_urls = ['https://y.qq.com/n/yqq/album/003L8BAv3UNXWx.html'] # def __init__(self): # self.song_data = [] rules = ( Rule(LinkExtractor(allow=r'album/.+\.html'),callback='parse_item', follow=False), ) def start_requests(self): URL = 'https://u.y.qq.com/cgi-bin/musicu.fcg' formdata = { '-':'getUCGI12417882050721563', 'g_tk':'155229945', 'format':'json', 'inCharset':'utf8', 'outCharset':'utf-8', 'notice':'0', 'platform':'yqq.json', 'needNewCode':'0', } for item in range(1,5): item = item*20 for ids in range(1,7): formdata['data'] = '{"new_album":{"module":"newalbum.NewAlbumServer","method":"get_new_album_info","param":{"area":%d,"start":0,"num":%d}},"new_album_tag":{"module":"newalbum.NewAlbumServer","method":"get_new_album_area","param":{}},"comm":{"ct":24,"cv":0}}' %(ids,item) result = requests.get(URL,params=formdata) datas = json.loads(result.text) for id in datas['new_album']['data']['albums']: url = 'https://y.qq.com/n/yqq/album/%s.html' %id['mid'] self.start_urls.append(url) yield self.make_requests_from_url(url) def parse_item(self, response): URL_LINK = "https://u.y.qq.com/cgi-bin/musicu.fcg" URL_LYR = "https://c.y.qq.com/lyric/fcgi-bin/fcg_query_lyric_new.fcg" result = response song_mid = result.xpath("//span[@class='songlist__songname_txt']/a/@href").get().split('/')[-1].split('.')[0] singer_name = result.xpath("//div[@class='data__cont']/div[@class='data__singer']/a/text()").get() song_name = result.xpath("//div[@class='data__cont']//h1/text()").get() more_data = result.xpath("//div[@class='data__cont']//li/text()").getall() company = result.xpath("//div[@class='data__cont']//li/a/text()").get() post = response.urljoin(result.xpath("//span[@class='data__cover']/img/@src").get()) more_data = list(map(lambda x:x.split(':')[1],more_data)) schools = more_data[0] language = more_data[1] send_time = more_data[2] song_type = None qq_pages = 'https://y.qq.com/n/yqq/album/%s.html' %song_mid formdata_link = { '-':'getplaysongvkey', 'g_tk':'155229945', 'loginUin': '810839700', 'hostUin':'0', 'format':'json', 'inCharset':'utf8', 'outCharset':'utf-8', 'notice':'0', 'platform':'yqq.json', 'needNewCode':'0', 'data':'{"req":{"module":"CDN.SrfCdnDispatchServer","method":"GetCdnDispatch","param":{"guid":"986239112","calltype":0,"userip":""}},"req_0":{"module":"vkey.GetVkeyServer","method":"CgiGetVkey","param":{"guid":"986239112","songmid":["%s"],"songtype":[0],"uin":"810839700","loginflag":1,"platform":"20"}},"comm":{"uin":810839700,"format":"json","ct":24,"cv":0}}' %song_mid } formdata_lry = { '-':'MusicJsonCallback_lrc', 'g_tk':'155229945', 'songmid':song_mid, 'format':'json', 'inCharset':'utf8', 'outCharset':'utf-8', 'notice':'0', 'platform':'yqq.json', 'needNewCode':'0', } headers = { 'User-Agent':'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36', 'Referer':'https://y.qq.com/portal/player.html' } if len(more_data) > 4: song_type = more_data[4] print('正在爬取歌曲%s' %song_name) res_link = requests.get(URL_LINK,params=formdata_link) # 获取歌曲地址 res_lyr = requests.get(URL_LYR,params=formdata_lry,headers=headers) # 获取歌词 datas_link = json.loads(res_link.text)['req_0']['data'] datas_lyr = json.loads(res_lyr.text)['lyric'] song_link = 'http://isure.stream.qqmusic.qq.com/' + datas_link['midurlinfo'][0]['purl'] item = QqmusicItem(singer_name=singer_name,song_name=song_name,schools=schools,language=language,send_time=send_time,song_type=song_type,company=company,post=post,song_mid=song_mid,song_link=song_link,qq_pages=qq_pages,lyric=datas_lyr) yield item
UTF-8
Python
false
false
4,734
py
8
music.py
6
0.556809
0.521702
0
99
46.484848
383
Dituohgasirre/python
9,698,036,202,454
346616db94cff25f16ee05ffd974b5924403425e
8e7a2b9efbc0d25111f01f4cddb781961032685a
/python-1025/python/1_base_syntax/homework.py
56368582436dac9d44afcfe1e4ce98f4cc01c885
[]
no_license
https://github.com/Dituohgasirre/python
e044aa2e1fb2233b6ccd59701b834ab01e4e24c2
05f036d2723f75cd89e4412aaed7ee0ba5d3a502
refs/heads/master
2023-06-03T13:50:18.641433
2021-06-17T10:23:40
2021-06-17T10:23:40
366,942,423
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python3 import kyo import menu def ball(index, args): """ 一个袋子里有3个红球, 3个绿球,6个黄球, 一次从袋子里取6个球 列出所有可能的颜色组合 """ r = 0 y = 0 while r < 4: g = 0 while g < 4: y = 6 - r - g print("红球: %d, 绿球: %d, 黄球: %d" % (r, g, y)) g += 1 r += 1 def mul9x9(index, args): """ 9x9乘法 """ i = 1 while i < 10: j = 1 while j <= i: if i % 2 == 0: print("%d X %d = %2d " % (i, j, i * j), end='') else: print("\033[32;40m%d X %d = %2d\033[0m " % (i, j, i * j), end='') j += 1 print() i += 1 def blackFri(index, args): """ 已知1900年一月一号是星期一 问今年有多少个黑色星期五(黑色星期五每个月13号是星期五) """ year = int(input("请输入年: ")) days = kyo.countYearDays(1900, year) + 13 m = 1 while m <= 12: if (days + kyo.countMonthDays(year, m)) % 7 == 5: print("%d 年 %d 月 13号是黑色星期五!" % (year, m)) m += 1 def fish(index, args): """ 某人从2000年一月一号开始过着3天打鱼两天晒网的日子 输入年月日判断此人在打鱼还是晒网 """ def core(year, month, day): day += kyo.countYearDays(2000, year) + kyo.countMonthDays(year, month) return "打鱼" if 1 <= day % 5 <= 3 else "晒网" try: print(core(*kyo.checkDate(input("请输入年月日: ").split('-')))) # print(core(*kyo.checkDate(input("请输入年月日: ")))) except: print("日期不合法....") # print(core(*[int(x) for x in input("请输入年月日:").split()])) # year, month, day = [int(x) for x in input("请输入年月日: ").split()] # print(core(year, month, day)) #自动测试代码 # for i in range(1, 16): # print("%d-%d-%d: " % (year, month, i), core(year, month, i)) def main(): def end(index, args): print("--------------------------------------------") print("本题测试完成, 回车继续, q为退出: ", end='') return True if input() == 'q' else False menuList = menu.add("拿球", ball) menu.add("买鸡", items=menuList) menu.add("9x9乘法表", mul9x9, items=menuList) menu.add("黑色星期五", blackFri, items=menuList) menu.add("打鱼晒网", fish, items=menuList) menu.add("最大公约数", items=menuList) menu.add("4, 5, 6, 7组合数", items=menuList) menu.add("输出1-1/2+1/3-1/4+1/5...+1/99-1/100结果", items=menuList) menu.add("日历", items=menuList) menu.add("回文数", items=menuList) menu.add("完数", items=menuList) menu.add("水仙花数", items=menuList) menu.add("八进制转十进制", items=menuList) menu.add("菜单打印图形", items=menuList) menu.add("把八进制数转化为十进制数输出", items=menuList) menu.add("实现菜单打印图形", items=menuList) menu.add("退出", items=menuList) menu.run(menuList, "====== 第一天练习题 ======", end) if __name__ == "__main__": main()
UTF-8
Python
false
false
3,271
py
347
homework.py
244
0.501279
0.465839
0
108
24.333333
81
iluoxw/OurServer
9,938,554,340,682
a511da40c36be7c0eff00be83b3c64be0c43be17
2ced9f032b61792d81aced126dfeb1d40eeb065e
/User/migrations/0001_initial.py
bdf95fc8d9e65dcad2418f1dafc2004765c6de32
[]
no_license
https://github.com/iluoxw/OurServer
c35e2d334df86f278156a2f32479caf353ad1646
a3a76f1c8b61bd81c9a64774d7b0c3717755c9cb
refs/heads/master
2020-05-21T03:48:50.868345
2017-03-10T14:28:10
2017-03-10T14:28:10
84,567,482
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='Group', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=32)), ('delete_flag', models.CharField(max_length=4)), ], ), migrations.CreateModel( name='GroupPrivileges', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('groupId', models.IntegerField()), ('privilegesId', models.IntegerField()), ('delete_flag', models.CharField(max_length=4)), ], ), migrations.CreateModel( name='Privileges', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=32)), ('description', models.TextField()), ('delete_flag', models.CharField(max_length=4)), ], ), migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('username', models.CharField(max_length=32)), ('name', models.CharField(max_length=32)), ('password', models.CharField(max_length=32)), ('delete_flag', models.CharField(max_length=4)), ], ), migrations.CreateModel( name='UserGroup', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('userId', models.IntegerField()), ('groupId', models.IntegerField()), ('delete_flag', models.CharField(max_length=4)), ], ), migrations.CreateModel( name='UserPrivileges', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('userId', models.IntegerField()), ('privilegesId', models.IntegerField()), ('delete_flag', models.CharField(max_length=4)), ], ), ]
UTF-8
Python
false
false
2,614
py
4
0001_initial.py
3
0.521423
0.51492
0
67
38.014925
114
ygzylmz/theNextTrace
9,105,330,692,341
d6f7ae3fbb5de7652b1d1a67ef23609644c0b94c
7447ddef42bb3dc859a48d8a05e7b4f0832ecb55
/blog/migrations/0025_auto_20201014_1845.py
306cd6472ae4cc678c76a93f84e27e1063f8aa4d
[]
no_license
https://github.com/ygzylmz/theNextTrace
f72feca5402b203afea91a3fe8d719d2e1ed9744
f46efcb9575c83d865ee6b841943ea0292a1f094
refs/heads/master
2022-12-31T11:36:35.116518
2020-10-22T14:20:44
2020-10-22T14:20:44
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2020-10-14 18:45 from __future__ import unicode_literals import ckeditor.fields from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('blog', '0024_auto_20200914_1043'), ] operations = [ migrations.AlterField( model_name='blogdizi', name='content', field=ckeditor.fields.RichTextField(max_length=10000, null=True, verbose_name='İcerik'), ), migrations.AlterField( model_name='blogfilm', name='content', field=ckeditor.fields.RichTextField(max_length=10000, null=True, verbose_name='İcerik'), ), migrations.AlterField( model_name='bloggezi', name='content', field=ckeditor.fields.RichTextField(max_length=10000, null=True, verbose_name='İcerik'), ), migrations.AlterField( model_name='bloghayat', name='content', field=ckeditor.fields.RichTextField(max_length=10000, null=True, verbose_name='İcerik'), ), ]
UTF-8
Python
false
false
1,137
py
22
0025_auto_20201014_1845.py
17
0.599294
0.553398
0
36
30.472222
100
arnabs542/Leetcode-38
16,080,357,596,918
dcf8bd6b88034b5eb09ab3480fa86aaddcdd933d
c6ec292a52ea54499a35a7ec7bc042a9fd56b1aa
/Python/90.py
06ec0bed0222cb95586ce2e133a8a11258bb8a3d
[]
no_license
https://github.com/arnabs542/Leetcode-38
ad585353d569d863613e90edb82ea80097e9ca6c
b75b06fa1551f5e4d8a559ef64e1ac29db79c083
refs/heads/master
2023-02-01T01:18:45.851097
2020-12-19T03:46:26
2020-12-19T03:46:26
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
class Solution: def subsetsWithDup(self, nums: List[int]) -> List[List[int]]: nums.sort() self.results = [] visited = [False] * len(nums) self.dfs(nums, visited, [], 0) return self.results def dfs(self, nums, visited, prev, start): self.results.append(prev) if start == len(nums): return for i in range(start, len(nums)): if i > 0 and nums[i - 1] == nums[i] and not visited[i - 1]: continue visited[i] = True self.dfs(nums, visited, prev + [nums[i]], i + 1) visited[i] = False
UTF-8
Python
false
false
658
py
364
90.py
362
0.484802
0.477204
0
19
32.947368
71
nusaibsqli/TCPShell
13,176,959,697,811
a73239e6da0227a91cf3eff6380aa0454122ad18
c31ba668f35095075186b3bfd9250c97a6b2d80c
/generate_password.py
d0cc6b91394f2b210eabb78f2a849429109b1e54
[]
no_license
https://github.com/nusaibsqli/TCPShell
1e765b04cc740e92483784c0c6d4d9e659cc6047
9a15b36d0cceac6d46580058003b7093842ca705
refs/heads/master
2021-09-15T12:50:22.202323
2018-06-02T01:47:50
2018-06-02T01:47:50
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
clrPasswd = raw_input("Enter Password: ") encPasswd = '' for char in clrPasswd: _tmp = (ord(char) << 1) | (ord(char) >> 7) #print _tmp encPasswd += chr(_tmp) encPasswd = '\\x' + '\\x'.join(x.encode('hex') for x in encPasswd) print encPasswd
UTF-8
Python
false
false
248
py
5
generate_password.py
1
0.616935
0.608871
0.008065
11
21.454545
66
shuuki4/MachineLearningInAction
5,291,399,734,393
45f5f8dba6fe2d64b122628bc792e21bdfd6773a
661399426fed233f508430a211cc952339faa7da
/ID3DecisionTree+TreePlot.py
b189a01efc1334020afbd111c5b3ebcf889d750f
[]
no_license
https://github.com/shuuki4/MachineLearningInAction
1dd1776ae962c0a8e28bb0115e72d369e30f0bbd
6d539aa099593d555fd704f9707b9bdb24274fd5
refs/heads/master
2021-03-12T22:55:02.952965
2015-09-13T16:13:44
2015-09-13T16:13:44
42,063,251
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
## This code generates an ID3 Decision Tree and plot this tree by matplotlib ## ## TreePlotting Codes are from text, rest by YuKiSa ## from numpy import * import matplotlib.pyplot as plt from math import log ## Tree Plot Section ## ## tree plot codes are from MLinA text ## ## @author : Peter Harington ## decisionNode = dict(boxstyle="sawtooth", fc="0.8") leafNode = dict(boxstyle="round4", fc="0.8") arrow_args = dict(arrowstyle="<-") def getNumLeafs(myTree): numLeafs = 0 firstStr = myTree.keys()[0] secondDict = myTree[firstStr] for key in secondDict.keys(): if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes numLeafs += getNumLeafs(secondDict[key]) else: numLeafs +=1 return numLeafs def getTreeDepth(myTree): maxDepth = 0 firstStr = myTree.keys()[0] secondDict = myTree[firstStr] for key in secondDict.keys(): if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes thisDepth = 1 + getTreeDepth(secondDict[key]) else: thisDepth = 1 if thisDepth > maxDepth: maxDepth = thisDepth return maxDepth def plotNode(nodeTxt, centerPt, parentPt, nodeType): createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction', xytext=centerPt, textcoords='axes fraction', va="center", ha="center", bbox=nodeType, arrowprops=arrow_args ) def plotMidText(cntrPt, parentPt, txtString): xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0] yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1] createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30) def plotTree(myTree, parentPt, nodeTxt):#if the first key tells you what feat was split on numLeafs = getNumLeafs(myTree) #this determines the x width of this tree depth = getTreeDepth(myTree) firstStr = myTree.keys()[0] #the text label for this node should be this cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff) plotMidText(cntrPt, parentPt, nodeTxt) plotNode(firstStr, cntrPt, parentPt, decisionNode) secondDict = myTree[firstStr] plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD for key in secondDict.keys(): if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes plotTree(secondDict[key],cntrPt,str(key)) #recursion else: #it's a leaf node print the leaf node plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode) plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key)) plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD #if you do get a dictonary you know it's a tree, and the first element will be another dict def createPlot(inTree): fig = plt.figure(1, facecolor='white') fig.clf() axprops = dict(xticks=[], yticks=[]) createPlot.ax1 = plt.subplot(111, frameon=False, **axprops) #no ticks #createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses plotTree.totalW = float(getNumLeafs(inTree)) plotTree.totalD = float(getTreeDepth(inTree)) plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0; plotTree(inTree, (0.5,1.0), '') plt.show() ## ID3 Decision Tree Section ## ## dataSet = [[feature1, feature2, ..., featureN, label], ... [feature1, ..., label]] def calcShannonEnt(dataSet) : m = len(dataSet) labelCount = {}; for featureVec in dataSet : labelCount[featureVec[-1]] = labelCount.get(featureVec[-1], 0.0)+1.0; totalEnt = 0.0; for label in labelCount.keys() : p = labelCount[label]/float(m) totalEnt -= p*log(p, 2) return totalEnt def dataSplit(dataSet, divFeatureIndex, value) : returnList = [] for featureVec in dataSet : if featureVec[divFeatureIndex]==value : newfeatVec = featureVec[:divFeatureIndex] newfeatVec.extend(featureVec[divFeatureIndex+1:]) returnList.append(newfeatVec) return returnList def chooseBestFeature(dataSet) : bestEntropy = calcShannonEnt(dataSet) bestFeatureIndex = -1 for i in range(len(dataSet[0])-1) : featList = [example[i] for example in dataSet] # fetch all available featureList featList = set(featList) nowEntropy = 0.0 for feature in featList : nowEntropy += calcShannonEnt(dataSplit(dataSet, i, feature)) if (bestEntropy > nowEntropy) : bestEntropy = nowEntropy bestFeatureIndex = i return bestFeatureIndex def majorityVote(dataSet) : labelCount = {} bestCount = -1 bestLabel = dataSet[0][-1] for vec in dataSet : label = vec[-1] labelCount[label] = labelCount.get(label, 0)+1 if bestCount < labelCount[label] : bestCount = labelCount[label] bestLabel = label return bestLabel def generateTree(dataSet, labels) : ## stop condition ## # condition 1 : no more benefit on dividing bestFeatureIndex = chooseBestFeature(dataSet) if bestFeatureIndex==-1 : return majorityVote(dataSet) # condition 2 : only one kind left kindList = [vec[-1] for vec in dataSet] kindSet = set(kindList) if (len(kindSet)==1) : return kindSet[0] # condition 3 : no more labels if (len(labels)==0) : return majorityVote(dataSet) returnTree = {} returnTreeElement = {} availableFeatureValSet = [vec[bestFeatureIndex] for vec in dataSet] availableFeatureValSet = set(availableFeatureValSet) newLabels = labels[:bestFeatureIndex] newLabels.extend(labels[bestFeatureIndex+1:]) for val in availableFeatureValSet : returnTreeElement[val] = generateTree(dataSplit(dataSet, bestFeatureIndex, val), newLabels) returnTree[labels[bestFeatureIndex]] = returnTreeElement return returnTree def myData() : return [[1,1,'yes'], [1,1,'yes'], [1,0,'no'], [0,1,'no'], [0,1,'no']] print createPlot( generateTree(myData(), ['feature1', 'feature2']))
UTF-8
Python
false
false
5,965
py
4
ID3DecisionTree+TreePlot.py
4
0.692037
0.675105
0
160
36.28125
122
enadol/bundesliga-visual
8,237,747,287,291
c3ea216b82df004e44e69c4443d47682009dc68b
d13b8d97fee668ecfbeab20c446f319c6bad9266
/provisionaales/bljson-puntos.py
3f0125ebfdb095491bef33725ad202b7ebad3bd3
[]
no_license
https://github.com/enadol/bundesliga-visual
6fb3e8ad6c62ddb1e34679c773151ba28e4977bd
2bfbd397b1139ed2b7cd7bcefb22d3fc65c1fb9f
refs/heads/master
2016-09-14T04:51:14.652863
2016-05-07T18:49:00
2016-05-07T18:49:00
58,158,705
0
0
null
false
2016-05-07T18:49:01
2016-05-05T20:30:29
2016-05-05T20:30:42
2016-05-07T18:49:00
406
0
0
0
Python
null
null
import urllib import json url="2015-2016/bl.json" uh=urllib.urlopen(url) data=uh.read() js=json.loads(data) i=0 ganador=None perdedor=None puntoslocal=0 puntosvisitante=0 sumavisitante=0 puntos=0 sumalocal=0 def getPuntos(equipo, afavor, encontra): puntos=0 if afavor > encontra: puntos=3 ganador=equipo perdedor=contrario elif afavor==encontra: puntos=1 ganador="Empate" perdedor=ganador else: puntos=0 ganador=contrario perdedor=equipo return puntos def getPuntosAcumulados(puntoslocal, puntos): puntoslocal=puntoslocal+puntos return puntoslocal jornadainput=raw_input("Ingrese la jornada: ") jornada=int(jornadainput)-1 equipoinput=raw_input("Ingrese el equipo: ") if jornada <0 or jornada >=34: print "No se jugó la jornada "+jornadainput+" en ese torneo. Verifique y vuelva a ingresar." jornada=None else: for fecha in range(0,jornada+1): jornadascompletas=js['rounds'][fecha]['name'] for i in range(0,9): equipo=js['rounds'][fecha]['matches'][i]['team1']['name'] afavor=js['rounds'][fecha]['matches'][i]['score1'] contrario=js['rounds'][fecha]['matches'][i]['team2']['name'] encontra=js['rounds'][fecha]['matches'][i]['score2'] if equipo>0 and equipo==equipoinput: puntoslocal=getPuntos(equipo, afavor, encontra) sumalocal=getPuntosAcumulados(sumalocal, puntoslocal) if equipo>0 and contrario==equipoinput: puntosvisitante=getPuntos(contrario, encontra, afavor) sumavisitante=getPuntosAcumulados(sumavisitante, puntosvisitante) sumapuntos=sumalocal+sumavisitante print "El equipo "+equipoinput+" sumaba "+str(sumalocal)+" como local a la "+jornadascompletas print "El equipo "+equipoinput+" sumaba "+str(sumavisitante)+" como visitante a la "+jornadascompletas print "El equipo "+equipoinput+" sumaba "+str(sumapuntos)+" puntos en total a la "+jornadascompletas uh.close()
UTF-8
Python
false
false
1,894
py
21
bljson-puntos.py
15
0.73083
0.713908
0
75
24.213333
104
fooofei/py_pieces
13,340,168,465,165
170095026f051f3389e0ae50f053e64eedf17158
e132739824d2e13eeed79975603133e58e5f4027
/iterator_itertools_tee.py
557b460597c56a8232667d3483020064068fe866
[]
no_license
https://github.com/fooofei/py_pieces
929274ef5415b89d175c38b8cf92ab13db6cbc6a
264b2fdb203132d09398250b2b509f23285e4add
refs/heads/master
2021-01-23T19:12:16.586391
2021-01-11T03:10:57
2021-01-11T03:10:57
83,008,648
2
1
null
null
null
null
null
null
null
null
null
null
null
null
null
# coding=utf-8 ''' use itertools.tee to copy an generator 适合多个 iterator 步差不大的, <10 的 1 生成两个 generator 但是实例并没有增加 2 两个 generator 持有同一份实例的引用 在一个 generator 中修改了一个实例 另一个 generator 也会受到修改影响 3 官方警告使用 itertools.tee 分裂之后 母 generator 不再使用 https://docs.python.org/2/library/itertools.html 4 官方建议 如果其中 1 个 iterator 走的太快 其他的 iterator 没走 使用 list() 比 tee() 更快 ''' import itertools import sys import unittest import copy count = 0 class Instance(object): def __init__(self, v): global count print('instance init {}'.format(count)) count += 1 self._v = v @property def v(self): return self._v def __del__(self): print('instance del') def __str__(self): return super(Instance, self).__str__() def __repr__(self): return '{}'.format(self.v) class MyTestCase(unittest.TestCase): def test_fetch_iterator_value(self): a = [Instance(i) for i in range(10)] ai = iter(a) self.assertEqual(a, list(ai)) self.assertEqual([], list(ai)) def test_tee_iterator1(self): a = [Instance(i) for i in range(10)] ai = iter(a) ai1, ai2 = itertools.tee(ai) self.assertEqual(a, list(ai1)) self.assertEqual([], list(ai)) def test_tee_iterator2(self): a = [Instance(i) for i in range(10)] ai = iter(a) ai1, ai2 = itertools.tee(ai) self.assertEqual(a, list(ai1)) self.assertEqual(a, list(ai2)) def test_tee_iterator3(self): a = [Instance(i) for i in range(10)] ai = iter(a) ai1, ai2 = itertools.tee(ai) self.assertEqual(a, list(ai)) self.assertEqual([], list(ai1)) self.assertEqual([], list(ai2)) def test_tee_iterator4(self): a = [Instance(i) for i in range(10)] ai = iter(a) ai1, ai2 = itertools.tee(ai) # this will effect a and list(ai2) for v in ai1: if v.v == 5: v._v = 55 self.assertEqual(a, list(ai2)) if __name__ == '__main__': unittest.main()
UTF-8
Python
false
false
2,300
py
77
iterator_itertools_tee.py
70
0.565403
0.54455
0
96
20.979167
97
kopok2/PythonCourse
16,381,005,306,576
ccc7cce39e26b05570e878851b951747a8aae00f
cdf2e3236e93ab33660cd7dc48e10ca8978ae9c3
/Lecture9/python_dynamics.py
58f42539fab0365fc8a7fc31ec09f40bc39ad01d
[ "MIT" ]
permissive
https://github.com/kopok2/PythonCourse
ef163250a31e23c4815d6073c2059db994ddd35a
f741b17adaa7290380e83408ed24100127837ad7
refs/heads/master
2021-07-08T05:12:48.356642
2020-11-30T09:24:01
2020-11-30T09:24:01
215,096,810
3
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# coding=utf-8 """ Module aimed to demonstrate dynamic nature of Python's code. """ import datetime class Lecture: def __init__(self, no): self.no = no if datetime.datetime.now().hour > 14: def __str__(self): return f"Lecture {self.no} has finished." else: def __str__(self): return f"Lecture {self.no} has started." if __name__ == '__main__': l9 = Lecture(9) print(l9)
UTF-8
Python
false
false
444
py
33
python_dynamics.py
14
0.554054
0.540541
0
23
18.304348
60
inverseTrig/leet_code
4,879,082,853,432
16e79eda9fde0b41ee55610ed21aac070c5db946
eba1bc6c853cf92a002eb3cf7a4ff71507fd1072
/202_happy_number.py
47181a54a3d22469308f66df3c740b190867d87f
[]
no_license
https://github.com/inverseTrig/leet_code
ab3b155d4ec581684be5ae0413c49d94492cbe1b
213a221f1577dd3346da794ef73e802af803d58b
refs/heads/master
2021-12-21T11:30:09.755104
2021-12-16T04:46:10
2021-12-16T04:46:10
86,788,182
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
class Solution: def isHappy(self, n: int) -> bool: seen = set() while n != 1: nstr = str(n) nxt = 0 for each in nstr: nxt += int(each) ** 2 n = nxt if n in seen: return False else: seen.add(n) return True sol = Solution() print(sol.isHappy(n=19)) print(sol.isHappy(n=2))
UTF-8
Python
false
false
423
py
168
202_happy_number.py
168
0.41844
0.404255
0
21
19.142857
38
coralhalperin/slides
14,388,140,491,208
2dbc17fbe59e00939c708c65ab0e6c73f7e9655f
2120db28dbe55b8a9185ae8aa42a769985491996
/python/examples/lists/master_mind.py
7286bcf73ed3ebe72aa9feed42b8c8b66d710cf2
[]
no_license
https://github.com/coralhalperin/slides
7b149cb61840eb1724cb1571bba2503b19278780
0c83e1d1e771c9d4b110542b2ad64bbc6bd7b81a
refs/heads/main
2023-01-04T14:02:11.406990
2020-10-25T06:20:07
2020-10-25T06:20:07
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import random width = 4 USED = '_' hidden = random.sample(range(10), width) # print(hidden) while True: # print(hidden) inp = input("your guess ({} digits):".format(width)) if inp == 'x': print("Bye") exit() if len(inp) != width: print("We need exactly {} characters".format(width)) continue guess = [] for cr in inp: guess.append(int(cr)) # guess = list(map(int, inp)) # print(guess) if hidden == guess: print("Match!") break my_hidden = hidden[:] my_guess = guess[:] result = '' for i in range(width): if my_hidden[i] == my_guess[i]: result += '*' my_hidden[i] = USED my_guess[i] = USED for i in range(width): if my_guess[i] == USED: continue if my_guess[i] in my_hidden: loc = my_hidden.index(my_guess[i]) my_hidden[loc] = USED guess[i] = USED result += '+' print(''.join(result))
UTF-8
Python
false
false
1,032
py
67
master_mind.py
23
0.492248
0.489341
0
48
20.5
60
ethz-asl/libpointmatcher
25,769,818,495
cca6a31e8b02ebcb47f04d09058d5b8c95ad29a6
e7d1531b4b0bcecb4fb436cafbb8a3fe363c02c7
/examples/python/icp_simple.py
b68367dd3c6c06bcd351b02d1a07d5b2ad014775
[ "BSD-3-Clause" ]
permissive
https://github.com/ethz-asl/libpointmatcher
91d9c63f285964da00a9d95bf906adc832ffa44c
3ace94a6959137d8d6a9a7278bf2644ffdcf73d3
refs/heads/master
2023-09-02T20:24:16.436314
2023-08-11T21:52:32
2023-08-11T21:52:32
1,266,625
1,446
567
BSD-3-Clause
false
2023-08-13T21:00:25
2011-01-18T10:00:28
2023-08-11T11:22:40
2023-08-13T21:00:23
19,865
1,413
522
84
C++
false
false
# Code example for ICP taking 2 points clouds (2D or 3D) relatively close # and computing the transformation between them. from pypointmatcher import pointmatcher as pm PM = pm.PointMatcher DP = PM.DataPoints # Path of output directory (default: tests/icp_simple/) # The output directory must already exist # Leave empty to save in the current directory output_base_directory = "tests/icp_simple/" # Name of output files (default: test) output_base_file = "test" # Toggle to switch between 2D and 3D clouds is_3D = True if is_3D: # Load 3D point clouds ref = DP(DP.load('../data/car_cloud400.csv')) data = DP(DP.load('../data/car_cloud401.csv')) test_base = "3D" else: # Load 2D point clouds ref = DP(DP.load('../data/2D_twoBoxes.csv')) data = DP(DP.load('../data/2D_oneBox.csv')) test_base = "2D" # Create the default ICP algorithm icp = PM.ICP() # See the implementation of setDefault() to create a custom ICP algorithm icp.setDefault() # Compute the transformation to express data in ref T = icp(data, ref) # Transform data to express it in ref data_out = DP(data) icp.transformations.apply(data_out, T) # Save files to see the results ref.save(f"{output_base_directory + test_base}_{output_base_file}_ref.vtk") data.save(f"{output_base_directory + test_base}_{output_base_file}_data_in.vtk") data_out.save(f"{output_base_directory + test_base}_{output_base_file}_data_out.vtk") print(f"Final {test_base} transformations:\n{T}\n".replace("[", " ").replace("]", " "))
UTF-8
Python
false
false
1,514
py
341
icp_simple.py
276
0.703435
0.690885
0
49
29.897959
87
rajesh305k/python_programs_9.26.2021
6,356,551,600,791
a188758b8312f16373e6a2a307a85a76918d9d60
d97e1acb6450c6303b44c0c3a4b8142eb0c79cae
/Ram/Assignment/Day4/assignment1.py
a556229f06ed4e85e3557eb912caa41e2b89593c
[]
no_license
https://github.com/rajesh305k/python_programs_9.26.2021
58e63e6ff5b5a83436e75f5e2ee52c8570ee9df0
61a69cd1e9ec0d91a36d1cb5501db11c0d017778
refs/heads/main
2023-08-24T08:11:14.789908
2021-10-30T04:47:44
2021-10-30T04:47:44
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
amount=int(input("Enter amount :")) # 1.Write a program to find credited amount,balance using **if else and operators.** # Note:variables:**amount,balance,credited_amount**, # Formula: **credited_amount=amount**,**balance+=credited_amount**, # **amount** should be greater than zero balance=10000 if(amount!=0): if(amount>0): credited_amount=amount balance+=credited_amount print("Balance : ",balance) print("credited_amount : ",credited_amount) elif(abs(amount)<balance): debited_amount=abs(amount) balance-=debited_amount print("Debited Amount :",debited_amount) print("balance Amount :",balance) else: print("you have eceeded your limit") else: print("Please enter a valid amount")
UTF-8
Python
false
false
781
py
66
assignment1.py
63
0.654289
0.644046
0
22
34.5
84
angkoonhian/hacknroll2021
11,364,483,487,053
04dbcd3eaf50637768a9fb6058d2c5a79c13cc87
d27f3f6340e4124d9949d7d53b41e9e02296e75b
/word_generator.py
b8f45d921f64bf2671d82f671c211d86025f7f39
[]
no_license
https://github.com/angkoonhian/hacknroll2021
60f683b52c1478215a6a613e32abb6b8fbd36b7c
9f1da6503cd7b5872f11e8e4cbc3c4d7f001c20c
refs/heads/main
2023-02-17T07:13:27.781828
2021-01-09T03:01:10
2021-01-09T03:01:10
325,207,862
0
2
null
null
null
null
null
null
null
null
null
null
null
null
null
from transformers import GPT2Tokenizer from transformers import TFGPT2Model, TFGPT2LMHeadModel import tensorflow as tf import numpy as np import os #Install the GPT-2 model/tokenizer and load it into memory def load_model_tokenizer_GPT2(): """ Loads GPT-2 model from local memory. Replace with gpt2 """ dir_path = os.path.dirname(os.path.realpath(__file__)) tokenizer = GPT2Tokenizer.from_pretrained(f'{dir_path}\\gpt2_model') model = TFGPT2LMHeadModel.from_pretrained(f'{dir_path}\\gpt2_model') return tokenizer, model #Tokenizer any given text and return def tokenize_text(tokenizer, text): #Using tensorflow backend #Removing space if text[-1] == " ": text = text[:-1] tokenized = tokenizer.encode(text, return_tensors='tf') return tokenized #Next Word algorithm def next_word_prediction(tokenizer, model, text, num_results = 3): tokens = tokenize_text(tokenizer, text) output = model(tokens) #Returns the logits of predictions for the last word in the sequence next_word_logits = output.logits[:, -1, :] softmaxed_next_word = tf.nn.softmax(next_word_logits) most_likely_words = tf.math.top_k(softmaxed_next_word, num_results) prob_most_likely_words = np.array(most_likely_words.values).squeeze() index_most_likely_words = np.array(most_likely_words.indices).squeeze() prob_word_dic = {} for i in range(num_results): prob = prob_most_likely_words[i] word = tokenizer.decode(int(index_most_likely_words[i])) prob_word_dic["word" + str(i)] = word return prob_word_dic
UTF-8
Python
false
false
1,601
py
7
word_generator.py
5
0.697064
0.687695
0
41
38.04878
76
taketakeyyy/atcoder
575,525,663,496
e37ac520ca730519e598c9c6f44b622a8e8b2558
66213c48da0b752dc6c350789935fe2b2b9ef5ca
/abc/170/b.py
07d4688555b7b28318e0c248936b34546fadd460
[]
no_license
https://github.com/taketakeyyy/atcoder
28c58ae52606ba85852687f9e726581ab2539b91
a57067be27b27db3fee008cbcfe639f5309103cc
refs/heads/master
2023-09-04T16:53:55.172945
2023-09-04T07:25:59
2023-09-04T07:25:59
123,848,306
0
0
null
false
2019-04-21T07:39:45
2018-03-05T01:37:20
2019-04-20T14:48:39
2019-04-21T07:39:44
193
0
0
0
Python
false
false
# -*- coding:utf-8 -*- def solve(): X, Y = list(map(int, input().split())) for kame in range(0, X+1): turu = X - kame if kame*4 + turu*2 == Y: print("Yes") return print("No") if __name__ == "__main__": solve()
UTF-8
Python
false
false
271
py
1,957
b.py
1,170
0.424354
0.405904
0
16
15.9375
42
gustcomer/pynnystock_analyser
15,779,709,874,271
369ce2c1c917a98a99ef9ade3c47ad2e98691d81
c68506d19ffdc22032a17dd97c5aff23bc7e1301
/pynnystock/strategies/stophighpre/ParametersSHP.py
d290a92660f363b3ffa56034fd0288f106b00982
[]
no_license
https://github.com/gustcomer/pynnystock_analyser
a31c0cfb3f75fdffa8cf4fa98c717f20e4525b89
5ffacae8db1ee21dcc491317554ae469ad82233a
refs/heads/master
2023-03-22T01:39:35.920679
2021-03-12T20:54:03
2021-03-12T20:54:03
324,470,954
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from ...Parameters import Parameters class ParametersSHP(Parameters): def __init__(self): super().__init__() # inicializa tudo mas algumas variaveis da super vão ficar de fora. Bad software engineering practice # repetimos a declaração de alguns parâmetros só pra enfatizar. Bad practice. self.short_after = 0.1 self.exit_target = 0.3 self.exit_stop_margin = 0.1 # se high do pre for $5.00, stop vai ficar em $5.50 def setAlgoParameters( self, short_after = 0.1, exit_target = 0.3, exit_stop_margin = 0.1): self.short_after = short_after self.exit_target = exit_target self.exit_stop_margin = exit_stop_margin def __repr__(self): s='PARÂMETROS PARA ALGORITMO DO TIPO STOP AT HIGH OF PRE-MARKET\n' s = s + 'FILTERING PARAMETERS\n' s = s + f"prevol_threshold: {self.prevol_threshold}\n" s = s + f"open_dolar_threshold: {self.open_dolar_threshold}\n" s = s + f"gap_threshold: {self.gap_threshold}\n" s = s + f"F_low_threshold: {self.F_low_threshold}\n" s = s + f"F_high_threshold: {self.F_high_threshold}\n" s = s + f"\n" s = s + f'TRADING PARAMETERS\n' s = s + f"short_after: {self.short_after}\n" s = s + f"exit_target: {self.exit_target}\n" s = s + f"exit_stop_margin: {self.exit_stop_margin}\n" s = s + f"\n" s = s + f'SIMULATION PARAMETERS\n' s = s + f"start_money: {self.start_money}\n" s = s + f"allocation: {self.allocation}\n" s = s + f"locate_fee: {self.locate_fee}\n" s = s + f"commission: {self.commission}\n" return s
UTF-8
Python
false
false
1,527
py
49
ParametersSHP.py
32
0.648258
0.636423
0
46
32.086957
122
chitakeo/Nagayama_2019
3,238,405,389,670
88e51b77d5fd511bc52c2f9fb042fe57b1be7ade
cc9a8298c4ce507d092c4bc83fd3659ea37a519d
/cat/cat4.py
d16914357d74f76b970d3de42e04a22b76dd8b0e
[]
no_license
https://github.com/chitakeo/Nagayama_2019
2d86eed47aeceb536aebc893b1bc0f14feab9799
29bd6316a73ed1da2c3967db689d81beec6bcbae
refs/heads/master
2020-12-28T01:46:48.511229
2020-02-16T13:58:16
2020-02-16T13:58:16
238,141,590
0
0
null
false
2020-02-16T13:58:17
2020-02-04T06:46:53
2020-02-16T09:38:13
2020-02-16T13:58:16
31,374
0
0
0
Python
false
false
import numpy as np import cv2 import os from matplotlib import pyplot as plt kan_file_path = '../save/fe.jpg' #完成図保存のファイルパス&ファイル名 mach_file_path = '../save/zikken.jpg' #マッチング結果保存のファイルパス&ファイル名 pazu_file_path = '../pazu/kousiki.png' #パズルのファイルパス&ファイル名 pice_file_path = '../pazu' #ピースのファイルパス&ファイル名 pice = ['/rt.png', '/rrb.png', '/lt.png', '/lb.png'] #4隅の画像のファイルパス #SIFT def sif(gray1, gray2): sift = cv2.xfeatures2d.SIFT_create() kp1, des1 = sift.detectAndCompute(gray1,None) kp2, des2 = sift.detectAndCompute(gray2,None) bf = cv2.BFMatcher() matches =bf.knnMatch(des1,des2, k=2) good = [] for m,n in matches: if m.distance < 0.75*n.distance: good.append([m]) good = sorted(good, key = lambda x:x[0].distance) return good, kp1, kp2 #マッチング後の組み立て def create(img1t,img1,img2,gray1,kp1,kp2, n): img3 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,good[:5],None,flags=2) cv2.imwrite(mach_file_path, img3) img1_pt = [list(map(int, kp1[m[0].queryIdx].pt)) for m in good] img2_pt = [list(map(int, kp2[m[0].trainIdx].pt)) for m in good] #ここからマッチングがうまくいったと仮定している #元画像の縦と横の距離を計算 img1_hei = img1_pt[0][1] - img1_pt[1][1] img1_wei = img1_pt[0][0] - img1_pt[1][0] #ピースの縦と横の距離を計算 img2_hei = img2_pt[0][1] - img2_pt[1][1] img2_wei = img2_pt[0][0] - img2_pt[1][0] #ピースと元画像の縦と横の比率を計算 height2, weight2 = img2.shape[:2] if img1_hei == 0 and img2_hei == 0: if img1_wei == 0 and img2_wei == 0: pass else: wei = abs(img2_wei) / abs(img1_wei) img2 = cv2.resize(img2, (int(weight2/wei), int(height2))) elif img1_wei == 0 and img2_wei == 0: hei = abs(img2_hei) / abs(img1_hei) img2 = cv2.resize(img2, (int(weight2), int(height2/hei))) elif img1_pt[0][1] != img2_pt[0][1] and img1_pt[0][0] != img2_pt[0][0]: wei = abs(img2_wei) / abs(img1_wei) hei = abs(img2_hei) / abs(img1_hei) img2 = cv2.resize(img2, (int(weight2/wei), int(height2/hei))) height, weight = img1t.shape[:2] #全体画像と同じ大きさの画像を作成、あるなら作らない if os.path.isfile(kan_file_path) : imageArray = cv2.imread(kan_file_path) else: imageArray = np.ones((height, weight, 3), np.uint8)*255 height2,weight2 = img2.shape[:2] hei41 = int(height / 4) hei43 = int(hei41 * 3) wei41 = int(weight / 4) wei43 = int(wei41 * 3) #nが0の時が左上,1の時左下、2の時右上、3の時右下 if n == 0: h1 = 0 h2 = height2 w1 = 0 w2 = weight2 elif n == 1: h1 = height - height2 h2 = height w1 = 0 w2 = weight2 elif n == 2: h1 = 0 h2 = height2 w1 = weight - weight2 w2 = weight elif n == 3: h1 = height - height2 h2 = height w1 = weight - weight2 w2 = weight imageArray[h1 : h2 , w1 : w2 ] = img2 cv2.imwrite(kan_file_path, imageArray) return imageArray #4隅の画像がどこか探す def find4(gray1): good = [] max_len = 0 for i in range(4): f = pice_file_path + pice[i] img2_1 = cv2.imread(f) gray2_1 = cv2.cvtColor(img2_1, cv2.COLOR_BGR2GRAY) check = [] check, kp3, kp4 = sif(gray1, gray2_1) print(len(check)) if max_len < len(check): max_len = len(check) img2 = img2_1 good = check kp1 = kp3 kp2 = kp4 return good, img2, kp1, kp2 if __name__ == '__main__': img1 = cv2.imread(pazu_file_path) # 元画像 height, weight = img1.shape[:2] hei41 = int(height / 4) hei43 = int(hei41 * 3) wei41 = int(weight / 4) wei43 = int(wei41 * 3) img1_lt = img1[0 : hei41 , 0 : wei41] img1_lb = img1[hei43 : height , 0 : wei41] img1_rt = img1[0 : hei41 , wei43 : weight] img1_rb = img1[hei43 : height , wei43 : weight] coner = [img1_lt, img1_lb, img1_rt, img1_rb] #左上、左下、右上、右下の順番にして for n in range(4): img1_tk = coner[n] gray1 = cv2.cvtColor(img1_tk, cv2.COLOR_BGR2GRAY) good = [] good, img2, kp1, kp2 = find4(gray1) dst = create(img1,img1_tk, img2, gray1, kp1, kp2, n) while(1): cv2.namedWindow('image', cv2.WINDOW_NORMAL) cv2.imshow('image',dst) if cv2.waitKey(20) & 0xFF == 27: break cv2.destroyAllWindows()
UTF-8
Python
false
false
4,345
py
7
cat4.py
6
0.63109
0.55272
0
158
23.556962
72
WillNye/duolingo_x
8,761,733,285,529
004d1ccd7375c327d089998c19e25b353ba201c9
7ea6d43d98813d9839f3a32e136ca04933922737
/training/models.py
f6c449e19cd157838fb18952520d0f1452f6a4a8
[]
no_license
https://github.com/WillNye/duolingo_x
d5e60749acc7e75fa0aca9994cc9ad83695dd211
923f38de89c60e0f8c945df4a13b360c1369f960
refs/heads/master
2021-01-13T13:04:21.456410
2017-01-14T03:01:05
2017-01-14T03:01:05
78,687,778
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.db import models from django.contrib.auth.models import User from datetime import datetime as dt class Language(models.Model): name = models.CharField(max_length=250, null=False) audio_base = models.CharField(max_length=250, null=False) def __str__(self): return self.name class Phrase(models.Model): english_translation = models.CharField(max_length=750, null=False) foreign_translation = models.CharField(max_length=750, null=False) language = models.ForeignKey(Language, null=False) audio_id = models.CharField(max_length=250, null=False) def __str__(self): return self.english_translation class PhraseStats(models.Model): user = models.ForeignKey(User, null=False) phrase = models.ForeignKey(Phrase, null=False) is_make_streak = models.BooleanField(default=False, null=False) streak_number = models.IntegerField(default=0, null=False) last_heard = models.DateTimeField(default=dt.now(), null=False) def __str__(self): if self.is_make_streak: stat_str = "Made {} in a row" else: stat_str = "Missed {} in a row" return stat_str.format(str(self.streak_number))
UTF-8
Python
false
false
1,205
py
7
models.py
5
0.685477
0.672199
0
37
31.540541
70
daniel-l-merhi/Python-and-ROS-Coursework
14,259,291,435,794
b4f792aad8b88d7cd9b93f0b552da2b2bc259752
5508e79fb43398f0622d0df986354f530fe6032c
/Python for Robotics/robot_control/get_laser_method.py
1e4af28b341ce1452c0b3f24c7c2b8ee7d520468
[]
no_license
https://github.com/daniel-l-merhi/Python-and-ROS-Coursework
14ac226379da6e8a9a0319244166e7a712df7f88
bc9956b264f5388184c0388d7106d89c162d718b
refs/heads/main
2023-08-06T12:51:35.236840
2021-10-09T02:25:00
2021-10-09T02:25:00
415,173,258
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from robot_control_class import RobotControl rc = RobotControl(robot_name="summit") def return_laser(a, b, c): laser_list = [rc.get_laser_summit(a), rc.get_laser_summit(b), rc.get_laser_summit(c)] return laser_list l = return_laser(0, 360, 400) print (l)
UTF-8
Python
false
false
267
py
43
get_laser_method.py
31
0.692884
0.666667
0
12
21.333333
89
vigman-xxxw/python-code
936,302,905,518
bd629e12fc3d65e0111493f1f9b86c728db02632
16d33ca26751e50d518f79bcb8f1c05dd7e79f7b
/二分法.py
20af27a85f4cb0833f444355126f9c70e5b7a8a2
[]
no_license
https://github.com/vigman-xxxw/python-code
6017fac6c7c019384957c63b38ef76b6919726d3
004d18576065ba94044659d4b83a361675a0f178
refs/heads/master
2023-08-19T01:53:52.624302
2021-10-11T09:03:53
2021-10-11T09:03:53
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# 给定数组A 目标值T 查找T在A中位置 def binary_search(arr, key): start = 0 end = len(arr) - 1 while start <= end: mid = int((start + end) / 2) if arr[mid] < key: start = mid + 1 elif arr[mid] > key: end = mid - 1 else: return mid return -1 list1 = [i for i in range(100)] print(list1) b = binary_search(list1, 5)
UTF-8
Python
false
false
413
py
66
二分法.py
66
0.49354
0.459948
0
19
19.315789
36
MarcoBorsato/AOC2020
13,795,434,976,011
8c9334e962500e0e8f12851fdd6e0af220e892dc
ec56e52fdb18c80c2a6eda74a66a8e6e6229c6f5
/AOCday6.py
e958cbfd2d7d764ca9ed32d4b73abbb15a120ee8
[]
no_license
https://github.com/MarcoBorsato/AOC2020
7d3a8896a60e737b574b3a8b0cffe7820228f95f
f813048f233b7833aedd1ebe126b0bd1cd50502c
refs/heads/master
2023-03-19T16:02:15.871020
2021-03-10T22:27:29
2021-03-10T22:27:29
344,621,179
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
def readInput(input): data = [] person = [] line = "" for i in input.readlines(): i = i.strip() if i == "": data.append(person) person = [] else: person.append(i) data.append(person) return data def countAnswers1(input: list[str]) -> int: data = readInput(input) answers = [] stripped = "" count = 0 for i in data: print(i) for s in "".join(i): if s not in stripped: stripped += s count += len(stripped) stripped = "" return count def countAnswers2(data: list[str]) -> int: data = readInput(data) count = 0 result = 0 for i in data: for j in range(len(i)): if j == 0: answer = set(i[j]) else: answer = answer.intersection(i[j]) count += len(answer) return count if __name__ == '__main__': input4 = open('inputday6.txt') print(countAnswers2(input4))
UTF-8
Python
false
false
1,023
py
7
AOCday6.py
7
0.482893
0.473118
0
47
20.765957
50
nasawz/wiki.catke
5,841,155,567,762
9cefe78c2e5477a86cc64fbe92e11912f89e6104
9933cb7f69b8e13a970901012fa3672120d944a3
/diy/syncdb.py
261cc82eba45f63affc579aae1d3ec5f2a9f3fef
[]
no_license
https://github.com/nasawz/wiki.catke
a78689f1e67fd48c134e95276552012f2d4c61dc
35d43fe9df92d9413f564b40e18028a931a6e652
refs/heads/master
2020-02-03T15:21:18.574729
2013-02-04T08:36:56
2013-02-04T08:36:56
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# coding=utf-8 ''' 同步数据表 @author vfasky@gmail.com ''' import os import sys # 设置系统编码为utf8 reload(sys) sys.setdefaultencoding('utf8') # 加入第三方类库搜索路径 sys.path.append(os.path.join(os.path.dirname(__file__), 'modules')) # 加载程序配置 from wiki import config # 引入Database from xcat import Database # 加载数据库配置 Database.load_config( config.settings['database'].get(config.settings['run_mode'], False) ) Database.connect() import wiki.models import wiki.models.wiki for m in dir(wiki.models): model = getattr(wiki.models, m) if m != 'Model' and str(type(model)) == "<class 'peewee.BaseModel'>": if model.table_exists() == False: try: model.create_table() except Exception, e: pass elif str(type(model)) == "<type 'module'>": for m2 in dir(model): model2 = getattr(model, m2) if m2 not in ('Model') and str(type(model2)) == "<class 'peewee.BaseModel'>": if model2.table_exists() == False: try: model2.create_table() except Exception, e: pass # 执行安装 if 0 == wiki.models.Role.select().count(): ar = wiki.models.Role() ar.code = 'admin' ar.name = '管理者' ar.save() ar = wiki.models.Role() ar.code = 'user' ar.name = '用户' ar.save() Database.close()
UTF-8
Python
false
false
1,487
py
35
syncdb.py
24
0.566403
0.558507
0
66
20.106061
89
SuhashisAcharya/automation
7,524,782,746,848
24ab24e059f116b78bc9da4dd37522d3be4ba4a0
8bb594bed8e458019d828864cbcd548c8d538e5a
/Infrastructure/validation_matrix_server/media_stream_validator/media_stream_validator
562257f35b581e879f25745a0b2d9b544f58e55a
[]
no_license
https://github.com/SuhashisAcharya/automation
ff1b8e6ffbd573a2c4edd95575627333fefd0128
db312f4fc168d297fc027298c865aa3e462d5d25
refs/heads/master
2020-03-03T00:38:22.010621
2016-06-06T05:31:00
2016-06-06T05:31:00
65,850,723
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- import os,sys import pexpect import json import re from time import gmtime, strftime #print len(sys.argv) #print str(sys.argv) if ( 6 > len(sys.argv) ): print 'Insufficient number of commands' sys.exit(1) manifest_url=sys.argv[1] apple_ip=sys.argv[2] apple_user=sys.argv[3] apple_pwd=sys.argv[4] automation_user=sys.argv[5] status_file_path=sys.argv[6] def media_stream_validator(manifest_url, apple_ip, apple_user, apple_pwd, status_file_path): #mediastreamvalidator -O /Users/rebaca/ http://192.168.4.128/AZ_HLS_FILE_BASED_TC2/master/master.m3u8 #hlsreport.py validation_data.json cmd = '/usr/local/bin/mediastreamvalidator -O /var/log/validation_data.json ' + manifest_url (command_output1, exitstatus) = \ pexpect.run("ssh " + apple_user + "@" + apple_ip + " '" + cmd + "'", \ events={'Password':'' + apple_pwd + '\n'}, \ timeout=660, withexitstatus=1) cmd = '/Users/rebaca/hlsreport_updated.py /var/log/validation_data.json' (command_output2, exitstatus) = \ pexpect.run("ssh " + apple_user + "@" + apple_ip + " '" + cmd + "'", \ events={'Password':'' + apple_pwd + '\n'}, \ timeout=660, withexitstatus=1) cmd = 'cat /var/log/validation_data_1.json' (command_output, exitstatus) = \ pexpect.run("ssh " + apple_user + "@" + apple_ip + " '" + cmd + "'", \ events={'Password':'' + apple_pwd + '\n'}, \ timeout=660, withexitstatus=1) status_file_and_path = status_file_path + '/' + 'MSV_' + automation_user; status_file_and_path = status_file_and_path + strftime("_%m-%d-%H-%M-%S", gmtime()) status_file_and_path = status_file_and_path + '.log' file_des = open(status_file_and_path,'w') file_des.write(command_output) hls_report_json_data=command_output.splitlines()[1] must_fix_errors_present = re.search(r'"errorStatusCode": -1', command_output, re.I) should_fix_errors_present = re.search(r'"errorStatusCode": 0', command_output, re.I) hls_report_json_object=json.loads(hls_report_json_data) if must_fix_errors_present: hls_report_json_object["must_fix_errors_present"] = "YES" else: hls_report_json_object["must_fix_errors_present"] = "NO" if should_fix_errors_present: hls_report_json_object["should_fix_errors_present"] = "YES" else: hls_report_json_object["should_fix_errors_present"] = "NO" mustfix_shouldfix_msg_json_obj=json.loads("{}") ''' message_list=hls_report_json_object["messages"] shouldfix_msg_list_obj = [] mustfix_msg_list_obj = [] if message_list == NONE: pass else: for read_message in message_list message_type=read_message["errorStatusCode"] if message_type == "-1" mustfix_msg_list_obj.append(read_message["errorComment"]) elif message_type == "0" shouldfix_msg_list_obj.append(read_message["errorComment"]) mustfix_shouldfix_msg_json_obj["mustfix_messages"]=mustfix_msg_list_obj mustfix_shouldfix_msg_json_obj["shouldfix_messages"]=shouldfix_msg_list_obj ''' #hls_report_json_object=json.loads(hls_report_json_data) mustfix_shouldfix_msg_json_obj=json.loads("{}") # Getting messages from top level hierarchy message_list=hls_report_json_object["messages"] shouldfix_msg_list_obj = [] mustfix_msg_list_obj = [] if message_list == None: pass else: for read_message in message_list: message_type=read_message["errorStatusCode"] if message_type == -1: mustfix_msg_list_obj.append(read_message["errorComment"]) elif message_type == 0: shouldfix_msg_list_obj.append(read_message["errorComment"]) message_object=json.loads("{}") message_object["mustfix_messages"]=mustfix_msg_list_obj message_object["shouldfix_messages"]=shouldfix_msg_list_obj mustfix_shouldfix_msg_json_obj["messages"]=message_object # Getting messages from each varient and creating json object varients_list=hls_report_json_object["variants"] varients_list_created=[] #print json.dumps(varients_list) if varients_list == None: pass else: for read_varient in varients_list: message_list=read_varient["messages"] bitrate=read_varient["measuredMaxBitrate"] shouldfix_msg_list_obj = [] mustfix_msg_list_obj = [] message_object=json.loads("{}") if message_list == None: pass else: for read_message in message_list: message_type=read_message["errorStatusCode"] if message_type == -1: mustfix_msg_list_obj.append(read_message["errorComment"]) elif message_type == 0: shouldfix_msg_list_obj.append(read_message["errorComment"]) message_object["playlistMaxBitrate"]=bitrate message_object["mustfix_messages"]=mustfix_msg_list_obj message_object["shouldfix_messages"]=shouldfix_msg_list_obj varients_list_created.append(message_object) mustfix_shouldfix_msg_json_obj["variants"]=varients_list_created if must_fix_errors_present: mustfix_shouldfix_msg_json_obj["must_fix_errors_present"] = "YES" else: mustfix_shouldfix_msg_json_obj["must_fix_errors_present"] = "NO" if should_fix_errors_present: mustfix_shouldfix_msg_json_obj["should_fix_errors_present"] = "YES" else: mustfix_shouldfix_msg_json_obj["should_fix_errors_present"] = "NO" print json.dumps(mustfix_shouldfix_msg_json_obj) #end of creating json object contains list of all the messages if must_fix_errors_present or should_fix_errors_present: print 'FAIL' else: print 'PASS' #print json.dumps(hls_report_json_object) ''' wrong_playlist = re.search(r'Failed to download playlist.*', command_output, re.I) valid_playlist = re.search(r'Playlist.*OK', command_output, re.I) not_run = re.search(r': command not found', command_output, re.I) if wrong_playlist: #print 'Invalid Playlist Provided: %s' %(wrong_playlist.group()) print 'FAIL' elif valid_playlist: fatal_msg = re.search(r'fatal.*', command_output, re.I) error_msg = re.search(r'error.*', command_output, re.I) bfr_error = re.search(r'error.*Decreasing DTS were detected in track 0.*', command_output, re.I) fail_msg = re.search(r'fail.*', command_output, re.I) warn_msg = re.search(r'warning.*', command_output, re.I) #print 'bfr_error: %s' %(bfr_error.group())) #print 'error_msg: %s' %(error_msg.group())) if error_msg and bfr_error: if error_msg.group() == bfr_error.group(): bframe_input_error = True else: bframe_input_error = False if fatal_msg: pass #print 'Fatal Message: %s' %(fatal_msg.group()) if error_msg: pass #print 'Error Message: %s' %(error_msg.group()) if fail_msg: pass #print 'Failure Message: %s' %(fail_msg.group()) if warn_msg: pass #print 'Warning Message: %s' %(warn_msg.group()) if fatal_msg or (error_msg and bframe_input_error == False) or fail_msg: print 'FAIL' else: print 'PASS' else: print 'NOT_PERFORMED' ''' #media_stream_validator('http://192.168.3.222/automation/main/mbnebfr/5/master/dummy.m3u8', '192.168.4.113', 'rebaca', 'rebaca') media_stream_validator(manifest_url, apple_ip, apple_user, apple_pwd, status_file_path)
UTF-8
Python
false
false
8,037
134
media_stream_validator
79
0.59898
0.59027
0
232
33.642241
128
devesh37/HackerRankProblems
10,067,403,355,660
363e8330029df04f82b127159adf0093172ff0ef
d65f58cb47b308dc7130a4033c5ec1de61d9814f
/Datastructure_HackerRank/Array/arrayRotation.py
5dd164efb2caa0a39fa9a4d00aa6c25fb74120db
[]
no_license
https://github.com/devesh37/HackerRankProblems
1b1fee329d2fae31dea524d272d5c1b596e107ed
8f7cdd1d96c169ea9071ac8e6ea7dff0788d046f
refs/heads/master
2022-12-22T18:26:46.688790
2020-09-23T06:02:44
2020-09-23T06:02:44
263,381,580
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/bin/python3 import math import os import random import re import sys def left_rotation(a,n,r): array=[0]*n i=0 while(i<n): array[(i+n-r)%n]=a[i] i+=1 for i in array: print(i,end=' ') if __name__ == '__main__': nd = input().split() n = int(nd[0]) r = int(nd[1]) a = list(map(int, input().rstrip().split())) left_rotation(a,n,r)
UTF-8
Python
false
false
396
py
25
arrayRotation.py
25
0.510101
0.494949
0
27
13.703704
48
kss2153/hubspot-mr
18,262,200,954,009
1cd1182d243fc86bb66b4d26f0bdab9fe4c0dfd6
441543345b718b43d52704200a7a87d98804bb93
/src/app/db.py
1c16b40bf0ff9b37296aaa7bf6e747044491238d
[]
no_license
https://github.com/kss2153/hubspot-mr
eed0a25c936bdca5d4b0c23e5f471e441224d604
b0b85bff42bf6e6a95c56f85090c5bbb1ff4e15d
refs/heads/master
2023-05-28T20:42:21.141819
2019-09-24T22:19:20
2019-09-24T22:19:20
210,515,808
0
0
null
false
2023-05-01T20:36:40
2019-09-24T05:02:12
2020-01-21T15:09:38
2023-05-01T20:36:39
20,778
0
0
1
Python
false
false
import os from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker db_user = os.environ.get('CLOUD_SQL_USERNAME') db_password = os.environ.get('CLOUD_SQL_PASSWORD') db_name = os.environ.get('CLOUD_SQL_DATABASE_NAME') db_host = os.environ.get('CLOUD_SQL_HOST') engine_url = 'mysql+pymysql://{}:{}@{}/{}'.format(db_user, db_password, db_host, db_name) engine = create_engine(engine_url, pool_size=3) SqlSession = sessionmaker(bind=engine)
UTF-8
Python
false
false
460
py
9
db.py
6
0.734783
0.732609
0
13
34.384615
89
mennthor/tdepps
13,125,420,065,650
ccd34e57f587e6658f7ea61f5529d79ca90d2248
490cd642d522ab512ab435580ea92bbae789414c
/tdepps/grb/llh.py
c98fafaed6ebb69255406621a5d9adb62ca897a1
[]
no_license
https://github.com/mennthor/tdepps
c4f86d11e61b99c1e27d6df2a8f013ea8f1c0a78
100035f95321506057677806d25f1695cfea58a9
refs/heads/master
2021-09-22T21:05:21.801613
2018-08-06T09:38:26
2018-08-06T09:38:26
90,803,720
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# coding: utf-8 from __future__ import division, absolute_import import math import numpy as np import scipy.optimize as sco from ..base import BaseLLH, BaseMultiLLH from ..utils import fill_dict_defaults, all_equal, dict_map class GRBLLH(BaseLLH): """ Stacking GRB LLH Stacking weights are a-priori fixed with w_theo * w_dec and only a single signal strength parameter ns is fitted. """ def __init__(self, llh_model, llh_opts=None): """ Parameters ---------- llh_model : BaseModel instance Model providing LLH args and signal over background ratio. llh_opts : dict, optional LLH options: - 'sob_rel_eps', optional: Relative threshold under which a single signal over background ratio is considered zero for speed reasons. - 'sob_abs_eps', optional: Absolute threshold under which a single signal over background ratio is considered zero for speed reasons. - 'ns_bounds', optional: ``[lo, hi]`` bounds for the ``ns`` fit parameter. - 'minimizer', optional: String selecting a scipy minizer. - 'minimizer_opts', optional: Options dict for the scipy minimizer. """ self._needed_args = ["src_w_dec", "src_w_theo", "nb"] self.model = llh_model self.llh_opts = llh_opts @property def needed_args(self): return self._needed_args @property def model(self): return self._model @model.setter def model(self, model): if not all_equal(self._needed_args, model.provided_args): raise(KeyError("Model `provided_args` don't match `needed_args`.")) # Cache fixed src weights over background estimation, shape (nsrcs, 1) args = model.get_args() src_w = args["src_w_dec"] * args["src_w_theo"] # Shape is (1, nsrcs) for stacking GRB LLH self._src_w_over_nb = ((src_w / np.sum(src_w)) / args["nb"])[:, None] self._model = model @property def llh_opts(self): return self._llh_opts.copy() @llh_opts.setter def llh_opts(self, llh_opts): required_keys = [] opt_keys = { "sob_rel_eps": 0, "sob_abs_eps": 1e-3, "ns_bounds": [0., None], "minimizer": "L-BFGS-B", "minimizer_opts": { "ftol": 1e-15, "gtol": 1e-10, "maxiter": int(1e3) }, } llh_opts = fill_dict_defaults(llh_opts, required_keys, opt_keys) if (llh_opts["sob_rel_eps"] < 0 or llh_opts["sob_rel_eps"] > 1): raise ValueError("'sob_rel_eps' must be in [0, 1]") if llh_opts["sob_abs_eps"] < 0: raise ValueError("'sob_abs_eps' must be >= 0.") if len(llh_opts["ns_bounds"]) != 2: raise ValueError("'ns_bounds' must be `[lo, hi]`.") if type(llh_opts["minimizer_opts"]) is not dict: raise ValueError("'minimizer_opts' must be a dictionary.") self._llh_opts = llh_opts def lnllh_ratio(self, ns, X, band_select=True): """ Public method wrapper """ sob = self._soverb(X, band_select=band_select) return self._lnllh_ratio(ns, sob) def fit_lnllh_ratio(self, ns0, X, band_select=True): """ Fit TS with optimized analytic cases """ def _neglnllh(ns, sob): """ Wrapper for minimizing the negative lnLLH ratio """ lnllh, lnllh_grad = self._lnllh_ratio(ns, sob) return -lnllh, -lnllh_grad if len(X) == 0: # Fit is always 0 if no events are given return 0., 0. # Get the best fit parameter and TS. Analytic cases are handled: # For nevts = [1 | 2] we get a [linear | quadratic] equation to solve. sob = self._soverb(X, band_select=band_select) nevts = len(sob) # Test again, because we applied some threshold cuts if nevts == 0: return 0., 0. elif nevts == 1: sob = sob[0] if sob <= 1.: # sob <= 1 => ns <= 0, so fit will be 0 return 0., 0. else: ns = 1. - (1. / sob) ts = 2. * (-ns + math.log(sob)) return ns, ts elif nevts == 2: sum_sob = sob[0] + sob[1] if sum_sob <= 1.: # More complicated to show but same as above return 0., 0. else: a = 1. / (sob[0] * sob[1]) c = sum_sob * a ns = 1. - 0.5 * c + math.sqrt(c * c / 4. - a + 1.) ts = 2. * (-ns + np.sum(np.log1p(ns * sob))) return ns, ts else: # Fit other cases res = sco.minimize(fun=_neglnllh, x0=[ns0], jac=True, args=(sob,), bounds=[self._llh_opts["ns_bounds"]], method=self._llh_opts["minimizer"], options=self._llh_opts["minimizer_opts"]) ns, ts = res.x[0], -res.fun[0] if ts < 0.: # Some times the minimizer doesn't go all the way to 0., so # TS vals might end up negative for a truly zero fit result ts = 0. return ns, ts def _soverb(self, X, band_select=True): """ Make an additional cut on small sob values to save time """ if len(X) == 0: # With no events given, we can skip this step return np.empty(0, dtype=np.float) # Stacking case: Weighted signal sum per source sob = self._model.get_soverb(X, band_select=band_select) sob = np.sum(sob * self._src_w_over_nb, axis=0) if len(sob) < 1: return np.empty(0) # Apply a SoB ratio cut, to save computation time on events that don't # contribute anyway. We have a relative and an absolute threshold sob_max = np.amax(sob) if sob_max > 0: sob_rel_mask = (sob / sob_max) < self._llh_opts["sob_rel_eps"] else: sob_rel_mask = np.zeros_like(sob, dtype=bool) sob_abs_mask = sob < self._llh_opts["sob_abs_eps"] return sob[~(sob_rel_mask | sob_abs_mask)] def _lnllh_ratio(self, ns, sob): """ Calculate TS = 2 * ln(L1 / L0) """ x = ns * sob ts = 2. * (-ns + np.sum(np.log1p(x))) # Gradient in ns (chain rule: ln(ns * a + 1)' = 1 / (ns * a + 1) * a) ns_grad = 2. * (-1. + np.sum(sob / (x + 1.))) return ts, np.array([ns_grad]) class MultiGRBLLH(BaseMultiLLH): """ Class holding multiple GRBLLH objects, implementing the combined GRBLLH from all single GRBLLHs. """ def __init__(self, llh_opts=None): self._ns_weights = None self.llh_opts = llh_opts @property def names(self): return list(self._llhs.keys()) @property def llhs(self): return self._llhs @property def model(self): return dict_map(lambda key, llh: llh.model, self._llhs) @property def needed_args(self): return dict_map(lambda key, llh: llh.needed_args, self._llhs) @property def llh_opts(self): return self._llh_opts.copy() @llh_opts.setter def llh_opts(self, llh_opts): required_keys = [] opt_keys = { "ns_bounds": [0., None], "minimizer": "L-BFGS-B", "minimizer_opts": { "ftol": 1e-15, "gtol": 1e-10, "maxiter": int(1e3) }, } llh_opts = fill_dict_defaults(llh_opts, required_keys, opt_keys) if len(llh_opts["ns_bounds"]) != 2: raise ValueError("'ns_bounds' must be `[lo, hi]`.") if type(llh_opts["minimizer_opts"]) is not dict: raise ValueError("'minimizer_opts' must be a dictionary.") self._llh_opts = llh_opts def fit(self, llhs): """ Takes multiple single GRBLLHs in a dict and manages them. Parameters ---------- llhs : dict LLHs to be managed by this multi LLH class. Names must match with dict keys of provided multi-injector data. """ for name, llh in llhs.items(): if not isinstance(llh, GRBLLH): raise ValueError("LLH object " + "`{}` is not of type `GRBLLH`.".format(name)) # Cache ns plit weights used in combined LLH evaluation self._ns_weights = self._ns_split_weights(llhs) self._llhs = llhs return def lnllh_ratio(self, ns, X): """ Combine LLH contribution from fitted single LLH instances. Parameters ---------- ns : float Total expected signal events ``ns``. X : dict of recarrays Fixed data to evaluate the LHL at """ # Loop over ln-LLHs and add their contribution ts = 0. ns_grad = 0. # Add up LLHs for each single LLH for key, llh in self._llhs.items(): ns_w = self._ns_weights[key] ts_i, ns_grad_i = llh.lnllh_ratio(ns=ns * ns_w, X=X[key]) ts += ts_i ns_grad += ns_grad_i * ns_w # Chain rule return ts, ns_grad def fit_lnllh_ratio(self, ns0, X): """ Fit single ns parameter simultaneously for all LLHs. TODO: This relies on calls into private LLH methods directly using sob for speed reasons. Maybe we can change that. """ def _neglnllh(ns, sob_dict): """ Multi LLH wrapper directly using a dict of sob values """ ts = 0. ns_grad = 0. for key, sob in sob_dict.items(): ts_i, ns_grad_i = self._llhs[key]._lnllh_ratio( ns * self._ns_weights[key], sob) ts -= ts_i ns_grad -= ns_grad_i * self._ns_weights[key] # Chain rule return ts, ns_grad # No events given for any LLH, fit is zero if sum(map(len, X.values())) == 0: return 0., 0. # Get soverb separately for all LLHs sob = [] # sob_dict is only used if we fit, because we need sob unweighted there sob_dict = {} for key, llh in self._llhs.items(): sob_i = llh._soverb(X[key]) sob.append(self._ns_weights[key] * sob_i) if len(sob_i) > 0: # If sob is empty for a LLH, it would return (0, [0]) anyway, # so just add the existing ones. ns_weights are added in # correctly in the fit function later sob_dict[key] = sob_i sob = np.concatenate(sob) nevts = len(sob) # Test again, because we may have applied sob threshold cuts per LLH if nevts == 0: return 0., 0. elif nevts == 1: # Same case as in single LLH because sob is multi year weighted sob = sob[0] if sob <= 1.: # sob <= 1 => ns <= 0, so fit will be 0 return 0., 0. else: ns = 1. - (1. / sob) ts = 2. * (-ns + math.log(sob)) return ns, ts elif nevts == 2: # Same case as in single LLH because sob is multi year weighted sum_sob = sob[0] + sob[1] if sum_sob <= 1.: # More complicated to show but same as above return 0., 0. else: a = 1. / (sob[0] * sob[1]) c = sum_sob * a ns = 1. - 0.5 * c + math.sqrt(c * c / 4. - a + 1.) ts = 2. * (-ns + np.sum(np.log1p(ns * sob))) return ns, ts else: # Fit other cases res = sco.minimize(fun=_neglnllh, x0=[ns0], jac=True, args=(sob_dict,), bounds=[self._llh_opts["ns_bounds"]], method=self._llh_opts["minimizer"], options=self._llh_opts["minimizer_opts"]) if not res.success: def _neglnllh_numgrad(ns, sob_dict): """ Use numerical gradient if LINESRCH problem arises. """ return _neglnllh(ns, sob_dict)[0] res = sco.minimize(fun=_neglnllh_numgrad, x0=[ns0], jac=False, args=(sob_dict,), bounds=[self._llh_opts["ns_bounds"]], method=self._llh_opts["minimizer"], options=self._llh_opts["minimizer_opts"]) ns, ts = res.x[0], -res.fun[0] if ts < 0.: # Some times the minimizer doesn't go all the way to 0., so # TS vals might end up negative for a truly zero fit result ts = 0. return ns, ts def _ns_split_weights(self, llhs): """ Set up the ``ns`` splitting weights: The weights simply renormalize the source weights for all single LLHs over all samples. Parameters ---------- llhs : dict of LLH instances Single LLH instances that shall be combined. Returns ------- ns_weigths : dict of array-like Weight per LLH to split up ``ns`` among different samples. """ ns_weights = {} ns_w_sum = 0 for key, llh in llhs.items(): args = llh.model.get_args() ns_weights[key] = np.sum(args["src_w_dec"] * args["src_w_theo"]) ns_w_sum += ns_weights[key] # Normalize weights over all sample source weights return dict_map(lambda key, nsw: nsw / ns_w_sum, ns_weights)
UTF-8
Python
false
false
13,802
py
31
llh.py
21
0.511882
0.501377
0
367
36.607629
80
wikimedia/revscoring
6,253,472,425,015
14ee62824c45cdb8434fd97ba4b477677918e0cc
496b5270078183b3ffc3e9a2eda76e95e18061f1
/revscoring/features/bytes/revision_oriented.py
4f426400d21df25c44b62c85dd7c9cafef68fd49
[ "MIT" ]
permissive
https://github.com/wikimedia/revscoring
87d0e9e856150b017b87f43e110b2062b4c90f07
5a3618e4ce6f93f1e571abf8b3600726d7295138
refs/heads/master
2023-08-23T03:48:07.172353
2023-01-24T10:58:33
2023-01-24T10:58:33
23,771,350
52
34
MIT
false
2023-04-17T06:03:24
2014-09-07T21:20:37
2023-03-02T18:19:49
2023-04-17T06:03:20
2,424
84
51
19
Python
false
false
from revscoring.datasources import revision_oriented from revscoring.dependencies import DependentSet from ..meta import aggregators from . import datasources name = "bytes.revision" class Revision(DependentSet): def __init__(self, name, revision_datasources): super().__init__(name) self.length = aggregators.len( revision_datasources.bytes, name=name + ".length" ) "`int` : The length of the revision content in bytes" if hasattr(revision_datasources, "parent"): self.parent = Revision( name + ".parent", revision_datasources.parent ) """ :class:`revscoring.features.bytes.Revision` : The parent (aka "previous") revision of the page. """ revision = Revision(name, datasources.Revision(name, revision_oriented.revision)) """ Represents the base revision of interest. Implements this a basic structure: * revision: :class:`~revscoring.features.bytes.Revision` * parent: :class:`~revscoring.features.bytes.Revision` """
UTF-8
Python
false
false
1,126
py
329
revision_oriented.py
283
0.625222
0.625222
0
38
28.631579
77
diweiqiang/PRIS
7,464,653,160,914
436a03719bf2ba13659b101b5783418a1d3a3b9f
7576879de06944ab501ef8875ec02aaab15d2e47
/peris_model.py
b4a7c8d019c2d149cc37f4c173f6fd933584a2c9
[]
no_license
https://github.com/diweiqiang/PRIS
4ed89540c4731a4e6b3591410796885b5287c9af
2e691ac82e6f91ae118c0cbb80aba6d2f337c052
refs/heads/master
2022-04-21T10:01:00.071643
2020-04-24T04:22:21
2020-04-24T04:22:21
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import tensorflow as tf import time from utils import Eval import numpy as np from sampler import * from mylayers import RCEncoding, EuclideanDistillation samplers = [SamplerModel, PopularSamplerModel, ClusterSamplerModel, ClusterPopularSamplerModel, ExactSamplerModel] class EvaluateCallback(tf.keras.callbacks.Callback): def __init__(self, round_): self.round = round_ super(EvaluateCallback, self).__init__() def on_epoch_begin(self, epoch, logs=None): self.starttime = time.time() def on_epoch_end(self, epoch, logs=None): elapsed = time.time() - self.starttime print('Epoch={} - {}s - loss={:.4f}'.format(self.round + epoch + 1, int(elapsed), logs['loss'])) def compute_loss(pred, prob, weighted): if weighted: importance = tf.nn.softmax(tf.negative(pred) - tf.log(prob)) else: importance = tf.nn.softmax(tf.ones_like(pred)) weight_loss = tf.multiply(importance, tf.negative(tf.log_sigmoid(pred))) loss = tf.reduce_sum(weight_loss, -1, keepdims=True) return loss def identity_loss(y_true, y_pred): return tf.reduce_mean(y_pred - 0 * y_true) class PerisModel: def __init__(self, config): user_id = tf.keras.Input(shape=(1,), name='user_id') pos_id = tf.keras.Input(shape=(1,), name='pos_id') neg_id = tf.keras.Input(shape=(config.neg_num,), name='neg_id') neg_prob = tf.keras.Input(shape=(config.neg_num,), name='neg_prob', dtype='float32') item_embed_layer = tf.keras.layers.Embedding(config.num_item, config.d, name='item_embedding', embeddings_initializer=tf.keras.initializers.glorot_normal(), activity_regularizer=tf.keras.regularizers.l2(config.coef / config.batch_size)) user_embed = tf.keras.layers.Embedding(config.num_user, config.d, name='user_embedding', embeddings_initializer=tf.keras.initializers.glorot_normal(), activity_regularizer=tf.keras.regularizers.l2(config.coef / config.batch_size))(user_id) pos_item_embed = item_embed_layer(pos_id) neg_item_embed = item_embed_layer(neg_id) pos_score = tf.keras.layers.dot([user_embed, pos_item_embed], axes=-1) neg_score = tf.keras.layers.dot([user_embed, neg_item_embed], axes=-1) ruij = tf.keras.layers.Flatten()(tf.keras.layers.subtract([pos_score, neg_score])) loss = tf.keras.layers.Lambda(lambda x: compute_loss(*x, config.weighted))([ruij, neg_prob]) self.model = tf.keras.Model(inputs=[user_id, pos_id, neg_id, neg_prob], outputs=loss) self.model.compile(loss=identity_loss, optimizer=tf.keras.optimizers.Adam(lr=config.learning_rate)) self.config = config def get_uv(self): user_embed = self.model.get_layer('user_embedding') item_embed = self.model.get_layer('item_embedding') u = user_embed.get_weights()[0] v = item_embed.get_weights()[0] return u, v def fit(self, train): steps_per_epoch = int((train.nnz + self.config.batch_size - 1) / self.config.batch_size) opt_para = [{}, {'mode': self.config.mode}, {'num_clusters': self.config.num_clusters}, {'num_clusters': self.config.num_clusters, 'mode': self.config.mode}, {}] if self.config.sampler in {0, 1}: sampler = samplers[self.config.sampler](train, **opt_para[self.config.sampler])\ .negative_sampler(neg=self.config.neg_num) dataset = IO.construct_dataset(sampler, self.config.neg_num).shuffle(50000)\ .batch(self.config.batch_size).repeat(self.config.epochs) self.model.fit(dataset, epochs=self.config.epochs, steps_per_epoch=steps_per_epoch, verbose=0, callbacks=[EvaluateCallback(0)]) elif self.config.sampler in {2, 3, 4}: sampler = samplers[self.config.sampler].__bases__[0](train, **opt_para[self.config.sampler % 2])\ .negative_sampler(neg=self.config.neg_num) for i in range(int(self.config.epochs / self.config.epochs_)): dataset = IO.construct_dataset(sampler, self.config.neg_num).shuffle(50000)\ .batch(self.config.batch_size).repeat(self.config.epochs_) self.model.fit(dataset, epochs=self.config.epochs_, steps_per_epoch=steps_per_epoch, verbose=0, callbacks=[EvaluateCallback(i * self.config.epochs_)]) u, v = self.get_uv() sampler = samplers[self.config.sampler](train, {'U': u, 'V': v}, **opt_para[self.config.sampler])\ .negative_sampler(self.config.neg_num) def evaluate(self, train, test): m, n = train.shape u, v = self.get_uv() users = np.random.choice(m, min(m, 50000), False) m = Eval.evaluate_item(train[users, :], test[users, :], u[users, :], v, topk=-1) return m class PerisJointModel: def __init__(self, config): user_id = tf.keras.Input(shape=(1,), name='user_id') pos_id = tf.keras.Input(shape=(1,), name='pos_id') neg_id = tf.keras.Input(shape=(config.neg_num,), name='neg_id') neg_prob = tf.keras.Input(shape=(config.neg_num,), name='neg_prob', dtype='float32') item_embed_layer = tf.keras.layers.Embedding(config.num_item, config.d, name='item_embedding', embeddings_initializer=tf.keras.initializers.glorot_normal(), activity_regularizer=tf.keras.regularizers.l2(config.coef / config.batch_size)) user_embed = tf.keras.layers.Embedding(config.num_user, config.d, name='user_embedding', embeddings_initializer=tf.keras.initializers.glorot_normal(), activity_regularizer=tf.keras.regularizers.l2(config.coef / config.batch_size))(user_id) pos_item_embed = item_embed_layer(pos_id) neg_item_embed = item_embed_layer(neg_id) pos_score = tf.keras.layers.dot([user_embed, pos_item_embed], axes=-1) neg_score = tf.keras.layers.dot([user_embed, neg_item_embed], axes=-1) ruij = tf.keras.layers.Flatten()(tf.keras.layers.subtract([pos_score, neg_score])) loss = tf.keras.layers.Lambda(lambda x: compute_loss(*x, config.weighted))([ruij, neg_prob]) num_clusters = config.num_clusters reg = tf.keras.layers.ActivityRegularization(l2=config.coef2 / config.batch_size) dist = EuclideanDistillation(coef=config.coef_kd) def transform(x): return reg(dist(x)) stop_grad = tf.keras.layers.Lambda(lambda x: tf.stop_gradient(x)) num_codewords = [num_clusters] item_rce_layer = RCEncoding(num_codewords, att_mode='bilinear', rnn_mode='none', name='rcencoding') pos_item_embed_stop = stop_grad(pos_item_embed) neg_item_embed_stop = stop_grad(neg_item_embed) pos_item_embed_, pos_item_cluster_idx = item_rce_layer(pos_item_embed_stop) neg_item_embed_, _ = item_rce_layer(neg_item_embed_stop) user_embed_ = tf.keras.layers.Dense(config.d, use_bias=False, name='user_dense', activity_regularizer=tf.keras.regularizers.l2(config.coef2 / config.batch_size))(stop_grad(user_embed)) pos_score_ = tf.keras.layers.dot([user_embed_, transform([pos_item_embed_stop, pos_item_embed_])], axes=-1) neg_score_ = tf.keras.layers.dot([user_embed_, transform([neg_item_embed_stop, neg_item_embed_])], axes=-1) ruij_ = tf.keras.layers.Flatten()(tf.keras.layers.subtract([pos_score_, neg_score_])) loss_ = tf.keras.layers.Lambda(lambda x: compute_loss(*x, config.weighted))([ruij_, neg_prob]) loss2 = tf.keras.layers.Lambda(lambda x: x[0] + x[1])([loss, loss_]) self.model = tf.keras.Model(inputs=[user_id, pos_id, neg_id, neg_prob], outputs=loss2) self.model.compile(loss=identity_loss, optimizer=tf.keras.optimizers.Adam()) self.config = config def get_cluster(self, m, n): cluster = self.model.get_layer('rcencoding') model_pred_item_cluster = tf.keras.Model(inputs=self.model.input[1], outputs=cluster.output[1]) user_embed_layer = self.model.get_layer('user_dense') model_pred_user = tf.keras.Model(inputs=self.model.input[0], outputs=user_embed_layer.output) item_code = np.squeeze(model_pred_item_cluster.predict(np.arange(n))) item_center = cluster.get_weights()[0] U = np.squeeze(model_pred_user.predict(np.arange(m))) return U, item_code, item_center def get_uv(self): user_embed = self.model.get_layer('user_embedding') item_embed = self.model.get_layer('item_embedding') U = user_embed.get_weights()[0] V = item_embed.get_weights()[0] return U, V def fit(self, train): steps_per_epoch = int((train.nnz + self.config.batch_size - 1) / self.config.batch_size) opt_para = {} if self.config.sampler == 2 else {'mode': self.config.mode} if self.config.sampler in {2, 3}: sampler = samplers[self.config.sampler].__bases__[0](train, **opt_para)\ .negative_sampler(neg=self.config.neg_num) for i in range(int(self.config.epochs / self.config.epochs_)): dataset = IO.construct_dataset(sampler, self.config.neg_num).shuffle(50000)\ .batch(self.config.batch_size).repeat(self.config.epochs_) self.model.fit(dataset, epochs=self.config.epochs_, steps_per_epoch=steps_per_epoch, verbose=0, callbacks=[EvaluateCallback(i * self.config.epochs_)]) u, code, center = self.get_cluster(self.config.num_user, self.config.num_item) sampler = ClusterPopularSamplerModel(train, {'U': u, 'code': code, 'center': center}, **opt_para)\ .negative_sampler(self.config.neg_num) def evaluate(self, train, test): m, n = train.shape u, v = self.get_uv() users = np.random.choice(m, min(m, 50000), False) m = Eval.evaluate_item(train[users, :], test[users, :], u[users, :], v, topk=-1) return m
UTF-8
Python
false
false
10,439
py
9
peris_model.py
9
0.61117
0.603314
0
187
54.828877
147
ChenBooming/python_pycharm
15,556,371,563,351
f592685de3f60acacab1a31453122980c02c750e
f620c09675fc77c91c9c33dcd5533c4c06829da3
/Python/itchat_test/test.py
cf437d77d5203838e91df5b7cd9b8ce972130d23
[ "MIT" ]
permissive
https://github.com/ChenBooming/python_pycharm
f47564b987792ba81ad6c7caaa6e1b58416cfd65
aec59a5411166bc0ac04c872181b2162bcdb6fb8
refs/heads/master
2021-01-24T18:05:35.233449
2017-03-17T07:43:47
2017-03-17T07:43:47
84,391,710
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#coding=utf8 import itchat # tuling plugin can be get here: # https://github.com/littlecodersh/EasierLife/tree/master/Plugins/Tuling from tuling import get_response @itchat.msg_register('Text') def text_reply(msg): if u'作者' in msg['Text'] or u'主人' in msg['Text']: return u'找陈蒙 421235586@qq.com' elif u'同盟会群' in msg['Text'] or u'同盟会' in msg['Text']: itchat.send('@img@/Users/koudai232/PycharmProjects/python_pycharm/Python/itchat_test/img/tongmenghui_group.png', msg['FromUserName']) return u'长按扫码进群,有问题请@陈蒙或者群主' elif u'白领活动' in msg['Text']: itchat.send('@img@/Users/koudai232/PycharmProjects/python_pycharm/Python/itchat_test/img/funbailing.jpg', msg['FromUserName']) # there should be a picture return u'长按扫码关注,有问题联系@陈蒙' elif u'亲子活动' in msg['Text']: itchat.send('@img@/Users/koudai232/PycharmProjects/python_pycharm/Python/itchat_test/img/funmili.jpg', msg['FromUserName']) # there should be a picture return u'长按扫码关注,有问题联系@陈蒙' else: return get_response(msg['Text']) @itchat.msg_register(['Picture', 'Recording', 'Attachment', 'Video']) def atta_reply(msg): return (u'很好,'+{ 'Picture': u'图片', 'Recording': u'录音', 'Attachment': u'附件', 'Video': u'视频', }.get(msg['Type']) + u'已转发给王珂') # download function is: msg['Text'](msg['FileName']) @itchat.msg_register(['Map', 'Card', 'Note', 'Sharing']) def mm_reply(msg): if msg['Type'] == 'Map': return u'收到位置分享' elif msg['Type'] == 'Sharing': return u'收到分享' + msg['Text'] elif msg['Type'] == 'Note': return u'收到:' + msg['Text'] elif msg['Type'] == 'Card': return u'收到好友信息:' + msg['Text']['Alias'] @itchat.msg_register('Text', isGroupChat = True) def group_reply(msg): if msg['isAt']: return u'@%s\u2005%s' % (msg['ActualNickName'], get_response(msg['Text']) or u'收到:' + msg['Text']) @itchat.msg_register('Friends') def add_friend(msg): itchat.add_friend(**msg['Text']) itchat.send_msg(u'可设置自定义回复消息、图片甚至文件,比如:\n' + u'同盟会入群:回复 同盟会群\n' + u'亲子活动:回复 亲子活动\n' + u'白领活动:回复 白领活动\n' + u'有问题反馈:回复 有问题 然后发送到邮箱即可', msg['RecommendInfo']['UserName']) itchat.auto_login(True, enableCmdQR=False) itchat.run()
UTF-8
Python
false
false
2,607
py
9
test.py
6
0.633527
0.623272
0
55
39.763636
162
prathipc/Financials
14,972,256,043,247
b5b8fced447b989b185fd4113d1a8d4f7141ccdf
705502038a7774fb378e289b83070fc54ab71653
/lograthamic_RateofReturn.py
f2d421e605957938555b888b9a6dd0ee02f5f2c7
[ "CC0-1.0" ]
permissive
https://github.com/prathipc/Financials
b1d6516da24399b30057d1cfc5e863c7252a65c2
1814e08e2cccec65f60559109d2e0305175cba51
refs/heads/master
2020-12-05T02:58:20.573138
2020-01-06T01:21:35
2020-01-06T01:21:35
231,989,742
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import matplotlib.pyplot as plt import numpy as np from pandas_datareader import data as wb STCK = wb.DataReader('VFINX', data_source='yahoo', start='2019-1-1') STCK['log_return'] = np.log(STCK['Adj Close'] / STCK['Adj Close'].shift(1)) print (STCK) #print(STCK['log_return']) STCK['log_return'].plot(figsize = (8,5)) plt.show() # use this to show in a graph. # multiplied by 250 becasue there is an average of 250 days on a calendar year. So just a small trick.. avg_returns_a = STCK['log_return'].mean() * 250 print ('log return is : ' + str(round(avg_returns_a, 2) * 100) + '%')
UTF-8
Python
false
false
586
py
4
lograthamic_RateofReturn.py
4
0.6843
0.646758
0
15
38.133333
104
jodal/pyspotify
8,658,654,085,848
0a1332c776b3a9d9b6e0ccd56def198022ff0219
66b7a2fb1c573d8c26bcccd7b54b950dc13bd69c
/spotify/session.py
7b7478b1dd61308f23adb898b40983647382e211
[ "Apache-2.0" ]
permissive
https://github.com/jodal/pyspotify
020b12e486239414c25cdf7408471a4bcbadb182
575e0cbd6dfeee0b2e22a6c1d8b4ff3a14bb129a
refs/heads/master
2023-08-25T05:36:09.958002
2022-06-15T14:30:36
2022-06-15T14:30:36
1,103,479
62
13
Apache-2.0
false
2022-06-14T21:53:00
2010-11-22T20:31:34
2022-06-10T19:54:00
2022-06-14T21:53:00
14,517
518
94
11
Python
false
false
from __future__ import unicode_literals import logging import warnings import weakref import spotify import spotify.connection import spotify.player import spotify.social from spotify import ffi, lib, serialized, utils __all__ = ["Session", "SessionEvent"] logger = logging.getLogger(__name__) class Session(utils.EventEmitter): """The Spotify session. If no ``config`` is provided, the default config is used. The session object will emit a number of events. See :class:`SessionEvent` for a list of all available events and how to connect your own listener functions up to get called when the events happens. .. warning:: You can only have one :class:`Session` instance per process. This is a libspotify limitation. If you create a second :class:`Session` instance in the same process pyspotify will raise a :exc:`RuntimeError` with the message "Session has already been initialized". :param config: the session config :type config: :class:`Config` or :class:`None` """ @serialized def __init__(self, config=None): super(Session, self).__init__() if spotify._session_instance is not None: raise RuntimeError("Session has already been initialized") if config is not None: self.config = config else: self.config = spotify.Config() if self.config.application_key is None: self.config.load_application_key_file() sp_session_ptr = ffi.new("sp_session **") spotify.Error.maybe_raise( lib.sp_session_create(self.config._sp_session_config, sp_session_ptr) ) self._sp_session = ffi.gc(sp_session_ptr[0], lib.sp_session_release) self._cache = weakref.WeakValueDictionary() self._emitters = [] self._callback_handles = set() self.connection = spotify.connection.Connection(self) self.offline = spotify.offline.Offline(self) self.player = spotify.player.Player(self) self.social = spotify.social.Social(self) spotify._session_instance = self _cache = None """A mapping from sp_* objects to their corresponding Python instances. The ``_cached`` helper constructors on wrapper objects use this cache for finding and returning existing alive wrapper objects for the sp_* object it is about to create a wrapper for. The cache *does not* keep objects alive. It's only a means for looking up the objects if they are kept alive somewhere else in the application. Internal attribute. """ _emitters = None """A list of event emitters with attached listeners. When an event emitter has attached event listeners, we must keep the emitter alive for as long as the listeners are attached. This is achieved by adding them to this list. When creating wrapper objects around sp_* objects we must also return the existing wrapper objects instead of creating new ones so that the set of event listeners on the wrapper object can be modified. This is achieved with a combination of this list and the :attr:`_cache` mapping. Internal attribute. """ _callback_handles = None """A set of handles returned by :meth:`spotify.ffi.new_handle`. These must be kept alive for the handle to remain valid until the callback arrives, even if the end user does not maintain a reference to the object the callback works on. Internal attribute. """ config = None """A :class:`Config` instance with the current configuration. Once the session has been created, changing the attributes of this object will generally have no effect. """ connection = None """An :class:`~spotify.connection.Connection` instance for controlling the connection to the Spotify servers.""" offline = None """An :class:`~spotify.offline.Offline` instance for controlling offline sync.""" player = None """A :class:`~spotify.player.Player` instance for controlling playback.""" social = None """A :class:`~spotify.social.Social` instance for controlling social sharing.""" def login(self, username, password=None, remember_me=False, blob=None): """Authenticate to Spotify's servers. You can login with one of two combinations: - ``username`` and ``password`` - ``username`` and ``blob`` To get the ``blob`` string, you must once log in with ``username`` and ``password``. You'll then get the ``blob`` string passed to the :attr:`~SessionCallbacks.credentials_blob_updated` callback. If you set ``remember_me`` to :class:`True`, you can later login to the same account without providing any ``username`` or credentials by calling :meth:`relogin`. """ username = utils.to_char(username) if password is not None: password = utils.to_char(password) blob = ffi.NULL elif blob is not None: password = ffi.NULL blob = utils.to_char(blob) else: raise AttributeError("password or blob is required to login") spotify.Error.maybe_raise( lib.sp_session_login( self._sp_session, username, password, bool(remember_me), blob ) ) def logout(self): """Log out the current user. If you logged in with the ``remember_me`` argument set to :class:`True`, you will also need to call :meth:`forget_me` to completely remove all credentials of the user that was logged in. """ spotify.Error.maybe_raise(lib.sp_session_logout(self._sp_session)) @property def remembered_user_name(self): """The username of the remembered user from a previous :meth:`login` call.""" return utils.get_with_growing_buffer( lib.sp_session_remembered_user, self._sp_session ) def relogin(self): """Relogin as the remembered user. To be able do this, you must previously have logged in with :meth:`login` with the ``remember_me`` argument set to :class:`True`. To check what user you'll be logged in as if you call this method, see :attr:`remembered_user_name`. """ spotify.Error.maybe_raise(lib.sp_session_relogin(self._sp_session)) def forget_me(self): """Forget the remembered user from a previous :meth:`login` call.""" spotify.Error.maybe_raise(lib.sp_session_forget_me(self._sp_session)) @property @serialized def user(self): """The logged in :class:`User`.""" sp_user = lib.sp_session_user(self._sp_session) if sp_user == ffi.NULL: return None return spotify.User(self, sp_user=sp_user, add_ref=True) @property @serialized def user_name(self): """The username of the logged in user.""" return utils.to_unicode(lib.sp_session_user_name(self._sp_session)) @property @serialized def user_country(self): """The country of the currently logged in user. The :attr:`~SessionEvent.OFFLINE_STATUS_UPDATED` event is emitted on the session object when this changes. """ return utils.to_country(lib.sp_session_user_country(self._sp_session)) @property @serialized def playlist_container(self): """The :class:`PlaylistContainer` for the currently logged in user. .. warning:: The playlists API was broken at 2018-05-24 by a server-side change made by Spotify. The functionality was never restored. Please use the Spotify Web API to work with playlists. """ warnings.warn( "Spotify broke the libspotify playlists API 2018-05-24 " "and never restored it. " "Please use the Spotify Web API to work with playlists." ) sp_playlistcontainer = lib.sp_session_playlistcontainer(self._sp_session) if sp_playlistcontainer == ffi.NULL: return None return spotify.PlaylistContainer._cached( self, sp_playlistcontainer, add_ref=True ) @property def inbox(self): """The inbox :class:`Playlist` for the currently logged in user. .. warning:: The playlists API was broken at 2018-05-24 by a server-side change made by Spotify. The functionality was never restored. Please use the Spotify Web API to work with playlists. """ warnings.warn( "Spotify broke the libspotify playlists API 2018-05-24 " "and never restored it. " "Please use the Spotify Web API to work with playlists." ) sp_playlist = lib.sp_session_inbox_create(self._sp_session) if sp_playlist == ffi.NULL: return None return spotify.Playlist._cached(self, sp_playlist=sp_playlist, add_ref=False) def set_cache_size(self, size): """Set maximum size in MB for libspotify's cache. If set to 0 (the default), up to 10% of the free disk space will be used.""" spotify.Error.maybe_raise(lib.sp_session_set_cache_size(self._sp_session, size)) def flush_caches(self): """Write all cached data to disk. libspotify does this regularly and on logout, so you should never need to call this method yourself. """ spotify.Error.maybe_raise(lib.sp_session_flush_caches(self._sp_session)) def preferred_bitrate(self, bitrate): """Set preferred :class:`Bitrate` for music streaming.""" spotify.Error.maybe_raise( lib.sp_session_preferred_bitrate(self._sp_session, bitrate) ) def preferred_offline_bitrate(self, bitrate, allow_resync=False): """Set preferred :class:`Bitrate` for offline sync. If ``allow_resync`` is :class:`True` libspotify may resynchronize already synced tracks. """ spotify.Error.maybe_raise( lib.sp_session_preferred_offline_bitrate( self._sp_session, bitrate, allow_resync ) ) @property def volume_normalization(self): """Whether volume normalization is active or not. Set to :class:`True` or :class:`False` to change. """ return bool(lib.sp_session_get_volume_normalization(self._sp_session)) @volume_normalization.setter def volume_normalization(self, value): spotify.Error.maybe_raise( lib.sp_session_set_volume_normalization(self._sp_session, value) ) def process_events(self): """Process pending events in libspotify. This method must be called for most callbacks to be called. Without calling this method, you'll only get the callbacks that are called from internal libspotify threads. When the :attr:`~SessionEvent.NOTIFY_MAIN_THREAD` event is emitted (from an internal libspotify thread), it's your job to make sure this method is called (from the thread you use for accessing Spotify), so that further callbacks can be triggered (from the same thread). pyspotify provides an :class:`~spotify.EventLoop` that you can use for processing events when needed. """ next_timeout = ffi.new("int *") spotify.Error.maybe_raise( lib.sp_session_process_events(self._sp_session, next_timeout) ) return next_timeout[0] def inbox_post_tracks(self, canonical_username, tracks, message, callback=None): """Post a ``message`` and one or more ``tracks`` to the inbox of the user with the given ``canonical_username``. ``tracks`` can be a single :class:`~spotify.Track` or a list of :class:`~spotify.Track` objects. Returns an :class:`InboxPostResult` that can be used to check if the request completed successfully. If callback isn't :class:`None`, it is called with an :class:`InboxPostResult` instance when the request has completed. """ return spotify.InboxPostResult( self, canonical_username, tracks, message, callback ) def get_starred(self, canonical_username=None): """Get the starred :class:`Playlist` for the user with ``canonical_username``. .. warning:: The playlists API was broken at 2018-05-24 by a server-side change made by Spotify. The functionality was never restored. Please use the Spotify Web API to work with playlists. If ``canonical_username`` isn't specified, the starred playlist for the currently logged in user is returned. """ warnings.warn( "Spotify broke the libspotify playlists API 2018-05-24 " "and never restored it. " "Please use the Spotify Web API to work with playlists." ) if canonical_username is None: sp_playlist = lib.sp_session_starred_create(self._sp_session) else: sp_playlist = lib.sp_session_starred_for_user_create( self._sp_session, utils.to_bytes(canonical_username) ) if sp_playlist == ffi.NULL: return None return spotify.Playlist._cached(self, sp_playlist, add_ref=False) def get_published_playlists(self, canonical_username=None): """Get the :class:`PlaylistContainer` of published playlists for the user with ``canonical_username``. .. warning:: The playlists API was broken at 2018-05-24 by a server-side change made by Spotify. The functionality was never restored. Please use the Spotify Web API to work with playlists. If ``canonical_username`` isn't specified, the published container for the currently logged in user is returned. """ warnings.warn( "Spotify broke the libspotify playlists API 2018-05-24 " "and never restored it. " "Please use the Spotify Web API to work with playlists." ) if canonical_username is None: canonical_username = ffi.NULL else: canonical_username = utils.to_bytes(canonical_username) sp_playlistcontainer = lib.sp_session_publishedcontainer_for_user_create( self._sp_session, canonical_username ) if sp_playlistcontainer == ffi.NULL: return None return spotify.PlaylistContainer._cached( self, sp_playlistcontainer, add_ref=False ) def get_link(self, uri): """ Get :class:`Link` from any Spotify URI. A link can be created from a string containing a Spotify URI on the form ``spotify:...``. Example:: >>> session = spotify.Session() # ... >>> session.get_link( ... 'spotify:track:2Foc5Q5nqNiosCNqttzHof') Link('spotify:track:2Foc5Q5nqNiosCNqttzHof') >>> session.get_link( ... 'http://open.spotify.com/track/4wl1dK5dHGp3Ig51stvxb0') Link('spotify:track:4wl1dK5dHGp3Ig51stvxb0') """ return spotify.Link(self, uri=uri) def get_track(self, uri): """ Get :class:`Track` from a Spotify track URI. Example:: >>> session = spotify.Session() # ... >>> track = session.get_track( ... 'spotify:track:2Foc5Q5nqNiosCNqttzHof') >>> track.load().name u'Get Lucky' """ return spotify.Track(self, uri=uri) def get_local_track(self, artist=None, title=None, album=None, length=None): """ Get :class:`Track` for a local track. Spotify's official clients supports adding your local music files to Spotify so they can be played in the Spotify client. These are not synced with Spotify's servers or between your devices and there is not trace of them in your Spotify user account. The exception is when you add one of these local tracks to a playlist or mark them as starred. This creates a "local track" which pyspotify also will be able to observe. "Local tracks" can be recognized in several ways: - The track's URI will be of the form ``spotify:local:ARTIST:ALBUM:TITLE:LENGTH_IN_SECONDS``. Any of the parts in all caps can be left out if there is no information available. That is, ``spotify:local::::`` is a valid local track URI. - :attr:`Link.type` will be :class:`LinkType.LOCALTRACK` for the track's link. - :attr:`Track.is_local` will be :class:`True` for the track. This method can be used to create local tracks that can be starred or added to playlists. ``artist`` may be an artist name. ``title`` may be a track name. ``album`` may be an album name. ``length`` may be a track length in milliseconds. Note that when creating a local track you provide the length in milliseconds, while the local track URI contains the length in seconds. """ if artist is None: artist = "" if title is None: title = "" if album is None: album = "" if length is None: length = -1 artist = utils.to_char(artist) title = utils.to_char(title) album = utils.to_char(album) sp_track = lib.sp_localtrack_create(artist, title, album, length) return spotify.Track(self, sp_track=sp_track, add_ref=False) def get_album(self, uri): """ Get :class:`Album` from a Spotify album URI. Example:: >>> session = spotify.Session() # ... >>> album = session.get_album( ... 'spotify:album:6wXDbHLesy6zWqQawAa91d') >>> album.load().name u'Forward / Return' """ return spotify.Album(self, uri=uri) def get_artist(self, uri): """ Get :class:`Artist` from a Spotify artist URI. Example:: >>> session = spotify.Session() # ... >>> artist = session.get_artist( ... 'spotify:artist:22xRIphSN7IkPVbErICu7s') >>> artist.load().name u'Rob Dougan' """ return spotify.Artist(self, uri=uri) def get_playlist(self, uri): """ Get :class:`Playlist` from a Spotify playlist URI. .. warning:: The playlists API was broken at 2018-05-24 by a server-side change made by Spotify. The functionality was never restored. Please use the Spotify Web API to work with playlists. Example:: >>> session = spotify.Session() # ... >>> playlist = session.get_playlist( ... 'spotify:user:fiat500c:playlist:54k50VZdvtnIPt4d8RBCmZ') >>> playlist.load().name u'500C feelgood playlist' """ warnings.warn( "Spotify broke the libspotify playlists API 2018-05-24 " "and never restored it. " "Please use the Spotify Web API to work with playlists." ) return spotify.Playlist(self, uri=uri) def get_user(self, uri): """ Get :class:`User` from a Spotify user URI. Example:: >>> session = spotify.Session() # ... >>> user = session.get_user('spotify:user:jodal') >>> user.load().display_name u'jodal' """ return spotify.User(self, uri=uri) def get_image(self, uri, callback=None): """ Get :class:`Image` from a Spotify image URI. If ``callback`` isn't :class:`None`, it is expected to be a callable that accepts a single argument, an :class:`Image` instance, when the image is done loading. Example:: >>> session = spotify.Session() # ... >>> image = session.get_image( ... 'spotify:image:a0bdcbe11b5cd126968e519b5ed1050b0e8183d0') >>> image.load().data_uri[:50] u'' """ return spotify.Image(self, uri=uri, callback=callback) def search( self, query, callback=None, track_offset=0, track_count=20, album_offset=0, album_count=20, artist_offset=0, artist_count=20, playlist_offset=0, playlist_count=20, search_type=None, ): """ Search Spotify for tracks, albums, artists, and playlists matching ``query``. .. warning:: The search API was broken at 2016-02-03 by a server-side change made by Spotify. The functionality was never restored. Please use the Spotify Web API to perform searches. The ``query`` string can be free format, or use some prefixes like ``title:`` and ``artist:`` to limit what to match on. There is no official docs on the search query format, but there's a `Spotify blog post <https://www.spotify.com/blog/archives/2008/01/22/searching-spotify/>`_ from 2008 with some examples. If ``callback`` isn't :class:`None`, it is expected to be a callable that accepts a single argument, a :class:`Search` instance, when the search completes. The ``*_offset`` and ``*_count`` arguments can be used to retrieve more search results. libspotify will currently not respect ``*_count`` values higher than 200, though this may change at any time as the limit isn't documented in any official docs. If you want to retrieve more than 200 results, you'll have to search multiple times with different ``*_offset`` values. See the ``*_total`` attributes on the :class:`Search` to see how many results exists, and to figure out how many searches you'll need to make to retrieve everything. ``search_type`` is a :class:`SearchType` value. It defaults to :attr:`SearchType.STANDARD`. Returns a :class:`Search` instance. """ raise Exception( "Spotify broke the libspotify search API 2016-02-03 " "and never restored it." ) def get_toplist( self, type=None, region=None, canonical_username=None, callback=None ): """Get a :class:`Toplist` of artists, albums, or tracks that are the currently most popular worldwide or in a specific region. ``type`` is a :class:`ToplistType` instance that specifies the type of toplist to create. ``region`` is either a :class:`ToplistRegion` instance, or a 2-letter ISO 3166-1 country code as a unicode string, that specifies the geographical region to create a toplist for. If ``region`` is :attr:`ToplistRegion.USER` and ``canonical_username`` isn't specified, the region of the current user will be used. If ``canonical_username`` is specified, the region of the specified user will be used instead. If ``callback`` isn't :class:`None`, it is expected to be a callable that accepts a single argument, a :class:`Toplist` instance, when the toplist request completes. Example:: >>> import spotify >>> session = spotify.Session() # ... >>> toplist = session.get_toplist( ... type=spotify.ToplistType.TRACKS, region='US') >>> toplist.load() >>> len(toplist.tracks) 100 >>> len(toplist.artists) 0 >>> toplist.tracks[0] Track(u'spotify:track:2dLLR6qlu5UJ5gk0dKz0h3') """ return spotify.Toplist( self, type=type, region=region, canonical_username=canonical_username, callback=callback, ) class SessionEvent(object): """Session events. Using the :class:`Session` object, you can register listener functions to be called when various session related events occurs. This class enumerates the available events and the arguments your listener functions will be called with. Example usage:: import spotify def logged_in(session, error_type): if error_type is spotify.ErrorType.OK: print('Logged in as %s' % session.user) else: print('Login failed: %s' % error_type) session = spotify.Session() session.on(spotify.SessionEvent.LOGGED_IN, logged_in) session.login('alice', 's3cret') All events will cause debug log statements to be emitted, even if no listeners are registered. Thus, there is no need to register listener functions just to log that they're called. """ LOGGED_IN = "logged_in" """Called when login has completed. Note that even if login has succeeded, that does not mean that you're online yet as libspotify may have cached enough information to let you authenticate with Spotify while offline. This event should be used to get notified about login errors. To get notified about the authentication and connection state, refer to the :attr:`SessionEvent.CONNECTION_STATE_UPDATED` event. :param session: the current session :type session: :class:`Session` :param error_type: the login error type :type error_type: :class:`ErrorType` """ LOGGED_OUT = "logged_out" """Called when logout has completed or there is a permanent connection error. :param session: the current session :type session: :class:`Session` """ METADATA_UPDATED = "metadata_updated" """Called when some metadata has been updated. There is no way to know what metadata was updated, so you'll have to refresh all you metadata caches. :param session: the current session :type session: :class:`Session` """ CONNECTION_ERROR = "connection_error" """Called when there is a connection error and libspotify has problems reconnecting to the Spotify service. May be called repeatedly as long as the problem persists. Will be called with an :attr:`ErrorType.OK` error when the problem is resolved. :param session: the current session :type session: :class:`Session` :param error_type: the connection error type :type error_type: :class:`ErrorType` """ MESSAGE_TO_USER = "message_to_user" """Called when libspotify wants to show a message to the end user. :param session: the current session :type session: :class:`Session` :param data: the message :type data: text """ NOTIFY_MAIN_THREAD = "notify_main_thread" """Called when processing on the main thread is needed. When this is called, you should call :meth:`~Session.process_events` from your main thread. Failure to do so may cause request timeouts, or a lost connection. .. warning:: This event is emitted from an internal libspotify thread. Thus, your event listener must not block, and must use proper synchronization around anything it does. :param session: the current session :type session: :class:`Session` """ MUSIC_DELIVERY = "music_delivery" """Called when there is decompressed audio data available. If the function returns a lower number of frames consumed than ``num_frames``, libspotify will retry delivery of the unconsumed frames in about 100ms. This can be used for rate limiting if libspotify is giving you audio data too fast. .. note:: You can register at most one event listener for this event. .. warning:: This event is emitted from an internal libspotify thread. Thus, your event listener must not block, and must use proper synchronization around anything it does. :param session: the current session :type session: :class:`Session` :param audio_format: the audio format :type audio_format: :class:`AudioFormat` :param frames: the audio frames :type frames: bytestring :param num_frames: the number of frames :type num_frames: int :returns: the number of frames consumed """ PLAY_TOKEN_LOST = "play_token_lost" """Music has been paused because an account only allows music to be played from one location simultaneously. When this event is emitted, you should pause playback. :param session: the current session :type session: :class:`Session` """ LOG_MESSAGE = "log_message" """Called when libspotify have something to log. Note that pyspotify logs this for you, so you'll probably never need to register a listener for this event. :param session: the current session :type session: :class:`Session` :param data: the message :type data: text """ END_OF_TRACK = "end_of_track" """Called when all audio data for the current track has been delivered. :param session: the current session :type session: :class:`Session` """ STREAMING_ERROR = "streaming_error" """Called when audio streaming cannot start or continue. :param session: the current session :type session: :class:`Session` :param error_type: the streaming error type :type error_type: :class:`ErrorType` """ USER_INFO_UPDATED = "user_info_updated" """Called when anything related to :class:`User` objects is updated. :param session: the current session :type session: :class:`Session` """ START_PLAYBACK = "start_playback" """Called when audio playback should start. You need to implement a listener for the :attr:`GET_AUDIO_BUFFER_STATS` event for the :attr:`START_PLAYBACK` event to be useful. .. warning:: This event is emitted from an internal libspotify thread. Thus, your event listener must not block, and must use proper synchronization around anything it does. :param session: the current session :type session: :class:`Session` """ STOP_PLAYBACK = "stop_playback" """Called when audio playback should stop. You need to implement a listener for the :attr:`GET_AUDIO_BUFFER_STATS` event for the :attr:`STOP_PLAYBACK` event to be useful. .. warning:: This event is emitted from an internal libspotify thread. Thus, your event listener must not block, and must use proper synchronization around anything it does. :param session: the current session :type session: :class:`Session` """ GET_AUDIO_BUFFER_STATS = "get_audio_buffer_stats" """Called to query the application about its audio buffer. .. note:: You can register at most one event listener for this event. .. warning:: This event is emitted from an internal libspotify thread. Thus, your event listener must not block, and must use proper synchronization around anything it does. :param session: the current session :type session: :class:`Session` :returns: an :class:`AudioBufferStats` instance """ OFFLINE_STATUS_UPDATED = "offline_status_updated" """Called when offline sync status is updated. :param session: the current session :type session: :class:`Session` """ CREDENTIALS_BLOB_UPDATED = "credentials_blob_updated" """Called when storable credentials have been updated, typically right after login. The ``blob`` argument can be stored and later passed to :meth:`~Session.login` to login without storing the user's password. :param session: the current session :type session: :class:`Session` :param blob: the authentication blob :type blob: bytestring """ CONNECTION_STATE_UPDATED = "connection_state_updated" """Called when the connection state is updated. The connection state includes login, logout, offline mode, etc. :param session: the current session :type session: :class:`Session` """ SCROBBLE_ERROR = "scrobble_error" """Called when there is a scrobble error event. :param session: the current session :type session: :class:`Session` :param error_type: the scrobble error type :type error_type: :class:`ErrorType` """ PRIVATE_SESSION_MODE_CHANGED = "private_session_mode_changed" """Called when there is a change in the private session mode. :param session: the current session :type session: :class:`Session` :param is_private: whether the session is private :type is_private: bool """ class _SessionCallbacks(object): """Internal class.""" @classmethod def get_struct(cls): return ffi.new( "sp_session_callbacks *", { "logged_in": cls.logged_in, "logged_out": cls.logged_out, "metadata_updated": cls.metadata_updated, "connection_error": cls.connection_error, "message_to_user": cls.message_to_user, "notify_main_thread": cls.notify_main_thread, "music_delivery": cls.music_delivery, "play_token_lost": cls.play_token_lost, "log_message": cls.log_message, "end_of_track": cls.end_of_track, "streaming_error": cls.streaming_error, "userinfo_updated": cls.user_info_updated, "start_playback": cls.start_playback, "stop_playback": cls.stop_playback, "get_audio_buffer_stats": cls.get_audio_buffer_stats, "offline_status_updated": cls.offline_status_updated, "credentials_blob_updated": cls.credentials_blob_updated, "connectionstate_updated": cls.connection_state_updated, "scrobble_error": cls.scrobble_error, "private_session_mode_changed": cls.private_session_mode_changed, }, ) # XXX Avoid use of the spotify._session_instance global in the following # callbacks. @staticmethod @ffi.callback("void(sp_session *, sp_error)") def logged_in(sp_session, sp_error): if not spotify._session_instance: return error_type = spotify.ErrorType(sp_error) if error_type == spotify.ErrorType.OK: logger.info("Spotify logged in") else: logger.error("Spotify login error: %r", error_type) spotify._session_instance.emit( SessionEvent.LOGGED_IN, spotify._session_instance, error_type ) @staticmethod @ffi.callback("void(sp_session *)") def logged_out(sp_session): if not spotify._session_instance: return logger.info("Spotify logged out") spotify._session_instance.emit( SessionEvent.LOGGED_OUT, spotify._session_instance ) @staticmethod @ffi.callback("void(sp_session *)") def metadata_updated(sp_session): if not spotify._session_instance: return logger.debug("Metadata updated") spotify._session_instance.emit( SessionEvent.METADATA_UPDATED, spotify._session_instance ) @staticmethod @ffi.callback("void(sp_session *, sp_error)") def connection_error(sp_session, sp_error): if not spotify._session_instance: return error_type = spotify.ErrorType(sp_error) logger.error("Spotify connection error: %r", error_type) spotify._session_instance.emit( SessionEvent.CONNECTION_ERROR, spotify._session_instance, error_type ) @staticmethod @ffi.callback("void(sp_session *, const char *)") def message_to_user(sp_session, data): if not spotify._session_instance: return data = utils.to_unicode(data).strip() logger.debug("Message to user: %s", data) spotify._session_instance.emit( SessionEvent.MESSAGE_TO_USER, spotify._session_instance, data ) @staticmethod @ffi.callback("void(sp_session *)") def notify_main_thread(sp_session): if not spotify._session_instance: return logger.debug("Notify main thread") spotify._session_instance.emit( SessionEvent.NOTIFY_MAIN_THREAD, spotify._session_instance ) @staticmethod @ffi.callback("int(sp_session *, const sp_audioformat *, const void *, int)") def music_delivery(sp_session, sp_audioformat, frames, num_frames): if not spotify._session_instance: return 0 if spotify._session_instance.num_listeners(SessionEvent.MUSIC_DELIVERY) == 0: logger.debug("Music delivery, but no listener") return 0 audio_format = spotify.AudioFormat(sp_audioformat) frames_buffer = ffi.buffer(frames, audio_format.frame_size() * num_frames) frames_bytes = frames_buffer[:] num_frames_consumed = spotify._session_instance.call( SessionEvent.MUSIC_DELIVERY, spotify._session_instance, audio_format, frames_bytes, num_frames, ) logger.debug( "Music delivery of %d frames, %d consumed", num_frames, num_frames_consumed, ) return num_frames_consumed @staticmethod @ffi.callback("void(sp_session *)") def play_token_lost(sp_session): if not spotify._session_instance: return logger.debug("Play token lost") spotify._session_instance.emit( SessionEvent.PLAY_TOKEN_LOST, spotify._session_instance ) @staticmethod @ffi.callback("void(sp_session *, const char *)") def log_message(sp_session, data): if not spotify._session_instance: return data = utils.to_unicode(data).strip() logger.debug("libspotify log message: %s", data) spotify._session_instance.emit( SessionEvent.LOG_MESSAGE, spotify._session_instance, data ) @staticmethod @ffi.callback("void(sp_session *)") def end_of_track(sp_session): if not spotify._session_instance: return logger.debug("End of track") spotify._session_instance.emit( SessionEvent.END_OF_TRACK, spotify._session_instance ) @staticmethod @ffi.callback("void(sp_session *, sp_error)") def streaming_error(sp_session, sp_error): if not spotify._session_instance: return error_type = spotify.ErrorType(sp_error) logger.error("Spotify streaming error: %r", error_type) spotify._session_instance.emit( SessionEvent.STREAMING_ERROR, spotify._session_instance, error_type ) @staticmethod @ffi.callback("void(sp_session *)") def user_info_updated(sp_session): if not spotify._session_instance: return logger.debug("User info updated") spotify._session_instance.emit( SessionEvent.USER_INFO_UPDATED, spotify._session_instance ) @staticmethod @ffi.callback("void(sp_session *)") def start_playback(sp_session): if not spotify._session_instance: return logger.debug("Start playback called") spotify._session_instance.emit( SessionEvent.START_PLAYBACK, spotify._session_instance ) @staticmethod @ffi.callback("void(sp_session *)") def stop_playback(sp_session): if not spotify._session_instance: return logger.debug("Stop playback called") spotify._session_instance.emit( SessionEvent.STOP_PLAYBACK, spotify._session_instance ) @staticmethod @ffi.callback("void(sp_session *, sp_audio_buffer_stats *)") def get_audio_buffer_stats(sp_session, sp_audio_buffer_stats): if not spotify._session_instance: return if ( spotify._session_instance.num_listeners(SessionEvent.GET_AUDIO_BUFFER_STATS) == 0 ): logger.debug("Audio buffer stats requested, but no listener") return logger.debug("Audio buffer stats requested") stats = spotify._session_instance.call( SessionEvent.GET_AUDIO_BUFFER_STATS, spotify._session_instance ) sp_audio_buffer_stats.samples = stats.samples sp_audio_buffer_stats.stutter = stats.stutter @staticmethod @ffi.callback("void(sp_session *)") def offline_status_updated(sp_session): if not spotify._session_instance: return logger.debug("Offline status updated") spotify._session_instance.emit( SessionEvent.OFFLINE_STATUS_UPDATED, spotify._session_instance ) @staticmethod @ffi.callback("void(sp_session *, const char *)") def credentials_blob_updated(sp_session, data): if not spotify._session_instance: return data = ffi.string(data) logger.debug("Credentials blob updated: %r", data) spotify._session_instance.emit( SessionEvent.CREDENTIALS_BLOB_UPDATED, spotify._session_instance, data, ) @staticmethod @ffi.callback("void(sp_session *)") def connection_state_updated(sp_session): if not spotify._session_instance: return logger.debug("Connection state updated") spotify._session_instance.emit( SessionEvent.CONNECTION_STATE_UPDATED, spotify._session_instance ) @staticmethod @ffi.callback("void(sp_session *, sp_error)") def scrobble_error(sp_session, sp_error): if not spotify._session_instance: return error_type = spotify.ErrorType(sp_error) logger.error("Spotify scrobble error: %r", error_type) spotify._session_instance.emit( SessionEvent.SCROBBLE_ERROR, spotify._session_instance, error_type ) @staticmethod @ffi.callback("void(sp_session *, bool)") def private_session_mode_changed(sp_session, is_private): if not spotify._session_instance: return is_private = bool(is_private) status = "private" if is_private else "public" logger.debug("Private session mode changed: %s", status) spotify._session_instance.emit( SessionEvent.PRIVATE_SESSION_MODE_CHANGED, spotify._session_instance, is_private, )
UTF-8
Python
false
false
42,852
py
105
session.py
66
0.623798
0.618408
0
1,238
33.613893
88
luyaochi/mycrawlerlib
11,029,476,030,572
6c63b735a9e89da448ea2960869c6f1eaae08bb1
9164d01a4482936816be74f3fc87c49612f6c303
/frontier.py
5403d01af3d4941f9e23d7a586281d16c2c54574
[]
no_license
https://github.com/luyaochi/mycrawlerlib
e70a0ab2b2398f18039698412959a70cd7ecd395
11438dc2985fe76f6dab3b0d59e8baf919c86da4
refs/heads/master
2016-08-04T16:29:30.311285
2014-10-09T16:49:40
2014-10-09T16:49:40
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python # -*-coding:utf-8-*- class frontier: def __init__(self,seed = None): self.list_frontier = [] self.init_frontier(seed) def init_frontier(self,seed): if seed == None: self.load_frontierFromDb() else: self.add_frontier(seed) return self.list_frontier def show_frontier(self): return self.list_frontier def add_frontier(self,seed): if seed not in self.list_frontier: self.list_frontier.append(seed) def del_frontier(self): return self.list_frontier.pop(0) def show_first_frontier(self): if len(self.list_frontier) > 0: return self.list_frontier[0] return '' def len_frontier(self): return len(self.list_frontier)
UTF-8
Python
false
false
677
py
10
frontier.py
10
0.691285
0.685377
0
32
20.125
36
jamesjarlathlong/beeview_gateway
1,666,447,354,649
e6437cb1b8c4b504aec46732d07817deff893c61
13ffe2e92484d3a3283905733afaf17b1b5f9e7b
/algorithms/compressive.py
839b5a9a33ab48ea2ffbbd7e7d87e939f849ce22
[]
no_license
https://github.com/jamesjarlathlong/beeview_gateway
7f89218cb06a29cae5720c6d57fe39c2438ac949
f1a4576aaded9e0265d832d6f41dde157d5220d9
refs/heads/master
2021-01-01T18:51:15.260795
2018-04-12T04:55:05
2018-04-12T04:55:05
98,449,510
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import scipy.fftpack as spfft import numpy as np import seaborn as sns import matplotlib import matplotlib.pyplot as plt import fourier_basis as ft import cvxpy as cvx import itertools import math import numpy as np import random import sys import fourier_basis as ft def downsample(data,ri): return data[ri] def reconstruct(downsampled, basis, ri): A = basis[ri] n =len(basis) vx = cvx.Variable(n) objective = cvx.Minimize(cvx.norm(vx, 1)) constraints = [A*vx == downsampled] prob = cvx.Problem(objective, constraints) result = prob.solve(verbose=False) return vx def fourier_denoising(lamda,downsampled, basis, ri): A = basis[ri] n =len(basis) w = cvx.Variable(n) loss = cvx.sum_squares(A*w-downsampled)/2 + lamda * cvx.norm(w,1) problem = cvx.Problem(cvx.Minimize(loss)) result = problem.solve(verbose=True) return w def freq_and_time(A, ri, signal, method): vx = method(signal[ri], A, ri) x = np.array(vx.value) x = np.squeeze(x) sig = np.dot(A,x) return x, sig def fourier_cs(signal, downsample_factor, method=reconstruct): n = len(signal) m =int(n//downsample_factor) A = np.array(ft.t(ft.zmean_real_dft(n))) ri = np.random.choice(n, m, replace=False) # random sample of indices f, t = freq_and_time(A, ri, signal, method=method) return f,t if __name__ == "__main__": data = np.loadtxt(sys.argv[1]) factor = int(sys.argv[2])
UTF-8
Python
false
false
1,405
py
33
compressive.py
18
0.688968
0.685409
0
51
26.568627
70
xflows/cf_weka
3,461,743,658,359
6c8a25a26a406d504056234dd36531e68b889ebf
db7373b959ccb2eceb67179bea8fff5d7c8b25c0
/cf_weka/library.py
e7c38ce36434f6e935027bb1112b94e6920b17d2
[ "MIT" ]
permissive
https://github.com/xflows/cf_weka
b6520b249fa24760067de03a5249b30711e933ea
9e76d9ef101a001bbcbc2a6fe67296619a7d0bb0
refs/heads/master
2021-01-10T01:17:28.015025
2017-10-18T12:18:32
2017-10-18T12:18:32
49,005,637
3
1
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- __authors__ = 'vid, daleksovski' import classification import evaluation import utilities import preprocessing # # CLASSIFICATION ALGORITHMS # def decision_tree_j48(input_dict): """Decision Tree learner J48""" p = input_dict['params'] return {'learner': classification.j48(p)} # '-C 0.25 -M 2' def naive_bayes(input_dict): """Naive Bayes learner""" p = input_dict['params'] return {'learner': classification.naive_bayes(p)} def random_forest(input_dict): """Random Forest learner""" p = input_dict['params'] return {'learner': classification.random_forest(p)} def multilayer_perceptron(input_dict): """MLP Neural-network learner""" p = input_dict['params'] return {'learner': classification.multilayer_perceptron(p)} def smo(input_dict): """SVM learner""" p = input_dict['params'] return {'learner': classification.smo(p)} def logistic_regression_weka(input_dict): """Logistic Regression learner""" p = input_dict['params'] return {'learner': classification.logistic(p)} def rules_zeror(input_dict): """rulesZeroR Rule learner""" p = input_dict['params'] return {'learner': classification.rules_zeror(p)} def rules_jripper(input_dict): """Rule learner JRipper""" p = input_dict['params'] return {'learner': classification.rules_jrip(p)} def knn(input_dict): """K-Nearest-Neighbours learner IBk""" p = input_dict['params'] return {'learner': classification.ibk(p)} def random_tree(input_dict): """Random Tree learner""" p = input_dict['params'] return {'learner': classification.random_tree(p)} def rep_tree(input_dict): """Reduced Error Pruning tree""" p = input_dict['params'] return {'learner': classification.rep_tree(p)} def k_star(input_dict): """K* is an instance-based classifier, that is the class of a test instance is based upon the class of those training instances similar to it, as determined by some similarity function""" p = input_dict['params'] return {'learner': classification.k_star(p)} # # PREPROCESSING # def feature_selection(input_dict): """Correlation-based Feature Subset Selection""" instances = input_dict['instances'] output_dict = {} output_dict['selected'] = preprocessing.correlation_basedfeat_sel(instances) return output_dict def normalize(input_dict): """Normalizes all numeric values in the given dataset""" instances = input_dict['instances'] output_dict = {} # 1,0 -> normalize to [0,1]; 2,-1 then to [-1,1] output_dict['normalized'] = preprocessing.normalize(instances, '-S 2.0 -T -1.0') return output_dict # # EVALUATION # def apply_mapped_classifier_get_instances(input_dict): """An advanced version of the Apply Classifier method""" sclassifier = input_dict['classifier'] soriginalInstances = input_dict['original_training_instances'] sinstances = input_dict['instances'] instances, report = evaluation.apply_mapped_classifier_get_instances(sclassifier, soriginalInstances, sinstances) output_dict = {'instances': instances, 'mapping_report': report} return output_dict # # UTILITIES # def export_dataset_to_arff(input_dict): """Export Dataset to an ARFF Textual Format""" arff_file_contents = utilities.export_dataset_to_arff(input_dict['dataset']) file_out = open('myfile', 'w') file_out.write(arff_file_contents) file_out.close() output_dict = {} output_dict['file_out'] = file_out return output_dict def import_dataset_from_arff(input_dict): """Imports Dataset From an ARFF Textual Format""" arff = input_dict['arff'] output_dict = {} output_dict['instances'] = utilities.import_dataset_from_arff(arff) return output_dict def load_uci(input_dict): """Loads a UCI dataset""" arff_file = input_dict['filename'] output_dict = {} output_dict['data'] = utilities.load_uci_dataset_weka(arff_file) return output_dict
UTF-8
Python
false
false
4,032
py
28
library.py
10
0.675099
0.669395
0
150
25.88
191
4ar0n/fifthtutorial
395,137,005,226
1f2d9fc24beb5175ac21e4efcc44547fbf06c6c2
d22cb36b926c23e15cf223288dc54f2218980e9d
/homework2.0_q.py
55c8f963ae18a46f82b7d558848cf9c3f33f4dec
[]
no_license
https://github.com/4ar0n/fifthtutorial
395c749848d69734856fcae406b94b91a75f36f0
d520e3100f99df6537ace1eac54001a873bd9cdb
refs/heads/master
2023-02-18T23:04:56.162587
2021-01-16T14:31:47
2021-01-16T14:31:47
312,524,107
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from pprint import pprint from random import * from datetime import datetime person_mapping_dict = { 1:"Aaron", 2:"Vincent", 3:"Sir Ying", 4:"Jason", 5:"Billy" } good_mapping_dict = { 45:"banana", 46:"apple", 47:"melon", 48:"orange" } price_mapping_table = { 45:4, 46:6, 47:20, 48:3, } data=[[datetime(2020, 1, 6), 3, 45], [datetime(2020, 1, 10), 1, 48], [datetime(2020, 1, 28), 3, 45], [datetime(2020, 2, 2), 4, 48], [datetime(2020, 2, 15), 3, 45], [datetime(2020, 2, 23), 4, 45], [datetime(2020, 3, 5), 4, 45], [datetime(2020, 3, 6), 2, 45], [datetime(2020, 3, 8), 2, 48], [datetime(2020, 3, 20), 1, 45], [datetime(2020, 4, 26), 4, 47], [datetime(2020, 4, 28), 3, 46], [datetime(2020, 5, 17), 1, 47], [datetime(2020, 5, 18), 1, 47], [datetime(2020, 5, 28), 3, 47], [datetime(2020, 6, 9), 2, 46], [datetime(2020, 6, 12), 2, 46], [datetime(2020, 6, 16), 2, 47], [datetime(2020, 6, 22), 5, 48], [datetime(2020, 6, 24), 5, 48], [datetime(2020, 7, 4), 4, 46], [datetime(2020, 7, 9), 4, 45], [datetime(2020, 7, 20), 5, 48], [datetime(2020, 7, 22), 4, 45], [datetime(2020, 7, 25), 2, 47], [datetime(2020, 7, 26), 5, 45], [datetime(2020, 7, 28), 3, 46], [datetime(2020, 7, 28), 4, 48], [datetime(2020, 8, 2), 5, 46], [datetime(2020, 8, 3), 4, 46], [datetime(2020, 8, 6), 1, 48], [datetime(2020, 8, 7), 3, 48], [datetime(2020, 8, 28), 1, 48], [datetime(2020, 9, 3), 4, 48], [datetime(2020, 9, 26), 1, 47], [datetime(2020, 9, 28), 3, 47], [datetime(2020, 10, 7), 3, 47], [datetime(2020, 10, 9), 1, 46], [datetime(2020, 10, 20), 3, 47], [datetime(2020, 10, 22), 1, 46], [datetime(2020, 10, 22), 2, 48], [datetime(2020, 10, 23), 3, 48], [datetime(2020, 10, 27), 3, 48], [datetime(2020, 11, 1), 2, 47], [datetime(2020, 11, 17), 4, 46], [datetime(2020, 11, 24), 2, 48], [datetime(2020, 12, 5), 1, 45], [datetime(2020, 12, 10), 4, 45], [datetime(2020, 12, 28), 5, 46]] Question 1a Write a script to show the transactions in the data above. e.g.: 'Aaron has bought a/an orange at a price of 3 on 2020-01-10.' Give the total revenue at then as a summary: "Total Revenue: 40" Question 1b Write a FUNCTION to show filtered transactions by name_id in the above. def transaction_filter(1): ... print and return transactions-of-name_id=1 Question 1c (*advanced) Write a FUNCTION to show filtered transactions by name_id , good_id and month, *PLUS your function need to capable of showing all transactions or filter just good_id or just name_id etc.
UTF-8
Python
false
false
2,770
py
34
homework2.0_q.py
29
0.54657
0.355957
0
87
30.804598
188
P-R-McWhirter/augment_height
18,674,517,808,094
a4861f902bb92d46b429a49f736fa3af8f1f74c0
0d91e95505e3ee60e058837d6d24d3e93a3eec65
/augment_height.py
34ed2587d77e76da21717d1d307684a6a9e4c587
[]
no_license
https://github.com/P-R-McWhirter/augment_height
0513b469d4feb3cef84e0186f446480d28b191f9
cdec23ee7c93b820a518735149c33fdd056a441f
refs/heads/master
2021-02-18T19:33:14.877719
2020-03-05T17:36:03
2020-03-05T17:36:03
245,227,906
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Imports from __future__ import print_function import numpy as np import pandas as pd import os from sklearn.model_selection import train_test_split from sklearn import preprocessing from sklearn.metrics import confusion_matrix import gc import itertools import cv2 import argparse gc.enable() ap = argparse.ArgumentParser() ap.add_argument("-s", "--start", type=float, required=True, help="starting height of data") ap.add_argument("-e", "--end", type=float, required=True, help="ending height of data") ap.add_argument("-t", "--type", type=str, required=True, help="file extension of data") args = vars(ap.parse_args()) start = args["start"] end = args["end"] filetype = args["type"] ratio = start/end color = [0, 0, 0] imgs = [] cwd = os.getcwd() for file in os.listdir(cwd): if file.endswith(filetype): imgs.append(file) new_folder = 'data_' + str(int(start)) + '_' + str(int(end)) if not os.path.exists(new_folder): os.makedirs(new_folder) for file in imgs: img = cv2.imread(file) newsize_x = int(img.shape[0] * ratio) newsize_y = int(img.shape[1] * ratio) resize = cv2.resize(img, dsize=(newsize_y, newsize_x), interpolation=cv2.INTER_CUBIC) delta_w = img.shape[1] - resize.shape[1] delta_h = img.shape[0] - resize.shape[0] top, bottom = delta_h//2, delta_h-(delta_h//2) left, right = delta_w//2, delta_w-(delta_w//2) new_im = cv2.copyMakeBorder(resize, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) cv2.imwrite(new_folder + '/' + file, new_im) labels = pd.read_csv(cwd + "/" + file[:-4] + ".txt", sep = " ", header = None).values labels[:,1] = (labels[:,1] - 0.5) * ratio + 0.5 labels[:,2] = (labels[:,2] - 0.5) * ratio + 0.5 labels[:,3] = labels[:,3] * ratio labels[:,4] = labels[:,4] * ratio np.savetxt(new_folder + '/' + file[:-4] + ".txt", labels, delimiter = ' ', fmt='%i %1.6f %1.6f %1.6f %1.6f')
UTF-8
Python
false
false
1,957
py
2
augment_height.py
1
0.625447
0.601942
0
67
28.208955
112
manhcntt21/TextNormSeq2Seq
7,121,055,811,919
a2840cdc8c280ce92c46d31aae8c3e5d2648cb9b
6f2d9408e0074ccc29fdcf65f55f55fa7ef53ee6
/check.py
08509afc3a3baa8b07200a9fa2fc59fc056165c9
[ "MIT" ]
permissive
https://github.com/manhcntt21/TextNormSeq2Seq
a3a4fb770b42594a5fa6837664013a496b067132
440b252bddc0c735f083acd51271f2056d088a0a
refs/heads/master
2020-09-13T13:54:19.390847
2020-02-03T02:09:01
2020-02-03T02:09:01
222,806,593
0
0
NOASSERTION
true
2019-11-19T23:02:02
2019-11-19T23:02:01
2019-11-14T15:46:25
2019-09-10T15:13:32
45
0
0
0
null
false
false
import random def get_repleace_character(): repleace_character = {} # repleace_character['ch'] = ['tr'] # repleace_character['tr'] = ['ch'] repleace_character['l'] = ['n'] repleace_character['n'] = ['l'] repleace_character['x'] = ['s'] repleace_character['s'] = ['x'] repleace_character['r'] = ['d', 'gi'] repleace_character['d'] = ['r', 'gi'] # repleace_character['gi'] = ['d', 'r'] repleace_character['c'] = ['q', 'k'] repleace_character['k'] = ['q', 'c'] repleace_character['q'] = ['c', 'k'] repleace_character['i'] = ['y'] repleace_character['y'] = ['i'] repleace_character['_'] = ['_'] return repleace_character def get_prox_keys(): array_prox = {} array_prox['a'] = ['q', 'w', 'z', 'x', 's'] array_prox['b'] = ['v', 'f', 'g', 'h', 'n', ' '] array_prox['c'] = ['x', 's', 'd', 'f', 'v'] array_prox['d'] = ['x', 's', 'w', 'e', 'r', 'f', 'v', 'c'] array_prox['e'] = ['w', 's', 'd', 'f', 'r'] array_prox['f'] = ['c', 'd', 'e', 'r', 't', 'g', 'b', 'v'] array_prox['g'] = ['r', 'f', 'v', 't', 'b', 'y', 'h', 'n'] array_prox['h'] = ['b', 'g', 't', 'y', 'u', 'j', 'm', 'n'] array_prox['i'] = ['u', 'j', 'k', 'l', 'o'] array_prox['j'] = ['n', 'h', 'y', 'u', 'i', 'k', 'm'] array_prox['k'] = ['u', 'j', 'm', 'l', 'o'] array_prox['l'] = ['p', 'o', 'i', 'k', 'm'] array_prox['m'] = ['n', 'h', 'j', 'k', 'l'] array_prox['n'] = ['b', 'g', 'h', 'j', 'm'] array_prox['o'] = ['i', 'k', 'l', 'p'] array_prox['p'] = ['o', 'l'] array_prox['q'] = ['w', 'a'] array_prox['r'] = ['e', 'd', 'f', 'g', 't'] array_prox['s'] = ['q', 'w', 'e', 'z', 'x', 'c'] array_prox['t'] = ['r', 'f', 'g', 'h', 'y'] array_prox['u'] = ['y', 'h', 'j', 'k', 'i'] array_prox['v'] = ['', 'c', 'd', 'f', 'g', 'b'] array_prox['w'] = ['q', 'a', 's', 'd', 'e'] array_prox['x'] = ['z', 'a', 's', 'd', 'c'] array_prox['y'] = ['t', 'g', 'h', 'j', 'u'] array_prox['z'] = ['x', 's', 'a'] array_prox['1'] = ['q', 'w'] array_prox['2'] = ['q', 'w', 'e'] array_prox['3'] = ['w', 'e', 'r'] array_prox['4'] = ['e', 'r', 't'] array_prox['5'] = ['r', 't', 'y'] array_prox['6'] = ['t', 'y', 'u'] array_prox['7'] = ['y', 'u', 'i'] array_prox['8'] = ['u', 'i', 'o'] array_prox['9'] = ['i', 'o', 'p'] array_prox['0'] = ['o', 'p'] array_prox['_'] = ['_'] return array_prox def add_noise(word): # i = random.randint(0,len(word)-1) # op = random.randint(0, 30) i = 0 op = 4 if op == 0: return word[:i] + word[i+1:] if op == 1: i += 1 return word[:i-1] + word[i:i+1] + word[i-1:i] + word[i+1:] if op == 2 or op == 3: try: # print(op) print(random.choice(repleace_character[word[i]])) return word[:i] + random.choice(repleace_character[word[i]]) + word[i+1:] # thay doi dau except: return word # print(random.choice(get_prox_keys[word[i]])) # return word[:i] + random.choice(get_prox_keys[word[i]]) + word[i+1:] try: tmp = get_prox_keys() tmp1 = random.choice(tmp[word[i]]) print(tmp1) return word[:i] + tmp1 + word[i+1:] #default is keyboard errors except : # print(word) return word if __name__ == '__main__': # a = '[anh' # b = add_noise(a) # print(b) # b = get_prox_keys() a = 10 b = 'string' c = str(a) print(type(a)) print(type(c))
UTF-8
Python
false
false
3,524
py
66
check.py
9
0.418275
0.408343
0
104
32.836538
100
g2thend/proxypool
2,405,181,701,292
2e19cb52db6edb83275d2ba77f24c43fc683850d
5f98c9ee03fe4e6c36eab76d819d2ab868b837c8
/imorter.py
eec48591e818ec08f1de146f8b0fd9a4f8ded6eb
[]
no_license
https://github.com/g2thend/proxypool
604fe8f6153b57e70b392ad3023786e98da1043f
fc30541131c095c7d4d845d7b884e78c6f7e9674
refs/heads/master
2020-12-14T17:43:12.544796
2020-01-19T02:42:25
2020-01-19T02:42:25
234,827,201
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 12/20/19 2:19 PM # @Author : yon # @Email : @qq.com # @File : imorter # 手动录入代理 # 未测试 from proxypool.db import sqlitedb importer = sqlitedb() def importproxy(proxy): result = importer.add(proxy) print(proxy) print('录入成功' if result else '录入失败') def scan(): print('请输入代理, 输入exit退出读入') while True: proxy = input("代理ip,格式为 ip:port") protocol = input("代理协议:http或https") temp = (proxy, protocol) if proxy == 'exit': break set(list(temp)) if __name__ == '__main__': scan()
UTF-8
Python
false
false
691
py
11
imorter.py
10
0.55935
0.543089
0
32
18.1875
43
ezeutno/PycharmProject
6,717,328,868,756
94ed949972b741443f798b3378624901ba37f47c
c4a0669126f2fbf757ac3b33a8279ef32305bbd7
/Data Project/Jude_Assignment/Alien_Invasion(New)/earth.py
738b0735ec6040ee00969c85928b6670fe303be6
[]
no_license
https://github.com/ezeutno/PycharmProject
822b5a7da05729c5241a03b7413548a34b12e4a5
bdb87599885287d2d7cd5cd703b62197563722b8
refs/heads/master
2021-07-18T20:55:08.605486
2017-10-24T03:14:10
2017-10-24T03:14:10
105,782,136
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import pygame class Earth(): def __init__ (self,ai_setting,screen): self.screen = screen self.ai_setting = ai_setting x = self.ai_setting self.image = pygame.image.load('Data_base\\earth.bmp') self.rect = self.image.get_rect() self.screen_rect = screen.get_rect() self.rect.centerx = self.screen_rect.centerx self.rect.bottom = self.screen_rect.bottom def blitme(self): self.screen.blit(self.image, self.rect)
UTF-8
Python
false
false
491
py
135
earth.py
125
0.621181
0.621181
0
15
31.8
62
JohnLZeller/F310_Gamepad_Parser
19,224,273,630,627
9e013c5208450692eb8d8375a6a6663fcaa95b04
e01376a824b8e9cc0e6910115e33365824de857c
/gui_main.py
79d4e29ceb66c34e43e64159aef435ccc6f1309f
[]
no_license
https://github.com/JohnLZeller/F310_Gamepad_Parser
7863fe383cad51b20703ba22dc3bff4aed311c07
04c47aac51a2697ad0288fbdad382ace754484c9
refs/heads/master
2021-01-21T05:06:02.317722
2013-02-12T23:22:49
2013-02-12T23:22:49
12,443,874
4
4
null
null
null
null
null
null
null
null
null
null
null
null
null
############ Logitech F310 Gamepad Controller GUI - gui_main.py ########## # Original Author: John Zeller # Description: GUI_Main displays the values being stored in the states # python dictionary in a very simple labeled Tkinter GUI # to make them easily viewable. import Tkinter as tk # Native Python GUI Framework import time class GUI(): def __init__(self, states): self.states = states # Save the states in self.states self.root = tk.Tk() self.root.title('Logitech F310 Gamepad Controller Output Display') self.root.geometry('600x750') # Create and Position Title Labels self.label_Time = tk.Label(self.root, text="GUI Running for... ").grid(row=0, padx=10, pady=20) self.label_Time_s = tk.Label(self.root, text="seconds").grid(row=0, column=2) self.label_Buttons_Title = tk.Label(self.root, text="-- Buttons --").grid(columnspan=2, pady=10, sticky="E") self.label_A = tk.Label(self.root, text="A").grid(row=2, padx=5, sticky="E") self.label_B = tk.Label(self.root, text="B").grid(row=3, padx=5, sticky="E") self.label_X = tk.Label(self.root, text="X").grid(row=4, padx=5, sticky="E") self.label_Y = tk.Label(self.root, text="Y").grid(row=5, padx=5, sticky="E") self.label_Back = tk.Label(self.root, text="Back").grid(row=6, padx=5, sticky="E") self.label_Start = tk.Label(self.root, text="Start").grid(row=7, padx=5, sticky="E") self.label_Middle = tk.Label(self.root, text="Middle").grid(row=8, padx=5, sticky="E") self.label_Left = tk.Label(self.root, text="Left").grid(row=9, padx=5, sticky="E") self.label_Right = tk.Label(self.root, text="Right").grid(row=10, padx=5, sticky="E") self.label_Up = tk.Label(self.root, text="Up").grid(row=11, padx=5, sticky="E") self.label_Down = tk.Label(self.root, text="Down").grid(row=12, padx=5, sticky="E") self.label_LB = tk.Label(self.root, text="LB").grid(row=13, padx=5, sticky="E") self.label_RB = tk.Label(self.root, text="RB").grid(row=14, padx=5, sticky="E") self.label_LJButton = tk.Label(self.root, text="LJ/Button").grid(row=15, padx=5, sticky="E") self.label_RJButton = tk.Label(self.root, text="RJ/Button").grid(row=16, padx=5, sticky="E") self.label_Joys_Title = tk.Label(self.root, text="-- Joys --").grid(columnspan=2, pady=10, sticky="E") self.label_LT = tk.Label(self.root, text="LT").grid(row=18, padx=5, sticky="E") self.label_RT = tk.Label(self.root, text="RT").grid(row=19, padx=5, sticky="E") self.label_LJLeft = tk.Label(self.root, text="LJ/Left").grid(row=20, padx=5, sticky="E") self.label_LJRight = tk.Label(self.root, text="LJ/Right").grid(row=21, padx=5, sticky="E") self.label_LJUp = tk.Label(self.root, text="LJ/Up").grid(row=22, padx=5, sticky="E") self.label_LJDown = tk.Label(self.root, text="LJ/Down").grid(row=23, padx=5, sticky="E") self.label_RJLeft = tk.Label(self.root, text="RJ/Left").grid(row=24, padx=5, sticky="E") self.label_RJRight = tk.Label(self.root, text="RJ/Right").grid(row=25, padx=5, sticky="E") self.label_RJUp = tk.Label(self.root, text="RJ/Up").grid(row=26, padx=5, sticky="E") self.label_RJDown = tk.Label(self.root, text="RJ/Down").grid(row=27, padx=5, sticky="E") self.label_Packet = tk.Label(self.root, text="Packets coming from controller (Bytes 0-7)").grid(row=29, \ column=2, columnspan=8, pady=10, sticky="W") self.label_Packet0 = tk.Label(self.root, text="Byte 0").grid(row=30, column=1, padx=5, sticky="E") self.label_Packet1 = tk.Label(self.root, text="Byte 1").grid(row=30, column=2, padx=5, sticky="E") self.label_Packet2 = tk.Label(self.root, text="Byte 2").grid(row=30, column=3, padx=5, sticky="E") self.label_Packet3 = tk.Label(self.root, text="Byte 3").grid(row=30, column=4, padx=5, sticky="E") self.label_Packet4 = tk.Label(self.root, text="Byte 4").grid(row=30, column=5, padx=5, sticky="E") self.label_Packet5 = tk.Label(self.root, text="Byte 5").grid(row=30, column=6, padx=5, sticky="E") self.label_Packet6 = tk.Label(self.root, text="Byte 6").grid(row=30, column=7, padx=5, sticky="E") self.label_Packet7 = tk.Label(self.root, text="Byte 7").grid(row=30, column=8, padx=5, sticky="E") self.label_HEX = tk.Label(self.root, text="HEX --->").grid(row=31, column=0, padx=5, sticky="E") self.label_DECIMAL = tk.Label(self.root, text="DECIMAL --->").grid(row=32, column=0, padx=5, sticky="E") # Create Dynamic Variable Labels self.variable_Time = tk.Label(text="") self.variable_Blank = tk.Label(text="") self.variable_A = tk.Label(text="") self.variable_B = tk.Label(text="") self.variable_X = tk.Label(text="") self.variable_Y = tk.Label(text="") self.variable_Back = tk.Label(text="") self.variable_Start = tk.Label(text="") self.variable_Middle = tk.Label(text="") self.variable_Left = tk.Label(text="") self.variable_Right = tk.Label(text="") self.variable_Up = tk.Label(text="") self.variable_Down = tk.Label(text="") self.variable_LB = tk.Label(text="") self.variable_RB = tk.Label(text="") self.variable_LJButton = tk.Label(text="") self.variable_RJButton = tk.Label(text="") self.variable_LT = tk.Label(text="") self.variable_RT = tk.Label(text="") self.variable_LJLeft = tk.Label(text="") self.variable_LJRight = tk.Label(text="") self.variable_LJUp = tk.Label(text="") self.variable_LJDown = tk.Label(text="") self.variable_RJLeft = tk.Label(text="") self.variable_RJRight = tk.Label(text="") self.variable_RJUp = tk.Label(text="") self.variable_RJDown = tk.Label(text="") self.variable_Packet0 = tk.Label(text="") self.variable_Packet1 = tk.Label(text="") self.variable_Packet2 = tk.Label(text="") self.variable_Packet3 = tk.Label(text="") self.variable_Packet4 = tk.Label(text="") self.variable_Packet5 = tk.Label(text="") self.variable_Packet6 = tk.Label(text="") self.variable_Packet7 = tk.Label(text="") self.variable_Packet0_INT = tk.Label(text="") self.variable_Packet1_INT = tk.Label(text="") self.variable_Packet2_INT = tk.Label(text="") self.variable_Packet3_INT = tk.Label(text="") self.variable_Packet4_INT = tk.Label(text="") self.variable_Packet5_INT = tk.Label(text="") self.variable_Packet6_INT = tk.Label(text="") self.variable_Packet7_INT = tk.Label(text="") # Position Dynamic Variable Labels self.variable_Time.grid(row=0, column=1) self.variable_A.grid(row=2, column=1) self.variable_B.grid(row=3, column=1) self.variable_X.grid(row=4, column=1) self.variable_Y.grid(row=5, column=1) self.variable_Back.grid(row=6, column=1) self.variable_Start.grid(row=7, column=1) self.variable_Middle.grid(row=8, column=1) self.variable_Left.grid(row=9, column=1) self.variable_Right.grid(row=10, column=1) self.variable_Up.grid(row=11, column=1) self.variable_Down.grid(row=12, column=1) self.variable_LB.grid(row=13, column=1) self.variable_RB.grid(row=14, column=1) self.variable_LJButton.grid(row=15, column=1) self.variable_RJButton.grid(row=16, column=1) self.variable_LT.grid(row=18, column=1) self.variable_RT.grid(row=19, column=1) self.variable_LJLeft.grid(row=20, column=1) self.variable_LJRight.grid(row=21, column=1) self.variable_LJUp.grid(row=22, column=1) self.variable_LJDown.grid(row=23, column=1) self.variable_RJLeft.grid(row=24, column=1) self.variable_RJRight.grid(row=25, column=1) self.variable_RJUp.grid(row=26, column=1) self.variable_RJDown.grid(row=27, column=1) self.variable_Packet0.grid(row=31, column=1, sticky="E") self.variable_Packet1.grid(row=31, column=2, sticky="E") self.variable_Packet2.grid(row=31, column=3, sticky="E") self.variable_Packet3.grid(row=31, column=4, sticky="E") self.variable_Packet4.grid(row=31, column=5, sticky="E") self.variable_Packet5.grid(row=31, column=6, sticky="E") self.variable_Packet6.grid(row=31, column=7, sticky="E") self.variable_Packet7.grid(row=31, column=8, sticky="E") self.variable_Packet0_INT.grid(row=32, column=1, sticky="E") self.variable_Packet1_INT.grid(row=32, column=2, sticky="E") self.variable_Packet2_INT.grid(row=32, column=3, sticky="E") self.variable_Packet3_INT.grid(row=32, column=4, sticky="E") self.variable_Packet4_INT.grid(row=32, column=5, sticky="E") self.variable_Packet5_INT.grid(row=32, column=6, sticky="E") self.variable_Packet6_INT.grid(row=32, column=7, sticky="E") self.variable_Packet7_INT.grid(row=32, column=8, sticky="E") # Start tracking time self.start_time = time.time() # Run update_label() self.update_labels() self.root.mainloop() # Once here, begin main loop again def update_labels(self): time_counter = time.time() - self.start_time time_counter = round(time_counter, 0) # Configure Labels with Updates self.variable_Time.configure(text=str(time_counter)) self.variable_A.configure(text=str(self.states['A'])) self.variable_B.configure(text=str(self.states['B'])) self.variable_X.configure(text=str(self.states['X'])) self.variable_Y.configure(text=str(self.states['Y'])) self.variable_Back.configure(text=str(self.states['Back'])) self.variable_Start.configure(text=str(self.states['Start'])) self.variable_Middle.configure(text=str(self.states['Middle'])) self.variable_Left.configure(text=str(self.states['Left'])) self.variable_Right.configure(text=str(self.states['Right'])) self.variable_Up.configure(text=str(self.states['Up'])) self.variable_Down.configure(text=str(self.states['Down'])) self.variable_LB.configure(text=str(self.states['LB'])) self.variable_RB.configure(text=str(self.states['RB'])) self.variable_LJButton.configure(text=str(self.states['LJ/Button'])) self.variable_RJButton.configure(text=str(self.states['RJ/Button'])) self.variable_LT.configure(text=str(self.states['LT'])) self.variable_RT.configure(text=str(self.states['RT'])) self.variable_LJLeft.configure(text=str(self.states['LJ/Left'])) self.variable_LJRight.configure(text=str(self.states['LJ/Right'])) self.variable_LJUp.configure(text=str(self.states['LJ/Up'])) self.variable_LJDown.configure(text=str(self.states['LJ/Down'])) self.variable_RJLeft.configure(text=str(self.states['RJ/Left'])) self.variable_RJRight.configure(text=str(self.states['RJ/Right'])) self.variable_RJUp.configure(text=str(self.states['RJ/Up'])) self.variable_RJDown.configure(text=str(self.states['RJ/Down'])) self.variable_Packet0.configure(text=self.states['Byte0']) self.variable_Packet1.configure(text=self.states['Byte1']) self.variable_Packet2.configure(text=self.states['Byte2']) self.variable_Packet3.configure(text=self.states['Byte3']) self.variable_Packet4.configure(text=self.states['Byte4']) self.variable_Packet5.configure(text=self.states['Byte5']) self.variable_Packet6.configure(text=self.states['Byte6']) self.variable_Packet7.configure(text=self.states['Byte7']) self.variable_Packet0_INT.configure(text=str(self.states['Byte0/INT'])) self.variable_Packet1_INT.configure(text=str(self.states['Byte1/INT'])) self.variable_Packet2_INT.configure(text=str(self.states['Byte2/INT'])) self.variable_Packet3_INT.configure(text=str(self.states['Byte3/INT'])) self.variable_Packet4_INT.configure(text=str(self.states['Byte4/INT'])) self.variable_Packet5_INT.configure(text=str(self.states['Byte5/INT'])) self.variable_Packet6_INT.configure(text=str(self.states['Byte6/INT'])) self.variable_Packet7_INT.configure(text=str(self.states['Byte7/INT'])) self.root.after(10, self.update_labels)
UTF-8
Python
false
false
12,513
py
2
gui_main.py
2
0.638376
0.611204
0
197
62.522843
116
rinoshinme/detection_yolo
16,329,465,678,604
747623a8ea175bf2e5caeb8bcf165ba9dfb92be8
42245303c0914e9923a67f7e5763f354627e1d7a
/yolo/yolov1.py
c39617f182d1eae1b8988db4b408ca628d3c094f
[]
no_license
https://github.com/rinoshinme/detection_yolo
0d68170136da908d6b7e384c2b9538f0017411e2
8c367d31cca4361aff1eacd6c96e544d5497ccbd
refs/heads/master
2020-07-02T05:04:44.489451
2019-08-09T09:55:15
2019-08-09T09:55:15
201,423,587
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import tensorflow as tf import numpy as np from utils.layers import leaky_relu from config.yolov1_config import cfg slim = tf.contrib.slim class YOLOv1(object): def __init__(self, is_training=True): self.classes = cfg.CLASSES self.num_classes = len(self.classes) self.image_size = cfg.IMAGE_SIZE self.cell_size = cfg.CELL_SIZE self.boxes_per_cell = cfg.BOXES_PER_CELL self.output_size = (self.cell_size * self.cell_size) * \ (self.num_classes + self.boxes_per_cell * 5) self.scale = 1.0 * self.image_size / self.cell_size self.boundary1 = 0 self.boundary2 = 0 self.object_scale = cfg.OBJECT_SCALE self.noobject_scale = cfg.NOOBJECT_SCALE self.class_scale = cfg.CLASS_SCALE self.coord_scale = cfg.COORD_SCALE self.learning_rate = cfg.LEARNING_RATE self.batch_size = cfg.BATCH_SIZE self.alpha = cfg.ALPHA self.is_training = is_training def build_network(self, images, num_output, keep_prob=0.5): with tf.variable_scope('yolo'): net = tf.pad(images, np.array([[0, 0], [3, 3], [3, 3], [0, 0]]), name='pad_1') net = tf.layers.conv2d(net, 64, [3, 3], [2, 2], padding='valid', activation=leaky_relu(self.alpha), name='conv_2') return net def loss_layer(self): pass if __name__ == '__main__': model = YOLOv1()
UTF-8
Python
false
false
1,507
py
22
yolov1.py
17
0.569343
0.5501
0
44
33.25
90
javerdejo/UMACamp_sensors
2,860,448,223,835
c448651a88c86378291100a365e153a7d13bfd8a
a00fc0006530b637f1439982b85a8f0b2fa12cc4
/sensors/bluetooth/settings.py
c2f6e0c67e41426ee864f4edbedca1b8d61510e7
[]
no_license
https://github.com/javerdejo/UMACamp_sensors
c272aa240a1f02f4b4e2aefa12218d3de8442996
05d6315ca085bbf2e77688a02eef18ea2ec10c23
refs/heads/master
2021-01-11T18:57:20.384878
2017-05-09T08:44:57
2017-05-09T08:44:57
79,280,292
0
0
null
false
2017-03-03T13:34:02
2017-01-17T22:46:44
2017-02-24T10:26:42
2017-03-03T13:32:59
47
0
0
2
Python
null
null
BT_SCANNER_DURATION = 10 #seconds BT_SCANNER_LOGGING = "/var/log/bluetooth.log" BT_SCANNER_DATAHTML = "/var/log/bluetooth_data.log" BT_SCANNER_LOGPATH = "/bluetooht_sensed"
UTF-8
Python
false
false
173
py
12
settings.py
11
0.751445
0.739884
0
4
42.25
51
vtheno/python-monad
1,176,821,040,834
1da93c0cef33f802d0edcc0b358370fffddb1848
e8e36611267126c6add47d8a66175ec5a30961e9
/infix.py
2aea38426855a4c12725ba23b3cd8d102807f023
[ "MIT" ]
permissive
https://github.com/vtheno/python-monad
666a044e5bc011e44b74440b725ba7dfabe83c20
781407a1b3eca7fb0beb0899136f4859f5e77540
refs/heads/master
2021-05-26T19:56:16.386606
2014-01-24T15:18:43
2014-01-24T15:18:43
106,650,047
1
0
null
true
2017-10-12T05:47:57
2017-10-12T05:47:57
2017-10-12T05:45:52
2014-01-24T15:18:49
152
0
0
0
null
null
null
""" Infix hack from: http://code.activestate.com/recipes/384122/ """ # pylint: disable=R0903 class Infix(object): """ Infix decorator. For instance: >>> @Infix >>> def mult(x, y): ... return x * y >>> 2 |mult| 4 8 >>> 2 <<mult>> 4 8 """ def __init__(self, function): self.function = function def __ror__(self, other): return Infix(lambda x, self=self, other=other: self.function(other, x)) def __or__(self, other): return self.function(other) def __rlshift__(self, other): return self.__or__(other) def __rshift__(self, other): return self.__ror__(other) def __call__(self, left, right): return self.function(left, right)
UTF-8
Python
false
false
749
py
7
infix.py
7
0.543391
0.522029
0
36
19.805556
79
rimvydaszilinskas/printer
1,906,965,484,100
befe3f1fc2053a6cb2cfc2b279ed089ea285068e
786a05b62e0a6bded2568194d80570e2c1f58df1
/lib/templates.py
fa1b98e6018f3c3ad7b1a34193944e0a97a6fcec
[]
no_license
https://github.com/rimvydaszilinskas/printer
ac31d05bd4c747dd793c5e3c5182573f922e7940
4a443c049dfc2fdb690f3c079393a7f2aad28058
refs/heads/master
2022-05-24T04:22:19.652929
2020-04-16T11:40:19
2020-04-16T11:40:19
171,291,657
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import os import urllib.request def load_image(template): print(template) return open("/home/pi/printer/templates/" + template) def cleanup_templates(): for root, dirs, files in os.walk("/home/pi/printer/templates"): for filename in files: if filename != "default.png" and filename != "template.bmp": os.remove("/home/pi/printer/templates/" + filename) def download_template(url, event_id): urllib.request.urlretrieve(url, "/home/pi/printer/templates/" + event_id + ".png") return "/home/pi/printer/templates/" + event_id + ".png" def template_exist(event_id): return os.path.isfile("/home/pi/printer/templates/" + event_id + ".png")
UTF-8
Python
false
false
697
py
14
templates.py
9
0.662841
0.662841
0
19
35.736842
86
wkdewey/learnpythonthehardway
13,812,614,850,581
e62e78f693e95d5dd4ae8971cebc808c10cc6f90
2ff2cb79b2ea556514ceb9f41c55734f30f4b5fe
/ex17.py
d0cb3a3c4481920873d422c7617e7874a178acce
[]
no_license
https://github.com/wkdewey/learnpythonthehardway
4ccc7dc02aeac09d42d36344961f539703cc008a
284643d0ad52abfc826492c6f9a3cdbd9dcd8b50
refs/heads/master
2020-03-23T02:31:25.530269
2018-07-14T21:06:54
2018-07-14T21:06:54
140,978,281
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from sys import argv; from os.path import exists; script, from_file, to_file = argv;print "Copying from %s to %s" % (from_file, to_file); indata = open(from_file).read(); out_file = open(to_file, 'w').write(indata) x = len("12345") print "%d" % x
UTF-8
Python
false
false
247
py
27
ex17.py
27
0.663968
0.643725
0
3
81.333333
214
rdghosal/WaveNative
16,329,465,659,863
551c9608375bf82c17d00c2df5bb24e15885a4bc
4c71c8a38429a39da78509c617923f7911b07bab
/api/services/user.py
9168764d00abc470547274c229d3a57ec5be182b
[]
no_license
https://github.com/rdghosal/WaveNative
4b4e184070b9e992c9379df647e66a64cfb19e4b
340fdb8e354daf87915d8e4725e510dd222cc4cc
refs/heads/master
2023-01-12T05:49:39.878089
2020-02-16T02:16:31
2020-02-16T02:16:31
196,894,015
0
0
null
false
2023-01-07T14:39:10
2019-07-14T23:40:55
2020-02-16T02:16:37
2023-01-07T14:39:09
7,756
0
0
25
JavaScript
false
false
from api import db from api.models.user import User from werkzeug.security import check_password_hash, generate_password_hash def check_form_data(form): """Takes data used for registration and evaluates whether info is original""" if form["password"] != form["confirmation"] or \ db.session.query(User).filter(User.username == form["username"]).count() > 0: return False return True def add_user(form): """Adds user to database""" # Add new user data db.session.add(User( username=form["username"], hashed=generate_password_hash(form["password"]), age=form["age"], country=form["country"] )) # Commit change to db db.session.commit() def get_user_info(form): """Checks login credentials against database""" result = db.session.query(User).filter(User.username == form["username"]).first() if not result or not check_password_hash(result.hashed, form["password"]): return None return { "id": result.id, "username": result.username }
UTF-8
Python
false
false
1,071
py
41
user.py
29
0.645191
0.644258
0
37
27.972973
85
mhyttsten/GeneralMLRepoPython
11,596,411,703,049
52be2f8821d9fa77f71892998fb48654208274e6
c790d516ae4fcb5a83010a08f9756313afd170a4
/TF_Old/Ref_TFFileIO.py
99032f755f0b4f9e56c2268ec7855c949877969c
[]
no_license
https://github.com/mhyttsten/GeneralMLRepoPython
1ccbf0c7fbd85ec981b8d4d417ab673dcaa2e8ec
c5d3bfb115601a3f162e8b089b0a1527ac0ba139
refs/heads/master
2021-09-06T05:20:07.597283
2018-02-02T18:16:06
2018-02-02T18:16:06
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import tensorflow as tf def input_pipeline(filenames, batch_size, num_epochs=None): filename_queue = tf.train.string_input_producer(filenames, num_epochs=num_epochs, shuffle=True) reader = tf.TextLineReader() key, record_string = reader.read(filename_queue) f1, f2, f3, label = tf.decode_csv(record_string, record_defaults=[["a"], ["b"], ["c"], ["d"]]) features = tf.stack([f1, f2, f3]) min_after_dequeue = 10000 capacity = min_after_dequeue + 3*batch_size feature_batch, label_batch = tf.train.shuffle_batch( [features, label], num_threads=16, batch_size=batch_size, capacity=capacity, min_after_dequeue=min_after_dequeue, allow_smaller_final_batch=True) return feature_batch, label_batch get_batch = input_pipeline( filenames=[("csv_file%d.csv" % i) for i in range(4)], batch_size=3, num_epochs=2) init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) coord = tf.train.Coordinator() sess = tf.Session() writer = tf.summary.FileWriter('tb_report', sess.graph) sess.run(init_op) threads = tf.train.start_queue_runners(sess=sess, coord=coord) try: while not coord.should_stop(): (features, labels) = sess.run(get_batch) for i in range(features.shape[0]): print "f: " + str(features[i]) + ", l: " + labels[i] print 'features: {}, labels: {}'.format(str(features.shape), str(labels.shape)) except tf.errors.OutOfRangeError, e: print 'Done training -- epoch limit reached' finally: coord.request_stop() coord.join(threads) writer.close()
UTF-8
Python
false
false
1,621
py
45
Ref_TFFileIO.py
45
0.660703
0.649599
0
45
35.044444
99
sneha8412/back-end-inspiration-board
18,657,337,937,933
efdb86bfd1b5c23c64eacf5538a0d0b5921d26f2
c59b47da153036a20be3152cd0b9498c4333f1d8
/app/card_routes.py
e57e419c4d97e6a19b0c6f537ee634f422a0754a
[]
no_license
https://github.com/sneha8412/back-end-inspiration-board
f4f18555ec9a2914de69a93196f12c17378c2bfb
cf752d0f8d6798933bdb1a3d94a1760687994efd
refs/heads/main
2023-06-18T03:16:18.209195
2021-06-29T02:59:24
2021-06-29T02:59:24
381,177,181
0
0
null
true
2021-06-28T22:36:06
2021-06-28T22:36:05
2021-06-23T23:37:41
2021-06-23T23:04:21
0
0
0
0
null
false
false
from flask import Blueprint, request, jsonify, make_response from app import db from .models.board import Board from .models.card import Card import os # example_bp = Blueprint('example_bp', __name__) card_bp = Blueprint("cards", __name__, url_prefix="/cards") @card_bp.route("", methods=["POST"], strict_slashes=False) def create_a_card(): request_body = request.get.json() if "message" not in request_body: return jsonify(details="invalid data"), 400 new_card = card.from_json(request_body) db.session.add(new_card) db.session.commit() return new_card.to_json_card(), 201 @card_bp.route("", methods=["DELETE"], strict_slashes=False) def delete_a_card(): pass #update a card # @card_bp.route("", methods=["PUT"], strict_slashes=False) # def like_a_card(): # pass @card_bp.route("", methods=["GET"], strict_slashes=False) def get_all_cards(): pass
UTF-8
Python
false
false
908
py
5
card_routes.py
5
0.664097
0.657489
0
37
23.513514
60
OverLordGoldDragon/StackExchangeAnswers
16,733,192,597,947
856b67ec64e3567bf89bb9645b342ef4a20a0009
88d98cc49954c8bf7f8076eedaeb2336282de4ce
/SignalProcessing/Q76636 - filters - Why is x(n) - x(n - 1) + x(n + 2) lowpass/main.py
07941c8928d54daef0e8de186616be9172bc8f6a
[ "MIT" ]
permissive
https://github.com/OverLordGoldDragon/StackExchangeAnswers
1312601f1a1b5970536171600e4317791c5e4953
47a5fd462e506cd417c7112a9fff3300b489f0de
refs/heads/main
2023-08-08T09:51:52.304487
2023-08-02T09:20:03
2023-08-02T09:20:03
387,701,666
13
3
MIT
false
2021-10-02T01:48:50
2021-07-20T06:57:55
2021-08-18T01:23:43
2021-10-02T01:48:49
154,626
2
0
1
Python
false
false
import numpy as np import matplotlib.pyplot as plt def plot(x, title): fig = plt.figure() plt.plot(np.abs(x)) plt.scatter(np.arange(len(x)), np.abs(x), s=10) plt.title(title, weight='bold', fontsize=18, loc='left') return fig def plot_T(x, Tmax): if Tmax == 0: title = "|H(w)|: x(n)" elif Tmax == 1: title = "|H(w)|: x(n) - x(n - 1)" elif Tmax == 2: title = "|H(w)|: x(n) - x(n - 1) + x(n - 2)" else: title = "|H(w)|: x(n) - x(n - 1) + x(n - 2) - ... x(n - %s)" % Tmax fig = plot(x, title, scatter=1) plt.ylim(-.05, 1.05) plt.savefig(f'im{Tmax}.png', bbox_inches='tight') plt.close(fig) def csoid(f): return (np.cos(2*np.pi* f * t) - np.sin(2*np.pi* f * t) * 1j) #%%# Direct frequency response ############################################### N = 32 t = np.linspace(0, 1, N, 0) for Tmax in range(N): x = np.sum([(-1)**T * csoid(T) for T in range(Tmax + 1)], axis=0) x /= np.abs(x).max() plot_T(x, Tmax) #%%# WGN example ############################################################# def plot_and_save(x, title, savepath): fig = plot(x, title) plt.savefig(savepath, bbox_inches='tight') plt.close(fig) np.random.seed(69) x = np.random.randn(32) xf0 = np.fft.fft(x) x = x - np.roll(x, 1) + np.roll(x, 2) xf1 = np.fft.fft(x) plot_and_save(xf0, "|X(w)|: x(n)", "WGN0.png") plot_and_save(xf1, "|X(w)|: x(n) - x(n - 1) + x(n - 2)", "WGN1.png")
UTF-8
Python
false
false
1,471
py
54
main.py
48
0.485384
0.456152
0
54
26.240741
78
YannisYao/12306Plus
1,812,476,234,058
bf3d92b212563f0f8e02a4c201a62542a169f7f1
1212291e28543032194a500a3c508cc44c71e238
/business/check_captcha.py
05e6955a6e5dfce8d5f0fa0e981e352c2518c221
[]
no_license
https://github.com/YannisYao/12306Plus
1d72102c6ca7b362ac077a12c069af8527a4bd4c
dbec0c8260fd94d5a7392330a1c3c692a6bbd1d5
refs/heads/master
2021-05-11T06:13:25.597472
2018-01-19T07:58:07
2018-01-19T07:58:07
117,982,002
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#校验验证码 from business.damatuWeb import DamatuApi from business.captcha_download import download_captcha import json from business.urlcontants import UrlContants from business.middleproxy import MiddleProxy from bs4 import BeautifulSoup #坐标识别式验证码 CAPTCHA_TYPE = 310 #坐标偏移量 OFFSET_X = 0 OFFSET_Y = 30 def get_result_points(ret,result): result_point = '' if ret == 0: if result is not None: captcha_point = result.split('|') for point in captcha_point: if point is not None: pointX = point.split(',')[0] pointY = point.split(',')[1] pointX = int(pointX) - OFFSET_X pointY = int(pointY) - OFFSET_Y result_point = result_point + str(pointX) + ',' + str(pointY)+',' return result_point.rstrip(',') else: print('打码故障! 错误代码:%s' % ret) return None def check_captcha_request(param,url=UrlContants.CAPTCHA_CHECK): params={'answer':param, 'login_site':'E', 'rand':'sjrand'} s = MiddleProxy.getSession().post(url, params=params,headers=MiddleProxy.headers_xhr) if s.status_code == 200 and s.headers['Content-Type'] == 'application/json;charset=UTF-8': content = str(s.content, encoding='utf-8') jres = json.loads(content) if jres['result_code'] == '4': return (True,jres['result_message']) else: return (False,jres['result_message']) elif s.status_code == 200 and s.headers['Content-Type'] == 'text/html': bsObj = BeautifulSoup(s.content,'html.parser') err_msg = bsObj.find('div', {'class': 'err_text'}).find('li', {'id': 'err_bot'}).get_text().strip() err_msg = err_msg[:err_msg.index('!')+2] return (False,err_msg) def check_captcha(): #存储验证码图片 image_path = download_captcha() if image_path is not None: damatu = DamatuApi(MiddleProxy.getDm2User(),MiddleProxy.getDm2Pwd()) #使用打码兔获取验证码 print(damatu.getBalance()) ret,result,id = damatu.decode(image_path,310) print('打码兔提供--->'+result) #获取转换后的坐标 result_points = get_result_points(ret,result) print('打码兔坐标转换--->'+result_points) #发起验证码验证 check_result = check_captcha_request(result_points) if check_result['result_code'] == '4': #此处后续可以进行数据库存储,因12306验证码图片不是动态生成的,可以存储对应的答案,减少对打码平台的依赖 return True else: return False
UTF-8
Python
false
false
2,752
py
21
check_captcha.py
19
0.594821
0.58247
0
70
34.871429
107