repo_name
stringlengths
7
111
__id__
int64
16.6k
19,705B
blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
151
content_id
stringlengths
40
40
detected_licenses
list
license_type
stringclasses
2 values
repo_url
stringlengths
26
130
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
42
visit_date
timestamp[ns]
revision_date
timestamp[ns]
committer_date
timestamp[ns]
github_id
int64
14.6k
687M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
12 values
gha_fork
bool
2 classes
gha_event_created_at
timestamp[ns]
gha_created_at
timestamp[ns]
gha_updated_at
timestamp[ns]
gha_pushed_at
timestamp[ns]
gha_size
int64
0
10.2M
gha_stargazers_count
int32
0
178k
gha_forks_count
int32
0
88.9k
gha_open_issues_count
int32
0
2.72k
gha_language
stringlengths
1
16
gha_archived
bool
1 class
gha_disabled
bool
1 class
content
stringlengths
10
2.95M
src_encoding
stringclasses
5 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
10
2.95M
extension
stringclasses
19 values
num_repo_files
int64
1
202k
filename
stringlengths
4
112
num_lang_files
int64
1
202k
alphanum_fraction
float64
0.26
0.89
alpha_fraction
float64
0.2
0.89
hex_fraction
float64
0
0.09
num_lines
int32
1
93.6k
avg_line_length
float64
4.57
103
max_line_length
int64
7
931
franck-roland/django-gitlean
5,617,817,234,034
5e339e4a26e5560a931710a9bade5d86fb913c69
5049bf1c915459d8b7deae532843a452d63da478
/gitlean/apps.py
406f5f4a9ccefb9ce64d0561af843c3ccafd4c27
[ "Apache-2.0" ]
permissive
https://github.com/franck-roland/django-gitlean
27f5eeb97fd7cdd8083cdf5c85e4b4c0d81575de
76260186d2d78bbe5ba3b2c6222a437d6d535d7e
refs/heads/master
2020-12-03T05:16:01.855877
2016-08-03T17:07:55
2016-08-03T17:07:55
63,898,827
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.apps import AppConfig class GitleanConfig(AppConfig): name = 'gitlean'
UTF-8
Python
false
false
89
py
10
apps.py
8
0.752809
0.752809
0
5
16.8
33
earlew/py_scripts
13,915,694,064,361
afc00ad664dc3b2c0219509b593cf4bac6489b96
66f4b432ba38dbd75fbd54e12577b096ea76c4cb
/BoB_work/compare_hycom_argo.py
c84218a9065b5bb572b9064a9205c5a7573f09e1
[]
no_license
https://github.com/earlew/py_scripts
7eadeaa5724f55bd3ea9c5dd83f56cf77ee51d8a
269780a4453956b2af46d3b4dda466f51491e469
refs/heads/master
2016-09-06T05:28:08.791427
2015-03-18T18:37:24
2015-03-18T18:37:24
27,857,664
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import netCDF4 as nc4 import os import numpy as np from IPython.core.debugger import Tracer import nc_functions as ncf import sys import timeit reload(ncf) debug_here = Tracer() def drawPolyOnMap(m, verts, facecolor='orange', alpha=0.3): import matplotlib.pyplot as plt from matplotlib.path import Path import matplotlib.patches as patches lons = [vert[0] for vert in verts] lats = [vert[1] for vert in verts] lons_m, lats_m = m(lons, lats) verts_m = zip(lons_m, lats_m) path = Path(verts) path_m = Path(verts_m) poly = patches.PathPatch(path_m, facecolor=facecolor, lw=2, alpha=alpha) ax = plt.gca() ax.add_patch(poly) return path, path_m def overlayRegionShading(m): swbb_verts = [(80,10), (80,15), (83.5,18), (86.5,18), (82.5,15), (82.5,7), (80,10)] nbb_verts = [(83.5,18), (94.5,18), (91.5,22), (88,22), (83.5,18)] cbb_verts = [(82.5,10), (82.5,15), (86.5,18), (94.5,18), (93,14), (93,10), (83,10)] sbb_verts = [(82.5,10), (93,10), (93,7), (82.5,7), (82.5,10)] # swbb_lons = [vert[0] for vert in box_vert] # swbb_lats = [vert[1] for vert in box_vert] # box_lons_m, box_lats_m = m(box_lons, box_lats) # box_vert_m = zip(box_lons_m, box_lats_m) fcolors = ['mediumblue', 'mediumseagreen', 'crimson', 'darkorange'] swbb_path, swbb_path_m = drawPolyOnMap(m, swbb_verts, facecolor=fcolors[0]) nbb_path, nbb_path_m = drawPolyOnMap(m, nbb_verts, facecolor=fcolors[1]) cbb_path, cbb_path_m = drawPolyOnMap(m, cbb_verts, facecolor=fcolors[2]) sbb_path, sbb_path_m = drawPolyOnMap(m, sbb_verts, facecolor=fcolors[3]) region_paths = {} region_paths['swbb'] = swbb_path region_paths['nbb'] = nbb_path region_paths['cbb'] = cbb_path region_paths['sbb'] = sbb_path return region_paths, fcolors def getshortname(vblename): vblename_short = {'salinity':'sal', 'temperature':'temp'} assert vblename in vblename_short.keys() return vblename_short[vblename] def convertArgoTime(tnum): """Function that converts argo day num (days since 1700-1-1) to python datetime returns, dvec - a matlab-like datevec array dvec.shape = (len(tnum), 3) dtnum_vec - a matlab-like datenum array """ dt0 = datetime(1770, 1, 1, 0, 0) dt0_num = datetime.toordinal(dt0) dvec = np.zeros((len(tnum),3)) dtnum_vec = np.zeros((len(tnum),1)) for i,t in enumerate(tnum): dti = datetime.fromordinal(int(t)+dt0_num) dtnum_vec[i,:] = int(t)+dt0_num dvec[i,:] = np.array([dti.year, dti.month, dti.day]) return dvec, dtnum_vec def findNearestIndex(array,value): #TODO: ensure the argo profile is actually in the nearest grid box #neg_diff = (array-value) < 0 #take only values idx = (np.abs(array-value)).argmin() return idx def loadHycomError(vname): ncfile = '/Users/ewilson2011/python_work/research/nio_wod_data_stdlvl/nio_hycom_argo.nc' f = nc4.Dataset(ncfile, 'r') #get variables vble_list = f.variables.keys() vbles_match = [vble for vble in vble_list if vble.endswith(vname)] argo_vble_name = [vble for vble in vbles_match if vble.startswith('argo')] hycom_vble_name = [vble for vble in vbles_match if vble.startswith('hycom')] assert len(argo_vble_name) == 1, "too many (or not enough) variables starting with 'argo' " assert len(hycom_vble_name) == 1, "too many (or not enough) variables starting with 'hycom' " argo_vble = f.variables[argo_vble_name[0]] hycom_vble = f.variables[hycom_vble_name[0]] return f, argo_vble, hycom_vble def selectRegion(f, region): #TODO: Add custom region selector. Maybe using polygons/patches #select for BoB regions = ['nio', 'BoB', 'AS'] assert region in regions, "region keyword argument needs to be 'nio', 'BoB' or 'AS'. " if region is 'BoB': lonmin=75; latmin=5; bobi = (f.variables['Longitude'][:]>lonmin) & (f.variables['Latitude'][:]>latmin) elif region is 'AS': lonmax = 75 latmin = 5 bobi = (f.variables['Longitude'][:]<lonmax) & (f.variables['Latitude'][:]>latmin) elif region is 'nio': lonmin = 40 latmin = 5 bobi = (f.variables['Longitude'][:]>lonmin) & (f.variables['Latitude'][:]>latmin) return bobi.flatten() def getColorVble(color_vble): #TODO: finish implementing col = {} if color_vble is 'lat': col['vble'] = lat col['vname'] = 'Latitude' col['units'] = 'degrees north' elif color_vble is 'lon': col['vble'] = lon col['vname'] = 'Longitude' col['units']= 'degrees east' return col def plotError_scatter(vname='sal', zlayers = [10., 30., 50., 125.], region='BoB', color_vble='lat', savefmt='png', saveplot=False): #vname = 'sal' or 'temp' import matplotlib.pyplot as plt #load data and output f, argo_vble, hycom_vble = loadHycomError(vname) #select for levels lvls = f.variables['zlvl'][0,:] zi = np.in1d(lvls, zlayers) argo_zi = argo_vble[:,zi] hycom_zi = hycom_vble[:,zi] #select for BoB bobi = selectRegion(f, region) lat = f.variables['Latitude'][:]; lat = lat[bobi] lon = f.variables['Longitude'][:]; lon = lon[bobi] argo_zi = argo_zi[bobi,:] hycom_zi = hycom_zi[bobi,:] #mask any lingering nans argo_zi = np.ma.masked_where(np.isnan(argo_zi), argo_zi) hycom_zi = np.ma.masked_where(np.isnan(hycom_zi), hycom_zi) #catch spurious salinity measurements in arabian sea if vname is 'sal' and region is 'AS': bad = argo_zi < 28 num_bad = argo_zi[bad].flatten() debug_here() argo_zi = np.ma.masked_where(bad, argo_zi) print "number of bad: %s" %len(num_bad) #set color variable if color_vble is 'lat': col = lat color_vname = 'Latitude' color_units = 'degrees north' elif color_vble is 'lon': col = lon color_vname = 'Longitude' color_units = 'degrees east' #debug_here() plt_lbls = ['a', 'b', 'c', 'd'] plt.close('all') fig,axes = plt.subplots(2,2, figsize=(12,8)) if vname is 'temp': units = r'$^{\circ}$C' else: units = argo_vble.units axes = axes.flatten() fntsz = 14 dx = 0.5 #for text box offset dy = 0.5 #for text box offset if region is 'BoB': if vname is 'sal': xlims = np.array([[28, 36],[28, 36], [30, 37], [30, 37]]) elif vname is 'temp': xlims = np.array([[23, 33], [23, 33], [13, 33], [10, 30]]) elif region is 'AS': if vname is 'sal': xlims = np.array([[33, 38],[33, 38], [33, 38], [33, 38]]) dx = 0.2 #for text box offset dy = 0.2 #for text box offset elif vname is 'temp': xlims = np.array([[22, 32], [20, 32], [13, 33], [10, 30]]) ylims = xlims for i,ax in enumerate(axes): plt.sca(ax) im1 = ax.scatter(argo_zi[:,i], hycom_zi[:,i], s=8, c=col, cmap=plt.cm.RdYlBu, alpha=0.7, lw=0) ax.set_title('(%s) Hycom vs. Argo at %.0fm (%s)' %(plt_lbls[i], zlayers[i], region), fontsize = fntsz+2) one2one = np.linspace(xlims[i,0], xlims[i,1],50) ax.plot(one2one, one2one, '-k') ax.set_xlim(xlims[i,:]) ax.set_ylim(ylims[i,:]) argo_std = np.std(argo_zi[:,i]) hycom_std = np.std(hycom_zi[:,i]) sq_err = (hycom_zi[:,i] - argo_zi[:,i])**2 rmse = np.sqrt(np.mean(sq_err)) #place text with stats in top right corner of plot text_xpos = xlims[i,0]+dx text_ypos = ylims[i,1]-dy stats = "Argo STD: %.2f \nHYCOM STD: %.2f \nRMSE: %.2f" %(argo_std, hycom_std, rmse) ax.text(text_xpos, text_ypos, stats, fontsize=8, verticalalignment='top', horizontalalignment='left', bbox=dict(facecolor='#F5BCA9', alpha=0.5)) if i==2 or i==3: ax.set_xlabel(argo_vble.long_name + ' (%s)' %units, fontsize=fntsz) if i==0 or i==2: ax.set_ylabel(hycom_vble.long_name + ' (%s)' %units, fontsize=fntsz) cbar_ax = fig.add_axes([0.82, 0.15, 0.025, 0.7]) #make a new axes for the colorbar fig.subplots_adjust(right=0.8) #adjust sublot to make colorbar fit cb = fig.colorbar(im1, cax=cbar_ax, format='%i') #plot colorbar in cbar_ax using colormap of im1 cb.set_label('%s (%s)' %(color_vname, color_units),fontsize=fntsz) cb.ax.tick_params(labelsize=fntsz) plt.show() #debug_here() if saveplot==True: plt.savefig('../py_plots/hycom_vs_argo_%s_%s.%s' %(vname, region, savefmt), bbox_inches='tight', dpi=300) import test fig,axes = plt.subplots(2,2, figsize=(12,8)) axes = axes.flatten() cvec = ['red','purple','green'] for i,ax in enumerate(axes): k=3 centroids, idx, good_data = test.kmeans_cluster(argo_zi[:,i], hycom_zi[:,i], k=k, makeplot=False) for j in xrange(k): ax.scatter(good_data[idx==j,0], good_data[idx==j,1], s=8, c=cvec[j], alpha=0.7, lw=0) #ax.plot(centroids[j,0],centroids[j,1],'*', color=cvec[j], markersize=15) ax.set_title('(%s) Hycom vs. Argo at %.0fm (%s)' %(plt_lbls[i], zlayers[i], region), fontsize = fntsz+2) one2one = np.linspace(xlims[i,0], xlims[i,1],50) ax.plot(one2one, one2one, '-k') ax.set_xlim(xlims[i,:]) ax.set_ylim(ylims[i,:]) if i==2 or i==3: ax.set_xlabel(argo_vble.long_name + ' (%s)' %units, fontsize=fntsz) if i==0 or i==2: ax.set_ylabel(hycom_vble.long_name + ' (%s)' %units, fontsize=fntsz) if saveplot==True: plt.savefig('../py_plots/hycom_vs_argo_%s_%s_clustered.%s' %(vname, region, savefmt), bbox_inches='tight', dpi=300) # f.close() # cbar_ax = fig.add_axes([0.82, 0.15, 0.025, 0.7]) #make a new axes for the colorbar # fig.subplots_adjust(right=0.8) #adjust sublot to make colorbar fit # # cb = fig.colorbar(im1, cax=cbar_ax, format='%i') #plot colorbar in cbar_ax using colormap of im1 # cb.set_label('%s (%s)' %(color_vname, color_units),fontsize=fntsz) # cb.ax.tick_params(labelsize=fntsz) plt.show() f.close() #return argo_zi, hycom_zi # # # hycom_err = hycom_zi-argo_zi # fig,axes = plt.subplots(2,2, figsize=(12,8)) # axes = axes.flatten() # xlims = [0,25] # for i,ax in enumerate(axes): # # #plt.sca(ax) # # im1 = ax.scatter(lat, np.abs(hycom_err[:,i]), s=8, c='k', alpha=0.7, lw=0) # # ax.set_title('(%s) Hycom error vs. Latitude at %.0fm (%s)' %(plt_lbls[i], zlayers[i], region), fontsize = fntsz+2) # ax.set_ylim(0, 2.5) # ax.set_xlim(*xlims) # # #ax.hlines(0,*xlims, color='b') # # if i==2 or i==3: # ax.set_xlabel('Latitude (%s)' %color_units, fontsize=fntsz) # if i==0 or i==2: # ax.set_ylabel('HYCOM error (%s)' %units, fontsize=fntsz) def plotError_tseries(vname='sal', zlayers=[10., 50.], region='BoB', ylims = (-6,6), color_vble='lat', savefmt='png'): from datetime import datetime import matplotlib.dates as mdates import matplotlib.pyplot as plt f, argo_vble, hycom_vble = loadHycomError(vname) #select for zlvl lvls = f.variables['zlvl'][0,:] zi = np.in1d(lvls, zlayers) argo_zi = argo_vble[:,zi] hycom_zi = hycom_vble[:,zi] #select for BoB bobi = selectRegion(f, region) lat = f.variables['Latitude'][:] lon = f.variables['Longitude'][:] lat = lat[bobi,:] lon = lon[bobi,:] hycom_zi = hycom_zi[bobi,:] argo_zi = argo_zi[bobi,:] hycom_error_zi = hycom_zi - argo_zi #mask any lingering nans argo_zi = np.ma.masked_where(np.isnan(argo_zi), argo_zi) hycom_zi = np.ma.masked_where(np.isnan(hycom_zi), hycom_zi) #mask spurious salinity measurements in arabian sea if vname is 'sal' and region is 'AS': bad = argo_zi < 28 num_bad = argo_zi[bad].flatten() debug_here() argo_zi = np.ma.masked_where(bad, argo_zi) print "number of bad: %s" %len(num_bad) #get dates dnum = f.variables['Time'][:] dnum = dnum[bobi,:] dnum_nomask = dnum[dnum.mask==False] dt_vec = np.array([datetime.fromordinal(dnum_i) for dnum_i in dnum_nomask]) maski = dnum.mask==False hycom_error_zi = hycom_error_zi[maski[:,0], :] lat = lat[maski[:,0], :] lon = lon[maski[:,0], :] #set color variable if color_vble is 'lat': col = lat color_vname = 'Latitude' color_units = 'degrees north' elif color_vble is 'lon': col = lon color_vname = 'Longitude' color_units = 'degrees east' plt.close('all') fig,axes = plt.subplots(2,1, figsize=(11,8)) plt_lbls = ['a', 'b', 'c', 'd'] fntsz = 14 if vname is 'temp': units = r'$^{\circ}$C' else: units = argo_vble.units for i,ax in enumerate(axes): plt.sca(ax) im1 = ax.scatter(dt_vec, hycom_error_zi[:,i], s=8, c=col, cmap=plt.cm.RdYlBu, alpha=0.7, lw=0) ax.set_title('(%s) Hycom minus Argo at %.0fm (%s)' %(plt_lbls[i], zlayers[i], region), fontsize = fntsz+2) ax.set_ylabel(hycom_vble.long_name + ' error (%s)' %units, fontsize=fntsz) ax.set_ylim(ylims) ax.grid(True) #format dates years = mdates.YearLocator(1,month=9) major_months = mdates.MonthLocator(bymonth=(3,9)) minor_months = mdates.MonthLocator() myFmt = mdates.DateFormatter('%b%y') ax.xaxis.set_major_locator(major_months) ax.xaxis.set_minor_locator(minor_months) ax.xaxis.set_major_formatter(myFmt) datemin = datetime(2008, 9, 1) datemax = datetime(2013, 9, 1) ax.set_xlim((datemin, datemax)) ax.hlines(0, datemin, datemax) #compute stats argo_std = np.std(argo_zi[:,i]) hycom_std = np.std(hycom_zi[:,i]) sq_err = (hycom_zi[:,i] - argo_zi[:,i])**2 rmse = np.sqrt(np.mean(sq_err)) #place text with stats in top right corner of plot text_xpos = datetime(2008, 10, 1) text_ypos = ylims[1]-0.5 stats = "Argo STD: %.2f \nHYCOM STD: %.2f \nRMSE: %.2f" %(argo_std, hycom_std, rmse) ax.text(text_xpos, text_ypos, stats, fontsize=8, verticalalignment='top', horizontalalignment='left', bbox=dict(facecolor='#F5BCA9', alpha=0.5)) cbar_ax = fig.add_axes([0.84, 0.15, 0.025, 0.7]) #make a new axes for the colorbar fig.subplots_adjust(right=0.8, hspace=0.35) #adjust sublot to make colorbar fit cb = fig.colorbar(im1, cax=cbar_ax, format='%i') #plot colorbar in cbar_ax using colormap of im1 cb.set_label('%s (%s)' %(color_vname, color_units),fontsize=fntsz) cb.ax.tick_params(labelsize=fntsz) plt.show() f.close() debug_here() plt.savefig('../py_plots/hycom_error_tseries_%s_%s.%s' %(vname, region, savefmt), bbox_inches='tight', dpi=300) def plotErrorMap(vname='sal', plotlvls=[10,50], months=[(2,3), (5,6), (8,9), (11,12)], clims=(-1.5,1.5), savefmt='png'): import string from datetime import datetime import calendar as cal import matplotlib.pyplot as plt import plotting_fun as pfun reload(pfun) region='BoB' latmin=5 lonmin=75 assert len(plotlvls) == 2, "plotlvls must have two elements" f, argo_vble, hycom_vble = loadHycomError(vname) #select for zlvl lvls = f.variables['zlvl'][0,:] zi = np.in1d(lvls, plotlvls) msg = "Choose plotlvls from available levels: " +str(lvls) assert np.any(zi==True), msg argo_zi = argo_vble[:,zi] hycom_zi = hycom_vble[:,zi] #select for BoB bobi = (f.variables['Longitude'][:]>lonmin) & (f.variables['Latitude'][:]>latmin) bobi = bobi.flatten() lat = f.variables['Latitude'][:]; lon = f.variables['Longitude'][:] dnum = f.variables['Time'][:] dnum = dnum[bobi,:] lat = lat[bobi,:]; lon = lon[bobi,:] hycom_error_zi = hycom_zi[bobi,:] - argo_zi[bobi,:] #mask any lingering nans hycom_error_zi = np.ma.masked_where(np.isnan(hycom_error_zi), hycom_error_zi) #eliminate profiles with masked dates maski = dnum.mask==False dnum_nomask = dnum[maski] hycom_error_zi = hycom_error_zi[maski[:,0], :] lat = lat[maski[:,0], :] lon = lon[maski[:,0], :] #create array of datetime objects dt_vec = np.array([datetime.fromordinal(dnum_i) for dnum_i in dnum_nomask]) #get the indicies for each selected month moni_dict = {} for mon in months: key = cal.month_abbr[mon[0]] + "-" + cal.month_abbr[mon[1]] moni_dict[key] = np.array([(dt.month==mon[0]) or (dt.month==mon[1]) for dt in dt_vec]) month_names_sorted = [cal.month_abbr[mon[0]] + "-" + cal.month_abbr[mon[1]] for mon in months] #debug_here() #now prep for plotting plt.close('all') fig,axes = plt.subplots(2,4, figsize=(16,5.3)) plt_lbls = string.lowercase fntsz = 14 #temperature units is stated as K when it is degrees C. Fixed in findHycomArgo() but function needs to re-run. if vname is 'temp': units = r'$^{\circ}$C' else: units = argo_vble.units axes = axes.flatten() i=0 for zi, dep in enumerate(plotlvls): for month_name in month_names_sorted: #select for correct month moni = moni_dict[month_name][:] lon_m = lon[moni] lat_m = lat[moni] hycom_error_zi_m = hycom_error_zi[moni,zi] hycom_error_zi_m = hycom_error_zi_m[:,np.newaxis] #switch to right plot plt.sca(axes[i]) #create Basemap intance m = pfun.createNIOmap(region=region) im1 = m.scatter(lon_m, lat_m, s=40, c=hycom_error_zi_m, cmap=plt.cm.coolwarm, lw=0, latlon=True) plt.clim(clims) #plt.clim(clim[0],clim[1]) plt.title('%s at %sm' %(month_name, int(dep)), fontsize=fntsz) i+=1 plt.suptitle('%s errors' %hycom_vble.long_name, fontsize=fntsz+3) cbar_ax = fig.add_axes([0.81, 0.12, 0.025, 0.73]) #make a new axes for the colorbar fig.subplots_adjust(right=0.8, top=0.85, hspace=0.4) #adjust sublot to make colorbar fit cb = fig.colorbar(im1, cax=cbar_ax) #plot colorbar in cbar_ax using colormap of im1 cb.set_label(units, fontsize=fntsz) cb.ax.tick_params(labelsize=fntsz) debug_here() plt.savefig('../py_plots/hycom_error_%s_map_%s.%s' %(region, vname, savefmt), bbox_inches='tight', dpi=300) def plotSubRegions(months=[(2,3), (5,6), (8,9), (11,12)], zmax=(200,300), savefmt='png'): import plotting_fun as pfun import matplotlib.pyplot as plt from datetime import datetime import string import calendar as cal from matplotlib.ticker import MultipleLocator, FormatStrFormatter reload(pfun) #definitions fntsz = 14 region='BoB' subregions = ['swbb', 'nbb', 'cbb', 'sbb'] latmin=5; lonmin=75 ncfile = '/Users/ewilson2011/python_work/research/nio_wod_data_stdlvl/nio_hycom_argo.nc' f = nc4.Dataset(ncfile, 'r') ##read argo and hycom data argo_temp = f.variables['argo_temp'][:] argo_sal = f.variables['argo_sal'][:] hycom_temp = f.variables['hycom_temp'][:] hycom_sal = f.variables['hycom_sal'][:] ##select for BoB bobi = (f.variables['Longitude'][:]>lonmin) & (f.variables['Latitude'][:]>latmin) bobi = bobi.flatten() lat = f.variables['Latitude'][:] lon = f.variables['Longitude'][:] dnum = f.variables['Time'][:] lat = lat[bobi,:]; lon = lon[bobi,:] dnum = dnum[bobi,:] ##get errors hycom_temp_error = hycom_temp[bobi,:] - argo_temp[bobi,:] hycom_sal_error = hycom_sal[bobi,:] - argo_sal[bobi,:] ##mask any lingering nans hycom_temp_error = np.ma.masked_where(np.isnan(hycom_temp_error), hycom_temp_error) hycom_sal_error = np.ma.masked_where(np.isnan(hycom_sal_error), hycom_sal_error) ##eliminate profiles with masked dates maski = dnum.mask==False dnum_nomask = dnum[maski] hycom_temp_error = hycom_temp_error[maski[:,0], :] hycom_sal_error = hycom_sal_error[maski[:,0], :] lat = lat[maski[:,0], :] lon = lon[maski[:,0], :] coords = np.hstack((lon,lat)) plt.close('all') fig = plt.figure() m = pfun.createNIOmap(region=region) im1 = m.scatter(lon, lat, s=20, c='k', lw=0, latlon=True) subregion_paths, fcolors = overlayRegionShading(m) plt.title('Map showing location of Argo profiles and subregions', fontsize=fntsz) ##Draw map of points fig = plt.figure() m = pfun.createNIOmap(region=region) for i,subregion in enumerate(subregions): subregion_select = subregion_paths[subregion].contains_points(coords) numprof = len(lat[subregion_select]) m.scatter(lon[subregion_select], lat[subregion_select], s=20, c=fcolors[i], lw=0, label= "%s (%s profiles)" %(subregion.upper(), numprof), latlon=True) plt.title('Map showing location of all Argo profiles in the BoB \nbetween September 2008 and July 2013', fontsize=fntsz+3) plt.legend(fontsize='small', loc=2) debug_here() plt.savefig('../py_plots/argo_loc_%s_regions.%s' %(region, savefmt), bbox_inches='tight', dpi=300) debug_here() #Now plot seasonal error profiles ##select for zlvl lvls = f.variables['zlvl'][0,:] zi_sal = lvls <= zmax[0] zi_temp = lvls <= zmax[1] sal_plot_lvls = lvls[zi_sal] temp_plot_lvls = lvls[zi_temp] hycom_temp_error = hycom_temp_error[:,zi_temp] hycom_sal_error = hycom_sal_error[:,zi_sal] #create array of datetime objects dt_vec = np.array([datetime.fromordinal(dnum_i) for dnum_i in dnum_nomask]) #get the indicies for each selected month moni_dict = {} for mon in months: key = cal.month_abbr[mon[0]] + "-" + cal.month_abbr[mon[1]] moni_dict[key] = np.array([(dt.month==mon[0]) or (dt.month==mon[1]) for dt in dt_vec]) month_names_sorted = [cal.month_abbr[mon[0]] + "-" + cal.month_abbr[mon[1]] for mon in months] fig,axes = plt.subplots(2,4, figsize=(16,8)) plt_lbls = string.lowercase fntsz = 14 yticks_top = [0,10,25,50,75,100,150,200] yticks_bottom = [0,20,50,75,100,150,200,250,300] sal_ticks = np.arange(-1.5, 1.51,0.5); temp_ticks = np.arange(-3, 3.01,1) majorlocator_top = MultipleLocator(0.5) minorlocator_top = MultipleLocator(0.1) majorlocator_bottom = MultipleLocator(1) minorlocator_bottom = MultipleLocator(0.2) for m,month_name in enumerate(month_names_sorted): #select for correct month and take average of all points moni = moni_dict[month_name][:] hycom_temp_error_m = hycom_temp_error[moni,:] hycom_sal_error_m = hycom_sal_error[moni,:] lon_m = lon[moni,:] lat_m = lat[moni,:] coords_m = np.hstack((lon_m,lat_m)) #set axis propeties ax_top = axes[0,m] ax_top.set_xticks(sal_ticks) ax_top.set_yticks(yticks_top) ax_top.xaxis.set_major_locator(majorlocator_top) ax_top.xaxis.set_minor_locator(minorlocator_top) #ax_top.invert_yaxis() ax_top.set_ylim(max(yticks_top), min(yticks_top)) ax_top.set_xlim(min(sal_ticks), max(sal_ticks)) ax_top.grid(True) ax_top.set_xlabel('Sal (PSS)', fontsize=fntsz) ax_bottom = axes[1,m] ax_bottom.set_xticks(temp_ticks) ax_bottom.set_yticks(yticks_bottom) ax_bottom.set_ylim(max(yticks_bottom), min(yticks_bottom)) ax_bottom.set_xlim(min(temp_ticks), max(temp_ticks)) ax_bottom.xaxis.set_major_locator(majorlocator_bottom) ax_bottom.xaxis.set_minor_locator(minorlocator_bottom) #ax_bottom.invert_yaxis() ax_bottom.grid(True) ax_bottom.set_xlabel('Temp ($^{\circ}$ C)', fontsize=fntsz) if m==0: ax_bottom.set_ylabel('Depth (m)', fontsize=fntsz) ax_top.set_ylabel('Depth (m)', fontsize=fntsz) for i,subregion in enumerate(subregions): #select for subregion subregion_select = subregion_paths[subregion].contains_points(coords_m) hycom_sal_error_mr = hycom_sal_error_m[subregion_select,:] hycom_temp_error_mr = hycom_temp_error_m[subregion_select,:] #compute mean and confidence intervals for means based on t-test sal_subregion_mean = np.mean(hycom_sal_error_mr, axis=0) temp_subregion_mean = np.mean(hycom_temp_error_mr, axis=0) sal_conf_int = pfun.t_interval(hycom_sal_error_mr, axis=0, alpha=0.05) temp_conf_int = pfun.t_interval(hycom_temp_error_mr, axis=0, alpha=0.05) #plot salinity error profile on top row ax_top.plot(sal_subregion_mean, sal_plot_lvls, color=fcolors[i], lw=2, label=subregion.upper()) ax_top.fill_betweenx(sal_plot_lvls, sal_conf_int[0], sal_conf_int[1], color=fcolors[i], alpha=0.5) ax_top.set_title('Sal errors for %s' %month_name, fontsize=fntsz) #plot temp error profile on top row ax_bottom.plot(temp_subregion_mean, temp_plot_lvls, color=fcolors[i], lw=2, label=subregion.upper()) ax_bottom.fill_betweenx(temp_plot_lvls, temp_conf_int[0], temp_conf_int[1], color=fcolors[i], alpha=0.5) ax_bottom.set_title('Temp errors for %s' %month_name, fontsize=fntsz) if m==0 or m==3: ax_top.legend(fontsize='small', loc=3) ax_bottom.legend(fontsize='small', loc=3) #add vertical zero lines after profile errors are drawn ax_top.vlines(0, min(yticks_top), max(yticks_top)) ax_bottom.vlines(0, min(yticks_bottom), max(yticks_bottom)) plt.suptitle('Seasonal HYCOM error profiles', fontsize=fntsz+3) fig.subplots_adjust(hspace=0.4) #adjust sublot to make colorbar fit plt.show() f.close() debug_here() plt.savefig('../py_plots/hycom_error_seas_profiles_%s.%s' %(region, savefmt), bbox_inches='tight', dpi=300) def findHycomArgo(testing=True): "function that finds co-locating HYCOM grid point values and in situ Argo data" if testing is True: print "Running in test mode..." elif testing is False: print "Starting full run. Getting time estimate..." #get list of hycom files hycom_temp_dir = '/Volumes/Free Space/NIO_hycom/temp_nc/' all_temp_files = os.listdir(hycom_temp_dir) hycom_temp_files = [file for file in all_temp_files if file.endswith('.nc')] hycom_sal_dir = '/Volumes/Free Space/NIO_hycom/sal_nc/' all_sal_files = os.listdir(hycom_sal_dir) hycom_sal_files = [file for file in all_sal_files if file.endswith('.nc')] #load argo data argo_file_dir = '/Users/ewilson2011/python_work/research/nio_wod_data_stdlvl/' argoFilePath = argo_file_dir + 'nio_combined_stdlvl.nc' f_argo = nc4.Dataset(argoFilePath, 'r') lat_full = f_argo.variables['Latitude'][:] lon_full = f_argo.variables['Longitude'][:] tnum_full = f_argo.variables['Time'][:] temp_full = f_argo.variables['Temperature'][:] sal_full = f_argo.variables['Salinity'][:] argo_zlvls = f_argo.variables['zlvl'][0,:] #take only data have time values if there are masked times if type(tnum_full) is np.ma.core.MaskedArray: tmask = tnum_full.mask argo_tnum = tnum_full[tmask==False] argo_lat = lat_full[tmask==False] argo_lon = lon_full[tmask==False] argo_temp_full = temp_full[:,np.newaxis] argo_sal_full = sal_full[:,np.newaxis] argo_temp = argo_temp_full[tmask==False] argo_sal = argo_sal_full[tmask==False] else: argo_tnum = tnum_full[:] argo_lat = lat_full[:] argo_lon = lon_full[:] argo_temp = temp_full[:,np.newaxis] argo_sal = sal_full[:,np.newaxis] del temp_full, sal_full, lon_full, lat_full, tnum_full #convert argo "time since" vector to actual date vector argo_dvec, argo_dtnum_vec = convertArgoTime(argo_tnum) #limit argo profiles to those that fall within HYCOM run time min_hytime = datetime(2008,9,17).toordinal() max_hytime = datetime(2013,8,31).toordinal() valid_argo = (argo_dtnum_vec>min_hytime) & (argo_dtnum_vec<max_hytime) valid_argo = valid_argo.flatten() argo_dvec = argo_dvec[valid_argo,:] argo_dtnum_vec = argo_dtnum_vec[valid_argo,:] argo_lat = argo_lat[valid_argo] argo_lon = argo_lon[valid_argo] argo_temp = argo_temp[valid_argo,:] argo_sal = argo_sal[valid_argo,:] #create new argo_hycom comparison file. Dimensions need to match f_argo. Maybe write a function that does this newFilename = 'nio_hycom_argo.nc' newFilePath = argo_file_dir+newFilename try: fnew = nc4.Dataset(newFilePath, 'w') except RuntimeError as e: print e.message sys.exit("RuntimeError: Close fnew if it is open in the command line workspace.") fnew.createDimension('numProf', None) #specify here, so copy_ncDataset skips over it newVariables = ('Salinity', 'Temperature', 'Time', 'Longitude', 'Latitude', 'zlvl') fnew = ncf.copy_ncDataset(f_argo, fnew, newVariables) fnew.renameVariable('Salinity', 'argo_sal') fnew.renameVariable('Temperature', 'argo_temp') fnew.createVariable('hycom_sal', 'f4', ('numProf', 'z')) fnew.createVariable('hycom_temp', 'f4', ('numProf', 'z')) f_argo.close() numProf = len(argo_dtnum_vec) #create loop that iterates through each argo profile checkpoint = 20 start_time = timeit.default_timer() for i in xrange(numProf): # find hycom daily output corresponding day of argo profile ## get day number for year yri = int(argo_dvec[i,0]) argo_dti_num = argo_dtnum_vec[i,0] yri_jan01 = datetime(yri,1,1) yri_jan01_num = datetime.toordinal(yri_jan01) yr_day_num = argo_dti_num - yri_jan01_num + 1 yr_day_num_str = "%03d" %yr_day_num ## load correct daily files hycom_fname_sal = 'salinity-%s_%s_00_3zs-nio.nc' %(yri,yr_day_num_str) hycom_fname_temp = 'temperature-%s_%s_00_3zt-nio.nc' %(yri,yr_day_num_str) if hycom_fname_sal not in hycom_sal_files: continue if hycom_fname_temp not in hycom_temp_files: continue f_hytemp = nc4.Dataset(hycom_temp_dir+hycom_fname_temp, 'r') f_hysal = nc4.Dataset(hycom_sal_dir+hycom_fname_sal, 'r') #find the model grid point corresponding to the location of the location of the float. hy_lon = f_hytemp.variables['longitude'][:] hy_lat = f_hytemp.variables['latitude'][:] closest_lati = findNearestIndex(hy_lat, argo_lat[i]) closest_loni = findNearestIndex(hy_lon, argo_lon[i]) ## make sure hycom grid box is within 0.08 degrees of the argo profile location assert np.abs(hy_lon[closest_loni]-argo_lon[i]) < 0.08, 'hycom grid point not close enough' assert np.abs(hy_lat[closest_lati]-argo_lat[i]) < 0.08, 'hycom grid point not close enough' hytemp_prof = f_hytemp.variables['temperature'][0, :, closest_lati, closest_loni] hysal_prof = f_hysal.variables['salinity'][0, :, closest_lati, closest_loni] #find the difference between hycom and argo at the levels where argo data are available ## find zlvls in hycom the correspond to zlvls in argo hy_zlvls = f_hytemp.variables['zlevels'][:] ahi = np.in1d(hy_zlvls, argo_zlvls) #argo in hycom hai = np.in1d(argo_zlvls, hy_zlvls) #hycom in argo #read data into argo_hycom comparison file # fnew.variables["sal_error"][i,hai] = argo_sal[i, hai] - hysal_prof[ahi] # fnew.variables["temp_error"][i,hai] = argo_temp[i, hai] - hytemp_prof[ahi] fnew.variables["hycom_sal"][i,hai] = hysal_prof[ahi] fnew.variables["hycom_temp"][i,hai] = hytemp_prof[ahi] fnew.variables["argo_sal"][i,hai] = argo_sal[i, hai] fnew.variables["argo_temp"][i,hai] = argo_temp[i, hai] fnew.variables["Time"][i] = argo_dti_num fnew.variables["Longitude"][i] = argo_lon[i] fnew.variables["Latitude"][i] = argo_lat[i] fnew.variables["zlvl"][0,:] = argo_zlvls #set attributes fnew.variables["hycom_sal"].units = 'PSS' fnew.variables["argo_sal"].units = 'PSS' fnew.variables["hycom_temp"].units = r'$^{\circ}$C' fnew.variables["argo_temp"].units = r'$^{\circ}$C' fnew.variables["hycom_sal"].long_name = 'Hycom Salinity' fnew.variables["argo_sal"].long_name = 'Argo Salinity' fnew.variables["hycom_temp"].long_name = 'Hycom Temperature' fnew.variables["argo_temp"].long_name = 'Argo Temperature' fnew.variables["zlvl"].long_name = 'Depth levels' fnew.variables["zlvl"].units = 'm' fnew.variables["Time"].units = 'days since Jan 01, 0001' #close hycom nc dataset objects f_hysal.close() f_hytemp.close() #give completion time estimate if i==checkpoint: check_time = timeit.default_timer() elapsed_time = check_time - start_time av_time = elapsed_time/checkpoint files_rem = numProf-checkpoint est_time_left = av_time*files_rem/60. print '%s files processed. %s remaining. \nEstimated completion time: %.1f minutes' %(checkpoint, files_rem, est_time_left) if testing: fnew.close() print "Test complete!" return fnew.close() end_time = timeit.default_timer() completion_time = (end_time - start_time)/60 print "Success!" print "Actual completion time: %.1f minutes" %completion_time
UTF-8
Python
false
false
35,283
py
25
compare_hycom_argo.py
24
0.583822
0.562084
0
961
35.683663
159
cash2one/xai
4,827,543,283,195
fddbc023b9f6a8f42b59d8bfaccb0abb005b0824
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_foxiest.py
86bda8a51b4f3712a3b5d317196bd67ada4da945
[ "MIT" ]
permissive
https://github.com/cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#calss header class _FOXIEST(): def __init__(self,): self.name = "FOXIEST" self.definitions = foxy self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['foxy']
UTF-8
Python
false
false
218
py
37,275
_foxiest.py
37,266
0.591743
0.591743
0
13
15.615385
25
vaidasj/alg-mod-rev
13,262,859,044,321
8725d6ce30f582d73cb757be71c45aa1bd0fc6d5
c4249ce9e7cb26ae006bc9951ea676ae2250777b
/gamslib/indus/indus-scalar.py
4d24cd61866fb8560cd12be80bc2f5134b876969
[]
no_license
https://github.com/vaidasj/alg-mod-rev
79de3ef1e110f4bd07cbdef6951de2e4216f47f1
a3ec6b5c21700a2f28ac6bf7db6aa22540748c6e
refs/heads/master
2021-06-27T14:06:39.997411
2020-10-19T15:47:54
2020-10-19T15:47:54
180,074,989
3
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# LP written by GAMS Convert at 12/13/18 10:24:46 # # Equation counts # Total E G L N X C B # 275 183 18 74 0 0 0 0 # # Variable counts # x b i s1s s2s sc si # Total cont binary integer sos1 sos2 scont sint # 404 404 0 0 0 0 0 0 # FX 0 0 0 0 0 0 0 0 # # Nonzero counts # Total const NL DLL # 4145 4145 0 0 # # Reformulation has removed 1 variable and 1 equation from pyomo.environ import * model = m = ConcreteModel() m.x1 = Var(within=Reals,bounds=(None,None),initialize=0) m.x2 = Var(within=Reals,bounds=(None,None),initialize=0) m.x3 = Var(within=Reals,bounds=(None,None),initialize=0) m.x4 = Var(within=Reals,bounds=(None,None),initialize=0) m.x5 = Var(within=Reals,bounds=(0,None),initialize=0) m.x6 = Var(within=Reals,bounds=(0,None),initialize=0) m.x7 = Var(within=Reals,bounds=(0,None),initialize=0) m.x8 = Var(within=Reals,bounds=(0,None),initialize=0) m.x9 = Var(within=Reals,bounds=(0,None),initialize=0) m.x10 = Var(within=Reals,bounds=(0,None),initialize=0) m.x11 = Var(within=Reals,bounds=(0,None),initialize=0) m.x12 = Var(within=Reals,bounds=(0,None),initialize=0) m.x13 = Var(within=Reals,bounds=(0,None),initialize=0) m.x14 = Var(within=Reals,bounds=(0,None),initialize=0) m.x15 = Var(within=Reals,bounds=(0,None),initialize=0) m.x16 = Var(within=Reals,bounds=(0,None),initialize=0) m.x17 = Var(within=Reals,bounds=(0,None),initialize=0) m.x18 = Var(within=Reals,bounds=(0,None),initialize=0) m.x19 = Var(within=Reals,bounds=(0,None),initialize=0) m.x20 = Var(within=Reals,bounds=(0,None),initialize=0) m.x21 = Var(within=Reals,bounds=(0,None),initialize=0) m.x22 = Var(within=Reals,bounds=(0,None),initialize=0) m.x23 = Var(within=Reals,bounds=(0,None),initialize=0) m.x24 = Var(within=Reals,bounds=(0,None),initialize=0) m.x25 = Var(within=Reals,bounds=(0,None),initialize=0) m.x26 = Var(within=Reals,bounds=(0,None),initialize=0) m.x27 = Var(within=Reals,bounds=(0,None),initialize=0) m.x28 = Var(within=Reals,bounds=(0,None),initialize=0) m.x29 = Var(within=Reals,bounds=(0,None),initialize=0) m.x30 = Var(within=Reals,bounds=(0,None),initialize=0) m.x31 = Var(within=Reals,bounds=(0,None),initialize=0) m.x32 = Var(within=Reals,bounds=(0,None),initialize=0) m.x33 = Var(within=Reals,bounds=(0,None),initialize=0) m.x34 = Var(within=Reals,bounds=(0,None),initialize=0) m.x35 = Var(within=Reals,bounds=(0,None),initialize=0) m.x36 = Var(within=Reals,bounds=(0,None),initialize=0) m.x37 = Var(within=Reals,bounds=(0,None),initialize=0) m.x38 = Var(within=Reals,bounds=(0,None),initialize=0) m.x39 = Var(within=Reals,bounds=(0,None),initialize=0) m.x40 = Var(within=Reals,bounds=(0,None),initialize=0) m.x41 = Var(within=Reals,bounds=(0,None),initialize=0) m.x42 = Var(within=Reals,bounds=(0,None),initialize=0) m.x43 = Var(within=Reals,bounds=(0,None),initialize=0) m.x44 = Var(within=Reals,bounds=(0,None),initialize=0) m.x45 = Var(within=Reals,bounds=(0,None),initialize=0) m.x46 = Var(within=Reals,bounds=(0,None),initialize=0) m.x47 = Var(within=Reals,bounds=(0,None),initialize=0) m.x48 = Var(within=Reals,bounds=(0,None),initialize=0) m.x49 = Var(within=Reals,bounds=(0,None),initialize=0) m.x50 = Var(within=Reals,bounds=(0,None),initialize=0) m.x51 = Var(within=Reals,bounds=(0,None),initialize=0) m.x52 = Var(within=Reals,bounds=(0,None),initialize=0) m.x53 = Var(within=Reals,bounds=(0,None),initialize=0) m.x54 = Var(within=Reals,bounds=(0,None),initialize=0) m.x55 = Var(within=Reals,bounds=(0,None),initialize=0) m.x56 = Var(within=Reals,bounds=(0,None),initialize=0) m.x57 = Var(within=Reals,bounds=(0,None),initialize=0) m.x58 = Var(within=Reals,bounds=(0,None),initialize=0) m.x59 = Var(within=Reals,bounds=(0,None),initialize=0) m.x60 = Var(within=Reals,bounds=(0,None),initialize=0) m.x61 = Var(within=Reals,bounds=(0,None),initialize=0) m.x62 = Var(within=Reals,bounds=(0,None),initialize=0) m.x63 = Var(within=Reals,bounds=(0,None),initialize=0) m.x64 = Var(within=Reals,bounds=(0,None),initialize=0) m.x65 = Var(within=Reals,bounds=(0,None),initialize=0) m.x66 = Var(within=Reals,bounds=(0,None),initialize=0) m.x67 = Var(within=Reals,bounds=(0,None),initialize=0) m.x68 = Var(within=Reals,bounds=(0,None),initialize=0) m.x69 = Var(within=Reals,bounds=(0,None),initialize=0) m.x70 = Var(within=Reals,bounds=(0,None),initialize=0) m.x71 = Var(within=Reals,bounds=(0,None),initialize=0) m.x72 = Var(within=Reals,bounds=(0,None),initialize=0) m.x73 = Var(within=Reals,bounds=(0,None),initialize=0) m.x74 = Var(within=Reals,bounds=(0,None),initialize=0) m.x75 = Var(within=Reals,bounds=(0,None),initialize=0) m.x76 = Var(within=Reals,bounds=(0,None),initialize=0) m.x77 = Var(within=Reals,bounds=(0,None),initialize=0) m.x78 = Var(within=Reals,bounds=(0,None),initialize=0) m.x79 = Var(within=Reals,bounds=(0,None),initialize=0) m.x80 = Var(within=Reals,bounds=(0,None),initialize=0) m.x81 = Var(within=Reals,bounds=(0,None),initialize=0) m.x82 = Var(within=Reals,bounds=(0,None),initialize=0) m.x83 = Var(within=Reals,bounds=(0,None),initialize=0) m.x84 = Var(within=Reals,bounds=(0,None),initialize=0) m.x85 = Var(within=Reals,bounds=(0,None),initialize=0) m.x86 = Var(within=Reals,bounds=(0,None),initialize=0) m.x87 = Var(within=Reals,bounds=(0,None),initialize=0) m.x88 = Var(within=Reals,bounds=(0,None),initialize=0) m.x89 = Var(within=Reals,bounds=(0,None),initialize=0) m.x90 = Var(within=Reals,bounds=(0,None),initialize=0) m.x91 = Var(within=Reals,bounds=(0,None),initialize=0) m.x92 = Var(within=Reals,bounds=(0,None),initialize=0) m.x93 = Var(within=Reals,bounds=(0,None),initialize=0) m.x94 = Var(within=Reals,bounds=(0,None),initialize=0) m.x95 = Var(within=Reals,bounds=(0,None),initialize=0) m.x96 = Var(within=Reals,bounds=(0,None),initialize=0) m.x97 = Var(within=Reals,bounds=(0,None),initialize=0) m.x98 = Var(within=Reals,bounds=(0,None),initialize=0) m.x99 = Var(within=Reals,bounds=(0,None),initialize=0) m.x100 = Var(within=Reals,bounds=(0,None),initialize=0) m.x101 = Var(within=Reals,bounds=(0,None),initialize=0) m.x102 = Var(within=Reals,bounds=(0,None),initialize=0) m.x103 = Var(within=Reals,bounds=(0,None),initialize=0) m.x104 = Var(within=Reals,bounds=(0,None),initialize=0) m.x105 = Var(within=Reals,bounds=(0,None),initialize=0) m.x106 = Var(within=Reals,bounds=(0,None),initialize=0) m.x107 = Var(within=Reals,bounds=(0,None),initialize=0) m.x108 = Var(within=Reals,bounds=(0,None),initialize=0) m.x109 = Var(within=Reals,bounds=(0,None),initialize=0) m.x110 = Var(within=Reals,bounds=(0,None),initialize=0) m.x111 = Var(within=Reals,bounds=(0,None),initialize=0) m.x112 = Var(within=Reals,bounds=(0,None),initialize=0) m.x113 = Var(within=Reals,bounds=(0,None),initialize=0) m.x114 = Var(within=Reals,bounds=(0,None),initialize=0) m.x115 = Var(within=Reals,bounds=(0,None),initialize=0) m.x116 = Var(within=Reals,bounds=(0,None),initialize=0) m.x117 = Var(within=Reals,bounds=(0,None),initialize=0) m.x118 = Var(within=Reals,bounds=(0,None),initialize=0) m.x119 = Var(within=Reals,bounds=(0,None),initialize=0) m.x120 = Var(within=Reals,bounds=(0,None),initialize=0) m.x121 = Var(within=Reals,bounds=(0,None),initialize=0) m.x122 = Var(within=Reals,bounds=(0,None),initialize=0) m.x123 = Var(within=Reals,bounds=(0,None),initialize=0) m.x124 = Var(within=Reals,bounds=(0,None),initialize=0) m.x125 = Var(within=Reals,bounds=(0,None),initialize=0) m.x126 = Var(within=Reals,bounds=(0,None),initialize=0) m.x127 = Var(within=Reals,bounds=(0,None),initialize=0) m.x128 = Var(within=Reals,bounds=(0,None),initialize=0) m.x129 = Var(within=Reals,bounds=(0,None),initialize=0) m.x130 = Var(within=Reals,bounds=(0,None),initialize=0) m.x131 = Var(within=Reals,bounds=(0,None),initialize=0) m.x132 = Var(within=Reals,bounds=(0,None),initialize=0) m.x133 = Var(within=Reals,bounds=(0,None),initialize=0) m.x134 = Var(within=Reals,bounds=(0,None),initialize=0) m.x135 = Var(within=Reals,bounds=(0,None),initialize=0) m.x136 = Var(within=Reals,bounds=(0,None),initialize=0) m.x137 = Var(within=Reals,bounds=(0,None),initialize=0) m.x138 = Var(within=Reals,bounds=(0,None),initialize=0) m.x139 = Var(within=Reals,bounds=(0,None),initialize=0) m.x140 = Var(within=Reals,bounds=(0,None),initialize=0) m.x141 = Var(within=Reals,bounds=(0,None),initialize=0) m.x142 = Var(within=Reals,bounds=(0,None),initialize=0) m.x143 = Var(within=Reals,bounds=(0,None),initialize=0) m.x144 = Var(within=Reals,bounds=(0,None),initialize=0) m.x145 = Var(within=Reals,bounds=(0,None),initialize=0) m.x146 = Var(within=Reals,bounds=(0,None),initialize=0) m.x147 = Var(within=Reals,bounds=(0,None),initialize=0) m.x148 = Var(within=Reals,bounds=(0,None),initialize=0) m.x149 = Var(within=Reals,bounds=(0,None),initialize=0) m.x150 = Var(within=Reals,bounds=(0,None),initialize=0) m.x151 = Var(within=Reals,bounds=(0,None),initialize=0) m.x152 = Var(within=Reals,bounds=(0,None),initialize=0) m.x153 = Var(within=Reals,bounds=(0,None),initialize=0) m.x154 = Var(within=Reals,bounds=(0,None),initialize=0) m.x155 = Var(within=Reals,bounds=(0,None),initialize=0) m.x156 = Var(within=Reals,bounds=(0,None),initialize=0) m.x157 = Var(within=Reals,bounds=(0,None),initialize=0) m.x158 = Var(within=Reals,bounds=(0,None),initialize=0) m.x159 = Var(within=Reals,bounds=(0,None),initialize=0) m.x160 = Var(within=Reals,bounds=(0,None),initialize=0) m.x161 = Var(within=Reals,bounds=(0,None),initialize=0) m.x162 = Var(within=Reals,bounds=(0,None),initialize=0) m.x163 = Var(within=Reals,bounds=(0,None),initialize=0) m.x164 = Var(within=Reals,bounds=(0,None),initialize=0) m.x165 = Var(within=Reals,bounds=(0,None),initialize=0) m.x166 = Var(within=Reals,bounds=(0,None),initialize=0) m.x167 = Var(within=Reals,bounds=(0,None),initialize=0) m.x168 = Var(within=Reals,bounds=(0,None),initialize=0) m.x169 = Var(within=Reals,bounds=(0,None),initialize=0) m.x170 = Var(within=Reals,bounds=(0,None),initialize=0) m.x171 = Var(within=Reals,bounds=(0,None),initialize=0) m.x172 = Var(within=Reals,bounds=(0,None),initialize=0) m.x173 = Var(within=Reals,bounds=(0,None),initialize=0) m.x174 = Var(within=Reals,bounds=(0,None),initialize=0) m.x175 = Var(within=Reals,bounds=(0,None),initialize=0) m.x176 = Var(within=Reals,bounds=(0,None),initialize=0) m.x177 = Var(within=Reals,bounds=(0,None),initialize=0) m.x178 = Var(within=Reals,bounds=(0,None),initialize=0) m.x179 = Var(within=Reals,bounds=(0,None),initialize=0) m.x180 = Var(within=Reals,bounds=(0,None),initialize=0) m.x181 = Var(within=Reals,bounds=(0,None),initialize=0) m.x182 = Var(within=Reals,bounds=(0,None),initialize=0) m.x183 = Var(within=Reals,bounds=(0,None),initialize=0) m.x184 = Var(within=Reals,bounds=(0,None),initialize=0) m.x185 = Var(within=Reals,bounds=(0,None),initialize=0) m.x186 = Var(within=Reals,bounds=(0,None),initialize=0) m.x187 = Var(within=Reals,bounds=(0,None),initialize=0) m.x188 = Var(within=Reals,bounds=(0,None),initialize=0) m.x189 = Var(within=Reals,bounds=(0,None),initialize=0) m.x190 = Var(within=Reals,bounds=(0,None),initialize=0) m.x191 = Var(within=Reals,bounds=(0,None),initialize=0) m.x192 = Var(within=Reals,bounds=(0,None),initialize=0) m.x193 = Var(within=Reals,bounds=(0,None),initialize=0) m.x194 = Var(within=Reals,bounds=(0,None),initialize=0) m.x195 = Var(within=Reals,bounds=(0,None),initialize=0) m.x196 = Var(within=Reals,bounds=(0,None),initialize=0) m.x197 = Var(within=Reals,bounds=(0,None),initialize=0) m.x198 = Var(within=Reals,bounds=(0,None),initialize=0) m.x199 = Var(within=Reals,bounds=(0,None),initialize=0) m.x200 = Var(within=Reals,bounds=(0,None),initialize=0) m.x201 = Var(within=Reals,bounds=(0,None),initialize=0) m.x202 = Var(within=Reals,bounds=(0,None),initialize=0) m.x203 = Var(within=Reals,bounds=(0,None),initialize=0) m.x204 = Var(within=Reals,bounds=(0,None),initialize=0) m.x205 = Var(within=Reals,bounds=(0,None),initialize=0) m.x206 = Var(within=Reals,bounds=(0,None),initialize=0) m.x207 = Var(within=Reals,bounds=(0,None),initialize=0) m.x208 = Var(within=Reals,bounds=(0,None),initialize=0) m.x209 = Var(within=Reals,bounds=(0,None),initialize=0) m.x210 = Var(within=Reals,bounds=(0,None),initialize=0) m.x211 = Var(within=Reals,bounds=(0,None),initialize=0) m.x212 = Var(within=Reals,bounds=(0,None),initialize=0) m.x213 = Var(within=Reals,bounds=(0,None),initialize=0) m.x214 = Var(within=Reals,bounds=(0,None),initialize=0) m.x215 = Var(within=Reals,bounds=(0,None),initialize=0) m.x216 = Var(within=Reals,bounds=(0,None),initialize=0) m.x217 = Var(within=Reals,bounds=(0,511),initialize=0) m.x218 = Var(within=Reals,bounds=(0,None),initialize=0) m.x219 = Var(within=Reals,bounds=(0,None),initialize=0) m.x220 = Var(within=Reals,bounds=(0,None),initialize=0) m.x221 = Var(within=Reals,bounds=(0,None),initialize=0) m.x222 = Var(within=Reals,bounds=(0,None),initialize=0) m.x223 = Var(within=Reals,bounds=(0,None),initialize=0) m.x224 = Var(within=Reals,bounds=(0,None),initialize=0) m.x225 = Var(within=Reals,bounds=(0,None),initialize=0) m.x226 = Var(within=Reals,bounds=(0,None),initialize=0) m.x227 = Var(within=Reals,bounds=(0,None),initialize=0) m.x228 = Var(within=Reals,bounds=(0,392),initialize=0) m.x229 = Var(within=Reals,bounds=(0,None),initialize=0) m.x230 = Var(within=Reals,bounds=(0,None),initialize=0) m.x231 = Var(within=Reals,bounds=(0,None),initialize=0) m.x232 = Var(within=Reals,bounds=(0,None),initialize=0) m.x233 = Var(within=Reals,bounds=(0,None),initialize=0) m.x234 = Var(within=Reals,bounds=(0,None),initialize=0) m.x235 = Var(within=Reals,bounds=(0,None),initialize=0) m.x236 = Var(within=Reals,bounds=(0,None),initialize=0) m.x237 = Var(within=Reals,bounds=(0,None),initialize=0) m.x238 = Var(within=Reals,bounds=(0,None),initialize=0) m.x239 = Var(within=Reals,bounds=(0,None),initialize=0) m.x240 = Var(within=Reals,bounds=(0,None),initialize=0) m.x241 = Var(within=Reals,bounds=(0,2168.4510478624),initialize=0) m.x242 = Var(within=Reals,bounds=(0,2168.4510478624),initialize=0) m.x243 = Var(within=Reals,bounds=(0,2168.4510478624),initialize=0) m.x244 = Var(within=Reals,bounds=(0,2168.4510478624),initialize=0) m.x245 = Var(within=Reals,bounds=(0,2168.4510478624),initialize=0) m.x246 = Var(within=Reals,bounds=(0,2168.4510478624),initialize=0) m.x247 = Var(within=Reals,bounds=(0,2168.4510478624),initialize=0) m.x248 = Var(within=Reals,bounds=(0,2168.4510478624),initialize=0) m.x249 = Var(within=Reals,bounds=(0,2168.4510478624),initialize=0) m.x250 = Var(within=Reals,bounds=(0,2168.4510478624),initialize=0) m.x251 = Var(within=Reals,bounds=(0,2168.4510478624),initialize=0) m.x252 = Var(within=Reals,bounds=(0,2168.4510478624),initialize=0) m.x253 = Var(within=Reals,bounds=(0,929.3361633696),initialize=0) m.x254 = Var(within=Reals,bounds=(0,929.3361633696),initialize=0) m.x255 = Var(within=Reals,bounds=(0,929.3361633696),initialize=0) m.x256 = Var(within=Reals,bounds=(0,929.3361633696),initialize=0) m.x257 = Var(within=Reals,bounds=(0,929.3361633696),initialize=0) m.x258 = Var(within=Reals,bounds=(0,929.3361633696),initialize=0) m.x259 = Var(within=Reals,bounds=(0,929.3361633696),initialize=0) m.x260 = Var(within=Reals,bounds=(0,929.3361633696),initialize=0) m.x261 = Var(within=Reals,bounds=(0,929.3361633696),initialize=0) m.x262 = Var(within=Reals,bounds=(0,929.3361633696),initialize=0) m.x263 = Var(within=Reals,bounds=(0,929.3361633696),initialize=0) m.x264 = Var(within=Reals,bounds=(0,929.3361633696),initialize=0) m.x265 = Var(within=Reals,bounds=(0,None),initialize=0) m.x266 = Var(within=Reals,bounds=(0,None),initialize=0) m.x267 = Var(within=Reals,bounds=(0,None),initialize=0) m.x268 = Var(within=Reals,bounds=(0,41354.33401568),initialize=0) m.x269 = Var(within=Reals,bounds=(0,41354.33401568),initialize=0) m.x270 = Var(within=Reals,bounds=(0,41354.33401568),initialize=0) m.x271 = Var(within=Reals,bounds=(0,41354.33401568),initialize=0) m.x272 = Var(within=Reals,bounds=(0,41354.33401568),initialize=0) m.x273 = Var(within=Reals,bounds=(0,41354.33401568),initialize=0) m.x274 = Var(within=Reals,bounds=(0,41354.33401568),initialize=0) m.x275 = Var(within=Reals,bounds=(0,41354.33401568),initialize=0) m.x276 = Var(within=Reals,bounds=(0,41354.33401568),initialize=0) m.x277 = Var(within=Reals,bounds=(0,41354.33401568),initialize=0) m.x278 = Var(within=Reals,bounds=(0,41354.33401568),initialize=0) m.x279 = Var(within=Reals,bounds=(0,41354.33401568),initialize=0) m.x280 = Var(within=Reals,bounds=(0,17723.28600672),initialize=0) m.x281 = Var(within=Reals,bounds=(0,17723.28600672),initialize=0) m.x282 = Var(within=Reals,bounds=(0,17723.28600672),initialize=0) m.x283 = Var(within=Reals,bounds=(0,17723.28600672),initialize=0) m.x284 = Var(within=Reals,bounds=(0,17723.28600672),initialize=0) m.x285 = Var(within=Reals,bounds=(0,17723.28600672),initialize=0) m.x286 = Var(within=Reals,bounds=(0,17723.28600672),initialize=0) m.x287 = Var(within=Reals,bounds=(0,17723.28600672),initialize=0) m.x288 = Var(within=Reals,bounds=(0,17723.28600672),initialize=0) m.x289 = Var(within=Reals,bounds=(0,17723.28600672),initialize=0) m.x290 = Var(within=Reals,bounds=(0,17723.28600672),initialize=0) m.x291 = Var(within=Reals,bounds=(0,17723.28600672),initialize=0) m.x292 = Var(within=Reals,bounds=(0,None),initialize=0) m.x293 = Var(within=Reals,bounds=(0,None),initialize=0) m.x294 = Var(within=Reals,bounds=(0,None),initialize=0) m.x295 = Var(within=Reals,bounds=(0,None),initialize=0) m.x296 = Var(within=Reals,bounds=(0,None),initialize=0) m.x297 = Var(within=Reals,bounds=(0,None),initialize=0) m.x298 = Var(within=Reals,bounds=(0,None),initialize=0) m.x299 = Var(within=Reals,bounds=(0,None),initialize=0) m.x300 = Var(within=Reals,bounds=(0,None),initialize=0) m.x301 = Var(within=Reals,bounds=(0,None),initialize=0) m.x302 = Var(within=Reals,bounds=(0,None),initialize=0) m.x303 = Var(within=Reals,bounds=(0,None),initialize=0) m.x304 = Var(within=Reals,bounds=(0,None),initialize=0) m.x305 = Var(within=Reals,bounds=(0,None),initialize=0) m.x306 = Var(within=Reals,bounds=(0,None),initialize=0) m.x307 = Var(within=Reals,bounds=(0,None),initialize=0) m.x308 = Var(within=Reals,bounds=(0,None),initialize=0) m.x309 = Var(within=Reals,bounds=(0,None),initialize=0) m.x310 = Var(within=Reals,bounds=(0,None),initialize=0) m.x311 = Var(within=Reals,bounds=(0,None),initialize=0) m.x312 = Var(within=Reals,bounds=(0,None),initialize=0) m.x313 = Var(within=Reals,bounds=(0,None),initialize=0) m.x314 = Var(within=Reals,bounds=(0,None),initialize=0) m.x315 = Var(within=Reals,bounds=(0,None),initialize=0) m.x316 = Var(within=Reals,bounds=(0,None),initialize=0) m.x317 = Var(within=Reals,bounds=(0,None),initialize=0) m.x318 = Var(within=Reals,bounds=(0,None),initialize=0) m.x319 = Var(within=Reals,bounds=(0,None),initialize=0) m.x320 = Var(within=Reals,bounds=(0,None),initialize=0) m.x321 = Var(within=Reals,bounds=(0,None),initialize=0) m.x322 = Var(within=Reals,bounds=(0,None),initialize=0) m.x323 = Var(within=Reals,bounds=(0,None),initialize=0) m.x324 = Var(within=Reals,bounds=(0,None),initialize=0) m.x325 = Var(within=Reals,bounds=(0,None),initialize=0) m.x326 = Var(within=Reals,bounds=(0,None),initialize=0) m.x327 = Var(within=Reals,bounds=(0,None),initialize=0) m.x328 = Var(within=Reals,bounds=(0,None),initialize=0) m.x329 = Var(within=Reals,bounds=(0,None),initialize=0) m.x330 = Var(within=Reals,bounds=(0,None),initialize=0) m.x331 = Var(within=Reals,bounds=(0,None),initialize=0) m.x332 = Var(within=Reals,bounds=(0,None),initialize=0) m.x333 = Var(within=Reals,bounds=(0,None),initialize=0) m.x334 = Var(within=Reals,bounds=(0,None),initialize=0) m.x335 = Var(within=Reals,bounds=(0,None),initialize=0) m.x336 = Var(within=Reals,bounds=(0,None),initialize=0) m.x337 = Var(within=Reals,bounds=(0,None),initialize=0) m.x338 = Var(within=Reals,bounds=(0,None),initialize=0) m.x339 = Var(within=Reals,bounds=(0,None),initialize=0) m.x340 = Var(within=Reals,bounds=(0,None),initialize=0) m.x341 = Var(within=Reals,bounds=(0,None),initialize=0) m.x342 = Var(within=Reals,bounds=(0,None),initialize=0) m.x343 = Var(within=Reals,bounds=(0,None),initialize=0) m.x344 = Var(within=Reals,bounds=(0,None),initialize=0) m.x345 = Var(within=Reals,bounds=(0,None),initialize=0) m.x346 = Var(within=Reals,bounds=(0,None),initialize=0) m.x347 = Var(within=Reals,bounds=(0,None),initialize=0) m.x348 = Var(within=Reals,bounds=(0,None),initialize=0) m.x349 = Var(within=Reals,bounds=(0,None),initialize=0) m.x350 = Var(within=Reals,bounds=(0,None),initialize=0) m.x351 = Var(within=Reals,bounds=(0,None),initialize=0) m.x352 = Var(within=Reals,bounds=(0,None),initialize=0) m.x353 = Var(within=Reals,bounds=(0,None),initialize=0) m.x354 = Var(within=Reals,bounds=(0,None),initialize=0) m.x355 = Var(within=Reals,bounds=(0,None),initialize=0) m.x357 = Var(within=Reals,bounds=(0,None),initialize=0) m.x358 = Var(within=Reals,bounds=(0,None),initialize=0) m.x359 = Var(within=Reals,bounds=(0,None),initialize=0) m.x360 = Var(within=Reals,bounds=(0,None),initialize=0) m.x361 = Var(within=Reals,bounds=(0,None),initialize=0) m.x362 = Var(within=Reals,bounds=(0,None),initialize=0) m.x363 = Var(within=Reals,bounds=(0,None),initialize=0) m.x364 = Var(within=Reals,bounds=(0,None),initialize=0) m.x365 = Var(within=Reals,bounds=(0,None),initialize=0) m.x366 = Var(within=Reals,bounds=(0,None),initialize=0) m.x367 = Var(within=Reals,bounds=(0,None),initialize=0) m.x368 = Var(within=Reals,bounds=(0,None),initialize=0) m.x369 = Var(within=Reals,bounds=(0,None),initialize=0) m.x370 = Var(within=Reals,bounds=(0,None),initialize=0) m.x371 = Var(within=Reals,bounds=(0,None),initialize=0) m.x372 = Var(within=Reals,bounds=(0,None),initialize=0) m.x373 = Var(within=Reals,bounds=(0,None),initialize=0) m.x374 = Var(within=Reals,bounds=(0,None),initialize=0) m.x375 = Var(within=Reals,bounds=(0,None),initialize=0) m.x376 = Var(within=Reals,bounds=(0,None),initialize=0) m.x377 = Var(within=Reals,bounds=(0,None),initialize=0) m.x378 = Var(within=Reals,bounds=(0,None),initialize=0) m.x379 = Var(within=Reals,bounds=(0,None),initialize=0) m.x380 = Var(within=Reals,bounds=(0,None),initialize=0) m.x381 = Var(within=Reals,bounds=(0,None),initialize=0) m.x382 = Var(within=Reals,bounds=(0,None),initialize=0) m.x383 = Var(within=Reals,bounds=(0,None),initialize=0) m.x384 = Var(within=Reals,bounds=(0,None),initialize=0) m.x385 = Var(within=Reals,bounds=(0,None),initialize=0) m.x386 = Var(within=Reals,bounds=(0,None),initialize=0) m.x387 = Var(within=Reals,bounds=(0,None),initialize=0) m.x388 = Var(within=Reals,bounds=(0,None),initialize=0) m.x389 = Var(within=Reals,bounds=(0,None),initialize=0) m.x390 = Var(within=Reals,bounds=(0,None),initialize=0) m.x391 = Var(within=Reals,bounds=(0,None),initialize=0) m.x392 = Var(within=Reals,bounds=(0,None),initialize=0) m.x393 = Var(within=Reals,bounds=(0,None),initialize=0) m.x394 = Var(within=Reals,bounds=(0,None),initialize=0) m.x395 = Var(within=Reals,bounds=(0,None),initialize=0) m.x396 = Var(within=Reals,bounds=(0,None),initialize=0) m.x397 = Var(within=Reals,bounds=(0,None),initialize=0) m.x398 = Var(within=Reals,bounds=(0,None),initialize=0) m.x399 = Var(within=Reals,bounds=(0,None),initialize=0) m.x400 = Var(within=Reals,bounds=(0,None),initialize=0) m.x401 = Var(within=Reals,bounds=(0,None),initialize=0) m.x402 = Var(within=Reals,bounds=(0,None),initialize=0) m.x403 = Var(within=Reals,bounds=(0,None),initialize=0) m.x404 = Var(within=Reals,bounds=(0,None),initialize=0) m.obj = Objective(expr= 0.001*m.x1 + 0.001*m.x2 - 0.0574470093527871*m.x5 - 0.0574470093527871*m.x6 - 0.00044516833461718*m.x292 - 0.00044516833461718*m.x293 - 0.00044516833461718*m.x294 - 0.00044516833461718*m.x295 - 0.00044516833461718*m.x296 - 0.00044516833461718*m.x297 - 0.00044516833461718*m.x298 - 0.00044516833461718*m.x299 - 0.00044516833461718*m.x300 - 0.00044516833461718*m.x301 - 0.00044516833461718*m.x302 - 0.00044516833461718*m.x303 - 0.00044516833461718*m.x304 - 0.00044516833461718*m.x305 - 0.00044516833461718*m.x306 - 0.00044516833461718*m.x307 - 0.00044516833461718*m.x308 - 0.00044516833461718*m.x309 - 0.00044516833461718*m.x310 - 0.00044516833461718*m.x311 - 0.00044516833461718*m.x312 - 0.00044516833461718*m.x313 - 0.00044516833461718*m.x314 - 0.00044516833461718*m.x315 - 0.00044516833461718*m.x316 - 0.00044516833461718*m.x317 - 0.00044516833461718*m.x318 - 0.00044516833461718*m.x319 - 0.00044516833461718*m.x320 - 0.00044516833461718*m.x321 - 0.00044516833461718*m.x322 - 0.00044516833461718*m.x323 - 0.00044516833461718*m.x324 - 0.00044516833461718*m.x325 - 0.00044516833461718*m.x326 - 0.00044516833461718*m.x327 - 0.00044516833461718*m.x328 - 0.00044516833461718*m.x329 - 0.00044516833461718*m.x330 - 0.00044516833461718*m.x331 - 0.00044516833461718*m.x332 - 0.00044516833461718*m.x333 - 0.00044516833461718*m.x334 - 0.00044516833461718*m.x335 - 0.00044516833461718*m.x336 - 0.00044516833461718*m.x337 - 0.00044516833461718*m.x338 - 0.00044516833461718*m.x339 - 0.00044516833461718*m.x340 - 0.00044516833461718*m.x341 - 0.00044516833461718*m.x342 - 0.00044516833461718*m.x343 - 0.00044516833461718*m.x344 - 0.00044516833461718*m.x345 - 0.00044516833461718*m.x346 - 0.00044516833461718*m.x347 - 0.00044516833461718*m.x348 - 0.00044516833461718*m.x349 - 0.00044516833461718*m.x350 - 0.00044516833461718*m.x351 - 0.00044516833461718*m.x352 - 0.00044516833461718*m.x353 - 0.00044516833461718*m.x354 - 0.00044516833461718*m.x355, sense=maximize) m.c2 = Constraint(expr= m.x1 - 1.086*m.x55 - 1.544*m.x56 - 0.45*m.x57 - 0.485*m.x58 - 0.45*m.x59 - 0.72*m.x60 - 0.07*m.x61 - 0.65*m.x62 - 0.5*m.x63 - 0.45*m.x73 - 0.485*m.x74 - 0.45*m.x75 - 0.72*m.x76 - 0.65*m.x77 - 0.5*m.x78 + 0.675*m.x85 + 0.7275*m.x86 + 0.675*m.x87 + 1.08*m.x88 + 0.975*m.x89 + 0.75*m.x90 - 1.25*m.x97 - 0.95*m.x98 - 2.5*m.x99 - 1.25*m.x103 - 0.95*m.x104 - 2.5*m.x105 + 2.5*m.x109 + 1.9*m.x110 + 5*m.x111 + m.x115 == 0) m.c3 = Constraint(expr= m.x2 - 1.086*m.x64 - 1.544*m.x65 - 0.45*m.x66 - 0.485*m.x67 - 0.45*m.x68 - 0.72*m.x69 - 0.07*m.x70 - 0.65*m.x71 - 0.5*m.x72 - 0.45*m.x79 - 0.485*m.x80 - 0.45*m.x81 - 0.72*m.x82 - 0.65*m.x83 - 0.5*m.x84 + 0.675*m.x91 + 0.7275*m.x92 + 0.675*m.x93 + 1.08*m.x94 + 0.975*m.x95 + 0.75*m.x96 - 1.25*m.x100 - 0.95*m.x101 - 2.5*m.x102 - 1.25*m.x106 - 0.95*m.x107 - 2.5*m.x108 + 2.5*m.x112 + 1.9*m.x113 + 5*m.x114 + m.x116 == 0) m.c4 = Constraint(expr= - m.x1 + m.x3 + 0.225*m.x85 + 0.2425*m.x86 + 0.225*m.x87 + 0.36*m.x88 + 0.325*m.x89 + 0.25*m.x90 - 1.25*m.x109 - 0.95*m.x110 - 2.5*m.x111 == 0) m.c5 = Constraint(expr= - m.x2 + m.x4 + 0.225*m.x91 + 0.2425*m.x92 + 0.225*m.x93 + 0.36*m.x94 + 0.325*m.x95 + 0.25*m.x96 - 1.25*m.x112 - 0.95*m.x113 - 2.5*m.x114 == 0) m.c6 = Constraint(expr= 74.4583*m.x209 + 70.01583*m.x211 + 34.507355*m.x212 + 74.4583*m.x213 + 70.01583*m.x214 + 78.806915*m.x215 - 30.72187*m.x216 + 40.263795*m.x219 - m.x292 + m.x324 == 0) m.c7 = Constraint(expr= 65.19794*m.x209 - 37.635855*m.x211 + 6.38214*m.x212 + 65.19794*m.x213 - 37.635855*m.x214 - 53.716345*m.x215 - 42.48503*m.x216 + 23.71403*m.x219 - m.x293 + m.x325 == 0) m.c8 = Constraint(expr= - 71.20466*m.x209 - 49.962145*m.x210 - 87.97342*m.x211 + 7.039125*m.x212 - 71.20466*m.x213 - 87.97342*m.x214 - 60.50519*m.x215 - 17.300605*m.x216 + 163.43284*m.x217 + 163.43284*m.x218 - 36.822445*m.x219 - m.x294 + m.x326 == 0) m.c9 = Constraint(expr= - 38.1677*m.x209 - 53.528635*m.x210 - 109.18465*m.x211 + 26.122975*m.x212 - 38.1677*m.x213 - 109.18465*m.x214 + 76.366685*m.x215 + 4.724035*m.x216 + 56.81356*m.x217 + 56.81356*m.x218 - 29.53304*m.x219 - m.x295 + m.x327 == 0) m.c10 = Constraint(expr= - 48.8046*m.x209 + 178.355785*m.x210 - 67.5756*m.x211 - 41.98447*m.x212 - 48.8046*m.x213 - 67.5756*m.x214 - 51.18226*m.x215 - 39.950945*m.x216 - 325.9897*m.x217 - 325.9897*m.x218 + 1.783245*m.x219 - m.x296 + m.x328 == 0) m.c11 = Constraint(expr= - 106.900845*m.x209 - 19.803405*m.x210 + 36.60345*m.x211 + 33.97551*m.x212 - 106.900845*m.x213 + 36.60345*m.x214 - 10.042485*m.x215 + 50.087285*m.x216 - 34.72635*m.x217 - 34.72635*m.x218 - 4.94303*m.x219 - m.x297 + m.x329 == 0) m.c12 = Constraint(expr= - 42.42246*m.x209 - 3.87934*m.x210 + 54.717465*m.x211 - 61.913015*m.x212 - 42.42246*m.x213 + 54.717465*m.x214 + 3.785485*m.x215 + 72.64377*m.x216 + 13.7654*m.x217 + 13.7654*m.x218 - 104.898605*m.x219 - m.x298 + m.x330 == 0) m.c13 = Constraint(expr= - 35.72747*m.x209 - 129.426045*m.x210 + 56.281715*m.x211 - 26.560965*m.x212 - 35.72747*m.x213 + 56.281715*m.x214 - 50.587845*m.x215 + 52.93422*m.x216 - 610.99605*m.x217 - 610.99605*m.x218 + 88.8494*m.x219 - m.x299 + m.x331 == 0) m.c14 = Constraint(expr= 299.27231*m.x209 - 199.03517*m.x210 + 51.463825*m.x211 - 48.49175*m.x212 + 299.27231*m.x213 + 51.463825*m.x214 + 81.810275*m.x215 - 67.70074*m.x216 - 79.83932*m.x217 - 79.83932*m.x218 + 16.58105*m.x219 - m.x300 + m.x332 == 0) m.c15 = Constraint(expr= - 50.24371*m.x209 - 133.77466*m.x210 + 127.611515*m.x211 + 25.09057*m.x212 - 50.24371*m.x213 + 127.611515*m.x214 + 58.283955*m.x215 + 45.80124*m.x216 + 473.90518*m.x217 + 473.90518*m.x218 - 5.44359*m.x219 - m.x301 + m.x333 == 0) m.c16 = Constraint(expr= - 18.176585*m.x209 - 90.60136*m.x210 + 31.78556*m.x211 + 55.0616*m.x212 - 18.176585*m.x213 + 31.78556*m.x214 - 1.18883*m.x215 + 106.74442*m.x216 + 577.802665*m.x217 + 577.802665*m.x218 + 57.845965*m.x219 - m.x302 + m.x334 == 0) m.c17 = Constraint(expr= - 21.71179*m.x209 + 115.097515*m.x210 - 7.602255*m.x211 - 46.207945*m.x212 - 21.71179*m.x213 - 7.602255*m.x214 - 88.943255*m.x215 + 71.548795*m.x216 - 29.814605*m.x217 - 29.814605*m.x218 - 55.530875*m.x219 - m.x303 + m.x335 == 0) m.c18 = Constraint(expr= 8.57209*m.x209 + 96.138805*m.x210 + 63.101845*m.x211 - 9.01008*m.x212 + 8.57209*m.x213 + 63.101845*m.x214 + 38.91854*m.x215 - 116.286345*m.x216 - 430.4816*m.x217 - 430.4816*m.x218 + 44.11185*m.x219 - m.x304 + m.x336 == 0) m.c19 = Constraint(expr= 5.725155*m.x209 + 126.45397*m.x210 - 4.536325*m.x211 + 29.72075*m.x212 + 5.725155*m.x213 - 4.536325*m.x214 - 21.242515*m.x215 - 53.716345*m.x216 + 591.9122*m.x217 + 591.9122*m.x218 - 29.65818*m.x219 - m.x305 + m.x337 == 0) m.c20 = Constraint(expr= - 25.121855*m.x209 + 245.993955*m.x210 - 72.14321*m.x211 - 54.905175*m.x212 - 25.121855*m.x213 - 72.14321*m.x214 - 160.648475*m.x215 - 79.27619*m.x216 - 67.231465*m.x217 - 67.231465*m.x218 - 63.539835*m.x219 - m.x306 + m.x338 == 0) m.c21 = Constraint(expr= 5.287165*m.x209 - 310.753905*m.x210 - 105.18017*m.x211 + 71.110805*m.x212 + 5.287165*m.x213 - 105.18017*m.x214 + 160.11663*m.x215 + 42.92302*m.x216 - 414.2134*m.x217 - 414.2134*m.x218 + 57.25155*m.x219 - m.x307 + m.x339 == 0) m.c22 = Constraint(expr= 74.4583*m.x220 + 70.01583*m.x222 + 34.507355*m.x223 + 74.4583*m.x224 + 70.01583*m.x225 + 78.806915*m.x226 - 30.72187*m.x227 + 40.263795*m.x230 - m.x308 + m.x340 == 0) m.c23 = Constraint(expr= 65.19794*m.x220 - 37.635855*m.x222 + 6.38214*m.x223 + 65.19794*m.x224 - 37.635855*m.x225 - 53.716345*m.x226 - 42.48503*m.x227 + 23.71403*m.x230 - m.x309 + m.x341 == 0) m.c24 = Constraint(expr= - 71.20466*m.x220 - 49.962145*m.x221 - 87.97342*m.x222 + 7.039125*m.x223 - 71.20466*m.x224 - 87.97342*m.x225 - 60.50519*m.x226 - 17.300605*m.x227 + 163.43284*m.x228 + 163.43284*m.x229 - 36.822445*m.x230 - m.x310 + m.x342 == 0) m.c25 = Constraint(expr= - 38.1677*m.x220 - 53.528635*m.x221 - 109.18465*m.x222 + 26.122975*m.x223 - 38.1677*m.x224 - 109.18465*m.x225 + 76.366685*m.x226 + 4.724035*m.x227 + 56.81356*m.x228 + 56.81356*m.x229 - 29.53304*m.x230 - m.x311 + m.x343 == 0) m.c26 = Constraint(expr= - 48.8046*m.x220 + 178.355785*m.x221 - 67.5756*m.x222 - 41.98447*m.x223 - 48.8046*m.x224 - 67.5756*m.x225 - 51.18226*m.x226 - 39.950945*m.x227 - 325.9897*m.x228 - 325.9897*m.x229 + 1.783245*m.x230 - m.x312 + m.x344 == 0) m.c27 = Constraint(expr= - 106.900845*m.x220 - 19.803405*m.x221 + 36.60345*m.x222 + 33.97551*m.x223 - 106.900845*m.x224 + 36.60345*m.x225 - 10.042485*m.x226 + 50.087285*m.x227 - 34.72635*m.x228 - 34.72635*m.x229 - 4.94303*m.x230 - m.x313 + m.x345 == 0) m.c28 = Constraint(expr= - 42.42246*m.x220 - 3.87934*m.x221 + 54.717465*m.x222 - 61.913015*m.x223 - 42.42246*m.x224 + 54.717465*m.x225 + 3.785485*m.x226 + 72.64377*m.x227 + 13.7654*m.x228 + 13.7654*m.x229 - 104.898605*m.x230 - m.x314 + m.x346 == 0) m.c29 = Constraint(expr= - 35.72747*m.x220 - 129.426045*m.x221 + 56.281715*m.x222 - 26.560965*m.x223 - 35.72747*m.x224 + 56.281715*m.x225 - 50.587845*m.x226 + 52.93422*m.x227 - 610.99605*m.x228 - 610.99605*m.x229 + 88.8494*m.x230 - m.x315 + m.x347 == 0) m.c30 = Constraint(expr= 299.27231*m.x220 - 199.03517*m.x221 + 51.463825*m.x222 - 48.49175*m.x223 + 299.27231*m.x224 + 51.463825*m.x225 + 81.810275*m.x226 - 67.70074*m.x227 - 79.83932*m.x228 - 79.83932*m.x229 + 16.58105*m.x230 - m.x316 + m.x348 == 0) m.c31 = Constraint(expr= - 50.24371*m.x220 - 133.77466*m.x221 + 127.611515*m.x222 + 25.09057*m.x223 - 50.24371*m.x224 + 127.611515*m.x225 + 58.283955*m.x226 + 45.80124*m.x227 + 473.90518*m.x228 + 473.90518*m.x229 - 5.44359*m.x230 - m.x317 + m.x349 == 0) m.c32 = Constraint(expr= - 18.176585*m.x220 - 90.60136*m.x221 + 31.78556*m.x222 + 55.0616*m.x223 - 18.176585*m.x224 + 31.78556*m.x225 - 1.18883*m.x226 + 106.74442*m.x227 + 577.802665*m.x228 + 577.802665*m.x229 + 57.845965*m.x230 - m.x318 + m.x350 == 0) m.c33 = Constraint(expr= - 21.71179*m.x220 + 115.097515*m.x221 - 7.602255*m.x222 - 46.207945*m.x223 - 21.71179*m.x224 - 7.602255*m.x225 - 88.943255*m.x226 + 71.548795*m.x227 - 29.814605*m.x228 - 29.814605*m.x229 - 55.530875*m.x230 - m.x319 + m.x351 == 0) m.c34 = Constraint(expr= 8.57209*m.x220 + 96.138805*m.x221 + 63.101845*m.x222 - 9.01008*m.x223 + 8.57209*m.x224 + 63.101845*m.x225 + 38.91854*m.x226 - 116.286345*m.x227 - 430.4816*m.x228 - 430.4816*m.x229 + 44.11185*m.x230 - m.x320 + m.x352 == 0) m.c35 = Constraint(expr= 5.725155*m.x220 + 126.45397*m.x221 - 4.536325*m.x222 + 29.72075*m.x223 + 5.725155*m.x224 - 4.536325*m.x225 - 21.242515*m.x226 - 53.716345*m.x227 + 591.9122*m.x228 + 591.9122*m.x229 - 29.65818*m.x230 - m.x321 + m.x353 == 0) m.c36 = Constraint(expr= - 25.121855*m.x220 + 245.993955*m.x221 - 72.14321*m.x222 - 54.905175*m.x223 - 25.121855*m.x224 - 72.14321*m.x225 - 160.648475*m.x226 - 79.27619*m.x227 - 67.231465*m.x228 - 67.231465*m.x229 - 63.539835*m.x230 - m.x322 + m.x354 == 0) m.c37 = Constraint(expr= 5.287165*m.x220 - 310.753905*m.x221 - 105.18017*m.x222 + 71.110805*m.x223 + 5.287165*m.x224 - 105.18017*m.x225 + 160.11663*m.x226 + 42.92302*m.x227 - 414.2134*m.x228 - 414.2134*m.x229 + 57.25155*m.x230 - m.x323 + m.x355 == 0) m.c38 = Constraint(expr= - 75*m.x7 - 75*m.x8 - 75*m.x9 - 75*m.x10 - 75*m.x11 - 75*m.x12 - 75*m.x13 - 75*m.x14 - 75*m.x15 - 75*m.x16 - 75*m.x17 - 75*m.x18 - 20*m.x31 - 20*m.x32 - 20*m.x33 - 20*m.x34 - 20*m.x35 - 20*m.x36 - 20*m.x37 - 20*m.x38 - 20*m.x39 - 20*m.x40 - 20*m.x41 - 20*m.x42 + m.x115 - 183.268417301075*m.x117 - 183.268417301075*m.x118 - 163.43261191348*m.x119 - 163.43261191348*m.x120 - 163.43261191348*m.x121 - 163.43261191348*m.x122 - 60.966*m.x123 - 60.966*m.x124 - 30.096*m.x125 - 30.096*m.x126 - 254.360840590973*m.x127 - 180.6012*m.x129 - 180.6012*m.x130 - 109.002*m.x131 - 109.002*m.x132 - 16.8*m.x133 - 16.8*m.x134 - 504.114*m.x135 - 504.114*m.x136 - 504.114*m.x137 - 504.114*m.x138 - 155.269590643677*m.x139 - 119.649644624064*m.x140 - 140.349836320895*m.x141 - 119.649644624064*m.x142 - 143.169496895445*m.x143 - 111.632543664972*m.x144 - 129.513271502313*m.x145 - 111.632543664972*m.x146 - 155.269590643677*m.x147 - 119.649644624064*m.x148 - 140.349836320895*m.x149 - 119.649644624064*m.x150 - 155.269590643677*m.x151 - 119.649644624064*m.x152 - 140.349836320895*m.x153 - 119.649644624064*m.x154 - 143.169496895445*m.x155 - 111.632543664972*m.x156 - 129.513271502313*m.x157 - 111.632543664972*m.x158 - 155.269590643677*m.x159 - 119.649644624064*m.x160 - 140.349836320895*m.x161 - 119.649644624064*m.x162 - 2.25*m.x237 - 2.25*m.x238 - 0.75*m.x241 - 0.75*m.x242 - 0.75*m.x243 - 1.5*m.x244 - 1.5*m.x245 - 0.75*m.x246 - 0.75*m.x247 - 0.75*m.x248 - 0.75*m.x249 - 1.5*m.x250 - 1.5*m.x251 - 0.75*m.x252 - 5300*m.x265 - 15890*m.x266 == 0) m.c39 = Constraint(expr= - 75*m.x19 - 75*m.x20 - 75*m.x21 - 75*m.x22 - 75*m.x23 - 75*m.x24 - 75*m.x25 - 75*m.x26 - 75*m.x27 - 75*m.x28 - 75*m.x29 - 75*m.x30 - 20*m.x43 - 20*m.x44 - 20*m.x45 - 20*m.x46 - 20*m.x47 - 20*m.x48 - 20*m.x49 - 20*m.x50 - 20*m.x51 - 20*m.x52 - 20*m.x53 - 20*m.x54 + m.x116 - 183.268417301075*m.x163 - 183.268417301075*m.x164 - 163.43261191348*m.x165 - 163.43261191348*m.x166 - 163.43261191348*m.x167 - 163.43261191348*m.x168 - 60.966*m.x169 - 60.966*m.x170 - 30.096*m.x171 - 30.096*m.x172 - 254.360840590973*m.x173 - 180.6012*m.x175 - 180.6012*m.x176 - 109.002*m.x177 - 109.002*m.x178 - 16.8*m.x179 - 16.8*m.x180 - 504.114*m.x181 - 504.114*m.x182 - 504.114*m.x183 - 504.114*m.x184 - 155.269590643677*m.x185 - 119.649644624064*m.x186 - 140.349836320895*m.x187 - 119.649644624064*m.x188 - 143.169496895445*m.x189 - 111.632543664972*m.x190 - 129.513271502313*m.x191 - 111.632543664972*m.x192 - 155.269590643677*m.x193 - 119.649644624064*m.x194 - 140.349836320895*m.x195 - 119.649644624064*m.x196 - 155.269590643677*m.x197 - 119.649644624064*m.x198 - 140.349836320895*m.x199 - 119.649644624064*m.x200 - 143.169496895445*m.x201 - 111.632543664972*m.x202 - 129.513271502313*m.x203 - 111.632543664972*m.x204 - 155.269590643677*m.x205 - 119.649644624064*m.x206 - 140.349836320895*m.x207 - 119.649644624064*m.x208 - 2.25*m.x239 - 2.25*m.x240 - 0.75*m.x253 - 0.75*m.x254 - 0.75*m.x255 - 1.5*m.x256 - 1.5*m.x257 - 0.75*m.x258 - 0.75*m.x259 - 0.75*m.x260 - 0.75*m.x261 - 1.5*m.x262 - 1.5*m.x263 - 0.75*m.x264 - 15890*m.x267 == 0) m.c40 = Constraint(expr= - m.x55 + 854.719106519546*m.x117 + 854.719106519546*m.x118 == 0) m.c41 = Constraint(expr= - m.x56 + 967.287547768436*m.x119 + 967.287547768436*m.x120 + 967.287547768436*m.x121 + 967.287547768436*m.x122 == 0) m.c42 = Constraint(expr= - m.x57 - m.x73 + m.x85 + 452.573*m.x125 + 452.573*m.x126 == 0) m.c43 = Constraint(expr= - m.x58 - m.x74 + m.x86 + 1772.19713847098*m.x127 == 0) m.c44 = Constraint(expr= - m.x59 - m.x75 + m.x87 + 822.86*m.x131 + 822.86*m.x132 == 0) m.c45 = Constraint(expr= - m.x60 - m.x76 + m.x88 + 493.716*m.x133 + 493.716*m.x134 == 0) m.c46 = Constraint(expr= - m.x61 + 38063.9849154703*m.x135 + 38063.9849154703*m.x136 == 0) m.c47 = Constraint(expr= - m.x62 - m.x77 + m.x89 + 3045.11879323763*m.x137 + 3045.11879323763*m.x138 == 0) m.c48 = Constraint(expr= - m.x63 - m.x78 + m.x90 + 1736.62555730054*m.x139 + 1125.73553711019*m.x140 + 1479.20467962168*m.x141 + 1125.73553711019*m.x142 + 1530.48508703852*m.x143 + 987.97116168261*m.x144 + 1297.68854460025*m.x145 + 987.97116168261*m.x146 + 1736.62555730054*m.x147 + 1125.73553711019*m.x148 + 1479.20467962168*m.x149 + 1125.73553711019*m.x150 + 1736.62555730054*m.x151 + 1125.73553711019*m.x152 + 1479.20467962168*m.x153 + 1125.73553711019*m.x154 + 1530.48508703852*m.x155 + 987.97116168261*m.x156 + 1297.68854460025*m.x157 + 987.97116168261*m.x158 + 1736.62555730054*m.x159 + 1125.73553711019*m.x160 + 1479.20467962168*m.x161 + 1125.73553711019*m.x162 == 0) m.c49 = Constraint(expr= - m.x64 + 854.719106519546*m.x163 + 854.719106519546*m.x164 == 0) m.c50 = Constraint(expr= - m.x65 + 967.287547768436*m.x165 + 967.287547768436*m.x166 + 967.287547768436*m.x167 + 967.287547768436*m.x168 == 0) m.c51 = Constraint(expr= - m.x66 - m.x79 + m.x91 + 452.573*m.x171 + 452.573*m.x172 == 0) m.c52 = Constraint(expr= - m.x67 - m.x80 + m.x92 + 1772.19713847098*m.x173 == 0) m.c53 = Constraint(expr= - m.x68 - m.x81 + m.x93 + 822.86*m.x177 + 822.86*m.x178 == 0) m.c54 = Constraint(expr= - m.x69 - m.x82 + m.x94 + 493.716*m.x179 + 493.716*m.x180 == 0) m.c55 = Constraint(expr= - m.x70 + 38063.9849154703*m.x181 + 38063.9849154703*m.x182 == 0) m.c56 = Constraint(expr= - m.x71 - m.x83 + m.x95 + 3045.11879323763*m.x183 + 3045.11879323763*m.x184 == 0) m.c57 = Constraint(expr= - m.x72 - m.x84 + m.x96 + 1736.62555730054*m.x185 + 1125.73553711019*m.x186 + 1479.20467962168*m.x187 + 1125.73553711019*m.x188 + 1530.48508703852*m.x189 + 987.97116168261*m.x190 + 1297.68854460025*m.x191 + 987.97116168261*m.x192 + 1736.62555730054*m.x193 + 1125.73553711019*m.x194 + 1479.20467962168*m.x195 + 1125.73553711019*m.x196 + 1736.62555730054*m.x197 + 1125.73553711019*m.x198 + 1479.20467962168*m.x199 + 1125.73553711019*m.x200 + 1530.48508703852*m.x201 + 987.97116168261*m.x202 + 1297.68854460025*m.x203 + 987.97116168261*m.x204 + 1736.62555730054*m.x205 + 1125.73553711019*m.x206 + 1479.20467962168*m.x207 + 1125.73553711019*m.x208 == 0) m.c58 = Constraint(expr= - m.x97 - m.x103 + m.x109 + 750*m.x232 == 0) m.c59 = Constraint(expr= - m.x98 - m.x104 + m.x110 + 550*m.x233 == 0) m.c60 = Constraint(expr= - m.x99 - m.x105 + m.x111 + 55.4*m.x231 + 35.2*m.x232 + 26*m.x233 == 0) m.c61 = Constraint(expr= - m.x100 - m.x106 + m.x112 + 750*m.x235 == 0) m.c62 = Constraint(expr= - m.x101 - m.x107 + m.x113 + 550*m.x236 == 0) m.c63 = Constraint(expr= - m.x102 - m.x108 + m.x114 + 55.4*m.x234 + 35.2*m.x235 + 26*m.x236 == 0) m.c64 = Constraint(expr= - 0.0254473333333333*m.x3 + m.x73 >= 1590.45712440009) m.c65 = Constraint(expr= - 0.0152031340206186*m.x3 + m.x74 >= 36928.459489312) m.c66 = Constraint(expr= - 0.00602046666666667*m.x3 + m.x75 >= 11522.9955108483) m.c67 = Constraint(expr= - 0.0214065347222222*m.x3 + m.x76 >= -4471.05545332801) m.c68 = Constraint(expr= - 0.0638093076923077*m.x3 + m.x77 >= -3933.32854216354) m.c69 = Constraint(expr= - 0.1485876*m.x3 + m.x78 >= 138311.983715238) m.c70 = Constraint(expr= - 0.0254473333333333*m.x4 + m.x79 >= 681.624481885752) m.c71 = Constraint(expr= - 0.0152031340206186*m.x4 + m.x80 >= 15826.4826382766) m.c72 = Constraint(expr= - 0.00602046666666667*m.x4 + m.x81 >= 4938.42664750639) m.c73 = Constraint(expr= - 0.0214065347222222*m.x4 + m.x82 >= -1916.16662285486) m.c74 = Constraint(expr= - 0.0638093076923077*m.x4 + m.x83 >= -1685.7122323558) m.c75 = Constraint(expr= - 0.1485876*m.x4 + m.x84 >= 59276.5644493876) m.c76 = Constraint(expr= - 0.119026488*m.x3 + m.x103 >= -20137.6590455391) m.c77 = Constraint(expr= - 0.1043406*m.x3 + m.x104 >= -20268.5473801287) m.c78 = Constraint(expr= - 0.007127736*m.x3 + m.x105 >= 2011.33342770906) m.c79 = Constraint(expr= - 0.119026488*m.x4 + m.x106 >= -8630.42530523105) m.c80 = Constraint(expr= - 0.1043406*m.x4 + m.x107 >= -8686.52030576945) m.c81 = Constraint(expr= - 0.007127736*m.x4 + m.x108 >= 862.000040446738) m.c82 = Constraint(expr= - 691.2024*m.x117 - 691.2024*m.x118 - 691.2024*m.x119 - 691.2024*m.x120 - 691.2024*m.x121 - 691.2024*m.x122 - 409.78428*m.x125 - 409.78428*m.x126 - 691.2024*m.x127 - 691.2024*m.x128 - 2212.999684*m.x129 - 2212.999684*m.x130 - 123.429*m.x133 - 123.429*m.x134 - 691.2024*m.x135 - 691.2024*m.x136 - 691.2024*m.x137 - 691.2024*m.x138 - 1173.5118246115*m.x139 - 760.515992627875*m.x140 - 997.603156023924*m.x141 - 760.515992627875*m.x142 - 1031.78769912709*m.x143 - 670.102179228205*m.x144 - 876.584314895534*m.x145 - 670.102179228205*m.x146 - 1173.5118246115*m.x147 - 760.515992627875*m.x148 - 997.603156023924*m.x149 - 760.515992627875*m.x150 - 1173.5118246115*m.x151 - 760.515992627875*m.x152 - 997.603156023924*m.x153 - 760.515992627875*m.x154 - 1031.78769912709*m.x155 - 670.102179228205*m.x156 - 876.584314895534*m.x157 - 670.102179228205*m.x158 - 1173.5118246115*m.x159 - 760.515992627875*m.x160 - 997.603156023924*m.x161 - 760.515992627875*m.x162 + 2800*m.x231 + 2300*m.x232 + 1500*m.x233 <= 0) m.c83 = Constraint(expr= - 997.17229093947*m.x117 - 997.17229093947*m.x118 - 5425.93884*m.x123 - 5425.93884*m.x124 - 1432.61445325499*m.x127 - 1234.29*m.x131 - 1234.29*m.x132 - 1205.54675394556*m.x135 - 1205.54675394556*m.x136 - 1205.54675394556*m.x137 - 1205.54675394556*m.x138 - 345.6012*m.x139 - 224.64078*m.x140 - 293.76102*m.x141 - 224.64078*m.x142 - 304.129056*m.x143 - 196.992684*m.x144 - 258.048896*m.x145 - 196.992684*m.x146 - 345.6012*m.x147 - 224.64078*m.x148 - 293.76102*m.x149 - 224.64078*m.x150 - 345.6012*m.x151 - 224.64078*m.x152 - 293.76102*m.x153 - 224.64078*m.x154 - 304.129056*m.x155 - 196.992684*m.x156 - 258.048896*m.x157 - 196.992684*m.x158 - 345.6012*m.x159 - 224.64078*m.x160 - 293.76102*m.x161 - 224.64078*m.x162 + 2800*m.x231 + 2300*m.x232 + 1500*m.x233 <= 0) m.c84 = Constraint(expr= - 691.2024*m.x163 - 691.2024*m.x164 - 691.2024*m.x165 - 691.2024*m.x166 - 691.2024*m.x167 - 691.2024*m.x168 - 409.78428*m.x171 - 409.78428*m.x172 - 691.2024*m.x173 - 691.2024*m.x174 - 2212.999684*m.x175 - 2212.999684*m.x176 - 123.429*m.x179 - 123.429*m.x180 - 691.2024*m.x181 - 691.2024*m.x182 - 691.2024*m.x183 - 691.2024*m.x184 - 1173.5118246115*m.x185 - 760.515992627875*m.x186 - 997.603156023924*m.x187 - 760.515992627875*m.x188 - 1031.78769912709*m.x189 - 670.102179228205*m.x190 - 876.584314895534*m.x191 - 670.102179228205*m.x192 - 1173.5118246115*m.x193 - 760.515992627875*m.x194 - 997.603156023924*m.x195 - 760.515992627875*m.x196 - 1173.5118246115*m.x197 - 760.515992627875*m.x198 - 997.603156023924*m.x199 - 760.515992627875*m.x200 - 1031.78769912709*m.x201 - 670.102179228205*m.x202 - 876.584314895534*m.x203 - 670.102179228205*m.x204 - 1173.5118246115*m.x205 - 760.515992627875*m.x206 - 997.603156023924*m.x207 - 760.515992627875*m.x208 + 2800*m.x234 + 2300*m.x235 + 1500*m.x236 <= 0) m.c85 = Constraint(expr= - 997.17229093947*m.x163 - 997.17229093947*m.x164 - 5425.93884*m.x169 - 5425.93884*m.x170 - 1432.61445325499*m.x173 - 1234.29*m.x177 - 1234.29*m.x178 - 1205.54675394556*m.x181 - 1205.54675394556*m.x182 - 1205.54675394556*m.x183 - 1205.54675394556*m.x184 - 345.6012*m.x185 - 224.64078*m.x186 - 293.76102*m.x187 - 224.64078*m.x188 - 304.129056*m.x189 - 196.992684*m.x190 - 258.048896*m.x191 - 196.992684*m.x192 - 345.6012*m.x193 - 224.64078*m.x194 - 293.76102*m.x195 - 224.64078*m.x196 - 345.6012*m.x197 - 224.64078*m.x198 - 293.76102*m.x199 - 224.64078*m.x200 - 304.129056*m.x201 - 196.992684*m.x202 - 258.048896*m.x203 - 196.992684*m.x204 - 345.6012*m.x205 - 224.64078*m.x206 - 293.76102*m.x207 - 224.64078*m.x208 + 2800*m.x234 + 2300*m.x235 + 1500*m.x236 <= 0) m.c86 = Constraint(expr= - 83.93172*m.x117 - 83.93172*m.x118 - 83.93172*m.x119 - 83.93172*m.x120 - 83.93172*m.x121 - 83.93172*m.x122 - 68.29738*m.x125 - 68.29738*m.x126 - 83.93172*m.x127 - 83.93172*m.x128 - 268.7213902*m.x129 - 268.7213902*m.x130 - 1.23429*m.x133 - 1.23429*m.x134 - 83.93172*m.x135 - 83.93172*m.x136 - 83.93172*m.x137 - 83.93172*m.x138 - 11.735118246115*m.x139 - 7.60515992627875*m.x140 - 9.97603156023924*m.x141 - 7.60515992627875*m.x142 - 10.3178769912709*m.x143 - 6.70102179228205*m.x144 - 8.76584314895534*m.x145 - 6.70102179228205*m.x146 - 11.735118246115*m.x147 - 7.60515992627875*m.x148 - 9.97603156023924*m.x149 - 7.60515992627875*m.x150 - 11.735118246115*m.x151 - 7.60515992627875*m.x152 - 9.97603156023924*m.x153 - 7.60515992627875*m.x154 - 10.3178769912709*m.x155 - 6.70102179228205*m.x156 - 8.76584314895534*m.x157 - 6.70102179228205*m.x158 - 11.735118246115*m.x159 - 7.60515992627875*m.x160 - 9.97603156023924*m.x161 - 7.60515992627875*m.x162 + 256*m.x231 + 210*m.x232 + 135*m.x233 - m.x237 <= 0) m.c87 = Constraint(expr= - 9.97172290939471*m.x117 - 9.97172290939471*m.x118 - 968.91765*m.x123 - 968.91765*m.x124 - 14.3261445325499*m.x127 - 246.858*m.x131 - 246.858*m.x132 - 67.2583762925165*m.x135 - 67.2583762925165*m.x136 - 67.2583762925165*m.x137 - 67.2583762925165*m.x138 - 41.96586*m.x139 - 27.277809*m.x140 - 35.670981*m.x141 - 27.277809*m.x142 - 36.9299568*m.x143 - 23.9205402*m.x144 - 31.3345088*m.x145 - 23.9205402*m.x146 - 41.96586*m.x147 - 27.277809*m.x148 - 35.670981*m.x149 - 27.277809*m.x150 - 41.96586*m.x151 - 27.277809*m.x152 - 35.670981*m.x153 - 27.277809*m.x154 - 36.9299568*m.x155 - 23.9205402*m.x156 - 31.3345088*m.x157 - 23.9205402*m.x158 - 41.96586*m.x159 - 27.277809*m.x160 - 35.670981*m.x161 - 27.277809*m.x162 + 256*m.x231 + 210*m.x232 + 135*m.x233 - m.x238 <= 0) m.c88 = Constraint(expr= - 83.93172*m.x163 - 83.93172*m.x164 - 83.93172*m.x165 - 83.93172*m.x166 - 83.93172*m.x167 - 83.93172*m.x168 - 68.29738*m.x171 - 68.29738*m.x172 - 83.93172*m.x173 - 83.93172*m.x174 - 268.7213902*m.x175 - 268.7213902*m.x176 - 1.23429*m.x179 - 1.23429*m.x180 - 83.93172*m.x181 - 83.93172*m.x182 - 83.93172*m.x183 - 83.93172*m.x184 - 11.735118246115*m.x185 - 7.60515992627875*m.x186 - 9.97603156023924*m.x187 - 7.60515992627875*m.x188 - 10.3178769912709*m.x189 - 6.70102179228205*m.x190 - 8.76584314895534*m.x191 - 6.70102179228205*m.x192 - 11.735118246115*m.x193 - 7.60515992627875*m.x194 - 9.97603156023924*m.x195 - 7.60515992627875*m.x196 - 11.735118246115*m.x197 - 7.60515992627875*m.x198 - 9.97603156023924*m.x199 - 7.60515992627875*m.x200 - 10.3178769912709*m.x201 - 6.70102179228205*m.x202 - 8.76584314895534*m.x203 - 6.70102179228205*m.x204 - 11.735118246115*m.x205 - 7.60515992627875*m.x206 - 9.97603156023924*m.x207 - 7.60515992627875*m.x208 + 256*m.x234 + 210*m.x235 + 135*m.x236 - m.x239 <= 0) m.c89 = Constraint(expr= - 9.97172290939471*m.x163 - 9.97172290939471*m.x164 - 968.91765*m.x169 - 968.91765*m.x170 - 14.3261445325499*m.x173 - 246.858*m.x177 - 246.858*m.x178 - 67.2583762925165*m.x181 - 67.2583762925165*m.x182 - 67.2583762925165*m.x183 - 67.2583762925165*m.x184 - 41.96586*m.x185 - 27.277809*m.x186 - 35.670981*m.x187 - 27.277809*m.x188 - 36.9299568*m.x189 - 23.9205402*m.x190 - 31.3345088*m.x191 - 23.9205402*m.x192 - 41.96586*m.x193 - 27.277809*m.x194 - 35.670981*m.x195 - 27.277809*m.x196 - 41.96586*m.x197 - 27.277809*m.x198 - 35.670981*m.x199 - 27.277809*m.x200 - 36.9299568*m.x201 - 23.9205402*m.x202 - 31.3345088*m.x203 - 23.9205402*m.x204 - 41.96586*m.x205 - 27.277809*m.x206 - 35.670981*m.x207 - 27.277809*m.x208 + 256*m.x234 + 210*m.x235 + 135*m.x236 - m.x240 <= 0) m.c90 = Constraint(expr= - 691.2024*m.x117 - 691.2024*m.x118 - 691.2024*m.x119 - 691.2024*m.x120 - 691.2024*m.x121 - 691.2024*m.x122 - 691.2024*m.x127 - 691.2024*m.x128 - 2212.999684*m.x129 - 2212.999684*m.x130 - 691.2024*m.x135 - 691.2024*m.x136 - 691.2024*m.x137 - 691.2024*m.x138 + 840*m.x231 + 690*m.x232 + 450*m.x233 <= 0) m.c91 = Constraint(expr= - 5425.93884*m.x123 - 5425.93884*m.x124 - 345.6012*m.x135 - 345.6012*m.x136 - 345.6012*m.x137 - 345.6012*m.x138 - 345.6012*m.x139 - 224.64078*m.x140 - 293.76102*m.x141 - 224.64078*m.x142 - 304.129056*m.x143 - 196.992684*m.x144 - 258.048896*m.x145 - 196.992684*m.x146 - 345.6012*m.x147 - 224.64078*m.x148 - 293.76102*m.x149 - 224.64078*m.x150 - 345.6012*m.x151 - 224.64078*m.x152 - 293.76102*m.x153 - 224.64078*m.x154 - 304.129056*m.x155 - 196.992684*m.x156 - 258.048896*m.x157 - 196.992684*m.x158 - 345.6012*m.x159 - 224.64078*m.x160 - 293.76102*m.x161 - 224.64078*m.x162 + 840*m.x231 + 690*m.x232 + 450*m.x233 <= 0) m.c92 = Constraint(expr= - 691.2024*m.x163 - 691.2024*m.x164 - 691.2024*m.x165 - 691.2024*m.x166 - 691.2024*m.x167 - 691.2024*m.x168 - 691.2024*m.x173 - 691.2024*m.x174 - 2212.999684*m.x175 - 2212.999684*m.x176 - 691.2024*m.x181 - 691.2024*m.x182 - 691.2024*m.x183 - 691.2024*m.x184 + 840*m.x234 + 690*m.x235 + 450*m.x236 <= 0) m.c93 = Constraint(expr= - 5425.93884*m.x169 - 5425.93884*m.x170 - 345.6012*m.x181 - 345.6012*m.x182 - 345.6012*m.x183 - 345.6012*m.x184 - 345.6012*m.x185 - 224.64078*m.x186 - 293.76102*m.x187 - 224.64078*m.x188 - 304.129056*m.x189 - 196.992684*m.x190 - 258.048896*m.x191 - 196.992684*m.x192 - 345.6012*m.x193 - 224.64078*m.x194 - 293.76102*m.x195 - 224.64078*m.x196 - 345.6012*m.x197 - 224.64078*m.x198 - 293.76102*m.x199 - 224.64078*m.x200 - 304.129056*m.x201 - 196.992684*m.x202 - 258.048896*m.x203 - 196.992684*m.x204 - 345.6012*m.x205 - 224.64078*m.x206 - 293.76102*m.x207 - 224.64078*m.x208 + 840*m.x234 + 690*m.x235 + 450*m.x236 <= 0) m.c94 = Constraint(expr= 2*m.x123 + m.x133 + 16.85*m.x135 + 17.85*m.x137 + 11*m.x138 - 96*m.x231 <= 0) m.c95 = Constraint(expr= 4*m.x123 + m.x133 + 15.1*m.x135 + 2.5*m.x136 + 11.6*m.x137 + 6.5*m.x138 - 96*m.x231 <= 0) m.c96 = Constraint(expr= 4*m.x123 + 7*m.x125 + 16*m.x129 + m.x133 + 15*m.x135 + 8.2*m.x137 + 2.5*m.x138 - 96*m.x231 <= 0) m.c97 = Constraint(expr= 16*m.x120 + 2*m.x123 + m.x129 + 12*m.x135 + 8.4*m.x139 + 5.5*m.x140 + 7.1*m.x141 + 5.5*m.x142 + 7.4*m.x143 + 4.8*m.x144 + 6.3*m.x145 + 4.8*m.x146 + 16.8*m.x147 + 10.9*m.x148 + 14.3*m.x149 + 10.9*m.x150 + 5.9*m.x151 + 3.8*m.x152 + 5*m.x153 + 3.8*m.x154 + 5.2*m.x155 + 3.4*m.x156 + 4.4*m.x157 + 3.4*m.x158 + 11.8*m.x159 + 7.7*m.x160 + 10*m.x161 + 7.7*m.x162 - 96*m.x231 <= 0) m.c98 = Constraint(expr= 17.09*m.x119 + 4*m.x120 + 2*m.x123 + m.x129 + 8*m.x135 + 1.75*m.x136 + 1.75*m.x137 + 1.75*m.x138 + 8.4*m.x139 + 5.5*m.x140 + 7.1*m.x141 + 5.5*m.x142 + 7.4*m.x143 + 4.8*m.x144 + 6.3*m.x145 + 4.8*m.x146 + 5.9*m.x151 + 3.8*m.x152 + 5*m.x153 + 3.8*m.x154 + 5.2*m.x155 + 3.4*m.x156 + 4.4*m.x157 + 3.4*m.x158 - 77*m.x231 <= 0) m.c99 = Constraint(expr= 22*m.x117 + 15.2*m.x119 + 12.3*m.x120 + 18.9*m.x127 + 16*m.x129 + 10.8*m.x131 + 1.75*m.x135 + 1.75*m.x136 + 1.75*m.x137 + 1.75*m.x138 - 77*m.x231 <= 0) m.c100 = Constraint(expr= 17.2*m.x117 + 19.2*m.x127 + 1.5*m.x129 + 4.5*m.x131 - 96*m.x231 <= 0) m.c101 = Constraint(expr= 15*m.x129 + 14.2*m.x131 + 3*m.x132 - 96*m.x231 <= 0) m.c102 = Constraint(expr= m.x119 + m.x120 + 10.1*m.x123 + 10.8*m.x125 + m.x129 - 96*m.x231 <= 0) m.c103 = Constraint(expr= m.x119 + m.x120 + 13.01*m.x123 + 5.6*m.x125 + 0.5*m.x129 + 10.8*m.x133 + 18.6*m.x139 + 18.6*m.x140 + 18.6*m.x141 + 18.6*m.x142 + 18.6*m.x147 + 18.6*m.x148 + 18.6*m.x149 + 18.6*m.x150 - 96*m.x231 <= 0) m.c104 = Constraint(expr= 2*m.x117 + m.x119 + m.x120 + 7.6*m.x123 + 1.5*m.x127 + 10.1*m.x133 + 10*m.x135 + 11.5*m.x137 + 11.5*m.x138 + 20.6*m.x139 + 20.6*m.x140 + 20.6*m.x141 + 20.6*m.x142 + 39.2*m.x143 + 39.2*m.x144 + 39.2*m.x145 + 39.2*m.x146 + 20.6*m.x147 + 20.6*m.x148 + 20.6*m.x149 + 20.6*m.x150 - 96*m.x231 <= 0) m.c105 = Constraint(expr= 15.6*m.x117 + 13.6*m.x118 + m.x119 + m.x120 + 2*m.x123 + 18.4*m.x127 + 16.4*m.x128 + 5*m.x131 + m.x133 + 12.5*m.x135 + 13.5*m.x137 + 11*m.x138 - 96*m.x231 <= 0) m.c106 = Constraint(expr= 2*m.x169 + m.x179 + 16.85*m.x181 + 17.85*m.x183 + 11*m.x184 - 96*m.x234 <= 0) m.c107 = Constraint(expr= 4*m.x169 + m.x179 + 15.1*m.x181 + 2.5*m.x182 + 11.6*m.x183 + 6.5*m.x184 - 96*m.x234 <= 0) m.c108 = Constraint(expr= 4*m.x169 + 7*m.x171 + 16*m.x175 + m.x179 + 15*m.x181 + 8.2*m.x183 + 2.5*m.x184 - 96*m.x234 <= 0) m.c109 = Constraint(expr= 16*m.x166 + 2*m.x169 + m.x175 + 12*m.x181 + 8.4*m.x185 + 5.5*m.x186 + 7.1*m.x187 + 5.5*m.x188 + 7.4*m.x189 + 4.8*m.x190 + 6.3*m.x191 + 4.8*m.x192 + 16.8*m.x193 + 10.9*m.x194 + 14.3*m.x195 + 10.9*m.x196 + 5.9*m.x197 + 3.8*m.x198 + 5*m.x199 + 3.8*m.x200 + 5.2*m.x201 + 3.4*m.x202 + 4.4*m.x203 + 3.4*m.x204 + 11.8*m.x205 + 7.7*m.x206 + 10*m.x207 + 7.7*m.x208 - 96*m.x234 <= 0) m.c110 = Constraint(expr= 17.09*m.x165 + 4*m.x166 + 2*m.x169 + m.x175 + 8*m.x181 + 1.75*m.x182 + 1.75*m.x183 + 1.75*m.x184 + 8.4*m.x185 + 5.5*m.x186 + 7.1*m.x187 + 5.5*m.x188 + 7.4*m.x189 + 4.8*m.x190 + 6.3*m.x191 + 4.8*m.x192 + 5.9*m.x197 + 3.8*m.x198 + 5*m.x199 + 3.8*m.x200 + 5.2*m.x201 + 3.4*m.x202 + 4.4*m.x203 + 3.4*m.x204 - 77*m.x234 <= 0) m.c111 = Constraint(expr= 22*m.x163 + 15.2*m.x165 + 12.3*m.x166 + 18.9*m.x173 + 16*m.x175 + 10.8*m.x177 + 1.75*m.x181 + 1.75*m.x182 + 1.75*m.x183 + 1.75*m.x184 - 77*m.x234 <= 0) m.c112 = Constraint(expr= 17.2*m.x163 + 19.2*m.x173 + 1.5*m.x175 + 4.5*m.x177 - 96*m.x234 <= 0) m.c113 = Constraint(expr= 15*m.x175 + 14.2*m.x177 + 3*m.x178 - 96*m.x234 <= 0) m.c114 = Constraint(expr= m.x165 + m.x166 + 10.1*m.x169 + 10.8*m.x171 + m.x175 - 96*m.x234 <= 0) m.c115 = Constraint(expr= m.x165 + m.x166 + 13.01*m.x169 + 5.6*m.x171 + 0.5*m.x175 + 10.8*m.x179 + 18.6*m.x185 + 18.6*m.x186 + 18.6*m.x187 + 18.6*m.x188 + 18.6*m.x193 + 18.6*m.x194 + 18.6*m.x195 + 18.6*m.x196 - 96*m.x234 <= 0) m.c116 = Constraint(expr= 2*m.x163 + m.x165 + m.x166 + 7.6*m.x169 + 1.5*m.x173 + 10.1*m.x179 + 10*m.x181 + 11.5*m.x183 + 11.5*m.x184 + 20.6*m.x185 + 20.6*m.x186 + 20.6*m.x187 + 20.6*m.x188 + 39.2*m.x189 + 39.2*m.x190 + 39.2*m.x191 + 39.2*m.x192 + 20.6*m.x193 + 20.6*m.x194 + 20.6*m.x195 + 20.6*m.x196 - 96*m.x234 <= 0) m.c117 = Constraint(expr= 15.6*m.x163 + 13.6*m.x164 + m.x165 + m.x166 + 2*m.x169 + 18.4*m.x173 + 16.4*m.x174 + 5*m.x177 + m.x179 + 12.5*m.x181 + 13.5*m.x183 + 11*m.x184 - 96*m.x234 <= 0) m.c118 = Constraint(expr= m.x231 - 1.25*m.x233 <= 0) m.c119 = Constraint(expr= m.x234 - 1.25*m.x236 <= 0) m.c120 = Constraint(expr= - m.x31 + 1.5*m.x124 + m.x134 + 6.4*m.x136 + 2.4*m.x138 == 0) m.c121 = Constraint(expr= - m.x32 + 1.5*m.x124 + m.x134 + 6.6*m.x136 + 0.6*m.x138 == 0) m.c122 = Constraint(expr= - m.x33 + 1.5*m.x124 + 3.7*m.x126 + 2.5*m.x130 + m.x134 + 5.2*m.x136 + 0.7*m.x138 == 0) m.c123 = Constraint(expr= - m.x34 + 1.5*m.x124 + 0.5*m.x130 + 4.5*m.x136 + 0.7*m.x151 + 0.5*m.x152 + 0.6*m.x153 + 0.5*m.x154 + 0.6*m.x155 + 0.4*m.x156 + 0.5*m.x157 + 0.4*m.x158 + 1.5*m.x159 + m.x160 + 1.3*m.x161 + m.x162 == 0) m.c124 = Constraint(expr= - m.x35 + 2.5*m.x121 + 4.7*m.x122 + 1.5*m.x124 + 1.8*m.x130 + 4*m.x136 + 0.8*m.x151 + 0.5*m.x152 + 0.7*m.x153 + 0.5*m.x154 + 0.7*m.x155 + 0.4*m.x156 + 0.6*m.x157 + 0.4*m.x158 == 0) m.c125 = Constraint(expr= - m.x36 + 2.7*m.x118 + 2.2*m.x121 + 2.6*m.x128 + m.x130 == 0) m.c126 = Constraint(expr= - m.x37 + 1.7*m.x118 + 2.2*m.x128 + 2.2*m.x130 + 1.8*m.x132 == 0) m.c127 = Constraint(expr= - m.x38 + 0.5*m.x122 + 1.5*m.x130 + 1.6*m.x132 == 0) m.c128 = Constraint(expr= - m.x39 + 0.5*m.x121 + 0.5*m.x122 + 1.3*m.x124 + 1.3*m.x126 + m.x130 == 0) m.c129 = Constraint(expr= - m.x40 + 0.5*m.x121 + 0.5*m.x122 + 2*m.x124 + 0.8*m.x126 + 0.5*m.x130 + 1.3*m.x134 == 0) m.c130 = Constraint(expr= - m.x41 + 1.5*m.x118 + 0.5*m.x121 + 0.5*m.x122 + 2.3*m.x124 + m.x128 + 1.3*m.x134 + 5.8*m.x136 + 7.6*m.x151 + 7.6*m.x152 + 7.6*m.x153 + 7.6*m.x154 + 4*m.x155 + 4*m.x156 + 4*m.x157 + 4*m.x158 + 7.6*m.x159 + 7.6*m.x160 + 7.6*m.x161 + 7.6*m.x162 == 0) m.c131 = Constraint(expr= - m.x42 + 0.5*m.x118 + 0.5*m.x121 + 1.5*m.x124 + 0.5*m.x128 + 2.5*m.x132 + m.x134 + 5.8*m.x136 + 0.3*m.x138 + 3.6*m.x155 + 3.6*m.x156 + 3.6*m.x157 + 3.6*m.x158 == 0) m.c132 = Constraint(expr= - m.x43 + 1.5*m.x170 + m.x180 + 6.4*m.x182 + 2.4*m.x184 == 0) m.c133 = Constraint(expr= - m.x44 + 1.5*m.x170 + m.x180 + 6.6*m.x182 + 0.6*m.x184 == 0) m.c134 = Constraint(expr= - m.x45 + 1.5*m.x170 + 3.7*m.x172 + 2.5*m.x176 + m.x180 + 5.2*m.x182 + 0.7*m.x184 == 0) m.c135 = Constraint(expr= - m.x46 + 1.5*m.x170 + 0.5*m.x176 + 4.5*m.x182 + 0.7*m.x197 + 0.5*m.x198 + 0.6*m.x199 + 0.5*m.x200 + 0.6*m.x201 + 0.4*m.x202 + 0.5*m.x203 + 0.4*m.x204 + 1.5*m.x205 + m.x206 + 1.3*m.x207 + m.x208 == 0) m.c136 = Constraint(expr= - m.x47 + 2.5*m.x167 + 4.7*m.x168 + 1.5*m.x170 + 1.8*m.x176 + 4*m.x182 + 0.8*m.x197 + 0.5*m.x198 + 0.7*m.x199 + 0.5*m.x200 + 0.7*m.x201 + 0.4*m.x202 + 0.6*m.x203 + 0.4*m.x204 == 0) m.c137 = Constraint(expr= - m.x48 + 2.7*m.x164 + 2.2*m.x167 + 2.6*m.x174 + m.x176 == 0) m.c138 = Constraint(expr= - m.x49 + 1.7*m.x164 + 2.2*m.x174 + 2.2*m.x176 + 1.8*m.x178 == 0) m.c139 = Constraint(expr= - m.x50 + 0.5*m.x168 + 1.5*m.x176 + 1.6*m.x178 == 0) m.c140 = Constraint(expr= - m.x51 + 0.5*m.x167 + 0.5*m.x168 + 1.3*m.x170 + 1.3*m.x172 + m.x176 == 0) m.c141 = Constraint(expr= - m.x52 + 0.5*m.x167 + 0.5*m.x168 + 2*m.x170 + 0.8*m.x172 + 0.5*m.x176 + 1.3*m.x180 == 0) m.c142 = Constraint(expr= - m.x53 + 1.5*m.x164 + 0.5*m.x167 + 0.5*m.x168 + 2.3*m.x170 + m.x174 + 1.3*m.x180 + 5.8*m.x182 + 7.6*m.x197 + 7.6*m.x198 + 7.6*m.x199 + 7.6*m.x200 + 4*m.x201 + 4*m.x202 + 4*m.x203 + 4*m.x204 + 7.6*m.x205 + 7.6*m.x206 + 7.6*m.x207 + 7.6*m.x208 == 0) m.c143 = Constraint(expr= - m.x54 + 0.5*m.x164 + 0.5*m.x167 + 1.5*m.x170 + 0.5*m.x174 + 2.5*m.x178 + m.x180 + 5.8*m.x182 + 0.3*m.x184 + 3.6*m.x201 + 3.6*m.x202 + 3.6*m.x203 + 3.6*m.x204 == 0) m.c144 = Constraint(expr= 32.3*m.x123 + 31.1*m.x124 + 21.7*m.x133 + 21.7*m.x134 + 90*m.x135 + 86.5*m.x136 + 159*m.x137 + 151*m.x138 + 4.3*m.x139 + 4.3*m.x140 + 4.3*m.x141 + 4.3*m.x142 + 4.3*m.x143 + 4.3*m.x144 + 4.3*m.x145 + 4.3*m.x146 + 4.3*m.x147 + 4.3*m.x148 + 4.3*m.x149 + 4.3*m.x150 + 4.3*m.x151 + 4.3*m.x152 + 4.3*m.x153 + 4.3*m.x154 + 4.3*m.x155 + 4.3*m.x156 + 4.3*m.x157 + 4.3*m.x158 + 4.3*m.x159 + 4.3*m.x160 + 4.3*m.x161 + 4.3*m.x162 + 30.1*m.x231 + 33.6*m.x232 + 25.1*m.x233 - m.x241 - m.x268 == 0) m.c145 = Constraint(expr= 41.5*m.x123 + 39.8*m.x124 + 20.5*m.x133 + 20.2*m.x134 + 85*m.x135 + 81.5*m.x136 + 80.4*m.x137 + 80.6*m.x138 + 3.9*m.x139 + 3.9*m.x140 + 3.9*m.x141 + 3.9*m.x142 + 3.9*m.x143 + 3.9*m.x144 + 3.9*m.x145 + 3.9*m.x146 + 3.9*m.x147 + 3.9*m.x148 + 3.9*m.x149 + 3.9*m.x150 + 3.9*m.x151 + 3.9*m.x152 + 3.9*m.x153 + 3.9*m.x154 + 3.9*m.x155 + 3.9*m.x156 + 3.9*m.x157 + 3.9*m.x158 + 3.9*m.x159 + 3.9*m.x160 + 3.9*m.x161 + 3.9*m.x162 + 30.1*m.x231 + 33.6*m.x232 + 25.1*m.x233 - m.x242 - m.x269 == 0) m.c146 = Constraint(expr= 41.8*m.x123 + 40.3*m.x124 + 21.7*m.x125 + 20*m.x126 + 18.5*m.x129 + 6*m.x130 + 6*m.x133 + 6*m.x134 + 95*m.x135 + 90*m.x136 + 54.4*m.x137 + 48.9*m.x138 + 3.9*m.x139 + 3.9*m.x140 + 3.9*m.x141 + 3.9*m.x142 + 3.9*m.x143 + 3.9*m.x144 + 3.9*m.x145 + 3.9*m.x146 + 3.9*m.x147 + 3.9*m.x148 + 3.9*m.x149 + 3.9*m.x150 + 3.9*m.x151 + 3.9*m.x152 + 3.9*m.x153 + 3.9*m.x154 + 3.9*m.x155 + 3.9*m.x156 + 3.9*m.x157 + 3.9*m.x158 + 3.9*m.x159 + 3.9*m.x160 + 3.9*m.x161 + 3.9*m.x162 + 30.1*m.x231 + 33.6*m.x232 + 25.1*m.x233 - m.x243 - m.x270 == 0) m.c147 = Constraint(expr= 26.8*m.x120 + 29.4*m.x123 + 28.7*m.x124 + 2*m.x129 + 1.3*m.x130 + 72.1*m.x135 + 64*m.x136 + 22.5*m.x137 + 22.5*m.x138 + 64.4*m.x139 + 41.9*m.x140 + 54.7*m.x141 + 41.9*m.x142 + 51.4*m.x143 + 33.2*m.x144 + 43.4*m.x145 + 33.2*m.x146 + 88.1*m.x147 + 57.3*m.x148 + 74.9*m.x149 + 57.3*m.x150 + 60.1*m.x151 + 39.1*m.x152 + 51.1*m.x153 + 39.1*m.x154 + 52.8*m.x155 + 34.3*m.x156 + 44.9*m.x157 + 34.3*m.x158 + 79.6*m.x159 + 44*m.x160 + 67.7*m.x161 + 44*m.x162 + 30.1*m.x231 + 33.6*m.x232 + 25.1*m.x233 - m.x244 - m.x271 == 0) m.c148 = Constraint(expr= 35.6*m.x119 + 6.7*m.x120 + 5*m.x121 + 18.2*m.x123 + 17.6*m.x124 + 3*m.x129 + 4.5*m.x130 + 30*m.x135 + 34.5*m.x136 + 4.75*m.x137 + 4.75*m.x138 + 23.8*m.x139 + 15.5*m.x140 + 20.2*m.x141 + 15.5*m.x142 + 18.9*m.x143 + 12.3*m.x144 + 16.1*m.x145 + 12.3*m.x146 + 19.5*m.x151 + 12.7*m.x152 + 16.6*m.x153 + 12.7*m.x154 + 17.2*m.x155 + 11.2*m.x156 + 14.6*m.x157 + 11.2*m.x158 + 30.1*m.x231 + 33.6*m.x232 + 25.1*m.x233 - m.x245 - m.x272 == 0) m.c149 = Constraint(expr= 29.1*m.x117 + 8.4*m.x118 + 18.4*m.x119 + 20.5*m.x120 + 9.4*m.x121 + 14.4*m.x122 + 22.9*m.x127 + 5.3*m.x128 + 18.7*m.x129 + 6.5*m.x130 + 10.8*m.x131 + 5.05*m.x135 + 5.05*m.x136 + 5.05*m.x137 + 5.05*m.x138 + 30.1*m.x231 + 33.6*m.x232 + 25.1*m.x233 - m.x246 - m.x273 == 0) m.c150 = Constraint(expr= 88.8*m.x117 + 71.6*m.x118 + 2.5*m.x119 + 2.5*m.x120 + 2.5*m.x121 + 2.5*m.x122 + 122.3*m.x127 + 105.5*m.x128 + 4*m.x129 + 4.2*m.x130 + 4.5*m.x131 + 2.4*m.x132 + 3*m.x135 + 3*m.x136 + 3*m.x137 + 3*m.x138 + 30.1*m.x231 + 33.6*m.x232 + 25.1*m.x233 - m.x247 - m.x274 == 0) m.c151 = Constraint(expr= 65.9*m.x117 + 65.9*m.x118 + 7.6*m.x119 + 7.6*m.x120 + 7.6*m.x121 + 7.6*m.x122 + 35.9*m.x127 + 29.9*m.x128 + 18*m.x129 + 5.5*m.x130 + 16.7*m.x131 + 8.4*m.x132 + 3*m.x135 + 3*m.x136 + 3*m.x137 + 3*m.x138 + 30.1*m.x231 + 33.6*m.x232 + 25.1*m.x233 - m.x248 - m.x275 == 0) m.c152 = Constraint(expr= 5.6*m.x117 + 5.6*m.x118 + 13.2*m.x119 + 13.2*m.x120 + 12.7*m.x121 + 12.7*m.x122 + 10.1*m.x123 + 7.5*m.x124 + 10.8*m.x125 + 1.6*m.x126 + 8.4*m.x127 + 8.4*m.x128 + 3*m.x129 + 2*m.x130 + 44.2*m.x131 + 44.2*m.x132 + 3*m.x135 + 3*m.x136 + 3*m.x137 + 3*m.x138 + 30.1*m.x231 + 33.6*m.x232 + 25.1*m.x233 - m.x249 - m.x276 == 0) m.c153 = Constraint(expr= 5.6*m.x117 + 5.6*m.x118 + 41.3*m.x119 + 41.3*m.x120 + 40.8*m.x121 + 40.8*m.x122 + 15.5*m.x123 + 13.2*m.x124 + 8.9*m.x125 + 4.4*m.x126 + 6.4*m.x127 + 6.4*m.x128 + m.x129 + 1.5*m.x130 + 2.5*m.x131 + 2.5*m.x132 + 10.8*m.x133 + 1.6*m.x134 + 1.5*m.x135 + 1.5*m.x136 + 1.5*m.x137 + 1.5*m.x138 + 18.6*m.x139 + 18.6*m.x140 + 18.6*m.x141 + 18.6*m.x142 + 18.6*m.x147 + 18.6*m.x148 + 18.6*m.x149 + 18.6*m.x150 + 30.1*m.x231 + 33.6*m.x232 + 25.1*m.x233 - m.x250 - m.x277 == 0) m.c154 = Constraint(expr= 47.9*m.x117 + 47.4*m.x118 + 57.4*m.x119 + 57.4*m.x120 + 56.9*m.x121 + 56.9*m.x122 + 23.5*m.x123 + 21.6*m.x124 + 0.7*m.x125 + 0.7*m.x126 + 43.9*m.x127 + 43.4*m.x128 + 26.8*m.x131 + 26*m.x132 + 13.6*m.x133 + 5.1*m.x134 + 85*m.x135 + 80.5*m.x136 + 150.3*m.x137 + 148.3*m.x138 + 23.9*m.x139 + 23.9*m.x140 + 23.9*m.x141 + 23.9*m.x142 + 45.2*m.x143 + 45.2*m.x144 + 45.2*m.x145 + 45.2*m.x146 + 23.9*m.x147 + 23.9*m.x148 + 23.9*m.x149 + 23.9*m.x150 + 15.6*m.x151 + 15.6*m.x152 + 15.6*m.x153 + 15.6*m.x154 + 8*m.x155 + 8*m.x156 + 8*m.x157 + 8*m.x158 + 15.6*m.x159 + 15.6*m.x160 + 15.6*m.x161 + 15.6*m.x162 + 30.1*m.x231 + 33.6*m.x232 + 25.1*m.x233 - m.x251 - m.x278 == 0) m.c155 = Constraint(expr= 17.6*m.x117 + 16.1*m.x118 + 22.1*m.x119 + 22.1*m.x120 + 21.6*m.x121 + 21.6*m.x122 + 29.1*m.x123 + 28.4*m.x124 + 2.5*m.x125 + 2.5*m.x126 + 20.4*m.x127 + 17.9*m.x128 + 27*m.x131 + 26.8*m.x132 + 13.9*m.x133 + 13.9*m.x134 + 95*m.x135 + 90.5*m.x136 + 148.5*m.x137 + 142.3*m.x138 + 3.9*m.x139 + 3.9*m.x140 + 3.9*m.x141 + 3.9*m.x142 + 3.9*m.x143 + 3.9*m.x144 + 3.9*m.x145 + 3.9*m.x146 + 3.9*m.x147 + 3.9*m.x148 + 3.9*m.x149 + 3.9*m.x150 + 3.9*m.x151 + 3.9*m.x152 + 3.9*m.x153 + 3.9*m.x154 + 11.5*m.x155 + 11.5*m.x156 + 11.5*m.x157 + 11.5*m.x158 + 3.9*m.x159 + 3.9*m.x160 + 3.9*m.x161 + 3.9*m.x162 + 30.1*m.x231 + 33.6*m.x232 + 25.1*m.x233 - m.x252 - m.x279 == 0) m.c156 = Constraint(expr= 32.3*m.x169 + 31.1*m.x170 + 21.7*m.x179 + 21.7*m.x180 + 90*m.x181 + 86.5*m.x182 + 159*m.x183 + 151*m.x184 + 4.3*m.x185 + 4.3*m.x186 + 4.3*m.x187 + 4.3*m.x188 + 4.3*m.x189 + 4.3*m.x190 + 4.3*m.x191 + 4.3*m.x192 + 4.3*m.x193 + 4.3*m.x194 + 4.3*m.x195 + 4.3*m.x196 + 4.3*m.x197 + 4.3*m.x198 + 4.3*m.x199 + 4.3*m.x200 + 4.3*m.x201 + 4.3*m.x202 + 4.3*m.x203 + 4.3*m.x204 + 4.3*m.x205 + 4.3*m.x206 + 4.3*m.x207 + 4.3*m.x208 + 30.1*m.x234 + 33.6*m.x235 + 25.1*m.x236 - m.x253 - m.x280 == 0) m.c157 = Constraint(expr= 41.5*m.x169 + 39.8*m.x170 + 20.5*m.x179 + 20.2*m.x180 + 85*m.x181 + 81.5*m.x182 + 80.4*m.x183 + 80.6*m.x184 + 3.9*m.x185 + 3.9*m.x186 + 3.9*m.x187 + 3.9*m.x188 + 3.9*m.x189 + 3.9*m.x190 + 3.9*m.x191 + 3.9*m.x192 + 3.9*m.x193 + 3.9*m.x194 + 3.9*m.x195 + 3.9*m.x196 + 3.9*m.x197 + 3.9*m.x198 + 3.9*m.x199 + 3.9*m.x200 + 3.9*m.x201 + 3.9*m.x202 + 3.9*m.x203 + 3.9*m.x204 + 3.9*m.x205 + 3.9*m.x206 + 3.9*m.x207 + 3.9*m.x208 + 30.1*m.x234 + 33.6*m.x235 + 25.1*m.x236 - m.x254 - m.x281 == 0) m.c158 = Constraint(expr= 41.8*m.x169 + 40.3*m.x170 + 21.7*m.x171 + 20*m.x172 + 18.5*m.x175 + 6*m.x176 + 6*m.x179 + 6*m.x180 + 95*m.x181 + 90*m.x182 + 54.4*m.x183 + 48.9*m.x184 + 3.9*m.x185 + 3.9*m.x186 + 3.9*m.x187 + 3.9*m.x188 + 3.9*m.x189 + 3.9*m.x190 + 3.9*m.x191 + 3.9*m.x192 + 3.9*m.x193 + 3.9*m.x194 + 3.9*m.x195 + 3.9*m.x196 + 3.9*m.x197 + 3.9*m.x198 + 3.9*m.x199 + 3.9*m.x200 + 3.9*m.x201 + 3.9*m.x202 + 3.9*m.x203 + 3.9*m.x204 + 3.9*m.x205 + 3.9*m.x206 + 3.9*m.x207 + 3.9*m.x208 + 30.1*m.x234 + 33.6*m.x235 + 25.1*m.x236 - m.x255 - m.x282 == 0) m.c159 = Constraint(expr= 26.8*m.x166 + 29.4*m.x169 + 28.7*m.x170 + 2*m.x175 + 1.3*m.x176 + 72.1*m.x181 + 64*m.x182 + 22.5*m.x183 + 22.5*m.x184 + 64.4*m.x185 + 41.9*m.x186 + 54.7*m.x187 + 41.9*m.x188 + 51.4*m.x189 + 33.2*m.x190 + 43.4*m.x191 + 33.2*m.x192 + 88.1*m.x193 + 57.3*m.x194 + 74.9*m.x195 + 57.3*m.x196 + 60.1*m.x197 + 39.1*m.x198 + 51.1*m.x199 + 39.1*m.x200 + 52.8*m.x201 + 34.3*m.x202 + 44.9*m.x203 + 34.3*m.x204 + 79.6*m.x205 + 44*m.x206 + 67.7*m.x207 + 44*m.x208 + 30.1*m.x234 + 33.6*m.x235 + 25.1*m.x236 - m.x256 - m.x283 == 0) m.c160 = Constraint(expr= 35.6*m.x165 + 6.7*m.x166 + 5*m.x167 + 18.2*m.x169 + 17.6*m.x170 + 3*m.x175 + 4.5*m.x176 + 30*m.x181 + 34.5*m.x182 + 4.75*m.x183 + 4.75*m.x184 + 23.8*m.x185 + 15.5*m.x186 + 20.2*m.x187 + 15.5*m.x188 + 18.9*m.x189 + 12.3*m.x190 + 16.1*m.x191 + 12.3*m.x192 + 19.5*m.x197 + 12.7*m.x198 + 16.6*m.x199 + 12.7*m.x200 + 17.2*m.x201 + 11.2*m.x202 + 14.6*m.x203 + 11.2*m.x204 + 30.1*m.x234 + 33.6*m.x235 + 25.1*m.x236 - m.x257 - m.x284 == 0) m.c161 = Constraint(expr= 29.1*m.x163 + 8.4*m.x164 + 18.4*m.x165 + 20.5*m.x166 + 9.4*m.x167 + 14.4*m.x168 + 22.9*m.x173 + 5.3*m.x174 + 18.7*m.x175 + 6.5*m.x176 + 10.8*m.x177 + 5.05*m.x181 + 5.05*m.x182 + 5.05*m.x183 + 5.05*m.x184 + 30.1*m.x234 + 33.6*m.x235 + 25.1*m.x236 - m.x258 - m.x285 == 0) m.c162 = Constraint(expr= 88.8*m.x163 + 71.6*m.x164 + 2.5*m.x165 + 2.5*m.x166 + 2.5*m.x167 + 2.5*m.x168 + 122.3*m.x173 + 105.5*m.x174 + 4*m.x175 + 4.2*m.x176 + 4.5*m.x177 + 2.4*m.x178 + 3*m.x181 + 3*m.x182 + 3*m.x183 + 3*m.x184 + 30.1*m.x234 + 33.6*m.x235 + 25.1*m.x236 - m.x259 - m.x286 == 0) m.c163 = Constraint(expr= 65.9*m.x163 + 65.9*m.x164 + 7.6*m.x165 + 7.6*m.x166 + 7.6*m.x167 + 7.6*m.x168 + 35.9*m.x173 + 29.9*m.x174 + 18*m.x175 + 5.5*m.x176 + 16.7*m.x177 + 8.4*m.x178 + 3*m.x181 + 3*m.x182 + 3*m.x183 + 3*m.x184 + 30.1*m.x234 + 33.6*m.x235 + 25.1*m.x236 - m.x260 - m.x287 == 0) m.c164 = Constraint(expr= 5.6*m.x163 + 5.6*m.x164 + 13.2*m.x165 + 13.2*m.x166 + 12.7*m.x167 + 12.7*m.x168 + 10.1*m.x169 + 7.5*m.x170 + 10.8*m.x171 + 1.6*m.x172 + 8.4*m.x173 + 8.4*m.x174 + 3*m.x175 + 2*m.x176 + 44.2*m.x177 + 44.2*m.x178 + 3*m.x181 + 3*m.x182 + 3*m.x183 + 3*m.x184 + 30.1*m.x234 + 33.6*m.x235 + 25.1*m.x236 - m.x261 - m.x288 == 0) m.c165 = Constraint(expr= 5.6*m.x163 + 5.6*m.x164 + 41.3*m.x165 + 41.3*m.x166 + 40.8*m.x167 + 40.8*m.x168 + 15.5*m.x169 + 13.2*m.x170 + 8.9*m.x171 + 4.4*m.x172 + 6.4*m.x173 + 6.4*m.x174 + m.x175 + 1.5*m.x176 + 2.5*m.x177 + 2.5*m.x178 + 10.8*m.x179 + 1.6*m.x180 + 1.5*m.x181 + 1.5*m.x182 + 1.5*m.x183 + 1.5*m.x184 + 18.6*m.x185 + 18.6*m.x186 + 18.6*m.x187 + 18.6*m.x188 + 18.6*m.x193 + 18.6*m.x194 + 18.6*m.x195 + 18.6*m.x196 + 30.1*m.x234 + 33.6*m.x235 + 25.1*m.x236 - m.x262 - m.x289 == 0) m.c166 = Constraint(expr= 47.9*m.x163 + 47.4*m.x164 + 57.4*m.x165 + 57.4*m.x166 + 56.9*m.x167 + 56.9*m.x168 + 23.5*m.x169 + 21.6*m.x170 + 0.7*m.x171 + 0.7*m.x172 + 43.9*m.x173 + 43.4*m.x174 + 26.8*m.x177 + 26*m.x178 + 13.6*m.x179 + 5.1*m.x180 + 85*m.x181 + 80.5*m.x182 + 150.3*m.x183 + 148.3*m.x184 + 23.9*m.x185 + 23.9*m.x186 + 23.9*m.x187 + 23.9*m.x188 + 45.2*m.x189 + 45.2*m.x190 + 45.2*m.x191 + 45.2*m.x192 + 23.9*m.x193 + 23.9*m.x194 + 23.9*m.x195 + 23.9*m.x196 + 15.6*m.x197 + 15.6*m.x198 + 15.6*m.x199 + 15.6*m.x200 + 8*m.x201 + 8*m.x202 + 8*m.x203 + 8*m.x204 + 15.6*m.x205 + 15.6*m.x206 + 15.6*m.x207 + 15.6*m.x208 + 30.1*m.x234 + 33.6*m.x235 + 25.1*m.x236 - m.x263 - m.x290 == 0) m.c167 = Constraint(expr= 17.6*m.x163 + 16.1*m.x164 + 22.1*m.x165 + 22.1*m.x166 + 21.6*m.x167 + 21.6*m.x168 + 29.1*m.x169 + 28.4*m.x170 + 2.5*m.x171 + 2.5*m.x172 + 20.4*m.x173 + 17.9*m.x174 + 27*m.x177 + 26.8*m.x178 + 13.9*m.x179 + 13.9*m.x180 + 95*m.x181 + 90.5*m.x182 + 148.5*m.x183 + 142.3*m.x184 + 3.9*m.x185 + 3.9*m.x186 + 3.9*m.x187 + 3.9*m.x188 + 3.9*m.x189 + 3.9*m.x190 + 3.9*m.x191 + 3.9*m.x192 + 3.9*m.x193 + 3.9*m.x194 + 3.9*m.x195 + 3.9*m.x196 + 3.9*m.x197 + 3.9*m.x198 + 3.9*m.x199 + 3.9*m.x200 + 11.5*m.x201 + 11.5*m.x202 + 11.5*m.x203 + 11.5*m.x204 + 3.9*m.x205 + 3.9*m.x206 + 3.9*m.x207 + 3.9*m.x208 + 30.1*m.x234 + 33.6*m.x235 + 25.1*m.x236 - m.x264 - m.x291 == 0) m.c168 = Constraint(expr= m.x123 + m.x124 + m.x125 + m.x126 + m.x133 + m.x134 + m.x135 + m.x136 + m.x137 + m.x138 + m.x139 + m.x140 + m.x141 + m.x142 + m.x143 + m.x144 + m.x145 + m.x146 + m.x147 + m.x148 + m.x149 + m.x150 + m.x151 + m.x152 + m.x153 + m.x154 + m.x155 + m.x156 + m.x157 + m.x158 + m.x159 + m.x160 + m.x161 + m.x162 + m.x357 == 862.6652) m.c169 = Constraint(expr= m.x123 + m.x124 + m.x125 + m.x126 + m.x133 + m.x134 + m.x135 + m.x136 + m.x137 + m.x138 + m.x139 + m.x140 + m.x141 + m.x142 + m.x143 + m.x144 + m.x145 + m.x146 + m.x147 + m.x148 + m.x149 + m.x150 + m.x151 + m.x152 + m.x153 + m.x154 + m.x155 + m.x156 + m.x157 + m.x158 + m.x159 + m.x160 + m.x161 + m.x162 + m.x358 == 862.6652) m.c170 = Constraint(expr= m.x123 + m.x124 + m.x125 + m.x126 + 0.5*m.x129 + 0.5*m.x130 + m.x133 + m.x134 + m.x135 + m.x136 + m.x137 + m.x138 + m.x139 + m.x140 + m.x141 + m.x142 + m.x143 + m.x144 + m.x145 + m.x146 + m.x147 + m.x148 + m.x149 + m.x150 + m.x151 + m.x152 + m.x153 + m.x154 + m.x155 + m.x156 + m.x157 + m.x158 + m.x159 + m.x160 + m.x161 + m.x162 + m.x359 == 862.6652) m.c171 = Constraint(expr= 0.5*m.x120 + m.x123 + m.x124 + 0.5*m.x129 + 0.5*m.x130 + m.x135 + m.x136 + m.x137 + m.x138 + m.x139 + m.x140 + m.x141 + m.x142 + m.x143 + m.x144 + m.x145 + m.x146 + 0.5*m.x147 + 0.5*m.x148 + 0.5*m.x149 + 0.5*m.x150 + m.x151 + m.x152 + m.x153 + m.x154 + m.x155 + m.x156 + m.x157 + m.x158 + 0.5*m.x159 + 0.5*m.x160 + 0.5*m.x161 + 0.5*m.x162 + m.x360 == 862.6652) m.c172 = Constraint(expr= m.x119 + m.x120 + m.x121 + m.x123 + m.x124 + 0.5*m.x129 + 0.5*m.x130 + m.x135 + m.x136 + m.x137 + m.x138 + m.x361 == 862.6652) m.c173 = Constraint(expr= m.x117 + m.x118 + m.x119 + m.x120 + m.x121 + m.x122 + m.x127 + m.x128 + m.x129 + m.x130 + 0.5*m.x131 + m.x135 + m.x136 + m.x137 + m.x138 + m.x362 == 862.6652) m.c174 = Constraint(expr= m.x117 + m.x118 + m.x119 + m.x120 + m.x121 + m.x122 + m.x127 + m.x128 + m.x129 + m.x130 + m.x131 + m.x132 + m.x135 + m.x136 + m.x137 + m.x138 + m.x363 == 862.6652) m.c175 = Constraint(expr= m.x117 + m.x118 + m.x119 + m.x120 + m.x121 + m.x122 + m.x127 + m.x128 + m.x129 + m.x130 + m.x131 + m.x132 + m.x135 + m.x136 + m.x137 + m.x138 + m.x364 == 862.6652) m.c176 = Constraint(expr= m.x117 + m.x118 + m.x119 + m.x120 + m.x121 + m.x122 + 0.5*m.x123 + 0.25*m.x124 + 0.5*m.x125 + 0.25*m.x126 + m.x127 + m.x128 + 0.5*m.x129 + 0.5*m.x130 + m.x131 + m.x132 + m.x135 + m.x136 + m.x137 + m.x138 + m.x365 == 862.6652) m.c177 = Constraint(expr= m.x117 + m.x118 + m.x119 + m.x120 + m.x121 + m.x122 + m.x123 + m.x124 + m.x125 + m.x126 + m.x127 + m.x128 + 0.5*m.x129 + 0.5*m.x130 + m.x131 + m.x132 + m.x133 + m.x134 + m.x135 + m.x136 + m.x137 + m.x138 + 0.5*m.x139 + 0.5*m.x140 + 0.5*m.x141 + 0.5*m.x142 + 0.5*m.x147 + 0.5*m.x148 + 0.5*m.x149 + 0.5*m.x150 + m.x366 == 862.6652) m.c178 = Constraint(expr= m.x117 + m.x118 + m.x119 + m.x120 + m.x121 + m.x122 + m.x123 + m.x124 + m.x125 + m.x126 + m.x127 + m.x128 + m.x131 + m.x132 + m.x133 + m.x134 + m.x135 + m.x136 + m.x137 + m.x138 + m.x139 + m.x140 + m.x141 + m.x142 + m.x143 + m.x144 + m.x145 + m.x146 + m.x147 + m.x148 + m.x149 + m.x150 + m.x151 + m.x152 + m.x153 + m.x154 + 0.5*m.x155 + 0.5*m.x156 + 0.5*m.x157 + m.x159 + m.x160 + m.x161 + m.x162 + m.x367 == 862.6652) m.c179 = Constraint(expr= 0.5*m.x119 + 0.5*m.x120 + 0.5*m.x121 + 0.5*m.x122 + m.x123 + m.x124 + m.x125 + m.x126 + 0.5*m.x131 + 0.5*m.x132 + m.x133 + m.x134 + m.x135 + m.x136 + m.x137 + m.x138 + m.x139 + m.x140 + m.x141 + m.x142 + m.x143 + m.x144 + m.x145 + m.x146 + m.x147 + m.x148 + m.x149 + m.x150 + m.x151 + m.x152 + m.x153 + m.x154 + m.x155 + m.x156 + m.x157 + m.x158 + m.x159 + m.x160 + m.x161 + m.x162 + m.x368 == 862.6652) m.c180 = Constraint(expr= m.x169 + m.x170 + m.x171 + m.x172 + m.x179 + m.x180 + m.x181 + m.x182 + m.x183 + m.x184 + m.x185 + m.x186 + m.x187 + m.x188 + m.x189 + m.x190 + m.x191 + m.x192 + m.x193 + m.x194 + m.x195 + m.x196 + m.x197 + m.x198 + m.x199 + m.x200 + m.x201 + m.x202 + m.x203 + m.x204 + m.x205 + m.x206 + m.x207 + m.x208 + m.x369 == 369.7136) m.c181 = Constraint(expr= m.x169 + m.x170 + m.x171 + m.x172 + m.x179 + m.x180 + m.x181 + m.x182 + m.x183 + m.x184 + m.x185 + m.x186 + m.x187 + m.x188 + m.x189 + m.x190 + m.x191 + m.x192 + m.x193 + m.x194 + m.x195 + m.x196 + m.x197 + m.x198 + m.x199 + m.x200 + m.x201 + m.x202 + m.x203 + m.x204 + m.x205 + m.x206 + m.x207 + m.x208 + m.x370 == 369.7136) m.c182 = Constraint(expr= m.x169 + m.x170 + m.x171 + m.x172 + 0.5*m.x175 + 0.5*m.x176 + m.x179 + m.x180 + m.x181 + m.x182 + m.x183 + m.x184 + m.x185 + m.x186 + m.x187 + m.x188 + m.x189 + m.x190 + m.x191 + m.x192 + m.x193 + m.x194 + m.x195 + m.x196 + m.x197 + m.x198 + m.x199 + m.x200 + m.x201 + m.x202 + m.x203 + m.x204 + m.x205 + m.x206 + m.x207 + m.x208 + m.x371 == 369.7136) m.c183 = Constraint(expr= 0.5*m.x166 + m.x169 + m.x170 + 0.5*m.x175 + 0.5*m.x176 + m.x181 + m.x182 + m.x183 + m.x184 + m.x185 + m.x186 + m.x187 + m.x188 + m.x189 + m.x190 + m.x191 + m.x192 + 0.5*m.x193 + 0.5*m.x194 + 0.5*m.x195 + 0.5*m.x196 + m.x197 + m.x198 + m.x199 + m.x200 + m.x201 + m.x202 + m.x203 + m.x204 + 0.5*m.x205 + 0.5*m.x206 + 0.5*m.x207 + 0.5*m.x208 + m.x372 == 369.7136) m.c184 = Constraint(expr= m.x165 + m.x166 + m.x167 + m.x169 + m.x170 + 0.5*m.x175 + 0.5*m.x176 + m.x181 + m.x182 + m.x183 + m.x184 + m.x373 == 369.7136) m.c185 = Constraint(expr= m.x163 + m.x164 + m.x165 + m.x166 + m.x167 + m.x168 + m.x173 + m.x174 + m.x175 + m.x176 + 0.5*m.x177 + m.x181 + m.x182 + m.x183 + m.x184 + m.x374 == 369.7136) m.c186 = Constraint(expr= m.x163 + m.x164 + m.x165 + m.x166 + m.x167 + m.x168 + m.x173 + m.x174 + m.x175 + m.x176 + m.x177 + m.x178 + m.x181 + m.x182 + m.x183 + m.x184 + m.x375 == 369.7136) m.c187 = Constraint(expr= m.x163 + m.x164 + m.x165 + m.x166 + m.x167 + m.x168 + m.x173 + m.x174 + m.x175 + m.x176 + m.x177 + m.x178 + m.x181 + m.x182 + m.x183 + m.x184 + m.x376 == 369.7136) m.c188 = Constraint(expr= m.x163 + m.x164 + m.x165 + m.x166 + m.x167 + m.x168 + 0.5*m.x169 + 0.25*m.x170 + 0.5*m.x171 + 0.25*m.x172 + m.x173 + m.x174 + 0.5*m.x175 + 0.5*m.x176 + m.x177 + m.x178 + m.x181 + m.x182 + m.x183 + m.x184 + m.x377 == 369.7136) m.c189 = Constraint(expr= m.x163 + m.x164 + m.x165 + m.x166 + m.x167 + m.x168 + m.x169 + m.x170 + m.x171 + m.x172 + m.x173 + m.x174 + 0.5*m.x175 + 0.5*m.x176 + m.x177 + m.x178 + m.x179 + m.x180 + m.x181 + m.x182 + m.x183 + m.x184 + 0.5*m.x185 + 0.5*m.x186 + 0.5*m.x187 + 0.5*m.x188 + 0.5*m.x193 + 0.5*m.x194 + 0.5*m.x195 + 0.5*m.x196 + m.x378 == 369.7136) m.c190 = Constraint(expr= m.x163 + m.x164 + m.x165 + m.x166 + m.x167 + m.x168 + m.x169 + m.x170 + m.x171 + m.x172 + m.x173 + m.x174 + m.x177 + m.x178 + m.x179 + m.x180 + m.x181 + m.x182 + m.x183 + m.x184 + m.x185 + m.x186 + m.x187 + m.x188 + m.x189 + m.x190 + m.x191 + m.x192 + m.x193 + m.x194 + m.x195 + m.x196 + m.x197 + m.x198 + m.x199 + m.x200 + 0.5*m.x201 + 0.5*m.x202 + 0.5*m.x203 + m.x205 + m.x206 + m.x207 + m.x208 + m.x379 == 369.7136) m.c191 = Constraint(expr= 0.5*m.x165 + 0.5*m.x166 + 0.5*m.x167 + 0.5*m.x168 + m.x169 + m.x170 + m.x171 + m.x172 + 0.5*m.x177 + 0.5*m.x178 + m.x179 + m.x180 + m.x181 + m.x182 + m.x183 + m.x184 + m.x185 + m.x186 + m.x187 + m.x188 + m.x189 + m.x190 + m.x191 + m.x192 + m.x193 + m.x194 + m.x195 + m.x196 + m.x197 + m.x198 + m.x199 + m.x200 + m.x201 + m.x202 + m.x203 + m.x204 + m.x205 + m.x206 + m.x207 + m.x208 + m.x380 == 369.7136) m.c192 = Constraint(expr= - m.x117 - m.x118 + m.x209 == 0) m.c193 = Constraint(expr= - m.x119 - m.x120 - m.x121 - m.x122 + m.x210 == 0) m.c194 = Constraint(expr= - m.x123 - m.x124 + m.x211 == 0) m.c195 = Constraint(expr= - m.x125 - m.x126 + m.x212 == 0) m.c196 = Constraint(expr= - m.x127 - m.x128 + m.x213 == 0) m.c197 = Constraint(expr= - m.x129 - m.x130 + m.x214 == 0) m.c198 = Constraint(expr= - m.x131 - m.x132 + m.x215 == 0) m.c199 = Constraint(expr= - m.x133 - m.x134 + m.x216 == 0) m.c200 = Constraint(expr= - m.x135 - m.x136 + m.x217 == 0) m.c201 = Constraint(expr= - m.x137 - m.x138 + m.x218 == 0) m.c202 = Constraint(expr= - m.x139 - m.x140 - m.x141 - m.x142 - m.x143 - m.x144 - m.x145 - m.x146 - m.x147 - m.x148 - m.x149 - m.x150 - m.x151 - m.x152 - m.x153 - m.x154 - m.x155 - m.x156 - m.x157 - m.x158 - m.x159 - m.x160 - m.x161 - m.x162 + m.x219 == 0) m.c203 = Constraint(expr= - m.x163 - m.x164 + m.x220 == 0) m.c204 = Constraint(expr= - m.x165 - m.x166 - m.x167 - m.x168 + m.x221 == 0) m.c205 = Constraint(expr= - m.x169 - m.x170 + m.x222 == 0) m.c206 = Constraint(expr= - m.x171 - m.x172 + m.x223 == 0) m.c207 = Constraint(expr= - m.x173 - m.x174 + m.x224 == 0) m.c208 = Constraint(expr= - m.x175 - m.x176 + m.x225 == 0) m.c209 = Constraint(expr= - m.x177 - m.x178 + m.x226 == 0) m.c210 = Constraint(expr= - m.x179 - m.x180 + m.x227 == 0) m.c211 = Constraint(expr= - m.x181 - m.x182 + m.x228 == 0) m.c212 = Constraint(expr= - m.x183 - m.x184 + m.x229 == 0) m.c213 = Constraint(expr= - m.x185 - m.x186 - m.x187 - m.x188 - m.x189 - m.x190 - m.x191 - m.x192 - m.x193 - m.x194 - m.x195 - m.x196 - m.x197 - m.x198 - m.x199 - m.x200 - m.x201 - m.x202 - m.x203 - m.x204 - m.x205 - m.x206 - m.x207 - m.x208 + m.x230 == 0) m.c214 = Constraint(expr= - 0.67545*m.x7 + 0.186275745657289*m.x123 + 0.186275745657289*m.x124 + 0.086275745657289*m.x125 + 0.086275745657289*m.x126 + 0.186275745657289*m.x133 + 0.186275745657289*m.x134 + 0.080275745657289*m.x135 + 0.080275745657289*m.x136 + 0.080275745657289*m.x137 + 0.080275745657289*m.x138 + 0.220275745657289*m.x139 + 0.267275745657289*m.x140 + 0.220275745657289*m.x141 + 0.220275745657289*m.x143 + 0.267275745657289*m.x144 + 0.220275745657289*m.x145 + 0.220275745657289*m.x147 + 0.267275745657289*m.x148 + 0.220275745657289*m.x149 + 0.220275745657289*m.x151 + 0.267275745657289*m.x152 + 0.220275745657289*m.x153 + 0.220275745657289*m.x155 + 0.267275745657289*m.x156 + 0.220275745657289*m.x157 + 0.220275745657289*m.x159 + 0.267275745657289*m.x160 + 0.220275745657289*m.x161 + m.x381 == 33.1648634053726) m.c215 = Constraint(expr= - 0.67545*m.x8 + 0.283170516228474*m.x123 + 0.283170516228474*m.x124 + 0.033170516228474*m.x125 + 0.033170516228474*m.x126 + 0.133170516228474*m.x133 + 0.133170516228474*m.x134 + 0.123170516228474*m.x135 + 0.123170516228474*m.x136 + 0.123170516228474*m.x137 + 0.123170516228474*m.x138 + 0.357170516228474*m.x139 + 0.357170516228474*m.x141 + 0.264170516228474*m.x142 + 0.357170516228474*m.x143 + 0.357170516228474*m.x145 + 0.264170516228474*m.x146 + 0.357170516228474*m.x147 + 0.357170516228474*m.x149 + 0.264170516228474*m.x150 + 0.357170516228474*m.x151 + 0.357170516228474*m.x153 + 0.264170516228474*m.x154 + 0.357170516228474*m.x155 + 0.357170516228474*m.x157 + 0.264170516228474*m.x158 + 0.357170516228474*m.x159 + 0.357170516228474*m.x161 + 0.264170516228474*m.x162 + m.x382 == 38.6431466113418) m.c216 = Constraint(expr= - 0.67545*m.x9 + 0.427861483676044*m.x123 + 0.427861483676044*m.x124 + 0.0778614836760444*m.x129 + 0.0778614836760444*m.x130 + 0.211861483676044*m.x135 + 0.211861483676044*m.x136 + 0.211861483676044*m.x137 + 0.211861483676044*m.x138 + 0.445861483676044*m.x139 + 0.445861483676044*m.x143 + 0.445861483676044*m.x147 + 0.445861483676044*m.x151 + 0.445861483676044*m.x155 + 0.445861483676044*m.x159 + m.x383 == 40.7781297689446) m.c217 = Constraint(expr= - 0.67545*m.x10 + 0.167441181790281*m.x120 + 0.530441181790282*m.x123 + 0.530441181790282*m.x124 + 0.130441181790281*m.x129 + 0.130441181790281*m.x130 + 0.354441181790281*m.x135 + 0.354441181790281*m.x136 + 0.354441181790281*m.x137 + 0.354441181790281*m.x138 + m.x384 == 79.6609082081682) m.c218 = Constraint(expr= - 0.595*m.x11 + 0.167778380917306*m.x119 + 0.0747783809173062*m.x120 + 0.167778380917306*m.x121 + 0.354778380917306*m.x122 + 0.230778380917306*m.x123 + 0.230778380917306*m.x124 + 0.230778380917306*m.x129 + 0.230778380917306*m.x130 + 0.354778380917306*m.x135 + 0.354778380917306*m.x136 + 0.354778380917306*m.x137 + 0.354778380917306*m.x138 + m.x385 == 121.291256973504) m.c219 = Constraint(expr= - 0.52*m.x12 + 0.351666519938619*m.x117 + 0.351666519938619*m.x118 + 0.258666519938619*m.x119 + 0.351666519938619*m.x120 + 0.258666519938619*m.x121 + 0.304666519938619*m.x122 + 0.351666519938619*m.x127 + 0.351666519938619*m.x128 + 0.277666519938619*m.x129 + 0.277666519938619*m.x130 + 0.0776665199386191*m.x131 + 0.304666519938619*m.x135 + 0.304666519938619*m.x136 + 0.304666519938619*m.x137 + 0.304666519938619*m.x138 + m.x386 == 110.737946854126) m.c220 = Constraint(expr= - 0.52*m.x13 + 0.755537393186701*m.x117 + 0.755537393186701*m.x118 + 0.240537393186701*m.x119 + 0.240537393186701*m.x120 + 0.240537393186701*m.x121 + 0.287537393186701*m.x122 + 0.755537393186701*m.x127 + 0.755537393186701*m.x128 + 0.313537393186701*m.x129 + 0.313537393186701*m.x130 + 0.0135373931867009*m.x131 + 0.0635373931867009*m.x132 + 0.287537393186701*m.x135 + 0.287537393186701*m.x136 + 0.287537393186701*m.x137 + 0.287537393186701*m.x138 + m.x387 == 126.060763601253) m.c221 = Constraint(expr= - 0.52*m.x14 + 0.861953354052856*m.x117 + 0.861953354052856*m.x118 + 0.300953354052856*m.x119 + 0.300953354052856*m.x120 + 0.300953354052856*m.x121 + 0.394953354052856*m.x122 + 0.861953354052856*m.x127 + 0.861953354052856*m.x128 + 0.226953354052856*m.x129 + 0.226953354052856*m.x130 + 0.226953354052856*m.x131 + 0.226953354052856*m.x132 + 0.394953354052856*m.x135 + 0.394953354052856*m.x136 + 0.394953354052856*m.x137 + 0.394953354052856*m.x138 + m.x388 == 118.20855444677) m.c222 = Constraint(expr= - 0.595*m.x15 + 0.917501344750213*m.x117 + 0.917501344750213*m.x118 + 0.450501344750213*m.x119 + 0.450501344750213*m.x120 + 0.450501344750213*m.x121 + 0.309501344750213*m.x122 + 0.182501344750213*m.x123 + 0.182501344750213*m.x124 + 0.232501344750213*m.x125 + 0.232501344750213*m.x126 + 0.917501344750213*m.x127 + 0.917501344750213*m.x128 + 0.182501344750213*m.x129 + 0.182501344750213*m.x130 + 0.282501344750213*m.x131 + 0.282501344750213*m.x132 + 0.450501344750213*m.x135 + 0.450501344750213*m.x136 + 0.450501344750213*m.x137 + 0.450501344750213*m.x138 + m.x389 == 153.550323696193) m.c223 = Constraint(expr= - 0.67545*m.x16 + 0.460213503365729*m.x117 + 0.460213503365729*m.x118 + 0.319213503365729*m.x119 + 0.319213503365729*m.x120 + 0.319213503365729*m.x121 + 0.086213503365729*m.x122 + 0.242213503365729*m.x123 + 0.242213503365729*m.x124 + 0.142213503365729*m.x125 + 0.142213503365729*m.x126 + 0.460213503365729*m.x127 + 0.460213503365729*m.x128 + 0.392213503365729*m.x131 + 0.392213503365729*m.x132 + 0.292213503365729*m.x133 + 0.292213503365729*m.x134 + 0.273213503365729*m.x135 + 0.273213503365729*m.x136 + 0.273213503365729*m.x137 + 0.273213503365729*m.x138 + 0.179213503365729*m.x139 + 0.179213503365729*m.x140 + 0.179213503365729*m.x141 + 0.179213503365729*m.x142 + 0.179213503365729*m.x147 + 0.179213503365729*m.x148 + 0.179213503365729*m.x149 + 0.179213503365729*m.x150 + m.x390 == 138.238819242656) m.c224 = Constraint(expr= - 0.67545*m.x17 + 0.0842575717715261*m.x119 + 0.0842575717715261*m.x120 + 0.0842575717715261*m.x121 + 0.140257571771526*m.x123 + 0.140257571771526*m.x124 + 0.0902575717715261*m.x125 + 0.0902575717715261*m.x126 + 0.190257571771526*m.x131 + 0.240257571771526*m.x132 + 0.190257571771526*m.x133 + 0.190257571771526*m.x134 + 0.364257571771526*m.x135 + 0.364257571771526*m.x136 + 0.364257571771526*m.x137 + 0.364257571771526*m.x138 + 0.177257571771526*m.x139 + 0.177257571771526*m.x140 + 0.177257571771526*m.x141 + 0.177257571771526*m.x142 + 0.271257571771526*m.x143 + 0.271257571771526*m.x144 + 0.271257571771526*m.x145 + 0.271257571771526*m.x146 + 0.177257571771526*m.x147 + 0.177257571771526*m.x148 + 0.177257571771526*m.x149 + 0.177257571771526*m.x150 + 0.271257571771526*m.x151 + 0.271257571771526*m.x152 + 0.271257571771526*m.x153 + 0.271257571771526*m.x154 + 0.224257571771526*m.x155 + 0.224257571771526*m.x156 + 0.224257571771526*m.x157 + 0.224257571771526*m.x158 + 0.271257571771526*m.x159 + 0.271257571771526*m.x160 + 0.271257571771526*m.x161 + 0.271257571771526*m.x162 + m.x391 == 68.1739205167211) m.c225 = Constraint(expr= - 0.67545*m.x18 + 0.138242344*m.x123 + 0.138242344*m.x124 + 0.0882423440000001*m.x125 + 0.0882423440000001*m.x126 + 0.188242344*m.x133 + 0.188242344*m.x134 + 0.175242344*m.x135 + 0.175242344*m.x136 + 0.175242344*m.x137 + 0.175242344*m.x138 + 0.175242344*m.x139 + 0.175242344*m.x140 + 0.175242344*m.x141 + 0.175242344*m.x142 + 0.175242344*m.x143 + 0.175242344*m.x144 + 0.175242344*m.x145 + 0.175242344*m.x146 + 0.175242344*m.x147 + 0.175242344*m.x148 + 0.175242344*m.x149 + 0.175242344*m.x150 + 0.175242344*m.x151 + 0.175242344*m.x152 + 0.175242344*m.x153 + 0.175242344*m.x154 + 0.222242344*m.x155 + 0.222242344*m.x156 + 0.222242344*m.x157 + 0.222242344*m.x158 + 0.175242344*m.x159 + 0.175242344*m.x160 + 0.175242344*m.x161 + 0.175242344*m.x162 + m.x392 == 35.5890481828349) m.c226 = Constraint(expr= 0.178345303867403*m.x169 + 0.178345303867403*m.x170 + 0.0783453038674033*m.x171 + 0.0783453038674033*m.x172 + 0.178345303867403*m.x179 + 0.178345303867403*m.x180 + 0.0723453038674033*m.x181 + 0.0723453038674033*m.x182 + 0.0723453038674033*m.x183 + 0.0723453038674033*m.x184 + 0.212345303867403*m.x185 + 0.259345303867403*m.x186 + 0.212345303867403*m.x187 + 0.212345303867403*m.x189 + 0.259345303867403*m.x190 + 0.212345303867403*m.x191 + 0.212345303867403*m.x193 + 0.259345303867403*m.x194 + 0.212345303867403*m.x195 + 0.212345303867403*m.x197 + 0.259345303867403*m.x198 + 0.212345303867403*m.x199 + 0.212345303867403*m.x201 + 0.259345303867403*m.x202 + 0.212345303867403*m.x203 + 0.212345303867403*m.x205 + 0.259345303867403*m.x206 + 0.212345303867403*m.x207 + m.x393 == 32.8373413501853) m.c227 = Constraint(expr= 0.270787548066298*m.x169 + 0.270787548066298*m.x170 + 0.0207875480662983*m.x171 + 0.0207875480662983*m.x172 + 0.120787548066298*m.x179 + 0.120787548066298*m.x180 + 0.110787548066298*m.x181 + 0.110787548066298*m.x182 + 0.110787548066298*m.x183 + 0.110787548066298*m.x184 + 0.344787548066298*m.x185 + 0.344787548066298*m.x187 + 0.251787548066298*m.x188 + 0.344787548066298*m.x189 + 0.344787548066298*m.x191 + 0.251787548066298*m.x192 + 0.344787548066298*m.x193 + 0.344787548066298*m.x195 + 0.251787548066298*m.x196 + 0.344787548066298*m.x197 + 0.344787548066298*m.x199 + 0.251787548066298*m.x200 + 0.344787548066298*m.x201 + 0.344787548066298*m.x203 + 0.251787548066298*m.x204 + 0.344787548066298*m.x205 + 0.344787548066298*m.x207 + 0.251787548066298*m.x208 + m.x394 == 57.1078093758598) m.c228 = Constraint(expr= 0.407347881399632*m.x169 + 0.407347881399632*m.x170 + 0.0573478813996317*m.x175 + 0.0573478813996317*m.x176 + 0.191347881399632*m.x181 + 0.191347881399632*m.x182 + 0.191347881399632*m.x183 + 0.191347881399632*m.x184 + 0.425347881399632*m.x185 + 0.425347881399632*m.x189 + 0.425347881399632*m.x193 + 0.425347881399632*m.x197 + 0.425347881399632*m.x201 + 0.425347881399632*m.x205 + m.x395 == 73.4259111626889) m.c229 = Constraint(expr= 0.13696977053407*m.x166 + 0.49996977053407*m.x169 + 0.49996977053407*m.x170 + 0.09996977053407*m.x175 + 0.09996977053407*m.x176 + 0.32396977053407*m.x181 + 0.32396977053407*m.x182 + 0.32396977053407*m.x183 + 0.32396977053407*m.x184 + m.x396 == 58.438744224694) m.c230 = Constraint(expr= 0.129080668876611*m.x165 + 0.0360806688766114*m.x166 + 0.129080668876611*m.x167 + 0.316080668876611*m.x168 + 0.192080668876611*m.x169 + 0.192080668876611*m.x170 + 0.192080668876611*m.x175 + 0.192080668876611*m.x176 + 0.316080668876611*m.x181 + 0.316080668876611*m.x182 + 0.316080668876611*m.x183 + 0.316080668876611*m.x184 + m.x397 == 54.46015010971) m.c231 = Constraint(expr= 0.307336995948435*m.x163 + 0.307336995948435*m.x164 + 0.214336995948435*m.x165 + 0.307336995948435*m.x166 + 0.214336995948435*m.x167 + 0.260336995948435*m.x168 + 0.307336995948435*m.x173 + 0.307336995948435*m.x174 + 0.233336995948435*m.x175 + 0.233336995948435*m.x176 + 0.0333369959484346*m.x177 + 0.260336995948435*m.x181 + 0.260336995948435*m.x182 + 0.260336995948435*m.x183 + 0.260336995948435*m.x184 + m.x398 == 73.5908838818816) m.c232 = Constraint(expr= 0.718245529281768*m.x163 + 0.718245529281768*m.x164 + 0.203245529281768*m.x165 + 0.203245529281768*m.x166 + 0.203245529281768*m.x167 + 0.250245529281768*m.x168 + 0.718245529281768*m.x173 + 0.718245529281768*m.x174 + 0.276245529281768*m.x175 + 0.276245529281768*m.x176 + 0.0262455292817679*m.x178 + 0.250245529281768*m.x181 + 0.250245529281768*m.x182 + 0.250245529281768*m.x183 + 0.250245529281768*m.x184 + m.x399 == 72.5947837053058) m.c233 = Constraint(expr= 0.827680702025783*m.x163 + 0.827680702025783*m.x164 + 0.266680702025783*m.x165 + 0.266680702025783*m.x166 + 0.266680702025783*m.x167 + 0.360680702025783*m.x168 + 0.827680702025783*m.x173 + 0.827680702025783*m.x174 + 0.192680702025783*m.x175 + 0.192680702025783*m.x176 + 0.192680702025783*m.x177 + 0.192680702025783*m.x178 + 0.360680702025783*m.x181 + 0.360680702025783*m.x182 + 0.360680702025783*m.x183 + 0.360680702025783*m.x184 + m.x400 == 87.4955408928402) m.c234 = Constraint(expr= 0.885562467771639*m.x163 + 0.885562467771639*m.x164 + 0.418562467771639*m.x165 + 0.418562467771639*m.x166 + 0.418562467771639*m.x167 + 0.277562467771639*m.x168 + 0.150562467771639*m.x169 + 0.150562467771639*m.x170 + 0.200562467771639*m.x171 + 0.200562467771639*m.x172 + 0.885562467771639*m.x173 + 0.885562467771639*m.x174 + 0.150562467771639*m.x175 + 0.150562467771639*m.x176 + 0.250562467771639*m.x177 + 0.250562467771639*m.x178 + 0.418562467771639*m.x181 + 0.418562467771639*m.x182 + 0.418562467771639*m.x183 + 0.418562467771639*m.x184 + m.x401 == 120.952831010239) m.c235 = Constraint(expr= 0.43861143038674*m.x163 + 0.43861143038674*m.x164 + 0.29761143038674*m.x165 + 0.29761143038674*m.x166 + 0.29761143038674*m.x167 + 0.0646114303867403*m.x168 + 0.22061143038674*m.x169 + 0.22061143038674*m.x170 + 0.12061143038674*m.x171 + 0.12061143038674*m.x172 + 0.43861143038674*m.x173 + 0.43861143038674*m.x174 + 0.37061143038674*m.x177 + 0.37061143038674*m.x178 + 0.27061143038674*m.x179 + 0.27061143038674*m.x180 + 0.25161143038674*m.x181 + 0.25161143038674*m.x182 + 0.25161143038674*m.x183 + 0.25161143038674*m.x184 + 0.15761143038674*m.x185 + 0.15761143038674*m.x186 + 0.15761143038674*m.x187 + 0.15761143038674*m.x188 + 0.15761143038674*m.x193 + 0.15761143038674*m.x194 + 0.15761143038674*m.x195 + 0.15761143038674*m.x196 + m.x402 == 95.1225286879146) m.c236 = Constraint(expr= 0.0709898519337017*m.x165 + 0.0709898519337017*m.x166 + 0.0709898519337017*m.x167 + 0.126989851933702*m.x169 + 0.126989851933702*m.x170 + 0.0769898519337017*m.x171 + 0.0769898519337017*m.x172 + 0.176989851933702*m.x177 + 0.226989851933702*m.x178 + 0.176989851933702*m.x179 + 0.176989851933702*m.x180 + 0.350989851933702*m.x181 + 0.350989851933702*m.x182 + 0.350989851933702*m.x183 + 0.350989851933702*m.x184 + 0.163989851933702*m.x185 + 0.163989851933702*m.x186 + 0.163989851933702*m.x187 + 0.163989851933702*m.x188 + 0.257989851933702*m.x189 + 0.257989851933702*m.x190 + 0.257989851933702*m.x191 + 0.257989851933702*m.x192 + 0.163989851933702*m.x193 + 0.163989851933702*m.x194 + 0.163989851933702*m.x195 + 0.163989851933702*m.x196 + 0.257989851933702*m.x197 + 0.257989851933702*m.x198 + 0.257989851933702*m.x199 + 0.257989851933702*m.x200 + 0.210989851933702*m.x201 + 0.210989851933702*m.x202 + 0.210989851933702*m.x203 + 0.210989851933702*m.x204 + 0.257989851933702*m.x205 + 0.257989851933702*m.x206 + 0.257989851933702*m.x207 + 0.257989851933702*m.x208 + m.x403 == 57.6379265410218) m.c237 = Constraint(expr= 0.1196826*m.x169 + 0.1196826*m.x170 + 0.0696826*m.x171 + 0.0696826*m.x172 + 0.1696826*m.x179 + 0.1696826*m.x180 + 0.1566826*m.x181 + 0.1566826*m.x182 + 0.1566826*m.x183 + 0.1566826*m.x184 + 0.1566826*m.x185 + 0.1566826*m.x186 + 0.1566826*m.x187 + 0.1566826*m.x188 + 0.1566826*m.x189 + 0.1566826*m.x190 + 0.1566826*m.x191 + 0.1566826*m.x192 + 0.1566826*m.x193 + 0.1566826*m.x194 + 0.1566826*m.x195 + 0.1566826*m.x196 + 0.1566826*m.x197 + 0.1566826*m.x198 + 0.1566826*m.x199 + 0.1566826*m.x200 + 0.2036826*m.x201 + 0.2036826*m.x202 + 0.2036826*m.x203 + 0.2036826*m.x204 + 0.1566826*m.x205 + 0.1566826*m.x206 + 0.1566826*m.x207 + 0.1566826*m.x208 + m.x404 == 33.7923398929774) m.c238 = Constraint(expr= m.x7 - 44.6*m.x265 <= 227) m.c239 = Constraint(expr= m.x8 - 44.6*m.x265 <= 227) m.c240 = Constraint(expr= m.x9 - 44.6*m.x265 <= 227) m.c241 = Constraint(expr= m.x10 - 44.6*m.x265 <= 227) m.c242 = Constraint(expr= m.x11 - 44.6*m.x265 <= 227) m.c243 = Constraint(expr= m.x12 - 44.6*m.x265 <= 227) m.c244 = Constraint(expr= m.x13 - 44.6*m.x265 <= 227) m.c245 = Constraint(expr= m.x14 - 44.6*m.x265 <= 227) m.c246 = Constraint(expr= m.x15 - 44.6*m.x265 <= 227) m.c247 = Constraint(expr= m.x16 - 44.6*m.x265 <= 227) m.c248 = Constraint(expr= m.x17 - 44.6*m.x265 <= 227) m.c249 = Constraint(expr= m.x18 - 44.6*m.x265 <= 227) m.c250 = Constraint(expr= - 0.756784608460846*m.x7 - 0.77064599459946*m.x8 - 0.799250855085509*m.x9 - 0.828989828982898*m.x10 - 0.787822371737174*m.x11 - 0.742*m.x12 - 0.73205400540054*m.x13 - 0.718831683168317*m.x14 - 0.766193208820882*m.x15 - 0.80076300630063*m.x16 - 0.773040234023402*m.x17 - 0.786019531953195*m.x18 + 1.5*m.x209 + 1.5*m.x213 + 3.11739130434783E-6*m.x357 + 3.58840579710145E-6*m.x358 + 4.24927536231884E-6*m.x359 + 2.64347826086957E-6*m.x360 + 1.98405797101449E-6*m.x361 + 2.64347826086957E-6*m.x362 + 2.48260869565217E-5*m.x363 + 2.0768115942029E-5*m.x364 + 2.17246376811594E-6*m.x365 + 1.41739130434783E-7*m.x366 + 1.51159420289855E-6*m.x367 + 1.7E-6*m.x368 == -1478.35221628198) m.c251 = Constraint(expr= - m.x5 + m.x6 + 1.5*m.x220 + 1.5*m.x224 + 3.1182320441989E-6*m.x369 + 3.54088397790055E-6*m.x370 + 4.10755064456722E-6*m.x371 + 2.55156537753223E-6*m.x372 + 1.98489871086556E-6*m.x373 + 2.55156537753223E-6*m.x374 + 2.35182320441989E-5*m.x375 + 1.99742173112339E-5*m.x376 + 2.12578268876611E-6*m.x377 + 1.4182320441989E-7*m.x378 + 1.55911602209945E-6*m.x379 + 1.7E-6*m.x380 == -248.587050752182) m.c252 = Constraint(expr= m.x31 - 250*m.x266 <= 274) m.c253 = Constraint(expr= m.x32 - 250*m.x266 <= 274) m.c254 = Constraint(expr= m.x33 - 250*m.x266 <= 274) m.c255 = Constraint(expr= m.x34 - 250*m.x266 <= 274) m.c256 = Constraint(expr= m.x35 - 250*m.x266 <= 274) m.c257 = Constraint(expr= m.x36 - 250*m.x266 <= 274) m.c258 = Constraint(expr= m.x37 - 250*m.x266 <= 274) m.c259 = Constraint(expr= m.x38 - 250*m.x266 <= 274) m.c260 = Constraint(expr= m.x39 - 250*m.x266 <= 274) m.c261 = Constraint(expr= m.x40 - 250*m.x266 <= 274) m.c262 = Constraint(expr= m.x41 - 250*m.x266 <= 274) m.c263 = Constraint(expr= m.x42 - 250*m.x266 <= 274) m.c264 = Constraint(expr= m.x43 - 250*m.x267 <= 117) m.c265 = Constraint(expr= m.x44 - 250*m.x267 <= 117) m.c266 = Constraint(expr= m.x45 - 250*m.x267 <= 117) m.c267 = Constraint(expr= m.x46 - 250*m.x267 <= 117) m.c268 = Constraint(expr= m.x47 - 250*m.x267 <= 117) m.c269 = Constraint(expr= m.x48 - 250*m.x267 <= 117) m.c270 = Constraint(expr= m.x49 - 250*m.x267 <= 117) m.c271 = Constraint(expr= m.x50 - 250*m.x267 <= 117) m.c272 = Constraint(expr= m.x51 - 250*m.x267 <= 117) m.c273 = Constraint(expr= m.x52 - 250*m.x267 <= 117) m.c274 = Constraint(expr= m.x53 - 250*m.x267 <= 117) m.c275 = Constraint(expr= m.x54 - 250*m.x267 <= 117)
UTF-8
Python
false
false
114,776
py
1,335
indus-scalar.py
246
0.575373
0.237637
0
1,604
70.55611
120
vietodoo/course-rest-api
1,778,116,504,134
cec01723076770077aadb8b6c060c95fdbae0b14
f6171f08f645b7a50b8bac88d378f758eefe16e8
/src/profiles_project/profiles_api/views.py
46a60dc8d3fb7598841d11e3687f4861e2513acc
[ "MIT" ]
permissive
https://github.com/vietodoo/course-rest-api
c5c63c8c756914a39a108ff5c8941f4671d7ee47
3872549a277bb85ae139968a8a0d2aa9dd7266dc
refs/heads/master
2023-01-27T15:58:08.882816
2020-12-16T09:42:00
2020-12-16T09:42:00
319,248,863
0
0
MIT
true
2020-12-07T08:15:07
2020-12-07T08:15:07
2020-10-27T15:28:13
2018-09-01T08:42:09
26
0
0
0
null
false
false
from django.shortcuts import render from rest_framework.response import Response from rest_framework import viewsets # Create your views here. from . import serializers, models class UserProfileViewSet(viewsets.ModelViewSet): """Handles creating, reading and updating profiles.""" serializer_class = serializers.UserProfileSerializer queryset = models.UserProfile.objects.all()
UTF-8
Python
false
false
395
py
5
views.py
3
0.792405
0.792405
0
14
27.214286
58
epidersis/olymps
8,899,172,252,460
fe7c5207350fb8f6c1b03445bcb0e1b68f35ce56
ba1061443f83d65033347c8e8896618005fbb32e
/617B/617B.py
56b9c0998828e4a64c10a5b00d28410758f34f57
[]
no_license
https://github.com/epidersis/olymps
9388f690d4cc282bb5af2b8f57094a5bacce77eb
ff22f97d8cc7e6779dc8533e246d0d651e96033e
refs/heads/master
2022-07-31T01:50:42.950753
2022-07-18T21:51:47
2022-07-18T21:51:47
130,722,706
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
input() nuts = input().replace(' ', '').replace('0', ' ').strip().split('1') if len(nuts) == 1 and nuts[0] == '': print(0) exit(0) mult = 1 for el in nuts: mult *= len(el) + 1 print(mult)
UTF-8
Python
false
false
204
py
126
617B.py
125
0.509804
0.470588
0
13
14.692308
68
AhmadRazaAwan/Files
14,602,888,833,294
561daf012a698f8f1f05d424a1bfcc53bd7fac8e
f590fa124c2818297cdd44e5a6d8aeb5e0e71d6d
/dir_4.py
66267a75a26f64b0c3bb9c70092b9e01dfc7a637
[]
no_license
https://github.com/AhmadRazaAwan/Files
45a7364e99048f78f9360bfb68b820409536d1f7
0e6bd0c18c085a8f9e021eb22fb160493ec42a18
refs/heads/master
2023-01-24T09:18:01.749087
2020-11-11T14:16:10
2020-11-11T14:16:10
311,991,721
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Removing a directory or a file import os # Print list of directory print(os.listdir()) # rename name (old name), (new name) os.rename("Allah", "My Allah") # Again print list to check print(os.listdir())
UTF-8
Python
false
false
208
py
40
dir_4.py
38
0.701923
0.701923
0
11
17.909091
36
aqp1234/gitVR
15,599,321,245,448
e2637dadaf41b8be05e286042a9994ece9ce677a
36957a9ce540846d08f151b6a2c2d582cff1df47
/VR/Python/Python36/Lib/encodings/mac_arabic.py
646fc054f035aa04b9eb5302bd543b89452cd093
[]
no_license
https://github.com/aqp1234/gitVR
60fc952307ef413e396d31e0d136faffe087ed2b
e70bd82c451943c2966b8ad1bee620a0ee1080d2
refs/heads/master
2022-12-29T15:30:12.540947
2020-10-07T15:26:32
2020-10-07T15:26:32
290,163,043
0
1
null
false
2020-08-25T09:15:40
2020-08-25T08:47:36
2020-08-25T09:03:47
2020-08-25T09:15:40
0
0
1
0
C#
false
false
version https://git-lfs.github.com/spec/v1 oid sha256:f5c262f930f3b7d83466283347f8b0d7b5c7cbf18dd6fceb4faf93dbcd58839e size 37165
UTF-8
Python
false
false
130
py
9,567
mac_arabic.py
1,742
0.884615
0.538462
0
3
42.333333
75
jirenuki-69/AlienStrike_RetributionDay
4,303,557,269,561
60417848444f0fc55351d733cbe17ad5d359a192
eca81659957eb096179e3dc992487e2ca7d882f7
/intro_LVL_2.py
ef6666886e9e5ff425cc0343d139156406532c3f
[]
no_license
https://github.com/jirenuki-69/AlienStrike_RetributionDay
26e59abbda7ad831e72cdbfbde225e76fe0c9266
1c95349b14218630ca1a3efad8468410ecaf7821
refs/heads/main
2023-01-28T12:38:27.466690
2020-12-09T06:04:25
2020-12-09T06:04:25
310,120,201
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import pygame, sys, const, LVL_2 from clases.Sound import Sound from clases.Music import Music from clases.Nave import Nave from clases.Texto import Texto def conseguir_nombre(): with open ("nombre.txt") as archivo: for linea in archivo.readlines(): return str(linea.split("-")[0]) def intro_lvl_2(cursor, controller, difficulty, shields, vidas): music = Music() music.stop() sound = Sound() width = 1200 height = 800 size = (width, height) screen = pygame.display.set_mode(size) #Global values background = pygame.image.load("assets/visual/gameplay_assets/mas_ciudad.png") background = pygame.transform.scale(background, size) dialogo = pygame.image.load("assets/visual/gameplay_assets/dialogo_negro.png") get_ready = pygame.image.load("assets/visual/gameplay_assets/get_ready.png") font = pygame.font.Font("fonts/Pixel LCD-7.ttf", 15) clock = pygame.time.Clock() fps = 60 cont = 0 cont2 = 0 dialogue_open = False is_get_ready_opened = False secs = 30 nombre = conseguir_nombre() dialogo_intro = [ "Cada vez nos vamos adentrando mas a las fuerzas de los snatchers... se que eres un profesional pero ten cuidado.", f"procura que tus balas sean certeras {nombre}, no pierdas tus escudos por tonteras.", ] index = 0 texto = Texto( dialogo_intro[index], (int(width * 0.15), int(height * 0.9)), font, screen, 75, const.WHITE, ) nave = Nave( (int(width * 0.50), int(height * 1.2)), 5, size, screen, "assets/visual/gameplay_assets/main_ship.png" ) while True: for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit() if event.type == pygame.KEYDOWN: if event.key == pygame.K_RETURN and dialogue_open: if index + 1 == len(dialogo_intro): if not is_get_ready_opened and dialogue_open: sound.get_ready() music.lvl_2() is_get_ready_opened = True dialogue_open = False else: sound.dialogue_change() index += 1 texto.text = dialogo_intro[index] elif event.type == pygame.MOUSEBUTTONDOWN: if pygame.mouse.get_pressed()[0]: if index + 1 == len(dialogo_intro): if not is_get_ready_opened and dialogue_open: sound.get_ready() music.lvl_2() is_get_ready_opened = True dialogue_open = False else: sound.dialogue_change() index += 1 texto.text = dialogo_intro[index] elif event.type == pygame.JOYBUTTONDOWN: if index + 1 == len(dialogo_intro): if not is_get_ready_opened and dialogue_open: sound.get_ready() music.lvl_2() is_get_ready_opened = True dialogue_open = False else: sound.dialogue_change() index += 1 texto.text = dialogo_intro[index] screen.blit(background, [0 , 0]) screen.blit(nave.image, nave.rect) if nave.rect.y != int(height * 0.9) - 60: nave.rect.y -= nave.movementSpeed if nave.rect.y == int(height * 0.9) - 60: if not dialogue_open: cont += 1 if cont >= secs and not is_get_ready_opened: dialogue_open = True if dialogue_open: screen.blit(dialogo, [0, height - 200]) texto.show_text() if is_get_ready_opened: cont2 += 1 if cont2 >= secs * 2: LVL_2.lvl_2(cursor, controller, difficulty, shields, vidas) screen.blit(get_ready, [width / 2 - 150, height / 2 - 75]) pygame.display.flip() clock.tick(fps) pygame.quit()
UTF-8
Python
false
false
4,334
py
38
intro_LVL_2.py
35
0.506922
0.490309
0
128
32.859375
123
breenbo/tictactoe
10,522,669,902,094
f45faef60b43c4ada206e92da75a088f0eddfbf0
11e867eaabe3a8ab01b823696955ef3dd553d2aa
/ticTacToe.py
7a15ca3a3abe2ffbac91719765136fbd43a8c54d
[]
no_license
https://github.com/breenbo/tictactoe
11c7b8a2730ca685200571210ebe293748a82cda
a0fc5d8fdcbead53af426ce6e45f75512d403383
refs/heads/master
2021-07-20T11:23:01.109958
2017-10-27T18:57:46
2017-10-27T18:57:46
108,582,801
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from random import * def printBoard(liste, lenLine=3): ''' liste : list of num or string lenLine : length of the desired board return : line to be printed to have the board ''' counter = 1 line = '' # set a counter and add \n every lenLine for char in liste: if counter % lenLine == 0: line += '| ' + str(char) + ' |' + '\n' else: line += '| ' + str(char) + ' ' pass counter += 1 return(line) def playersNumberName(): ''' input : none return : list with name(s) of player(s) ''' playersNumber = '0' while playersNumber != '1' and playersNumber != '2': playersNumber = input("How many to play (choose 1 or 2 players) ?") # control if number of players is correct : if playersNumber == '2': name1 = input("What's your name player 1 ?") name2 = input("What's your name player 2 ?") names = [name1, name2] return(names) else: name = input("Who cares, but what's your name ?") return([name]) def play(player, liste, marker): ''' player : human or computer liste : list of cases return : list of played cases take player or computer input, check if a int, in the good range, and if the case is empty in the liste. Marker is defined by an external counter. ''' # set game for computer player if player == 'I': # check if the case is empty marker = 'O' check = False while not check: case = randint(0,8) if liste[case] == '.': liste[case] = marker check = True else: case = '' check = False # check if number entered by user, in the good range while not check: case = input('\n' + player + ', choose an empty box (1 to 9) :\n') if case.isdigit(): if int(case) in range(1, 10): case = int(case) - 1 if liste[case] == '.': liste[case] = marker check = True return(liste) def checkWin(liste, counter, name1='You', name2='I'): ''' list : list of played case name : name of players counter : external counter to check if draw return : win, lost or draw status depending of an external counter ''' winList = ['123', '456', '789', '147', '258', '369', '159', '357'] resultX = '' resultO = '' for i in range(0, 9): if liste[i] == 'X': # add 1 to index iot compare to win list !!!! resultX += str(i+1) elif liste[i] == 'O': resultO += str(i+1) # check if one of the players have won for win in winList: if win in resultX: return(name1 + ' win !') elif win in resultO: return(name2 + ' win !') # set counter to 10 to be sure there is no win on last turn elif counter == 10: return("It's a draw !") def printGame(names, intro): if intro == 'yes': print('\nPython TicTacToe Game\n=====================') if len(names) == 2: print("Ok, let's get to Rumble " + names[0] + " and " + names[1] + " !\n") else: print("Ok, let's fight, I'll crush you 'dear' " + names[0] + " !\nYou start, but I keep the O\n") print('Reference Board\n') print(printBoard(example)) if len(names) == 2: print('The Battlefield\n') else: print('Your board of defeat\n') print(printBoard(board)) ############################## example = range(1, 10) text = '. '*9 emptyBoard = text.split() board = emptyBoard counter = 0 names = playersNumberName() printGame(names, 'yes') if len(names) == 2: player1 = names[0] player2 = names[1] else: player1 = 'You' player2 = 'I' while checkWin(board, counter) is None: for player in [player1, player2]: # check parity of counter to set marker if counter % 2 == 0: marker = 'X' else: marker = 'O' # players play and print the board after each play board = play(player, board, marker) printGame(names, 'no') # check if one of the player has won if checkWin(board, counter) is None: # if not, add 1 to counter to count the played turn counter += 1 # check if it's the last turn else: # if there is a winner, break the loop and print him break if counter == 9: # if so, without a winner, add 1 to counter iot print the draw counter += 1 # break the loop and print the draw break print(checkWin(board, counter, player1, player2))
UTF-8
Python
false
false
4,826
py
2
ticTacToe.py
1
0.52528
0.506838
0
161
28.975155
86
apolopino/4G-Final-Backend
5,299,989,684,032
664c2173d95b4150dd20682d8301506a645bef64
4ef2f21bffc23336097fcb3b96b35c381ada0001
/src/admin.py
da4599b1954a435cf8b8b54e19925b27fe549c60
[]
no_license
https://github.com/apolopino/4G-Final-Backend
2ee7920e02f940a9fbbf82eb25c65dbcb39fbfdb
56332592ae9aa877556e7a9d78166e1eab74e045
refs/heads/develop
2023-08-07T07:53:01.159833
2021-09-29T19:03:20
2021-09-29T19:03:20
396,526,383
0
3
null
false
2021-09-29T19:03:21
2021-08-15T23:04:35
2021-09-29T18:56:09
2021-09-29T19:03:20
4,684
0
1
0
Python
false
false
import os from flask_admin import Admin from models import db, User, ExtrasUsuarios, TodoUsuario, Extras, TemplateTodo, Dias, Desafios from flask_admin.contrib.sqla import ModelView def setup_admin(app): app.secret_key = os.environ.get('FLASK_APP_KEY', 'sample key') app.config['FLASK_ADMIN_SWATCH'] = 'cerulean' admin = Admin(app, name='4Geeks Admin', template_mode='bootstrap3') # Add your models here, for example this is how we add a the User model to the admin admin.add_view(ModelView(User, db.session)) admin.add_view(ModelView(Desafios, db.session)) admin.add_view(ModelView(Dias, db.session)) admin.add_view(ModelView(Extras, db.session)) admin.add_view(ModelView(TemplateTodo, db.session)) admin.add_view(ModelView(TodoUsuario, db.session)) admin.add_view(ModelView(ExtrasUsuarios, db.session)) # You can duplicate that line to add mew models # admin.add_view(ModelView(YourModelName, db.session))
UTF-8
Python
false
false
967
py
7
admin.py
5
0.730093
0.728025
0
22
43
94
DanielBok/copulae
11,175,504,926,900
490a2fd2ab96d565fe3ab89f83c015de672730eb
c8d98c2101a2932c4449183c9e8bd6501c57345f
/copulae/mixtures/gmc/summary.py
3486e2dca9475042b37b023f03d8bc8f02e0a6f4
[ "MIT" ]
permissive
https://github.com/DanielBok/copulae
a9af8fa88a212a5436226a22d59799d671d78645
d48fbd064426605b8784684114844758e3ffc90d
refs/heads/master
2023-07-08T09:52:31.815899
2023-06-14T04:29:39
2023-06-14T05:22:31
165,516,660
131
30
MIT
false
2023-06-14T05:22:32
2019-01-13T14:43:39
2023-06-13T07:41:45
2023-06-14T05:22:31
1,888
113
24
7
Jupyter Notebook
false
false
import pandas as pd from copulae.copula.summary import SummaryType from .parameter import GMCParam class Summary(SummaryType): def __init__(self, params: GMCParam, fit_details: dict): self.name = "Gaussian Mixture Copula" self.params = params self.fit = fit_details def _repr_html_(self): params = [f"<strong>{title}</strong>" + pd.DataFrame(values).to_html(header=False, index=False) for title, values in [("Mixture Probability", self.params.prob), ("Means", self.params.means)]] params.append( f"<strong>Covariance</strong>" + '<br/>'.join( f"<div>Margin {i + 1}</div>{pd.DataFrame(c).to_html(header=False, index=False)}" for i, c in enumerate(self.params.covs) ) ) fit_details = '' if self.fit['method'] is not None: fit_details = f""" <div> <h3>Fit Details</h3> <div>Algorithm: {self.fit['method']}</div> </div> """.strip() html = f""" <div> <h2>{self.name} Summary</h2> <div>{self.name} with {self.params.n_clusters} components and {self.params.n_dim} dimensions</div> <hr/> <div> <h3>Parameters</h3> {'<br/>'.join(params)} </div> {fit_details} </div> """.strip() return html def __str__(self): return '\n'.join([ f"{self.name} Summary", "=" * 80, str(self.params) ])
UTF-8
Python
false
false
1,523
py
161
summary.py
116
0.523309
0.5174
0
54
27.203704
103
danmao124/url_shortener
3,530,463,150,810
bfdc6556190ee2b1a3c887f1908faba2bbed33c5
862edac0971f5b5449773b8a3419c2b005fc3eea
/link_shortener.py
e20f46cb6e87c1e78747de230d88bcdc8c11d049
[]
no_license
https://github.com/danmao124/url_shortener
d2e093454c7f13bf6c0ad68dcc22f178648de7d2
a986e28831e491567708d4f2028b749cddb2cb27
refs/heads/master
2021-06-09T18:24:32.304005
2017-01-13T19:54:03
2017-01-13T19:54:03
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from flask import Flask, url_for, request, json, redirect import MySQLdb, sys, ConfigParser #Config reader helper method. Taken from online def ConfigSectionMap(section): dict1 = {} options = Config.options(section) for option in options: try: dict1[option] = Config.get(section, option) if dict1[option] == -1: DebugPrint("skip: %s" % option) except: print("exception on %s!" % option) dict1[option] = None return dict1 #Base62(0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ) encoding algorithm. Taken from online def encode(num, alphabet="123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"): if num == 0: return alphabet[0] arr = [] base = len(alphabet) while num: num, rem = divmod(num, base) arr.append(alphabet[rem]) arr.reverse() return ''.join(arr) #Read in variable from settings.ini Config = ConfigParser.ConfigParser() Config.read("settings.ini") host = ConfigSectionMap("Database")['host'] #your host, usually localhost user = ConfigSectionMap("Database")['user'] #your username password = ConfigSectionMap("Database")['passwd'] #your password database_name = ConfigSectionMap("Database")['database_name'] #your database name port = ConfigSectionMap("Server")['port'] #your port number is_redirect = ConfigSectionMap("Server")['is_redirect'] #does the server redirect you to the url? Is either "ON" or "OFF" #Connecting to the MySQL database. Set parameters in the ini file try: db = MySQLdb.connect(host, user, password, database_name) cursor = db.cursor() cursor.execute("""CREATE TABLE IF NOT EXISTS links ( link_id INT UNSIGNED NOT NULL AUTO_INCREMENT, link varchar(255), link_key varchar(64), PRIMARY KEY (link_id))""") except MySQLdb.Error: sys.exit("ERROR IN DATABASE CONNECTION") #Setting up the server. app = Flask(__name__) #Main page. User sends url post request and gets a encoded url as a response. @app.route('/', methods = ['GET', 'POST']) def api_root(): if request.method == 'GET': return "yay it works" elif request.method == 'POST' and request.headers['Content-Type'] == 'application/json': dataDict = json.loads(request.data) if 'url' in dataDict.keys(): try: url = dataDict.get('url') #check if url is in the table cursor.execute("""SELECT * FROM links WHERE link = %s""", (url,)) #if the url is not in the table, we add it and encode its key using the primary_id number if cursor.rowcount == 0: cursor.execute("""INSERT INTO links (link) VALUES (%s)""", (url,)) key = encode(cursor.lastrowid) cursor.execute("""UPDATE links SET link_key = %s WHERE link_id = %s""", (key, cursor.lastrowid,)) db.commit() return "{'response': 'localhost:" + port + "/" + key + "'}" #if the url is in the table, we just return the link key else: return "{'response': 'localhost:" + port + "/" + cursor.fetchone()[2] + "'}" except MySQLdb.Error: return "{'response': 'Something blew up in the sql query'}" else: return "{'response': 'You need to have a url key in the json request. See the readme!'}" else: return "{'response': 'You need to send a json request. See the readme!'}"; #Encoded url page. Returns the website link. @app.route('/<link_key>') def api_link_key(link_key): try: cursor.execute("""SELECT * FROM links WHERE link_key = %s""", (link_key,)) if cursor.rowcount == 0: return "{'response': 'invalid key'}" else: if is_redirect == "OFF": return "{'response': '" + cursor.fetchone()[1] + "'}" else: return redirect(cursor.fetchone()[1]) except MySQLdb.Error: return "{'response': 'Something blew up in the sql query'}" #Run the server! app.run(port = port)
UTF-8
Python
false
false
3,928
py
3
link_shortener.py
1
0.641548
0.631619
0
109
35.018349
125
Vohsty/Awaards
18,047,452,615,234
a152c6643016f3dca7bd72009c365207438a3cd2
890a7db25425d21743199677fe79071b97934f78
/rating/views.py
0526a117ba302ce8bc9ad99ece6fe03f12fa31d7
[ "MIT" ]
permissive
https://github.com/Vohsty/Awaards
841828523d4168c69c2cabca876071beaad99697
4add09ac6b48fd6963ad6f2b36f921530536a83c
refs/heads/master
2021-09-09T11:53:23.368667
2019-07-08T06:34:38
2019-07-08T06:34:38
194,614,928
0
1
MIT
false
2021-09-08T01:06:47
2019-07-01T06:43:00
2019-07-08T13:02:27
2021-09-08T01:06:45
37,212
0
1
4
Python
false
false
from django.shortcuts import render, redirect from django.http import HttpResponse, Http404 from django.contrib.auth.decorators import login_required from .models import Project, Profile, Rating, categories, technologies from .forms import ProfileForm, UploadForm, RatingForm from rest_framework.response import Response from rest_framework.views import APIView from .serializers import ProfileSerializer, ProjectSerializer from rest_framework import status from .permissions import IsAdminOrReadOnly from django.core.exceptions import ObjectDoesNotExist @login_required(login_url='/accounts/login') def index(request): current_user = request.user projects = Project.objects.order_by('-overall').all() top = projects[0] runners=Project.objects.all()[:4] try: current_user = request.user profile =Profile.objects.get(user=current_user) except ObjectDoesNotExist: return redirect('edit') return render(request, 'index.html', locals()) @login_required(login_url='/accounts/login') def profile(request): current_user=request.user profile =Profile.objects.get(user=current_user) projects = Project.objects.filter(user=current_user) my_profile = Profile.objects.get(user=current_user) return render(request, 'profile.html', locals()) @login_required(login_url='/accounts/login') def edit_profile(request): current_user = request.user if request.method == 'POST': form = ProfileForm(request.POST, request.FILES) if form.is_valid(): prof = form.save(commit=False) prof.user = current_user prof.save() return redirect('myprofile') else: form = ProfileForm() return render(request, 'edit_profile.html', {'form': form, 'profile':profile}) @login_required(login_url='/accounts/login') def new_project(request): current_user = request.user profile =Profile.objects.get(user=current_user) if request.method == 'POST': form = UploadForm(request.POST, request.FILES) if form.is_valid(): image = form.save(commit=False) image.user = current_user image.save() return redirect('index') else: form = UploadForm() return render(request, 'new_project.html', {'form': form,'profile':profile}) @login_required(login_url='/accounts/login') def project(request, project_id): current_user = request.user profile =Profile.objects.get(user=current_user) message = "Thank you for voting" try: project = Project.objects.get(id=project_id) except Project.DoesNotExist: raise ObjectDoesNotExist() total_design = 0 total_usability = 0 total_creativity = 0 total_content = 0 overall_score = 0 ratings = Rating.objects.filter(project=project_id) if len(ratings) > 0: users = len(ratings) else: users = 1 design = list(Rating.objects.filter(project=project_id).values_list('design',flat=True)) usability = list(Rating.objects.filter(project=project_id).values_list('usability',flat=True)) creativity = list(Rating.objects.filter(project=project_id).values_list('creativity',flat=True)) content = list(Rating.objects.filter(project=project_id).values_list('content',flat=True)) total_design=sum(design)/users total_usability=sum(usability)/users total_creativity=sum(creativity)/users total_content=sum(content)/users overall_score=(total_design+total_content+total_usability+total_creativity)/4 project.design = total_design project.usability = total_usability project.creativity = total_creativity project.content = total_content project.overall = overall_score project.save() if request.method == 'POST': form = RatingForm(request.POST, request.FILES) if form.is_valid(): rating = form.save(commit=False) rating.project= project rating.profile = profile if not Rating.objects.filter(profile=profile, project=project).exists(): rating.overall_score = (rating.design+rating.usability+rating.creativity+rating.content)/4 rating.save() else: form = RatingForm() return render(request, "project.html",{"project":project,"profile":profile,"ratings":ratings,"form":form, "message":message, 'total_design':total_design, 'total_usability':total_usability, 'total_creativity':total_creativity, 'total_content':total_content}) @login_required(login_url='/accounts/login') def search(request): current_user = request.user profile =Profile.objects.get(user=current_user) if 'project' in request.GET and request.GET["project"]: search_term = request.GET.get("project") projects = Project.search_project(search_term) message = f"{search_term}" return render(request, 'search.html', {"message":message, "projects":projects, 'profile':profile}) else: message = "Please enter search term" return render(request, 'search.html', {"message":message, "projects":projects,'profile':profile}) class ProfileList(APIView): permission_classes = (IsAdminOrReadOnly,) def get(self, request, format=None): all_profiles = Profile.objects.all() serializers = ProfileSerializer(all_profiles, many=True) return Response(serializers.data) def post(self, request, format=None): serializers = ProfileSerializer(data=request.data) if serializers.is_valid(): serializers.save() return Response(serializers.data, status=status.HTTP_201_CREATED) return Response(serializers.errors, status=status.HTTP_400_BAD_REQUEST) class ProjectList(APIView): permission_classes = (IsAdminOrReadOnly,) def get(self, request, format=None): all_projects = Project.objects.all() serializers = ProjectSerializer(all_projects, many=True) return Response(serializers.data) def post(self, request, format=None): serializers = ProfileSerializer(data=request.data) if serializers.is_valid(): serializers.save() return Response(serializers.data, status=status.HTTP_201_CREATED) return Response(serializers.errors, status=status.HTTP_400_BAD_REQUEST) class ProfileDescription(APIView): def get_profile(self, pk): try: return Profile.objects.get(pk=pk) except Profile.DoesNotExist: return Http404 def get(self, request, pk, format=None): profile = self.get_profile(pk) serializers = ProfileSerializer(profile) return Response(serializers.data) class ProjectDescription(APIView): def get_project(self, pk): try: return Project.objects.get(pk=pk) except Project.DoesNotExist: return Http404 def get(self, request, pk, format=None): project = self.get_project(pk) serializers = ProjectSerializer(project) return Response(serializers.data)
UTF-8
Python
false
false
7,072
py
14
views.py
6
0.680713
0.676188
0
186
37.026882
261
Dantes-Shade/Code_Guild
7,507,602,862,481
3f0ef4909173fd3dd18a980f5a3fd4004ef0bd2c
6ad7763cfe3e3cbe9be5c0cf31fde4c88f79cc78
/IronEnclave/IronEnclave/iEaccounts/migrations/0002_auto_20200625_1846.py
be01eb85f1bb37a29c55606e380e67aaca5ac1b1
[]
no_license
https://github.com/Dantes-Shade/Code_Guild
3766e4d063045444a110b56d712dee646058bc94
102a1f709796e6dff9431d38235e826a5a930ff3
refs/heads/master
2021-12-12T19:07:00.751277
2020-07-29T02:52:44
2020-07-29T02:52:44
243,426,674
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
# Generated by Django 3.0.7 on 2020-06-26 01:46 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('iEaccounts', '0001_initial'), ] operations = [ migrations.AlterField( model_name='profiles', name='profile_img', field=models.ImageField(blank=True, upload_to='profile_image'), ), ]
UTF-8
Python
false
false
410
py
93
0002_auto_20200625_1846.py
58
0.597561
0.55122
0
18
21.777778
75
michaelhe/micserver
16,183,436,787,908
768391c0f1ab11afbbad019cc5e346faf90991f6
78bc1cee3a9990e6f0601f6afaf275661413410e
/micsocket.py
662f47212e34ff14ed0c10ca880ed8fb22a27c56
[]
no_license
https://github.com/michaelhe/micserver
07d9fdffadea7893564d6325d5e5d3d7121d825d
8897ead9c0d219bdcd0a08cff900b2324700ffc5
refs/heads/master
2021-01-19T20:30:23.124259
2017-05-02T01:35:29
2017-05-02T01:35:29
88,512,269
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python # -*- coding: UTF-8 -*- import SocketServer import logging import time logging.basicConfig( level = logging.DEBUG, format = '%(threadName)s | %(message)s' ) class MicSocket(SocketServer.BaseRequestHandler): def handle(self): data = self.request[0].strip() addr = self.request[1] logging.debug('receive data %s from %s' % (data,self.client_address[0])) if __name__=='__main__': address = ('127.0.0.1',30000) server = SocketServer.UDPServer(address, MicSocket) server.serve_forever()
UTF-8
Python
false
false
518
py
14
micsocket.py
13
0.689189
0.660232
0
24
20.625
74
imsardine/learning
738,734,383,510
0ef6925e0bd4463b0f3233ac69a6fade52112fdc
b43c6c03eea348d68d6582c3594760bbe0ecaa08
/python/tests/test_enum.py
5e845a0f81191d2151135c9cff75f90b53924388
[ "MIT" ]
permissive
https://github.com/imsardine/learning
1b41a13a4c71c8d9cdd8bd4ba264a3407f8e05f5
925841ddd93d60c740a62e12d9f57ef15b6e0a20
refs/heads/master
2022-12-22T18:23:24.764273
2020-02-21T01:35:40
2020-02-21T01:35:40
24,145,674
0
0
MIT
false
2022-12-14T20:43:28
2014-09-17T13:24:37
2020-02-21T01:35:54
2022-12-14T20:43:25
2,751
0
0
15
Python
false
false
import pytest from enum import Enum class Season(Enum): SPRING = 1 SUMMER = 9 FALL = 3 WINTER = 5 AUTUMN = 3 # alias def test_str_name_repr(): assert str(Season.SPRING) == 'Season.SPRING' # w/ type assert Season.SPRING.name == 'SPRING' # w/o type assert repr(Season.SPRING) == '<Season.SPRING: 1>' # w/ value def test_type__is_enum_class(): assert type(Season.SPRING) == Season assert isinstance(Season.SPRING, Season) assert isinstance(Season.SPRING, Enum) def test_iteration__in_definition_or_order_exclusing_aliases(py2): names = [season.name for season in Season] if py2: # in value order assert names == ['SPRING', 'FALL', 'WINTER', 'SUMMER'] else: # in definition order assert names == ['SPRING', 'SUMMER', 'FALL', 'WINTER'] def test_hashable(): try: hash(Season.SPRING) except TypeError: pytest.fail() favorites = {Season.SPRING: 'wind', Season.FALL: 'temp.'} assert favorites[Season.SPRING] == 'wind' def test_member_from_value__or_raise_valueerror(): assert Season(1) == Season.SPRING with pytest.raises(ValueError) as excinfo: Season(99) assert str(excinfo.value) == '99 is not a valid Season' def test_member_from_name__or_raise_keyerror(): assert Season['AUTUMN'] == Season.FALL with pytest.raises(KeyError) as excinfo: Season['UNKNOWN'] assert str(excinfo.value) == "'UNKNOWN'" def test_alias__same_identity_value_and_name(): assert id(Season.FALL) == id(Season.AUTUMN) assert Season.FALL == Season.AUTUMN assert Season.FALL.value == Season.AUTUMN.value == 3 assert Season.FALL.name == Season.AUTUMN.name == 'FALL' def test_custom_value_attrs(): class Color(Enum): RED = ('RD', (255, 0, 0)) GREEN = ('GN', (0, 255, 0)) BLUE = ('BL', (0, 0, 255)) def __new__(cls, code, rgb): obj = object.__new__(cls) obj._value_ = code return obj def __init__(self, code, rgb): self.code = code self.rgb = rgb blue = Color('BL') assert blue == Color['BLUE'] == Color.BLUE assert blue.value == 'BL' assert blue.rgb == (0, 0, 255)
UTF-8
Python
false
false
2,243
py
313
test_enum.py
218
0.599643
0.584485
0
81
26.703704
66
jbitshine/hacker-rank
3,633,542,333,829
50e7d9a228c4e4db390343dce45687b2b544e5b5
fce0bffdca4eddc15d6288ae4a204de666819bb6
/python/itertools/01-product.py
c89d105eb7707b176e75c993b3573a242ddcf774
[]
no_license
https://github.com/jbitshine/hacker-rank
c8d7e7445e87b837f4fae3096e87e4dcb549a705
27b746c8a0b399b4f69eb40218fcb7b8795c69c7
refs/heads/master
2016-09-14T06:09:40.811046
2016-09-05T18:58:57
2016-09-05T18:58:57
64,609,894
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# itertools.product() - Python from itertools import product for element in product(map(int, raw_input().strip().split()), map(int, raw_input().strip().split())): print element,
UTF-8
Python
false
false
184
py
143
01-product.py
137
0.690217
0.690217
0
6
29.666667
101
rsd13/wetherPLN
19,069,654,799,922
d09894bac6abc98362cf528142327e4ef0d213e7
2714ce48b53d7c1c614b9f481f223b9e1956230b
/src/BBDD/BDHora.py
4e3aa535294f5f7d3a41802560da90608be9f74a
[]
no_license
https://github.com/rsd13/wetherPLN
96a84921a2f91cd7e74131c4de980bfb80db87b9
dab6aad5e20733f438c11b27d18ecbcbf63c26d8
refs/heads/master
2020-08-05T05:21:55.026807
2019-10-02T18:27:08
2019-10-02T18:27:08
212,411,438
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import sqlite3 import os from src.Dataset.Hora import Hora from llvmlite.tests.test_binding import asm_inlineasm class BDHora: #hora,dai,mes,año,estadoCielo,precipitacion,probPreci,probTormenta,nieve,probNieve #temperatura,sensTeermica,humedadRelativa,velocidadV,rachaMax,direcionViento,codLocalidad #codProvincia def __init__(self): #ruta de la base de datos dir_path = os.path.dirname(os.path.abspath(__file__)) self.bbdd = sqlite3.connect(dir_path + "/Weather.db",timeout=10) self.bbdd.row_factory = sqlite3.Row self.cursor = self.bbdd.cursor() #TIENES QUE REVISAR LOS TIEMPOS RELACIONADOS CON EL VOIENTO def insertHora(self,hora): #comprobamos si existe self.cursor.execute("select * " + "from hora " + "where hora=? and dia=? and mes=? and año=? and codProvincia=?" + " and codLocalidad=?",( hora.hora, hora.fecha.dia, hora.fecha.mes, hora.fecha.año, hora.codProvincia, hora.codLocalidad)) lineas = self.cursor.fetchall() #si no existe esa fecha se inserta if len(lineas) == 0: self.cursor.execute("INSERT INTO hora VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)",( hora.hora, hora.fecha.dia, hora.fecha.mes, hora.fecha.año, hora.estadoCielo, hora.precipitacion, hora.probPrecipitacion, hora.probTormenta, hora.nieve, hora.probNieve, hora.temperatura, hora.sensTermica, hora.humedadRelativa, hora.velocidadViento, hora.direccionViento, hora.rachaMax, hora.codLocalidad, hora.codProvincia)) self.bbdd.commit() def getCodProvincia(self,ciudad): if(ciudad == "ALACANT/ALICANTE"): ciudad = "Alicante/Alacant" if(ciudad == "TENERIFE"): ciudad = "Santa Cruz de Tenerife" self.cursor.execute("Select codigo FROM Provincia where nombre like ?",( ciudad,)) lineas = self.cursor.fetchall() return lineas[0][0] def getNube(self,ciudad,fecha): fechas = fecha.split("-") anyo = fechas[0] mes = fechas[1] dia = fechas[2] codProvincia = self.getCodProvincia(ciudad) self.cursor.execute("Select hora, estadoCielo FROM hora where dia=? and mes=? and año=? and codProvincia = ?",( dia, mes, anyo, codProvincia)) lineas = self.cursor.fetchall() dicci ={} list = [] sum = 0 for linea in lineas: hora = linea[0] estado = linea[1] dicci[hora] = estado #list.append(datos) sum+= 1 if(sum == 24): list.append(dicci) sum = 0 dicci ={} return list def getViento(self,ciudad,fecha): fechas = fecha.split("-") anyo = fechas[0] mes = fechas[1] dia = fechas[2] codProvincia = self.getCodProvincia(ciudad) self.cursor.execute("Select hora, velocidadViento, direccionViento, rachaMax" + " FROM hora where dia=? and mes=? and año=? and codProvincia = ?",( dia, mes, anyo, codProvincia)) lineas = self.cursor.fetchall() dicVelocidad ={} dicDirecion = {} dicRacha = {} listTotal = [] listPrecipitacion = [] listProbPrecipitacion = [] listProbTormenta = [] sum = 0 for linea in lineas: hora = linea[0] velocidad = linea[1] direcion = linea[2] racha = linea[3] dicVelocidad[hora] = velocidad dicDirecion[hora] = direcion dicRacha[hora] = racha sum+= 1 if(sum == 24): listPrecipitacion.append(dicVelocidad) listProbPrecipitacion.append(dicDirecion) listProbTormenta.append(dicRacha) sum = 0 dicVelocidad ={} dicDirecion = {} dicRacha = {} listTotal.append(listPrecipitacion) listTotal.append(listProbPrecipitacion) listTotal.append(listProbTormenta) return listTotal def getPrecipitacion(self,ciudad,fecha): fechas = fecha.split("-") anyo = fechas[0] mes = fechas[1] dia = fechas[2] codProvincia = self.getCodProvincia(ciudad) self.cursor.execute("Select hora, precipitacion, probPrecipitacion, probTormenta, nieve, probNieve" + " FROM hora where dia=? and mes=? and año=? and codProvincia = ?",( dia, mes, anyo, codProvincia)) lineas = self.cursor.fetchall() dicPrecipitacion ={} dicProbPrecipitacion = {} dictProbTormenta = {} dicNieve = {} dicProbNieve = {} listTotal = [] listPrecipitacion = [] listProbPrecipitacion = [] listProbTormenta = [] listNieve = [] listProbNieve = [] sum = 0 for linea in lineas: hora = linea[0] precipitacion = linea[1] probPrecipitacion = linea[2] probTormenta = linea[3] nieve = linea[4] probNieve = linea[5] dicPrecipitacion[hora] = precipitacion dicProbPrecipitacion[hora] = probPrecipitacion dictProbTormenta[hora] = probTormenta dicNieve[hora] = nieve dicProbNieve[hora] = probNieve sum+= 1 if(sum == 24): listPrecipitacion.append(dicPrecipitacion) listProbPrecipitacion.append(dicProbPrecipitacion) listProbTormenta.append(dictProbTormenta) listNieve.append(dicNieve) listProbNieve.append(dicProbNieve) sum = 0 dicPrecipitacion ={} dicProbPrecipitacion = {} dictProbTormenta = {} dicNieve = {} dicProbNieve = {} listTotal.append(listPrecipitacion) listTotal.append(listProbPrecipitacion) listTotal.append(listProbTormenta) listTotal.append(listNieve) listTotal.append(listProbNieve) return listTotal def getCiudades(self,codProvincia): self.cursor.execute("SELECT codigo,nombre" + " FROM LOCALIDAD " + " WHERE codprovincia= "+ codProvincia) rows = self.cursor.fetchall() ciudades = [] for row in rows: item = (row[0],row[1]) ciudades.append(item) return ciudades def getTemperatura(self,provincia,fecha,esMayor): fechas = fecha.split("-") anyo = fechas[0] mes = fechas[1] dia = fechas[2] result = [] dicHora ={} codProvincia = self.getCodProvincia(provincia) ciudades = self.getCiudades(codProvincia) lista = [] for ciudad in ciudades: codLocalidad = ciudad[0] nombre = ciudad[1] self.cursor.execute(" SELECT temperatura,hora " + " FROM Hora,localidad " + " WHERE hora.codProvincia = localidad.codProvincia and hora.codLocalidad = localidad.codigo " + " and localidad.codigo=? and localidad.codProvincia =? " + " and dia=? and mes=? and año=?",( codLocalidad, codProvincia, dia, mes, anyo)) dic = {} dicHora ={} temperatura = [] rows = self.cursor.fetchall() mayor = -999 menor = 999 for row in rows: if esMayor: dato = int(row[0]) if dato > mayor: mayor = dato if dato < menor: menor = dato else: lista.append(row[0]) if esMayor: result.append(nombre +":" + str(mayor) + ":" + str(menor)) else: result = lista return result
UTF-8
Python
false
false
9,968
py
233
BDHora.py
31
0.443574
0.437651
0
333
28.372372
123
elioudakis/COMP211_Software-development-tools-and-systems-programming
13,606,456,397,013
e8d32e18a5a18fe73366729d6dc9aa106c0dea92
cf618901be5bb4fb8c397a767b86022982bd2e90
/2_Python exercise/computeSales.py
cedb6adee6714a539ca5907aaaa5972206777b18
[]
no_license
https://github.com/elioudakis/COMP211_Software-development-tools-and-systems-programming
d0c304399bed1119216607bde287f443c869d68b
0307a93c62339102efa18de16a3af5ce3f21c7fb
refs/heads/master
2020-12-30T04:44:16.308196
2020-02-07T07:45:10
2020-02-07T07:45:10
238,864,810
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
## ##Author: elioudakis ##A.M.: ##email: elioudakis@isc.tuc.gr ## ################################################### # #function checkFile(arg1, arg2) #The function checkFile gets two arguments, the input file (which contains correct and incorrect receipts) and the output file. #The correct receipts are appended to the output file. #When the user choices 2 or 3 in the main menu, the program will work with the output file. # ################################################### def checkFile(input_File): collected_receipts_file=open('tmp.txt', 'a+',encoding='utf-8') rec_list=input_File.read().split() startStopIndexes=[] tmp=[] for i in range(len(rec_list)): if not rec_list[i].find('-') and len(set(rec_list[i]))==1: #Check that the lines with "---" contain only this character startStopIndexes.append(i) for i in range(len(startStopIndexes)-1): for j in range(startStopIndexes[i]+1, startStopIndexes[i+1]): #The part of the list between two "----" tmp.append(rec_list[j].upper()) #The list tmp contains all the fields of ONE receipt. totalAmount=0.0 if not(len(tmp)%4==0): tmp=[] continue if not ((tmp[0]=='ΑΦΜ:') and (len(tmp[1])==10) and tmp[1].isdigit()): tmp=[] continue if (tmp.count('ΑΦΜ:')!=1): ##the line for AFM exists more than once tmp=[] continue if (tmp.count('ΣΥΝΟΛΟ:')!=1): ##the line for total amount exists more than once tmp=[] continue if not (tmp[-2]=='ΣΥΝΟΛΟ:'): tmp=[] continue for k in range(2, len(tmp)-2, 4): ##the lines with the products #we increment the counter by 4, to access the four fields of a product each time #cast. Previously they were strings if (abs(float(tmp[k+3])-float(float(tmp[k+2])*float(tmp[k+1])))<0.0001): totalAmount=float(totalAmount+float(tmp[k+3]))##The product has right calculated total price. We add it to the total counter else:##wrong total price in one of the products of the receipt tmp[-1]=-1 #We set it to -1 in order to do the comparison break if not (abs(totalAmount-float(tmp[-1]))<0.0001):##wrongly calculated total amount tmp=[] continue ##If we have reached here, the receipt is correct. We will write it to the total receipts file. ## ##The function "write" supports only 1 argument, so we will place manually the spaces and the newline ## collected_receipts_file.write('--\n') collected_receipts_file.write(tmp[0]) collected_receipts_file.write(' ') collected_receipts_file.write(tmp[1]) collected_receipts_file.write('\n') for a in range(2, len(tmp)-2, 4): collected_receipts_file.write(tmp[a]) collected_receipts_file.write(' ') collected_receipts_file.write(tmp[a+1]) collected_receipts_file.write(' ') collected_receipts_file.write(tmp[a+2]) collected_receipts_file.write(' ') collected_receipts_file.write(tmp[a+3]) collected_receipts_file.write('\n') collected_receipts_file.write('--\n') collected_receipts_file.flush() tmp=[] ##Re-initialize the list, to have it empty in the next loop collected_receipts_file.close()#close the file, to update its content def choice2(): collected_receipts_file=open('tmp.txt',encoding='utf-8') ##we had to close and re-open the file, to update its content listOfLines=[] collected_receipts_file.seek(0) for line in collected_receipts_file: listOfLines.append(line.split()) data={} #defining a dictionary for i in listOfLines: if len(i)==1: #the lines with ------ continue #do nothing elif len(i)==2: #the lines with the AFM if i[0]=="ΑΦΜ:": afm=i[1] continue else: ##the lines with products prodName=i[0] totalPrice=i[3] prodName=prodName.replace(":", "") #throw away the ':' which each prodName has prodName=prodName.upper() #convert prodName to capitals if prodName in data.keys(): tmp=data[prodName] if afm in tmp.keys(): oldTotal=tmp[afm] totalPrice=float(totalPrice)+float(oldTotal) del tmp[afm] data[prodName].update({afm:float(totalPrice)}) else: data.update({prodName:{afm:float(totalPrice)}}) prodChoice=input('Give the product\'s name... ') prodChoice=prodChoice.upper() ToPrint=sorted(data[prodChoice])##list with the sorted keys of the dictionary data[prodChoice]) for i in ToPrint: print(i,"%0.2f" % data[prodChoice][i]) collected_receipts_file.close() def choice3(): collected_receipts_file=open('tmp.txt',encoding='utf-8') ##we had to close and re-open the file, to update its content listOfLines=[] collected_receipts_file.seek(0) for line in collected_receipts_file: listOfLines.append(line.split()) data={} #defining a dictionary for i in listOfLines: if len(i)==1: #the lines with ------ continue #do nothing elif len(i)==2: #the lines with the AFM if i[0]=="ΑΦΜ:": afm=i[1] continue else: ##the lines with products prodName=i[0] totalPrice=i[3] prodName=prodName.replace(":", "") #throw away the ':' which each prodName has prodName=prodName.upper() #convert prodName to capitals if afm in data.keys(): tmp=data[afm] if prodName in tmp.keys(): oldTotal=tmp[prodName] totalPrice=float(totalPrice)+float(oldTotal) del tmp[prodName] data[afm].update({prodName:float(totalPrice)}) else: data.update({afm:{prodName:float(totalPrice)}}) afmChoice=input('Give the afm... ') #afm is used as a str unsortedToPrintList=data[afmChoice] ToPrint=sorted(data[afmChoice])##ist with the sorted keys of the dictionary data[afmChoice]) for i in ToPrint: print(i,"%0.2f" % data[afmChoice][i]) collected_receipts_file.close() def main(): while True: try: choice=int(input('Give your preference: (1: read new input file, 2: print statistics for a specific product, 3: print statistics for a specific AFM, 4: exit the program)')) except: continue if choice==1: input_File_Name=input('Please enter the file\'s name...') try: input_File=open(input_File_Name, 'r',encoding='utf-8') checkFile(input_File) input_File.close() continue except FileNotFoundError: continue elif choice==2: try: choice2() continue except: continue elif choice==3: try: choice3() continue except: continue elif choice==4: import os import sys try: os.remove('tmp.txt') sys.exit(0) except: sys.exit(0) else: continue #simply ask again for a number if __name__ == "__main__": main()
UTF-8
Python
false
false
8,489
py
7
computeSales.py
3
0.507738
0.49746
0
229
35.965066
184
robin3773/Codeforces-Problem-Solution-in-Python-3
9,637,906,641,865
192928ee813f38faef877eb0e89debb7652cd4fc
ee1e6c0c2234387b9040527206a01b4b60587c48
/Type A/996A - Hit the Lottery.py
8ce20e61feeffbd54e0a70c0d2dd8c0ab3367923
[]
no_license
https://github.com/robin3773/Codeforces-Problem-Solution-in-Python-3
2d8e7cdf11e4823c1a8fe64dad9af53211132d5f
9bb5e6cdf64fe0cf6628c40fd64324b70acc0cb9
refs/heads/master
2022-11-29T19:19:04.550904
2020-08-05T14:44:03
2020-08-05T14:44:03
276,883,825
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
n = int(input()) number_of_bills = 0 if n >= 100: number_of_bills += n // 100 n = n % 100 if n >= 20: number_of_bills += n // 20 n = n % 20 if n >= 10: number_of_bills += n // 10 n = n % 10 if n >= 5: number_of_bills += n // 5 n = n % 5 number_of_bills += n print(number_of_bills)
UTF-8
Python
false
false
337
py
150
996A - Hit the Lottery.py
149
0.459941
0.385757
0
19
15.631579
31
enridaga/data-journey
5,592,047,460,680
652bd68cf5e3580861a3dfc96180decf3f25cf66
23ffdb532938efb80b4710b63b488af2f4d31224
/sources/what-makes-a-kaggler-valuable.py
035c60b1e78fac563d936d0cb9a93df424243d9b
[]
no_license
https://github.com/enridaga/data-journey
6865622739d318dfd4e1157a2d535b3478d0ed94
252353a61874005cd0d8854a61a0caf3c0bc9671
refs/heads/master
2021-07-19T14:00:53.824896
2021-06-21T10:34:28
2021-06-21T10:34:28
250,588,858
5
3
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np import pandas as pd # Loading the multiple choices dataset, we will not look to the free form data on this study mc = pd.read_csv('../input/kaggle-survey-2018/multipleChoiceResponses.csv', low_memory=False) # Separating questions from answers # This Series stores all questions mcQ = mc.iloc[0,:] # This DataFrame stores all answers mcA = mc.iloc[1:,:] # removing everyone that took less than 4 minutes or more than 600 minutes to answer the survey less3 = mcA[round(mcA.iloc[:,0].astype(int) / 60) <= 4].index mcA = mcA.drop(less3, axis=0) more300 = mcA[round(mcA.iloc[:,0].astype(int) / 60) >= 600].index mcA = mcA.drop(more300, axis=0) # removing gender trolls, because we noticed from other kernels thata there are some ouliers here gender_trolls = mcA[(mcA.Q1 == 'Prefer to self-describe') | (mcA.Q1 == 'Prefer not to say')].index mcA = mcA.drop(list(gender_trolls), axis=0) # removing student trolls, because a student won't make more than 250k a year. student_trolls = mcA[((mcA.Q6 == 'Student') & (mcA.Q9 > '500,000+')) | \ ((mcA.Q6 == 'Student') & (mcA.Q9 > '400-500,000')) | \ ((mcA.Q6 == 'Student') & (mcA.Q9 > '300-400,000')) | \ ((mcA.Q6 == 'Student') & (mcA.Q9 > '250-300,000'))].index mcA = mcA.drop(list(student_trolls), axis=0) # dropping all NaN and I do not wish to disclose my approximate yearly compensation, because we are only interested in respondents that revealed their earnings mcA = mcA[~mcA.Q9.isnull()].copy() not_disclosed = mcA[mcA.Q9 == 'I do not wish to disclose my approximate yearly compensation'].index mcA = mcA.drop(list(not_disclosed), axis=0) # Creating a table with personal data personal_data = mcA.iloc[:,:13].copy() # renaming columns cols = ['survey_duration', 'gender', 'gender_text', 'age', 'country', 'education_level', 'undergrad_major', 'role', 'role_text', 'employer_industry', 'employer_industry_text', 'years_experience', 'yearly_compensation'] personal_data.columns = cols # Drop text and survey_duration columns personal_data.drop(['survey_duration', 'gender_text', 'role_text', 'employer_industry_text'], axis=1, inplace=True) personal_data.head(3) from pandas.api.types import CategoricalDtype # transforming compensation into category type and ordening the values categ = ['0-10,000', '10-20,000', '20-30,000', '30-40,000', '40-50,000', '50-60,000', '60-70,000', '70-80,000', '80-90,000', '90-100,000', '100-125,000', '125-150,000', '150-200,000', '200-250,000', '250-300,000', '300-400,000', '400-500,000', '500,000+'] cat_type = CategoricalDtype(categories=categ, ordered=True) personal_data.yearly_compensation = personal_data.yearly_compensation.astype(cat_type) # Doing this we are transforming the category "I do not wish to disclose my approximate yearly compensation" into NaN # transforming age into category type and sorting the values categ = ['18-21', '22-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-69', '70-79', '80+'] cat_type = CategoricalDtype(categories=categ, ordered=True) personal_data.age = personal_data.age.astype(cat_type) # transforming years of experience into category type and sorting the values categ = ['0-1', '1-2', '2-3', '3-4', '4-5', '5-10', '10-15', '15-20', '20-25', '25-30', '30+'] cat_type = CategoricalDtype(categories=categ, ordered=True) personal_data.years_experience = personal_data.years_experience.astype(cat_type) # transforming education level into category type and sorting the values categ = ['No formal education past high school', 'Some college/university study without earning a bachelor’s degree', 'Professional degree', 'Bachelor’s degree', 'Master’s degree', 'Doctoral degree', 'I prefer not to answer'] cat_type = CategoricalDtype(categories=categ, ordered=True) personal_data.education_level = personal_data.education_level.astype(cat_type) personal_data.yearly_compensation.value_counts(dropna=False, sort=False) compensation = personal_data.yearly_compensation.str.replace(',', '').str.replace('500000\+', '500-500000').str.split('-') personal_data['yearly_compensation_numerical'] = compensation.apply(lambda x: (int(x[0]) * 1000 + int(x[1]))/ 2) / 1000 # it is calculated in thousand dollars print('Dataset Shape: ', personal_data.shape) personal_data.head(3) # Finding the compensation that separates the Top 20% most welll paid from the Bottom 80% top20flag = personal_data.yearly_compensation_numerical.quantile(0.8) top20flag # Creating a flag to identify who belongs to the Top 20% personal_data['top20'] = personal_data.yearly_compensation_numerical > top20flag # creating data for future mapping of values top20 = personal_data.groupby('yearly_compensation', as_index=False)['top20'].min() # Some helper functions to make our plots cleaner with Plotly from plotly.offline import init_notebook_mode, iplot import plotly.graph_objs as go from plotly import tools init_notebook_mode(connected=True) def gen_xaxis(title): """ Creates the X Axis layout and title """ xaxis = dict( title=title, titlefont=dict( color='#AAAAAA' ), showgrid=False, color='#AAAAAA', ) return xaxis def gen_yaxis(title): """ Creates the Y Axis layout and title """ yaxis=dict( title=title, titlefont=dict( color='#AAAAAA' ), showgrid=False, color='#AAAAAA', ) return yaxis def gen_layout(charttitle, xtitle, ytitle, lmarg, h, annotations=None): """ Creates whole layout, with both axis, annotations, size and margin """ return go.Layout(title=charttitle, height=h, width=800, showlegend=False, xaxis=gen_xaxis(xtitle), yaxis=gen_yaxis(ytitle), annotations = annotations, margin=dict(l=lmarg), ) def gen_bars(data, color, orient): """ Generates the bars for plotting, with their color and orient """ bars = [] for label, label_df in data.groupby(color): if orient == 'h': label_df = label_df.sort_values(by='x', ascending=True) if label == 'a': label = 'lightgray' bars.append(go.Bar(x=label_df.x, y=label_df.y, name=label, marker={'color': label}, orientation = orient ) ) return bars def gen_annotations(annot): """ Generates annotations to insert in the chart """ if annot is None: return [] annotations = [] # Adding labels for d in annot: annotations.append(dict(xref='paper', x=d['x'], y=d['y'], xanchor='left', yanchor='bottom', text= d['text'], font=dict(size=13, color=d['color']), showarrow=False)) return annotations def generate_barplot(text, annot_dict, orient='v', lmarg=120, h=400): """ Generate the barplot with all data, using previous helper functions """ layout = gen_layout(text[0], text[1], text[2], lmarg, h, gen_annotations(annot_dict)) fig = go.Figure(data=gen_bars(barplot, 'color', orient=orient), layout=layout) return iplot(fig) # Counting the quantity of respondents per compensation barplot = personal_data.yearly_compensation.value_counts(sort=False).to_frame().reset_index() barplot.columns = ['yearly_compensation', 'qty'] # mapping back to get top 20% label barplot = barplot.merge(top20, on='yearly_compensation') barplot.columns = ['x', 'y', 'top20'] # apply color for top 20% and bottom 80% barplot['color'] = barplot.top20.apply(lambda x: 'mediumaquamarine' if x else 'lightgray') # Create title and annotations title_text = ['<b>How Much Does Kagglers Get Paid?</b>', 'Yearly Compensation (USD)', 'Quantity of Respondents'] annotations = [{'x': 0.06, 'y': 2200, 'text': '80% of respondents earn up to USD 90k','color': 'gray'}, {'x': 0.51, 'y': 1100, 'text': '20% of respondents earn more than USD 90k','color': 'mediumaquamarine'}] # call function for plotting generate_barplot(title_text, annotations) # creating masks to identify students and not students is_student_mask = (personal_data['role'] == 'Student') | (personal_data['employer_industry'] == 'I am a student') not_student_mask = (personal_data['role'] != 'Student') & (personal_data['employer_industry'] != 'I am a student') # Counting the quantity of respondents per compensation (where is student) barplot = personal_data[is_student_mask].yearly_compensation.value_counts(sort=False).to_frame().reset_index() barplot.columns = ['yearly_compensation', 'qty'] # mapping back to get top 20% barplot.columns = ['x', 'y',] barplot['highlight'] = barplot.x != '0-10,000' # applying color barplot['color'] = barplot.highlight.apply(lambda x: 'lightgray' if x else 'crimson') # title and annotations title_text = ['<b>Do Students Get Paid at All?</b><br><i>only students</i>', 'Yearly Compensation (USD)', 'Quantity of Respondents'] annotations = [{'x': 0.06, 'y': 1650, 'text': '75% of students earn up to USD 10k','color': 'crimson'}] # ploting generate_barplot(title_text, annotations) # Finding the compensation that separates the Top 20% most welll paid from the Bottom 80% (without students) top20flag_no_students = personal_data[not_student_mask].yearly_compensation_numerical.quantile(0.8) top20flag_no_students # Creating a flag for Top 20% when there are no students in the dataset personal_data['top20_no_students'] = personal_data.yearly_compensation_numerical > top20flag_no_students # creating data for future mapping of values top20 = personal_data[not_student_mask].groupby('yearly_compensation', as_index=False)['top20_no_students'].min() # Counting the quantity of respondents per compensation (where is not student) barplot = personal_data[not_student_mask].yearly_compensation.value_counts(sort=False).to_frame().reset_index() barplot.columns = ['yearly_compensation', 'qty'] # mapping back to get top 20% barplot = barplot.merge(top20, on='yearly_compensation') barplot.columns = ['x', 'y', 'top20'] barplot['color'] = barplot.top20.apply(lambda x: 'mediumaquamarine' if x else 'lightgray') title_text = ['<b>How Much Does Kagglers Get Paid?</b><br><i>without students</i>', 'Yearly Compensation (USD)', 'Quantity of Respondents'] annotations = [{'x': 0.06, 'y': 1600, 'text': '80% of earn up to USD 100k','color': 'gray'}, {'x': 0.56, 'y': 800, 'text': '20% of earn more than USD 100k','color': 'mediumaquamarine'}] generate_barplot(title_text, annotations) # Creating a helper function to generate lineplot def gen_lines(data, colorby): """ Generate the lineplot with data """ if colorby == 'top20': colors = {False: 'lightgray', True: 'mediumaquamarine'} else: colors = {False: 'lightgray', True: 'deepskyblue'} traces = [] for label, label_df in data.groupby(colorby): traces.append(go.Scatter( x=label_df.x, y=label_df.y, mode='lines+markers+text', line={'color': colors[label], 'width':2}, connectgaps=True, text=label_df.y.round(), hoverinfo='none', textposition='top center', textfont=dict(size=12, color=colors[label]), marker={'color': colors[label], 'size':8}, ) ) return traces # Grouping data to get compensation per gender of Top20% and Bottom 80% barplot = personal_data[not_student_mask].groupby(['gender', 'top20_no_students'], as_index=False)['yearly_compensation_numerical'].mean() barplot = barplot[(barplot['gender'] == 'Female') | (barplot['gender'] == 'Male')] barplot.columns = ['x', 'gender', 'y'] # Creates annotations annot_dict = [{'x': 0.05, 'y': 180, 'text': 'The top 20% men are almost 12% better paid than the top 20% woman','color': 'deepskyblue'}, {'x': 0.05, 'y': 60, 'text': 'At the bottom 80% there is almost no difference in payment','color': 'gray'}] # Creates layout layout = gen_layout('<b>What is the gender difference in compensation at the top 20%?</b><br><i>without students</i>', 'Gender', 'Average Yearly Compensation (USD)', 120, 400, gen_annotations(annot_dict) ) # Make plot fig = go.Figure(data=gen_lines(barplot, 'gender'), layout=layout) iplot(fig, filename='color-bar') # Calculates compensation per education level barplot = personal_data[not_student_mask].groupby(['education_level'], as_index=False)['yearly_compensation_numerical'].mean() barplot['no_college'] = (barplot.education_level == 'No formal education past high school') | \ (barplot.education_level == 'Doctoral degree') # creates a line break for better visualisation barplot.education_level = barplot.education_level.str.replace('study without', 'study <br> without') barplot.columns = ['y', 'x', 'no_college'] barplot = barplot.sort_values(by='x', ascending=True) barplot['color'] = barplot.no_college.apply(lambda x: 'coral' if x else 'a') # Add title and annotations title_text = ['<b>Impact of Formal Education on Compenstaion</b><br><i>without students</i>', 'Average Yearly Compensation (USD)', 'Level of Education'] annotations = [] generate_barplot(title_text, annotations, orient='h', lmarg=300) # Calculates compensation per industry barplot = personal_data[not_student_mask].groupby(['employer_industry'], as_index=False)['yearly_compensation_numerical'].mean() # Flags the top 5 industries to add color barplot['best_industries'] = (barplot.employer_industry == 'Medical/Pharmaceutical') | \ (barplot.employer_industry == 'Insurance/Risk Assessment') | \ (barplot.employer_industry == 'Military/Security/Defense') | \ (barplot.employer_industry == 'Hospitality/Entertainment/Sports') | \ (barplot.employer_industry == 'Accounting/Finance') barplot.columns = ['y', 'x', 'best_industries'] barplot = barplot.sort_values(by='x', ascending=True) barplot['color'] = barplot.best_industries.apply(lambda x: 'darkgoldenrod' if x else 'a') title_text = ['<b>Average Compensation per Industry | Top 5 in Color</b><br><i>without students</i>', 'Average Yearly Compensation (USD)', 'Industry'] annotations = [] generate_barplot(title_text, annotations, orient='h', lmarg=300, h=600) # Calculates compensation per role barplot = personal_data[not_student_mask].groupby(['role'], as_index=False)['yearly_compensation_numerical'].mean() # Flags the top 5 roles to add color barplot['role_highlight'] = (barplot.role == 'Data Scientist') | \ (barplot.role == 'Product/Project Manager') | \ (barplot.role == 'Consultant') | \ (barplot.role == 'Data Journalist') | \ (barplot.role == 'Manager') | \ (barplot.role == 'Principal Investigator') | \ (barplot.role == 'Chief Officer') barplot.columns = ['y', 'x', 'role_highlight'] barplot = barplot.sort_values(by='x', ascending=True) barplot['color'] = barplot.role_highlight.apply(lambda x: 'mediumvioletred' if x else 'lightgray') title_text = ['<b>Average Compensation per Role | Top 7 in Color</b><br><i>without students</i>', 'Average Yearly Compensation (USD)', 'Job Title'] annotations = [{'x': 0.6, 'y': 11.5, 'text': 'The first step into the ladder<br>of better compensation is<br>becoming a Data Scientist','color': 'mediumvioletred'}] generate_barplot(title_text, annotations, orient='h', lmarg=300, h=600) # Replacing long country names personal_data.country = personal_data.country.str.replace('United Kingdom of Great Britain and Northern Ireland', 'United Kingdom') personal_data.country = personal_data.country.str.replace('United States of America', 'United States') personal_data.country = personal_data.country.str.replace('I do not wish to disclose my location', 'Not Disclosed') personal_data.country = personal_data.country.str.replace('Iran, Islamic Republic of...', 'Iran') personal_data.country = personal_data.country.str.replace('Hong Kong \(S.A.R.\)', 'Hong Kong') personal_data.country = personal_data.country.str.replace('Viet Nam', 'Vietnam') personal_data.country = personal_data.country.str.replace('Republic of Korea', 'South Korea') # Calculates compensation per country barplot = personal_data[not_student_mask].groupby(['country'], as_index=False)['yearly_compensation_numerical'].mean() # Flags the top 10 countries to add color barplot['country_highlight'] = (barplot.country == 'United States') | \ (barplot.country == 'Switzerland') | \ (barplot.country == 'Australia') | \ (barplot.country == 'Israel') | \ (barplot.country == 'Denmark') | \ (barplot.country == 'Canada') | \ (barplot.country == 'Hong Kong') | \ (barplot.country == 'Norway') | \ (barplot.country == 'Ireland') | \ (barplot.country == 'United Kingdom') barplot.columns = ['y', 'x', 'country_highlight'] barplot = barplot.sort_values(by='x', ascending=True) barplot['color'] = barplot.country_highlight.apply(lambda x: 'mediumseagreen' if x else 'lightgray') title_text = ['<b>Average Compensation per Country - Top 10 in Color</b><br><i>without students</i>', 'Average Yearly Compensation (USD)', 'Country'] annotations = [] generate_barplot(title_text, annotations, orient='h', lmarg=300, h=1200) # Loading the cost of living cost_living = pd.read_csv('../input/cost-of-living-per-country/cost_of_living.csv') cost_living.columns = ['ranking', 'country', 'price_index'] cost_living.head() # joining both tables personal_data = personal_data.merge(cost_living, on='country') # doing an inner join to avoid nans on normalized compensation # calculating the normalized compensation personal_data['normalized_compensation'] = personal_data.yearly_compensation_numerical / personal_data.price_index * 10 personal_data['normalized_compensation'] = personal_data['normalized_compensation'].round() * 10 # recreating masks is_student_mask = (personal_data['role'] == 'Student') | (personal_data['employer_industry'] == 'I am a student') not_student_mask = (personal_data['role'] != 'Student') & (personal_data['employer_industry'] != 'I am a student') # Calculates compensation per country barplot = personal_data[not_student_mask].groupby(['country'], as_index=False)['normalized_compensation'].mean() # Flags the top 10 countries to add color barplot['country_highlight'] = (barplot.country == 'United States') | \ (barplot.country == 'Australia') | \ (barplot.country == 'Israel') | \ (barplot.country == 'Switzerland') | \ (barplot.country == 'Canada') | \ (barplot.country == 'Tunisia') | \ (barplot.country == 'Germany') | \ (barplot.country == 'Denmark') | \ (barplot.country == 'Colombia') | \ (barplot.country == 'South Korea') barplot.columns = ['y', 'x', 'country_highlight'] barplot = barplot.sort_values(by='x', ascending=True) barplot['color'] = barplot.country_highlight.apply(lambda x: 'mediumseagreen' if x else 'lightgray') title_text = ['<b>Normalized Average Compensation per Country - Top 10 in Color</b><br><i>without students</i>', 'Normalized Average Yearly Compensation (USD)', 'Country'] annotations = [] generate_barplot(title_text, annotations, orient='h', lmarg=300, h=1200) # Defining the threshold for top 20% most paid top20_tresh = personal_data.normalized_compensation.quantile(0.8) personal_data['top20'] = personal_data.normalized_compensation > top20_tresh # creating data for future mapping of values top20 = personal_data.groupby('normalized_compensation', as_index=False)['top20'].min() # Calculates respondents per compensation barplot = personal_data.normalized_compensation.value_counts(sort=False).to_frame().reset_index() barplot.columns = ['normalized_compensation', 'qty'] # mapping back to get top 20% and 50% barplot = barplot.merge(top20, on='normalized_compensation') barplot.columns = ['x', 'y', 'top20'] barplot['color'] = barplot.top20.apply(lambda x: 'mediumaquamarine' if x else 'lightgray') title_text = ['<b>How Much Does Kagglers Get Paid?<br></b><i>normalized by cost of living</i>', 'Normalized Yearly Compensation', 'Quantity of Respondents'] annotations = [{'x': 0.1, 'y': 1000, 'text': '20% Most well paid','color': 'mediumaquamarine'}] generate_barplot(title_text, annotations) # First we store all answers in a dict answers = {'Q1': mcA.iloc[:,1], 'Q2': mcA.iloc[:,3], 'Q3': mcA.iloc[:,4], 'Q4': mcA.iloc[:,5], 'Q5': mcA.iloc[:,6], 'Q6': mcA.iloc[:,7], 'Q7': mcA.iloc[:,9], 'Q8': mcA.iloc[:,11], 'Q9': mcA.iloc[:,12], 'Q10': mcA.iloc[:,13], 'Q11': mcA.iloc[:,14:21], 'Q12': mcA.iloc[:,22], 'Q13': mcA.iloc[:,29:44], 'Q14': mcA.iloc[:,45:56], 'Q15': mcA.iloc[:,57:64], 'Q16': mcA.iloc[:,65:83], 'Q17': mcA.iloc[:,84], 'Q18': mcA.iloc[:,86], 'Q19': mcA.iloc[:,88:107], 'Q20': mcA.iloc[:,108], 'Q21': mcA.iloc[:,110:123], 'Q22': mcA.iloc[:,124], 'Q23': mcA.iloc[:,126], 'Q24': mcA.iloc[:,127], 'Q25': mcA.iloc[:,128], 'Q26': mcA.iloc[:,129], 'Q27': mcA.iloc[:,130:150], 'Q28': mcA.iloc[:,151:194], 'Q29': mcA.iloc[:,195:223], 'Q30': mcA.iloc[:,224:249], 'Q31': mcA.iloc[:,250:262], 'Q32': mcA.iloc[:,263], 'Q33': mcA.iloc[:,265:276], 'Q34': mcA.iloc[:, 277:283], 'Q35': mcA.iloc[:, 284:290], 'Q36': mcA.iloc[:,291:304], 'Q37': mcA.iloc[:,305], 'Q38': mcA.iloc[:,307:329], 'Q39': mcA.iloc[:,330:332], 'Q40': mcA.iloc[:,332], 'Q41': mcA.iloc[:,333:336], 'Q42': mcA.iloc[:,336:341], 'Q43': mcA.iloc[:,342], 'Q44': mcA.iloc[:,343:348], 'Q45': mcA.iloc[:,349:355], 'Q46': mcA.iloc[:,355], 'Q47': mcA.iloc[:,356:371], 'Q48': mcA.iloc[:,372], 'Q49': mcA.iloc[:,373:385], 'Q50': mcA.iloc[:,386:394]} # Then we store all questions in another dict questions = { 'Q1': 'What is your gender?', 'Q2': 'What is your age (# years)?', 'Q3': 'In which country do you currently reside?', 'Q4': 'What is the highest level of formal education that you have attained or plan to attain within the next 2 years?', 'Q5': 'Which best describes your undergraduate major?', 'Q6': 'Select the title most similar to your current role (or most recent title if retired)', 'Q7': 'In what industry is your current employer/contract (or your most recent employer if retired)?', 'Q8': 'How many years of experience do you have in your current role?', 'Q9': 'What is your current yearly compensation (approximate $USD)?', 'Q10': 'Does your current employer incorporate machine learning methods into their business?', 'Q11': 'Select any activities that make up an important part of your role at work', 'Q12': 'What is the primary tool that you use at work or school to analyze data?', 'Q13': 'Which of the following integrated development environments (IDEs) have you used at work or school in the last 5 years?', 'Q14': 'Which of the following hosted notebooks have you used at work or school in the last 5 years?', 'Q15': 'Which of the following cloud computing services have you used at work or school in the last 5 years?', 'Q16': 'What programming languages do you use on a regular basis?', 'Q17': 'What specific programming language do you use most often?', 'Q18': 'What programming language would you recommend an aspiring data scientist to learn first?', 'Q19': 'What machine learning frameworks have you used in the past 5 years?', 'Q20': 'Of the choices that you selected in the previous question, which ML library have you used the most?', 'Q21': 'What data visualization libraries or tools have you used in the past 5 years?', 'Q22': 'Of the choices that you selected in the previous question, which specific data visualization library or tool have you used the most?', 'Q23': 'Approximately what percent of your time at work or school is spent actively coding?', 'Q24': 'How long have you been writing code to analyze data?', 'Q25': 'For how many years have you used machine learning methods (at work or in school)?', 'Q26': 'Do you consider yourself to be a data scientist?', 'Q27': 'Which of the following cloud computing products have you used at work or school in the last 5 years?', 'Q28': 'Which of the following machine learning products have you used at work or school in the last 5 years?', 'Q29': 'Which of the following relational database products have you used at work or school in the last 5 years?', 'Q30': 'Which of the following big data and analytics products have you used at work or school in the last 5 years?', 'Q31': 'Which types of data do you currently interact with most often at work or school?', 'Q32': 'What is the type of data that you currently interact with most often at work or school? ', 'Q33': 'Where do you find public datasets?', 'Q34': 'During a typical data science project at work or school, approximately what proportion of your time is devoted to the following?', 'Q35': 'What percentage of your current machine learning/data science training falls under each category?', 'Q36': 'On which online platforms have you begun or completed data science courses?', 'Q37': 'On which online platform have you spent the most amount of time?', 'Q38': 'Who/what are your favorite media sources that report on data science topics?', 'Q39': 'How do you perceive the quality of online learning platforms and in-person bootcamps as compared to the quality of the education provided by traditional brick and mortar institutions?', 'Q40': 'Which better demonstrates expertise in data science: academic achievements or independent projects? ', 'Q41': 'How do you perceive the importance of the following topics?', 'Q42': 'What metrics do you or your organization use to determine whether or not your models were successful?', 'Q43': 'Approximately what percent of your data projects involved exploring unfair bias in the dataset and/or algorithm?', 'Q44': 'What do you find most difficult about ensuring that your algorithms are fair and unbiased? ', 'Q45': 'In what circumstances would you explore model insights and interpret your models predictions?', 'Q46': 'Approximately what percent of your data projects involve exploring model insights?', 'Q47': 'What methods do you prefer for explaining and/or interpreting decisions that are made by ML models?', 'Q48': 'Do you consider ML models to be "black boxes" with outputs that are difficult or impossible to explain?', 'Q49': 'What tools and methods do you use to make your work easy to reproduce?', 'Q50': 'What barriers prevent you from making your work even easier to reuse and reproduce?', 'top7_job_title': 'Select the title most similar to your current role (or most recent title if retired)', 'job_title_student': 'Select the title most similar to your current role (or most recent title if retired)', 'top10_country': 'In which country do you currently reside?', 'age': 'What is your age (# years)?', 'gender-Male': 'What is your gender?', 'top2_education_level': 'What is the highest level of formal education that you have attained or plan to attain within the next 2 years?', 'top5_industries': 'In what industry is your current employer/contract (or your most recent employer if retired)?', 'industry_student': 'In what industry is your current employer/contract (or your most recent employer if retired)?', 'years_experience': 'How many years of experience do you have in your current role?'} def normalize_labels(full_label): """ treat labels for new column names """ try: label = full_label.split('<>')[1] # split and get second item except IndexError: label = full_label.split('<>')[0] # split and get first item return label def treat_data(data, idx, tresh): """ Clean and get dumies for columns """ # get dummies with a distinct separator result = pd.get_dummies(data, prefix_sep='<>', drop_first=False) # gets and normalize dummies names cols = [normalize_labels(str(x)) for x in result.columns] # build columns labels with questions try: Qtext = mcQ['Q{}'.format(idx)] except KeyError: try: Qtext = mcQ['Q{}_Part_1'.format(idx)] except KeyError: Qtext = mcQ['Q{}_MULTIPLE_CHOICE'.format(idx)] # Build new columns names prefix = 'Q{}-'.format(idx) result.columns = [prefix + x for x in cols] # dropping columns that had less than 10% of answers to avoid overfitting percent_answer = result.sum() / result.shape[0] for row in percent_answer.iteritems(): if row[1] < tresh: result = result.drop(row[0], axis=1) return result # selecting the questions selected_questions = [1, 2, 3, 4, 6, 7, 8, 10, 11, 15, 16, 17, 18, 19, 21, 23, 24, 25, 26, 29, 31, 36, 38, 40, 42, 47, 48, 49] treated_data = {} # Formatting all answers from the selected questions, dropping answers with less than 5% for sq in selected_questions: treated_data['Q{}'.format(sq)] = treat_data(answers['Q{}'.format(sq)], sq, 0.05) # Done! Now we are able to rebuild a much cleaner dataset! # Define target variable compensation = mcA.Q9.str.replace(',', '').str.replace('500000\+', '500-500000').str.split('-') mcA['yearly_compensation_numerical'] = compensation.apply(lambda x: (int(x[0]) * 1000 + int(x[1]))/ 2) / 1000 # it is calculated in thousand dollars clean_dataset = (mcA.yearly_compensation_numerical > 100).reset_index().astype(int) clean_dataset.columns = ['index', 'top20'] # Join with treated questions for key, value in treated_data.items(): value = value.reset_index(drop=True) clean_dataset = clean_dataset.join(value, how='left') clean_dataset = clean_dataset.drop('index', axis=1) # saving back to csv so others may use it clean_dataset.to_csv('clean_dataset.csv') clean_dataset.head() shape = clean_dataset.shape print('Our cleaned dataset has {} records and {} features'.format(shape[0], shape[1])) # Create correlation matrix correl = clean_dataset.corr().abs() # Select upper triangle of correlation matrix upper = correl.where(np.triu(np.ones(correl.shape), k=1).astype(np.bool)) # Find index of feature columns with correlation greater than 0.5 to_drop = [column for column in upper.columns if any(upper[column] > 0.5)] # Drop features clean_dataset_dropped = clean_dataset.drop(to_drop, axis=1) shape = clean_dataset_dropped.shape print('After dropping highly correlated features, our has {} records and {} features'.format(shape[0], shape[1])) print('Dropped features: ', to_drop) # Finding NANs df = clean_dataset_dropped.isnull().sum().to_frame() print('We found {} NaNs on the dataset after treatment'.format(df[df[0] > 0].shape[0])) from sklearn.model_selection import train_test_split train, test = train_test_split(clean_dataset_dropped, test_size=0.2, random_state=42) print('Train Shape:', train.shape) print('Test Shape:', test.shape) # Separating X,y train and test sets ytrain = train['top20'].copy() Xtrain = train.drop(['top20'], axis=1).copy() # removing both target variables from features ytest = test['top20'].copy() Xtest = test.drop(['top20'], axis=1).copy() # removing both target variables from features # Helper function to help evaluating the model from sklearn.metrics import roc_auc_score from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix def display_scores(predictor, X, y): """ Calculates metrics and display it """ print('\n### -- ### -- ' + str(type(predictor)).split('.')[-1][:-2] + ' -- ### -- ###') # Getting the predicted values ypred = predictor.predict(X) ypred_score = predictor.predict_proba(X) # calculating metrics accuracy = accuracy_score(y, ypred) roc = roc_auc_score(y, pd.DataFrame(ypred_score)[1]) confusion = confusion_matrix(y, ypred) print('Confusion Matrix: ', confusion) print('Accuracy: ', accuracy) print('AUC: ', roc) type1_error = confusion[0][1] / confusion[0].sum() # False Positive - model predicted in top 20%, while it wasn't type2_error = confusion[1][0] / confusion[1].sum() # False Negative - model predicted out of top 20%, while it was print('Type 1 error: ', type1_error) print('Type 2 error: ', type2_error) from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression rforest = RandomForestClassifier(n_estimators=100, random_state=42) lreg = LogisticRegression(solver='liblinear', random_state=42) # Fit the models rforest.fit(Xtrain, ytrain) lreg.fit(Xtrain, ytrain) # Check some metrics display_scores(rforest, Xtrain, ytrain) display_scores(lreg, Xtrain, ytrain) from sklearn.model_selection import cross_val_score def do_cv(predictor, X, y, cv): """ Executes cross validation and display scores """ print('### -- ### -- ' + str(type(predictor)).split('.')[-1][:-2] + ' -- ### -- ###') cv_score = cross_val_score(predictor, X, y, scoring='roc_auc', cv=5) print ('Mean AUC score after a 5-fold cross validation: ', cv_score.mean()) print ('AUC score of each fold: ', cv_score) do_cv(rforest, Xtrain, ytrain, 5) print('\n ----------------------------- \n') do_cv(lreg, Xtrain, ytrain, 5) from collections import Counter from imblearn.under_sampling import RandomUnderSampler print('Quantity of samples on each class BEFORE undersampling: ', sorted(Counter(ytrain).items())) rus = RandomUnderSampler(random_state=42) X_resampled, y_resampled = rus.fit_resample(Xtrain, ytrain) print('Quantity of samples on each class AFTER undersampling: ', sorted(Counter(y_resampled).items())) # refit the model rforest.fit(X_resampled, y_resampled) lreg.fit(X_resampled, y_resampled) # do Cross Validation do_cv(rforest, Xtrain, ytrain, 5) display_scores(rforest, Xtrain, ytrain) print('\n ----------------------------- \n') do_cv(lreg, Xtrain, ytrain, 5) display_scores(lreg, Xtrain, ytrain) display_scores(lreg, Xtest, ytest) # calculating scores scores = pd.DataFrame(lreg.predict_proba(Xtest)).iloc[:,1] scores = pd.DataFrame([scores.values, ytest.values]).transpose() scores.columns = ['score', 'top20'] # Add histogram data x0 = scores[scores['top20'] == 0]['score'] x1 = scores[scores['top20'] == 1]['score'] bottom80 = go.Histogram( x=x0, opacity=0.5, marker={'color': 'lightgray'}, name='Bottom 80%' ) top20 = go.Histogram( x=x1, opacity=0.5, marker={'color': 'mediumaquamarine'}, name='Top 20%' ) annot_dict = [{'x': 0.2, 'y': 180, 'text': 'The 80% less paid tend<br>to have lower scores','color': 'gray'}, {'x': 0.75, 'y': 95, 'text': 'Top 20% tend to have<br>higher scores','color': 'mediumaquamarine'}] layout = gen_layout('<b>Distribution of Scores From the Top 20% and Bottom 80%</b><br><i>test data</i>', 'Probability Score', 'Quantity of Respondents', annotations=gen_annotations(annot_dict), lmarg=150, h=400 ) layout['barmode'] = 'overlay' data = [bottom80, top20] layout = go.Layout(layout) fig = go.Figure(data=data, layout=layout) iplot(fig) from sklearn.metrics import roc_curve yscore = pd.DataFrame(lreg.predict_proba(Xtest)).iloc[:,1] fpr, tpr, _ = roc_curve(ytest, yscore) trace1 = go.Scatter(x=fpr, y=tpr, mode='lines', line=dict(color='mediumaquamarine', width=3), name='ROC curve' ) trace2 = go.Scatter(x=[0, 1], y=[0, 1], mode='lines', line=dict(color='lightgray', width=1, dash='dash'), showlegend=False) layout = gen_layout('<b>Receiver Operating Characteristic Curve</b><br><i>test data</i>', 'False Positive Rate', 'True Positive Rate', lmarg=50, h=600 ) fig = go.Figure(data=[trace1, trace2], layout=layout) iplot(fig) def calc_proba(model): # calculating scores for the test data scores = pd.DataFrame(model.predict_proba(Xtest)).iloc[:,1] scores = pd.DataFrame([scores.values, ytest.values]).transpose() scores.columns = ['score', 'top20'] # create 10 evenly spaced bins scores['bin'] = pd.cut(scores.score, [-0.01, 0.05, 0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.975, 1]) # count number of individuals in Top20% and Bottom80% per bin prob = scores.groupby(['bin', 'top20'], as_index=False)['score'].count() prob = pd.pivot_table(prob, values='score', index=['bin'], columns=['top20']) # calculates the probability prob['probability'] = prob[1.0] / (prob[0.0] + prob[1.0]) return prob['probability'] # Calculates the probabilities of belonging to Top20% per range of score based on test data calc_proba(lreg).to_frame() print('Our model\'s intercept is:', lreg.intercept_[0]) # treating the questions just to display better names features = pd.DataFrame([Xtrain.columns, lreg.coef_[0]]).transpose() features.columns = ['feature', 'coefficient'] features['abs_coefficient'] = features['coefficient'].abs() features['question_number'] = features.feature.str.split('-').str[0] features['answer'] = features.feature.str[3:] features['answer'] = features.answer.apply(lambda x: x[1:] if x[0] == '-' else x) features['question'] = features['question_number'].map(questions) answers_dict = {'age': 'continuous feature', 'top10_country': 'live at one of the top 10 countries', 'top7_job_title': 'has one of the top 7 job titles', } features['question'] = features['question_number'].map(questions) features = features[['question_number', 'question', 'answer', 'coefficient', 'abs_coefficient']] # Helper functions for building clean plots def gen_yaxis(title): """ Create y axis """ yaxis=dict( title=title, titlefont=dict( color='#AAAAAA' ), showgrid=False, color='#AAAAAA', tickfont=dict( size=12, color='#444444' ), ) return yaxis def gen_layout(charttitle, xtitle, ytitle, annotations=None, lmarg=120, h=400): """ Create layout """ return go.Layout(title=charttitle, height=h, width=800, showlegend=False, xaxis=gen_xaxis(xtitle), yaxis=gen_yaxis(ytitle), annotations = annotations, margin=dict(l=lmarg), ) def split_string(string, lenght): """ Split a string adding a line break at each "lenght" words """ result = '' idx = 1 for word in string.split(' '): if idx % lenght == 0: result = result + '<br>' + ''.join(word) else: result = result + ' ' + ''.join(word) idx += 1 return result def gen_bars_result(data, color, orient): """ Create bars """ bars = [] for label, label_df in data.groupby(color): if orient == 'h': label_df = label_df.sort_values(by='x', ascending=True) if label == 'a': label = 'lightgray' bars.append(go.Bar(x=label_df.x, y=label_df.y, name=label, marker={'color': label}, orientation = orient, text=label_df.x.astype(float).round(3), hoverinfo='none', textposition='auto', textfont=dict(size=12, color= '#444444') ) ) return bars def plot_result (qnumber): """ Plot coefficients for a given question number """ data = features[features.question_number == qnumber] title = qnumber + '. ' + data.question.values[0] title = split_string(title, 8) barplot = data[['answer', 'coefficient']].copy() barplot.answer = barplot.answer.apply(lambda x: split_string(x, 5)) barplot.columns = ['y', 'x'] bartplot = barplot.sort_values(by='x', ascending=False) barplot['model_highlight'] = barplot.x > 0 barplot['color'] = barplot.model_highlight.apply(lambda x: 'cornflowerblue' if x else 'a') layout = gen_layout('<b>{}</b>'.format(title), 'Model Coefficient', '', lmarg=300, h= 600) fig = go.Figure(data=gen_bars_result(barplot, 'color', orient='h'), layout=layout) iplot(fig, filename='color-bar') plot_result('Q1') plot_result('Q2') plot_result('Q3') plot_result('Q4') plot_result('Q6') plot_result('Q7') plot_result('Q8') plot_result('Q10') plot_result('Q11') plot_result('Q15') plot_result('Q16') plot_result('Q17') plot_result('Q18') plot_result('Q19') plot_result('Q21') plot_result('Q23') plot_result('Q24') plot_result('Q26') plot_result('Q29') plot_result('Q31') plot_result('Q36') plot_result('Q38') plot_result('Q40') plot_result('Q42') plot_result('Q47') plot_result('Q48') plot_result('Q49') ### Training the model again with fewer questions # Selecting just the questions we are putting in production selected_questions = [1, 2, 3, 4, 6, 7, 8, 10, 11, 15, 16, 23, 31, 42] treated_data = {} # Let's select answers that had more than 5% of answers for sq in selected_questions: treated_data['Q{}'.format(sq)] = treat_data(answers['Q{}'.format(sq)], sq, 0.05) # Done! Now we are able to rebuild a much cleaner dataset! # Define target variable compensation = mcA.Q9.str.replace(',', '').str.replace('500000\+', '500-500000').str.split('-') mcA['yearly_compensation_numerical'] = compensation.apply(lambda x: (int(x[0]) * 1000 + int(x[1]))/ 2) / 1000 # it is calculated in thousand dollars clean_dataset = (mcA.yearly_compensation_numerical > 100).reset_index().astype(int) clean_dataset.columns = ['index', 'top20'] # Join wit treated questions for key, value in treated_data.items(): value = value.reset_index(drop=True) clean_dataset = clean_dataset.join(value, how='left') clean_dataset = clean_dataset.drop('index', axis=1) # saving back to csv so others may use it clean_dataset.to_csv('production_clean_dataset.csv') # Create correlation matrix correl = clean_dataset.corr().abs() # Select upper triangle of correlation matrix upper = correl.where(np.triu(np.ones(correl.shape), k=1).astype(np.bool)) # Find index of feature columns with correlation greater than 0.5 to_drop = [column for column in upper.columns if any(upper[column] > 0.5)] # Drop features clean_dataset_dropped = clean_dataset.drop(to_drop, axis=1) # splitting train and test data train, test = train_test_split(clean_dataset_dropped, test_size=0.2, random_state=42) ytrain = train['top20'].copy() Xtrain = train.drop(['top20'], axis=1).copy() # removing both target variables from features ytest = test['top20'].copy() Xtest = test.drop(['top20'], axis=1).copy() # removing both target variables from features # undersampling X_resampled, y_resampled = rus.fit_resample(Xtrain, ytrain) # fitting the model lreg = LogisticRegression(solver='liblinear', random_state=42) lreg.fit(X_resampled, y_resampled) # validating on test data display_scores(lreg, Xtest, ytest) # Calculates the probabilities of belonging to Top20% per range of score based on test data calc_proba(lreg).to_frame() input_json = { "Q1": "q1_other", "Q2": "q2_25_29", "Q3": "q3_united_", "Q4": "q4_other", "Q6": "q6_student", "Q7": "q7_other2", "Q8": "q8_2_3", "Q10": "q10_we_rec", "q11_analyz": "on", "q11_run_a_": "on", "q11_build_": "on", "q15_amazon": "on", "other": "on", "q16_python": "on", "q16_sql": "on", "Q23": "q23_25_to_", "q31_catego": "on", "q31_geospa": "on", "q31_numeri": "on", "q31_tabula": "on", "q31_text_d": "on", "q31_time_s": "on", "q42_revenu": "on" } import re # treating the questions to match the input json features = pd.DataFrame([Xtrain.columns, lreg.coef_[0]]).transpose() features.columns = ['feature', 'coefficient'] features['answer'] = features.feature features['answer'] = features['answer'].apply(lambda x: re.sub(r"[^a-zA-Z0-9]+", ' ', x)) features['answer'] = features['answer'].str.replace(' ', '_') features['answer'] = features['answer'].str.lower() features['answer'] = features['answer'].str.replace('_build_and_or_', '_') features['answer'] = features['answer'].str.replace('_metrics_that_consider_', '_') features['answer'] = features['answer'].str[:10] features['question_number'] = features['answer'].str.split('_').str[0] features = features[['question_number', 'answer', 'coefficient']] features.head(3) # treating the input json to keep it in the same format as the coeficcients def treat_input(input_json): treated = dict() for key, value in input_json.items(): if key[0] == 'Q': treated[value] = 1 else: treated[key] = 1 return treated treated_input_json = treat_input(input_json) print('First 8 elements of the treated input:', dict(list(treated_input_json.items())[0:8])) features['positive'] = features['answer'].map(treated_input_json) features.fillna(0, inplace=True) features['points'] = features.positive * features.coefficient features.head(5) from math import exp # Creating a function to normalize the scores between 0 and 1000 def normalize(points): """ Normalize to get values between 0 and 1000 """ return int(1 / (1 + exp(-points)) * 1000) # suming all points + intercept then normalizing between 0 and 1 score = features['points'].sum() + lreg.intercept_[0] print('Calculated score is:', normalize(score)) import requests import json input_json = { "Q1": "q1_other", "Q2": "q2_25_29", "Q3": "q3_united_", "Q4": "q4_other", "Q6": "q6_student", "Q7": "q7_other2", "Q8": "q8_2_3", "Q10": "q10_we_rec", "q11_analyz": "on", "q11_run_a_": "on", "q11_build_": "on", "q15_amazon": "on", "other": "on", "q16_python": "on", "q16_sql": "on", "Q23": "q23_25_to_", "q31_catego": "on", "q31_geospa": "on", "q31_numeri": "on", "q31_tabula": "on", "q31_text_d": "on", "q31_time_s": "on", "q42_revenu": "on" } treated_input_json = treat_input(input_json) header = {'Content-Type': 'application/x-www-form-urlencoded'} url = 'https://tk9k0fkvyj.execute-api.us-east-2.amazonaws.com/default/top20-predictor' requests.post(url, params=treated_input_json, headers=header).json() # Making a get to our API. It triggers a lambda function that counts the number of objects inside our bucket. url = 'https://wucg3iz2r4.execute-api.us-east-2.amazonaws.com/default/count-kaggle-top20-objects' requests.get(url).json()
UTF-8
Python
false
false
48,501
py
2,600
what-makes-a-kaggler-valuable.py
860
0.639344
0.606434
0
1,104
42.92663
193
MatthewSteen/Toolbox
9,964,324,135,621
37ae14f7b7399d369de09215ed3ca1c5fa492050
7c4f4568f2322c42d202f8e68e0e92692b4f9fee
/keeplines.py
3f74d60dc66ca4e3c3350b98d1144febafe7e09d
[]
no_license
https://github.com/MatthewSteen/Toolbox
4048520c7c867489e04de5661adce9f7d5c42017
c3a34c1f44aeeb729c9b26f52b0a5f24f81e542c
refs/heads/master
2020-04-09T23:55:13.825326
2015-08-11T14:51:19
2015-08-11T14:51:19
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# coding: utf-8 # In[1]: import os # In[7]: ''' cwd = os.getcwd() file_name = "14095_Kilroy_T24_v3.log" string_list = ["Warning:"] suffix = "_errors" ext = ".log" ''' def remove_lines(string, read_file, read_file_suffix, read_file_ext): # Assign file paths cwd = os.getcwd() read_path = os.path.join(cwd, read_file) write_file = read_file + read_file_suffix + read_file_ext # Check if read file exists #TODO # Check if write file exists and delete if os.path.exists(write_file): os.remove(write_file) # Read write with open(read_path) as oldfile, open(write_file, 'w') as newfile: #print os.path.join(os.getcwd(), file_name) #print string_list for line in oldfile: if string in line: newfile.write(line) ''' if not any(string in line for string in string_list): newfile.write(line) ''' '''#TODO open file import subprocess as sp programName = "notepad.exe" fileName = newfile sp.Popen([programName, fileName]) ''' if __name__ == "__main__": import sys #arg1 = str(sys.argv[1]) #first command line argument #arg2 = str(sys.argv[2]) remove_lines(str(sys.argv[1]), str(sys.argv[2]), str(sys.argv[3]), str(sys.argv[4])) # In[ ]:
UTF-8
Python
false
false
1,339
py
2
keeplines.py
1
0.577296
0.563107
0
57
22.473684
88
1e16miin/backjoon
5,677,946,793,454
89cd983bf1ae2290b80951f214de52b0523a515e
d51ad1d67502e651c8d7aaba7f262109c4d188a9
/1222.py
d76ef07e305d69a73d62e0a98999e228a99aab00
[]
no_license
https://github.com/1e16miin/backjoon
94fd8ff69d100a58a036788db21d665e3143edc7
78f6cdf4bd19b70371415cfcc468c7331c44e669
refs/heads/master
2023-06-12T14:11:49.764491
2021-06-22T04:08:20
2021-06-22T04:08:20
379,137,562
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
for test_case in range(1,11): N = int(input()) numbers = list(map(int, input().split("+"))) print("#" + str(test_case) + " " + str(sum(numbers)))
UTF-8
Python
false
false
157
py
42
1222.py
42
0.547771
0.528662
0
4
38.5
57
adrianrojek/Bakalarka
8,392,366,128,478
a1dc30aaddb25dfa0cdb86d46561a9ff613bea3f
965a750cb28ac1a48c4ee5a7f1d5a0bc6aa2c722
/AttributeClasses/AnonymizaciaIpAdresy.py
695eb74c4f60d0177fa030d360408331a86108c1
[]
no_license
https://github.com/adrianrojek/Bakalarka
11d2f187b73aa68c27ec227b0748c6386a523ebf
a2987bf16b75a0af00fa5be1a3718018153b43da
refs/heads/master
2023-05-04T06:51:50.279247
2021-05-16T23:28:29
2021-05-16T23:28:29
344,475,700
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import re from AttributeClasses.AttributeExtractor import AttributeExtractor class anonymizacia_ip_adresy(AttributeExtractor): def __init__(self): pass def extrahuj_txt(self, Dokument): array=Dokument.naSlova() i = 0 while i < len(array): if array[i] == "IP": if "XX" in array[i+2]: return 1 if (char.isdigit() for char in array[i+2]): return 0 i += 1 def extrahuj_json(self, Dokument): return
UTF-8
Python
false
false
535
py
444
AnonymizaciaIpAdresy.py
24
0.543925
0.53271
0
22
23.272727
66
jztang/scalica-access-control
14,860,586,863,394
f8d2ef2054b50ab16a1bdb283f100fe37d8ac065
f8f22938533f04569d0256e7fa6304963be6d7b7
/groupDatabase-Django/accessControl/groupDB_server.py
15b3c513c281f4dbd00d71e6d11e79ce08f4a8b0
[]
no_license
https://github.com/jztang/scalica-access-control
09061719058eda506197b44aefbd50fc400672c8
dbb6aeb1d6ea6c949e8b219c850ec708a55993a9
refs/heads/master
2021-06-23T11:59:02.350561
2019-12-16T01:28:52
2019-12-16T01:28:52
221,736,715
1
0
null
false
2021-06-10T22:15:37
2019-11-14T16:06:47
2019-12-16T01:29:11
2021-06-10T22:15:35
22,125
1
0
2
Python
false
false
import copy import grpc import logging import os import django import sys os.environ.setdefault("DJANGO_SETTINGS_MODULE", "accessControl.settings") #from django.core.management import execute_from_command_line django.setup() from groupDatabase.models import user, group from concurrent import futures import groupDB_pb2 import groupDB_pb2_grpc import groups_pb2 import groups_pb2_grpc channel = grpc.insecure_channel("localhost:50051") stub = groups_pb2_grpc.Groups_ManagerStub(channel) class database(groupDB_pb2_grpc.databaseServicer): def addGroup(self, request, context): currentUserId = request.userId currentGroupName = request.groupName #lookup try: currentUser = user.objects.get(userNumber = currentUserId) filterSet = group.objects.filter(user=currentUser) for i in filterSet: if i.groupName == currentGroupName: return groupDB_pb2.addGroupReply(success = False) except user.DoesNotExist: currentUser = user(userNumber = currentUserId) currentUser.save() currentGroup = group(groupName = currentGroupName, user = currentUser) currentGroup.save() return groupDB_pb2.addGroupReply(success = True) def deleteGroup(self, request, context): currentUserId = request.userId currentGroupName = request.groupName print(currentGroupName) print(currentUserId) #lookup try: currentUser = user.objects.get(userNumber = currentUserId) filterSet = group.objects.filter(user=currentUser) except user.DoesNotExist: return groupDB_pb2.deleteGroupReply(success = False) print("hi") for i in filterSet: if i.groupName == currentGroupName: #with grpc.insecure_channel('localhost:50051') as channel: #stub = groups_pb2_grpc.Groups_ManagerStub(channel) #stub.DeleteGroup(groups_pb2.DeleteGroupRequest(group_id = str(i.id))) i.delete() print("wsa able to delete") return groupDB_pb2.deleteGroupReply(success = True) return groupDB_pb2.deleteGroupReply(success = False) def getGroupId(self, request, context): currentUserId = request.userId currentGroupName = request.groupName print("current group name "+request.groupName) try: currentUser = user.objects.get(userNumber = currentUserId) filterSet = group.objects.filter(user=currentUser) #currentGroup = group.objects.get(user = currentUser, groupName = currentGroupName) except user.DoesNotExist: print("user dne") return groupDB_pb2.getGroupReply(groupId = 0) #print(user.objects.all()) print(filterSet) for i in filterSet: if i.groupName == currentGroupName: returnID = i.id return groupDB_pb2.getGroupReply(groupId = returnID) print("end") return groupDB_pb2.getGroupReply(groupId = 0) def removeAll(self, request, context): user.objects.all().delete() group.objects.all().delete() return groupDB_pb2.removeAllReply(success = True) def getGroupNames(self, request, context): currentUserId = request.userId currentUser = user.objects.get(userNumber = currentUserId) filterSet = group.objects.filter(user=currentUser) listOfGroupNames = "" for i in filterSet: listOfGroupNames = listOfGroupNames + str(i.groupName) + "," listOfGroupNames = listOfGroupNames[0: len(listOfGroupNames) - 1] return groupDB_pb2.getGroupNamesReply(groupNames = listOfGroupNames) groupIdCounter = 0 def serve(): server = grpc.server(futures.ThreadPoolExecutor(max_workers=10)) groupDB_pb2_grpc.add_databaseServicer_to_server(database(), server) server.add_insecure_port('[::]:50052') server.start() server.wait_for_termination() if __name__ == '__main__': logging.basicConfig() from django.core.management import execute_from_command_line execute_from_command_line(sys.argv) serve()
UTF-8
Python
false
false
3,732
py
21
groupDB_server.py
16
0.748124
0.737138
0
131
27.48855
86
markillob/python_basics
10,883,447,151,435
d239fa7478813bf527216b14d3f2d1da104bab0c
75022fcc62508ebe5f9e075b4ad6c4826e145b97
/basics/strings_search.py
2c765d258a7a30fbf46c9d81e0694430a76bc63e
[]
no_license
https://github.com/markillob/python_basics
5304a8f4733c94ba389ee333f691a6def4aade31
c285816e9432566337f832daa1493ff69df6c4f5
refs/heads/master
2021-07-01T14:02:22.575904
2021-03-20T13:07:28
2021-03-20T13:07:28
222,870,357
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python def get_longest_substring ( full_string : str): counter = 0 counter_temp = 0 anchor_str_temp = "" i = 0 anchor_str = "" if full_string == "" : return print("empty") while i < (len(full_string)-1): #7 if full_string[i+1] != full_string[i] and full_string[i] not in anchor_str: anchor_str = anchor_str + (full_string[i]) counter +=1 elif i > 1 and i < (len(full_string)-2) and full_string[i] not in anchor_str: anchor_str_temp = anchor_str #ab anchor_str = "" counter_temp = counter # 2 counter = 0 i -=1 elif i == 1 and full_string[i + 1] == full_string[i]: anchor_str = full_string[i] i +=1 if full_string[i] not in anchor_str: anchor_str = anchor_str + (full_string[i]) counter +=1 elif full_string[i] not in anchor_str_temp: anchor_str_temp = anchor_str_temp + full_string[i] counter_temp +=1 if counter_temp > counter: print( anchor_str_temp,counter_temp) else: print(anchor_str,counter) return def get_longest_substring_one ( full_string : str): counter = 0 counter_temp = 0 anchor_str_temp = "" i = 0 anchor_str = "" while i < (len(full_string)-1): #7 if full_string[i+1] > len(str): if full_string[i] not in anchor_str: anchor_str = anchor_str + (full_string[i]) counter +=1 elif full_string[i] not in anchor_str_temp: anchor_str_temp = anchor_str_temp + full_string[i] counter_temp +=1 if fuull_string[i+1] != full_string[i] and full_string[i] not in anchor_str: anchor_str = anchor_str + (full_string[i]) counter +=1 elif i > 1 and i < (len(full_string)-2) and full_string[i] not in anchor_str: anchor_str_temp = anchor_str #ab anchor_str = "" counter_temp = counter # 2 counter = 0 i -=1 elif i == 1 and full_string[i + 1] == full_string[i]: anchor_str = full_string[i] i +=1 if counter_temp > counter: print( anchor_str_temp,counter_temp) else: print(anchor_str,counter) return def get_list_sum_numbers ( full_list : list): return list_temporar def main (): get_longest_substring("dbdadb") if __name__ =="__main__": main()
UTF-8
Python
false
false
2,493
py
22
strings_search.py
19
0.532692
0.518652
0
78
30.961538
85
fabregas/nimbusfs-client
14,448,270,028,443
b2e188eda8e20610b242fcc18bbceab687d8bfec
67696fc94000dede419d0943cf6a98722addc641
/id_client/webdav_mounter.py
eb51847f2ac10269c97b6506c35cb35fb8821757
[]
no_license
https://github.com/fabregas/nimbusfs-client
35ffca5efc421c44ffa57e1f8e03181d385cd3dc
2be2db7f6dce6f47407ba5537b64d56efa7f51de
refs/heads/master
2020-05-18T10:17:49.926114
2013-07-10T15:17:34
2013-07-10T15:17:34
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python """ Copyright (C) 2013 Konstantin Andrusenko See the documentation for further information on copyrights, or contact the author. All Rights Reserved. @package id_client.webdav_mounter @author Konstantin Andrusenko @date May 08, 2013 """ import os import sys import string from id_client.utils import Subprocess, logger LINUX_MOUNTER_BIN = os.path.abspath(os.path.join(os.path.dirname(__file__), '../bin/webdav_mount')) #-------- for win32 ---------- ALL_DRIVES_LIST = list(string.ascii_uppercase) ALL_DRIVES_LIST.reverse() #for win32 #----------------------------- OS_MAC = 'mac' OS_LINUX = 'linux' OS_WINDOWS = 'windows' OS_UNKNOWN = 'unknown' class WebdavMounter: def __init__(self, nofork=False): system = sys.platform if system.startswith('linux'): self.cur_os = OS_LINUX elif system == 'darwin': self.cur_os = OS_MAC elif system == 'win32': self.cur_os = OS_WINDOWS else: self.cur_os = OS_UNKNOWN self.nofork = nofork self.__mountpoint = '' def get_mount_point(self): return self.__mountpoint def __run_linux_mounter(self, cmd): proc = Subprocess('%s %s'%(LINUX_MOUNTER_BIN, cmd)) cout, cerr = proc.communicate() if proc.returncode: logger.error('webdav mounter error: %s %s'%(cout, cerr)) return proc.returncode def mount(self, host, port): if self.cur_os == OS_MAC: return self.mount_mac(host, port) elif self.cur_os == OS_LINUX: try: if not self.nofork: return self.__run_linux_mounter('mount') return self.mount_linux(host, port) finally: self.update_linux_mountpoint('%s:%s'%(host, port)) elif self.cur_os == OS_WINDOWS: self.mount_windows(host, port) def unmount(self): try: if self.cur_os == OS_LINUX: if not self.nofork: return self.__run_linux_mounter('umount') if self.cur_os in (OS_MAC, OS_LINUX): self.unmount_unix(self.get_mount_point()) elif self.cur_os == OS_WINDOWS: self.umount_windows() finally: self.__mountpoint = '' def update_linux_mountpoint(self, url): p = Subprocess('df') out, err = p.communicate() for line in out.splitlines(): if url in line: self.__mountpoint = line.split()[-1] return def mount_linux(self, bind_host, bind_port): mount_point = '/media/iDepositBox' if os.path.exists(mount_point): self.unmount_unix(mount_point) else: os.makedirs(mount_point) p = Subprocess('mount -t davfs -o rw,user,dir_mode=0777 http://%s:%s/ %s'\ % (bind_host, bind_port, mount_point), with_input=True) out, err = p.communicate('anonymous\nanonymous') if p.returncode: sys.stderr.write('%s\n'%err) return p.returncode def mount_mac(self, bind_host, bind_port): self.__mountpoint = mount_point = '/Volumes/iDepositBox' if os.path.exists(mount_point): os.system('umount %s'%mount_point) else: os.mkdir(mount_point) if bind_host == '127.0.0.1': bind_host = 'localhost' return os.system('mount_webdav -v iDepositBox http://%s:%s/ %s'\ % (bind_host, bind_port, mount_point)) def __get_win_unused_drive(self): import win32api drives = win32api.GetLogicalDriveStrings() drives = drives.split('\000') a_drives = [] for s in drives: s = s.strip() if s: a_drives.append(s[0]) for drive in ALL_DRIVES_LIST: if drive in a_drives: continue return '%s:'%drive def mount_windows(self, host, port): self.umount_windows() drive = self.__get_win_unused_drive() self.__mountpoint = 'drive %s'%drive p = Subprocess(['sc', 'create', 'iDepositBoxMount', 'binPath=', 'cmd /b /c net use %s http://%s:%s/'%\ (drive, host, port), 'type=', 'share']) p = Subprocess(['sc', 'create', 'iDepositBoxUnmount', 'binPath=', 'cmd /b /c net use /delete %s /Y'%\ drive, 'type=', 'share']) out, err = p.communicate() logger.debug('sc create iDepositBoxUnmount: [%s] %s %s'%(p.returncode, out, err)) p = Subprocess('net start iDepositBoxMount') p.communicate() return 0 def umount_windows(self): p = Subprocess('sc query iDepositBoxUnmount') out, err = p.communicate() if p.returncode: logger.debug('no iDepositBoxUnmount service found...') return p = Subprocess('net start iDepositBoxUnmount') p.communicate() p = Subprocess('sc delete iDepositBoxMount') out, err = p.communicate() logger.debug('sc delete iDepositBoxMount: %s %s'%(out, err)) p = Subprocess('sc delete iDepositBoxUnmount') out, err = p.communicate() logger.debug('sc delete iDepositBoxUnmount: %s %s'%(out, err)) def unmount_unix(self, mount_point): if os.path.exists(mount_point): p = Subprocess('umount %s'%mount_point) out, err = p.communicate() if p.returncode: logger.debug('"umount %s" output: %s %s'%(mount_point, out, err)) if __name__ == '__main__': if len(sys.argv) != 2: sys.stderr.write('usage: webdav_mount mount|umount\n') sys.exit(1) from id_client.config import Config wdm = WebdavMounter(nofork=True) config = Config() cmd = sys.argv[1] if cmd == 'mount': err = '' try: ret_code = wdm.mount('127.0.0.1', config.webdav_bind_port) except Exception, err: ret_code = 1 if ret_code: sys.stderr.write('Webdav does not mounted locally! %s\n'%err) sys.exit(1) elif cmd == 'umount': wdm.update_linux_mountpoint( '127.0.0.1:%s'%config.webdav_bind_port) wdm.unmount() else: sys.stderr.write('unknown command "%s"!\n'%cmd) sys.exit(1) sys.stdout.write('ok\n') sys.exit(0)
UTF-8
Python
false
false
6,426
py
66
webdav_mounter.py
63
0.552132
0.543573
0
199
31.286432
110
du-debug/tornado_SDK
15,899,968,937,486
6007af90ee28a9762e8b45ac15c6be3999bb20ed
c656411d42db388c805c14e3b46dd402d2048d16
/tornado_SDK/common/notify_url.py
5194bd76a1d373c789f7475ab58e9ce8dd1c4f4a
[]
no_license
https://github.com/du-debug/tornado_SDK
ebff9606c5f9fb0e88430966b71e28ac1009d29b
8b78411413aae01e7ade0eec36f37746d0e54cd4
refs/heads/master
2020-09-11T00:14:34.456824
2019-11-27T05:28:55
2019-11-27T05:28:55
221,876,675
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" 单线程的去维护 notify_url """ from utils.cache import CacheMixin class NotifyUrl(CacheMixin): is_instance = None def __new__(cls, *args, **kwargs): if not cls.is_instance: cls.is_instance = super(NotifyUrl, cls).__new__(cls, *args, **kwargs) return cls.is_instance @classmethod def instance(cls): if cls.is_instance is None: NotifyUrl() return cls.is_instance if __name__ == "__main__": test01 = NotifyUrl() test02 = NotifyUrl() print(id(test01)) print(id(test02))
UTF-8
Python
false
false
572
py
30
notify_url.py
30
0.584229
0.569892
0
27
19.62963
81
marcelocra/generic-code
4,054,449,170,878
5dfb6482ad03140f63a064a6245273442223e387
89d8a87f6f9eca558f874e7f9f9bc294f9b7b486
/sort_quicksort.py
7621c88805fa5e56cae805ddeec326e71a485ce2
[]
no_license
https://github.com/marcelocra/generic-code
18cc8bfa44da0f856783be2f4f2c69104d03dbc9
9844a228f2a91e50625cdf72c49d23f8bcdaf06f
refs/heads/master
2016-09-06T14:32:59.000196
2013-02-28T04:08:22
2013-02-28T04:08:22
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import json import random import time def quicksort(array): if len(array) <= 1: return array pivot = array[len(array)/2] array.remove(pivot) smaller = [] bigger = [] for x in array: if x <= pivot: smaller.append(x) else: bigger.append(x) return quicksort(smaller) + [pivot] + quicksort(bigger) def calculate_time(number): my_list = [] for i in range(number): my_list.append(random.random()) inicio = time.time() quicksort(my_list) return time.time() - inicio my_file = open('sort_quicksort_result.txt', 'r+') try: my_res = my_file.read() my_result = json.loads(my_res) except: my_result = {} for i in range(10000, 100000, 10000): if i not in my_result.keys(): my_result[i] = [calculate_time(i)] print 'if' else: my_result[i].append(calculate_time(i)) print 'else' my_file.write(json.dumps(my_result)) my_file.close()
UTF-8
Python
false
false
980
py
15
sort_quicksort.py
13
0.585714
0.567347
0
45
20.777778
59
kool7/Data_Structures_And_Algorithms_nd256
13,984,413,527,640
095c551b0e3be8fcd4bc473eeb1aaa11641d0e38
fa264b31b1fdc13dc0532f99a86b8dd7615b0116
/interview_Cake/Array and strings/merging_meeting_times.py
498f9c30c4348e6a0639c9aec68b48039c057065
[]
no_license
https://github.com/kool7/Data_Structures_And_Algorithms_nd256
7e718a1a8ae81f4d08c245a9a6a1bccf8c562fd3
24d37d011a3914b667a97efedd5f0078bdce9913
refs/heads/master
2021-02-18T01:48:51.462575
2021-01-16T11:03:51
2021-01-16T11:03:51
245,146,425
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
data = [(0, 1), (3, 5), (4, 8), (10, 12), (9, 10)] def merge_range(time:list): ''' Arguments time -- list of meeting time ranges ''' output = [] for item in sorted(data, key=lambda x: x[0]): if output and item[0] <= output[-1][1]: output[-1][1] = max(item[1], output[-1][1]) else: output.append(item) return output merge_range(data)
UTF-8
Python
false
false
406
py
49
merging_meeting_times.py
48
0.504926
0.450739
0
19
20.368421
55
tinajer/personal
3,272,765,080,214
878aa24c3987356ef5694c8cac61c311581a4374
110150911ec1e4b54dc1d8b12c006b3636a766c9
/solopy/dorade.py
365e0d0097649327b47a731aebd8dcacb629acad
[]
no_license
https://github.com/tinajer/personal
ee8400249afbbc4633096a4b09fd44874a768cfb
807e50ce3ba8a1287165fc28ab1da3274bb9f8fc
refs/heads/master
2021-01-18T12:36:31.320074
2015-06-07T03:09:05
2015-06-07T03:09:05
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import struct import numpy as np class DoradeFile: def __init__(self, file_name, mode): self._defaults = [] self._dorade = open(file_name, mode) self._defaults = dir(self) if 'r' in mode: self._readHeaders() self._readSweep() return def _readHeaders(self): self._readSuperSweepIDBlock() self._readVolumeDescriptor() self._readSensorDescriptors(self.num_sens_descr) return def _readSuperSweepIDBlock(self): _marker = self._read('s4') if _marker != "SSWB": print "Error: Expected volume descriptor marker (SSWB)" super_sweep_id_block_length = self._read('i') self.last_used = self._read('i') self.start_time = self._read('i') self.stop_time = self._read('i') file_size = self._read('i') self.compression_flag = self._read('i') self.volume_time_stamp = self._read('i') self.num_params = self._read('i') self.radar_name = self._read('s8') start_time = self._read('d') stop_time = self._read('d') self.version_number = self._read('i') num_key_tables = self._read('i') status = self._read('i') for idx in range(7): placeholder = self._read('i') self.key_table = [] for idx in range(8): key = {} key['offset'] = self._read('i') key['size'] = self._read('i') key['type'] = self._read('i') self.key_table.append(key) return def _readVolumeDescriptor(self): _marker = self._read('s4') if _marker != "VOLD": print "Error: Expected volume descriptor marker (VOLD)" _vol_descr_length = self._read('i') self.revision_number = self._read('h') self.volume_number = self._read('h') self.max_record_length = self._read('i') self.project_name = self._read('s20') self.year_data = self._read('h') self.month_data = self._read('h') self.day_data = self._read('h') self.hour_data = self._read('h') self.minute_data = self._read('h') self.second_data = self._read('h') self.flight_number = self._read('s8') self.record_source_id = self._read('s8') self.year_recording = self._read('h') self.month_recording = self._read('h') self.day_recording = self._read('h') self.num_sens_descr = self._read('h') return def _readSensorDescriptors(self, n_sensor_descr): self.radar_descriptors = [] for sens_descr in range(n_sensor_descr): descriptor = {} _marker = self._read('s4') if _marker != "RADD": print "Error: Expected sensor descriptor marker (RADD)" descriptor_length = self._read('i') descriptor['name'] = self._read('s8') descriptor['radar_constant'] = self._read('f') descriptor['peak_power'] = self._read('f') descriptor['noise_power'] = self._read('f') descriptor['receiver_gain'] = self._read('f') descriptor['antenna_gain'] = self._read('f') descriptor['system_gain'] = self._read('f') descriptor['horiz_beam_width'] = self._read('f') descriptor['vert_beam_width'] = self._read('f') descriptor['radar_type'] = self._read('h') descriptor['scan_mode'] = self._read('h') descriptor['antenna_rot_vel'] = self._read('f') descriptor['scan_param_1'] = self._read('f') descriptor['scan_param_2'] = self._read('f') num_param_descr = self._read('h') num_additional_descr = self._read('h') data_compression = self._read('h') data_reduction = self._read('h') data_reduction_param_1 = self._read('f') data_reduction_param_2 = self._read('f') descriptor['radar_longitude'] = self._read('f') descriptor['radar_latitude'] = self._read('f') descriptor['radar_altitude'] = self._read('f') # print descriptor['radar_longitude'] # print descriptor['radar_latitude'] # print descriptor['radar_altitude'] descriptor['unambig_velocity'] = self._read('f') descriptor['unambig_range'] = self._read('f') num_frequencies = self._read('h') num_interpulse_per = self._read('h') descriptor['frequencies'] = self._read('fffff') descriptor['interpulse_per'] = self._read('fffff') descriptor['parameters'] = self._readParameterDescriptors(num_param_descr) descriptor['cell_range_vec'] = self._readCellRangeVector() descriptor['corr_factor'] = self._readCorrectionFactorDescriptor() self.radar_descriptors.append(descriptor) return def _readParameterDescriptors(self, n_parameter_descr): parameter_descriptors = [] for parm_desc in range(n_parameter_descr): descriptor = {} _marker = self._read('s4') if _marker != "PARM": print "Error: Expected parameter descriptor marker (PARM)" param_descr_length = self._read('i') descriptor['name'] = self._read('s8') descriptor['description'] = self._read('s40') descriptor['units'] = self._read('s8') descriptor['interpulse_used'] = self._read('h') descriptor['frequency_used'] = self._read('h') descriptor['receiver_bandwidth'] = self._read('f') descriptor['pulse_width'] = self._read('h') descriptor['polarization'] = self._read('h') descriptor['num_samples'] = self._read('h') descriptor['binary_format'] = self._read('h') descriptor['threshold_param'] = self._read('s8') descriptor['thershold_value'] = self._read('f') descriptor['scale_factor'] = self._read('f') descriptor['bias_factor'] = self._read('f') descriptor['bad_data_flag'] = self._read('i') print descriptor['name'] parameter_descriptors.append(descriptor) return parameter_descriptors def _readCellRangeVector(self): _marker = self._read('s4') if _marker != "CELV": print "Error: Expected cell range vector marker (CELV)" comment_length = self._read('i') cell_vector_length = self._read('i') cell_vector = self._read('f' * 1500) # is 1500 constant for all files? return cell_vector def _readCorrectionFactorDescriptor(self): descriptor = {} _marker = self._read('s4') if _marker != "CFAC": print "Error: Expected correction factor descriptor marker (CFAC)" corr_fact_descr_length = self._read('i') descriptor['azimuth'] = self._read('f') descriptor['elevation'] = self._read('f') descriptor['range_delay'] = self._read('f') descriptor['longitude'] = self._read('f') descriptor['latitude'] = self._read('f') descriptor['pressure_alt'] = self._read('f') descriptor['physical_alt'] = self._read('f') descriptor['platform_u'] = self._read('f') descriptor['platform_v'] = self._read('f') descriptor['platform_w'] = self._read('f') descriptor['platform_heading'] = self._read('f') descriptor['platform_roll'] = self._read('f') descriptor['platform_pitch'] = self._read('f') descriptor['platform_drift'] = self._read('f') descriptor['rotation_angle'] = self._read('f') descriptor['tilt_angle'] = self._read('f') return descriptor def _readSweep(self): self._readSweepDescriptor() self._readRays(self.num_rays, self.radar_descriptors[0]['parameters']) return def _readSweepDescriptor(self): _marker = self._read('s4') if _marker != "SWIB": print "Error: Expected sweep descriptor marker (SWIB)" sweep_descr_length = self._read('i') sweep_comment = self._read('s8') sweep_number = self._read('i') self.num_rays = self._read('i') self.true_start_angle = self._read('f') self.true_end_angle = self._read('f') fixed_angle = self._read('f') filter_flag = self._read('i') return def _readRays(self, n_rays, parameter_descriptors): self._rays = [] for ray in range(n_rays): descriptor = {} descriptor['ray_info'] = self._readRayInfoBlock() descriptor['platform_info'] = self._readPlatformInfoBlock() descriptor['param_data'] = {} for param_desc in parameter_descriptors: _marker = self._read('s4') if _marker != "RDAT": print "Error: Expected radar data marker (RDAT): ray %d" % ray radar_data_length = self._read('i') parameter_name = self._read('s8') if parameter_name != param_desc['name']: print "Error: Expected parameter %s, but got %s" % (param_desc['name'], parameter_name) data_type = {1:'b', 2:'h', 3:'i', 4:'f'}[ param_desc['binary_format'] ] data_width = {1:1, 2:2, 3:4, 4:4}[ param_desc['binary_format'] ] data_compressed = np.array(self._read(data_type * ((radar_data_length - 16) / data_width))) data = self._decompressHRD(data_compressed)#, debug=(ray == 0)) data = self._remap(data, param_desc) descriptor['param_data'][parameter_name] = data self._rays.append(descriptor) return def _decompressHRD(self, compressed_data, debug=False): decompressed_data = [] idx = 0 if debug: print compressed_data while idx < len(compressed_data) and compressed_data[idx] != 1: count = compressed_data[idx] & int("0x7fff", 0) good_data = compressed_data[idx] & int("0x8000", 0) if debug: print count, bool(good_data) if good_data: decompressed_data.extend(compressed_data[(idx + 1):(idx + count + 1)]) idx += count + 1 else: decompressed_data.extend([ -int("0x8000", 0) for jdy in range(count) ]) idx += 1 return np.array(decompressed_data) def _remap(self, data, parameter_desc): return np.where(data > -10000, data / parameter_desc['scale_factor'] - parameter_desc['bias_factor'], data) def _readRayInfoBlock(self): descriptor = {} _marker = self._read('s4') if _marker != "RYIB": print "Error: Expected ray info block marker (RYIB)" ray_info_block_length = self._read('i') descriptor['sweep_number'] = self._read('i') descriptor['julian_day'] = self._read('i') descriptor['hour'] = self._read('h') descriptor['minute'] = self._read('h') descriptor['second'] = self._read('h') descriptor['millisecond'] = self._read('h') descriptor['azimuth'] = self._read('f') descriptor['elevation'] = self._read('f') descriptor['peak_tx_power'] = self._read('f') descriptor['scan_rate'] = self._read('f') descriptor['ray_status'] = self._read('i') return descriptor def _readPlatformInfoBlock(self): descriptor = {} _marker = self._read('s4') if _marker != "ASIB": print "Error: Expected platform info block marker (ASIB)" platform_info_block_length = self._read('i') descriptor['longitude'] = self._read('f') descriptor['latitude'] = self._read('f') descriptor['altitude_msl'] = self._read('f') descriptor['altitude_agl'] = self._read('f') descriptor['antenna_u'] = self._read('f') descriptor['antenna_v'] = self._read('f') descriptor['antenna_w'] = self._read('f') descriptor['heading'] = self._read('f') descriptor['roll'] = self._read('f') descriptor['pitch'] = self._read('f') descriptor['drift'] = self._read('f') descriptor['beam_sweep_angle'] = self._read('f') descriptor['beam_scan_angle'] = self._read('f') descriptor['air_u'] = self._read('f') descriptor['air_v'] = self._read('f') descriptor['air_w'] = self._read('f') descriptor['heading_chg_rate'] = self._read('f') descriptor['pitch_chg_rate'] = self._read('f') return descriptor def _read(self, type_string): if type_string[0] != 's': size = struct.calcsize(type_string) data = struct.unpack("<%s" % type_string, self._dorade.read(size)) else: size = int(type_string[1:]) data = tuple([ self._dorade.read(size).strip("\0") ]) if len(data) == 1: return data[0] else: return list(data) def getSweep(self, parameter_name): sweep = np.empty((self.num_rays, len(self._rays[0]['param_data'][parameter_name]))) for idx in range(self.num_rays): sweep[idx] = self._rays[idx]['param_data'][parameter_name] return sweep def open_file(file_name, mode): return DoradeFile(file_name, mode) if __name__ == "__main__": dor = open_file("swp.1090605194442.KFTG.486.0.5_SUR_v531", 'r') print dor.getSweep("REF").max()
UTF-8
Python
false
false
14,594
py
39
dorade.py
34
0.509182
0.501919
0
382
37.201571
115
DracoMindz/holbertonschool-machine_learning
1,151,051,283,055
30f92306744f4c8844cbba02c8b1e6184e241008
8406a55dcd26a111486a99d4a7a0cd556bd8348c
/supervised_learning/0x06-keras/9-model.py
60d9690c5534ead83339476cf5bc442297368430
[]
no_license
https://github.com/DracoMindz/holbertonschool-machine_learning
d486ad55865622d81527a31ee844c82b7d06286b
4ac942126918c7acaa9ef88d18efe299b2f726fe
refs/heads/master
2020-12-21T20:44:01.026482
2020-10-09T02:31:36
2020-10-09T02:31:36
236,553,914
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python3 """ function save_model: saves entire model function load_model: loadsd entire model """ import tensorflow.keras as K def save_model(network, filename): """ saves entire model """ network.save(filename) return None def load_model(filename): """ loads entire model """ loaded_model = K.models.load_model(filename) return loaded_model
UTF-8
Python
false
false
401
py
274
9-model.py
220
0.665835
0.663342
0
23
16.434783
48
zexpp5/houseAiApi
6,502,580,499,703
7876668c07fa8554328585ef61ae136cb2a4610c
332b2aad6c2ca2cafe4209c9789285b80ed76190
/src/AnalyAPI.py
dfa8b7dbd40625fcdf969143af68ea2c032678ab
[ "Apache-2.0" ]
permissive
https://github.com/zexpp5/houseAiApi
4e65c90973044ddf15f73cc7fd88ba00a3448fcc
8784c1bac82f21b5f8f96eb68e6aab9ea0694aa7
refs/heads/master
2020-05-27T21:14:12.108127
2016-06-02T09:52:02
2016-06-02T09:52:02
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#coding:utf-8 #语义解析api接口,端口号8778 import subprocess import os import logging from flask import Flask,request app = Flask(__name__) @app.route('/fc/<text>') def hello_world(text): #param = request.args.get('text') fc=subprocess.check_output('/usr/bin/python ../ree.py ' + text,shell=True) return fc #input if __name__ == '__main__': app.run(host='0.0.0.0',port=8778)
UTF-8
Python
false
false
418
py
31
AnalyAPI.py
19
0.638191
0.605528
0
16
23.9375
82
fank-cd/python_leetcode
7,052,336,324,199
3f7ec0715afd128548c8af4a83d6ca7fbc85c600
8f7b7a910520ba49a2e614da72f7b6297f617409
/Problemset/jewels-and-stones/jewels-and-stones.py
f8ac7f2af5a27836f21b9364b4179ddd0dd6d87d
[]
no_license
https://github.com/fank-cd/python_leetcode
69c4466e9e202e48502252439b4cc318712043a2
61f07d7c7e76a1eada21eb3e6a1a177af3d56948
refs/heads/master
2021-06-16T23:41:55.591095
2021-03-04T08:31:47
2021-03-04T08:31:47
173,226,640
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# @Title: 宝石与石头 (Jewels and Stones) # @Author: 2464512446@qq.com # @Date: 2020-10-02 20:38:40 # @Runtime: 40 ms # @Memory: 13.4 MB class Solution: def numJewelsInStones(self, J: str, S: str) -> int: d = Counter(S) res = 0 for i in J: res += d[i] return res
UTF-8
Python
false
false
317
py
287
jewels-and-stones.py
277
0.547231
0.449511
0
13
22.538462
55
ngoclam9415/all-authorization
9,947,144,270,572
9edd39c247a18a7ff33b558a764a38342956f8b8
4fe6b7a8f149cfbf16c3f47e7de607a05cc40157
/all_authentication.py
e726f76323389ecd78330afb60c1cc6fd2d46e06
[]
no_license
https://github.com/ngoclam9415/all-authorization
4759ce50269deffb977cec846836dba683ff4999
e8e2b9eec5d576700bf9dafa15512f5f149294b0
refs/heads/master
2020-09-20T03:44:18.608663
2019-11-27T07:22:17
2019-11-27T07:22:17
224,369,382
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from flask import Flask, request, render_template, session, jsonify import base64 import jwt import time import random import re import hashlib app = Flask(__name__) app.config["BASIC_AUTH_USERNAME"] = "ngoclam_athena" app.config["BASIC_AUTH_PASSWORD"] = "athenaforthewin" app.secret_key = 'any random string' data = base64.b64encode("ngoclam_athena:athenaforthewin".encode("utf-8")) # print(data.decode("utf-8")) def parse_diggest_header(diggest_header): reg = re.compile(r'(\w+)[:=] ?"?([\w\/]+)"?') return dict(reg.findall(diggest_header)) def generate_random_value(): return "%032x"% random.getrandbits(128) @app.route("/basic_auth", methods=["POST"]) def basic_auth(): auth_header = request.headers.get("Authorization", None) if auth_header == "Basic " + data.decode("utf-8"): current_time = time.time() value = "%032x"% random.getrandbits(128) encoded_data = jwt.encode({"from" : current_time, "to" : current_time + 60, "data" : value}, "secret", algorithm="HS256").decode("utf-8") # THIS OUTPUT IS BYTE if "Bearer" not in session: session["Bearer"] = [] session["Bearer"].append(encoded_data) return jsonify({"access_token" : encoded_data}) else : return "FAIL" @app.route("/bearer_auth", methods=["POST"]) def bearer_auth(): bearer_header = request.headers.get("Authorization", None) encoded_data = bearer_header.split("Bearer ")[-1] if encoded_data in session["Bearer"]: data = jwt.decode(encoded_data, "secret", algorithms=["HS256"]) if time.time() < data["to"]: return "THIS IS WHAT YOU WANT" else: return "TOKEN EXPIRED" else: return "INVALID TOKEN" return "FAIL" @app.route("/diggest_auth", methods=["GET", "POST"]) def diggest_auth(): if request.method == "GET": realm="diggest_auth" nonce=generate_random_value() algorithm="MD5" qop="auth" session["server_nonce"] = nonce print(generate_random_value()) return jsonify({"realm" : realm, "nonce" : nonce, "algorithm" : algorithm, "qop" : qop}) elif request.method == "POST": header_dict = parse_diggest_header(request.headers.get("Authorization")) print(header_dict) md1 = hashlib.md5("{}:{}:{}".format(header_dict["username"], header_dict["realm"], app.config.get("BASIC_AUTH_PASSWORD")).encode("utf-8")).digest() md2 = hashlib.md5("{}:{}".format(request.method, header_dict["uri"]).encode("utf-8")).digest() result = hashlib.md5("{}:{}:{}:{}:{}".format(md1, header_dict["nonce"], header_dict["nonceCount"], header_dict["cnonce"], md2).encode("utf-8")).hexdigest() if result == header_dict["response"]: return "THIS IS WHAT YOU WANT" return "FAIL" if __name__ == "__main__": app.run(debug=True)
UTF-8
Python
false
false
2,873
py
2
all_authentication.py
2
0.619213
0.604595
0
75
37.32
167
Joakimad/IINI4014-Python-for-programmers
14,053,132,997,929
6f6728131d1b8e27c4b9587376edd4ce26eeb82b
6f84027b5d3cb29ccd75409bf713c5a5fe932aa5
/oving7/decrypt.py
156db6081e141374a647744a35c2c64d5c211d4d
[]
no_license
https://github.com/Joakimad/IINI4014-Python-for-programmers
de77f093406bdbdbf53aef409e8fe8a48fab67c9
8b4959d9bcadce58e28c9264b30982767ee19a4f
refs/heads/master
2021-01-14T20:48:48.335124
2020-04-19T15:47:19
2020-04-19T15:47:19
242,755,030
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from oving7.rsa import decrypt def decrypt_with_publickey(publickey, encrypted_msg, start, end): e, n = publickey possible_solutions = [] counter = 0 for i in range(start, end): if counter == 100: print(i) counter = 0 counter += 1 decrypted_msg = decrypt((i, n), encrypted_msg) if decrypted_msg.startswith('h'): print(decrypted_msg) possible_solutions.append((i, decrypted_msg)) return possible_solutions def PrimeGen(n=10000): primes = [] chk = 2 while len(primes) < n: ptest = [chk for i in range(2, chk) if chk % i == 0] primes += [] if ptest else [chk] chk += 1 return primes encrypted_msg = [84620, 66174, 66174, 5926, 9175, 87925, 54744, 54744, 65916, 79243, 39613, 9932, 70186, 85020, 70186, 5926, 65916, 72060, 70186, 21706, 39613, 11245, 34694, 13934, 54744, 9932, 70186, 85020, 70186, 54744, 81444, 32170, 53121, 81327, 82327, 92023, 34694, 54896, 5926, 66174, 11245, 9175, 54896, 9175, 66174, 65916, 43579, 64029, 34496, 53121, 66174, 66174, 21706, 92023, 85020, 9175, 81327, 21706, 13934, 21706, 70186, 79243, 9175, 66174, 81327, 5926, 74450, 21706, 70186, 79243, 81327, 81444, 32170, 53121] publickey = (29815, 100127) print(decrypt_with_publickey(publickey, encrypted_msg, 64300, 64400))
UTF-8
Python
false
false
1,418
py
10
decrypt.py
8
0.603667
0.324401
0
38
36.315789
120
Aasthaengg/IBMdataset
13,503,377,215,686
fa6d642ece22153be2315b6325b7db1547631299
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02797/s604469972.py
3c4c4d455f81e5f7cf9f26b9659943f6db4d8491
[]
no_license
https://github.com/Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
N,K,S=map(int,input().split()) ans=[S]*K if N-K>=S: ans.extend([S+1]*(N-K)) else: ans.extend([1]*(N-K)) print(*ans)
UTF-8
Python
false
false
123
py
202,060
s604469972.py
202,055
0.536585
0.520325
0
9
12.777778
30
kigold/fullApp
1,640,677,547,667
f5236ce8ef8339bca3aad72f64f81aa9f3a9d799
a5937fd971d8c728c3652c49b96796db0f3da153
/api/fullapp/userprofile/migrations/0002_auto_20200409_0021.py
1c67ec7831f20898241bd8a1ac8a31f95d225279
[ "MIT" ]
permissive
https://github.com/kigold/fullApp
a779b5354db335636f30b59820bbfd9b736a3770
0782648590524739df07eeeefdacf7e5ceb66332
refs/heads/master
2023-01-29T00:37:31.522077
2020-10-31T16:20:52
2020-10-31T16:20:52
214,624,839
0
0
null
false
2023-01-06T15:52:13
2019-10-12T10:07:39
2020-10-31T16:20:55
2023-01-06T15:52:12
1,766
0
0
36
Python
false
false
# Generated by Django 3.0.5 on 2020-04-09 00:21 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('userprofile', '0001_initial'), ] operations = [ migrations.AlterField( model_name='game', name='away_score', field=models.IntegerField(null=True), ), migrations.AlterField( model_name='game', name='home_score', field=models.IntegerField(null=True), ), migrations.AlterField( model_name='game', name='penalty_shootout', field=models.BooleanField(null=True), ), ]
UTF-8
Python
false
false
694
py
71
0002_auto_20200409_0021.py
61
0.550432
0.523055
0
28
23.785714
49
lsjsss/PythonClass
5,437,428,598,816
416d4dd650f759dc53e1ed8909ed49f786a76c66
da99b8e2a22318f1cafb0c78adb17c8fdebe01df
/PythonBookAdditional/第09章 GUI编程/code/tkinter_RegionCapture.py
e43d485df7e75e9d4cfa0ac694857580a4384128
[ "MIT" ]
permissive
https://github.com/lsjsss/PythonClass
f185873113d54ed6ae9b3ccc22cc5a71bf8f611d
0d38d2ca4d14d5e0e2062e22ae2dbbefea279179
refs/heads/master
2023-02-18T13:43:32.453478
2023-02-08T07:17:09
2023-02-08T07:17:09
247,711,629
0
0
null
false
2022-04-25T07:03:53
2020-03-16T13:38:15
2020-06-23T15:11:37
2022-04-25T07:03:53
29,236
0
0
1
Python
false
false
import tkinter import tkinter.filedialog import os from PIL import ImageGrab from time import sleep root = tkinter.Tk() root.geometry('100x40+400+300') root.resizable(False, False) class MyCapture: def __init__(self, png): #变量X和Y用来记录鼠标左键按下的位置 self.X = tkinter.IntVar(value=0) self.Y = tkinter.IntVar(value=0) #屏幕尺寸 screenWidth = root.winfo_screenwidth() screenHeight = root.winfo_screenheight() #创建顶级组件容器 self.top = tkinter.Toplevel(root, width=screenWidth, height=screenHeight) #不显示最大化、最小化按钮 self.top.overrideredirect(True) self.canvas = tkinter.Canvas(self.top,bg='white', width=screenWidth, height=screenHeight) #显示全屏截图,在全屏截图上进行区域截图 self.image = tkinter.PhotoImage(file=png) self.canvas.create_image(screenWidth//2, screenHeight//2, image=self.image) #鼠标左键按下的位置 def onLeftButtonDown(event): self.X.set(event.x) self.Y.set(event.y) #开始截图 self.sel = True self.canvas.bind('<Button-1>', onLeftButtonDown) #鼠标左键移动,显示选取的区域 def onLeftButtonMove(event): if not self.sel: return global lastDraw try: #删除刚画完的图形,要不然鼠标移动的时候是黑乎乎的一片矩形 self.canvas.delete(lastDraw) except Exception as e: pass lastDraw = self.canvas.create_rectangle(self.X.get(), self.Y.get(), event.x, event.y, outline='black') self.canvas.bind('<B1-Motion>', onLeftButtonMove) #获取鼠标左键抬起的位置,保存区域截图 def onLeftButtonUp(event): self.sel = False try: self.canvas.delete(lastDraw) except Exception as e: pass sleep(0.1) #考虑鼠标左键从右下方按下而从左上方抬起的截图 left, right = sorted([self.X.get(), event.x]) top, bottom = sorted([self.Y.get(), event.y]) pic = ImageGrab.grab((left+1, top+1, right, bottom)) #弹出保存截图对话框 fileName = tkinter.filedialog.asksaveasfilename(title='保存截图', filetypes=[('image', '*.jpg *.png')]) if fileName: pic.save(fileName) #关闭当前窗口 self.top.destroy() self.canvas.bind('<ButtonRelease-1>', onLeftButtonUp) self.canvas.pack(fill=tkinter.BOTH, expand=tkinter.YES) #开始截图 def buttonCaptureClick(): #最小化主窗口 root.state('icon') sleep(0.2) filename = 'temp.png' im = ImageGrab.grab() im.save(filename) im.close() #显示全屏幕截图 w = MyCapture(filename) buttonCapture.wait_window(w.top) #截图结束,恢复主窗口,并删除临时的全屏幕截图文件 root.state('normal') os.remove(filename) buttonCapture = tkinter.Button(root, text='截图', command=buttonCaptureClick) buttonCapture.place(x=10, y=10, width=80, height=20) #启动消息主循环 root.mainloop()
UTF-8
Python
false
false
3,333
py
252
tkinter_RegionCapture.py
244
0.597506
0.586422
0
86
32.569767
114
camillemonchicourt/Geotrek
12,962,211,343,817
e55ba4f4338edffbd29a5da0d2be1486f7d4d557
ba6ac9acfbf969eac1d6f3e06e9ce8174fef1cfd
/geotrek/trekking/tests/__init__.py
1a32c7cf858e7ec3d8b83fbe23815676d192ee60
[ "BSD-2-Clause" ]
permissive
https://github.com/camillemonchicourt/Geotrek
550e71917ff577ccd99506432fde55d731c59475
c33eac7e4479e3aa5b16608c0aa7665c4a72e9a1
refs/heads/master
2023-08-03T13:16:51.929524
2014-11-28T16:16:21
2014-11-28T16:16:21
24,842,186
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# pylint: disable=W0401 from .base import * from .test_views import * from .test_filters import * from .test_translation import * from .test_trek_relationship import * from .test_models import * from .test_admin import *
UTF-8
Python
false
false
221
py
38
__init__.py
28
0.751131
0.733032
0
9
23.666667
37
lavaluv/hadoop-test
7,894,149,924,452
36a736c62830a5f8631a13b8aa966aab06a3959b
539eb0d494d22c67c5f0c4a075382acf1bbe322d
/pcap/pcap.py
6bce84b7449d8c98baf17a96c8d8b29e2f7626da
[]
no_license
https://github.com/lavaluv/hadoop-test
9679142072aa0cecc6bf1ec662edc6e3366d921a
aec1e7ef760c1357de3eabd102ea2d20c272aec4
refs/heads/master
2020-04-01T20:13:54.080103
2019-03-08T07:37:59
2019-03-08T07:37:59
153,594,518
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
# coding=utf-8 import copy import PcapAnalyzer.protocol as protocol inputFilePath = 'test.pcap' outputFilePath = 'result.txt' fpcap = open(inputFilePath,'rb') file = open(outputFilePath,'w') input_data = fpcap.read() #pcap header pHeader = protocol.Pcap(input_data[0:24]) pHeader.writeIntoFile(file,'magicNum','verMajor','verMinor','thiszone','sigfigs','snaplen','linktype') #data pDataArray = [] i = 24 while (i < len(input_data)): #dataHeader pData = protocol.PcapData(input_data[i:]) #write into pData pDataArray.append(copy.deepcopy(pData)) i = i + pData.getValue('caplen') + 16 #pcap data packet for data in pDataArray: data.writeIntoFile(file,'GMTTime','microTime','caplen','datalen','content') file.write('Have'+str(len(pDataArray))+"pcakets"+'\n') file.close() fpcap.close()
UTF-8
Python
false
false
793
py
28
pcap.py
20
0.726356
0.716267
0
31
24.612903
102
bgruening/ngsutils
17,214,228,958,724
1014cce40fffea7656ff2a81f473501c4f2da19a
94bd032bc21bfd24e6dcbcfe642331f58829e574
/ngsutils/bam/junctioncount.py
46114dfa66cdebeb374eb973bbbc4f4d575ecac1
[ "BSD-3-Clause", "BSD-3-Clause-Open-MPI" ]
permissive
https://github.com/bgruening/ngsutils
4c1d935eb0ff337de996ce9d71b8e79ebf2faee7
417e90dc1918fb553dd84990f2c54bd8cea8f44d
refs/heads/master
2021-01-21T20:33:45.678884
2019-06-25T20:48:45
2019-06-25T20:48:45
45,920,499
0
0
BSD-3-Clause
true
2019-07-16T10:09:01
2015-11-10T15:21:30
2015-11-10T15:21:32
2019-07-16T10:08:58
5,658
0
0
0
Python
false
false
#!/usr/bin/env python ## category General ## desc Counts the number of reads spanning individual junctions. ''' Counts the number of reads that span each junction found in the BAM file. You can specify a particular genome range to scan (like a gene region). ''' import sys import os from ngsutils.bam import bam_iter, bam_open def bam_junction_count(bam, ref=None, start=None, end=None, out=sys.stdout, quiet=False): last_tid = None junctions = {} for read in bam_iter(bam, ref=ref, start=start, end=end, quiet=quiet): if read.is_unmapped: continue if read.tid != last_tid and junctions: for junction in junctions: sys.stdout.write('%s\t%s\n' % (junction, len(junctions[junction]))) junctions = {} last_tid = read.tid hasgap = False pos = read.pos end = None for op, size in read.cigar: if op == 0: pos += size elif op == 1: pass elif op == 2: pos += size elif op == 3: hasgap = True end = pos + size break elif op == 4: pos += size if not hasgap: continue junction = '%s:%s-%s' % (bam.references[read.tid], pos, end) if not junction in junctions: junctions[junction] = set() junctions[junction].add(read.qname) for junction in junctions: sys.stdout.write('%s\t%s\n' % (junction, len(junctions[junction]))) def usage(msg=""): if msg: print msg print print __doc__ print """\ Usage: bamutils junctioncount {opts} bamfile {region} Region should be: chr:start-end (start 1-based) """ sys.exit(1) if __name__ == "__main__": fname = None ref = None start = None end = None for arg in sys.argv[1:]: if arg == '-h': usage() elif not fname: if os.path.exists(arg): fname = arg else: usage("%s doesn't exist!") else: chrom, se = arg.split(':') start, end = [int(x) for x in se.split('-')] start = start - 1 if not fname: usage() bamfile = bam_open(fname) bam_junction_count(bamfile, ref, start, end) bamfile.close()
UTF-8
Python
false
false
2,393
py
126
junctioncount.py
121
0.522357
0.518596
0
95
24.189474
89
fair-workflows/fairworkflows-ui
9,354,438,795,664
d1c66e8703c4177b9dd5c4b55b631fc22c0e2270
b1f816d36ec77ea4f7a622d5708cb0268844445b
/app/app.py
e30eec92dcdbe3a9ebc0328db1ae125d19b45a3a
[ "Apache-2.0" ]
permissive
https://github.com/fair-workflows/fairworkflows-ui
03380033a39705e9522f14814342c177cb9c2c75
0036e2ff9a2cd9039dc955d21b8175386a44c8d5
refs/heads/main
2022-12-27T05:56:13.975755
2020-10-06T10:40:42
2020-10-06T10:40:42
301,308,768
0
0
Apache-2.0
false
2020-10-06T10:40:44
2020-10-05T06:05:00
2020-10-05T13:37:17
2020-10-06T10:40:43
20
0
0
0
HTML
false
false
import time from fairworkflows import FairWorkflow, FairStep from flask import Flask, render_template, request, redirect, jsonify cache = {} def create_app(): app = Flask(__name__) app.config['SEND_FILE_MAX_AGE_DEFAULT'] = 0 @app.route("/", methods=['GET', 'POST']) def index(): all_count, in_hat_count = 2, 1 if request.method == 'POST': if 'create_workflow' in request.form: description = request.form['workflow_description'] cache['workflow'] = FairWorkflow(description=description) update_visualization() return redirect('/workflow') elif 'empty_hat' in request.form: return redirect('/') elif 'start_game' in request.form: return redirect('/game') elif 'fill_hat' in request.form: return redirect('/') return render_template('index.html', workflow=cache.get('workflow'), all_count=all_count, in_hat_count=in_hat_count) def update_visualization(): workflow = cache['workflow'] ts = time.time() filepath = 'static/cache/dag' + str(int(ts)) cache['filepath'] = filepath + '.dot.png' workflow.draw('app/' + filepath) @app.route("/workflow", methods=['GET', 'POST']) def workflow(): if 'add_step' in request.form: uri = request.form['step_uri'] if request.form.get('from_nanopub'): step = FairStep.from_nanopub(uri) else: step = FairStep(uri) workflow = cache['workflow'] workflow.add(step) update_visualization() return redirect('/workflow') if 'publish' in request.form: publication_info = cache['workflow'].publish_as_nanopub() nanopub_uri = publication_info.get('nanopub_uri') if nanopub_uri is None: print('Failed to publish to nanopub') cache['nanopub_uri'] = nanopub_uri return render_template('workflow.html', workflow=cache.get('workflow'), image_path=cache.get('filepath'), nanopub_uri=cache.get('nanopub_uri')) return app def main(): app = create_app() app.run(debug=True, host='0.0.0.0') if __name__ == '__main__': main()
UTF-8
Python
false
false
2,504
py
5
app.py
1
0.527955
0.52516
0
72
33.777778
73
afarrellsherman/Woolf
15,453,292,340,023
0b62a79825dbf28cc78a0e3062ecc5a2fea09982
e8a8b8c6b308ef7ee353e5207dcafddd125011b8
/tests/test_scripts.py
315d30765669500fd6271dfd1ba0985a3ebdcdc7
[ "MIT" ]
permissive
https://github.com/afarrellsherman/Woolf
0cd112aefcb1c03ead97302165e6f0dad7331f1d
43fd5ba3ac74c115a7e59203a876701ab0aac03f
refs/heads/master
2020-03-30T08:04:03.230669
2019-06-27T17:07:41
2019-06-27T17:57:30
150,986,346
2
1
MIT
false
2019-06-27T17:57:32
2018-09-30T16:52:59
2019-06-27T17:52:19
2019-06-27T17:57:31
12,293
1
1
9
Python
false
false
import os import tempfile import wget import zipfile tut_file_url = 'https://osf.io/gtjfq/download' def command_filter(line): commands = ['trainWoolf', 'featureTable'] cmd = line.split()[0] # get first item return cmd in commands tmp = tempfile.TemporaryDirectory() tutorial_file = os.path.normpath(os.path.join( os.path.dirname(__file__), '..', 'docs', 'usermanual.md' )) tutorial_commands = [] with open(tutorial_file) as tut: for line in tut: if line.startswith("$ "): line = line.lstrip('$ ') if command_filter(line): tutorial_commands.append(line) wget.download(tut_file_url, os.path.join(tmp.name, "files.zip")) zipfile.ZipFile(os.path.join(tmp.name, "files.zip")).extractall(tmp.name) def test_trainWoolf_help(script_runner): ret = script_runner.run('trainWoolf', '--help') assert ret.success assert ret.stderr == '' def test_trainWoolf_help(script_runner): ret = script_runner.run('featureTable', '--help') assert ret.success assert ret.stderr == '' def test_tutorial_commands(script_runner): os.chdir(tmp.name) for cmd in tutorial_commands: args = cmd.split() ret = script_runner.run(*args) assert ret.success assert ret.stderr == ''
UTF-8
Python
false
false
1,349
py
18
test_scripts.py
11
0.617494
0.616753
0
48
27.104167
73
shangqd/BlockChain
644,245,143,671
f788cff132f733767a6f01841866aae94608147c
e2ddc18286efd27ac7d59be64131302eca0fd731
/python/btc.py
b59f0a7aea765c8f77295d252d657f23d403650f
[]
no_license
https://github.com/shangqd/BlockChain
cebceca6460be8f99684a22c667afc2b566d9808
d4d8db6fce415f5bf2ad650b40f5340acbd3e152
refs/heads/master
2023-04-07T10:54:28.294663
2023-03-27T14:54:35
2023-03-27T14:54:35
143,091,340
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: UTF-8 -*- ''' 富豪榜 https://btc.com/stats/rich-list ''' import requests import json import time import os import pymysql.cursors import sys import threading from decimal import Decimal import re import traceback reload(sys) sys.setdefaultencoding('utf8') sys.path.append(re.sub("btc$","",os.getcwd(),1)) from config import config class Work(threading.Thread): def __init__(self,tag,threads): super(Work, self).__init__() self.tag = tag self.connection = pymysql.connect(host=config.host,user=config.user,password=config.password,db=config.db,cursorclass=pymysql.cursors.DictCursor,charset='utf8') self.cursor = self.connection.cursor() self.threads = threads def ExecSql(self,sql): self.cursor.execute(sql) self.connection.commit() def GetBN(self): req = requests.get("https://blockchain.info/latestblock") text = json.loads(req.text); return text["height"] def GetBN_(self): self.cursor.execute("SELECT next_block from currency where symbol = 'btc'"); self.connection.commit() result = self.cursor.fetchone() return int(result["next_block"]) def TxInsert(self,tx_hash,bn,from_addr,to_addr,token_transfer,ts): sql = ("INSERT INTO tx_btc (tx_hash, block_number, from_addr,`to_addr`, token_transfer, tx_time) VALUES ('%s','%s','%s','%s',%s,from_unixtime(%s))" % (tx_hash,bn,from_addr,to_addr,token_transfer,ts)) self.ExecSql(sql); def run(self): bn = self.GetBN() bn = bn - bn % self.threads + self.tag print "%s_%s_%s\n" % (bn,self.tag,self.threads) while (True): try: url = "https://blockchain.info/block-height/%s?format=json" % bn; req = requests.get(url) if req.text == "Unknown Error Fetching Blocks From Database": print("%s_sleep(100)" % self.tag); time.sleep(100) continue; text = json.loads(req.text); if text.has_key("blocks"): for b in text["blocks"]: for tx in b["tx"]: index = 0; if len(tx["inputs"]) > len(tx["out"]): for vin in tx["inputs"]: from_addr = "" from_token = 0 if vin.has_key("prev_out"): from_addr = vin["prev_out"]["addr"]; from_token = Decimal(vin["prev_out"]["value"]) / Decimal(10 ** 8) sql = "" if index >= len(tx["out"]): sql = ("INSERT into tx_btc1(tx_hash,from_addr,from_token,block_number,tx_time)values('%s','%s',%s,%s,from_unixtime(%s))" % (tx["hash"],from_addr,from_token,bn,tx["time"])) else: to_addr = "" token_transfer = 0 if tx["out"][index].has_key("addr"): to_addr = tx["out"][index]["addr"]; token_transfer = Decimal(tx["out"][index]["value"]) / Decimal(10 ** 8); sql = ("INSERT into tx_btc1(tx_hash,from_addr,from_token,to_addr,token_transfer,block_number,tx_time)values('%s','%s',%s,'%s',%s,%s,from_unixtime(%s))" %(tx["hash"],from_addr,from_token,to_addr,token_transfer,bn,tx["time"])) self.ExecSql(sql) index = index + 1 else: for vout in tx["out"]: to_addr = "" token_transfer = 0 if vout.has_key("addr"): to_addr = vout["addr"] token_transfer = Decimal(vout["value"]) / Decimal(10 ** 8); sql = "" if index >= len(tx["inputs"]): sql = ("INSERT into tx_btc1(tx_hash,to_addr,token_transfer,block_number,tx_time)values('%s','%s',%s,%s,from_unixtime(%s))" % (tx["hash"],to_addr,token_transfer,bn,tx["time"])) else: from_addr = "" from_token = 0 if tx["inputs"][index].has_key("prev_out"): from_addr = tx["inputs"][index]["prev_out"]["addr"] from_token = Decimal(tx["inputs"][index]["prev_out"]["value"]) / Decimal(10 ** 8) sql = ("INSERT into tx_btc1(tx_hash,from_addr,from_token,to_addr,token_transfer,block_number,tx_time)values('%s','%s',%s,'%s',%s,%s,from_unixtime(%s))" % (tx["hash"],from_addr,from_token,to_addr,token_transfer,bn,tx["time"])) self.ExecSql(sql) index = index + 1 bn = bn + self.threads; sql = ("update currency set next_block = %d where symbol = 'btc'" % bn); self.ExecSql(sql); print("bn:%d;tag:%d" % (bn,self.tag)); except Exception as e: print 'traceback.format_exc():\n%s' % traceback.format_exc() print e if __name__ == '__main__': threads = 1 t = Work(0,threads) t.run() sys.exit(); for i in xrange(threads): t = Work(i,threads) t.start()
UTF-8
Python
false
false
6,281
py
81
btc.py
53
0.423083
0.417504
0
125
48.2
191
hoon4233/Data-Science
13,597,866,464,027
e9711d74ef50e61a8a2a10c77ad039dbabbd3ea2
ed60b2983bd14601df31c283a40c9f560fb66865
/assignment1/apriori.py
fa3ab7e45a9d8d206a29f2a20ab801b77ee6b4f4
[]
no_license
https://github.com/hoon4233/Data-Science
e01cd3988d69742afc1560f33e5089af3e17bde2
43b866e1bc97c0c864c762e1b6b9007639a2f6c9
refs/heads/master
2023-07-19T02:06:01.665867
2021-09-04T06:31:07
2021-09-04T06:31:07
364,768,689
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import sys from itertools import chain, combinations min_support = float(sys.argv[1]) / 100 input_file, output_file = sys.argv[2], sys.argv[3] def apriori(trxs): global min_support trxs_len = len(trxs) idxs = set([]) for trx in trxs : idxs = idxs.union(trx) # 일반 set 은 unhashable type 이므로 frozenset 사용 candidates = { frozenset({i}) for i in idxs } # candidates = { set({i}) for i in idxs } item_set = dict() K = 1 while candidates : count = dict() for trx in trxs : for candidate in candidates: if candidate.issubset(trx): try : count[candidate] += 1 except KeyError : count[candidate] = 1 # pruning after_pruning = { key : (float(value) / trxs_len) for (key, value) in count.items() if (float(value) / trxs_len) >= min_support } item_set[K] = after_pruning #self_joining K += 1 candidates = { i.union(j) for i in after_pruning for j in after_pruning if len(i.union(j)) == K } return item_set def print_output(trxs, fps): for patt_len, patt_len_fps in fps.items(): if patt_len == 1 : continue for fp in patt_len_fps : com_len_cases = [ combinations(fp, length) for length in range(1, len(fp)+1, 1) ] all_cases = [] for cases in com_len_cases : for case in cases : all_cases.append(frozenset(case)) for case in all_cases: remainder = fp.difference(case) if remainder : confidence = fps[len(fp)][fp] / fps[len(case)][case] prt_case, prt_remainder = str(set(map(int,case))).replace(" ", ""), str(set(map(int,remainder))).replace(" ", "") prt_supp, prt_confi = str('%.2f' % round(fps[len(fp)][fp] * 100, 2)), str('%.2f' % round(confidence * 100, 2)) string = prt_case + '\t' + prt_remainder + '\t' + prt_supp + '\t' + prt_confi + '\n' with open(output_file, 'a') as f : f.write(string) with open(input_file, 'r') as f : trxs = [ trx.split('\t') for trx in f.read().splitlines() ] fps = apriori(trxs) print_output(trxs, fps)
UTF-8
Python
false
false
2,396
py
17
apriori.py
4
0.510924
0.50084
0
75
30.746667
137
awmace/Demo
15,607,911,161,878
70c1a32b2ab4ed6c44c4814f5f34726ccb9cd9be
f2ba48da8c66c454470dd1441904797e5fbc509c
/Crawl/tender2/crawl_data.py
d96e47232743f6e686a9cf2a492cf5bda9727348
[]
no_license
https://github.com/awmace/Demo
862800b81e4088615a92d2da0a576a5660e0fec9
9734e50578bda139d3781478b7170af723c5881a
refs/heads/master
2023-03-06T09:01:02.321914
2021-02-20T07:41:25
2021-02-20T07:41:25
340,599,537
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import jieba, json import scrapy, requests import time, hashlib, re from simhash import Simhash from lxml import etree from Crawl.tender2.read_data import filter_data, set_data def md5_jm(v): md5 = hashlib.md5() md5.update(v.encode()) md5_v = str(md5.hexdigest()) return md5_v for page in range(1, 100): page_url = 'http://search.ccgp.gov.cn/bxsearch?searchtype=1&page_index={}&bidSort=0&buyerName=&projectId=&pinMu=0&bidType=0&dbselect=bidx&kw=%E9%92%A2&start_time=2020%3A05%3A12&end_time=2020%3A11%3A10&timeType=5&displayZone=&zoneId=&pppStatus=0&agentName='.format( page) headers = { 'Referer': 'http://search.ccgp.gov.cn/bxsearch?searchtype=1&page_index=1&bidSort=0&buyerName=&projectId=&pinMu=0&bidType=0&dbselect=bidx&kw=%E9%92%A2&start_time=2020%3A08%3A10&end_time=2020%3A11%3A10&timeType=4&displayZone=&zoneId=&pppStatus=0&agentName=', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.183 Safari/537.36' } response = requests.get(page_url, headers=headers).text ele = etree.HTML(response) li_urls = ele.xpath('//ul[@class="vT-srch-result-list-bid"]/li/a/@href') old_data = [] for index, li_url in enumerate(li_urls): res = requests.get(li_url) res.encoding = 'utf-8' res = res.text data = dict() try: data['rowKey'] = md5_jm(li_url) # 唯一标识 data['crawl_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())) data['title'] = re.findall('<title>(.*?)</title>', res)[0] print(data['title']) data['url'] = li_url data['source'] = '中国政府采购网' publish_time = re.findall('<span id="pubTime">(.*?)</span>', res)[0] data['publish_time'] = publish_time.replace('年', '-').replace('月', '-').replace('日', '') data['d_type'] = re.findall('<a.*?class="CurrChnlCls">(.*?)</a>', res)[-1] data['elements'] = \ re.findall('<div class="vF_deail_maincontent">(.*?)<div class="footer mt13">', res, re.S)[0] data['text'] = re.sub(r'\s+|<.+?>', '', data['elements']) old_data.append(data) except: pass # new_data = filter_data(old_data) # print(new_data) # set_data(old_data, new_data) # print(page) time.sleep(2)
UTF-8
Python
false
false
2,418
py
85
crawl_data.py
81
0.597071
0.550628
0
52
44.961538
268
Marilyth/mss-data-retrieval
5,282,809,820,131
7700cffca26dd1f0d664077dba0a4ffb06ac9f85
8497c58b1758925ed29726b69d8f00820b5e3afd
/bin/add_ancillary.py
ac59b73a79464cbbbb13f49f420a2e36575e8ebf
[]
no_license
https://github.com/Marilyth/mss-data-retrieval
45da4ab9856819820adbda32a648b398bcb0c347
33fbacd4c787e583d0f63cde7924b756e48b346b
refs/heads/main
2023-04-05T18:15:21.437651
2021-04-22T09:48:17
2021-04-22T09:48:17
354,835,334
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" Copyright (C) 2012 by Forschungszentrum Juelich GmbH Author(s): Joern Ungermann Please see docstring of main(). """ import datetime import itertools import optparse import os import sys from metpy.calc import potential_temperature, potential_vorticity_baroclinic, brunt_vaisala_frequency_squared, geopotential_to_height import xarray as xr import netCDF4 import numpy as np import tqdm VARIABLES = { "pressure": ("FULL", "hPa", "air_pressure", "Pressure"), "pt": ("FULL", "K", "air_potential_temperature", "Potential Temperature"), "pv": ("FULL", "m^2 K s^-1 kg^-1 10E-6", "ertel_potential_vorticity", "Potential Vorticity"), "mod_pv": ("FULL", "m^2 K s^-1 kg^-1 10E-6", "", "Modified Potential Vorticity"), "EQLAT": ("FULL", "degree N", "equivalent_latitude", "Equivalent Latitude"), "zh": ("FULL", "km", "geopotential_height", "Geopotential Altitude"), "n2": ("FULL", "s^-2", "square_of_brunt_vaisala_frequency_in_air", "N^2"), "SURFACE_UV": ("HORIZONTAL", "m s^-1", "", "Horizontal Wind Speed at "), "SURFACE_PV": ("HORIZONTAL", "m^2 K s^-1 kg^-1", "", "Potential Vorticity at "), "TROPOPAUSE": ("HORIZONTAL", "km", "tropopause_altitude", "vertical location of first WMO thermal tropopause"), "TROPOPAUSE_PRESSURE": ("HORIZONTAL", "Pa", "tropopause_air_pressure", "vertical location of first WMO thermal tropopause"), "TROPOPAUSE_THETA": ("HORIZONTAL", "K", "tropopause_air_potential_temperature", "vertical location of first WMO thermal tropopause"), "TROPOPAUSE_SECOND": ("HORIZONTAL", "km", "secondary_tropopause_altitude", "vertical location of second WMO thermal tropopause"), "TROPOPAUSE_SECOND_PRESSURE": ("HORIZONTAL", "Pa", "secondary_tropopause_air_pressure", "vertical location of second WMO thermal tropopause"), "TROPOPAUSE_SECOND_THETA": ("HORIZONTAL", "K", "secondary_tropopause_air_potential_temperature", "vertical location of second WMO thermal tropopause"), } def get_create_variable(ncin, name): """ Either retrieves a variable from NetCDF or creates it, in case it is not yet present. """ is_surface = False if name not in ncin.variables: if name in VARIABLES: dim, units, standard_name, long_name = VARIABLES[name] else: fields = name.split("_") assert fields[1] == "SURFACE" dim, units, long_name = VARIABLES["_".join(fields[1:4:2])] long_name += fields[2] is_surface = True dims = ("time", "lev_2", "lat", "lon") if not is_surface else ("time", "lat", "lon") var_id = ncin.createVariable(name, "f4", dims, **{"zlib": 1, "shuffle": 1, "fletcher32": 1, "fill_value": np.nan}) var_id.units = units var_id.long_name = long_name if standard_name: var_id.standard_name = standard_name return ncin.variables[name] def find_tropopause(alts, temps): """ Identifies position of thermal tropopauses in given altitude/temperature profile. Has some issues with inversions, which is circumventyed partly by setting seek to False, which is not strictly necessary by WMO definition. The thermal definition of the tropopause, WMO, 1957: (a) The first tropopause is defined as the lowest level at which the lapse rate decreases to 2 degree C/km or less, provided also the average lapse rate between this level and all higher levels within 2 km does not exceed 2 degree C/km. (b) If above the first tropopause the average lapse rate between any level and all higher levels within 1 km exceeds 3 degree C/km, then a second tropopause is defined by the same criterion as under (a). This tropopause may be either within or above the 1 km layer. """ dtdz_wmo = -2 zmin = 5 zmax = 22 alts = np.asarray(alts) temps = np.asarray(temps) valid = (~(np.isnan(alts) | np.isnan(temps))) & (alts > 2.0) & (alts < 30.0) alts, temps = alts[valid], temps[valid] if len(alts) < 3: return [] if alts[0] > alts[1]: # check for proper order and reverse if necessary alts = alts[::-1] temps = temps[::-1] result = [] # This differentiation is sufficient as we are looking at average lapse rate # with respect to higher levels anyway, so using a more accurate left/right # differentiation does not really improve things here. lapse_rate = (temps[1:] - temps[:-1]) / (alts[1:] - alts[:-1]) lapse_alts = (alts[1:] + alts[:-1]) / 2. seek = True for j in range(1, len(lapse_rate)): if not seek and lapse_rate[j] < -3: ks = [k for k in range(len(temps)) if lapse_alts[j] <= alts[k] <= lapse_alts[j] + 1.] # This way of calculating the average lapse rate is optimal. Don't # try to improve. Integrate t'/(z1-z0) numerically (no trapez! do it # stupid way) with infinitesimal h. Differentiate numerically using # same h. Simplify. Voila. As h can be assumed as small as possible, # this is accurate. if len(ks) > 1: k, ks = ks[0], ks[1:] avg_lapse = (temps[ks] - temps[k]) / (alts[ks] - alts[k]) if all(avg_lapse < -3): seek = True else: seek = True if seek and lapse_rate[j - 1] <= dtdz_wmo < lapse_rate[j] \ and zmin < lapse_alts[j] < zmax: alt = np.interp([dtdz_wmo], lapse_rate[j - 1:j + 1], lapse_alts[j - 1:j + 1])[0] ks = [_k for _k in range(len(temps)) if alt <= alts[_k] <= alt + 2.] if len(ks) > 1: k, ks = ks[0], ks[1:] avg_lapse = (temps[ks] - temps[k]) / (alts[ks] - alts[k]) if all(avg_lapse > dtdz_wmo): result.append(alt) seek = False else: result.append(alt) seek = False return result def parse_args(args): oppa = optparse.OptionParser(usage=""" add_pv.py Adds PV and ancillary quantities to 4D model data given as NetCDF. Supported model types are ECMWFP (ECMWF on pressure levels), ECMWFZ (JURASSIC ECMWF format on altitude levels), FNL, WACCM. Usage: add_pv.py [options] <model type> <netCDF file> Example: add_pv.py ECMWFP ecmwfr_ana_ml_06072912.nc """) oppa.add_option('--theta', '', action='store_true', help="Add pt potential temperature field") oppa.add_option('--n2', '', action='store_true', help="Add n2 static stability.") oppa.add_option('--pv', '', action='store_true', help="Add pv potential vorticity.") oppa.add_option('--tropopause', '', action='store_true', help="Add first and second tropopause") oppa.add_option('--eqlat', '', action='store_true', help="Add equivalent latitude") oppa.add_option('--surface_pressure', '', action='store', type=str, help="Add PV and UV on given hPa surfaces, e.g., 200:300:400.") oppa.add_option('--surface_theta', '', action='store', type=str, help="Add PV and UV on given theta surfaces, e.g., 200:300:400.") opt, arg = oppa.parse_args(args) if len(arg) != 1: print(oppa.get_usage()) exit(1) if not os.path.exists(arg[0]): print("Cannot find model data at", arg[1]) exit(1) return opt, arg[0] def add_eqlat(ncin): print("Adding EQLAT...") pv = ncin.variables["pv"][:] theta = ncin.variables["pt"][:] eqlat = np.zeros(pv.shape) latc = ncin.variables["lat"][:] lonc = ncin.variables["lon"][:] if min(latc) > -75 or max(latc) < 75: print("WARNING:") print(" Not enough latitudes present for this to be a global set.") print(" EQLAT may not be meaningful.") lats = np.zeros(len(latc) + 1) lats[:-1] = latc lats[1:] += latc lats[1:-1] /= 2 lats = np.deg2rad(lats) area = np.absolute(np.sin(lats[:-1]) - np.sin(lats[1:])) / (2 * len(lonc)) assert area[0] > 0 if latc[0] > latc[1]: baseareas = (np.sin(np.deg2rad(latc[0])) - np.sin(np.deg2rad(latc))) / 2. else: baseareas = (np.sin(np.deg2rad(latc[-1])) - np.sin(np.deg2rad(latc)))[::-1] / 2. latc = latc[::-1] assert(baseareas[1] > baseareas[0]) thetagrid = np.hstack([np.arange(250., 400., 2), np.arange(400., 500., 5.), np.arange(500., 750., 10.), np.arange(750., 1000., 25.), np.arange(1000., 3000., 100.)]) log_thetagrid = np.log(thetagrid) newshape = list(pv.shape) newshape[1] = len(thetagrid) p_theta = np.zeros(newshape) p_theta.swapaxes(1, 3)[:] = thetagrid # convert u, v, theta to pressure grid theta_pv = np.zeros(newshape) lp = np.log(theta[0, :, 0, 0]) reverse = False if lp[0] > lp[-1]: theta = theta[:, ::-1] pv = pv[:, ::-1] reverse = True for iti, ilo, ila in tqdm.tqdm( itertools.product(range(newshape[0]), range(newshape[3]), range(newshape[2])), total=newshape[0] * newshape[3] * newshape[2], ascii=True, desc="Interpolation to theta levels:"): lp = np.log(theta[iti, :, ila, ilo]) theta_pv[iti, :, ila, ilo] = np.interp( log_thetagrid, lp, pv[iti, :, ila, ilo], left=np.nan, right=np.nan) theta_eqlat = np.zeros(newshape) for iti in range(newshape[0]): for lev in tqdm.tqdm(range(newshape[1]), desc="Integration", ascii=True): areas = np.zeros(len(latc) + 1) pv_limits = np.zeros(len(area)) loc_thpv = theta_pv[iti, lev, :, :] loc_lat = np.zeros(loc_thpv.shape, dtype="i8") loc_lat.swapaxes(0, 1)[:] = range(len(latc)) loc_lat = loc_lat.reshape(-1) thpv_list = loc_thpv.reshape(-1) notnanpv = ~(np.isnan(thpv_list)) if len(thpv_list[notnanpv]) == 0: theta_eqlat[iti, lev, :, :] = np.nan continue missing_area = area[loc_lat[np.isnan(thpv_list)]].sum() areas = baseareas.copy() missing_fac = (areas[-1] - missing_area) / areas[-1] if missing_fac < 0.99: areas *= missing_fac print("\nWARNING") print(" 'Fixing' area due to nan in PV at theta ", thetagrid[lev], end=' ') print("by a factor of ", missing_fac) minpv, maxpv = thpv_list[notnanpv].min(), thpv_list[notnanpv].max() thpv_list = sorted(zip(-thpv_list[notnanpv], loc_lat[notnanpv])) aind_lat = np.asarray([x[1] for x in thpv_list], dtype="i8") apv = np.asarray([x[0] for x in thpv_list])[:-1] cum_areas = np.cumsum(area[aind_lat])[1:] if len(cum_areas) >= 2: pv_limits = np.interp(areas, cum_areas, apv) pv_limits[0], pv_limits[-1] = -maxpv, -minpv loc_eqlat = np.interp(-loc_thpv, pv_limits, latc) theta_eqlat[iti, lev, :, :] = loc_eqlat else: print("\nWARNING") print(" Filling one level to NaN due to missing PV values") theta_eqlat[iti, lev, :, :] = np.nan # convert pv back to model grid for iti, ilo, ila in tqdm.tqdm( itertools.product(range(eqlat.shape[0]), range(eqlat.shape[3]), range(eqlat.shape[2])), total=eqlat.shape[0] * eqlat.shape[3] * eqlat.shape[2], ascii=True, desc="Interpolation back to model levels:"): lp = np.log(theta[iti, :, ila, ilo]) eqlat[iti, :, ila, ilo] = np.interp( lp, log_thetagrid, theta_eqlat[iti, :, ila, ilo], left=np.nan, right=np.nan) if reverse: eqlat = eqlat[:, ::-1] get_create_variable(ncin, "EQLAT")[:] = eqlat def add_surface(ncin, typ, levels): """ This function takes PV and hor. Wind from a model and adds a variable where these entities are interpolated on the given horizontal hPa planes. """ if levels is None: return for p in [int(x) for x in levels.split(":")]: print("Adding PV, UV on", typ, "level", p) pv = ncin.variables["pv"][:] if typ == "pressure": vert = ncin.variables["pressure"][:]/100 elif typ == "pt": vert = ncin.variables["pt"][:] else: vert = ncin.variables[typ][:] u = ncin.variables["u"][:] v = ncin.variables["v"][:] pv_surf = np.zeros((pv.shape[0], pv.shape[2], pv.shape[3])) uv_surf = np.zeros(pv_surf.shape) uv = np.sqrt(u ** 2 + v ** 2) if vert[0, 0, 0, 0] < vert[0, -1, 0, 0]: order = 1 else: order = -1 for iti, ilo, ila in tqdm.tqdm( itertools.product(range(pv.shape[0]), range(pv.shape[3]), range(pv.shape[2])), total=pv.shape[0] * pv.shape[3] * pv.shape[2], ascii=True, desc="Interpolation to {} level {}".format(typ, p)): uv_surf[iti, ila, ilo] = np.interp( [p], vert[iti, ::order, ila, ilo], uv[iti, ::order, ila, ilo], left=np.nan, right=np.nan) pv_surf[iti, ila, ilo] = np.interp( [p], vert[iti, ::order, ila, ilo], pv[iti, ::order, ila, ilo], left=np.nan, right=np.nan) get_create_variable(ncin, "%s_SURFACE_%04d_UV" % (typ, p))[:] = uv_surf get_create_variable(ncin, "%s_SURFACE_%04d_PV" % (typ, p))[:] = pv_surf def add_tropopauses(ncin): """ Adds first and second thermal WMO tropopause to model. Fill value is -999. """ print("Adding first and second tropopause") temp = ncin.variables["t"][:] press = ncin.variables["pressure"][:]/100 gph = ncin.variables["zh"][:] theta = ncin.variables["pt"][:] if gph[0, 1, 0, 0] < gph[0, 0, 0, 0]: gph = gph[:, ::-1, :, :] press = press[:, ::-1, :, :] temp = temp[:, ::-1, :, :] theta = theta[:, ::-1, :, :] valid = np.isfinite(gph[0, :, 0, 0]) assert gph[0, valid, 0, 0][1] > gph[0, valid, 0, 0][0] assert press[0, valid, 0, 0][1] < press[0, valid, 0, 0][0] above_tropo1 = np.empty((gph.shape[0], gph.shape[2], gph.shape[3])) above_tropo1[:] = np.nan above_tropo2 = above_tropo1.copy() above_tropo1_press = above_tropo1.copy() above_tropo2_press = above_tropo1.copy() above_tropo1_theta = above_tropo1.copy() above_tropo2_theta = above_tropo1.copy() for iti, ilo, ila in tqdm.tqdm( itertools.product(range(gph.shape[0]), range(gph.shape[3]), range(gph.shape[2])), total=gph.shape[0] * gph.shape[3] * gph.shape[2], ascii=True): tropopauses = find_tropopause(gph[iti, :, ila, ilo], temp[iti, :, ila, ilo]) tropopauses = [x for x in tropopauses if 5 < x < 22] if len(tropopauses) > 0: above_tropo1[iti, ila, ilo] = min(tropopauses) above_tropo1_press[iti, ila, ilo] = np.interp( above_tropo1[iti, ila, ilo], gph[iti, :, ila, ilo], press[iti, :, ila, ilo]) above_tropo1_theta[iti, ila, ilo] = np.interp( above_tropo1[iti, ila, ilo], gph[iti, :, ila, ilo], theta[iti, :, ila, ilo]) second = [x for x in tropopauses if x > above_tropo1[iti, ila, ilo]] if len(second) > 0: above_tropo2[iti, ila, ilo] = min(second) above_tropo2_press[iti, ila, ilo] = np.interp( above_tropo2[iti, ila, ilo], gph[iti, :, ila, ilo], press[iti, :, ila, ilo]) above_tropo2_theta[iti, ila, ilo] = np.interp( above_tropo2[iti, ila, ilo], gph[iti, :, ila, ilo], theta[iti, :, ila, ilo]) above_tropo1_press = np.exp(above_tropo1_press) above_tropo2_press = np.exp(above_tropo2_press) get_create_variable(ncin, "TROPOPAUSE")[:] = above_tropo1 get_create_variable(ncin, "TROPOPAUSE_SECOND")[:] = above_tropo2 get_create_variable(ncin, "TROPOPAUSE_PRESSURE")[:] = above_tropo1_press * 100 get_create_variable(ncin, "TROPOPAUSE_SECOND_PRESSURE")[:] = above_tropo2_press * 100 get_create_variable(ncin, "TROPOPAUSE_THETA")[:] = above_tropo1_theta get_create_variable(ncin, "TROPOPAUSE_SECOND_THETA")[:] = above_tropo2_theta def add_metpy(option, filename): """ Adds the variables possible through metpy (theta, pv, n2) """ with xr.load_dataset(filename) as xin: if option.theta or option.pv: print("Adding potential temperature...") xin["pt"] = potential_temperature(xin["pressure"], xin["t"]) xin["pt"].data = np.array(xin["pt"].data) xin["pt"].attrs["units"] = "K" xin["pt"].attrs["standard_name"] = VARIABLES["pt"][2] if option.pv: print("Adding potential vorticity...") xin = xin.metpy.assign_crs(grid_mapping_name='latitude_longitude', earth_radius=6.356766e6) xin["pv"] = potential_vorticity_baroclinic(xin["pt"], xin["pressure"], xin["u"], xin["v"]) xin["pv"].data = np.array(xin["pv"].data * 10 ** 6) xin = xin.drop("metpy_crs") xin["pv"].attrs["units"] = "kelvin * meter ** 2 / kilogram / second" xin["pv"].attrs["standard_name"] = VARIABLES["pv"][2] xin["mod_pv"] = xin["pv"] * ((xin["pt"] / 360) ** (-4.5)) xin["mod_pv"].attrs["standard_name"] = VARIABLES["mod_pv"][2] if option.n2: print("Adding N2...") xin["n2"] = brunt_vaisala_frequency_squared(geopotential_to_height(xin["zh"]), xin["pt"]) xin["n2"].data = np.array(xin["n2"].data) xin["n2"].attrs["units"] = VARIABLES["n2"][1] xin["n2"].attrs["standard_name"] = "square_of_brunt_vaisala_frequency_in_air" xin.to_netcdf(filename) def add_rest(option, filename): """ Adds the variables not possible through metpy """ # Open NetCDF file as passed from command line with netCDF4.Dataset(filename, "r+") as ncin: history = datetime.datetime.now().isoformat() + ":" + " ".join(sys.argv) if hasattr(ncin, "history"): history += "\n" + ncin.history ncin.history = history ncin.date_modified = datetime.datetime.now().isoformat() if option.eqlat: add_eqlat(ncin) add_surface(ncin, "pressure", option.surface_pressure) add_surface(ncin, "pt", option.surface_theta) if option.tropopause: add_tropopauses(ncin) def main(): option, filename = parse_args(sys.argv[1:]) add_metpy(option, filename) add_rest(option, filename) if __name__ == "__main__": main()
UTF-8
Python
false
false
19,228
py
9
add_ancillary.py
6
0.556012
0.535833
0
457
41.074398
133
wujonathan/517proj
12,541,304,542,538
a6838f1034c03516c9938a41f0f09b1a376fb4e3
f00b716a220810b80d0f09feee98f2480754be0b
/milestone_4/modelFitting.py
e98cdedc51433c5d45bedff8614a39d06cde34b2
[]
no_license
https://github.com/wujonathan/517proj
453b607d4ce8f68d16a58f2e0e898ccbcd4ceb3d
78320eb9cda2fc30fcc1f80aef8c46eb6a82cedb
refs/heads/master
2021-01-24T16:19:33.751247
2018-05-05T06:55:30
2018-05-05T06:55:30
123,183,650
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np from sklearn import linear_model as lm from sklearn import svm from sklearn.decomposition import PCA from sklearn.metrics import mean_squared_error as mse import pyGPs import json xFilename = '../dataset/bostonX.csv' yFilename = '../dataset/bostonY.csv' XTrain = np.loadtxt(xFilename, delimiter=",") yTrain = np.loadtxt(yFilename, delimiter=",") yTrain = np.array([[i] for i in yTrain]) K = 10 scoresMSE = {"lr" : [], "clf": [], "gp": [], "lrPCA" : [], "gpPCA" : []} finalScoresMSE = {"lr" : [], "clf": [], "gp": [], "lrPCA" : [], "gpPCA" : []} for i in xrange(10): for x_train, x_test, y_train, y_test in pyGPs.Validation.valid.k_fold_validation(XTrain, yTrain, K, randomise = True): lr = lm.LinearRegression() lr.fit(x_train, y_train) y_pred = lr.predict(x_test) scoresMSE["lr"].append(mse(y_test, y_pred)) clf = svm.SVR() clf.fit(x_train, y_train) y_pred = clf.predict(x_test) scoresMSE["clf"].append(mse(y_test, y_pred)) model = pyGPs.GPR() model.optimize(x_train, y_train) ymu, ys2, fmu, fs2, lp = model.predict(x_test, ys = y_test) scoresMSE["gp"].append(mse(y_test, ymu)) pca = PCA(n_components=2) new_x_train = pca.fit_transform(x_train) new_x_test = pca.transform(x_test) lr = lm.LinearRegression() lr.fit(new_x_train, y_train) y_pred = lr.predict(new_x_test) scoresMSE["lrPCA"].append(mse(y_test, y_pred)) model = pyGPs.GPR() model.optimize(new_x_train, y_train) ymu, ys2, fmu, fs2, lp = model.predict(new_x_test, ys = y_test) scoresMSE["gpPCA"].append(mse(y_test, ymu)) for key in scoresMSE: finalScoresMSE[key].append(np.mean(scoresMSE[key])) scoresMSE = {"lr" : [], "clf": [], "gp": [], "lrPCA" : [], "gpPCA" : []} print i with open('ttest.txt', 'w') as o: json.dump(finalScoresMSE, o)
UTF-8
Python
false
false
1,796
py
30
modelFitting.py
9
0.642539
0.637528
0
68
25.411765
119
kxu68/Cell_model
4,105,988,778,363
89cdea91e740cf2cbfdfc0c8dcb88e43f3a0eb6d
036efa8e627e6ec5cada0a115dd42c5c50830525
/files made by Ke/testfiles/test_iml1515second_check.py
dd82f586bbb345070d9a3daae8d454b1cd004a29
[]
no_license
https://github.com/kxu68/Cell_model
2c68f321b3a8e43bda169d23fcf77ef72ef7aed2
ce095d10760d4d3ec2f7d4d492fc34ab096c8ce8
refs/heads/main
2023-07-15T19:49:00.277231
2022-02-02T19:42:16
2022-02-02T19:42:16
436,499,505
0
0
null
true
2021-12-09T05:56:21
2021-12-09T05:56:21
2021-08-18T16:22:37
2021-08-18T16:22:35
11,060
0
0
0
null
false
false
#!/usr/bin/env python # coding: utf-8 # In[21]: import unittest # import pytest import cobra import copy # generate a sample for loading the models in the origin way for comparison model_origin= cobra.io.read_sbml_model('iML1515.xml') OV_origin= model_origin.optimize() #this is objective value model_test = cobra.io.read_sbml_model('IMPROVED_iML1515.xml') OV_test= model_test.optimize() SM_test= model_test.summary() class TestIML1515(unittest.TestCase): # # generate a sample for loading the models in the origin way for comparison # model_origin= cobra.io.read_sbml_model('iML1515.xml') # OV_origin=model_origin.optimize() # #this is objective value # model_test = cobra.io.read_sbml_model('IMPROVED_iML1515.xml') # OV_test= model_test.optimize() # SM_test= model_test.summary() def setUp(self): print('setup...') # generate a sample for loading the models in the origin way for comparison # model_origin= cobra.io.read_sbml_model('iML1515.xml') # OV_origin= model_origin.optimize() # #this is objective value # model_test = cobra.io.read_sbml_model('IMPROVED_iML1515.xml') # OV_test = model_test.optimize() # SM_test = model_test.summary() # SETUP is only used for each test therefore the variables can not be passed on to other cases. # NEED to use fixture to pass the variables(OV_test e.g.) to give other testcases values # @pytest.fixture # def OV_test(): # model_test = cobra.io.read_sbml_model('IMPROVED_iML1515.xml') # OV_test = model_test.optimize() # @pytest.fixture # def OV_origin(): # model_origin= cobra.io.read_sbml_model('iML1515.xml') # OV_origin= model_origin.optimize() def test_objectivevaluepass(self): self.assertTrue(isinstance(OV_test, cobra.core.Solution)) self.assertTrue(isinstance(OV_origin, cobra.core.Solution)) def test_randomreactiondeletioncheck(self): modifymodel= copy.deepcopy(model_origin) print('complete model: ', modifymodel.optimize()) with modifymodel: # model_origin.genes.b3940.knock_out() # print('metL knocked out: ', model_origin.optimize()) modifymodel.genes.b4034.knock_out() print(' knocked out: ', modifymodel.optimize()) self.assertNotEqual(modifymodel.optimize().objective_value,0) # def test_fluxchange(self): # self.assert # also need a for checking flux 100% # and another for checking gene is essential or not(this is using the deletions) # def tearDown(self): # print('tearDown...') # this is for test script to be able to run in python as a normal python script # if __name__ == '__main__': # unittest.main() # this is for test script to be able to run in ipython shell with notebook if __name__ == '__main__': unittest.main(argv=['first-arg-is-ignored'], exit=False) # In[22]: # # testing the isinstance function # import unittest # import pytest # import cobra # import copy # # generate a sample for loading the models in the origin way for comparison # model_origin= cobra.io.read_sbml_model('iML1515.xml') # OV_origin= model_origin.optimize() # #this is objective value # model_test = cobra.io.read_sbml_model('IMPROVED_iML1515.xml') # OV_test= model_test.optimize() # SM_test= model_test.summary() # isinstance(OV_test, cobra.core.Solution) # In[ ]: # In[ ]: # In[ ]:
UTF-8
Python
false
false
3,525
py
34
test_iml1515second_check.py
31
0.65617
0.638865
0
120
28.341667
99
shekhuverma/competitive-coding
7,567,732,425,798
b055019eb89a7c154fc3e148fc97633465ca2e06
f7e0fa8fc5e944e9f6da2e6382072ad27580cf53
/Gridland_metro/gridland_metro.py
d8561472b375ef7cf7e85f9a17057f7518976484
[]
no_license
https://github.com/shekhuverma/competitive-coding
0b897b7602311826d31e0c266f2de47349d060b8
b263c401f3681e7c18970cff9420fa814b8c4064
refs/heads/master
2021-01-21T23:45:14.355595
2018-02-03T15:26:02
2018-02-03T15:26:02
102,180,926
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#gridland metro ip=[int(x) for x in raw_input().split()] temp={} j=0 ans=0 while(j<ip[2]): ip1=[int(y) for y in raw_input().split()] r=ip1[0] c1=ip1[1] c2=ip1[2] if temp.has_key(r): temp[r].extend([c1,c2]) else: temp[r]=[c1,c2] j+=1 print temp ##for key,value in temp.iteritems(): ## for a in range(len(value)): ## frm=a ## till=a+1
UTF-8
Python
false
false
394
py
30
gridland_metro.py
26
0.525381
0.479695
0
20
18.7
45
Kay212MD/breakfast_planner_online
2,628,520,009,560
8373e4772cae65cef36d59d5946cafbe4ff7209a
50f2277623e177dd3484a4e7a6a6381512bfe97f
/plan/views.py
d84d12ff16512c24d8e2c507d2eea95e6b24fbd1
[]
no_license
https://github.com/Kay212MD/breakfast_planner_online
c43bf3a79abe3616ded0b0b3d909761d73bc681e
ea0a22a0de3d36643cf83234934ea2c7f686159b
refs/heads/master
2022-06-28T17:03:19.095487
2020-05-09T17:51:37
2020-05-09T17:51:37
260,449,615
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.shortcuts import render, redirect from .models import PersonalPlan, FoodMainInformation from .forms import PersonalPlanForm, FoodMainInformationForm # Create your views here. def index(request): """The home page of breakfast planner online""" return render(request, 'plan/index.html') def personal_plans(request): """Show all plans""" personal_plans = PersonalPlan.objects.order_by() context = {'personal_plans':personal_plans} return render(request, 'plan/personal_plans.html', context) def personal_plan(request, personal_plan_id): """Show all food labels and descriptions from oner personal plan""" personal_plan = PersonalPlan.objects.get(id=personal_plan_id) food_informations = personal_plan.foodmaininformation_set.all() context = {'personal_plan':personal_plan, 'food_informations':food_informations} return render(request, 'plan/personal_plan.html', context) def new_personal_plan(request): """Add new personal plan""" if request != 'POST': # No data submitted, create a blank form form = PersonalPlanForm() else: # Post data submitted, process data form = PersonalPlanForm(data=request.POST) if form.is_valid(): form.save() return redirect('plan:personal_plans') # Display a blank or invalid form. context={'form':form} return render(request, 'plan/new_personal_plan.html', context) def new_food(request, personal_plan_id): """Add new food""" personal_plan = PersonalPlan.objects.get(id=personal_plan_id) if request != 'POST': # No data submitted, create a blank form form = FoodMainInformationForm() else: # Post data submitted, process data form = FoodMainInformationForm(data=request.POST) if form.is_valid(): new_food = form.save(commit=False) new_food.personal_plan = personal_plan new_food.save() return redirect('plan:personal_plan', personal_plan_id=personal_plan_id) # Display a blank or invalid form. context={'personal_plan':personal_plan, 'form':form} return render(request, 'plan/new_food.html', context)
UTF-8
Python
false
false
2,208
py
10
views.py
5
0.675725
0.675725
0
58
37.017241
84
andersthuesen/DTU-Course-Project-02466
12,962,211,329,255
37f409f2448327a98efe599eefa07c013b1dd5e5
c42f1e68acac80855d79002d5ffe910656eec35e
/scripts/synthesize_dataset.py
87c2e5d09ae30a3831c891a6d1f61b2b23f9ec3e
[ "MIT" ]
permissive
https://github.com/andersthuesen/DTU-Course-Project-02466
ff8a7bb77f34fed97b08640a7627bab3f0ef2167
67f16f0264fb2ec5e76d7b0edbafc92bced1f73c
refs/heads/master
2022-11-13T02:19:00.576789
2020-06-24T10:21:38
2020-06-24T10:21:38
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/bin/env python import sys import os import argparse import json import sys import numpy as np import torch import soundfile from tqdm import tqdm import shutil import matplotlib.pyplot as plt from torchaudio.transforms import Resample os.chdir("flowtron") sys.path.insert(0, ".") from flowtron import Flowtron from torch.utils.data import DataLoader from data import Data from train import update_params sys.path.insert(0, "tacotron2") sys.path.insert(0, "tacotron2/waveglow") from glow import WaveGlow from scipy.io.wavfile import write def chunks(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i:i + n] seed = 1234 sigma = 0.5 gate_threshold = 0.5 n_frames = 400 * 4 flowtron_speaker_id = 0 params = [] target_sample_rate = 16000 waveglow_path = "models/waveglow_256channels_universal_v4.pt" flowtron_path = "models/flowtron_ljs.pt" config_path = "config.json" chunk_size = 1 with open(config_path) as f: data = f.read() config = json.loads(data) update_params(config, params) data_config = config["data_config"] model_config = config["model_config"] samplerate = data_config["sampling_rate"] hop_length = data_config["hop_length"] # Load seeds torch.manual_seed(seed) torch.cuda.manual_seed(seed) # Resample function resample = Resample(orig_freq=samplerate, new_freq=target_sample_rate) # load waveglow waveglow = torch.load(waveglow_path)['model'].cuda().eval() waveglow.cuda().half() for k in waveglow.convinv: k.float() waveglow.eval() # load flowtron model = Flowtron(**model_config).cuda() state_dict = torch.load(flowtron_path, map_location='cpu')['state_dict'] model.load_state_dict(state_dict) model.eval() print("Loaded checkpoint '{}')".format(flowtron_path)) ignore_keys = ['training_files', 'validation_files'] trainset = Data( data_config['training_files'], **dict((k, v) for k, v in data_config.items() if k not in ignore_keys)) torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False if __name__ == "__main__": _, path, output_path = sys.argv for speaker_id in tqdm(os.listdir(path)): speaker_path = os.path.join(path, speaker_id) for chapter_id in os.listdir(speaker_path): chapter_path = os.path.join(speaker_path, chapter_id) transcript_filename = f"{speaker_id}-{chapter_id}.trans.txt" transcript_path = os.path.join(chapter_path, transcript_filename) audio_output_dir = os.path.join(output_path, speaker_id, chapter_id) # Create output directory if not os.path.isdir(audio_output_dir): os.makedirs(audio_output_dir) os.chmod(audio_output_dir, 0o775) transcript_output_path = os.path.join(audio_output_dir, transcript_filename) if not os.path.exists(transcript_output_path): shutil.copy(transcript_path, transcript_output_path) with open(transcript_path, "r") as file: for lines in chunks(file.readlines(), chunk_size): batch_size = len(lines) audio_names, texts = zip(*[line.split(" ", 1) for line in lines]) texts = [text.lower() for text in texts] audio_filenames = [f"{audio_name}.flac" for audio_name in audio_names] audio_output_paths = [ os.path.join(audio_output_dir, audio_filename) for audio_filename in audio_filenames ] if os.path.exists(audio_output_paths[0]): continue speaker_vecs = trainset.get_speaker_id(flowtron_speaker_id) speaker_vecs = speaker_vecs.repeat(batch_size, 1) speaker_vecs = speaker_vecs.cuda() text_lengths = torch.tensor([len(text) for text in texts]) max_text_length = torch.max(text_lengths) encoded_texts = [trainset.get_text(text) for text in texts] encoded_text_lengths = torch.tensor( [text.size(0) for text in encoded_texts]) max_encoded_text_length = torch.max(encoded_text_lengths) padded_texts = torch.LongTensor(batch_size, max_encoded_text_length) padded_texts.zero_() for i, encoded_text in enumerate(encoded_texts): padded_texts[i, :encoded_text.size(0)] = encoded_text padded_texts = padded_texts.cuda() frames = max_text_length * 6 with torch.no_grad(): residual = torch.cuda.FloatTensor(batch_size, 80, frames).normal_() * sigma mels, attentions, masks = model.infer( residual, speaker_vecs.T, padded_texts, gate_threshold=gate_threshold) audio = waveglow.infer(mels.half(), sigma=0.8).float() audio = resample(audio) audio_max, _ = audio.abs().max(dim=1, keepdim=True) audio = audio / audio_max audio = audio.cpu().numpy() for i, wav in enumerate(audio): resampled_hop_length = int(samplerate / target_sample_rate * hop_length) start_index = masks[i][0] * resampled_hop_length stop_index = masks[i][1] * resampled_hop_length wav = wav[start_index:stop_index] soundfile.write( audio_output_paths[i], wav, target_sample_rate, format="flac") print(audio_output_paths[i])
UTF-8
Python
false
false
5,419
py
25
synthesize_dataset.py
15
0.635173
0.626684
0
178
29.449438
80
RainingNight0329/JerryHW
18,262,200,964,616
47f99317ff4b2899cd85bd498998dbd96e3fe5d5
f0d4bfac9918fc32656fa08542c8111ef1200f02
/0416/0416/mysite/cms/views.py
9e532a6b4f629b848f03631263709c56ef027718
[]
no_license
https://github.com/RainingNight0329/JerryHW
299e09ac9fe062b932587e3dc5bd3b57c43c450f
3e0c939dd71d2ca30df76c917c31648738f4ef10
refs/heads/master
2021-03-30T20:57:14.049674
2018-05-21T04:18:21
2018-05-21T04:18:21
124,831,974
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.shortcuts import render_to_response from django.http import HttpResponse from .models import Information # Create your views here. def index(request): informations=Information.objects.all() return render_to_response('cms/menu.html',locals()) #return HttpResponse("Hello mom I'm Here")
UTF-8
Python
false
false
308
py
15
views.py
6
0.772727
0.772727
0
8
37.625
55
dencesun/Algorithm
16,544,214,051,872
2f9612f3a53b0e86eefec90e89ed450dcfc23851
e4fdb9cd960e6366cc56417bd26a134d0d0b0073
/387.py
d4e96a5a0b272bbc1c41f6eaef4413b7bc99af7c
[]
no_license
https://github.com/dencesun/Algorithm
9ea98d6baf13020ef1c9cca40e5e3e2b5b259d1a
846bcc0a304c12535fd353f78f041a2b8da89d9d
refs/heads/master
2020-07-13T02:36:27.353763
2017-11-04T02:24:52
2017-11-04T02:24:52
67,869,179
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import collections class Solution(object): def firstUniqChar(self, s): """ :type s: str :rtype: int """ if len(s) == 0: return -1 counts = collections.Counter(s) for ch in s: if counts[ch] == 1: return s.index(ch) return -1 test = Solution() print test.firstUniqChar('loveleetcode') print test.firstUniqChar('leetcode') print test.firstUniqChar('cc') print test.firstUniqChar("")
UTF-8
Python
false
false
470
py
80
387.py
79
0.582979
0.574468
0
21
21.380952
40
Engineering-Course/CIHP_PGN
10,496,900,074,529
e35b6b8da7683db2c7e5fd3c8a619f9f155aa50b
7e873b17a7e464ddb5b0e3367ef277f1254bdd6c
/train_pgn.py
328e766c17f8986e3be81c11f57c052126483e97
[ "MIT" ]
permissive
https://github.com/Engineering-Course/CIHP_PGN
b230976dfffd8ab0bf4c39d08728aabbb90ed88c
0cf1cbe54a44fc86abe2023b0e762df3f9605242
refs/heads/master
2023-08-31T12:16:40.864057
2022-11-24T03:25:21
2022-11-24T03:25:21
143,100,053
408
122
MIT
false
2023-08-20T12:57:15
2018-08-01T03:38:07
2023-08-17T04:33:26
2023-08-20T12:57:05
843
386
104
40
Python
false
false
from __future__ import print_function import os import time import tensorflow as tf import numpy as np import random from utils import * # Set gpus gpus = [0] os.environ["CUDA_VISIBLE_DEVICES"]=','.join([str(i) for i in gpus]) num_gpus = len(gpus) # number of GPUs to use ### parameters setting DATA_DIR = './datasets/CIHP' LIST_PATH = './datasets/CIHP/list/train_rev.txt' DATA_ID_LIST = './datasets/CIHP/list/train_id.txt' SNAPSHOT_DIR = './checkpoint/CIHP_pgn' LOG_DIR = './logs/CIHP_pgn' N_CLASSES = 20 INPUT_SIZE = (512, 512) BATCH_I = 1 BATCH_SIZE = BATCH_I * len(gpus) SHUFFLE = True RANDOM_SCALE = True RANDOM_MIRROR = True LEARNING_RATE = 1e-5 MOMENTUM = 0.9 POWER = 0.9 p_Weight = 50 e_Weight = 0.005 Edge_Pos_W = 2 with open(DATA_ID_LIST, 'r') as f: TRAIN_SET = len(f.readlines()) SAVE_PRED_EVERY = TRAIN_SET / BATCH_SIZE + 1 # save model per epoch (number of training set / batch) NUM_STEPS = int(SAVE_PRED_EVERY) * 100 + 1 # 100 epoch def main(): RANDOM_SEED = random.randint(1000, 9999) tf.set_random_seed(RANDOM_SEED) ## Create queue coordinator. coord = tf.train.Coordinator() h, w = INPUT_SIZE ## Load reader. with tf.name_scope("create_inputs"): reader = ImageReaderPGN(DATA_DIR, LIST_PATH, DATA_ID_LIST, INPUT_SIZE, RANDOM_SCALE, RANDOM_MIRROR, SHUFFLE, coord) image_batch, label_batch, edge_batch = reader.dequeue(BATCH_SIZE) tower_grads = [] reuse1 = False # Define loss and optimisation parameters. base_lr = tf.constant(LEARNING_RATE) step_ph = tf.placeholder(dtype=tf.float32, shape=()) learning_rate = tf.scalar_mul(base_lr, tf.pow((1 - step_ph / NUM_STEPS), POWER)) optim = tf.train.MomentumOptimizer(learning_rate, MOMENTUM) for i in range(num_gpus): with tf.device('/gpu:%d' % i): with tf.name_scope('Tower_%d' % (i)) as scope: if i == 0: reuse1 = False else: reuse1 = True next_image = image_batch[i*BATCH_I:(i+1)*BATCH_I,:] next_label = label_batch[i*BATCH_I:(i+1)*BATCH_I,:] next_edge = edge_batch[i*BATCH_I:(i+1)*BATCH_I,:] # Create network. with tf.variable_scope('', reuse=reuse1): net = PGNModel({'data': next_image}, is_training=False, n_classes=N_CLASSES, keep_prob=0.9) # parsing net parsing_out1 = net.layers['parsing_fc'] parsing_out2 = net.layers['parsing_rf_fc'] # edge net edge_out1_final = net.layers['edge_fc'] edge_out1_res5 = net.layers['fc1_edge_res5'] edge_out1_res4 = net.layers['fc1_edge_res4'] edge_out1_res3 = net.layers['fc1_edge_res3'] edge_out2_final = net.layers['edge_rf_fc'] # combine resize edge_out1 = tf.image.resize_images(edge_out1_final, tf.shape(next_image)[1:3,]) edge_out2 = tf.image.resize_images(edge_out2_final, tf.shape(next_image)[1:3,]) edge_out1_res5 = tf.image.resize_images(edge_out1_res5, tf.shape(next_image)[1:3,]) edge_out1_res4 = tf.image.resize_images(edge_out1_res4, tf.shape(next_image)[1:3,]) edge_out1_res3 = tf.image.resize_images(edge_out1_res3, tf.shape(next_image)[1:3,]) ### Predictions: ignoring all predictions with labels greater or equal than n_classes raw_prediction_p1 = tf.reshape(parsing_out1, [-1, N_CLASSES]) raw_prediction_p2 = tf.reshape(parsing_out2, [-1, N_CLASSES]) label_proc = prepare_label(next_label, tf.stack(parsing_out1.get_shape()[1:3]), one_hot=False) # [batch_size, h, w] raw_gt = tf.reshape(label_proc, [-1,]) indices = tf.squeeze(tf.where(tf.less_equal(raw_gt, N_CLASSES - 1)), 1) gt = tf.cast(tf.gather(raw_gt, indices), tf.int32) prediction_p1 = tf.gather(raw_prediction_p1, indices) prediction_p2 = tf.gather(raw_prediction_p2, indices) raw_edge = tf.reshape(tf.sigmoid(edge_out2_final), [-1,]) edge_cond = tf.multiply(tf.cast(tf.greater(raw_edge, 0.1), tf.int32), tf.cast(tf.less_equal(raw_gt, N_CLASSES - 1), tf.int32)) edge_mask = tf.squeeze(tf.where(tf.equal(edge_cond, 1)), 1) gt_edge = tf.cast(tf.gather(raw_gt, edge_mask), tf.int32) p1_lc = tf.gather(raw_prediction_p1, edge_mask) p2_lc = tf.gather(raw_prediction_p2, edge_mask) ### Pixel-wise softmax loss. loss_p1_gb = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=prediction_p1, labels=gt)) loss_p2_gb = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=prediction_p2, labels=gt)) loss_p1_lc = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=p1_lc, labels=gt_edge)) loss_p2_lc = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=p2_lc, labels=gt_edge)) loss_p1 = loss_p1_lc + loss_p1_gb loss_p2 = loss_p2_lc + loss_p2_gb ### Sigmoid cross entropy edge_pos_mask = tf.equal(next_edge, 1) edge_neg_mask = tf.logical_not(edge_pos_mask) edge_pos_mask = tf.cast(edge_pos_mask, tf.float32) edge_neg_mask = tf.cast(edge_neg_mask, tf.float32) total_pixels = tf.cast(tf.shape(next_edge)[1] * tf.shape(next_edge)[2], tf.int32) pos_pixels = tf.reduce_sum(tf.to_int32(next_edge)) neg_pixels = tf.subtract(total_pixels, pos_pixels) pos_weight = tf.cast(tf.divide(neg_pixels, total_pixels), tf.float32) neg_weight = tf.cast(tf.divide(pos_pixels, total_pixels), tf.float32) parsing_mask = tf.cast(tf.greater(next_label, 0), tf.float32) edge_gt = tf.cast(next_edge, tf.float32) t_loss_e1 = tf.nn.sigmoid_cross_entropy_with_logits(logits=edge_out1, labels=edge_gt) loss_e1_pos_gb = tf.reduce_sum(tf.multiply(t_loss_e1, edge_pos_mask), [1, 2]) loss_e1_neg_gb = tf.reduce_sum(tf.multiply(t_loss_e1, edge_neg_mask), [1, 2]) loss_e1_pos_lc = tf.reduce_sum(tf.multiply(tf.multiply(t_loss_e1, parsing_mask), edge_pos_mask), [1, 2]) loss_e1_neg_lc = tf.reduce_sum(tf.multiply(tf.multiply(t_loss_e1, parsing_mask), edge_neg_mask), [1, 2]) loss_e1_pos = (loss_e1_pos_gb + loss_e1_pos_lc)* pos_weight loss_e1_neg = (loss_e1_neg_gb + loss_e1_neg_lc) * neg_weight loss_e1 = tf.reduce_mean(loss_e1_pos * Edge_Pos_W + loss_e1_neg) t_loss_e2 = tf.nn.sigmoid_cross_entropy_with_logits(logits=edge_out2, labels=edge_gt) loss_e2_pos_gb = tf.reduce_sum(tf.multiply(t_loss_e2, edge_pos_mask), [1, 2]) loss_e2_neg_gb = tf.reduce_sum(tf.multiply(t_loss_e2, edge_neg_mask), [1, 2]) loss_e2_pos_lc = tf.reduce_sum(tf.multiply(tf.multiply(t_loss_e2, parsing_mask), edge_pos_mask), [1, 2]) loss_e2_neg_lc = tf.reduce_sum(tf.multiply(tf.multiply(t_loss_e2, parsing_mask), edge_neg_mask), [1, 2]) loss_e2_pos = (loss_e2_pos_gb + loss_e2_pos_lc)* pos_weight loss_e2_neg = (loss_e2_neg_gb + loss_e2_neg_lc) * neg_weight loss_e2 = tf.reduce_mean(loss_e2_pos * Edge_Pos_W + loss_e2_neg) t_loss_e1_res5 = tf.nn.sigmoid_cross_entropy_with_logits(logits=edge_out1_res5, labels=edge_gt) loss_e1_res5_pos_gb = tf.reduce_sum(tf.multiply(t_loss_e1_res5, edge_pos_mask), [1, 2]) loss_e1_res5_neg_gb = tf.reduce_sum(tf.multiply(t_loss_e1_res5, edge_neg_mask), [1, 2]) loss_e1_res5_pos_lc = tf.reduce_sum(tf.multiply(tf.multiply(t_loss_e1_res5, parsing_mask), edge_pos_mask), [1, 2]) loss_e1_res5_neg_lc = tf.reduce_sum(tf.multiply(tf.multiply(t_loss_e1_res5, parsing_mask), edge_neg_mask), [1, 2]) loss_e1_res5_pos = (loss_e1_res5_pos_gb + loss_e1_res5_pos_lc)* pos_weight loss_e1_res5_neg = (loss_e1_res5_neg_gb + loss_e1_res5_neg_lc) * neg_weight loss_e1_res5 = tf.reduce_mean(loss_e1_res5_pos * Edge_Pos_W + loss_e1_res5_neg) t_loss_e1_res4 = tf.nn.sigmoid_cross_entropy_with_logits(logits=edge_out1_res4, labels=edge_gt) loss_e1_res4_pos_gb = tf.reduce_sum(tf.multiply(t_loss_e1_res4, edge_pos_mask), [1, 2]) loss_e1_res4_neg_gb = tf.reduce_sum(tf.multiply(t_loss_e1_res4, edge_neg_mask), [1, 2]) loss_e1_res4_pos_lc = tf.reduce_sum(tf.multiply(tf.multiply(t_loss_e1_res4, parsing_mask), edge_pos_mask), [1, 2]) loss_e1_res4_neg_lc = tf.reduce_sum(tf.multiply(tf.multiply(t_loss_e1_res4, parsing_mask), edge_neg_mask), [1, 2]) loss_e1_res4_pos = (loss_e1_res4_pos_gb + loss_e1_res4_pos_lc)* pos_weight loss_e1_res4_neg = (loss_e1_res4_neg_gb + loss_e1_res4_neg_lc) * neg_weight loss_e1_res4 = tf.reduce_mean(loss_e1_res4_pos * Edge_Pos_W + loss_e1_res4_neg) t_loss_e1_res3 = tf.nn.sigmoid_cross_entropy_with_logits(logits=edge_out1_res3, labels=edge_gt) loss_e1_res3_pos_gb = tf.reduce_sum(tf.multiply(t_loss_e1_res3, edge_pos_mask), [1, 2]) loss_e1_res3_neg_gb = tf.reduce_sum(tf.multiply(t_loss_e1_res3, edge_neg_mask), [1, 2]) loss_e1_res3_pos_lc = tf.reduce_sum(tf.multiply(tf.multiply(t_loss_e1_res3, parsing_mask), edge_pos_mask), [1, 2]) loss_e1_res3_neg_lc = tf.reduce_sum(tf.multiply(tf.multiply(t_loss_e1_res3, parsing_mask), edge_neg_mask), [1, 2]) loss_e1_res3_pos = (loss_e1_res3_pos_gb + loss_e1_res3_pos_lc)* pos_weight loss_e1_res3_neg = (loss_e1_res3_neg_gb + loss_e1_res3_neg_lc) * neg_weight loss_e1_res3 = tf.reduce_mean(loss_e1_res3_pos * Edge_Pos_W + loss_e1_res3_neg) loss_parsing = loss_p1 + loss_p2 loss_edge = loss_e1 + loss_e2 + loss_e1_res5 + loss_e1_res4 + loss_e1_res3 reduced_loss = loss_parsing * p_Weight + loss_edge * e_Weight trainable_variable = tf.trainable_variables() grads = optim.compute_gradients(reduced_loss, var_list=trainable_variable) tower_grads.append(grads) tf.add_to_collection('loss_p', loss_parsing) tf.add_to_collection('loss_e', loss_edge) tf.add_to_collection('reduced_loss', reduced_loss) # Average the gradients grads_ave = average_gradients(tower_grads) # apply the gradients with our optimizers train_op = optim.apply_gradients(grads_ave) loss_p_ave = tf.reduce_mean(tf.get_collection('loss_p')) loss_e_ave = tf.reduce_mean(tf.get_collection('loss_e')) loss_ave = tf.reduce_mean(tf.get_collection('reduced_loss')) loss_summary_p = tf.summary.scalar("loss_p_ave", loss_p_ave) loss_summary_e = tf.summary.scalar("loss_e_ave", loss_e_ave) loss_summary_ave = tf.summary.scalar("loss_ave", loss_ave) loss_summary = tf.summary.merge([loss_summary_ave, loss_summary_p, loss_summary_e]) summary_writer = tf.summary.FileWriter(LOG_DIR, graph=tf.get_default_graph()) # Saver for storing checkpoints of the model. all_saver_var = tf.global_variables() restore_var = [v for v in all_saver_var if 'parsing' not in v.name and 'edge' not in v.name and 'Momentum' not in v.name] saver = tf.train.Saver(var_list=all_saver_var, max_to_keep=100) loader = tf.train.Saver(var_list=restore_var) # Set up tf session and initialize variables. config = tf.ConfigProto(allow_soft_placement=True,log_device_placement=False) config.gpu_options.allow_growth = True sess = tf.Session(config=config) init = tf.global_variables_initializer() sess.run(init) if load(loader, sess, SNAPSHOT_DIR): print(" [*] Load SUCCESS") else: print(" [!] Load failed...") # Start queue threads. threads = tf.train.start_queue_runners(coord=coord, sess=sess) # Iterate over training steps. for step in range(NUM_STEPS): start_time = time.time() loss_value = 0 feed_dict = { step_ph : step } # Apply gradients. summary, loss_value, par_loss, edge_loss, _ = sess.run([loss_summary, reduced_loss, loss_parsing, loss_edge, train_op], feed_dict=feed_dict) summary_writer.add_summary(summary, step) if step % SAVE_PRED_EVERY == 0: save(saver, sess, SNAPSHOT_DIR, step) duration = time.time() - start_time print('step {:d} \t loss = {:.3f}, parsing_loss = {:.3f}, edge_loss = {:.3f}, ({:.3f} sec/step)'.format(step, loss_value, par_loss, edge_loss, duration)) def average_gradients(tower_grads): """Calculate the average gradient for each shared variable across all towers. Note that this function provides a synchronization point across all towers. Args: tower_grads: List of lists of (gradient, variable) tuples. The outer list is over individual gradients. The inner list is over the gradient calculation for each tower. Returns: List of pairs of (gradient, variable) where the gradient has been averaged across all towers. """ average_grads = [] for grad_and_vars in zip(*tower_grads): # Note that each grad_and_vars looks like the following: # ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN)) grads = [] for g, _ in grad_and_vars: # Add 0 dimension to the gradients to represent the tower. expanded_g = tf.expand_dims(g, 0) # Append on a 'tower' dimension which we will average over below. grads.append(expanded_g) # Average over the 'tower' dimension. grad = tf.concat(axis=0, values=grads) grad = tf.reduce_mean(grad, 0) # Keep in mind that the Variables are redundant because they are shared # across towers. So .. we will just return the first tower's pointer to # the Variable. v = grad_and_vars[0][1] grad_and_var = (grad, v) average_grads.append(grad_and_var) return average_grads if __name__ == '__main__': main() ##########################################
UTF-8
Python
false
false
14,522
py
1,996
train_pgn.py
18
0.603154
0.576573
0
285
49.954386
161
jujoohwan/Algorithm_Problem
15,977,278,375,630
a6f91666acf722ce5f0119a32466ddc90040a145
abdee00961399404666d7d9e9c181b1f55e89767
/CodeUp/6067.py
caa9c69f49bf9b28de07952be8ed79579a2b8cb9
[]
no_license
https://github.com/jujoohwan/Algorithm_Problem
e744240f155071038b75da217fb48541a178e4e9
bebe3f13ce16b9a821dce8057658bec41022d8aa
refs/heads/main
2023-08-01T11:47:23.750263
2022-12-21T14:24:26
2022-12-21T14:24:26
406,480,036
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
result = int(input()) if result%2==0 and result<0: print('A') elif result%2 !=0 and result<0: print('B') elif result%2==0 and result>0: print('C') elif result%2!=0 and result>0: print('D')
UTF-8
Python
false
false
214
py
74
6067.py
71
0.579439
0.523364
0
10
19.6
31
beshoyAtefZaki/diet
1,391,569,421,905
79e129c6fc8f0cc241a9710b521107bea8897878
6bdd77b2b716f738225768caa56f989209e600f2
/doctors/migrations/0006_auto_20201114_1233.py
ed36e9435b0de073605c01f613e7975747365ffe
[]
no_license
https://github.com/beshoyAtefZaki/diet
9bbcfef732aa3d4bfe1dcb849fa8fff0a80634ba
891b4a0f48aaad8b5c43c324db78203c0e2b7acb
refs/heads/master
2023-01-27T14:00:10.104349
2020-11-20T21:22:10
2020-11-20T21:22:10
308,125,859
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2020-11-14 12:33 from __future__ import unicode_literals import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('doctors', '0005_auto_20201114_1219'), ] operations = [ migrations.AddField( model_name='patienttfr', name='ASH', field=models.DecimalField(blank=True, decimal_places=2, max_digits=10, null=True), ), migrations.AddField( model_name='patienttfr', name='Calcium', field=models.DecimalField(blank=True, decimal_places=2, max_digits=10, null=True), ), migrations.AddField( model_name='patienttfr', name='Carbohydrate', field=models.DecimalField(blank=True, decimal_places=2, max_digits=10, null=True), ), migrations.AddField( model_name='patienttfr', name='coper', field=models.DecimalField(blank=True, decimal_places=2, max_digits=10, null=True), ), migrations.AddField( model_name='patienttfr', name='enerygy', field=models.DecimalField(blank=True, decimal_places=2, max_digits=10, null=True), ), migrations.AddField( model_name='patienttfr', name='fat', field=models.DecimalField(blank=True, decimal_places=2, max_digits=10, null=True), ), migrations.AddField( model_name='patienttfr', name='fiber', field=models.DecimalField(blank=True, decimal_places=2, max_digits=10, null=True), ), migrations.AddField( model_name='patienttfr', name='iron', field=models.DecimalField(blank=True, decimal_places=2, max_digits=10, null=True), ), migrations.AddField( model_name='patienttfr', name='magnisum', field=models.DecimalField(blank=True, decimal_places=2, max_digits=10, null=True), ), migrations.AddField( model_name='patienttfr', name='phorphorus', field=models.DecimalField(blank=True, decimal_places=2, max_digits=10, null=True), ), migrations.AddField( model_name='patienttfr', name='potasium', field=models.DecimalField(blank=True, decimal_places=2, max_digits=10, null=True), ), migrations.AddField( model_name='patienttfr', name='protein', field=models.DecimalField(blank=True, decimal_places=2, max_digits=10, null=True), ), migrations.AddField( model_name='patienttfr', name='refuse', field=models.DecimalField(blank=True, decimal_places=2, max_digits=10, null=True), ), migrations.AddField( model_name='patienttfr', name='riboflabn', field=models.DecimalField(blank=True, decimal_places=2, max_digits=10, null=True), ), migrations.AddField( model_name='patienttfr', name='sodium', field=models.DecimalField(blank=True, decimal_places=2, max_digits=10, null=True), ), migrations.AddField( model_name='patienttfr', name='thiamen', field=models.DecimalField(blank=True, decimal_places=2, max_digits=10, null=True), ), migrations.AddField( model_name='patienttfr', name='vitamen_a', field=models.DecimalField(blank=True, decimal_places=2, max_digits=10, null=True), ), migrations.AddField( model_name='patienttfr', name='vitamen_c', field=models.DecimalField(blank=True, decimal_places=2, max_digits=10, null=True), ), migrations.AddField( model_name='patienttfr', name='water', field=models.DecimalField(blank=True, decimal_places=2, max_digits=10, null=True), ), migrations.AddField( model_name='patienttfr', name='zinc', field=models.DecimalField(blank=True, decimal_places=2, max_digits=10, null=True), ), migrations.AlterField( model_name='doctorprofile', name='strat_date', field=models.DateField(default=datetime.datetime(2020, 11, 14, 12, 33, 29, 422159)), ), ]
UTF-8
Python
false
false
4,516
py
23
0006_auto_20201114_1233.py
19
0.570195
0.545394
0
121
36.322314
96
evanchan92/learnpython
19,585,050,898,325
6a4afa4b9dba8e5d39547fe3eb0ed6852112278a
59f01588055395ae1b3b1981326a2b46780c6d56
/Oreilly-Scraper/ScrappingENV/lib/python3.7/ntpath.py
a4489ee454ed06a4c5d0c5f67ec9170035c3bb2d
[]
no_license
https://github.com/evanchan92/learnpython
bf05d93771ebf21ba7bf628a44697947b9af3ce8
6174d0f650dbeb514ac7aee9eddba4481f1b3d6b
refs/heads/master
2020-09-02T13:12:12.736723
2019-04-02T15:57:02
2019-04-02T15:57:02
98,376,246
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
/Users/evan/anaconda3/lib/python3.7/ntpath.py
UTF-8
Python
false
false
45
py
49
ntpath.py
45
0.822222
0.755556
0
1
45
45
RevansChen/online-judge
8,581,344,679,116
5bec560d6dc704afe76756169b04ba23e1984ed1
abad82a1f487c5ff2fb6a84059a665aa178275cb
/Codewars/4kyu/codewars-style-ranking-system/Python/solution1.py
1d2a030572d8083ec55324c6b99ba85bb9598624
[ "MIT" ]
permissive
https://github.com/RevansChen/online-judge
8ae55f136739a54f9c9640a967ec931425379507
ad1b07fee7bd3c49418becccda904e17505f3018
refs/heads/master
2021-01-19T23:02:58.273081
2019-07-05T09:42:40
2019-07-05T09:42:40
88,911,035
9
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Python - 3.6.0 class User: RANK = [-8, -7, -6, -5, -4, -3, -2, -1, 1, 2, 3, 4, 5, 6, 7, 8] def __init__(self): self.progress = 0 self.rank = User.RANK[0] def inc_progress(self, activityRank): if not activityRank in User.RANK: raise ValueError() if self.rank == User.RANK[-1]: return d = User.RANK.index(activityRank) - User.RANK.index(self.rank) p = 1 if d < 0 else (3 if d == 0 else (10 * d * d)) self.progress += p if self.progress >= 100: r, self.progress = divmod(self.progress, 100) i = User.RANK.index(self.rank) self.rank = User.RANK[min(i + r, len(User.RANK) - 1)] if self.rank == User.RANK[-1]: self.progress = 0
UTF-8
Python
false
false
794
py
2,569
solution1.py
1,607
0.5
0.453401
0
26
29.538462
70
RachelElysia/ratings-v2
13,872,744,390,884
c74d4cd9c1a82cd0f3aae3aed1eedc40429a29c5
a9a050b4464b8de43e58900f7bdc2377909e6b9c
/seed_database.py
40c7ecd3e7e9cd7a748726003897a23083fae7d3
[]
no_license
https://github.com/RachelElysia/ratings-v2
70a9e38b72ab07de444e5df8bbfd5826ceed2d3e
971503752a46a3dfacfdfc97ab11268801f7cc51
refs/heads/main
2023-02-26T03:07:11.234342
2021-02-04T07:45:53
2021-02-04T07:45:53
335,814,255
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
"""Script to seed database.""" import os import json from random import choice, randint from datetime import datetime import crud import model import server os.system('dropdb ratings') os.system('createdb ratings') model.connect_to_db(server.app) model.db.create_all() # read in movie data to movie_data variable with open('data/movies.json') as f: movie_data = json.loads(f.read()) movie_list = [] # populate movies database for movie in movie_data: release_date = datetime.strptime(movie['release_date'], '%Y-%m-%d') curr_movie = crud.create_movie(movie['title'], movie['overview'], release_date, movie['poster_path']) movie_list.append(curr_movie) # generate 10 random users for n in range(10): email = f'user{n}@test.com' password = 'test123' curr_user = crud.create_user(email, password) # Make each user make 10 ratings for userratings in range(10): # Randomly choose a Movie to rate random_movie = choice(movie_list) # Rate 1-5 score = randint(1, 5) # Use data: User, random movie chosen, and random score to make a fake rating crud.create_rating(curr_user, random_movie, score)
UTF-8
Python
false
false
1,202
py
2
seed_database.py
2
0.671381
0.658902
0
45
25.511111
105
anishnarang/data_mining_project
12,498,354,843,121
1493f033a23b3ccd4b7edcadd0c3325552ce2f26
59401a6d106960f22edd54e47d8575c3216e7eb2
/remove_redundant.py
8532558257371c64bce7411b524d0b077f520605
[]
no_license
https://github.com/anishnarang/data_mining_project
e666d309889da5eed5c477e273531ad6b01fb771
8b42fe2dc31943e82d4a305922dd1d6bed1d0cd0
refs/heads/master
2020-03-31T20:34:37.068794
2018-12-04T02:05:16
2018-12-04T02:05:16
152,546,099
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
data = {} with open("util_data/user_to_cuicine_test.csv") as input_file: for row in input_file: user, category, rating = row.strip().split(",") rating = int(rating) if user in data: if category in data[user]: data[user][category] = (data[user][category][0]+rating, data[user][category][1]+1) else: data[user][category] = (rating, 1) else: data[user] = {} data[user][category] = (rating, 1) for user in data.keys(): for category in data[user].keys(): data[user][category] = float(data[user][category][0])/data[user][category][1] with open("util_data/user_to_cuisine_unique_test.csv","w+") as output_file: output_file.write("User,Category,Rating\n") for user in data.keys(): for category in data[user].keys(): output_file.write(str(user) + "," + str(category) + "," + str(data[user][category]) + "\n")
UTF-8
Python
false
false
973
py
23
remove_redundant.py
15
0.561151
0.553957
0
27
35.074074
103
veronikanska/pyladies
2,284,922,633,731
db1fc5c4c1195a9f9df2201e8386975e068d868a
ee10ae2dddfac07e2cfbbabfe41484b5989c16bf
/03/kalkulacka.py
29b80f14d60fc36ff6bc0a2090ac9d62ebee8ccc
[]
no_license
https://github.com/veronikanska/pyladies
4f5e69199b9000b8fd15dfe75f2735a4bc67d27d
a8a191fceddff0bba8c8553e4326e3f85e6f2326
refs/heads/master
2020-05-04T12:42:17.507172
2019-04-15T18:15:30
2019-04-15T18:15:30
179,130,866
0
0
null
false
2019-06-11T19:31:38
2019-04-02T17:55:43
2019-04-15T18:15:33
2019-06-11T19:25:33
38
0
0
4
Python
false
false
# Uzivatel zada dve cisla a operaci a program operaci s cislz provede cislo_1 = int(input('Zadej prvni cislo: ')) cislo_2 = int(input('Zadej druhe cislo: ')) operace = str(input('Vyber operaci: +, -, * nebo /: ')) if operace != '+' and operace != '-' and operace != '*' and operace != '/': print('Nerozumim') else: print('Prvni cislo: ', cislo_1) print('Druhe cislo: ', cislo_2) print('Operace: ', operace) if operace == '+': print(cislo_1, ' + ', cislo_2, ' = ', cislo_1 + cislo_2) elif operace == '-': print(cislo_1, ' - ', cislo_2, ' = ', cislo_1 - cislo_2) elif operace == '*': print(cislo_1, ' * ', cislo_2, ' = ', cislo_1 * cislo_2) elif operace == '/': print(cislo_1, ' / ', cislo_2, ' = ', cislo_1 / cislo_2)
UTF-8
Python
false
false
791
py
34
kalkulacka.py
34
0.532238
0.506953
0
21
36.52381
75
joewen85/mycmdb
9,483,287,799,487
f538932262f69303685311cdeac1ac7558e6dac0
20f37928911ec08475aa44c8226eb1671553b069
/apps/domain/urls.py
4198136fad8a4e1c806835d43da0e5fbe031a482
[ "Apache-2.0" ]
permissive
https://github.com/joewen85/mycmdb
b63a747780704eceab5c504d11dd9cc5c28293f7
cd5883b1a884fea645d5488d55bed0a0ce4d81c0
refs/heads/main
2023-09-01T12:54:15.587227
2023-08-21T02:12:58
2023-08-21T02:12:58
188,344,131
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- # @Time : 2019-08-09 22:38 # @Author : Joe # @Site : # @File : urls.py # @Software: PyCharm # @function: xxxxx from django.urls import path from domain.views import DomainView, BlackListList, BlackListDetail from rest_framework.documentation import include_docs_urls API_TITLE = 'devops api documentation' API_DESCRIPTION = 'devops' urlpatterns = [ path('', DomainView.as_view()), path('blacklist/', BlackListList.as_view(), name='blacklist_list'), path('blacklist/<int:pk>', BlackListDetail.as_view(), name='blacklist_list'), path('docs/', include_docs_urls(title=API_TITLE, description=API_DESCRIPTION, authentication_classes=[], permission_classes=[])) ]
UTF-8
Python
false
false
711
py
207
urls.py
77
0.697609
0.679325
0
21
32.857143
132
thelearningcurves/ERINN
15,049,565,446,619
974c9bb57238e4d14ffb54c932863618539ddc92
768e5cd65886cc092f50e5507e94bf6aa4f66ae6
/erinn/preprocessing.py
659cac7fe6f7f1c115b286fd77024f034bf806fe
[ "MIT" ]
permissive
https://github.com/thelearningcurves/ERINN
b6ca4170d159304777463430139ea41ae209e00f
8297db51f63d5ef961672ae7ccb01c5ef18c70a3
refs/heads/master
2022-04-12T00:04:56.506791
2020-03-20T08:36:21
2020-03-20T08:36:21
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
"""Custom preprocessing functions.""" from __future__ import absolute_import from __future__ import division from __future__ import generator_stop from __future__ import print_function import multiprocessing as mp import os import re from functools import partial import numba import numpy as np import tensorflow as tf from tqdm import tqdm from erinn.utils.io_utils import read_config_file from erinn.utils.io_utils import read_pkl from erinn.utils.io_utils import write_pkl def log_transform(arr, inverse=False, inplace=True): """ Perform a logarithmic transformation or an inverse logarithmic transformation. new_array[i] = log10(arr[i] + 1), arr[i] >= 0 new_array[i] = -log10(abs(arr[i] - 1)), arr[i] < 0 Parameters ---------- arr : numpy.ndarray An array which you want to perform logarithmic transformation or inverse logarithmic transformation. inverse : bool Whether to perform an inverse transformation. inplace : bool Whether to use inplace mode. Returns ------- new_arr : numpy.ndarray, optional If `inplace` is False, then a transformed array is returned. References ---------- https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html https://stackoverflow.com/questions/21610198/runtimewarning-divide-by-zero-encountered-in-log """ if inplace: # method 1: use boolean mask if inverse: mask = (arr >= 0) arr[mask] = np.power(10, arr[mask]) - 1 arr[~mask] = -np.power(10, -arr[~mask]) + 1 else: mask = (arr >= 0) arr[mask] = np.log10(arr[mask] + 1) arr[~mask] = -np.log10(np.abs(arr[~mask] - 1)) # method 2: use index # ge0 = np.where(arr >= 0) # greater equal 0 # lt0 = np.where(arr < 0) # less than 0 # ge0 = np.asarray(arr >= 0).nonzero() # lt0 = np.asarray(arr < 0).nonzero() # arr[ge0] = np.log10(arr[ge0] + 1) # arr[lt0] = -np.log10(np.abs(arr[lt0] - 1)) # method 3: use numpy.where(condition[, x, y]) # An array with elements from x where condition is True, and elements from y elsewhere. # Note: numpy.log10(prob) is being evaluated before the numpy.where is being evaluated. # arr = np.where(arr >= 0, np.log10(arr + 1), -np.log10(np.abs(arr - 1))) else: new_arr = arr.copy() if inverse: mask = (new_arr >= 0) new_arr[mask] = np.power(10, new_arr[mask]) - 1 new_arr[~mask] = -np.power(10, -new_arr[~mask]) + 1 else: mask = (new_arr >= 0) new_arr[mask] = np.log10(new_arr[mask] + 1) new_arr[~mask] = -np.log10(np.abs(new_arr[~mask] - 1)) return new_arr @numba.njit() def add_noise(x, scale=0.05, noise_type='normal'): """Add noise to each element of the array by a certain percentage. In order to handle large arrays under memory constraints, this function uses in-place mode. Parameters ---------- x : numpy.ndarray Array that you wanted to add noise. scale : float, default 0.05 If noise_type is 'normal', scale is represent the standard deviation. If noise_type is 'uniform', the noise added to element is proportional to this variable. noise_type: str, {'normal', 'uniform'}, default normal Noise type. "normal" indicates that the noise is sampled from a Gaussian probability distribution function. "uniform" indicates that the noise is sampled from a uniform probability distribution function. Returns ------- None References ---------- .. [1] https://stackoverflow.com/questions/44257931/fastest-way-to-add-noise-to-a-numpy-array .. [2] https://github.com/simpeg/simpeg/blob/178b54417af0b892a3920685056a489ab2b6cda1/SimPEG/Survey.py#L501-L502 .. [3] https://stackoverflow.com/questions/14058340/adding-noise-to-a-signal-in-python/53688043#53688043 .. [4] https://numba.pydata.org/numba-doc/latest/reference/numpysupported.html """ # Since version 0.28.0, the generator is thread-safe and fork-safe. # Each thread and each process will produce independent streams of random numbers. # x = x.reshape(-1) # flat view x = x.ravel() # flat view if noise_type == 'normal': for i in range(len(x)): x[i] += scale * abs(x[i]) * np.random.normal(0.0, 1.0) elif noise_type == 'uniform': for i in range(len(x)): x[i] += scale * abs(x[i]) * np.random.uniform(-1.0, 1.0) else: raise(NotImplementedError('noise_type is not supported.')) def source_receiver_midpoints(Tx_locations, Rx_locations): """ Calculate source receiver midpoints. Parameters ---------- Tx_locations : numpy.ndarray Transmitter locations. Rx_locations : numpy.ndarray Receiver locations. Returns ------- midx : numpy.ndarray midpoints x location midz : numpy.ndarray midpoints z location References ---------- https://github.com/simpeg/simpeg/blob/b8d716f86a4ea07ba3085fabb24c2bc974788040/SimPEG/EM/Static/Utils/StaticUtils.py#L128 """ # initialize midx and midz midx = [] midz = [] for i in range(len(Tx_locations)): # midpoint of the current electrode (Tx) pair (in x direction) Cmid = (Tx_locations[i, 0] + Tx_locations[i, 2]) / 2 # midpoint of the potential electrode (Rx) pair (in x direction) Pmid = (Rx_locations[i, 0] + Rx_locations[i, 2]) / 2 # midpoint of the current electrode (Tx) pair (in z direction) zsrc = (Tx_locations[i, 1] + Tx_locations[i, 3]) / 2 # midpoint of the Cmid and Pmid (x direction) midx.append(((Cmid + Pmid) / 2)) # Half the length between Cmid and Pmid, then add zsrc (in z direction, positive down) midz.append(np.abs(Cmid - Pmid) / 2 + zsrc) midx = np.array(midx).reshape(-1, 1) # form an 2D array midz = np.array(midz).reshape(-1, 1) # form an 2D array return midx, midz def to_midpoint(array, Tx_locations, Rx_locations, value=0.0): """Reshape inputs tensor to midpoint image. shape = (accumulated number of same midpoint, number of midpoint, 1) Parameters ---------- array : numpy.ndarray The array you want to reshape. Tx_locations : numpy.ndarray Transmitter locations. Rx_locations : numpy.ndarray Receiver locations. value : float The value of the blank element you want to fill in. Returns ------- new_array : numpy.ndarray Reshaped array. """ array = array.reshape(-1) # flatten input arrays midx, midz = source_receiver_midpoints(Tx_locations, Rx_locations) # calculate midpoint unique_midx, index_midx = np.unique(midx, return_inverse=True) num_unique_midx = len(unique_midx) num_midpoint = len(midx) # number of midpoint new_array = [[] for i in range(num_unique_midx)] # initialize new array (list of lists) # accumulate at same midpoint for i in range(num_midpoint): new_array[index_midx[i]].append([array[i], midz[i]]) # sort by depth at the same midpoint for i in range(num_unique_midx): new_array[i].sort(key=lambda x: x[1]) # sort by midz (depth) new_array[i] = [ii[0] for ii in new_array[i]] # drop midz # pad the list of lists to form an array new_array = tf.keras.preprocessing.sequence.pad_sequences(new_array, dtype='float64', padding='post', value=value) new_array = np.expand_dims(new_array.T, axis=2) # reshape to 3D array return new_array def to_txrx(array, Tx_locations, Rx_locations, value=0.0): """Reshape inputs tensor to Tx-Rx image. shape = (number of Tx pair, number of Rx pair, 1) Parameters ---------- array : numpy.ndarray The array you want to reshape. Tx_locations : numpy.ndarray Transmitter locations. Rx_locations : numpy.ndarray Receiver locations. value : float The value of the blank element you want to fill in. Returns ------- new_array : numpy.ndarray Reshaped array. """ array = array.reshape(-1) # flatten input arrays # find unique Tx pair and unique Rx pair unique_Tx_locations, index_src = np.unique(Tx_locations, return_inverse=True, axis=0) unique_Rx_locations, index_rec = np.unique(Rx_locations, return_inverse=True, axis=0) # create new zero array and assign value num_index = len(index_src) new_array = np.ones((unique_Tx_locations.shape[0], unique_Rx_locations.shape[0]), dtype=np.float) * value for i in range(num_index): new_array[index_src[i], index_rec[i]] = array[i] new_array = np.expand_dims(new_array, axis=2) # reshape to 3D array return new_array def to_section(array, nCx, nCy): """Reshape inputs tensor to section image. shape = ( number of cell center mesh in the z (y) direction, number of cell center mesh in the x direction, 1 ) Parameters ---------- array : numpy.ndarray The array you want to reshape. nCx : int Number of cell center mesh in the x direction. nCy : int Number of cell center mesh in the z (y) direction. Returns ------- new_array : numpy.ndarray Reshaped array. """ array = array.reshape(-1) # flatten input arrays new_array = np.flipud(array.reshape((nCy, nCx))) new_array = np.expand_dims(new_array, axis=2) # reshape to 3D array return new_array # TODO: use tfRecord def make_processed_dataset(config_file): """ Preprocess raw dataset and save it to processed directory. Parameters ---------- config_file : str, pathlib.Path or dict The path to the configured yaml file or the dictionary for configuration. Returns ------- None """ config = read_config_file(config_file) raw_data_dir = config['raw_data_dir'] save_processed_data_dir = config['save_processed_data_dir'] preprocess = config['preprocess'] simulator_pkl = os.path.join(raw_data_dir, 'simulator.pkl') save_simulator_pkl = os.path.join(save_processed_data_dir, 'simulator.pkl') do_preprocess = any(value['perform'] for action, value in preprocess.items()) simulator = read_pkl(simulator_pkl) # read nCx and nCy nCx = simulator.mesh.nCx # number of cell center mesh in the x direction nCy = simulator.mesh.nCy # number of cell center mesh in the z (y) direction # read Tx_locations and Rx_locations Tx_locations = simulator.urf.abmn_locations[:, :4] Rx_locations = simulator.urf.abmn_locations[:, 4:] # expand simulator.config and save it simulator.config = { 'generate': simulator.config, # config for generate data 'preprocess': config # config for preprocess data } os.makedirs(save_processed_data_dir, exist_ok=True) write_pkl(simulator, save_simulator_pkl) if do_preprocess: pattern_raw_pkl = re.compile('raw_data_\d{6}.pkl') for root_dir, sub_dirs, files in os.walk(raw_data_dir): # filter files list so the files list will contain pickle files that match the pattern files = list(filter(pattern_raw_pkl.match, files)) # If the files list is empty, continue to the next iteration of the loop if not files: continue # make sub directory sub_dir_in_processed = re.sub(raw_data_dir, save_processed_data_dir, root_dir) os.makedirs(sub_dir_in_processed, exist_ok=True) # Parallel version! par = partial( _make_processed_dataset, preprocess=preprocess, root_dir=root_dir, sub_dir_in_processed=sub_dir_in_processed, Tx_locations=Tx_locations, Rx_locations=Rx_locations, nCx=nCx, nCy=nCy ) pool = mp.Pool(processes=mp.cpu_count(), maxtasksperchild=1) for data in tqdm(pool.imap_unordered(par, files), desc=f'Preprocess data and save to {sub_dir_in_processed}', total=len(files)): pass pool.close() pool.join() # Serial version! # for filename in files: # pkl_name = os.path.join(root_dir, filename) # data = read_pkl(pkl_name) # # check if the data is dict and have "resistance" and "resistivity_log10" keys # if (not isinstance(data, dict) # or data.get('resistance') is None # or data.get('resistivity_log10') is None): # continue # # preprocess # for k, v in preprocess.items(): # if k == 'add_noise' and v.get('perform'): # add_noise(data['resistance'], **v.get('kwargs')) # elif k == 'log_transform' and v.get('perform'): # log_transform(data['resistance'], **v.get('kwargs')) # elif k == 'to_midpoint' and v.get('perform'): # data['resistance'] = to_midpoint( # data['resistance'], Tx_locations, Rx_locations # ) # elif k == 'to_txrx' and v.get('perform'): # data['resistance'] = to_txrx( # data['resistance'], Tx_locations, Rx_locations # ) # elif k == 'to_section' and v.get('perform'): # data['resistivity_log10'] = to_section( # data['resistivity_log10'], nCx, nCy # ) # # save pickle in processed dir # new_pkl_name = os.path.join( # sub_dir_in_processed, # re.sub(r'raw', r'processed', filename) # ) # write_pkl(data, new_pkl_name) # show information about input / target tensor shape try: print("The shape of resistance (shape of NN input data): " + f"{data['resistance'].shape}") print("The shape of resistivity (shape of NN target data): " + f"{data['resistivity_log10'].shape}") print("IF YOU WANT TO GET THE RAW resistivity_log10, YOU SHOULD USE" + " `raw_resistivity_log10 = np.flipud(resistivity_log10).flatten()`") except NameError as err: pass # no pickle files def _make_processed_dataset(filename, preprocess, root_dir, sub_dir_in_processed, Tx_locations, Rx_locations, nCx, nCy): # for filename in files: pkl_name = os.path.join(root_dir, filename) data = read_pkl(pkl_name) # check if the data is dict and have "resistance" and "resistivity_log10" keys if (not isinstance(data, dict) or data.get('resistance') is None or data.get('resistivity_log10') is None): raise Exception('data is not a dict or dict does not contain essential keys') # preprocess for k, v in preprocess.items(): if k == 'add_noise' and v.get('perform'): add_noise(data['resistance'], **v.get('kwargs')) elif k == 'log_transform' and v.get('perform'): log_transform(data['resistance'], **v.get('kwargs')) elif k == 'to_midpoint' and v.get('perform'): data['resistance'] = to_midpoint( data['resistance'], Tx_locations, Rx_locations ) elif k == 'to_txrx' and v.get('perform'): data['resistance'] = to_txrx( data['resistance'], Tx_locations, Rx_locations ) elif k == 'to_section' and v.get('perform'): data['resistivity_log10'] = to_section( data['resistivity_log10'], nCx, nCy ) # save pickle in processed dir new_pkl_name = os.path.join( sub_dir_in_processed, re.sub(r'raw', r'processed', filename) ) write_pkl(data, new_pkl_name) return data
UTF-8
Python
false
false
17,009
py
13
preprocessing.py
10
0.568346
0.552943
0
440
36.656818
125
TheCulliganMan/flask-admin-profiler
5,334,349,425,705
0f912f432848c077e5cb71bad718f2da1ac35d47
ae349c0dea196b637632cb3220115e68b13d4895
/flask_admin_profiler/base.py
48ffc8dfe17c7867f2155b2e7340b7c6d672b633
[]
no_license
https://github.com/TheCulliganMan/flask-admin-profiler
20a728f888d6a0a09c8332404522b675f06a6892
c343586c1155418fa95553c84e2cf1a3b2be0b95
refs/heads/master
2020-05-15T23:51:10.488962
2019-04-22T15:05:21
2019-04-22T15:05:21
182,563,464
0
0
null
true
2019-04-21T17:35:00
2019-04-21T17:34:59
2017-08-03T10:32:03
2015-05-29T15:44:35
124
0
0
0
null
false
false
import os import os.path as op from flask_admin import BaseView class ProfilerBaseView(BaseView): base_template = 'admin/base.html' def __init__(self, name, category=None, **kwargs): self.base_path = op.dirname(__file__) print(self.base_path) super(ProfilerBaseView, self).__init__(name, category=category, static_folder=op.join(self.base_path, 'static'), **kwargs) # Override template path def create_blueprint(self, admin): blueprint = super(ProfilerBaseView, self).create_blueprint(admin) blueprint.template_folder = op.join(self.base_path, 'templates') blueprint.static_folder=op.join(self.base_path, 'static') print(blueprint.template_folder) return blueprint
UTF-8
Python
false
false
892
py
15
base.py
7
0.57287
0.57287
0
25
34.68
95
MichaelGlasbrenner/MGFileSystem
2,834,678,419,452
697b81c1f986f245b234cf85c66ab12ba79a856f
9401eda4be1d15a0fae20a33a3d68de3b20f8c11
/tests/test_touch.py
789dddf2bf9c9bccbbf446f5834cc4bf404aede0
[]
no_license
https://github.com/MichaelGlasbrenner/MGFileSystem
6d23503508e09596e5e8204d6e41b65a2f702235
10fdd49eebb2a7ee06ebcab4191743c24f41ce4b
refs/heads/master
2020-06-28T08:51:52.030216
2020-06-26T21:31:48
2020-06-26T21:31:48
200,192,369
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import test_tools import subprocess def test_touch_new_file(): success = False; error_message = ""; file_list = test_tools.get_list_of_files("testdir"); if test_tools.file_exists( "new_file", file_list ): success = False; error_message = "file already existed"; subprocess.call(["rm","testdir/new_file"]) return success, error_message; with open('temp_output', "w") as outfile: subprocess.call(["touch","testdir/new_file"]) file_list = test_tools.get_list_of_files("testdir"); ls_output = test_tools.ls_output("testdir"); if test_tools.file_exists( "new_file", file_list ): success = True; else: error_message = "file was not created"; return success, error_message; if not (test_tools.get_file_property("permissions", "new_file", ls_output) == "-rw-r--r--"): success = False; error_message = "wrong file permissions"; subprocess.call(["rm","testdir/new_file"]) return success, error_message; test_tools.check_creation_time( "new_file", ls_output); subprocess.call(["rm","testdir/new_file"]) return success, error_message;
UTF-8
Python
false
false
1,227
py
22
test_touch.py
18
0.599022
0.599022
0
38
31.263158
100
AnimaTakeshi/windmill-django
7,627,861,966,880
3f08e00b9330ba69ba442a2c22b2247c79e6cb57
65e73c6c4a9e66715be2cbdd93339ebcab93976e
/windmill/ativos/migrations/0015_auto_20181018_1801.py
94d876e1e2de5cc99fed28dfc8bd1e2bdaf58cf3
[]
no_license
https://github.com/AnimaTakeshi/windmill-django
3577f304d5e7f74750c7d95369e87d37209f1ac6
78bde49ace1ed215f6238fe94c142eac16e164dc
refs/heads/master
2022-12-13T11:13:21.859012
2019-02-07T20:50:01
2019-02-07T20:50:01
150,470,109
0
0
null
false
2022-12-08T01:29:36
2018-09-26T18:13:54
2019-02-07T20:53:11
2022-12-08T01:29:36
1,254
0
0
19
Python
false
false
# Generated by Django 2.0 on 2018-10-18 21:01 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('ativos', '0014_auto_20181018_1754'), ] operations = [ migrations.RemoveField( model_name='fundo_local', name='data_cotizacao_aplicacao', ), migrations.AddField( model_name='fundo_local', name='data_cotizacao_aplicacao', field=models.DurationField(), ), migrations.RemoveField( model_name='fundo_local', name='data_cotizacao_resgate', ), migrations.AddField( model_name='fundo_local', name='data_cotizacao_resgate', field=models.DurationField(), ), migrations.RemoveField( model_name='fundo_local', name='data_liquidacao_aplicacao', ), migrations.AddField( model_name='fundo_local', name='data_liquidacao_aplicacao', field=models.DurationField(), ), migrations.RemoveField( model_name='fundo_local', name='data_liquidacao_resgate', ), migrations.AddField( model_name='fundo_local', name='data_liquidacao_resgate', field=models.DurationField(), ), migrations.RemoveField( model_name='fundo_offshore', name='data_cotizacao_aplicacao', ), migrations.AddField( model_name='fundo_offshore', name='data_cotizacao_aplicacao', field=models.DurationField(), ), migrations.RemoveField( model_name='fundo_offshore', name='data_cotizacao_resgate', ), migrations.AddField( model_name='fundo_offshore', name='data_cotizacao_resgate', field=models.DurationField(), ), migrations.RemoveField( model_name='fundo_offshore', name='data_liquidacao_aplicacao', ), migrations.AddField( model_name='fundo_offshore', name='data_liquidacao_aplicacao', field=models.DurationField(), ), migrations.RemoveField( model_name='fundo_offshore', name='data_liquidacao_resgate', ), migrations.AddField( model_name='fundo_offshore', name='data_liquidacao_resgate', field=models.DurationField(), ), ]
UTF-8
Python
false
false
2,574
py
161
0015_auto_20181018_1801.py
149
0.539239
0.527584
0
85
29.282353
46
rlcjj/cequant
14,817,637,203,304
4f98922d0a0217c22f557853fc41092e2dea2067
adc1f09c948d4250e4cbfedfa2daf3158c4e954b
/service/dumpdata/main.py
19085f13210ddbf6f96dcaa5b43d0ff75a5c4599
[]
no_license
https://github.com/rlcjj/cequant
e1dd85237826911c45ab1adb4e549bc7a0f8dcc8
597d3151a9991d35244ce5c061acd31742189d6f
refs/heads/master
2017-12-03T17:35:53.683787
2017-03-23T16:56:16
2017-03-23T16:56:16
86,044,280
1
0
null
true
2017-03-24T08:22:06
2017-03-24T08:22:06
2017-03-23T16:57:28
2017-03-23T16:57:26
45
0
0
0
null
null
null
#coding=utf-8 from core.scanner import set_trace from core.settings import DATA_BASE_PATH from .dumpdbtrace import dump_trace @set_trace('dumpdata.stock_value_factor') def dump_stock_value_factor(iostream,cmd): model_class_name = 'StockValueFactor' dump_trace(model_class_name,DATA_BASE_PATH) return iostream @set_trace('dumpdata.stock_report_factor') def dump_stock_report_factor(iostream,cmd): model_class_name = 'StockReportFactor' dump_trace(model_class_name,DATA_BASE_PATH) return iostream
UTF-8
Python
false
false
522
py
48
main.py
43
0.758621
0.756705
0
18
28.055556
47
TheVinhLuong102/FLAML
15,702,400,458,201
e174c6a09e3f485bca875140a45aca6f8dd3572a
ac5e821a3016d7157ed0558e32f6c7e379b31057
/test/tune/test_flaml_raytune_consistency.py
dee393c3a5d719e19a80cf92f93cfb5ebad1d784
[ "LicenseRef-scancode-generic-cla", "MIT", "LicenseRef-scancode-free-unknown", "Apache-2.0" ]
permissive
https://github.com/TheVinhLuong102/FLAML
06d1d6227902e9345c995868f24d7188c69a0ea8
2f5d6169d3b5cc025eb2516cbd003fced924a88e
refs/heads/main
2023-06-23T23:22:22.749417
2021-12-26T00:13:39
2021-12-26T00:13:39
389,860,327
0
0
MIT
true
2021-07-27T05:32:00
2021-07-27T05:31:59
2021-07-27T05:31:58
2021-07-25T06:28:31
18,277
0
0
0
null
false
false
# import unittest import numpy as np # require: pip install flaml[blendsearch, ray] # require: pip install flaml[ray] import time from flaml import tune def evaluate_config(config): """evaluate a hyperparameter configuration""" # we uss a toy example with 2 hyperparameters metric = (round(config["x"]) - 85000) ** 2 - config["x"] / config["y"] # usually the evaluation takes an non-neglible cost # and the cost could be related to certain hyperparameters # in this example, we assume it's proportional to x time.sleep(config["x"] / 100000) # use tune.report to report the metric to optimize tune.report(metric=metric) config_search_space = { "x": tune.lograndint(lower=1, upper=100000), "y": tune.randint(lower=1, upper=100000), } low_cost_partial_config = {"x": 1} def setup_searcher(searcher_name): from flaml.searcher.blendsearch import BlendSearch, CFO, RandomSearch if "cfo" in searcher_name: searcher = CFO( space=config_search_space, low_cost_partial_config=low_cost_partial_config ) elif searcher_name == "bs": searcher = BlendSearch( metric="metric", mode="min", space=config_search_space, low_cost_partial_config=low_cost_partial_config, ) elif searcher_name == "random": searcher = RandomSearch(space=config_search_space) else: return None return searcher def _test_flaml_raytune_consistency( num_samples=-1, max_concurrent_trials=1, searcher_name="cfo" ): try: from ray import tune as raytune except ImportError: print( "skip _test_flaml_raytune_consistency because ray tune cannot be imported." ) return np.random.seed(100) searcher = setup_searcher(searcher_name) analysis = tune.run( evaluate_config, # the function to evaluate a config config=config_search_space, # the search space low_cost_partial_config=low_cost_partial_config, # a initial (partial) config with low cost metric="metric", # the name of the metric used for optimization mode="min", # the optimization mode, 'min' or 'max' num_samples=num_samples, # the maximal number of configs to try, -1 means infinite time_budget_s=None, # the time budget in seconds local_dir="logs/", # the local directory to store logs search_alg=searcher, # verbose=0, # verbosity # use_ray=True, # uncomment when performing parallel tuning using ray ) flaml_best_config = analysis.best_config flaml_config_in_results = [v["config"] for v in analysis.results.values()] print(analysis.best_trial.last_result) # the best trial's result print("best flaml", searcher_name, flaml_best_config) # the best config print("flaml config in results", searcher_name, flaml_config_in_results) np.random.seed(100) searcher = setup_searcher(searcher_name) from ray.tune.suggest import ConcurrencyLimiter search_alg = ConcurrencyLimiter(searcher, max_concurrent_trials) analysis = raytune.run( evaluate_config, # the function to evaluate a config config=config_search_space, metric="metric", # the name of the metric used for optimization mode="min", # the optimization mode, 'min' or 'max' num_samples=num_samples, # the maximal number of configs to try, -1 means infinite local_dir="logs/", # the local directory to store logs # max_concurrent_trials=max_concurrent_trials, # resources_per_trial={"cpu": max_concurrent_trials, "gpu": 0}, search_alg=search_alg, ) ray_best_config = analysis.best_config ray_config_in_results = [v["config"] for v in analysis.results.values()] print(analysis.best_trial.last_result) # the best trial's result print("ray best", searcher_name, analysis.best_config) # the best config print("ray config in results", searcher_name, ray_config_in_results) assert ray_best_config == flaml_best_config, "best config should be the same" assert ( flaml_config_in_results == ray_config_in_results ), "results from raytune and flaml should be the same" def test_consistency(): _test_flaml_raytune_consistency( num_samples=5, max_concurrent_trials=1, searcher_name="random" ) _test_flaml_raytune_consistency( num_samples=5, max_concurrent_trials=1, searcher_name="cfo" ) _test_flaml_raytune_consistency( num_samples=5, max_concurrent_trials=1, searcher_name="bs" ) if __name__ == "__main__": # unittest.main() test_consistency()
UTF-8
Python
false
false
4,684
py
84
test_flaml_raytune_consistency.py
44
0.661827
0.652007
0
123
37.081301
100
jnash2001/unfone
19,061,064,903,021
ecd9b1b3908d420d634545b57fc0eee5c995f533
6e81b08e7a8c64f7c92136acee8c80e8ee959f2c
/run2.py
dccf5ad3f0fab5b8596a04a3f3e9a2eaff10f942
[]
no_license
https://github.com/jnash2001/unfone
b49650848f282c0bee38f113fbdf983eb9f736b7
ed1e063907bbadbd57499807773259f3b333b0b7
refs/heads/master
2022-11-27T14:16:20.168669
2020-08-04T08:13:12
2020-08-04T08:13:12
284,918,405
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import os import datetime from pytz import timezone os.system("sudo airmon-ng start wlan1") timestamp = str(datetime.datetime.now(timezone('Asia/Kolkata'))) newstamp = "" for i in range(len(timestamp)): if timestamp[i] == "." or timestamp[i]== ":" or timestamp[i]== " ": newstamp = newstamp + "_" else: newstamp = newstamp + timestamp[i] os.system("sudo python probemon4.py -i wlan1mon -o logs/"+newstamp+" -f -r -s -l")
UTF-8
Python
false
false
475
py
1
run2.py
1
0.614737
0.608421
0
18
25.388889
82
ccjeremiahlin/DataAnalytics_96_777
16,758,962,401,227
a26115d87a2434b3e30ea64af33a8e958e9b2bf5
3232d72500afc4c0d23ad6f4d3cf6d51aa039804
/xlsx2csv_p3.py
c02b3dab49489b34a8d481b4308e295febeeb69e
[]
no_license
https://github.com/ccjeremiahlin/DataAnalytics_96_777
805c687f126702340371ace7fa519418dd35c0ed
02a627f189035ac3b7d31abae53982ba53016e39
refs/heads/master
2021-01-17T06:33:47.247571
2015-04-26T00:03:55
2015-04-26T00:03:55
33,592,632
0
2
null
null
null
null
null
null
null
null
null
null
null
null
null
""" Simple python script to convert XLSX sheets to CSV Usage: python xls2csv.py <excelfile.xlsx> Restrictions: Requires xlrd module: sudo pip install xlrd Sheet name hardcoded: EKO_NEFTDetailsAuto """ import xlrd import csv import sys import os import pandas as pd def csv_from_excel(xlsx_file): print("Reading Excel spreadsheet data..."), xls = pd.ExcelFile(xlsx_file) print("Done!") file_name, file_extension = os.path.splitext(xlsx_file) df = xls.parse(index_col=None, na_values=['NA']) print("Writing csv file..."), df.to_csv(file_name+'.csv') print("Done!") def main(): try: csv_from_excel(sys.argv[1]) except Exception as e: print('Something might have gone wrong. Did you called the program correctly?') print('Usage:') print(' python xls2csv.py <excelfile.xlsx>') print("Here is the error, in any case:") if __name__ == "__main__": main()
UTF-8
Python
false
false
962
py
5
xlsx2csv_p3.py
5
0.638254
0.635135
0
40
23.025
87
SPSingh1998/Banking
7,086,696,086,163
49384c5eb4ccb62713e7a8fd86dbf5f350bdc0ad
fa7ed7e7b97d7a4a7dfa78507855cdbc2f0a118b
/View.py
d0781041379114f9fecec570b81b647ac666c3be
[]
no_license
https://github.com/SPSingh1998/Banking
a895a9319e3c202cfd61cf0a409f83ec889e378e
8f1b84d6ed4550f9eb4bf35e0757714485236cf1
refs/heads/master
2020-08-31T03:14:24.739620
2019-10-30T16:56:47
2019-10-30T16:56:47
218,570,554
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from pymysql import cursors from tkinter import * from tkinter import messagebox from PIL import ImageTk,Image import pymysql.cursors from time import gmtime, strftime import DB import main class view_class: def __init__(self,id): self.id=id self.root=Tk() self.root.geometry("600x500+400+175") self.root.resizable(False,False) self.root.title("View All Account Window") self.root.config(background="light blue") self.conn=pymysql.connect(host='localhost',user='root',password='root',db='dbbank') self.cursor=self.conn.cursor() self.l0=Label(self.root,text='this is demo') self.i1=ImageTk.PhotoImage(Image.open("images\\view_all_accounts.png")) self.l0.config(image=self.i1,background="light blue") self.l0.place(relx=0.2,rely=0.05) self.l11=Listbox(self.root,selectmode=SINGLE,height=40,width=30) qry="select * from tbuser" self.cursor.execute(qry) for row in self.cursor: self.l11.insert(END,str(row[0])) self.l11.bind("<<ListboxSelect>>", self.onSelect) self.l11.place(relx=0.72,rely=0.15) self.f1=Frame(self.root,height=240,width=360,background="light blue") self.l1=Label(self.f1,text="Account No",background="light blue") self.l2=Label(self.f1,text="Name",background="light blue") self.l3=Label(self.f1,text="Address",background="light blue") self.l4=Label(self.f1,text="Gender",background="light blue") self.l5=Label(self.f1,text="Phone No",background="light blue") self.l6=Label(self.f1,text="Email",background="light blue") self.l7=Label(self.f1,text="Opening Date",background="light blue") self.l8=Label(self.f1,text="Balance",background="light blue") self.t1=Label(self.f1,background="light blue") self.t2=Label(self.f1,background="light blue") self.t3=Label(self.f1,background="light blue") self.t4=Label(self.f1,background="light blue") self.t5=Label(self.f1,background="light blue") self.t6=Label(self.f1,background="light blue") self.t7=Label(self.f1,background="light blue") self.t8=Label(self.f1,background="light blue") self.l1.place(relx=0.09,rely=0.08) self.l2.place(relx=0.09,rely=0.18) self.l3.place(relx=0.09,rely=0.28) self.l4.place(relx=0.09,rely=0.38) self.l5.place(relx=0.09,rely=0.48) self.l6.place(relx=0.09,rely=0.58) self.l7.place(relx=0.09,rely=0.68) self.l8.place(relx=0.09,rely=0.78) self.t1.place(relx=0.4,rely=0.08) self.t2.place(relx=0.4,rely=0.18) self.t3.place(relx=0.4,rely=0.28) self.t4.place(relx=0.4,rely=0.38) self.t5.place(relx=0.4,rely=0.48) self.t6.place(relx=0.4,rely=0.58) self.t7.place(relx=0.4,rely=0.68) self.t8.place(relx=0.4,rely=0.78) self.b1=Button(self.root,text="Back",command=self.back) self.b1.place(relx=0,rely=0) self.root.mainloop() def back(self): self.root.destroy() obj2=main.Main(self.id) def onSelect(self,event): widget = event.widget selection=widget.curselection() value=str((widget.get(ANCHOR))) #print(qry) #print(value) self.cursor.execute("select * from tbuser where accno=%s",value) self.f1.place(relx=0.1,rely=0.15) r=self.cursor.rowcount row=self.cursor.fetchone() if r>0: self.t1.config(text=row[0]) self.t2.config(text=row[1]) self.t3.config(text=row[2]) self.t4.config(text=row[3]) self.t5.config(text=row[4]) self.t6.config(text=row[5]) self.t7.config(text=row[6]) self.t8.config(text=row[7]) else: messagebox.showinfo("Info","Internal Error") #print(selection) #print(event) #obj=view_class("aa@gmail.com")
UTF-8
Python
false
false
4,114
py
19
View.py
19
0.599174
0.547642
0
110
36.409091
91
rdevnoah/python_practice03
1,451,698,964,784
273f7ad02fe54162e870154403e435e545156f54
199d9f0dfb86bd85f8b9cc975469c942eaeb3f94
/prob02.py
bdb21e7b627ef03f83413c0e647d835eaad41987
[]
no_license
https://github.com/rdevnoah/python_practice03
1a7493caf00768cdeb033ad6f2d50243d633854d
223ed81ed06c08d721683ad0358c5669533172f0
refs/heads/master
2020-06-04T06:42:05.908596
2019-06-14T08:54:22
2019-06-14T08:54:22
191,909,129
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# range() 함수와 유사한 frange() 함수를 작성해 보세요. frange() 함수는 실수 리스트를 반환합니다. def frange(stop, start=0.0, step=0.1): if stop < start: stop, start = start, stop i = start l = [] while i < stop: l.append(round(i, 2)) i += step return l print(frange(2)) print(frange(2.0)) print(frange(2)) print(frange(1.0, 2.0)) print(frange(1.0, 3.0, 0.5))
UTF-8
Python
false
false
438
py
3
prob02.py
3
0.560526
0.510526
0
19
18.894737
67
westzyan/blastpipeline
12,283,606,471,484
734abc963f56f952c3701fbffc0c359498f8a99c
d444aa5b6de348e63e0036c4c9c37de40714bd67
/logreader-dill.py
043d65c7670dced15f4d01c5de4f7b82954ac9be
[]
no_license
https://github.com/westzyan/blastpipeline
1fbb3ae39b6821937f100ea1ba006d9d496f51d1
8dab8f86e8e861bab58e422c67898719a28ba04f
refs/heads/master
2021-02-12T11:57:06.751727
2020-02-07T05:05:21
2020-02-07T05:05:21
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#logreader.py produces 3 dill files "-small" "-large" "-open" #this file reads them to get results import time import calendar import re ##import parse #change from tbrreader: Server contains both ent and ci, replacing them in Resources and Connection. class Resource: #holds data for a HttpTransaction def __init__(self): self.ptr = "" self.URI = "" #self.methodname = "" self.countWritten = 0 self.countRead = 0 self.ind = None #used by printout of referrer self.Connection = None self.Server = None self.started = 0 #DispatchTransaction self.ended = 0 #mResponseIsComplete self.dispatched = 0 #how many times this was dispatched, in total. dropped count is this - 1 self.pipelined = 0 #is this pipelined? (the first resource counts too) self.context = None self.parent = None #referrer is not necessarily parent self.parentrule = None #1-6 self.parentwritten = None self.timeCreated = None #InitTransaction self.timeStarted = None #DispatchTransaction self.timeRead = None #first ReadRequestSegment self.timeWritten = None #first WriteRequestSegment self.timeEnded = None #mResponseIsComplete self.curActive = None #for steps 1 and 2: list of currently active resources when this staretd self.neighbors = [] #used for step 4 self.lastwrites = [] #used for steps 5 and 6: last resources written to (within 0.2s) self.mUsingSpdy = 0 #was this using http/1.1 (0) or http/2 (1)? def __str__(self): string = "" name = self.URI if len(name) > 100: name = name[:97] + "..." string += name string += " at ptr " + self.ptr if self.Connection != None: string += " on Connection " + self.Connection.ptr else: string += " on Connection (None) " return string def __repr__(self): return str(self) class Connection: def __init__(self): self.ptr = "" self.Transactions = [] self.SocketIn = None self.SocketOut = None self.Server = None self.timeCreated = None #creation self.timeNPN = None #npn negotiation completed self.timeSPDY = None #earliest use of spdy self.timeClosed = None #if closed. self.ind = None #index in Connections def __str__(self): if self.Transactions != []: string = "Connection {} carrying Transaction {} on Socket {} {}".format( self.ptr, self.Transactions, self.SocketIn.ptr, self.SocketOut.ptr) else: string = "Connection {} carrying Transaction (None) on Socket {} {}".format( self.ptr, self.SocketIn.ptr, self.SocketOut.ptr) return string def __repr__(self): return str(self) class Socket: def __init__(self): self.ptr = "" self.Connection = None self.totalInc = 0 self.totalOut = 0 def __str__(self): string = "Socket {} ({} out, {} inc)".format( self.ptr, self.totalOut, self.totalInc) return string def __repr__(self): return str(self) class Server: def __init__(self): self.ptr = None self.ci = "" self.is_tls = None self.is_http2 = None self.is_pipelined = None self.cert_length = None self.rec_length = 0 self.events = [] def printevents(self): print "Events for " + repr(self) for e in self.events: print e def __str__(self): return "Server [ci={}, ptr={}]".format(self.ci, self.ptr) def __repr__(self): return str(self) def str_to_epochs(string): # string is like: "2019-06-10 12:40:46.289654 UTC" string = string.strip() string = string[:-4] #cut off UTC milli = float("0." + string.split(".")[1]) #grab milliseconds separately string = string.split(".")[0] a = time.strptime(string, "%Y-%m-%d %H:%M:%S") #construct struct_time t = calendar.timegm(a) + milli return t def epochs_to_str(t): #converts unix epochs back to string milli = repr(t).split(".")[1] while len(milli) < 6: milli += "0" s = time.gmtime(t) string = "{}-{:02d}-{:02d} {:02d}:{:02d}:{:02d}.{} UTC".format( s.tm_year, s.tm_mon, s.tm_mday, s.tm_hour, s.tm_min, s.tm_sec, milli) return string def parse(line): time = str_to_epochs(line.split(" - ")[0]) line = line.split(" - ")[1].split("]: ")[1] if OLD_LOG == 0: line = " ".join(line.split(" ")[1:]) line = line.strip() params = {"t":time} try: li = line.split("\t") for l in li: if not "=" in l: params["text"] = l else: params[l.split("=")[0]] = l.split("=")[1] except: params["text"] = line return params def URI_format(URI): #remove fragment identifier because they don't matter on the wire if ("#" in URI): URI = URI.split("#")[0] return URI def ci_to_URI(ci): return ci.split(":")[0][7:] import numpy import dill def proc_data(rets, results): for k in results.keys(): [Resources, Connections, Servers, Sockets] = results[k] ## if "comp0" in k and not "3-35-comp0.tbrlog" in k: ## spdyServers = [0] * len(Servers) ## countServers = [0] * len(Servers) ## for r in Resources: ## if r.mUsingSpdy == 1 and r.Server != None: ## spdyServers[Servers.index(r.Server)] = 1 ## if r.Server != None: ## countServers[Servers.index(r.Server)] += 1 ## ## ## for i in range(len(Servers)): ## if spdyServers[i] == 0: ## if countServers[i] > 20: ## print k ## for r in Resources: ## if Servers.index(r.Server) == i: ## print r.timeCreated, r.timeStarted, ## print r.timeRead, r.timeWritten, ## print r.timeEnded, r.ptr, r.URI ## sys.exit(-1) if len(Resources) == 0: continue ## for r in Resources: ## #tempfix for possible time issues ## r_times = [r.timeCreated, r.timeStarted, r.timeRead, r.timeWritten, r.timeEnded] ## for i in reversed(range(4)): ## if r_times[i] > r_times[i+1]: ## r_times[i] = r_times[i+1] ## [r.timeCreated, r.timeStarted, r.timeRead, r.timeWritten, r.timeEnded] = r_times ## this_rets = [] ## for r in Resources: ## this_rets.append([r.dispatched, r.mUsingSpdy]) ## if not k in rets.keys(): ## rets[k] = {} ## rets[k]["res.dispatch"] = this_rets #PAGE LOAD TIME AND RES COUNT sResources = [] for r in Resources: if r.timeEnded != None: sResources.append(r) sResources = sorted(sResources, key = lambda r:r.timeEnded) eind = int(len(sResources) * 0.95) endtime = sResources[eind].timeEnded starttime = Resources[0].timeCreated for r in Resources: if r.timeCreated != None: if starttime == None: starttime = r.timeCreated starttime = min(r.timeCreated, starttime) if (endtime != None and starttime != None): if not k in rets.keys(): rets[k] = {} rets[k]["page.t"] = endtime-starttime rets[k]["res.count"] = len(Resources) #Resource server ids and using spdy this_rets = [] for r_i in range(len(Resources)): if Resources[r_i].Server != None: this_rets.append([Resources[r_i].mUsingSpdy, Servers.index(Resources[r_i].Server)]) rets[k]["res.spdy"] = this_rets if len(this_rets) != 0: count = 0 for i in range(len(this_rets)): if this_rets[i][0] == 1: count += 1 rets[k]["page.spdypct"] = float(count)/float(len(this_rets)) else: rets[k]["page.spdypct"] = 0 ## if rets[k]["page.spdypct"] != 0: ## print rets[k]["page.spdypct"] pagesize = 0 for r in Resources: if r.timeEnded != None: pagesize += r.countWritten if not k in rets.keys(): rets[k] = {} rets[k]["page.size"] = pagesize #TOTAL LOAD TIMES sResources = sorted(Resources, key = lambda r:r.timeEnded) eind = int(len(Resources) * 0.95) er = sResources[eind] listr = [] cr = er while cr.parentind != -1: listr.append(cr) if cr.parentind >= Resources.index(cr): print "Warning:", k, "has parent greater than child" break cr = Resources[cr.parentind] listr.append(Resources[0]) #root was not included in above listr = listr[::-1] #list of "critical" resources this_times = [0, 0, 0, 0] rtt = 0 for rind in range(len(listr)): r = listr[rind] if rind == len(listr) - 1: nexttime = r.timeEnded else: nexttime = listr[rind+1].timeCreated if nexttime == None: continue r_times = [r.timeCreated, r.timeStarted, r.timeRead, r.timeWritten, r.timeEnded] if r_times[4] == None: #sometimes a resource does not declare itself finished r_times[4] = nexttime if not (None in r_times): for i in range(4): diff = min(r_times[i+1] - r_times[i], nexttime - r_times[i]) if diff < 0: diff = 0 this_times[i] += diff rets[k]["page.tcat"] = this_times #RTT counting #the following incur RTT: #default = 1 RTT #new connection = 1 RTT, 2 RTT if HTTPS seenConnections = [] for r in listr: rtt += 1 if not (r.Connection in seenConnections): seenConnections.append(r.Connection) rtt += 1 if len(r.URI) > 5 and r.URI[:5] == "https": rtt += 1 #another one rets[k]["page.rtt"] = rtt ## #RESOURCE LOAD TIMES ## this_rets = [] ## for r in Resources: ## r_times = [r.timeCreated, r.timeStarted, r.timeRead, r.timeWritten, r.timeEnded] ## r_rets = [] ## if not (None in r_times): ## for i in range(4): ## r_rets.append(r_times[i+1] - r_times[i]) ## this_rets.append(r_rets) ## if not (k in rets.keys()): ## rets[k] = {} ## rets[k]["res.t"] = this_rets ## ## #SLOW RESOURCE LOAD TIMES ## this_rets = [] ## for r in Resources: ## if r.mUsingSpdy == 0: ## continue ## accept = 0 ## for r2 in Resources: ## if r != r2: ## if r.Connection == r2.Connection: ## if r2.timeWritten < r.timeCreated and \ ## r2.timeEnded > r.timeCreated: ## accept = 1 ## if accept == 0: ## continue ## r_times = [r.timeCreated, r.timeStarted, r.timeRead, r.timeWritten, r.timeEnded] ## r_rets = [] ## if not (None in r_times): ## for i in range(4): ## r_rets.append(r_times[i+1] - r_times[i]) ## this_rets.append(r_rets) ## if not (k in rets.keys()): ## rets[k] = {} ## rets[k]["res.slowt"] = this_rets generations = [0] * len(Resources) for rind in range(len(Resources)): r = Resources[rind] if r.parentind == -1: generations[rind] = 0 else: generations[rind] = generations[r.parentind] + 1 if not (k in rets.keys()): rets[k] = {} rets[k]["page.gencount"] = max(generations) r = Resources[0] r_times = [r.timeCreated, r.timeStarted, r.timeRead, r.timeWritten, r.timeEnded] r_rets = [] if not (None in r_times): for i in range(4): r_rets.append(r_times[i+1] - r_times[i]) rets[k]["firstrestimes"] = r_rets #RESOURCE TRANSFER RATES this_rets = [] for r in Resources: if r.timeWritten != None and r.timeEnded != None: this_rets.append([r.countWritten, r.timeEnded - r.timeWritten, r.mUsingSpdy]) rets[k]["res.writetimes"] = this_rets #DISPATCHED count ## this_rets = [] ## for r in Resources: ## if r.timeEnded != None: ## this_rets.append([Servers.index(r.Server), r.pipelined, r.dispatched]) ## rets.append(this_rets) ## for rind in range(len(Resources)): ## r = Resources[rind] #find simultaneously dispatched previous resources ## waittime = 0 ## for sind in range(rind): ## s = Resources[sind] ## if r.Server == s.Server and \ ## r.timeStarted != None and \ ## s.timeStarted != None and \ ## s.timeEnded != None and\ ## s.timeWritten != None and \ ## abs(r.timeStarted - s.timeStarted) < 0.01: ## if r.timeEnded > s.timeStarted: ## waittime += s.timeEnded - s.timeWritten ## rets.append(waittime) ## ## for r in Resources: ## if not (None in [r.timeCreated, r.timeStarted, ## r.timeRead, r.timeWritten, r.timeEnded]): ## this_times[-1].append([r.timeStarted - r.timeCreated, ## r.timeRead - r.timeStarted, ## r.timeWritten - r.timeRead, ## r.timeEnded - r.timeWritten]) ## ## dispatchtimes = [None] * len(Connections) ## for r in Resources: ## if r.Connection != None: ## conind = Connections.index(r.Connection) ## if dispatchtimes[conind] == None: ## dispatchtimes[conind] = r.timeStarted ## else: ## dispatchtimes[conind] = min(dispatchtimes[conind], ## r.timeStarted) ## for cind in range(len(Connections)): ## c = Connections[cind] ## if dispatchtimes[cind] != None and c.timeCreated != None: ## rets.append(dispatchtimes[cind] - c.timeCreated) ## print generations ## starttime = None ## for r in Resources: ## if r.timeCreated != None: ## starttime = r.timeCreated ## break ## for r in Resources: ## if r.timeCreated < starttime: ## starttime = r.timeCreated ## endtimes = [] ## for r in Resources: ## if r.timeEnded != None: ## endtimes.append(r.timeEnded) ## ind = int(len(endtimes) * 0.95) ## endtime = endtimes[ind] ## this_times.append(endtime-starttime) ## Server_sizes = [0]*len(Servers) ## for r in Resources: ## if r.Server != None: ## Server_ind = Servers.index(r.Server) ## Server_sizes[Server_ind] += 1 ## rets.append(max(Server_sizes)) ## if len(this_times) == 5: ## times.append(this_times) return rets import numpy count = 0 rcount = 0 rsize = 0 rsizes = [0]*1000000 fold = "data/treebatch-new/" fnames = ["comp-all-0.dill", "comp-all-1.dill", "comp-all-2.dill"] rets = {} #dictionary of file name: relevant returns, just like the dill itself results = [] for fname in fnames: print "Loading dill..." f = open(fold + fname, "r") results = dill.load(f) f.close() print "Processing dill..." proc_data(rets, results) del results rfnames = [] sfnames = [] word = "comp" for i in range(10): for j in range(50): rfnames.append(fold + "{}-{}-{}".format(i, j, word)) for i in range(200): for j in range(5): rfnames.append(fold + "{}-{}-{}".format(i, j, word)) for i in range(1000): rfnames.append(fold + "{}-{}".format(i+200, word)) sfnames.append(fold + "{}-{}".format(i+200, word)) ##grfnames = [] ##rfnames = [] ##for i in range(10): ## for j in range(50): ## rfnames.append(fold + "{}-{}-{}".format(i, j, word)) ##grfnames.append(rfnames) ##rfnames = [] ##for i in range(200): ## for j in range(5): ## rfnames.append(fold + "{}-{}-{}".format(i, j, word)) ##grfnames.append(rfnames) ##rfnames = [] ##for i in range(1000): ## rfnames.append(fold + "{}-{}".format(i+200, word)) ##grfnames.append(rfnames) rts = [] for k in range(3): totalWritten = 0 totalt = 0 spdyWritten = 0 spdyt = 0 totalCount = 0 spdyCount = 0 for rfname in rfnames: fname = rfname + str(k) + ".tbrlog" if fname in rets.keys(): this_rets = rets[fname]["res.writetimes"] for r in this_rets: if r[0] > 500000: totalWritten += r[0] totalt += r[1] totalCount += 1 if k == 0: rts.append([r[0], r[1]]) if r[2] == 1: spdyWritten += r[0] spdyt += r[1] spdyCount += 1 ## print totalWritten, totalt, totalCount, totalWritten/totalt print totalWritten, totalt, totalCount ## print spdyWritten, spdyt, spdyCount ##fout = open("rtt-time.txt", "w") ##for k in range(3): ## for rfname in rfnames: ## fname = rfname + str(k) + ".tbrlog" ## if fname in rets.keys(): ## fout.write("\t".join(str(a) for a in [k, rets[fname]["page.rtt"], rets[fname]["page.t"]]) + "\n") ##fout.close() ##for k in range(3): ## totallen = 0 ## totaltime = 0 ## count = 0 ## for rfname in rfnames: ## fname = rfname + str(k) + ".tbrlog" ## if fname in rets.keys(): ## for s in rets[fname]["res.writetimes"]: ## if s[0] > 50000 and s[2] == 1: ## count += 1 ## totallen += s[0] ## totaltime += s[1] ## print count, totallen, totaltime, totallen/totaltime ##for k in range(4): ## for m in range(4): ## print times[k][m]/counts[k] ##f = open("features.txt", "w") ##for rfname in rfnames: ## feats = [] ## for k in range(2): ## fname = rfname + str(k) + ".tbrlog" ## if fname in rets.keys(): ## feats.append([rets[fname]["page.t"], ## rets[fname]["page.size"], ## rets[fname]["page.gencount"], ## rets[fname]["page.spdypct"], ## rets[fname]["res.count"]]) ## else: ## break ## if len(feats) == 2: ## combfeats = [] ## for i in range(5): ## combfeats.append(feats[0][i] - feats[1][i]) ## for i in range(5): ## combfeats.append((feats[0][i] + feats[1][i])/2.0) ## f.write("\t".join([str(fs) for fs in combfeats]) + "\n") ##f.close() ##counts = [0, 0, 0, 0] ##times = [] ##slowtimes = [] ##for k in range(4): ## times.append([0, 0, 0, 0]) ## slowtimes.append([0, 0, 0, 0]) ##for rfname in rfnames: ## for k in range(4): ## fname = rfname + str(k) + ".tbrlog" ## if fname in rets.keys(): #### for r in rets[fname]["res.t"]: #### if len(r) == 4: #### for m in range(4): #### times[k][m] += r[m] #### counts[k] += 1 ## ## for r in rets[fname]["res.slowt"]: ## if len(r) == 4: ## for m in range(4): ## slowtimes[k][m] += r[m] ## counts[k] += 1 ## ##for k in range(4): ## for m in range(4): #### print times[k][m]/counts[k] ## print slowtimes[k][m]/counts[k] ##countpos = 0 ##countneg = 0 ##for rfname in rfnames: ## k = 0 ## fname = rfname + str(k) + ".tbrlog" ## if fname in rets.keys(): ## for r in rets[fname]["res.spdy"]: ## if r[0] == 1: ## countpos += 1 ## if r[0] == 0: ## countneg += 1 ## ##haspos = 0 ##hasneg = 0 ##for rfname in rfnames: ## k = 0 ## fname = rfname + str(k) + ".tbrlog" ## if fname in rets.keys(): ## foundpos = 0 ## for r in rets[fname]["res.spdy"]: ## if r[0] == 1: ## foundpos = 1 ## if foundpos == 1: ## haspos += 1 ## else: ## hasneg += 1 ##diffs = [] ##for rfname in rfnames: ## this_times = [] ## for k in range(2): ## fname = rfname + str(k) + ".tbrlog" ## if fname in rets.keys(): ## this_times.append(rets[fname]["page.t"]) ## else: ## break ## if len(this_times) == 2: ## diffs.append([rfname, this_times[1] - this_times[0]]) ##for time in times: ## print time/count for rfnames in grfnames: times = [] count = 0 for i in range(1, 2): times.append([0, 0, 0, 0]) for rfname in rfnames: this_times = [] for k in range(1, 2): fname = rfname + str(k) + ".tbrlog" if fname in rets.keys(): this_times.append(rets[fname]["page.tcat"]) else: continue if len(this_times) == 1: for k in range(0, 1): for m in range(4): times[k][m] += this_times[k][m] count += 1 c = 0 for t in times: for a in t: c += a/count print c ##tars = [18.371, 17.641, 18.7] ##for time in times: ## c = 0 ## for m in range(4): ## c += time[m]/count ## print c, ## print tars[times.index(time)] - c, "" ##times = [0, 0, 0, 0] ##count = 0 ##for rfname in rfnames: ## this_times = [] ## for k in range(4): ## fname = rfname + str(k) + ".tbrlog" ## if fname in rets.keys(): ## this_times.append(rets[fname]["page.t"]) ## else: ## break ## if len(this_times) == 4: ## for k in range(4): ## times[k] += this_times[k] ## count += 1 ##for time in times: ## print time/count #for pipelining size experiment #first, re-sort ##time_sizes = [[], [], [], []] ##for rets in total_rets: ## if len(rets) != 5: ## continue ## for i in range(4): ## time_sizes[i].append(rets[i+1]) ## ##for i in range(4): ## ts = time_sizes[i] ## ts = sorted(ts, key = lambda k:k[1]) ## for j in range(4): ## start = int(j/4.0 * len(ts)) ## end = min(int((j+1)/4.0 * len(ts)), len(ts) - 1) ## print numpy.mean([t[0] for t in ts[start:end]]) ##goodservercount = 0 ##badservercount = 0 ##for page in rets: ## maxserver_ind = 0 ## for res in page: ## [server_ind, is_pipeline, dispatchcount] = res ## maxserver_ind = max(maxserver_ind, server_ind) ## goodservers = [-1] * (maxserver_ind+1) ## for res in page: ## [server_ind, is_pipeline, dispatchcount] = res ## if is_pipeline == 1: ## if goodservers[server_ind] == -1: ## goodservers[server_ind] = 1 ## if dispatchcount > 1: ## goodservers[server_ind] = 0 ## goodservercount += goodservers.count(1) ## badservercount += goodservers.count(0) ##times = [0, 0, 0, 0, 0] ##for x in total_rets: ## for i in range(5): ## times[i] += x[i] ##for t in times: ## print t/float(len(total_rets)) #code for getting transfer times ##times = [0, 0, 0, 0] ##for x in total_rets: ## for i in range(4): ## times[i] += x[i] ##c = 0 ##for i in range(4): ## c += times[i]/len(total_rets) ## print c ## print times[i]/len(total_rets)
UTF-8
Python
false
false
24,986
py
8
logreader-dill.py
5
0.484511
0.468943
0
745
32.538255
111
will-hill/AI_Based_Hyperparameter_Tuning
4,398,046,521,257
f9b0a2590972d01026e13026e49425f603f4ccdc
2a9b6d13213a8a8e816cf0480ddee80ed6af5102
/src/rf_objective.py
b5ad4d1ccdd1059df4e7f0415ce0740f1fe6d17a
[]
no_license
https://github.com/will-hill/AI_Based_Hyperparameter_Tuning
84ab65156bb0ce4be94b8d87005323207bfb4893
abd0090113fd1e90d5c47d9997a9920c5c41f946
refs/heads/master
2020-12-13T15:53:04.104367
2020-02-11T04:01:10
2020-02-11T04:01:10
234,463,468
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# %% def rf_ojbective(trial): from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import roc_curve from sklearn.metrics import auc import pandas as pd # Random Forest Params rf_params = { 'n_estimators': trial.suggest_int('n_estimators', 5, 2000), 'max_depth': trial.suggest_int('max_depth', 1, 1000) } """ 'criterion': trial.suggest_categorical('criterion', ['gini', 'entropy']), 'min_samples_split': trial.suggest_int('min_samples_split', 2, 2000), 'min_samples_leaf': trial.suggest_int('min_samples_leaf', 1, 100), 'min_weight_fraction_leaf': trial.suggest_int('min_weight_fraction_leaf', 0.0, 0.99), 'max_features': trial.suggest_uniform('max_features', 0.01, 0.99), 'max_leaf_nodes': trial.suggest_int('max_leaf_nodes', 0, 999), 'min_impurity_decrease': trial.suggest_int('min_impurity_decrease', 0.0, 0.99), 'min_impurity_split': trial.suggest_uniform('min_impurity_split', 0.0, 0.99), 'bootstrap': trial.suggest_categorical('bootstrap', [True, False]), 'oob_score': trial.suggest_categorical('oob_score', [False, True]), 'warm_start': trial.suggest_categorical('warm_start', [False, True]), 'class_weight': trial.suggest_categorical('class_weight', [None, "balanced", "balanced_subsample"]), 'ccp_alpha': trial.suggest_uniform('ccp_alpha', 0.0, 0.99), 'max_samples': trial.suggest_uniform('max_samples', 0.5, 1.0) }""" results = [] # Induction for i in range(0,6): train = pd.read_feather('../data/train_'+str(i)+'.ftr').set_index('TransactionID') X_train = train.drop(['isFraud', 'ProductCD'], axis=1) y_train = train['isFraud'] print(y_train.sample(3)) del train test = pd.read_feather('../data/test_' +str(i)+'.ftr').set_index('TransactionID') X_test = test.drop(['isFraud', 'ProductCD'], axis=1) y_test = test['isFraud'] print(y_test.sample(3)) del test print('rf') clf = RandomForestClassifier(random_state=0, **rf_params) print('rf fit') clf.fit(X_train, y_train) print('rf score') # auc, roc_auc_score, average_precision_score fpr, tpr, thresholds = roc_curve(y_test, [y_hat[1] for y_hat in clf.predict_proba(X_test)], pos_label=1) result = 1 - auc(fpr, tpr) results.append(result) print('result ') return results.mean() #%% import optuna study = optuna.create_study() study.optimize(rf_ojbective, n_trials=1)
UTF-8
Python
false
false
2,656
py
13
rf_objective.py
4
0.596386
0.572289
0
62
41.854839
112
fkuhn/fedora_microservices
11,527,692,273,304
ef27d8d7944d741d5ef23146301da9632a98fbca
a29bf8fba2deb473580e12b9e24326df772f6ba6
/src/content_model_listeners/islandoradm.py
2757f771554ff0e93066dfece341b7c500f73d60
[]
no_license
https://github.com/fkuhn/fedora_microservices
18b269f4d1e7a19dbf5b7415fc0a54208be486f8
b0701e258c77732fa0aff450c96f96acf6c6060a
refs/heads/master
2021-01-16T17:45:39.514082
2010-11-24T19:55:34
2010-11-24T19:55:34
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
''' Created on 2010-10-16 @author: jesterhazy ''' import os import subprocess import sys import fcrepo.connection import tempfile from shutil import rmtree from fcrepo.client import FedoraClient from fcrepo.utils import NS abby_home = '/usr/local/ABBYYData/FRE80_M5_Linux_part_498-28_build_8-1-0-7030/Samples/CLI/' def read_in_chunks(file_object, chunk_size=524288): """Lazy function (generator) to read a file piece by piece. Default chunk size: 512k.""" while True: data = file_object.read(chunk_size) if not data: break yield data def sysout(msg, end='\n'): sys.stdout.write(str(msg) + end) def make_jp2(): subprocess.call(["kdu_compress", "-i", "tmp.tiff", "-o", "tmp.jp2", "-rate", "0.5", "Clayers=1", "Clevels=7", "Cprecincts={256,256},{256,256},{256,256},{128,128},{128,128},{64,64},{64,64},{32,32},{16,16}", "Corder=RPCL", "ORGgen_plt=yes", "ORGtparts=R", "Cblk={32,32}", "Cuse_sop=yes"]) def make_jp2_lossless(): subprocess.call(["kdu_compress", "-i", "tmp.tiff", "-o", "tmp_lossless.jp2", "-rate", "-,0.5", "Clayers=2", "Creversible=yes", "Clevels=8", "Cprecincts={256,256},{256,256},{128,128}", "Corder=RPCL", "ORGgen_plt=yes", "ORGtparts=R", "Cblk={32,32}"]) def make_tn(): # would like 85x110^ instead of 85x110!, but need imagemagick upgrade first ( >= 6.3.8-2) subprocess.call(["convert", "tmp.tiff", "-thumbnail", "85x110!", "-gravity", "center", "-extent", "85x110", "tmp.jpg"]) def make_ocr(tmpdir): global abby_home os.chdir(abby_home) subprocess.call(["./CLI", "-ics", "-if", "%(dir)s/tmp.tiff" % {'dir': tmpdir}, "-f", "PDF", "-pem", "ImageOnText", "-pfpf", "Automatic", "-pfq", "90", "-pfpr", "150", "-of", "%(dir)s/tmp.pdf" % {'dir': tmpdir}, "-f", "XML", "-xaca", "-of", "%(dir)s/tmp.xml" % {'dir': tmpdir}, "-f", "Text", "-tel", "-tpb", "-tet", "UTF8", "-of", "%(dir)s/tmp.txt" % {'dir': tmpdir}]) def attach_datastream(obj, tmpdir, filename, dsid, dslabel, mime_type): if dsid not in obj: f = open('%s/%s' % (tmpdir, filename), 'r') obj.addDataStream(dsid, dslabel, controlGroup=unicode('M'), mimeType=unicode(mime_type)) obj[dsid].setContent(f) f.close() else: sysout('datastream %s already exists' % (dsid)) def process(obj, dsid): if dsid == 'tiff': cwd = os.getcwd() tmpdir = tempfile.mkdtemp() os.chdir(tmpdir) # fetch tiff f = open(tmpdir + '/tmp.tiff', 'w') # f.write(obj['tiff'].getContent().read()) # f.close() content = obj['tiff'].getContent() for chunk in read_in_chunks(content): f.write(chunk) f.flush() os.fsync(f.fileno()) f.close() # do conversions make_tn() make_jp2() make_jp2_lossless() make_ocr(tmpdir) # attach to fedora object attach_datastream(obj, tmpdir, 'tmp.jpg', 'tn', 'thumbnail image', 'image/jpeg') attach_datastream(obj, tmpdir, 'tmp.jp2', 'jp2', 'jp2 image', 'image/jp2') attach_datastream(obj, tmpdir, 'tmp_lossless.jp2', 'jp2lossless', 'jp2 image (lossless)', 'image/jp2') attach_datastream(obj, tmpdir, 'tmp.xml', 'xml', 'ocr xml', 'text/xml') attach_datastream(obj, tmpdir, 'tmp.txt', 'text', 'ocr text', 'text/plain') attach_datastream(obj, tmpdir, 'tmp.pdf', 'pdf', 'pdf', 'application/pdf') rmtree(tmpdir, ignore_errors = True) os.chdir(cwd) else: sysout('islandoradm: ignoring dsid: %s' % (dsid)) return obj
UTF-8
Python
false
false
3,646
py
6
islandoradm.py
4
0.575699
0.532913
0
94
37.787234
290
eldojk/Workspace
2,903,397,918,501
a2073f92abdb8a0812eb6b522ca36d1b308d9957
a9dfc35814bde9f387bb78db2e8566c08e38b635
/WS/G4G/Problems/arrays/check_duplicates_at_k_distance.py
231fa0c474c7fb2ff3f8e47c9d46bc51d65338cb
[]
no_license
https://github.com/eldojk/Workspace
b6c87f7ab74c4a3bb8585fdfa36a24a731f280f8
224626665a2b4c0cf701731f4e4dc96c93a26266
refs/heads/master
2021-01-19T13:33:09.378172
2017-11-14T17:53:09
2017-11-14T17:53:09
82,396,876
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" amzn http://www.geeksforgeeks.org/check-given-array-contains-duplicate-elements-within-k-distance/ """ def check_duplicates(array, k): dict = {} for i in range(len(array)): if dict.get(array[i]): return True else: dict[array[i]] = True if i - k >= 0: dict[array[i - k]] = False return False if __name__ == '__main__': print check_duplicates([1, 2, 3, 4, 1, 2, 3, 4], 3) print check_duplicates([1, 2, 3, 1, 4, 5], 3) print check_duplicates([1, 2, 3, 4, 5], 3) print check_duplicates([1, 2, 3, 4, 4], 3)
UTF-8
Python
false
false
602
py
586
check_duplicates_at_k_distance.py
583
0.534884
0.486711
0
27
21.296296
93
PetrCala/Hearthstone_Archmage
4,492,535,828,703
dfa9374bf7e92e106b3fb9885f60a6eed27fc5a2
f3c16983880fc5f8b3824e81ebc9686f176340fd
/pyscripts/DataExtractor.py
47976c175cf13adeb75c8a719075f9c836f82a67
[]
no_license
https://github.com/PetrCala/Hearthstone_Archmage
32697a75e4fc0e7efd060c937df82ee06e99c532
621c6ec7ac0be99078f1320738bce4918beacf71
refs/heads/main
2023-07-11T06:40:32.128171
2021-08-11T14:55:30
2021-08-11T14:55:30
377,523,117
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#External browser Selenium from selenium import webdriver from selenium.common.exceptions import TimeoutException from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC #Other useful packages import sys from datetime import date import pandas as pd import numpy as np import re import warnings import os #Silence the deprecation warning when minimizing the external drivers warnings.filterwarnings('ignore', category=DeprecationWarning) class DataExtractor: '''Extract data from the hsreplay.net website for either some or all archetypes in the game. ''' def __init__(self, driver_path = None, deck_folder = None): ''' The constructor for DataExtractor class. ''' #Defining file paths self.base_path = re.search(f'(.+)Hearthstone_Archmage', os.getcwd()).group(1)\ + 'Hearthstone_Archmage' script_path = self.base_path + '\\pyscripts' if script_path not in sys.path: sys.path.insert(0, script_path) if driver_path == None: self.driver_path = f'{self.base_path}\\tools\\chromedriver' else: self.driver_path = driver_path if deck_folder == None: self.deck_folder = f'{self.base_path}\\data' else: self.deck_folder = deck_folder def open_driver(self): '''Open an empty driver with the specified driver path. :returns: - None: An open empty driver. ''' self.driver = webdriver.Chrome(self.driver_path) return None def open_website(self, link = f'https://hsreplay.net/decks'): '''Insert a link and open a website using said link. :args: - link (str): The link to open the website on. Set to f'https://hsreplay.net/decks' by default. :usage: self.open_website(f'https://hsreplay.net/decks') :returns: - None: An open website using a specified link. ''' self.open_driver() self.driver.get(link) self.driver.maximize_window() try: WebDriverWait(self.driver, 10).until(lambda x: x.find_element_by_class_name('css-flk0bs')) self.driver.find_element_by_class_name('css-flk0bs').click() except TimeoutException: raise Exception('The privacy window has not shown up; try running the script again') print('Website successfully opened') return None def get_card_info(self): '''Analyze the mulligan guide page of a deck and store this information in a data frame. :assumptions: - An already opened driver with a window containing the mulligan guide information. :usage: (self.open_website(specify_link_here)) -> self.get_card_info() :returns: - df (pd.DataFrame): A data frame containing data about the cards from a given deck. ''' url = self.driver.current_url name_of_class = self.driver.find_element_by_xpath('//*[@id="deck-container"]/div/aside/ul/li[1]/a').text try: name_of_deck = self.driver.find_element_by_xpath('//*[@id="deck-container"]/div/aside/ul/li[2]/span/a').text except: name_of_deck = 'Other' code = re.search('decks/(.+?)/', url).group(1) date_of_deck = date.today() #Generating the card names data card_names = self.driver.find_elements_by_class_name('table-row-header') cards = [] for c in card_names: info = c.text txt = info.rsplit('\n') if len(txt) == 3: mana_cost = int(txt[0]) card_name = txt[2] card_count = int(txt[1].replace('★', '1')) row = [name_of_class, name_of_deck, code, date_of_deck, mana_cost, card_name, card_count] cards.append(row) elif len(txt) == 2: mana_cost = int(txt[0]) card_name = txt[1] card_count = 1 row = [name_of_class, name_of_deck, code, date_of_deck, mana_cost, card_name, card_count] cards.append(row) else: raise Exception('Error - the scraper is not reading the card information properly') #Generating the card details data data = self.driver.find_elements_by_class_name('table-cell') further_info = [] for d in range(int(len(data)/6)): try: mull_wr = data[0+6*d].text.replace('▼', '').replace('▲', '') per_kept = data[1+6*d].text drawn_wr = data[2+6*d].text.replace('▼', '').replace('▲', '') played_wr = data[3+6*d].text.replace('▼', '').replace('▲', '') turns_held = float(data[4+6*d].text) turns_played = float(data[5+6*d].text) row = [mull_wr, per_kept, drawn_wr, played_wr, turns_held, turns_played] except ValueError: print('Some cards in this deck contain missing data') row = [] further_info.append(row) #Concatenating the two data frames together df_card = pd.DataFrame(cards, columns = ['Class', 'Deck Name', 'Deck Code', 'Date', 'Mana Cost', 'Card Name', 'Card Count']) df_further = pd.DataFrame(further_info, columns = ['Mulligan WR', 'Kept', 'Drawn WR', 'Played WR', 'Turns Held', 'Turn Played']) df = pd.concat([df_card, df_further], axis = 1) return df def get_overview(self): '''Analyze the overview page of a deck and store this information in a data frame. :assumptions: - An already opened driver with a window containing the overview information. :usage: (self.open_website(specify_link_here)) -> self.get_overview() :returns: - df (pd.DataFrame): A data frame containing an overview a given deck. (e.g., deck code, win rates, game sample size) ''' data = self.driver.find_elements_by_xpath("//tr/td[2]") url = self.driver.current_url name_of_class = self.driver.find_element_by_xpath('//*[@id="deck-container"]/div/aside/ul/li[1]/a').text try: name_of_deck = self.driver.find_element_by_xpath('//*[@id="deck-container"]/div/aside/ul/li[2]/span/a').text except: name_of_deck = 'Other' code = re.search('decks/(.+?)/', url).group(1) date_of_deck = date.today() overview = [name_of_class, name_of_deck, code, date_of_deck] for d in data: text = d.text.replace('▼', '').replace('▲', '') overview.append(text) #Add sample size manually sample_size = int(self.driver.find_element_by_xpath("//*[@id='deck-container']/div/aside/section/ul/li[1]/span").text.replace(' games', '').replace(',','')) overview.append(sample_size) overview = [overview] df = pd.DataFrame(overview, columns = ['Class', 'Deck Name', 'Deck Code', 'Date', 'Match Duration', 'Turns', 'Turn Duration', 'Overall Winrate', 'vs. Demon Hunter', 'vs. Druid', 'vs. Hunter', 'vs. Mage', 'vs. Paladin', 'vs. Priest', 'vs. Rogue', 'vs. Shaman', 'vs. Warlock', 'vs. Warrior', 'Sample Size']) return df def get_archetype_data(self, class_name, arch_name): '''Specify the name for the archetype and return the data from the hsreplay website for the given archetype. :args: - class_name (str): Name of the class. - arch_name (str): Name of the archetype. :usage: self.driver.get_archetype_data(class_name = 'Rogue', arch_name = 'Miracle Rogue') - The method is case sensitive. An wrongly formatted input returns error. :returns: - data_frames (pandas.DataFrame): A data frame containing data for the given archetype. ''' #Pre-processing and identifying the data class_name = class_name.title() arch_name = arch_name.title() class_codes = {'Demon Hunter' : 1, 'Druid' : 2, 'Hunter' : 3, 'Mage' : 4, 'Paladin' : 5, 'Priest' : 6, 'Rogue' : 7 , 'Shaman' : 8, 'Warlock' : 9, 'Warrior' : 10} class_index = class_codes.get(class_name) if class_index == None: raise Exception('The class name is not correctly specified (e.g. Demon Hunter, Warlock, etc.)') else: pass #The actual process self.open_website() #Open the page for the specified archetype u = WebDriverWait(self.driver, 8) u.until(EC.presence_of_element_located((By.CLASS_NAME,"deck-tile"))) xpath_class = f'//*[@id="player-class-filter"]/div/div[1]/span[{class_index}]/div/img' x = self.driver.find_element_by_xpath(xpath_class) x.click() xpath_arch = f'//*[@id="player-class-filter"]/div/div[2]/div/ul/li/span[text() = "{arch_name}"]' y = self.driver.find_element_by_xpath(xpath_arch) y.click() deck_amount = len(self.driver.find_elements_by_xpath('//*[@id="decks-container"]/main/div[3]/section/ul/li/a')) #Generate the card info for each of the decks of a given archetype data_frames = [] overviews_df = pd.DataFrame() for d in range(deck_amount): u = WebDriverWait(self.driver, 8) u.until(EC.presence_of_element_located((By.CLASS_NAME,"deck-tile"))) index = d + 2 xpath_deck = f'//*[@id="decks-container"]/main/div[3]/section/ul/li[{index}]/a' l = self.driver.find_element_by_xpath(xpath_deck) l.click() try: u.until(EC.presence_of_element_located((By.CLASS_NAME,"sort-header__title"))) card_info = self.get_card_info() data_frames.append(card_info) except: print('This deck is missing card data') pass #Switch to overview overview_button = self.driver.find_element_by_id('tab-overview') overview_button.click() try: u.until(EC.presence_of_element_located((By.CLASS_NAME,"winrate-cell"))) overview = self.get_overview() overviews_df = overviews_df.append(overview) except: print('This deck is missing overview data') pass deck_position = d + 1 print(f'Extracted data for {deck_position}/{deck_amount} decks of archetype {arch_name}') self.driver.back() data_frames.insert(0, overviews_df) self.driver.quit() return data_frames def archetype_to_excel(self, class_name, arch_name): '''Specify the class name, archetype name and folder path and return an excel file with all informations about said archetype in said folder :args: - class_name (str): Name of the class. - arch_name (str): Name of the archetype. :usage: self.archetype_to_excel(class_name = 'Rogue', archetype = 'Miracle Rogue', 'path' = ) ''' class_name = class_name.title() arch_name = arch_name.title() today = date.today().strftime("%m-%d") path_partial = f'{self.deck_folder}\\{today}' #Assert the existence of a folder into which to add the data if not os.path.exists(path_partial): os.makedirs(path_partial) print(f'Creating a folder {today} where the data will be stored') #Get the archetype data df = self.get_archetype_data(class_name, arch_name) #Get the number of data frames to write into excel sheet_n = len(df) #Write these data frames into excel path = f'{self.deck_folder}\\{today}\\{class_name} - {arch_name} {today}.xlsx' with pd.ExcelWriter(path) as writer: for i in range(sheet_n): if i == 0: df[i].to_excel(writer, sheet_name = 'Overview', index = False) else: index = i - 1 temp = df[0].reset_index() deck_code = temp.loc[index, 'Deck Code'] df[i].to_excel(writer, sheet_name = f'{deck_code}', index = False) print('All done') return df def get_all_data(self, classes_skip = 0): '''Return all the data from the hsreplay website as several data frames. The data is chronologically collected in the order: Demon Hunter, Druid, Hunter, Mage, Paladin, Priest, Rogue, Shaman, Warlock, Warrior. :args: - classes_skip (int): Define how many classes to skip when collecting the data. ''' today = date.today().strftime("%m-%d") path_partial = f'{self.deck_folder}\\{today}' #Assert the existence of a folder into which to add the data if not os.path.exists(path_partial): os.makedirs(path_partial) print(f'Creating a folder {today} where the data will be stored') self.open_website() #Get the classes as a list of the html elements u = WebDriverWait(self.driver, 8) u.until(EC.presence_of_element_located((By.CLASS_NAME,"deck-tile"))) classes_len = len(self.driver.find_elements_by_xpath('//*[@id="player-class-filter"]/div/div[1]/span/div/img')) for c in range(classes_len): index = c + classes_skip + 1 xpath_class = f'//*[@id="player-class-filter"]/div/div[1]/span[{index}]/div/img' c = self.driver.find_element_by_xpath(xpath_class) class_name = c.get_attribute('alt').title() c.click() #Go to the website of the class archetype_length = len(self.driver.find_elements_by_xpath('//*[@id="player-class-filter"]/div/div[2]/div/ul/li/span')) for a in range(archetype_length): index = a + 1 xpath_arch = f'//*[@id="player-class-filter"]/div/div[2]/div/ul/li[{index}]/span' k = self.driver.find_element_by_xpath(xpath_arch) k.click() data_frames = [] arch_name = k.text.title() url = self.driver.current_url arch_code = re.search('archetypes=(.+)', url).group(1) overviews_df = pd.DataFrame() deck_amount = len(self.driver.find_elements_by_xpath('//*[@id="decks-container"]/main/div[3]/section/ul/li/a')) #Generate the card info for each of the decks of a given archetype for d in range(deck_amount): u = WebDriverWait(self.driver, 8) u.until(EC.presence_of_element_located((By.CLASS_NAME,"deck-tile"))) index = d + 2 xpath_deck = f'//*[@id="decks-container"]/main/div[3]/section/ul/li[{index}]/a' l = self.driver.find_element_by_xpath(xpath_deck) l.click() try: u.until(EC.presence_of_element_located((By.CLASS_NAME,"sort-header__title"))) card_info = self.get_card_info() data_frames.append(card_info) except: print('This deck is missing card data') pass #Switch to overview overview_button = self.driver.find_element_by_id('tab-overview') overview_button.click() try: u.until(EC.presence_of_element_located((By.CLASS_NAME,"winrate-cell"))) overview = self.get_overview() overviews_df = overviews_df.append(overview) except: print('This deck is missing overview data') pass deck_position = d + 1 print(f'Extracted data for {deck_position}/{deck_amount} decks of archetype {arch_name}') self.driver.back() u = WebDriverWait(self.driver, 8) u.until(EC.presence_of_element_located((By.CLASS_NAME,"deck-tile"))) k = self.driver.find_element_by_xpath(xpath_arch) k.click() #Add the overview data frame to the beginning of the list data_frames.insert(0, overviews_df) #Get the number of data frames to write into excel sheet_n = len(data_frames) #Write these data frames into excel path = f'{path_partial}\\{class_name} - {arch_name} {today}.xlsx' with pd.ExcelWriter(path) as writer: for i in range(sheet_n): if i == 0: data_frames[i].to_excel(writer, sheet_name = 'Overview', index = False) else: index = i - 1 temp = data_frames[0].reset_index() deck_code = temp.loc[index, 'Deck Code'] data_frames[i].to_excel(writer, sheet_name = f'{deck_code}', index = False) self.driver.quit() print('All done') return data_frames if __name__ == '__main__': E = DataExtractor() E.open_website()
UTF-8
Python
false
false
18,503
py
27
DataExtractor.py
9
0.529132
0.524858
0
452
39.89823
164
gwgundersen/codebook
16,338,055,602,200
d933a447a92b9a9cc2850c37fdfb9bef04864274
25757d40e1b2640dbed688d6cc803e3d9a5341be
/codebook/endpoints/index.py
fd52e02293ed43739d7187dad3edaf852d33911b
[ "MIT" ]
permissive
https://github.com/gwgundersen/codebook
99d0b2c1fa65e81222e78a29d2bdcd6045b178b1
ff6d808c4c50de80f9a3c3f9d6898b9b3fdeae74
refs/heads/master
2021-01-20T04:47:55.469912
2017-04-30T22:41:19
2017-04-30T22:41:19
89,736,423
3
0
null
null
null
null
null
null
null
null
null
null
null
null
null
"""Return JSON representations of codebook data.""" from flask import Blueprint, jsonify, request import pickle index_blueprint = Blueprint('index', __name__, url_prefix='/api') db = pickle.load(file('codebook/db.pck', 'rb')) @index_blueprint.route('/codebook/', methods=['GET']) def get_all_codebook_data(): """Return all codebook data """ if 'q' in request.args: q = request.args.get('q') results = _search_description_by_query(q) else: results = [_prepare_data(code, data) for code, data in db.items()] return jsonify(results) @index_blueprint.route('/codebook/<string:code>', methods=['GET']) def get_specific_codebook_data(code): """Return codebook data for associated code. """ try: data = db[code] except KeyError: return jsonify({ 'status': 'error', 'message': 'Invalid codename.' }) return jsonify(_prepare_data(code, data)) def _prepare_data(code, data): """Format data for API. """ results = { 'code': code, 'description': data['description'] } results.update(_add_metadata(data)) return results def _add_metadata(data): """Builds question metadata based on specified fields. """ keys = ['type', 'label', 'range', 'units', 'unique values', 'missing', 'source file'] results = {} for key, val in data.items(): if key in keys: results[key] = val return results def _search_description_by_query(q): """Returns questions whose description contains the query. """ results = [] for code, data in db.items(): if q in data['description']: results.append(_prepare_data(code, data)) return results
UTF-8
Python
false
false
1,817
py
19
index.py
5
0.583379
0.583379
0
71
24.605634
74
alejogonza/holbertonschool-higher_level_programming
9,680,856,329,045
0059474ee5ce6b774597d21533fd2d3771224c5d
0c47c4fe166c2d457c608aa9339ec4aac5f19bb3
/0x04-python-more_data_structures/12-roman_to_int.py
efa88951ced6f0b103cedd23bff39ffaf1fba99d
[]
no_license
https://github.com/alejogonza/holbertonschool-higher_level_programming
dbc6c933be158e330aff7f035a107af62b3dd61c
7a7ab877a8eb220e3238ede9110353069ddfe3c7
refs/heads/master
2020-07-22T21:11:59.823541
2020-02-13T21:42:19
2020-02-13T21:42:19
207,329,112
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python3 def roman_to_int(roman_string): if isinstance(roman_string, str) is False or roman_string is None: return (0) res = 0 rom_str = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000} for i in range(len(roman_string), 0, -1): if roman_string[i-1] in rom_str: res += rom_str[roman_string[i-1]] if i != 0 and (i-2) >= 0: if rom_str[roman_string[i - 2]] < rom_str[roman_string[i - 1]]: res -= (2 * rom_str[roman_string[i - 2]]) else: return (0) return (res)
UTF-8
Python
false
false
600
py
72
12-roman_to_int.py
61
0.49
0.438333
0
15
39
79
rkaramc/celery-dedupe
6,949,257,088,648
2df7aa75a166786e05db11380290b1778cf5d170
1384f98033dbd5020f53506b524263322c7a7e30
/setup.py
a50f9c6d22aa82e75ea957b63a771a45d06e0df8
[ "MIT" ]
permissive
https://github.com/rkaramc/celery-dedupe
a626de0c2d0b74b2639382e4e19f450e664f58b5
d31c8ec3e40b58c7b58fb1adb1472e46db1bbafd
refs/heads/master
2020-07-28T08:50:19.912255
2016-11-10T22:00:37
2016-11-10T22:00:37
73,416,331
0
0
null
true
2016-11-10T20:19:54
2016-11-10T19:57:16
2016-11-10T19:57:17
2016-11-10T20:19:53
196
0
0
0
Python
null
null
#!/usr/bin/env python from setuptools import setup, find_packages with open('README.md') as f: readme = f.read() setup( name='celery-dedupe', version='0.0.1', description='Deduplication of Celery tasks', author='Joe Alcorn', author_email='joealcorn123@gmail.com', url='https://github.com/joealcorn/celery-dedupe', packages=find_packages(), package_data={ 'celery_dedupe': ['README.md'], }, long_description=readme, license='MIT', classifiers=( 'Intended Audience :: Developers', 'Natural Language :: English', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', ), )
UTF-8
Python
false
false
740
py
13
setup.py
9
0.614865
0.604054
0
29
24.517241
53
cindy820219/python-realbook
5,454,608,501,748
a36bcb422b4b36df6f0b382b3bd4fd81efbcc979
b89bc3608d525d6b3719e0d14269f8d28b285196
/realbook/measure.py
96631df1deec1f9941f6262d92367fecd674010b
[]
no_license
https://github.com/cindy820219/python-realbook
4764b53b2a200112d3a9d82b3476cbea5661c850
b99daace9f05095c64c23337c03ab986f48bd2f3
refs/heads/master
2021-01-10T13:41:57.842336
2010-05-20T13:47:57
2010-05-20T13:47:57
42,981,886
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python # -*- encoding: utf-8 -*- # # Copyright (C) 2010 Vittorio Palmisano <vpalmisano at gmail dot com> # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. # import math from chord import Chord from symbol import Symbol def make_key_signatures(): key_signatures = {} # maj key_signatures['C'] = {'maj': []} key_signatures['Cb'] = {'maj': ['B4b', 'E5b', 'A4b', 'D5b', 'G4b', 'C5b', 'F4b']} key_signatures['C#'] = {'maj': ['F5#', 'C5#', 'G5#', 'D5#', 'A4#', 'E5#', 'B4#']} key_signatures['D'] = {'maj': ['F5#', 'C5#']} key_signatures['Db'] = {'maj': ['B4b', 'E5b', 'A4b', 'D5b', 'G4b']} key_signatures['E'] = {'maj': ['F5#', 'C5#', 'G5#', 'D5#']} key_signatures['Eb'] = {'maj': ['B4b', 'E5b', 'A4b']} key_signatures['F'] = {'maj': ['B4b']} key_signatures['F#'] = {'maj': ['F5#', 'C5#', 'G5#', 'D5#', 'A4#', 'E5#']} key_signatures['G'] = {'maj': ['F5#']} key_signatures['Gb'] = {'maj': ['B4b', 'E5b', 'A4b', 'D5b', 'G4b', 'C5b']} key_signatures['G#'] = {'maj': ['F5#', 'C5#', 'G5#', 'D5#', 'A4#']} key_signatures['A'] = {'maj': ['F5#', 'C5#', 'G5#']} key_signatures['Ab'] = {'maj': ['B4b', 'E5b', 'A4b', 'D5b']} key_signatures['B'] = {'maj': ['F5#', 'C5#', 'G5#', 'D5#', 'A4#']} key_signatures['Bb'] = {'maj': ['B4b', 'E5b']} # min key_signatures['C']['min'] = key_signatures['Eb']['maj'] key_signatures['Cb']['min'] = key_signatures['Bb']['maj'] key_signatures['C#']['min'] = key_signatures['E']['maj'] key_signatures['D']['min'] = key_signatures['F']['maj'] key_signatures['Db']['min'] = key_signatures['E']['maj'] key_signatures['E']['min'] = key_signatures['G']['maj'] key_signatures['Eb']['min'] = key_signatures['Gb']['maj'] key_signatures['F']['min'] = key_signatures['Ab']['maj'] key_signatures['F#']['min'] = key_signatures['A']['maj'] key_signatures['G']['min'] = key_signatures['Bb']['maj'] key_signatures['Gb']['min'] = key_signatures['A']['maj'] key_signatures['G#']['min'] = key_signatures['B']['maj'] key_signatures['A']['min'] = key_signatures['C']['maj'] key_signatures['Ab']['min'] = key_signatures['B']['maj'] key_signatures['B']['min'] = key_signatures['D']['maj'] key_signatures['Bb']['min'] = key_signatures['Db']['maj'] return key_signatures class Measure: def __init__(self, staff, index=0, time=(), key_signature=(), start_barline='single', stop_barline='single', ending='', section='', empty=False): self.staff = staff self.index = index self.time = time self.start_barline = start_barline self.stop_barline = stop_barline self.ending = ending self.section = section self.empty = empty self.chords = [] self.symbols = [] self.key_signature = key_signature self.key_signatures = make_key_signatures() # drawing properties self.reset_drawing() def __repr__(self): return '<Measure %d>' %(self.index) def add_chord(self, index, chord='', **kw): c = Chord(self, index, chord, **kw) self.chords.append(c) return c def add_symbol(self, index, symbol='', **kw): s = Symbol(self, index, symbol, **kw) self.symbols.append(s) return s def add_chords(self, chords, **kw): added = [] for i in xrange(len(chords)): c = Chord(self, i, chords[i], **kw) self.chords.append(c) added.append(c) return added def num_chords(self): n = 0 for chord in self.chords: if not chord.alternate: n += 1 return n def total_height(self): return self.height + self.top_height + self.bottom_height def reset_drawing(self): self.padding_left = 0 self.width = 0 self.height = 0 self.top_height = 0 self.bottom_height = 0 self.chords_left = 0 self.chords_padding_left = 0 self.top_heights = [] def draw(self, width, simulate=False): self.reset_drawing() self.width = width self.simulate = simulate self.height = self.staff.staff_lines_pos[-1]-self.staff.staff_lines_pos[0] cr = self.staff.score.cr self.padding_left = self.staff.score.padding_left+self.index*self.width # if self.empty: return self.draw_lines() # draw start measure if self.index == 0 and self.staff.index == 0: self.draw_clef() if self.start_barline: self.draw_start_barline() if self.stop_barline: self.draw_stop_barline() if self.time: self.draw_time_signature() if self.key_signature: self.draw_key_signature() if self.section: self.draw_section() # draw chords for chord in self.chords: chord.draw(simulate=self.simulate) self.top_height = max(self.top_height, chord.height) self.top_heights.append((chord.left, chord.width, chord.height)) # draw symbols for symbol in self.symbols: symbol.draw(simulate=self.simulate) self.top_height = max(self.top_height, symbol.height) self.top_heights.append((symbol.left, symbol.width, symbol.height)) if self.ending: self.draw_ending() def get_measure_height(self, position): for left, width, height in self.top_heights: if left <= position and (left+width) >= position: return height return 0 def draw_lines(self): if self.simulate: return cr = self.staff.score.cr cr.set_source_rgb(0, 0, 0) cr.set_line_width(0.5) for i in xrange(5): left = self.staff.score.padding_left + self.index*self.width right = self.staff.score.padding_left + (self.index+1)*self.width cr.move_to(left, self.staff.top+i*self.staff.lines_distance) cr.line_to(right, self.staff.top+i*self.staff.lines_distance) cr.stroke() def draw_clef(self): cr = self.staff.score.cr cr.set_font_face(self.staff.score.face_jazz) cr.set_font_size(30) xbear, ybear, fwidth, fheight, xadv, yadv = cr.text_extents('V') self.padding_left += 2 cr.move_to(self.padding_left, self.staff.staff_lines_pos[3]) if not self.simulate: cr.show_text('&') # update dist top_dist = self.staff.staff_lines_pos[3]-self.staff.staff_lines_pos[0] height = -ybear - top_dist self.top_height = max(self.top_height, height) self.top_heights.append((self.padding_left, fwidth+2, height)) self.padding_left += fwidth + 2 bottom_dist = self.staff.staff_lines_pos[-1]-self.staff.staff_lines_pos[3] self.bottom_height = max(self.bottom_height, fheight + ybear - bottom_dist) def draw_start_barline(self): if self.start_barline == 'single': if self.staff.index == 0 and self.index == 0: return self.draw_measure_start() elif self.start_barline == 'double': self.draw_measure_start_double() elif self.start_barline == 'repeat': self.draw_start_repeat() def draw_stop_barline(self): if self.stop_barline == 'single': self.draw_measure_stop() elif self.stop_barline == 'double': self.draw_measure_stop_double() elif self.stop_barline == 'repeat': self.draw_stop_repeat() elif self.stop_barline == 'final': self.draw_measure_stop_final() def draw_measure_start(self): if not self.simulate: cr = self.staff.score.cr cr.set_source_rgb(0, 0, 0) cr.set_line_width(1.0) cr.move_to(self.padding_left, self.staff.staff_lines_pos[0]) cr.line_to(self.padding_left, self.staff.staff_lines_pos[-1]) cr.stroke() self.padding_left += 2 def draw_measure_start_double(self): cr = self.staff.score.cr if not self.simulate: cr.set_source_rgb(0, 0, 0) cr.set_line_width(1.0) cr.move_to(self.padding_left, self.staff.staff_lines_pos[0]) cr.line_to(self.padding_left, self.staff.staff_lines_pos[-1]) cr.move_to(self.padding_left+3, self.staff.staff_lines_pos[0]) cr.line_to(self.padding_left+3, self.staff.staff_lines_pos[-1]) cr.stroke() self.padding_left += 5 def draw_measure_stop(self): if not self.simulate: cr = self.staff.score.cr cr.set_source_rgb(0, 0, 0) cr.set_line_width(1.0) left = self.staff.score.padding_left+(self.index+1)*self.width cr.move_to(left, self.staff.staff_lines_pos[0]) cr.line_to(left, self.staff.staff_lines_pos[-1]) cr.stroke() def draw_measure_stop_double(self): if not self.simulate: cr = self.staff.score.cr cr.set_source_rgb(0, 0, 0) cr.set_line_width(1.0) left = self.staff.score.padding_left+(self.index+1)*self.width cr.move_to(left-3, self.staff.staff_lines_pos[0]) cr.line_to(left-3, self.staff.staff_lines_pos[-1]) cr.move_to(left, self.staff.staff_lines_pos[0]) cr.line_to(left, self.staff.staff_lines_pos[-1]) cr.stroke() def draw_measure_stop_final(self): if not self.simulate: cr = self.staff.score.cr cr.set_source_rgb(0, 0, 0) cr.set_line_width(1.0) left = self.staff.score.padding_left+(self.index+1)*self.width cr.move_to(left-4, self.staff.staff_lines_pos[0]) cr.line_to(left-4, self.staff.staff_lines_pos[-1]) cr.stroke() cr.set_line_width(3.0) cr.move_to(left, self.staff.staff_lines_pos[0]) cr.line_to(left, self.staff.staff_lines_pos[-1]) cr.stroke() def draw_start_repeat(self): cr = self.staff.score.cr cr.set_font_face(self.staff.score.face_jazz) cr.set_source_rgb(0, 0, 0) cr.set_font_size(32) cr.move_to(self.padding_left-2, self.staff.staff_lines_pos[2]) text = u'Ú' if not self.simulate: cr.show_text(text) xbear, ybear, fwidth, fheight, xadv, yadv = cr.text_extents(text) self.padding_left += fwidth + 2 def draw_stop_repeat(self): cr = self.staff.score.cr cr.set_font_face(self.staff.score.face_jazz) cr.set_source_rgb(0, 0, 0) cr.set_font_size(32) left = self.staff.score.padding_left+(self.index+1)*self.width cr.move_to(left+2, self.staff.staff_lines_pos[2]) text = u'Ú' cr.rotate(math.pi) if not self.simulate: cr.show_text(text) cr.rotate(-math.pi) ending_padding_bottom = 10 ending_padding_top = 0 def draw_ending(self): cr = self.staff.score.cr cr.set_source_rgb(0, 0, 0) cr.set_line_width(1.0) left = self.staff.score.padding_left+self.index*self.width if self.ending: cr.set_font_face(self.staff.score.face_jazz) cr.set_font_size(22) xbear, ybear, fwidth, fheight, xadv, yadv = cr.text_extents(self.ending) else: fheight = 0 top = self.staff.staff_lines_pos[0] - self.top_height - \ self.ending_padding_top - fheight - 10 cr.move_to(left, self.staff.staff_lines_pos[0]-self.ending_padding_bottom) if not self.simulate: cr.line_to(left, top) cr.line_to(left+self.width*0.9, top) cr.stroke() if self.ending != 'empty': cr.move_to(left+2, top+fheight-4) if not self.simulate: cr.show_text(self.ending) self.top_height += self.ending_padding_top + fheight + 10 section_table = { 'A': u'Ø', 'B': u'Ù', 'C': u'Ú', 'D': u'Û', 'E': u'Ü', 'F': u'Ý', 'G': u'Þ', 'H': u'ß', 'I': u'à', 'J': u'á', 'K': u'â', 'L': u'ã', 'M': u'ä', 'N': u'å', 'O': u'æ', 'P': u'ç', 'Q': u'è', 'R': u'é', 'S': u'ê', 'T': u'ë', 'U': u'ì', 'V': u'í', 'W': u'î', 'X': u'ï', 'Y': u'ð', 'Z': u'ñ', ' ': u'ò', 'intro': u'Intro', 'verse': u'Verse', } section_padding_bottom = 4 def draw_section(self): cr = self.staff.score.cr cr.set_font_face(self.staff.score.face_jazztext) cr.set_source_rgb(0, 0, 0) cr.set_font_size(25) text = self.section_table.get(self.section) xbear, ybear, fwidth, fheight, xadv, yadv = cr.text_extents(text) left = self.staff.score.padding_left+self.index*self.width top = self.staff.staff_lines_pos[0] - self.top_height - (fheight+ybear) - \ self.section_padding_bottom cr.move_to(left, top) if not self.simulate: cr.show_text(text) self.top_height += fheight + self.section_padding_bottom self.chords_left = left + fwidth + 8 self.chords_padding_left = fwidth + 8 self.top_heights.append((left, fwidth, fheight + self.section_padding_bottom)) def draw_time_signature(self): cr = self.staff.score.cr cr.set_font_face(self.staff.score.face_jazztext) cr.set_source_rgb(0, 0, 0) cr.set_font_size(22) self.padding_left += 2 # num = str(self.time[0]) den = str(self.time[1]) xbear, ybear, num_width, fheight, xadv, yadv = cr.text_extents(num) xbear, ybear, den_width, fheight, xadv, yadv = cr.text_extents(den) if num_width > den_width: num_padding = 0 den_padding = (num_width-den_width)*0.5 else: den_padding = 0 num_padding = (den_width-num_width)*0.5 # draw num cr.move_to(self.padding_left+num_padding, self.staff.staff_lines_pos[2]) if not self.simulate: cr.show_text(num) # draw den cr.move_to(self.padding_left+den_padding, self.staff.staff_lines_pos[-1]) if not self.simulate: cr.show_text(den) # update padding left self.padding_left += max(num_width, den_width) + 2 def get_note_y(self, note): d = self.staff.lines_distance return { 'G5': self.staff.staff_lines_pos[0]-d/2, 'F5': self.staff.staff_lines_pos[0], 'E5': self.staff.staff_lines_pos[0]+d/2., 'D5': self.staff.staff_lines_pos[1], 'C5': self.staff.staff_lines_pos[1]+d/2., 'B4': self.staff.staff_lines_pos[2], 'A4': self.staff.staff_lines_pos[2]+d/2., 'G4': self.staff.staff_lines_pos[3], 'F4': self.staff.staff_lines_pos[3]+d/2, }[note] def draw_key_signature(self): cr = self.staff.score.cr cr.set_font_face(self.staff.score.face_jazz) cr.set_source_rgb(0, 0, 0) cr.set_font_size(25) key, mode = self.key_signature top_height = 0 left = self.padding_left for note in self.key_signatures[key][mode]: top = self.get_note_y(note[:2]) cr.move_to(self.padding_left, top) xbear, ybear, width, fheight, xadv, yadv = cr.text_extents(note[2]) top_height = max(top_height, self.staff.staff_lines_pos[0] - top - ybear) if not self.simulate: cr.show_text(note[2]) self.padding_left += 6 self.padding_left += 6 self.top_height = max(self.top_height, top_height) self.top_heights.append((left, self.padding_left, top_height))
UTF-8
Python
false
false
16,646
py
6
measure.py
6
0.556779
0.540711
0
412
39.332524
86
vzhng/python_practice
18,021,682,805,873
e154618816eb20295ba04506ae07f44b8f664e33
d1f35be125b2ac85f0cb123c461e00dd6f21cdd6
/python_learn1/wordcount1.py
9fc9a65b6c81bb53e2534ed1f769d71ba1bde813
[]
no_license
https://github.com/vzhng/python_practice
5ceeaf1441622f227ac691b76f3621817a268e5c
eb454c8833038e20250af85751fe124bfc539575
refs/heads/main
2023-06-01T13:13:15.955964
2021-06-11T21:15:06
2021-06-11T21:15:06
376,143,210
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#s1 = "nba cxy word history type cxy nba history word word type type history" s1 = input("Please input words:") s2 = s1.split() dict={} for word in s2: print (word) if word in dict: n = dict[word] n = n+1 dict[word] = n else: dict[word] = 1 print (dict)
UTF-8
Python
false
false
317
py
51
wordcount1.py
47
0.536278
0.514196
0
15
19
77
ddank0/Python-ex
10,642,928,961,836
59554e5c3ba66c247cc77e415251d89bb95fb658
4438a397db52f1dad60edc7f583d2dad103f217a
/lista 1.26.py
69c10678d31ca51af9ebf07d32ce803cb0f56a3d
[]
no_license
https://github.com/ddank0/Python-ex
07c20ed2f609fad700f0801d7d174626285a3bb2
ab0ed0d7228d19695e7e320a973a928cddbe9055
refs/heads/master
2021-07-01T18:17:05.729400
2021-02-22T01:30:05
2021-02-22T01:30:05
224,468,844
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
n = float(input("Digite um numero:")) maior_n = 0 soma = 0 cont = 0 while n > 0: cont += 1 soma += n if n > maior_n: maior_n = n x = soma - maior_n n = float(input("Digite um numero:")) if cont < 3: print('Não é possivel formar o poligono') elif maior_n < x: print('É possivel formar o poligono') else: print('Não é possivel formar o poligono')
UTF-8
Python
false
false
393
py
119
lista 1.26.py
114
0.582474
0.56701
0
19
19.421053
45
kalachand/codes
12,249,246,751,930
074e08f9d39e37f8cb8c4fd461a64825c02b248a
26551769200eafa5bdd72ea5a51f87e61dbd8d6d
/codechef/julylong2k14/lastsgarden.py
930671191f760b59a80466d1ccb31cc962504c9d
[]
no_license
https://github.com/kalachand/codes
f894945a2cdc4c7868fd1f24c3b7727f32cf5ba1
ed45d7ffe380e4e5d52f95e9542a108e4ceeceb7
refs/heads/master
2021-01-15T12:44:29.552598
2015-11-03T21:02:36
2015-11-03T21:02:36
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def gcd(a,b): if(b==0): return a return gcd(b,a%b) maxit=100009 primeit=[] isprime={} for i in range(0,maxit+1): isprime[i]=0 isprime[0]=1 isprime[1]=1 isprime[2]=1 primeit.append(2) for i in range(4,maxit,2): isprime[i]=1 sqrtit=maxit**0.5 sqrtit=int(sqrtit)+1 for i in range(3,sqrtit,2): if(isprime[i]==0): for j in range(i*i,maxit,2*i): isprime[j]=1 primeit.append(i) t=input() for i in range(0,t): n=input() primetrack=[] calcit=[] newit=[] for j in range(0,100001): primetrack.append(0) arr=[] dictit={} xx=raw_input().split() arr.append(0) dictit[0]=0 for j in xx: val=int(j) arr.append(val) dictit[val]=0 for j in range(1,n+1): if dictit[arr[j]]==0: dictit[arr[j]]=1 x=arr[j] y=arr[x] cnt=1 while(y!=x): cnt+=1 dictit[y]=1 y=arr[y] calcit.append(cnt) calcit.sort() sizeit=len(calcit) for j in range(0,sizeit): if(j==sizeit-1 or calcit[j]!=calcit[j+1]): newit.append(calcit[j]) sizeit=len(newit) if(sizeit==1): print newit[0] else: calc=newit[0] modit=1000000007 for i in range(1,sizeit): calc1=gcd(calc,newit[i]) calc2=(calc*newit[i])/calc1 calc=calc2 calc%=modit print calc
UTF-8
Python
false
false
1,181
py
401
lastsgarden.py
378
0.624894
0.566469
0
67
16.626866
44
syslabcomarchive/gfb.policy
6,287,832,133,030
58d635aadc15ba8a753f46e6d42b728833ba2469
071cf102c9ccb8c833cadb782029aaa4f553bda8
/gfb/policy/order.py
c0b2b0306e7ef312847be3c4ade1633b9eb59e49
[]
no_license
https://github.com/syslabcomarchive/gfb.policy
f8975cc8b44966b03b9d38928446d4f8419ae40e
32d11b8a408f2f43580bc012b8460950725d881a
refs/heads/master
2023-02-25T04:37:55.385359
2016-11-04T16:55:58
2016-11-04T16:55:58
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from plone.folder.default import DefaultOrdering class PrependOrdering(DefaultOrdering): """prepend new added content copied from collective.folderorder """ def notifyAdded(self, id): """ Inform the ordering implementation that an item was added """ order = self._order(True) pos = self._pos(True) order.insert(0, id) pos.clear() for n, id in enumerate(order): pos[id] = n def set_prepend(object, event): object.setOrdering("prepend")
UTF-8
Python
false
false
536
py
48
order.py
27
0.615672
0.613806
0
22
23.363636
65
zebengberg/wasatch
10,625,749,128,761
ba2bc7ea1947b697cb6ebb3861f427ad73b2b338
abca6158aafd16a5be7fd81a9743eac09c99dd10
/python/pygame_examples/snake.py
bd6398be18ae264a2b13f1cbf74541fc95427461
[]
no_license
https://github.com/zebengberg/wasatch
0a6bed336220772e216ca4e01930d1efd392a4c6
423b679644901f5bec0272175ab582de0ae61997
refs/heads/master
2023-03-31T12:12:51.295511
2021-04-14T20:18:34
2021-04-14T20:18:34
240,130,163
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# run with pythonw on mac import random import pygame pygame.init() screen = pygame.display.set_mode([400, 400]) pygame.display.set_caption('Hello World') class Snake: def __init__(self): self.x = screen.get_width() // 2 self.y = screen.get_height() // 2 self.r = 10 self.direction = 'RIGHT' self.color = (0, 0, 255) self.food_position = (random.randint(10, screen.get_width() - 10), random.randint(10, screen.get_width() - 10)) self.food_color = (255, 127, 0) def update_position(self): if self.direction == 'RIGHT': self.x += 1 elif self.direction == 'LEFT': self.x -= 1 elif self.direction == 'UP': self.y -= 1 elif self.direction == 'DOWN': self.y += 1 def draw(self): pygame.draw.circle(screen, self.food_color, self.food_position, 10) pygame.draw.circle(screen, self.color, (self.x, self.y), self.r) def update_direction(self, key): key_codes = {pygame.K_UP: 'UP', pygame.K_DOWN: 'DOWN', pygame.K_RIGHT: 'RIGHT', pygame.K_LEFT: 'LEFT'} if key in key_codes: target_direction = key_codes[key] direction_set = {target_direction, self.direction} valid_directions = [{'UP', 'RIGHT'}, {'UP', 'LEFT'}, {'DOWN', 'RIGHT'}, {'DOWN', 'LEFT'}] if direction_set in valid_directions: self.direction = target_direction def hit_wall(self): w, h = screen.get_width(), screen.get_height() if (self.x - self.r < 0 or self.x + self.r > w or self.y - self.r < 0 or self.y + self.r > h): self.direction = None def is_near_food(self): x = self.x - self.food_position[0] y = self.y - self.food_position[1] return x ** 2 + y ** 2 <= (self.r + 20) ** 2 def eat(self): self.food_position = (random.randint(10, screen.get_width() - 10), random.randint(10, screen.get_width() - 10)) self.r += 2 s = Snake() running = True while running: for event in pygame.event.get(): if event.type == pygame.QUIT: running = False elif event.type == pygame.KEYDOWN: # update the direction s.update_direction(event.key) # restart the game if event.key == pygame.K_r: s.__init__() screen.fill((255, 255, 255)) s.update_position() s.hit_wall() if s.is_near_food(): s.eat() s.draw() # updates pygame display pygame.display.flip() pygame.quit()
UTF-8
Python
false
false
2,541
py
26
snake.py
19
0.558835
0.534042
0
92
26.619565
71
ustcrding/ai-study
17,824,114,282,737
a83736b506345f9062c6451b11907d2089bca5e8
9d5531e60a7b2866952fb0e30af7e89c6739fc08
/作业/第一次作业/代码/ljw/文本分类/cluster.py
de607a7ad56c9548eb3a67ecadf753bb35f15aad
[ "Apache-2.0" ]
permissive
https://github.com/ustcrding/ai-study
8e99db453fae6ad9f7687a3aba77b155957445cc
d09bf8e1ae15e8b4c2d5eeb81a733087495475ca
refs/heads/master
2020-04-30T09:15:03.927375
2019-03-23T12:57:02
2019-03-23T12:57:02
176,741,730
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import jieba from sklearn.cluster import KMeans import numpy as np import os def read_from_file(file_name): with open(file_name, "r", encoding="utf-8") as fp: words = fp.read() return words def stop_words(stop_word_file): words = read_from_file(stop_word_file) result = jieba.cut(words) new_words = [] for r in result: new_words.append(r) return set(new_words) def del_stop_words(words, stop_words_set): # words是已经切词但是没有去除停用词的文档。 # 返回的会是去除停用词后的文档 result = jieba.cut(words) new_words = [] for r in result: if r not in stop_words_set: new_words.append(r) return new_words def get_all_vector(file_path, stop_words_set): posts = open(file_path, encoding="utf-8").read().split("\n") docs = [] word_set = set() for post in posts: doc = del_stop_words(post, stop_words_set) docs.append(doc) word_set |= set(doc) # print len(doc),len(word_set) word_set = list(word_set) docs_vsm = [] # for word in word_set[:30]: # print word.encode("utf-8"), for doc in docs: temp_vector = [] for word in word_set: temp_vector.append(doc.count(word) * 1.0) # print temp_vector[-30:-1] docs_vsm.append(temp_vector) docs_matrix = np.array(docs_vsm) column_sum = [float(len(np.nonzero(docs_matrix[:, i])[0])) for i in range(docs_matrix.shape[1])] column_sum = np.array(column_sum) column_sum = docs_matrix.shape[0] / column_sum idf = np.log(column_sum) idf = np.diag(idf) # 请仔细想想,根绝IDF的定义,计算词的IDF并不依赖于某个文档,所以我们提前计算好。 # 注意一下计算都是矩阵运算,不是单个变量的运算。 for doc_v in docs_matrix: if doc_v.sum() == 0: doc_v = doc_v / 1 else: doc_v = doc_v / (doc_v.sum()) tfidf = np.dot(docs_matrix, idf) return posts, tfidf if __name__ == "__main__": stop_words = stop_words("./stopwords.txt") names, tfidf_mat = get_all_vector("./意见反馈.txt", stop_words) km = KMeans(n_clusters=10) km.fit(tfidf_mat) clusters = km.labels_.tolist() str_clusters = {} for i in range(len(clusters)): if str_clusters.get(clusters[i]) is None: str_clusters.setdefault(clusters[i], []) str_clusters.get(clusters[i]).append(names[i])
UTF-8
Python
false
false
2,503
py
14
cluster.py
8
0.591872
0.584522
0
83
26.86747
100
Gvex95/BlackJackMindFuck
13,511,967,118,706
29c0b13b1fc493a920bcf4bf567b7e9737204b81
e088dbd98fcfecc0c95bc7d1693e252d86fc4385
/BlackJack/BlackJack.py
f34a91b11589a02e8ba9a7502db736b0c4559e52
[]
no_license
https://github.com/Gvex95/BlackJackMindFuck
872713c9202ae318826b159385d7683588aeb699
84a26a4292ec6eaa0967ecd5ef06d5519401a62f
refs/heads/master
2021-01-25T07:55:07.619589
2017-06-07T23:09:21
2017-06-07T23:09:21
93,686,163
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import sys import random izracunato = [None] * 52 spil = [1,2,3,4,5,6,7,8,9,10,10,10,10, 1,2,3,4,5,6,7,8,9,10,10,10,10, 1,2,3,4,5,6,7,8,9,10,10,10,10, 1,2,3,4,5,6,7,8,9,10,10,10,10,] def IzracunajMaxPara(i): if izracunato[i] == -1: #taj slucaj nije obradjen izbor = [0] for h in range (4+i,52): tmp = IshodRunde(i,h) if (tmp!=-4): #nema greske, il sam izgubio,nereseno,ili pobedio izbor.append(tmp + IzracunajMaxPara(h)) #posto nema greska, a proslo je h karata, apenduj rez i izracunaj opet od h-te karte izracunato[i] = max(izbor) return izracunato[i] def IshodRunde(i,h): igrac = 0 delilac = 0 #ako delimo neparan broj karti, npr delimo do 7 do 12 karte,dele se od 7 do 11, a zadnju kartu gledamo posebno #while deli 4 karte koje i igrac i delilac moraju da uzmu while(i<(h-(h-i)%2)): if (spil[i] == 1 and igrac <=10): igrac+=11 else: if (igrac + spil[i]<=21): igrac+=spil[i] if(spil[i+1] == 1 and delilac<=10): delilac+=11 else: if (delilac<17): delilac+=spil[i+1] else: #ako delilac ima vise od 17 uzece kartu samo ako nece preci 21 if(delilac + spil[i+1] <= 21): delilac += spil[i+1] i+=2 #jer prvo uzima igrac pa delilac pa opet igrac pa opet delilac #nakon podeljene 4 karte if ((h-i)%2 != 0): if (spil[h-1] == 1 and igrac<=10): igrac+=11 else: if(igrac + spil[h-1]<=21): igrac += spil[h-1] #igrac ne vuce jer ce preci 21, znaci red je na dilera else: if (spil[h-1] == 1 and delilac <=10): delilac+=11 else: if(delilac>igrac): return -4 else: delilac+= spil[h-1] if (delilac<17): return -4 if (igrac>21): return -1 if (delilac>21): return 1 if (igrac>delilac): return 1 if (igrac == delilac): return 0 if (igrac < delilac): return -1 for i in range(0,10): random.shuffle(spil) print("SPIL: ",spil) for i in range(0,52): izracunato[i] = -1 print("Maksimalno para za ceo dek karata: ") print(IzracunajMaxPara(0), "$")
UTF-8
Python
false
false
2,485
py
1
BlackJack.py
1
0.495775
0.433803
0
84
28.52381
141
bx0709/Price_Comparator
19,095,424,624,976
0e4f967c04b770b4f784a98b975c5734fa3a3c4d
dfaa566aea6dcd5d8c94802154a309e102869385
/book_comp.py
19818be642081612cd68a76b96faa4f3452d7222
[]
no_license
https://github.com/bx0709/Price_Comparator
cd5cc4dfeeadd85f37ec25397f217c60a609dd00
dafe3ee6adedd11bfea8af9d494a9a6565ff0d61
refs/heads/master
2022-11-26T06:40:50.919598
2020-08-08T20:50:39
2020-08-08T20:50:39
286,116,818
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from tkinter import * import time from tkinter import ttk from tkinter.ttk import * import local_price import ib_store import compare_prices import sqlite3 from tkinter import Tk book_name = ['18 Years JEE Main Physics Chapterwise Solutions', 'Daily Practice Problems of PCM for JEE Main/Advanced 1 Edition', 'Errorless Chemistry for JEE MAIN 2020 by NTA ', 'Organic Chemistry 8th Edition by Leroy G. Wade', ' Organic Chemistry 2nd Edition by Clayden, Greeves, Warren', 'JEE MAIN EXPLORER', ' Principles of Physics by Walker, Halliday, Resnick', ' Mathematics MCQ', 'Differential Calculus ,Author : S.K. Goyal', ' Skill in Mathematics - Algebra for JEE Main', 'NEW PATTERN JEE PROBLEMS PHYSICS FOR JEE MAIN', ' Problems in Physical Chemistry for JEE', 'Concise Inorganic Chemistry: Fifth Edition by J.D. Lee', 'Fundamentals of Mathematics for JEE Main/Advanced - Integral Calculus', 'Chapterwise Solutions of Physics for JEE Main 2002-2017'] updated=[] for i in range(1,16): updated.append(0) class Login_page(): # ----------------------------CONNECT TO DATABASE---------------------------# def Database(self): global conn, cursor conn = sqlite3.connect("accounts.db") cursor = conn.cursor() cursor.execute( "CREATE TABLE IF NOT EXISTS `members` (id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, username TEXT, password TEXT)") cursor.execute("SELECT * FROM `members` WHERE `username` = 'admin' AND `password` = 'admin'") if cursor.fetchone() is None: cursor.execute("INSERT INTO `members` (username, password) VALUES('admin', 'admin')") conn.commit() # model_numb = ['8174505172', '8174504893', '86858'] cursor.execute("DROP TABLE `books`") conn.commit() final_model_no = ['9789389310788', '9789353501488', '9788193766095', '9789332578586', '9780198728719', '9789388899796', '9788126552566', '9788177098471', '9789384934064', '9789313191889', '9789313191353', '9789384934873', '9788126515547', '9789332570276', '9789386650788'] book_name = ['18 Years JEE Main Physics Chapterwise Solutions', 'Daily Practice Problems of PCM for JEE Main/Advanced 1 Edition', 'Errorless Chemistry for JEE MAIN 2020 by NTA ', 'Organic Chemistry 8th Edition by Leroy G. Wade', ' Organic Chemistry 2nd Edition by Clayden, Greeves, Warren', 'JEE MAIN EXPLORER', ' Principles of Physics by Walker, Halliday, Resnick', ' Mathematics MCQ', 'Differential Calculus ,Author : S.K. Goyal', ' Skill in Mathematics - Algebra for JEE Main', 'NEW PATTERN JEE PROBLEMS PHYSICS FOR JEE MAIN', ' Problems in Physical Chemistry for JEE', 'Concise Inorganic Chemistry: Fifth Edition by J.D. Lee', 'Fundamentals of Mathematics for JEE Main/Advanced - Integral Calculus', 'Chapterwise Solutions of Physics for JEE Main 2002-2017'] cursor.execute( "CREATE TABLE IF NOT EXISTS `books` (id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, model_no TEXT, name TEXT)") # *****BOOKS NAME TO BE ADDED**** cursor.execute("SELECT * FROM `books` WHERE `id` = 1 AND `model_no` = '9789389310788'") if cursor.fetchone() is None: for i in range(len(final_model_no)): cursor.execute("INSERT INTO `books` (model_no, name) VALUES (?,?)", (final_model_no[i], book_name[i])) conn.commit() cursor.execute( "CREATE TABLE IF NOT EXISTS `book_record` (sno INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, user_id INTEGER, book_id INTEGER, count INTEGER )") conn.commit() # -------------------------------FRONTEND-------------------------------------# def __init__(self, master): self.master = master self.style = ttk.Style() self.master.title("Book Comparator-Login") self.master.geometry('1000x1000') self.style.configure('TFrame', background='Lightskyblue2') self.frame=ttk.Frame(self.master,style='TFrame') self.frame.pack() self.style.configure('W.TButton', font= ('verdana', 10, 'bold'), foreground='black',background='blue2') self.style.configure('TLabel', background='Lightskyblue2') self.topframe=Frame(self.frame, width=10000, height=3000,style='new.TFrame') self.topframe.grid(row=5,column=0,pady=20) self.bottomframe = Frame(self.frame, width=1000, height=5000,style='new.TFrame') self.bottomframe.grid(row=20,column=0,) self.login_btn = ttk.Button(self.bottomframe, text="Login",style="W.TButton",command=self.Login) self.login_btn.grid(row=3, column=2) self.login_btn.bind('<Return>', self.Login) self.register_btn = ttk.Button(self.bottomframe, text="Register",style="W.TButton", command=self.Register) self.register_btn.grid(row=3, column=3,padx=15) self.register_btn.bind('<Return>', self.Register) self.title=ttk.Label(self.topframe,text="Book Comparator!",font=('Cambria',30,'bold'),style='TLabel') self.title.grid() self.headline= ttk.Label(self.topframe, text="Hello user! Register if you are a new user or login if you already have an account.",font=('Cambria',15),style='TLabel') self.headline.grid(row=1, column=0,pady=20) # -------------------------------LOGIN FORM-------------------------------------# self.caption = Label(self.topframe, text="", font=('arial', 10)) self.username = StringVar() self.password = StringVar() self.user_text = ttk.Label(self.topframe, text="Username:", font=('arial', 18),style='TLabel') self.user_text.grid(row=2, column=0, pady=5, sticky=W) self.user_value = Entry(self.topframe, textvariable=self.username) self.user_value.grid(row=2, column=0) self.pwd_text = ttk.Label(self.topframe, text="Password:", font=('arial', 18),style='TLabel') self.pwd_text.grid(row=3, column=0, sticky=W) self.pwd_value = Entry(self.topframe, textvariable=self.password, show="*") self.pwd_value.grid(row=3, column=0) self.lbl_text = ttk.Label(self.bottomframe,style='TLabel') self.lbl_text.grid(row=5, column=2, pady=10) #-------------------------------------------------# def new_page(self): self.NewPage = Toplevel(self.master) self.project = main_page(self.NewPage) self.project.config(bg='Lightskyblue2') # -------------------------------LOGIN FUNCTION-------------------------------------# def Login(self, event=None): self.Database() if self.username.get() == "" or self.password.get() == "": self.lbl_text.config(text="Please complete the required field!") else: cursor.execute("SELECT * FROM `members` WHERE `username` = ? AND `password` = ?", (self.username.get(), self.password.get())) data = cursor.fetchone() cursor.execute("SELECT * FROM `members` WHERE `username` = ? AND `password` = ?", (self.username.get(), self.password.get())) if cursor.fetchone() is not None: self.username.set("") self.password.set("") self.lbl_text.config(text="") self.user_id = data[0] main_page.get_id(main_page, self.user_id) # sends id of the logged in user self.new_page() else: self.lbl_text.config(text="Invalid username or password") self.username.set("") self.password.set("") cursor.close() conn.close() # -------------------------------REGISTER FUNCTION-------------------------------------# def Register(self, event=None): self.Database() if self.username.get() == "" or self.password.get() == "": self.lbl_text.config(text="Please complete the required field!") else: cursor.execute("SELECT * FROM `members` WHERE `username` = ? AND `password` = ?", (self.username.get(), self.password.get())) if cursor.fetchone() is not None: self.username.set("") self.password.set("") self.lbl_text.config(text="") self.lbl_text.config(text="Account with this username already exists.") else: cursor.execute("INSERT INTO `members` (username, password) VALUES (?,?)", (self.username.get(), self.password.get())) conn.commit() self.lbl_text.config(text="Account created successfully!") self.username.set("") self.password.set("") cursor.close() conn.close() # -------------------------------NEW WINDOW(MAIN)-------------------------------------# class main_page(): def get_id(self, user_id): self.user_id = user_id return self.user_id def get_book_id(self, recieved): self.book_id = recieved return self.book_id # -------------------------------FETCH PRICES-------------------------------------# def project(id, list): Login_page.Database(Login_page) sql = "SELECT * FROM `books` WHERE id=(?)" cursor.execute(sql, (id,)) model = cursor.fetchone() model_number = model[1] list.delete(0, END) price = local_price.get_local_price(model_number) list.insert(0,"Book price in offline stores : "+price) on_price1, on_price2 = ib_store.get_online_price(model_number) list.insert(1,"Book price on Amazon : "+on_price1) list.insert(2, "Book price on Flipkart : "+on_price2) updated[id-1]=min(compare_prices.price_ib(on_price1),compare_prices.price_ib(on_price2),compare_prices.price_local(price)) print(updated) # -------------------------------SHOW SECOND WINDOW-------------------------------------# def __init__(self, master1): self.master1 = master1 self.style = ttk.Style() self.master1.title("Book Comparator") self.width=root.winfo_screenwidth() self.height=root.winfo_screenheight() self.master1.geometry("%dx%d" % (self.width,self.height)) self.frame = Frame(self.master1) self.frame.pack() self.style.configure('TFrame',background='Lightskyblue2') Mainframe = ttk.Frame(self.master1,style='TFrame') Mainframe.pack() self.style.configure('TLabel', background='Lightskyblue2') self.title=ttk.Label(Mainframe,text="Book Comparator!",font=('Cambria',30,'bold'),style='TLabel') self.title.pack() self.sub_title = ttk.Label(Mainframe, text="Your Prices are shown here:", font=('Cambria', 15),style='TLabel') self.sub_title.place(x=10,y=66) Dataframe = Frame(Mainframe, width=900, height=100) Dataframe.pack(side=LEFT) ARframe=Frame(Mainframe,width=500,height=100) ARframe.pack(side=BOTTOM) self.ARframe_2=ARframe self.Dataframe_2 = Dataframe # new frame created so as to display the "add to cart" content self.sub_title = ttk.Label(self.Dataframe_2, text="Amount to be paid:", font=('Cambria', 15),style='TLabel') self.sub_title.place(x=10,y=210) self.show_price= Listbox(Dataframe, width=20, bd=10, relief='groove', fg='Gray') self.show_price.grid(row=1, column=0, padx=8,pady=20) Buttonframe = Frame(Mainframe, width=600, height=950) Buttonframe.pack(side=RIGHT) self.Buttonframe=Buttonframe list = Listbox(Dataframe, width=50) list.grid(row=0,column=0,sticky=N,pady=30) self.display_cost = 0 self.style.configure('W.TButton', font= ('verdana', 9), foreground='black',background='blue2') self.style.configure('TButton', font=('Times New Roman',12,'bold'), foreground='black',background='navy',relief='flat') # created 15 buttons each with different functionality by assigning different id's to them. for buttons in range(1, 16): book1 = ttk.Button(Buttonframe, text=book_name[buttons - 1],style='W.TButton', command=lambda buttons=buttons: main_page.get_book_id(main_page,buttons)) book1.grid(row=buttons+1, column=0,sticky=W,pady=5) showprice = ttk.Button(Buttonframe, text="SHOW PRICE",style='TButton', command=lambda buttons=buttons: main_page.project(self.book_id,list)) showprice.grid(row=0, column=0,pady=10) add_to_cart_button = ttk.Button(Buttonframe, text="ADD TO CART", style='TButton', command=self.add_to_cart) add_to_cart_button.grid(row=18, column=0,pady=7) # -------------------------------ADD TO CART-------------------------------------# def add_book(self, book, cart_list): Login_page.Database(Login_page) cursor.execute("SELECT * FROM `book_record` WHERE `user_id` = ? AND `book_id` = ?", (self.user_id, book)) if cursor.fetchone() is not None: cursor.execute("UPDATE `book_record` SET count=count+1 WHERE `user_id` = ? AND `book_id` = ?", (self.user_id, book)) conn.commit() else: cursor.execute("INSERT INTO `book_record` (user_id, book_id, count) VALUES (?,?,?)", (self.user_id, book, 1)) conn.commit() sql = "SELECT model_no,name FROM `books` WHERE id=(?)" cursor.execute(sql, (book,)) model = cursor.fetchone() cart_list.insert(END, "Added " + str(model[1])) if updated[book-1]==0: cost, avail = compare_prices.compare(model[0]) updated[book - 1]=cost else: cost=updated[book-1] self.display_cost += cost self.show_price.delete(0, END) self.show_price.insert(END, self.display_cost) print(self.display_cost) # -------------------------------REMOVE FROM CART-------------------------------------# def remove_book(self, book, cart_list): Login_page.Database(Login_page) sql = "SELECT model_no FROM `books` WHERE id=(?)" cursor.execute(sql, (book,)) model = cursor.fetchone() cursor.execute("SELECT count FROM `book_record` WHERE `user_id` = ? AND `book_id` = ?", (self.user_id, book)) rec = cursor.fetchone() if rec is not None: if updated[book-1] == 0: cost, avail = compare_prices.compare(model[0]) updated[book - 1]=cost else: cost = updated[book-1] self.display_cost -= cost if rec[0] == 1: cursor.execute("DELETE FROM `book_record` WHERE `user_id` = ? AND `book_id` = ?", (self.user_id, book)) conn.commit() else: cursor.execute("UPDATE `book_record` SET count=count-1 WHERE `user_id` = ? AND `book_id` = ?", (self.user_id, book)) conn.commit() else: pass cart_list.delete(0, END) self.show_price.delete(0, END) self.show_price.insert(END, self.display_cost) record_sql = "SELECT * FROM `book_record` WHERE user_id=(?)" cursor.execute(record_sql, (self.user_id,)) result = cursor.fetchall() for r in result: sql_1 = "SELECT model_no,name FROM `books` WHERE id=(?)" cursor.execute(sql_1, (r[2],)) book_display = cursor.fetchone() b = book_display[1] string = str(b) + " Quantity :" + str(r[3]) cart_list.insert(END, string) # -------------------------------DISPLAY CURRENT CART-------------------------------------# def add_to_cart(self): cart_list = Listbox(self.Dataframe_2, width=75) scroll = Scrollbar(self.Dataframe_2, command=cart_list.yview, orient=VERTICAL) cart_list.configure(yscrollcommand=scroll.set) cart_list.grid(row=3, column=0, padx=8) scroll.grid(row=3, column=3, sticky=N + S) self.sub_title = ttk.Label(self.Dataframe_2, text="Your Cart:", font=('Cambria', 15),style='TLabel') self.sub_title.place(x=10,y=410) add_1 = ttk.Button(self.Buttonframe, text="Add", command=lambda: main_page.add_book(self, self.book_id, cart_list)) add_1.grid(row=6, column=2,sticky='W') remove_1 = ttk.Button(self.Buttonframe, text="Remove", command=lambda: main_page.remove_book(self, self.book_id, cart_list)) remove_1.grid(row=6, column=3,sticky='E') Login_page.Database(Login_page) #self.display_cost = 0 record_sql = "SELECT * FROM `book_record` WHERE user_id=(?)" cursor.execute(record_sql, (self.user_id,)) result = cursor.fetchall() for r in result: sql_1 = "SELECT model_no,name FROM `books` WHERE id=(?)" cursor.execute(sql_1, (r[2],)) book_display = cursor.fetchone() modelno = book_display[0] quantity = r[3] string = str(book_display[1]) + " Quantity :" + str(quantity) cart_list.insert(END, string) if updated[r[2]-1] == 0: cost, avail = compare_prices.compare(modelno) updated[r[2] - 1]=cost else: cost = updated[r[2]-1] if (avail == 0): pass else: self.display_cost += quantity * (cost) self.show_price.delete(0, END) self.show_price.insert(END, self.display_cost) print(self.display_cost) def config(self, bg): self.master1.configure(bg='Lightskyblue2') root=Tk() project = Login_page(root) imagelist = ['images/book1.gif','images/book2.gif','images/book3.gif','images/book4.gif','images/book5.gif','images/book6.gif'] photo = PhotoImage(file=imagelist[0]) width = photo.width() height = photo.height() canvas = Canvas(width=width, height=height) canvas.pack() giflist = [] for imagefile in imagelist: photo = PhotoImage(file=imagefile) giflist.append(photo) for k in range(0, 1000): for gif in giflist: canvas.delete(ALL) canvas.create_image(width/2.0, height/2.0, image=gif) canvas.update() time.sleep(1) #root.configure(bg='Lightskyblue2') root.mainloop()
UTF-8
Python
false
false
19,018
py
5
book_comp.py
4
0.562888
0.535177
0
394
47.271574
174
genomoncology/related
12,360,915,894,899
cef3726bf446d02eff10eb1d2ba8d85742c16405
a21ccc8ced1b57b351e3772e3939714e330de2d5
/tests/ex08_self_reference/models.py
34564014a623eea4f5b534a8000e7835f40c0e03
[ "MIT" ]
permissive
https://github.com/genomoncology/related
f7d4310fd5776441afd045a96f07f9dad9797a6c
2f3db6b07f5515792370d97f790cd46ec0882a9d
refs/heads/master
2023-01-12T08:46:16.068921
2022-08-05T13:34:47
2022-08-05T13:34:47
92,290,249
208
18
MIT
false
2022-12-27T17:03:18
2017-05-24T12:31:44
2022-12-19T22:03:05
2022-12-27T17:03:16
328
190
15
21
Python
false
false
import related node_cls = "ex08_self_reference.models.Node" @related.mutable class Node(object): name = related.StringField() node_child = related.ChildField(node_cls, required=False) node_list = related.SequenceField(node_cls, required=False) node_map = related.MappingField(node_cls, "name", required=False)
UTF-8
Python
false
false
329
py
42
models.py
31
0.735562
0.729483
0
11
28.909091
69
fedspendingtransparency/data-act-broker-backend
12,524,124,641,488
7033d7005c88eaf5a027556d78cd02e8c6f17831
d0081f81996635e913b1f267a4586eb0bfd3dcd5
/tests/unit/dataactvalidator/test_b7_object_class_program_activity_1.py
70b9591f77b0130db935e1bb7b512cb1f882e414
[ "CC0-1.0" ]
permissive
https://github.com/fedspendingtransparency/data-act-broker-backend
71c10a6c7c284c8fa6556ccc0efce798870b059b
b12c73976fd7eb5728eda90e56e053759c733c35
refs/heads/master
2023-09-01T07:41:35.449877
2023-08-29T20:14:45
2023-08-29T20:14:45
57,313,310
55
36
CC0-1.0
false
2023-09-13T16:40:58
2016-04-28T15:39:36
2023-04-06T18:18:03
2023-09-13T16:40:56
94,931
44
30
5
Python
false
false
from tests.unit.dataactcore.factories.staging import ObjectClassProgramActivityFactory from tests.unit.dataactvalidator.utils import number_of_errors, query_columns _FILE = 'b7_object_class_program_activity_1' def test_column_headers(database): expected_subset = {'row_number', 'gross_outlays_delivered_or_fyb', 'ussgl490800_authority_outl_fyb', 'difference', 'uniqueid_TAS', 'uniqueid_DisasterEmergencyFundCode', 'uniqueid_ProgramActivityCode', 'uniqueid_ProgramActivityName', 'uniqueid_ObjectClass', 'uniqueid_ByDirectReimbursableFundingSource'} actual = set(query_columns(_FILE, database)) assert (actual & expected_subset) == expected_subset def test_success(database): """ Test Object Class Program Activity gross_outlays_delivered_or_fyb equals ussgl490800_authority_outl_fyb """ op = ObjectClassProgramActivityFactory(gross_outlays_delivered_or_fyb=1, ussgl490800_authority_outl_fyb=1) assert number_of_errors(_FILE, database, models=[op]) == 0 def test_failure(database): """ Test Object Class Program Activity gross_outlays_delivered_or_fyb doesn't equal ussgl490800_authority_outl_fyb """ op = ObjectClassProgramActivityFactory(gross_outlays_delivered_or_fyb=1, ussgl490800_authority_outl_fyb=0) assert number_of_errors(_FILE, database, models=[op]) == 1
UTF-8
Python
false
false
1,394
py
931
test_b7_object_class_program_activity_1.py
790
0.725968
0.698709
0
32
42.5625
118
jinwei2016211483/jinwei
4,191,888,121,023
9dac69432aea4225318a66e15063b3f1dec1df33
b5a7dada98e842ba08063a5eb2573879c0d416a5
/untitled0.py
d6da41a9e336bbe6d759201d9e70f473fcb77cc7
[]
no_license
https://github.com/jinwei2016211483/jinwei
1c03d86ee462c6653a576bf5ed0cd7b72c04d8b5
cbc47b6474c7ee280f7f60baa8416a2b50cba3fb
refs/heads/master
2023-08-14T01:58:18.036150
2021-09-22T07:56:16
2021-09-22T07:56:16
410,473,975
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed Sep 22 15:10:07 2021 @author: Dell """ import tensorflow as tf
UTF-8
Python
false
false
108
py
1
untitled0.py
1
0.62037
0.5
0
8
12.5
35
cheneyuwu/TD3fD-through-Shaping-using-Generative-Models
163,208,790,172
69c33375393a9c74cf7ff377a6bc3ad3be8a838b
9488b24f3b44577529de25b71919c01de3f161f9
/Package/td3fd/td3fd/ddpg/torch/ddpg.py
c718033ddebd192bf173bc21403fc11ee4d6d25c
[ "MIT" ]
permissive
https://github.com/cheneyuwu/TD3fD-through-Shaping-using-Generative-Models
0858b6227a5b77e123b38257ea157903bd8c469b
f23bf3f219fa20cb7d14370acdf22c17f49f9b7d
refs/heads/master
2020-04-10T14:14:53.357667
2019-11-12T21:26:16
2019-11-12T21:26:16
161,072,134
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import pickle import numpy as np import torch from td3fd.memory import RingReplayBuffer, UniformReplayBuffer from td3fd.ddpg.torch.model import Actor, Critic # from td3fd.actor_critic import ActorCritic # from td3fd.demo_shaping import EnsGANDemoShaping, EnsNFDemoShaping from td3fd.ddpg.torch.normalizer import Normalizer class DDPG(object): def __init__( self, input_dims, use_td3, layer_sizes, polyak, buffer_size, batch_size, q_lr, pi_lr, norm_eps, norm_clip, max_u, action_l2, clip_obs, scope, eps_length, fix_T, clip_pos_returns, clip_return, sample_demo_buffer, batch_size_demo, use_demo_reward, num_demo, demo_strategy, bc_params, shaping_params, gamma, info, num_epochs, num_cycles, num_batches, ): """ Implementation of DDPG that is used in combination with Hindsight Experience Replay (HER). Added functionality to use demonstrations for training to Overcome exploration problem. Args: # Environment I/O and Config max_u (float) - maximum action magnitude, i.e. actions are in [-max_u, max_u] T (int) - the time horizon for rollouts fix_T (bool) - every episode has fixed length clip_obs (float) - clip observations before normalization to be in [-clip_obs, clip_obs] clip_pos_returns (boolean) - whether or not positive returns should be clipped (i.e. clip to 0) clip_return (float) - clip returns to be in [-clip_return, clip_return] # Normalizer norm_eps (float) - a small value used in the normalizer to avoid numerical instabilities norm_clip (float) - normalized inputs are clipped to be in [-norm_clip, norm_clip] # NN Configuration scope (str) - the scope used for the TensorFlow graph input_dims (dict of ints) - dimensions for the observation (o), the goal (g), and the actions (u) layer_sizes (list of ints) - number of units in each hidden layers initializer_type (str) - initializer of the weight for both policy and critic reuse (boolean) - whether or not the networks should be reused # Replay Buffer buffer_size (int) - number of transitions that are stored in the replay buffer # Dual Network Set polyak (float) - coefficient for Polyak-averaging of the target network # Training batch_size (int) - batch size for training Q_lr (float) - learning rate for the Q (critic) network pi_lr (float) - learning rate for the pi (actor) network action_l2 (float) - coefficient for L2 penalty on the actions gamma (float) - gamma used for Q learning updates # Use demonstration to shape critic or actor sample_demo_buffer (int) - whether or not to sample from demonstration buffer batch_size_demo (int) - number of samples to be used from the demonstrations buffer, per mpi thread use_demo_reward (int) - whether or not to assue that demonstration dataset has rewards num_demo (int) - number of episodes in to be used in the demonstration buffer demo_strategy (str) - whether or not to use demonstration with different strategies bc_params (dict) shaping_params (dict) """ # Store initial args passed into the function self.init_args = locals() # Parameters self.num_epochs = num_epochs self.num_cycles = num_cycles self.num_batches = num_batches self.input_dims = input_dims self.use_td3 = use_td3 self.layer_sizes = layer_sizes # self.initializer_type = initializer_type self.polyak = polyak self.buffer_size = buffer_size self.batch_size = batch_size self.q_lr = q_lr self.pi_lr = pi_lr self.norm_eps = norm_eps self.norm_clip = norm_clip self.max_u = max_u self.action_l2 = action_l2 # self.clip_obs = clip_obs self.eps_length = eps_length self.fix_T = fix_T # self.clip_pos_returns = clip_pos_returns # self.clip_return = clip_return self.sample_demo_buffer = sample_demo_buffer self.batch_size_demo = batch_size_demo self.use_demo_reward = use_demo_reward self.num_demo = num_demo self.demo_strategy = demo_strategy assert self.demo_strategy in ["none", "bc", "gan", "nf"] self.bc_params = bc_params self.shaping_params = shaping_params self.gamma = gamma self.info = info # Prepare parameters self.dimo = self.input_dims["o"] self.dimg = self.input_dims["g"] self.dimu = self.input_dims["u"] self._create_memory() self._create_network() def get_actions(self, o, g, compute_q=False): o = torch.from_numpy(o) g = torch.from_numpy(g) o, g = self._normalize_state(o, g) u = self.main_actor(o=o, g=g) if compute_q: q = self.main_critic(o=o, g=g, u=u) if self.demo_shaping: p = torch.Tensor((0.0,)) # TODO else: p = q u = u * self.max_u if compute_q: return [u.data.numpy(), p.data.numpy(), q.data.numpy()] else: return u.data.numpy() def init_demo_buffer(self, demo_file, update_stats=True): """Initialize the demonstration buffer. """ # load the demonstration data from data file episode_batch = self.demo_buffer.load_from_file(data_file=demo_file, num_demo=self.num_demo) self._update_demo_stats(episode_batch) if update_stats: self._update_stats(episode_batch) def store_episode(self, episode_batch, update_stats=True): """ episode_batch: array of batch_size x (T or T+1) x dim_key ('o' and 'ag' is of size T+1, others are of size T) """ self.replay_buffer.store_episode(episode_batch) if update_stats: self._update_stats(episode_batch) def sample_batch(self): # use demonstration buffer to sample as well if demo flag is set TRUE if self.sample_demo_buffer: transitions = {} transition_rollout = self.replay_buffer.sample(self.batch_size) transition_demo = self.demo_buffer.sample(self.batch_size_demo) assert transition_rollout.keys() == transition_demo.keys() for k in transition_rollout.keys(): transitions[k] = np.concatenate((transition_rollout[k], transition_demo[k])) else: transitions = self.replay_buffer.sample(self.batch_size) # otherwise only sample from primary buffer return transitions def save_policy(self, path): """Pickles the current policy for later inspection. """ with open(path, "wb") as f: pickle.dump(self, f) def save_replay_buffer(self, path): pass def load_replay_buffer(self, path): pass def save_weights(self, path): pass def load_weights(self, path): pass def train_shaping(self): pass def train(self): batch = self.sample_batch() r_tc = torch.from_numpy(batch["r"]) o_tc, g_tc = self._normalize_state(torch.from_numpy(batch["o"]), torch.from_numpy(batch["g"])) o_2_tc, g_2_tc = self._normalize_state(torch.from_numpy(batch["o_2"]), torch.from_numpy(batch["g_2"])) u_tc = torch.from_numpy(batch["u"]) / self.max_u u_2_tc = self.target_actor(o=o_2_tc, g=g_2_tc) # Critic update target_tc = r_tc if self.use_td3: target_tc += self.gamma * torch.min( self.target_critic(o=o_2_tc, g=g_2_tc, u=u_2_tc), self.target_critic_twin(o=o_2_tc, g=g_2_tc, u=u_2_tc) ) critic_loss = self.q_criterion(target_tc, self.main_critic(o=o_tc, g=g_tc, u=u_tc)) critic_twin_loss = self.q_criterion(target_tc, self.main_critic_twin(o=o_tc, g=g_tc, u=u_tc)) else: target_tc += self.gamma * self.target_critic(o=o_2_tc, g=g_2_tc, u=u_2_tc) critic_loss = self.q_criterion(target_tc, self.main_critic(o=o_tc, g=g_tc, u=u_tc)) self.critic_adam.zero_grad() critic_loss.backward() self.critic_adam.step() if self.use_td3: self.critic_twin_adam.zero_grad() critic_twin_loss.backward() self.critic_twin_adam.step() # Actor update pi_tc = self.main_actor(o=o_tc, g=g_tc) actor_loss = -torch.mean(self.main_critic(o=o_tc, g=g_tc, u=pi_tc)) actor_loss += self.action_l2 * torch.mean(pi_tc) self.actor_adam.zero_grad() actor_loss.backward() self.actor_adam.step() return actor_loss.data.numpy(), critic_loss.data.numpy() def initialize_target_net(self): func = lambda v: v[0].data.copy_(v[1].data) map(func, zip(self.target_actor.parameters(), self.main_actor.parameters())) map(func, zip(self.target_critic.parameters(), self.main_critic.parameters())) if self.use_td3: map(func, zip(self.target_critic_twin.parameters(), self.main_critic_twin.parameters())) def update_target_net(self): func = lambda v: v[0].data.copy_(self.polyak * v[0].data + (1.0 - self.polyak) * v[1].data) map(func, zip(self.target_actor.parameters(), self.main_actor.parameters())) map(func, zip(self.target_critic.parameters(), self.main_critic.parameters())) if self.use_td3: map(func, zip(self.target_critic_twin.parameters(), self.main_critic_twin.parameters())) def logs(self, prefix=""): logs = [] logs.append((prefix + "stats_o/mean", self.o_stats.mean_tc.numpy())) logs.append((prefix + "stats_o/std", self.o_stats.std_tc.numpy())) if self.dimg != 0: logs.append((prefix + "stats_g/mean", self.g_stats.mean_tc.numpy())) logs.append((prefix + "stats_g/std", self.g_stats.std_tc.numpy())) return logs def _create_memory(self): # buffer shape buffer_shapes = {} if self.fix_T: buffer_shapes["o"] = (self.eps_length + 1, self.dimo) buffer_shapes["u"] = (self.eps_length, self.dimu) buffer_shapes["r"] = (self.eps_length, 1) if self.dimg != 0: # for multigoal environment - or states that do not change over episodes. buffer_shapes["ag"] = (self.eps_length + 1, self.dimg) buffer_shapes["g"] = (self.eps_length, self.dimg) for key, val in self.input_dims.items(): if key.startswith("info"): buffer_shapes[key] = (self.eps_length, *(tuple([val]) if val > 0 else tuple())) else: buffer_shapes["o"] = (self.dimo,) buffer_shapes["o_2"] = (self.dimo,) buffer_shapes["u"] = (self.dimu,) buffer_shapes["r"] = (1,) if self.dimg != 0: # for multigoal environment - or states that do not change over episodes. buffer_shapes["ag"] = (self.dimg,) buffer_shapes["g"] = (self.dimg,) buffer_shapes["ag_2"] = (self.dimg,) buffer_shapes["g_2"] = (self.dimg,) for key, val in self.input_dims.items(): if key.startswith("info"): buffer_shapes[key] = tuple([val]) if val > 0 else tuple() # need the "done" signal for restarting from training buffer_shapes["done"] = (1,) # initialize replay buffer(s) if self.fix_T: self.replay_buffer = UniformReplayBuffer(buffer_shapes, self.buffer_size, self.eps_length) if self.demo_strategy != "none" or self.sample_demo_buffer: self.demo_buffer = UniformReplayBuffer(buffer_shapes, self.buffer_size, self.eps_length) else: self.replay_buffer = RingReplayBuffer(buffer_shapes, self.buffer_size) if self.demo_strategy != "none" or self.sample_demo_buffer: self.demo_buffer = RingReplayBuffer(buffer_shapes, self.buffer_size) def _create_network(self): # Normalizer for goal and observation. self.o_stats = Normalizer(self.dimo, self.norm_eps, self.norm_clip) self.g_stats = Normalizer(self.dimg, self.norm_eps, self.norm_clip) # Models self.main_actor = Actor( dimo=self.dimo, dimg=self.dimg, dimu=self.dimu, layer_sizes=self.layer_sizes, noise=False ) self.target_actor = Actor( dimo=self.dimo, dimg=self.dimg, dimu=self.dimu, layer_sizes=self.layer_sizes, noise=self.use_td3 ) self.actor_adam = torch.optim.Adam(self.main_actor.parameters(), lr=self.pi_lr) self.main_critic = Critic(dimo=self.dimo, dimg=self.dimg, dimu=self.dimu, layer_sizes=self.layer_sizes) self.target_critic = Critic(dimo=self.dimo, dimg=self.dimg, dimu=self.dimu, layer_sizes=self.layer_sizes) self.critic_adam = torch.optim.Adam(self.main_critic.parameters(), lr=self.q_lr) if self.use_td3: self.main_critic_twin = Critic( dimo=self.dimo, dimg=self.dimg, dimu=self.dimu, layer_sizes=self.layer_sizes ) self.target_critic_twin = Critic( dimo=self.dimo, dimg=self.dimg, dimu=self.dimu, layer_sizes=self.layer_sizes ) self.critic_twin_adam = torch.optim.Adam(self.main_critic_twin.parameters(), lr=self.q_lr) self.demo_shaping = None # TODO self.q_criterion = torch.nn.MSELoss() self.initialize_target_net() def _normalize_state(self, o, g): o = self.o_stats.normalize(o) # for multigoal environments, we have goal as another states if self.dimg != 0: g = self.g_stats.normalize(g) return o, g def _update_stats(self, episode_batch): # add transitions to normalizer if self.fix_T: episode_batch["o_2"] = episode_batch["o"][:, 1:, :] if self.dimg != 0: episode_batch["ag_2"] = episode_batch["ag"][:, :, :] episode_batch["g_2"] = episode_batch["g"][:, :, :] num_normalizing_transitions = episode_batch["u"].shape[0] * episode_batch["u"].shape[1] transitions = self.replay_buffer.sample_transitions(episode_batch, num_normalizing_transitions) else: transitions = episode_batch.copy() self.o_stats.update(torch.from_numpy(transitions["o"])) if self.dimg != 0: self.g_stats.update(torch.from_numpy(transitions["g"])) def _update_demo_stats(self, episode_batch): # add transitions to normalizer if self.fix_T: episode_batch["o_2"] = episode_batch["o"][:, 1:, :] if self.dimg != 0: episode_batch["ag_2"] = episode_batch["ag"][:, :, :] episode_batch["g_2"] = episode_batch["g"][:, :, :] num_normalizing_transitions = episode_batch["u"].shape[0] * episode_batch["u"].shape[1] transitions = self.demo_buffer.sample_transitions(episode_batch, num_normalizing_transitions) else: transitions = episode_batch.copy() self.demo_o_stats.update(torch.from_numpy(transitions["o"])) if self.dimg != 0: self.demo_g_stats.update(torch.from_numpy(transitions["g"])) def __getstate__(self): pass # """ # Our policies can be loaded from pkl, but after unpickling you cannot continue training. # """ # state = {k: v for k, v in self.init_args.items() if not k == "self"} # state["tf"] = self.sess.run([x for x in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)]) # return state def __setstate__(self, state): pass # kwargs = state["kwargs"] # del state["kwargs"] # self.__init__(**state, **kwargs) # vars = [x for x in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)] # assert len(vars) == len(state["tf"]) # node = [tf.assign(var, val) for var, val in zip(vars, state["tf"])] # self.sess.run(node)
UTF-8
Python
false
false
17,003
py
124
ddpg.py
74
0.570311
0.565724
0
391
42.485934
123
le1nux/pandattack
16,183,436,776,373
a15e45e1be823da050f1205bb9942b53192dcb4c
5bc231e45984a2bfb1d93c548e0d8cb395fa9d05
/tests/dataset_loaders/test_dataset.py
54471ee8d38db4eeb4f304a9183efb55c0f471c2
[ "MIT" ]
permissive
https://github.com/le1nux/pandattack
9232075c160bca11876e314e6b3f8c4bd2f2ce98
c3671fc11b74019fb20b7507e09f7b8425f9bb81
refs/heads/master
2022-12-24T21:17:05.442606
2019-10-08T14:28:32
2019-10-08T14:28:32
207,798,327
2
1
MIT
false
2022-12-15T18:35:06
2019-09-11T11:42:53
2021-05-13T13:29:59
2019-10-08T14:28:43
335
1
1
1
Python
false
false
#!/usr/bin/env python3 import pytest import tempfile class TestDataset: @pytest.fixture(autouse=True) def setup_and_teardown(self): tmp_dir = tempfile.TemporaryDirectory() yield tmp_dir.cleanup()
UTF-8
Python
false
false
230
py
28
test_dataset.py
26
0.673913
0.669565
0
11
19.909091
47
Reyoth/initiationPython
15,839,839,429,658
a0df200b73e445df460230cc32bfb28574a0ed2d
0102ccf6c44c225868813bbcc9b37e22092e67cf
/06_exercices.py
9d8589d7d48ac3dd0f37bff161754b9ee449e5ed
[]
no_license
https://github.com/Reyoth/initiationPython
c1e72ec4669c22a4ff5c06c8fa978b2af1625af0
d0cc3473be0b9f286e89921f9ff72a34c1eedcb0
refs/heads/master
2022-03-26T07:35:00.040124
2022-02-28T10:51:42
2022-02-28T10:51:42
150,640,858
0
10
null
null
null
null
null
null
null
null
null
null
null
null
null
# Règles du jeu de la roulette ZCasino de OpenClassRooms.com # On va simplifier les règles et je vous présente tout de suite ce que l'on obtient : # Le joueur mise sur un numéro compris entre 0 et 49 (50 numéros en tout). # En choisissant son numéro, il y dépose la somme qu'il souhaite miser. # La roulette est constituée de 50 cases allant naturellement de 0 à 49. # Les numéros pairs sont de couleur noire, les numéros impairs sont de couleur rouge. # Le croupier lance la roulette, lâche la bille et quand la roulette s'arrête, # relève le numéro de la case dans laquelle la bille s'est arrêtée. # Dans notre programme, nous ne reprendrons pas tous ces détails « matériels » mais # ces explications sont aussi à l'intention de ceux qui ont eu la chance d'éviter les salles de casino jusqu'ici. # Le numéro sur lequel s'est arrêtée la bille est, naturellement, le numéro gagnant. # Si le numéro gagnant est celui sur lequel le joueur a misé (probabilité de 1/50, plutôt faible), # le croupier lui remet 3 fois la somme misée. # Sinon, le croupier regarde si le numéro misé par le joueur est de la même couleur que # le numéro gagnant (s'ils sont tous les deux pairs ou tous les deux impairs). # Si c'est le cas, le croupier lui remet 50 % de la somme misée. Si ce n'est pas le cas, le joueur perd sa mise. # Dans les deux scénarios gagnants vus ci-dessus # (le numéro misé et le numéro gagnant sont identiques ou ont la même couleur), # le croupier remet au joueur la somme initialement misée avant d'y ajouter ses gains. # Cela veut dire que, dans ces deux scénarios, le joueur récupère de l'argent. # Il n'y a que dans le troisième cas qu'il perd la somme misée. # On utilisera pour devise le dollar $ à la place de l'euro pour des raisons d'encodage sous la console Windows. # Attention, arrondir un nombre # Vous l'avez peut-être bien noté, dans l'explication des règles je spécifiais que # si le joueur misait sur la bonne couleur, il obtenait 50% de sa mise. # Oui mais… c'est quand même mieux de travailler avec des entiers. # Si le joueur mise 3$, par exemple, on lui rend 1,5$. C'est encore acceptable mais, si cela se poursuit, # on risque d'arriver à des nombres flottants avec beaucoup de chiffres après la virgule. # Alors autant arrondir au nombre supérieur. Ainsi, si le joueur mise 3$, on lui rend 2$. # Pour cela, on va utiliser une fonction du module math nommée ceil. # Je vous laisse regarder ce qu'elle fait, il n'y a rien de compliqué. # SOLUTION ------------------------------------------------------------ import os from random import randrange from math import ceil # Déclaration des variables de départ argent = 1000 # On a 1000 $ au début du jeu continuer_partie = True # Booléen qui est vrai tant qu'on doit # continuer la partie print("Vous vous installez à la table de roulette avec", argent, "$.") while continuer_partie: # Tant qu'on doit continuer la partie # on demande à l'utilisateur de saisir le nombre sur # lequel il va miser nombre_mise = -1 while nombre_mise < 0 or nombre_mise > 49: nombre_mise = input("Tapez le nombre sur lequel vous voulez miser (entre 0 et 49) : ") # On convertit le nombre misé try: nombre_mise = int(nombre_mise) except ValueError: print("Vous n'avez pas saisi de nombre") nombre_mise = -1 continue if nombre_mise < 0: print("Ce nombre est négatif") if nombre_mise > 49: print("Ce nombre est supérieur à 49") # À présent, on sélectionne la somme à miser sur le nombre mise = 0 while mise <= 0 or mise > argent: mise = input("Tapez le montant de votre mise : ") # On convertit la mise try: mise = int(mise) except ValueError: print("Vous n'avez pas saisi de nombre") mise = -1 continue if mise <= 0: print("La mise saisie est négative ou nulle.") if mise > argent: print("Vous ne pouvez miser autant, vous n'avez que", argent, "$") # Le nombre misé et la mise ont été sélectionnés par # l'utilisateur, on fait tourner la roulette numero_gagnant = randrange(50) print("La roulette tourne... ... et s'arrête sur le numéro", numero_gagnant) # On établit le gain du joueur if numero_gagnant == nombre_mise: print("Félicitations ! Vous obtenez", mise * 3, "$ !") argent += mise * 3 elif numero_gagnant % 2 == nombre_mise % 2: # ils sont de la même couleur mise = ceil(mise * 0.5) print("Vous avez misé sur la bonne couleur. Vous obtenez", mise, "$") argent += mise else: print("Désolé l'ami, c'est pas pour cette fois. Vous perdez votre mise.") argent -= mise # On interrompt la partie si le joueur est ruiné if argent <= 0: print("Vous êtes ruiné ! C'est la fin de la partie.") continuer_partie = False else: # On affiche l'argent du joueur print("Vous avez à présent", argent, "$") quitter = input("Souhaitez-vous quitter le casino (o/n) ? ") if quitter == "o" or quitter == "O": print("Vous quittez le casino avec vos gains.") continuer_partie = False # On met en pause le système (Windows) os.system("pause")
UTF-8
Python
false
false
5,528
py
18
06_exercices.py
18
0.655255
0.644763
0
195
26.866667
113
davidbrownell/Common_Environment
4,011,499,481,987
ea96589fcc6b9fab622d8e1ec5a662b7e09ef257
8ac43a158d42db9b9b4098415cb8119f9e8d092c
/Libraries/Python/CommonEnvironment/v1.0/CommonEnvironment/TypeInfo/SchemaConverters/UnitTests/SimpleSchemaConverter_UnitTest.py
af0809e260f4ff5f0f243374434e62044399009d
[ "BSL-1.0" ]
permissive
https://github.com/davidbrownell/Common_Environment
834ae4fd86284115dc2f0c2a85434ebc6bffeb89
4015872aeac8d5da30a6aa7940e1035a6aa6a75d
refs/heads/master
2021-01-23T04:29:17.336612
2018-04-15T18:58:41
2018-04-15T18:58:41
88,362,950
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# ---------------------------------------------------------------------- # | # | SimpleSchemaConverter_UnitTest.py # | # | David Brownell <db@DavidBrownell.com> # | 2016-09-06 17:31:15 # | # ---------------------------------------------------------------------- # | # | Copyright David Brownell 2016-18. # | Distributed under the Boost Software License, Version 1.0. # | (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) # | # ---------------------------------------------------------------------- import os import sys import unittest from CommonEnvironment import Package # ---------------------------------------------------------------------- _script_fullpath = os.path.abspath(__file__) if "python" in sys.executable.lower() else sys.executable _script_dir, _script_name = os.path.split(_script_fullpath) # ---------------------------------------------------------------------- with Package.NameInfo(__package__) as ni: __package__ = ni.created from ..SimpleSchemaConverter import * from ...FundamentalTypes import * __package__ = ni.original # ---------------------------------------------------------------------- class UnitTest(unittest.TestCase): # ---------------------------------------------------------------------- def test_Name(self): self.assertEqual(SimpleSchemaConveter.Convert(BoolTypeInfo(), name="Foo"), "<Foo boolean>") self.assertEqual(SimpleSchemaConveter.Convert(BoolTypeInfo(arity='?'), name="Foo"), "<Foo boolean ?>") self.assertEqual(SimpleSchemaConveter.Convert(BoolTypeInfo(arity='?'), name="Foo", arity_override='*'), "<Foo boolean *>") self.assertEqual(SimpleSchemaConveter.Convert(BoolTypeInfo(arity='?'), name="Foo", arity_override=Arity.FromString('+')), "<Foo boolean +>") # ---------------------------------------------------------------------- def test_Collection(self): self.assertEqual(SimpleSchemaConveter.Convert(BoolTypeInfo()), "<boolean>") self.assertEqual(SimpleSchemaConveter.Convert(BoolTypeInfo(arity="(2)")), "<boolean {2}>") self.assertEqual(SimpleSchemaConveter.Convert(BoolTypeInfo(arity="(2,10)")), "<boolean {2,10}>") self.assertEqual(SimpleSchemaConveter.Convert(BoolTypeInfo(arity="?")), "<boolean ?>") self.assertEqual(SimpleSchemaConveter.Convert(BoolTypeInfo(arity="1")), "<boolean>") self.assertEqual(SimpleSchemaConveter.Convert(BoolTypeInfo(arity="*")), "<boolean *>") self.assertEqual(SimpleSchemaConveter.Convert(BoolTypeInfo(arity="+")), "<boolean +>") # ---------------------------------------------------------------------- def test_SimpleItems(self): self.assertEqual(SimpleSchemaConveter.Convert(BoolTypeInfo()), "<boolean>") self.assertEqual(SimpleSchemaConveter.Convert(DateTimeTypeInfo()), "<datetime>") self.assertEqual(SimpleSchemaConveter.Convert(DateTypeInfo()), "<date>") self.assertEqual(SimpleSchemaConveter.Convert(DurationTypeInfo()), "<duration>") self.assertEqual(SimpleSchemaConveter.Convert(GuidTypeInfo()), "<guid>") self.assertEqual(SimpleSchemaConveter.Convert(TimeTypeInfo()), "<time>") # ---------------------------------------------------------------------- def test_FilenameDirectory(self): self.assertEqual(SimpleSchemaConveter.Convert(DirectoryTypeInfo()), '<filename must_exist="True" type="directory">') self.assertEqual(SimpleSchemaConveter.Convert(FilenameTypeInfo()), '<filename must_exist="True" type="file">') self.assertEqual(SimpleSchemaConveter.Convert(FilenameTypeInfo(ensure_exists=False, match_any=True)), '<filename must_exist="False" type="either">') # ---------------------------------------------------------------------- def test_Enum(self): self.assertEqual(SimpleSchemaConveter.Convert(EnumTypeInfo([ "one", "two", "three", ])), '<enum values=[ "one", "two", "three" ]>') self.assertEqual(SimpleSchemaConveter.Convert(EnumTypeInfo([ "one", "two", "three", ], friendly_values=[ "1", "2", "3", ])), '<enum values=[ "one", "two", "three" ] friendly_values=[ "1", "2", "3" ]>') # ---------------------------------------------------------------------- def test_Float(self): self.assertEqual(SimpleSchemaConveter.Convert(FloatTypeInfo()), '<number>') self.assertEqual(SimpleSchemaConveter.Convert(FloatTypeInfo(min=2.0)), '<number min="2.0">') self.assertEqual(SimpleSchemaConveter.Convert(FloatTypeInfo(max=10.5)), '<number max="10.5">') self.assertEqual(SimpleSchemaConveter.Convert(FloatTypeInfo(min=2.0, max=10.5)), '<number min="2.0" max="10.5">') # ---------------------------------------------------------------------- def test_Int(self): self.assertEqual(SimpleSchemaConveter.Convert(IntTypeInfo()), '<integer>') self.assertEqual(SimpleSchemaConveter.Convert(IntTypeInfo(min=2)), '<integer min="2">') self.assertEqual(SimpleSchemaConveter.Convert(IntTypeInfo(max=10)), '<integer max="10">') self.assertEqual(SimpleSchemaConveter.Convert(IntTypeInfo(min=2, max=10)), '<integer min="2" max="10">') self.assertEqual(SimpleSchemaConveter.Convert(IntTypeInfo(bytes=4)), '<integer min="-2147483648" max="2147483647" bytes="4">') # ---------------------------------------------------------------------- def test_String(self): self.assertEqual(SimpleSchemaConveter.Convert(StringTypeInfo()), '<string min_length="1">') self.assertEqual(SimpleSchemaConveter.Convert(StringTypeInfo(min_length=2)), '<string min_length="2">') self.assertEqual(SimpleSchemaConveter.Convert(StringTypeInfo(max_length=10)), '<string min_length="1" max_length="10">') self.assertEqual(SimpleSchemaConveter.Convert(StringTypeInfo(min_length=2, max_length=10)), '<string min_length="2" max_length="10">') self.assertEqual(SimpleSchemaConveter.Convert(StringTypeInfo(validation_expression="foo")), '<string validation_expression="foo">') # --------------------------------------------------------------------------- if __name__ == "__main__": try: sys.exit(unittest.main(verbosity=2)) except KeyboardInterrupt: pass
UTF-8
Python
false
false
6,374
py
222
SimpleSchemaConverter_UnitTest.py
196
0.559931
0.542673
0
100
61.74
209
madskillz254/watchlist-tutorial
16,106,127,402,549
30355eefb5b70748d2673da7d7eb17874711dbd0
50a72c754521700825bb0fd2e7a38af200435525
/config.py
0eb0c29c08645643fdd2f554bb8540a83996e1dc
[]
no_license
https://github.com/madskillz254/watchlist-tutorial
4160945c24c79e686560de81b417a376db1df7f3
977f001031c9b32ef9248a4ce13b3143bd801e34
refs/heads/master
2020-05-07T09:30:05.783420
2019-04-17T09:40:31
2019-04-17T09:40:31
180,379,966
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import os class Config: ''' General configuration parent class ''' # simple mde configurations SIMPLEMDE_JS_IIFE = True SIMPLEMDE_USE_CDN = True MOVIE_API_BASE_URL ='https://api.themoviedb.org/3/movie/{}?api_key={}' MOVIE_API_KEY = os.environ.get('MOVIE_API_KEY') SECRET_KEY = os.environ.get('SECRET_KEY') UPLOADED_PHOTOS_DEST ='app/static/photos' # It is not advisable to store files inside the database. Instead we store the files inside our application and we store the path to the files in our database. # # email configurations MAIL_SERVER = 'smtp.googlemail.com' #Flask uses the Flask-Mail extension to send emails to users. MAIL_PORT = 587 MAIL_USE_TLS = True #enables a transport layer security to secure the emails when sending the emails. MAIL_USERNAME = os.environ.get("MAIL_USERNAME") MAIL_PASSWORD = os.environ.get("MAIL_PASSWORD") class ProdConfig(Config): SQLALCHEMY_DATABASE_URI = os.environ.get("DATABASE_URL") class TestConfig(Config): SQLALCHEMY_DATABASE_URI = 'postgresql+psycopg2://mugambi254:pitchdb@localhost/watchlist_test' # Here we create a new database watchlist_test. We use WITH TEMPLATE to copy the schema of the watchlist database so both databases can be identical. ie CREATE DATABASE watchlist_test WITH TEMPLATE watchlist class DevConfig(Config): SQLALCHEMY_DATABASE_URI = 'postgresql+psycopg2://mugambi254:pitchdb@localhost/watchlist' #this is the location of the database with authentication. DEBUG = True #enables debig mode in our app config_options = { 'development':DevConfig, 'production':ProdConfig, 'test':TestConfig }
UTF-8
Python
false
false
1,730
py
12
config.py
11
0.704046
0.69711
0
43
39.255814
314