repo_name
stringlengths 7
111
| __id__
int64 16.6k
19,705B
| blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 5
151
| content_id
stringlengths 40
40
| detected_licenses
list | license_type
stringclasses 2
values | repo_url
stringlengths 26
130
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringlengths 4
42
| visit_date
timestamp[ns] | revision_date
timestamp[ns] | committer_date
timestamp[ns] | github_id
int64 14.6k
687M
⌀ | star_events_count
int64 0
209k
| fork_events_count
int64 0
110k
| gha_license_id
stringclasses 12
values | gha_fork
bool 2
classes | gha_event_created_at
timestamp[ns] | gha_created_at
timestamp[ns] | gha_updated_at
timestamp[ns] | gha_pushed_at
timestamp[ns] | gha_size
int64 0
10.2M
⌀ | gha_stargazers_count
int32 0
178k
⌀ | gha_forks_count
int32 0
88.9k
⌀ | gha_open_issues_count
int32 0
2.72k
⌀ | gha_language
stringlengths 1
16
⌀ | gha_archived
bool 1
class | gha_disabled
bool 1
class | content
stringlengths 10
2.95M
| src_encoding
stringclasses 5
values | language
stringclasses 1
value | is_vendor
bool 2
classes | is_generated
bool 2
classes | length_bytes
int64 10
2.95M
| extension
stringclasses 19
values | num_repo_files
int64 1
202k
| filename
stringlengths 4
112
| num_lang_files
int64 1
202k
| alphanum_fraction
float64 0.26
0.89
| alpha_fraction
float64 0.2
0.89
| hex_fraction
float64 0
0.09
| num_lines
int32 1
93.6k
| avg_line_length
float64 4.57
103
| max_line_length
int64 7
931
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
beexu/testlearngit | 3,410,204,070,854 | 38a0d58103204ad1c0e3447449e0422044e245a7 | 9637558a4e4a94198342dd4ab7b1706d6bc682d9 | /requests git/learnpython/testall.py | 9b7d807bf1e24bb1f83e2a13350c26b4e9b091c6 | []
| no_license | https://github.com/beexu/testlearngit | 28e30efffa8280178b299a11e568f107e50a1f63 | 3b99237aaf78d09c5b2c473229702bd06aa7ad52 | refs/heads/master | 2022-04-22T05:39:48.398650 | 2020-04-25T06:54:35 | 2020-04-25T06:54:35 | 258,698,945 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # -*- coding: UTF-8 -*-
import requests
import sys
import unittest
# sys.path.insert(0, '..') # 这个可以
sys.path.append('..')
# 这个不行
# print(sys.path)
from learnexcel import *
from learnfixexcel import *
from learnjson import *
from mytest.testinter import *
class testurl(unittest.TestCase):
def __init__(self):
self.learnexcel1 = ExcelMethod()
self.learnfixexcel1 = fixtest()
self.learnjson1 = Getpython()
self.testinter1 = interface1()
def run(self, methon, path):
self.url = "http://lovebee.crazylaw.cn/single/sign.php"
if methon == "get":
res, code = self.testinter1.send_get(self.url, path)
return res, code
elif methon == "post":
res, code = self.testinter1.send_post(self.url, path)
return res, code
def test(self):
row = self.learnexcel1.GettestRow()
truepath = ''
a = []
for i in range(1, row):
print(i)
url = self.learnfixexcel1.getexcelurl(i)
methon = self.learnfixexcel1.getexcelmethon(i)
path = self.learnfixexcel1.getexcelpath(i)
try:
truepath = {'url': ''}
truepath['url'] = url
# print(truepath)
littletruepath = self.learnjson1.getjsonid(path)
for key, value in littletruepath.items():
truepath[key] = littletruepath[key]
# print('aaa')
# print(truepath)
except Exception as e:
# traceback = __import__('traceback')
# print(traceback.print_exc())print_exc
print(e)
result, code = self.run(methon, truepath)
# 存入excel
self.learnexcel1.WriteEXcel(i, result)
self.learnexcel1.WriteCode(i, code)
returndata = self.learnexcel1.Getreturn(i)
self.assertIn(returndata, result)
print("test")
print(code)
print(returndata)
# result = self.testinter1.send_get('http://lovebee.crazylaw.cn/single/sign.php', truepath)
# result = self.testinter1.send_post('http://lovebee.crazylaw.cn/single/sign.php', truepath)
# print(result)
one1 = type(result)
a.append(result)
return a
if __name__ == '__main__':
testa = testurl().test()
print(testa)
| UTF-8 | Python | false | false | 2,458 | py | 41 | testall.py | 38 | 0.550041 | 0.541427 | 0 | 79 | 29.860759 | 104 |
Hwlcoder/CNN_conflict_types | 17,875,653,910,712 | f0b72e5f9d9a2b5e6c1ff28c711cb67173e87b3c | 4e7a7570381a344c7b156da9705e996ef1dccdbd | /CNN/SVM+OurInput.py | e01fcb0cf188001ca6c89b1668c2c9c574ff1109 | []
| no_license | https://github.com/Hwlcoder/CNN_conflict_types | 7dadea6093a55abeae1938c6113c506d84d23568 | b049615de539fb3582f34cdda6d0fbf50722a30e | refs/heads/master | 2020-06-17T05:27:54.540574 | 2019-07-08T13:06:11 | 2019-07-08T13:06:11 | 195,811,301 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/usr/bin/python
# -*- coding: utf-8 -*-
import tensorflow as tf
from textProcess3 import *
from sklearn.model_selection import StratifiedKFold
import os
from sklearn.decomposition import PCA
from sklearn import svm
from sklearn.externals import joblib
import time
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.5)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
#得到整个文本的矩阵(包括标签)
all_dir_1 = 'data/cate300_cut/'
all_dir_2 = 'data/parser/'
categories, cat_to_id = read_category()
all_xdata, all_ydata = process_file(all_dir_1,all_dir_2, cat_to_id)
#N折交叉验证,先将all_xdata和all_ydata分成N组
stratified_folder = StratifiedKFold(n_splits=10, random_state=0, shuffle=False)
train_acc = []
test_acc = []
train_xdata = np.zeros((270,3,3))
train_labels = np.zeros(270)
test_xdata = np.zeros((30,3,3))
test_labels = np.zeros(30)
fp = open('result/'+'AccurancyResultSVM.txt','w')
for train_index, test_index in stratified_folder.split(all_xdata, all_ydata):
for i in range(len(train_index)):
train_xdata[i] = all_xdata[train_index[i]]
train_labels[i] = all_ydata[train_index[i]]
for i in range(len(test_index)):
test_xdata[i] = all_xdata[test_index[i]]
test_labels[i] = all_ydata[test_index[i]]
t = time.time()
# svm方法
nsamples, nx, ny = train_xdata.shape
d2_train_dataset = train_xdata.reshape((nsamples, nx * ny))
nsamples1, nx1, ny1 = test_xdata.shape
d2_test_dataset = test_xdata.reshape((nsamples1, nx1 * ny1))
pca = PCA(n_components=0.8, whiten=True)
train_x = pca.fit_transform(d2_train_dataset)
test_x = pca.transform(d2_test_dataset)
svc = svm.SVC(kernel='rbf', C=10)
svc.fit(train_x, train_labels)
pre = svc.predict(test_x)
acc = float((pre == test_labels).sum()) / len(test_x)
test_acc.append(acc)
print (u'准确率:%f,花费时间:%.2fs' % (acc, time.time() - t))
joblib.dump(svc, "train_svm_model.m")
print ("Done\n")
sum_acc = 0
for i in test_acc:
sum_acc = sum_acc+i
print (sum_acc/10)
modeluse = joblib.load("train_svm_model.m")
my_data_path1 = "data/test/liu/test_3/"
my_data_path2 = "data/test/my/test_parser3/"
categories, cat_to_id = read_category()
test_1, test_2 = process_file(my_data_path1,my_data_path2,cat_to_id)
nsamples, nx, ny = test_1.shape
d2_test_data = test_1.reshape((nsamples, nx * ny))
d2_test_data_2 = pca.transform(d2_test_data)
print(test_2)
print(modeluse.predict(d2_test_data_2))
| UTF-8 | Python | false | false | 2,594 | py | 41 | SVM+OurInput.py | 10 | 0.684022 | 0.658188 | 0 | 71 | 34.43662 | 79 |
Muzer/smartbot | 10,823,317,626,496 | facaa937cca505a07ebae77e5243694936eec16a | 5ebe97e9597c1bd7b2162d7c092897f557472b51 | /smartbot/backend.py | e0ff94bec31844d59a0edc379278d0b9f00a5ad0 | [
"MIT"
]
| permissive | https://github.com/Muzer/smartbot | 048791e2731c850ffb66fa2178ee7c2f6d271b12 | c18daac6b066a7d368ef3dd0848a21c16a076604 | refs/heads/master | 2021-01-24T21:47:23.583529 | 2015-05-05T15:09:22 | 2015-05-05T15:09:22 | 16,807,677 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from .events import Event
class Backend:
def __init__(self):
self.storage = None
self.event_listeners = []
self.on_connect = Event()
self.on_disconnect = Event()
self.on_ready = Event()
self.on_join = Event()
self.on_message = Event()
| UTF-8 | Python | false | false | 298 | py | 25 | backend.py | 23 | 0.553691 | 0.553691 | 0 | 13 | 21.923077 | 36 |
Patchkat/Advent-Of-Code-2020 | 16,054,587,778,825 | 58814575ed7b4e1ad76e655afd36f0bcd48704a8 | e71fd1e081af09cf3a5f8ccc3071bfbdb57ad5d1 | /Day 9/AoC9A.py | 542ca30dcb2ef0d9edebecb4f6d6fe0fe4fa61be | []
| no_license | https://github.com/Patchkat/Advent-Of-Code-2020 | 339b76ce2bd61cc1c91d225a2959a0acebbc43d9 | 7d3abee87c1c3df434cc907594b329b638839e0d | refs/heads/main | 2023-04-28T01:54:38.975577 | 2021-05-04T16:27:09 | 2021-05-04T16:27:09 | 318,089,752 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | f = [int(x.rstrip('\n')) for x in open('xmas.txt').readlines()]
preamble_length = 25
for x in range(preamble_length, len(f)):
current_nums = f[x-preamble_length:x]
summed = False
for y in current_nums:
if (f[x] - y) in current_nums:
summed = True
if summed == False:
print(f[x])
break
| UTF-8 | Python | false | false | 337 | py | 39 | AoC9A.py | 39 | 0.569733 | 0.563798 | 0 | 11 | 29.636364 | 63 |
jakobpederson/tweetbot | 8,074,538,543,671 | a12f58a3d4d45e11d3cfdbd60fcf20304a15a99a | 404a25c21c978ed0025be797c5639f5df8f0652a | /helloworld.py | e3aa6544a92f6a14a705eec171392beee1e88b2b | []
| no_license | https://github.com/jakobpederson/tweetbot | 670b34dff5322b9a066c9a2d0cebc804ea21018a | 8b1fb4b6e249e85a97dd5660ff8f4c0b671fe8f3 | refs/heads/master | 2021-01-20T00:14:45.139541 | 2017-04-23T23:42:07 | 2017-04-23T23:42:07 | 89,100,049 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/usr/bin/env python
# -*- coding: utf-8 -*-
from datetime import datetime
import tweepy
from tweepy.error import TweepError
import time
import random
import string
import sys
import KEYS_AND_TOKENS
# argfile = str(sys.argv[1])
CONSUMER_KEY = KEYS_AND_TOKENS.CONSUMER_KEY
CONSUMER_SECRET = KEYS_AND_TOKENS.CONSUMER_SECRET
ACCESS_KEY = KEYS_AND_TOKENS.ACCESS_KEY
ACCESS_SECRET = KEYS_AND_TOKENS.ACCESS_SECRET
auth = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET)
auth.set_access_token(ACCESS_KEY, ACCESS_SECRET)
api = tweepy.API(auth)
# filename = open(argfile, 'r')
# f = filename.readlines()
# filename.close()
format = '%Y-%m-%d %H:%M'
def deck():
cards = [
'The Fool',
'The Magician',
'The High Priestess',
'The Empress',
'The Emperor',
'The Hierophant',
'The Lovers',
'The Chariot',
'Strength',
'The Hermit',
'Wheel of Fortune',
'Justice',
'The Hanged Man',
'Death',
'Temperance',
'The Devil',
'The Tower',
'The Star',
'The Moon',
'The Sun',
'Judgement',
'The World',
]
houses = ["Cups", "Wands", "Swords", "Pentacles"]
royals = ["Ace", "Page", "Knight", "Queen", "King"]
number_deck = []
for house in houses:
number_deck.extend(['{} of {}'.format(x, house) for x in list(range(2, 11))])
for house in houses:
number_deck.extend(['{} of {}'.format(x, house) for x in royals])
cards.extend(number_deck)
return cards
while(True):
try:
hand = random.sample(deck(), 3)
final_hand = []
for card in hand:
orientation = random.sample(["", "Inverted"], 1)
if orientation[0] == "Inverted":
final_hand.append('{} ({})'.format(card, "Inverted"))
else:
final_hand.append('{}'.format(card))
final_hand.append(datetime.now().strftime(format))
message = '1.) {0}\n2.) {1}\n3.) {2}\n\n{3}'.format(*final_hand)
api.update_status(message)
print(message)
except TweepError:
print('pass')
pass
time.sleep(900)
| UTF-8 | Python | false | false | 2,192 | py | 2 | helloworld.py | 1 | 0.565237 | 0.557026 | 0 | 84 | 25.095238 | 85 |
AZ015/design_patterns | 19,095,424,625,678 | 7a83c60cd3f7dbb9998bf2964661b91cfccc581d | 2e223fb4771146ad0f80085b60aee6110cfdeff7 | /Behavioral/observer/push_observer/main.py | e83cb5624a82a5d627ba78cd1942aa29eebf202c | []
| no_license | https://github.com/AZ015/design_patterns | c6b2612ff5ce169f0c8e343c1f9e670b2b593e96 | 704c4b29d6fab2dfaf7c4e8923909276eaabbfa7 | refs/heads/master | 2020-12-21T00:59:08.009764 | 2020-02-05T12:02:29 | 2020-02-05T12:02:29 | 236,259,486 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from Behavioral.observer.push_observer import DataSource, SpreadSheet, Chart
if __name__ == '__main__':
data_source = DataSource()
sheet_1 = SpreadSheet()
sheet_2 = SpreadSheet()
chart = Chart()
data_source.add_observer(sheet_1)
data_source.add_observer(sheet_2)
data_source.add_observer(chart)
data_source.value = 1
| UTF-8 | Python | false | false | 351 | py | 74 | main.py | 73 | 0.672365 | 0.65812 | 0 | 12 | 28.25 | 76 |
Tamar20/Google-project | 309,237,654,816 | 936ff441913f5a2238dbb77694875b432d2e06da | 0f8a171012617f64df5a7c98845239a583225d53 | /init.py | f3b9328fc4ca166f6edb05e764369a8d5a637e07 | []
| no_license | https://github.com/Tamar20/Google-project | 8608af4b242f052ae1341ad300561fe03ad16e3d | ffac4d8df66375c3077cbb98dee47a28200c2db6 | refs/heads/master | 2023-02-21T04:30:24.072228 | 2021-01-21T14:19:15 | 2021-01-21T14:19:15 | 331,651,072 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import os
import string
from trie import *
def edit_sentence(prefix: str) -> str:
prefix = prefix.translate(str.maketrans('', '', string.punctuation))
return ' '.join(prefix.lower().split())
def init_data():
trie = Trie()
init_trie(trie)
return trie
def init_trie(trie):
for line, path, line_num in uploading_files():
line = edit_sentence(line)
offset = 1
while line != '':
trie.insert(line, path, line_num, offset)
line = line[1:]
offset += 1
def uploading_files():
for root, dirs, files in os.walk(f"./data"):
for file in files:
curr_path = f"./{root}/{file}"
with open(curr_path) as file:
for line_num, line in enumerate(file, 1):
yield line, curr_path, line_num
| UTF-8 | Python | false | false | 837 | py | 4 | init.py | 4 | 0.553166 | 0.548387 | 0 | 37 | 21.540541 | 72 |
pengliu380/Feature-Detectors | 12,429,635,354,752 | fcfc26575f85ae113b706f4cc041f20da95fc164 | 6089d4b659071747aa623041c6b221096f8d07e7 | /test.py | 69e68f1dae1c3838cb28acd50df6e13d90b31ecc | []
| no_license | https://github.com/pengliu380/Feature-Detectors | 47e5c92c35b7d85029f26abc4d5f40ccca2f3872 | 807ab6cf8d6ed527967ae53626ad247c8ffea47b | refs/heads/master | 2020-04-02T16:55:51.586041 | 2018-10-25T08:43:24 | 2018-10-25T08:43:24 | 154,635,415 | 4 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import cv2 as cv
import numpy as np
# Merge pictures
classname = ['bikes_blur', 'graffiti_viewpoints', 'bark_zoom_rotation', 'cars_light']
method = ['hcd', 'dog', 'fast', 'mser']
for i in range(4):
for j in range(4):
filename = 'result/' + classname[i] +'/' + method[j]
img = cv.imread(filename + '_1.jpg')
for m in range(2):
temp = cv.imread( filename + '_' + str(2*m+3) +'.jpg')
img = np.hstack((img, temp))
cv.imwrite(filename + '.jpg', img)
| UTF-8 | Python | false | false | 507 | py | 2 | test.py | 2 | 0.556213 | 0.542406 | 0 | 14 | 35.214286 | 85 |
johnnyguogrit/Python-- | 2,894,807,968,924 | b1d3af5c2bfa366f27722315771886643f2e2d47 | 094dc24a91346ab9c7e12b1b7ed85d2d596804d1 | /food.py | 5ebcc304d2ac2e9bcd8222308470db1300caffaf | []
| no_license | https://github.com/johnnyguogrit/Python-- | 23123220e8f7f5ed848b8e3593e47df000195f36 | 340c00f97449a8691ee3b2025729bdf97ff3a2a8 | refs/heads/master | 2020-08-14T21:03:16.767061 | 2019-10-18T11:07:04 | 2019-10-18T11:07:04 | 215,232,213 | 4 | 0 | null | false | 2019-10-15T08:13:40 | 2019-10-15T07:15:16 | 2019-10-15T07:15:19 | 2019-10-15T08:13:40 | 0 | 0 | 0 | 0 | null | false | false | my_foods = ['pizza', 'falafel', 'carrot cake']
friend_foods = my_foods[:]
print("My favorite foods are:")
my_foods.append('cannoli')
print(my_foods)
print("\nMy friends' favorite foods are:")
friend_foods.append('ice cream')
print(friend_foods)
print("\nThe first three items in the list are:")
print(friend_foods[:3])
print("\nThree items from the middle of the list are:")
print(my_foods[int(len(my_foods)/2):int(len(my_foods)/2)+3])
print("\nLast three items in the list are")
print(my_foods[-3:])
for my_food in my_foods:
print(my_food)
for friend_food in friend_foods:
print(friend_food)
| UTF-8 | Python | false | false | 606 | py | 50 | food.py | 48 | 0.69967 | 0.691419 | 0 | 26 | 22.192308 | 60 |
movie5/deeplearning_from_scratch | 10,033,043,616,744 | d850002e2f8cd0a65e5373e10426b80038de955c | 91b34a72cecfaf6b11333b598cffa60b87afade8 | /ch1.헬로 파이썬/1.6.matplotlib.py | 0b54559916c03fa025b5340ba311c4362c8b84de | [
"MIT"
]
| permissive | https://github.com/movie5/deeplearning_from_scratch | 635a1c1cfc96028a7a28c75d74460fdf4d911b02 | eedc8718c7995f4f82d3b71475987d6e0c1ff578 | refs/heads/master | 2023-05-29T23:19:28.262873 | 2023-05-02T04:52:34 | 2023-05-02T04:52:34 | 283,549,037 | 0 | 0 | MIT | true | 2020-07-29T16:29:28 | 2020-07-29T16:29:27 | 2020-07-29T16:27:47 | 2019-03-15T04:34:44 | 60,444 | 0 | 0 | 0 | null | false | false | import numpy as np
import matplotlib.pyplot as plt
from matplotlib.image import imread
# 1.6.1 단순한 그래프 그리기
# 데이터 준비
x = np.arange(0, 6, 0.1)
y = np.sin(x)
# 그래프 그리기
# plt.plot(x, y)
# plt.show()
# 1.6.2 pyplot의 기능
# 데이터 준비
x = np.arange(0, 6, 0.1)
y1 = np.sin(x)
y2 = np.cos(x)
# 그래프 그리기
plt.plot(x, y1, label="sin")
plt.plot(x, y2, linestyle="--", label="cos")
plt.xlabel("x") # 축이름
plt.ylabel("y")
plt.title('sin & cos')
plt.legend()
plt.show()
# 1.6.3 이미지 표시하기
img = imread('../dataset/lena.png')
plt.imshow(img)
plt.show()
| UTF-8 | Python | false | false | 623 | py | 31 | 1.6.matplotlib.py | 27 | 0.624299 | 0.585047 | 0 | 34 | 14.735294 | 44 |
shubhamverma1997/Sentiment-Dictionary | 15,006,615,736,581 | d433c7af2e70c4a8236a2661bc9b5b4030c5c242 | 8b4e33b960a7b89d4a82eb61546dd1fc53e943eb | /countForeign.py | 7ebf770539917de9f0e402e209a6d3d06d68c358 | []
| no_license | https://github.com/shubhamverma1997/Sentiment-Dictionary | e3143a3b02581659b5f95d3c86c78f561ae8c20a | a98ebed01507846eae02927201adc7fe55cdda63 | refs/heads/master | 2020-03-23T16:19:07.790928 | 2018-05-15T14:26:28 | 2018-05-15T14:26:28 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import pandas as pd
from langdetect import detect
Dict = pd.read_csv('Dict.csv', delimiter = ",")
wlist = []
for word in Dict['Word']:
wlist.append(word)
forCnt = 0
TotWord = len(wlist)
print TotWord
wordLang = {}
for word in wlist:
wordLang[word] = detect(word)
df = pd.DataFrame(wordLang.items(), columns =['word', 'lang'])
df.to_csv(path_or_buf = 'cntForeign.csv', sep = ',', index = False)
| UTF-8 | Python | false | false | 405 | py | 25 | countForeign.py | 12 | 0.664198 | 0.661728 | 0 | 17 | 22.823529 | 67 |
Tilana/Classification | 17,523,466,572,760 | ee8d130938ccdf235e514f3594cc055a3810c602 | fa9d9985a5c1f8e02ea0983097574dcbb51bc699 | /lda/Collection.py | c5941d04c289023320878b1efff904fc747dc5dc | []
| no_license | https://github.com/Tilana/Classification | 76e111a52a1ceda6a2c090e65a03cd6c087c0fed | 636e7660ecbd7d0615a40d210fb3b7afce919166 | refs/heads/develop | 2020-05-23T07:53:12.885056 | 2018-05-08T07:29:29 | 2018-05-08T07:29:29 | 80,451,934 | 3 | 1 | null | false | 2018-04-12T08:11:26 | 2017-01-30T18:49:53 | 2018-04-09T23:49:41 | 2018-04-12T08:11:25 | 128,642 | 3 | 0 | 47 | Python | false | null | # encoding=utf8
from docLoader import loadData
from Preprocessor import Preprocessor
#import preprocessor as tweetPreprocessor
from FeatureExtractor import FeatureExtractor
import cPickle as pickle
import listUtils as utils
import pandas as pd
import numpy as np
import os
import pdb
class Collection:
def __init__(self, path=None):
self.data = pd.DataFrame()
if path:
self.path = path
self.data = loadData(path)
self.nrDocs = len(self.data)
def cleanDataframe(self, textField='text'):
dataWithText = self.data[self.data[textField].notnull()]
cleanDataframe = dataWithText.dropna(axis=1, how='all')
self.data = cleanDataframe.reset_index()
self.nrDocs = len(self.data)
def vectorize(self, vecType='tfidf', vocabulary=None, field='text', ngrams=(1,2), maxFeatures=8000):
self.buildVectorizer(vecType=vecType, ngram_range=ngrams, min_df=5, max_df=0.50, max_features=maxFeatures, binary=False, vocabulary=vocabulary)
self.trainVectorizer(vecType, field)
def buildVectorizer(self, vecType='tfIdf', min_df=10, max_df=0.5, stop_words='english', ngram_range = (1,2), max_features=8000, vocabulary=None, binary=False):
self.preprocessor = Preprocessor(processor=vecType, min_df=min_df, max_df=max_df, stop_words=stop_words, ngram_range=ngram_range, max_features=max_features, vocabulary=vocabulary, binary=binary)
def trainVectorizer(self, vecType='tfIdf', field='text'):
trainDocs = self.data[field].tolist()
self.data[vecType] = self.preprocessor.trainVectorizer(trainDocs)
self.vocabulary = self.preprocessor.vocabulary
def save(self, path):
self.savePreprocessor(path)
with open(path +'.pkl', 'wb') as f:
pickle.dump(self, f, -1)
def load(self, path):
model = pickle.load(open(path+'.pkl', 'rb'))
self.data = model.data
self.loadPreprocessor(path)
return self
def savePreprocessor(self, path):
if hasattr(self, 'preprocessor'):
self.preprocessor.save(path)
del self.preprocessor
def loadPreprocessor(self, path):
preprocessor = Preprocessor()
if os.path.exists(path+'.pkl'):
self.preprocessor = preprocessor.load(path)
self.vocabulary = self.preprocessor.vocabulary
def existsProcessedData(self, path):
return os.path.exists(path + '.pkl')
def cleanTexts(self):
preprocessor = Preprocessor()
self.applyToRows('text', preprocessor.removeHTMLtags, 'cleanText')
self.applyToRows('cleanText', preprocessor.cleanText, 'cleanText')
self.applyToRows('cleanText', preprocessor.numbersInTextToDigits, 'cleanText')
def removeStopwords(self):
preprocessor = Preprocessor()
self.applyToRows('cleanText', preprocessor.removeStopwords, 'cleanTokens')
def cleanTweets(self):
self.applyToRows('decodeTweet', tweetPreprocessor.clean, 'cleanTweets')
def extractDate(self):
self.applyToRows('tweet_time', separateDateAndTime, 'date')
def extractDate(self):
self.data['date'] = self.data.apply(lambda doc: doc['tweet_time'].split('T')[0], axis=1)
def extractEntities(self, path=None):
featureExtractor = FeatureExtractor(path)
self.applyToRows('text', featureExtractor.entities, 'entities')
def setRelevantWords(self):
self.applyToRows('tfidf', self.relevantWords, 'relevantWords')
def relevantWords(self, wordWeights):
sortedWeights = sorted(enumerate(wordWeights), key=lambda x: x[1], reverse=True)
sortedWeights = [wordWeight for wordWeight in sortedWeights if wordWeight[1]>0]
return [(self.vocabulary[wordIndex], weight) for (wordIndex, weight) in sortedWeights]
def applyToRows(self, field, fun, name, args=None):
if args:
self.data[name] = self.data.apply(lambda doc: fun(doc[field], args), axis=1)
else:
self.data[name] = self.data.apply(lambda doc: fun(doc[field]), axis=1)
| UTF-8 | Python | false | false | 4,100 | py | 54 | Collection.py | 43 | 0.674146 | 0.666829 | 0 | 116 | 34.344828 | 202 |
Ayush1959/Python-prgs | 77,309,426,607 | 8e37d14597356190a9873e924739b500b0d8f870 | eee3b82c2596fd71738aa550225675d733b1d0f2 | /bigandsmall.py | 0d51ae5877c10777411a725a6b0905332e3881c7 | []
| no_license | https://github.com/Ayush1959/Python-prgs | d0329233b14b120ce6096ac8e87ba596033be5a4 | 3f3e26d3351d6b346bb915c135a58b3812977912 | refs/heads/master | 2021-01-23T09:39:39.948557 | 2017-09-28T08:42:05 | 2017-09-28T08:42:05 | 102,587,880 | 0 | 1 | null | null | null | null | null | null | null | null | null | null | null | null | null | def big (x):
tmp = max (x)
return tmp
def small (x):
tmp = min (x)
return tmp
| UTF-8 | Python | false | false | 94 | py | 19 | bigandsmall.py | 19 | 0.510638 | 0.510638 | 0 | 6 | 14.666667 | 17 |
bpiche/sent2vec | 4,045,859,196,042 | e333fd70c6cec930ab8ba2bb2db7ceab30845284 | dd6588c995f01ce9fcd9a0ab90dfe8fcd8fd9812 | /sentence2vec.py | 471accfbd2bf63ec0dc3632ee54b6290439f03a4 | [
"Apache-2.0"
]
| permissive | https://github.com/bpiche/sent2vec | 4b46f0c14719296030548798f15d59734d234f86 | 42fb05114f03377f4e3b15144ff7444610853d65 | refs/heads/master | 2020-04-07T14:45:12.243891 | 2018-11-20T22:38:28 | 2018-11-20T22:38:28 | 158,459,717 | 1 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | """
Slightly modified from https://github.com/peter3125/sentence2vec with
some new methods for preprocessing sentences, calculating cosine similarity
with sklearn, and a pipeline for comparing an input sentence against a corpus
for some braindead question answering purposes
"""
from __future__ import print_function
import time
import gensim
from gensim.corpora.wikicorpus import WikiCorpus
from gensim.models.doc2vec import Doc2Vec
import spacy
import math
import numpy as np
import pandas as pd
from sklearn.decomposition import PCA
from sklearn.metrics.pairwise import cosine_similarity
from typing import List
nlp = spacy.load('en')
gnews_model = gensim.models.KeyedVectors.load_word2vec_format('~/Downloads/GoogleNews-vectors-negative300.bin', binary=True)
class Word:
def __init__(self, text, vector):
self.text = text
self.vector = vector
class Sentence:
def __init__(self, word_list):
self.word_list = word_list
# return the length of a sentence
def len(self):
return(len(self.word_list))
def __str__(self):
word_str_list = [word.text for word in self.word_list]
return ' '.join(word_str_list)
def __repr__(self):
return self.__str__()
def get_word_frequency(word_text, vec_model):
wf = vec_model.vocab[word_text].count
return(wf)
def preloading_sentences(sentence_list, model):
"""
Converts a list of sentences into a list of Sentence (and Word) objects
Pretty similar to what peter3125/sentence2vec.git does
input: a list of sentences, embedding_size
output: a list of Sentence objects, containing Word objects, which contain 'text' and word vector attributes
"""
embedding_size = 300
all_sent_info = []
for sentence in sentence_list:
sent_info = []
spacy_sentence = nlp(sentence)
for word in spacy_sentence:
if word.text in model.vocab:
sent_info.append(Word(word.text, model[word.text]))
# todo: if sent_info > 0, append, else don't
all_sent_info.append(Sentence(sent_info))
return(all_sent_info)
def sentence_to_vec(sentence_list, embedding_size, a=1e-3):
"""
A SIMPLE BUT TOUGH TO BEAT BASELINE FOR SENTENCE EMBEDDINGS
Sanjeev Arora, Yingyu Liang, Tengyu Ma
Princeton University
"""
sentence_set = [] # intermediary list of sentence vectors before PCA
sent_list = [] # return list of input sentences in the output
for sentence in sentence_list:
this_sent = []
vs = np.zeros(embedding_size) # add all w2v values into one vector for the sentence
sentence_length = sentence.len()
for word in sentence.word_list:
this_sent.append(word.text)
word_freq = get_word_frequency(word.text, gnews_model)
a_value = a / (a + word_freq) # smooth inverse frequency, SIF
vs = np.add(vs, np.multiply(a_value, word.vector)) # vs += sif * word_vector
vs = np.divide(vs, sentence_length) # weighted average, normalized by sentence length
sentence_set.append(vs) # add to our existing re-caculated set of sentences
sent_list.append(' '.join(this_sent))
# calculate PCA of this sentence set
pca = PCA(n_components=embedding_size)
pca.fit(np.array(sentence_set))
u = pca.components_[0] # the PCA vector
u = np.multiply(u, np.transpose(u)) # u x uT
# pad the vector? (occurs if we have less sentences than embeddings_size)
if len(u) < embedding_size:
for i in range(embedding_size - len(u)):
u = np.append(u, 0)
# resulting sentence vectors, vs = vs -u * uT * vs
sentence_vecs = []
for vs in sentence_set:
sub = np.multiply(u, vs)
sentence_vecs.append(np.subtract(vs, sub))
return(sentence_vecs, sent_list)
def get_sen_embeddings(sentence_list):
"""
Create Sentence and Word objects from a list and pass them to sentence_to_vec()
Return a list of _sentence embeddings_ for all sentences in the list
"""
embedding_size = 300
all_sent_info = preloading_sentences(sentence_list, gnews_model)
sentence_vectors, sent_list = sentence_to_vec(all_sent_info, embedding_size)
return(sentence_vectors, sent_list)
def get_cos_distance(sentence_list):
"""
Create Sentence and Word objects from a list and pass them to sentence_to_vec()
Return a matrix of the _cosine distance_ of elements in the matrix
This is used for sentence similarity functions
input: A list of plaintext sentences
output: A list of sentence distances
"""
sentence_vectors, sent_list = get_sen_embeddings(sentence_list)
cos_list = cosine_similarity(sentence_vectors, Y=None, dense_output=True)
return(cos_list, sent_list)
def get_most_similar(utterance, sentence_list):
"""
Takes an input utterance and a corpus sentence_list to compare it to,
and returns a dict of the utterance, closest question, and relevant answer
"""
sentence_list.append(utterance)
cos_list, sent_text = get_cos_distance(sentence_list)
tmp_list = list(cos_list[len(cos_list)-1])
tmp_indx = tmp_list.index(max(tmp_list[0:len(tmp_list)-1]))
return(tmp_indx)
if __name__ == "__main__":
# load questions to compare simliarity to input/test utterances
faq_csv = pd.read_csv("./utterances_test.csv")
sentence_list = list(faq_csv['utterance'])
answer_list = list(faq_csv['answer'])
max_idx = get_most_similar(utterance, sentence_list)
# print the relevant question and answer pair
sentence_list[max_idx]
answer_list[max_idx] | UTF-8 | Python | false | false | 5,620 | py | 2 | sentence2vec.py | 1 | 0.67847 | 0.672954 | 0 | 157 | 34.802548 | 124 |
GitHubSecurity/insightconnect-plugins | 14,851,996,910,489 | 8c8916e8a332298dffb9a0e17fede9a9bee101df | 160c4eab3c0a7d6b2477a8b857001ddb83199dd1 | /recorded_future/setup.py | f40de65f2399f177239ce4549d01227dcd049690 | [
"MIT"
]
| permissive | https://github.com/GitHubSecurity/insightconnect-plugins | 6bc03448b93f2180cc05029adbd5669bca5f3256 | b1ecc1ba345e3bd6db22688e5476d9e0edd4e6ac | refs/heads/master | 2020-06-17T19:37:38.276131 | 2019-07-24T09:34:11 | 2019-07-24T09:34:11 | 196,028,200 | 1 | 0 | null | true | 2019-07-09T14:47:02 | 2019-07-09T14:47:01 | 2019-06-21T16:47:16 | 2019-06-29T02:35:47 | 31,084 | 0 | 0 | 0 | null | false | false | # GENERATED BY KOMAND SDK - DO NOT EDIT
from setuptools import setup, find_packages
setup(name='recorded_future-rapid7-plugin',
version='1.0.2',
description='Recorded Future arms threat analysts, security operators, and incident responders to rapidly connect the dots and reveal unknown threats',
author='rapid7',
author_email='',
url='',
packages=find_packages(),
install_requires=['komand'], # Add third-party dependencies to requirements.txt, not here!
scripts=['bin/komand_recorded_future']
)
| UTF-8 | Python | false | false | 554 | py | 374 | setup.py | 107 | 0.693141 | 0.684116 | 0 | 14 | 38.571429 | 157 |
clbm/SESSDSA-2048-F19-X-ray- | 15,899,968,973,765 | e314c0d556d110ee893c577e0a8eb738a08a2514 | 25a5398a5e7cc9f3fb172f206a4d411b73c58a87 | /α-β剪枝代码及调试/green light_2.py | 0e8893b0c770a546f6fdb355a22ac2dba47f256f | []
| no_license | https://github.com/clbm/SESSDSA-2048-F19-X-ray- | fee89ca3cabc0cd313072a9981bb3011989117ee | 7eecd7e1f9c4aaa3aea55d608547a56313b79b62 | refs/heads/master | 2022-09-26T06:27:14.057050 | 2020-06-07T13:01:49 | 2020-06-07T13:01:49 | 269,928,075 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | Inf = float('inf')
import numpy as np
Weight_L = np.array((1.0,1.05,1.1,1.15,1.2,1.2,1.2,1.2))
Weight_R = np.array((1.2,1.2,1.2,1.2,1.15,1.1,1.05,1.0))
def getmark(board, isFirst:bool):
"评估函数"
Value, Belong = np.array(board.getRaw()).transpose((2,0,1))
return np.sum(((Belong<<Value)*Weight_L-((1-Belong)<<Value)*Weight_R)*(1+0.02*Value))*(1 if isFirst else -1)
def simulation(depth:int, Round:int, Gamemode:int, is_max:bool, board, alpha, beta): #模拟对战
global Inf
mode,isFirst = Gamemode>>1,not Gamemode&1
if depth >= 6 or Round == 500: #大于最大深度时
alpha = getmark(board,isFirst)
return (alpha,alpha)
#以下为一般情况
if mode == 0: #落子阶段
#第一步,找出全部可行落子
Self_part = board.getNext(isFirst,Round) #自己棋盘落子的位置
#available为全部可行位置
available = [Self_part] if Self_part else []
if Round > 30:available += board.getNone(not isFirst) #对手棋盘可落子的位置
#第二步,迭代模拟
if len(available) == 0: #无合法移动的特殊情况
if not depth&1:return -Inf, -Inf
return simulation(depth+1,Round,Gamemode+1,not is_max,board,alpha,beta)
#一般情况
result = available[0]
for position in available: #子树对决
new_board = board.copy()
new_board.add(isFirst,position)
alpha_beta = simulation(depth+1,Round,Gamemode+1,not is_max,new_board,alpha,beta)
#更新alpha-beta
if is_max:
if not depth:old_alpha = alpha #对于树根,需要比较alpha值的变化
alpha = max(alpha, *alpha_beta)
if not depth and alpha > old_alpha: result = position #当alpha值变大时,落子位置更新
else: beta = min(beta, *alpha_beta)
if alpha >= beta: break#alpha-beta剪枝
#返回结果
if depth:return alpha, beta
return result
else: #合并阶段
No_available = True
for move in range(4):
#跳过非法合并
new_board = board.copy()
if not new_board.move(isFirst, move):continue
elif No_available:
No_available = False
if not depth: result = move
#子树对决
alpha_beta = simulation(depth+1,Round+1-isFirst,(Gamemode+1)&3,not is_max,new_board,alpha,beta = beta)
#更新alpha-beta
if is_max:
if not depth:old_alpha = alpha#对于树根,需要比较alpha值的变化
alpha = max(alpha, *alpha_beta)
if not depth and alpha > old_alpha:result = move#当alpha值变大时,落子位置更新
else:beta = min(beta, *alpha_beta)
if alpha >= beta:break#alpha-beta剪枝
#无合法移动的特殊情况
if No_available:
if not depth&1: return -Inf, -Inf
return simulation(depth+1,Round + 1-isFirst,(Gamemode+1)&3,not is_max,board,alpha,beta)
else:
if depth: return alpha, beta
return result
class Player:
def __init__(self, isFirst:bool, array:list):
self.isFirst = isFirst
def output(self, currentRound:int, board, mode:str):
if mode == 'position':Gamemode = 1^self.isFirst # 给出己方下棋的位置
elif mode == 'direction':Gamemode = 2+(1^self.isFirst) # 给出己方合并的方向
else:return
return simulation(0, currentRound,Gamemode,True,board,-Inf,Inf)
| UTF-8 | Python | false | false | 3,711 | py | 31 | green light_2.py | 31 | 0.565453 | 0.542582 | 0 | 75 | 42.306667 | 114 |
lishulongVI/rest-web | 5,540,507,851,445 | 60dec3cd3f0e80df65a49f5fc9f93e9fb077bcfe | 91fe99a22aa3f6fb0842a79b138eff6190d9676a | /rest/web_admin/base_views.py | 664ce9cf0ecfa202bcfb77a9765d4c40e481a923 | []
| no_license | https://github.com/lishulongVI/rest-web | f55f2aba79eefb08bc750f3d0595b4cbc65a5bd6 | 7835c0f393deaac86ada644aa4c9f219811e037b | refs/heads/release | 2020-06-25T03:15:17.383452 | 2019-12-27T08:05:02 | 2019-12-27T08:05:02 | 199,183,013 | 0 | 0 | null | false | 2019-12-16T08:30:12 | 2019-07-27T15:35:32 | 2019-12-16T08:28:23 | 2019-12-16T08:28:21 | 40 | 0 | 0 | 0 | Python | false | false | from django_filters.rest_framework import DjangoFilterBackend
from rest_framework import mixins, viewsets, serializers
class BaseFilter(DjangoFilterBackend):
def filter_queryset(self, request, queryset, view):
old = request.GET._mutable
request.GET._mutable = True
if 'deleted' not in request.query_params:
request.query_params['deleted'] = 0
request.GET._mutable = old
return super().filter_queryset(request, queryset, view)
class BaseViewSet(mixins.CreateModelMixin,
mixins.ListModelMixin,
mixins.RetrieveModelMixin,
mixins.UpdateModelMixin,
viewsets.GenericViewSet):
filter_backends = (BaseFilter,)
filterset_fields = ('deleted',)
class BaseModelSerialize(serializers.ModelSerializer):
update_datetime = serializers.DateTimeField(format="%Y-%m-%d %H:%M:%S", required=False, read_only=True)
| UTF-8 | Python | false | false | 939 | py | 7 | base_views.py | 6 | 0.677316 | 0.676251 | 0 | 25 | 36.56 | 107 |
DCC-CC4401/2018-1-Soft-Where-T4 | 11,192,684,798,070 | 8637f85cc13d2cbf9265ead5f534794ed60b4d01 | d3fc1675c69f6523b79089e9a58510dea91f554d | /cc4401Inventory/loansApp/models.py | 99decd5142c22dcc0c44fb369c169233a422badc | []
| no_license | https://github.com/DCC-CC4401/2018-1-Soft-Where-T4 | e6ae0740e96eb9726d94e15917aa278515fe8ffe | 5171289a72e807e97a5389151d843e3d85588b78 | refs/heads/master | 2020-03-23T13:44:23.658215 | 2018-08-21T16:22:05 | 2018-08-21T16:22:05 | 141,634,468 | 0 | 0 | null | false | 2018-08-15T00:33:42 | 2018-07-19T21:53:37 | 2018-08-02T22:23:42 | 2018-08-14T20:27:28 | 996 | 0 | 0 | 1 | HTML | false | null | from mainApp.models import Action, User
from articlesApp.models import Article
from django.db import models
class Loan(Action):
article = models.ForeignKey(Article, on_delete=models.CASCADE)
admin = models.ForeignKey(User, related_name="admin_art_prestador", on_delete=models.CASCADE, default=None,
null=True) | UTF-8 | Python | false | false | 349 | py | 12 | models.py | 5 | 0.716332 | 0.716332 | 0 | 9 | 37.888889 | 111 |
kiruthihan10/Music-Classifier | 7,224,135,028,688 | c8c0ab3de630a9a85fcbeaa3f49819884d48ebe3 | 275112ddf479e40316866a08161713c9a84e6a02 | /classifier.py | 4af712fe015017b897a72c70d9565c4c8409270e | [
"MIT"
]
| permissive | https://github.com/kiruthihan10/Music-Classifier | 70fb9157d332663ba4382d43597eb9b85f9a5096 | e782d230194cd1acdee72c85f3b14a5fd802131c | refs/heads/master | 2020-05-03T10:36:16.601275 | 2019-03-30T16:37:01 | 2019-03-30T16:37:01 | 178,583,501 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | ##################################################
#Import Libs
import scipy
import sklearn as sk
import matplotlib.pyplot as plt
from PIL import Image
import numpy
import numpy as np
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import SGDClassifier
from sklearn.base import BaseEstimator
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import confusion_matrix
#####################################################
#Get datas
new = []
old = []
new_file = open("new_song_array.txt",'r')
import time
star = time.time()
y=[]
for line in new_file:
data = line.strip().split(',')
temp = []
for i in data:
if i.isdigit():
temp.append(float(i))
data = temp
new.append(data)
y.append(1)
#print(data)
print(len(y))
print("done")
new_file.close()
old_file = open("old_song_array.txt",'r')
for line in old_file:
data = line.strip().split(',')
temp = []
for i in data:
if i.isdigit():
temp.append(float(i))
data = temp
new.append(data)
y.append(0)
print(len(new))
print("done")
print(time.time()-star)
####################################################
#Shuffle
chaos = np.random.permutation(len(new))
X=[]
Y=[]
for i in chaos:
X.append(new[i])
Y.append(y[i])
train_X = X[:90]
train_Y = Y[:90]
test_X = X[90:]
test_Y = Y[90:]
print(np.array(train_X).shape)
print(np.array(train_Y).shape)
####################################################
#Create Classifications
svm_clf = Pipeline((("Scaler",StandardScaler()),("linear_svc",LinearSVC(C=1, loss="hinge")),))
svm_clf.fit(train_X,train_Y)
test = svm_clf.predict(test_X)
n = 0
correct = 0
for i in test:
if i == test_Y[n]:
correct+=1
n+=1
print (float(correct)*100/len(test))
svm_score = cross_val_score(svm_clf,train_X,train_Y,cv=3,scoring="accuracy")
print (svm_score)
y_train_pred = cross_val_predict(svm_clf,train_X,train_Y,cv=3)
print (confusion_matrix(train_Y,y_train_pred))
if True:
sgd_clf = SGDClassifier(random_state=42)
sgd_clf.fit(train_X,train_Y)
test = sgd_clf.predict(test_X)
# print len(test)
# print len(test_Y)
n = 0
correct = 0
for i in test:
if i == test_Y[n]:
correct+=1
n+=1
print (float(correct)*100/len(test))
#print test_Y
sgd_score = cross_val_score(sgd_clf,train_X,train_Y,cv=3,scoring="accuracy")
print (sgd_score)
y_train_pred = cross_val_predict(sgd_clf,train_X,train_Y,cv=3)
print (confusion_matrix(train_Y,y_train_pred))
| UTF-8 | Python | false | false | 2,878 | py | 4 | classifier.py | 3 | 0.579222 | 0.56845 | 0 | 111 | 23.927928 | 94 |
Henry-Yan/BusTickets | 6,253,472,411,241 | d8ee72f9c287bb3f5b0bb0a1248a4da8c0d2cf9b | d1c526efe6c7daa0fd4b52f2585a16fbb4b8bde5 | /src/tickets/ticket.py | 799ebe9957cab8ef47ddebfb1dd9201573583771 | []
| no_license | https://github.com/Henry-Yan/BusTickets | 4266a8c3e1c3418622ede695b2e833e5741c7e4f | 2ff79dcda8bb086dcfe8f89727fd4917f7ffb8b7 | refs/heads/master | 2015-08-09T17:54:25.862241 | 2014-01-13T04:30:15 | 2014-01-13T04:30:15 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | '''
Created on Dec 11, 2013
@author: Jilin Yan
'''
import datetime
class Ticket(object):
'''
Basic class for ticket
'''
cities = { 'Boston' : 94,
'New York' : 123,
'Philadelphia' : 127,
'Washington' : 142,
'Toronto' : 145 }
companies = { 'MegaBus' : 1,
'BoltBus' : 2 }
def __init__(self, origin, destination, depart_date, depart_time, arrive_time, price, company):
'''
Initializes the ticket's data
'''
self.origin = origin
self.destination = destination
self.depart_date = depart_date.strftime("%Y-%m-%d")
self.depart_time = self.get_depart_time(depart_time)
self.arrive_time = self.get_arrive_time(depart_time, arrive_time)
self.price = price
self.company = company
def get_origin_index(self):
'''
Returns the origin city's index
'''
return self.cities[self.origin]
def get_destination_index(self):
'''
Returns the destination city's index
'''
return self.cities[self.destination]
def get_depart_time(self, depart_time):
'''
Returns the depart time
'''
d_time = datetime.datetime.strptime(self.depart_date + " " + depart_time, '%Y-%m-%d %I:%M%p')
return d_time.strftime("%Y-%m-%d %H:%M:%S")
def get_arrive_time(self, depart_time, arrive_time):
'''
Returns the arrive time
'''
d_time = datetime.datetime.strptime(self.depart_date + " " + depart_time, '%Y-%m-%d %I:%M%p')
a_time = datetime.datetime.strptime(self.depart_date + " " + arrive_time, '%Y-%m-%d %I:%M%p')
if a_time < d_time:
a_time += datetime.timedelta(days = 1)
return a_time.strftime("%Y-%m-%d %H:%M:%S")
def get_company_index(self):
'''
Returns the company's index
'''
return self.companies[self.company]
def get_ticket(self):
'''
Print the ticket information
'''
print "origin: %s" % self.origin,
print " | destination: %s" % self.destination,
print " | depart_date: %s" % self.depart_date,
print " | depart_time: %s" % self.depart_time,
print " | arrive_time: %s" % self.arrive_time,
print " | price: %.2f" % self.price,
print " | company: %s" % self.company
| UTF-8 | Python | false | false | 2,568 | py | 7 | ticket.py | 6 | 0.508956 | 0.499611 | 0 | 87 | 28.425287 | 101 |
FabSchilling/WarframePrimeManager | 1,176,821,039,661 | 6d5351e6af69c7c78e1531e40b0a109a900a3d50 | 11cdf3279144b6aaab299ec2878a5c6aad88b97a | /database_functions.py | 537f491e595b47c538ad0003acb70809e753f05b | []
| no_license | https://github.com/FabSchilling/WarframePrimeManager | 5cdfd530feec53327ebe63c6008e5ec4d80a5d72 | ec42729ed1aab5c90270c9caff8e883e82f31fe8 | refs/heads/master | 2021-10-24T18:03:24.214454 | 2018-05-05T17:30:24 | 2018-05-05T17:30:24 | 125,201,237 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import json
import re
from six.moves import urllib
from tinydb import TinyDB, Query
db = TinyDB('db.json')
qr = Query()
def updateDatabase():
download_Path_allinone = "https://destiny.trade/JSON/allinone.json"
urllib.request.urlretrieve(download_Path_allinone, "./allinone.json")
resetDatabase()
def resetDatabase():
db.purge()
saveRelicDataToDatabase(loadDataFromJSON('./allinone.json'))
def loadDataFromJSON(path):
json_data=open(path).read()
data = json.loads(json_data)
return data
def saveRelicDataToDatabase(data):
relic_Data = data["relicRewards"]
tier_list = ["Lith", "Meso", "Neo", "Axi"]
for relics in relic_Data:
for item in relic_Data[relics]['rewards']:
db.insert({'tier': relic_Data[relics]['tier'], 'type': relic_Data[relics]['type'], 'name': item['name'], 'rarity': item['intact']['name'], 'vaulted': False})
vaulted_Relics = getVaultedRelicsFromData(data)
for tier in tier_list:
for relic_type in vaulted_Relics[tier_list.index(tier)]:
db.update({'vaulted': True}, ((qr.tier == tier) & (qr.type == relic_type)))
def getListOfPartsFromItem(item):
parts = []
db_list = db.search((qr.name.matches(item)))
for i in db_list:
parts.append(i["name"])
return parts
def getVaultedRelicsFromData(data):
relic_data = getAllRelics()
not_vaulted_relics = [[], [], [], []]
vaulted_relics = relic_data
pattern = '\w*\s\w*\sRelic'
text = str(data)
for match in re.findall(pattern, text):
if match[:4] == 'Lith':
if match[5:7] in relic_data[0]:
not_vaulted_relics[0].append(match[5:7])
elif match[:4] == 'Meso':
if match[5:7] in relic_data[1]:
not_vaulted_relics[1].append(match[5:7])
elif match[:3] == 'Neo':
if match[4:6] in relic_data[2]:
not_vaulted_relics[2].append(match[4:6])
elif match[:3] == 'Axi':
if match[4:6] in relic_data[3]:
not_vaulted_relics[3].append(match[4:6])
not_vaulted_relics = [list(set(not_vaulted_relics[0])), list(set(not_vaulted_relics[1])), list(set(not_vaulted_relics[2])), list(set(not_vaulted_relics[3]))]
count = 0
for tier in not_vaulted_relics:
for type in tier:
vaulted_relics[count].remove(type)
count += 1
return vaulted_relics
def getAllRelics():
relic_list =[]
query_result = db.all()
for tier in ['Lith', 'Meso', 'Neo', 'Axi']:
sub_list = []
for relic in query_result:
if relic["tier"] == tier:
sub_list.append(relic["type"])
sub_list = list(set(sub_list))
sub_list = sorted(sub_list)
relic_list.append(sub_list)
return relic_list
def isRelicVaulted(tier, type):
relic = db.get((qr.tier == tier) & (qr.type == type))
return relic["vaulted"]
| UTF-8 | Python | false | false | 2,924 | py | 8 | database_functions.py | 5 | 0.596443 | 0.584815 | 0 | 95 | 29.778947 | 169 |
hienha/python | 2,697,239,493,916 | de2e912c30d8b939d51fa2bf3dd65d1986c19e47 | 826b521587f1384b4d6de83819d6f75d59c2d71d | /apepy/codes/1-Python基础篇/1-2_Python基础进阶/1.8_递归列出目录里的文件.py | de6efe323789712d0302d6bf5fc738246d0ee49e | []
| no_license | https://github.com/hienha/python | b69be98bba5939b89fadd7feacb358b9b59de9d2 | a7c1d44be3f7c3ee569dcbca0c7b5c202d40041e | refs/heads/master | 2018-05-31T16:48:44.295948 | 2018-05-30T10:04:47 | 2018-05-30T10:04:47 | 59,118,477 | 4 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/usr/bin/env python
import os
import sys
def print_files(path):
lsdir = os.listdir( path )
files = [ i for i in lsdir if os.path.isfile( os.path.join(path, i) ) ]
dirs = [ i for i in lsdir if os.path.isdir( os.path.join(path,i) ) ]
if files:
for f in files:
print os.path.join(path, f)
if dirs:
for d in dirs:
print_files( os.path.join(path, d) )
print_files( sys.argv[1] )
| UTF-8 | Python | false | false | 397 | py | 948 | 1.8_递归列出目录里的文件.py | 558 | 0.639798 | 0.63728 | 0 | 19 | 19.894737 | 72 |
Texas-Waitlisters/BlinkLink | 13,984,413,544,580 | e700d7b079e4546c945d8c9e230881d0aad4591f | 813b2275838f234190d7a325cf22cee4b589944a | /Redtooth/RedtoothWindows/Windows.py | e35d2c092dc81790198abd4557017a1a78726a65 | []
| no_license | https://github.com/Texas-Waitlisters/BlinkLink | ef57c7750d6718124e0014026643bb55d9fb288d | 7554cb227ab28767e9508f3d0c59d9f13ad3db20 | refs/heads/master | 2021-09-09T09:04:32.509724 | 2018-03-14T14:33:53 | 2018-03-14T14:33:53 | 117,875,405 | 1 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import time
import os
from urllib.request import urlopen
import subprocess
from uuid import getnode as get_mac
ipAddress = "10.209.6.212"
mac = str(hex(get_mac()))
print(mac)
#audio state
def getVolumeStatus():
audiovalue = subprocess.Popen("ConsoleApplication1.exe", shell=False, stdout=subprocess.PIPE)
val = audiovalue.communicate()[0].strip() == b'True'
print(val)
time.sleep(.15)
audiovalue.kill()
return val
#Creates custom URL string
def getURL(device, isPlaying):
boolean = "false"
if isPlaying:
boolean = "true"
url = "http://" + ipAddress + ":8080/redtooth/report/" + device + "/" + boolean
print(url)
return url
#Ping database
def pingDatabase(isPlaying):
url = getURL(mac, isPlaying)
response = urlopen(url).read()
desiredMAC = response
print(desiredMAC)
return desiredMAC
def Redtooth():
print("Running Core")
while True:
isPlaying = getVolumeStatus()
deviceToPlay = pingDatabase(isPlaying)
if (str(mac) in str(deviceToPlay)) and isPlaying:
#bt on and pair
print("Redtooth Activated")
elif not(str(mac) in str(deviceToPlay)):
#windows bt cmds off
print("Redtooth De-activated")
time.sleep(1)
Redtooth()
| UTF-8 | Python | false | false | 1,301 | py | 13 | Windows.py | 10 | 0.644889 | 0.631053 | 0 | 60 | 20.666667 | 97 |
opensciencegrid/osg-display-data | 9,612,136,827,039 | 079daec333d98bf95b86a2f2a2c6ec216c1b01e5 | 52b5fd2bdc4906e1f944f9d03c9b98a3d1ec3fa6 | /src/osg_display/transfer_datasource.py | 5d3dbf6ecb4aeff7e0254bb8d25b7744ba7191dd | []
| no_license | https://github.com/opensciencegrid/osg-display-data | bba930f630d4eec8bd621e32d97129c18bd1df5d | 93df8bc98f703a4c83fdd979357dd764148dc165 | refs/heads/master | 2021-07-18T02:10:31.200337 | 2021-06-28T16:55:00 | 2021-06-28T16:55:00 | 55,262,958 | 0 | 3 | null | false | 2021-06-28T16:55:01 | 2016-04-01T21:18:23 | 2020-10-27T22:02:11 | 2021-06-28T16:55:00 | 105 | 0 | 2 | 0 | Python | false | false |
import sys
import time
import pickle
import datetime
from .common import log, get_files, commit_files, euid
import elasticsearch
from elasticsearch_dsl import Search, A, Q
import logging
logging.basicConfig(level=logging.WARN)
tracer = logging.getLogger('elasticsearch.trace')
tracer.setLevel(logging.WARN)
tracer.addHandler(logging.StreamHandler(sys.stderr))
transfers_raw_index = 'gracc.osg-transfer.raw-*'
transfers_summary_index = 'gracc.osg-transfer.summary'
def gracc_query_transfers(es, index, starttime, endtime, interval):
s = Search(using=es, index=index)
s = s.query('bool',
filter=[
Q('range', StartTime={'gte': starttime, 'lt': endtime })
& ~Q('terms', SiteName=['NONE', 'Generic', 'Obsolete'])
]
)
curBucket = s.aggs.bucket('StartTime', 'date_histogram',
field='StartTime', interval=interval)
curBucket = curBucket.metric('Network', 'sum', field='Network')
curBucket = curBucket.metric('Records', 'sum', field='Njobs')
response = s.execute()
return response
class TransferData(object):
"""
Information about a single hour's worth of tranfers from the DB.
Meant to be saved in the cache, keeps track of the creationtime of the
object itself so the cache knows when to expire it.
"""
def __init__(self):
self.starttime = None
self.endtime = None
self.count = None
self.volume_mb = None
self.createtime = time.time()
class DataSourceTransfers(object):
"""
A data source which queries (and caches!) hourly transfer information from
GRACC
"""
def __init__(self, cp):
self.cp = cp
self.data = {}
self.missing = set()
def run(self):
self.connect()
self.load_cached()
self.determine_missing()
self.query_missing()
def disconnect(self):
pass
def connect(self):
gracc_url = self.cp.get("GRACC Transfer", "Url")
#gracc_url = 'https://gracc.opensciencegrid.org/q'
try:
self.es = elasticsearch.Elasticsearch(
[gracc_url], timeout=300, use_ssl=True, verify_certs=True)
except Exception as e:
log.exception(e)
log.error("Unable to connect to GRACC database")
raise
def load_cached(self):
try:
data = pickle.load(open(self.cp.get("Filenames", "transfer_data") \
% {'uid': euid}, "rb"))
# Verify we didn't get useless data
for time, tdata in list(data.items()):
assert isinstance(time, datetime.datetime)
assert isinstance(tdata, TransferData)
assert isinstance(tdata.starttime, datetime.datetime)
assert isinstance(tdata.endtime, datetime.datetime)
assert tdata.count != None
assert tdata.volume_mb != None
assert tdata.starttime != None
self.data = data
log.info("Successfully loaded transfer data from cache; %i" \
" cache entries." % len(data))
remove_data = []
now = globals()['time'].time()
now_dt = datetime.datetime.now()
for time, tdata in list(data.items()):
if not hasattr(tdata, 'createtime') or not tdata.createtime:
log.debug("Ignoring cached data from %s as it has no " \
"create time info." % time)
remove_data.append(time)
continue
if now - tdata.createtime > 3600:
log.debug("Ignoring cached data from %s as it is over " \
"an hour old." % time)
remove_data.append(time)
age_starttime = now_dt - tdata.starttime
age_starttime = age_starttime.days*86400 + age_starttime.seconds
if (now - tdata.createtime > 1800) and (age_starttime <= 12*3600):
log.debug("Ignoring cached data from %s as it is over " \
"30 minutes old and is for a recent interval." % \
time)
remove_data.append(time)
for time in remove_data:
del self.data[time]
except Exception as e:
log.warning("Unable to load cache; it may not exist. Error: %s" % \
str(e))
def save_cache(self):
now = datetime.datetime.now()
old_keys = []
for key in self.data.keys():
if (now - key).days >= 7:
old_keys.append(key)
for key in old_keys:
del self.data[key]
try:
name, tmpname = get_files(self.cp, "transfer_data")
fp = open(tmpname, 'wb')
pickle.dump(self.data, fp)
fp.close()
commit_files(name, tmpname)
log.debug("Saved data to cache.")
except Exception as e:
log.warning("Unable to write cache; message: %s" % str(e))
def _timestamp_to_datetime(self, ts):
return datetime.datetime(*time.gmtime(ts)[:6])
def determine_missing(self):
now = time.time()
hour_now = now - (now % 3600)
if (now-hour_now) < 15*60:
hour_now -= 3600
self.missing.add(self._timestamp_to_datetime(hour_now))
self.missing.add(self._timestamp_to_datetime(hour_now-3600))
self.missing.add(self._timestamp_to_datetime(hour_now-2*3600))
self.missing.add(self._timestamp_to_datetime(hour_now-3*3600))
cur = hour_now
hours = int(self.cp.get("GRACC Transfer", "hours"))
while cur >= now - hours*3600:
cur -= 3600
cur_dt = self._timestamp_to_datetime(cur)
if cur_dt not in self.data:
self.missing.add(cur_dt)
def query_missing(self):
now = time.time()
log.info("Querying %i missing data entries." % len(self.missing))
for mtime in self.missing:
starttime = mtime
endtime = mtime + datetime.timedelta(0, 3600)
results = self.query_transfers(starttime, endtime)
if not results:
log.warning("No transfer results found for %s." % starttime)
for result in results:
res_time, count, volume_mb = result
res_time = float(res_time)
starttime = self._timestamp_to_datetime(res_time)
if now-res_time >= 3600:
endtime = self._timestamp_to_datetime(res_time+3600)
else:
endtime = self._timestamp_to_datetime(now)
if res_time > now:
continue
td = TransferData()
td.starttime = starttime
td.endtime = endtime
td.count = count
td.volume_mb = volume_mb
self.data[starttime] = td
log.debug("Successfully parsed results for %s." % starttime)
self.save_cache()
def query_transfers(self, starttime, endtime):
log.info("Querying GRACC Transfer index for transfers from %s to %s." \
% (starttime.strftime("%Y-%m-%d %H:%M:%S"),
endtime.strftime("%Y-%m-%d %H:%M:%S")))
params = {'interval': 'hour'}
params['starttime'] = starttime
params['endtime'] = endtime
response = gracc_query_transfers(self.es, transfers_raw_index, **params)
try:
results = response.aggregations.StartTime.buckets
except AttributeError:
results = []
all_results = [ (x.key / 1000,
x.Records.value,
x.Network.value / 1024**2) for x in results ]
return all_results
def get_json(self):
assert self.transfer_results != None
assert self.transfer_volume_results != None
total_transfers = sum(self.transfer_results)
total_transfer_volume = sum(self.transfer_volume_results)
return {'transfers_hourly': int(total_transfers),
'transfer_volume_mb_hourly': int(total_transfer_volume)}
def get_data(self):
all_times = list(self.data.keys())
all_times.sort()
all_times = all_times[-26:-1]
results = []
for time in all_times:
results.append((int(self.data[time].count), self.data[time].volume_mb))
if results:
self.transfer_results, self.transfer_volume_results = list(zip(*results))
else:
self.transfer_results, self.transfer_volume_results = [[],[]]
return results
def get_volume_rates(self):
all_times = list(self.data.keys())
all_times.sort()
all_times = all_times[-26:-1]
results = []
for time in all_times:
td = self.data[time]
interval = td.endtime - td.starttime
interval_s = interval.days*86400 + interval.seconds
results.append(td.volume_mb/interval_s)
return results
def get_rates(self):
all_times = list(self.data.keys())
all_times.sort()
all_times = all_times[-26:-1]
results = []
for time in all_times:
td = self.data[time]
interval = td.endtime - td.starttime
interval_s = interval.days*86400 + interval.seconds
results.append(td.count/float(interval_s))
return results
| UTF-8 | Python | false | false | 9,565 | py | 14 | transfer_datasource.py | 10 | 0.555463 | 0.544903 | 0 | 259 | 35.926641 | 85 |
karthigkk/chicago_taxi_ss | 15,693,810,531,077 | a2fb8027ad655d8377ffb1124d8aa8915a37b1dd | c4e3edae8a27ff6f65a21fe9f41d6fb3cfd56fe3 | /packages/regression_model/regression_model/pipeline.py | 5998a7ecd1ed038ffdcc6f53e30b06e04763035a | []
| no_license | https://github.com/karthigkk/chicago_taxi_ss | 648ef04626a10bef0380df14f9c56d1b3a3af6f7 | 942cd98ef2e3f381e09344713221f37f6e51cceb | refs/heads/master | 2023-01-11T18:05:32.487938 | 2020-11-11T10:34:49 | 2020-11-11T10:34:49 | 288,145,261 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from regression_model.preprocessing.preprocessors import Preprocessdataframe
from mmlspark.featurize import AssembleFeatures
from mmlspark.lightgbm import LightGBMRegressor
from mmlspark.stages import UDFTransformer, DropColumns
from pyspark.sql.types import IntegerType
from pyspark.sql.functions import udf
# from pyspark.ml.feature import OneHotEncoderEstimator, StringIndexer, VectorAssembler
# from pyspark.ml.regression import LinearRegression
from regression_model.config import config
class Buildpipeline:
def __init__(self):
pass
@staticmethod
def build_stages() -> list:
get_week_day = udf(lambda z: z.weekday(), IntegerType())
get_year = udf(lambda z: z.year, IntegerType())
get_month = udf(lambda z: z.month, IntegerType())
get_hour = udf(lambda z: z.hour, IntegerType())
#preprocess = Preprocessdataframe()
# build Pipeline
# stringIndexer = StringIndexer(inputCol=config.CATEGORICAL_VAR, outputCol='Comp_Index')
# encoder = OneHotEncoderEstimator(inputCols=[stringIndexer.getOutputCol()], outputCols=['Comp_classVec'])
# inputfeatures = config.NUMERICAL_VARS + config.DERIVED_VARS + ['Comp_classVec']
# assembler = VectorAssembler(inputCols=inputfeatures, outputCol='features')
# lr = LinearRegression(featuresCol='features', labelCol=config.TARGET, maxIter=2, regParam=0.3, elasticNetParam=0.8)
# STAGES = [preprocess, stringIndexer, encoder, assembler, lr]
assembler = AssembleFeatures(
columnsToFeaturize=config.NUMERICAL_VARS + config.DERIVED_VARS + config.CATEGORICAL_VAR,
numberOfFeatures=1)
lgbm = LightGBMRegressor(learningRate=0.001, numIterations=50, featuresCol='features', labelCol=config.TARGET)
STAGES = [UDFTransformer(inputCol='trip_start_timestamp', outputCol='Trip_Day_Of_Week', udf=get_week_day),
UDFTransformer(inputCol='trip_start_timestamp', outputCol='Trip_Year', udf=get_year),
UDFTransformer(inputCol='trip_start_timestamp', outputCol='Trip_Month', udf=get_month),
UDFTransformer(inputCol='trip_start_timestamp', outputCol='Trip_Hour', udf=get_hour),
DropColumns(cols=['trip_start_timestamp']), assembler, lgbm]
return STAGES
| UTF-8 | Python | false | false | 2,313 | py | 36 | pipeline.py | 19 | 0.711198 | 0.70601 | 0 | 40 | 56.825 | 125 |
deutranium/speed-ideating | 11,424,613,033,155 | c488ae41aae24984de02185ec7ba010a9c409764 | c70ef424f4f15fcce67af55ed93248e21f0c2791 | /bot.py | aeaab62c67272c1233e4091e7ea21a5f5721178c | []
| no_license | https://github.com/deutranium/speed-ideating | cfbb32ef8b1281ec379ed56b729dcd5115d1242c | 9f955636d83ddb8a90ee7ca218c4619ba3c4297b | refs/heads/master | 2023-01-05T10:06:23.802102 | 2020-10-27T17:28:30 | 2020-10-27T17:28:30 | 305,782,759 | 0 | 0 | null | false | 2020-10-22T08:39:06 | 2020-10-20T17:23:04 | 2020-10-21T14:59:04 | 2020-10-22T08:39:05 | 16 | 0 | 0 | 0 | Python | false | false | import os
import sys
from time import sleep
import discord
from tabulate import tabulate
from dotenv import load_dotenv
from sql import SQL
load_dotenv()
client = discord.Client()
TOKEN = os.getenv("DISCORD_TOKEN")
GUILD = os.getenv("DISCORD_GUILD")
db = None
history_channel = None
# TODO: Add all the teams here
# Make sure they are in order
team_names = [
'The Boys',
'MCDT',
"Fluffy's 3 Heads",
'Mario & the other guy',
'www.',
'The Intrepids',
'Detty pigs',
'The Invincibles',
'Goal Diggers ',
'HoynaHoyna',
'El',
'Theen Bacche',
'Tesseract',
'XD',
'Ombani',
'Impostors',
'God particle',
'kryptomaniax ',
'Oreo Sheikhs',
'Sons of pitches',
'Strawberry Beans',
]
# admin role ID
ADMIN_ID = 767717031318782003
HISTORY_CHANNEL_ID = 768235871223676948
def help():
"""
Shows help message
"""
help_msg = """
```
Commands (prepend `!si` to all the commands):
update <teamA> <teamB> <score>: Transfer `score` points FROM teamA TO teamB
scoreboard: Display the scoreboard
```
"""
return help_msg
def print_scoreboard():
"""
Returns the scoreboard as a string
"""
data = db.get_scoreboard()
headers = ["Team #", "Name", "Score"]
content = tabulate(data, headers)
return "```\n" + content + "\n```"
def update_score(from_team_id, to_team_id, score_delta):
"""
Updates the score
If successful, returns the new scoreboard otherwise nothing
"""
if db.update_score(from_team_id, to_team_id, score_delta):
return print_scoreboard()
return None
# TODO: ADD ALL THE UPDATES TO READ-ONLY HISTORY CHANNEL
async def add_to_history(message):
global history_channel
if history_channel is None:
history_channel = client.get_channel(HISTORY_CHANNEL_ID)
await history_channel.send(message)
@client.event
async def on_ready():
print(f"{client.user} has connected to Discord!\n")
guild = discord.utils.get(client.guilds, name=GUILD)
print(
f"{client.user} is connected to the following guild:\n"
f"{guild.name}(id: {guild.id})"
)
@client.event
async def on_message(message):
msg = "A valid command plox"
cntnt = message.content.lower()
# Check bot prefix
if (cntnt.split()[0] != "!si") or message.author.bot:
return
# Check if the author is an admin
if ADMIN_ID not in [i.id for i in message.author.roles]:
await message.channel.send("Only admins allowed")
return
# remove the prefix
cntnt = " ".join(cntnt.split()[1:])
# help
if cntnt == "help":
msg = help()
# display scoreboard
elif cntnt == "scoreboard":
msg = print_scoreboard()
# update team score
elif cntnt.split()[0] == "update":
_, from_team_id, to_team_id, delta = cntnt.split()
if int(delta) < 0:
msg = "Only positive score can be transferred.\nCheck !si.help"
else:
logs = f"{message.author} requested for transferring {delta} points from {from_team_id} to {to_team_id}"
msg = update_score(int(from_team_id), int(to_team_id), int(delta))
if msg is None:
msg = "Failed to update score"
logs += "\n\nStatus: FAILED"
else:
logs += "\n\nStatus: Successful"
await add_to_history(logs)
await message.channel.send(msg)
def main():
global db
# setup database and tables
db = SQL()
db.setup_table()
if db.count_rows() == 0:
db.populate_table(team_names)
client.run(TOKEN)
if __name__ == "__main__":
while True:
try:
main()
except Exception as e:
print(e)
sleep(10)
| UTF-8 | Python | false | false | 3,806 | py | 3 | bot.py | 2 | 0.596689 | 0.585129 | 0 | 174 | 20.873563 | 116 |
zaswedyg/Algorithms | 5,214,090,335,203 | 2eca1c78e7c0a5f5c3d5011fcc9aa7b100e9c3ee | 96ca5294a67294885a7519c558e4036801815211 | /HW2.py | 0d62e3ac4b9902a685257c109d132f18cd8116b1 | []
| no_license | https://github.com/zaswedyg/Algorithms | be8cf3d19b3a9b2c5c4e30a52a43ba3b980b716c | 2954e26cececebcd5d74bcc4121b337ac441ea7b | refs/heads/main | 2023-06-26T06:18:58.490317 | 2021-07-28T03:08:19 | 2021-07-28T03:08:19 | 383,977,546 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null |
# 1. Split in Half
#Given a string. Split it into two equal parts. Swap these parts and return the result.
#If the string has odd characters, the first part should be one character greater than the second part.
#Example: string = 'bbbbbcaaaaa'. Result = ‘aaaaabbbbbc’.
"""
def split_in_half(s):
first_half = ""
second_half = ""
string_length = len(s)
if string_length % 2 == 0:
first_half = s[0:(string_length/2-1)]
second_half = s[string_length/2:]
return (second_half + first_half)
else:
first_half = s[0:(string_length // 2 + 1)]
second_half = s[string_length // 2 + 1:]
return (second_half + first_half)
print(split_in_half("bbbbbcaaaaa"))
"""
# 2. Unique Characters in String
# Given a string, determine if it consists of all unique characters.
# For example, the string 'abcde' has all unique characters and should return True.
# The string 'aabcde' contains duplicate characters and should return False.
"""
def unique_char(s):
chars = set()
for char in s:
if char in chars:
return False
else:
chars.add(char)
return True
print(unique_char('abcde'))
print(unique_char('aabcde'))
""" | UTF-8 | Python | false | false | 1,218 | py | 8 | HW2.py | 7 | 0.64168 | 0.630972 | 0 | 42 | 27.880952 | 103 |
soyoungcheng/senti_c | 4,045,859,195,557 | 9bada3e0148b96096293a40d3fb8136d8a35f8e4 | 4af5e167a8b49298b994e68411217f5baf666709 | /src/senti_c/model_structure.py | 9b3b64a1898e6383758b0827251fc53930b817d1 | []
| no_license | https://github.com/soyoungcheng/senti_c | bdb18f608f9e761c0f32cc2628040b12e58e0dfa | 4ea14b83040ef586d1edbd995f6fb1eef8a3282a | refs/heads/master | 2023-04-02T22:34:37.418203 | 2021-04-06T00:43:13 | 2021-04-06T00:43:13 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # coding=utf-8
# Some of structures or codes in this script are referenced from HuggingFace Inc. team.
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''放置句子情感分類、屬性情感分析模型架構'''
import torch
import torch.nn as nn
from torch.nn import BCEWithLogitsLoss
from torch.nn import CrossEntropyLoss
from torch.nn import NLLLoss
from transformers import (
BertModel,
BertPreTrainedModel,
)
import numpy as np
import os
import torch.nn.functional as F
from .utils import chg_labels_to_aspect_and_sentiment,get_domain_embedding
class MyNewBertForSequenceClassification(BertPreTrainedModel):
'''BERT輸出接上一層線性層;此外額外加入domain embedding layer,等於最後BERT輸出和domain embedding連接、饋入分類層,是句子情感分類的模型'''
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
### 加入 domain embedding layer
file_path = os.path.split(os.path.realpath(__file__))[0] + "/utils/new_restaurant_emb.vec.npy"
get_domain_embedding(file_path)
domain_emb = np.load(file_path)
self.domain_embedding = nn.Embedding(domain_emb.shape[0], domain_emb.shape[1])
self.domain_embedding.weight = nn.Parameter(torch.from_numpy(domain_emb), requires_grad=True)
self.first_classifier = nn.Linear(config.hidden_size+domain_emb.shape[1],config.hidden_size)
self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
self.init_weights()
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
):
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
### 加入 domain embedding ###
input_embedding = self.domain_embedding(input_ids)
### 將每筆資料中每個字的embedding拼起來平均 ###
sent_embedding = torch.mean(input_embedding,dim=1) #針對seq部分做平均
### 將平均後的embedding和bert的CLS位置輸出連接 ###
combine_emb = torch.cat((sent_embedding,pooled_output),dim=1)
### 經過兩層線性層、中間添加tanh活化函數 ###
firsts = self.first_classifier(combine_emb)
firsts = torch.tanh(firsts)
logits = self.classifier(firsts)
outputs = (logits,) + outputs[2:]
if labels is not None:
loss_fct = BCEWithLogitsLoss() #改成多標籤分類(每個標籤做二元分類的感覺)
labels = labels.float()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1, self.num_labels))
outputs = (loss,) + outputs
return outputs
# class MyNewBertForSequenceClassification(BertPreTrainedModel):
# '''BERT輸出接上一層線性層,是句子情感分類的模型'''
# def __init__(self, config):
# super().__init__(config)
# self.num_labels = config.num_labels
# self.bert = BertModel(config)
# self.dropout = nn.Dropout(config.hidden_dropout_prob)
# self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
# self.init_weights()
# def forward(
# self,
# input_ids=None,
# attention_mask=None,
# token_type_ids=None,
# position_ids=None,
# head_mask=None,
# inputs_embeds=None,
# labels=None,
# ):
# outputs = self.bert(
# input_ids,
# attention_mask=attention_mask,
# token_type_ids=token_type_ids,
# position_ids=position_ids,
# head_mask=head_mask,
# inputs_embeds=inputs_embeds,
# )
# pooled_output = outputs[1]
# pooled_output = self.dropout(pooled_output)
# logits = self.classifier(pooled_output)
# outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here
# if labels is not None:
# loss_fct = BCEWithLogitsLoss() #改成多標籤分類(每個標籤做二元分類的感覺)
# labels = labels.float()
# loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1, self.num_labels))
# outputs = (loss,) + outputs
# return outputs
class MyNewBertForTokenClassification(BertPreTrainedModel):
'''將BERT每個位置輸出接上線性層預測屬性,並輔以屬性轉移矩陣設置;另外將BERT輸出額外接上另一線性層預測情感,之後用情感轉移矩陣獲得最終情感預測結果,是屬性情感分析的模型'''
def __init__(self, config):
super().__init__(config)
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
### 將BERT輸出傳到這層來做屬性標記預測 ###
self.aspect_classfier = nn.Linear(config.hidden_size,3) #768 -> 3 (BIO)
### 增加屬性轉移矩陣 ###
# transition_path = {'B': ['B','I', 'O'],
# 'I': ['B', 'I', 'O'],
# 'O': ['B','O']}
self.transition_scores_aspect = [[1/3,1/3,1/3],[1/3,1/3,1/3],[1/2,0,1/2]] #3*3矩陣,為B/I/O到B/I/O的機率
self.transition_scores_aspect = np.array(self.transition_scores_aspect, dtype='float32').transpose()
### 增加情感轉移矩陣 (FOR 屬性標籤預測情感標籤) ###
# transition_path = {'B': ['NEG','NEU','POS'],
# 'I': ['NEG','NEU','POS'],
# 'O': ['O']}
self.transition_scores_sentiment = [[1/3,1/3,1/3,0],[1/3,1/3,1/3,0],[0,0,0,1]] #3*4矩陣,為B/I/O到NEG/NEU/POS/O的機率
self.transition_scores_sentiment = np.array(self.transition_scores_sentiment, dtype='float32').transpose()
### 將BERT輸出傳到這層來預測情感標記 ###
self.sentiment_classifier = nn.Linear(config.hidden_size, 4) #768 -> 4 (POS/NEU/NEG/O)
self.init_weights()
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
):
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
)
tagger_input = outputs[0]
tagger_input = self.dropout(tagger_input)
#### 以下開始對屬性部分做處理 ####
aspect_tagger_pred = self.aspect_classfier(tagger_input)
pred_aspect = F.softmax(aspect_tagger_pred,dim=2)
if torch.cuda.is_available():
self.transitions_aspect = torch.tensor(self.transition_scores_aspect).cuda()
else:
self.transitions_aspect = torch.tensor(self.transition_scores_aspect)
combined_aspect_pred = []
for bsz in range(pred_aspect.size(0)) :
current_sample = pred_aspect[bsz]
current_sample_transition = []
for t in range(current_sample.size(0)):
if t == 0 or t == 1: #對 cls & 對 cls後的第一個字 => 兩者都不用做轉移矩陣運算
current_sample_transition.append(current_sample[t])
else:
transition_pred = torch.mm(self.transitions_aspect,current_sample_transition[t-1].view(3,-1)) #轉移矩陣乘上前一個token已經權衡相加後的值
### 計算 confidence value (用轉移矩陣算出的值的重要程度) ###
val = torch.sum(current_sample_transition[t-1].view(3,-1) * current_sample_transition[t-1].view(3,-1))
alpha = val * 0.6
new_aspect_pred = alpha * transition_pred + (1-alpha) * current_sample[t].view(3,-1)
current_sample_transition.append(new_aspect_pred.view(-1))
combined_aspect_pred.append(torch.stack(current_sample_transition, 0))
aspect_tagger = torch.stack(combined_aspect_pred, 0)
### 以下開始對情感部分做處理 ###
sentiment_pred = self.sentiment_classifier(tagger_input)
if torch.cuda.is_available():
self.transitions_sentiment = torch.tensor(self.transition_scores_sentiment).cuda()
else:
self.transitions_sentiment = torch.tensor(self.transition_scores_sentiment)
sentiment_pred = F.softmax(sentiment_pred,dim=2)
combined_sentiment_pred = []
for bsz in range(sentiment_pred.size(0)) :
current_sample_aspect = aspect_tagger[bsz]
current_sample_sentiment = sentiment_pred[bsz]
current_sample_transition = []
for t in range(current_sample_sentiment.size(0)):
if t == 0: #對cls不用做轉移矩陣運算
current_sample_transition.append(current_sample_sentiment[t])
else:
transition_pred = torch.mm(self.transitions_sentiment,current_sample_aspect[t].view(3,-1)) #轉移矩陣乘上屬性預測標籤
### 計算 confidence value (這個用轉移矩陣算出的值的重要程度) ###
val = torch.sum(current_sample_aspect[t].view(3,-1) * current_sample_aspect[t].view(3,-1))
alpha = val * 0.6
new_sentiment_pred = alpha * transition_pred + (1-alpha) * current_sample_sentiment[t].view(4,-1)
current_sample_transition.append(new_sentiment_pred.view(-1))
combined_sentiment_pred.append(torch.stack(current_sample_transition, 0))
logits = torch.stack(combined_sentiment_pred, 0)
outputs = (aspect_tagger,) + (logits,) + outputs[2:]
### 輸入的label map: {'B-NEG': 0, 'B-NEU': 1, 'B-POS': 2, 'I-NEG': 3, 'I-NEU': 4, 'I-POS': 5, 'O': 6}
## 自定義的新label map :
# aspect_labels : {"B" : 0, "I":1, "O": 2}
# sentiment_labels {"NEG": 0 ,"NEU":1, "POS":2, "O":3}
if labels is not None:
#處理 labels、讓它符合joint屬性模型格式
aspect_labels, sentiment_labels = chg_labels_to_aspect_and_sentiment(labels)
aspect_tagger = torch.log(aspect_tagger + 1e-20) #將屬性預測部分經過log
logits = torch.log(logits + 1e-20) #將情感預測部分經過log
loss_fct = NLLLoss() #因為已經過softmax和log,不能使用CrossEntropyLoss
if attention_mask is not None:
active_loss = attention_mask.view(-1) == 1
active_logits = aspect_tagger.view(-1, 3)
active_labels = torch.where(
active_loss, aspect_labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
)
aspect_loss = loss_fct(active_logits, active_labels)
active_loss = attention_mask.view(-1) == 1
active_logits = logits.view(-1, 4)
active_labels = torch.where(
active_loss, sentiment_labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
)
sentiment_loss = loss_fct(active_logits, active_labels)
loss = aspect_loss + sentiment_loss
else:
aspect_loss = loss_fct(aspect_tagger.view(-1, 3), aspect_labels.view(-1))
sentiment_loss = loss_fct(logits.view(-1, 4), sentiment_labels.view(-1))
loss = aspect_loss + sentiment_loss
outputs = (loss,) + (aspect_loss,) + (sentiment_loss,) + outputs
return outputs
# class MyNewBertForTokenClassification(BertPreTrainedModel):
# '''把bert輸出分別接上一層線性分類層,是屬性情感分析的模型'''
# def __init__(self, config):
# super().__init__(config)
# self.bert = BertModel(config)
# self.dropout = nn.Dropout(config.hidden_dropout_prob)
# # 將bert輸出傳到這層來預測屬性標記
# self.aspect_classfier = nn.Linear(config.hidden_size,3) #768 -> 3 (BIO)
# # 將bert輸出傳到這層來預測情感標記
# self.sentiment_classifier = nn.Linear(config.hidden_size, 4) #768 -> 4 (POS/NEU/NEG/O)
# self.init_weights()
# def forward(
# self,
# input_ids=None,
# attention_mask=None,
# token_type_ids=None,
# position_ids=None,
# head_mask=None,
# inputs_embeds=None,
# labels=None,
# ):
# outputs = self.bert(
# input_ids,
# attention_mask=attention_mask,
# token_type_ids=token_type_ids,
# position_ids=position_ids,
# head_mask=head_mask,
# inputs_embeds=inputs_embeds,
# )
# tagger_input = outputs[0]
# tagger_input = self.dropout(tagger_input)
# aspect_tagger = self.aspect_classfier(tagger_input) #輸出預測的屬性標註, 維度是bsz,seq,num_labels (3,因為標BIO)
# logits = self.sentiment_classifier(tagger_input) #得到最後經過情感標註後的結果
# outputs = (aspect_tagger,) + (logits,) + outputs[2:]
# ### 輸入的label map: {'B-NEG': 0, 'B-NEU': 1, 'B-POS': 2, 'I-NEG': 3, 'I-NEU': 4, 'I-POS': 5, 'O': 6}
# ## 需轉成自定義的新label map :
# # aspect_labels : {"B" : 0, "I":1, "O": 2}
# # sentiment_labels {"NEG": 0 ,"NEU":1, "POS":2, "O":3}
# if labels is not None:
# #處理 labels、讓它符合joint屬性模型格式
# aspect_labels, sentiment_labels = chg_labels_to_aspect_and_sentiment(labels)
# loss_fct = CrossEntropyLoss()
# if attention_mask is not None:
# # 先算屬性標記的loss:
# active_loss = attention_mask.view(-1) == 1
# active_logits = aspect_tagger.view(-1, 3)
# active_labels = torch.where(
# active_loss, aspect_labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
# )
# aspect_loss = loss_fct(active_logits, active_labels)
# active_loss = attention_mask.view(-1) == 1
# active_logits = logits.view(-1, 4)
# active_labels = torch.where(
# active_loss, sentiment_labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
# )
# sentiment_loss = loss_fct(active_logits, active_labels)
# loss = aspect_loss + sentiment_loss #兩個loss會一起訓練
# else:
# aspect_loss = loss_fct(aspect_tagger.view(-1, 3), aspect_labels.view(-1))
# sentiment_loss = loss_fct(logits.view(-1, 4), sentiment_labels.view(-1))
# loss = aspect_loss + sentiment_loss #兩個loss會一起訓練
# outputs = (loss,) + (aspect_loss,) + (sentiment_loss,) + outputs
# return outputs | UTF-8 | Python | false | false | 17,198 | py | 15 | model_structure.py | 10 | 0.550063 | 0.537469 | 0 | 413 | 37.641646 | 139 |
doamaral/MIA | 566,935,694,076 | ff53daf2e608630130f4ddb21cb401353a0f214a | 60cbc3aae5cc975b962d6a57c376af608355f4d7 | /pest/envsim/__init__.py | 6808c33e877bfb34492bfd119163fb5d7e3f2146 | []
| no_license | https://github.com/doamaral/MIA | 553c0c1732c50470108e8c21b71fbe0f6c2e2c07 | 7deb195f8a98e2ce0d53b03dc5e9c4ba71205deb | refs/heads/master | 2021-01-10T01:02:31.216041 | 2015-06-18T11:18:40 | 2015-06-18T11:18:40 | 31,398,747 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | __author__ = 'Usuário'
| UTF-8 | Python | false | false | 24 | py | 12 | __init__.py | 10 | 0.565217 | 0.565217 | 0 | 1 | 22 | 22 |
jeansyo/Python | 7,799,660,618,766 | 6bf8d19ab8cf175214a0171b64f59cf8b0ddc9fd | 353955d50f75ec7363961aad7c6a9761ae0bc46d | /suma_de_matrizes.py | b9bf3d5d186f919a51a36cc467c20c367c781ea2 | []
| no_license | https://github.com/jeansyo/Python | 06f86894b5c5b6e0449cd5e6fedbc1c509550d5c | 96badd322b793849e82500543d26981cc9af0360 | refs/heads/master | 2022-09-25T07:20:18.918979 | 2020-06-06T05:36:38 | 2020-06-06T05:36:38 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # -*- coding: utf-8 -*-
"""
Created on Wed May 6 21:30:25 2020
@author: DELL.E5430.SSD
"""
m = int(input('Digite la cantidad de filas: '))
n = int(input('Digite la cantidad de columnas: '))
matriz_a = []
matriz_b = []
matriz_suma = []
for i in range(m):
matriz_a.append([0]*n)
for i in range(m):
matriz_b.append([0]*n)
print('Matriz A:')
for i in range(m):
for j in range(n):
matriz_a[i][j] = int(input(f'Matriz A --> Fila {i+1}, columna {j+1}: '))
print()
print('Matriz B:')
for i in range(m):
for j in range(n):
matriz_b[i][j] = int(input(f'Matriz B --> Fila {i+1}, columna {j+1}: '))
print()
print('Matriz A')
for i in matriz_a:
print(i)
print()
print('Matriz B')
for i in matriz_b:
print(i)
print()
#sumamos
for i in range(m):
matriz_suma.append([0]*n)
for i in range(m):
for j in range(n):
matriz_suma[i][j] = matriz_a[i][j] + matriz_b[i][j]
print('La matriz suma es: ')
for i in matriz_suma:
print(i) | UTF-8 | Python | false | false | 1,021 | py | 97 | suma_de_matrizes.py | 97 | 0.553379 | 0.530852 | 0 | 55 | 17.581818 | 80 |
odify/PORT-OF-PYTHON | 6,055,903,913,726 | a1386c7be4c7fd74cb891a7565a8dd2001fab47c | 3af1a0ba485f28ee695c9a95773140b6cfa721f1 | /CLI/metas-cli/metaextractor.py | 19e7b802e248701a88111cf215a14e867a4c833a | []
| no_license | https://github.com/odify/PORT-OF-PYTHON | d985e1a25ac20072f375ed96b4186279e17f237e | b7335af2c55eb10768e3a0b9ad621e263e1b766d | refs/heads/main | 2023-08-18T06:48:19.103446 | 2021-10-13T18:37:41 | 2021-10-13T18:37:41 | 311,485,221 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/usr/local/bin/python3
from colored import stylize, fg
from PIL import Image
from PIL.ExifTags import TAGS
# EXTRACT METADATA FROM IMG
class Metadata:
def __init__(self, file):
self.file = file
def __repr__(self):
metadata = self.extract_metadata(self.file)
if len(metadata) == 0:
return stylize(f"\n{self.file} No metadata.\n", fg("red"))
else:
print(stylize(f"\nMetadata of {self.file}:\n", fg("red")))
for data in metadata:
print(data)
return ""
def extract_metadata(self, file):
image = Image.open(file)
exifdata = image.getexif()
metadata = []
for tag_id in exifdata:
tag = TAGS.get(tag_id, tag_id)
data = exifdata.get(tag_id)
if isinstance(data, bytes):
data = data.decode()
metadata.append(f"{tag:25}: {data}")
return metadata
if __name__ == "__main__":
filename = input("Filename: ")
print(Metadata(filename))
| UTF-8 | Python | false | false | 1,058 | py | 85 | metaextractor.py | 53 | 0.545369 | 0.541588 | 0 | 49 | 20.591837 | 70 |
cash2one/xai | 19,232,863,562,926 | 6b2dbefb5db45211a1230a314ae6b1ba34b8c88d | 9743d5fd24822f79c156ad112229e25adb9ed6f6 | /xai/brain/wordbase/nouns/_dog.py | 28708a46d37edb8ee9d3422bc35e91a4912bec0d | [
"MIT"
]
| permissive | https://github.com/cash2one/xai | de7adad1758f50dd6786bf0111e71a903f039b64 | e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6 | refs/heads/master | 2021-01-19T12:33:54.964379 | 2017-01-28T02:00:50 | 2017-01-28T02:00:50 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null |
#calss header
class _DOG():
def __init__(self,):
self.name = "DOG"
self.definitions = [u'a common animal with four legs, especially kept by people as a pet or to hunt or guard things: ', u'a man who is unpleasant or not to be trusted: ', u'a woman who is not attractive']
self.parents = []
self.childen = []
self.properties = []
self.jsondata = {}
self.specie = 'nouns'
def run(self, obj1 = [], obj2 = []):
return self.jsondata
| UTF-8 | Python | false | false | 454 | py | 37,275 | _dog.py | 37,266 | 0.640969 | 0.636564 | 0 | 17 | 25.588235 | 206 |
franciscovillaescusa/Quijote-simulations | 4,758,823,787,835 | a2e68f0f1828debab440cfca7a30aa93366acb94 | fb228c9604964b9bea7d099e581906918cd24e5b | /Bk/Bk_halos.py | 26d0b17bdb6cd3118490391b889febc04857f06b | [
"MIT"
]
| permissive | https://github.com/franciscovillaescusa/Quijote-simulations | 927efec911799858a74a57f27fb5a9178f22cc8c | 36644e63c5ca421a3a1e664d0fe735f40abb7d27 | refs/heads/master | 2023-08-21T15:30:44.937134 | 2023-08-16T14:11:41 | 2023-08-16T14:11:41 | 183,778,267 | 81 | 256 | MIT | false | 2023-03-22T01:34:32 | 2019-04-27T13:45:47 | 2023-01-15T10:01:57 | 2023-03-22T01:34:31 | 71,354 | 69 | 131 | 1 | Python | false | false | # This script computes the halo bispectrum in real- and redshift-space. It takes as input
# the first and last number of the wanted realizations, the cosmology and the snapnum
# In redshift-space it computes the bispectrum along the 3 different axes.
import argparse
from mpi4py import MPI
import numpy as np
import sys,os
import readgadget,readfof
import redshift_space_library as RSL
from pyspectrum import pyspectrum as pySpec
###### MPI DEFINITIONS ######
comm = MPI.COMM_WORLD
nprocs = comm.Get_size()
myrank = comm.Get_rank()
# read the first and last realization to identify voids
parser = argparse.ArgumentParser(description="This script computes the bispectrum")
parser.add_argument("first", help="first realization number", type=int)
parser.add_argument("last", help="last realization number", type=int)
parser.add_argument("cosmo", help="folder with the realizations")
parser.add_argument("snapnum", help="snapshot number", type=int)
args = parser.parse_args()
first, last, cosmo, snapnum = args.first, args.last, args.cosmo, args.snapnum
# This routine computes and saves the bispectrum
def find_Bk(folder, snapdir, snapnum, axis, Ngrid, step, Ncut, Nmax,
do_RSD, fixed_Mmin, Mmin, Nhalos):
# read header
head = readgadget.header(snapdir)
BoxSize = head.boxsize/1e3 #Mpc/h
Omega_m = head.omega_m
Omega_l = head.omega_l
redshift = head.redshift
Hubble = 100.0*np.sqrt(Omega_m*(1.0+redshift)**3+Omega_l)#km/s/(Mpc/h)
h = head.hubble
# read halo catalogue
FoF = readfof.FoF_catalog(folder, snapnum, long_ids=False,
swap=False, SFR=False, read_IDs=False)
pos_h = FoF.GroupPos/1e3 #Mpc/h
mass = FoF.GroupMass*1e10 #Msun/h
vel_h = FoF.GroupVel*(1.0+redshift) #km/s
if fixed_Mmin:
indexes = np.where(mass>Mmin)[0]
pos_h = pos_h[indexes]; vel_h = vel_h[indexes]; del indexes
else:
indexes = np.argsort(mass)[-Nhalos:] #take the Nhalos most massive halos
pos_h = pos_h[indexes]; vel_h = vel_h[indexes]; del indexes
# move halos to redshift-space
if do_RSD: RSL.pos_redshift_space(pos_h, vel_h, BoxSize, Hubble, redshift, axis)
# calculate bispectrum
b123out = pySpec.Bk_periodic(pos_h.T, Lbox=BoxSize, Ngrid=Ngrid, step=step,
Ncut=Ncut, Nmax=Nmax, fft='pyfftw',
nthreads=1, silent=False)
i_k = b123out['i_k1']
j_k = b123out['i_k2']
l_k = b123out['i_k3']
p0k1 = b123out['p0k1']
p0k2 = b123out['p0k2']
p0k3 = b123out['p0k3']
b123 = b123out['b123']
b_sn = b123out['b123_sn']
q123 = b123out['q123']
cnts = b123out['counts']
hdr = ('halo bispectrum; k_f = 2pi/%.1f, Nhalo=%i'%(BoxSize, pos_h.shape[0]))
np.savetxt(fbk, np.array([i_k, j_k, l_k, p0k1, p0k2, p0k3, b123, q123, b_sn, cnts]).T,
fmt='%i %i %i %.5e %.5e %.5e %.5e %.5e %.5e %.5e',
delimiter='\t', header=hdr)
root = '/simons/scratch/fvillaescusa/pdf_information'
##################################### INPUT #########################################
# Bk parameters
Ngrid = 360
Nmax = 40
Ncut = 3
step = 3
# halo parameters
fixed_Mmin = True #whether fix Mmin or nbar
Mmin = 3.2e13 #Msun/h; fixed Mmin
Nhalos = 150000 #also consider the Nhalos more massive of the sim (nbar fixed)
# output folder name
root_out = '/simons/scratch/fvillaescusa/pdf_information/Bk/Mmin_3.2e13/'
#####################################################################################
# find the redshift
z = {4:0, 3:0.5, 2:1, 1:2, 0:3}[snapnum]
# create output folder if it does not exist
if myrank==0:
if not(os.path.exists(root_out+cosmo)): os.system('mkdir %s/%s/'%(root_out,cosmo))
# get the realizations each cpu works on
numbers = np.where(np.arange(args.first, args.last)%nprocs==myrank)[0]
numbers = np.arange(args.first, args.last)[numbers]
######## standard simulations #########
for i in numbers:
folder = '%s/Halos/%s/%d'%(root,cosmo,i) #folder with the halo catalogue
if not(os.path.exists(folder)): continue
snapdir = '%s/%s/%d/snapdir_%03d/snap_%03d'%(root,cosmo,i,snapnum,snapnum)
# real-space
fbk = '%s/%s/Bk_%d_z=%s.txt'%(root_out,cosmo,i,z)
if not(os.path.exists(fbk)):
do_RSD, axis = False, 0
find_Bk(folder, snapdir, snapnum, axis, Ngrid, step, Ncut, Nmax,
do_RSD, fixed_Mmin, Mmin, Nhalos)
# redshift-space
for axis in [0,1,2]:
fbk = '%s/%s/Bk_RS%d_%d_z=%s.txt'%(root_out,cosmo,axis,i,z)
if not(os.path.exists(fbk)):
do_RSD = True
find_Bk(folder, snapdir, snapnum, axis, Ngrid, step, Ncut, Nmax,
do_RSD, fixed_Mmin, Mmin, Nhalos)
###### paired fixed realizations ######
for i in numbers:
for pair in [0,1]:
folder = '%s/Halos/%s/NCV_%d_%d'%(root,cosmo,pair,i) #halo catalogue folder
if not(os.path.exists(folder)): continue
snapdir = '%s/%s/NCV_%d_%d/snapdir_%03d/snap_%03d'\
%(root,cosmo,pair,i,snapnum,snapnum)
# real-space
fbk = '%s/%s/Bk_NCV_%d_%d_z=%s.txt'%(root_out,cosmo,pair,i,z)
if not(os.path.exists(fbk)):
do_RSD, axis = False, 0
find_Bk(folder, snapdir, snapnum, axis, Ngrid, step, Ncut, Nmax,
do_RSD, fixed_Mmin, Mmin, Nhalos)
# redshift-space
for axis in [0,1,2]:
fbk = '%s/%s/Bk_RS%d_NCV_%d_%d_z=%s.txt'%(root_out,cosmo,axis,pair,i,z)
if not(os.path.exists(fbk)):
do_RSD = True
find_Bk(folder, snapdir, snapnum, axis, Ngrid, step, Ncut, Nmax,
do_RSD, fixed_Mmin, Mmin, Nhalos)
| UTF-8 | Python | false | false | 5,888 | py | 115 | Bk_halos.py | 56 | 0.584239 | 0.557575 | 0 | 151 | 37.907285 | 90 |
nurse/nkf | 6,725,918,799,152 | 52e8949fb60d7f7fd49435cb3d6c4afad2624d40 | ec5fc1c97ec8638966099d1699e363b728e5d2f7 | /NKF.python3/setup.py | c68d03cef593907031c448f2adeccfe795d80c75 | []
| no_license | https://github.com/nurse/nkf | a29e950709af320bcbcb871b1b9158d4b8ae5e22 | a937062004418d776cef426876def9aba6d8e94f | refs/heads/master | 2022-12-12T13:45:42.854398 | 2022-08-08T09:57:16 | 2022-08-08T09:57:16 | 3,713,060 | 72 | 19 | null | false | 2022-12-06T03:38:34 | 2012-03-14T00:44:33 | 2022-09-20T12:57:11 | 2022-08-08T09:57:16 | 1,066 | 69 | 15 | 1 | C | false | false | #!/usr/bin/env python
from distutils.core import setup, Extension
setup (name = "nkf",
version="1.0",
description="Python Interface to NKF",
author="Matsumoto Tadashi",
author_email="ma2@city.plala.jp",
ext_modules = [
Extension("nkf", ["NKF_python.c"],
extra_link_args = ['-s'])])
| UTF-8 | Python | false | false | 359 | py | 21 | setup.py | 2 | 0.548747 | 0.54039 | 0 | 12 | 28.916667 | 52 |
Ebuyuktas/11-HAFTA-OOP | 6,597,069,806,266 | 4787aad7c5732a2c14ad8b99228739511a343935 | b822f5f418092f44b3b8c4111561961f905261a0 | /odev2.py | dfccaeb54e8feda6c5ea89d3b19f91d7c74ddffe | []
| no_license | https://github.com/Ebuyuktas/11-HAFTA-OOP | d250f3ca697eefd0ecc1857965d5849e6974a92d | 04337e5ed113a09bf73b8d791ce92853391a6ef5 | refs/heads/master | 2020-07-12T05:54:36.344834 | 2019-08-30T17:52:13 | 2019-08-30T17:52:13 | 204,736,772 | 0 | 0 | null | true | 2019-08-27T18:46:50 | 2019-08-27T15:46:50 | 2019-08-26T09:50:26 | 2019-08-26T09:50:25 | 1 | 0 | 0 | 0 | null | false | false | #hafta 11 odev 2#
#muzik listesi#
import random
class walkman():
liste=[]
def cal(self,sarki):
if sarki in self.liste:
print(sarki,"yurutuluyor..")
else:
print("Malesef repertuvarimizda mevcut degil")
def temizle(self):
self.liste.clear()
print("yurutme listesi bos")
def goruntule(self):
print("Sarkilar:\n")
for i in self.liste:
print(i)
def ekle(self,sarki):
self.liste.append(sarki)
print(sarki,"eklendi iyi dinlemeler..\n\n")
def sil(self,sarki):
self.liste.pop(self.liste.index(sarki))
print(sarki,"listeden kaldirildi\n")
def sonraki(self,sarki):
x=self.liste.index(sarki)
print("Bir sonraki parcamiz: ")
print(self.liste[x+1],"caliniyor...")
def onceki(self,sarki):
x=self.liste.index(sarki)
print("onceki sarkimiz: \n")
print(self.liste[x-1], "caliniyor...")
def karisik(self):
karisik=random.randint(0,len(self.liste))
print(self.liste[karisik], "Caliniyor..")
repertuvar= walkman()
repertuvar.ekle("Sagopa-366. gun")
repertuvar.ekle("Hayko Cepkin-Gelin olmus")
repertuvar.ekle("Duman-Eski koprunun altinda")
repertuvar.ekle("Cem karaca-kara sevda")
repertuvar.ekle("Tarkan-Yolla")
repertuvar.goruntule()
repertuvar.sil("Hayko Cepkin-Gelin olmus")
repertuvar.sonraki("Duman-Eski koprunun altinda")
repertuvar.onceki("Sagopa-366. gun")
repertuvar.karisik()
repertuvar.temizle()
| UTF-8 | Python | false | false | 1,463 | py | 2 | odev2.py | 2 | 0.663021 | 0.654819 | 0 | 54 | 25.092593 | 52 |
jiamo/concurrent_server | 3,143,916,083,613 | 8ea4e701963363f8337da6bf40759d13cb194ff3 | f640756039e04dae4a3e4adfb69b0b15eda3c54a | /epoll_server.py | f16e7c4a47626ff475183b8666c0bd8807639e05 | []
| no_license | https://github.com/jiamo/concurrent_server | de0b518a3e729be1a678d0ee1371a0abcbefed8b | 9a6d661b2afe2a7207cc3b6eb2eab45976f604a8 | refs/heads/master | 2021-06-02T09:09:20.124364 | 2020-01-13T04:43:18 | 2020-01-13T04:43:18 | 144,312,145 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/usr/bin/env python
"""Simple server using epoll. running in linux"""
from __future__ import print_function
from contextlib import contextmanager
import socket
import select
from enum import Enum
class ProcessingState(Enum):
INITIAL_ACK = 0
WAIT_FOR_MSG = 1
IN_MSG = 2
class PeerState:
def __init__(self, process_state=None, sendbuf=None,
sendbuf_end=None, sendptr=None):
self.process_state = process_state
self.sendbuf = sendbuf or []
self.sendbuf_end = sendbuf_end
self.sendptr = sendptr
SENDBUF_SIZE = 1024
MAX_SOCKS = 1000
global_states = [PeerState() for i in range(MAX_SOCKS)]
class SockStatus:
def __init__(self, want_read, want_write):
self.want_read = want_read
self.want_write = want_write
sock_status_R = SockStatus(True, False)
sock_status_W = SockStatus(False, True)
sock_status_RW = SockStatus(True, True)
sock_status_NORW = SockStatus(False, False)
@contextmanager
def socketcontext(*args, **kwargs):
"""Context manager for a socket."""
s = socket.socket(*args, **kwargs)
try:
yield s
finally:
print("Close socket")
s.close()
@contextmanager
def epollcontext(*args, **kwargs):
"""Context manager for an epoll loop."""
e = select.epoll()
e.register(*args, **kwargs)
try:
yield e
finally:
print("\nClose epoll loop")
e.unregister(args[0])
e.close()
def init_connection(server, connections, requests, responses, epoll):
"""Initialize a connection."""
connection, address = server.accept()
connection.setblocking(0)
fd = connection.fileno()
epoll.register(fd, select.EPOLLIN)
connections[fd] = connection
requests[fd] = ''
responses[fd] = ''
def on_peer_connected(conn, address):
print(f"on accept {address}")
fd = conn.fileno()
assert fd < MAX_SOCKS
peer_state = global_states[fd]
peer_state.process_state = ProcessingState.INITIAL_ACK
peer_state.sendbuf.insert(0, "*")
peer_state.sendptr = 0
peer_state.sendbuf_end = 1
return sock_status_W
def on_peer_ready_recv(fd, connections):
sock = connections[fd]
peer_state = global_states[fd]
print(f"on_peer_ready_recv {peer_state.process_state} {fd}")
print(f"on_peer_ready_recv f{fd} {id(peer_state)}")
if peer_state.process_state == ProcessingState.INITIAL_ACK or \
peer_state.sendptr < peer_state.sendbuf_end:
return sock_status_W
buffer_len = 1024
data = sock.recv(buffer_len)
print(f"on_peer_ready_recv {data} {peer_state.process_state}")
if not data:
return sock_status_NORW
# failed has except for simple reason don't handle it
ready_to_send = False
for i, ch in enumerate(data):
if peer_state.process_state == ProcessingState.INITIAL_ACK:
assert "can't reach here"
elif peer_state.process_state == ProcessingState.WAIT_FOR_MSG:
if data[i] == ord(b'^'):
print("recv ^")
peer_state.process_state = ProcessingState.IN_MSG
elif peer_state.process_state == ProcessingState.IN_MSG:
if data[i] == ord(b'$'):
peer_state.process_state = ProcessingState.WAIT_FOR_MSG
else:
assert peer_state.sendbuf_end < 1024
peer_state.sendbuf.insert(peer_state.sendbuf_end,
chr(data[i] + 1))
peer_state.sendbuf_end += 1
ready_to_send = True
# change a little
# return SockStatus(
# want_read=(not ready_to_send),
# want_write=ready_to_send,
# )
if ready_to_send:
return sock_status_W
else:
return sock_status_R
def on_peer_ready_send(fd, connections):
# print("on_peer_ready_send")
sock = connections[fd]
peer_state = global_states[fd]
if peer_state.sendptr >= peer_state.sendbuf_end:
return sock_status_RW
send_len = peer_state.sendbuf_end - peer_state.sendptr
send_data = peer_state.sendbuf[
peer_state.sendptr: peer_state.sendptr + send_len
]
nsent = sock.send(''.join(send_data).encode())
if nsent < send_len:
print("nsent < send_len")
return sock_status_RW
else:
print(f"send {nsent} : {send_data}")
peer_state.sendptr = 0
peer_state.sendbuf_end = 0
if peer_state.process_state == ProcessingState.INITIAL_ACK:
peer_state.process_state = ProcessingState.WAIT_FOR_MSG
return sock_status_R
def do_register(peer_status, fd, epoll):
if peer_status == sock_status_RW:
try:
epoll.register(fd, select.EPOLLIN | select.EPOLLOUT)
except FileExistsError:
epoll.modify(fd, select.EPOLLIN | select.EPOLLOUT)
if peer_status == sock_status_R:
try:
epoll.register(fd, select.EPOLLIN)
except FileExistsError:
epoll.modify(fd, select.EPOLLIN)
if peer_status == sock_status_W:
try:
epoll.register(fd, select.EPOLLOUT)
except FileExistsError:
epoll.modify(fd, select.EPOLLOUT)
if peer_status == sock_status_NORW:
try:
epoll.unregister(fd)
except FileNotFoundError:
pass
def run_server(socket_options, address):
"""Run a simple TCP server using epoll."""
with socketcontext(*socket_options) as server, \
epollcontext(server.fileno(), select.EPOLLIN) as epoll:
server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
server.bind(address)
server.listen(5)
server.setblocking(0)
server.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1)
print("Listening")
connections = {}
server_fd = server.fileno()
while True:
events = epoll.poll(1)
for fileno, event in events:
if fileno == server_fd:
connection, client_address = server.accept()
connection.setblocking(0)
peer_status = on_peer_connected(connection, client_address)
fd = connection.fileno()
connections[fd] = connection # save fd sock relate
do_register(peer_status, fd, epoll)
elif event & select.EPOLLIN:
peer_status = on_peer_ready_recv(fileno, connections)
do_register(peer_status, fileno, epoll)
elif event & select.EPOLLOUT:
peer_status = on_peer_ready_send(fileno, connections)
do_register(peer_status, fileno, epoll)
else:
print("event ", event)
if __name__ == '__main__':
try:
run_server([socket.AF_INET, socket.SOCK_STREAM], ("0.0.0.0", 9090))
except KeyboardInterrupt as e:
print("Shutdown") | UTF-8 | Python | false | false | 6,978 | py | 12 | epoll_server.py | 11 | 0.597592 | 0.591574 | 0 | 230 | 29.343478 | 79 |
mark-barrett/Ticketr-2 | 19,284,403,161,813 | e68f0d0d53870b82bf03cd0155248a35d20e63d6 | d98d650fe46caa922e9cf60cbecfc6a9f7e5b40d | /account/views.py | 87b9f6cded93a5626e35a4c4d3ad2c588297f65a | [
"MIT"
]
| permissive | https://github.com/mark-barrett/Ticketr-2 | ca6cee6bfe9c94c78a30b8a6989fff8f0bbeb913 | 723bb2542bee818132b4c2315efe07c5ac3146c6 | refs/heads/master | 2021-09-07T20:02:43.370478 | 2018-02-28T09:00:28 | 2018-02-28T09:00:28 | 117,800,313 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from django.contrib.auth import authenticate, login, logout
from django.contrib.auth.models import User
from django.shortcuts import render, redirect
from django.contrib import messages
# Create your views here.
from django.views import View
class SignIn(View):
def get(self, request):
if not request.user.is_authenticated:
return render(request, 'sign-in.html')
else:
return redirect('/')
def post(self, request):
# Get the post information
email = request.POST['email']
password = request.POST['password']
# Authenticate the user with their email as the username
user = authenticate(username=email, password=password)
# Check if the user logged in okay
if user is not None:
login(request, user)
return redirect('/')
else:
messages.error(request, 'The email or password is invalid.')
return redirect('/account/sign-in')
class SignUp(View):
def get(self, request):
if not request.user.is_authenticated():
return render(request, 'sign-up.html')
else:
return redirect('/')
def post(self, request):
first_name = request.POST['first_name']
last_name = request.POST['last_name']
email = request.POST['email']
password = request.POST['password']
# Try find the user to see if they exist
try:
db_user = User.objects.get(username=email)
messages.error(request, 'A user with that email already exists.')
return redirect('/account/sign-up')
except:
user, created = User.objects.get_or_create(username=email, email=email)
if created:
user.set_password(password) # This line will hash the password
user.first_name = first_name
user.last_name = last_name
user.save() # DO NOT FORGET THIS LINE
# Check if the user logged in okay
if user is not None:
login(request, user)
messages.success(request, 'Your account has been setup.')
return redirect('/')
else:
messages.error(request, 'There was an error signing up')
return redirect('/account/sign-up')
class SignOut(View):
def get(self, request):
if request.user.is_authenticated:
logout(request)
messages.success(request, "Logged out. Thanks for stopping by!")
return redirect('/')
class ForgotPassword(View):
def get(self, request):
pass
def post(self, request):
pass
| UTF-8 | Python | false | false | 2,737 | py | 39 | views.py | 18 | 0.584216 | 0.584216 | 0 | 91 | 29.076923 | 83 |
KU2021-NLP17/odqa_baseline_code | 4,861,903,024,649 | 24ae8e9f9dd5abf87d337998f0446c8cdf9047d7 | 277f60ec8afec6cb874906d1540e6cab1ec450b1 | /retrieval/dense/dp_base.py | 1e9053436a8e3927423bd18ab235d2deadcb2f6d | [
"Apache-2.0"
]
| permissive | https://github.com/KU2021-NLP17/odqa_baseline_code | 519a596e881b6f6af52709b147b96a8ec7bd6226 | fd14652ebce050cd43dbcd58c6625caaeed0d5bd | refs/heads/main | 2023-09-02T17:19:03.011957 | 2021-11-23T15:15:13 | 2021-11-23T15:15:13 | 428,232,707 | 2 | 1 | Apache-2.0 | true | 2021-11-15T11:16:40 | 2021-11-15T11:16:40 | 2021-11-13T14:17:36 | 2021-06-19T13:35:31 | 7,246 | 0 | 0 | 0 | null | false | false | from tqdm.auto import tqdm, trange
import pickle
import random
import time
import os.path as p
from itertools import chain
import torch
import numpy as np
import torch.nn.functional as F
from datasets import load_from_disk, load_dataset
from transformers import TrainingArguments
from transformers import AdamW, get_linear_schedule_with_warmup
from torch.utils.data import TensorDataset, DataLoader, RandomSampler
from retrieval.dense import DenseRetrieval
def get_retriever_dataset(args):
if args.retriever.dense_train_dataset not in [
"train_dataset",
"squad_kor_v1",
"bm25_document_questions",
"bm25_question_documents",
]:
raise FileNotFoundError(f"{args.retriever.dense_train_dataset}은 DenseRetrieval 데이터셋이 아닙니다.")
if args.retriever.dense_train_dataset == "squad_kor_v1":
train_dataset = load_dataset(args.retriever.dense_train_dataset)
else:
dataset_path = p.join(args.path.train_data_dir, args.retriever.dense_train_dataset)
assert p.exists(dataset_path), f"{args.retriever.dense_train_dataset}이 경로에 존재하지 않습니다."
train_dataset = load_from_disk(dataset_path)
return train_dataset
def epoch_time(start_time, end_time):
elapsed_time = end_time - start_time
elapsed_mins = int(elapsed_time / 60)
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
return elapsed_mins, elapsed_secs
class DpRetrieval(DenseRetrieval):
def __init__(self, args):
super().__init__(args) # wiki context load
self.mappings = []
self.window_size = 20
self.sample_per_phrase = 4
save_dir = p.join(args.path.embed, self.name)
self.mappings_path = p.join(save_dir, "mappings.bin")
def get_embedding(self):
if p.isfile(self.embed_path) and p.isfile(self.encoder_path) and not self.args.retriever.retrain:
with open(self.embed_path, "rb") as f:
self.p_embedding = pickle.load(f)
with open(self.mappings_path, "rb") as f:
self.mappings = pickle.load(f)
self.encoder = self._get_encoder()
self.encoder.load_state_dict(torch.load(self.encoder_path))
else:
self.p_embedding, self.encoder, self.mappings = self._exec_embedding()
with open(self.embed_path, "wb") as f:
pickle.dump(self.p_embedding, f)
with open(self.mappings_path, "wb") as f:
pickle.dump(self.mappings, f)
torch.save(self.encoder.state_dict(), self.encoder_path)
def get_relevant_doc_bulk(self, queries, topk=1):
self.encoder.eval() # question encoder
self.encoder.cuda()
with torch.no_grad():
q_seqs_val = self.tokenizer(
queries, padding="longest", truncation=True, max_length=512, return_tensors="pt"
).to("cuda")
q_embedding = self.encoder(**q_seqs_val)
q_embedding.squeeze_() # in-place
q_embedding = q_embedding.cpu().detach().numpy()
# p_embedding: numpy, q_embedding: numpy
result = np.matmul(q_embedding, self.p_embedding.T)
phrase_indices = np.argsort(result, axis=1)[:, -topk:][:, ::-1]
doc_indices = [[self.mappings[phrase_indices[i][j]] for j in range(len(phrase_indices[i]))] for i in range(len(phrase_indices))]
doc_scores = []
for i in range(len(phrase_indices)):
doc_scores.append(result[i][[phrase_indices[i].tolist()]])
return doc_scores, doc_indices
def _exec_embedding(self):
p_encoder, q_encoder = self._load_model()
train_dataset, eval_dataset = self._load_dataset(eval=True)
args = TrainingArguments(
output_dir="densephrase_retrieval",
evaluation_strategy="epoch",
learning_rate=self.args.retriever.learning_rate,
per_device_train_batch_size=self.args.retriever.per_device_train_batch_size,
per_device_eval_batch_size=self.args.retriever.per_device_eval_batch_size,
num_train_epochs=self.args.retriever.num_train_epochs,
weight_decay=self.args.retriever.weight_decay,
gradient_accumulation_steps=self.args.retriever.gradient_accumulation_steps,
)
p_encoder, q_encoder = self._train(args, train_dataset, p_encoder, q_encoder, eval_dataset)
p_embedding = []
mappings = []
for idx, passage in enumerate(tqdm(self.contexts)): # wiki
splitted = passage.split()
for i in range(len(splitted) // self.window_size * 2):
phrase = ' '.join(splitted[i*(self.window_size // 2):(i+2)*(self.window_size //2)])
phrase = self.tokenizer(
phrase, padding="max_length", truncation=True, max_length=self.window_size, return_tensors="pt"
).to("cuda")
p_emb = p_encoder(**phrase).to("cpu").detach().numpy()
p_embedding.append(p_emb)
mappings.append(idx)
p_embedding = np.array(p_embedding).squeeze() # numpy
return p_embedding, q_encoder, mappings
class DPTrainMixin:
def _load_dataset(self, eval=False):
datasets = get_retriever_dataset(self.args)
train_dataset = datasets["train"]
# TODO delete
# train_dataset = train_dataset.select(range(100))
# with negative examples
questions = []
phrases = []
labels = []
for idx, question in enumerate(tqdm(train_dataset["question"])):
answer_passage = train_dataset["context"][idx]
splitted = answer_passage.split()
for phrase_idx in range(len(splitted) // self.window_size * 2):
phrase = ' '.join(splitted[phrase_idx*(self.window_size // 2):(phrase_idx+2)*(self.window_size //2)]) # NOTE: Overlap?
while True:
incorrect_passage = random.choice(train_dataset["context"])
incorrect_passage_splitted = incorrect_passage.split()
if len(incorrect_passage_splitted) // self.window_size >= self.sample_per_phrase:
break
incorrect_phrase_indices = random.sample(range(0, len(incorrect_passage_splitted) // self.window_size), self.sample_per_phrase - 1)
incorrect_phrases = [' '.join(incorrect_passage_splitted[i*(self.window_size // 2):(i+2)*(self.window_size //2)]) for i in incorrect_phrase_indices]
incorrect_phrases.insert(phrase_idx % self.sample_per_phrase, phrase)
questions.append(question)
phrases.append(incorrect_phrases)
labels.append(phrase_idx % self.sample_per_phrase)
print('Dataset prepare success')
print(f'Length : {len(questions)}')
q_seqs = self.tokenizer(
questions, padding="longest", truncation=True, max_length=512, return_tensors="pt"
)
p_seqs = self.tokenizer(
list(chain(*phrases)), padding="max_length", truncation=True, max_length=self.window_size, return_tensors="pt"
)
embedding_size = p_seqs["input_ids"].shape[-1]
for k in p_seqs.keys():
p_seqs[k] = p_seqs[k].reshape(-1, self.sample_per_phrase, embedding_size)
train_dataset = TensorDataset(
p_seqs["input_ids"],
p_seqs["attention_mask"],
p_seqs["token_type_ids"],
q_seqs["input_ids"],
q_seqs["attention_mask"],
q_seqs["token_type_ids"],
torch.tensor(labels)
)
eval_dataset = None
return train_dataset, eval_dataset
def _train(self, training_args, train_dataset, p_model, q_model, eval_dataset):
print("TRAINING IN DensePhrase TRAIN MIXIN")
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(
train_dataset, sampler=train_sampler, batch_size=training_args.per_device_train_batch_size, drop_last=True
)
if eval_dataset:
eval_sampler = RandomSampler(eval_dataset)
eval_dataloader = DataLoader(
eval_dataset, sampler=eval_sampler, batch_size=training_args.per_device_eval_batch_size
)
optimizer_grouped_parameters = [{"params": p_model.parameters()}, {"params": q_model.parameters()}]
optimizer = AdamW(optimizer_grouped_parameters, lr=training_args.learning_rate, eps=training_args.adam_epsilon)
t_total = len(train_dataloader) // training_args.gradient_accumulation_steps * training_args.num_train_epochs
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=training_args.warmup_steps, num_training_steps=t_total
)
global_step = 0
p_model.train()
q_model.train()
p_model.zero_grad()
q_model.zero_grad()
torch.cuda.empty_cache()
for epoch in range(training_args.num_train_epochs):
train_loss = 0.0
start_time = time.time()
for step, batch in enumerate(train_dataloader):
if torch.cuda.is_available():
batch = tuple(t.cuda() for t in batch)
embedding_size = batch[0].shape[-1]
p_inputs = {
"input_ids": batch[0].reshape(-1, embedding_size),
"attention_mask": batch[1].reshape(-1, embedding_size),
"token_type_ids": batch[2].reshape(-1, embedding_size)
}
q_inputs = {
"input_ids": batch[3],
"attention_mask": batch[4],
"token_type_ids": batch[5]
}
adder = torch.arange(0, training_args.per_device_train_batch_size).long() * self.sample_per_phrase
if torch.cuda.is_available():
adder = adder.to("cuda")
label = torch.repeat_interleave(batch[6] + adder, self.sample_per_phrase)
p_outputs = p_model(**p_inputs)
q_outputs = q_model(**q_inputs)
q_outputs = torch.repeat_interleave(q_outputs, self.sample_per_phrase, dim=0)
sim_scores = torch.matmul(q_outputs, torch.transpose(p_outputs, 0, 1))
sim_scores = F.log_softmax(sim_scores, dim=1)
loss = F.nll_loss(sim_scores, label)
loss = loss / training_args.gradient_accumulation_steps
# print(p_inputs["input_ids"].shape)
# print(q_inputs["input_ids"].shape)
# print(p_outputs.shape)
# print(q_outputs.shape)
# print(label.shape)
# print(label)
print(f"epoch: {epoch + 1:02} step: {step:02} loss: {loss}", end="\r")
train_loss += loss.item()
loss.backward()
if ((step + 1) % training_args.gradient_accumulation_steps) == 0:
optimizer.step()
scheduler.step()
p_model.zero_grad()
q_model.zero_grad()
global_step += 1
torch.cuda.empty_cache()
end_time = time.time()
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
print(f"Epoch: {epoch + 1:02} | Time: {epoch_mins}m {epoch_secs}s")
print(f"\tTrain Loss: {train_loss / len(train_dataloader):.4f}")
p_model.train()
q_model.train()
return p_model, q_model | UTF-8 | Python | false | false | 11,797 | py | 66 | dp_base.py | 50 | 0.57832 | 0.572194 | 0 | 295 | 38.844068 | 164 |
thipaulino/tpTools | 17,497,696,779,952 | e695402a0988274dfbbb086c9519896fc8c2fb9e | 6956291893c1deef10b10e645d18dcacc2819969 | /tpRig/tpRigBuilder/tpBuildable.py | 50028398a8efa4a2d80103f2c090d10f1c922d14 | []
| no_license | https://github.com/thipaulino/tpTools | 19c8bcbd98b1e4d6fc6f015a6f73bd890cedac36 | dbf799eb65b0da0db612b97c9b2bedf0e79bb537 | refs/heads/master | 2023-02-20T04:11:49.767739 | 2023-02-06T10:08:28 | 2023-02-06T10:08:28 | 249,549,932 | 9 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null |
class Buildable(object):
def __init__(self):
self.build_methods_list = []
self.top_level_item = 'FaceRig'
self.register_build_method('Pre-Build Utils', 'root', background_color='dark_magenta')
self.register_build_method(self.top_level_item, 'root', background_color='dark_cyan')
self.register_build_method('Post Build Utils', 'root', background_color='dark_green')
# when item no parent and no method is added in register, code is breaking - improve
def register_build_method(self,
action_name,
parent_action,
method=None,
after=None,
background_color=None):
"""
Data Structure
[{'method_name': method_name,
'parent': parent_action_name,
'method': self.method,
'after': method_name to be placed after},
{...}]
:param action_name:
:param parent_action:
:param method:
:param after:
:param background_color:
:return:
"""
method_data = {
'method_name': action_name,
'parent': parent_action,
'method': method,
'after': after,
'background_color': background_color,
'stop_flag': False}
self.build_methods_list.append(method_data)
| UTF-8 | Python | false | false | 1,440 | py | 31 | tpBuildable.py | 30 | 0.521528 | 0.521528 | 0 | 43 | 32.418605 | 94 |
arthuroe/ibu_backend | 1,614,907,726,356 | c1d5169aea0d1f9e6b7312630611ba231d1b597b | 0d0286770c13134252e04fb9dc163855f0eb6d46 | /api/patient/views.py | 49feace29f001a87ca4ec066d4fb233e334fd67d | []
| no_license | https://github.com/arthuroe/ibu_backend | ac21834fe9e16dbf9e4e8a7746bdcb96fb4488d1 | b08619f532649d875b117d021f601d6e511f58db | refs/heads/develop | 2022-04-20T13:38:56.286907 | 2020-04-03T06:30:23 | 2020-04-03T06:30:23 | 251,427,051 | 0 | 0 | null | false | 2020-04-03T05:28:48 | 2020-03-30T20:59:29 | 2020-04-02T14:21:26 | 2020-04-03T05:28:47 | 23 | 0 | 0 | 2 | Python | false | false | import logging
from flask import Blueprint, request, make_response, jsonify
from flask.views import MethodView
from api.decorators import token_required
from api.models import Patient
class PatientView(MethodView):
"""
View to manage patients
"""
decorators = [token_required]
def get(self, current_user, patient_id=None):
try:
if patient_id:
patient = Patient.find_first(id=patient_id)
if not patient:
response = {
'status': 'fail',
'message': 'Patient does not exist'
}
return make_response(jsonify(response)), 400
response = {
'status': 'success',
'patient': patient.serialize()
}
return make_response(jsonify(response)), 200
patients = Patient.fetch_all()
if not patients:
response = {
'status': 'success',
'message': 'No patients have been added'
}
return make_response(jsonify(response)), 200
response = {
'status': 'success',
'patients': [patient.serialize() for patient in patients]
}
return make_response(jsonify(response)), 200
except Exception as e:
logging.error(f"An error has occurred {e}")
response = {
'status': 'fail',
'message': 'Failed to retrieve patients.'
}
return make_response(jsonify(response)), 500
def post(self, current_user):
kwargs = request.json
phone_number = kwargs.get('phone_number')
if not phone_number:
response = {
'status': 'fail',
'message': 'Phone number is required.'
}
return make_response(jsonify(response)), 400
patient = Patient.find_first(phone_number=kwargs.get('phone_number'))
kp_code = (
kwargs.get('first_name')[0] + kwargs.get('second_name')[0] +
kwargs.get('third_name')[0] + str(
int(kwargs.get('date_of_birth')[5:7])) +
str(int(kwargs.get('date_of_birth')[0:4])) + kwargs.get('gender')[0]
)
kwargs.update({"kp_code": kp_code})
if not patient:
try:
patient = Patient(**kwargs)
patient.save()
response = {
'status': 'success',
'message': f"Successfully Added {kwargs.get('first_name')}."
}
return make_response(jsonify(response)), 201
except Exception as e:
logging.error(f"An error has occurred {e}")
response = {
'status': 'fail',
'message': 'Failed to add patient. Please try again.'
}
return make_response(jsonify(response)), 401
else:
response = {
'status': 'fail',
'message': 'Patient already exists.',
}
return make_response(jsonify(response)), 409
def put(self, current_user, patient_id):
kwargs = request.json
kwargs.update({"id": patient_id})
try:
patient = Patient.find_first(id=patient_id)
if patient:
patient.update(**kwargs)
response = {
'status': 'success',
'message': f'Successfully updated {patient.first_name}.'
}
return make_response(jsonify(response)), 201
response = {
'status': 'fail',
'message': 'Patient does not exist.',
}
return make_response(jsonify(response)), 400
except Exception as e:
logging.error(f"An error has occurred {e}")
response = {
'status': 'fail',
'message': 'Update failed. Please try again.'
}
return make_response(jsonify(response)), 500
def delete(self, current_user, patient_id):
try:
patient = Patient.find_first(id=patient_id)
if patient:
patient.delete()
response = {
'status': 'success',
'message': f'Successfully deleted {patient.first_name}.'
}
return make_response(jsonify(response)), 200
response = {
'status': 'fail',
'message': 'Patient does not exist.',
}
return make_response(jsonify(response)), 400
except Exception as e:
logging.error(f"An error has occurred {e}")
response = {
'status': 'fail',
'message': 'Delete failed. Please try again.'
}
return make_response(jsonify(response)), 500
| UTF-8 | Python | false | false | 5,087 | py | 29 | views.py | 26 | 0.482406 | 0.471987 | 0 | 151 | 32.688742 | 80 |
openstack/python-troveclient | 9,586,367,007,452 | a472545a39390304fa4cb92be3e2c92ecb349da8 | e1e8c24070460e5edc07f168663d9783fc18a8b1 | /troveclient/tests/test_root.py | 58d0e67b8ec8a9908464d8f58ee98ae16d996213 | [
"Apache-2.0"
]
| permissive | https://github.com/openstack/python-troveclient | 5bfafda27ccb4b788118b2fe4e92ed862f02cd93 | 0415e4bc884b4acb341960f35678c6b93f262518 | refs/heads/master | 2023-09-04T13:04:02.033407 | 2022-05-11T10:03:17 | 2023-06-26T10:03:58 | 10,698,584 | 47 | 35 | Apache-2.0 | false | 2021-04-30T06:12:22 | 2013-06-14T21:58:05 | 2021-04-29T02:44:53 | 2021-04-29T07:38:00 | 2,052 | 70 | 49 | 0 | Python | false | false | # Copyright 2015 Tesora Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import testtools
from unittest import mock
from troveclient.v1 import root
"""
Unit tests for root.py
"""
class RootTest(testtools.TestCase):
def setUp(self):
super(RootTest, self).setUp()
self.orig__init = root.Root.__init__
root.Root.__init__ = mock.Mock(return_value=None)
self.root = root.Root()
self.root.api = mock.Mock()
self.root.api.client = mock.Mock()
def tearDown(self):
super(RootTest, self).tearDown()
root.Root.__init__ = self.orig__init
def _get_mock_method(self):
self._resp = mock.Mock()
self._body = None
self._url = None
def side_effect_func(url, body=None):
self._body = body
self._url = url
return (self._resp, body)
return mock.Mock(side_effect=side_effect_func)
def test_delete(self):
self.root.api.client.delete = self._get_mock_method()
self._resp.status_code = 200
self.root.delete(1234)
self.assertEqual('/instances/1234/root', self._url)
self._resp.status_code = 400
self.assertRaises(Exception, self.root.delete, 1234)
| UTF-8 | Python | false | false | 1,766 | py | 190 | test_root.py | 92 | 0.64043 | 0.625142 | 0 | 56 | 30.535714 | 78 |
someshwar123/python | 15,315,853,403,521 | 2ec304ce33dd5a7ad255f5dc2517d621b01668ad | c9d8671400781bc2ec1cfe560cf49f17d436afcb | /set-9/lcm.py | 180796c6cc15edbef517fca7b9e590744e081ea0 | []
| no_license | https://github.com/someshwar123/python | 7d6e9d5d4969742a999d0d7083415bef76a79346 | 55cbf4076ab48999c99fa8f3c595379e31d60150 | refs/heads/master | 2020-03-24T03:42:27.655146 | 2018-08-16T18:37:21 | 2018-08-16T18:37:21 | 142,429,758 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #-------------------------------------------------------------------------------
# Name: module1
# Purpose:
#
# Author: Somesh
#
# Created: 14/08/2018
# Copyright: (c) Somesh 2018
# Licence: <your licence>
#-------------------------------------------------------------------------------
def lcm (a,b):
if(a>b):
greater=a
else:
greater=b
while(True):
if((greater%a==0) and(greater%b==0)):
lcm =greater
break
greater =greater+1
return lcm
a=int(input("enter the a value"))
b=int(input("enter the b value"))
z=lcm(48,60)
print ("The lcm is : ",z) | UTF-8 | Python | false | false | 638 | py | 77 | lcm.py | 77 | 0.398119 | 0.366771 | 0 | 27 | 22.666667 | 80 |
BlaiseGratton/DataAnalysisNgin | 13,125,420,056,641 | 84547c95f2e58b05b074ee8640c02aa47365b071 | 39f9d416f11e9136ed404c25a876d6a83727c7c9 | /anatolution/models/project_marker_option/__init__.py | a29d5a31a5b661536b7d9bce61ff0121e9b1e8e1 | [
"MIT"
]
| permissive | https://github.com/BlaiseGratton/DataAnalysisNgin | 478dc24e50fd4915fdfe7661102e483a26c477e2 | 24d72320735faf6183d44ae728dd8557014abf8d | refs/heads/master | 2016-09-23T10:53:24.412773 | 2016-09-10T18:37:16 | 2016-09-10T18:37:16 | 42,779,692 | 0 | 1 | null | null | null | null | null | null | null | null | null | null | null | null | null | """
anatolution.project_marker_option
~~~~~~~~~~~~~~~~~~
"""
from ...core import Service
from .project_marker_option import ProjectMarkerOption
class ProjectMarkerOptionService(Service):
__model__ = ProjectMarkerOption
| UTF-8 | Python | false | false | 233 | py | 122 | __init__.py | 88 | 0.690987 | 0.690987 | 0 | 10 | 22.3 | 54 |
McDermott-Group/Analysis | 14,671,608,324,567 | 04d6711d1eac2d44023a87ee12e98c67aac581ef | 93ef9d1738328036320d3dbff018b04f05a75b36 | /projects/fluxNoise/python/analyze_P1_dwell_time.py | 8df386a482ca8a19bd0b161e7d1e12ca1261ff7e | []
| no_license | https://github.com/McDermott-Group/Analysis | a1fcf314c0182dbd0261fb148843a998e183b966 | 1426997aa7e5a156deedca9e0f3381e1c7d0a7cc | refs/heads/master | 2023-06-21T15:59:32.519975 | 2023-06-19T19:16:50 | 2023-06-19T19:16:50 | 37,875,133 | 0 | 3 | null | null | null | null | null | null | null | null | null | null | null | null | null | import os
import numpy as np
import noiselib
import importlib
importlib.reload(noiselib)
from noiselib import matpaths
from dataChest import *
import general.calibration as cal
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
import datasets
importlib.reload(datasets)
from datasets import *
# q, date, filesP1, filesT1, thresh = 'Q3', '04-29-20', range(112,493), range(0,381), 0.33 # really bad
# q, date, filesP1, filesT1, thresh = 'Q3', '04-29-20', range(0,63), range(0,63), 0.25 # shows nothing
# q, date, filesP1, filesT1, thresh = 'Q4', '04-30-20', range(0,231), range(0,231), 0.44
#################################
# ds = q4_0430_T1
# ds = q3_0501_T1
# ds = q1_0503_T1
ds = q2_0505_T1
fP1_I = matpaths(fileName='P1_I', fileNums='files_P1', **ds)
fP1_X = matpaths(fileName='P1_X', fileNums='files_P1', **ds)
dwellsDirty = np.array([])
dwellsClean = np.array([])
dwellsDirty1 = np.array([])
dwellsDirty2 = np.array([])
dwellsDirty3 = np.array([])
if 'recalibrate' in ds and ds['recalibrate']:
data = noiselib.loadmat( fP1_I[0] )
iq0 = np.array((data['Is'],data['Qs']))
data = noiselib.loadmat( fP1_X[0] )
iq1 = np.array((data['Is'],data['Qs']))
c = cal.CalibratedStates( (0,iq0), (1,iq1), plot=False)
for i,f in enumerate(fP1_I):
try:
data = noiselib.loadmat( f )
except:
print('corrupted file:', f)
data = {'Single_Shot_Occupations': [np.nan],
'Single_Shot_Occupation': [np.nan]}
if 'recalibrate' in ds and ds['recalibrate']:
states, SSO, _ = c.get_single_shot_occupation( np.array((data['Is'],
data['Qs'])) )
else:
states = data['Single_Shot_Occupations']
SSO = {1: data['Single_Shot_Occupation']}
d0,d1 = noiselib.bin_dwell_times(states)
if SSO[1] > ds['thresh_P1']:
dwellsDirty = np.append(dwellsDirty, d0)
if i in range(30,40):
dwellsDirty1 = np.append(dwellsDirty, d0)
elif i in range(80,88):
dwellsDirty2 = np.append(dwellsDirty, d0)
elif i in range(311,319):
dwellsDirty3 = np.append(dwellsDirty, d0)
else:
dwellsClean = np.append(dwellsClean, d0)
fig, ax = plt.subplots()
ax.hist(dwellsDirty1, bins, color='red')
ax.hist(dwellsDirty2, bins, color='blue', alpha=0.6)
ax.hist(dwellsDirty3, bins, color='green', alpha=0.6)
ax.set_xlabel('Dwell Time in 0 State Before Excitation [Reps=500us]')
ax.set_ylabel('Counts')
ax.set_yscale('log')
fig.suptitle(ds['Q']+'\n'+str(ds['date']))
plt.draw()
plt.pause(0.05)
fig, ax = plt.subplots()
hD, bins, _ = ax.hist(dwellsDirty,30, color='red')
hC, bins, _ = ax.hist(dwellsClean, bins, color='blue', alpha=0.6)
ax.set_xlabel('Dwell Time in 0 State Before Excitation [Reps=500us]')
ax.set_ylabel('Counts')
ax.set_yscale('log')
fig.suptitle(ds['Q']+'\n'+str(ds['date']))
plt.draw()
plt.pause(0.05)
def exponential(t, a, tau):
return a*np.exp(-t/tau)
def poisoned_exponential(t, b, a, tau_r, n_qp, tau_qp):
return b + a*np.exp(-t/tau_r)*np.exp(n_qp*(np.exp(-t/tau_qp)-1))
def poisoned_exponential_simul(t, a0, a1, tau_r, n_qp0, n_qp1, tau_qp0, tau_qp1):
return np.ravel([poisoned_exponential(t, 0, a0, tau_r, n_qp0, tau_qp0),
poisoned_exponential(t, 0, a1, tau_r, n_qp1, tau_qp1)])
t = (bins[1:]+bins[:-1])/2
poptD, pcovD = curve_fit(exponential, t[t.size/2:], hD[t.size/2:], p0=[hD.max()/2, .3])
poptC, pcovC = curve_fit(exponential, t[t.size/2:], hC[t.size/2:], p0=[hC.max()/2, .3])
ax.plot(t, exponential(t, *poptD), 'k:')
ax.plot(t, exponential(t, *poptC), 'k:')
ax.set_ylim([0.5, None])
plt.draw()
plt.pause(0.05)
popt, pcov = curve_fit(poisoned_exponential_simul,
t, np.ravel([hD,hC]),
p0=[poptD[0],poptC[0],poptC[1],1.,0.,.5,.5],
bounds=(0,np.inf))
# bounds=([0,0,0,0,0,0,0],[np.inf,np.inf,np.inf,3,3,np.inf,np.inf]))
fits = poisoned_exponential_simul(t, *popt).reshape((2,t.size))
ax.plot(t, np.transpose(fits), 'k', linewidth=2)
plt.draw()
plt.pause(0.05)
text = '{:>7}{:>12}{:>12}\n'.format('','Dirty','Clean')
# text += '{:>7}{:>12.3f}{:>12.3f}\n'.format('A',*popt[0:2])
text += '{:>7}{:>12.3f}{:>12}\n'.format('tau_R',popt[2]*500,'')
text += '{:>7}{:>12.3f}{:>12.3f}\n'.format('n_QP',*popt[3:5])
text += '{:>7}{:>12.3f}{:>12.3f}\n'.format('tau_QP',popt[5]*500,popt[6]*500)
text += '{:>7}{:>12.3f}{:>12.3f}\n'.format('tau',poptD[1]*500,poptC[1]*500)
ax.text(t[-1],fits.max()/10, text, family='monospace', horizontalalignment='right')
plt.draw()
plt.pause(0.05) | UTF-8 | Python | false | false | 4,646 | py | 569 | analyze_P1_dwell_time.py | 322 | 0.596427 | 0.535945 | 0 | 128 | 35.304688 | 103 |
tell-k/code-snippets | 14,791,867,401,119 | 021aaa1d1c307044c731ba73349b20976b105b96 | 4b0de0c936d8c2300de61c42a5ba7a549ed60ae1 | /python/snippets/convert_nfc.py | 243932bbb97cb907babb5e4083204c6a75d8104f | []
| no_license | https://github.com/tell-k/code-snippets | 54adf5e1967af25c362e72af391fffc83dc9c291 | ab85aa3e4e8f74aa3cb394aee427efd29ec623ec | refs/heads/master | 2021-06-06T13:47:42.978609 | 2017-04-05T14:27:34 | 2017-04-05T14:27:34 | 365,239 | 0 | 2 | null | false | 2020-10-02T11:37:46 | 2009-11-08T13:40:22 | 2015-01-22T11:03:56 | 2017-04-05T14:32:45 | 108,440 | 0 | 2 | 1 | ActionScript | false | false |
from unicodedata import normalize
import sys, codecs
sys.stdout = codecs.getwriter("utf-8")(sys.stdout)
with open('./templates/core/index.html') as f:
hoge = f.readlines()
hoge_body = "".join(hoge)
hoge_nfc = normalize('NFC', hoge_body.decode('utf8'))
print hoge_nfc
| UTF-8 | Python | false | false | 287 | py | 300 | convert_nfc.py | 192 | 0.675958 | 0.66899 | 0 | 11 | 25 | 57 |
sintetizzatore/dsp | 9,139,690,425,963 | db8e45ba72d604700d1214c49e27de5c51f7088e | 632b349062e6f4611a276d74dee3fe3a0d461d3b | /python/advanced_python_csv.py | cde9a5535a02757f564df16ee850b30b5ed82d67 | []
| no_license | https://github.com/sintetizzatore/dsp | 910be4ad20ffab08b2fea09d1b7a24d9b1923502 | 436ea8170426a3518cdc839441315d910667dc56 | refs/heads/master | 2020-04-07T12:44:37.545561 | 2015-09-24T23:26:32 | 2015-09-24T23:26:32 | 40,987,242 | 0 | 0 | null | true | 2015-08-18T17:35:08 | 2015-08-18T17:35:08 | 2015-08-13T14:48:23 | 2015-08-17T21:07:05 | 1,437 | 0 | 0 | 0 | null | null | null | import csv
with open('faculty.csv', 'r') as book1:
with open('emails.csv', 'r') as book2:
reader1 = csv.reader(book1, delimiter=',')
reader2 = csv.reader(book2, delimiter=',')
both = []
fields = reader1.next()
reader2.next()
for row1, row2 in zip(reader1, reader2):
row2.append(row1[-1])
both.append(row2)
with open('emails2.csv', 'w') as output:
writer = csv.writer(output, delimiter=',')
writer.writerow(fields)
writer.writerows(both)
| UTF-8 | Python | false | false | 560 | py | 9 | advanced_python_csv.py | 4 | 0.548214 | 0.517857 | 0 | 18 | 30.111111 | 54 |
BrutuZ/Flexget | 9,655,086,493,598 | 34bf2c8e2c26570e5c9ed89d8613030292ebe82f | b18c069efe396a05b9e3156e527fd5a3bdb081b2 | /flexget/components/sites/sites/eztv.py | 20cd31bcf96d575d5b7d3dd2f47c66a5721ccac5 | [
"MIT"
]
| permissive | https://github.com/BrutuZ/Flexget | 032692abeff3f6e5687dee2e7ba3d00a316400d4 | 2b7e8314d103c94cf4552bd0152699eeca0ad159 | refs/heads/master | 2023-08-30T22:31:16.746674 | 2023-08-28T15:14:04 | 2023-08-28T15:14:04 | 143,061,489 | 1 | 0 | MIT | true | 2022-11-06T17:25:03 | 2018-07-31T20:03:45 | 2022-03-19T22:29:58 | 2022-11-06T17:22:09 | 127,261 | 0 | 0 | 1 | Python | false | false | import re
from urllib.parse import urlparse, urlunparse
from loguru import logger
from requests import RequestException
from flexget import plugin
from flexget.components.sites.urlrewriting import UrlRewritingError
from flexget.event import event
from flexget.utils.soup import get_soup
logger = logger.bind(name='eztv')
EZTV_MIRRORS = [('http', 'eztv.ch'), ('https', 'eztv-proxy.net'), ('http', 'eztv.come.in')]
class UrlRewriteEztv:
"""Eztv url rewriter."""
def url_rewritable(self, task, entry):
return urlparse(entry['url']).netloc == 'eztv.ch'
def url_rewrite(self, task, entry):
url = entry['url']
page = None
for scheme, netloc in EZTV_MIRRORS:
try:
_, _, path, params, query, fragment = urlparse(url)
url = urlunparse((scheme, netloc, path, params, query, fragment))
page = task.requests.get(url).content
except RequestException:
logger.debug('Eztv mirror `{}` seems to be down', url)
continue
break
if not page:
raise UrlRewritingError('No mirrors found for url %s' % entry['url'])
logger.debug('Eztv mirror `{}` chosen', url)
try:
soup = get_soup(page)
mirrors = soup.find_all('a', attrs={'class': re.compile(r'download_\d')})
except Exception as e:
raise UrlRewritingError(e)
logger.debug('{} torrent mirrors found', len(mirrors))
if not mirrors:
raise UrlRewritingError('Unable to locate download link from url %s' % url)
entry['urls'] = [m.get('href') for m in mirrors]
entry['url'] = mirrors[0].get('href')
@event('plugin.register')
def register_plugin():
plugin.register(UrlRewriteEztv, 'eztv', interfaces=['urlrewriter'], api_ver=2)
| UTF-8 | Python | false | false | 1,852 | py | 854 | eztv.py | 737 | 0.613391 | 0.612311 | 0 | 57 | 31.491228 | 91 |
jongfranco/python-workshop-2 | 18,047,452,602,657 | 3b376c2319a691ae7e89e5408050c6ae552da1fb | f16545184a8fd369ef2f9ee9ebae8b1a3271cb9a | /day-1/if-else.py | c5034094cb529004ae54135f080b8d0dceea8b99 | []
| no_license | https://github.com/jongfranco/python-workshop-2 | 81e86708d0e24428b8aebebe17063b05dfa5ebba | 417e2f07e40e5ca5a66acaa919dcd84c922d1c14 | refs/heads/master | 2022-11-16T17:26:52.490254 | 2020-07-15T18:39:15 | 2020-07-15T18:39:15 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | """
Structure of if else
if predicate:
code
code
code
elif predicate2: (not cumpolsory)
code
code
elif predicate3: (not cumpolsory)
code
code
elif predicate4: (not cumpolsory)
code
code
else: (not compulsory)
code
code
elif --> else if
"""
# if 1 > 2:
# print('i am in if block')
# else:
# print('i am in else block')
#
# print('i am outside if else')
number = int(input())
if number < 5:
print('less than 5')
elif 5 <= number < 10:
print('greater than equal to 5 and less than 10')
elif 10 <= number < 20:
print('very large number')
else:
print('OMG!!!!')
print('outside if else block')
| UTF-8 | Python | false | false | 662 | py | 31 | if-else.py | 31 | 0.60574 | 0.58006 | 0 | 42 | 14.761905 | 53 |
willist/dailyprogrammer | 14,207,751,820,130 | 178f9958fa5510dc749e389ec143cf70e0643c32 | 733c57c8952a58b2a3fcaa818e56833bc0f34d8a | /049_hard.py | 35ebd749eb605a8f8cfbdd022580c26904dbf786 | []
| no_license | https://github.com/willist/dailyprogrammer | 7ad308ad2f7801f80906973eb4ba53a31754bcc8 | 70592cd27847fae87b9e35927ad4a48173ff4514 | refs/heads/master | 2020-04-01T08:12:57.865946 | 2012-05-08T14:54:34 | 2012-05-08T14:55:24 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import sys
from collections import defaultdict
from contextlib import contextmanager
from itertools import product
from math import factorial
def dice_iter(n):
for item in range(n):
yield range(1,7)
def count_sums(iterator):
counter = defaultdict(int)
for item in iterator:
if sum(item) == 5:
print item
counter[sum(item)] += 1
return counter
def dice_sums(n):
return count_sums(product(*dice_iter(n)))
@contextmanager
def no_recursion_limit():
limit = sys.getrecursionlimit()
sys.setrecursionlimit(100000)
yield
sys.setrecursionlimit(limit)
def combos(num_dice, target_sum, prev_die=None):
if num_dice == 1 and prev_die <= target_sum <= 6:
yield [target_sum]
else:
start = 1 if prev_die is None else prev_die
end = 7
for head in range(start, end):
remaining_sum = target_sum - head
remaining_dice = num_dice - 1
if remaining_dice <= remaining_sum <= (remaining_dice * 6):
for tail in combos(remaining_dice, remaining_sum, head):
yield [head] + tail
def counter(iterator):
counter = defaultdict(int)
for item in iterator:
counter[item] += 1
return counter
def j(num_dice, sum_dice):
total = 0
top = factorial(num_dice)
with no_recursion_limit():
for index, combo in enumerate(combos(num_dice, sum_dice)):
count = counter(combo)
bottoms = [factorial(c) for c in count.values()]
bottom = reduce(lambda x,y: x*y, bottoms)
sub_total = top/bottom
if not index % 100000:
print combo, sub_total
total += sub_total
return total
if __name__ == "__main__":
assert j(02, 07) == 6
assert j(02, 10) == 3
assert j(02, 12) == 1
assert j(03, 10) == 27
assert j(05, 20) == 651
assert j(07, 30) == 12117
assert j(10, 50) == 85228
print j(20, 100)
print j(1100, 5000) % pow(10,7)
| UTF-8 | Python | false | false | 2,030 | py | 5 | 049_hard.py | 5 | 0.586207 | 0.543842 | 0 | 72 | 27.194444 | 72 |
AMDevG/MarathonTrackerServer | 11,141,145,168,863 | c64bb83044613ffad6bcef87bbcccc5292107d16 | c98c1b73a30b7f9f961d5f5ff2cfcdcdb3c4d63d | /marathonapp/models.py | 2ef9f71ceed0d537f4e91f46c8007580e17096f0 | []
| no_license | https://github.com/AMDevG/MarathonTrackerServer | eb64bff7f4d030aa960b7c4506479a49be2d1d41 | 5338c4069a520c1d43f7fa635acfde50b5006e16 | refs/heads/master | 2018-12-23T13:06:14.843724 | 2018-10-16T17:12:19 | 2018-10-16T17:12:19 | 152,489,476 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from django.db import models
class RunTrain(models.Model):
date = models.DateTimeField(auto_now_add=True)
distance = models.CharField(max_length=255, null=True, blank=True, default=None)
time = models.CharField(max_length=255, null=True, blank=True, default=None)
minsPerMile = models.CharField(max_length=255, null=True, blank=True, default=None)
def __str__(self):
return '{}'.format(self.name)
class CrossTrain(models.Model):
date = models.DateTimeField(auto_now_add=True)
exercise = models.CharField(max_length=255, null=True, blank=True, default=None)
time = models.CharField(max_length=255, null=True, blank=True, default=None)
def __str__(self):
return '{}'.format(self.name)
class LiftTrain(models.Model):
date = models.DateTimeField(auto_now_add=True)
exercise = models.CharField(max_length=255, null=True, blank=True, default=None)
time = models.CharField(max_length=255, null=True, blank=True, default=None)
def __str__(self):
return '{}'.format(self.name) | UTF-8 | Python | false | false | 1,024 | py | 4 | models.py | 4 | 0.714844 | 0.694336 | 0 | 27 | 36.962963 | 84 |
JosephLevinthal/Research-projects | 5,222,680,248,812 | 50a3c182c322aacadd9983dcdd98b52d00005d25 | d554b1aa8b70fddf81da8988b4aaa43788fede88 | /5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/223/users/4444/codes/1716_2504.py | b0ca13315e36aba4d3bd53bdc18d78b27047d013 | []
| no_license | https://github.com/JosephLevinthal/Research-projects | a3bc3ca3b09faad16f5cce5949a2279cf14742ba | 60d5fd6eb864a5181f4321e7a992812f3c2139f9 | refs/heads/master | 2022-07-31T06:43:02.686109 | 2020-05-23T00:24:26 | 2020-05-23T00:24:26 | 266,199,309 | 1 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | v=int(input("quantidade de virus: "))
l=int(input("qtd leucocitos: "))
pv=float(input(" percentual de mut virus: "))
pl=float(input(" percentual de mut leococutos: "))
dias=0
i=0
while(l<=2*v):
v=v+v*pv/100
l=l+l*pl/100
i=i+1
dias=dias+1
print(dias)
| UTF-8 | Python | false | false | 256 | py | 13,190 | 1716_2504.py | 13,160 | 0.660156 | 0.617188 | 0 | 13 | 18.615385 | 50 |
oliverroick/rosi | 14,010,183,344,908 | e6ef060d5416d5c18bb801bd1f7213dc6d47563c | 143580af7e40e292ce5cf2e2c47ac3ed98721a57 | /tests/util.py | a2c5db2b6b223d9f28df45ad8d9dddc42527d061 | [
"MIT"
]
| permissive | https://github.com/oliverroick/rosi | 46e4cb68596fc79fddd8d27c1a7591fae1e7f1ab | 27cf94ae3e73c199a7533fa28937e2b25a4f6106 | refs/heads/master | 2020-03-30T12:51:21.319148 | 2018-10-06T11:20:06 | 2018-10-06T11:20:06 | 151,244,450 | 1 | 0 | MIT | false | 2018-10-06T11:01:15 | 2018-10-02T11:36:13 | 2018-10-06T10:32:45 | 2018-10-06T11:01:14 | 10 | 0 | 0 | 1 | Python | false | null | def depth(L):
return isinstance(L, list) and max(map(depth, L))+1
| UTF-8 | Python | false | false | 70 | py | 6 | util.py | 3 | 0.657143 | 0.642857 | 0 | 2 | 34 | 55 |
liana-80/flask-vue-example | 9,268,539,451,841 | 1af80ec811fde0cee0b833f4aa587890acb95e9f | 0524b31a1185272af5ab572800783c4d6362b8eb | /api_rest/privileges.py | 27ef8dcca3ba2685ea174a55e336618954978e47 | [
"MIT"
]
| permissive | https://github.com/liana-80/flask-vue-example | f17bbd922aaccc8783d582f854569a6a4b8360a1 | c0fc343312b2baf0f3009eb0c114c224d5f5deed | refs/heads/master | 2022-09-25T12:39:55.975663 | 2020-06-04T15:03:10 | 2020-06-04T15:03:10 | 269,379,966 | 0 | 0 | MIT | true | 2020-06-04T15:03:11 | 2020-06-04T14:21:37 | 2020-06-04T14:34:59 | 2020-06-04T15:03:10 | 41 | 0 | 0 | 0 | Python | false | false | # coding=utf-8
"""
desc: 定义权限
author: congqing.li
date: 2016-10-31
"""
from permission.permission import ItemPermission, VIEWNEEDS, MANAGENEEDS
# 权限管理模块的查看权限
admin_view = ItemPermission("admin", u"用户角色管理", VIEWNEEDS)
# 权限管理模块的管理权限
admin_manage = ItemPermission("admin", u"用户角色管理", MANAGENEEDS)
# 学生管理权限
student_manage = ItemPermission("student", u"学生管理", MANAGENEEDS)
| UTF-8 | Python | false | false | 473 | py | 27 | privileges.py | 25 | 0.742706 | 0.718833 | 0 | 18 | 19.944444 | 72 |
au3641/HEPY_site | 7,318,624,292,662 | ef57ad4eec2c79f236ed46d4919f8a96f69a6601 | b8b8e640ce4c5f7084a6594c71ea5c3e51afbb9d | /HEPY_django/HEPY_new/migrations/0005_auto_20170716_1903.py | 8fc1eacddc7fdf114a448bb2621afb838641cebc | []
| no_license | https://github.com/au3641/HEPY_site | 8c51a6a33a61fcac39ed11fea171e158315aae9c | 04036d5ab5480c060488617048092911dfc69f25 | refs/heads/master | 2020-05-20T15:06:10.032928 | 2017-07-24T21:30:40 | 2017-07-24T21:30:40 | 84,488,450 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # -*- coding: utf-8 -*-
# Generated by Django 1.11.3 on 2017-07-16 17:03
from __future__ import unicode_literals
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('HEPY_new', '0004_auto_20170712_0716'),
]
operations = [
migrations.AddField(
model_name='question',
name='group',
field=models.IntegerField(blank=True, null=True),
),
migrations.AlterField(
model_name='answerweight',
name='type',
field=models.CharField(choices=[('risk', 'risk'), ('hepatitis_a_b', 'hepatitis_a_b'), ('not_a_b', 'not_a_b'), ('order', 'order')], default='risk', max_length=16),
),
]
| UTF-8 | Python | false | false | 743 | py | 60 | 0005_auto_20170716_1903.py | 19 | 0.570659 | 0.523553 | 0 | 25 | 28.72 | 174 |
baehll/python-exercise | 11,493,332,511,971 | 9857286b0d593ab6737b873e9b78ecd467c86daa | ba53cac18be782295fd54f1a9558094dbec4d11d | /chapter12/managerui.py | 14532bd6f54628831a51a2e6c95a1c8f48a31490 | []
| no_license | https://github.com/baehll/python-exercise | fff775d3f8ace636709fa948acc36a80dbae3b7a | 8a1f2578e59fec5046e541ca40607dce8095e685 | refs/heads/master | 2020-03-13T16:13:17.082255 | 2018-05-15T14:11:28 | 2018-05-15T14:11:28 | 131,192,437 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #####################
# Aufgabe 1,12.4.3#
# v1.0 #
# baehll #
# 02.05.2018 #
#####################
import pickle
from musical import *
class Manager:
__menuetext = """
Musical-Manager
------------------
(n)eue Vorstellung
(U)eberblick Vorstellungen
(S)torniere Vorstellung
(E)nde
"""
def __init__(self, datei):
self.__datei = datei
self.__lade_musical()
self.__run()
def __run(self):
print(self.__menuetext)
wahl = "-"
while wahl not in ["e", "E"]:
wahl = input("Auswahl: ")
if wahl in ["n", "N"]:
self.__neueVorstellung()
elif wahl in ["u", "U"]:
print(self.__musical)
elif wahl in ["s", "S"]:
self.__storniere()
print(self.__menuetext)
print("Danke für die Benutzung vom Musical-Manager")
self.__speichern()
def __storniere(self):
datum = input("Datum der Vorstellung: ")
text = self.__musical.storniere(datum)
print(text)
def __neueVorstellung(self):
datum = input("Termin: ")
beginn = input("Beginn der Vorstellung: ")
vorstellung = Vorstellung(datum, beginn, self.__musical.saal)
self.__musical.neueVorstellung(vorstellung)
def __neuesMusical(self):
titel = input("Titel: ")
eintrittspreis = float(input("Eintrittspreis: "))
anzahl_reihen = int(input("Anzahl Sitzreihen: "))
liste = []
for i in range(anzahl_reihen):
sitze = int(input("Sitze in Reihe " + str(i + 1) + ": "))
liste.append(sitze)
saal = Saal(liste)
self.__musical = Musical(titel, eintrittspreis, saal)
def __lade_musical(self):
try:
f = open(self.__datei, "rb")
self.__musical = pickle.load(f)
f.close()
print("\n W I L L K O M M E N")
print("beim Manangement-System für das Musical", self.__musical.titel)
except:
print("Kein Musical gespeichert")
print("Richten Sie ein neues Musical ein.")
self.__neuesMusical()
def __speichern(self):
f = open(self.__datei, "wb")
pickle.dump(self.__musical, f)
f.close()
m = Manager("daten/hairspray.txt") | UTF-8 | Python | false | false | 2,385 | py | 45 | managerui.py | 43 | 0.504406 | 0.497692 | 0 | 80 | 28.8 | 82 |
mfigat/public_rshpn_tool | 1,151,051,275,070 | 81371fa5fb576508aa13a6fb0a0e0e41a2b53828 | cfd374b34a6b1a6ae16b5d23f633a0c47ae471e1 | /generated_python_code/ball_collector/teleoperated/scripts/subsystem_cs.py | a8addcfbb53cffe97cb94e2be8cea36f22e5d4af | [
"BSD-3-Clause"
]
| permissive | https://github.com/mfigat/public_rshpn_tool | dd91d12e28d31a9c97c878b4d6e0a482a9bddfb6 | 3555cb8f1eb35ef12441b9aef63dae8f578c2aa7 | refs/heads/master | 2021-11-05T23:47:08.904506 | 2021-11-02T12:26:29 | 2021-11-02T12:26:29 | 207,675,046 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/usr/bin/env python
'''
Copyright (c) 2019, Robot Control and Pattern Recognition Group, Warsaw University of Technology
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the Warsaw University of Technology nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL <COPYright HOLDER> BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Author: Maksym Figat
'''
# Import other scripts #
from auxiliary_functions import *
from auxiliary_agent_teleoperated import *
from auxiliary_subsystem_cs import *
# Temporary definitions #
IS_LOG = False # Flag determining if logs are shown in the terminal #
IS_PRINT = True # Flag indicating if debug information for developer are shown in the terminal #
class cs:
##### Subsystem cs constructor #####
def __init__(self):
self.log("__init__ function")
rospy.init_node("cs")
self._subsystemName="cs"
self._subsystemFrequency=10;
self._currentSubsystemBehaviour="Behaviour_initBehaviour";
self._subsystemIterations=0
self._behaviourIterations=0
self.initialiseCommunicationModel()
self.auxiliaryFunctions = AuxiliaryFunctions(self._subsystemFrequency)
# initialize all input flags
self._in_flag_taskCommand=False
self._in_flag_robotStatus=False
self._in_flag_ballInfoTele=False
self._in_flag_obstacleDetectedTele=False
self._in_flag_ballCollected=False
# initialize all output flags
self._out_flag_taskStatus=False
self._out_flag_desiredRobotCommandTele=False
pass
##### Start subsystem #####
def startSubsystem(self):
self.log("startSubsystem")
try:
while self.auxiliaryFunctions.isSubsystemOK():
''' Execute behaviour associated with _currentSubsystemBehaviour -- choose appropriate state based on _currentSubsystemBehaviour '''
if self._currentSubsystemBehaviour=="Behaviour_initBehaviour":
self.log("_currentSubsystemBehaviour==Behaviour_initBehaviour")
self.subsystemBehaviour_initBehaviour()
continue
if self._currentSubsystemBehaviour=="Behaviour_idleBehaviour":
self.log("_currentSubsystemBehaviour==Behaviour_idleBehaviour")
self.subsystemBehaviour_idleBehaviour()
continue
if self._currentSubsystemBehaviour=="Behaviour_terminateBehaviour":
self.log("_currentSubsystemBehaviour==Behaviour_terminateBehaviour")
self.subsystemBehaviour_terminateBehaviour()
continue
if self._currentSubsystemBehaviour=="Behaviour_terminatedBehaviour":
self.log("_currentSubsystemBehaviour==Behaviour_terminatedBehaviour")
self.subsystemBehaviour_terminatedBehaviour()
continue
if self._currentSubsystemBehaviour=="Behaviour_stopBehaviour":
self.log("_currentSubsystemBehaviour==Behaviour_stopBehaviour")
self.subsystemBehaviour_stopBehaviour()
continue
if self._currentSubsystemBehaviour=="Behaviour_moveFasterBehaviour":
self.log("_currentSubsystemBehaviour==Behaviour_moveFasterBehaviour")
self.subsystemBehaviour_moveFasterBehaviour()
continue
if self._currentSubsystemBehaviour=="Behaviour_moveSlowerBehaviour":
self.log("_currentSubsystemBehaviour==Behaviour_moveSlowerBehaviour")
self.subsystemBehaviour_moveSlowerBehaviour()
continue
if self._currentSubsystemBehaviour=="Behaviour_vacuumOnBehaviour":
self.log("_currentSubsystemBehaviour==Behaviour_vacuumOnBehaviour")
self.subsystemBehaviour_vacuumOnBehaviour()
continue
if self._currentSubsystemBehaviour=="Behaviour_vacuumOffBehaviour":
self.log("_currentSubsystemBehaviour==Behaviour_vacuumOffBehaviour")
self.subsystemBehaviour_vacuumOffBehaviour()
continue
if self._currentSubsystemBehaviour=="Behaviour_moveBackwardBehaviour":
self.log("_currentSubsystemBehaviour==Behaviour_moveBackwardBehaviour")
self.subsystemBehaviour_moveBackwardBehaviour()
continue
if self._currentSubsystemBehaviour=="Behaviour_moveFrontBehaviour":
self.log("_currentSubsystemBehaviour==Behaviour_moveFrontBehaviour")
self.subsystemBehaviour_moveFrontBehaviour()
continue
if self._currentSubsystemBehaviour=="Behaviour_moveRightBehaviour":
self.log("_currentSubsystemBehaviour==Behaviour_moveRightBehaviour")
self.subsystemBehaviour_moveRightBehaviour()
continue
if self._currentSubsystemBehaviour=="Behaviour_moveLeftBehaviour":
self.log("_currentSubsystemBehaviour==Behaviour_moveLeftBehaviour")
self.subsystemBehaviour_moveLeftBehaviour()
continue
if self._currentSubsystemBehaviour=="Behaviour_rotateLeftBehaviour":
self.log("_currentSubsystemBehaviour==Behaviour_rotateLeftBehaviour")
self.subsystemBehaviour_rotateLeftBehaviour()
continue
if self._currentSubsystemBehaviour=="Behaviour_rotateRightBehaviour":
self.log("_currentSubsystemBehaviour==Behaviour_rotateRightBehaviour")
self.subsystemBehaviour_rotateRightBehaviour()
continue
if self._currentSubsystemBehaviour=="Behaviour_whatCanYouSeeBehaviour":
self.log("_currentSubsystemBehaviour==Behaviour_whatCanYouSeeBehaviour")
self.subsystemBehaviour_whatCanYouSeeBehaviour()
continue
except Exception as e:
print e
self.error("Error found in function startSubsystem -- file subsystem_cs.py!")
pass
##### Update data for input buffer: taskCommand #####
def update_taskCommand(self, data):
self.log("update_taskCommand")
self.taskCommand=data
self._in_flag_taskCommand=True
pass
##### Update data for input buffer: ballInfoTele #####
def update_ballInfoTele(self, data):
self.log("update_ballInfoTele")
self.ballInfoTele=data
self._in_flag_ballInfoTele=True
pass
##### Update data for input buffer: obstacleDetectedTele #####
def update_obstacleDetectedTele(self, data):
self.log("update_obstacleDetectedTele")
self.obstacleDetectedTele=data
self._in_flag_obstacleDetectedTele=True
pass
##### Update data for input buffer: ballCollected #####
def update_ballCollected(self, data):
self.log("update_ballCollected")
self.ballCollected=data
self._in_flag_ballCollected=True
pass
##### Initialise communication model #####
def initialiseCommunicationModel(self):
self.log("initialiseCommunicationModel")
self.initialiseSendChannel()
self.initialiseSendChannelForDiagnostics()
self.initialiseReceiveChannel()
pass
##### Initialise send channel #####
def initialiseSendChannel(self):
self.log("initialiseSendChannel")
# Buffer name=taskStatus - Sender using NON-BLOCKING mode, receiver using NON-BLOCKING mode
self._sender_taskStatus=rospy.Publisher("taskStatusChannelTele", String, queue_size=CHANNEL_SIZE)
# Buffer name=desiredRobotCommandTele - Sender using NON-BLOCKING mode, receiver using NON-BLOCKING mode
self._sender_desiredRobotCommandTele=rospy.Publisher("desiredRobotCommandChannelTele", String, queue_size=CHANNEL_SIZE)
pass
##### Initialise send channel for diagnostics #####
def initialiseSendChannelForDiagnostics(self):
self.log("initialiseSendChannelForDiagnostics")
self._vectorOfSenderDiagnostics=[]
self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_currentSubsystemBehaviour', String, queue_size=CHANNEL_SIZE))
self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_subsystemFrequency', Float64, queue_size=CHANNEL_SIZE))
self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_subsystemName', String, queue_size=CHANNEL_SIZE))
self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_subsystemIterations', Int64, queue_size=CHANNEL_SIZE))
self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_behaviourIterations', Int64, queue_size=CHANNEL_SIZE))
self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/isNewCommandReceived', Int64, queue_size=CHANNEL_SIZE))
self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_in_flag_taskCommand', Bool, queue_size=CHANNEL_SIZE))
self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_in_flag_robotStatus', Bool, queue_size=CHANNEL_SIZE))
self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_in_flag_ballInfoTele', Bool, queue_size=CHANNEL_SIZE))
self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_in_flag_obstacleDetectedTele', Bool, queue_size=CHANNEL_SIZE))
self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_in_flag_ballCollected', Bool, queue_size=CHANNEL_SIZE))
self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_out_flag_taskStatus', Bool, queue_size=CHANNEL_SIZE))
self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_out_flag_desiredRobotCommandTele', Bool, queue_size=CHANNEL_SIZE))
pass
##### Initialise receive channel based on input buffers #####
def initialiseReceiveChannel(self):
self.log("initialiseReceiveChannel")
# Buffer name=taskCommand sender NON-BLOCKING mode - receiver NON-BLOCKING mode
self._subscriber_taskCommand=rospy.Subscriber("taskCommandChannel", String, self.update_taskCommand)
# Buffer name=ballInfoTele sender NON-BLOCKING mode - receiver NON-BLOCKING mode
self._subscriber_ballInfoTele=rospy.Subscriber("ballInfoChannelTele", CameraMessage, self.update_ballInfoTele)
# Buffer name=obstacleDetectedTele sender NON-BLOCKING mode - receiver NON-BLOCKING mode
self._subscriber_obstacleDetectedTele=rospy.Subscriber("obstacleDetectedChannelTele", ObstacleDetected, self.update_obstacleDetectedTele)
# Buffer name=ballCollected sender NON-BLOCKING mode - receiver NON-BLOCKING mode
self._subscriber_ballCollected=rospy.Subscriber("ballCollectedChannelTele", Bool, self.update_ballCollected)
pass
##### Wait for all messages #####
def waitForAllMessages(self):
self.log("waitForAllMessages")
#rospy.wait_for_message("", String, timeout=TOPIC_TIMEOUT)
#rospy.wait_for_message("", String, timeout=TOPIC_TIMEOUT)
#rospy.wait_for_message("", CameraMessage, timeout=TOPIC_TIMEOUT)
#rospy.wait_for_message("", ObstacleDetected, timeout=TOPIC_TIMEOUT)
#rospy.wait_for_message("", Bool, timeout=TOPIC_TIMEOUT)
pass
##### Publish on topics diagnostic data concerning the subsystem state #####
def sendDataForDiagnostics(self):
self._vectorOfSenderDiagnostics[0].publish(self._currentSubsystemBehaviour)
self._vectorOfSenderDiagnostics[1].publish(self._subsystemFrequency)
self._vectorOfSenderDiagnostics[2].publish(self._subsystemName)
self._vectorOfSenderDiagnostics[3].publish(self._subsystemIterations)
self._vectorOfSenderDiagnostics[4].publish(self._behaviourIterations)
###### internal state #####
if(12 < len(self._vectorOfSenderDiagnostics) ):
self._vectorOfSenderDiagnostics[5].publish(self.isNewCommandReceived)
self._vectorOfSenderDiagnostics[6].publish(self._in_flag_taskCommand)
self._vectorOfSenderDiagnostics[7].publish(self._in_flag_robotStatus)
self._vectorOfSenderDiagnostics[8].publish(self._in_flag_ballInfoTele)
self._vectorOfSenderDiagnostics[9].publish(self._in_flag_obstacleDetectedTele)
self._vectorOfSenderDiagnostics[10].publish(self._in_flag_ballCollected)
self._vectorOfSenderDiagnostics[11].publish(self._out_flag_taskStatus)
self._vectorOfSenderDiagnostics[12].publish(self._out_flag_desiredRobotCommandTele)
pass
##### Behaviour definitions #####
##### Behaviour initBehaviour #####
##### Terminal condition #####
def terminalCondition_initBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour initBehaviour] -- Checking Terminal Condition")
return True
pass
##### Error condition #####
def errorCondition_initBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour initBehaviour] -- Checking Error Condition")
return False
pass
##### Transition function #####
def transitionFunction_initBehaviour(self):
self.log("[Behaviour initBehaviour] -- Calculating Transition Function")
# Transition function #
self.log("TRANSITION FUNCTION - initBehaviour consists of the following partial transition functions (decomposition based on output buffers)")
# Partial transition function call: fun1
self.transitionFunction_initBehaviour_fun1()
# Partial transition function call: set_buffer_flags_function
self.transitionFunction_initBehaviour_set_buffer_flags_function()
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_initBehaviour_fun1(self):
self.log("[Behaviour initBehaviour] -- Calculating Partial Transition Function fun1")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - initBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_initBehaviour_fun1_0()
pass
##### Partial transition function: fun1_0 based on input buffers True #####
def transitionFunction_initBehaviour_fun1_0(self):
self.log("[Behaviour initBehaviour] -- Calculating Partial Transition Function fun1_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - initBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
print("[CS - teleoperated] -- initBehaviour")
self.taskCommand=String("empty")
self.taskStatus=String("empty")
self.desiredRobotCommandTele=String("empty")
self.robotStatus=String("empty")
self.isNewCommandReceived=Int64(0)
# End - Partial Transition Function Code
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_initBehaviour_set_buffer_flags_function(self):
self.log("[Behaviour initBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - initBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_initBehaviour_set_buffer_flags_function_0()
pass
##### Partial transition function: set_buffer_flags_function_0 based on input buffers True #####
def transitionFunction_initBehaviour_set_buffer_flags_function_0(self):
self.log("[Behaviour initBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - initBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
# End - Partial Transition Function Code
pass
##### End of transition function #####
##### Send data to other subsystems #####
def sendData_initBehaviour(self):
self.log("[Behaviour initBehaviour] -- Sending Data")
# DIAGNOSTICS SEND #
self.sendDataForDiagnostics()
# END OF DIAGNOSTICS SEND #
# TYPICAL SEND CALL #
# check if output buffer taskStatus has new data - i.e. is ready to send new data
if( self._out_flag_taskStatus ):
# send data from output buffer taskStatus
# Buffer taskStatus - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_taskStatus.publish(self.taskStatus) # sending data from output buffer taskStatus #
# indicate that data was sent and now the output buffer taskStatus is empty
self._out_flag_taskStatus=False
# check if output buffer desiredRobotCommandTele has new data - i.e. is ready to send new data
if( self._out_flag_desiredRobotCommandTele ):
# send data from output buffer desiredRobotCommandTele
# Buffer desiredRobotCommandTele - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_desiredRobotCommandTele.publish(self.desiredRobotCommandTele) # sending data from output buffer desiredRobotCommandTele #
# indicate that data was sent and now the output buffer desiredRobotCommandTele is empty
self._out_flag_desiredRobotCommandTele=False
# END OF TYPICAL SEND CALL #
# BEGIN OF BODY SEND CALL #
# END OF BODY SEND CALL #
pass
##### Receive data from other subsystems #####
def receiveData_initBehaviour(self):
self.log("[Behaviour initBehaviour] -- Receiving Data")
# TYPICAL RECEIVE CALL #
# Buffer taskCommand - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer taskCommand
# Buffer ballInfoTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballInfoTele
# Buffer obstacleDetectedTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer obstacleDetectedTele
# Buffer ballCollected - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballCollected
self.waitForAllMessages() #
# END OF TYPICAL RECEIVE CALL #
# BEGIN OF RECEIVE BODY CALL #
# END OF RECEIVE BODY CALL #
pass
##### Execute behaviour initBehaviour #####
def executeBehaviour_initBehaviour(self):
self.log("[Behaviour initBehaviour] -- Executing initBehaviour Behaviour")
stopBehaviourIteration=False
# Execution of a single iteration of a behaviour initBehaviour #
_behaviourIterations=0
# Starts execution! #
while True:
# Sleep is a method from class AuxiliaryFunctions which executes sleep from ROS #
self.auxiliaryFunctions.sleep()
# Calculates transition function -- output and internal buffers can only be modified by this function! #
self.transitionFunction_initBehaviour()
# Sends data! #
self.sendData_initBehaviour()
# Updates index! -- i.e. i:i+1 -- increment number of behaviour iterations and number of subsystem iterations #
self._behaviourIterations=self._behaviourIterations+1
# Receives data! #
self.receiveData_initBehaviour()
# Check both conditions, i.e. terminal condition and error condition #
stopBehaviourIteration = self.terminalCondition_initBehaviour() or self.errorCondition_initBehaviour()
if stopBehaviourIteration or not self.auxiliaryFunctions.isSubsystemOK():
'''
Iterate within the while loop until stopBehaviourIteration is set true, i.e. one
of error and terminal condition is fulfilled and isSubsystemOK is true. Otherwise
subsystem must have been switched to another state or SIGINT was sent
'''
break
# Stops execution! #
pass
##### Behaviour idleBehaviour #####
##### Terminal condition #####
def terminalCondition_idleBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour idleBehaviour] -- Checking Terminal Condition")
return checkCommand(self.taskCommand.data) and self.isNewCommandReceived.data>0
pass
##### Error condition #####
def errorCondition_idleBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour idleBehaviour] -- Checking Error Condition")
return False
pass
##### Transition function #####
def transitionFunction_idleBehaviour(self):
self.log("[Behaviour idleBehaviour] -- Calculating Transition Function")
# Transition function #
self.log("TRANSITION FUNCTION - idleBehaviour consists of the following partial transition functions (decomposition based on output buffers)")
# Partial transition function call: fun1
self.transitionFunction_idleBehaviour_fun1()
# Partial transition function call: set_buffer_flags_function
self.transitionFunction_idleBehaviour_set_buffer_flags_function()
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_idleBehaviour_fun1(self):
self.log("[Behaviour idleBehaviour] -- Calculating Partial Transition Function fun1")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - idleBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if self._in_flag_taskCommand:
self.transitionFunction_idleBehaviour_fun1_0()
elif not (self._in_flag_taskCommand):
self.transitionFunction_idleBehaviour_fun1_1()
pass
##### Partial transition function: fun1_0 based on input buffers self._in_flag_taskCommand #####
def transitionFunction_idleBehaviour_fun1_0(self):
self.log("[Behaviour idleBehaviour] -- Calculating Partial Transition Function fun1_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - idleBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
print("[CS - teleoperated] -- idleBehaviour - TRUE")
self.isNewCommandReceived.data=1
# End - Partial Transition Function Code
pass
##### Partial transition function: fun1_1 based on input buffers not (self._in_flag_taskCommand) #####
def transitionFunction_idleBehaviour_fun1_1(self):
self.log("[Behaviour idleBehaviour] -- Calculating Partial Transition Function fun1_1")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - idleBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
print("[CS - teleoperated] -- idleBehaviour - FALSE")
self.isNewCommandReceived.data=0
# End - Partial Transition Function Code
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_idleBehaviour_set_buffer_flags_function(self):
self.log("[Behaviour idleBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - idleBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_idleBehaviour_set_buffer_flags_function_0()
pass
##### Partial transition function: set_buffer_flags_function_0 based on input buffers True #####
def transitionFunction_idleBehaviour_set_buffer_flags_function_0(self):
self.log("[Behaviour idleBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - idleBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
self._in_flag_taskCommand=False
# End - Partial Transition Function Code
pass
##### End of transition function #####
##### Send data to other subsystems #####
def sendData_idleBehaviour(self):
self.log("[Behaviour idleBehaviour] -- Sending Data")
# DIAGNOSTICS SEND #
self.sendDataForDiagnostics()
# END OF DIAGNOSTICS SEND #
# TYPICAL SEND CALL #
# check if output buffer taskStatus has new data - i.e. is ready to send new data
if( self._out_flag_taskStatus ):
# send data from output buffer taskStatus
# Buffer taskStatus - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_taskStatus.publish(self.taskStatus) # sending data from output buffer taskStatus #
# indicate that data was sent and now the output buffer taskStatus is empty
self._out_flag_taskStatus=False
# check if output buffer desiredRobotCommandTele has new data - i.e. is ready to send new data
if( self._out_flag_desiredRobotCommandTele ):
# send data from output buffer desiredRobotCommandTele
# Buffer desiredRobotCommandTele - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_desiredRobotCommandTele.publish(self.desiredRobotCommandTele) # sending data from output buffer desiredRobotCommandTele #
# indicate that data was sent and now the output buffer desiredRobotCommandTele is empty
self._out_flag_desiredRobotCommandTele=False
# END OF TYPICAL SEND CALL #
# BEGIN OF BODY SEND CALL #
# END OF BODY SEND CALL #
pass
##### Receive data from other subsystems #####
def receiveData_idleBehaviour(self):
self.log("[Behaviour idleBehaviour] -- Receiving Data")
# TYPICAL RECEIVE CALL #
# Buffer taskCommand - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer taskCommand
# Buffer ballInfoTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballInfoTele
# Buffer obstacleDetectedTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer obstacleDetectedTele
# Buffer ballCollected - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballCollected
self.waitForAllMessages() #
# END OF TYPICAL RECEIVE CALL #
# BEGIN OF RECEIVE BODY CALL #
# END OF RECEIVE BODY CALL #
pass
##### Execute behaviour idleBehaviour #####
def executeBehaviour_idleBehaviour(self):
self.log("[Behaviour idleBehaviour] -- Executing idleBehaviour Behaviour")
stopBehaviourIteration=False
# Execution of a single iteration of a behaviour idleBehaviour #
_behaviourIterations=0
# Starts execution! #
while True:
# Sleep is a method from class AuxiliaryFunctions which executes sleep from ROS #
self.auxiliaryFunctions.sleep()
# Calculates transition function -- output and internal buffers can only be modified by this function! #
self.transitionFunction_idleBehaviour()
# Sends data! #
self.sendData_idleBehaviour()
# Updates index! -- i.e. i:i+1 -- increment number of behaviour iterations and number of subsystem iterations #
self._behaviourIterations=self._behaviourIterations+1
# Receives data! #
self.receiveData_idleBehaviour()
# Check both conditions, i.e. terminal condition and error condition #
stopBehaviourIteration = self.terminalCondition_idleBehaviour() or self.errorCondition_idleBehaviour()
if stopBehaviourIteration or not self.auxiliaryFunctions.isSubsystemOK():
'''
Iterate within the while loop until stopBehaviourIteration is set true, i.e. one
of error and terminal condition is fulfilled and isSubsystemOK is true. Otherwise
subsystem must have been switched to another state or SIGINT was sent
'''
break
# Stops execution! #
pass
##### Behaviour terminateBehaviour #####
##### Terminal condition #####
def terminalCondition_terminateBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour terminateBehaviour] -- Checking Terminal Condition")
return False
pass
##### Error condition #####
def errorCondition_terminateBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour terminateBehaviour] -- Checking Error Condition")
return False
pass
##### Transition function #####
def transitionFunction_terminateBehaviour(self):
self.log("[Behaviour terminateBehaviour] -- Calculating Transition Function")
# Transition function #
self.log("TRANSITION FUNCTION - terminateBehaviour consists of the following partial transition functions (decomposition based on output buffers)")
# Partial transition function call: fun1
self.transitionFunction_terminateBehaviour_fun1()
# Partial transition function call: set_buffer_flags_function
self.transitionFunction_terminateBehaviour_set_buffer_flags_function()
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_terminateBehaviour_fun1(self):
self.log("[Behaviour terminateBehaviour] -- Calculating Partial Transition Function fun1")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - terminateBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_terminateBehaviour_fun1_0()
pass
##### Partial transition function: fun1_0 based on input buffers True #####
def transitionFunction_terminateBehaviour_fun1_0(self):
self.log("[Behaviour terminateBehaviour] -- Calculating Partial Transition Function fun1_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - terminateBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
self._out_flag_taskStatus=True
self._out_flag_desiredRobotCommandTele=True
print("[CS - teleoperated] -- terminateBehaviour")
if(self.taskStatus.data=="task terminated"):
self._out_flag_taskStatus=False
self._out_flag_desiredRobotCommandTele=False
else:
self.taskStatus.data="task terminated"
self.desiredRobotCommandTele.data="terminate"
# End - Partial Transition Function Code
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_terminateBehaviour_set_buffer_flags_function(self):
self.log("[Behaviour terminateBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - terminateBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_terminateBehaviour_set_buffer_flags_function_0()
pass
##### Partial transition function: set_buffer_flags_function_0 based on input buffers True #####
def transitionFunction_terminateBehaviour_set_buffer_flags_function_0(self):
self.log("[Behaviour terminateBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - terminateBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
# End - Partial Transition Function Code
pass
##### End of transition function #####
##### Send data to other subsystems #####
def sendData_terminateBehaviour(self):
self.log("[Behaviour terminateBehaviour] -- Sending Data")
# DIAGNOSTICS SEND #
self.sendDataForDiagnostics()
# END OF DIAGNOSTICS SEND #
# TYPICAL SEND CALL #
# check if output buffer taskStatus has new data - i.e. is ready to send new data
if( self._out_flag_taskStatus ):
# send data from output buffer taskStatus
# Buffer taskStatus - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_taskStatus.publish(self.taskStatus) # sending data from output buffer taskStatus #
# indicate that data was sent and now the output buffer taskStatus is empty
self._out_flag_taskStatus=False
# check if output buffer desiredRobotCommandTele has new data - i.e. is ready to send new data
if( self._out_flag_desiredRobotCommandTele ):
# send data from output buffer desiredRobotCommandTele
# Buffer desiredRobotCommandTele - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_desiredRobotCommandTele.publish(self.desiredRobotCommandTele) # sending data from output buffer desiredRobotCommandTele #
# indicate that data was sent and now the output buffer desiredRobotCommandTele is empty
self._out_flag_desiredRobotCommandTele=False
# END OF TYPICAL SEND CALL #
# BEGIN OF BODY SEND CALL #
# END OF BODY SEND CALL #
pass
##### Receive data from other subsystems #####
def receiveData_terminateBehaviour(self):
self.log("[Behaviour terminateBehaviour] -- Receiving Data")
# TYPICAL RECEIVE CALL #
# Buffer taskCommand - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer taskCommand
# Buffer ballInfoTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballInfoTele
# Buffer obstacleDetectedTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer obstacleDetectedTele
# Buffer ballCollected - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballCollected
self.waitForAllMessages() #
# END OF TYPICAL RECEIVE CALL #
# BEGIN OF RECEIVE BODY CALL #
# END OF RECEIVE BODY CALL #
pass
##### Execute behaviour terminateBehaviour #####
def executeBehaviour_terminateBehaviour(self):
self.log("[Behaviour terminateBehaviour] -- Executing terminateBehaviour Behaviour")
stopBehaviourIteration=False
# Execution of a single iteration of a behaviour terminateBehaviour #
_behaviourIterations=0
# Starts execution! #
while True:
# Sleep is a method from class AuxiliaryFunctions which executes sleep from ROS #
self.auxiliaryFunctions.sleep()
# Calculates transition function -- output and internal buffers can only be modified by this function! #
self.transitionFunction_terminateBehaviour()
# Sends data! #
self.sendData_terminateBehaviour()
# Updates index! -- i.e. i:i+1 -- increment number of behaviour iterations and number of subsystem iterations #
self._behaviourIterations=self._behaviourIterations+1
# Receives data! #
self.receiveData_terminateBehaviour()
# Check both conditions, i.e. terminal condition and error condition #
stopBehaviourIteration = self.terminalCondition_terminateBehaviour() or self.errorCondition_terminateBehaviour()
if stopBehaviourIteration or not self.auxiliaryFunctions.isSubsystemOK():
'''
Iterate within the while loop until stopBehaviourIteration is set true, i.e. one
of error and terminal condition is fulfilled and isSubsystemOK is true. Otherwise
subsystem must have been switched to another state or SIGINT was sent
'''
break
# Stops execution! #
pass
##### Behaviour terminatedBehaviour #####
##### Terminal condition #####
def terminalCondition_terminatedBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour terminatedBehaviour] -- Checking Terminal Condition")
return False
pass
##### Error condition #####
def errorCondition_terminatedBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour terminatedBehaviour] -- Checking Error Condition")
return False
pass
##### Transition function #####
def transitionFunction_terminatedBehaviour(self):
self.log("[Behaviour terminatedBehaviour] -- Calculating Transition Function")
# Transition function #
self.log("TRANSITION FUNCTION - terminatedBehaviour consists of the following partial transition functions (decomposition based on output buffers)")
# Partial transition function call: fun1
self.transitionFunction_terminatedBehaviour_fun1()
# Partial transition function call: set_buffer_flags_function
self.transitionFunction_terminatedBehaviour_set_buffer_flags_function()
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_terminatedBehaviour_fun1(self):
self.log("[Behaviour terminatedBehaviour] -- Calculating Partial Transition Function fun1")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - terminatedBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_terminatedBehaviour_fun1_0()
pass
##### Partial transition function: fun1_0 based on input buffers True #####
def transitionFunction_terminatedBehaviour_fun1_0(self):
self.log("[Behaviour terminatedBehaviour] -- Calculating Partial Transition Function fun1_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - terminatedBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
print("[CS - teleoperated] -- terminatedBehaviour")
# End - Partial Transition Function Code
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_terminatedBehaviour_set_buffer_flags_function(self):
self.log("[Behaviour terminatedBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - terminatedBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_terminatedBehaviour_set_buffer_flags_function_0()
pass
##### Partial transition function: set_buffer_flags_function_0 based on input buffers True #####
def transitionFunction_terminatedBehaviour_set_buffer_flags_function_0(self):
self.log("[Behaviour terminatedBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - terminatedBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
# End - Partial Transition Function Code
pass
##### End of transition function #####
##### Send data to other subsystems #####
def sendData_terminatedBehaviour(self):
self.log("[Behaviour terminatedBehaviour] -- Sending Data")
# DIAGNOSTICS SEND #
self.sendDataForDiagnostics()
# END OF DIAGNOSTICS SEND #
# TYPICAL SEND CALL #
# check if output buffer taskStatus has new data - i.e. is ready to send new data
if( self._out_flag_taskStatus ):
# send data from output buffer taskStatus
# Buffer taskStatus - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_taskStatus.publish(self.taskStatus) # sending data from output buffer taskStatus #
# indicate that data was sent and now the output buffer taskStatus is empty
self._out_flag_taskStatus=False
# check if output buffer desiredRobotCommandTele has new data - i.e. is ready to send new data
if( self._out_flag_desiredRobotCommandTele ):
# send data from output buffer desiredRobotCommandTele
# Buffer desiredRobotCommandTele - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_desiredRobotCommandTele.publish(self.desiredRobotCommandTele) # sending data from output buffer desiredRobotCommandTele #
# indicate that data was sent and now the output buffer desiredRobotCommandTele is empty
self._out_flag_desiredRobotCommandTele=False
# END OF TYPICAL SEND CALL #
# BEGIN OF BODY SEND CALL #
# END OF BODY SEND CALL #
pass
##### Receive data from other subsystems #####
def receiveData_terminatedBehaviour(self):
self.log("[Behaviour terminatedBehaviour] -- Receiving Data")
# TYPICAL RECEIVE CALL #
# Buffer taskCommand - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer taskCommand
# Buffer ballInfoTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballInfoTele
# Buffer obstacleDetectedTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer obstacleDetectedTele
# Buffer ballCollected - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballCollected
self.waitForAllMessages() #
# END OF TYPICAL RECEIVE CALL #
# BEGIN OF RECEIVE BODY CALL #
# END OF RECEIVE BODY CALL #
pass
##### Execute behaviour terminatedBehaviour #####
def executeBehaviour_terminatedBehaviour(self):
self.log("[Behaviour terminatedBehaviour] -- Executing terminatedBehaviour Behaviour")
stopBehaviourIteration=False
# Execution of a single iteration of a behaviour terminatedBehaviour #
_behaviourIterations=0
# Starts execution! #
while True:
# Sleep is a method from class AuxiliaryFunctions which executes sleep from ROS #
self.auxiliaryFunctions.sleep()
# Calculates transition function -- output and internal buffers can only be modified by this function! #
self.transitionFunction_terminatedBehaviour()
# Sends data! #
self.sendData_terminatedBehaviour()
# Updates index! -- i.e. i:i+1 -- increment number of behaviour iterations and number of subsystem iterations #
self._behaviourIterations=self._behaviourIterations+1
# Receives data! #
self.receiveData_terminatedBehaviour()
# Check both conditions, i.e. terminal condition and error condition #
stopBehaviourIteration = self.terminalCondition_terminatedBehaviour() or self.errorCondition_terminatedBehaviour()
if stopBehaviourIteration or not self.auxiliaryFunctions.isSubsystemOK():
'''
Iterate within the while loop until stopBehaviourIteration is set true, i.e. one
of error and terminal condition is fulfilled and isSubsystemOK is true. Otherwise
subsystem must have been switched to another state or SIGINT was sent
'''
break
# Stops execution! #
pass
##### Behaviour stopBehaviour #####
##### Terminal condition #####
def terminalCondition_stopBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour stopBehaviour] -- Checking Terminal Condition")
return True
pass
##### Error condition #####
def errorCondition_stopBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour stopBehaviour] -- Checking Error Condition")
return False
pass
##### Transition function #####
def transitionFunction_stopBehaviour(self):
self.log("[Behaviour stopBehaviour] -- Calculating Transition Function")
# Transition function #
self.log("TRANSITION FUNCTION - stopBehaviour consists of the following partial transition functions (decomposition based on output buffers)")
# Partial transition function call: fun1
self.transitionFunction_stopBehaviour_fun1()
# Partial transition function call: set_buffer_flags_function
self.transitionFunction_stopBehaviour_set_buffer_flags_function()
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_stopBehaviour_fun1(self):
self.log("[Behaviour stopBehaviour] -- Calculating Partial Transition Function fun1")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - stopBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_stopBehaviour_fun1_0()
pass
##### Partial transition function: fun1_0 based on input buffers True #####
def transitionFunction_stopBehaviour_fun1_0(self):
self.log("[Behaviour stopBehaviour] -- Calculating Partial Transition Function fun1_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - stopBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
self._out_flag_taskStatus=True
self._out_flag_desiredRobotCommandTele=True
print("[CS - teleoperated] -- stopBehaviour")
self.desiredRobotCommandTele.data="stop"
self.taskStatus.data="task status: stop robot"
# End - Partial Transition Function Code
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_stopBehaviour_set_buffer_flags_function(self):
self.log("[Behaviour stopBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - stopBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_stopBehaviour_set_buffer_flags_function_0()
pass
##### Partial transition function: set_buffer_flags_function_0 based on input buffers True #####
def transitionFunction_stopBehaviour_set_buffer_flags_function_0(self):
self.log("[Behaviour stopBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - stopBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
# End - Partial Transition Function Code
pass
##### End of transition function #####
##### Send data to other subsystems #####
def sendData_stopBehaviour(self):
self.log("[Behaviour stopBehaviour] -- Sending Data")
# DIAGNOSTICS SEND #
self.sendDataForDiagnostics()
# END OF DIAGNOSTICS SEND #
# TYPICAL SEND CALL #
# check if output buffer taskStatus has new data - i.e. is ready to send new data
if( self._out_flag_taskStatus ):
# send data from output buffer taskStatus
# Buffer taskStatus - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_taskStatus.publish(self.taskStatus) # sending data from output buffer taskStatus #
# indicate that data was sent and now the output buffer taskStatus is empty
self._out_flag_taskStatus=False
# check if output buffer desiredRobotCommandTele has new data - i.e. is ready to send new data
if( self._out_flag_desiredRobotCommandTele ):
# send data from output buffer desiredRobotCommandTele
# Buffer desiredRobotCommandTele - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_desiredRobotCommandTele.publish(self.desiredRobotCommandTele) # sending data from output buffer desiredRobotCommandTele #
# indicate that data was sent and now the output buffer desiredRobotCommandTele is empty
self._out_flag_desiredRobotCommandTele=False
# END OF TYPICAL SEND CALL #
# BEGIN OF BODY SEND CALL #
# END OF BODY SEND CALL #
pass
##### Receive data from other subsystems #####
def receiveData_stopBehaviour(self):
self.log("[Behaviour stopBehaviour] -- Receiving Data")
# TYPICAL RECEIVE CALL #
# Buffer taskCommand - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer taskCommand
# Buffer ballInfoTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballInfoTele
# Buffer obstacleDetectedTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer obstacleDetectedTele
# Buffer ballCollected - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballCollected
self.waitForAllMessages() #
# END OF TYPICAL RECEIVE CALL #
# BEGIN OF RECEIVE BODY CALL #
# END OF RECEIVE BODY CALL #
pass
##### Execute behaviour stopBehaviour #####
def executeBehaviour_stopBehaviour(self):
self.log("[Behaviour stopBehaviour] -- Executing stopBehaviour Behaviour")
stopBehaviourIteration=False
# Execution of a single iteration of a behaviour stopBehaviour #
_behaviourIterations=0
# Starts execution! #
while True:
# Sleep is a method from class AuxiliaryFunctions which executes sleep from ROS #
self.auxiliaryFunctions.sleep()
# Calculates transition function -- output and internal buffers can only be modified by this function! #
self.transitionFunction_stopBehaviour()
# Sends data! #
self.sendData_stopBehaviour()
# Updates index! -- i.e. i:i+1 -- increment number of behaviour iterations and number of subsystem iterations #
self._behaviourIterations=self._behaviourIterations+1
# Receives data! #
self.receiveData_stopBehaviour()
# Check both conditions, i.e. terminal condition and error condition #
stopBehaviourIteration = self.terminalCondition_stopBehaviour() or self.errorCondition_stopBehaviour()
if stopBehaviourIteration or not self.auxiliaryFunctions.isSubsystemOK():
'''
Iterate within the while loop until stopBehaviourIteration is set true, i.e. one
of error and terminal condition is fulfilled and isSubsystemOK is true. Otherwise
subsystem must have been switched to another state or SIGINT was sent
'''
break
# Stops execution! #
pass
##### Behaviour moveFasterBehaviour #####
##### Terminal condition #####
def terminalCondition_moveFasterBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour moveFasterBehaviour] -- Checking Terminal Condition")
return True
pass
##### Error condition #####
def errorCondition_moveFasterBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour moveFasterBehaviour] -- Checking Error Condition")
return False
pass
##### Transition function #####
def transitionFunction_moveFasterBehaviour(self):
self.log("[Behaviour moveFasterBehaviour] -- Calculating Transition Function")
# Transition function #
self.log("TRANSITION FUNCTION - moveFasterBehaviour consists of the following partial transition functions (decomposition based on output buffers)")
# Partial transition function call: fun1
self.transitionFunction_moveFasterBehaviour_fun1()
# Partial transition function call: set_buffer_flags_function
self.transitionFunction_moveFasterBehaviour_set_buffer_flags_function()
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_moveFasterBehaviour_fun1(self):
self.log("[Behaviour moveFasterBehaviour] -- Calculating Partial Transition Function fun1")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - moveFasterBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_moveFasterBehaviour_fun1_0()
pass
##### Partial transition function: fun1_0 based on input buffers True #####
def transitionFunction_moveFasterBehaviour_fun1_0(self):
self.log("[Behaviour moveFasterBehaviour] -- Calculating Partial Transition Function fun1_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - moveFasterBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
self._out_flag_taskStatus=True
self._out_flag_desiredRobotCommandTele=True
print("[CS - teleoperated] -- moveFasterBehaviour")
self.desiredRobotCommandTele.data="move faster"
self.taskStatus.data="task status: move faster"
# End - Partial Transition Function Code
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_moveFasterBehaviour_set_buffer_flags_function(self):
self.log("[Behaviour moveFasterBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - moveFasterBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_moveFasterBehaviour_set_buffer_flags_function_0()
pass
##### Partial transition function: set_buffer_flags_function_0 based on input buffers True #####
def transitionFunction_moveFasterBehaviour_set_buffer_flags_function_0(self):
self.log("[Behaviour moveFasterBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - moveFasterBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
# End - Partial Transition Function Code
pass
##### End of transition function #####
##### Send data to other subsystems #####
def sendData_moveFasterBehaviour(self):
self.log("[Behaviour moveFasterBehaviour] -- Sending Data")
# DIAGNOSTICS SEND #
self.sendDataForDiagnostics()
# END OF DIAGNOSTICS SEND #
# TYPICAL SEND CALL #
# check if output buffer taskStatus has new data - i.e. is ready to send new data
if( self._out_flag_taskStatus ):
# send data from output buffer taskStatus
# Buffer taskStatus - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_taskStatus.publish(self.taskStatus) # sending data from output buffer taskStatus #
# indicate that data was sent and now the output buffer taskStatus is empty
self._out_flag_taskStatus=False
# check if output buffer desiredRobotCommandTele has new data - i.e. is ready to send new data
if( self._out_flag_desiredRobotCommandTele ):
# send data from output buffer desiredRobotCommandTele
# Buffer desiredRobotCommandTele - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_desiredRobotCommandTele.publish(self.desiredRobotCommandTele) # sending data from output buffer desiredRobotCommandTele #
# indicate that data was sent and now the output buffer desiredRobotCommandTele is empty
self._out_flag_desiredRobotCommandTele=False
# END OF TYPICAL SEND CALL #
# BEGIN OF BODY SEND CALL #
# END OF BODY SEND CALL #
pass
##### Receive data from other subsystems #####
def receiveData_moveFasterBehaviour(self):
self.log("[Behaviour moveFasterBehaviour] -- Receiving Data")
# TYPICAL RECEIVE CALL #
# Buffer taskCommand - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer taskCommand
# Buffer ballInfoTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballInfoTele
# Buffer obstacleDetectedTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer obstacleDetectedTele
# Buffer ballCollected - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballCollected
self.waitForAllMessages() #
# END OF TYPICAL RECEIVE CALL #
# BEGIN OF RECEIVE BODY CALL #
# END OF RECEIVE BODY CALL #
pass
##### Execute behaviour moveFasterBehaviour #####
def executeBehaviour_moveFasterBehaviour(self):
self.log("[Behaviour moveFasterBehaviour] -- Executing moveFasterBehaviour Behaviour")
stopBehaviourIteration=False
# Execution of a single iteration of a behaviour moveFasterBehaviour #
_behaviourIterations=0
# Starts execution! #
while True:
# Sleep is a method from class AuxiliaryFunctions which executes sleep from ROS #
self.auxiliaryFunctions.sleep()
# Calculates transition function -- output and internal buffers can only be modified by this function! #
self.transitionFunction_moveFasterBehaviour()
# Sends data! #
self.sendData_moveFasterBehaviour()
# Updates index! -- i.e. i:i+1 -- increment number of behaviour iterations and number of subsystem iterations #
self._behaviourIterations=self._behaviourIterations+1
# Receives data! #
self.receiveData_moveFasterBehaviour()
# Check both conditions, i.e. terminal condition and error condition #
stopBehaviourIteration = self.terminalCondition_moveFasterBehaviour() or self.errorCondition_moveFasterBehaviour()
if stopBehaviourIteration or not self.auxiliaryFunctions.isSubsystemOK():
'''
Iterate within the while loop until stopBehaviourIteration is set true, i.e. one
of error and terminal condition is fulfilled and isSubsystemOK is true. Otherwise
subsystem must have been switched to another state or SIGINT was sent
'''
break
# Stops execution! #
pass
##### Behaviour moveSlowerBehaviour #####
##### Terminal condition #####
def terminalCondition_moveSlowerBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour moveSlowerBehaviour] -- Checking Terminal Condition")
return True
pass
##### Error condition #####
def errorCondition_moveSlowerBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour moveSlowerBehaviour] -- Checking Error Condition")
return False
pass
##### Transition function #####
def transitionFunction_moveSlowerBehaviour(self):
self.log("[Behaviour moveSlowerBehaviour] -- Calculating Transition Function")
# Transition function #
self.log("TRANSITION FUNCTION - moveSlowerBehaviour consists of the following partial transition functions (decomposition based on output buffers)")
# Partial transition function call: fun1
self.transitionFunction_moveSlowerBehaviour_fun1()
# Partial transition function call: set_buffer_flags_function
self.transitionFunction_moveSlowerBehaviour_set_buffer_flags_function()
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_moveSlowerBehaviour_fun1(self):
self.log("[Behaviour moveSlowerBehaviour] -- Calculating Partial Transition Function fun1")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - moveSlowerBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_moveSlowerBehaviour_fun1_0()
pass
##### Partial transition function: fun1_0 based on input buffers True #####
def transitionFunction_moveSlowerBehaviour_fun1_0(self):
self.log("[Behaviour moveSlowerBehaviour] -- Calculating Partial Transition Function fun1_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - moveSlowerBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
self._out_flag_taskStatus=True
self._out_flag_desiredRobotCommandTele=True
print("[CS - teleoperated] -- moveSlowerBehaviour")
self.desiredRobotCommandTele.data="move slower"
self.taskStatus.data="task status: move slower"
# End - Partial Transition Function Code
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_moveSlowerBehaviour_set_buffer_flags_function(self):
self.log("[Behaviour moveSlowerBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - moveSlowerBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_moveSlowerBehaviour_set_buffer_flags_function_0()
pass
##### Partial transition function: set_buffer_flags_function_0 based on input buffers True #####
def transitionFunction_moveSlowerBehaviour_set_buffer_flags_function_0(self):
self.log("[Behaviour moveSlowerBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - moveSlowerBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
# End - Partial Transition Function Code
pass
##### End of transition function #####
##### Send data to other subsystems #####
def sendData_moveSlowerBehaviour(self):
self.log("[Behaviour moveSlowerBehaviour] -- Sending Data")
# DIAGNOSTICS SEND #
self.sendDataForDiagnostics()
# END OF DIAGNOSTICS SEND #
# TYPICAL SEND CALL #
# check if output buffer taskStatus has new data - i.e. is ready to send new data
if( self._out_flag_taskStatus ):
# send data from output buffer taskStatus
# Buffer taskStatus - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_taskStatus.publish(self.taskStatus) # sending data from output buffer taskStatus #
# indicate that data was sent and now the output buffer taskStatus is empty
self._out_flag_taskStatus=False
# check if output buffer desiredRobotCommandTele has new data - i.e. is ready to send new data
if( self._out_flag_desiredRobotCommandTele ):
# send data from output buffer desiredRobotCommandTele
# Buffer desiredRobotCommandTele - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_desiredRobotCommandTele.publish(self.desiredRobotCommandTele) # sending data from output buffer desiredRobotCommandTele #
# indicate that data was sent and now the output buffer desiredRobotCommandTele is empty
self._out_flag_desiredRobotCommandTele=False
# END OF TYPICAL SEND CALL #
# BEGIN OF BODY SEND CALL #
# END OF BODY SEND CALL #
pass
##### Receive data from other subsystems #####
def receiveData_moveSlowerBehaviour(self):
self.log("[Behaviour moveSlowerBehaviour] -- Receiving Data")
# TYPICAL RECEIVE CALL #
# Buffer taskCommand - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer taskCommand
# Buffer ballInfoTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballInfoTele
# Buffer obstacleDetectedTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer obstacleDetectedTele
# Buffer ballCollected - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballCollected
self.waitForAllMessages() #
# END OF TYPICAL RECEIVE CALL #
# BEGIN OF RECEIVE BODY CALL #
# END OF RECEIVE BODY CALL #
pass
##### Execute behaviour moveSlowerBehaviour #####
def executeBehaviour_moveSlowerBehaviour(self):
self.log("[Behaviour moveSlowerBehaviour] -- Executing moveSlowerBehaviour Behaviour")
stopBehaviourIteration=False
# Execution of a single iteration of a behaviour moveSlowerBehaviour #
_behaviourIterations=0
# Starts execution! #
while True:
# Sleep is a method from class AuxiliaryFunctions which executes sleep from ROS #
self.auxiliaryFunctions.sleep()
# Calculates transition function -- output and internal buffers can only be modified by this function! #
self.transitionFunction_moveSlowerBehaviour()
# Sends data! #
self.sendData_moveSlowerBehaviour()
# Updates index! -- i.e. i:i+1 -- increment number of behaviour iterations and number of subsystem iterations #
self._behaviourIterations=self._behaviourIterations+1
# Receives data! #
self.receiveData_moveSlowerBehaviour()
# Check both conditions, i.e. terminal condition and error condition #
stopBehaviourIteration = self.terminalCondition_moveSlowerBehaviour() or self.errorCondition_moveSlowerBehaviour()
if stopBehaviourIteration or not self.auxiliaryFunctions.isSubsystemOK():
'''
Iterate within the while loop until stopBehaviourIteration is set true, i.e. one
of error and terminal condition is fulfilled and isSubsystemOK is true. Otherwise
subsystem must have been switched to another state or SIGINT was sent
'''
break
# Stops execution! #
pass
##### Behaviour vacuumOnBehaviour #####
##### Terminal condition #####
def terminalCondition_vacuumOnBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour vacuumOnBehaviour] -- Checking Terminal Condition")
return True
pass
##### Error condition #####
def errorCondition_vacuumOnBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour vacuumOnBehaviour] -- Checking Error Condition")
return False
pass
##### Transition function #####
def transitionFunction_vacuumOnBehaviour(self):
self.log("[Behaviour vacuumOnBehaviour] -- Calculating Transition Function")
# Transition function #
self.log("TRANSITION FUNCTION - vacuumOnBehaviour consists of the following partial transition functions (decomposition based on output buffers)")
# Partial transition function call: fun1
self.transitionFunction_vacuumOnBehaviour_fun1()
# Partial transition function call: set_buffer_flags_function
self.transitionFunction_vacuumOnBehaviour_set_buffer_flags_function()
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_vacuumOnBehaviour_fun1(self):
self.log("[Behaviour vacuumOnBehaviour] -- Calculating Partial Transition Function fun1")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - vacuumOnBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_vacuumOnBehaviour_fun1_0()
pass
##### Partial transition function: fun1_0 based on input buffers True #####
def transitionFunction_vacuumOnBehaviour_fun1_0(self):
self.log("[Behaviour vacuumOnBehaviour] -- Calculating Partial Transition Function fun1_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - vacuumOnBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
self._out_flag_taskStatus=True
self._out_flag_desiredRobotCommandTele=True
print("[CS - teleoperated] -- vacuumOnBehaviour")
self.desiredRobotCommandTele.data="vacuum turn on"
self.taskStatus.data="task status: vacuum turn on"
# End - Partial Transition Function Code
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_vacuumOnBehaviour_set_buffer_flags_function(self):
self.log("[Behaviour vacuumOnBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - vacuumOnBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_vacuumOnBehaviour_set_buffer_flags_function_0()
pass
##### Partial transition function: set_buffer_flags_function_0 based on input buffers True #####
def transitionFunction_vacuumOnBehaviour_set_buffer_flags_function_0(self):
self.log("[Behaviour vacuumOnBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - vacuumOnBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
# End - Partial Transition Function Code
pass
##### End of transition function #####
##### Send data to other subsystems #####
def sendData_vacuumOnBehaviour(self):
self.log("[Behaviour vacuumOnBehaviour] -- Sending Data")
# DIAGNOSTICS SEND #
self.sendDataForDiagnostics()
# END OF DIAGNOSTICS SEND #
# TYPICAL SEND CALL #
# check if output buffer taskStatus has new data - i.e. is ready to send new data
if( self._out_flag_taskStatus ):
# send data from output buffer taskStatus
# Buffer taskStatus - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_taskStatus.publish(self.taskStatus) # sending data from output buffer taskStatus #
# indicate that data was sent and now the output buffer taskStatus is empty
self._out_flag_taskStatus=False
# check if output buffer desiredRobotCommandTele has new data - i.e. is ready to send new data
if( self._out_flag_desiredRobotCommandTele ):
# send data from output buffer desiredRobotCommandTele
# Buffer desiredRobotCommandTele - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_desiredRobotCommandTele.publish(self.desiredRobotCommandTele) # sending data from output buffer desiredRobotCommandTele #
# indicate that data was sent and now the output buffer desiredRobotCommandTele is empty
self._out_flag_desiredRobotCommandTele=False
# END OF TYPICAL SEND CALL #
# BEGIN OF BODY SEND CALL #
# END OF BODY SEND CALL #
pass
##### Receive data from other subsystems #####
def receiveData_vacuumOnBehaviour(self):
self.log("[Behaviour vacuumOnBehaviour] -- Receiving Data")
# TYPICAL RECEIVE CALL #
# Buffer taskCommand - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer taskCommand
# Buffer ballInfoTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballInfoTele
# Buffer obstacleDetectedTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer obstacleDetectedTele
# Buffer ballCollected - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballCollected
self.waitForAllMessages() #
# END OF TYPICAL RECEIVE CALL #
# BEGIN OF RECEIVE BODY CALL #
# END OF RECEIVE BODY CALL #
pass
##### Execute behaviour vacuumOnBehaviour #####
def executeBehaviour_vacuumOnBehaviour(self):
self.log("[Behaviour vacuumOnBehaviour] -- Executing vacuumOnBehaviour Behaviour")
stopBehaviourIteration=False
# Execution of a single iteration of a behaviour vacuumOnBehaviour #
_behaviourIterations=0
# Starts execution! #
while True:
# Sleep is a method from class AuxiliaryFunctions which executes sleep from ROS #
self.auxiliaryFunctions.sleep()
# Calculates transition function -- output and internal buffers can only be modified by this function! #
self.transitionFunction_vacuumOnBehaviour()
# Sends data! #
self.sendData_vacuumOnBehaviour()
# Updates index! -- i.e. i:i+1 -- increment number of behaviour iterations and number of subsystem iterations #
self._behaviourIterations=self._behaviourIterations+1
# Receives data! #
self.receiveData_vacuumOnBehaviour()
# Check both conditions, i.e. terminal condition and error condition #
stopBehaviourIteration = self.terminalCondition_vacuumOnBehaviour() or self.errorCondition_vacuumOnBehaviour()
if stopBehaviourIteration or not self.auxiliaryFunctions.isSubsystemOK():
'''
Iterate within the while loop until stopBehaviourIteration is set true, i.e. one
of error and terminal condition is fulfilled and isSubsystemOK is true. Otherwise
subsystem must have been switched to another state or SIGINT was sent
'''
break
# Stops execution! #
pass
##### Behaviour vacuumOffBehaviour #####
##### Terminal condition #####
def terminalCondition_vacuumOffBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour vacuumOffBehaviour] -- Checking Terminal Condition")
return True
pass
##### Error condition #####
def errorCondition_vacuumOffBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour vacuumOffBehaviour] -- Checking Error Condition")
return False
pass
##### Transition function #####
def transitionFunction_vacuumOffBehaviour(self):
self.log("[Behaviour vacuumOffBehaviour] -- Calculating Transition Function")
# Transition function #
self.log("TRANSITION FUNCTION - vacuumOffBehaviour consists of the following partial transition functions (decomposition based on output buffers)")
# Partial transition function call: fun1
self.transitionFunction_vacuumOffBehaviour_fun1()
# Partial transition function call: set_buffer_flags_function
self.transitionFunction_vacuumOffBehaviour_set_buffer_flags_function()
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_vacuumOffBehaviour_fun1(self):
self.log("[Behaviour vacuumOffBehaviour] -- Calculating Partial Transition Function fun1")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - vacuumOffBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_vacuumOffBehaviour_fun1_0()
pass
##### Partial transition function: fun1_0 based on input buffers True #####
def transitionFunction_vacuumOffBehaviour_fun1_0(self):
self.log("[Behaviour vacuumOffBehaviour] -- Calculating Partial Transition Function fun1_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - vacuumOffBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
self._out_flag_taskStatus=True
self._out_flag_desiredRobotCommandTele=True
print("[CS - teleoperated] -- vacuumOffBehaviour")
self.desiredRobotCommandTele.data="vacuum off"
self.taskStatus.data="task status: vacuum off"
# End - Partial Transition Function Code
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_vacuumOffBehaviour_set_buffer_flags_function(self):
self.log("[Behaviour vacuumOffBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - vacuumOffBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_vacuumOffBehaviour_set_buffer_flags_function_0()
pass
##### Partial transition function: set_buffer_flags_function_0 based on input buffers True #####
def transitionFunction_vacuumOffBehaviour_set_buffer_flags_function_0(self):
self.log("[Behaviour vacuumOffBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - vacuumOffBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
# End - Partial Transition Function Code
pass
##### End of transition function #####
##### Send data to other subsystems #####
def sendData_vacuumOffBehaviour(self):
self.log("[Behaviour vacuumOffBehaviour] -- Sending Data")
# DIAGNOSTICS SEND #
self.sendDataForDiagnostics()
# END OF DIAGNOSTICS SEND #
# TYPICAL SEND CALL #
# check if output buffer taskStatus has new data - i.e. is ready to send new data
if( self._out_flag_taskStatus ):
# send data from output buffer taskStatus
# Buffer taskStatus - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_taskStatus.publish(self.taskStatus) # sending data from output buffer taskStatus #
# indicate that data was sent and now the output buffer taskStatus is empty
self._out_flag_taskStatus=False
# check if output buffer desiredRobotCommandTele has new data - i.e. is ready to send new data
if( self._out_flag_desiredRobotCommandTele ):
# send data from output buffer desiredRobotCommandTele
# Buffer desiredRobotCommandTele - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_desiredRobotCommandTele.publish(self.desiredRobotCommandTele) # sending data from output buffer desiredRobotCommandTele #
# indicate that data was sent and now the output buffer desiredRobotCommandTele is empty
self._out_flag_desiredRobotCommandTele=False
# END OF TYPICAL SEND CALL #
# BEGIN OF BODY SEND CALL #
# END OF BODY SEND CALL #
pass
##### Receive data from other subsystems #####
def receiveData_vacuumOffBehaviour(self):
self.log("[Behaviour vacuumOffBehaviour] -- Receiving Data")
# TYPICAL RECEIVE CALL #
# Buffer taskCommand - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer taskCommand
# Buffer ballInfoTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballInfoTele
# Buffer obstacleDetectedTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer obstacleDetectedTele
# Buffer ballCollected - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballCollected
self.waitForAllMessages() #
# END OF TYPICAL RECEIVE CALL #
# BEGIN OF RECEIVE BODY CALL #
# END OF RECEIVE BODY CALL #
pass
##### Execute behaviour vacuumOffBehaviour #####
def executeBehaviour_vacuumOffBehaviour(self):
self.log("[Behaviour vacuumOffBehaviour] -- Executing vacuumOffBehaviour Behaviour")
stopBehaviourIteration=False
# Execution of a single iteration of a behaviour vacuumOffBehaviour #
_behaviourIterations=0
# Starts execution! #
while True:
# Sleep is a method from class AuxiliaryFunctions which executes sleep from ROS #
self.auxiliaryFunctions.sleep()
# Calculates transition function -- output and internal buffers can only be modified by this function! #
self.transitionFunction_vacuumOffBehaviour()
# Sends data! #
self.sendData_vacuumOffBehaviour()
# Updates index! -- i.e. i:i+1 -- increment number of behaviour iterations and number of subsystem iterations #
self._behaviourIterations=self._behaviourIterations+1
# Receives data! #
self.receiveData_vacuumOffBehaviour()
# Check both conditions, i.e. terminal condition and error condition #
stopBehaviourIteration = self.terminalCondition_vacuumOffBehaviour() or self.errorCondition_vacuumOffBehaviour()
if stopBehaviourIteration or not self.auxiliaryFunctions.isSubsystemOK():
'''
Iterate within the while loop until stopBehaviourIteration is set true, i.e. one
of error and terminal condition is fulfilled and isSubsystemOK is true. Otherwise
subsystem must have been switched to another state or SIGINT was sent
'''
break
# Stops execution! #
pass
##### Behaviour moveBackwardBehaviour #####
##### Terminal condition #####
def terminalCondition_moveBackwardBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour moveBackwardBehaviour] -- Checking Terminal Condition")
return True
pass
##### Error condition #####
def errorCondition_moveBackwardBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour moveBackwardBehaviour] -- Checking Error Condition")
return False
pass
##### Transition function #####
def transitionFunction_moveBackwardBehaviour(self):
self.log("[Behaviour moveBackwardBehaviour] -- Calculating Transition Function")
# Transition function #
self.log("TRANSITION FUNCTION - moveBackwardBehaviour consists of the following partial transition functions (decomposition based on output buffers)")
# Partial transition function call: fun1
self.transitionFunction_moveBackwardBehaviour_fun1()
# Partial transition function call: set_buffer_flags_function
self.transitionFunction_moveBackwardBehaviour_set_buffer_flags_function()
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_moveBackwardBehaviour_fun1(self):
self.log("[Behaviour moveBackwardBehaviour] -- Calculating Partial Transition Function fun1")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - moveBackwardBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_moveBackwardBehaviour_fun1_0()
pass
##### Partial transition function: fun1_0 based on input buffers True #####
def transitionFunction_moveBackwardBehaviour_fun1_0(self):
self.log("[Behaviour moveBackwardBehaviour] -- Calculating Partial Transition Function fun1_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - moveBackwardBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
self._out_flag_taskStatus=True
self._out_flag_desiredRobotCommandTele=True
print("[CS - teleoperated] -- moveBackwardBehaviour")
self.desiredRobotCommandTele.data="move backwards"
self.taskStatus.data="task status: move backwards"
# End - Partial Transition Function Code
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_moveBackwardBehaviour_set_buffer_flags_function(self):
self.log("[Behaviour moveBackwardBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - moveBackwardBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_moveBackwardBehaviour_set_buffer_flags_function_0()
pass
##### Partial transition function: set_buffer_flags_function_0 based on input buffers True #####
def transitionFunction_moveBackwardBehaviour_set_buffer_flags_function_0(self):
self.log("[Behaviour moveBackwardBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - moveBackwardBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
# End - Partial Transition Function Code
pass
##### End of transition function #####
##### Send data to other subsystems #####
def sendData_moveBackwardBehaviour(self):
self.log("[Behaviour moveBackwardBehaviour] -- Sending Data")
# DIAGNOSTICS SEND #
self.sendDataForDiagnostics()
# END OF DIAGNOSTICS SEND #
# TYPICAL SEND CALL #
# check if output buffer taskStatus has new data - i.e. is ready to send new data
if( self._out_flag_taskStatus ):
# send data from output buffer taskStatus
# Buffer taskStatus - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_taskStatus.publish(self.taskStatus) # sending data from output buffer taskStatus #
# indicate that data was sent and now the output buffer taskStatus is empty
self._out_flag_taskStatus=False
# check if output buffer desiredRobotCommandTele has new data - i.e. is ready to send new data
if( self._out_flag_desiredRobotCommandTele ):
# send data from output buffer desiredRobotCommandTele
# Buffer desiredRobotCommandTele - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_desiredRobotCommandTele.publish(self.desiredRobotCommandTele) # sending data from output buffer desiredRobotCommandTele #
# indicate that data was sent and now the output buffer desiredRobotCommandTele is empty
self._out_flag_desiredRobotCommandTele=False
# END OF TYPICAL SEND CALL #
# BEGIN OF BODY SEND CALL #
# END OF BODY SEND CALL #
pass
##### Receive data from other subsystems #####
def receiveData_moveBackwardBehaviour(self):
self.log("[Behaviour moveBackwardBehaviour] -- Receiving Data")
# TYPICAL RECEIVE CALL #
# Buffer taskCommand - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer taskCommand
# Buffer ballInfoTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballInfoTele
# Buffer obstacleDetectedTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer obstacleDetectedTele
# Buffer ballCollected - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballCollected
self.waitForAllMessages() #
# END OF TYPICAL RECEIVE CALL #
# BEGIN OF RECEIVE BODY CALL #
# END OF RECEIVE BODY CALL #
pass
##### Execute behaviour moveBackwardBehaviour #####
def executeBehaviour_moveBackwardBehaviour(self):
self.log("[Behaviour moveBackwardBehaviour] -- Executing moveBackwardBehaviour Behaviour")
stopBehaviourIteration=False
# Execution of a single iteration of a behaviour moveBackwardBehaviour #
_behaviourIterations=0
# Starts execution! #
while True:
# Sleep is a method from class AuxiliaryFunctions which executes sleep from ROS #
self.auxiliaryFunctions.sleep()
# Calculates transition function -- output and internal buffers can only be modified by this function! #
self.transitionFunction_moveBackwardBehaviour()
# Sends data! #
self.sendData_moveBackwardBehaviour()
# Updates index! -- i.e. i:i+1 -- increment number of behaviour iterations and number of subsystem iterations #
self._behaviourIterations=self._behaviourIterations+1
# Receives data! #
self.receiveData_moveBackwardBehaviour()
# Check both conditions, i.e. terminal condition and error condition #
stopBehaviourIteration = self.terminalCondition_moveBackwardBehaviour() or self.errorCondition_moveBackwardBehaviour()
if stopBehaviourIteration or not self.auxiliaryFunctions.isSubsystemOK():
'''
Iterate within the while loop until stopBehaviourIteration is set true, i.e. one
of error and terminal condition is fulfilled and isSubsystemOK is true. Otherwise
subsystem must have been switched to another state or SIGINT was sent
'''
break
# Stops execution! #
pass
##### Behaviour moveFrontBehaviour #####
##### Terminal condition #####
def terminalCondition_moveFrontBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour moveFrontBehaviour] -- Checking Terminal Condition")
return True
pass
##### Error condition #####
def errorCondition_moveFrontBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour moveFrontBehaviour] -- Checking Error Condition")
return False
pass
##### Transition function #####
def transitionFunction_moveFrontBehaviour(self):
self.log("[Behaviour moveFrontBehaviour] -- Calculating Transition Function")
# Transition function #
self.log("TRANSITION FUNCTION - moveFrontBehaviour consists of the following partial transition functions (decomposition based on output buffers)")
# Partial transition function call: fun1
self.transitionFunction_moveFrontBehaviour_fun1()
# Partial transition function call: set_buffer_flags_function
self.transitionFunction_moveFrontBehaviour_set_buffer_flags_function()
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_moveFrontBehaviour_fun1(self):
self.log("[Behaviour moveFrontBehaviour] -- Calculating Partial Transition Function fun1")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - moveFrontBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_moveFrontBehaviour_fun1_0()
pass
##### Partial transition function: fun1_0 based on input buffers True #####
def transitionFunction_moveFrontBehaviour_fun1_0(self):
self.log("[Behaviour moveFrontBehaviour] -- Calculating Partial Transition Function fun1_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - moveFrontBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
self._out_flag_taskStatus=True
self._out_flag_desiredRobotCommandTele=True
print("[CS - teleoperated] -- moveFrontBehaviour")
self.desiredRobotCommandTele.data="move front"
self.taskStatus.data="task status: move front"
# End - Partial Transition Function Code
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_moveFrontBehaviour_set_buffer_flags_function(self):
self.log("[Behaviour moveFrontBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - moveFrontBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_moveFrontBehaviour_set_buffer_flags_function_0()
pass
##### Partial transition function: set_buffer_flags_function_0 based on input buffers True #####
def transitionFunction_moveFrontBehaviour_set_buffer_flags_function_0(self):
self.log("[Behaviour moveFrontBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - moveFrontBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
# End - Partial Transition Function Code
pass
##### End of transition function #####
##### Send data to other subsystems #####
def sendData_moveFrontBehaviour(self):
self.log("[Behaviour moveFrontBehaviour] -- Sending Data")
# DIAGNOSTICS SEND #
self.sendDataForDiagnostics()
# END OF DIAGNOSTICS SEND #
# TYPICAL SEND CALL #
# check if output buffer taskStatus has new data - i.e. is ready to send new data
if( self._out_flag_taskStatus ):
# send data from output buffer taskStatus
# Buffer taskStatus - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_taskStatus.publish(self.taskStatus) # sending data from output buffer taskStatus #
# indicate that data was sent and now the output buffer taskStatus is empty
self._out_flag_taskStatus=False
# check if output buffer desiredRobotCommandTele has new data - i.e. is ready to send new data
if( self._out_flag_desiredRobotCommandTele ):
# send data from output buffer desiredRobotCommandTele
# Buffer desiredRobotCommandTele - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_desiredRobotCommandTele.publish(self.desiredRobotCommandTele) # sending data from output buffer desiredRobotCommandTele #
# indicate that data was sent and now the output buffer desiredRobotCommandTele is empty
self._out_flag_desiredRobotCommandTele=False
# END OF TYPICAL SEND CALL #
# BEGIN OF BODY SEND CALL #
# END OF BODY SEND CALL #
pass
##### Receive data from other subsystems #####
def receiveData_moveFrontBehaviour(self):
self.log("[Behaviour moveFrontBehaviour] -- Receiving Data")
# TYPICAL RECEIVE CALL #
# Buffer taskCommand - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer taskCommand
# Buffer ballInfoTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballInfoTele
# Buffer obstacleDetectedTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer obstacleDetectedTele
# Buffer ballCollected - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballCollected
self.waitForAllMessages() #
# END OF TYPICAL RECEIVE CALL #
# BEGIN OF RECEIVE BODY CALL #
# END OF RECEIVE BODY CALL #
pass
##### Execute behaviour moveFrontBehaviour #####
def executeBehaviour_moveFrontBehaviour(self):
self.log("[Behaviour moveFrontBehaviour] -- Executing moveFrontBehaviour Behaviour")
stopBehaviourIteration=False
# Execution of a single iteration of a behaviour moveFrontBehaviour #
_behaviourIterations=0
# Starts execution! #
while True:
# Sleep is a method from class AuxiliaryFunctions which executes sleep from ROS #
self.auxiliaryFunctions.sleep()
# Calculates transition function -- output and internal buffers can only be modified by this function! #
self.transitionFunction_moveFrontBehaviour()
# Sends data! #
self.sendData_moveFrontBehaviour()
# Updates index! -- i.e. i:i+1 -- increment number of behaviour iterations and number of subsystem iterations #
self._behaviourIterations=self._behaviourIterations+1
# Receives data! #
self.receiveData_moveFrontBehaviour()
# Check both conditions, i.e. terminal condition and error condition #
stopBehaviourIteration = self.terminalCondition_moveFrontBehaviour() or self.errorCondition_moveFrontBehaviour()
if stopBehaviourIteration or not self.auxiliaryFunctions.isSubsystemOK():
'''
Iterate within the while loop until stopBehaviourIteration is set true, i.e. one
of error and terminal condition is fulfilled and isSubsystemOK is true. Otherwise
subsystem must have been switched to another state or SIGINT was sent
'''
break
# Stops execution! #
pass
##### Behaviour moveRightBehaviour #####
##### Terminal condition #####
def terminalCondition_moveRightBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour moveRightBehaviour] -- Checking Terminal Condition")
return True
pass
##### Error condition #####
def errorCondition_moveRightBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour moveRightBehaviour] -- Checking Error Condition")
return False
pass
##### Transition function #####
def transitionFunction_moveRightBehaviour(self):
self.log("[Behaviour moveRightBehaviour] -- Calculating Transition Function")
# Transition function #
self.log("TRANSITION FUNCTION - moveRightBehaviour consists of the following partial transition functions (decomposition based on output buffers)")
# Partial transition function call: fun1
self.transitionFunction_moveRightBehaviour_fun1()
# Partial transition function call: set_buffer_flags_function
self.transitionFunction_moveRightBehaviour_set_buffer_flags_function()
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_moveRightBehaviour_fun1(self):
self.log("[Behaviour moveRightBehaviour] -- Calculating Partial Transition Function fun1")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - moveRightBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_moveRightBehaviour_fun1_0()
pass
##### Partial transition function: fun1_0 based on input buffers True #####
def transitionFunction_moveRightBehaviour_fun1_0(self):
self.log("[Behaviour moveRightBehaviour] -- Calculating Partial Transition Function fun1_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - moveRightBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
self._out_flag_desiredRobotCommandTele=True
self._out_flag_taskStatus=True
print("[CS - teleoperated] -- moveRightBehaviour")
self.desiredRobotCommandTele.data="move right"
self.taskStatus.data="task status: move right"
# End - Partial Transition Function Code
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_moveRightBehaviour_set_buffer_flags_function(self):
self.log("[Behaviour moveRightBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - moveRightBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_moveRightBehaviour_set_buffer_flags_function_0()
pass
##### Partial transition function: set_buffer_flags_function_0 based on input buffers True #####
def transitionFunction_moveRightBehaviour_set_buffer_flags_function_0(self):
self.log("[Behaviour moveRightBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - moveRightBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
# End - Partial Transition Function Code
pass
##### End of transition function #####
##### Send data to other subsystems #####
def sendData_moveRightBehaviour(self):
self.log("[Behaviour moveRightBehaviour] -- Sending Data")
# DIAGNOSTICS SEND #
self.sendDataForDiagnostics()
# END OF DIAGNOSTICS SEND #
# TYPICAL SEND CALL #
# check if output buffer taskStatus has new data - i.e. is ready to send new data
if( self._out_flag_taskStatus ):
# send data from output buffer taskStatus
# Buffer taskStatus - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_taskStatus.publish(self.taskStatus) # sending data from output buffer taskStatus #
# indicate that data was sent and now the output buffer taskStatus is empty
self._out_flag_taskStatus=False
# check if output buffer desiredRobotCommandTele has new data - i.e. is ready to send new data
if( self._out_flag_desiredRobotCommandTele ):
# send data from output buffer desiredRobotCommandTele
# Buffer desiredRobotCommandTele - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_desiredRobotCommandTele.publish(self.desiredRobotCommandTele) # sending data from output buffer desiredRobotCommandTele #
# indicate that data was sent and now the output buffer desiredRobotCommandTele is empty
self._out_flag_desiredRobotCommandTele=False
# END OF TYPICAL SEND CALL #
# BEGIN OF BODY SEND CALL #
# END OF BODY SEND CALL #
pass
##### Receive data from other subsystems #####
def receiveData_moveRightBehaviour(self):
self.log("[Behaviour moveRightBehaviour] -- Receiving Data")
# TYPICAL RECEIVE CALL #
# Buffer taskCommand - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer taskCommand
# Buffer ballInfoTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballInfoTele
# Buffer obstacleDetectedTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer obstacleDetectedTele
# Buffer ballCollected - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballCollected
self.waitForAllMessages() #
# END OF TYPICAL RECEIVE CALL #
# BEGIN OF RECEIVE BODY CALL #
# END OF RECEIVE BODY CALL #
pass
##### Execute behaviour moveRightBehaviour #####
def executeBehaviour_moveRightBehaviour(self):
self.log("[Behaviour moveRightBehaviour] -- Executing moveRightBehaviour Behaviour")
stopBehaviourIteration=False
# Execution of a single iteration of a behaviour moveRightBehaviour #
_behaviourIterations=0
# Starts execution! #
while True:
# Sleep is a method from class AuxiliaryFunctions which executes sleep from ROS #
self.auxiliaryFunctions.sleep()
# Calculates transition function -- output and internal buffers can only be modified by this function! #
self.transitionFunction_moveRightBehaviour()
# Sends data! #
self.sendData_moveRightBehaviour()
# Updates index! -- i.e. i:i+1 -- increment number of behaviour iterations and number of subsystem iterations #
self._behaviourIterations=self._behaviourIterations+1
# Receives data! #
self.receiveData_moveRightBehaviour()
# Check both conditions, i.e. terminal condition and error condition #
stopBehaviourIteration = self.terminalCondition_moveRightBehaviour() or self.errorCondition_moveRightBehaviour()
if stopBehaviourIteration or not self.auxiliaryFunctions.isSubsystemOK():
'''
Iterate within the while loop until stopBehaviourIteration is set true, i.e. one
of error and terminal condition is fulfilled and isSubsystemOK is true. Otherwise
subsystem must have been switched to another state or SIGINT was sent
'''
break
# Stops execution! #
pass
##### Behaviour moveLeftBehaviour #####
##### Terminal condition #####
def terminalCondition_moveLeftBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour moveLeftBehaviour] -- Checking Terminal Condition")
return True
pass
##### Error condition #####
def errorCondition_moveLeftBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour moveLeftBehaviour] -- Checking Error Condition")
return False
pass
##### Transition function #####
def transitionFunction_moveLeftBehaviour(self):
self.log("[Behaviour moveLeftBehaviour] -- Calculating Transition Function")
# Transition function #
self.log("TRANSITION FUNCTION - moveLeftBehaviour consists of the following partial transition functions (decomposition based on output buffers)")
# Partial transition function call: fun1
self.transitionFunction_moveLeftBehaviour_fun1()
# Partial transition function call: set_buffer_flags_function
self.transitionFunction_moveLeftBehaviour_set_buffer_flags_function()
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_moveLeftBehaviour_fun1(self):
self.log("[Behaviour moveLeftBehaviour] -- Calculating Partial Transition Function fun1")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - moveLeftBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_moveLeftBehaviour_fun1_0()
pass
##### Partial transition function: fun1_0 based on input buffers True #####
def transitionFunction_moveLeftBehaviour_fun1_0(self):
self.log("[Behaviour moveLeftBehaviour] -- Calculating Partial Transition Function fun1_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - moveLeftBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
self._out_flag_taskStatus=True
self._out_flag_desiredRobotCommandTele=True
print("[CS - teleoperated] -- moveLeftBehaviour")
self.desiredRobotCommandTele.data="move left"
self.taskStatus.data="task status: move left"
# End - Partial Transition Function Code
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_moveLeftBehaviour_set_buffer_flags_function(self):
self.log("[Behaviour moveLeftBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - moveLeftBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_moveLeftBehaviour_set_buffer_flags_function_0()
pass
##### Partial transition function: set_buffer_flags_function_0 based on input buffers True #####
def transitionFunction_moveLeftBehaviour_set_buffer_flags_function_0(self):
self.log("[Behaviour moveLeftBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - moveLeftBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
# End - Partial Transition Function Code
pass
##### End of transition function #####
##### Send data to other subsystems #####
def sendData_moveLeftBehaviour(self):
self.log("[Behaviour moveLeftBehaviour] -- Sending Data")
# DIAGNOSTICS SEND #
self.sendDataForDiagnostics()
# END OF DIAGNOSTICS SEND #
# TYPICAL SEND CALL #
# check if output buffer taskStatus has new data - i.e. is ready to send new data
if( self._out_flag_taskStatus ):
# send data from output buffer taskStatus
# Buffer taskStatus - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_taskStatus.publish(self.taskStatus) # sending data from output buffer taskStatus #
# indicate that data was sent and now the output buffer taskStatus is empty
self._out_flag_taskStatus=False
# check if output buffer desiredRobotCommandTele has new data - i.e. is ready to send new data
if( self._out_flag_desiredRobotCommandTele ):
# send data from output buffer desiredRobotCommandTele
# Buffer desiredRobotCommandTele - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_desiredRobotCommandTele.publish(self.desiredRobotCommandTele) # sending data from output buffer desiredRobotCommandTele #
# indicate that data was sent and now the output buffer desiredRobotCommandTele is empty
self._out_flag_desiredRobotCommandTele=False
# END OF TYPICAL SEND CALL #
# BEGIN OF BODY SEND CALL #
# END OF BODY SEND CALL #
pass
##### Receive data from other subsystems #####
def receiveData_moveLeftBehaviour(self):
self.log("[Behaviour moveLeftBehaviour] -- Receiving Data")
# TYPICAL RECEIVE CALL #
# Buffer taskCommand - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer taskCommand
# Buffer ballInfoTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballInfoTele
# Buffer obstacleDetectedTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer obstacleDetectedTele
# Buffer ballCollected - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballCollected
self.waitForAllMessages() #
# END OF TYPICAL RECEIVE CALL #
# BEGIN OF RECEIVE BODY CALL #
# END OF RECEIVE BODY CALL #
pass
##### Execute behaviour moveLeftBehaviour #####
def executeBehaviour_moveLeftBehaviour(self):
self.log("[Behaviour moveLeftBehaviour] -- Executing moveLeftBehaviour Behaviour")
stopBehaviourIteration=False
# Execution of a single iteration of a behaviour moveLeftBehaviour #
_behaviourIterations=0
# Starts execution! #
while True:
# Sleep is a method from class AuxiliaryFunctions which executes sleep from ROS #
self.auxiliaryFunctions.sleep()
# Calculates transition function -- output and internal buffers can only be modified by this function! #
self.transitionFunction_moveLeftBehaviour()
# Sends data! #
self.sendData_moveLeftBehaviour()
# Updates index! -- i.e. i:i+1 -- increment number of behaviour iterations and number of subsystem iterations #
self._behaviourIterations=self._behaviourIterations+1
# Receives data! #
self.receiveData_moveLeftBehaviour()
# Check both conditions, i.e. terminal condition and error condition #
stopBehaviourIteration = self.terminalCondition_moveLeftBehaviour() or self.errorCondition_moveLeftBehaviour()
if stopBehaviourIteration or not self.auxiliaryFunctions.isSubsystemOK():
'''
Iterate within the while loop until stopBehaviourIteration is set true, i.e. one
of error and terminal condition is fulfilled and isSubsystemOK is true. Otherwise
subsystem must have been switched to another state or SIGINT was sent
'''
break
# Stops execution! #
pass
##### Behaviour rotateLeftBehaviour #####
##### Terminal condition #####
def terminalCondition_rotateLeftBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour rotateLeftBehaviour] -- Checking Terminal Condition")
return True
pass
##### Error condition #####
def errorCondition_rotateLeftBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour rotateLeftBehaviour] -- Checking Error Condition")
return False
pass
##### Transition function #####
def transitionFunction_rotateLeftBehaviour(self):
self.log("[Behaviour rotateLeftBehaviour] -- Calculating Transition Function")
# Transition function #
self.log("TRANSITION FUNCTION - rotateLeftBehaviour consists of the following partial transition functions (decomposition based on output buffers)")
# Partial transition function call: fun1
self.transitionFunction_rotateLeftBehaviour_fun1()
# Partial transition function call: set_buffer_flags_function
self.transitionFunction_rotateLeftBehaviour_set_buffer_flags_function()
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_rotateLeftBehaviour_fun1(self):
self.log("[Behaviour rotateLeftBehaviour] -- Calculating Partial Transition Function fun1")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - rotateLeftBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_rotateLeftBehaviour_fun1_0()
pass
##### Partial transition function: fun1_0 based on input buffers True #####
def transitionFunction_rotateLeftBehaviour_fun1_0(self):
self.log("[Behaviour rotateLeftBehaviour] -- Calculating Partial Transition Function fun1_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - rotateLeftBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
self._out_flag_taskStatus=True
self._out_flag_desiredRobotCommandTele=True
print("[CS - teleoperated] -- rotateLeftBehaviour")
self.desiredRobotCommandTele.data="rotate left"
self.taskStatus.data="task status: rotate left"
# End - Partial Transition Function Code
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_rotateLeftBehaviour_set_buffer_flags_function(self):
self.log("[Behaviour rotateLeftBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - rotateLeftBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_rotateLeftBehaviour_set_buffer_flags_function_0()
pass
##### Partial transition function: set_buffer_flags_function_0 based on input buffers True #####
def transitionFunction_rotateLeftBehaviour_set_buffer_flags_function_0(self):
self.log("[Behaviour rotateLeftBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - rotateLeftBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
# End - Partial Transition Function Code
pass
##### End of transition function #####
##### Send data to other subsystems #####
def sendData_rotateLeftBehaviour(self):
self.log("[Behaviour rotateLeftBehaviour] -- Sending Data")
# DIAGNOSTICS SEND #
self.sendDataForDiagnostics()
# END OF DIAGNOSTICS SEND #
# TYPICAL SEND CALL #
# check if output buffer taskStatus has new data - i.e. is ready to send new data
if( self._out_flag_taskStatus ):
# send data from output buffer taskStatus
# Buffer taskStatus - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_taskStatus.publish(self.taskStatus) # sending data from output buffer taskStatus #
# indicate that data was sent and now the output buffer taskStatus is empty
self._out_flag_taskStatus=False
# check if output buffer desiredRobotCommandTele has new data - i.e. is ready to send new data
if( self._out_flag_desiredRobotCommandTele ):
# send data from output buffer desiredRobotCommandTele
# Buffer desiredRobotCommandTele - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_desiredRobotCommandTele.publish(self.desiredRobotCommandTele) # sending data from output buffer desiredRobotCommandTele #
# indicate that data was sent and now the output buffer desiredRobotCommandTele is empty
self._out_flag_desiredRobotCommandTele=False
# END OF TYPICAL SEND CALL #
# BEGIN OF BODY SEND CALL #
# END OF BODY SEND CALL #
pass
##### Receive data from other subsystems #####
def receiveData_rotateLeftBehaviour(self):
self.log("[Behaviour rotateLeftBehaviour] -- Receiving Data")
# TYPICAL RECEIVE CALL #
# Buffer taskCommand - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer taskCommand
# Buffer ballInfoTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballInfoTele
# Buffer obstacleDetectedTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer obstacleDetectedTele
# Buffer ballCollected - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballCollected
self.waitForAllMessages() #
# END OF TYPICAL RECEIVE CALL #
# BEGIN OF RECEIVE BODY CALL #
# END OF RECEIVE BODY CALL #
pass
##### Execute behaviour rotateLeftBehaviour #####
def executeBehaviour_rotateLeftBehaviour(self):
self.log("[Behaviour rotateLeftBehaviour] -- Executing rotateLeftBehaviour Behaviour")
stopBehaviourIteration=False
# Execution of a single iteration of a behaviour rotateLeftBehaviour #
_behaviourIterations=0
# Starts execution! #
while True:
# Sleep is a method from class AuxiliaryFunctions which executes sleep from ROS #
self.auxiliaryFunctions.sleep()
# Calculates transition function -- output and internal buffers can only be modified by this function! #
self.transitionFunction_rotateLeftBehaviour()
# Sends data! #
self.sendData_rotateLeftBehaviour()
# Updates index! -- i.e. i:i+1 -- increment number of behaviour iterations and number of subsystem iterations #
self._behaviourIterations=self._behaviourIterations+1
# Receives data! #
self.receiveData_rotateLeftBehaviour()
# Check both conditions, i.e. terminal condition and error condition #
stopBehaviourIteration = self.terminalCondition_rotateLeftBehaviour() or self.errorCondition_rotateLeftBehaviour()
if stopBehaviourIteration or not self.auxiliaryFunctions.isSubsystemOK():
'''
Iterate within the while loop until stopBehaviourIteration is set true, i.e. one
of error and terminal condition is fulfilled and isSubsystemOK is true. Otherwise
subsystem must have been switched to another state or SIGINT was sent
'''
break
# Stops execution! #
pass
##### Behaviour rotateRightBehaviour #####
##### Terminal condition #####
def terminalCondition_rotateRightBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour rotateRightBehaviour] -- Checking Terminal Condition")
return True
pass
##### Error condition #####
def errorCondition_rotateRightBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour rotateRightBehaviour] -- Checking Error Condition")
return False
pass
##### Transition function #####
def transitionFunction_rotateRightBehaviour(self):
self.log("[Behaviour rotateRightBehaviour] -- Calculating Transition Function")
# Transition function #
self.log("TRANSITION FUNCTION - rotateRightBehaviour consists of the following partial transition functions (decomposition based on output buffers)")
# Partial transition function call: fun1
self.transitionFunction_rotateRightBehaviour_fun1()
# Partial transition function call: set_buffer_flags_function
self.transitionFunction_rotateRightBehaviour_set_buffer_flags_function()
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_rotateRightBehaviour_fun1(self):
self.log("[Behaviour rotateRightBehaviour] -- Calculating Partial Transition Function fun1")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - rotateRightBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_rotateRightBehaviour_fun1_0()
pass
##### Partial transition function: fun1_0 based on input buffers True #####
def transitionFunction_rotateRightBehaviour_fun1_0(self):
self.log("[Behaviour rotateRightBehaviour] -- Calculating Partial Transition Function fun1_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - rotateRightBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
self._out_flag_taskStatus=True
self._out_flag_desiredRobotCommandTele=True
print("[CS - teleoperated] -- rotateRightBehaviour")
self.desiredRobotCommandTele.data="rotate right"
self.taskStatus.data="task status: rotate right"
# End - Partial Transition Function Code
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_rotateRightBehaviour_set_buffer_flags_function(self):
self.log("[Behaviour rotateRightBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - rotateRightBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_rotateRightBehaviour_set_buffer_flags_function_0()
pass
##### Partial transition function: set_buffer_flags_function_0 based on input buffers True #####
def transitionFunction_rotateRightBehaviour_set_buffer_flags_function_0(self):
self.log("[Behaviour rotateRightBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - rotateRightBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
# End - Partial Transition Function Code
pass
##### End of transition function #####
##### Send data to other subsystems #####
def sendData_rotateRightBehaviour(self):
self.log("[Behaviour rotateRightBehaviour] -- Sending Data")
# DIAGNOSTICS SEND #
self.sendDataForDiagnostics()
# END OF DIAGNOSTICS SEND #
# TYPICAL SEND CALL #
# check if output buffer taskStatus has new data - i.e. is ready to send new data
if( self._out_flag_taskStatus ):
# send data from output buffer taskStatus
# Buffer taskStatus - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_taskStatus.publish(self.taskStatus) # sending data from output buffer taskStatus #
# indicate that data was sent and now the output buffer taskStatus is empty
self._out_flag_taskStatus=False
# check if output buffer desiredRobotCommandTele has new data - i.e. is ready to send new data
if( self._out_flag_desiredRobotCommandTele ):
# send data from output buffer desiredRobotCommandTele
# Buffer desiredRobotCommandTele - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_desiredRobotCommandTele.publish(self.desiredRobotCommandTele) # sending data from output buffer desiredRobotCommandTele #
# indicate that data was sent and now the output buffer desiredRobotCommandTele is empty
self._out_flag_desiredRobotCommandTele=False
# END OF TYPICAL SEND CALL #
# BEGIN OF BODY SEND CALL #
# END OF BODY SEND CALL #
pass
##### Receive data from other subsystems #####
def receiveData_rotateRightBehaviour(self):
self.log("[Behaviour rotateRightBehaviour] -- Receiving Data")
# TYPICAL RECEIVE CALL #
# Buffer taskCommand - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer taskCommand
# Buffer ballInfoTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballInfoTele
# Buffer obstacleDetectedTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer obstacleDetectedTele
# Buffer ballCollected - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballCollected
self.waitForAllMessages() #
# END OF TYPICAL RECEIVE CALL #
# BEGIN OF RECEIVE BODY CALL #
# END OF RECEIVE BODY CALL #
pass
##### Execute behaviour rotateRightBehaviour #####
def executeBehaviour_rotateRightBehaviour(self):
self.log("[Behaviour rotateRightBehaviour] -- Executing rotateRightBehaviour Behaviour")
stopBehaviourIteration=False
# Execution of a single iteration of a behaviour rotateRightBehaviour #
_behaviourIterations=0
# Starts execution! #
while True:
# Sleep is a method from class AuxiliaryFunctions which executes sleep from ROS #
self.auxiliaryFunctions.sleep()
# Calculates transition function -- output and internal buffers can only be modified by this function! #
self.transitionFunction_rotateRightBehaviour()
# Sends data! #
self.sendData_rotateRightBehaviour()
# Updates index! -- i.e. i:i+1 -- increment number of behaviour iterations and number of subsystem iterations #
self._behaviourIterations=self._behaviourIterations+1
# Receives data! #
self.receiveData_rotateRightBehaviour()
# Check both conditions, i.e. terminal condition and error condition #
stopBehaviourIteration = self.terminalCondition_rotateRightBehaviour() or self.errorCondition_rotateRightBehaviour()
if stopBehaviourIteration or not self.auxiliaryFunctions.isSubsystemOK():
'''
Iterate within the while loop until stopBehaviourIteration is set true, i.e. one
of error and terminal condition is fulfilled and isSubsystemOK is true. Otherwise
subsystem must have been switched to another state or SIGINT was sent
'''
break
# Stops execution! #
pass
##### Behaviour whatCanYouSeeBehaviour #####
##### Terminal condition #####
def terminalCondition_whatCanYouSeeBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour whatCanYouSeeBehaviour] -- Checking Terminal Condition")
return True
pass
##### Error condition #####
def errorCondition_whatCanYouSeeBehaviour(self): # String taskCommand, String robotStatus, CameraMessage ballInfoTele, ObstacleDetected obstacleDetectedTele, Bool ballCollected, Int64 isNewCommandReceived, std_msgs::Bool _in_flag_taskCommand, std_msgs::Bool _in_flag_robotStatus, std_msgs::Bool _in_flag_ballInfoTele, std_msgs::Bool _in_flag_obstacleDetectedTele, std_msgs::Bool _in_flag_ballCollected, std_msgs::Bool _out_flag_taskStatus, std_msgs::Bool _out_flag_desiredRobotCommandTele #
self.log("[Behaviour whatCanYouSeeBehaviour] -- Checking Error Condition")
return False
pass
##### Transition function #####
def transitionFunction_whatCanYouSeeBehaviour(self):
self.log("[Behaviour whatCanYouSeeBehaviour] -- Calculating Transition Function")
# Transition function #
self.log("TRANSITION FUNCTION - whatCanYouSeeBehaviour consists of the following partial transition functions (decomposition based on output buffers)")
# Partial transition function call: fun1
self.transitionFunction_whatCanYouSeeBehaviour_fun1()
# Partial transition function call: set_buffer_flags_function
self.transitionFunction_whatCanYouSeeBehaviour_set_buffer_flags_function()
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_whatCanYouSeeBehaviour_fun1(self):
self.log("[Behaviour whatCanYouSeeBehaviour] -- Calculating Partial Transition Function fun1")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - whatCanYouSeeBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_whatCanYouSeeBehaviour_fun1_0()
pass
##### Partial transition function: fun1_0 based on input buffers True #####
def transitionFunction_whatCanYouSeeBehaviour_fun1_0(self):
self.log("[Behaviour whatCanYouSeeBehaviour] -- Calculating Partial Transition Function fun1_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - whatCanYouSeeBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
self._out_flag_taskStatus=True
self._out_flag_desiredRobotCommandTele=True
print("[CS - teleoperated] -- whatCanYouSeeBehaviour")
self.desiredRobotCommandTele.data="what can you see"
self.taskCommand.data="empty"
self.taskStatus.data="task status: what can you see"
# End - Partial Transition Function Code
pass
##### Decomposition of partial transition function based on input buffers #####
def transitionFunction_whatCanYouSeeBehaviour_set_buffer_flags_function(self):
self.log("[Behaviour whatCanYouSeeBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function")
# Partial Transition Function - the first layer #
self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - whatCanYouSeeBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
if True:
self.transitionFunction_whatCanYouSeeBehaviour_set_buffer_flags_function_0()
pass
##### Partial transition function: set_buffer_flags_function_0 based on input buffers True #####
def transitionFunction_whatCanYouSeeBehaviour_set_buffer_flags_function_0(self):
self.log("[Behaviour whatCanYouSeeBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function_0")
# Partial Transition Function - the second layer #
self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - whatCanYouSeeBehaviour consists of the following partial transition functions (decomposition based on input buffers)")
# Begin - Partial Transition Function Code
# End - Partial Transition Function Code
pass
##### End of transition function #####
##### Send data to other subsystems #####
def sendData_whatCanYouSeeBehaviour(self):
self.log("[Behaviour whatCanYouSeeBehaviour] -- Sending Data")
# DIAGNOSTICS SEND #
self.sendDataForDiagnostics()
# END OF DIAGNOSTICS SEND #
# TYPICAL SEND CALL #
# check if output buffer taskStatus has new data - i.e. is ready to send new data
if( self._out_flag_taskStatus ):
# send data from output buffer taskStatus
# Buffer taskStatus - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_taskStatus.publish(self.taskStatus) # sending data from output buffer taskStatus #
# indicate that data was sent and now the output buffer taskStatus is empty
self._out_flag_taskStatus=False
# check if output buffer desiredRobotCommandTele has new data - i.e. is ready to send new data
if( self._out_flag_desiredRobotCommandTele ):
# send data from output buffer desiredRobotCommandTele
# Buffer desiredRobotCommandTele - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode
self._sender_desiredRobotCommandTele.publish(self.desiredRobotCommandTele) # sending data from output buffer desiredRobotCommandTele #
# indicate that data was sent and now the output buffer desiredRobotCommandTele is empty
self._out_flag_desiredRobotCommandTele=False
# END OF TYPICAL SEND CALL #
# BEGIN OF BODY SEND CALL #
# END OF BODY SEND CALL #
pass
##### Receive data from other subsystems #####
def receiveData_whatCanYouSeeBehaviour(self):
self.log("[Behaviour whatCanYouSeeBehaviour] -- Receiving Data")
# TYPICAL RECEIVE CALL #
# Buffer taskCommand - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer taskCommand
# Buffer ballInfoTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballInfoTele
# Buffer obstacleDetectedTele - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer obstacleDetectedTele
# Buffer ballCollected - Sender using NON-BLOCKING MODE - Receiver using NON-BLOCKING MODE
# ROS topic generated for the input buffer ballCollected
self.waitForAllMessages() #
# END OF TYPICAL RECEIVE CALL #
# BEGIN OF RECEIVE BODY CALL #
# END OF RECEIVE BODY CALL #
pass
##### Execute behaviour whatCanYouSeeBehaviour #####
def executeBehaviour_whatCanYouSeeBehaviour(self):
self.log("[Behaviour whatCanYouSeeBehaviour] -- Executing whatCanYouSeeBehaviour Behaviour")
stopBehaviourIteration=False
# Execution of a single iteration of a behaviour whatCanYouSeeBehaviour #
_behaviourIterations=0
# Starts execution! #
while True:
# Sleep is a method from class AuxiliaryFunctions which executes sleep from ROS #
self.auxiliaryFunctions.sleep()
# Calculates transition function -- output and internal buffers can only be modified by this function! #
self.transitionFunction_whatCanYouSeeBehaviour()
# Sends data! #
self.sendData_whatCanYouSeeBehaviour()
# Updates index! -- i.e. i:i+1 -- increment number of behaviour iterations and number of subsystem iterations #
self._behaviourIterations=self._behaviourIterations+1
# Receives data! #
self.receiveData_whatCanYouSeeBehaviour()
# Check both conditions, i.e. terminal condition and error condition #
stopBehaviourIteration = self.terminalCondition_whatCanYouSeeBehaviour() or self.errorCondition_whatCanYouSeeBehaviour()
if stopBehaviourIteration or not self.auxiliaryFunctions.isSubsystemOK():
'''
Iterate within the while loop until stopBehaviourIteration is set true, i.e. one
of error and terminal condition is fulfilled and isSubsystemOK is true. Otherwise
subsystem must have been switched to another state or SIGINT was sent
'''
break
# Stops execution! #
pass
##### Definition of functions responsible for switching subsystem cs between states : Behaviour_initBehaviour Behaviour_idleBehaviour Behaviour_terminateBehaviour Behaviour_terminatedBehaviour Behaviour_stopBehaviour Behaviour_moveFasterBehaviour Behaviour_moveSlowerBehaviour Behaviour_vacuumOnBehaviour Behaviour_vacuumOffBehaviour Behaviour_moveBackwardBehaviour Behaviour_moveFrontBehaviour Behaviour_moveRightBehaviour Behaviour_moveLeftBehaviour Behaviour_rotateLeftBehaviour Behaviour_rotateRightBehaviour Behaviour_whatCanYouSeeBehaviour #####
# Behaviour initBehaviour: #
def subsystemBehaviour_initBehaviour(self):
self.log("subsystemBehaviour_initBehaviour")
# Executing behaviour initBehaviour #
self.executeBehaviour_initBehaviour()
# Behaviour has been terminated #
# Checking initial condition for behaviour initBehaviour: switching to behaviour idleBehaviour #
if self.initialCondition_From_Behaviour_initBehaviour_To_Behaviour_idleBehaviour():
# incrementing the number determining how many times subsystem has switched between behaviours #
self._subsystemIterations=self._subsystemIterations+1
self._currentSubsystemBehaviour="Behaviour_idleBehaviour"
pass
# Behaviour idleBehaviour: #
def subsystemBehaviour_idleBehaviour(self):
self.log("subsystemBehaviour_idleBehaviour")
# Executing behaviour idleBehaviour #
self.executeBehaviour_idleBehaviour()
# Behaviour has been terminated #
# Checking initial condition for behaviour idleBehaviour: switching to behaviour terminateBehaviour #
if self.initialCondition_From_Behaviour_idleBehaviour_To_Behaviour_terminateBehaviour():
# incrementing the number determining how many times subsystem has switched between behaviours #
self._subsystemIterations=self._subsystemIterations+1
self._currentSubsystemBehaviour="Behaviour_terminateBehaviour"
# Checking initial condition for behaviour idleBehaviour: switching to behaviour stopBehaviour #
if self.initialCondition_From_Behaviour_idleBehaviour_To_Behaviour_stopBehaviour():
# incrementing the number determining how many times subsystem has switched between behaviours #
self._subsystemIterations=self._subsystemIterations+1
self._currentSubsystemBehaviour="Behaviour_stopBehaviour"
# Checking initial condition for behaviour idleBehaviour: switching to behaviour moveFasterBehaviour #
if self.initialCondition_From_Behaviour_idleBehaviour_To_Behaviour_moveFasterBehaviour():
# incrementing the number determining how many times subsystem has switched between behaviours #
self._subsystemIterations=self._subsystemIterations+1
self._currentSubsystemBehaviour="Behaviour_moveFasterBehaviour"
# Checking initial condition for behaviour idleBehaviour: switching to behaviour moveSlowerBehaviour #
if self.initialCondition_From_Behaviour_idleBehaviour_To_Behaviour_moveSlowerBehaviour():
# incrementing the number determining how many times subsystem has switched between behaviours #
self._subsystemIterations=self._subsystemIterations+1
self._currentSubsystemBehaviour="Behaviour_moveSlowerBehaviour"
# Checking initial condition for behaviour idleBehaviour: switching to behaviour vacuumOnBehaviour #
if self.initialCondition_From_Behaviour_idleBehaviour_To_Behaviour_vacuumOnBehaviour():
# incrementing the number determining how many times subsystem has switched between behaviours #
self._subsystemIterations=self._subsystemIterations+1
self._currentSubsystemBehaviour="Behaviour_vacuumOnBehaviour"
# Checking initial condition for behaviour idleBehaviour: switching to behaviour vacuumOffBehaviour #
if self.initialCondition_From_Behaviour_idleBehaviour_To_Behaviour_vacuumOffBehaviour():
# incrementing the number determining how many times subsystem has switched between behaviours #
self._subsystemIterations=self._subsystemIterations+1
self._currentSubsystemBehaviour="Behaviour_vacuumOffBehaviour"
# Checking initial condition for behaviour idleBehaviour: switching to behaviour moveBackwardBehaviour #
if self.initialCondition_From_Behaviour_idleBehaviour_To_Behaviour_moveBackwardBehaviour():
# incrementing the number determining how many times subsystem has switched between behaviours #
self._subsystemIterations=self._subsystemIterations+1
self._currentSubsystemBehaviour="Behaviour_moveBackwardBehaviour"
# Checking initial condition for behaviour idleBehaviour: switching to behaviour moveFrontBehaviour #
if self.initialCondition_From_Behaviour_idleBehaviour_To_Behaviour_moveFrontBehaviour():
# incrementing the number determining how many times subsystem has switched between behaviours #
self._subsystemIterations=self._subsystemIterations+1
self._currentSubsystemBehaviour="Behaviour_moveFrontBehaviour"
# Checking initial condition for behaviour idleBehaviour: switching to behaviour moveRightBehaviour #
if self.initialCondition_From_Behaviour_idleBehaviour_To_Behaviour_moveRightBehaviour():
# incrementing the number determining how many times subsystem has switched between behaviours #
self._subsystemIterations=self._subsystemIterations+1
self._currentSubsystemBehaviour="Behaviour_moveRightBehaviour"
# Checking initial condition for behaviour idleBehaviour: switching to behaviour moveLeftBehaviour #
if self.initialCondition_From_Behaviour_idleBehaviour_To_Behaviour_moveLeftBehaviour():
# incrementing the number determining how many times subsystem has switched between behaviours #
self._subsystemIterations=self._subsystemIterations+1
self._currentSubsystemBehaviour="Behaviour_moveLeftBehaviour"
# Checking initial condition for behaviour idleBehaviour: switching to behaviour rotateLeftBehaviour #
if self.initialCondition_From_Behaviour_idleBehaviour_To_Behaviour_rotateLeftBehaviour():
# incrementing the number determining how many times subsystem has switched between behaviours #
self._subsystemIterations=self._subsystemIterations+1
self._currentSubsystemBehaviour="Behaviour_rotateLeftBehaviour"
# Checking initial condition for behaviour idleBehaviour: switching to behaviour rotateRightBehaviour #
if self.initialCondition_From_Behaviour_idleBehaviour_To_Behaviour_rotateRightBehaviour():
# incrementing the number determining how many times subsystem has switched between behaviours #
self._subsystemIterations=self._subsystemIterations+1
self._currentSubsystemBehaviour="Behaviour_rotateRightBehaviour"
# Checking initial condition for behaviour idleBehaviour: switching to behaviour whatCanYouSeeBehaviour #
if self.initialCondition_From_Behaviour_idleBehaviour_To_Behaviour_whatCanYouSeeBehaviour():
# incrementing the number determining how many times subsystem has switched between behaviours #
self._subsystemIterations=self._subsystemIterations+1
self._currentSubsystemBehaviour="Behaviour_whatCanYouSeeBehaviour"
pass
# Behaviour terminateBehaviour: #
def subsystemBehaviour_terminateBehaviour(self):
self.log("subsystemBehaviour_terminateBehaviour")
# Executing behaviour terminateBehaviour #
self.executeBehaviour_terminateBehaviour()
# Behaviour has been terminated #
# Checking initial condition for behaviour terminateBehaviour: switching to behaviour terminatedBehaviour #
if self.initialCondition_From_Behaviour_terminateBehaviour_To_Behaviour_terminatedBehaviour():
# incrementing the number determining how many times subsystem has switched between behaviours #
self._subsystemIterations=self._subsystemIterations+1
self._currentSubsystemBehaviour="Behaviour_terminatedBehaviour"
pass
# Behaviour terminatedBehaviour: #
def subsystemBehaviour_terminatedBehaviour(self):
self.log("subsystemBehaviour_terminatedBehaviour")
# Executing behaviour terminatedBehaviour #
self.executeBehaviour_terminatedBehaviour()
# Behaviour has been terminated #
pass
# Behaviour stopBehaviour: #
def subsystemBehaviour_stopBehaviour(self):
self.log("subsystemBehaviour_stopBehaviour")
# Executing behaviour stopBehaviour #
self.executeBehaviour_stopBehaviour()
# Behaviour has been terminated #
# Checking initial condition for behaviour stopBehaviour: switching to behaviour idleBehaviour #
if self.initialCondition_From_Behaviour_stopBehaviour_To_Behaviour_idleBehaviour():
# incrementing the number determining how many times subsystem has switched between behaviours #
self._subsystemIterations=self._subsystemIterations+1
self._currentSubsystemBehaviour="Behaviour_idleBehaviour"
pass
# Behaviour moveFasterBehaviour: #
def subsystemBehaviour_moveFasterBehaviour(self):
self.log("subsystemBehaviour_moveFasterBehaviour")
# Executing behaviour moveFasterBehaviour #
self.executeBehaviour_moveFasterBehaviour()
# Behaviour has been terminated #
# Checking initial condition for behaviour moveFasterBehaviour: switching to behaviour idleBehaviour #
if self.initialCondition_From_Behaviour_moveFasterBehaviour_To_Behaviour_idleBehaviour():
# incrementing the number determining how many times subsystem has switched between behaviours #
self._subsystemIterations=self._subsystemIterations+1
self._currentSubsystemBehaviour="Behaviour_idleBehaviour"
pass
# Behaviour moveSlowerBehaviour: #
def subsystemBehaviour_moveSlowerBehaviour(self):
self.log("subsystemBehaviour_moveSlowerBehaviour")
# Executing behaviour moveSlowerBehaviour #
self.executeBehaviour_moveSlowerBehaviour()
# Behaviour has been terminated #
# Checking initial condition for behaviour moveSlowerBehaviour: switching to behaviour idleBehaviour #
if self.initialCondition_From_Behaviour_moveSlowerBehaviour_To_Behaviour_idleBehaviour():
# incrementing the number determining how many times subsystem has switched between behaviours #
self._subsystemIterations=self._subsystemIterations+1
self._currentSubsystemBehaviour="Behaviour_idleBehaviour"
pass
# Behaviour vacuumOnBehaviour: #
def subsystemBehaviour_vacuumOnBehaviour(self):
self.log("subsystemBehaviour_vacuumOnBehaviour")
# Executing behaviour vacuumOnBehaviour #
self.executeBehaviour_vacuumOnBehaviour()
# Behaviour has been terminated #
# Checking initial condition for behaviour vacuumOnBehaviour: switching to behaviour idleBehaviour #
if self.initialCondition_From_Behaviour_vacuumOnBehaviour_To_Behaviour_idleBehaviour():
# incrementing the number determining how many times subsystem has switched between behaviours #
self._subsystemIterations=self._subsystemIterations+1
self._currentSubsystemBehaviour="Behaviour_idleBehaviour"
pass
# Behaviour vacuumOffBehaviour: #
def subsystemBehaviour_vacuumOffBehaviour(self):
self.log("subsystemBehaviour_vacuumOffBehaviour")
# Executing behaviour vacuumOffBehaviour #
self.executeBehaviour_vacuumOffBehaviour()
# Behaviour has been terminated #
# Checking initial condition for behaviour vacuumOffBehaviour: switching to behaviour idleBehaviour #
if self.initialCondition_From_Behaviour_vacuumOffBehaviour_To_Behaviour_idleBehaviour():
# incrementing the number determining how many times subsystem has switched between behaviours #
self._subsystemIterations=self._subsystemIterations+1
self._currentSubsystemBehaviour="Behaviour_idleBehaviour"
pass
# Behaviour moveBackwardBehaviour: #
def subsystemBehaviour_moveBackwardBehaviour(self):
self.log("subsystemBehaviour_moveBackwardBehaviour")
# Executing behaviour moveBackwardBehaviour #
self.executeBehaviour_moveBackwardBehaviour()
# Behaviour has been terminated #
# Checking initial condition for behaviour moveBackwardBehaviour: switching to behaviour idleBehaviour #
if self.initialCondition_From_Behaviour_moveBackwardBehaviour_To_Behaviour_idleBehaviour():
# incrementing the number determining how many times subsystem has switched between behaviours #
self._subsystemIterations=self._subsystemIterations+1
self._currentSubsystemBehaviour="Behaviour_idleBehaviour"
pass
# Behaviour moveFrontBehaviour: #
def subsystemBehaviour_moveFrontBehaviour(self):
self.log("subsystemBehaviour_moveFrontBehaviour")
# Executing behaviour moveFrontBehaviour #
self.executeBehaviour_moveFrontBehaviour()
# Behaviour has been terminated #
# Checking initial condition for behaviour moveFrontBehaviour: switching to behaviour idleBehaviour #
if self.initialCondition_From_Behaviour_moveFrontBehaviour_To_Behaviour_idleBehaviour():
# incrementing the number determining how many times subsystem has switched between behaviours #
self._subsystemIterations=self._subsystemIterations+1
self._currentSubsystemBehaviour="Behaviour_idleBehaviour"
pass
# Behaviour moveRightBehaviour: #
def subsystemBehaviour_moveRightBehaviour(self):
self.log("subsystemBehaviour_moveRightBehaviour")
# Executing behaviour moveRightBehaviour #
self.executeBehaviour_moveRightBehaviour()
# Behaviour has been terminated #
# Checking initial condition for behaviour moveRightBehaviour: switching to behaviour idleBehaviour #
if self.initialCondition_From_Behaviour_moveRightBehaviour_To_Behaviour_idleBehaviour():
# incrementing the number determining how many times subsystem has switched between behaviours #
self._subsystemIterations=self._subsystemIterations+1
self._currentSubsystemBehaviour="Behaviour_idleBehaviour"
pass
# Behaviour moveLeftBehaviour: #
def subsystemBehaviour_moveLeftBehaviour(self):
self.log("subsystemBehaviour_moveLeftBehaviour")
# Executing behaviour moveLeftBehaviour #
self.executeBehaviour_moveLeftBehaviour()
# Behaviour has been terminated #
# Checking initial condition for behaviour moveLeftBehaviour: switching to behaviour idleBehaviour #
if self.initialCondition_From_Behaviour_moveLeftBehaviour_To_Behaviour_idleBehaviour():
# incrementing the number determining how many times subsystem has switched between behaviours #
self._subsystemIterations=self._subsystemIterations+1
self._currentSubsystemBehaviour="Behaviour_idleBehaviour"
pass
# Behaviour rotateLeftBehaviour: #
def subsystemBehaviour_rotateLeftBehaviour(self):
self.log("subsystemBehaviour_rotateLeftBehaviour")
# Executing behaviour rotateLeftBehaviour #
self.executeBehaviour_rotateLeftBehaviour()
# Behaviour has been terminated #
# Checking initial condition for behaviour rotateLeftBehaviour: switching to behaviour idleBehaviour #
if self.initialCondition_From_Behaviour_rotateLeftBehaviour_To_Behaviour_idleBehaviour():
# incrementing the number determining how many times subsystem has switched between behaviours #
self._subsystemIterations=self._subsystemIterations+1
self._currentSubsystemBehaviour="Behaviour_idleBehaviour"
pass
# Behaviour rotateRightBehaviour: #
def subsystemBehaviour_rotateRightBehaviour(self):
self.log("subsystemBehaviour_rotateRightBehaviour")
# Executing behaviour rotateRightBehaviour #
self.executeBehaviour_rotateRightBehaviour()
# Behaviour has been terminated #
# Checking initial condition for behaviour rotateRightBehaviour: switching to behaviour idleBehaviour #
if self.initialCondition_From_Behaviour_rotateRightBehaviour_To_Behaviour_idleBehaviour():
# incrementing the number determining how many times subsystem has switched between behaviours #
self._subsystemIterations=self._subsystemIterations+1
self._currentSubsystemBehaviour="Behaviour_idleBehaviour"
pass
# Behaviour whatCanYouSeeBehaviour: #
def subsystemBehaviour_whatCanYouSeeBehaviour(self):
self.log("subsystemBehaviour_whatCanYouSeeBehaviour")
# Executing behaviour whatCanYouSeeBehaviour #
self.executeBehaviour_whatCanYouSeeBehaviour()
# Behaviour has been terminated #
# Checking initial condition for behaviour whatCanYouSeeBehaviour: switching to behaviour idleBehaviour #
if self.initialCondition_From_Behaviour_whatCanYouSeeBehaviour_To_Behaviour_idleBehaviour():
# incrementing the number determining how many times subsystem has switched between behaviours #
self._subsystemIterations=self._subsystemIterations+1
self._currentSubsystemBehaviour="Behaviour_idleBehaviour"
pass
##### Initial condition for behaviour initBehaviour: switching to behaviour idleBehaviour #####
def initialCondition_From_Behaviour_initBehaviour_To_Behaviour_idleBehaviour(self):
# Initial condition specified by user #
return True
##### Initial condition for behaviour idleBehaviour: switching to behaviour terminateBehaviour #####
def initialCondition_From_Behaviour_idleBehaviour_To_Behaviour_terminateBehaviour(self):
# Initial condition specified by user #
return self.taskCommand.data=="terminate"
##### Initial condition for behaviour idleBehaviour: switching to behaviour stopBehaviour #####
def initialCondition_From_Behaviour_idleBehaviour_To_Behaviour_stopBehaviour(self):
# Initial condition specified by user #
return self.taskCommand.data=="stop"
##### Initial condition for behaviour idleBehaviour: switching to behaviour moveFasterBehaviour #####
def initialCondition_From_Behaviour_idleBehaviour_To_Behaviour_moveFasterBehaviour(self):
# Initial condition specified by user #
return self.taskCommand.data=="speed up"
##### Initial condition for behaviour idleBehaviour: switching to behaviour moveSlowerBehaviour #####
def initialCondition_From_Behaviour_idleBehaviour_To_Behaviour_moveSlowerBehaviour(self):
# Initial condition specified by user #
return self.taskCommand.data=="speed down"
##### Initial condition for behaviour idleBehaviour: switching to behaviour vacuumOnBehaviour #####
def initialCondition_From_Behaviour_idleBehaviour_To_Behaviour_vacuumOnBehaviour(self):
# Initial condition specified by user #
return self.taskCommand.data=="vacuum turn on"
##### Initial condition for behaviour idleBehaviour: switching to behaviour vacuumOffBehaviour #####
def initialCondition_From_Behaviour_idleBehaviour_To_Behaviour_vacuumOffBehaviour(self):
# Initial condition specified by user #
return self.taskCommand.data=="vacuum off"
##### Initial condition for behaviour idleBehaviour: switching to behaviour moveBackwardBehaviour #####
def initialCondition_From_Behaviour_idleBehaviour_To_Behaviour_moveBackwardBehaviour(self):
# Initial condition specified by user #
return self.taskCommand.data=="backwards"
##### Initial condition for behaviour idleBehaviour: switching to behaviour moveFrontBehaviour #####
def initialCondition_From_Behaviour_idleBehaviour_To_Behaviour_moveFrontBehaviour(self):
# Initial condition specified by user #
return self.taskCommand.data=="front"
##### Initial condition for behaviour idleBehaviour: switching to behaviour moveRightBehaviour #####
def initialCondition_From_Behaviour_idleBehaviour_To_Behaviour_moveRightBehaviour(self):
# Initial condition specified by user #
return self.taskCommand.data=="right"
##### Initial condition for behaviour idleBehaviour: switching to behaviour moveLeftBehaviour #####
def initialCondition_From_Behaviour_idleBehaviour_To_Behaviour_moveLeftBehaviour(self):
# Initial condition specified by user #
return self.taskCommand.data=="left"
##### Initial condition for behaviour idleBehaviour: switching to behaviour rotateLeftBehaviour #####
def initialCondition_From_Behaviour_idleBehaviour_To_Behaviour_rotateLeftBehaviour(self):
# Initial condition specified by user #
return self.taskCommand.data=="rotate left"
##### Initial condition for behaviour idleBehaviour: switching to behaviour rotateRightBehaviour #####
def initialCondition_From_Behaviour_idleBehaviour_To_Behaviour_rotateRightBehaviour(self):
# Initial condition specified by user #
return self.taskCommand.data=="rotate right"
##### Initial condition for behaviour idleBehaviour: switching to behaviour whatCanYouSeeBehaviour #####
def initialCondition_From_Behaviour_idleBehaviour_To_Behaviour_whatCanYouSeeBehaviour(self):
# Initial condition specified by user #
return self.taskCommand.data=="what can you see"
##### Initial condition for behaviour terminateBehaviour: switching to behaviour terminatedBehaviour #####
def initialCondition_From_Behaviour_terminateBehaviour_To_Behaviour_terminatedBehaviour(self):
# Initial condition specified by user #
return True
##### Initial condition for behaviour stopBehaviour: switching to behaviour idleBehaviour #####
def initialCondition_From_Behaviour_stopBehaviour_To_Behaviour_idleBehaviour(self):
# Initial condition specified by user #
return True
##### Initial condition for behaviour moveFasterBehaviour: switching to behaviour idleBehaviour #####
def initialCondition_From_Behaviour_moveFasterBehaviour_To_Behaviour_idleBehaviour(self):
# Initial condition specified by user #
return True
##### Initial condition for behaviour moveSlowerBehaviour: switching to behaviour idleBehaviour #####
def initialCondition_From_Behaviour_moveSlowerBehaviour_To_Behaviour_idleBehaviour(self):
# Initial condition specified by user #
return True
##### Initial condition for behaviour vacuumOnBehaviour: switching to behaviour idleBehaviour #####
def initialCondition_From_Behaviour_vacuumOnBehaviour_To_Behaviour_idleBehaviour(self):
# Initial condition specified by user #
return True
##### Initial condition for behaviour vacuumOffBehaviour: switching to behaviour idleBehaviour #####
def initialCondition_From_Behaviour_vacuumOffBehaviour_To_Behaviour_idleBehaviour(self):
# Initial condition specified by user #
return True
##### Initial condition for behaviour moveBackwardBehaviour: switching to behaviour idleBehaviour #####
def initialCondition_From_Behaviour_moveBackwardBehaviour_To_Behaviour_idleBehaviour(self):
# Initial condition specified by user #
return True
##### Initial condition for behaviour moveFrontBehaviour: switching to behaviour idleBehaviour #####
def initialCondition_From_Behaviour_moveFrontBehaviour_To_Behaviour_idleBehaviour(self):
# Initial condition specified by user #
return True
##### Initial condition for behaviour moveRightBehaviour: switching to behaviour idleBehaviour #####
def initialCondition_From_Behaviour_moveRightBehaviour_To_Behaviour_idleBehaviour(self):
# Initial condition specified by user #
return True
##### Initial condition for behaviour moveLeftBehaviour: switching to behaviour idleBehaviour #####
def initialCondition_From_Behaviour_moveLeftBehaviour_To_Behaviour_idleBehaviour(self):
# Initial condition specified by user #
return True
##### Initial condition for behaviour rotateLeftBehaviour: switching to behaviour idleBehaviour #####
def initialCondition_From_Behaviour_rotateLeftBehaviour_To_Behaviour_idleBehaviour(self):
# Initial condition specified by user #
return True
##### Initial condition for behaviour rotateRightBehaviour: switching to behaviour idleBehaviour #####
def initialCondition_From_Behaviour_rotateRightBehaviour_To_Behaviour_idleBehaviour(self):
# Initial condition specified by user #
return True
##### Initial condition for behaviour whatCanYouSeeBehaviour: switching to behaviour idleBehaviour #####
def initialCondition_From_Behaviour_whatCanYouSeeBehaviour_To_Behaviour_idleBehaviour(self):
# Initial condition specified by user #
return True
##### Function indicating basic log/debug message #####
def log(self, str):
if(IS_LOG):
rospy.loginfo("[SUBSYSTEM cs] -- LOG -- "+str)
if(IS_PRINT):
print "[SUBSYSTEM cs] -- LOG -- " + str
pass
##### Function indicating basic error message #####
def error(self, str):
sys.stderr.write("[SUBSYSTEM cs] -- ERROR -- " + str)
if(IS_LOG):
rospy.loginfo("[SUBSYSTEM cs] -- ERROR -- "+str)
sys.exit()
pass
##### MAIN FUNCTION FOR SUBSYSTEM cs #####
if __name__ == '__main__':
try:
subsystem_cs = cs()
subsystem_cs.startSubsystem()
except rospy.ROSInterruptException:
pass
| UTF-8 | Python | false | false | 174,238 | py | 59 | subsystem_cs.py | 32 | 0.750795 | 0.748252 | 0 | 3,007 | 56.943798 | 554 |
nagpureabhirag/Graph-1 | 17,471,926,969,178 | a932817460a1c07c44956c28efae9a826375e875 | 1c5de78c2f731a6e5c34524880912bfe89593048 | /find_the_town_judge.py | 12cfdfc1cc478a69e5a4e72aa60fe3afcd2924e1 | []
| no_license | https://github.com/nagpureabhirag/Graph-1 | cc6a19178e5e9e26e4e588088ebb009f152e2619 | a813d3b086bb6c899fb79f1a5b1438f69ab16fd2 | refs/heads/master | 2023-08-26T09:08:26.208774 | 2021-10-18T16:09:05 | 2021-10-18T16:09:05 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # Did this code successfully run on Leetcode : YES
# approach
# calculate difference between indegrees and outdegrees
# TC: O(N)
# SC: O(N)
class Solution:
def findJudge(self, n: int, trust: List[List[int]]) -> int:
degrees = [0 for _ in range(n)]
for [i, j] in trust:
degrees[j-1] += 1
degrees[i-1] -= 1
for d in range(n):
if degrees[d] == n-1:
return d+1
return -1 | UTF-8 | Python | false | false | 456 | py | 2 | find_the_town_judge.py | 2 | 0.537281 | 0.519737 | 0 | 17 | 25.882353 | 63 |
Ochwada/Thesis_-Data_Analysis-Public | 11,012,296,162,218 | 0f851d8f9f361781b6b920668062ea119f13c6f0 | 1c7c2690c4439be51135c85533f6f0d3cf4ff1ce | /wind_histogram.py | af10a3026442e4295738734ad0702b60f4a5657f | []
| no_license | https://github.com/Ochwada/Thesis_-Data_Analysis-Public | 516c4c15464511f0ef969f56c8bbb648c2767b94 | ac1e8a7bff96521c9e9b2134d56f3a09c1a72524 | refs/heads/master | 2020-04-09T02:45:24.202761 | 2018-12-01T14:48:49 | 2018-12-01T14:48:49 | 159,952,732 | 1 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # -*- coding: utf-8 -*-
# -*- codiing for wind_histogram -*-
import matplotlib.pyplot as plt
import numpy as np
#import scipy.stats as stats
from scipy import stats
import matplotlib.mlab as mlab
import statsmodels.api as sm
import wind_data as wd
import plot_winddata as pwd
from helper import date_to_doy, doy_to_date, moving_average, altitude_to_int, weib
import project_config as conf
import math
#import matplotlib.font_manager as font_manager
axis_font = {'fontname':'Arial', 'size':'16'}
# -----------------------------------------------------------------------
#Central Tendency
# -----------------------------------------------------------------------
#mean
def mean_speed(data):
total = 0
mean = 0
for item in data:
total += item
mean_speed = total/float(len(data))
return mean_speed
def mean_power(data):
total = 0
mean = 0
for item in data:
total+= item
mean_power = total/float(len(data))
return mean_power
# -----------------------------------------------------------------------
#Weibull pdf
# -----------------------------------------------------------------------
def weibull_plot_speed(data, params):
bins = np.arange(0, 32.0, 0.5)
plt.hist(data, bins, histtype='bar', edgecolor='black',normed=True, alpha=0.5, rwidth=1.0);
x = np.arange(0, 32.0, 0.1)
plt.plot(x,stats.exponweib.pdf(x, *params), label="Weibull PDF")
mean_value = data.mean()
plt.axvline(mean_value, color='m', linestyle='dashed', linewidth=1, label="Mean power" )
#plt.title('Wind speed distribution for Germany at Level 1')
plt.xlabel('Wind Speed (m/s)', **axis_font)
plt.ylabel('Wind speed frequency', **axis_font)
plt.legend(loc=1, prop={'size': 16})
plt.show()
#plt.savefig('image1')
#print(result)
#=======================================================================
if __name__ == '__main__':
# -----------------------------------------------------------------------
# -----------------------------------------------------------------------
#Central Tendancy - Compute for 0-9
speedall = conf.load_all_windspeeds()
meanspeed = mean_speed(speedall[:,1])
#print(meanspeed)
powerall = conf.load_all_windpower()
meanpower = mean_power(powerall[:,8])
#print(meanpower)
#--------------------------Weibull PDF----------------------
#-----------------------------------------------------------
#------------windspeed
speedall = conf.load_all_windspeeds()
data_speed = speedall [:,1]
#params_speed = stats.exponweib.fit(data_speed,floc=0)
#windspeed -----stats.exponweib.fit(data_speed,floc=0)
params_speed = (1.1113449643109912, 1.6809413157101651, 0, 7.2972382976005772)#Level 1
#params_speed =(1.0635878486058918, 1.7129895275983615, 0, 8.0111689684382323)#Level 2
#params_speed =(1.0704643275819068, 1.6853620845145747, 0, 8.3604171276602486)#Level 3
#params_speed =(1.1113173256840196, 1.6301269094327573, 0, 8.4365496561132183)#Level 4
#params_speed =(1.1600496620157552, 1.5765771265205082, 0, 8.4068808687607639)#Level 5
#params_speed =(1.2147903730266001, 1.5256215491691232, 0, 8.3224080743411264)#Level 6
#params_speed =(1.2558199288860206, 1.4950921999766487, 0, 8.2474385764630327)#Level 7
#params_speed =(1.2949475501898591, 1.469286787656831, 0, 8.1859121591777537)#Level 8
#params_speed =(1.3035611603623392, 1.4695586916574541, 0, 8.2236837246717638)#Level 9
print('p\n', params_speed)
#weibull_plot_speed(data_speed, params_speed)
#------------windpower
dist = stats.lognorm
powerall = conf.load_all_windpower()
data_power = powerall [:,9]
#params_power = dist.fit(data_power,floc=0)
params_power = (2.1848911866776488, 0, 195.85401224562315) #lognorm
print('p\n', params_power)
#--2--params_power=(1.0945801093499283, 0.56150661053208051, 0, 274.89152413198588)#Level 1
#weibull_plot_power(data_power, params_power, dist)
#==================================================================================================
#------------windpower location base --------
dist = stats.lognorm
wind_Konigssee = wd.WindMeasurements().load(conf.connected_filename(47.5, 13.5) )
data_power_Konigssee = wind_Konigssee.windpower[:,9]
params_power_Konigssee = dist.fit(data_power_Konigssee,floc=0)
print('p\n', params_power_Konigssee)
#weibull_plot_power(data_power_Konigssee, params_power_Konigssee, dist)
#-------------------------------------------------
#-------------------------------------------------
#speedall = conf.load_all_windspeeds()
#mediumspeed = median_speed(speedall [:,0])
#print(mediumspeed)
#powerall = conf.load_all_windpower()
#mediumpower = median_power(powerall [:,0])
#print(mediumpower)
# -----------------------------------------------------------------------
#indata_Konigssee = wd.WindMeasurements().load(conf.connected_filename(47.5, 13.5) ) # Ten years at this location
#check_distribution(indata_Konigssee.get_windspeed_at(0))
#speedall = conf.load_all_windspeeds() # np.load(conf.npz_folder_path + "windspeed_complete.npz", allow_pickle=False)['arr_0']
#powerall = conf.load_all_windpower() # np.load(conf.npz_folder_path + "windspower_complete.npz", allow_pickle=False)['arr_0']
#print(speedall.shape)
#check_distribution(speedall[:,1])
#pass | UTF-8 | Python | false | false | 5,467 | py | 10 | wind_histogram.py | 9 | 0.56338 | 0.449241 | 0 | 140 | 38.057143 | 131 |
TheDrHax/streamlink | 8,693,013,818,674 | d3c223fe1854552333643c1d17387b59ce411cbb | 716501ff054d10f095879f986d74882778fa72c5 | /tests/plugins/test_webcast_india_gov.py | 9e83d7dded01b3393c4227b4e511a4f73a88d4bd | [
"BSD-2-Clause"
]
| permissive | https://github.com/TheDrHax/streamlink | 017fdfd999277089a0c89a209ba4f64df9e54916 | 4dfd0d516fd8484438389518985e3b5131b7a253 | refs/heads/master | 2021-10-26T17:43:50.402219 | 2020-10-11T22:43:53 | 2021-10-25T19:10:01 | 223,461,822 | 4 | 0 | BSD-2-Clause | true | 2019-11-22T18:25:47 | 2019-11-22T18:25:46 | 2019-11-22T15:37:19 | 2019-11-22T16:48:00 | 35,041 | 0 | 0 | 0 | null | false | false | from streamlink.plugins.webcast_india_gov import WebcastIndiaGov
from tests.plugins import PluginCanHandleUrl
class TestPluginCanHandleUrlWebcastIndiaGov(PluginCanHandleUrl):
__plugin__ = WebcastIndiaGov
should_match = [
"http://webcast.gov.in/ddpunjabi/",
"http://webcast.gov.in/#Channel1",
"http://webcast.gov.in/#Channel3",
]
| UTF-8 | Python | false | false | 368 | py | 111 | test_webcast_india_gov.py | 103 | 0.711957 | 0.706522 | 0 | 12 | 29.666667 | 64 |
colinmipapi/italian | 14,190,571,951,544 | 437a9635f279630430e9296b4f70dd2f82ab51b9 | cfbf93c27ea19920d620dabd1f0648fe082f9391 | /blog/models.py | 5980326e7c80d5d524c45e9763a75f9e549ebb9e | []
| no_license | https://github.com/colinmipapi/italian | 63c8ee03e55c3a572d89c42f3211687c60422ea1 | 8dbd270d6c7b9b2acb9f5e5fd964379030731f37 | refs/heads/master | 2021-01-21T17:17:17.988107 | 2017-03-16T03:36:58 | 2017-03-16T03:36:58 | 85,148,252 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from __future__ import unicode_literals
from django.db import models
from django.core.validators import MinValueValidator, MaxValueValidator
from django.http import HttpResponseRedirect
# Create your models here.
class Post(models.Model):
title = models.CharField(max_length=300)
slug = models.CharField(max_length=100, unique=True)
content = models.TextField()
published = models.BooleanField(default=False)
pub_date = models.DateTimeField(auto_now_add=True)
rating_info = models.ForeignKey(
'blog.rating',
on_delete=models.CASCADE,
)
image_one = models.ImageField(
upload_to='static/blog/media/uploads',
default = '/None/no-img.jpg')
def __unicode__(self):
return '%s' % self.title
class Rating(models.Model):
sandwich_name = models.CharField(max_length=300, null = True)
bread_quality = models.PositiveIntegerField(default=0, validators=[MaxValueValidator(10),], null = True)
meat_quality = models.PositiveIntegerField(default=0, validators=[MaxValueValidator(10),], null = True)
meat_quantity = models.PositiveIntegerField(default=0, validators=[MaxValueValidator(10),],null = True)
veg_quality = models.PositiveIntegerField(default=0, validators=[MaxValueValidator(10),],null = True)
veg_quantity = models.PositiveIntegerField(default=0, validators=[MaxValueValidator(10),],null = True)
dressing_quality = models.PositiveIntegerField(default=0, validators=[MaxValueValidator(10),],null = True)
dressing_quantity = models.PositiveIntegerField(default=0, validators=[MaxValueValidator(10),],null = True)
def __unicode__(self):
return '%s' % self.sandwich_name
def score(self):
b_ql = int(self.bread_quality)
m_ql = int(self.meat_quality)
m_qt = int(self.meat_quantity)
v_ql = int(self.veg_quality)
v_qt = int(self.veg_quantity)
d_ql = int(self.dressing_quality)
d_qt = int(self.dressing_quantity)
total = b_ql + m_ql + m_qt + v_ql + v_qt + d_ql + d_qt
return total
class Restaurant(models.Model):
name = models.CharField(
max_length=200,
unique=True,
)
address = models.CharField(max_length=500, null = True)
website = models.CharField(max_length=200, null = True)
phone_number = models.CharField(max_length=12, null = True)
email = models.CharField(max_length=75, null = True)
rating_info = models.ForeignKey(
'blog.rating',
on_delete=models.CASCADE,
null=True,
blank = True,
)
latitude = models.IntegerField(
blank=True,
null=True,
)
longitude = models.IntegerField(
blank=True,
null=True,
)
def __unicode__(self):
return '%s' % self.name
def get_lat_long(self):
from googlemaps import GoogleMaps
gmaps = GoogleMaps(italian-1489414695369)
Address = self.address
lat, lng = gmaps.address_to_latlng(address)
self.latitude = lat
self.longitude = lng
save()
| UTF-8 | Python | false | false | 3,074 | py | 18 | models.py | 10 | 0.657775 | 0.639558 | 0 | 88 | 33.931818 | 112 |
kurodo/apiprueba | 17,583,596,128,773 | 11fd527bb4ed0167cf1e1591b7391d99580f4e52 | b41805d913e7bc0f09399bec558d7079863e331b | /catalogo/urls.py | ed0ac18afd608514b00565f422339fde25d38631 | []
| no_license | https://github.com/kurodo/apiprueba | 21fb5cd569ba2311d0f2de887c34ed0e8c065c98 | 7db0682f2b054dcfdbc4d98e713cb3b067651f09 | refs/heads/master | 2020-05-17T15:55:53.227062 | 2019-05-05T00:17:18 | 2019-05-05T00:17:18 | 183,805,181 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from django.urls import path, include
from rest_framework import routers
from .views import *
router = routers.DefaultRouter()
router.register(r'producto', ProductoViewSet)
router.register(r'precio', PrecioProductoViewSet)
router.register(r'variacion', VariacionViewSet)
router.register(r'producto_variacion', ProdcutoVariacionViewSet)
router.register(r'categoria', CategoriaViewSet)
urlpatterns = [
path('', include(router.urls)),
path('build/variaciones/<int:pk>/',CrearVariaciones.as_view())
]
urlpatterns += router.urls
| UTF-8 | Python | false | false | 535 | py | 38 | urls.py | 36 | 0.781308 | 0.781308 | 0 | 17 | 30.470588 | 66 |
mengyuqianxun/Python-Algorithm-interview | 6,854,767,851,226 | 8150bdd89ac24e0504450d895cabe091697ec4be | fdfbcf4451f3f165ad6c897c74563dc1f04908db | /ch3_binary_tree/5.py | f2f7763f7f731f78996a097caa6eae12752983dd | []
| no_license | https://github.com/mengyuqianxun/Python-Algorithm-interview | 3c9baac00657fea68786876706b526140c1f7799 | 95b6aa69fdffb2e8cbc696cc958d8d5ee8eb5c29 | refs/heads/master | 2020-08-29T06:50:37.178084 | 2020-02-17T03:11:48 | 2020-02-17T03:11:48 | 217,958,936 | 4 | 1 | null | null | null | null | null | null | null | null | null | null | null | null | null | import math
class BiTNode:
def __init__(self):
self.data = None
self.lchild = None
self.rchild = None
def array2tree(arr,start,end):
root = None
if end >= start:
root = BiTNode()
mid = math.floor((start + end +1)/2)
root.data = arr[mid]
root.lchild = array2tree(arr,start,mid-1)
root.rchild = array2tree(arr,mid+1,end)
else:
root =None
return root
class Test:
def __init__(self):
self.pHead = None
self.pEnd = None
def BiT2List(self,root):
if root == None:
return
#转换root的左子树
self.BiT2List(root.lchild)
root.lchild = self.pEnd
if self.pEnd == None:
self.pHead = root
else:
self.pEnd.rchild = root
self.pEnd = root
self.BiT2List(root.rchild)
if __name__ == "__main__":
arr =[1,2,3,4,5,6,7]
root = array2tree(arr,0,len(arr)-1)
test = Test()
print(u'双向链表正向遍历:')
test.BiT2List(root)
cur = test.pHead
while cur != None:
print(cur.data,end = ' ')
cur = cur.rchild
print('\n'+u'转换后双向链表逆向遍历:')
cur = test.pEnd
while cur != None:
print(cur.data,end = ' ')
cur = cur.lchild
| UTF-8 | Python | false | false | 1,328 | py | 84 | 5.py | 68 | 0.518838 | 0.502355 | 0 | 55 | 21.963636 | 49 |
2877992943/count_record | 19,679,540,180,773 | bfc7192cf95786ec3455a8b28e8f3de0dadcfd5a | fca9fbaae9bff52d5ebb9cbce424983734101143 | /demo1028_tagitApp_QueryCleanData_chenyuTeam_walkRunRid_countRecord_ios.py | f4129a769e2470e2da3e54c04dd1903914e5bca0 | []
| no_license | https://github.com/2877992943/count_record | c15383b38b10334eac482b49e3bcd3661acf6cc5 | cfd53d30c606a9dadca9f9a33b66ad670b1934f9 | refs/heads/master | 2016-09-01T16:07:57.582265 | 2015-11-23T12:17:09 | 2015-11-23T12:17:09 | 46,718,267 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/usr/bin/env python
# encoding=utf-8
"""
tagit app
android
count the number of record for each data collector
not visualize,cleaning,store data
"""
import numpy as np
import cPickle,math,random
from leancloud import Object
from leancloud import Query
import leancloud
import time,os
deviceId={'huawei':'ffffffff-c7a8-3cd1-ffff-ffffea16e571',
'xiaomi':'ffffffff-c7a7-c7d4-0000-000031a92fbe',
'mine':'ffffffff-c95d-196f-0000-00007e282437',
'chenyu':'ffffffff-c43f-692d-ffff-fffff4d57110',
'wangx':'ffffffff-c28a-1bf0-0000-00005e774605',
'zhangx':'ffffffff-f259-8a54-0000-0000300c3e8c',
'liyt':'ffffffff-c7a8-3c91-ffff-ffffa2dc21fc',
'donggy':'ffffffff-c95e-eae5-ffff-ffffce758366',
'hangwz':'ffffffff-c43f-77d4-0000-00001b78f081',
'wangf':'ffffffff-c7a8-3bf6-ffff-ffffb8d6d318',
'biany':'ffffffff-c28b-7966-0000-000049d75b84',
'liuxuan':'ffffffff-f259-8a2f-0000-0000040de9c1',
'wangzhenfang':'00000000-53a7-c4ef-ffff-fffffd609c24',
'cuiyajie':'ffffffff-910d-998f-0000-0000585e3d7e'
}
sensor_list=["magneticSensor","accelerometer","proximity"]
inst_id_zhangnn_ios='L2OGFhzaHM2IbNzJ1NjEHceroElYVdk2'
inst_id_chenyu_ios='yg80UzhxQFPPcwicTtU4lDTyP9IcqDs2'
inst_id_lb_ios='G93jbBRhtiWVGFULyLR9gPHDjUkl3S3R'
inst_id_zhangnn1_ios='GsjMrEReu1OC2wtkUpM5asbWEyJ5AdQ1'
#######################each class generate fea
c_list=['running','walking','riding','sitting','driving']
dataPath='/home/yr/magnetic_fea/data1027/'
test_pack=11040#01234 #012 not sure walk |mod<15 rid | mod>=15 walkrun|but differ between people
para_pack=0#1with liangbin riding into trainset
class_type=c_list[1]
###########query label.data
device=deviceId['wangzhenfang']
sensor=sensor_list[1]
##########query log.tracer
txt_i=2
see_flag=True
inst_id=inst_id_chenyu_ios
##########
def generate_stamp(period):
#[8,28,8,33]->[(2015, 10, 20, 22, 30, 0, 0, 0, 0),(2015, 10, 20, 22, 48, 0, 0, 0, 0)]->stamp
dur= [(2015, period[0], period[1], period[2], period[3], 0, 0, 0, 0),\
(2015, period[4], period[5], period[6], period[7], 0, 0, 0, 0)]
stamp_range0=[time2stamp(dur[0]),time2stamp(dur[1])]
stamp_range=[t*1000 for t in stamp_range0]
return stamp_range
def time2stamp(t):
#t = (2015, 9, 28, 12, 36, 38, 0, 0, 0)
stamp = int(time.mktime( t )) ;
return stamp
def connect_db_label():#label.data
import leancloud,cPickle
appid = "ckjjqzf3jqwl8k1u4o10j2hqp0rm0q6ferqcfb0xpw00e8zl"
appkey = "rn0qw8ib96xl0km63kylo6v5afuxclc8jti5ol8rx4kylqob"
leancloud.init(appid, appkey)
def connect_db_log():##sensor.log.tracer not label.sensor,
import leancloud,cPickle
appid = "9ra69chz8rbbl77mlplnl4l2pxyaclm612khhytztl8b1f9o"
appkey = "1zohz2ihxp9dhqamhfpeaer8nh1ewqd9uephe9ztvkka544b"
#appid = "ckjjqzf3jqwl8k1u4o10j2hqp0rm0q6ferqcfb0xpw00e8zl"
#appkey = "rn0qw8ib96xl0km63kylo6v5afuxclc8jti5ol8rx4kylqob"
leancloud.init(appid, appkey)
#####################
def get_content(results):#result is from find()
obs={};
r=results
for i in range(1):
#print type(r.get("events"))
if len(r.get("events"))>=1:
print r.get("motion"),r.get("events").__len__()
ll=r.get("events") #ll=[ {},{}...]
for dic in ll[:]:#dic={timestamp:xxxx,value:[1,2,3]...}
#print dic["timestamp"],' ',dic["values"][0],' ',dic["values"][1],' ',dic["values"][2]
if dic["timestamp"] not in obs.keys():
obs[ dic["timestamp"] ]=[r.get("motion"),\
dic["values"][0],dic["values"][1],dic["values"][2] ]
###data form: {timestamp:[obs],...} [obs]=[motion,x,y,z]
###########################
"""
for k,v in obs.items():
print k,' ',v
"""
print 'final',obs.__len__()
#print 'i',i,count #query-has-limit100,real-count=320
###################3
return obs
def get_all(query,skip,result):
limit=500
query.limit(limit)
query.skip(skip)
found=query.find()
if found and len(found)>0:
result.extend(found)
print 'av_utils get all,now result len:',len(result),'skip',skip
return get_all(query,skip+limit,result)
else:
return result
def save2pickle(c,name):
write_file=open(dataPath+str(name),'wb')
cPickle.dump(c,write_file,-1)#[ (timestamp,[motion,x,y,z]),...]
write_file.close()
def load_pickle(path_i):
f=open(path_i,'rb')
data=cPickle.load(f)#[ [time,[xyz],y] ,[],[]...]
f.close()
#print data.__len__(),data[0]
return data
def see_record_num(period_label_dic):
valid_num=0
####init
connect_db_log()
log = leancloud.Object.extend('Log')
log_query = leancloud.Query(log)
#print 'all',log_query.count()##error
inst_query = leancloud.Query(leancloud.Installation)
#print 'install',inst_query.count()#2335
inst = inst_query.equal_to('objectId', inst_id).find();#print '1',inst[0]
#
for label,periods in period_label_dic.items():
for period in periods:
stamp_range=generate_stamp(period)
#################each period
log_query.equal_to('installation', inst[0]).equal_to("type",'sensor').\
less_than("timestamp", stamp_range[1]).greater_than("timestamp",stamp_range[0])
print label,period,'count',log_query.count()
if log_query.count()>0:valid_num+=log_query.count()
print 'total valid count',valid_num
def remove_punct(line):
for punct in ['.','-',':','/','\\']:
if punct in line:line=line.replace(punct,' ')
return line
############3
if __name__=="__main__":
txt_path='/home/yr/magnetic_fea/txt_1123/'
period_label={};
for filename in os.listdir(txt_path)[txt_i:txt_i+1]:
print 'file '+filename
inpath=txt_path+filename
content=open(inpath,'r')
line=content.readline().strip('\n').strip('\r').strip(' ')
#period=[0,0,0,0,0,0,0,0]#month day minu sec ....
while line:
line=remove_punct(line)
line=line.split(' ');print line
period=[int(line[0]),int(line[1]),int(line[2]),int(line[3]),\
int(line[0]),int(line[1]),int(line[4]),int(line[5])]
label=line[-1]
if label not in period_label:
period_label[label]=[period]
elif label in period_label:
period_label[label].append(period)
#####next
line=content.readline().strip('\n').strip('\r').strip(' ')
###################
for k,v in period_label.items():#{label:[period,p,...],label:{}...
print k,v.__len__()
#########see valid record
if see_flag==True : see_record_num(period_label)
elif see_flag==False:print 'file '+filename
| UTF-8 | Python | false | false | 6,408 | py | 1 | demo1028_tagitApp_QueryCleanData_chenyuTeam_walkRunRid_countRecord_ios.py | 1 | 0.647784 | 0.571941 | 0 | 224 | 27.388393 | 100 |
ohjho/pyp-w1-gw-language-detector | 3,762,391,372,115 | 43d54a81c4a6636972bcb519188cdebf60cc6d2b | 23c333a9db3bedf1688a346bf1573e2f5bd34117 | /language_detector/main.py | c39596f4d92bac9f2427cb78c0c74dfafbd361ab | [
"MIT"
]
| permissive | https://github.com/ohjho/pyp-w1-gw-language-detector | ee5215e35dea4a304fefe77c6a58c77bce37b1c1 | d40f9ab7b02eb568208c02a8add591a81b627236 | refs/heads/master | 2021-01-23T10:56:34.334393 | 2017-06-02T02:18:48 | 2017-06-02T02:18:48 | 93,109,242 | 0 | 0 | null | true | 2017-06-01T23:56:54 | 2017-06-01T23:56:54 | 2017-01-12T23:09:17 | 2017-06-01T23:29:51 | 20 | 0 | 0 | 0 | null | null | null | # -*- coding: utf-8 -*-
def detect_language(text, languages):
"""Returns the detected language of given text."""
count = {}
for language in languages:
matches = (len(set(text.split(' ')) & set(language['common_words'])))
count[language['name']] = matches
return max(count, key=count.get)
| UTF-8 | Python | false | false | 337 | py | 2 | main.py | 2 | 0.58457 | 0.581602 | 0 | 11 | 28.727273 | 77 |
h-mayorquin/mnist_deep_neural_network_BPNNs | 9,500,467,661,736 | 3b1d73bd2a961ffa0f686f1e0d7d42812d8a511e | a5aa4c7d0b7b2a6202c1befadd11a4a31d571da1 | /distort_pattern.py | 4275c3c6cc4172597e08ac47102c25f4db06ce6e | []
| no_license | https://github.com/h-mayorquin/mnist_deep_neural_network_BPNNs | 793b60985df41f4895e266829b8308bbf62952dd | a679e09b5f5b18ce95282e6963662ab700c227d6 | refs/heads/master | 2021-01-01T19:47:19.908058 | 2015-05-08T16:57:37 | 2015-05-08T16:57:37 | 31,664,159 | 1 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import numpy as np
import matplotlib.pyplot as plt
from load_binary_files import training_ims, training_labels
from corrupt_functions import distort_binnary
from copy import deepcopy
# Select quantity of data to use
N_data_total = len(training_labels)
percentage = 0.01
N_to_use = int(percentage * N_data_total)
# Decide how much data to use
X = training_ims[0:N_to_use]
Y = training_labels[0:N_to_use]
N_hypercolumns = X.shape[1]
units_per_hypercolumn = 2
index = 0
size = 28
percentage = 0.1
pattern = deepcopy(X[index])
dis_pattern = distort_binnary(index, percentage, X)
plt.subplot(1, 3, 1)
plt.title('Corrupted')
plt.imshow(dis_pattern.reshape((size, size)))
plt.subplot(1, 3, 2)
plt.title('Normal pattern')
plt.imshow(pattern.reshape((size, size)))
plt.subplot(1, 3, 3)
plt.title('Normal should be')
plt.imshow(X[index].reshape((size, size)))
plt.show()
| UTF-8 | Python | false | false | 867 | py | 23 | distort_pattern.py | 22 | 0.734717 | 0.710496 | 0 | 35 | 23.771429 | 59 |
TheClearwind/DeepISP | 1,228,360,690,722 | 5a3fae6bb03628b93bdb2cea8b2499dbdcd1edca | 3a37356348b1961a70dac753980c61e21a7ae725 | /utils.py | 936648a6bd9a083ea261ce16a58beb617b73277d | []
| no_license | https://github.com/TheClearwind/DeepISP | cf328be53ba42ca5ba929fd56bd5f33bdc582eef | 0e88c8915eab0723989a5f8632b09f2fa57d240d | refs/heads/master | 2022-11-23T06:43:51.022142 | 2020-07-15T06:44:21 | 2020-07-15T06:44:21 | 279,495,723 | 8 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import numpy as np
def extract_bayer_channels(raw):
# RGGB模式
ch_B = raw[1::2, 1::2]
ch_Gb = raw[0::2, 1::2]
ch_R = raw[0::2, 0::2]
ch_Gr = raw[1::2, 0::2]
return ch_R, ch_Gr, ch_B, ch_Gb
def extract_bayer_channels_v2(raw):
# RGGB模式
ch_R = np.zeros_like(raw)
ch_G = np.zeros_like(raw)
ch_B = np.zeros_like(raw)
ch_B[1::2, 1::2] = raw[1::2, 1::2]
ch_R[0::2, 0::2] = raw[0::2, 0::2]
ch_G[0::2, 1::2] = raw[0::2, 1::2]
ch_G[1::2, 0::2] = raw[1::2, 0::2]
return ch_R, ch_G, ch_B
def pack_raw(raw):
ch_B, ch_Gb, ch_R, ch_Gr = extract_bayer_channels(raw)
packed = np.dstack((ch_B, ch_Gb, ch_R, ch_Gr))
packed = np.transpose(packed, [2, 0, 1])
return packed
def pack_raw_v2(raw):
ch_R, ch_G, ch_B = extract_bayer_channels_v2(raw)
packed = np.dstack((ch_R, ch_G, ch_B))
packed = np.transpose(packed, [2, 0, 1])
return packed
if __name__ == '__main__':
raw = np.random.randn(224, 224)
packed = pack_raw_v2(raw)
print(packed.shape)
| UTF-8 | Python | false | false | 1,045 | py | 9 | utils.py | 8 | 0.537126 | 0.47541 | 0 | 44 | 22.568182 | 58 |
Sovetnikov/livelock | 2,413,771,641,869 | 7e88346d92d017aba1a4973a11d39333d2302304 | 6b6a99d78765d71b1024c3876753013cb3cb0398 | /livelock/server.py | 816cf39bbb09849538eee4f0ced410c3be7bd101 | []
| no_license | https://github.com/Sovetnikov/livelock | a8beead745405f957576e6f8e2af0e82b1436c6a | 237b01c2ab2efebf5e74c2a5653ca5168ede65dd | refs/heads/master | 2022-12-24T14:46:43.013963 | 2022-12-14T15:32:24 | 2022-12-14T15:32:24 | 193,243,160 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import asyncio
import logging
import os
import signal
import socket
import time
import uuid
from asyncio import StreamReader, IncompleteReadError, Event
from timeit import default_timer
from livelock.memory_storage import InMemoryLockStorage
from livelock.shared import DEFAULT_RELEASE_ALL_TIMEOUT, DEFAULT_BIND_TO, DEFAULT_LIVELOCK_SERVER_PORT, get_settings, DEFAULT_MAX_PAYLOAD, pack_resp, DEFAULT_SHUTDOWN_SUPPORT, \
DEFAULT_PROMETHEUS_PORT, DEFAULT_TCP_KEEPALIVE_TIME, DEFAULT_TCP_KEEPALIVE_INTERVAL, DEFAULT_TCP_KEEPALIVE_PROBES, DEFAULT_LOGLEVEL, DEFAULT_DISABLE_DUMP_LOAD, \
DEFAULT_TCP_USER_TIMEOUT_SECONDS, DEFAULT_MAINTENANCE_TIMEOUT_MS, DEFAULT_MAINTENANCE_PERIOD, get_float_settings, get_int_settings, SERVER_TERMINATING, CONN_HAS_ID_ERROR, \
WRONG_ARGS, CONN_REQUIRED_ERROR, UNKNOWN_COMMAND_ERROR, PASS_ERROR, ERRORS, LazyArg
from livelock.stats import latency, max_lock_live_time, stats_collection_time, prometheus_client_installed, maintenance_time, stats_collection_count, maintenance_count, lock_count
from livelock.storage import LockStorage
from livelock.tcp_opts import set_tcp_keepalive
ABSOLUTE_PATH = lambda x: os.path.abspath(os.path.join(os.path.abspath(os.path.dirname(__file__)), x))
logger = logging.getLogger(__name__)
# Надо сделать
# 3. Протоколирование длительности операций
# 4. Хранение clientinfo
class StorageAdaptor(LockStorage):
def __init__(self, store):
self.store = store
self.kill_active = False
self._storage_operations_in_process = 0
self._commands_in_process = 0
self._data_dumped = False
self._maintenance_event = Event()
signal.signal(signal.SIGINT, self._on_kill_requested)
signal.signal(signal.SIGTERM, self._on_kill_requested)
super().__init__()
def terminate(self):
self._on_kill_requested()
def on_storage_operation_start(self):
self._storage_operations_in_process += 1
def on_storage_operation_end(self):
self._storage_operations_in_process -= 1
if self._storage_operations_in_process < 0:
raise Exception('Storage active operations counter broken')
if self.kill_active and not self._storage_operations_in_process:
# Last storage operation ended, good point to dump storage data
# then exit() after sending replies to clients
self.dump_before_die()
def is_commands_in_process(self):
return self._commands_in_process > 0
async def on_command_start(self):
await self._maintenance_event.wait()
self._commands_in_process += 1
def on_command_end(self):
self._commands_in_process -= 1
if self.kill_active and not self._commands_in_process:
if self._storage_operations_in_process:
logger.error('Last command executed, but storage operations counter has value')
self.die()
def _on_kill_requested(self, *args, **kwargs):
# Must wait for active commands to complete, then dump data, close all connections and exit
self.kill_active = True
logger.info('Received terminate signal %s %s', args, kwargs)
if not self._storage_operations_in_process:
# Good time to dump and exit(), but there is chance that some client's will not get their responses
self.dump_before_die()
# In case any storage operations is in progress, we will dump data after last operations completes
# and will exit() when last reply is sent
if not self._commands_in_process:
self.die()
def dump_before_die(self):
# Just dump data, because all storage operations ended
self.store.dump()
self._data_dumped = True
logger.debug('Dumped data')
def die(self):
# All commands processed, can exit safely
if not self._data_dumped:
self.store.dump()
logger.debug('Exit')
exit(1)
def acquire(self, *args, **kwargs):
with StorageOperationGuard(self):
return self.store.acquire(*args, **kwargs)
def release(self, *args, **kwargs):
with StorageOperationGuard(self):
return self.store.release(*args, **kwargs)
def release_all(self, client_id):
with StorageOperationGuard(self):
return self.store.release_all(client_id=client_id, timeout=self.release_all_timeout)
def unrelease_all(self, *args, **kwargs):
with StorageOperationGuard(self):
return self.store.unrelease_all(*args, **kwargs)
def locked(self, *args, **kwargs):
return self.store.locked(*args, **kwargs)
def set_client_last_address(self, *args, **kwargs):
with StorageOperationGuard(self):
return self.store.set_client_last_address(*args, **kwargs)
def add_signal(self, *args, **kwargs):
with StorageOperationGuard(self):
return self.store.add_signal(*args, **kwargs)
def has_signal(self, *args, **kwargs):
return self.store.has_signal(*args, **kwargs)
def remove_signal(self, *args, **kwargs):
with StorageOperationGuard(self):
return self.store.remove_signal(*args, **kwargs)
def get_client_last_address(self, *args, **kwargs):
return self.store.get_client_last_address(*args, **kwargs)
def find(self, *args, **kwargs):
return self.store.find(*args, **kwargs)
def dump(self):
return self.store.dump()
def load_dump(self):
return self.store.load_dump()
def clear_dump(self):
return self.store.clear_dump()
def stats(self):
return self.store.stats()
def maintenance(self, *args, **kwargs):
logger.debug('Doing maintenance')
try:
self._maintenance_event.clear()
return self.store.maintenance(*args, **kwargs)
finally:
self._maintenance_event.set()
class CommandProtocol(asyncio.Protocol):
def __init__(self, tcp_keepalive_time=None, tcp_keepalive_interval=None, tcp_keepalive_probes=None, tcp_user_timeout_seconds=None, *args, **kwargs):
self.transport = None
self._reader = None
"""
https://blog.cloudflare.com/when-tcp-sockets-refuse-to-die/
http://coryklein.com/tcp/2015/11/25/custom-configuration-of-tcp-socket-keep-alive-timeouts.html
Keep-Alive Process
There are three configurable properties that determine how Keep-Alives work. On Linux they are1:
tcp_keepalive_time
default 7200 seconds
tcp_keepalive_probes
default 9
tcp_keepalive_intvl
default 75 seconds
The process works like this:
1. Client opens TCP connection
2. If the connection is silent for tcp_keepalive_time seconds, send a single empty ACK packet.1
3. Did the server respond with a corresponding ACK of its own?
- No
1. Wait tcp_keepalive_intvl seconds, then send another ACK
2. Repeat until the number of ACK probes that have been sent equals tcp_keepalive_probes.
3. If no response has been received at this point, send a RST and terminate the connection.
- Yes: Return to step 2
"""
self.tcp_keepalive_time = int(tcp_keepalive_time)
self.tcp_keepalive_interval = int(tcp_keepalive_interval)
self.tcp_keepalive_probes = int(tcp_keepalive_probes)
self.tcp_user_timeout_seconds = int(tcp_user_timeout_seconds)
super().__init__(*args, **kwargs)
def data_received(self, data):
if self.kill_active:
return
self._reader.feed_data(data)
def connection_made(self, transport):
if self.kill_active:
return
sock = transport.get_extra_info('socket')
set_tcp_keepalive(sock, opts=dict(tcp_keepalive=True,
tcp_keepalive_idle=self.tcp_keepalive_time,
tcp_keepalive_intvl=self.tcp_keepalive_interval,
tcp_keepalive_cnt=self.tcp_keepalive_probes,
))
# https://eklitzke.org/the-caveats-of-tcp-nodelay
sock.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1)
if hasattr(socket, 'TCP_USER_TIMEOUT'):
logger.debug('Setting TCP_USER_TIMEOUT to %s', self.tcp_user_timeout_seconds * 1000)
sock.setsockopt(socket.SOL_TCP, socket.TCP_USER_TIMEOUT, self.tcp_user_timeout_seconds * 1000)
self.transport = transport
self._reader = StreamReader()
self._reader.set_transport(transport)
loop = asyncio.get_event_loop()
loop.create_task(self.receive_commands())
super().connection_made(transport)
def connection_lost(self, exc):
if self.kill_active:
return
if self._reader is not None:
if exc is None:
self._reader.feed_eof()
else:
self._reader.set_exception(exc)
super().connection_lost(exc)
def eof_received(self):
if self.kill_active:
return
self._reader.feed_eof()
return super().eof_received()
async def _read_int(self):
if self.kill_active:
return
line = await self._reader.readuntil(b'\r\n')
return int(line.decode().strip())
async def _read_float(self):
if self.kill_active:
return
line = await self._reader.readuntil(b'\r\n')
return float(line.decode().strip())
async def _read_bytes(self):
if self.kill_active:
return
len = await self._read_int()
line = await self._reader.readexactly(max(2, len + 2))
if line[-1] != ord(b'\n'):
raise Exception(r"line[-1] != ord(b'\n')")
if line[-2] != ord(b'\r'):
raise Exception(r"line[-2] != ord(b'\r')")
if len < 0:
return None
if len == 0:
return b''
return line[:-2]
async def _read_array(self):
if self.kill_active:
return
len = await self._read_int()
r = []
while len:
c = await self._reader.readexactly(1)
value = await self._receive_resp(c)
r.append(value)
len -= 1
return r
async def _receive_resp(self, c):
if self.kill_active:
return
if c == b':':
return await self._read_int()
elif c == b'$':
return await self._read_bytes()
elif c == b'*':
return await self._read_array()
elif c == b',':
return await self._read_float()
else:
raise Exception('Unknown RESP start char %s' % c)
async def receive_commands(self):
while True:
if self.kill_active:
self.reply_terminating()
return
try:
c = await self._reader.readexactly(1)
if c in b':*$,':
value = await self._receive_resp(c)
if not isinstance(value, list):
value = [value, ]
else:
command = c + await self._reader.readuntil(b'\r\n')
value = [x.strip().encode() for x in command.decode().split(' ')]
except (ConnectionAbortedError, ConnectionResetError, IncompleteReadError, TimeoutError) as e:
# Connection is closed
self.receive_commands_end(e)
return
await self.on_command_received(*value)
async def on_command_received(self, command):
raise NotImplemented()
def reply_terminating(self):
raise NotImplemented()
def receive_commands_end(self, exc):
raise NotImplemented()
class LiveLockProtocol(CommandProtocol):
def __init__(self, adaptor, password, max_payload, shutdown_support=False, *args, **kwargs):
self.password = password
self.adaptor = adaptor
self.max_payload = max_payload
self.client_id = None
self.client_info = None
self.shutdown_support = shutdown_support
self._authorized = None
self.transport = None
self.debug = get_settings(None, 'LIVELOCK_DEBUG', False)
self.lazy_client_display = LazyArg(self.client_display)
super().__init__(*args, **kwargs)
def client_display(self):
if self.transport:
peername = self.transport.get_extra_info('peername')
else:
peername = 'no_peer_address'
return f'{peername} ({self.client_info}), client={self.client_id}'
def connection_made(self, transport):
if self.adaptor.kill_active:
return
logger.debug('Connection from %s', LazyArg(lambda: transport.get_extra_info('peername')))
self.transport = transport
super().connection_made(transport)
def receive_commands_end(self, exc):
logger.debug('Receive command loop ended for %s, Exception=%s', self.lazy_client_display, exc)
def eof_received(self):
logger.debug('EOF received for %s', self.lazy_client_display)
return super().eof_received()
def connection_lost(self, exc):
peername = self.transport.get_extra_info('peername')
if self.adaptor.kill_active:
logger.debug('Connection lost on active kill %s client=%s, Exception=%s', self.lazy_client_display, self.client_id, exc)
return
logger.debug('Connection lost %s, Exception=%s', self.lazy_client_display, exc)
if self.client_id:
last_address = self.adaptor.get_client_last_address(self.client_id)
if last_address is None:
logger.warning('Client last address is empty')
if (last_address and last_address == peername) or last_address is None:
# Releasing all client locks only if last known connection is dropped
# other old connection can be dead
self.adaptor.release_all(self.client_id)
super().connection_lost(exc)
@property
def kill_active(self):
return self.adaptor.kill_active
async def on_command_received(self, command, *args):
st = default_timer()
verb = 'unknown'
try:
verb = await self.process_command(command, *args)
finally:
latency.labels(verb if verb is not None else 'unknown').observe(max(default_timer() - st, 0))
async def process_command(self, command, *args):
if self.kill_active:
self.reply_terminating()
return
peername = self.transport.get_extra_info('peername')
verb = command.decode().lower()
logger.debug('Got command %s from %s', command, self.lazy_client_display)
await self.adaptor.on_command_start()
try:
if self.password and not self._authorized:
if verb == 'pass':
if len(args) == 1 and args[0]:
password = args[0].decode()
if password == self.password:
self._authorized = True
self._reply(True)
return
self._reply(PASS_ERROR)
self.transport.close()
if verb == 'conn':
if self.client_id:
self._reply(CONN_HAS_ID_ERROR)
if args:
if not args[0]:
self._reply(WRONG_ARGS)
return
self.client_id = args[0].decode()
# Restoring client locks
self.adaptor.unrelease_all(self.client_id)
else:
self.client_id = str(uuid.uuid4())
# Saving client last connection source address for making decision to call release_all on connection lost
self.adaptor.set_client_last_address(self.client_id, peername)
self._reply(self.client_id)
return
else:
if not self.client_id:
self._reply(CONN_REQUIRED_ERROR)
return
if verb == 'conninfo':
if len(args) != 1 or not args[0]:
self._reply(WRONG_ARGS)
return
try:
client_info = args[0].decode()
except:
self._reply(WRONG_ARGS)
return
logger.debug('Got client info for %s = %s', self.lazy_client_display, client_info)
if self.client_info:
if self.client_info != client_info:
logger.warning('Client info changed for %s', self.lazy_client_display)
self.client_info = client_info
self._reply(True)
elif verb in ('aq', 'aqr'):
if len(args) != 1 or not args[0]:
self._reply(WRONG_ARGS)
return
try:
lock_id = args[0].decode()
except:
self._reply(WRONG_ARGS)
return
res = self.acquire(client_id=self.client_id, lock_id=lock_id, reentrant=(verb == 'aqr'))
self._reply(res)
elif verb == 'release':
if len(args) != 1 or not args[0]:
self._reply(WRONG_ARGS)
return
try:
lock_id = args[0].decode()
except:
self._reply(WRONG_ARGS)
return
res = self.release(client_id=self.client_id, lock_id=lock_id)
self._reply(res)
elif verb == 'locked':
if len(args) != 1 or not args[0]:
self._reply(WRONG_ARGS)
return
try:
lock_id = args[0].decode()
except:
self._reply(WRONG_ARGS)
return
res = self.locked(lock_id=lock_id)
self._reply(res)
elif verb == 'sigset':
if len(args) != 2 or not args[0] or not args[1]:
self._reply(WRONG_ARGS)
return
try:
lock_id = args[0].decode()
signal = args[1].decode()
except:
self._reply(WRONG_ARGS)
return
res = self.add_signal(lock_id, signal)
self._reply(res)
elif verb == 'sigexists':
if len(args) != 2 or not args[0] or not args[1]:
self._reply(WRONG_ARGS)
return
try:
lock_id = args[0].decode()
signal = args[1].decode()
except:
self._reply(WRONG_ARGS)
return
res = self.has_signal(lock_id, signal)
self._reply(res)
elif verb == 'sigdel':
if len(args) != 2 or not args[0] or not args[1]:
self._reply(WRONG_ARGS)
return
try:
lock_id = args[0].decode()
signal = args[1].decode()
except:
self._reply(WRONG_ARGS)
return
res = self.remove_signal(lock_id, signal)
self._reply(res)
elif verb == 'ping':
self._reply('PONG')
elif verb == 'find':
if len(args) != 1 or not args[0]:
self._reply(WRONG_ARGS)
return
result = list(self.adaptor.find(args[0].decode()))
self._reply_data(result)
elif verb == 'stats':
if len(args):
self._reply(WRONG_ARGS)
return
result = self.adaptor.stats()
self._reply_data(result)
elif verb == 'shutdown' and self.shutdown_support:
logger.debug('SHUTDOWN invoked by %s', self.lazy_client_display)
self.adaptor.terminate()
self._reply('1')
else:
if self.debug:
if verb == 'dump':
if hasattr(self.adaptor, 'dump'):
self.adaptor.dump()
self._reply('1')
else:
self._reply('0')
return
self._reply(UNKNOWN_COMMAND_ERROR)
finally:
self.adaptor.on_command_end()
# For stats returning verb
return verb
def _reply_data(self, data):
payload = pack_resp(data)
self.transport.write(payload)
def reply_terminating(self):
self._reply(SERVER_TERMINATING)
def _reply(self, content):
prefix = '+'
if content is True:
content = '1'
elif content is False:
content = '0'
elif isinstance(content, int):
content = '%s %s' % (content, ERRORS[content])
prefix = '-'
payload = '%s%s\r\n' % (prefix, content)
payload = payload.encode()
self.transport.write(payload)
def acquire(self, client_id, lock_id, reentrant):
res = self.adaptor.acquire(client_id, lock_id, reentrant)
return res
def release(self, client_id, lock_id):
res = self.adaptor.release(client_id, lock_id)
return res
def locked(self, lock_id):
res = self.adaptor.locked(lock_id)
return res
def add_signal(self, lock_id, signal):
res = self.adaptor.add_signal(lock_id, signal.lower())
return res
def has_signal(self, lock_id, signal):
res = self.adaptor.has_signal(lock_id, signal.lower())
return res
def remove_signal(self, lock_id, signal):
res = self.adaptor.remove_signal(lock_id, signal.lower())
return res
class StorageOperationGuard(object):
def __init__(self, parent):
self.parent = parent
def __enter__(self):
if self.parent.kill_active:
raise Exception('Lock storage write operations disabled')
self.parent.on_storage_operation_start()
def __exit__(self, exc_type, exc_val, exc_tb):
self.parent.on_storage_operation_end()
async def stats_collector(adaptor):
while True:
st = time.time()
max_live_lock = 0
locks = list(adaptor.find('*'))
if locks:
now = time.time()
first_lock = min(locks, key=lambda x: x[1])
max_live_lock = int(now - first_lock[1])
lock_count.set(len(locks))
max_lock_live_time.set(max_live_lock)
stats_collection_time.inc(time.time() - st)
stats_collection_count.inc()
await asyncio.sleep(5)
async def maintenance_scheduler(adaptor, period, timeout_ms):
"""
"Sampling" scheduler of maintenance call
"""
logger.debug('Starting maintenance scheduler, period %s, timeout_ms %s', period, timeout_ms)
while True:
if not adaptor.is_commands_in_process() and not adaptor.kill_active:
# Can do maintenance
st = time.time()
adaptor.maintenance(timeout_ms=timeout_ms)
ed = time.time()
t = (ed - st) * 1000
logger.debug('Maintenance time %s ms', t)
if t > timeout_ms:
logger.warning('Maintenance timeout exceeded, configured=%s ms, actual=%s ms, ', timeout_ms, t)
maintenance_time.inc(t)
maintenance_count.inc()
else:
logger.debug('Skipping maintenance')
await asyncio.sleep(period)
async def live_lock_server(bind_to, port, release_all_timeout, password=None,
max_payload=None,
data_dir=None,
shutdown_support=None,
tcp_keepalive_time=None,
tcp_keepalive_interval=None,
tcp_keepalive_probes=None,
tcp_user_timeout_seconds=None,
disable_dump_load=None,
):
# Sanitize values
tcp_keepalive_time = int(tcp_keepalive_time) if tcp_keepalive_time else None
tcp_keepalive_interval = int(tcp_keepalive_interval) if tcp_keepalive_interval else None
tcp_keepalive_probes = int(tcp_keepalive_probes) if tcp_keepalive_probes else None
tcp_user_timeout_seconds = int(tcp_user_timeout_seconds) if tcp_user_timeout_seconds else None
loop = asyncio.get_running_loop()
try:
port = int(port)
except:
raise Exception(f'Live lock server port is not integer: {port}')
if data_dir:
os.chdir(data_dir)
else:
data_dir = os.getcwd()
storage = InMemoryLockStorage(release_all_timeout=release_all_timeout)
if not disable_dump_load:
logger.info('Loading dump')
storage.load_dump()
stats = storage.stats()
logger.info('Locks loaded from dump: %s', stats.get("lock_count", 0))
logger.info('Starting live lock server at %s, %s', bind_to, port)
logger.debug('release_all_timeout=%s', release_all_timeout)
logger.debug('data_dir=%s', data_dir)
adaptor = StorageAdaptor(storage)
server = await loop.create_server(lambda: LiveLockProtocol(adaptor=adaptor,
password=password,
max_payload=max_payload,
shutdown_support=shutdown_support,
tcp_keepalive_time=tcp_keepalive_time,
tcp_keepalive_interval=tcp_keepalive_interval,
tcp_keepalive_probes=tcp_keepalive_probes,
tcp_user_timeout_seconds=tcp_user_timeout_seconds,
), bind_to, port)
def exception_handler(loop, context):
if not isinstance(context['exception'], SystemExit):
raise context['exception']
loop.set_exception_handler(exception_handler)
if prometheus_client_installed:
stats_collector_task = loop.create_task(stats_collector(adaptor))
maintenance_scheduler_task = loop.create_task(maintenance_scheduler(adaptor,
period=get_float_settings(None, 'LIVELOCK_MAINTENANCE_PERIOD', DEFAULT_MAINTENANCE_PERIOD),
timeout_ms=get_int_settings(None, 'LIVELOCK_MAINTENANCE_TIMEOUT_MS', DEFAULT_MAINTENANCE_TIMEOUT_MS)))
async with server:
await server.serve_forever()
if prometheus_client_installed:
stats_collector_task.cancel()
maintenance_scheduler_task.cancel()
def start(bind_to=DEFAULT_BIND_TO, port=None, release_all_timeout=None, password=None,
max_payload=None,
data_dir=None,
shutdown_support=None,
tcp_keepalive_time=None,
tcp_keepalive_interval=None,
tcp_keepalive_probes=None,
tcp_user_timeout_seconds=None,
disable_dump_load=None,
):
sentry_dsn = get_settings(None, 'SENTRY_DSN', None)
if sentry_dsn:
logger.debug('Turning ON sentry')
try:
import sentry_sdk
sentry_sdk.init(dsn=sentry_dsn)
except ImportError:
logger.error('No sentry-sdk installed')
env_loglevel = get_settings(None, 'LIVELOCK_LOGLEVEL', DEFAULT_LOGLEVEL)
loglevel = getattr(logging, env_loglevel.upper())
logging.basicConfig(level=loglevel, format='%(name)s:[%(levelname)s]: %(message)s')
prometheus_port = get_settings(port, 'LIVELOCK_PROMETHEUS_PORT', DEFAULT_PROMETHEUS_PORT)
if prometheus_port:
try:
prometheus_port = int(prometheus_port)
except:
logger.critical('Wrong prometheus port %s', prometheus_port)
prometheus_port = None
if prometheus_port:
try:
from prometheus_client import start_http_server
except ImportError:
logger.info('Prometheus port is set but prometheus_client not installed (pip install prometheus-client)')
prometheus_port = None
if prometheus_port:
logger.info('Starting prometheus metrics server at port %s', prometheus_port)
start_http_server(prometheus_port)
asyncio.run(live_lock_server(bind_to=get_settings(bind_to, DEFAULT_BIND_TO, 'LIVELOCK_BIND_TO'),
port=get_settings(port, 'LIVELOCK_PORT', DEFAULT_LIVELOCK_SERVER_PORT),
release_all_timeout=get_settings(release_all_timeout, 'LIVELOCK_RELEASE_ALL_TIMEOUT', DEFAULT_RELEASE_ALL_TIMEOUT),
password=get_settings(password, 'LIVELOCK_PASSWORD', None),
max_payload=get_settings(max_payload, 'LIVELOCK_MAX_PAYLOAD', DEFAULT_MAX_PAYLOAD),
data_dir=get_settings(data_dir, 'LIVELOCK_DATA_DIR', None),
shutdown_support=get_settings(shutdown_support, 'LIVELOCK_SHUTDOWN_SUPPORT', DEFAULT_SHUTDOWN_SUPPORT),
tcp_keepalive_time=get_settings(tcp_keepalive_time, 'LIVELOCK_TCP_KEEPALIVE_TIME', DEFAULT_TCP_KEEPALIVE_TIME),
tcp_keepalive_interval=get_settings(tcp_keepalive_interval, 'LIVELOCK_TCP_KEEPALIVE_INTERVAL', DEFAULT_TCP_KEEPALIVE_INTERVAL),
tcp_keepalive_probes=get_settings(tcp_keepalive_probes, 'LIVELOCK_TCP_KEEPALIVE_PROBES', DEFAULT_TCP_KEEPALIVE_PROBES),
tcp_user_timeout_seconds=get_settings(tcp_user_timeout_seconds, 'LIVELOCK_TCP_USER_TIMEOUT_SECONDS', DEFAULT_TCP_USER_TIMEOUT_SECONDS),
disable_dump_load=get_settings(disable_dump_load, 'LIVELOCK_DISABLE_DUMP_LOAD', DEFAULT_DISABLE_DUMP_LOAD),
))
| UTF-8 | Python | false | false | 31,248 | py | 19 | server.py | 16 | 0.55163 | 0.5482 | 0 | 769 | 39.563069 | 179 |
Oneflow-Inc/oneflow_convert_tools | 3,307,124,850,380 | 36e9733468c3d435d9be826a6472de1b0c544134 | 9c4987a2db63a269ca86b035fb1c5924342a8ee6 | /oneflow_onnx/oneflow2onnx/handlers/math.py | 588f52195d7f141d76df440f4d1e36677faedfbe | []
| no_license | https://github.com/Oneflow-Inc/oneflow_convert_tools | 6d50b11a190f173071b89984a851c266af888995 | 6bb9b54dcfa78eaaddaa117b8af423ab328451cb | refs/heads/main | 2023-07-09T19:46:46.472939 | 2023-03-07T07:38:58 | 2023-03-07T07:38:58 | 347,891,709 | 22 | 4 | null | null | null | null | null | null | null | null | null | null | null | null | null | """
Copyright 2020 The OneFlow Authors. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import
import logging
import math
import oneflow
import numpy as np
from onnx import onnx_pb
from onnx import TensorProto
from oneflow_onnx import constants, util
from oneflow_onnx.oneflow2onnx.handler import flow_op
from oneflow_onnx.oneflow2onnx.handlers import common
logger = logging.getLogger(__name__)
# pylint: disable=unused-argument,missing-docstring
@flow_op(["broadcast_add", "scalar_add_by_tensor"], onnx_op="Add")
@flow_op(["broadcast_sub", "scalar_sub_by_tensor"], onnx_op="Sub", flow_ibns=["x", "y"])
@flow_op(["multiply", "broadcast_mul", "scalar_mul_by_tensor"], onnx_op="Mul")
@flow_op(["broadcast_div", "scalar_div_by_tensor"], onnx_op="Div", flow_ibns=["x", "y"])
class BroadcastOp(common.BroadcastOp):
pass
@flow_op("scalar_mul", "Mul")
@flow_op("scalar_add", "Add")
@flow_op("scalar_div", "Div")
class ScalarBinaryOp:
@classmethod
def Version_6(cls, ctx, node, **kwargs):
scalar_val = node.attrs["int_operand"] if node.attrs["has_int_operand"] else node.attrs["float_operand"]
np_dtype = util.Onnx2NumpyDtype(ctx.get_dtype(node.input_tensor_names[0]))
scalar_node = ctx.MakeConst(oneflow._oneflow_internal.UniqueStr("scalar"), np.array([scalar_val]).astype(np_dtype))
node.input_tensor_names.append(scalar_node.output_tensor_names[0])
@flow_op("add_n", onnx_op="Add")
class AddN:
@classmethod
def Version_1(cls, ctx, node, **kwargs):
input_length = len(node.input_tensor_names)
if input_length <= 2:
pass
else:
ctx.RemoveNode(node.name)
ctx.MakeNode("Sum", node.input_tensor_names, outputs=[node.output_tensor_names[0]], op_name_scope=node.name, name="mul")
@flow_op("bias_add", onnx_op="Add", flow_ibns=["a", "b"])
class BiasAdd(common.BroadcastOp):
@classmethod
def Version_6(cls, ctx, node, **kwargs):
axis = node.attrs["axis"]
unsqueeze_axes = []
x_rank = len(ctx.get_shape(node.input_tensor_names[0]))
for i in range(x_rank):
if axis != i:
unsqueeze_axes.append(i)
unsqueeze_shape = [1] * x_rank
assert len(ctx.get_shape(node.input_tensor_names[1])) == 1
unsqueeze_shape[axis] = ctx.get_shape(node.input_tensor_names[1])[0]
unsqueeze_dtype = ctx.get_dtype(node.input_tensor_names[1])
ctx.InsertNewNodeOnInput(node, "Unsqueeze", node.input_tensor_names[1], axes=unsqueeze_axes)
ctx.set_shape(node.input_tensor_names[1], unsqueeze_shape)
ctx.set_dtype(node.input_tensor_names[1], unsqueeze_dtype)
super().Version_6(ctx, node, **kwargs)
@classmethod
def Version_13(cls, ctx, node, **kwargs):
axis = node.attrs["axis"]
unsqueeze_axes = []
x_rank = len(ctx.get_shape(node.input_tensor_names[0]))
for i in range(x_rank):
if axis != i:
unsqueeze_axes.append(i)
assert len(ctx.get_shape(node.input_tensor_names[1])) == 1
shape_node = ctx.MakeConst(oneflow._oneflow_internal.UniqueStr("shape"), np.array(unsqueeze_axes))
ctx.InsertNewNodeOnInput(node, "Unsqueeze", [node.input_tensor_names[1], shape_node.output_tensor_names[0]])
super().Version_6(ctx, node, **kwargs)
@flow_op(["leaky_relu", "softplus"], onnx_op=["LeakyRelu", "Softplus"])
class DirectOpSinceOpset1:
@classmethod
def Version_1(cls, ctx, node, **kwargs):
pass
@flow_op("prelu", onnx_op="PRelu", flow_ibns=["x", "alpha"])
class PReLUOp:
@classmethod
def Version_1(cls, ctx, node, **kwargs):
input_shape = ctx.get_shape(node.input_tensor_names[0])
alpha_shape = ctx.get_shape(node.input_tensor_names[1])
if len(alpha_shape) == 1:
new_shape = []
new_shape.append(alpha_shape[0])
for _ in range(1, len(input_shape) - 1):
new_shape.append(1)
ctx.set_shape(node.input_tensor_names[1], new_shape)
@flow_op(
[
"abs",
"ceil",
"elu",
"exp",
"floor",
"log",
"neg",
"sigmoid",
"sigmoid_v2",
"sqrt",
"tanh",
"reciprocal",
"relu",
],
[
"Abs",
"Ceil",
"Elu",
"Exp",
"Floor",
"Log",
"Neg",
"Sigmoid",
"Sigmoid",
"Sqrt",
"Tanh",
"Reciprocal",
"Relu",
],
)
class DirectOp:
@classmethod
def Version_1(cls, ctx, node, **kwargs):
pass
@classmethod
def Version_6(cls, ctx, node, **kwargs):
pass
@flow_op(
["acos", "asin", "atan", "cos", "sin", "tan"],
["Acos", "Asin", "Atan", "Cos", "Sin", "Tan"],
)
class TrigOpSinceOpset7:
@classmethod
def Version_7(cls, ctx, node, **kwargs):
pass
@flow_op(
["acosh", "asinh", "atanh", "cosh", "sinh"],
["Acosh", "Asinh", "Atanh", "Cosh", "Sinh"],
)
class TrigOpSinceOpset9:
@classmethod
def Version_9(cls, ctx, node, **kwargs):
pass
def _MakeMinOrMaxOp(ctx, op_type, inputs, outputs, output_shapes=None, output_dtypes=None):
# support more dtype
supported_dtypes = [
onnx_pb.TensorProto.FLOAT,
onnx_pb.TensorProto.FLOAT16,
onnx_pb.TensorProto.DOUBLE,
]
target_dtype = onnx_pb.TensorProto.FLOAT
need_cast = False
cast_inputs = []
for inp in inputs:
dtype = ctx.get_dtype(inp)
util.MakeSure(dtype is not None, "dtype of {} is None".format(inp))
if dtype not in supported_dtypes:
cast_inp = ctx.MakeNode("Cast", [inp], attr={"to": target_dtype})
cast_inputs.append(cast_inp.output_tensor_names[0])
need_cast = True
else:
cast_inputs.append(inp)
node = ctx.MakeNode(op_type, cast_inputs, shapes=output_shapes)
actual_outputs = node.output_tensor_names
if need_cast:
origin_dtype = ctx.get_dtype(inputs[0])
if output_dtypes is not None:
origin_dtype = output_dtypes[0]
ctx.set_dtype(node.output_tensor_names[0], target_dtype)
cast_name = oneflow._oneflow_internal.UniqueStr(node.name)
cast_node = ctx.InsertNewNodeOnOutput("Cast", node.output_tensor_names[0], name=cast_name, to=origin_dtype)
ctx.set_dtype(cast_node.output_tensor_names[0], origin_dtype)
ctx.CopyShape(node.output_tensor_names[0], cast_node.output_tensor_names[0])
actual_outputs = cast_node.output_tensor_names
ctx.MakeNode(
"Identity",
actual_outputs,
outputs=outputs,
shapes=output_shapes,
dtypes=output_dtypes,
)
# onnx < opset 8 does not support broadcasting
# handle this by doing something like:
# y = min(x1, add(x2, sub(x1, x1))), where x1, x2 are the inputs and x2 is a scalar
# this will create a tensor of zeros of the shape of x1, adds x2 to it (which broadcasts) and use that for min.
shapeo = ctx.get_shape(node.output_tensor_names[0])
needs_broadcast_op = []
has_correct_shape = []
if ctx.opset < 8:
for i, input_name in enumerate(node.input_tensor_names):
if ctx.get_shape(input_name) != shapeo:
needs_broadcast_op.append(i)
else:
has_correct_shape.append(input_name)
if needs_broadcast_op:
has_correct_shape = has_correct_shape[0]
for i in needs_broadcast_op:
input_node = node.input_nodes[i]
# get a tensor with zeros (since there is no Fill op as of opset8)
sub_node = ctx.MakeNode(
"Sub",
[has_correct_shape, has_correct_shape],
op_name_scope=input_node.name,
)
# use add as 'broadcast' op
add_node = ctx.MakeNode(
"Add",
[input_node.output_tensor_names[0], sub_node.output_tensor_names[0]],
op_name_scope=input_node.name,
)
node.input_tensor_names[i] = add_node.output_tensor_names[0]
@flow_op("broadcast_minimum", onnx_op="Min")
@flow_op("broadcast_maximum", onnx_op="Max")
@flow_op("elementwise_minimum", onnx_op="Min")
@flow_op("elementwise_maximum", onnx_op="Max")
class MinMaxOp:
@classmethod
def Version_1(cls, ctx, node, **kwargs):
shapes = node.output_shapes
dtypes = node.output_dtypes
ctx.RemoveNode(node.name)
_MakeMinOrMaxOp(
ctx,
node.op_type,
node.input_tensor_names,
node.output_tensor_names,
shapes,
dtypes,
)
@flow_op("hardswish", onnx_op="HardSwish")
class HardSwish:
@classmethod
def Version_1(cls, ctx, node, **kwargs):
dtypes = node.output_dtypes
node1 = ctx.MakeNode("HardSigmoid", [node.input_tensor_names[0]], op_name_scope=node.name, name="hard_sigmoid", dtypes=dtypes, attr={"alpha": 1.0 / 6})
ctx.RemoveNode(node.name)
ctx.MakeNode("Mul", [node.input_tensor_names[0], node1.output_tensor_names[0]], outputs=[node.output_tensor_names[0]], op_name_scope=node.name, name="mul")
@classmethod
def Version_14(cls, ctx, node, **kwargs):
pass
@flow_op("silu", onnx_op="Mul")
class Silu:
@classmethod
def Version_1(cls, ctx, node, **kwargs):
dtypes = node.output_dtypes
sigmoid_node = ctx.MakeNode("Sigmoid", [node.input_tensor_names[0]], op_name_scope=node.name, name="sigmoid", dtypes=dtypes)
ctx.RemoveNode(node.name)
ctx.MakeNode("Mul", [node.input_tensor_names[0], sigmoid_node.output_tensor_names[0]], outputs=[node.output_tensor_names[0]], op_name_scope=node.name, name="mul")
@classmethod
def Version_10(cls, ctx, node, **kwargs):
cls.Version_1(ctx, node, **kwargs)
@flow_op(["gelu", "fast_gelu", "quick_gelu"])
class Gelu:
@classmethod
def Version_9(cls, ctx, node, **kwargs):
dtypes = node.output_dtypes
if node.op_type == "fast_gelu":
kBeta = math.sqrt(2 / math.pi)
kKappa = 0.044715
beta = ctx.MakeConst(oneflow._oneflow_internal.UniqueStr("beta"), np.array(kBeta, dtype=util.Onnx2NumpyDtype(dtypes[0])))
kappa = ctx.MakeConst(oneflow._oneflow_internal.UniqueStr("kKappa"), np.array(kKappa, dtype=util.Onnx2NumpyDtype(dtypes[0])))
one = ctx.MakeConst(oneflow._oneflow_internal.UniqueStr("one"), np.array(1.0, dtype=util.Onnx2NumpyDtype(dtypes[0])))
half = ctx.MakeConst(oneflow._oneflow_internal.UniqueStr("half"), np.array(0.5, dtype=util.Onnx2NumpyDtype(dtypes[0])))
mul_node_1 = ctx.MakeNode("Mul", [node.input_tensor_names[0], node.input_tensor_names[0]], op_name_scope=node.name, name="mul1", dtypes=dtypes)
cube = ctx.MakeNode("Mul", [node.input_tensor_names[0], mul_node_1.output_tensor_names[0]], op_name_scope=node.name, name="cube", dtypes=dtypes)
mul_node_2 = ctx.MakeNode("Mul", [kappa.output_tensor_names[0], cube.output_tensor_names[0]], op_name_scope=node.name, name="mul2", dtypes=dtypes)
add_node_1 = ctx.MakeNode("Add", [mul_node_2.output_tensor_names[0], node.input_tensor_names[0]], op_name_scope=node.name, name="add1", dtypes=dtypes)
inner = ctx.MakeNode("Mul", [add_node_1.output_tensor_names[0], beta.output_tensor_names[0]], op_name_scope=node.name, name="inner", dtypes=dtypes)
tanh_node = ctx.MakeNode("Tanh", [inner.output_tensor_names[0]], op_name_scope=node.name, name="tanh", dtypes=dtypes)
add_node_2 = ctx.MakeNode("Add", [tanh_node.output_tensor_names[0], one.output_tensor_names[0]], op_name_scope=node.name, name="add2", dtypes=dtypes)
mul_node_3 = ctx.MakeNode("Mul", [add_node_2.output_tensor_names[0], node.input_tensor_names[0]], op_name_scope=node.name, name="mul3", dtypes=dtypes)
ctx.RemoveNode(node.name)
ctx.MakeNode("Mul", [mul_node_3.output_tensor_names[0], half.output_tensor_names[0]], outputs=[node.output_tensor_names[0]], op_name_scope=node.name, name="mul4", dtypes=dtypes)
elif node.op_type == "gelu":
_sqrt2 = ctx.MakeConst(oneflow._oneflow_internal.UniqueStr("sqrt2"), np.array(1.4142135623730951, dtype=util.Onnx2NumpyDtype(dtypes[0])))
div1 = ctx.MakeNode("Div", [node.input_tensor_names[0], _sqrt2.output_tensor_names[0]], op_name_scope=node.name, name="div1", dtypes=dtypes)
erf = ctx.MakeNode("Erf", [div1.output_tensor_names[0]], op_name_scope=node.name, name="erf", dtypes=dtypes)
one = ctx.MakeConst(oneflow._oneflow_internal.UniqueStr("one"), np.array(1.0, dtype=util.Onnx2NumpyDtype(dtypes[0])))
erf_plusone = ctx.MakeNode("Add", [one.output_tensor_names[0], erf.output_tensor_names[0]], op_name_scope=node.name, name="erf_plusone", dtypes=dtypes)
half = ctx.MakeConst(oneflow._oneflow_internal.UniqueStr("half"), np.array(0.5, dtype=util.Onnx2NumpyDtype(dtypes[0])))
mul_node_1 = ctx.MakeNode("Mul", [node.input_tensor_names[0], erf_plusone.output_tensor_names[0]], op_name_scope=node.name, name="mul1", dtypes=dtypes)
ctx.RemoveNode(node.name)
ctx.MakeNode("Mul", [mul_node_1.output_tensor_names[0], half.output_tensor_names[0]], outputs=[node.output_tensor_names[0]], op_name_scope=node.name, name="mul2", dtypes=dtypes)
elif node.op_type == "quick_gelu":
beta = ctx.MakeConst(oneflow._oneflow_internal.UniqueStr("beta"), np.array(1.702, dtype=util.Onnx2NumpyDtype(dtypes[0])))
mul_node_1 = ctx.MakeNode("Mul", [node.input_tensor_names[0], beta.output_tensor_names[0]], op_name_scope=node.name, name="mul1", dtypes=dtypes)
sigmoid_node = ctx.MakeNode("Sigmoid", [mul_node_1.output_tensor_names[0]], op_name_scope=node.name, name="sigmoid", dtypes=dtypes)
ctx.RemoveNode(node.name)
ctx.MakeNode("Mul", [node.input_tensor_names[0], sigmoid_node.output_tensor_names[0]], outputs=[node.output_tensor_names[0]], op_name_scope=node.name, name="mul2", dtypes=dtypes)
@flow_op("hardsigmoid", onnx_op="HardSigmoid")
class HardSigmoid:
@classmethod
def Version_1(cls, ctx, node, **kwargs):
node.attrs["alpha"] = 1.0 / 6
pass
@flow_op("scalar_pow", onnx_op="Pow")
class ScalarPow:
@classmethod
def Version_1(cls, ctx, node, **kwargs):
np_dtype = util.Onnx2NumpyDtype(ctx.get_dtype(node.input_tensor_names[0]))
if node.attrs["has_float_operand"]:
y = ctx.MakeConst(oneflow._oneflow_internal.UniqueStr("start"), np.array(node.attrs["float_operand"]).astype(np_dtype))
node.input_tensor_names.append(y.output_tensor_names[0])
else:
y = ctx.MakeConst(oneflow._oneflow_internal.UniqueStr("start"), np.array(node.attrs["int_operand"]).astype(np_dtype))
node.input_tensor_names.append(y.output_tensor_names[0])
@flow_op("scalar_logical_less", onnx_op="Less")
@flow_op("scalar_logical_greater", onnx_op="Greater")
class ScalarPow:
@classmethod
def Version_1(cls, ctx, node, **kwargs):
np_dtype = util.Onnx2NumpyDtype(ctx.get_dtype(node.input_tensor_names[0]))
node.attrs["broadcast"] = 1
if node.attrs["has_float_operand"]:
y = ctx.MakeConst(oneflow._oneflow_internal.UniqueStr("start"), np.array(node.attrs["float_operand"]).astype(np_dtype))
node.input_tensor_names.append(y.output_tensor_names[0])
elif node.attrs["has_int_operand"]:
y = ctx.MakeConst(oneflow._oneflow_internal.UniqueStr("start"), np.array(node.attrs["int_operand"]).astype(np_dtype))
node.input_tensor_names.append(y.output_tensor_names[0])
@flow_op("arange", onnx_op="Range")
class Arange:
@classmethod
def Version_1(cls, ctx, node, **kwargs):
if node.attrs["dtype"] == 1:
starts = ctx.MakeConst(oneflow._oneflow_internal.UniqueStr("start"), np.array(node.attrs["float_start"]))
node.input_tensor_names.append(starts.output_tensor_names[0])
limits = ctx.MakeConst(oneflow._oneflow_internal.UniqueStr("limit"), np.array(node.attrs["float_limit"]))
node.input_tensor_names.append(limits.output_tensor_names[0])
delta = ctx.MakeConst(oneflow._oneflow_internal.UniqueStr("delta"), np.array(node.attrs["float_delta"]))
node.input_tensor_names.append(delta.output_tensor_names[0])
else:
starts = ctx.MakeConst(oneflow._oneflow_internal.UniqueStr("start"), np.array(node.attrs["integer_start"]))
node.input_tensor_names.append(starts.output_tensor_names[0])
limits = ctx.MakeConst(oneflow._oneflow_internal.UniqueStr("limit"), np.array(node.attrs["integer_limit"]))
node.input_tensor_names.append(limits.output_tensor_names[0])
delta = ctx.MakeConst(oneflow._oneflow_internal.UniqueStr("delta"), np.array(node.attrs["integer_delta"]))
node.input_tensor_names.append(delta.output_tensor_names[0])
@classmethod
def Version_11(cls, ctx, node, **kwargs):
cls.Version_1(ctx, node, **kwargs)
class ClipOps:
@classmethod
def Version_1(cls, ctx, node, min_val=None, max_val=None, **kwargs):
# relu6 = min(max(features, 0), 6)
node.op_type = "Clip"
if min_val is not None:
node.attrs["min"] = float(min_val)
if max_val is not None:
node.attrs["max"] = float(max_val)
@classmethod
def Version_11(cls, ctx, node, min_val=None, max_val=None, **kwargs):
# add min and max as inputs
node.op_type = "Clip"
onnx_dtype = ctx.get_dtype(node.input_tensor_names[0])
np_dtype = util.ONNX_2_NUMPY_DTYPE[onnx_dtype]
if min_val is not None:
clip_min = ctx.MakeConst(
oneflow._oneflow_internal.UniqueStr("{}_min".format(node.name)),
np.array(min_val, dtype=np_dtype),
)
node.input_tensor_names.append(clip_min.output_tensor_names[0])
else:
node.input_tensor_names.append("")
if max_val is not None:
clip_max = ctx.MakeConst(
oneflow._oneflow_internal.UniqueStr("{}_max".format(node.name)),
np.array(max_val, dtype=np_dtype),
)
node.input_tensor_names.append(clip_max.output_tensor_names[0])
else:
node.input_tensor_names.append("")
@flow_op("hardtanh", onnx_op="Clip")
class HardTanh(ClipOps):
@classmethod
def Version_1(cls, ctx, node, **kwargs):
min_val = 0.0
max_val = 6.0
super().Version_1(ctx, node, min_val, max_val)
@flow_op(["clip_by_scalar", "clip_by_scalar_min", "clip_by_scalar_max"], onnx_op="Clip")
class ClipByValueOp(ClipOps):
@classmethod
def Version_1(cls, ctx, node, **kwargs):
min_val = node.attrs.get("floating_min", None) or node.attrs.get("integral_min", None)
max_val = node.attrs.get("floating_max", None) or node.attrs.get("integral_max", None)
super().Version_1(ctx, node, min_val, max_val)
@classmethod
def Version_11(cls, ctx, node, **kwargs):
min_val = node.attrs.get("floating_min", None) or node.attrs.get("integral_min", None)
max_val = node.attrs.get("floating_max", None) or node.attrs.get("integral_max", None)
super().Version_11(ctx, node, min_val, max_val)
@flow_op("softmax", "Softmax")
class Softmax:
@classmethod
def Version_1(cls, ctx, node, **kwargs):
# T output = Softmax(T logits). The axis softmax would be performed on is always on -1.
# T output = Softmax(T input, @int axis). Default axis is 1.
logits_rank = len(ctx.get_shape(node.input_tensor_names[0]))
node.attrs["axis"] = logits_rank - 1
@classmethod
def Version_11(cls, ctx, node, **kwargs):
cls.Version_1(ctx, node, **kwargs)
@flow_op("square", None)
class Square:
@classmethod
def Version_1(cls, ctx, node, **kwargs):
node.op_type = "Mul"
node.input_tensor_names.append(node.input_tensor_names[0])
@flow_op("rsqrt", None)
class Rsqrt:
@classmethod
def Version_1(cls, ctx, node, **kwargs):
node.op_type = "Sqrt"
op_name = oneflow._oneflow_internal.UniqueStr(node.name)
reciprocal = ctx.InsertNewNodeOnOutput("Reciprocal", node.output_tensor_names[0], name=op_name)
ctx.CopyShape(node.output_tensor_names[0], reciprocal.output_tensor_names[0])
@flow_op("squared_difference", None)
class SquaredDifference:
@classmethod
def Version_1(cls, ctx, node, **kwargs):
node.op_type = "Sub"
op_name = oneflow._oneflow_internal.UniqueStr(node.name)
mul = ctx.InsertNewNodeOnOutput("Mul", node.output_tensor_names[0], name=op_name)
mul.input_tensor_names.append(node.output_tensor_names[0])
@flow_op("sign", onnx_op="Sign")
class Sign:
@classmethod
def Version_1(cls, ctx, node, **kwargs):
"""Sign op."""
# T sign = Sign(T Input)
node_dtype = ctx.get_dtype(node.output_tensor_names[0])
util.MakeSure(node_dtype, "Dtype of {} is None".format(node.name))
if node_dtype in [
onnx_pb.TensorProto.COMPLEX64,
onnx_pb.TensorProto.COMPLEX128,
]:
raise ValueError("dtype " + str(node_dtype) + " is not supported in onnx for now")
zero_name = oneflow._oneflow_internal.UniqueStr("{}_zero".format(node.name))
ctx.MakeConst(zero_name, np.array(0, dtype=np.float32))
if node_dtype not in [
onnx_pb.TensorProto.FLOAT16,
onnx_pb.TensorProto.FLOAT,
onnx_pb.TensorProto.DOUBLE,
]:
cast_node_0 = ctx.MakeNode("Cast", [node.input_tensor_names[0]], {"to": onnx_pb.TensorProto.FLOAT})
greater_node = ctx.MakeNode("Greater", [cast_node_0.output_tensor_names[0], zero_name])
less_node = ctx.MakeNode("Less", [cast_node_0.output_tensor_names[0], zero_name])
else:
greater_node = ctx.MakeNode("Greater", [node.input_tensor_names[0], zero_name])
less_node = ctx.MakeNode("Less", [node.input_tensor_names[0], zero_name])
cast_node_1 = ctx.MakeNode("Cast", [greater_node.output_tensor_names[0]], {"to": node_dtype})
cast_node_2 = ctx.MakeNode("Cast", [less_node.output_tensor_names[0]], {"to": node_dtype})
shapes = node.output_shapes
dtypes = node.output_dtypes
ctx.RemoveNode(node.name)
ctx.MakeNode(
"Sub",
[cast_node_1.output_tensor_names[0], cast_node_2.output_tensor_names[0]],
outputs=[node.output_tensor_names[0]],
shapes=shapes,
dtypes=dtypes,
)
@classmethod
def Version_9(cls, ctx, node, **kwargs):
node_dtype = ctx.get_dtype(node.output_tensor_names[0])
util.MakeSure(node_dtype, "dtype of {} is None".format(node.name))
if node_dtype in [
onnx_pb.TensorProto.BOOL,
onnx_pb.TensorProto.COMPLEX64,
onnx_pb.TensorProto.COMPLEX128,
]:
raise ValueError("dtype " + str(node_dtype) + " is not supported in onnx for now")
@flow_op(["matmul", "batch_matmul", "broadcast_matmul"], "MatMul", flow_ibns=["a", "b"])
class MatMul:
@classmethod
def Version_1(cls, ctx, node, **kwargs):
transpose_a = node.attrs.get("transpose_a", 0)
transpose_b = node.attrs.get("transpose_b", 0)
alpha = node.attrs.get("alpha")
if transpose_a != 0:
shape = ctx.get_shape(node.input_tensor_names[0])
if shape:
perm = list(range(0, len(shape)))
tmp = perm[-1]
perm[-1] = perm[-2]
perm[-2] = tmp
ctx.InsertNewNodeOnInput(node, "Transpose", node.input_tensor_names[0], perm=perm)
if transpose_b != 0:
shape = ctx.get_shape(node.input_tensor_names[1])
if shape:
perm = list(range(0, len(shape)))
tmp = perm[-1]
perm[-1] = perm[-2]
perm[-2] = tmp
ctx.InsertNewNodeOnInput(node, "Transpose", node.input_tensor_names[1], perm=perm)
unsupported = ["a_is_sparse", "b_is_sparse"]
for i in unsupported:
val = node.attrs.get(i, 0)
if val != 0:
raise ValueError(node.op_type + " attribute " + i + " is not supported")
if alpha != 1.0:
dtypes = node.output_dtypes
alpha = ctx.MakeConst(oneflow._oneflow_internal.UniqueStr("alpha"), np.array(alpha, dtype=util.Onnx2NumpyDtype(dtypes[0])))
op_name = oneflow._oneflow_internal.UniqueStr(node.name)
mul = ctx.InsertNewNodeOnOutput("Mul", node.output_tensor_names[0], op_name_scope=node.name, name=op_name)
mul.input_tensor_names.append(alpha.output_tensor_names[0])
ctx.set_dtype(mul.output_tensor_names[0], ctx.get_dtype(node.output_tensor_names[0]))
ctx.CopyShape(node.output_tensor_names[0], mul.output_tensor_names[0])
@flow_op("fused_self_attention_query_mul_key_and_value")
class FusedSelfAttention:
@classmethod
def Version_1(cls, ctx, node, **kwargs):
head_size = node.attrs.get("head_size")
scope = node.name
output_name1 = node.output_tensor_names[0]
output_name2 = node.output_tensor_names[1]
dtypes = node.output_dtypes
shape = ctx.get_shape(node.input_tensor_names[0])
new_shape = [shape[0], shape[1], int(shape[2] / 3 / head_size), 3 * head_size]
starts_q = ctx.MakeConst(
oneflow._oneflow_internal.UniqueStr("start_q"),
np.array([0]).astype(np.int64),
)
ends_q = ctx.MakeConst(
oneflow._oneflow_internal.UniqueStr("stop_q"),
np.array([head_size]).astype(np.int64),
)
starts_k = ctx.MakeConst(
oneflow._oneflow_internal.UniqueStr("start_k"),
np.array([head_size]).astype(np.int64),
)
ends_k = ctx.MakeConst(
oneflow._oneflow_internal.UniqueStr("stop_k"),
np.array([2 * head_size]).astype(np.int64),
)
starts_v = ctx.MakeConst(
oneflow._oneflow_internal.UniqueStr("start_v"),
np.array([2 * head_size]).astype(np.int64),
)
ends_v = ctx.MakeConst(
oneflow._oneflow_internal.UniqueStr("stop_v"),
np.array([3 * head_size]).astype(np.int64),
)
steps = ctx.MakeConst(
oneflow._oneflow_internal.UniqueStr("steps"),
np.array([1]).astype(np.int64),
)
axes = ctx.MakeConst(
oneflow._oneflow_internal.UniqueStr("axes"),
np.array([3]).astype(np.int64),
)
# reshape
new_shape_name = oneflow._oneflow_internal.UniqueStr("new_shape")
ctx.MakeConst(new_shape_name, np.array(new_shape, dtype=np.int64))
reshape = ctx.MakeNode("Reshape", [node.input_tensor_names[0], new_shape_name])
# query
slice_node_q = ctx.MakeNode(
"Slice",
[
reshape.output_tensor_names[0],
starts_q.output_tensor_names[0],
ends_q.output_tensor_names[0],
axes.output_tensor_names[0],
steps.output_tensor_names[0],
],
)
transpose_node_q = ctx.MakeNode("Transpose", [slice_node_q.output_tensor_names[0]], attr={"perm": [1, 2, 0, 3]})
# key
slice_node_k = ctx.MakeNode(
"Slice",
[
reshape.output_tensor_names[0],
starts_k.output_tensor_names[0],
ends_k.output_tensor_names[0],
axes.output_tensor_names[0],
steps.output_tensor_names[0],
],
)
transpose_node_k = ctx.MakeNode("Transpose", [slice_node_k.output_tensor_names[0]], attr={"perm": [1, 2, 3, 0]})
# value
slice_node_v = ctx.MakeNode(
"Slice",
[
reshape.output_tensor_names[0],
starts_v.output_tensor_names[0],
ends_v.output_tensor_names[0],
axes.output_tensor_names[0],
steps.output_tensor_names[0],
],
)
transpose_node_v = ctx.MakeNode("Transpose", [slice_node_v.output_tensor_names[0]], attr={"perm": [1, 2, 0, 3]})
# q * k
matmul_node_qk = ctx.MakeNode(
"MatMul",
[transpose_node_q.output_tensor_names[0], transpose_node_k.output_tensor_names[0]],
name="matmul_qk",
op_name_scope=scope,
)
ctx.RemoveNode(node.name)
ctx.MakeNode("Identity", [matmul_node_qk.output_tensor_names[0]], outputs=[output_name1], op_name_scope=node.name, dtypes=[dtypes[0]])
ctx.MakeNode("Identity", [transpose_node_v.output_tensor_names[0]], outputs=[output_name2], op_name_scope=node.name, dtypes=[dtypes[0]])
@flow_op("erf", onnx_op="Erf")
class Erf:
@classmethod
def Version_1(cls, ctx, node, **kwargs):
"""Error function."""
# constant names
a1 = "erf_a1"
a2 = "erf_a2"
a3 = "erf_a3"
a4 = "erf_a4"
a5 = "erf_a5"
p = "erf_p"
one = "erf_one"
null = "erf_null"
n = node.name
output_name = node.output_tensor_names[0]
erf_a1_node = ctx.get_node_by_output("erf_a1")
if erf_a1_node is None:
# insert the constants for erf once
ctx.MakeConst(a1, np.array(0.254829592, dtype=np.float32))
ctx.MakeConst(a2, np.array(-0.284496736, dtype=np.float32))
ctx.MakeConst(a3, np.array(1.421413741, dtype=np.float32))
ctx.MakeConst(a4, np.array(-1.453152027, dtype=np.float32))
ctx.MakeConst(a5, np.array(1.061405429, dtype=np.float32))
ctx.MakeConst(p, np.array(0.3275911, dtype=np.float32))
ctx.MakeConst(one, np.array(1.0, dtype=np.float32))
ctx.MakeConst(null, np.array(0.0, dtype=np.float32))
x = node.input_tensor_names[0]
# erf(x):
# sign = 1 if x >= 0 else -1
# x = abs(x)
# # A&S formula 7.1.26
# t = 1.0 / (1.0 + p * x)
# y = 1.0 - (((((a5 * t + a4) * t) + a3) * t + a2) * t + a1) * t * math.exp(-x * x)
# return sign * y # erf(-x) = -erf(x)
x_node = ctx.MakeNode("Abs", [x], op_name_scope=node.name, name="x")
negx_node = ctx.MakeNode("Sub", [null, x], op_name_scope=node.name, name="negx")
is_positive_node = ctx.MakeNode("Greater", [x, null], op_name_scope=node.name, name="isPositive")
is_positive_value_node = ctx.MakeNode(
"Cast",
is_positive_node.output_tensor_names,
op_name_scope=node.name,
name="isPositiveValue",
attr={"to": onnx_pb.TensorProto.FLOAT},
)
is_neg_node = ctx.MakeNode("Less", [x, null], op_name_scope=node.name, name="isNeg")
ig_neg_value_node = ctx.MakeNode(
"Cast",
is_neg_node.output_tensor_names,
op_name_scope=node.name,
name="isNegValue",
attr={"to": onnx_pb.TensorProto.FLOAT},
)
sign0_node = ctx.MakeNode(
"Sub",
[
is_positive_value_node.output_tensor_names[0],
ig_neg_value_node.output_tensor_names[0],
],
op_name_scope=node.name,
name="sign0",
)
sign_add_one_node = ctx.MakeNode(
"Add",
[sign0_node.output_tensor_names[0], one],
op_name_scope=node.name,
name="signAddOne",
)
non_zero_node = ctx.MakeNode(
"Abs",
sign0_node.output_tensor_names,
op_name_scope=node.name,
name="nonZero",
)
sign_node = ctx.MakeNode(
"Sub",
[
sign_add_one_node.output_tensor_names[0],
non_zero_node.output_tensor_names[0],
],
op_name_scope=node.name,
name="sign",
)
num_4_node = ctx.MakeNode("Mul", [x_node.output_tensor_names[0], p], op_name_scope=node.name, name="4")
num_5_node = ctx.MakeNode(
"Add",
[num_4_node.output_tensor_names[0], one],
op_name_scope=node.name,
name="5",
)
t_node = ctx.MakeNode(
"Div",
[one, num_5_node.output_tensor_names[0]],
op_name_scope=node.name,
name="t",
)
xsq_node = ctx.MakeNode(
"Mul",
[x, negx_node.output_tensor_names[0]],
op_name_scope=node.name,
name="xsq",
)
num_6_node = ctx.MakeNode("Exp", xsq_node.output_tensor_names, op_name_scope=node.name, name="6")
num_7_node = ctx.MakeNode(
"Mul",
[num_6_node.output_tensor_names[0], t_node.output_tensor_names[0]],
op_name_scope=node.name,
name="7",
)
num_8_node = ctx.MakeNode(
"Mul",
[t_node.output_tensor_names[0], a5],
op_name_scope=node.name,
name="8",
)
num_9_node = ctx.MakeNode(
"Add",
[num_8_node.output_tensor_names[0], a4],
op_name_scope=node.name,
name="9",
)
num_10_node = ctx.MakeNode(
"Mul",
[num_9_node.output_tensor_names[0], t_node.output_tensor_names[0]],
op_name_scope=node.name,
name="10",
)
num_11_node = ctx.MakeNode(
"Add",
[num_10_node.output_tensor_names[0], a3],
op_name_scope=node.name,
name="11",
)
num_12_node = ctx.MakeNode(
"Mul",
[num_11_node.output_tensor_names[0], t_node.output_tensor_names[0]],
op_name_scope=node.name,
name="12",
)
num_13_node = ctx.MakeNode(
"Add",
[num_12_node.output_tensor_names[0], a2],
op_name_scope=node.name,
name="13",
)
num_14_node = ctx.MakeNode(
"Mul",
[num_13_node.output_tensor_names[0], t_node.output_tensor_names[0]],
op_name_scope=node.name,
name="14",
)
num_15_node = ctx.MakeNode(
"Add",
[num_14_node.output_tensor_names[0], a1],
op_name_scope=node.name,
name="15",
)
num_16_node = ctx.MakeNode(
"Mul",
[num_15_node.output_tensor_names[0], num_7_node.output_tensor_names[0]],
op_name_scope=node.name,
name="16",
)
num_17_node = ctx.MakeNode(
"Sub",
[one, num_16_node.output_tensor_names[0]],
op_name_scope=node.name,
name="17",
)
shapes = node.output_shapes
dtypes = node.output_dtypes
ctx.RemoveNode(node.name)
ctx.MakeNode(
"Mul",
[num_17_node.output_tensor_names[0], sign_node.output_tensor_names[0]],
outputs=[output_name],
name=n,
shapes=shapes,
dtypes=dtypes,
)
@classmethod
def Version_9(cls, ctx, node, **kwargs):
pass
@flow_op("broadcast_floor_mod", onnx_op="FloorMod")
class FloorMod:
@classmethod
def Version_7(cls, ctx, node, **kwargs):
# T output = FloorMod(T x, T y)
div = ctx.MakeNode(op_type="Div", inputs=node.input_tensor_names)
dtype = ctx.get_dtype(node.input_tensor_names[0])
if dtype in [
onnx_pb.TensorProto.FLOAT,
onnx_pb.TensorProto.FLOAT16,
onnx_pb.TensorProto.DOUBLE,
]:
div = ctx.MakeNode(op_type="Floor", inputs=div.output_tensor_names)
mul = ctx.MakeNode(
op_type="Mul",
inputs=[div.output_tensor_names[0], node.input_tensor_names[1]],
)
# res node will take over shape&dtype&output connection info of original "node"
shapes = node.output_shapes
dtypes = node.output_dtypes
ctx.RemoveNode(node.name)
ctx.MakeNode(
op_type="Sub",
inputs=[node.input_tensor_names[0], mul.output_tensor_names[0]],
name=node.name,
outputs=node.output_tensor_names,
shapes=shapes,
dtypes=dtypes,
)
@flow_op("round", onnx_op="Round")
class Round:
@classmethod
def Version_11(cls, ctx, node, **kwargs):
pass
def _AddCastToInputs(graph, node, supported_dtypes, target_dtype):
is_support = True
for inp in node.input_tensor_names:
if graph.get_dtype(inp) not in supported_dtypes:
is_support = False
break
if not is_support:
for inp in node.input_tensor_names:
inp_cast = graph.InsertNewNodeOnInput(node, "Cast", inp, to=target_dtype)
graph.CopyShape(inp, inp_cast.output_tensor_names[0])
graph.set_dtype(inp_cast.output_tensor_names[0], target_dtype)
def _AddCastToOutput(graph, node):
# oneflow logical ops produce int8 tensor while onnx logical ops produce bool tensor
output = node.output_tensor_names[0]
cast_node = graph.InsertNewNodeOnOutput("Cast", output, oneflow._oneflow_internal.UniqueStr("cast"), to=graph.get_dtype(output))
graph.CopyShape(output, node.output_tensor_names[0])
graph.set_dtype(node.output_tensor_names[0], TensorProto.BOOL)
# oneflow doesn't have logical_not and broadcast_logical_or, but
# it is easy to implement onnx converter in advance
@flow_op("logical_not", onnx_op="Not")
class DirectOp:
@classmethod
def Version_1(cls, ctx, node, **kwargs):
_AddCastToOutput(ctx, node)
@flow_op("broadcast_logical_and", onnx_op="And", flow_ibns=["x", "y"])
@flow_op("broadcast_logical_or", onnx_op="Or", flow_ibns=["x", "y"])
class BroadcastOp(common.BroadcastOp):
@classmethod
def Version_1(cls, ctx, node, **kwargs):
_AddCastToOutput(ctx, node)
super().Version_1(ctx, node, **kwargs)
@flow_op(
["broadcast_equal", "broadcast_not_equal"],
["Equal", "NotEqual"],
flow_ibns=["x", "y"],
)
class Equal:
@classmethod
def Version_7(cls, ctx, node, **kwargs):
# T2 output = Equal(T1, x, T1 y), T1 \in {bool, int32, int64}
_AddCastToOutput(ctx, node)
need_not = node.op_type == "NotEqual"
supported_dtypes = [TensorProto.BOOL, TensorProto.INT32, TensorProto.INT64]
if any([ctx.get_dtype(inp) not in supported_dtypes for inp in node.input_tensor_names]):
raise ValueError("Version 7 Equal op only supports bool, int32 and int64 inputs. Please set opset > 11 and try again.")
if need_not:
node.op_type = "Equal"
output_name = node.output_tensor_names[0]
not_node = ctx.InsertNewNodeOnOutput("Not", output_name, name=oneflow._oneflow_internal.UniqueStr(node.name))
ctx.CopyShape(output_name, not_node.output_tensor_names[0])
ctx.CopyDtype(output_name, not_node.output_tensor_names[0])
@classmethod
def Version_11(cls, ctx, node, **kwargs):
# starting with opset-11, equal supports all types
_AddCastToOutput(ctx, node)
need_not = node.op_type == "NotEqual"
if need_not:
node.op_type = "Equal"
output_name = node.output_tensor_names[0]
not_node = ctx.InsertNewNodeOnOutput("Not", output_name, name=oneflow._oneflow_internal.UniqueStr(node.name))
ctx.CopyShape(output_name, not_node.output_tensor_names[0])
ctx.CopyDtype(output_name, not_node.output_tensor_names[0])
@flow_op(["broadcast_greater", "broadcast_less"], ["Greater", "Less"], flow_ibns=["x", "y"])
class GreaterLess:
@classmethod
def Version_7(cls, ctx, node, **kwargs):
_AddCastToOutput(ctx, node)
# T2 output = Greater(T1 x, T1 y), T2=tensor(bool)
# T2 output = Less(T1 x, T1 y), T2=tensor(bool)
# Great/Less in opset7 only supports limited types, insert Cast if needed
supported_dtypes = [TensorProto.FLOAT, TensorProto.FLOAT16, TensorProto.DOUBLE]
target_dtype = TensorProto.FLOAT
_AddCastToInputs(ctx, node, supported_dtypes, target_dtype)
@flow_op("broadcast_greater_equal", onnx_op="Less", flow_ibns=["x", "y"])
@flow_op("broadcast_less_equal", onnx_op="Greater", flow_ibns=["x", "y"])
class GreaterLessEqual:
@classmethod
def Version_7(cls, ctx, node, **kwargs):
_AddCastToOutput(ctx, node)
GreaterLess.Version_7(ctx, node, **kwargs)
output_name = node.output_tensor_names[0]
new_node = ctx.InsertNewNodeOnOutput("Not", output_name, name=oneflow._oneflow_internal.UniqueStr(node.name))
ctx.CopyShape(output_name, new_node.output_tensor_names[0])
ctx.set_dtype(new_node.output_tensor_names[0], ctx.get_dtype(output_name))
@flow_op(["var"])
class Var:
@classmethod
def Version_13(cls, ctx, node, **kwargs):
origin_dim = node.attrs.get("dim", None)
unbiased = node.attrs.get("unbiased", None)
keepdim = node.attrs.get("keepdim", None)
num_elements = 1
dtypes = node.output_dtypes
input_shape = ctx.get_shape(node.input_tensor_names[0])
keepdim_mean = 0 if origin_dim is None else keepdim
if origin_dim is None:
dim = []
for i in range(len(input_shape)):
num_elements *= input_shape[i]
dim.append(i)
reduce_mean_node = ctx.MakeNode("ReduceMean", [node.input_tensor_names[0]], op_name_scope=node.name, name="reduce_mean", dtypes=dtypes, attr={"axes": dim, "keepdims": 0})
t_mean = reduce_mean_node.output_tensor_names[0]
else:
reduce_mean_node = ctx.MakeNode("ReduceMean", [node.input_tensor_names[0]], op_name_scope=node.name, name="reduce_mean", dtypes=dtypes, attr={"axes": origin_dim, "keepdims": 1})
t_mean = reduce_mean_node.output_tensor_names[0]
for i in range(len(origin_dim)):
num_elements *= input_shape[i]
sub_node = ctx.MakeNode("Sub", [node.input_tensor_names[0], t_mean], op_name_scope=node.name, name="sub", dtypes=dtypes)
sub_v = sub_node.output_tensor_names[0]
mul_node = ctx.MakeNode("Mul", [sub_v, sub_v], op_name_scope=node.name, name="mul", dtypes=dtypes)
sqr_sub = mul_node.output_tensor_names[0]
if unbiased is None:
unbiased = False
ctx.RemoveNode(node.name)
if unbiased:
var_node = ctx.MakeNode("ReduceMean", [sqr_sub], op_name_scope=node.name, name="var", dtypes=dtypes, attr={"axes": origin_dim, "keepdims": keepdim_mean})
var = var_node.output_tensor_names[0]
scalar_node = ctx.MakeConst(oneflow._oneflow_internal.UniqueStr("scalar"), np.array([num_elements]).astype(np.float32))
one = ctx.MakeConst(oneflow._oneflow_internal.UniqueStr("constant"), np.array([1]).astype(np.float32))
num_elements = scalar_node.output_tensor_names[0]
mul = ctx.MakeNode("Mul", [var, num_elements])
sub = ctx.MakeNode("Sub", [num_elements, one.output_tensor_names[0]])
var = ctx.MakeNode("Div", [mul.output_tensor_names[0], sub.output_tensor_names[0]], outputs=[node.output_tensor_names[0]])
else:
var_node = ctx.MakeNode(
"ReduceMean", [sqr_sub], op_name_scope=node.name, name="var", dtypes=dtypes, attr={"axes": origin_dim, "keepdims": keepdim_mean}, outputs=[node.output_tensor_names[0]]
)
@flow_op("fill_", onnx_op="Constant")
class Fill:
@classmethod
def Version_1(cls, ctx, node, **kwargs):
is_floating_value = node.attrs["is_floating_value"]
output_name = node.output_tensor_names[0]
out_shape = ctx.get_shape(output_name)
if is_floating_value:
values = np.full(shape=out_shape, fill_value=node.attrs["floating_value"], dtype=np.float32)
else:
values = np.full(shape=out_shape, fill_value=node.attrs["integral_value"], dtype=np.float32)
ctx.RemoveNode(node.name)
ctx.MakeConst(output_name, values)
@classmethod
def Version_9(cls, ctx, node, **kwargs):
cls.Version_1(ctx, node, **kwargs)
@classmethod
def Version_11(cls, ctx, node, **kwargs):
cls.Version_1(ctx, node, **kwargs)
@classmethod
def Version_13(cls, ctx, node, **kwargs):
cls.Version_1(ctx, node, **kwargs)
@flow_op("fused_bias_add_scale_mask_softmax_dropout")
class FusedBiasAddScaleMaskSoftmaxDropout:
@classmethod
def Version_1(cls, ctx, node, **kwargs):
dtypes = node.output_dtypes
scale_value = node.attrs.get("scale_value")
mask_fill_value = node.attrs.get("mask_fill_value")
output_name1 = node.output_tensor_names[0]
output_name2 = node.output_tensor_names[1]
scale = ctx.MakeConst(oneflow._oneflow_internal.UniqueStr("scale"), np.array(scale_value, dtype=util.Onnx2NumpyDtype(dtypes[0])))
mask_fill = ctx.MakeConst(oneflow._oneflow_internal.UniqueStr("mask_fill"), np.array(mask_fill_value, dtype=util.Onnx2NumpyDtype(dtypes[0])))
one = ctx.MakeConst(oneflow._oneflow_internal.UniqueStr("one"), np.array(1, dtype=util.Onnx2NumpyDtype(dtypes[0])))
ctx.set_dtype(node.input_tensor_names[2], ctx.get_dtype(one.output_tensor_names[0]))
add_node_1 = ctx.MakeNode("Add", [node.input_tensor_names[0], node.input_tensor_names[1]], op_name_scope=node.name, name="add_node_1", dtypes=[dtypes[0]])
mul_node_1 = ctx.MakeNode("Mul", [add_node_1.output_tensor_names[0], node.input_tensor_names[2]], op_name_scope=node.name, name="mul_node_1", dtypes=[dtypes[0]])
masked = ctx.MakeNode("Mul", [mul_node_1.output_tensor_names[0], scale.output_tensor_names[0]], op_name_scope=node.name, name="masked", dtypes=[dtypes[0]])
unmask = ctx.MakeNode("Sub", [one.output_tensor_names[0], node.input_tensor_names[2]], op_name_scope=node.name, name="unmask", dtypes=[dtypes[0]])
mul_node_2 = ctx.MakeNode("Mul", [mask_fill.output_tensor_names[0], unmask.output_tensor_names[0]], op_name_scope=node.name, name="mul_node_2", dtypes=[dtypes[0]])
mul_node_3 = ctx.MakeNode("Mul", [masked.output_tensor_names[0], node.input_tensor_names[2]], op_name_scope=node.name, name="mul_node_3", dtypes=[dtypes[0]])
sub_node_1 = ctx.MakeNode("Sub", [mul_node_2.output_tensor_names[0], mul_node_3.output_tensor_names[0]], op_name_scope=node.name, name="sub_node_1", dtypes=[dtypes[0]])
add_node_2 = ctx.MakeNode("Add", [sub_node_1.output_tensor_names[0], masked.output_tensor_names[0]], op_name_scope=node.name, name="add_node_2", dtypes=[dtypes[0]])
softmax_y = ctx.MakeNode("Softmax", [add_node_2.output_tensor_names[0]], attr={"axis": 2}, op_name_scope=node.name, name="softmax_node_1", dtypes=[dtypes[0]])
ctx.RemoveNode(node.name)
ctx.MakeNode("Identity", [softmax_y.output_tensor_names[0]], outputs=[output_name1], op_name_scope=node.name, dtypes=[dtypes[0]])
ctx.MakeNode("Identity", [softmax_y.output_tensor_names[0]], outputs=[output_name2], op_name_scope=node.name, dtypes=[dtypes[0]])
| UTF-8 | Python | false | false | 48,404 | py | 30 | math.py | 17 | 0.599289 | 0.582369 | 0 | 1,145 | 41.274236 | 190 |
PADAS/das-clients | 4,776,003,639,402 | e62b7e4e0d071b6b24963c3680a2644c64ca2f69 | 729926a37895feba9b754739e7e9e2f09113f8b4 | /python/dasclient/dasclient.py | 3e31f334912660d2d5924c143d7e9ca5831dd40b | [
"MIT"
]
| permissive | https://github.com/PADAS/das-clients | 159959d6c5c6cc776f27ff86d77a386e25d3138e | 05a9ca1ff395bfaef4ab9af0cb75aab18b6150a2 | refs/heads/main | 2022-12-12T21:41:10.250817 | 2022-07-12T19:13:27 | 2022-07-12T19:13:27 | 84,587,693 | 4 | 0 | MIT | false | 2022-12-08T15:44:05 | 2017-03-10T18:08:56 | 2022-05-06T15:56:08 | 2022-12-08T15:44:03 | 183 | 5 | 0 | 3 | Python | false | false | from datetime import datetime, timedelta
import urllib.parse
from urllib3.util.retry import Retry
import pytz
import logging
import re
import dateparser
import concurrent.futures
import math
import requests
from requests.adapters import HTTPAdapter
import io
import json
from .version import __version__
version_string = __version__
def linkify(url, params):
p = ['='.join((str(x), str(y))) for x, y in params.items()]
p = '&'.join(p)
return '?'.join((url, p))
def split_link(url):
url, qs = url.split('?')
params = dict([p.split('=') for p in qs.split('&')])
return (url, params)
class DasClient(object):
"""
DasClient provides basic access to a DAS API. It requires the coordinates of a DAS API service as well
as valid credentials for a user.
The boiler-plate code handles authentication, so you don't have to think about Oauth2 or refresh tokens.
As of May 12, 2017 it includes just a basic set of functions to access Subject data and to post observations.
June 6, 2017: Added methods to add a photo or document to an Event.
"""
def __init__(self, **kwargs):
"""
Initialize a DasClient instance.
:param username: DAS username
:param password: DAS password
:param service_root: The root of the DAS API (Ex. https://demo.pamdas.org/api/v1.0)
:param token_url: The auth token url for DAS (Ex. https://demo.pamdas.org/oauth2/token)
:param provider_key: provider-key for posting observation data (Ex. xyz_provider)
:param client_id: Auth client ID (Ex. das_web_client)
"""
self.auth = None
self.auth_expires = pytz.utc.localize(datetime.min)
self._http_session = None
self.max_retries = kwargs.get('max_http_retries', 5)
self.service_root = kwargs.get('service_root')
self.client_id = kwargs.get('client_id')
self.provider_key = kwargs.get('provider_key')
self.token_url = kwargs.get('token_url')
self.username = kwargs.get('username')
self.password = kwargs.get('password')
self.realtime_url = kwargs.get('realtime_url')
if kwargs.get('token'):
self.token = kwargs.get('token')
self.auth = dict(token_type='Bearer',
access_token=kwargs.get('token'))
self.auth_expires = datetime(2099, 1, 1, tzinfo=pytz.utc)
self.user_agent = 'das-client/{}'.format(version_string)
self.logger = logging.getLogger(self.__class__.__name__)
self._http_session = requests.Session()
retries = Retry(total = 5, backoff_factor=1.5, status_forcelist=[502])
self._http_session.mount("http", HTTPAdapter(max_retries=retries))
self._http_session.mount("https", HTTPAdapter(max_retries=retries))
def _auth_is_valid(self):
return self.auth_expires > pytz.utc.localize(datetime.utcnow())
def auth_headers(self):
if self.auth:
if not self._auth_is_valid():
if not self.refresh_token():
if not self.login():
raise DasClientException('Login failed.')
else:
if not self.login():
raise DasClientException('Login failed.')
return {'Authorization': '{} {}'.format(self.auth['token_type'],
self.auth['access_token']),
'Accept-Type': 'application/json'}
def refresh_token(self):
payload = {'grant_type': 'refresh_token',
'refresh_token': self.auth['refresh_token'],
'client_id': self.client_id
}
return self._token_request(payload)
def login(self):
payload = {'grant_type': 'password',
'username': self.username,
'password': self.password,
'client_id': self.client_id
}
return self._token_request(payload)
def _token_request(self, payload):
response = requests.post(self.token_url, data=payload)
if response.ok:
self.auth = json.loads(response.text)
expires_in = int(self.auth['expires_in']) - 5 * 60
self.auth_expires = pytz.utc.localize(
datetime.utcnow()) + timedelta(seconds=expires_in)
return True
self.auth = None
self.auth_expires = pytz.utc.localize(datetime.min)
return False
def _das_url(self, path):
return '/'.join((self.service_root, path))
def _get(self, path, stream=False, **kwargs):
headers = {'User-Agent': self.user_agent}
headers.update(self.auth_headers())
if(not path.startswith("http")):
path = self._das_url(path)
response = None
if(self._http_session):
response = self._http_session.get(path, headers=headers,
params=kwargs.get('params'), stream=stream)
else:
response = requests.get(path, headers=headers,
params=kwargs.get('params'), stream=stream)
if response.ok:
if kwargs.get('return_response', False):
return response
data = json.loads(response.text)
if 'metadata' in data:
return data['metadata']
elif 'data' in data:
return data['data']
else:
return data
if response.status_code == 404: # not found
self.logger.error(f"404 when calling {path}")
raise DasClientNotFound()
if response.status_code == 403: # forbidden
try:
_ = json.loads(response.text)
reason = _['status']['detail']
except:
reason = 'unknown reason'
raise DasClientPermissionDenied(reason)
self.logger.debug("Fail: " + response.text)
raise DasClientException(
f"Failed to call DAS web service at {response.url}. {response.status_code} {response.text}")
def _call(self, path, payload, method, params=None):
headers = {'Content-Type': 'application/json',
'User-Agent': self.user_agent}
headers.update(self.auth_headers())
def time_converter(t):
if isinstance(t, datetime):
return t.isoformat()
body = json.dumps(payload, default=time_converter)
fmap = None
if(self._http_session):
fmap = {'POST': self._http_session.post, 'PATCH': self._http_session.patch}
else:
fmap = {'POST': requests.post, 'PATCH': requests.patch}
try:
fn = fmap[method]
except KeyError:
self.logger.error('method must be one of...')
else:
response = fn(self._das_url(path), data=body, headers=headers, params=params)
if response and response.ok:
res_json = response.json()
if('data' in res_json):
return res_json['data']
else:
return res_json
if response.status_code == 404: # not found
self.logger.error(f"Could not load {path}")
raise DasClientNotFound()
try:
_ = json.loads(response.text)
reason = _['status']['detail']
except:
reason = 'unknown reason'
if response.status_code == 403: # forbidden
raise DasClientPermissionDenied(reason)
if response.status_code == 504 or response.status_code == 502: # gateway timeout or bad gateway
self.logger.error(f"ER service unavailable", extra=dict(provider_key=self.provider_key,
service=self.service_root,
path=path,
status_code=response.status_code,
reason=reason,
text=response.text))
raise DasClientServiceUnavailable(f"ER service unavailable")
self.logger.error(f"ER returned bad response", extra=dict(provider_key=self.provider_key,
service=self.service_root,
path=path,
status_code=response.status_code,
reason=reason,
text=response.text))
message = f"provider_key: {self.provider_key}, service: {self.service_root}, path: {path},\n\t {response.status_code} from ER. Message: {reason} {response.text}"
raise DasClientException(
f"Failed to {fn} to DAS web service. {message}")
def _post(self, path, payload, params={}):
return self._call(path, payload, "POST", params)
def _patch(self, path, payload, params={}):
return self._call(path, payload, "PATCH", params)
def add_event_to_incident(self, event_id, incident_id):
params = {
'to_event_id': event_id,
'type': 'contains'
}
result = self._post('activity/event/' +
incident_id + '/relationships', params)
def remove_event_from_incident(self, event_id, incident_id, relationship_type='contains'):
result = self._delete(
f'activity/event/{incident_id}/relationship/{relationship_type}/{event_id}/')
def _delete(self, path):
headers = {'User-Agent': self.user_agent}
headers.update(self.auth_headers())
resonse = None
if(self._http_session):
response = self._http_session.delete(self._das_url(path), headers=headers)
else:
response = requests.delete(self._das_url(path), headers=headers)
if response.ok:
return True
if response.status_code == 404: # not found
self.logger.error(f"404 when calling {path}")
raise DasClientNotFound()
if response.status_code == 403: # forbidden
try:
_ = json.loads(response.text)
reason = _['status']['detail']
except:
reason = 'unknown reason'
raise DasClientPermissionDenied(reason)
raise DasClientException(
f'Failed to delete: {response.status_code} {response.text}')
def delete_event(self, event_id):
self._delete('activity/event/' + event_id + '/')
def delete_source(self, source_id):
self._delete('source/' + source_id + '/')
def delete_subject(self, subject_id):
self._delete('subject/' + subject_id + '/')
def delete_message(self, message_id):
self._delete('messages/' + message_id + '/')
def delete_patrol(self, patrol_id):
self._delete('activity/patrols/' + patrol_id + '/')
def _post_form(self, path, body=None, files=None):
headers = {'User-Agent': self.user_agent}
headers.update(self.auth_headers())
body = body or {}
response = requests.post(self._das_url(
path), data=body, headers=headers, files=files)
if response and response.ok:
return json.loads(response.text)['data']
if response.status_code == 404: # not found
raise DasClientNotFound()
if response.status_code == 403: # forbidden
try:
_ = json.loads(response.text)
reason = _['status']['detail']
except:
reason = 'unknown reason'
raise DasClientPermissionDenied(reason)
self.logger.error('provider_key: %s, path: %s\n\tBad result from das service. Message: %s',
self.provider_key, path, response.text)
raise DasClientException('Failed to post to DAS web service.')
def post_eventprovider(self, eventprovider):
self.logger.debug('Posting eventprovider: %s', eventprovider)
result = self._post('activity/eventproviders/', payload=eventprovider)
self.logger.debug('Result of eventprovider post is: %s', result)
return result
def post_eventsource(self, eventprovider_id, eventsource):
self.logger.debug('Posting eventsource: %s', eventsource)
result = self._post(f'activity/eventprovider/{eventprovider_id}/eventsources', payload=eventsource)
self.logger.debug('Result of eventsource post is: %s', result)
return result
def post_event_photo(self, event_id, image):
raise ValueError('post_event_photo is no longer valid.')
photos_path = 'activity/event/' + str(event_id) + '/photos/'
with open(image, "rb") as image_file:
files = {'image': image_file}
return self._post_form(photos_path, files=files)
def post_camera_trap_report(self, camera_trap_payload, file=None):
camera_trap_report_path = f'sensors/camera-trap/' + self.provider_key + '/status/'
if file:
files = {'filecontent.file': file}
return self._post_form(camera_trap_report_path, body=camera_trap_payload, files=files)
else:
file_path = camera_trap_payload.get('file')
with open(file_path, "rb") as f:
files = {'filecontent.file': f}
return self._post_form(camera_trap_report_path, body=camera_trap_payload, files=files)
def delete_event_file(self, event_id, file_id):
self._delete(f"activity/event/{event_id}/file/{file_id}")
def delete_event_note(self, event_id, note_id):
path = f"activity/event/{event_id}/note/{note_id}"
self._delete(path)
def post_event_file(self, event_id, filepath=None, comment=''):
documents_path = 'activity/event/' + str(event_id) + '/files/'
with open(filepath, "rb") as f:
files = {'filecontent.file': f}
return self._post_form(documents_path, body={'comment': comment}, files=files)
def post_event_note(self, event_id, notes):
created = []
if(not isinstance(notes, list)):
notes = [notes, ]
for note in notes:
notesRequest = {
'event': event_id,
'text': note
}
result = self._post('activity/event/' +
event_id + '/notes', notesRequest)
created.append(result)
return created
def get_me(self):
"""
Get details for the 'me', the current DAS user.
:return:
"""
return self._get('user/me')
def post_subject(self, subject):
'''
Post a subject payload to create a new subject.
:param subject:
:return:
'''
self.logger.debug(f"Posting subject {subject.get('name')}")
return self._post('subjects', payload=subject)
def post_source(self, source):
'''
Post a source payload to create a new source.
:param source:
:return:
'''
self.logger.debug('Posting source for manufacturer_id: %s',
source.get('manufacturer_id'))
return self._post('sources', payload=source)
def _clean_observation(self, observation):
if hasattr(observation['recorded_at'], 'isoformat'):
observation['recorded_at'] = observation['recorded_at'].isoformat()
return observation
def _clean_event(self, event):
return event
def post_radio_observation(self, observation):
# Clean-up data before posting
observation['recorded_at'] = observation['recorded_at'].isoformat()
self.logger.debug('Posting observation: %s', observation)
result = self._post(
'sensors/dasradioagent/{}/status'.format(self.provider_key), payload=observation)
self.logger.debug('Result of post is: %s', result)
return result
def post_radio_heartbeat(self, data):
self.logger.debug('Posting heartbeat: %s', data)
result = self._post(
'sensors/dasradioagent/{}/status'.format(self.provider_key), payload=data)
self.logger.debug('Result of heartbeat post is: %s', result)
def post_observation(self, observation):
"""
Post a new observation, or a list of observations.
"""
if isinstance(observation, (list, set)):
payload = [self._clean_observation(o) for o in observation]
else:
payload = self._clean_observation(observation)
self.logger.debug('Posting observation: %s', payload)
return self._post('observations', payload=payload)
def post_sensor_observation(self, observation, sensor_type='generic'):
"""
Post a new observation, or a list of observations.
"""
if isinstance(observation, (list, set)):
payload = [self._clean_observation(o) for o in observation]
else:
payload = self._clean_observation(observation)
self.logger.debug('Posting observation: %s', observation)
result = self._post(
'sensors/{}/{}/status'.format(sensor_type, self.provider_key), payload=observation)
self.logger.debug('Result of post is: %s', result)
return result
def post_patrol(self, data):
payload = self._clean_event(data)
self.logger.debug('Posting patrol: %s', payload)
result = self._post('activity/patrols', payload=payload)
self.logger.debug('Result of patrol post is: %s', result)
return result
def patch_event_type(self, event_type):
self.logger.debug('Patching event type: %s', event_type)
result = self._patch(
f"activity/events/eventtypes/{event_type['id']}", payload=event_type)
self.logger.debug('Result of event type patch is: %s', result)
return result
def post_event_type(self, event_type):
self.logger.debug('Posting event type: %s', event_type)
result = self._post('activity/events/eventtypes/', payload=event_type)
self.logger.debug('Result of event type post is: %s', result)
return result
def post_report(self, data):
payload = self._clean_event(data)
self.logger.debug('Posting report: %s', payload)
result = self._post('activity/events', payload=payload)
self.logger.debug('Result of report post is: %s', result)
return result
def post_event_category(self, data):
self.logger.debug('Posting event category: %s', data)
result = self._post('activity/events/categories', payload=data)
self.logger.debug('Result of report category post is: %s', result)
return result
def patch_event_category(self, data):
self.logger.debug('Patching event category: %s', data)
result = self._patch(
f'activity/events/categories/{data["id"]}', payload=data)
self.logger.debug('Result of report category patch is: %s', result)
return result
def post_event(self, event):
"""
Post a new Event.
"""
return self.post_report(event)
def add_events_to_patrol_segment(self, events, patrol_segment):
for event in events:
payload = {
'id': event['id'],
'patrol_segments': [
patrol_segment['id']
]
}
result = self._patch(
f"activity/event/{event['id']}", payload=payload)
def patch_event(self, event_id, payload):
self.logger.debug('Patching event: %s', payload)
result = self._patch('activity/event/' + event_id, payload=payload)
self.logger.debug('Result of event patch is: %s', result)
return result
def get_file(self, url):
return self._get(url, stream=True, return_response=True)
def get_event_type(self, event_type_name):
return self._get(f'activity/events/schema/eventtype/{event_type_name}')
def get_event_categories(self, include_inactive=False):
return self._get(f'activity/events/categories', params={"include_inactive": include_inactive})
def get_messages(self):
results = self._get(path='messages')
while True:
if results and results.get('results'):
for r in results['results']:
yield r
if results and results['next']:
url, params = split_link(results['next'])
p['page'] = params['page']
results = self._get(path='messages')
else:
break
def get_event_types(self, include_inactive = False, include_schema = False):
return self._get('activity/events/eventtypes', params =
{"include_inactive": include_inactive, "include_schema": include_schema})
def get_event_schema(self, event_type):
return self._get(f'activity/events/schema/eventtype/{event_type}')
def _get_objects_count(self, params):
params = params.copy()
params["page"] = 1
params["page_size"] = 1
events = self._get(params['object'], params=params)
if events and events.get('count'):
return events['count']
return 0
def get_objects(self, **kwargs):
params = dict((k, v) for k, v in kwargs.items() if k not in ('page'))
if(not params.get('object')):
raise ValueError("Must specify object URL")
self.logger.debug(f"Getting {params['object']}: ", params)
count = 0
results = self._get(params['object'], params=params)
while True:
if(not results):
break
if('results' in results):
for result in results['results']:
yield result
count += 1
if(('max_results' in params) and (count >= params['max_results'])):
return
next = results.get('next')
if (next and ('page' not in params)):
url = next
self.logger.debug('Getting more objects: ' + url)
results = self._get(url)
else:
break
elif(type(results) == list):
for o in results:
yield o
break
else:
yield results
break
def get_objects_multithreaded(self, **kwargs):
threads = kwargs.get("threads", 5)
params = dict((k, v) for k, v in kwargs.items() if k not in ('page'))
if(not params.get('object')):
raise ValueError("Must specify object URL")
if(not params.get('page_size')):
params['page_size'] = 100
count = self._get_objects_count(params)
self.logger.debug(f"Loading {count} {params['object']} from ER with page size {params['page_size']} and {threads} threads")
with concurrent.futures.ThreadPoolExecutor(max_workers = threads) as executor:
futures = []
for page in range(1,math.ceil(count/params['page_size'])+1):
temp_params = params.copy()
temp_params["page"] = page
futures.append(executor.submit(self._get, params['object'], params=temp_params))
for future in concurrent.futures.as_completed(futures):
max_retries = kwargs.get("retries", 0)
tries = 0
while(True):
tries += 1
try:
result = future.result()
for e in result['results']:
yield e
break
except Exception as e:
if(tries > max_retries):
logging.error(f"Error occurred loading events: {e}")
raise e
else:
logging.warning(f"Attempt {tries} of {max_retries}: Error occurred loading events: {e}.")
def get_events(self, **kwargs):
params = dict((k, v) for k, v in kwargs.items() if k in
('state', 'page_size', 'page', 'event_type', 'filter', 'include_notes',
'include_related_events', 'include_files', 'include_details', 'updated_since',
'include_updates', 'max_results', 'oldest_update_date', 'event_ids'))
self.logger.debug('Getting events: ', params)
events = self._get('activity/events', params=params)
count = 0
while True:
if events and events.get('results'):
for result in events['results']:
yield result
count += 1
if(('max_results' in params) and (count >= params['max_results'])):
return
if events['next'] and ('page' not in params):
url = events['next']
url = re.sub('.*activity/events?',
'activity/events', events['next'])
self.logger.debug('Getting more events: ' + url)
events = self._get(url)
else:
break
def get_patrols(self, **kwargs):
params = dict((k, v) for k, v in kwargs.items() if k in
('state', 'page_size', 'page', 'event_type', 'filter'))
self.logger.debug('Getting patrols: ', params)
patrols = self._get('activity/patrols', params=params)
while True:
if patrols and patrols.get('results'):
for result in patrols['results']:
yield result
if patrols['next']:
url = patrols['next']
url = re.sub('.*activity/patrols?',
'activity/patrols', patrols['next'])
self.logger.debug('Getting more patrols: ' + url)
patrols = self._get(url)
else:
break
def get_events_export(self, filter=None):
params = None
if filter:
params = {
'filter': filter}
response = self._get('activity/events/export/',
params=params, return_response=True)
return response
def pulse(self, message=None):
"""
Convenience method for getting status of the DAS api.
:param message:
:return:
"""
return self._get('status')
def get_subject_sources(self, subject_id):
return self._get(path=f'subject/{subject_id}/sources')
def get_subjectsources(self, subject_id):
return self._get(path=f'subject/{subject_id}/subjectsources')
def get_source_provider(self, provider_key):
results = self.get_objects(object="sourceproviders")
for r in results:
if(r.get('provider_key') == provider_key):
return r
return None
def get_subject_tracks(self, subject_id='', start=None, end=None):
"""
Get the latest tracks for the Subject having the given subject_id.
"""
p = {}
if start is not None and isinstance(start, datetime):
p['since'] = start.isoformat()
if end is not None and isinstance(end, datetime):
p['until'] = end.isoformat()
return self._get(path='subject/{0}/tracks'.format(subject_id), params=p)
def get_subject_trackingdata(self, subject_id=None, subject_chronofile=None, include_inactive=True, start=None, end=None,
out_format='json', filter_flag=0, current_status=False):
p = {}
if start is not None and isinstance(start, datetime):
p['after_date'] = start.isoformat()
if end is not None and isinstance(end, datetime):
p['before_date'] = end.isoformat()
if subject_id:
p['subject_id'] = subject_id
elif subject_chronofile:
p['subject_chronofile'] = subject_chronofile
else:
raise ValueError('specify subject_id or subject_chronofile')
p['include_inactive'] = include_inactive
p['format'] = out_format # should be 'json' or 'csv'
p['filter'] = 'null' if filter_flag is None else filter_flag
p['current_status'] = current_status
return self._get(path='trackingdata/export', params=p)
def get_subject_trackingmetadata(self, include_inactive=True, out_format='json'):
p = {}
p['include_inactive'] = include_inactive
p['format'] = out_format # should be 'json' or 'csv'
return self._get(path='trackingmetadata/export', params=p)
def get_subject_observations(self, subject_id, start=None, end=None,
filter_flag=0, include_details=True, page_size=10000):
return self.get_observations(subject_id=subject_id, start=start, end=end,
filter_flag=filter_flag, include_details=include_details, page_size=page_size)
def get_source_observations(self, source_id, start=None, end=None,
filter_flag=0, include_details=True, page_size=10000):
return self.get_observations(source_id=source_id, start=start, end=end,
filter_flag=filter_flag, include_details=include_details, page_size=page_size)
def get_observations(self, subject_id=None, source_id=None, start=None, end=None,
filter_flag=0, include_details=True, page_size=10000):
p = {}
if start is not None and isinstance(start, datetime):
p['since'] = start.isoformat()
if end is not None and isinstance(end, datetime):
p['until'] = end.isoformat()
if subject_id:
p['subject_id'] = subject_id
elif source_id:
p['source_id'] = source_id
p['filter'] = 'null' if filter_flag is None else filter_flag
p['include_details'] = include_details
p['page_size'] = page_size # current limit
results = self._get(path='observations', params=p)
while True:
if results and results.get('results'):
for r in results['results']:
yield r
if results and results['next']:
url, params = split_link(results['next'])
p['page'] = params['page']
results = self._get(path='observations', params=p)
else:
break
def get_subjects(self, subject_group_id=None, **kwargs):
"""
Get the list of subjects to whom the user has access.
:return:
"""
params = dict((k, v) for k, v in kwargs.items() if k in
('subject_group', 'include_inactive'))
return self._get('subjects', params=params)
def get_subject(self, subject_id=''):
"""
get the subject given the subject id
:param subject_id: the UUID for the subject
:return:
"""
return self._get(path='subject/{0}'.format(subject_id))
def get_source_by_id(self, id):
"""
get the source by id
:param id: source id
:return:
"""
return self._get(path='source/{0}'.format(id))
def get_source_by_manufacturer_id(self, id):
"""
get the source by manufacturer id or collar id
:param id: the manufacturer id
:return:
"""
return self._get(path='source/{0}'.format(id))
def get_subjectgroups(self, include_inactive=False,
include_hidden=True, isvisible=True, flat=True, group_name=None):
"""Get the list of visible subjectgroups including members.
By default don't include inactive subjects
to get all subject groups whether visible or not, call with include_hidden=True
Args:
include_inactive (bool, optional): set to True to include inactive subjects. Defaults to False.
include_hidden (bool, optional): include subject groups that are not visible (isvisible flag is false). Defaults to True.
isvisible (bool, optional): either include all visible groups, or only include not visible groups. Defaults to True.
flat (bool, optional): unnest parent/child subjectgroups returning a flat list of subjectgroups
group_name (string, optional): filter the subjectgroups to this name
Returns:
[type]: [description]
"""
p = dict()
p['include_inactive'] = include_inactive
p['include_hidden'] = include_hidden
p['isvisible'] = isvisible
p['flat'] = flat
p['group_name'] = group_name
return self._get('subjectgroups', params=p)
def get_sources(self, page_size=100):
"""Return all sources"""
params = dict(page_size=page_size)
sources = 'sources'
results = self._get(path=sources, params=params)
while True:
if results and results.get('results'):
for r in results['results']:
yield r
if results and results['next']:
_, qparam = split_link(results['next'])
params['page'] = qparam['page']
results = self._get(path=sources, params=params)
else:
break
def get_users(self):
return self._get('users')
class DasClientException(Exception):
pass
class DasClientPermissionDenied(DasClientException):
pass
class DasClientServiceUnavailable(DasClientException):
pass
class DasClientNotFound(DasClientException):
pass
| UTF-8 | Python | false | false | 34,143 | py | 18 | dasclient.py | 8 | 0.558387 | 0.555165 | 0 | 902 | 36.85255 | 169 |
MaxT2/EWPythonDevelopment | 14,774,687,502,634 | 49def9b3e9840ab2ea8c904543c6cf2385d290ad | f05e792af806f1069238aae3ce966a3268708f41 | /RandomStuff/SpaceBackgroundScreenshot/SpaceBackgroundCreator.py | 84dc5d491e56d1d093bd144c91ab3e9748bb6c83 | []
| no_license | https://github.com/MaxT2/EWPythonDevelopment | 9de608e32f319132b85e0ea4a1548872d2c90b55 | 6154b85a0b35438bb51944eddc742684469e6b60 | refs/heads/master | 2020-06-18T12:10:56.381449 | 2019-07-11T18:39:04 | 2019-07-11T18:39:04 | 196,299,153 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # import pygame library so we can use it!
import pygame
import random
from pathlib import Path
from PythonCodingClub import pygameColors
# class definitions
class Star(pygame.sprite.Sprite):
def __init__(self, screen_width, screen_height):
pygame.sprite.Sprite.__init__(self)
# setup random numbers
self.x_speed = 0
self.y_speed = 0
#setup pygame image stuff
self.random_size = random.randint(1, 5)
self.image = pygame.Surface((self.random_size, self.random_size))
self.image.fill((255, 255, 255))
# setup create bounding box and set position
self.rect = self.image.get_rect()
self.rect.center = (random.randint(0, screen_width), random.randint(0, screen_height))
# def update(self):
# self.rect.x += self.x_speed
# self.rect.y += self.y_speed
#
# # check to see if sprite left screen and reverse direction
# if self.rect.top > display_height:
# self.kill()
# game code that needs to run only once
pygame.init()
# setup display dimensions
display_width = 1000
display_height = 1000
gameSurface = pygame.display.set_mode((display_width, display_height))
# pygame.display.set_caption('Window Caption!')
# setup game clock
FPS = 60
clock = pygame.time.Clock()
# setup game resources
# color definitions
# create a sprite group to keep track of sprites
all_sprites = pygame.sprite.Group()
# create stars and put them into all_sprites group so we can update and draw them
for x in range(200):
all_sprites.add(Star(display_width, display_height))
# draw the display sprites once and show them
# fill entire screen with color
gameSurface.fill(pygameColors.BLACK)
all_sprites.draw(gameSurface)
pygame.display.flip()
# save a screenshot of the background
# check if file exists is not working properly so it always takes a screenshot
image_screen_shot = Path("/spaceBackground.jpg")
if image_screen_shot.exists():
print("screenshot already exists")
else:
pygame.image.save(gameSurface, "screenshot1.jpg")
print("screenshot saved")
# main game loop
running = True # when running is True game loop will run
while running == True:
# get input events and respond to them
# if event is .QUIT
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
# UPDATE STUFF
# if all_sprites.__sizeof__() < 50:
# all_sprites.add(Star(display_width, display_height))
# only update FPS (60) times a second
clock.tick(FPS)
# run update on all sprites in all_sprites group
# all_sprites.update()
# DRAW STUFF
# clear display every frame(redraw background)
# gameSurface.fill(pygameColors.BLACK)
# draw all sprites in all_sprites groups
# all_sprites.draw(gameSurface)
# update and redraw entire screen
# pygame.display.flip()
# update some of the screen
# pygame.display.update()
| UTF-8 | Python | false | false | 2,957 | py | 52 | SpaceBackgroundCreator.py | 49 | 0.682448 | 0.671288 | 0 | 103 | 27.708738 | 94 |
eshenkulovilias/month_3 | 10,110,353,014,800 | 247546cead6969bef3fe65b9ae4fa2d6bdabdd22 | 3575106d0386044a3e010c3d454d74bf2ec911f9 | /twit_post.py | 728aee6ade9be404c405cea9cd23046df533e212 | []
| no_license | https://github.com/eshenkulovilias/month_3 | 92d4a2b7198e18a48ef5c6d8be2471cfb735666b | 716e1b5b1677fc47951c21aa78abffbf983ec6a1 | refs/heads/main | 2023-05-08T11:52:31.614816 | 2021-06-02T03:26:39 | 2021-06-02T03:26:39 | 370,043,570 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | class CharField:
def __init__(self, char, max_length):
self.char = char
self.max_length = max_length
def __str__(self):
return self.char
class User:
def __init__(self, name, age):
self.name = name
self.age = age
def __str__(self):
return self.name
class Post:
def __init__(self, title, body, author):
self.title = CharField(title, 10)
self.body = CharField(body, 140)
self.author = author
def __str__(self):
return f'Author: {self.author}\nTitle: {self.title}\n{self.body}'
user = User('John', 18)
post = Post('Welcome!', 'Hi, my name is John.', user)
print(post)
| UTF-8 | Python | false | false | 677 | py | 5 | twit_post.py | 5 | 0.564254 | 0.553914 | 0 | 31 | 20.83871 | 73 |
joelcolucci/mailgunpi | 16,595,753,656,094 | 1e69a10db5d8d50c33bb5ef62518a657c8110332 | 52fc554d8f11e2b3e2e3dda9a13815b2adc45b62 | /tests/mailgunservice/test_api.py | 471a57de418665730ecc87a30d8d5ad0f8164757 | []
| no_license | https://github.com/joelcolucci/mailgunpi | 759fc0b47b8b72062a3a11a867271fccfe4e2ed1 | 186109e1b5f0aa7575ae2b8ff6636e0c003c6786 | refs/heads/master | 2016-06-13T15:00:22.305192 | 2016-06-13T03:00:02 | 2016-06-13T03:00:02 | 56,538,257 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | """Unit tests for mailgunservice api blueprint
"""
import json
from unittest import TestCase
from unittest import main
from flask import Flask
from smokinggun.mailgunservice import service_api
# Create Flask application for blueprint only
app = Flask(__name__)
app.register_blueprint(service_api, url_prefix='')
class MailgunServiceApiTestCase(TestCase):
def setUp(self):
app.config['TESTING'] = True
self.app = app.test_client()
def tearDown(self):
pass
def test_event_endpoint(self):
"""Test events endpoint returns json response"""
response = self.app.get('/mailgunservice/api/v1/event')
try:
data = json.loads(response.data)
except Exception:
self.fail("Endpoint did not return JSON")
self.assertIsInstance(data, dict)
def test_unsubscribe_endpoint(self):
"""Test events unsubscribe returns json response"""
response = self.app.get('/mailgunservice/api/v1/unsubscribe')
try:
data = json.loads(response.data)
except Exception:
self.fail("Endpoint did not return JSON")
self.assertIsInstance(data, dict)
def test_complaint_endpoint(self):
"""Test events complaint returns json response"""
response = self.app.get('/mailgunservice/api/v1/complaint')
try:
data = json.loads(response.data)
except Exception:
self.fail("Endpoint did not return JSON")
self.assertIsInstance(data, dict)
def test_bounce_endpoint(self):
"""Test events bounce returns json response"""
response = self.app.get('/mailgunservice/api/v1/bounce')
try:
data = json.loads(response.data)
except Exception:
self.fail("Endpoint did not return JSON")
self.assertIsInstance(data, dict)
if __name__ == '__main__':
main()
| UTF-8 | Python | false | false | 1,917 | py | 20 | test_api.py | 15 | 0.636411 | 0.634324 | 0 | 74 | 24.905405 | 69 |
andarabr/simvas | 9,981,504,029,995 | 38507d86a308dd2fcec2f25c7e32375450b98f4e | aa694370905208d986a0e29a678f18aef328dfed | /mvasapi/apps.py | c74bb7d6f33348d8467c74b96c6ae71b00c12627 | []
| no_license | https://github.com/andarabr/simvas | 4d1369a5f2935554f42b330e1630ce7831706016 | bb4a9bbc16c0e4c84e754194947756fb7d568b12 | refs/heads/master | 2023-08-26T22:43:55.396918 | 2021-11-11T07:54:47 | 2021-11-11T07:54:47 | 421,659,325 | 0 | 0 | null | false | 2021-11-11T07:54:48 | 2021-10-27T03:07:03 | 2021-11-10T09:29:24 | 2021-11-11T07:54:47 | 41 | 0 | 0 | 0 | Python | false | false | from django.apps import AppConfig
class MvasapiConfig(AppConfig):
default_auto_field = 'django.db.models.BigAutoField'
name = 'mvasapi'
| UTF-8 | Python | false | false | 146 | py | 21 | apps.py | 14 | 0.746575 | 0.746575 | 0 | 6 | 23.333333 | 56 |
mhw32/PersistentHomology | 2,585,570,342,328 | 45c4fe229c4ade63c2971be48a2e4956c18cb776 | 3096e153fa8400f7c4686ba94d733d0e05c6a54f | /paper/image_tools/gen_fig9_v2.py | 2183276ba0f1f46d7be6339905402babe56590f3 | []
| no_license | https://github.com/mhw32/PersistentHomology | be9982fcf022cb63541187cfff6421e889dce6ca | db806a5e091eb9c14f03c0720d11eabe9dd089de | refs/heads/master | 2021-05-01T12:36:15.017641 | 2017-10-31T06:24:20 | 2017-10-31T06:24:20 | 42,668,152 | 1 | 0 | null | false | 2017-04-22T17:05:36 | 2015-09-17T16:36:51 | 2017-01-16T18:58:49 | 2017-04-22T17:05:36 | 355,699 | 0 | 0 | 1 | Jupyter Notebook | null | null | import sys, numpy as np
sys.path.append('/Users/mikewu/Desktop/Research/persist-homology/')
import sub_parse
reload(sub_parse)
import matplotlib.pyplot as plt
import matplotlib
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
name = '/Users/mikewu/Desktop/Research/persist-homology/saved_states/large_sub_set_test/results-'
norm = 'True'
base = '0.1'
paths = [name+str(i)+'-'+base+'baseNorm'+norm+'.txt' for i in range(1, 101)]
singles = ['all-silh', 'euler', 'all-euler', 'silh-euler']
doubles = ['indiv_silh', 'indiv-euler', 'contour']
resArr = np.array([sub_parse.parse(f) for f in paths])
bighash = {}
for characteristic in singles:
bighash[characteristic] = sub_parse.prepare1d(resArr, characteristic)
for characteristic in doubles:
for dim in [0,1,2]:
bighash[characteristic+'-dim-'+str(dim)] = sub_parse.prepare2d(resArr, characteristic, dim)
def safelog10(B, noise=1e-5):
B[B == 0] += noise
return np.log10(B)
import rpy2.robjects as robjects
from rpy2.robjects.numpy2ri import numpy2ri
import numpy as np
def rds_to_np(Rfile):
''' Convert .RData to be able to load
the array into Python.
Rfile := (str) location of file to
translate to Python.
'''
raw = robjects.r['readRDS'](Rfile)
return raw
# bighash for CORR:
if norm == 'False':
corr_data = np.array(rds_to_np('/Users/mikewu/Desktop/Research/persist-homology/correlation/sub_output/voronoi_proba_norm(0).rds'))
pi_data = np.load('/Users/mikewu/Desktop/Research/persist-homology/intensity/output/sub_proba/nonorm/ans-voronoi-nodim.npy')
wkc_data = np.load('/Users/mikewu/Desktop/Research/persist-homology/intensity/output/sub_proba/nonorm/ans-voronoi-bydim.npy')
else:
corr_data = np.array(rds_to_np('/Users/mikewu/Desktop/Research/persist-homology/correlation/sub_output/voronoi_proba_norm(1).rds'))
pi_data = np.load('/Users/mikewu/Desktop/Research/persist-homology/intensity/output/sub_proba/yesnorm/ans-voronoi-nodim.npy')
wkc_data = np.load('/Users/mikewu/Desktop/Research/persist-homology/intensity/output/sub_proba/yesnorm/ans-voronoi-bydim.npy')
bighash_corr = {'corr': np.array(corr_data.T)}
# bighash for wik
wkc_data = np.log(1 - np.exp(wkc_data))
pi_data = np.log(1 - np.exp(pi_data))
wkc_0 = wkc_data[:, 0, :]
wkc_1 = wkc_data[:, 1, :]
wkc_2 = wkc_data[:, 2, :]
pi_all = pi_data
bighash_wik = {'wik_0': np.array(wkc_0.T),
'wik_1': np.array(wkc_1.T),
'wik_2': np.array(wkc_2.T),
'pi': np.array(pi_data.T) }
def get_align_dict(keys, step=0.01):
alignment_hash = {}
mid_pt = len(allkeys) / 2
base_val = mid_pt * -step
for i, key in enumerate(allkeys):
alignment_hash[key] = base_val
base_val += step
return alignment_hash
def hard_line_plot(allkeys,
allticks,
allcolors,
bighash,
custom_ylim=None,
save_path=None):
xvalues = np.arange(0.1, 0.35, 0.05)
align_values = get_align_dict(allkeys, 0.005)
matplotlib.rc('xtick', labelsize=27)
matplotlib.rc('ytick', labelsize=27)
fig, ax = plt.subplots(figsize=(20,5))
plt.ylabel(r'$log_{10}(p)$', fontsize=40)
plt.xlabel('PercFil', fontsize=40)
for it in range(5):
store_error_max = []
store_error_min = []
for k, c, t in zip(allkeys, allcolors, allticks):
xvalue = xvalues[it] + align_values[k]
yvalue = [np.percentile(np.log10(np.exp(i)), 50) for i in bighash[k]][it]
lower_error = [np.percentile(np.log10(np.exp(i)), 25) for i in bighash[k]]
upper_error = [np.percentile(np.log10(np.exp(i)), 75) for i in bighash[k]]
store_error_min.append(lower_error[it])
store_error_max.append(upper_error[it])
store_error_min = np.array(store_error_min)
store_error_max = np.array(store_error_max)
for k, c, t in zip(allkeys, allcolors, allticks):
xvalue = xvalues[it] + align_values[k]
yvalue = [np.percentile(np.log10(np.exp(i)), 50) for i in bighash[k]][it]
lower_error = [np.percentile(np.log10(np.exp(i)), 25) for i in bighash[k]]
upper_error = [np.percentile(np.log10(np.exp(i)), 75) for i in bighash[k]]
pos = [xvalue]
ypt = [yvalue]
err = [[yvalue - lower_error[it]], [upper_error[it] - yvalue]]
plt.errorbar(pos,
ypt,
yerr=err,
lw=6,
alpha=0.4,
color=c,
capsize=20,
capthick=6)
for k, c, t in zip(allkeys, allcolors, allticks):
xvalue = xvalues[it] + align_values[k]
yvalue = [np.percentile(np.log10(np.exp(i)), 50) for i in bighash[k]][it]
plt.scatter([xvalue],
[yvalue],
color=c,
marker='o',
alpha=1,
s=300)
# put it here so dots are the legend
plt.legend(allticks, fontsize=30, loc='lower left')
ax.xaxis.grid(False)
plt.tick_params(axis='both', which='major', labelsize=35)
plt.tight_layout()
plt.xlim(0.02, 0.33)
ax.set_xticklabels([0.00, '', '10%', '15%', '20%', '25%', '30%'])
if not custom_ylim is None:
plt.ylim(custom_ylim[0], custom_ylim[1])
if save_path:
plt.savefig(save_path)
else:
plt.show()
def merge_dicts(*dict_args):
'''
Given any number of dicts, shallow copy and merge into a new dict,
precedence goes to key value pairs in latter dicts.
'''
result = {}
for dictionary in dict_args:
result.update(dictionary)
return result
# allkeys = ['euler', 'all-euler', 'indiv-euler-dim-0', 'indiv-euler-dim-1', 'indiv-euler-dim-2']
# allticks = ['EC', 'EC (0:2)', 'EC (0)', 'EC (1)', 'EC (2)']
# allcolors = ['#44B3C2', '#F1A94E', '#E45641', '#5D4C46', '#7B8D8E']
# hard_line_plot(allkeys, allticks, allcolors, bighash, custom_ylim=[-7, 1], save_path='figure_8_euler_group_normed.pdf')
# allkeys = ['silh-euler', 'all-silh', 'indiv_silh-dim-0', 'indiv_silh-dim-1', 'indiv_silh-dim-2']
# allticks = ['SIL (EC)', 'SIL (0:2)', 'SIL (0)', 'SIL (1)', 'SIL (2)']
# allcolors = ['#44B3C2', '#F1A94E', '#E45641', '#5D4C46', '#7B8D8E']
# hard_line_plot(allkeys, allticks, allcolors, bighash, custom_ylim=[-3.5, 0.5], save_path='figure_8_silhouette_group_normed.pdf')
# allkeys = ['contour-dim-0', 'contour-dim-1', 'contour-dim-2']
# allticks = ['IK (0)', 'IK (1)', 'IK (2)']
# allcolors = ['#44B3C2', '#F1A94E', '#E45641', '#5D4C46', '#7B8D8E']
# hard_line_plot(allkeys, allticks, allcolors, bighash, custom_ylim=[-1.8, 0], save_path='figure_8_contour_group_normed.pdf')
# allkeys = ['corr']
# allticks = ['CORR']
# allcolors = ['#44B3C2']
# hard_line_plot(allkeys, allticks, allcolors, bighash_corr, custom_ylim=[-5, 1], save_path='figure_8_correlation_group_normed.pdf')
# allkeys = ['wik_0', 'wik_1', 'wik_2', 'pi']
# allticks = ['WIK (0)', 'WIK (1)', 'WIK (2)', 'PI']
# allcolors = ['#44B3C2', '#F1A94E', '#E45641', '#5D4C46']
# hard_line_plot(allkeys, allticks, allcolors, bighash_wik, custom_ylim=[-1.2, 0], save_path='figure_8_weighted_contour_group_normed.pdf')
bighash_best = merge_dicts(bighash, bighash_wik)
allkeys = ['euler', 'silh-euler', 'contour-dim-2', 'wik_2']
allticks = ['EC', 'SIL (EC)', 'IK (2)', 'WIK (2)']
allcolors = ['#44B3C2', '#F1A94E', '#E45641', '#5D4C46']
hard_line_plot(allkeys, allticks, allcolors, bighash_best, save_path='figure_8_best_group_normed.pdf')
| UTF-8 | Python | false | false | 7,749 | py | 70 | gen_fig9_v2.py | 61 | 0.597755 | 0.562137 | 0 | 198 | 38.131313 | 138 |
mongesan/Atcoder-m0_ngesan-py | 18,236,431,170,095 | a3b01ee380964443acd439460f9528f168f60863 | d27af9d58b91b8cd998ac0eb87d980d304ff0670 | /Beginner-Contest/ABC178/ABC178_F.py | 63f77f925218a53ab97c450c0ccb5e4a53ff520f | []
| no_license | https://github.com/mongesan/Atcoder-m0_ngesan-py | 29dd79daab149003ffc8b6b6bad5fa2e7daa9646 | 6654af034d4ff4cece1be04c2c8b756976d99a4b | refs/heads/master | 2023-08-20T19:50:04.547025 | 2021-10-27T12:24:51 | 2021-10-27T12:24:51 | 258,486,105 | 1 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | cnt=0
for i in range(10):
for j in range(10):
if 0<i<9 and 0<j<9:
continue
else:
print(i,j)
cnt+=1
print(cnt) | UTF-8 | Python | false | false | 165 | py | 193 | ABC178_F.py | 191 | 0.436364 | 0.375758 | 0 | 9 | 17.444444 | 27 |
nadav7679/Hopfield-Model | 12,386,685,716,093 | 6099dd1004f63e91ffaa7fd7d2b0ff502d11f37c | 0aca4f6434bf86958205098f4bc669790ef8c93b | /network.py | c7b16613fdcce7620adefc1f7808754fa81075f0 | []
| no_license | https://github.com/nadav7679/Hopfield-Model | 6650869509cc2cf429c8cd9b56a864eeb4b275c4 | 77cfcd5a2bad3ca4979b008e81d4ddc40a0b47e3 | refs/heads/master | 2022-06-26T11:41:07.779961 | 2020-05-10T20:42:59 | 2020-05-10T20:42:59 | 262,868,494 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null |
# Hopfield model - Network class
## By Nadav Porat
# ------------------------------------
import numpy as np
import matplotlib.pyplot as plt
import idx2numpy
from scipy.special import erfc
from PIL import Image
import matplotlib.animation as animation
from IPython.display import HTML
get_ipython().run_line_magic('matplotlib', 'inline')
# -------------- Helpful functions ------------------#
def heaviside(value):
if value > 0:
return 1
else:
return -1
def arrayToCell(arr): # A small helpfull function that makes Cell arrays from int arrays
res = []
for i in arr:
res.append(heaviside(i-0.2))
return res
def matrixToArray(mat):
arr = []
for i in range(np.shape(mat)[0]):
for j in range(np.shape(mat)[1]):
arr.append(mat[i][j])
return arr
def arrayToMatrix(arr, n, m): # n is the numer of rows, m is the number of columes
mat = np.zeros((n,m))
count = 0
for i in range(n):
for j in range(m):
mat[i][j] = arr[count]
count += 1
return mat
def overlap(arr1,arr2):
if not len(arr1) == len(arr2):
print ("Error - The configuration you have entered needs to be a Cell array with length = N")
return
summ = 0
for i in range(len(arr1)):
summ += arr1[i] * arr2[i]
return summ/len(arr1)
def noiseItUp(arr, p = 0.3):
N = len(arr)
amount = int(p*N)
res = np.copy(arr)
for i in range(amount):
res[np.random.randint(N)] *= -1
return res
def jpgToMatrix(path):
im = Image.open(path)
im_np = np.asarray(im)
try:
im_np = im_np[:, :, 0]
except IndexError:
pass
im_np = np.where(im_np<128, -1, 1)
return im_np
# -------------- The Network Class ------------------#
class Network:
def __init__(self,N,error=0.01): # Creats a Neuronal network with N neurons and maximum error.
# N += 1 # IMPORTENT: I add one artificial Cell to the Network,
netTemp = [] # its job is to prevent the system from going in the "Inverted" direction
weights = np.zeros((N,N))
for i in range(N):
netTemp.append(1)
self.length = N
self.net = netTemp
self.maxError = error
self.weights = weights
self.numOfMem = 0
self.pError = 0
self.maxMem = 0
prob = 0
while prob < self.maxError:
self.maxMem += 1
prob = 0.5*erfc(np.sqrt(N/(2*self.maxMem))) # Calculating the maximum amount of memories that are allowed
#to enter the Network
def insertMemory(self,mem): # Inserting a memory to the system, mem needs to be an N lengthed array
self.numOfMem += 1
N = self.length
if len(mem) != len(self.net): # Dealing with wrong enteries
print ("Error - The memory you have entered needs to be a Cell array with length = N")
return
# if self.numOfMem != 1:
# self.weights *= (self.numOfMem-1) # This line's intent is to remove the previous normalization.
#You can imagine how annoyed iv'e beeb when I realized I missed this petty detial at first.
for i in range(len(mem)):
for j in range(len(mem)):
if i == j:
self.weights[i][j] = 0
else:
self.weights[i][j] += (mem[i] * mem[j])/N # Adding in the Generalized-Hebb-rule weights
# self.weights *= 1/self.numOfMem # Re-normalization
self.pError = 0.5*erfc(np.sqrt(self.length/(2*self.numOfMem))) # Recalculating the current error of the Network with the new memory
def update(self): # Updating a single random Cell in the network
omega = self.weights
N = self.length
net = self.net
num = np.random.randint(0,N)
summ = 0
for i in range(N):
summ += omega[num][i]*net[i] # Weighted sum
self.net[num] = heaviside(summ) # Updating the num Cell
def quickUpdate(self): # Updating the system N times (N number of Cells)
for i in range(self.length):
self.update()
def printNet(self):
for i in range(self.length):
if i == 0:
print("[%d" %self.net[i], end="")
elif i == self.length-1:
print(", %d]" %self.net[i]) # Just trying to make it pretty :)
else:
print(", %d" %self.net[i],end="")
def setNet(self,config): # Setting some configuration to the system
if not len(config) == self.length:
print ("Error - The configuration you have entered needs to be a Cell array with length = N")
return
for i in range(self.length):
self.net[i] = heaviside(config[i])
def clear(self):
N = self.length
netTemp = []
weights = np.zeros((N,N))
for i in range(N):
netTemp.append(1)
self.net = netTemp
self.weights = weights
self.numOfMem = 0
self.pError = 0
def energy(self):
summ = 0
for i in range(self.length):
for j in range(self.length):
if i == j: continue
summ += self.weights[i][j]*self.net[i]*self.net[j]
return (-1/2)*summ
def crosstalk(self,mem, num = -100):
# The memory inserted (mem) must be a memory that is already embedded in the Network (otherwise the result has no meaning)
# The crosstalk is calculated for a single cell denoted with num. If a cell is not given, one is chosen randomly.
N = self.length
if num == -100 : num = np.random.randint(0,N)
weights = self.weights
summ = 0
if not len(mem) == self.length:
print ("Error - The configuration you have entered needs to be a Cell array with length = N")
for i in range(N):
for j in range(N):
weights[i][j] -= mem[i]
summ += weights[num][i]*mem[i]
return summ*mem[num]*(-1)
# -------------- Network assisting functions ------------------#
def loadMatToNet(Net,mat):
mem = matrixToArray(mat)
mem1 = arrayToCell(mem)
Net.insertMemory(mem1)
def makeVid(net,updates = -1,test = None, name = None, title = None):
if updates == -1: updates = 5*net.length
ims = []
length = int(np.sqrt(net.length))
step = 5*(1+int(length/100)) # The step size is taken from trial and error
fig = plt.figure(figsize=(6,6))
for i in range(updates):
if i%step == 0:
if test != None:
net_copy = np.copy(net.net)
for j in range(net.length):
if net_copy[j] != test[j]:
net_copy[j] = -0.2
if title != None: plt.title(title)
mat = arrayToMatrix(net_copy,length,length)
im = plt.imshow(mat, animated=True,cmap="gray")
plt.axis("off")
else:
if title != None: plt.title(title)
mat = arrayToMatrix(net.net,length,length)
im = plt.imshow(mat, animated=True,cmap="gray")
plt.axis("off")
ims.append([im])
net.update()
ani = animation.ArtistAnimation(fig, ims, interval=10, blit=True,repeat_delay=500)
HTML(ani.to_html5_video())
if name != None:
ani.save(name + ".mp4")
return
| UTF-8 | Python | false | false | 8,258 | py | 2 | network.py | 2 | 0.49782 | 0.486922 | 0 | 293 | 27.174061 | 141 |
liman21/qiyexinyong | 7,567,732,390,180 | b176ece3f890b701874475bfacff3a832fe0791b | 5c6df020950d6f684903d3c6cd22f74c7bacbf34 | /企查查/xin/zhanghao.py | 8449b8016c8cf75e386e33bdb6791bf31a85d497 | []
| no_license | https://github.com/liman21/qiyexinyong | 5a569b1a03ec5492897b81cc856ab81e0d0c7e4d | 9f05332e934c33b2ce446f78a699e29abda93485 | refs/heads/master | 2022-12-05T11:35:33.193184 | 2020-08-31T03:26:27 | 2020-08-31T03:26:27 | 291,604,379 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import requests,re
url='https://www.yinsiduanxin.com/'
con=requests.get(url).content.decode('utf-8').replace('\n','').replace('\t','').replace('\r','')
conts=re.findall(' <a href="/(\w+)-phone-number/verification-code-(\d+)\.html" class="clickA"',con)
for cont in conts:
tell=cont[1]
link='https://www.yinsiduanxin.com/'+cont[0]+f'-phone-number/verification-code-{tell}.html'
con1 = requests.get(link).content.decode('utf-8').replace('\n', '').replace('\t', '').replace('\r', '')
print('vv') | UTF-8 | Python | false | false | 508 | py | 23 | zhanghao.py | 20 | 0.637795 | 0.627953 | 0 | 10 | 49.9 | 107 |
gabbpuy/django-discordbot | 3,856,880,636,815 | fbe1308b848910334c5fe10724e5ed508fb66f71 | 24c9e2bdb02debeb5f95ac439760f36f3c7171f1 | /discordbot/botevents/__init__.py | 50bac56d1297158acafb5275ff808f78d1efea0b | [
"MIT"
]
| permissive | https://github.com/gabbpuy/django-discordbot | a63f3ce0b042c56475863158a3d6a2595627f127 | 7da39206b9b01f615447ca824851e79fafbe9305 | refs/heads/master | 2023-05-24T10:19:32.436866 | 2021-06-10T19:05:34 | 2021-06-10T19:05:34 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from discordbot.botevents.on_command_error import setup as setup_on_command_error
from discordbot.botevents.on_command import setup as setup_on_command
from discordbot.botevents.on_message import setup as setup_on_message
from discordbot.botevents.general import setup as setup_general
def setup(bot):
setup_on_command_error(bot)
setup_on_command(bot)
setup_on_message(bot)
setup_general(bot) | UTF-8 | Python | false | false | 409 | py | 60 | __init__.py | 55 | 0.792176 | 0.792176 | 0 | 10 | 40 | 81 |
manch93/vfs-slots-api-monitor | 10,849,087,412,761 | b85c047a7fee80b48de14eb40b1f024c3fb8f963 | e0089c60a870e1837c321ef9a1293ff75359a306 | /PingVFS.py | 97d55a252966331c7d061363ad124b7cad438325 | [
"MIT"
]
| permissive | https://github.com/manch93/vfs-slots-api-monitor | bf6fdbdf1bc0843199837ee69f90b3636701d747 | 864342fd1e144971df2a31e45b120fb22536f2bd | refs/heads/main | 2023-06-14T21:30:16.700534 | 2021-07-15T02:19:11 | 2021-07-15T02:19:11 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/usr/bin/env python
import os
import sys
import time
import json
import requests
import subprocess
from playsound import playsound
from urllib.parse import urlencode, quote_plus
from datetime import datetime, timedelta
class PingVFS:
# default constructor
def __init__(self, params):
self.url = params["url"]
self.urlparams = params["urlparams"]
self.paths = params["paths"]
self.auth = ""
self.start_time = datetime.now()
self.sound = params["sound"]
def get_auth_token(self):
if not os.path.isfile(self.paths["auth"]):
return False
path = os.path.realpath(self.paths["auth"])
read = open(path, "r")
auth = read.read().replace("\n", " ")
read.close()
if auth == self.auth:
return self.auth
self.auth = auth
# os.remove(path)
return self.auth
def store_output(self, output):
# Saving the output in result.txt.
with open(self.paths["output"], "a") as file_object:
# Append 'hello' at the end of file
file_object.write(output)
def get_foramtted_date(self, date):
return datetime.strptime(str(date), "%Y-%m-%d").strftime("%d/%m/%Y")
def hit_vfs(self):
headers = {
"Content-length" : "0",
"Content-type" : "application/json",
}
headers["Authorization"] = self.auth
from_date = datetime.now().date() + timedelta(days = 1)
to_date = from_date + timedelta(days = 90)
self.urlparams["fromDate"] = str(self.get_foramtted_date(from_date))
self.urlparams["toDate"] = str(self.get_foramtted_date(to_date))
url = self.url \
+ "?" \
+ urlencode(self.urlparams, quote_via=quote_plus)
try:
resp = requests.get(url, headers=headers)
except:
return "ERROR Connection Refused"
if os.path.isfile(self.paths["auth"]):
self.get_auth_token()
try:
resp = resp.json()
except:
return "ERROR " + str(resp.status_code)
return json.dumps(resp)
def init(self):
auth = self.get_auth_token()
count = 0
print("""
██ ██ ███████ ███████ ███████ ██ ██████ ████████ ███████
██ ██ ██ ██ ██ ██ ██ ██ ██ ██
██ ██ █████ ███████ ███████ ██ ██ ██ ██ ███████
██ ██ ██ ██ ██ ██ ██ ██ ██ ██
████ ██ ███████ ███████ ███████ ██████ ██ ███████ ██ ██ ██""")
print("\n")
print("Started at:", end =" ")
print(datetime.now())
print("Trying to access VFS appointment API for slots...")
print("\n")
while True:
time.sleep(5)
request = self.hit_vfs()
count += 1
output = "\nOutput: " \
+ str(request) \
+ "\nTime: " \
+ str(datetime.now()) \
+ "\nCount: " \
+ str(count) \
+ "\n==="
self.store_output(output)
# Printing the output in terminal.
# print(output)
print(".", end="", flush=True),
if request == "[[]]":
continue
try:
request = json.loads(request)
except:
continue
try:
if request[0]["counters"] != None:
break
except:
continue
subprocess.call([
"/usr/bin/notify-send",
"VFS Slots!!!",
"Something Positive May Have Happend."
])
print("\n")
print(str(count) + " times HTTP 200 response received.")
print("Ended at:", end =" ")
print(datetime.now())
time_diff = datetime.now() - self.start_time
time_diff = time_diff.total_seconds() / 60.0
print("Script ran for " + str(time_diff) + " minutes")
# Will play the alert sound.
playsound(self.sound)
def main(params):
if not os.path.isfile(params):
return False
path = os.path.realpath(params)
read = open(path, "r")
params = json.loads(read.read())
read.close()
ping = PingVFS(params)
ping.init()
if __name__ == "__main__":
main("./ping_creds.json")
| UTF-8 | Python | false | false | 5,062 | py | 9 | PingVFS.py | 4 | 0.463415 | 0.46031 | 0 | 158 | 27.544304 | 83 |
vanshdevgan/Crypton | 1,589,137,913,906 | c2f4cf155aba2b72dc6902c883daec4683d19376 | 9c923224c9422f4da3336bb6bdadb9d550a30eb0 | /RSA-encryption/Attack-Coppersmith/exploit.py | 41062c7e23746cd15d55bb7b3f5e2422642b7c3d | [
"MIT"
]
| permissive | https://github.com/vanshdevgan/Crypton | d8f79f6d0a456fb13253913ffb27ebc6f47a6454 | 92033a94bc6e7a543117dcef51407121ac7acfa2 | refs/heads/master | 2021-07-02T08:40:40.068449 | 2020-10-02T15:57:58 | 2020-10-02T15:57:58 | 181,874,564 | 0 | 2 | MIT | true | 2020-10-16T16:10:05 | 2019-04-17T11:08:37 | 2020-10-02T15:58:02 | 2020-10-02T15:57:59 | 1,138 | 0 | 2 | 1 | Python | false | false | from sage.all import *
# f is the monic polynomial f(x) = (m + x)**e - c whose roots we have to find
def stereotyped(f, N):
P.<x> = PolynomialRing(Zmod(N))
beta = 1
dd = f.degree() # Degree of the polynomial
epsilon = beta/7
XX = ceil(N**((beta**2/dd) - epsilon))
rt = f.small_roots(XX, beta, epsilon)
return rt
def N-factorize(f, N):
P.<x> = PolynomialRing(Zmod(N))
beta = 0.5
dd = f.degree() # Degree of the polynomial
epsilon = beta/7
XX = ceil(N**((beta**2/dd) - epsilon))
rt = f.small_roots(XX, beta, epsilon)
return rt
| UTF-8 | Python | false | false | 588 | py | 204 | exploit.py | 69 | 0.585034 | 0.573129 | 0 | 20 | 28.4 | 77 |
ytgw/01_MicroMouse2016 | 7,567,732,402,304 | db987e08beaf2aff796f56c2b59b79bc9e700208 | 20ab163d5c8052322e8ea235d2c32fd99ab83c03 | /middleware.py | a0b13829539f5f440f0e29ca9a5703efbd3f7da4 | []
| no_license | https://github.com/ytgw/01_MicroMouse2016 | 3eea19a1c3567ddc33d0d57b71124ae4e4aced9c | b4bc0c1d0f6e940be88b3b8b7bf6b6cd3d0cfea8 | refs/heads/master | 2017-04-26T19:41:35.663047 | 2016-08-30T13:25:13 | 2016-08-30T13:25:13 | 66,799,173 | 0 | 0 | null | true | 2016-08-29T00:51:29 | 2016-08-29T00:51:29 | 2016-08-04T16:18:10 | 2016-08-28T16:35:15 | 876 | 0 | 0 | 0 | null | null | null | # coding: UTF-8
#-----------------------------------------------------------------------------#
# Declation #
#-----------------------------------------------------------------------------#
# 各デバイスドライバのパス
sensor_driver = "/dev/rtlightsensor0"
switch_driver = [ "/dev/rtswitch0", "/dev/rtswitch1"]
buzzer_driver = "/dev/rtbuzzer0"
motor_driver = [ "/dev/rtmotor_raw_l0", "/dev/rtmotor_raw_r0"]
led_driver = [ "/dev/rtled0", "/dev/rtled1", "/dev/rtled2", "/dev/rtled3"]
# デバイスドライバから取得した値を格納する配列
sensor_data = [0, 0, 0, 0] # [距離センサー0の取得値, 1の値, 2の値, 3の値]
switch_state = [0, 0, 0] # [タクトスイッチ0の取得値, 1の値, 2の値]
#-----------------------------------------------------------------------------#
# Input system (入力系) #
#-----------------------------------------------------------------------------#
def sensorinfo():
# 距離センサの値を取得する
# デバイスドライバが見つかった場合 => tryの処理
# デバイスドライバが見つからなかった場合 => exceptの処理
try:
filename = sensor_driver
with open(filename,"r") as f:
# f.readlin() の返り値は 8要素の配列データ(すべての要素は文字列)
# 要素0 = 距離センサ0の取得値(文字列)
# 要素1 = スペース(文字列)
# 要素2 = 距離センサ1の取得値(文字列)
# 要素3 = スペース(文字列)
# 要素4 = 距離センサ2の取得値(文字列)
# 要素5 = スペース(文字列)
# 要素6 = 距離センサ3の取得値(文字列)
# 要素7 = \n(改行コード)
temp = f.readline()
# デバイスドライバから取得できる値は文字列なので数値に変換する
# 要素1,要素3, 要素5のスペースを削除
# 要素7の改行コードを削除
info = [int(temp[0]), int(temp[2]), int(temp[4]), int(temp[6])]
except:
# デバイスドライバが見つからない場合は全ての要素に数値の255を代入する
info = [ 255, 255, 255, 255 ]
sensor_info = info
return sensor_info
def switchstate():
# タクトスイッチの値を取得する
# デバイスドライバが見つかった場合 => tryの処理
# デバイスドライバが見つからなかった場合 => exceptの処理
try:
for i, filename in enumerate(switch_driver):
with open(filename,"r") as f:
# f.readlin() の返り値は 2要素の配列データ(すべての要素は文字列)
# 要素0 = "0":押されてない or "1":押されている
# 要素1 = \n(改行コード)
temp = f.readline()
# デバイスドライバから取得できる値は文字列なので数値に変換する
# 要素1は改行コードなので削除
state[i] = int(temp[0])
except:
# デバイスドライバが見つからない場合は全ての要素に数値の-1を代入する
state = [ -1, -1, -1 ]
switch_state = state
return switch_state
#-----------------------------------------------------------------------------#
# Output system (出力系) #
#-----------------------------------------------------------------------------#
def buzzer(frequency):
# ブザーを鳴らす
# 引数は鳴らす音の周波数(Hz)
# デバイスドライバが見つかった場合 => tryの処理
# デバイスドライバが見つからなかった場合 => exceptの処理
try:
filename = buzzer_driver
with open(filename,"w") as f:
f.write(frequency)
ret = True
except:
ret = False
return ret
def motor(speed):
# モーターを駆動する
# 引数は配列データ( speed = [ 左モータの回転数(Hz), 右モータの回転数(Hz) ] )
# デバイスドライバが見つかった場合 => tryの処理
# デバイスドライバが見つからなかった場合 => exceptの処理
try:
for i, filename in enumerate(motor_driver):
with open(filename,"w") as f_r_m:
f.write(str(speed[i]))
ret = True
except:
ret = False
return ret
def led(led_state):
# LEDを駆動する
# 引数は配列データ( led_state = [ led_0, led_1, led_2,led_3 ] )
# "led_X = 0" => Off , "led_X = 1" => ON
# デバイスドライバが見つかった場合 => tryの処理
# デバイスドライバが見つからなかった場合 => exceptの処理
try:
for i,filename in enumerate(led_driver):
with open(filename,'w') as f:
f.write(led_state[i])
ret = True
except:
ret = False
return ret | UTF-8 | Python | false | false | 5,152 | py | 4 | middleware.py | 3 | 0.455315 | 0.434691 | 0 | 110 | 33.390909 | 79 |
jl223vy/Catching-a-Python | 19,628,000,563,000 | b804a6f8f0ea07a96eabbe6fc2fbd9bc1a4293e4 | 8689bf35529fd245df659abbbeaaa158d91cf749 | /Test/用户登录(三次机会).py | de98a903bb9a96e1308bb385078c9560ddc45d6c | []
| no_license | https://github.com/jl223vy/Catching-a-Python | 56a5ebd5994b221233b6504dd0de975fa7b4738e | 1a8495bfc35f4a98d061783c65d84bfe415c3f13 | refs/heads/master | 2021-05-08T19:05:39.701496 | 2018-07-09T13:58:44 | 2018-07-09T13:58:44 | 119,550,132 | 1 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | def main():
name = "Kate"
psw = "666666"
flag = 1
for i in range(3):
tName = input()
tPsw = input()
if tName == name and tPsw == psw:
print("登录成功!")
break
else:
flag = 0
if flag == 0:
print("3次用户名或者密码均有误!退出程序。")
main()
| UTF-8 | Python | false | false | 361 | py | 41 | 用户登录(三次机会).py | 40 | 0.429022 | 0.394322 | 0 | 17 | 17.647059 | 41 |
abbasjam/abbas_repo | 2,319,282,364,171 | 5dd40a792a30e6f0134a1eb3beb7501b77d0d1c9 | 8ff01e8bbb04a6411a16766f29ff6bc94878be0c | /python/dev-ops/python/pythan-class/set_example2.py | 3d3fac7648bca127372c2422830502278c8a1e23 | []
| no_license | https://github.com/abbasjam/abbas_repo | 5642db639e12b5ec99f88834b472e44567b5e3aa | 6a55288ba7c7e44f55f034b0e4978c51da6d2116 | refs/heads/master | 2020-08-17T23:12:47.168145 | 2020-03-23T09:15:41 | 2020-03-23T09:15:41 | 215,722,331 | 4 | 4 | null | null | null | null | null | null | null | null | null | null | null | null | null | print ("Set Manipulations")
print ("-----------------")
x={1,2,3,4,5,6}
print ("Given x is :",x)
x.discard(5)
print ("after discard(5):",x)
x.discard(100)
print ("After discard(100):",x)
| UTF-8 | Python | false | false | 187 | py | 229 | set_example2.py | 153 | 0.572193 | 0.497326 | 0 | 8 | 22.375 | 31 |
Kuroko0o/eje_python | 13,683,765,806,392 | 617cc3362893cf70d5fb52e38a59a92b155bef2b | d2078cf5931ceb38307ee74da918ada83d28b867 | /promedios.py | e37ccb5f98e0088b23ff631a1eb94c3d59725727 | [
"Apache-2.0"
]
| permissive | https://github.com/Kuroko0o/eje_python | 98255d08ba262b343ea75eaf375bf827812cd1fe | 12580bdcb2b70b89b20e2566bf17870ba4532ef2 | refs/heads/master | 2022-11-09T13:34:46.832207 | 2020-06-21T03:58:29 | 2020-06-21T03:58:29 | 273,349,945 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | print(" ****** Bienvenido al Registro de Promedios por Materias Y Alumnos ****** ")
print(" ")
print ("*******************************************************")
print(" ")
k = input("Ingresar la cantidad deseada de nombres de alumnos y promedios que desea conseguir: \n")
try:
cant = int(k)
except :
print("La Cantidad ingresada no es valida! Intentelo nuevamente reiniciando el registro!")
for cuenta in range(cant):
a = input("Ingresar nombre de alumno completo: \n")
b = input("Ingresar la materia (Lengua/Historia/Matematica/Geografia/Quimica/ Etc.): \n")
c = input("Ingresar Calificación del Primer Trimestre: \n")
d = input("Ingresar Calificación del Segundo Trimestre: \n")
e = input ("Ingresar Calificación del Tercer Trimestre: \n")
try:
n = float(c)
nu = float(d)
num = float(e)
except :
print("-----------------------------------------------------------------------------")
print("Valor ingresado en calificación NO es valido, vuelva a intentarlo!")
print("-----------------------------------------------------------------------------")
break
total = (n + nu + num) / 3
print("---------------------------------------------------------------------------------")
print(" El alumno: \n", a , "\n tiene un promedio de: \n", total, "\n en la materia: \n", b)
print("---------------------------------------------------------------------------------")
print("************************************************************")
print(" ****** Sus promedios fueron mostrados, gracias por usar el registro ******")
| UTF-8 | Python | false | false | 1,630 | py | 5 | promedios.py | 3 | 0.456335 | 0.45572 | 0 | 32 | 49.8125 | 99 |
xielinshai1992/PyQt5 | 11,553,462,035,406 | 787724c7d651a4e447a4673a2d5a4868a3ff5b0e | b9004f0539279fe61539164076d8e71b8a884965 | /create_airportdata/adsb_mainForm.py | 2c8360d0b8ccf90a19ad819d51850de563a8581d | []
| no_license | https://github.com/xielinshai1992/PyQt5 | 2576eaa3dd672da94a0cab389ad3a1a5eb48df50 | a295b8d97165f8fec7f7e4b64ffc75604ac91269 | refs/heads/master | 2021-06-15T18:18:12.748160 | 2021-05-14T09:02:52 | 2021-05-14T09:02:52 | 200,157,657 | 1 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # -*- coding: utf-8 -*-
# Form implementation generated from reading ui file 'adsb_mainForm.ui'
#
# Created by: PyQt5 UI code generator 5.11.3
#
# WARNING! All changes made in this file will be lost!
from PyQt5 import QtCore, QtGui, QtWidgets
class Ui_MainWindow(object):
def setupUi(self, MainWindow):
MainWindow.setObjectName("MainWindow")
MainWindow.resize(1550, 880)
MainWindow.setMaximumSize(QtCore.QSize(1550, 880))
icon = QtGui.QIcon()
icon.addPixmap(QtGui.QPixmap("C:/Users/Administrator/.designer/backup/pic/airport.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
MainWindow.setWindowIcon(icon)
MainWindow.setToolTipDuration(0)
self.centralwidget = QtWidgets.QWidget(MainWindow)
self.centralwidget.setObjectName("centralwidget")
self.groupBox_2 = QtWidgets.QGroupBox(self.centralwidget)
self.groupBox_2.setGeometry(QtCore.QRect(920, 370, 611, 491))
font = QtGui.QFont()
font.setFamily("宋体")
font.setPointSize(11)
self.groupBox_2.setFont(font)
self.groupBox_2.setObjectName("groupBox_2")
self.tabWidget = QtWidgets.QTabWidget(self.groupBox_2)
self.tabWidget.setGeometry(QtCore.QRect(10, 25, 591, 461))
self.tabWidget.setObjectName("tabWidget")
self.tab = QtWidgets.QWidget()
self.tab.setObjectName("tab")
self.frame_target = QtWidgets.QFrame(self.tab)
self.frame_target.setGeometry(QtCore.QRect(0, 0, 591, 421))
self.frame_target.setFrameShape(QtWidgets.QFrame.StyledPanel)
self.frame_target.setFrameShadow(QtWidgets.QFrame.Raised)
self.frame_target.setObjectName("frame_target")
self.groupBox_tcas_target1 = QtWidgets.QGroupBox(self.frame_target)
self.groupBox_tcas_target1.setGeometry(QtCore.QRect(310, 50, 271, 361))
self.groupBox_tcas_target1.setObjectName("groupBox_tcas_target1")
self.btn_stopsend_tcas_target1 = QtWidgets.QPushButton(self.groupBox_tcas_target1)
self.btn_stopsend_tcas_target1.setGeometry(QtCore.QRect(10, 318, 251, 28))
self.btn_stopsend_tcas_target1.setObjectName("btn_stopsend_tcas_target1")
self.layoutWidget = QtWidgets.QWidget(self.groupBox_tcas_target1)
self.layoutWidget.setGeometry(QtCore.QRect(10, 40, 251, 261))
self.layoutWidget.setObjectName("layoutWidget")
self.gridLayout_3 = QtWidgets.QGridLayout(self.layoutWidget)
self.gridLayout_3.setContentsMargins(0, 0, 0, 0)
self.gridLayout_3.setObjectName("gridLayout_3")
self.label_27 = QtWidgets.QLabel(self.layoutWidget)
self.label_27.setScaledContents(True)
self.label_27.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter)
self.label_27.setObjectName("label_27")
self.gridLayout_3.addWidget(self.label_27, 0, 0, 1, 1)
self.txt_Track_ID_target1 = QtWidgets.QLineEdit(self.layoutWidget)
self.txt_Track_ID_target1.setEnabled(False)
self.txt_Track_ID_target1.setMaximumSize(QtCore.QSize(150, 16777215))
self.txt_Track_ID_target1.setText("")
self.txt_Track_ID_target1.setObjectName("txt_Track_ID_target1")
self.gridLayout_3.addWidget(self.txt_Track_ID_target1, 0, 1, 1, 1)
self.label_26 = QtWidgets.QLabel(self.layoutWidget)
self.label_26.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter)
self.label_26.setObjectName("label_26")
self.gridLayout_3.addWidget(self.label_26, 1, 0, 1, 1)
self.txt_Tcas_Altitude_target1 = QtWidgets.QLineEdit(self.layoutWidget)
self.txt_Tcas_Altitude_target1.setEnabled(False)
self.txt_Tcas_Altitude_target1.setMaximumSize(QtCore.QSize(150, 16777215))
self.txt_Tcas_Altitude_target1.setText("")
self.txt_Tcas_Altitude_target1.setObjectName("txt_Tcas_Altitude_target1")
self.gridLayout_3.addWidget(self.txt_Tcas_Altitude_target1, 1, 1, 1, 1)
self.label_23 = QtWidgets.QLabel(self.layoutWidget)
self.label_23.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter)
self.label_23.setObjectName("label_23")
self.gridLayout_3.addWidget(self.label_23, 2, 0, 1, 1)
self.txt_Relative_Direction_target1 = QtWidgets.QLineEdit(self.layoutWidget)
self.txt_Relative_Direction_target1.setEnabled(False)
self.txt_Relative_Direction_target1.setMaximumSize(QtCore.QSize(150, 16777215))
self.txt_Relative_Direction_target1.setText("")
self.txt_Relative_Direction_target1.setObjectName("txt_Relative_Direction_target1")
self.gridLayout_3.addWidget(self.txt_Relative_Direction_target1, 2, 1, 1, 1)
self.label_21 = QtWidgets.QLabel(self.layoutWidget)
self.label_21.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter)
self.label_21.setObjectName("label_21")
self.gridLayout_3.addWidget(self.label_21, 3, 0, 1, 1)
self.txt_Relative_Distance_target1 = QtWidgets.QLineEdit(self.layoutWidget)
self.txt_Relative_Distance_target1.setEnabled(False)
self.txt_Relative_Distance_target1.setMaximumSize(QtCore.QSize(150, 16777215))
self.txt_Relative_Distance_target1.setText("")
self.txt_Relative_Distance_target1.setObjectName("txt_Relative_Distance_target1")
self.gridLayout_3.addWidget(self.txt_Relative_Distance_target1, 3, 1, 1, 1)
self.btn_import_info_target1 = QtWidgets.QPushButton(self.frame_target)
self.btn_import_info_target1.setGeometry(QtCore.QRect(10, 15, 241, 28))
self.btn_import_info_target1.setObjectName("btn_import_info_target1")
self.groupBox_adsb_target1 = QtWidgets.QGroupBox(self.frame_target)
self.groupBox_adsb_target1.setGeometry(QtCore.QRect(10, 50, 291, 361))
self.groupBox_adsb_target1.setObjectName("groupBox_adsb_target1")
self.layoutWidget1 = QtWidgets.QWidget(self.groupBox_adsb_target1)
self.layoutWidget1.setGeometry(QtCore.QRect(9, 34, 271, 318))
self.layoutWidget1.setObjectName("layoutWidget1")
self.gridLayout_2 = QtWidgets.QGridLayout(self.layoutWidget1)
self.gridLayout_2.setContentsMargins(0, 0, 0, 0)
self.gridLayout_2.setObjectName("gridLayout_2")
self.label_4 = QtWidgets.QLabel(self.layoutWidget1)
self.label_4.setMaximumSize(QtCore.QSize(144, 16777215))
self.label_4.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter)
self.label_4.setObjectName("label_4")
self.gridLayout_2.addWidget(self.label_4, 2, 0, 1, 1)
self.txt_Heading_Track_Angle_target1 = QtWidgets.QLineEdit(self.layoutWidget1)
self.txt_Heading_Track_Angle_target1.setEnabled(False)
self.txt_Heading_Track_Angle_target1.setMaximumSize(QtCore.QSize(150, 16777215))
self.txt_Heading_Track_Angle_target1.setText("")
self.txt_Heading_Track_Angle_target1.setObjectName("txt_Heading_Track_Angle_target1")
self.gridLayout_2.addWidget(self.txt_Heading_Track_Angle_target1, 7, 1, 1, 1)
self.txt_FlightID_target1 = QtWidgets.QLineEdit(self.layoutWidget1)
self.txt_FlightID_target1.setEnabled(False)
self.txt_FlightID_target1.setMaximumSize(QtCore.QSize(150, 16777215))
self.txt_FlightID_target1.setText("")
self.txt_FlightID_target1.setObjectName("txt_FlightID_target1")
self.gridLayout_2.addWidget(self.txt_FlightID_target1, 1, 1, 1, 1)
self.txt_V_EW_target1 = QtWidgets.QLineEdit(self.layoutWidget1)
self.txt_V_EW_target1.setEnabled(False)
self.txt_V_EW_target1.setMaximumSize(QtCore.QSize(150, 16777215))
self.txt_V_EW_target1.setText("")
self.txt_V_EW_target1.setObjectName("txt_V_EW_target1")
self.gridLayout_2.addWidget(self.txt_V_EW_target1, 4, 1, 1, 1)
self.txt_Latitude_target1 = QtWidgets.QLineEdit(self.layoutWidget1)
self.txt_Latitude_target1.setEnabled(False)
self.txt_Latitude_target1.setMaximumSize(QtCore.QSize(150, 16777215))
self.txt_Latitude_target1.setText("")
self.txt_Latitude_target1.setObjectName("txt_Latitude_target1")
self.gridLayout_2.addWidget(self.txt_Latitude_target1, 5, 1, 1, 1)
self.label_11 = QtWidgets.QLabel(self.layoutWidget1)
self.label_11.setMaximumSize(QtCore.QSize(90, 16777215))
self.label_11.setScaledContents(True)
self.label_11.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter)
self.label_11.setObjectName("label_11")
self.gridLayout_2.addWidget(self.label_11, 0, 0, 1, 1)
self.label_12 = QtWidgets.QLabel(self.layoutWidget1)
self.label_12.setMaximumSize(QtCore.QSize(16777215, 16777214))
self.label_12.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter)
self.label_12.setObjectName("label_12")
self.gridLayout_2.addWidget(self.label_12, 3, 0, 1, 1)
self.txt_V_SN_target1 = QtWidgets.QLineEdit(self.layoutWidget1)
self.txt_V_SN_target1.setEnabled(False)
self.txt_V_SN_target1.setMaximumSize(QtCore.QSize(150, 16777215))
self.txt_V_SN_target1.setText("")
self.txt_V_SN_target1.setObjectName("txt_V_SN_target1")
self.gridLayout_2.addWidget(self.txt_V_SN_target1, 3, 1, 1, 1)
self.label_15 = QtWidgets.QLabel(self.layoutWidget1)
self.label_15.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter)
self.label_15.setObjectName("label_15")
self.gridLayout_2.addWidget(self.label_15, 4, 0, 1, 1)
self.label_14 = QtWidgets.QLabel(self.layoutWidget1)
self.label_14.setMaximumSize(QtCore.QSize(90, 16777215))
self.label_14.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter)
self.label_14.setObjectName("label_14")
self.gridLayout_2.addWidget(self.label_14, 1, 0, 1, 1)
self.txt_Longitude_target1 = QtWidgets.QLineEdit(self.layoutWidget1)
self.txt_Longitude_target1.setEnabled(False)
self.txt_Longitude_target1.setMaximumSize(QtCore.QSize(150, 16777215))
self.txt_Longitude_target1.setText("")
self.txt_Longitude_target1.setObjectName("txt_Longitude_target1")
self.gridLayout_2.addWidget(self.txt_Longitude_target1, 6, 1, 1, 1)
self.label_17 = QtWidgets.QLabel(self.layoutWidget1)
self.label_17.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter)
self.label_17.setObjectName("label_17")
self.gridLayout_2.addWidget(self.label_17, 8, 0, 1, 1)
self.label_18 = QtWidgets.QLabel(self.layoutWidget1)
self.label_18.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter)
self.label_18.setObjectName("label_18")
self.gridLayout_2.addWidget(self.label_18, 7, 0, 1, 1)
self.label_13 = QtWidgets.QLabel(self.layoutWidget1)
self.label_13.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter)
self.label_13.setObjectName("label_13")
self.gridLayout_2.addWidget(self.label_13, 5, 0, 1, 1)
self.txt_ICAO_target1 = QtWidgets.QLineEdit(self.layoutWidget1)
self.txt_ICAO_target1.setEnabled(False)
self.txt_ICAO_target1.setMaximumSize(QtCore.QSize(150, 16777215))
self.txt_ICAO_target1.setText("")
self.txt_ICAO_target1.setObjectName("txt_ICAO_target1")
self.gridLayout_2.addWidget(self.txt_ICAO_target1, 0, 1, 1, 1)
self.txt_Altitude_target1 = QtWidgets.QLineEdit(self.layoutWidget1)
self.txt_Altitude_target1.setEnabled(False)
self.txt_Altitude_target1.setMaximumSize(QtCore.QSize(150, 16777215))
self.txt_Altitude_target1.setText("")
self.txt_Altitude_target1.setObjectName("txt_Altitude_target1")
self.gridLayout_2.addWidget(self.txt_Altitude_target1, 2, 1, 1, 1)
self.label_16 = QtWidgets.QLabel(self.layoutWidget1)
self.label_16.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter)
self.label_16.setObjectName("label_16")
self.gridLayout_2.addWidget(self.label_16, 6, 0, 1, 1)
self.txt_GroundSpeed_target1 = QtWidgets.QLineEdit(self.layoutWidget1)
self.txt_GroundSpeed_target1.setEnabled(False)
self.txt_GroundSpeed_target1.setMaximumSize(QtCore.QSize(150, 16777215))
self.txt_GroundSpeed_target1.setText("")
self.txt_GroundSpeed_target1.setObjectName("txt_GroundSpeed_target1")
self.gridLayout_2.addWidget(self.txt_GroundSpeed_target1, 8, 1, 1, 1)
self.btn_stopsend_adsb_target1 = QtWidgets.QPushButton(self.layoutWidget1)
self.btn_stopsend_adsb_target1.setObjectName("btn_stopsend_adsb_target1")
self.gridLayout_2.addWidget(self.btn_stopsend_adsb_target1, 9, 0, 1, 2)
self.tabWidget.addTab(self.tab, "")
self.groupBox_3 = QtWidgets.QGroupBox(self.centralwidget)
self.groupBox_3.setGeometry(QtCore.QRect(1230, 0, 301, 361))
font = QtGui.QFont()
font.setFamily("宋体")
font.setPointSize(11)
self.groupBox_3.setFont(font)
self.groupBox_3.setObjectName("groupBox_3")
self.btn_start = QtWidgets.QPushButton(self.groupBox_3)
self.btn_start.setGeometry(QtCore.QRect(50, 120, 201, 28))
self.btn_start.setObjectName("btn_start")
self.btn_stop = QtWidgets.QPushButton(self.groupBox_3)
self.btn_stop.setEnabled(False)
self.btn_stop.setGeometry(QtCore.QRect(50, 180, 201, 28))
self.btn_stop.setObjectName("btn_stop")
self.groupBox = QtWidgets.QGroupBox(self.centralwidget)
self.groupBox.setGeometry(QtCore.QRect(920, 0, 291, 361))
font = QtGui.QFont()
font.setFamily("宋体")
font.setPointSize(11)
self.groupBox.setFont(font)
self.groupBox.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignTop)
self.groupBox.setFlat(False)
self.groupBox.setCheckable(False)
self.groupBox.setObjectName("groupBox")
self.layoutWidget2 = QtWidgets.QWidget(self.groupBox)
self.layoutWidget2.setGeometry(QtCore.QRect(20, 30, 241, 318))
self.layoutWidget2.setObjectName("layoutWidget2")
self.gridLayout = QtWidgets.QGridLayout(self.layoutWidget2)
self.gridLayout.setContentsMargins(0, 0, 0, 0)
self.gridLayout.setObjectName("gridLayout")
self.txt_GroundSpeed_own = QtWidgets.QLineEdit(self.layoutWidget2)
self.txt_GroundSpeed_own.setEnabled(False)
self.txt_GroundSpeed_own.setMaximumSize(QtCore.QSize(150, 16777215))
self.txt_GroundSpeed_own.setText("")
self.txt_GroundSpeed_own.setObjectName("txt_GroundSpeed_own")
self.gridLayout.addWidget(self.txt_GroundSpeed_own, 13, 2, 1, 1)
self.label_2 = QtWidgets.QLabel(self.layoutWidget2)
self.label_2.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter)
self.label_2.setObjectName("label_2")
self.gridLayout.addWidget(self.label_2, 2, 1, 1, 1)
self.txt_Altitude_own = QtWidgets.QLineEdit(self.layoutWidget2)
self.txt_Altitude_own.setEnabled(False)
self.txt_Altitude_own.setMaximumSize(QtCore.QSize(150, 16777215))
self.txt_Altitude_own.setText("")
self.txt_Altitude_own.setObjectName("txt_Altitude_own")
self.gridLayout.addWidget(self.txt_Altitude_own, 3, 2, 1, 1)
self.txt_FlightID_own = QtWidgets.QLineEdit(self.layoutWidget2)
self.txt_FlightID_own.setEnabled(False)
self.txt_FlightID_own.setMaximumSize(QtCore.QSize(150, 16777215))
self.txt_FlightID_own.setText("")
self.txt_FlightID_own.setObjectName("txt_FlightID_own")
self.gridLayout.addWidget(self.txt_FlightID_own, 2, 2, 1, 1)
self.txt_V_EW_own = QtWidgets.QLineEdit(self.layoutWidget2)
self.txt_V_EW_own.setEnabled(False)
self.txt_V_EW_own.setMaximumSize(QtCore.QSize(150, 16777215))
self.txt_V_EW_own.setText("")
self.txt_V_EW_own.setObjectName("txt_V_EW_own")
self.gridLayout.addWidget(self.txt_V_EW_own, 5, 2, 1, 1)
self.label_7 = QtWidgets.QLabel(self.layoutWidget2)
self.label_7.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter)
self.label_7.setObjectName("label_7")
self.gridLayout.addWidget(self.label_7, 6, 1, 1, 1)
self.txt_V_SN_own = QtWidgets.QLineEdit(self.layoutWidget2)
self.txt_V_SN_own.setEnabled(False)
self.txt_V_SN_own.setMaximumSize(QtCore.QSize(150, 16777215))
self.txt_V_SN_own.setText("")
self.txt_V_SN_own.setObjectName("txt_V_SN_own")
self.gridLayout.addWidget(self.txt_V_SN_own, 4, 2, 1, 1)
self.label_9 = QtWidgets.QLabel(self.layoutWidget2)
self.label_9.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter)
self.label_9.setObjectName("label_9")
self.gridLayout.addWidget(self.label_9, 9, 1, 1, 1)
self.label_3 = QtWidgets.QLabel(self.layoutWidget2)
self.label_3.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter)
self.label_3.setObjectName("label_3")
self.gridLayout.addWidget(self.label_3, 3, 1, 1, 1)
self.label_6 = QtWidgets.QLabel(self.layoutWidget2)
self.label_6.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter)
self.label_6.setObjectName("label_6")
self.gridLayout.addWidget(self.label_6, 5, 1, 1, 1)
self.txt_Heading_Track_Angle_own = QtWidgets.QLineEdit(self.layoutWidget2)
self.txt_Heading_Track_Angle_own.setEnabled(False)
self.txt_Heading_Track_Angle_own.setMaximumSize(QtCore.QSize(150, 16777215))
self.txt_Heading_Track_Angle_own.setText("")
self.txt_Heading_Track_Angle_own.setObjectName("txt_Heading_Track_Angle_own")
self.gridLayout.addWidget(self.txt_Heading_Track_Angle_own, 9, 2, 1, 1)
self.label_8 = QtWidgets.QLabel(self.layoutWidget2)
self.label_8.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter)
self.label_8.setObjectName("label_8")
self.gridLayout.addWidget(self.label_8, 8, 1, 1, 1)
self.txt_Longitude_own = QtWidgets.QLineEdit(self.layoutWidget2)
self.txt_Longitude_own.setEnabled(False)
self.txt_Longitude_own.setMaximumSize(QtCore.QSize(150, 16777215))
self.txt_Longitude_own.setText("")
self.txt_Longitude_own.setObjectName("txt_Longitude_own")
self.gridLayout.addWidget(self.txt_Longitude_own, 8, 2, 1, 1)
self.label = QtWidgets.QLabel(self.layoutWidget2)
self.label.setScaledContents(True)
self.label.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter)
self.label.setObjectName("label")
self.gridLayout.addWidget(self.label, 1, 1, 1, 1)
self.txt_Latitude_own = QtWidgets.QLineEdit(self.layoutWidget2)
self.txt_Latitude_own.setEnabled(False)
self.txt_Latitude_own.setMaximumSize(QtCore.QSize(150, 16777215))
self.txt_Latitude_own.setText("")
self.txt_Latitude_own.setObjectName("txt_Latitude_own")
self.gridLayout.addWidget(self.txt_Latitude_own, 6, 2, 1, 1)
self.label_5 = QtWidgets.QLabel(self.layoutWidget2)
self.label_5.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter)
self.label_5.setObjectName("label_5")
self.gridLayout.addWidget(self.label_5, 4, 1, 1, 1)
self.label_10 = QtWidgets.QLabel(self.layoutWidget2)
self.label_10.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter)
self.label_10.setObjectName("label_10")
self.gridLayout.addWidget(self.label_10, 13, 1, 1, 1)
self.txt_ICAO_own = QtWidgets.QLineEdit(self.layoutWidget2)
self.txt_ICAO_own.setEnabled(False)
self.txt_ICAO_own.setMaximumSize(QtCore.QSize(150, 16777215))
self.txt_ICAO_own.setText("")
self.txt_ICAO_own.setObjectName("txt_ICAO_own")
self.gridLayout.addWidget(self.txt_ICAO_own, 1, 2, 1, 1)
self.btn_import_info_own = QtWidgets.QPushButton(self.layoutWidget2)
self.btn_import_info_own.setObjectName("btn_import_info_own")
self.gridLayout.addWidget(self.btn_import_info_own, 0, 1, 1, 2)
self.horizontalLayoutWidget = QtWidgets.QWidget(self.centralwidget)
self.horizontalLayoutWidget.setGeometry(QtCore.QRect(10, 10, 901, 851))
self.horizontalLayoutWidget.setObjectName("horizontalLayoutWidget")
self.horizontalLayout_3 = QtWidgets.QHBoxLayout(self.horizontalLayoutWidget)
self.horizontalLayout_3.setContentsMargins(0, 0, 0, 0)
self.horizontalLayout_3.setObjectName("horizontalLayout_3")
self.layoutWidget3 = QtWidgets.QWidget(self.centralwidget)
self.layoutWidget3.setGeometry(QtCore.QRect(0, 0, 2, 2))
self.layoutWidget3.setObjectName("layoutWidget3")
self.horizontalLayout = QtWidgets.QHBoxLayout(self.layoutWidget3)
self.horizontalLayout.setContentsMargins(0, 0, 0, 0)
self.horizontalLayout.setObjectName("horizontalLayout")
self.layoutWidget4 = QtWidgets.QWidget(self.centralwidget)
self.layoutWidget4.setGeometry(QtCore.QRect(0, 0, 2, 2))
self.layoutWidget4.setObjectName("layoutWidget4")
self.horizontalLayout_2 = QtWidgets.QHBoxLayout(self.layoutWidget4)
self.horizontalLayout_2.setContentsMargins(0, 0, 0, 0)
self.horizontalLayout_2.setObjectName("horizontalLayout_2")
self.layoutWidget5 = QtWidgets.QWidget(self.centralwidget)
self.layoutWidget5.setGeometry(QtCore.QRect(0, 0, 2, 2))
self.layoutWidget5.setObjectName("layoutWidget5")
self.verticalLayout = QtWidgets.QVBoxLayout(self.layoutWidget5)
self.verticalLayout.setContentsMargins(0, 0, 0, 0)
self.verticalLayout.setObjectName("verticalLayout")
self.layoutWidget6 = QtWidgets.QWidget(self.centralwidget)
self.layoutWidget6.setGeometry(QtCore.QRect(0, 0, 2, 2))
self.layoutWidget6.setObjectName("layoutWidget6")
self.horizontalLayout_4 = QtWidgets.QHBoxLayout(self.layoutWidget6)
self.horizontalLayout_4.setContentsMargins(0, 0, 0, 0)
self.horizontalLayout_4.setObjectName("horizontalLayout_4")
MainWindow.setCentralWidget(self.centralwidget)
self.statusbar = QtWidgets.QStatusBar(MainWindow)
self.statusbar.setObjectName("statusbar")
MainWindow.setStatusBar(self.statusbar)
self.action1 = QtWidgets.QAction(MainWindow)
self.action1.setObjectName("action1")
self.action2 = QtWidgets.QAction(MainWindow)
self.action2.setObjectName("action2")
self.retranslateUi(MainWindow)
self.tabWidget.setCurrentIndex(0)
QtCore.QMetaObject.connectSlotsByName(MainWindow)
def retranslateUi(self, MainWindow):
_translate = QtCore.QCoreApplication.translate
MainWindow.setWindowTitle(_translate("MainWindow", "模拟飞机数据产生软件"))
self.groupBox_2.setTitle(_translate("MainWindow", "目标机信息"))
self.groupBox_tcas_target1.setTitle(_translate("MainWindow", "TCAS"))
self.btn_stopsend_tcas_target1.setText(_translate("MainWindow", "暂停发送TCAS数据"))
self.label_27.setText(_translate("MainWindow", "Track_ID:"))
self.label_26.setText(_translate("MainWindow", "压强高度(m):"))
self.label_23.setText(_translate("MainWindow", "相对本机方位(deg):"))
self.label_21.setText(_translate("MainWindow", "相对本机距离(km):"))
self.btn_import_info_target1.setText(_translate("MainWindow", "导入飞机信息"))
self.groupBox_adsb_target1.setTitle(_translate("MainWindow", "ADS-B"))
self.label_4.setText(_translate("MainWindow", "压强高度(m):"))
self.label_11.setText(_translate("MainWindow", "ICAO码:"))
self.label_12.setText(_translate("MainWindow", "南北速度(km/h):"))
self.label_15.setText(_translate("MainWindow", "东西速度(km/h):"))
self.label_14.setText(_translate("MainWindow", "航班号:"))
self.label_17.setText(_translate("MainWindow", "地速(km/h):"))
self.label_18.setText(_translate("MainWindow", "航向角(deg):"))
self.label_13.setText(_translate("MainWindow", "纬度(deg):"))
self.label_16.setText(_translate("MainWindow", "经度(deg):"))
self.btn_stopsend_adsb_target1.setText(_translate("MainWindow", "暂停发送ADS-B数据"))
self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab), _translate("MainWindow", "1号目标机"))
self.groupBox_3.setTitle(_translate("MainWindow", "控制台"))
self.btn_start.setText(_translate("MainWindow", "开始"))
self.btn_stop.setText(_translate("MainWindow", "停止"))
self.groupBox.setTitle(_translate("MainWindow", "本机信息"))
self.label_2.setText(_translate("MainWindow", "航班号:"))
self.label_7.setText(_translate("MainWindow", "纬度(deg):"))
self.label_9.setText(_translate("MainWindow", "航向角(deg):"))
self.label_3.setText(_translate("MainWindow", "压强高度(m):"))
self.label_6.setText(_translate("MainWindow", "东西速度(km/h):"))
self.label_8.setText(_translate("MainWindow", "经度(deg):"))
self.label.setText(_translate("MainWindow", "ICAO码:"))
self.label_5.setText(_translate("MainWindow", "南北速度(km/h):"))
self.label_10.setText(_translate("MainWindow", "地速(km/h):"))
self.btn_import_info_own.setText(_translate("MainWindow", "导入飞机信息"))
self.action1.setText(_translate("MainWindow", "本机"))
self.action2.setText(_translate("MainWindow", "目标机"))
| UTF-8 | Python | false | false | 26,115 | py | 20 | adsb_mainForm.py | 13 | 0.697866 | 0.652364 | 0 | 408 | 62.289216 | 133 |
ruoyuryc/Deep-Learning-and-Practice-2020-Spring | 10,015,863,742,504 | cf013a25a98a87241155c3a652812f76407a55a8 | 1a7b47bb1ff483b236211aaa5cc648b9c7854853 | /Lab6/dataset/preprocess.py | d7f6f828773917338ced47463e4c8f1aed341920 | []
| no_license | https://github.com/ruoyuryc/Deep-Learning-and-Practice-2020-Spring | 4929ed3aa83312029daf724d76554f8768a23e4c | 7ac9fc9163635aff8ae386c610396ae4646f8095 | refs/heads/master | 2022-10-20T04:45:37.648427 | 2020-06-15T15:24:25 | 2020-06-15T15:24:25 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import PIL
from PIL import Image
import torch
import json
from torchvision import transforms
from tqdm import tqdm
with open('objects.json', 'r') as f:
objects = json.load(f)
with open('labels.json', 'r') as f:
labels = json.load(f)
trans = transforms.Compose([
transforms.Resize((64, 64)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5]
)
])
torch.save(trans(PIL.Image.open('png/background.png').convert('RGB')), 'background.pth')
lbls = []
imgs = []
for idx in tqdm(range(6004)):
for sub_idx in range(3):
key = f'CLEVR_train_{idx:06}_{sub_idx}.png'
lbls.append(torch.LongTensor([objects[labels[key][-1]]]))
imgs.append(trans(PIL.Image.open(f'png/{key}').convert("RGB")))
lbls = torch.stack(lbls)
imgs = torch.stack(imgs)
torch.save(lbls, 'labels.pth')
torch.save(imgs, 'images.pth')
| UTF-8 | Python | false | false | 902 | py | 79 | preprocess.py | 54 | 0.638581 | 0.611973 | 0 | 39 | 22.128205 | 88 |
radtek/Server-Monitoring | 9,423,158,281,982 | 7219366ebfbf87e59f6fdd2fd5ccae0112e74180 | 5cd16658110d9a65556b63a16cf07a9b6ea338fc | /Ver2.0/zabbix/CentOS-7/vdisk_status.py | 7c0126bdacdb53b979ffaff12a108657d624781c | []
| no_license | https://github.com/radtek/Server-Monitoring | 60a21c837bddd786bddb41ee463ba2f5c11acce5 | 9f3ca9876a0ed5e9f4971cec873e524f06fd87ab | refs/heads/master | 2023-05-02T16:20:52.299839 | 2021-05-19T14:57:15 | 2021-05-19T14:57:15 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import os
import re
import sys
def get_pdisk_status(logicaldrive):
conent=os.popen("sudo hpacucli ctrl all show config").readlines()
for index in range(len(conent)):
if logicaldrive in conent[index] and re.split(r'[ ]',conent[index])[7].strip()==logicaldrive:
return re.split(r'[) ]',conent[index])[12].strip()
if __name__=='__main__':
if get_pdisk_status(sys.argv[1])=="OK":
print 1
else:
print 0
| UTF-8 | Python | false | false | 413 | py | 74 | vdisk_status.py | 40 | 0.677966 | 0.663438 | 0 | 15 | 26.533333 | 95 |
baidw/languages | 11,965,778,916,584 | d13a61b51cf2af8b54e138d63029d9326688fd45 | 2f4c7fae43c7d13d1925f8d5a53d05021865c34b | /python/trainning/train_001_farbic.py | e23676cea992ef58f7f2852115628f5ac1a9a023 | []
| no_license | https://github.com/baidw/languages | 87aafe620d6873e6bffc6d0aafe517939784bba0 | 5e7cccc737cc6f415e0b1e91f441a84b6286603b | refs/heads/master | 2020-05-22T06:40:33.668235 | 2018-10-23T05:59:22 | 2018-10-23T05:59:22 | 60,157,718 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/usr/bin/env python
# -*- coding:utf-8 -*-
__author__='baidw'
def tribonacci(signature,n):
#your code here
temp = signature
slen=len(temp)
if n ==0:
return []
if n==1 and len(list(set(signature)))==1:
return signature[:1]
while slen<n:
temp.append(int(temp[slen-1])+int(temp[slen-2])+int(temp[slen-3]))
slen=len(temp)
return temp
x= tribonacci([1,1,1],1)
print x | UTF-8 | Python | false | false | 434 | py | 78 | train_001_farbic.py | 66 | 0.56682 | 0.539171 | 0 | 21 | 19.714286 | 74 |
cpressland/dictfilter | 15,693,810,512,280 | 73cec6a3d0e754d20788f3fe19326ddf0f70fc83 | 80cad9acb46be23437f22344e23b79caf3c45e98 | /dictfilter/__init__.py | 64fa0354e1a5c9182228aaf6b3a9d30c6ed0590a | [
"MIT"
]
| permissive | https://github.com/cpressland/dictfilter | fbd1e5ba6b47253c529eb2c25b666e223dcae90c | a55f68d1719bc951e283b8dccbd7eee315bbdee5 | refs/heads/master | 2023-03-12T16:08:14.512146 | 2023-02-28T13:46:46 | 2023-02-28T13:46:46 | 289,022,266 | 0 | 0 | null | true | 2020-08-20T14:05:32 | 2020-08-20T14:05:31 | 2020-08-20T13:57:11 | 2020-08-20T13:57:07 | 0 | 0 | 0 | 0 | null | false | false | from dictfilter.core import query # noqa
| UTF-8 | Python | false | false | 42 | py | 10 | __init__.py | 5 | 0.785714 | 0.785714 | 0 | 1 | 41 | 41 |
dcherix/apiontology-demonstrator | 1,829,656,074,901 | 1c132bae81dadeec1fa82712aa2177961c35223c | d62283766afd59ddde1a630c80eb92d52cf3df0f | /apiontology-demonstrator-example-services/citylatlong.py | 15ff810ace2780c3d5a5ec1a00e3a9b56c1af313 | []
| no_license | https://github.com/dcherix/apiontology-demonstrator | 129d16e4081f22677642f38a62a7ec49ecb1c1b1 | 9a4974f1cfdbba6b7e05e5f64beaa7e2792592cd | refs/heads/master | 2022-12-22T17:19:40.697607 | 2018-10-18T05:14:53 | 2019-09-04T19:56:21 | 42,429,342 | 2 | 0 | null | false | 2022-12-16T09:52:56 | 2015-09-14T05:40:31 | 2019-09-04T19:57:03 | 2022-12-16T09:52:52 | 5,566 | 2 | 0 | 10 | Java | false | false | '''
service returns for a given city and adminarea the corresponding lat,long
@author a.both
'''
from service import init_service
import csv
from pprint import pprint
def citylatlong( cityname, adminarea ):
'''
returns the companys city, country and stock name as strings for a given company name
'''
global citylatlong_data
try:
result = citylatlong_data[cityname][adminarea]
except:
result = {}
print("in: ",cityname,adminarea," out: ",result)
return result
def main():
# read data from CSV file
reader = csv.reader(open('citylatlong.csv', 'r'))
global citylatlong_data
citylatlong_data = {}
for row in reader:
cityname,adminarea,latlong = row
#print cityname,adminarea,latlong
long,lat = latlong.split()
citylatlong_data[cityname] = { adminarea: {'lat':lat, 'long':long} }
init_service(
port=8182,
servicename='CityLatLong',
userfunction=citylatlong,
args={'cityname':str, 'adminarea':str},
returns={'lat':str, 'long':str}
)
if __name__ =='__main__':
main() | UTF-8 | Python | false | false | 1,064 | py | 75 | citylatlong.py | 49 | 0.665414 | 0.661654 | 0 | 45 | 22.666667 | 89 |
Richard-CH-NG/djangular_project | 3,728,031,638,696 | 55d208038bc4f61ccdeddc5720f80405fe8a0516 | cc8445d0af32a7134ffd8c5b45851d7bd73069a3 | /accounts/forms.py | 7a2d40f0ee12fb875f5e64ca998d198314a07b1e | []
| no_license | https://github.com/Richard-CH-NG/djangular_project | 5a5ad33b080bc25ae7a93f15e7e507961d1f4a9f | fa121457cf9ae81886df034692811141d8868daa | refs/heads/master | 2017-07-31T17:12:25.470749 | 2017-06-29T06:00:07 | 2017-06-29T06:00:07 | 95,001,627 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from django import forms
from django.contrib.auth import (
authenticate,
get_user_model,
login,
logout,
)
User = get_user_model()
class UserLoginForm(forms.Form):
username = forms.CharField()
password = forms.CharField(widget=forms.PasswordInput)
def clean(self):
username = self.cleaned_data['username']
password = self.cleaned_data['password']
user = authenticate(username=username, password=password)
if not user:
raise forms.ValidationError("This username/password does not exist.")
# if not user.check_password(password):
# raise forms.ValidationError("Incorrect Password.")
if not user.is_active:
raise forms.ValidationError("This user is no longer active")
# if everthing's okay, return the default clean
return super(UserLoginForm, self).clean()
class UserRegisterForm(forms.ModelForm):
email2 = forms.EmailField(label="Confirm Email")
class Meta:
model = User
fields = [
'username',
'email',
'email2',
'password',
]
widgets = {
'password' : forms.PasswordInput
}
# if use clean_email method, will give KeyError
# becuz order matter, email2 exists after email,
# so u won't see email2 in cleaned_data yet when "cleaning" email
def clean(self):
"""cleaning email for which the default does not do that"""
print(self.cleaned_data)
email = self.cleaned_data['email']
email2 = self.cleaned_data['email2']
if email != email2:
raise forms.ValidationError("Email input fields do not match.")
if User.objects.filter(email=email).exists():
raise forms.ValidationError("This email has already been registered.")
return super(UserRegisterForm, self).clean()
| UTF-8 | Python | false | false | 1,894 | py | 31 | forms.py | 18 | 0.629356 | 0.62566 | 0 | 56 | 32.821429 | 82 |
guchio3/kaggle-homecredit | 14,671,608,304,654 | 4e58d936853ac71598de202f0ec4a27cc48d6fd4 | e29103f2f7e4a44dbb4626f4f138ed09555d2dcc | /protos/shared_kfold/split.py | c66a33d0cee56735c0558f7ee054e78c3d7075c4 | []
| no_license | https://github.com/guchio3/kaggle-homecredit | e800eac42dd0f2428de9099d6052139c2df6e2ac | 210a7bb3a5e124bd4a9895cf95be8d5269c1a225 | refs/heads/master | 2020-04-27T23:56:57.408848 | 2019-03-16T07:05:56 | 2019-03-16T07:05:56 | 174,797,829 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from sklearn.cross_validation import KFold
import numpy as np
def splitter(clf, x_train, y, x_test):
NFOLDS = 5
SEED = 71
kf = KFold(len(x_train), n_folds=NFOLDS, shuffle=True, random_state=SEED)
fold_train_test = {}
for i, (train_index, test_index) in enumerate(kf):
fold_train_test[i] = { 'train_index': train_index, 'test_index':test_index }
return fold_train_test
import glob, gc
import pandas as pd
df = pd.read_pickle('../my-nural/00-dump.pkl')
train_df = df[df['TARGET'].notnull()]
test_df = df[df['TARGET'].isnull()]
feats = [f for f in train_df.columns if f not in ['TARGET','SK_ID_CURR','SK_ID_BUREAU','SK_ID_PREV','index']]
y = train_df['TARGET']
# この差は4件あるが、7.95だしているカーネルによるとこれは、正しい
print(train_df.shape)
print(pd.read_csv('../input/application_train.csv').shape)
check = pd.read_pickle('../my-nural/00-dump.pkl')
print( check[check['TARGET'].notnull()].shape )
fold_train_test = splitter(None, train_df, y.values, test_df)
import pickle
pickle.dump(fold_train_test, open('fold_train_test.pkl', 'wb'))
# pickle形式で保存
# 例) 2foldのtrain_indexにアクセス
# fold_train_test = pickle.load(open('fold_train_test.pkl', 'rb'))
print(fold_train_test[2]['train_index'] )
| UTF-8 | Python | false | false | 1,280 | py | 307 | split.py | 16 | 0.684474 | 0.673623 | 0 | 35 | 33.2 | 109 |
eymenkurdoglu/ml_projects | 15,882,789,085,006 | f3e620a9e29086f57bc765a48ed5564769bf515d | 1c1d8f76da7fb157af608ece27d9759b0b6c8bbf | /time-ser-forecast/svr.py | 9df9f4792ee82d1b15e818763f01bc5158dd512a | []
| no_license | https://github.com/eymenkurdoglu/ml_projects | f3a4c7b160621e4d603bd2b5e2c000897e6da0a0 | 1756d6a274952864ad23b835843734684a6ca17f | refs/heads/master | 2021-04-15T15:10:24.684323 | 2018-03-27T02:24:27 | 2018-03-27T02:24:27 | 126,917,214 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import csv
import numpy as np
from sklearn.svm import SVR
import matplotlib.pyplot as plt
dates = []
prices = []
def get_data(filename):
with open(filename, 'r') as csvfile:
csvFileReader = csv.reader(csvfile)
next(csvFileReader)
for row in csvFileReader:
dates.append(int(row[0].split('-')[0]))
prices.append(float(row[1]))
return
def predict_price(dates, prices, x):
dates = np.reshape(dates,(len(dates),1)) # convert to vector of length n
svr_lin = SVR( kernel = 'linear', C = 1e3 )
svr_poly = SVR( kernel = 'poly', C = 1e3, degree = 2 )
svr_rbf = SVR( kernel = 'rbf', C = 1e3, gamma = 0.1 )
svr_lin.fit( dates, prices )
svr_poly.fit( dates, prices )
svr_rbf.fit( dates, prices )
plt.scatter( dates, prices, color = 'black', label = 'Data' )
plt. plot( dates, svr_lin.predict( dates ), color= 'green', label= 'Linear model' )
plt. plot( dates, svr_poly.predict( dates ), color= 'blue', label= 'Polynomial model' )
plt. plot( dates, svr_rbf.predict( dates ), color= 'red', label= 'RBF model' )
plt.xlabel('Date')
plt.ylabel('Price')
plt.legend()
plt.show()
return svr_rbf.predict(x)[0], svr_lin.predict(x)[0], svr_poly.predict(x)[0]
get_data('googl.csv')
predicted_price = predict_price(dates, prices, 29)
| UTF-8 | Python | false | false | 1,254 | py | 3 | svr.py | 1 | 0.660287 | 0.645933 | 0 | 42 | 28.857143 | 89 |
Semenyshyn/CodeWars | 17,076,789,999,317 | 4735c2217f97658ae8046d13262f1bc4575dea45 | 72220530641dd387f5cf178a3ed53b4a6815a22f | /Sum consecutives.py | 73e43ffbb2590369dd4777cfa0c4333b20b05881 | []
| no_license | https://github.com/Semenyshyn/CodeWars | 7516d7ba27e46ab47364c5266ef578de95b4be7b | 131ac35c55402853ddbeda38a8e27210ac1a7c7c | refs/heads/master | 2020-06-23T13:41:04.134166 | 2016-08-20T11:56:11 | 2016-08-20T11:56:11 | 66,144,292 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | s = [1, 1, 1, 0, 1, 2, 2, -3, -3, -3]
def sum_consecutives(s):
prev = None
x = []
for i in s:
if i == prev:
x[-1] += i
else:
x.append(i)
prev = i
return x
print(sum_consecutives(s)) | UTF-8 | Python | false | false | 248 | py | 15 | Sum consecutives.py | 15 | 0.407258 | 0.362903 | 0 | 15 | 15.6 | 37 |
uit-no/python-open-mike | 14,499,809,609,993 | 31abe97f6eb43e59b864334d735deeb9ef29e6d2 | 21d7c98b8c7d62dd182f04d3a9ea092b8c330dea | /solutions/2/most-frequent/most_frequent.py | 59149faf9558d3034f132ce342cbdf43313baac3 | []
| no_license | https://github.com/uit-no/python-open-mike | 951678870b61d63203e0b8c248c9189687473d9a | 2a83b27ca31959f0c0de2ee6f72abca440d76ec8 | refs/heads/gh-pages | 2020-03-30T12:42:37.311093 | 2019-09-11T14:13:06 | 2019-09-11T14:13:06 | 151,236,182 | 2 | 4 | null | false | 2018-11-19T13:12:01 | 2018-10-02T10:16:25 | 2018-11-19T09:41:01 | 2018-11-19T13:12:00 | 363 | 0 | 2 | 0 | Python | false | null | #!/usr/bin/env python3
from collections import Counter
def strip_special_chars(string):
return "".join(char for char in string if char.isalpha())
def char_counter(string, number):
chars = filter(str.isalpha, string)
return Counter(chars).most_common(number)
def word_counter(string, number):
words = map(strip_special_chars, string.split())
return Counter(words).most_common(number)
if __name__ == "__main__":
file_name = "poem.txt"
with open(file_name) as page:
lines = page.read().lower()
print("# Most frequent words:", word_counter(lines, 5))
print("# Most frequent chars:", char_counter(lines, 5))
| UTF-8 | Python | false | false | 655 | py | 45 | most_frequent.py | 31 | 0.668702 | 0.664122 | 0 | 24 | 26.291667 | 61 |
Jayashsatolia403/Projects | 13,889,924,259,540 | c3f9d3dc3dfdc3c8f7b66286d5c85f2a008a25ff | 6e083faecc108f78210c9b43f5e19f2e29be8b56 | /EcommerceFullStack/FullStack/EcommerceProject/order/migrations/0013_remove_order_users.py | 82051cd23177920bbada0bcf7f77dc24f244d320 | []
| no_license | https://github.com/Jayashsatolia403/Projects | d86240124ca189c00f706d5788b78c360b433cab | d98dc8600e29ae8e751da6c68d31902d3f5e9142 | refs/heads/master | 2023-06-26T01:01:49.983012 | 2021-07-20T11:28:01 | 2021-07-20T11:28:01 | 385,829,888 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # Generated by Django 3.1.7 on 2021-04-13 20:28
from django.db import migrations
class Migration(migrations.Migration):
dependencies = [
('order', '0012_auto_20210414_0150'),
]
operations = [
migrations.RemoveField(
model_name='order',
name='users',
),
]
| UTF-8 | Python | false | false | 324 | py | 114 | 0013_remove_order_users.py | 97 | 0.574074 | 0.478395 | 0 | 17 | 18.058824 | 47 |
w-x-me/PyImageSearch | 1,486,058,703,088 | ce640a62583d401723fadc67b29991ba287401e4 | e1def0cb3ea2f1b9e7e8c9183ef3eae6eb4f2d97 | /Moudel1/Threshold3.py | a4fc0edef07bce52f351456350845733feb4a2e4 | []
| no_license | https://github.com/w-x-me/PyImageSearch | 58084fd4834457a10a75383702093f5d98a0e6e4 | fc6034ae43767f9ec5cc0d4e6bb771d70a866a56 | refs/heads/master | 2020-03-20T07:50:17.690517 | 2018-06-14T02:08:51 | 2018-06-14T02:08:51 | 134,201,710 | 1 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from skimage.filters import threshold_adaptive
import argparse
import cv2
ap = argparse.ArgumenParser()
ap.add_argument("-i", "--image", required = True, help = "Path to the image")
args = vars(ap.parse_args())
image = cv2.imread(args["image"])
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GussianBlur(image, (5, 5), 0)
cv2.imshow("Image", image)
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 25, 15)
cv2.imshow("OpenCV Mean Thresh", thresh)
thresh = threshold_adaptive(blurred, 29, offset = 5).astype("uint8") * 255
thresh = cv2.bitwise_not(thresh)
cv2.imshow("scikit-image Mean Thresh", thresh)
cv2.waitKey(0)
| UTF-8 | Python | false | false | 683 | py | 65 | Threshold3.py | 60 | 0.7306 | 0.683748 | 0 | 20 | 33.15 | 103 |
machukhinktato/test_tasks_python | 11,003,706,223,296 | 7e317a238433dece7c80b26c1d27912986d35974 | c4ad8eb9ad11e821806c01953e630617a2dc274a | /task2/SRC/task2.py | 1322ab674b152fa8add9dacb98f8056a10cdba7e | []
| no_license | https://github.com/machukhinktato/test_tasks_python | 09cac9d2d2fac651efbe4bff8cb8327e62aa3b54 | 7dcf494742dbd24e6a271db368be91e64eeed26f | refs/heads/master | 2023-02-17T00:21:15.459882 | 2021-01-20T15:48:50 | 2021-01-20T15:48:50 | 311,645,105 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import json
def file_loader(name):
"""Загружает json файл с данынми"""
with open(name) as f:
try:
file = json.load(f)
except:
file = f.readlines()
f.close()
return file
def main(filename):
"""
Основная функция, принимает исходные значения, сортирует данные
и отдаёт их на обработку профильным функциям
"""
# task_dict = file_loader(input('Enter the file name, to start program: '))
task_dict = file_loader(filename)
sphere_coords, line_coords = [], []
for i in range(3):
sphere_coords.append((
((task_dict.get('sphere').get('center')[i]) -
(task_dict.get('sphere').get('radius'))),
(((task_dict.get('sphere').get('center')[i])) +
(task_dict.get('sphere').get('radius'))))
)
line_coords.append((
[task_dict.get('line')[0][i], task_dict.get('line')[1][i]]
))
line = {'sections': {
'x': line_coords[0],
'y': line_coords[1],
'z': line_coords[2],
}}
result = comparison(line, sphere_coords)
try:
for key in result.keys():
# ok.append(f"{key} = {result.get(key)}")
print(f"{key} : {result.get(key)}")
return ''
except:
return print('Коллизий не найдено')
def comparison(line, sphere):
"""Функция находящая точки внутри сферы"""
x = 0
section = line.get('sections')
for key in section.keys():
for i in range(2):
if section[key][i] >= sphere[0][0] and section[key][i] <= sphere[x][1]:
section.get(key).append(True)
else:
section.get(key).append(None)
x += 1
return cross_finder(line, sphere)
def cross_finder(sections, sphere):
"""
Функция производящая финальную оценку по точкам
линии проходящим через или входящим в сферу
"""
x = 0
sections = sections.get('sections')
crosspoints = dict()
for key in sections.keys():
if sections[key][2] and sections[key][3] == True or \
float(sections[key][0]) < min(sphere[x]) and \
float(sections[key][1]) < min(sphere[x]) or \
float(sections[key][0]) > max(sphere[x]) and \
float(sections[key][1]) > max(sphere[x]):
continue
elif sections[key][2] == True:
if sections[key][0] > sections[key][1]:
# Номера присватваются в зависимот от элемента вхождения
crosspoints[key + '_1'] = sphere[x][0]
else:
crosspoints[key + '_1'] = sphere[x][1]
elif sections[key][3] == True:
if sections[key][1] > sections[key][0]:
crosspoints[key + '_2'] = sphere[x][0]
else:
crosspoints[key + '_2'] = sphere[x][1]
cords = ['x_1', 'y_1', 'z_1', 'x_2', 'y_2', 'z_2']
for point in cords:
if point in crosspoints:
return crosspoints
if __name__ == '__main__':
main('test.txt') | UTF-8 | Python | false | false | 3,345 | py | 6 | task2.py | 4 | 0.521113 | 0.508347 | 0 | 97 | 30.505155 | 83 |
Alicia1529/ComputerScience | 14,267,881,406,749 | 45a2b31320d52a14c4382ce3c0753920e5f9fa04 | 77106803619fd019cca5ec2b7744bfd1a70e0fc9 | /CodeJam/2019-pre/test3.py | 09dcb33583f132eb0ee90396d2039e3e5d92d812 | []
| no_license | https://github.com/Alicia1529/ComputerScience | dc18960eeb4f7a4deb2a6b99d33bcf08c1afe583 | 4529f4cb2797d59684fa68c615c8a0b6525f7004 | refs/heads/master | 2020-06-28T17:01:05.363189 | 2019-08-02T20:59:53 | 2019-08-02T20:59:53 | 200,290,236 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null |
def foundInit(n,N):
for i in range(1,N):
if is_prime(i) and is_prime(n//i) and (n//i)*i==n:
return i,n//i
def is_prime(n):
if n == 2 or n == 3: return True
if n < 2 or n%2 == 0: return False
if n < 9: return True
if n%3 == 0: return False
r = int(n**0.5)
f = 5
while f <= r:
if n%f == 0: return False
if n%(f+2) == 0: return False
f +=6
return True
num = input().strip()
while num=="":
num = input().strip()
num = int(num)
for i in range(num):
line = input().strip()
while line=="":
line = input().strip()
N,L = line.split(" ")
N,L = int(N),int(L)
line = input().strip()
while line=="":
line = input().strip()
data = line.split(" ")
array = []
for j in range(len(data)):
if j==0:
this,nextOne = foundInit(int(data[j]),N)
if (int(data[j+1])//nextOne)*nextOne==int(data[j+1]) and is_prime(int(data[j+1])//nextOne):
pass
else:
this,nextOne = nextOne,this
array.append(this)
array.append(nextOne)
else:
array.append(int(data[j])//nextOne)
nextOne = int(data[j])//nextOne
index = list(set(array))
index.sort()
output = []
for j in range(len(array)):
idx = index.index(array[j])
letter = chr(65+idx)
output.append(letter)
string = "Case #"+str(i+1)+":"
print(string,"".join(output))
| UTF-8 | Python | false | false | 1,498 | py | 52 | test3.py | 46 | 0.493324 | 0.477971 | 0 | 56 | 25.732143 | 103 |
Donnadonnam/SOEN487-ResoluteLeopards | 5,823,975,674,440 | c79e22863ade7eef8a81289ba398b028fd7e5658 | 86eae54c21c850a3c00c7dffa22f2b76c35cc857 | /user_api/config.py | 22faf3814a7c33eb41c95eeb53a87fe193e55190 | []
| no_license | https://github.com/Donnadonnam/SOEN487-ResoluteLeopards | 916675735645db319c20e1017871354844abd493 | 48de7ba82ddcbe3627920e9e435bb05b49845186 | refs/heads/master | 2023-03-18T15:49:20.944037 | 2020-03-04T12:38:00 | 2020-03-04T12:38:00 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import os
class Config(object):
SQLALCHEMY_DATABASE_URI = r"sqlite:///userdb.sqlite"
SQLALCHEMY_TRACK_MODIFICATIONS = False
class ProdConfig(Config):
pass
class DevConfig(Config):
KEY_LIST_PATH = os.path.join(os.path.dirname(__file__), "keys/keylist.json")
DEBUG = True
class TestConfig(Config):
TESTING = True
KEY_LIST_PATH = os.path.join(os.path.dirname(__file__), "tests/keys/keylist.json")
SQLALCHEMY_DATABASE_URI = r"sqlite:///tests/test_userdb.sqlite" | UTF-8 | Python | false | false | 497 | py | 76 | config.py | 45 | 0.692153 | 0.692153 | 0 | 21 | 22.714286 | 86 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.