repo_name
stringlengths
7
111
__id__
int64
16.6k
19,705B
blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
151
content_id
stringlengths
40
40
detected_licenses
list
license_type
stringclasses
2 values
repo_url
stringlengths
26
130
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
42
visit_date
timestamp[ns]
revision_date
timestamp[ns]
committer_date
timestamp[ns]
github_id
int64
14.6k
687M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
12 values
gha_fork
bool
2 classes
gha_event_created_at
timestamp[ns]
gha_created_at
timestamp[ns]
gha_updated_at
timestamp[ns]
gha_pushed_at
timestamp[ns]
gha_size
int64
0
10.2M
gha_stargazers_count
int32
0
178k
gha_forks_count
int32
0
88.9k
gha_open_issues_count
int32
0
2.72k
gha_language
stringlengths
1
16
gha_archived
bool
1 class
gha_disabled
bool
1 class
content
stringlengths
10
2.95M
src_encoding
stringclasses
5 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
10
2.95M
extension
stringclasses
19 values
num_repo_files
int64
1
202k
filename
stringlengths
4
112
num_lang_files
int64
1
202k
alphanum_fraction
float64
0.26
0.89
alpha_fraction
float64
0.2
0.89
hex_fraction
float64
0
0.09
num_lines
int32
1
93.6k
avg_line_length
float64
4.57
103
max_line_length
int64
7
931
tumbleweed91/todo
15,015,205,706,656
517eb248a7af0ff53509d239db030acf39b67419
4b9b05025f79fcf99217474a02c8b0ffd9416f30
/general/models.py
03b492532684f8f09b23bb2c453740b18176f988
[]
no_license
https://github.com/tumbleweed91/todo
c890004accbe2831c3257fcad5d98b980f9a1b1f
d1776e73124d9d2e78ef85e606a0474644689017
refs/heads/master
2016-09-22T16:59:41.694810
2016-06-03T22:38:43
2016-06-03T22:38:43
60,289,192
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from __future__ import unicode_literals from django.db import models class ToDoEntry(models.Model): text = models.CharField(max_length=25) done = models.BooleanField(default=False) created_at = models.DateTimeField(auto_now=True) def __unicode__(self): return self.text
UTF-8
Python
false
false
298
py
6
models.py
5
0.708054
0.701342
0
12
23.833333
52
IBM-Security/ibmsecurity
12,360,915,905,554
21423e7ef9105da8da44d74385cb0eb92fac7383
33b3d332deafae90bff495ae7caffc98f331089b
/ibmsecurity/isam/web/reverse_proxy/federation_configuration.py
42dcef5c77c2bba66effa7b0c705af2271f85ca2
[ "Apache-2.0" ]
permissive
https://github.com/IBM-Security/ibmsecurity
5698e8f52db6e04f759d67fc3ecdd976de233fa4
66f7673c5757273eb2afa4d1734e35efbd6f3fc0
refs/heads/master
2023-08-11T09:22:38.009427
2023-07-06T11:54:32
2023-07-06T11:54:32
85,416,486
50
96
Apache-2.0
false
2023-07-06T11:54:33
2017-03-18T16:40:53
2023-06-23T07:40:23
2023-07-06T11:54:32
1,161
44
75
32
Python
false
false
import logging import ibmsecurity.isam.fed.federations logger = logging.getLogger(__name__) def config(isamAppliance, instance_id, federation_id=None, federation_name=None, hostname='127.0.0.1', port='443', username='easuser', password='passw0rd', reuse_certs=False, reuse_acls=False, check_mode=False, force=False): """ Federation configuration for a reverse proxy instance :param isamAppliance: :param instance_id: :param federation_id: :param federation_name: :param hostname: :param port: :param username: :param password: :param reuse_certs: :param reuse_acls: :param check_mode: :param force: :return: """ if federation_name is not None: ret_obj = ibmsecurity.isam.fed.federations.search(isamAppliance, name=federation_name, check_mode=check_mode, force=force) federation_id = ret_obj['data'] if federation_id == {}: logger.info("Federation {0}, not found. Skipping config.".format(federation_name)) return isamAppliance.create_return_object() if federation_id is None: logger.info("Required parameter federation_id missing. Skipping config.") return isamAppliance.create_return_object() if force is True or _check(isamAppliance, instance_id, federation_id) is False: if check_mode is True: return isamAppliance.create_return_object(changed=True) else: return isamAppliance.invoke_post( "Federation configuration for a reverse proxy instance", "/wga/reverseproxy/{0}/fed_config".format(instance_id), { "runtime": { "hostname": hostname, "port": port, "username": username, "password": password }, "federation_id": federation_id, "reuse_certs": reuse_certs, "reuse_acls": reuse_acls }) return isamAppliance.create_return_object() def unconfig(isamAppliance, instance_id, federation_id=None, federation_name=None, check_mode=False, force=False): """ Federation unconfiguration for a reverse proxy instance :param isamAppliance: :param instance_id: :param federation_id: :param federation_name: :param check_mode: :param force: :return: """ if federation_name is not None: ret_obj = ibmsecurity.isam.fed.federations.search(isamAppliance, name=federation_name, check_mode=check_mode, force=force) federation_id = ret_obj['data'] if federation_id == {}: logger.info("Federation {0}, not found. Skipping config.".format(federation_name)) return isamAppliance.create_return_object() if federation_id is None: logger.info("Required parameter federation_id missing. Skipping config.") return isamAppliance.create_return_object() if force is True or _check(isamAppliance, instance_id, federation_id) is True: if check_mode is True: return isamAppliance.create_return_object(changed=True) else: return isamAppliance.invoke_delete( "Federation unconfiguration for a reverse proxy instance", "/wga/reverseproxy/{0}/fed_config/{1}".format(instance_id, federation_id)) return isamAppliance.create_return_object() def _check(isamappliance, instance_id, federation_id): # WebSEAL has a stanza that should contain the configured federations from ibmsecurity.isam.web.reverse_proxy.configuration import entry ret_obj = entry.get_all(isamappliance, reverseproxy_id=instance_id, stanza_id="isam-fed-autocfg") # IF there is any exception - i.e. stanza not found return False try: if federation_id in ret_obj['data']: logger.info("federation_id {0} found in reverse_proxy stanza isam-fed-autocfg.".format(federation_id)) return True except: pass return False
UTF-8
Python
false
false
4,206
py
303
federation_configuration.py
300
0.617689
0.613885
0
112
36.553571
134
jmslagle/nagplugins
7,524,782,731,945
4de818fb99237702cfd870e3c150b3315b65acbb
ed4988957c35a237423bb534ebced640fb9f4aeb
/check_pcp_node_status.py
98abe362b25e963332eb9a8c75d1bc0e2db0b411
[]
no_license
https://github.com/jmslagle/nagplugins
0688954eb0e7421a24750580af601cd1e68aaaaa
41c62858c2fc802c548f4a83529f5a38b994b6c1
refs/heads/master
2016-09-06T06:45:18.361687
2012-06-06T19:35:33
2012-06-06T19:35:33
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python # check_pcp_node_status - check PGPool node status # # Python Nagios Template from # http://bsd.dischaos.com/2009/04/29/nagios-plugin-template-in-python/ import sys, getopt, subprocess nagios_codes = {'OK': 0, 'WARNING': 1, 'CRITICAL': 2, 'UNKNOWN': 3, 'DEPENDENT': 4} def usage(): """ returns nagios status UNKNOWN with a one line usage description usage() calls nagios_return() """ nagios_return('UNKNOWN', "usage: %s -H host -P port -u user -p pass [-n node]" % sys.argv[0]) def nagios_return(code, response): """ prints the response message and exits the script with one of the defined exit codes DOES NOT RETURN """ print code + ": " + response sys.exit(nagios_codes[code]) def do_nodeinfo_check(host, port, user, pwd, node): retcode=0 args = ["pcp_node_info", "30", host, port, user, pwd, node] try: p = subprocess.Popen(args, stdout=subprocess.PIPE) except OSError: retcode=-1 s = 0 w = 0 if (retcode!=-1): p.wait() retcode = p.returncode out = p.communicate()[0].strip() ov = out.split() s = ov[2] w = ov[3] return [retcode, s, w] def get_node_count(host, port, user, pwd): retcode=0 args = ["pcp_node_count", "30", host, port, user, pwd] try: p = subprocess.Popen(args, stdout=subprocess.PIPE) except OSError: retcode=-1 c=0 if (retcode!=-1): p.wait() retcode = p.returncode out = p.communicate()[0].strip() c=int(out) return [retcode,c] def check_condition(host, port, user, pwd, node): ret={} if (node!=None): (retcode, status, weight) = do_nodeinfo_check(host, port, user, pwd, node) if (retcode!=0): ret={"code": "UNKNOWN", "message": "pcp_node_info returned non zero"} else: if (status == '2'): ret={"code": "OK", "message": "Node Status OK - Weight %s" % weight} elif (status == '3'): ret={"code": "CRITICAL", "message": "Node Status CRITICAL - Node down"} else: ret={"code": "UNKNOWN", "message": "Node Status Unknown - %s" % status} else: upnodes=[] downnodes=[] (r,count)=get_node_count(host, port, user, pwd) if (r==-1): ret={"code": "UNKNOWN", "message": "Error running pcp_node_count"} for i in range(count): (retcode, status, weight) = do_nodeinfo_check(host, port, user, pwd, str(i)) if (retcode!=0): ret={"code": "UNKNOWN", "message": "pcp_node_info returned non zero"} break if (status=='2'): upnodes.append([i,status]) else: downnodes.append([i,status]) if (ret.has_key("code")): return ret # Ug I hate returning in more than 1 place in a function if (len(downnodes)==0): ret={"code": "OK", "message": "%d nodes up" % count} else: m = "" for n in downnodes: m = m + "Node: %s, Status: %s " % (n[0], n[1]) ret={"code": "CRITICAL", "message": m} return ret def main(): host=None port=None user=None pwd=None node=None if len(sys.argv) < 2: usage() try: opts, args = getopt.getopt(sys.argv[1:], "H:P:u:p:n:") except getopt.GetoptError, err: usage() for o, value in opts: if (o == "-H"): host = value elif (o == "-P"): port = value elif (o == "-u"): user = value elif (o == "-p"): pwd = value elif (o == "-n"): node = value else: usage() if (host == None or port == None or user == None or pwd == None): usage() result = check_condition(host, port, user, pwd, node) nagios_return(result['code'], result['message']) if __name__ == "__main__": main()
UTF-8
Python
false
false
3,676
py
2
check_pcp_node_status.py
2
0.569369
0.557671
0
142
24.887324
82
HermanSun/Python-Test
16,097,537,425,498
84ece52f0060d6faafcb7d27631744d16690caf0
ad287c40a1a6f967b9daafd701ade9f0ff19ba3b
/de.vogella.python.second/src/p3.py
9ed00bc92a6093cae877a94d14a7e4a1743293fd
[]
no_license
https://github.com/HermanSun/Python-Test
bfd856ce0c8880d11844d21a8b850629f5117381
3bb4cd88fc91a8f450eaf33c0fa76dfad85692c4
refs/heads/master
2020-03-26T12:46:30.139339
2018-08-15T22:18:33
2018-08-15T22:18:33
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
''' Created on Sep 23, 2016 @author: HermanSun ''' def list_mul(list1, list2): rlist=[] a = len(list1)+len(list2)-1 #print a for i2 in range(len(list2)): for i in range(a): if i < len(rlist): continue i1=i-i2 if i1>=len(list1): break #print i, i1, i2 #for check number k=list1[i1] j=list2[i2] w=k*j rlist.append(w) #print rlist if a==len(rlist): return rlist ''' a1 = [1,3,5] a2 = [2,4] print list_mul(a1, a2) '''
UTF-8
Python
false
false
650
py
23
p3.py
21
0.410769
0.361538
0
32
18.375
46
AmishaAgrawal-code0103/api_project17
11,407,433,170,696
263788edfa5c169f49319369ac5f0b4272dbbb71
222977ed0ba9dcc4abb7901b536678addf424090
/Project17/demo.py
d1ae6228f9e3d88884cbf579b056b38e4b6ed1b2
[]
no_license
https://github.com/AmishaAgrawal-code0103/api_project17
bbe1fed11484acde8ed0faccbae6bf8034bb3efa
b1c97d97ff5b7bbb436f4eec5dc89e1e863b2127
refs/heads/master
2023-01-03T21:18:08.658688
2020-10-27T19:58:23
2020-10-27T19:58:23
307,813,188
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import requests import json BASE_URL = 'http://127.0.0.1:8000/' END_POINT = 'api/' '''This function is used to select resource''' def get_resource(id = None): data = {} id = input('Enter the id:\t') if id is not None: data = {'id':id} response = requests.get(BASE_URL+END_POINT, data = json.dumps(data)) print(response.status_code) print(response.json()) '''This function is used to create resource''' def create_resource(): sname = input('Enter the student name:\t') semail = input('Enter the student Email id:\t') sphone_no = int(input('Enter the student phone no:\t')) saddress = input('Enter the student address:\t') stud_data = {'sname':sname, 'semail':semail, 'sphone_no':sphone_no, 'saddress':saddress} response = requests.post(BASE_URL+END_POINT, data = json.dumps(stud_data)) print(response.status_code) print(response.json()) '''This function is used to update resource''' def update_resource(id): sname = input('Enter the student name:\t') id = input('Enter the id:\t') sphone_no = int(input('Enter the student phone no:\t')) saddress = input('Enter the student address:\t') semail = input('Enter the Student email:\t') update_data = {'id':id,'sname':sname, 'semail':semail, 'sphone_no':sphone_no,'saddress':saddress} response = requests.post(BASE_URL+END_POINT, data = json.dumps(update_data)) print(response.status_code) print(response.json()) '''This function is used to delete resource''' def delete_resource(id): id = input('Enter the id:\t') data = {'id':id} response = requests.post(BASE_URL+END_POINT, data = json.dumps(data)) print(response.status_code) print(response.json()) while True: print('select your option:\n 1-select single data\n 2-create data\n 3-update data\n 4-delete data\n 5-select complete data\n') '''option for selecting operation used to perforn''' option = input('Enter your option no:\t') if option == '1': get_resource(id) elif option == '2': create_resource() elif option == '3': update_resource(id) elif option == '4': delete_resource(id) elif option == '5': get_resource()
UTF-8
Python
false
false
2,090
py
6
demo.py
6
0.686124
0.676555
0
75
26.84
127
masa8224/MeguHome
14,474,039,825,363
5017e926734f7bb7033b30c621a6a130685e8e4b
dab04bc6553c0284197ac93485501e9757d38223
/Python/test_speak.py
e72c3d97b9ad861dd1a51a3fd4114440b36c4ef0
[]
no_license
https://github.com/masa8224/MeguHome
012cf974761688a7b0f6a4ce733538f1bef8cd91
db329904c66fa6124353caaca837f2565f3aeb6e
refs/heads/master
2021-01-23T22:19:25.999927
2017-09-20T12:33:54
2017-09-20T12:33:54
102,926,235
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from SpeakPython.SpeakPythonRecognizer import SpeakPythonRecognizer; import time import udp #define callback function with 1 parameter (string) def execute(s): print s; if "on" in s: udp.main("on") if "off" in s: udp.main("off") #creates recognition instance #param 1 - function accepting 1 string argument - used as callback #param 2 - appName - used to read [appName].fsg and [appName].db recog = SpeakPythonRecognizer(execute, "megumi"); # sets the level of debug output # 1 is the most output, 10 is the least # default level is 3 recog.setDebug(1); #call this to start recognizing speech #I believe this call utilizes current thread. Please multi-thread it yourself if necessary. stop = False try: while not stop: recog.recognize(); except KeyboardInterrupt: stop = True; print "Interrupted."; finally: time.sleep(0.00001)
UTF-8
Python
false
false
900
py
38
test_speak.py
31
0.703333
0.686667
0
32
27.125
91
tkukurin/Lab.SeparatingFactFromFiction
16,131,897,201,255
66a07195e50b4347b5e124cbdfd826c607ecf0d2
d5647b0086277fba5d159a8fe9adeca9e420eb00
/util/featureutil.py
b9084d3a16b6ff6b922bba3f6203a6379a9d4d06
[]
no_license
https://github.com/tkukurin/Lab.SeparatingFactFromFiction
e051d58e42a1b2b8b9f5b3a716b04a5621e970eb
c64fb8bfc84c7a4125f559ac745fcd18f149da51
refs/heads/master
2021-09-14T20:36:33.427485
2018-05-18T19:46:18
2018-05-18T19:46:18
125,760,742
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
from collections import defaultdict def dict_features(tokens, feature_set): ret = defaultdict(int) for t in tokens: if t in feature_set: ret[t] += 1 return ret from nltk.tokenize import RegexpTokenizer from util import data_process, functions from nltk.stem.porter import PorterStemmer from sklearn.pipeline import TransformerMixin class TokenizerTransformer(TransformerMixin): def __init__(self): self.normalizer = data_process.TweetNormalizer() self.regex_word_tokenizer = RegexpTokenizer(r'[@]?\w+') stemmer = PorterStemmer() stem = lambda ws: [stemmer.stem(w) for w in ws] self.pipeline = util.compose( self.normalizer.transform, self.regex_word_tokenizer.tokenize, # 10 times faster without stemming # stem, ) self.fit = functions.const(self) self.transform = self.pipeline
UTF-8
Python
false
false
948
py
39
featureutil.py
22
0.644515
0.64135
0
32
28.59375
63
comedxd/Artificial_Intelligence
13,314,398,654,179
4f32d0b2293ff8535a870cd9730528ecf4874190
408d5ebecf0964eb2609ee787036f41b1966c708
/2_DoublyLinkedList.py
f38a1a7bf7083c8fb83dbf60dc2e2eb0b7112682
[]
no_license
https://github.com/comedxd/Artificial_Intelligence
414688e1ea25649c000e3abf40bf97ef5fce1ada
667c7fdf1c055b7130c6e289c643a5b4adf8f3af
refs/heads/main
2023-04-16T02:41:43.195075
2021-04-01T12:50:36
2021-04-01T12:50:36
351,805,360
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
class LinkedListNode: def __init__(self,value,prevnode=None,nextnode=None): self.prevnode=prevnode self.value=value self.nextnode=nextnode def TraverseListForward(self): current_node = self while True: print(current_node.value, "-", end=" ") if (current_node.nextnode is None): print("None") break current_node = current_node.nextnode def TraverseListBackward(self): current_node = self while True: print(current_node.value, "-", end=" ") if (current_node.prevnode is None): print("None") break current_node = current_node.prevnode # driver code if __name__=="__main__": node1=LinkedListNode("Hello ") node2=LinkedListNode("Dear ") node3=LinkedListNode(" AI ") node4=LinkedListNode("Student") head=node1 tail=node4 # forward linking node1.nextnode=node2 node2.nextnode=node3 node3.nextnode=node4 # backward linking node4.prevnode=node3 node3.prevnode=node2 node2.prevnode=node1 head.TraverseListForward() tail.TraverseListBackward()
UTF-8
Python
false
false
1,266
py
28
2_DoublyLinkedList.py
27
0.56872
0.554502
0
45
25.822222
57
Duchyna1/PYTHON
15,032,385,555,176
ceafe5a5a1224a1b8e4cb0627635c2b777283dbf
602cb983fb198464ca7aa1e716e7c92d60d30ab6
/projects/raspberrypi/push.py
c6b014d0dbb94838bc74a33ce3c219b4c3face2b
[]
no_license
https://github.com/Duchyna1/PYTHON
2b5c8375123bbc27ab484eb73c90b9b9c00081ea
6b189b6145e0ff32fc43285cbcf39e3479bb44c2
refs/heads/master
2022-11-14T13:49:58.398229
2020-06-22T15:01:28
2020-06-22T15:01:28
238,493,189
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import os message = input("Commit message: ") os.system('git commit -am "{}"'.format(message)) os.system('git push')
UTF-8
Python
false
false
119
py
93
push.py
89
0.672269
0.672269
0
6
18.833333
48
andrirahmanto/DistanceTransformForWatershed
5,025,111,750,831
6acfcfc16caabc12965e052415d2bf5c8030afab
cebd4e4ce7d93a2267d67042b3690ccaa7759b80
/DistanceTranfrom_byCityBlock.py
2c5727818c160da7447b2eb9ce039729fba19302
[]
no_license
https://github.com/andrirahmanto/DistanceTransformForWatershed
84a7a59f38b3cc9e5be3d2f37e1941cb2aca2463
358c624a318dccda3f2279cf6e889d9c66d55673
refs/heads/master
2020-11-28T01:54:41.456760
2019-12-23T08:04:33
2019-12-23T08:04:33
229,673,274
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np import matplotlib.pyplot as plt def city_block(lis): matrix = np.array(lis) # simpan index pixel fore-ground atau pixel yang valunya non-zero kedalam saveindex saveindex = [] for i in range(len(matrix)): for j in range(len(matrix[i])): if matrix[i,j] != 0: saveindex.append((i,j)) # buat matrik hasil yang berisi 0 di setiap elementnya hasil = np.zeros((len(lis),len(lis[0]))) # loop untuk setiap pixel(termasuk pixel fore-ground) for i1 in range(len(hasil)): for j1 in range(len(hasil[0])): lis = [] for i2,j2 in saveindex: # cari jarak pixel ke semua pixel fore-ground jarak = abs(i1-i2) + abs(j1-j2) lis.append(jarak) # ambil jarak yang paling minimum ke fore-ground yang terdekat hasil[i1,j1] = min(lis) return hasil lis = [[0,0,0,0,0], [0,0,1,0,0], [0,1,0,1,0], [0,0,1,0,0], [0,0,0,0,0],] hasil = city_block(lis) print(hasil) f,(x,y) = plt.subplots(1,2) x.imshow(lis, 'gray') y.imshow(hasil, 'gray') plt.show()
UTF-8
Python
false
false
1,189
py
2
DistanceTranfrom_byCityBlock.py
1
0.544996
0.510513
0
42
26.309524
87
paulberesuita/linearalgebra
979,252,577,440
ffac0148c3a7eea6909e6dbc6add30e76486c5ef
914a9eb9e8374414516a72ac80ba9529d551a061
/hello.py
cd481c0c101221e3394363e98232d6c5c587e0ff
[]
no_license
https://github.com/paulberesuita/linearalgebra
cd7af9f32b16e45b2d97d57940c4b35b0cf5607f
e09b6cc6d7649c6a70d5c4ddadca2040e5138ec7
refs/heads/master
2016-08-09T14:22:23.562694
2016-01-17T19:16:55
2016-01-17T19:16:55
49,831,388
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import math class Vector(object): def __init__(self, coordinates): try: if not coordinates: raise ValueError self.coordinates = tuple(coordinates) self.dimension = len(coordinates) except ValueError: raise ValueError('The coordinates must be nonempty') except TypeError: raise TypeError('The coordinates must be an iterable') def __str__(self): return 'Vector: {}'.format(self.coordinates) def __eq__(self, v): return self.coordinates == v.coordinates def main(): #TESTING PLUS, MINUS, AND TIME SCALAR FUNCTIONSS # my_vector = Vector([1,2,3]) # my_vector2 = Vector([2,3,4]) # print addTwoVectors(my_vector, my_vector2) # my_vectorPlus = plus(Vector([8.218,-9.341]), Vector([-1.129,2.111])) # my_vectorMinus = minus(Vector([7.119,8.215]), Vector([-8.223,0.878])) # my_vectorScalar = times_scalar(Vector([1.671,-1.012, -0.318]), 7.41) # print my_vectorPlus # print my_vectorMinus # print my_vectorScalar #TESTING MAGNITUDE AND NORMALIZE FUNCTIONS # result1 = magnitude(Vector([-0.221, 7.437])) # result2 = magnitude(Vector([8.813, -1.331, -6.247])) # result3 = normalize(Vector([5.581, -2.136])) # result4 = normalize(Vector([1.996, 3.108, -4.554])) # print Vector([-0.221, 7.437]), "magnitude is", result1 # print Vector([8.813, -1.331, -6.247]), "magnitude is", result2 # print Vector([5.581, -2.136]), "normalize is", result3 # print Vector([1.996, 3.108, -4.554]), "normalize is", result4 #TESTING DOT PRODUCT AND ANGLE/RADIANS CALCULATION # result1 = dotProduct(Vector([-5.955, -4.904, -1.874]), Vector([-4.496, -8.755, 7.103])) # result1 = radiansTwoVectors(Vector([3.183, -7.627]), Vector([-2.668, 5.319])) result1 = angleTwoVectors(Vector([7.35, 0.221, 5.188]), Vector([2.751, 8.259, 3.985])) # result2 = angleTwoVectors(Vector([1, 2, -1]), Vector([3, 1, 0])) # result3 = radiansTwoVectors(Vector([1, 2, -1]), Vector([3, 1, 0])) print "dot product", result1 # print "angle", result2 # print "radian", result3 def plus(v1, v2): # print v1.coordinates # print v2.coordinates # print zip(v1.coordinates, v2.coordinates) new_coordinates = [x+y for x,y in zip(v1.coordinates, v2.coordinates)] # print new_coordinates return Vector(new_coordinates) def plus2(v1, v2): new_coordinates = [] n = len(v1.coordinates) for i in range(n): new_coordinates.append(v1.coordinates[i] + v2.coordinates[i]) return Vector(new_coordinates) def minus(v1, v2): new_coordinates = [x-y for x,y in zip(v1.coordinates, v2.coordinates)] return Vector(new_coordinates) def times_scalar(v, c): # print "Entering times_scalar function" # print v # print c new_coordinates = [c*x for x in v.coordinates] return Vector(new_coordinates) def magnitude(v): magnitude = 0 # print "vector", v # print "length", len(v.coordinates) for i in range(len(v.coordinates)): # print "v.coordinates[i]", v.coordinates[i] current = v.coordinates[i] * v.coordinates[i] # print "current:", current magnitude = magnitude + current return math.sqrt(magnitude) def magnitude2(v): coordinates_squared = [x*2 for x in v.coordinates] return math.sqrt(sum(coordinates_squared)) def normalize(v): new_coordinates = [] for i in range(len(v.coordinates)): new_coordinates.append(v.coordinates[i]/magnitude(v)) return Vector(new_coordinates) def normalize2(v): try: magnitude = magnitude(v) return times_scalar(v, 1/magnitude) except ZeroDivisionError: raise Exception("Cannot normalize the zero vector") def dotProduct(v1, v2): new_coordinates = [x*y for x,y in zip(v1.coordinates, v2.coordinates)] sum = 0 for i in range(len(new_coordinates)): sum = sum + new_coordinates[i] return sum def radiansTwoVectors(v1, v2): dotProductResult = dotProduct(v1, v2) angle = math.acos(dotProductResult/(magnitude(v1)*magnitude(v2))) return angle def angleTwoVectors(v1, v2): radian = radiansTwoVectors(v1, v2) return math.degrees(radian) main()
UTF-8
Python
false
false
4,380
py
1
hello.py
1
0.619178
0.558904
0
137
30.978102
93
victorhcunha/ExerciciosPython
13,134,010,030,708
59128cf1d2bfdd41b7c62722f8c859c4ce4515ad
763d0b857dd8316a6a2c0af97be58cbc6c747987
/Programação 1/monitoria3.py
ad0a1b3873f3253ece2068e2b30d484adc4bbdf3
[]
no_license
https://github.com/victorhcunha/ExerciciosPython
af60b737b5c9c8cadd93f9f02de171653c46eda7
ba4f6b2324f62de85bb6d00b5263f6324e8ce667
refs/heads/master
2020-03-28T17:33:34.026276
2019-04-18T18:11:15
2019-04-18T18:11:15
148,801,374
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Inteiros entre eles n = int(input()) m = int(input()) if n < m: for i in range(n+1,m): print(i) elif m < n: for i in range(m+1,n): print(i) else: print ("Iguais")
UTF-8
Python
false
false
197
py
31
monitoria3.py
26
0.507614
0.497462
0
15
12.133333
26
tshrinivasan/tools-for-wiki
11,261,404,297,454
0a2a9a914177944d3e807a54c34c80d0bd26c2f8
f47655ddc23484f4804b0d654b23606c3bd53ac1
/pdf-upload-commons/pdf-djvu-uploader-commons.py
952f0b3091f44f92042094b375ac4a69399085eb
[]
no_license
https://github.com/tshrinivasan/tools-for-wiki
51cb8b7744340f1bf610660b43d8430ef9d15a1d
6fb975abd1a8edcb6d34461f0a650defd2e11ee6
refs/heads/master
2023-01-12T11:59:46.032571
2022-07-16T05:23:24
2022-07-16T05:23:24
48,401,880
6
11
null
false
2022-12-27T16:55:20
2015-12-22T00:44:53
2022-07-04T16:45:45
2022-12-27T16:55:19
478
6
9
25
Python
false
false
#!/usr/bin/python # -*- coding: utf-8 -*- import wikitools import poster import pyexiv2 import os import shutil import sys import time import datetime ts = time.time() timestamp = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d-%H-%M-%S') #wiki_url = "MediaWiki API url here" wiki_url = "https://commons.wikimedia.org/w/api.php" wiki_username = "" wiki_password = "" try: wiki = wikitools.wiki.Wiki(wiki_url) except: print "Can not connect with wiki. Check the URL" login_result = wiki.login(username=wiki_username,password=wiki_password) #print "login status = " + str(login_result) if login_result == True: print "Logged in." else: print "Invalid username or password error" sys.exit() path = './' listing = os.listdir(path) def filetype(file): return file.split(".")[-1] def filename(file): return file.split(".")[-2] def move_file(pdf_file): source = pdf_file destination = "./uploaded-"+ timestamp + "/" + pdf_file if os.path.isdir("uploaded-" + timestamp): shutil.move(source,destination) else: os.mkdir("uploaded-" + timestamp) shutil.move(source,destination) print "Moving the file " + pdf_file + " to the folder 'uploaded-" + timestamp + "'" def upload_pdf_file(pdf_file): print "Uploading the file " + pdf_file file_name = pdf_file caption = pdf_file # extension = filetype(image) # upload_file_name = file_name + "." + extension file_object=open(pdf_file,"r") pdf=wikitools.wikifile.File(wiki=wiki, title=file_name) pdf.upload(fileobj=file_object,comment=caption, ignorewarnings=True) page_name = pdf_file.replace(" ","_") page = wikitools.Page(wiki, "File:" + page_name , followRedir=True) wikidata_part1 = """ =={{int:filedesc}}== {{Book | Author = | Editor = | Translator = | Illustrator = """ wikidata_part2 = """ | Subtitle = | Series title = | Volume = | Edition = | Publisher = | Printer = | Date = | City = | Language = தமிழ் | Description = {{ta|1=தமிழக அரசால் அறிவிக்கப்பட்ட நாட்டுடைமை நூல்களில் இதுவும் ஒன்று.}} | Source = {{Institution:Tamil Virtual Academy}} | Image = {{PAGENAME}} | Image page = | Permission = [[File:Tamil-Nadu-Nationalized-Books-Public-Domain-Declaration.jpg|thumb|left|Letter from Tamil Virtual Academy declaring books nationalized by Tamil Nadu government and released under Creative Commons CC0 1.0 Universal Public Domain Dedication license]] | Other versions = | Wikisource =s:ta:Index:{{PAGENAME}} | Homecat = }} =={{int:license-header}}== {{cc-zero}} [[Category:Books in Tamil]] [[Category:PDF files in Tamil with CC0 1.0 license]] [[Category:Books from Tamil Virtual Academy]] """ wikidata = wikidata_part1 + "| Title = " + filename(pdf_file).replace("_"," ") + wikidata_part2 page.edit(text=wikidata) print "File URL = " + wiki_url.split('/w')[0] + "/wiki/File:" + page_name move_file(pdf_file) for pdf_file in listing: if filetype(pdf_file) in ['pdf','PDF','djvu','DJVU']: upload_pdf_file(pdf_file)
UTF-8
Python
false
false
3,291
py
51
pdf-djvu-uploader-commons.py
21
0.630167
0.625118
0
142
21.274648
271
Wytamma/Rosalind
10,960,756,547,923
10c239bf600ba5aa7b2e7ccc6a01c4b9f16cb6ad
8cfb139967d5f60072469158e2ed696a93a6d087
/bioinformatics_stronghold/edit.py
6b1d5e122dfe4c8d2659c167d9b98d0db3588e88
[ "MIT" ]
permissive
https://github.com/Wytamma/Rosalind
53efb19692b9271fc605a7e0f07df7b49642df20
d3ffecc324f806df79c43bc9f89128b5d2a57dfb
refs/heads/master
2023-04-14T15:53:29.051286
2021-04-26T06:48:54
2021-04-26T06:48:54
264,836,033
0
0
MIT
false
2021-04-26T06:48:55
2020-05-18T05:27:38
2021-02-28T06:22:47
2021-04-26T06:48:55
177
0
0
0
Python
false
false
from pyoinformatics import read_fasta from pyoinformatics.align import matrix SAMPLE_DATASET = """>Rosalind_39 PLEASANTLY >Rosalind_11 MEANLY""" SAMPLE_OUTPUT = 5 def solution(dataset: list) -> str: fasta = read_fasta(lines=dataset) Seq1, Seq2 = fasta[0], fasta[1] w, h = len(Seq1), len(Seq2) # create a empty matrix M = [[0 for x in range(w + 1)] for y in range(h + 1)] # pad the first row and col with edit distances from empty strings # the distance from '' to HAT is 3 (insertions) # C A T # 0 1 2 3 # H 1 0 0 0 # A 2 0 0 0 # T 3 0 0 0 M[0] = [i for i in range(len(Seq1)+1)] for j in range(len(M)): M[j][0] = j # calculate the edit distance from the start to each cell # i.e. the number of indels or mutations to get there # the distance from H to C is 1 (mutation) # C A T # 0 1 2 3 # H 1 1 0 0 # A 2 0 0 0 # T 3 0 0 0 # the distance from H to CA is 2 (1 del 1 mutation) # C A T # 0 1 2 3 # H 1 1 2 0 # A 2 0 0 0 # T 3 0 0 0 # because A and A match there is no extra edit distance # between CA ans HA and H and CA therefore use the last # edit distance # C A T # 0 1 2 3 # H 1 1 2 3 # A 2 2 1 # T 3 for i, ib in enumerate(Seq1, 1): for j, jb in enumerate(Seq2, 1): if ib == jb: edit = M[j-1][i-1] else: edit = min( M[j -1][i], M[j][i-1], M[j-1][i-1]) + 1 M[j][i] = edit # M[-1][-1] is the total edit distance from the ends return M[-1][-1] def test_solution(): assert solution(SAMPLE_DATASET.splitlines(True)) == SAMPLE_OUTPUT
UTF-8
Python
false
false
1,777
py
38
edit.py
25
0.521666
0.466517
0
70
24.385714
70
AshwiniReddyChalla/TransferLearningForIntentClassification
8,366,596,344,202
6b9d8fc30c4fc2b04d6fd5fb139f85db6d702b5a
e0f6dfce0e7b0c92dbeabb26bb48a803c53ecdf9
/intent_classification/softmax_regression/train.py
b48db430d00a79e2e1982bbbf117d0ce88d1fd76
[]
no_license
https://github.com/AshwiniReddyChalla/TransferLearningForIntentClassification
4765212e44879f1ec4476569a0c619f65a273332
0752d099372a38732b151ac67ffad804d876044f
refs/heads/master
2021-09-03T07:31:48.493456
2018-01-07T03:12:35
2018-01-07T03:12:35
108,052,925
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import tensorflow as tf import sys sys.path.append("../") import atis_data FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string("data_dir", '../../ATIS', "Data directory") tf.app.flags.DEFINE_integer("in_vocab_size", 10000, "max vocab Size.") tf.app.flags.DEFINE_string("max_in_seq_len", 20, "max in seq length") tf.app.flags.DEFINE_integer("max_data_size", 4000, "max training data size") tf.app.flags.DEFINE_integer("batch_size", 500, "batch size") tf.app.flags.DEFINE_integer("iterations", 5000, "number of iterations") tf.app.flags.DEFINE_integer("embedding_size", 25, "size of embedding") def train(): atis = atis_data.AtisData(FLAGS.data_dir, FLAGS.in_vocab_size, FLAGS.max_in_seq_len, FLAGS.max_data_size, FLAGS.embedding_size) number_of_labels = atis.get_number_of_labels() x = tf.placeholder(tf.float32, [None, FLAGS.max_in_seq_len*FLAGS.embedding_size]) W = tf.Variable(tf.zeros([FLAGS.embedding_size*FLAGS.max_in_seq_len, number_of_labels])) b = tf.Variable(tf.zeros([number_of_labels])) y_ = tf.placeholder(tf.float32, [None, number_of_labels]) y = tf.matmul(x, W)+b cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_,logits=y) train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) sess = tf.InteractiveSession() tf.global_variables_initializer().run() for _ in range(FLAGS.iterations): batch_xs, batch_ys = atis.get_next_batch(FLAGS.batch_size) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) test_x, test_y = atis.get_test_data() print(sess.run(accuracy, feed_dict={x: test_x, y_: test_y})) def main(_): train() if __name__ == "__main__": tf.app.run()
UTF-8
Python
false
false
1,787
py
10
train.py
10
0.705092
0.688304
0
45
38.733333
89
guocongyun/basic-ml-projects
18,399,639,915,957
84eeb9ba7313aeeb224f9cd8397c58dab3bfec0f
d702fd53c02117e8d41b8fddf8dcffb977305614
/project2_heoffding_inequality.py
1aa7a542cc07127ea93ebf3b7f421ba59b9a60f5
[]
no_license
https://github.com/guocongyun/basic-ml-projects
4c26ea96a388078baaf10683f5eb787a591cb0df
259f6c224b75594591083eb3c8a0af939cd47f1d
refs/heads/master
2023-04-22T02:16:21.019808
2021-05-07T08:37:55
2021-05-07T08:37:55
304,696,359
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np class coin: def __init__(self): self.head = 0 self.tail = 0 def flip(self): if (np.random.randint(0,2,dtype=int) == 1): self.head += 1 # randint lower bound is inclusive, higher bound is exclusive else: self.tail += 1 def simulation(): coin_list = np.zeros(3) randint_ = np.random.randint(1,1000) lowest_head_freq = 10 for num in range(1000): coin_ = coin() for _ in range(10): coin_.flip() # if (num == 1): # coin_list[0] = coin_.head # elif (num == randint_): # coin_list[1] = coin_.head if (coin_.head < lowest_head_freq): lowest_head_freq = coin_.head coin_list[2] = lowest_head_freq return coin_list def main(): dataset = [] for _ in range(100): coin_list = simulation() dataset.extend(coin_list) # print(_) print(sum(dataset)/1000) if __name__ == "__main__": main()
UTF-8
Python
false
false
992
py
16
project2_heoffding_inequality.py
15
0.52621
0.493952
0
43
22.093023
69
threkk/domino
19,241,453,511,900
7cec0f0961ace3ad0facb3e0acca66751965c541
92978a00f2f767000cabaa092396e9192022f9b6
/main.py
42c1ceae59ba9d034bd5f1df3f4b1b77be918e9d
[]
no_license
https://github.com/threkk/domino
8d18cced052859d4c8e71f47eed566503a600576
9c265307b8fe90d208ddf467b83aec26962b19cf
refs/heads/master
2021-04-06T10:54:15.997363
2018-03-13T01:09:09
2018-03-13T01:09:09
124,470,231
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import argparse from domino.game import Game from domino.player import Player def start_game(player_names): """ Starts a game with the given player names. It creates the players, draws 7 tiles for each and starts the game. :param player_names: Name of the players to play the game. """ players = [Player(name) for name in player_names] game = Game(players) for player in players: for i in range(0, 7): player.draw(game.pop_top()) game.run() def cli(): """ Creates a simulation of a dominoes game. It takes the defined players to play the match until one of them wins. Starting with 7 tiles in hand and one randomly chosen on the board, the players alternatively place one tile on the board by matching the free numbers with their own tiles. If a player cannot play a tile, the player will draw tiles until is able to play a tile. In case there are no more tiles to play, the player will skip its turn. The first player to empty its hand wins. If given a board state no player can place a tile neither draw, the game finishes with a tie. """ parser = argparse.ArgumentParser(prog='domino', description=cli.__doc__) parser.add_argument('players', metavar='<players>', type=str, nargs='+', help='Players who will be part of the emulation.') args = parser.parse_args() start_game(args.players) if __name__ == '__main__': cli()
UTF-8
Python
false
false
1,473
py
12
main.py
11
0.671419
0.668703
0
43
33.255814
79
iangelmx/big-data-visualization
19,310,173,006,932
610d852cba6cdb2448b0e82b3cae85f9d9f7e32a
a144f1b97b2a9d1ffdd5ea1f4eb52dd79986987b
/extracting_fb_insights/extracting_data_fb_simple.py
ab7913f0a3cdecc7fd24354c830e50763e4fcc70
[ "MIT" ]
permissive
https://github.com/iangelmx/big-data-visualization
6bd08cf7c166438b618a3de6af2ac8531bbf78bb
75d6cacc8dd33ec372af78f719e6cc31fe30d97d
refs/heads/master
2022-11-21T08:19:05.696340
2020-07-25T02:31:02
2020-07-25T02:31:02
273,782,171
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" Script to get some analytics from a FB page and save to CSV/XLSX This script was developed according the Visualization Big data's course in FCS. This script helps people of marketing to get more information about the activity in their social media page in Facebook in a free way. To make it run you need to make an app in FB for developers, then get a TOKEN with the permissions of page read/manage posts. Created by: Ángel Negib Ramírez Álvarez Github: iangelmx Email: angel@ninjacom.space Version: 1.3 First release: 2020-06-21 Last modification: 2020-06-23 """ #In[1] import facebook import requests import json import pandas as pd import datetime #In[2]: def get_reaction_from_post( row : pd.core.series.Series ) -> pd.core.series.Series: post_id = row['id'] reactions = graph.get_connections(post_id, 'reactions', fields='pic,name,pic_large,profile_type,pic_crop,can_post,type,link,id') #Para irnos moviendo entre las páginas paging = reactions.get('paging') reactions = reactions['data'] for react in reactions: row[ react['type'].lower() ] +=1 row[ 'users_likes' ].append( (react['name'], ) ) return row #In[3] settings = json.loads(open("settings.json").read()) CANT_COMMENTS = 10 ACCESS_TOKEN = settings.get('access_token') PAGE_ID = settings.get('id_fb_page') graph = facebook.GraphAPI(access_token=ACCESS_TOKEN, version="3.1") cuenta_likes = 0 lista_comments = [] flag = False #In[4] comments = graph.get_connections(PAGE_ID, 'feed') paging = comments['paging'] comments = comments['data'] comments #In[5]: # Esto lo hice, porque al ejecutar likes_post = { ... } me daba{ # un error, de que había posts sin 'messages', se trata de publicaciones # sin un cuerpo de texto. Sólo notificaciones o algo como eso ~} with_no_message = filter( lambda x: 'message' not in x, comments ) with_no_message = tuple(with_no_message) #In[6]: #Convertimos esto a un bonito diccionario para poderle meter mano con pandas likes_post = [ { 'id' : item['id'], 'post':item['message'] if 'message' in item else item['story'], 'users_likes':[], 'like':0, 'love':0, 'haha':0, 'angy':0, 'care':0, 'wow':0, 'sad':0, 'created_time':datetime.datetime.strptime( item['created_time'], "%Y-%m-%dT%H:%M:%S+0000" ) } for item in comments ] likes_post posts = pd.DataFrame.from_dict(likes_post) posts #In[7]: posts_with_reactions = posts.apply( get_reaction_from_post, axis='columns' ) posts_with_reactions #In[8]: posts_with_reactions.to_csv( 'salida_reactions.csv' ) posts_with_reactions.to_excel( 'salida_reactions.xlsx' ) # %%
UTF-8
Python
false
false
2,736
py
21
extracting_data_fb_simple.py
17
0.665934
0.650183
0
108
24.277778
132
frclasso/aulas_particulares_python
3,496,103,386,223
5368d1372902e0ceec3f98691d377f1eb7054d18
d02b09fb83041dbe10d34a74c152e87f08e451dc
/jessica_campos/aula3/script3.py
0857a1648f36cb80a0d0145ed88d93a1c419ebf7
[]
no_license
https://github.com/frclasso/aulas_particulares_python
d9d6da8127a0d02f117373572438266c67fe79fe
f877cd9b9ce2732b0cbb72922d3079e1b0d944b0
refs/heads/main
2023-07-29T18:15:02.452427
2021-09-17T22:20:01
2021-09-17T22:20:01
395,457,184
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# comparacao # retorna True ou False valor_1 = 100 valor_2 = 200 # igualdade print(valor_1 == valor_2) # desigualdade print(valor_1 != valor_2) # maior que print(valor_1 > valor_2) # menor que print(valor_1 < valor_2) # maior ou igual print(valor_2 >= 200.0) # menor ou igual print(valor_1 <= 100.01)
UTF-8
Python
false
false
309
py
55
script3.py
45
0.666667
0.579288
0
23
12.434783
26
Vitkof/MathSite_Django
19,009,525,265,184
48a7e49ab0c153439e83bda2b44d47383df80853
4960df7d4a13528ba15f439b05fad9e5adec872b
/ctmath/apps/univers/models.py
023d0ab65a46625167fd46bf01551011aae37768
[]
no_license
https://github.com/Vitkof/MathSite_Django
1cc5327223949742bb6fd570302ab0d95d0de68c
5b149b7e417f80592b2199dcae8927f5c7096879
refs/heads/main
2023-02-04T17:40:31.661101
2020-12-27T22:00:36
2020-12-27T22:00:36
324,852,072
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.db import models class UniverModel(models.Model): title = models.CharField(max_length=32) location = models.CharField(max_length=32) overall = models.FloatField() teaching = models.FloatField() research = models.FloatField() citations = models.FloatField() industry_income = models.FloatField() international_outlook = models.FloatField() number_students = models.PositiveIntegerField() students_staff = models.FloatField() percent_foreigners = models.PositiveSmallIntegerField() gender_ratio = models.CharField(max_length=8) def __str__(self): return f"{self.id}_{self.title}"
UTF-8
Python
false
false
670
py
20
models.py
12
0.691045
0.683582
0
18
35.222222
59
nguyenductinh1998py/PythonLab
13,073,880,472,778
318d17c3f3db96445b570bb4fc2ccb889cb0a8d3
1c6a5eea04f1eddb584971d91679e0cb8ad93c16
/Python_Lab_03/02.py
daf0fedd35f64f246b95d08749bcd3acbe50902d
[]
no_license
https://github.com/nguyenductinh1998py/PythonLab
1dbccd9ca4f77f70acd6db2c86af3463270a91a8
b9cf09150a7065d698e03189b8078c1c1f6e32f0
refs/heads/main
2023-02-08T09:28:03.435498
2021-01-04T14:09:35
2021-01-04T14:09:35
320,751,716
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#2d Lists xs = [3, 1, 2] print(xs, xs[2]) print(xs[-1]) xs[2] = 'foo' print(xs) xs.append('bar') print(xs) x = xs.pop() print(x, xs) nums = list(range(5)) print(nums) print(nums[2:4]) print(nums[2:]) print(nums[:2]) print(nums[:]) print(nums[:-1]) nums[2:4] = [8, 9] print(nums[2:4]) animals = ['cat', 'dog', 'monkey'] for animal in animals: print(animal) for idx, animal in enumerate(animals): print(f'{idx + 1, animal}') nums = [0, 1, 2, 3, 4] squares = [] for x in nums: squares.append(x ** 2) print(squares) squares = [x ** 2 for i in nums] print(squares) enven_squares = [x ** 2 for x in nums if x % 2 == 0] print(enven_squares) #2e Dictionaries d = {'cat': 'cute', 'dog':'furry'} print(d['cat']) print('cat' in d) d['fish'] = 'wet' print(d['fish']) print(d.get('monkey', 'N/A')) print(d.get('fish', 'N/A')) del d['fish'] print(d.get('fish', 'N/A')) for animal in d: legs = d[animal] print(f'{animal}, {legs}') for animal, legs in d.items(): print(f'{animal} , {legs}') nums = {0, 1, 2, 3, 4} even_num_to_square = {x: x ** 2 for x in nums if x % 2 == 0} print(even_num_to_square) #2f Sets animals = {'cat', 'dog'} print('cat' in animals) print('fish' in animals) animals.add('fish') print('fish' in animals) print(len(animals)) animals.add('cat') print(len(animals)) animals.remove('cat') print(len(animals)) for idx, animal in enumerate(animals): print(f'{idx + 1}, { animal}') from math import sqrt nums = {int(sqrt(x)) for x in range(30)} print(nums) #2g Tuples d = {(x, x + 1): x for x in range(10)} t = (5, 6) print(type(t)) print(d[t]) print(d[1, 2])
UTF-8
Python
false
false
1,608
py
73
02.py
21
0.599502
0.567786
0
85
17.929412
60
dungeonmaster51/commcare-hq
19,499,151,538,612
19d6598a935d3027daddeadccc883652c7fd6b13
81579ecd0678d652bbb57ff97529631fcfb74b12
/corehq/apps/case_search/exceptions.py
8c3f1551ca85967a52652a45fefb556d9aaad0f0
[ "BSD-3-Clause" ]
permissive
https://github.com/dungeonmaster51/commcare-hq
64fece73671b03c1bca48cb9d1a58764d92796ea
1c70ce416564efa496fb4ef6e9130c188aea0f40
refs/heads/master
2022-12-03T21:50:26.035495
2020-08-11T07:34:59
2020-08-11T07:34:59
279,546,551
1
0
BSD-3-Clause
true
2020-07-31T06:13:03
2020-07-14T09:51:32
2020-07-30T16:37:59
2020-07-31T06:03:08
562,669
1
0
0
Python
false
false
class CaseSearchException(Exception): pass class CaseSearchNotEnabledException(CaseSearchException): pass
UTF-8
Python
false
false
116
py
2,296
exceptions.py
1,577
0.810345
0.810345
0
6
18.333333
57
gregVader/french-accidents-nosql
3,728,031,630,177
517fa3e3e758216be552c96b23e3531ece392c8f
e238f616a3c280c2e7f004c0448104ea3ed12673
/loaders/characteristicsLoader.py
652465bac0c753c08ba6194ce7d09f0210ca816e
[]
no_license
https://github.com/gregVader/french-accidents-nosql
c5302fbda4064db4d65f5e1f97ac862f6e9ad574
78cc78fb595fc7f819480f20c05fa2f49893d994
refs/heads/main
2023-06-06T13:15:43.153509
2021-06-13T22:26:38
2021-06-13T22:26:38
371,169,408
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import threading import pandas as pd import os.path import json from json import JSONDecoder from json import JSONEncoder from datetime import datetime csvCharacteristics = "../dataset/characteristics.csv" csvHolidays = "../dataset/holidays.csv" csvPlaces = "../dataset/places.csv" csvInsee = "../dataset/code-postal-code-insee-2015.csv" jsonCharacteristics = "json/characteristics.json" jsonHolidays = "json/holidays.json" jsonPlaces = "json/places.json" jsonInsee = "json/insee.json" class DateTimeDecoder(JSONDecoder): def __init__(self, *args, **kargs): JSONDecoder.__init__(self, object_hook=self.dict_to_object, *args, **kargs) def dict_to_object(self, d): if '__type__' not in d: return d type = d.pop('__type__') try: dateobj = datetime(**d) return dateobj except: d['__type__'] = type return d class DateTimeEncoder(JSONEncoder): """ Instead of letting the default encoder convert datetime to string, convert datetime objects into a dict, which can be decoded by the DateTimeDecoder """ def default(self, obj): if isinstance(obj, datetime): return { '__type__' : 'datetime', 'year' : obj.year, 'month' : obj.month, 'day' : obj.day, 'hour' : obj.hour, 'minute' : obj.minute, 'second' : obj.second, 'microsecond' : obj.microsecond, } else: return JSONEncoder.default(self, obj) def getInsee(inseeDf): insee = {} insee["insee"] = inseeDf["INSEE_COM"] insee["com"] = inseeDf["NOM_COM"] insee["dep"] = inseeDf["NOM_DEPT"] insee["population"] = int(inseeDf["POPULATION"]) latlong = inseeDf["Geo Point"].split(',') insee["lat"] = float(latlong[0]) insee["long"] = float(latlong[1]) return insee def getInseeCode(dep, com): if com == 'nan' or dep == 'nan': return None if dep == '201': insee_dep = '2A' elif dep == '202': insee_dep = '2B' elif dep in ['971', '972', '973', '974', '975', '976']: insee_dep = '97' else: insee_dep = dep[:-1].zfill(2) insee_com = com.zfill(3) return insee_dep + insee_com def getPlace(placeDf): place = {} # place["Num_Acc"] = int(placeDf["Num_Acc"]) if not pd.isna(placeDf["catr"]): place["catr"] = int(placeDf["catr"]) if not pd.isna(placeDf["voie"]): place["voie"] = placeDf["voie"] #if not pd.isna(placeDf["v1"]): # place["v1"] = int(placeDf["v1"]) if str(placeDf["circ"]) not in ["0", "0.0", "nan"]: place["circ"] = int(placeDf["circ"]) if not pd.isna(placeDf["nbv"]): place["nbv"] = int(placeDf["nbv"]) #if not pd.isna(placeDf["pr"]): # place["pr"] = float(placeDf["pr"]) #if not pd.isna(placeDf["pr1"]): # place["pr1"] = int(placeDf["pr1"]) #if str(placeDf["vosp"]) not in ["0", "0.0", "nan"]: # place["vosp"] = int(placeDf["vosp"]) #if not pd.isna(placeDf["lartpc"]): # place["lartpc"] = int(placeDf["lartpc"]) #if not pd.isna(placeDf["larrout"]): # place["larrout"] = int(placeDf["larrout"]) if str(placeDf["infra"]) not in ["0", "0.0", "nan"]: place["infra"] = int(placeDf["infra"]) if str(placeDf["situ"]) not in ["0", "0.0", "nan"]: place["situ"] = int(placeDf["situ"]) #if not pd.isna(placeDf["env1"]): # place["env1"] = int(placeDf["env1"]) condition = {} if str(placeDf["prof"]) not in ["0", "0.0", "nan"]: condition["prof"] = int(placeDf["prof"]) if str(placeDf["plan"]) not in ["0", "0.0", "nan"]: condition["plan"] = int(placeDf["plan"]) if str(placeDf["surf"]) not in ["0", "0.0", "nan"]: condition["surf"] = int(placeDf["surf"]) if condition: place["condition"] = condition return place def getCharacteristic(dataFrame, holidaysMap, inseeMap, placesMap): c = {} c["Num_Acc"] = int(dataFrame["Num_Acc"]) hrmn = str(dataFrame["hrmn"]).zfill(4) years = "20" + str(dataFrame["an"]).zfill(2) hours = int(hrmn[0:-2]) minutes = int(hrmn[-2:]) date = datetime.strptime(years + '-' + str(dataFrame['mois']) + '-' + str(dataFrame["jour"]) + ' ' + str(hours) + ":" + str(minutes), '%Y-%m-%d %H:%M') c["date"] = date holiday = holidaysMap.get(date.strftime("%Y-%m-%d")) if holiday is not None: c["holiday"] = holiday if not pd.isna(dataFrame["col"]): c["col"] = int(dataFrame["col"]) if str(dataFrame["int"]) not in ['0', '0.0']: c["int"] = int(dataFrame["int"]) condition = {} condition["lum"] = int(dataFrame["lum"]) if not pd.isna(dataFrame["atm"]): condition["atm"] = int(dataFrame["atm"]) c["condition"] = condition # c["agg"] = int(dataFrame["agg"]) # c["adr"] = str(dataFrame["adr"]) location = None insee_code = getInseeCode(str(dataFrame["dep"]), str(dataFrame["com"])) if insee_code is not None: location = inseeMap.get(insee_code) #location = getLocation(str(int(dataFrame["dep"])), str(int(dataFrame["com"]))) if location is None: location = {} if str(dataFrame["gps"]) not in ['0', '0.0', '']: location["gps"] = str(dataFrame["gps"]) #if str(dataFrame["lat"]) not in ['0', '', '0.0', 'nan']: # location["lat"] = float(dataFrame["lat"] / 100000) #if str(dataFrame["long"]) not in ['0', '0.0', '', 'nan']: # location["long"] = float(dataFrame["long"] / 100000) if location: c["location"] = location road = placesMap.get(str(dataFrame["Num_Acc"])) if road is not None: c["road"] = road return c def loadHolidays(): holidaysMap = {} print("Started loading holidays") if os.path.isfile(jsonHolidays): with open(jsonHolidays) as infile: holidaysMap = json.load(infile) print("Holidays loaded from file") else: holidaysData = pd.read_csv(csvHolidays) for _, rowHoliday in holidaysData.iterrows(): if holidaysMap.get(rowHoliday["ds"]) is None: holidaysMap[rowHoliday["ds"]] = rowHoliday["holiday"] with open(jsonHolidays, 'w') as outfile: json.dump(holidaysMap, outfile) print("Holidays loaded in memory and saved to file") return holidaysMap def loadPlaces(): placesMap = {} print("Started loading places") if os.path.isfile(jsonPlaces): with open(jsonPlaces) as infile: placesMap = json.load(infile) print("Places loaded from file") else: placesData = pd.read_csv(csvPlaces) for _, rowPlace in placesData.iterrows(): if placesMap.get(rowPlace["Num_Acc"]) is None: placesMap[rowPlace["Num_Acc"]] = getPlace(rowPlace) with open(jsonPlaces, 'w') as outfile: json.dump(placesMap, outfile) print("Places loaded in memory and saved to file") return placesMap def loadInsee(): inseeMap = {} print("Started loading insee") if os.path.isfile(jsonInsee): with open(jsonInsee) as infile: inseeMap = json.load(infile) print("Insee loaded from file") else: inseePostCodeData = pd.read_csv(csvInsee, sep=";") for _, rowInsee in inseePostCodeData.iterrows(): if inseeMap.get(rowInsee["INSEE_COM"]) is None: inseeMap[rowInsee["INSEE_COM"]] = getInsee(rowInsee) with open(jsonInsee, 'w') as outfile: json.dump(inseeMap, outfile) print("Insee loaded in memory and saved to file") return inseeMap def loadCharacteristics(): characteristicsMap = {} print("Started loading characteristics") if os.path.isfile(jsonCharacteristics): with open(jsonCharacteristics) as infile: characteristicsMap = json.load(infile, cls=DateTimeDecoder) print("Characteristics loaded from file") else: characteristicsData = pd.read_csv(csvCharacteristics) holidaysMap = loadHolidays() inseeMap = loadInsee() placesMap = loadPlaces() for _, rowCharacteristic in characteristicsData.iterrows(): if characteristicsMap.get(rowCharacteristic["Num_Acc"]) is None: characteristicsMap[rowCharacteristic["Num_Acc"]] = getCharacteristic(rowCharacteristic, holidaysMap, inseeMap, placesMap) with open(jsonCharacteristics, 'w') as outfile: json.dump(characteristicsMap, outfile, cls=DateTimeEncoder) print("Characteristics loaded in memory and saved to file") return characteristicsMap
UTF-8
Python
false
false
8,063
py
18
characteristicsLoader.py
15
0.633759
0.621605
0
265
29.426415
152
Shmuma/pytorch_tests
4,741,643,933,152
a7eab207a9f84dd443e71b7bd85be44b8f3ddb46
d18f2c659ab6290bca630aebf7da6e32b13fff17
/char_rnn_classification/char_rnn/data.py
e76ad6bb529bbaf66b1daf89d1e77a4549f516da
[]
no_license
https://github.com/Shmuma/pytorch_tests
a30b47ef03e789261ad7063d1a6262295ab8369e
cded13e89559ad0e0b41ad8aad150469ac962dee
refs/heads/master
2022-12-24T00:40:27.564634
2017-10-12T06:22:39
2017-10-12T06:22:39
96,669,907
0
0
null
false
2022-12-08T00:00:35
2017-07-09T08:04:52
2017-07-29T14:57:41
2022-12-08T00:00:35
10,804
0
0
6
Python
false
false
import glob import random import os.path import unicodedata import string ALL_ASCII_LETTERS = string.ascii_letters + " .,;'" def all_filenames(data_dir="data"): return glob.glob(os.path.join(data_dir, "*.txt")) def read_file(file_path): """ Read data from file :param file_path: :return: """ with open(file_path, "rt", encoding='utf-8') as fd: return list(map(str.rstrip, fd.readlines())) def name_to_ascii(name): """ Convert unicode name to ASCII equivalent, method taken from http://stackoverflow.com/a/518232/2809427 :param name: :return: normalized name string """ assert isinstance(name, str) return ''.join( c for c in unicodedata.normalize('NFD', name) if unicodedata.category(c) != 'Mn' and c in ALL_ASCII_LETTERS ) def read_files(files, normalize_names=True): """ Read train data from given files list :param files: list of files, one file per class :param normalize_names: if True, read names will be normalized to ASCII :return: dict with class -> [lines] data """ assert isinstance(files, list) result = {} for path in files: class_name = os.path.splitext(os.path.basename(path))[0] lines = read_file(path) if normalize_names: lines = list(map(name_to_ascii, lines)) result[class_name] = lines return result def read_data(normalize_names=True): return read_files(all_filenames(), normalize_names=normalize_names) def prepare_train_test(class_names, data_dict, test_ratio): """ Convert data dictionary in form class -> [samples] to train/test list of (name, class_idx) samples :param class_names: list of class names :param data_dict: data dict :param test_ratio: float to use split data into train/test :return: tuple of lists """ assert isinstance(class_names, list) assert isinstance(data_dict, dict) assert isinstance(test_ratio, float) class_map = {name: idx for idx, name in enumerate(class_names)} data = [ (name, class_map[class_name]) for class_name in class_names for name in data_dict[class_name] ] random.shuffle(data) test_len = int(len(data) * test_ratio) return data[:-test_len], data[-test_len:]
UTF-8
Python
false
false
2,316
py
46
data.py
29
0.645078
0.638601
0
85
26.247059
105
Mostofa-Najmus-Sakib/Applied-Algorithm
8,220,567,404,626
49f99de6eb6adde3c196309377effc9845452c21
f8e8e365c9cf58b61d72655bc2340baeaed5baff
/Leetcode/Python Solutions/Binary Trees/MaximumAverageSubtree.py
da1412cd36971bbda362196b84de9892df1bf4d8
[ "MIT" ]
permissive
https://github.com/Mostofa-Najmus-Sakib/Applied-Algorithm
39a69f6b9ed113efe4a420d19cad79e0aa317637
bc656fd655617407856e0ce45b68585fa81c5035
refs/heads/master
2023-08-31T19:54:34.242559
2021-11-05T03:43:35
2021-11-05T03:43:35
412,263,430
0
0
MIT
true
2021-09-30T23:45:29
2021-09-30T23:45:25
2021-05-16T07:10:36
2021-05-16T07:10:34
840
0
0
0
null
false
false
""" LeetCode Problem: 1120. Maximum Average Subtree Link: https://leetcode.com/problems/maximum-average-subtree/ Language: Python Written by: Mostofa Adib Shakib Time Compplexity: O(n) Space Complexity: O(n) """ # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def maximumAverageSubtree(self, root: TreeNode) -> float: def depthFirstSearch(node): # If we encounter a null node if not node: return [0, 0, 0] # currentSum, numberOfNodes, maxAverage # Get the maximum average possible for the left & right subtree leftSubTree = depthFirstSearch(node.left) rightSubTree = depthFirstSearch(node.right) # Calculate the currentSum, numberOfNodes, and maxAverage currentSum = leftSubTree[0] + rightSubTree[0] + node.val numberOfNodes = leftSubTree[1] + rightSubTree[1] + 1 maxAverage = max(leftSubTree[2], rightSubTree[2], currentSum/numberOfNodes) # Return the currentSum, numberOfNodes, and maxAverage for each subtree return [currentSum, numberOfNodes, maxAverage] return depthFirstSearch(root)[2]
UTF-8
Python
false
false
1,413
py
503
MaximumAverageSubtree.py
500
0.610757
0.599434
0
40
34.35
87
shevchenkodim/django2_1
3,410,204,071,404
8df20cdfe614925a4b867d940f6935d282ec7d81
ede51ecf2641440b04b264d2be02b7e651fa5c68
/vikupauto/urls.py
b9faa89213febbc091ae23faa5ddd3d1ae6627e3
[]
no_license
https://github.com/shevchenkodim/django2_1
8764308b2f475a2fe7ee7483d1e92b58f3141fac
5576af559e41aaa3f1a0b58365d8efc46f47db26
refs/heads/master
2020-09-21T06:26:57.711599
2019-11-30T21:37:50
2019-11-30T21:37:50
224,709,388
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.conf import settings from django.conf.urls.static import static from django.contrib import admin from django.urls import path, include from . import views from service.views import ServiceModel, ServiceModelView urlpatterns = [ path('admin/', admin.site.urls), path('feedback/', include('feedback.urls')), path('', include('service.urls')), ] if settings.DEBUG: urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
UTF-8
Python
false
false
552
py
3
urls.py
3
0.751812
0.751812
0
16
33.5
82
addy999/HemDetect
10,883,447,151,641
f06f7afc42667fd4d446396e646388a0bbf06674
d5f5bf59d3e03cecb2c826a774faae7c8e9f85e3
/Training/Scripts/tl.py
ed282e9f0f1effc9526a2cf7cf66a9a2cb78f326
[]
no_license
https://github.com/addy999/HemDetect
84fb2a7e0bd41c9e9485a0a0c4021a3c0ccfe034
77bbe2758fb8c02ae2dfa13619d3659357a06724
refs/heads/master
2021-06-28T13:42:41.749945
2021-01-29T18:52:57
2021-01-29T18:52:57
212,179,860
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import torch.nn as nn import torchvision.models import torch.nn.functional as F import torch.optim as optim import torchvision import torchvision.transforms as transforms from torchvision import datasets import numpy as np import matplotlib.pyplot as plt import time import torch import gc import os # alexnet_model_1 alexnet_model_1 = torchvision.models.alexnet(pretrained=True) alexnet_model_1.features[0] = nn.Conv2d(1, 64, kernel_size= 7, stride= 2, padding= 3) alexnet_model_1.cuda() for param in alexnet_model_1.parameters(): param.requires_grad = False # alexnet_model_1 alexnet_model_3 = torchvision.models.alexnet(pretrained=True).cuda() for param in alexnet_model_3.parameters(): param.requires_grad = False # Resnet detector resnet152_3 = torchvision.models.resnet152(pretrained=True).cuda() # remove last FC layer resnet152_3 = torch.nn.Sequential(*(list(resnet152_3.children())[:-1])) for param in resnet152_3.parameters(): param.requires_grad = False
UTF-8
Python
false
false
983
py
112
tl.py
24
0.771109
0.734486
0
34
27.911765
85
nikkygleeson/secrets
9,156,870,314,818
5c1930467ba646556bd05ae84898ddaca079f08c
002956c05f53e5762c86f2f9e4710e8b1774a98d
/src/secrets/secrets.py
aa8abd00f80278aa58995745920e819889060be9
[ "MIT" ]
permissive
https://github.com/nikkygleeson/secrets
956af2123f60a659c25b3a3c4733605ab904ad05
c70623a6bf724f286cfd2401bb79e7ae5250f150
refs/heads/master
2023-04-29T03:31:16.619543
2021-05-25T02:38:21
2021-05-25T02:38:21
361,356,661
0
1
null
false
2021-05-05T02:46:05
2021-04-25T07:08:50
2021-04-25T07:15:32
2021-05-05T02:46:04
8
0
1
0
null
false
false
def hex_cipher_encryptor(message: str) -> str: """Encrypts a given message using a Hex Cipher (converts characters to their hexadecimal equivalents). Args: message (str): Message to be encrypted. Returns: encrypted_message (str): Encrypted message. """ encrypted_message = "".join([hex(ord(char)) for char in message]) return encrypted_message def hex_cipher_decryptor(encrypted_message: str) -> str: """Decrypts a message which has been encrypted using a Hex Cipher. Args: encrypted_message (str): Message to be decrypted. Returns: decrypted_message (str): Decrypted message. """ encrypted_characters = [encrypted_message[i : i + 4] for i in range(0, len(encrypted_message), 4)] decrypted_message = "".join([chr(int(char, 16)) for char in encrypted_characters]) return decrypted_message def atbash_cipher_encryptor_decryptor(message: str) -> str: """Encrypts and decrypts a given message using an AtBash Cipher (substitutes a letter of the plaintext alphabet with the corresponding letter of the reversed alphabet). a <-> z b <-> y c <-> x Args: message (str): Message to be encrypted or decrypted. Returns: encrypted_decrypted_message (str): Encrypted or decrypted message. """ N = ord("z") + ord("a") encrypted_decrypted_message = "".join([chr(N - ord(char)) for char in message]) return encrypted_decrypted_message def caesar_cipher_encryptor(key: int, message: str) -> str: """Encrypts a given message using a Caesar Cipher (substitutes a letter of the plaintext alphabet with a letter located some fixed number of letters down the alphabet). If key = 3: a -> d b -> e z -> c Args: message (str): Message to be encrypted. key (int): Shift. Returns: encrypted_message (str): Encrypted message. """ encrypted_message = "".join([chr(((ord(char) - ord("a") + key) % 26) + ord("a")) for char in message]) return encrypted_message def caesar_cipher_decryptor(key: int, encrypted_message: str) -> str: """Decrypts a message which has been encrypted using a Caesar Cipher. Args: encrypted_message (str): Message to be decrypted. key (int): Original shift. Returns: decrypted_message (str): Decrypted message. """ decrypted_message = "".join([chr(((ord(char) - ord("a") - key) % 26) + ord("a")) for char in encrypted_message]) return decrypted_message def keyword_cipher_encryptor(key: str, message: str) -> str: """Encrypts a given message using a Keyword Cipher (replaces a consecutive set of letters in the alphabet (from the beginning) with a chosen keyword with any repeated letters removed. All other characters which do not appear in the keyword are placed directly after the keyword in alphabetical order to form the cipher alphabet. Args: message (str): Message to be encrypted. key (str): Keyword. Returns: encrypted_message (str): Encrypted message. """ # Remove duplicate characters in key key = "".join(dict.fromkeys(key)) # Create string of all lowercase characters chars = "".join([chr(char) for char in range(97, 123)]) # Create cipher key for char in chars: if char not in key: key += char index_values = [chars.index(char) for char in message] encrypted_message = "".join(key[index] for index in index_values) return encrypted_message def keyword_cipher_decryptor(key: str, encrypted_message: str) -> str: """Decrypts a message which has been encrypted using a Keyword Cipher. Args: encrypted_message (str): Message to be decrypted. key (str): Keyword. Returns: decrypted_message (str): Decrypted message. """ # Remove duplicate characters in key key = "".join(dict.fromkeys(key)) # Create string of lowercase characters chars = "".join([chr(char) for char in range(97, 123)]) # Create cipher key for char in chars: if char not in key: key += char index_values = [key.index(char) for char in encrypted_message] decrypted_message = "".join(chars[index] for index in index_values) return decrypted_message def vigenere_cipher_encryptor(key: str, message: str) -> str: """Encrypts a given message using a Vigenere Cipher (a more complicated cipher involving a keyword, in which the letter subsitution of a plaintext letter is not always the same). Args: message (str): Message to be encrypted. key (str): Keyword. Returns: encrypted_message (str): Encrypted message. """ key = list(key) if len(message) == len(key): full_key = key else: for i in range(len(message) - len(key)): key.append(key[i % len(key)]) full_key = "".join(key) encrypted_message = [] for char in range(len(message)): x = (ord(message[char]) - 2 * ord("a") + ord(full_key[char])) % 26 x += ord("a") encrypted_message.append(chr(x)) encrypted_message = "".join(encrypted_message) return encrypted_message def vigenere_cipher_decryptor(key: str, encrypted_message: str) -> str: """Decrypts a message which has been encrypted using a Vigenere Cipher. Args: encrypted_message (str): Message to be decrypted. key (str): Returns: decrypted_message (str): Decrypted message. """ key = list(key) if len(encrypted_message) == len(key): full_key = key else: for i in range(len(encrypted_message) - len(key)): key.append(key[i % len(key)]) full_key = "".join(key) decrypted_message = [] for char in range(len(encrypted_message)): x = (ord(encrypted_message[char]) - ord(full_key[char])) % 26 x += ord("a") decrypted_message.append(chr(x)) decrypted_message = "".join(decrypted_message) return decrypted_message
UTF-8
Python
false
false
6,076
py
5
secrets.py
4
0.637591
0.633476
0
197
29.84264
116
sw-Jack/Python
16,561,393,922,169
764bd8023c1d51394841cabf1422a4c32555194d
2fae7d7ba6b2a4590fd4d90b1a491e919ec744de
/myPy/day05/day05-exam04-이분탐색with알고리즘&재귀호출.py
1ff0a0ea2d2b513b60e154044a4f63f0e09f8cbc
[]
no_license
https://github.com/sw-Jack/Python
0952ded606f79c07c77a021b075e09b1e95caca4
c139301bf3a98f9b5289807ca8141febb947603b
refs/heads/master
2023-02-02T11:06:18.264799
2020-12-21T13:11:32
2020-12-21T13:11:32
290,997,124
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# 이분 탐색 # 자료가 이미 정렬되어 있다는 전제. # 자료가 있으면 위치값을 알려주고 없으면 -1 # 알고리즘 # (1) 중간 위치를 찾는다 # (2) 찾는 값과 중간 위치의 값을 비교한다. # (3) 같으면 해당 값의 위치를 반환한다 # (4) 찾는 값이 중간 값보다 크다면 중간 값 기준 오른쪽을 대상으로 다시 검색한다. # (5) 찿는 값이 중간 값보다 작다면 중간 값 기준 왼쪽을 대상으로 다시 검색한다. # 코드 def binary_search(lst,x) : start = 0 end = len(lst) - 1 while start <= end : mid = (start + end) // 2 if x == lst[mid] : return mid elif x > lst[mid] : start = mid + 1 else : end = mid - 1 return -1 data = [1,4,9,16,25,36,49.64,81] print(binary_search(data,36)) print(binary_search(data,4)) print(binary_search(data,90)) # Quiz : 재귀 호출을 이용한 이분 탐색 구현 # (1) 주어진 탐색 대상이 비어있다면 탐색할 필요가 없다.(종료) # (2) 찾는 값과 중간 값을 비교한다. # (3) 찾는 값과 중간 값이 같으면 해당 값의 위치를 반환한다 # (4) 찾는 값이 중간 값보다 크다면 중간 값 기준 오른쪽을 대상으로 이분 탐색 재귀 호출을 실행한다. # (5) 찿는 값이 중간 값보다 작다면 중간 값 기준 왼쪽을 대상으로 이분 탐색 재귀 호출을 실행한다. # 코드 def binary_search_sub(a,x,start,end) : if start > end : return -1 mid = (start + end) // 2 if x == a[mid] : return mid elif x > a[mid] : return binary_search_sub(a,x,mid+1,end) else : return binary_search_sub(a,x,start,mid-1) return -1 def binary_search(a,x) : return binary_search_sub(a,x,0,len(a)-1) data = [1,4,9,16,25,36,49.64,81] print(binary_search(data,36)) print(binary_search(data,4)) print(binary_search(data,90))
UTF-8
Python
false
false
2,011
py
70
day05-exam04-이분탐색with알고리즘&재귀호출.py
70
0.551844
0.507307
0
65
20.538462
59
hellais/ooni-probe
14,482,629,722,813
2786191e82d8d3071cde9a36d997e530868041b5
b156f49432b11047f5aa390dc93de1a9920ebf30
/ooni/director.py
21ac9fc252de51b52f1d8fe3aca6587d61ce72fd
[ "BSD-2-Clause-Views" ]
permissive
https://github.com/hellais/ooni-probe
8b2fad5aa7eb1eda6a089f75164ca18ec80e7535
2764cc2bca9fc60f978b3361ab2e8de372bc5af6
refs/heads/master
2021-01-16T17:42:56.589164
2014-05-27T22:10:46
2014-05-27T22:10:46
3,614,533
1
1
null
null
null
null
null
null
null
null
null
null
null
null
null
import os from ooni.managers import ReportEntryManager, MeasurementManager from ooni.reporter import Report from ooni.utils import log, pushFilenameStack from ooni.utils.net import randomFreePort from ooni.nettest import NetTest, getNetTestInformation from ooni.settings import config from ooni import errors from txtorcon import TorConfig, TorState, launch_tor, build_tor_connection from twisted.internet import defer, reactor from twisted.internet.endpoints import TCP4ClientEndpoint class Director(object): """ Singleton object responsible for coordinating the Measurements Manager and the Reporting Manager. How this all looks like is as follows: +------------------------------------------------+ | Director |<--+ +------------------------------------------------+ | ^ ^ | | Measurement | | +---------+ [---------] +--------------------+ | | | | MeasurementManager | | | NetTest | [---------] +--------------------+ | | | | [----------------] | | +---------+ [---------] | [----------------] | | | | [----------------] | | | +--------------------+ | v | +---------+ ReportEntry | | | [---------] +--------------------+ | | Report | | ReportEntryManager | | | | [---------] +--------------------+ | +---------+ | [----------------] | | [---------] | [----------------] |-- | [----------------] | +--------------------+ [------------] are Tasks +------+ | | are TaskManagers +------+ | | +------+ +------+ | | are general purpose objects +------+ """ _scheduledTests = 0 # Only list NetTests belonging to these categories categories = ['blocking', 'manipulation'] def __init__(self): self.activeNetTests = [] self.measurementManager = MeasurementManager() self.measurementManager.director = self self.reportEntryManager = ReportEntryManager() self.reportEntryManager.director = self # Link the TaskManager's by least available slots. self.measurementManager.child = self.reportEntryManager # Notify the parent when tasks complete # XXX deadlock!? self.reportEntryManager.parent = self.measurementManager self.successfulMeasurements = 0 self.failedMeasurements = 0 self.totalMeasurements = 0 # The cumulative runtime of all the measurements self.totalMeasurementRuntime = 0 self.failures = [] self.torControlProtocol = None # This deferred is fired once all the measurements and their reporting # tasks are completed. self.allTestsDone = defer.Deferred() self.sniffer = None def getNetTests(self): nettests = {} def is_nettest(filename): return not filename == '__init__.py' \ and filename.endswith('.py') for category in self.categories: dirname = os.path.join(config.nettest_directory, category) # print path to all filenames. for filename in os.listdir(dirname): if is_nettest(filename): net_test_file = os.path.join(dirname, filename) nettest = getNetTestInformation(net_test_file) nettest['category'] = category.replace('/', '') if nettest['id'] in nettests: log.err("Found a two tests with the same name %s, %s" % (net_test_file, nettests[nettest['id']]['path'])) else: category = dirname.replace(config.nettest_directory, '') nettests[nettest['id']] = nettest return nettests @defer.inlineCallbacks def start(self, start_tor=False): self.netTests = self.getNetTests() if config.advanced.start_tor and start_tor: yield self.startTor() elif config.tor.control_port: log.msg("Connecting to Tor Control Port...") yield self.getTorState() if config.global_options['no-geoip']: aux = [False] if config.global_options.get('annotations') is not None: annotations = [k.lower() for k in config.global_options['annotations'].keys()] aux = map(lambda x: x in annotations, ["city", "country", "asn"]) if not all(aux): log.msg("You should add annotations for the country, city and ASN") else: yield config.probe_ip.lookup() @property def measurementSuccessRatio(self): if self.totalMeasurements == 0: return 0 return self.successfulMeasurements / self.totalMeasurements @property def measurementFailureRatio(self): if self.totalMeasurements == 0: return 0 return self.failedMeasurements / self.totalMeasurements @property def measurementSuccessRate(self): """ The speed at which tests are succeeding globally. This means that fast tests that perform a lot of measurements will impact this value quite heavily. """ if self.totalMeasurementRuntime == 0: return 0 return self.successfulMeasurements / self.totalMeasurementRuntime @property def measurementFailureRate(self): """ The speed at which tests are failing globally. """ if self.totalMeasurementRuntime == 0: return 0 return self.failedMeasurements / self.totalMeasurementRuntime def measurementTimedOut(self, measurement): """ This gets called every time a measurement times out independenty from the fact that it gets re-scheduled or not. """ pass def measurementStarted(self, measurement): self.totalMeasurements += 1 def measurementSucceeded(self, result, measurement): log.debug("Successfully completed measurement: %s" % measurement) self.totalMeasurementRuntime += measurement.runtime self.successfulMeasurements += 1 measurement.result = result return measurement def measurementFailed(self, failure, measurement): log.msg("Failed doing measurement: %s" % measurement) self.totalMeasurementRuntime += measurement.runtime self.failedMeasurements += 1 self.failures.append((failure, measurement)) measurement.result = failure return measurement def reporterFailed(self, failure, net_test): """ This gets called every time a reporter is failing and has been removed from the reporters of a NetTest. Once a report has failed to be created that net_test will never use the reporter again. XXX hook some logic here. note: failure contains an extra attribute called failure.reporter """ pass def netTestDone(self, net_test): self.activeNetTests.remove(net_test) if len(self.activeNetTests) == 0: self.allTestsDone.callback(None) @defer.inlineCallbacks def startNetTest(self, net_test_loader, reporters): """ Create the Report for the NetTest and start the report NetTest. Args: net_test_loader: an instance of :class:ooni.nettest.NetTestLoader """ if self.allTestsDone.called: self.allTestsDone = defer.Deferred() if config.privacy.includepcap: if not config.reports.pcap: config.reports.pcap = config.generate_pcap_filename(net_test_loader.testDetails) self.startSniffing() report = Report(reporters, self.reportEntryManager) net_test = NetTest(net_test_loader, report) net_test.director = self yield net_test.report.open() yield net_test.initializeInputProcessor() try: self.activeNetTests.append(net_test) self.measurementManager.schedule(net_test.generateMeasurements()) yield net_test.done yield report.close() finally: self.netTestDone(net_test) def startSniffing(self): """ Start sniffing with Scapy. Exits if required privileges (root) are not available. """ from ooni.utils.txscapy import ScapyFactory, ScapySniffer config.scapyFactory = ScapyFactory(config.advanced.interface) if os.path.exists(config.reports.pcap): log.msg("Report PCAP already exists with filename %s" % config.reports.pcap) log.msg("Renaming files with such name...") pushFilenameStack(config.reports.pcap) if self.sniffer: config.scapyFactory.unRegisterProtocol(self.sniffer) self.sniffer = ScapySniffer(config.reports.pcap) config.scapyFactory.registerProtocol(self.sniffer) log.msg("Starting packet capture to: %s" % config.reports.pcap) @defer.inlineCallbacks def getTorState(self): connection = TCP4ClientEndpoint(reactor, '127.0.0.1', config.tor.control_port) config.tor_state = yield build_tor_connection(connection) def startTor(self): """ Starts Tor Launches a Tor with :param: socks_port :param: control_port :param: tor_binary set in ooniprobe.conf """ log.msg("Starting Tor...") @defer.inlineCallbacks def state_complete(state): config.tor_state = state log.msg("Successfully bootstrapped Tor") log.debug("We now have the following circuits: ") for circuit in state.circuits.values(): log.debug(" * %s" % circuit) socks_port = yield state.protocol.get_conf("SocksPort") control_port = yield state.protocol.get_conf("ControlPort") config.tor.socks_port = int(socks_port.values()[0]) config.tor.control_port = int(control_port.values()[0]) def setup_failed(failure): log.exception(failure) raise errors.UnableToStartTor def setup_complete(proto): """ Called when we read from stdout that Tor has reached 100%. """ log.debug("Building a TorState") config.tor.protocol = proto state = TorState(proto.tor_protocol) state.post_bootstrap.addCallback(state_complete) state.post_bootstrap.addErrback(setup_failed) return state.post_bootstrap def updates(prog, tag, summary): log.msg("%d%%: %s" % (prog, summary)) tor_config = TorConfig() if config.tor.control_port: tor_config.ControlPort = config.tor.control_port if config.tor.socks_port: tor_config.SocksPort = config.tor.socks_port if config.tor.data_dir: data_dir = os.path.expanduser(config.tor.data_dir) if not os.path.exists(data_dir): log.msg("%s does not exist. Creating it." % data_dir) os.makedirs(data_dir) tor_config.DataDirectory = data_dir if config.tor.bridges: tor_config.UseBridges = 1 if config.advanced.obfsproxy_binary: tor_config.ClientTransportPlugin = \ 'obfs2,obfs3 exec %s managed' % \ config.advanced.obfsproxy_binary bridges = [] with open(config.tor.bridges) as f: for bridge in f: if 'obfs' in bridge: if config.advanced.obfsproxy_binary: bridges.append(bridge.strip()) else: bridges.append(bridge.strip()) tor_config.Bridge = bridges if config.tor.torrc: for i in config.tor.torrc.keys(): setattr(tor_config, i, config.tor.torrc[i]) tor_config.save() if not hasattr(tor_config,'ControlPort'): control_port = int(randomFreePort()) tor_config.ControlPort = control_port config.tor.control_port = control_port if not hasattr(tor_config,'SocksPort'): socks_port = int(randomFreePort()) tor_config.SocksPort = socks_port config.tor.socks_port = socks_port tor_config.save() log.debug("Setting control port as %s" % tor_config.ControlPort) log.debug("Setting SOCKS port as %s" % tor_config.SocksPort) if config.advanced.tor_binary: d = launch_tor(tor_config, reactor, tor_binary=config.advanced.tor_binary, progress_updates=updates) else: d = launch_tor(tor_config, reactor, progress_updates=updates) d.addCallback(setup_complete) d.addErrback(setup_failed) return d
UTF-8
Python
false
false
13,480
py
103
director.py
73
0.555341
0.552893
0
373
35.13941
96
juanmacugat/google-ads-python
17,497,696,782,872
a30f9450589891dbc20625023f374c3d090a90b3
555b9f764d9bca5232360979460bc35c2f5ad424
/examples/billing/get_billing_setup.py
34f1109f8fe2deb1285c7be7ff9f6402d1762502
[ "Apache-2.0", "LicenseRef-scancode-generic-cla" ]
permissive
https://github.com/juanmacugat/google-ads-python
b50256163782bc0223bcd8b29f789d74f4cfad05
0fc8a7dbf31d9e8e2a4364df93bec5f6b7edd50a
refs/heads/master
2021-02-18T17:00:22.067673
2020-03-05T16:13:57
2020-03-05T16:13:57
245,215,877
1
0
Apache-2.0
true
2020-03-05T16:39:34
2020-03-05T16:39:33
2020-03-05T16:14:00
2020-03-05T16:13:58
3,865
0
0
0
null
false
false
#!/usr/bin/env python # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Gets all billing setup objects available for the specified customer ID.""" import argparse import sys import google.ads.google_ads.client _DEFAULT_PAGE_SIZE = 1000 def main(client, customer_id, page_size): ga_service = client.get_service('GoogleAdsService', version='v2') query = ( 'SELECT billing_setup.id, billing_setup.status, ' 'billing_setup.payments_account, ' 'billing_setup.payments_account_info.payments_account_id, ' 'billing_setup.payments_account_info.payments_account_name, ' 'billing_setup.payments_account_info.payments_profile_id, ' 'billing_setup.payments_account_info.payments_profile_name, ' 'billing_setup.payments_account_info.secondary_payments_profile_id ' 'FROM billing_setup') results = ga_service.search(customer_id, query=query, page_size=page_size) try: # Use the enum type to determine the enum name from the value. billing_setup_status_enum = ( client.get_type('BillingSetupStatusEnum', version='v2') .BillingSetupStatus) print('Found the following billing setup results:') for row in results: billing_setup = row.billing_setup payments_account_info = billing_setup.payments_account_info print('Billing setup with ID "%s", status "%s", ' 'payments_account "%s", payments_account_id "%s", ' 'payments_account_name "%s", payments_profile_id "%s", ' 'payments_profile_name "%s", ' 'secondary_payments_profile_id "%s".' % (billing_setup.id.value, billing_setup_status_enum.Name(billing_setup.status), billing_setup.payments_account.value, payments_account_info.payments_account_id.value, payments_account_info.payments_account_name.value, payments_account_info.payments_profile_id.value, payments_account_info.payments_profile_name.value, payments_account_info.secondary_payments_profile_id.value)) except google.ads.google_ads.errors.GoogleAdsException as ex: print('Request with ID "%s" failed with status "%s" and includes the ' 'following errors:' % (ex.request_id, ex.error.code().name)) for error in ex.failure.errors: print('\tError with message "%s".' % error.message) if error.location: for field_path_element in error.location.field_path_elements: print('\t\tOn field: %s' % field_path_element.field_name) sys.exit(1) if __name__ == '__main__': # GoogleAdsClient will read the google-ads.yaml configuration file in the # home directory if none is specified. google_ads_client = (google.ads.google_ads.client.GoogleAdsClient .load_from_storage()) parser = argparse.ArgumentParser( description='Lists all billing setup objects for specified customer.') # The following argument(s) should be provided to run the example. parser.add_argument('-c', '--customer_id', type=str, required=True, help='The Google Ads customer ID.') args = parser.parse_args() main(google_ads_client, args.customer_id, _DEFAULT_PAGE_SIZE)
UTF-8
Python
false
false
3,966
py
379
get_billing_setup.py
375
0.645487
0.641704
0
89
43.561798
80
hess8/pythonscripts
6,597,069,816,546
62bd819f6c05c400e9283977f4cfe30738e1b3fa
e6cc536dbb43a4dc0da4c21f76b5b61058f5e53e
/cluster_expansion/ceflashscripts/submitVasp.py
49049ee5a0b4532ed0472ff1738a7728d6ec93a4
[]
no_license
https://github.com/hess8/pythonscripts
2f8df626f0c12baf205845ba41654b6cd59280b2
a048b60c96254576f32ec67164cc8ed64cca2486
refs/heads/master
2021-01-18T20:25:11.141331
2019-03-29T03:27:48
2019-03-29T03:27:48
6,807,456
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python import time, os, subprocess '''For each dir in jobs2run: copies POSCAR.orig to POSCAR, replaces kpoints file with correct mesh for POSCAR, reads a jobfiles from the maindir,writes the structure number to the job name, and submits a vasp job ''' #!/usr/bin/python ''' tests. ''' import sys,os import numpy as np #from kmeshroutines.py import * ################# script ####################### #maindir = '/fslhome/bch/cluster_expansion/alir/AFLOWDATAf1_50/AlIr/' maindir = '/fslhome/bch/cluster_expansion/alir/AFLOWDATAf1_50e/test2/f5179/' testfile = 'POSCAR' reallatt = np.zeros((3,3)) os.chdir(maindir) dirs= sorted([d for d in os.listdir(os.getcwd()) if os.path.isdir(d)]) for dir in dirs: if testfile in os.listdir(dir): currdir = maindir + dir+'/' print dir #+ "************" file1 = open(maindir+dir+'/'+testfile,'r') poscar = file1.readlines() file1.close() if len(poscar) >0: os.chdir(currdir) # scale = np.sum(np.array(float(poscar[1]))) # N = np.rint(Nkppra/np.sum(np.array(poscar[5].split(),dtype=np.int16))).astype(int) # number of kpts desired # reallatt[0,:] = np.array(poscar[2].split()) # reallatt[1,:] = np.array(poscar[3].split()) # reallatt[2,:] = np.array(poscar[4].split()) # reallatt = scale*reallatt.astype(np.float) # reciplatt = 2*np.pi*np.transpose(np.linalg.inv(reallatt)) os.system('rm slurm*') # subprocess.call(['rm', 'slurm*']) subprocess.call(['rm', 'CHG*']) subprocess.call(['rm', 'OUTCAR']) subprocess.call(['sbatch', 'vaspjob']) os.chdir(maindir) # submit vasp job print 'Done'
UTF-8
Python
false
false
1,822
py
181
submitVasp.py
160
0.569704
0.553787
0
48
36.895833
120
Lusenaka/SENDIT_COURIER
7,533,372,657,663
119a72541a0e41d958600b3f4953f1784531ce06
df1735507951f72f147a82b882996dd59d90da30
/app/api/v1/models.py
9ad9ada176a66aafee2cb01cfb77059458d07d05
[ "MIT" ]
permissive
https://github.com/Lusenaka/SENDIT_COURIER
bab6f63a14635f8fd227400d2c817ab8f9ec9238
b87fcd6917751bacd82fbf103bfbf2f7b578601a
refs/heads/ft-correctionsbranch-161962988
2022-12-11T04:37:20.608098
2018-11-15T14:07:52
2018-11-15T14:07:52
157,015,049
0
0
MIT
false
2022-05-25T01:53:56
2018-11-10T19:39:00
2018-11-15T14:08:27
2022-05-25T01:53:56
22
0
0
9
Python
false
false
from flask import make_response, jsonify, request from flask_restful import reqparse users = [ { "user_id" : 23, "username" : "Alvin", "email": "Alvin@gmail.com", "default_location":"Kiambu", "password":1234 }, { "user_id" : 45, "username" : "Charity", "email": "Charity@gmail.com", "default_location":"Kericho", "password": 54321 }] """User roles""" customer = "Normal user" admin = "User administrator" class Users(object): """Creating model for users""" def __init__(self): self.udb = users self.user_id = len(self.udb) self.role = customer def create_user(self, username, email, default_location, password): user = { "user_id" :self.user_id + 1, "username": username, "email": email, "default_location": default_location, "password": password, "role" : self.role } save_user = self.udb.append(user) return save_user def filter_user_detail(self,email): """Using list comprehension to get specific user email""" user = [user for user in users if user['email']==email] return user def filter_password_detail(self,password): passw = [passw for passw in users if passw['password']==password] return passw def user_login(self, email, password): registered_user = Users.filter_user_detail(self, email) registered_user2 = Users.filter_password_detail(self, password) if not registered_user: return make_response(jsonify({ "message" : "{} is not a registered user".format(email) }), 201) if registered_user: return make_response(jsonify({ "message" : "login successful" }), 201) if not registered_user2: return make_response(jsonify({ "message" : "{} is not a registered user".format(email) }), 400) elif registered_user2: return make_response(jsonify({ "welcome" : "Login successful" })) for user in users: if user["role"] == customer: return {'Role' : 'You are a customer'} elif user['role'] == admin: return{'Role' : 'You are an admin'} parcels = [ { "order_id" : 56, "current_location": "Nairobi", "receiver_name": "Anne", "receivers_location": "Mombasa", "pickup_location": "Tuskeys", "weight": 23, "price": 3456, "status": "pending" }, { "order_id" : 65, "current_location": "Nairobi", "receiver_name": "Moreen", "receivers_location": "Kisumu", "pickup_location": "Mama Ngina", "weight": 23, "price": 5443, "status": "delivered" }] """Order status after pickup""" pending= "Your order is waiting to be sent" on_transit= "in Transit" delivered= "Delivered" cancelled= "Cancelled" class ParcelOrder(object): """Creating model for parcels""" def __init__(self): self.db = parcels self.order_id = len(self.db) self.status = pending def new_parcel(self, current_location,receiver_name ,receivers_location, pickup_location, weight, price): new_order_data = { "order_id": self.order_id + 1, "current_location": current_location, "receiver_name":receiver_name, "receivers_location":receivers_location, "pickup_location": pickup_location, "weight": weight, "price": price, "status": self.status } order = self.db.append(new_order_data) return order def parcels_list(self): return self.db def single_parcel(self, order_id): for parcel in parcels: if parcel["order_id"]== order_id: return parcel else: return {'parcel': 'Is nowhere to be found'}, 404 def cancel_order(self, order_id): for parcel in parcels: if parcel["status"] == delivered: return {'parcel': "This parcel was already delivered and therefore cannot be canceled"} elif parcel['order_id'] == order_id: parcel.update({"status": cancelled}) return {'parcel': 'Order Cancelled'} def clear(self): self.db = [] def get_orders_by_specific_user(self,receiver_name): """"Return orders by specific user""" user_orders = [] """Iterate over a sequence""" for parcel in parcels: if (parcel['receiver_name'] == receiver_name): user_orders.append(parcel) return user_orders return "Orders not found", 404
UTF-8
Python
false
false
4,863
py
14
models.py
11
0.549455
0.539379
0
157
29.974522
109
blacktyger/epicentral
2,276,332,683,365
d226c5de5b94cd12d21d6ec07a1599fb847bd7c6
ddfb5fb11498ed28c2e7bac4a32e7d965df3c842
/app/db.py
129ba435a041f0de16c3938d3da590564e2bfef0
[]
no_license
https://github.com/blacktyger/epicentral
955e62d91132bfac197ce3fecbf9e76bd7aee99e
498e9168b6d6be5bf18b5b8d4f9b8d7dfe052e5f
refs/heads/master
2023-02-20T08:30:04.323734
2021-01-25T13:35:16
2021-01-25T13:35:16
332,756,580
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import json from decimal import InvalidOperation, Decimal from live_trader import citex_api as citex import requests from vitex_api_pkg import VitexRestApi def d(value, places=8): try: return round(Decimal(value), places) except (InvalidOperation, ValueError): if value == '' or ' ' or []: print(f'Empty string') return Decimal(0) else: print(f'String should have numbers only') pass class DataBase: def __init__(self): print("--------------------- INITIALIZE DB ----------------") self.btc_price = float(json.loads(requests.get("https://blockchain.info/ticker").content)['USD']['last']) self.currency = self.currency_data() self.epic = self.epic_data() self.blocks = self.block_data() self.epic_vs_usd = float(self.epic['usdt']['avg_price']) self.epic_vs_btc = float(self.epic['btc']['avg_price']) self.orderbook = self.get_orderbook() def epicradar_api(self, query): base = "https://epicradar.tech/api/" url = f"{base}{query}" return json.loads(requests.get(url).content) def currency_data(self): data = self.epicradar_api('currency') output = {} for x in data: output[x['symbol']] = {'flag': x['flag'], 'country': x['country'], 'symbol': x['symbol'], 'price': x['price']} return output def epic_data(self): data = self.epicradar_api('data') output = {} for x in data: output[x['pair']] = x return output def block_data(self): data = self.epicradar_api('block') return data def get_orderbook(self): vitex_api = VitexRestApi() vitex_epic_btc_orderbook = vitex_api.get_order_book_depth(symbol="EPIC-001_BTC-000") citex_epic_btc_orderbook = citex.get_order_book('EPIC-BTC') citex_epic_usdt_orderbook = citex.get_order_book('EPIC-USDT') # self.orderbook = { # 'vitex': { # 'btc': { # 'bids': vitex_epic_btc_orderbook['data']['asks'], # 'asks': vitex_epic_btc_orderbook['data']['bids'] # }}, # 'citex': { # 'btc': { # 'bids': vitex_epic_btc_orderbook['data']['asks'], # 'asks': vitex_epic_btc_orderbook['data']['asks'], # }, # 'usd': { # 'bids': vitex_epic_btc_orderbook['data']['asks'], # 'asks': vitex_epic_btc_orderbook['data']['asks'], # }} # } self.orderbook = { 'vitex': { 'btc': { 'bids': vitex_epic_btc_orderbook['data']['asks'], 'asks': vitex_epic_btc_orderbook['data']['bids'] }}, 'citex': { 'btc': { 'bids': [[x['price'], x['quantity']] for x in citex_epic_btc_orderbook['data']['asks']], 'asks': [[x['price'], x['quantity']] for x in citex_epic_btc_orderbook['data']['bids']], }, 'usd': { 'bids': [[x['price'], x['quantity']] for x in citex_epic_usdt_orderbook['data']['asks']], 'asks': [[x['price'], x['quantity']] for x in citex_epic_usdt_orderbook['data']['bids']], }} } return self.orderbook db = DataBase()
UTF-8
Python
false
false
3,551
py
7
db.py
4
0.484934
0.482681
0
99
34.868687
113
Anjaan-g/learning-rest-framework
5,841,155,569,744
cfd49e68eb1433480373da71e398286612df3c86
c9cf349d854028b7f34b546dea3b3ffef8813713
/api_eg/api/urls.py
554dd68fe127592976d611b997eb494bb8c68dc4
[]
no_license
https://github.com/Anjaan-g/learning-rest-framework
da4b7a5ae731513cd42d08c763618917ddbaf8ca
b2c619d0ab246c7afec9d29e695ad889e3d64e82
refs/heads/master
2020-05-26T21:58:21.729213
2019-05-25T08:48:21
2019-05-25T08:48:21
188,388,594
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.urls import path, include from . import views from rest_framework import routers router = routers.DefaultRouter() router.register('colleges', views.CollegeView) router.register('jobs', views.JobView) router.register('addresses', views.AddressView) urlpatterns = [ path('', include(router.urls)), ]
UTF-8
Python
false
false
322
py
6
urls.py
6
0.748447
0.748447
0
14
22
47
vinaynv3/AlgorithmsDatastructures
5,291,399,717,580
40a98cfb140981a547428beaca84348fb9a3a23c
903981282e102869d8ec8fce99b2d9f176c2e922
/PgEx_1/circuit_connection.py
700ed01a37f54b3b44cfbafb09a1637c63c77a38
[]
no_license
https://github.com/vinaynv3/AlgorithmsDatastructures
98faeb559144b6e6221efc64bdf06749a75bd1dc
b6a7d6db8230c86c5fddec593ba61989eadc72bb
refs/heads/master
2020-05-31T17:55:33.499985
2020-05-10T21:19:51
2020-05-10T21:19:51
190,420,671
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
''' Connector class contains logic gate circuit design. ''' #from logic_gates import Binary, Unary class Connector: #Constructor def __init__(self, fromGate,toGate): self.fromGate = fromGate self.toGate = toGate def execute(self): result = self.fromGate.getOutput() self.toGate.setNext(result) final_result = self.toGate.getOutput() return final_result
UTF-8
Python
false
false
416
py
14
circuit_connection.py
12
0.653846
0.653846
0
17
23.470588
51
MUKHERJEE3112/Letsupgrade-Python_b7
4,793,183,551,467
8a6957214fe8d2404ff9ab1d4ca0cb167c872689
beb4ea00895b368f7f77565aac59c5846f58b6cd
/DAY4.py
2d89b8aa37bcd307ed4a52536a8d3c003f334c6a
[ "Apache-2.0" ]
permissive
https://github.com/MUKHERJEE3112/Letsupgrade-Python_b7
93db84a5722e62702bafde6dd0dbf9c2fa9b26e3
9a60cada5fdda813d53956135acb975f19950191
refs/heads/master
2022-12-08T18:19:06.991025
2020-09-06T14:20:12
2020-09-06T14:20:12
293,288,262
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
'''WAP TO FIND THE ARMSTRONG NUMBER FROM 1042000 TO 702648265 AND EXIT THE LOOP AS SOON AS YOU ENCOUNTER THE FIRST ARMSTRONG NUMBER''' #THE NUMBERS GIVEN BY THE USER IS STORED IN start AND end start = int(input('ENTER THE STARTING VALUE :')) end = int(input('ENTER THE ENDING VALUE :')) for num in range(start,end): sum,n = 0,num while n!=0: sum += ((n%10)**3) n//=10 if num==sum : print('THE NUMBER IS ARMSTRONG NUMBER',num) break else: print('NO ARMSTRONG NUMBER')
UTF-8
Python
false
false
543
py
4
DAY4.py
3
0.615101
0.572744
0
16
31.5625
72
Angelpacman/Dataschool
18,339,510,354,916
0dd6947b3c112a9f2c2285e1a5479de8afca9bdf
85668736ab6034ced0afca7ce7320e403e8c688f
/scripts/19 Loc, iLoc, iax.py
a5a1fa2a19129eee8f2a071b17da822928002796
[]
no_license
https://github.com/Angelpacman/Dataschool
e36b667e6677c767f96166f27a273762d91d1470
c30221337d7a8654b4e76a808ff5957308255cfb
refs/heads/master
2022-11-10T03:35:12.203224
2020-06-26T04:20:14
2020-06-26T04:20:14
268,156,678
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python # coding: utf-8 # # How do i select multiple rows and columns? # - Basicamente loc iloc y iax son metodos para seleccionar filas y columnas # In[1]: import pandas as pd # In[2]: #ufo = pd.read_csv('http://bit.ly/uforeports') ufo = pd.read_csv('uforeports.csv') ufo # ## Loc # - Loc sirve para filtrar filas y seleccionar columnas por label (cuando se habla de labels en pandas se refiere a que se selecciona par index cuando se trata de filas y se selecciona por nombre de columnas cuando se trata de las columnas) # # - La forma de usar Loc es la siguiente: .loc[ que filas quiero , que columnas quiero ] # In[3]: #En el ejemplo siguiente se usa el df ufo con la fila 0 y todas las columnas, que se representan con ":" ufo.loc[0,:] # In[4]: #Aqui lo que buscamos es todas las filas de la columna "City" ufo.loc[:,"City"] # - Se pueden seleccionar filas especificas del df si se pasan al metodo loc en una lista: # In[5]: #En este caso elegimos de las filas con index = 0,1,2 todas las columnas ":" ufo.loc[[0,1,2],:] # - La forma de seleccionar varias filas que son consecutivas es declarando el intervalo: # In[6]: #Esta forma arroja un resultado que es equivalente a la sentencia anterior ufo.loc[0:2,:] # #### IMPORTANTE: hay que notar que la seleccion 0:2 no excluye el index = 2 # - Pasar a una lista todos los label que deseamos tambien lo podemos hacer en las columnas: # In[7]: #En este ejemplo logramos que seleccione todas las filas de las columnas "City" y "State" ufo.loc[:,["City","State"]] # - Tambien pasar las columnas de una forma consecutiva: # In[8]: #En este caso logramos obtener las filas de 0 a 2 todas las columnas que hay desde "City" hasta "State" ufo.loc[0:2,"City":"State"] # - Como nada de esta ha sido asignado a ninguna variable, se puede obtener el resutado anterior usando el metodo .drop() y retiraremos la columna "Time" que esta en axis=1 # In[9]: ufo.head(3).drop('Time', axis = 1) # - Filtrando los avistamientos en Oakland usando la serie de booleanos True que coincidan con la condicion: # In[10]: ufo[ufo.City == 'Oakland'] # - El mismo filtro lo podemos obterner con loc de una manera bastante similar: # In[11]: ufo.loc[ufo.City == 'Oakland', :] # ## iLoc # - iloc sirve para seleccionar filas y columnas pero usando una posición que es hecha por un numero entero: # In[12]: # De esta manera logramos seleccionar todas las filas de las columnas que se encuentran en la posicion 0 y 3 ufo.iloc[:, [0,3]] # - Tambien se le puede pasar una lista a iloc asi como una serie consecutiva de labels # In[13]: ufo.iloc[:,0:3] # #### Cabe mencionar que en este metodo si se excluye la columna que fijamos como limite (fila con posición = 3, es decir cuarta columna) # In[14]: #supongamos que queremos todas las columnas de la posición 0 a 2, entonces; ufo.iloc[0:3, :] # ## ix function (deprecated) # - La funcion ix es obsoleta en pandas al menos desde version 1.0 # In[15]: drinks = pd.read_csv('drinks.csv', index_col = 'country') drinks # In[16]: drinks.ix['Albania', 0] # In[17]: drinks.ix(1,"beer_servings") # In[19]: drinks.ix['Albania':'Andorra',0:2] # In[20]: drinks.loc['Albania':'Andorra', 'beer_servings':'spirit_servings'] # In[21]: drinks.iloc[1:4, 0:2] # In[ ]:
UTF-8
Python
false
false
3,344
py
27
19 Loc, iLoc, iax.py
23
0.691709
0.669859
0
173
18.289017
241
LXL1314/d2l
18,640,158,073,443
1fd2c4ea64984d9ab16b85cc4ecf0b23dc2f69f6
7805346e05b101a02a1c2df7927577fc909a5ce6
/chapter3_deep-learning-basics/softmax_fashion_mnist.py
ab2c642421f786973abb58de219757497e5f331b
[]
no_license
https://github.com/LXL1314/d2l
9a9819a576a79fb562518a3564ded36771addeaf
cfdec5c771cd655571ebf7a143407b0155fe9cc0
refs/heads/master
2022-10-18T18:08:13.971814
2019-08-04T02:59:42
2019-08-04T02:59:42
200,372,631
0
1
null
false
2022-10-09T00:35:06
2019-08-03T12:23:50
2019-08-04T03:03:23
2022-10-09T00:35:06
375,827
0
1
1
Jupyter Notebook
false
false
from mxnet import nd import fashion_mnist as fm batch_size = 256 train_iter, test_iter = fm.load_data_fashion_mnist(batch_size) num_inputs = 784 num_outputs = 10 W = nd.random.normal(scale=0.01, shape=(num_inputs, num_outputs)) b = nd.zeros(num_outputs) W.attach_grad() b.attach_grad() def softmax(X): X_exp = X.exp() partition = X_exp.sum(axis=1, keepdims=True) return X_exp/partition def net(X): return softmax(nd.dot(X.reshape((-1, num_inputs)), W) + b) def cross_entropy(y_hat, y): return -nd.pick(y_hat, y).log() def accuracy(y_hat, y): return (y_hat.argmax(axis=1) == y.astype('float32')).mean().asscalar() num_epochs, lr = 10, 0.01 fm.train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, batch_size, [W, b], lr) for X, y in test_iter: break true_labels = fm.get_fashion_mnist_labels(y.asnumpy()) pre_labels = fm.get_fashion_mnist_labels(net(X).argmax(axis=1).asnumpy()) title = [true + '\n' + pre for true, pre in zip(true_labels, pre_labels)] fm.show_fashion_mnist(X[:10], title[:10])
UTF-8
Python
false
false
1,043
py
40
softmax_fashion_mnist.py
38
0.670182
0.644295
0
38
26.447368
91
deweerdt/condure
13,889,924,241,740
51aebbc1030545f6f22350386a49095124f72892
ff5c1d83496e34f8dce74d439e41798c25177c1b
/examples/streamhandler.py
c5a278fb328374d93dc9fe32c0793842a4826466
[ "Apache-2.0" ]
permissive
https://github.com/deweerdt/condure
abea0c88cbb71c37cf8384a9cc03e3ae67d8da4f
7f2f9e3987781ee31e3130f918d5bb0ad7769df4
refs/heads/master
2023-08-26T01:36:01.314990
2021-10-25T05:33:40
2021-10-25T05:33:40
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# this handler responds to every request with "hello world" import os import tnetstring import zmq instance_id = 'streamhandler.{}'.format(os.getpid()).encode('utf-8') ctx = zmq.Context() in_sock = ctx.socket(zmq.PULL) in_sock.connect('ipc://client-out') in_stream_sock = ctx.socket(zmq.ROUTER) in_stream_sock.identity = instance_id in_stream_sock.connect('ipc://client-out-stream') out_sock = ctx.socket(zmq.PUB) out_sock.connect('ipc://client-in') poller = zmq.Poller() poller.register(in_sock, zmq.POLLIN) poller.register(in_stream_sock, zmq.POLLIN) while True: socks = dict(poller.poll(None)) if socks.get(in_sock) == zmq.POLLIN: m_raw = in_sock.recv() elif socks.get(in_stream_sock) == zmq.POLLIN: m_list = in_stream_sock.recv_multipart() m_raw = m_list[2] else: continue req = tnetstring.loads(m_raw[1:]) print('IN {}'.format(req)) if req.get(b'type'): # skip all non-data messages continue if req.get(b'uri', b'').startswith(b'ws'): resp = {} resp[b'from'] = instance_id resp[b'id'] = req[b'id'] resp[b'seq'] = 0 resp[b'code'] = 101 resp[b'reason'] = b'Switching Protocols' resp[b'credits'] = 1024 print('OUT {} {}'.format(req[b'from'], resp)) out_sock.send(req[b'from'] + b' T' + tnetstring.dumps(resp)) resp = {} resp[b'from'] = instance_id resp[b'id'] = req[b'id'] resp[b'seq'] = 1 resp[b'body'] = b'hello world' print('OUT {} {}'.format(req[b'from'], resp)) out_sock.send(req[b'from'] + b' T' + tnetstring.dumps(resp)) resp = {} resp[b'from'] = instance_id resp[b'id'] = req[b'id'] resp[b'seq'] = 2 resp[b'type'] = b'close' print('OUT {} {}'.format(req[b'from'], resp)) out_sock.send(req[b'from'] + b' T' + tnetstring.dumps(resp)) else: resp = {} resp[b'from'] = instance_id resp[b'id'] = req[b'id'] resp[b'seq'] = 0 resp[b'code'] = 200 resp[b'reason'] = b'OK' resp[b'headers'] = [[b'Content-Type', b'text/plain']] resp[b'more'] = True resp[b'credits'] = 1024 print('OUT {} {}'.format(req[b'from'], resp)) out_sock.send(req[b'from'] + b' T' + tnetstring.dumps(resp)) resp = {} resp[b'from'] = instance_id resp[b'id'] = req[b'id'] resp[b'seq'] = 1 resp[b'body'] = b'hello world\n' print('OUT {} {}'.format(req[b'from'], resp)) out_sock.send(req[b'from'] + b' T' + tnetstring.dumps(resp))
UTF-8
Python
false
false
2,627
py
32
streamhandler.py
28
0.546631
0.538257
0
90
28.188889
68
jturibe/spicy_chorizo
11,458,972,766,111
10682108476a38523412eb658337d1969793db24
47b906d5ac12d831418c0fb5d8d1ea864df34621
/Server/server.py
078de4716018ac3c703d9edaaa4a4064a3d1fa38
[]
no_license
https://github.com/jturibe/spicy_chorizo
f150f6b2e6cb41f28468e76457cd8152ad1caaaa
670c71a0be4a45302572ff1ad9022bbb988ff8bd
refs/heads/master
2022-04-03T16:58:08.078900
2020-02-13T13:09:49
2020-02-13T13:09:49
237,996,573
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import paho.mqtt.client as mqtt import ssl import json from firebase import firebase import datetime import statistics import numpy as np import firebase_admin from firebase_admin import db from firebase_admin import credentials from firebase_admin import messaging import matplotlib.pyplot as plt import seaborn import base64 import time import calendar # Connect to Firebase cred = credentials.Certificate("Firebase/spicychorizo-794f1-firebase-adminsdk-dckj3-acd1fd6dc2.json") firebase_admin.initialize_app(cred, { 'databaseURL': 'https://spicychorizo-794f1.firebaseio.com' }) now = datetime.datetime.now() last_hour = now.hour last_day = now.weekday() ####################################################################################################### #-----------------------------Helper functions-------------------------------------------------------- ####################################################################################################### def list_to_dict(raw_data): if raw_data is None: return {} if type(raw_data) == type({}): return raw_data dict = {} for i in range(len(raw_data)): if raw_data[i] != None: if not np.isnan(raw_data[i]): dict[str(i)] = raw_data[i] return dict def filter_none(lst): res = [] for val in lst: if val != None : res.append(val) return res ####################################################################################################### #-----------------------------Graph creation-------------------------------------------------------- ####################################################################################################### def update_week_hour_graphs(): ref = db.reference('/l_week/week_hour_AVG') #Retreive data from Firebase humidity_values = list_to_dict(ref.child('humidity').get()) temperature_values = list_to_dict(ref.child('temperature').get()) ref = db.reference('/user_settings') settings = ref.get() if(settings is None): settings = { 'humidity_max' : 70, 'humidity_min' : 60, 'temperature_max' : 18, 'temperature_min' : 7 } average_week_hour_graph_temp(temperature_values, settings['temperature_max'], settings['temperature_min']) average_week_hour_graph_hum(humidity_values, settings['humidity_max'], settings['humidity_min']) def average_week_hour_graph_temp(temperature_values, lower_range, upper_range): graph_labels = [] graph_data = [] if temperature_values is not None: for i in range(24): graph_labels.append(str(i) + ":00") if str(i) in temperature_values: graph_data.append(temperature_values[str(i)]) else: graph_data.append(np.NaN) else: for i in range(24): graph_data.append(str(i) + ":00") graph_data.append(np.NaN) time_labels = [] graph_data = np.asarray(graph_data) series = np.array(graph_data).astype(np.double) mask = np.isfinite(series) xi = np.arange(24) allowed_ticks = [0, 4, 8, 12, 16, 20, 23] time_labels = [] for tick in allowed_ticks: time_labels.append(graph_labels[tick]) plot = plt.plot(xi[mask], graph_data[mask], linestyle='-', color='#000000',linewidth=2) plt.xticks(allowed_ticks, time_labels) plt.locator_params(axis='x', nbins=24) #plt.fill_between(xi[mask], graph_data[mask], y2=0, facecolor='#4D071D', alpha=0.5) upper_array = [upper_range]*24 lower_array = [lower_range]*24 upper = plt.plot(xi, upper_array, linestyle='--', color='#808080',linewidth=1.25) lower = plt.plot(xi, lower_array, linestyle='--', color='#808080',linewidth=1.25) plt.fill_between(xi, upper_array, y2=lower_array, facecolor='#C5FFA8', alpha=0.25) plt.ylabel("Average Temperature(°C)", fontweight="medium", fontsize="12") plt.xlabel("Time(daily)", fontweight="medium", fontsize="12") plt.title("Temperature(°C) per hour, averaged over 7 days", fontweight="medium", fontsize="12") axes = plt.gca() axes.set_ylim([min([graph_data[mask].min()*0.8,lower_range*0.8]),max([graph_data[mask].max(),upper_range]) + abs(min([graph_data[mask].min()*0.2,lower_range*0.2]))]) seaborn.despine(left=True, bottom=True, right=True) plt.savefig('average_week_hour_graph_temp.png') plt.clf() with open("average_week_hour_graph_temp.png", "rb") as img_file: image_string = base64.b64encode(img_file.read()) ref_average_week_hour_graph_temp = db.reference('/graphs_temp') ref_average_week_hour_graph_temp.update({'average_week_hour_graph': image_string.decode()}) def average_week_hour_graph_hum(humidity_values, lower_range, upper_range): graph_labels = [] graph_data = [] if humidity_values is not None: for i in range(24): graph_labels.append(str(i) + ":00") if str(i) in humidity_values: graph_data.append(humidity_values[str(i)]) else: graph_data.append(np.NaN) else: for i in range(24): graph_data.append(str(i) + ":00") graph_data.append(np.NaN) time_labels = [] graph_data = np.asarray(graph_data) series = np.array(graph_data).astype(np.double) mask = np.isfinite(series) xi = np.arange(24) allowed_ticks = [0, 4, 8, 12, 16, 20, 23] time_labels = [] for tick in allowed_ticks: time_labels.append(graph_labels[tick]) plot = plt.plot(xi[mask], graph_data[mask], linestyle='-', color='#000000',linewidth=2) plt.xticks(allowed_ticks, time_labels) plt.locator_params(axis='x', nbins=24) #plt.fill_between(xi[mask], graph_data[mask], y2=0, facecolor='#4D071D', alpha=0.5) upper_array = [upper_range]*24 lower_array = [lower_range]*24 upper = plt.plot(xi, upper_array, linestyle='--', color='#808080',linewidth=1.25) lower = plt.plot(xi, lower_array, linestyle='--', color='#808080',linewidth=1.25) plt.fill_between(xi, upper_array, y2=lower_array, facecolor='#C5FFA8', alpha=0.25) plt.ylabel("Average Humidity(%)", fontweight="medium", fontsize="12") plt.xlabel("Time(hourly)", fontweight="medium", fontsize="12") plt.title("Relative Humidity(%) per hour, averaged over 7 days", fontweight="medium", fontsize="12") axes = plt.gca() axes.set_ylim([min([graph_data[mask].min()*0.8,lower_range*0.8]),max([graph_data[mask].max(),upper_range]) + abs(min([graph_data[mask].min()*0.2,lower_range*0.2]))]) seaborn.despine(left=True, bottom=True, right=True) plt.savefig('average_week_hour_graph_hum.png') plt.clf() with open("average_week_hour_graph_hum.png", "rb") as img_file: image_string = base64.b64encode(img_file.read()) ref_average_week_hour_graph_hum = db.reference('/graphs_hum') ref_average_week_hour_graph_hum.update({'average_week_hour_graph': image_string.decode()}) def update_day_graphs(cur_day): ref = db.reference('/l_week/week_AVG/') #Retrieve data from firebase humidity_values = list_to_dict(ref.child('humidity').get()) temperature_values = list_to_dict(ref.child('temperature').get()) ref = db.reference('/user_settings') settings = ref.get() if(settings is None): settings = { 'humidity_max' : 70, 'humidity_min' : 60, 'temperature_max' : 18, 'temperature_min' : 7 } average_day_graph_temp(cur_day, temperature_values, settings['temperature_min'], settings['temperature_max']) average_day_graph_hum(cur_day, humidity_values, settings['humidity_min'], settings['humidity_max']) def average_day_graph_temp(day, temperature_values, lower_range, upper_range): graph_labels = [] graph_data = [] if temperature_values is not None: for i in range(day + 1, 7): graph_labels.append(calendar.day_name[i]) if str(i) in temperature_values: graph_data.append(temperature_values[str(i)]) else: graph_data.append(np.NaN) for i in range(0, day + 1): graph_labels.append(calendar.day_name[i]) if str(i) in temperature_values: graph_data.append(temperature_values[str(i)]) else: graph_data.append(np.NaN) else: for i in range(7): graph_data.append(calendar.day_name[i]) graph_data.append(np.NaN) time_labels = [] graph_data = np.asarray(graph_data) series = np.array(graph_data).astype(np.double) mask = np.isfinite(series) xi = np.arange(7) allowed_ticks = [0, 1, 2, 3, 4, 5, 6] time_labels = [] for tick in allowed_ticks: time_labels.append(graph_labels[tick]) plot = plt.plot(xi[mask], graph_data[mask], linestyle='-', color='#000000',linewidth=2) plt.xticks(allowed_ticks, time_labels) plt.locator_params(axis='x', nbins=7) #plt.fill_between(xi[mask], graph_data[mask], y2=0, facecolor='#4D071D', alpha=0.5) upper_array = [upper_range]*7 lower_array = [lower_range]*7 upper = plt.plot(xi, upper_array, linestyle='--', color='#808080',linewidth=1.25) lower = plt.plot(xi, lower_array, linestyle='--', color='#808080',linewidth=1.25) plt.fill_between(xi, upper_array, y2=lower_array, facecolor='#C5FFA8', alpha=0.25) plt.ylabel("Average Temperature(°C)", fontweight="medium", fontsize="12") plt.xlabel("Time(daily)", fontweight="medium", fontsize="12") plt.title("Average Temperature(°C) per day", fontweight="medium", fontsize="12") axes = plt.gca() axes.set_ylim([min([graph_data[mask].min()*0.8,lower_range*0.8]),max([graph_data[mask].max(),upper_range]) + abs(min([graph_data[mask].min()*0.2,lower_range*0.2]))]) seaborn.despine(left=True, bottom=True, right=True) plt.savefig('average_day_graph_temp.png') plt.clf() with open("average_day_graph_temp.png", "rb") as img_file: image_string = base64.b64encode(img_file.read()) ref_average_hour_graph_temp = db.reference('/graphs_temp') ref_average_hour_graph_temp.update({'average_day_graph': image_string.decode()}) def average_day_graph_hum(day, humidity_values, lower_range, upper_range): graph_labels = [] graph_data = [] if humidity_values is not None: for i in range(day + 1, 7): graph_labels.append(calendar.day_name[i]) if str(i) in humidity_values: graph_data.append(humidity_values[str(i)]) else: graph_data.append(np.NaN) for i in range(0, day + 1): graph_labels.append(calendar.day_name[i]) if str(i) in humidity_values: graph_data.append(humidity_values[str(i)]) else: graph_data.append(np.NaN) else: for i in range(7): graph_data.append(calendar.day_name[i]) graph_data.append(np.NaN) time_labels = [] graph_data = np.asarray(graph_data) series = np.array(graph_data).astype(np.double) mask = np.isfinite(series) xi = np.arange(7) allowed_ticks = [0, 1, 2, 3, 4, 5, 6] time_labels = [] for tick in allowed_ticks: time_labels.append(graph_labels[tick]) plot = plt.plot(xi[mask], graph_data[mask], linestyle='-', color='#000000',linewidth=2) plt.xticks(allowed_ticks, time_labels) plt.locator_params(axis='x', nbins=7) #plt.fill_between(xi[mask], graph_data[mask], y2=0, facecolor='#4D071D', alpha=0.5) upper_array = [upper_range]*7 lower_array = [lower_range]*7 upper = plt.plot(xi, upper_array, linestyle='--', color='#808080',linewidth=1.25) lower = plt.plot(xi, lower_array, linestyle='--', color='#808080',linewidth=1.25) plt.fill_between(xi, upper_array, y2=lower_array, facecolor='#C5FFA8', alpha=0.25) plt.ylabel("Average Humidity(%)", fontweight="medium", fontsize="12") plt.xlabel("Time(daily)", fontweight="medium", fontsize="12") plt.title("Average Relative Humidity(%) per day", fontweight="medium", fontsize="12") axes = plt.gca() axes.set_ylim([min([graph_data[mask].min()*0.8,lower_range*0.8]),max([graph_data[mask].max(),upper_range]) + abs(min([graph_data[mask].min()*0.2,lower_range*0.2]))]) seaborn.despine(left=True, bottom=True, right=True) plt.savefig('average_day_graph_hum.png') plt.clf() with open("average_day_graph_hum.png", "rb") as img_file: image_string = base64.b64encode(img_file.read()) ref_average_hour_graph_temp = db.reference('/graphs_hum') ref_average_hour_graph_temp.update({'average_day_graph': image_string.decode()}) def update_hour_graphs(cur_hour, cur_day): ref = db.reference('/l_week/hour_AVG/weekday_' + str(cur_day)) #Retreive data from Firebase humidity_values_today = ref.child('humidity').get() temperature_values_today = ref.child('temperature').get() humidity_values_today = list_to_dict(humidity_values_today) temperature_values_today = list_to_dict(temperature_values_today) ref = db.reference('/l_week/hour_AVG/weekday_' + str((cur_day-1)%7)) #Retreive data from Firebase humidity_values_yesterday = ref.child('humidity').get() temperature_values_yesterday = ref.child('temperature').get() humidity_values_yesterday = list_to_dict(humidity_values_yesterday) temperature_values_yesterday = list_to_dict(temperature_values_yesterday) ref = db.reference('/user_settings') settings = ref.get() if(settings is None): settings = { 'humidity_max' : 70, 'humidity_min' : 60, 'temperature_max' : 18, 'temperature_min' : 7 } average_hour_graph_temp(cur_hour, cur_day, temperature_values_yesterday, temperature_values_today, settings['temperature_max'], settings['temperature_min']) average_hour_graph_hum(cur_hour, cur_day, humidity_values_yesterday, humidity_values_today, settings['humidity_max'], settings['humidity_min']) def average_hour_graph_temp(hour, day, temp_values_yesterday, temp_values_today, upper_range, lower_range): #current hour, day of today graph_labels = [] graph_data = [] if temp_values_yesterday is not None: for i in range(hour + 1, 24): #take the required hours from yesterday graph_labels.append(str(i) + ":00") if str(i) in temp_values_yesterday: graph_data.append(temp_values_yesterday[str(i)]) else: graph_data.append(np.NaN) else: for i in range(hour + 1, 24): #take the required hours from yesterday graph_labels.append(str(i) + ":00") graph_data.append(np.NaN) if temp_values_today is not None: for i in range(0, hour): #take the required hours from today graph_labels.append(str(i) + ":00") if str(i) in temp_values_today: graph_data.append(temp_values_today[str(i)]) else: graph_data.append(np.NaN) else: for i in range(0, hour): #take the required hours from yesterday graph_labels.append(str(i) + ":00") graph_data.append(np.NaN) cur_vals = db.reference('/current_measurement').get() graph_labels.append(str(hour) + ":00") graph_data.append(cur_vals['temperature']) time_labels = [] graph_data = np.asarray(graph_data) series = np.array(graph_data).astype(np.double) mask = np.isfinite(series) xi = np.arange(24) allowed_ticks = [0, 4, 8, 12, 16, 20, 23] time_labels = [] for tick in allowed_ticks: time_labels.append(graph_labels[tick]) plot = plt.plot(xi[mask], graph_data[mask], linestyle='-', color='#000000',linewidth=2) plt.xticks(allowed_ticks, time_labels) plt.locator_params(axis='x', nbins=24) #plt.fill_between(xi[mask], graph_data[mask], y2=0, facecolor='#4D071D', alpha=0.5) upper_array = [upper_range]*24 lower_array = [lower_range]*24 upper = plt.plot(xi, upper_array, linestyle='--', color='#808080',linewidth=1.25) lower = plt.plot(xi, lower_array, linestyle='--', color='#808080',linewidth=1.25) plt.fill_between(xi, upper_array, y2=lower_array, facecolor='#C5FFA8', alpha=0.25) plt.ylabel("Temperature(°C)", fontweight="medium", fontsize="12") plt.xlabel("Time(hourly)", fontweight="medium", fontsize="12") plt.title("Average Temperature(°C) per hour", fontweight="medium", fontsize="12") axes = plt.gca() axes.set_ylim([min([graph_data[mask].min()*0.8,lower_range*0.8]),max([graph_data[mask].max(),upper_range]) + abs(min([graph_data[mask].min()*0.2,lower_range*0.2]))]) seaborn.despine(left=True, bottom=True, right=True) plt.savefig('average_hour_graph_temp.png') plt.clf() with open("average_hour_graph_temp.png", "rb") as img_file: image_string = base64.b64encode(img_file.read()) ref_average_hour_graph_temp = db.reference('/graphs_temp') ref_average_hour_graph_temp.update({'average_hour_graph': image_string.decode()}) def average_hour_graph_hum(hour, day, hum_values_yesterday, hum_values_today, upper_range, lower_range): #current hour, day of today # ref_today = db.reference('/l_week/hour_AVG/weekday_' + str(day)) # ref_yesterday = db.reference('/l_week/hour_AVG/weekday_' + str((day-1)%7)) # # light_values_today = ref_today.child('light').get() # light_values_yesterday = ref_yesterday.child('light').get() graph_labels = [] graph_data = [] # graph_data[:,:] = np.NaN if hum_values_yesterday is not None: for i in range(hour + 1, 24): #take the required hours from yesterday graph_labels.append(str(i) + ":00") if str(i) in hum_values_yesterday: graph_data.append(hum_values_yesterday[str(i)]) else: graph_data.append(np.NaN) else: for i in range(hour + 1, 24): #take the required hours from yesterday graph_labels.append(str(i) + ":00") graph_data.append(np.NaN) if hum_values_today is not None: for i in range(0, hour): #take the required hours from today graph_labels.append(str(i) + ":00") if str(i) in hum_values_today: graph_data.append(hum_values_today[str(i)]) else: graph_data.append(np.NaN) else: for i in range(0, hour): #take the required hours from yesterday graph_labels.append(str(i) + ":00") graph_data.append(np.NaN) cur_vals = db.reference('/current_measurement').get() graph_labels.append(str(hour) + ":00") graph_data.append(cur_vals['humidity']) time_labels = [] graph_data = np.asarray(graph_data) series = np.array(graph_data).astype(np.double) mask = np.isfinite(series) xi = np.arange(24) allowed_ticks = [0, 4, 8, 12, 16, 12, 23] time_labels = [] for tick in allowed_ticks: time_labels.append(graph_labels[tick]) plot = plt.plot(xi[mask], graph_data[mask], linestyle='-', color='#000000',linewidth=2) plt.xticks(allowed_ticks, time_labels) plt.locator_params(axis='x', nbins=24) #plt.fill_between(xi[mask], graph_data[mask], y2=0, facecolor='#4D071D', alpha=0.25) upper_array = [upper_range]*24 lower_array = [lower_range]*24 upper = plt.plot(xi, upper_array, linestyle='--', color='#808080',linewidth=1.25) lower = plt.plot(xi, lower_array, linestyle='--', color='#808080',linewidth=1.25) plt.fill_between(xi, upper_array, y2=lower_array, facecolor='#C5FFA8', alpha=0.25) plt.ylabel("Relative Humidity(%)", fontweight="medium", fontsize="12") plt.xlabel("Time(hourly)", fontweight="medium", fontsize="12") plt.title("Average Relative Humidity(%) per hour", fontweight="medium", fontsize="12") axes = plt.gca() axes.set_ylim([min([graph_data[mask].min()*0.8,lower_range*0.8]),max([graph_data[mask].max(),upper_range]) + abs(min([graph_data[mask].min()*0.2,lower_range*0.2]))]) seaborn.despine(left=True, bottom=True, right=True) plt.savefig("average_hour_graph_hum.png") plt.clf() with open("average_hour_graph_hum.png", "rb") as img_file: image_string = base64.b64encode(img_file.read()) ref_average_hour_graph_temp = db.reference('/graphs_hum') ref_average_hour_graph_temp.update({'average_hour_graph': image_string.decode()}) ####################################################################################################### #-----------------------------Data processing-------------------------------------------------------- ####################################################################################################### #Calculate the average value for the hour def average_hour(hour, day): ref = db.reference('/l_hour/RAW/') #Retreive RAW data about the last hour from Firebase light_values = ref.child('light').get() humidity_values = ref.child('humidity').get() temperature_values = ref.child('temperature').get() ref = db.reference('/l_week/hour_AVG/weekday_' + str(day)) if light_values is not None: #If there is any data, process it. Otherwise nothing happens light_values = list_to_dict(light_values) #Ensure data is a dict light_values = light_values.values() #Extract values if len(light_values) != 0: #Honestly just a cautionary check light_avg = statistics.mean(light_values) #Calculate the average else: light_avg = None ref_light = ref.child('light') ref_light.update({hour: light_avg}) if humidity_values is not None: humidity_values = list_to_dict(humidity_values) humidity_values = humidity_values.values() if len(humidity_values) != 0: humidity_avg = statistics.mean(humidity_values) else: humidity_avg = None ref_humidity = ref.child('humidity') ref_humidity.update({hour: humidity_avg}) if humidity_values is not None: temperature_values = list_to_dict(temperature_values) temperature_values = temperature_values.values() if len(temperature_values) != 0: temperature_avg = statistics.mean(temperature_values) else: temperature_avg = None ref_temperature = ref.child('temperature') ref_temperature.update({hour: temperature_avg}) #Calculate the average value for the day def average_day(day): ref = db.reference('/l_week/hour_AVG/weekday_' + str(day)) #Retreive data from Firebase light_values = ref.child('light').get() humidity_values = ref.child('humidity').get() temperature_values = ref.child('temperature').get() #Set upload reference ref = db.reference('/l_week/week_AVG') ref_light = ref.child('light') ref_humidity = ref.child('humidity') ref_temperature = ref.child('temperature') #Check for None values if light_values is not None: light_values = list_to_dict(light_values) light_values = light_values.values() #Extract values if len(light_values) != 0: light_avg = statistics.mean(light_values) else: light_avg = None ref_light.update({day: light_avg}) if humidity_values is not None: humidity_values = list_to_dict(humidity_values) humidity_values = humidity_values.values() #Extract values if len(humidity_values) != 0: humidity_avg = statistics.mean(humidity_values) else: humidity_avg = None ref_humidity.update({day: humidity_avg}) if temperature_values is not None: temperature_values = list_to_dict(temperature_values) temperature_values = temperature_values.values() #Extract values if len(temperature_values) != 0: temperature_avg = statistics.mean(temperature_values) else: temperature_avg = None ref_temperature.update({day: temperature_avg}) #Calculate the average value for every hour over the period of the last week def average_hour_over_day(): week_record = np.empty([3, 7, 24]) week_record[:,:,:] = np.NaN ref = db.reference('/l_week/hour_AVG') data = ref.get() if data is not None: for day in range(7): if 'weekday_' + str(day) in data: if 'light' in data['weekday_' + str(day)]: light_values = data['weekday_' + str(day)]['light'] light_values = list_to_dict(light_values) else: light_values = None if 'humidity' in data['weekday_' + str(day)]: humidity_values = data['weekday_' + str(day)]['humidity'] humidity_values = list_to_dict(humidity_values) else: humidity_values = None if 'temperature' in data['weekday_' + str(day)]: temperature_values = data['weekday_' + str(day)]['temperature'] temperature_values = list_to_dict(temperature_values) else: temperature_values = None for i in range(24): if light_values is not None: if str(i) in light_values: week_record[0, day, i] = light_values[str(i)] if humidity_values is not None: if str(i) in humidity_values: week_record[1, day, i] = humidity_values[str(i)] if temperature_values is not None: if str(i) in temperature_values: week_record[2, day, i] = temperature_values[str(i)] day_hour_avg = np.nanmean(week_record, axis=1) ref = db.reference('/l_week/week_hour_AVG') ref_light = ref.child('light') ref_hum = ref.child('humidity') ref_temp = ref.child('temperature') light_values = list_to_dict(day_hour_avg[0]) humidity_values = list_to_dict(day_hour_avg[1]) temperature_values = list_to_dict(day_hour_avg[2]) ref_light.update(light_values) ref_hum.update(humidity_values) ref_temp.update(temperature_values) def initialise_averages(): #helper function to flood the averages for day in range(7): print(day) average_day(day) ####################################################################################################### #-----------------------------Notifications-------------------------------------------------------- ####################################################################################################### def send_notifications(received_payload): ref = db.reference('/notifis') notif_data_temp = ref.child('temperature').get() if(notif_data_temp is None): notif_data_temp = { 'last_event_notified': 0, 'last_trend_notified': 0, 'trend_high_perc': 0, 'trend_low_perc': 0 } notif_data_hum = ref.child('humidity').get() if(notif_data_hum is None): notif_data_hum = { 'last_event_notified': 0, 'last_trend_notified': 0, 'trend_high_perc': 0, 'trend_low_perc': 0 } cur_humidity = received_payload['humidity'] cur_temperature = received_payload['temperature'] ref_settings = db.reference('/user_settings') settings = ref_settings.get() if(settings is None): #If the re is no user settings on the database. In the final #product this would flag a seperate notification saying thet the temperature #is different from the one we recomend settings = { 'humidity_max' : 30, 'humidity_min' : 10, 'temperature_max' : 30, 'temperature_min' : 5 } if(cur_temperature > settings['temperature_max']): #temperature is more than desired if not(notif_data_temp['trend_high_perc'] >= 1): notif_data_temp['trend_high_perc'] = notif_data_temp['trend_high_perc'] + 0.01666666666 #add to percentage of time spent hot if not(notif_data_temp['trend_low_perc'] <= 0): notif_data_temp['trend_low_perc'] = notif_data_temp['trend_low_perc'] - 0.01666666666 #add to percentage of time spent hot if (time.time() - notif_data_temp['last_trend_notified']) > 300: #a full day or week (5 minutes for demo) has passed since the last trend notification if(notif_data_temp['trend_high_perc']>= 0.5): #If there is a trend of high temperature in the last 5 min topic = "event_updates" message = messaging.Message( notification=messaging.Notification( title='Careful!', body='Your wine has been overheating for too long!', ), topic=topic, ) response = messaging.send(message) notif_data_temp['last_trend_notified'] = time.time() elif(cur_temperature < settings['temperature_min']): #temperature is more less desired if not(notif_data_temp['trend_low_perc'] >= 1): notif_data_temp['trend_low_perc'] = notif_data_temp['trend_low_perc'] + 0.01666666666 #add to percentage of time spent hot if not(notif_data_temp['trend_high_perc'] <= 0): notif_data_temp['trend_high_perc'] = notif_data_temp['trend_high_perc'] - 0.01666666666 #add to percentage of time spent hot if (time.time() - notif_data_hum['last_trend_notified']) > 300: #a full day or week (5 minutes for demo) has passed since the last trend notification if(notif_data_temp['trend_low_perc']>= 0.5): #If there is a trend of high temperature in the last 5 min topic = "event_updates" message = messaging.Message( notification=messaging.Notification( title='Careful!', body='Your wine has been freezing for too long!', ), topic=topic, ) response = messaging.send(message) notif_data_temp['last_trend_notified'] = time.time() else: if not(notif_data_temp['trend_low_perc'] <= 0): notif_data_temp['trend_low_perc'] = notif_data_temp['trend_low_perc'] - 0.01666666666 #add to percentage of time spent hot if not(notif_data_temp['trend_high_perc'] <= 0): notif_data_temp['trend_high_perc'] = notif_data_temp['trend_high_perc'] - 0.01666666666 #add to percentage of time spent hot if(cur_humidity > settings['humidity_max']): #humidity is more than desired if not(notif_data_hum['trend_high_perc'] >= 1): notif_data_hum['trend_high_perc'] = notif_data_hum['trend_high_perc'] + 0.01666666666 #add to percentage of time spent too moist if not(notif_data_hum['trend_low_perc'] <= 0): notif_data_hum['trend_low_perc'] = notif_data_hum['trend_low_perc'] - 0.01666666666 #take away from percentage of time spent too dry if (time.time() - notif_data_hum['last_trend_notified']) > 300: #a full day or week (5 minutes for demo) has passed since the last trend notification if(notif_data_hum['trend_high_perc']>= 0.5): #If there is a trend of high humidity in the last 5 min topic = "event_updates" message = messaging.Message( notification=messaging.Notification( title='Careful!', body='Your wine storage is too humid!', ), topic=topic, ) response = messaging.send(message) notif_data_hum['last_trend_notified'] = time.time() elif(cur_humidity < settings['humidity_min']): #humidity is less than desired if not(notif_data_hum['trend_low_perc'] >= 1): notif_data_hum['trend_low_perc'] = notif_data_hum['trend_low_perc'] + 0.01666666666 #add to percentage of time spent too dry if not(notif_data_hum['trend_high_perc'] <= 0): notif_data_hum['trend_high_perc'] = notif_data_hum['trend_high_perc'] - 0.01666666666 #take away from percentage of time spent too moist if (time.time() - notif_data_hum['last_trend_notified']) > 300: #a full day or week (5 minutes for demo) has passed since the last trend notification if(notif_data_hum['trend_low_perc']>= 0.5): #If there is a trend of high humidity in the last 5 min topic = "event_updates" message = messaging.Message( notification=messaging.Notification( title='Careful!', body='Your wine storage is not humid enough!', ), topic=topic, ) response = messaging.send(message) notif_data_hum['last_trend_notified'] = time.time() else: if not(notif_data_hum['trend_low_perc'] <= 0): notif_data_hum['trend_low_perc'] = notif_data_hum['trend_low_perc'] - 0.01666666666 #take away from percentage of time spent too dry if not(notif_data_hum['trend_high_perc'] <= 0): notif_data_hum['trend_high_perc'] = notif_data_hum['trend_high_perc'] - 0.01666666666 #take away from percentage of time spent too moist ref.child('temperature').update(notif_data_temp) ref.child('humidity').update(notif_data_hum) def send_to_topic(): topic = "event_updates" message = messaging.Message( notification=messaging.Notification( title='Warning:', body='Temperature is too high for your wine', ), topic=topic, ) # Send a message to the devices subscribed to the provided topic. response = messaging.send(message) # Response is a message ID string. print('Successfully sent message:', response) # [END send_to_topic] ####################################################################################################### #-----------------------------On message-------------------------------------------------------- ####################################################################################################### def on_message(client, userdata, message): #Global variables global last_hour global last_day print('Received a message') received_payload = json.loads(message.payload) #Current time now = datetime.datetime.now() cur_minute = now.minute cur_hour = now.hour cur_day = now.weekday() #Check if averages need to be updated if(cur_hour != last_hour): print('The hour has changed -> Updating averages and graphs') average_hour(last_hour, last_day) average_hour_over_day() if(cur_day != last_day): print('The day has changed -> Updating averages and graphs') average_day(last_day) # print('The hour has changed -> Updating averages and graphs') # average_hour(last_hour, last_day) # average_hour_over_day() # print('The day has changed -> Updating averages and graphs') # average_day(last_day) # print('------Done-------') #Retreive the individual values cur_light = received_payload['light'] cur_humidity = received_payload['humidity'] cur_temperature = received_payload['temperature'] #Compress light value for user display compressed_light = 'Bright' if(cur_light<10): compressed_light = 'Dark' elif(cur_light<50): compressed_light = 'Dim' print(received_payload) print('Light levels compressed') #Upload to current data ref = db.reference('/current_measurement') ref.update({ 'light': compressed_light, 'humidity': cur_humidity, 'temperature': cur_temperature }) print('Current measurements updated') #Unpload to hourly backlog ref = db.reference('/l_hour/RAW') ref.child('light').update({cur_minute: cur_light}) ref.child('humidity').update({cur_minute: cur_humidity}) ref.child('temperature').update({cur_minute: cur_temperature}) #Update last 24h average graphs since they contain last value as the current one update_week_hour_graphs() print('Updated Week hour graphs') update_day_graphs(cur_day) print('Updated last day average graphs') update_hour_graphs(cur_hour, cur_day) print('Updated last 24h average graphs') send_notifications(received_payload) print('Checked and sent notifications') last_hour = cur_hour last_day = cur_day print('Finished On Message\n\n') ####################################################################################################### #-----------------------------Main connections and actions on server startup-------------------------------------------------------- ####################################################################################################### client = mqtt.Client() client.tls_set(ca_certs="mosquitto.org.crt", certfile="client.crt",keyfile="client.key", tls_version=ssl.PROTOCOL_TLSv1_2) con_code = client.connect("test.mosquitto.org",port=8884) if not con_code: client.subscribe("IC.embedded/spicy_chorizo/#") print("Subscribed to IC.embedded/spicy_chorizo/#") else: print(mqtt.error_string(con_code)) client.on_message = on_message client.subscribe("IC.embedded/spicy_chorizo/#") client.loop_forever() print("Done") # upper_range = 27 # lower_range = 18 # yesterday = list_to_dict([20,21,20,21,20,21,20,21,20,21,20,21,20,21]) # today = list_to_dict([20,21,20,21,20,21,20,21,20,21,20,21,20,21]) # average_hour_graph_temp(last_hour, last_day, yesterday, today, upper_range, lower_range) # average_hour_graph_hum(last_hour, last_day, yesterday, today, upper_range, lower_range)
UTF-8
Python
false
false
38,324
py
12
server.py
6
0.586278
0.564408
0
934
40.025696
169
linhduongtuan/Kaggle-2020-Alaska2
3,633,542,352,357
600daa6944ca3d0538179c80f7b2c3ed97923e1f
c8026a5a31befa11c25e6d00d719af349635a4c5
/submissions/make_submissions_lgbm_gs.py
ade6cc9145643743c28e22c207aaaab9e8b8ee74
[ "MIT" ]
permissive
https://github.com/linhduongtuan/Kaggle-2020-Alaska2
97cb890b8328d0e99d0a9225364f9b6af4f6a70c
3c1f5e8e564c9f04423beef69244fc74168f88ca
refs/heads/master
2023-01-11T09:10:15.601495
2020-08-09T13:23:17
2020-08-09T13:23:17
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import os # For reading, visualizing, and preprocessing data import numpy as np import pandas as pd import torch import torch.nn.functional as F from pytorch_toolbelt.utils import fs from sklearn.metrics import make_scorer from sklearn.model_selection import GroupKFold, RandomizedSearchCV, GridSearchCV from sklearn.preprocessing import StandardScaler from alaska2 import get_holdout, INPUT_IMAGE_KEY, get_test_dataset from alaska2.metric import alaska_weighted_auc from alaska2.submissions import parse_classifier_probas, sigmoid, parse_array, parse_and_softmax, get_x_y_for_stacking from submissions.eval_tta import get_predictions_csv from submissions.make_submissions_averaging import compute_checksum_v2 import lightgbm as lgb def wauc_metric(y_true, y_pred): wauc = alaska_weighted_auc(y_true, y_pred) return ("wauc", wauc, True) def main(): output_dir = os.path.dirname(__file__) experiments = [ "G_Jul03_21_14_nr_rgb_tf_efficientnet_b6_ns_fold0_local_rank_0_fp16", "G_Jul05_00_24_nr_rgb_tf_efficientnet_b6_ns_fold1_local_rank_0_fp16", "G_Jul06_03_39_nr_rgb_tf_efficientnet_b6_ns_fold2_local_rank_0_fp16", "G_Jul07_06_38_nr_rgb_tf_efficientnet_b6_ns_fold3_local_rank_0_fp16", # "H_Jul12_18_42_nr_rgb_tf_efficientnet_b7_ns_mish_fold1_local_rank_0_fp16", # "K_Jul17_17_09_nr_rgb_tf_efficientnet_b6_ns_mish_fold0_local_rank_0_fp16", "J_Jul19_20_10_nr_rgb_tf_efficientnet_b7_ns_mish_fold1_local_rank_0_fp16", "H_Jul11_16_37_nr_rgb_tf_efficientnet_b7_ns_mish_fold2_local_rank_0_fp16", "K_Jul18_16_41_nr_rgb_tf_efficientnet_b6_ns_mish_fold3_local_rank_0_fp16" # # ] holdout_predictions = get_predictions_csv(experiments, "cauc", "holdout", "d4") test_predictions = get_predictions_csv(experiments, "cauc", "test", "d4") checksum = compute_checksum_v2(experiments) holdout_ds = get_holdout("", features=[INPUT_IMAGE_KEY]) image_ids = [fs.id_from_fname(x) for x in holdout_ds.images] quality_h = F.one_hot(torch.tensor(holdout_ds.quality).long(), 3).numpy().astype(np.float32) test_ds = get_test_dataset("", features=[INPUT_IMAGE_KEY]) quality_t = F.one_hot(torch.tensor(test_ds.quality).long(), 3).numpy().astype(np.float32) with_logits = True x, y = get_x_y_for_stacking(holdout_predictions, with_logits=with_logits, tta_logits=with_logits) # Force target to be binary y = (y > 0).astype(int) print(x.shape, y.shape) x_test, _ = get_x_y_for_stacking(test_predictions, with_logits=with_logits, tta_logits=with_logits) print(x_test.shape) if True: sc = StandardScaler() x = sc.fit_transform(x) x_test = sc.transform(x_test) if False: sc = PCA(n_components=16) x = sc.fit_transform(x) x_test = sc.transform(x_test) if True: x = np.column_stack([x, quality_h]) x_test = np.column_stack([x_test, quality_t]) group_kfold = GroupKFold(n_splits=5) params = { "boosting_type": ["gbdt", "dart", "rf", "goss"], "num_leaves": [16, 32, 64, 128], "reg_alpha": [0, 0.01, 0.1, 0.5], "reg_lambda": [0, 0.01, 0.1, 0.5], "learning_rate": [0.001, 0.01, 0.1, 0.5], "n_estimators": [32, 64, 126, 512], "max_depth": [2, 4, 8], "min_child_samples": [20, 40, 80, 100], } lgb_estimator = lgb.LGBMClassifier(objective="binary", silent=True) random_search = RandomizedSearchCV( lgb_estimator, param_distributions=params, scoring=make_scorer(alaska_weighted_auc, greater_is_better=True, needs_proba=True), n_jobs=3, n_iter=50, cv=group_kfold.split(x, y, groups=image_ids), verbose=2, random_state=42, ) # Here we go random_search.fit(x, y) test_pred = random_search.predict_proba(x_test)[:, 1] print(test_pred) submit_fname = os.path.join(output_dir, f"lgbm_gs_{random_search.best_score_:.4f}_{checksum}.csv") df = pd.read_csv(test_predictions[0]).rename(columns={"image_id": "Id"}) df["Label"] = test_pred df[["Id", "Label"]].to_csv(submit_fname, index=False) print("\n All results:") print(random_search.cv_results_) print("\n Best estimator:") print(random_search.best_estimator_) print(random_search.best_score_) print("\n Best hyperparameters:") print(random_search.best_params_) results = pd.DataFrame(random_search.cv_results_) results.to_csv("lgbm-random-grid-search-results-01.csv", index=False) # print(model.feature_importances_) if __name__ == "__main__": main()
UTF-8
Python
false
false
4,657
py
218
make_submissions_lgbm_gs.py
161
0.649775
0.610049
0
132
34.280303
118
reparadocs/ExtraLettuce
9,431,748,194,933
3ea5d7e57bbbac18f09cdac3e2a4b921e7244ec7
fe19fe1495b93b9f11abe1b41d088c99fae28895
/accounts/migrations/0005_auto_20160117_0512.py
d61c502eec683c1049c3e48ddd19db828aac2d4a
[]
no_license
https://github.com/reparadocs/ExtraLettuce
c464e5d2c100c4e2ba6a3e97e17d52f89a5b94f1
5e9f9f95d64e05b494f019ad6f8c4455ada51abe
refs/heads/master
2021-01-09T06:40:30.460078
2016-01-17T21:56:11
2016-01-17T21:56:11
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models from django.conf import settings class Migration(migrations.Migration): dependencies = [ ('accounts', '0004_account_token'), ] operations = [ migrations.CreateModel( name='Goal', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=100)), ('amount', models.IntegerField()), ], ), migrations.AddField( model_name='account', name='bank_amount', field=models.IntegerField(default=0), ), migrations.AddField( model_name='account', name='bank_name', field=models.CharField(max_length=100, null=True), ), migrations.AddField( model_name='goal', name='owner', field=models.ForeignKey(to=settings.AUTH_USER_MODEL), ), ]
UTF-8
Python
false
false
1,094
py
10
0005_auto_20160117_0512.py
6
0.542962
0.531993
0
38
27.789474
114
alireza-ansaripour/quizyar
10,256,381,933,119
01eee450f4f3f0b60b30dea310ad8f5526b79ca6
9f604e9700f906f95d180055709e123f2edfb3de
/Quizyar/quiz/views.py
b336a39ba2091ddf5e5c0a4a74f2ac5c209dd3c9
[]
no_license
https://github.com/alireza-ansaripour/quizyar
496c4ecc09e895791df6c1b34d5a57439c202132
8eab7d74c79825908de2ceb76e8627fb3889d361
refs/heads/master
2016-09-06T05:27:42.591868
2015-09-17T07:14:54
2015-09-17T07:14:54
42,368,950
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- from django.http import HttpResponse import datetime from django.shortcuts import render, redirect from django.views.decorators.csrf import csrf_exempt from rest_framework.renderers import JSONRenderer from rest_framework.views import APIView from Quizyar.models import Teacher, Tag, Student from rest_framework import permissions from Quizyar.quiz.forms import AddQuizForm from Quizyar.quiz.models import Question, Quiz, Result, Analyse, Answer from Quizyar.quiz.permissions import IsOwnerOrReadOnly from Quizyar.quiz.serializers import QuestionSerializer, QuestionSerializerForQuiz from django.utils.crypto import get_random_string __author__ = 'alireza' class addquiz(APIView): permission_classes = (permissions.IsAuthenticatedOrReadOnly, IsOwnerOrReadOnly) def get(self, request): if request.user.is_staff: form = AddQuizForm() teacher = Teacher.objects.get(username=request.user.username) tags = teacher.tag_set.all() edit = True return render(request, 'quiz/add_quiz_template.html', {'form': form, 'tags': tags, 'edit': edit}) else: return render(request, "quiz/get_teacher_template.html") def post(self, request, format=None): if request.user.is_staff: q = Quiz() q.title = request.data['title'] q.time_to_show = request.data['time_to_show'] q.time_to_end = request.data['time_to_end'] q.teacher = Teacher.objects.get(username=request.user.username) q.unique_id = get_random_string() q.save() return redirect('/accounts/profile/quiz') else: return redirect('/') class quiz(APIView): permission_classes = (permissions.IsAuthenticatedOrReadOnly, IsOwnerOrReadOnly) def get(self, request): print(request.user.username) teacher = Teacher.objects.get(username=request.user.username) tags = teacher.tag_set.all() return render(request, 'quiz/quiz_template.html', {'tags': tags}) def post(self, request): serializer = QuestionSerializer(data=request.data, many=True)# if the quiz contains many question if serializer.is_valid(): try: questions = serializer.data teacher = Teacher.objects.get(username=request.user.username) quiz = teacher.quiz_set.all() quiz = quiz[len(quiz)-1] i = 1 for question in questions: q = Question.objects.get(unique_id=question['unique_id']) q.text = question['text'] q.answer = question['answer'] q.choices = question['choices'] q.kind = question['kind'] q.save() quiz.questions.add(q) a = Analyse() a.quiz = quiz a.question_number = i a.save() i += 1 except Exception as e: print(e) return HttpResponse('quiz added') class question(APIView): permission_classes = (permissions.IsAuthenticatedOrReadOnly, IsOwnerOrReadOnly) def get(self, request): teacher = Teacher.objects.get(username=request.user.username) tag = teacher.tag_set.filter(text=request.GET['tag']) # print(request.GET['tag']) try: questions = Question.objects.filter(tag=tag) serializer = QuestionSerializer(questions, many=True) except Exception as e: print(e) return JSONResponse(serializer.data) def post(self, request): try: serializer = QuestionSerializer(data=request.data) if serializer.is_valid(): question = serializer.data q = Question() q.text = question['text'] q.answer = question['answer'] q.choices = question['choices'] q.kind = question['kind'] teacher = Teacher.objects.get(username=request.user.username) quiz = teacher.quiz_set.all()[0] q.quiz = quiz q.tag = Tag.objects.get(text=question['tag']) q.unique_id = get_random_string() q.save() else: print(serializer.errors) except Exception as e: print(e) return HttpResponse('done') def put(self, request): try: serializer = QuestionSerializer(data=request.data) if serializer.is_valid(): question = Question.objects.get(unique_id=serializer.data['unique_id']) question.text = serializer.data['text'] question.kind = serializer.data['kind'] question.answer = serializer.data['answer'] question.choices = serializer.data['choices'] question.save() else: print(serializer.errors) except Exception as e: print(e) return HttpResponse('done') class tag(APIView): permission_classes = (permissions.IsAuthenticatedOrReadOnly, IsOwnerOrReadOnly) def get(self, request): return HttpResponse('done') @csrf_exempt def post(self, request, format=None): print('post') print(request.data) tag = Tag() tag.text = request.data['text'] tag.teacher = Teacher.objects.get(username=request.user.username) tag.save() return HttpResponse('done') class GetQuiz(APIView): # @csrf_exempt def post(self, request): try: unique_id = request.data['unique_id'] quiz = Quiz.objects.get(unique_id=unique_id) questions = quiz.questions.all() serializer = QuestionSerializer(questions, many=True) return JSONResponse(serializer.data) except Exception as e: print(e) class SubmitQuiz(APIView): def post(self, request): u_id = request.data['unique_id'] try: quiz = Quiz.objects.get(unique_id=u_id) questions = quiz.questions.all() analyses = quiz.analyse_set.all() serializer = QuestionSerializer(data=request.data['questions'], many=True) numberOfQuestions = len(questions) * 3 score = 0 if serializer.is_valid(): answers = serializer.data i = 0 for question in answers: if question['kind'] == '1': alanyse = analyses[i] answer = questions[i].answer if question['answer'] == 0: alanyse.unanswered += 1 alanyse.save() i += 1 continue if question['answer'] == answer: alanyse.answered += 1 alanyse.save() score += 3 i += 1 if question['answer'] != answer: alanyse.wrong += 1 alanyse.save() score -= 1 i += 1 answer = Answer() answer.quiz = quiz answer.text = question['answer'] answer.student = Student.objects.get(username=request.user.username) answer.save() if question['kind'] == '2': answer = Answer() answer.quiz = quiz answer.text = question['answer'] answer.student = Student.objects.get(username=request.user.username) answer.save() result = score/numberOfQuestions * 100 r = Result() r.grade = result r.quiz = quiz r.student = Student.objects.get(username=request.user.username).first_name+' '+Student.objects.get(username=request.user.username).last_name r.username = Student.objects.get(username=request.user.username).username r.save() return HttpResponse(score/numberOfQuestions) except Exception as e: print(e) return HttpResponse(e) class JSONResponse(HttpResponse): """ An HttpResponse that renders its content into JSON. """ def __init__(self, data, **kwargs): content = JSONRenderer().render(data) kwargs['content_type'] = 'application/json' super(JSONResponse, self).__init__(content, **kwargs)
UTF-8
Python
false
false
8,887
py
45
views.py
17
0.544166
0.54169
0
231
37.471861
156
qualorm/adventofcode
16,157,666,987,974
d0692245bd779e906c8a540e8d8a084dfddaa251
561fec987d13956f97579136fb18af62dd05f96b
/2020/18/18_1.py
b1970f420a331d5b11b1eb03e7ac14cd4ff4ca61
[]
no_license
https://github.com/qualorm/adventofcode
a7f5052212b19017587bbf9180240e5425b8ee64
94b0dde342cd33400418a4ccd5258f620fe9d169
refs/heads/master
2023-04-22T07:34:28.816980
2021-12-14T12:16:48
2021-12-14T12:16:48
319,268,052
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def solve(eq): i = 0 nested = 0 if '(' in eq or ')' in eq: for i in range(len(eq)): if eq[i] == '(': nested += 1 if nested == 1: ind_left = i if eq[i] == ')': nested -= 1 if nested == 0: ind_right = i if ind_left == 0 and ind_right == len(eq)-1: new_eq = eq[ ind_left+1 : ind_right ] # print("SOLVING 1: ", new_eq) return solve(new_eq) elif ind_left == 0 and ind_right < len(eq)-1: new_eq = solve(eq[ ind_left+1 : ind_right ]) + eq[ind_right+1:] # print("SOLVING 2: ", new_eq) return solve(new_eq) elif ind_left > 0 and ind_right == len(eq)-1: new_eq = eq[:ind_left] + solve(eq[ ind_left+1 : ind_right ]) # print("SOLVING 3: ", new_eq) return solve(new_eq) else: new_eq = eq[:ind_left] + solve(eq[ ind_left+1 : ind_right ]) + eq[ind_right+1:] # print("SOLVING 4: ", new_eq) return solve(new_eq) else: for i in range(len(eq)): if eq[i] == '*': left_int = int(eq.split(' * ')[0]) if eq.count(' ') == 2: right_int = int(eq.split(' * ')[1]) return str(left_int*right_int) else: right_int = int(eq.split(' * ')[1].split(' ')[0]) new_eq = str(left_int*right_int) + eq[i+2+len(str(right_int)):] return solve(new_eq) if eq[i] == '+': left_int = int(eq.split(' + ')[0]) if eq.count(' ') == 2: right_int = int(eq.split(' + ')[1]) return str(left_int+right_int) else: right_int = int(eq.split(' + ')[1].split(' ')[0]) new_eq = str(left_int+right_int) + eq[i+2+len(str(right_int)):] return solve(new_eq) with open("day18.txt","r") as file: f = file.read().splitlines() ans = 0 for eq in f: # print("Equation: ", eq, "Answer: ", solve(eq)) int_ans = int(solve(eq)) ans += int_ans print("FINAL ANSWER: ", ans)
UTF-8
Python
false
false
2,493
py
89
18_1.py
88
0.380265
0.365423
0
65
37.369231
104
ImDaeseong/VocaKnow
6,786,048,362,472
703950ad661179548a2accf6247216d81500729d
781ea21caed5a6623af1d2cee91b8fe12eb84e3c
/convertExcel/readcsv/csv.py
e6becbc60e1a6217163e96bfbb2dede375d34249
[]
no_license
https://github.com/ImDaeseong/VocaKnow
72b6ff303e7b954856a246c1727030881a11383c
6231083a88cecb446fbc2793e1961b527a1c4a87
refs/heads/master
2023-03-16T15:12:55.860029
2021-03-19T09:27:11
2021-03-19T09:27:11
106,758,001
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import openpyxl if __name__ == '__main__': file = open('E:/kata.txt', 'w', encoding='utf8') xls = openpyxl.load_workbook("aa.xlsx") sheet = xls["Sheet1"] for row in sheet.rows: index = row[0].row # print(index) if index == 1: continue sPart1 = row[1].value sPart2 = row[2].value sPart3 = row[3].value sKorea = row[4].value sIndo = row[5].value sPron = row[6].value # print('index:{}|sPart2:{}:sPart3:{}:sKorea:{}:sIndo:{}:sPron:{}'.format(index - 1, sPart2, sPart3, sKorea, # sIndo, sPron)) file.write(str('{}|{}|{}|{}|{}|{}\n'.format(index - 1, sPart2, sPart3, sKorea, sIndo, sPron))) file.close()
UTF-8
Python
false
false
735
py
4
csv.py
1
0.515646
0.487075
0
28
25.25
116
kerneltravel/tinman
4,827,543,282,300
7a815bf5978960a1f628e719b0ceea74080cef9c
ffd896db3fb79a117db50dc6197d0290084e0e39
/tinman/handlers/redis_handlers.py
af4100745a31826485cf0d394b4eb4914bb82661
[ "BSD-3-Clause" ]
permissive
https://github.com/kerneltravel/tinman
52141885204b247b155e35830744b84445c28b47
2a7a59aabba340e98a938cc5ce39c547e196fd63
refs/heads/master
2021-01-16T20:05:40.538515
2013-09-25T02:20:22
2013-09-25T02:20:22
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
"""The RedisRequestHandler uses tornado-redis to support Redis. It will auto-establish a single redis connection when initializing the connection. """ import logging from tornado import web LOGGER = logging.getLogger(__name__) class RedisRequestHandler(web.RequestHandler): """This request handler will connect to Redis on initialize if the connection is not previously set. This handler uses the redis library for synchronous redis use. """ CONFIG_DB = 'db' REDIS = 'redis' REDIS_HOST = 'localhost' REDIS_PORT = 6379 REDIS_DB = 0 def _new_redis_client(self): """Create a new redis client and assign it to the application.attributes object for reuse later. """ if 'redis' not in globals(): import redis LOGGER.info('Creating new Redis instance') settings = self._redis_settings LOGGER.debug('Connecting to redis: %r', settings) client = redis.Redis(**settings) self.application.attributes.add(self.REDIS, client) @property def _redis_settings(self): """Return the Redis settings from configuration as a dict, defaulting to localhost:6379:0 if it's not set in configuration. The dict format is set to be passed as kwargs into the Client object. :rtype: dict """ settings = self.application.settings.get('redis', dict()) return {'host': settings.get('host', self.REDIS_HOST), 'port': settings.get('port', self.REDIS_PORT), self.CONFIG_DB: settings.get('db', self.REDIS_DB)} def prepare(self): """Prepare RedisRequestHandler requests, ensuring that there is a connected tornadoredis.Client object. """ super(RedisRequestHandler, self).prepare() if self.REDIS not in self.application.attributes: self._new_redis_client() @property def redis(self): """Return a handle to the active redis client. :rtype: tornadoredis.Redis """ if self.REDIS not in self.application.attributes: self._new_redis_client() return self.application.attributes.redis class AsynchronousRedisRequestHandler(RedisRequestHandler): """This request handler will connect to Redis on initialize if the connection is not previously set and uses the tornado-redis library for asynchronous use. """ CONFIG_DB = 'selected_db' def _new_redis_client(self): """Create a new redis client and assign it to the application.attributes object for reuse later. """ if 'tornadoredis' not in globals(): import tornadoredis LOGGER.info('Creating new Redis instance') settings = self._redis_settings LOGGER.debug('Connecting to redis: %r', settings) client = tornadoredis.Client(**settings) client.connect() self.application.attributes.add(self.REDIS, client)
UTF-8
Python
false
false
2,978
py
9
redis_handlers.py
8
0.650772
0.647414
0
91
31.725275
80
haveitjoewei/eventfinder
7,224,135,019,297
3a3d5374fc5939544801b1ea9993ab794bf292b9
fa1070295bc0ede61bc743fca96181135d56522c
/hello/templatetags/map_category.py
45e830f72f81d7f3de9ce3c7bea1ab5b3cd628d3
[]
no_license
https://github.com/haveitjoewei/eventfinder
da6aa1511af7385525c91faa2c133d09dba627cb
6ae5769d42f7ba28229fb255dd8b46d00f81bed1
refs/heads/master
2018-01-09T04:52:50.250292
2016-01-26T12:26:21
2016-01-26T12:26:21
49,937,334
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django import template register = template.Library() @register.filter def map_category(value): categories = { '101': 'Business & Professional', '102': 'Science & Technology', '103': 'Music', '104': 'Film, Media & Entertainment', '105': 'Performing & Visual Arts', '106': 'Fashion & Beauty', '107': 'Health & Wellness', '108': 'Sports & Fitness', '109': 'Travel & Outdoor', '110': 'Food & Drink', '111': 'Charity & Causes', '112': 'Government & Politics', '113': 'Community & Culture', '114': 'Religion & Spirituality', '115': 'Family & Education', '116': 'Seasonal & Holiday', '117': 'Home & Lifestyle', '118': 'Auto, Boat & Air', '119': 'Hobbies & Special Interest', '199': 'Other' } return categories[value]
UTF-8
Python
false
false
759
py
17
map_category.py
10
0.612648
0.533597
0
29
25.206897
39
XiDian-ChenMiao/python-master
7,567,732,416,904
6d4ed9d80f9921f000524233e7ad814968d6b567
9da6fdee6122604e4820b1e397c40eec6bfb02e9
/simple/config-parser.py
6b0df929f77d3c2fc4cd44546f2cc477791b5ebb
[]
no_license
https://github.com/XiDian-ChenMiao/python-master
54c76d1b0888388972fd9ab4ad3e780c786fe779
673993d4d197138e89c2952d2be64b95463b19e9
refs/heads/master
2021-01-01T15:37:23.283938
2020-07-26T04:01:54
2020-07-26T04:01:54
97,656,390
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# coding:utf-8 # Version: 0.1 # Author: DAQINZHIDI # License: Copyright(c) 2016 Miao.Chen # Summary: 测试Python的解析模块ConfigParser import configparser cp = configparser.ConfigParser() cp.read('config.ini', encoding='utf-8') sections = cp.sections() print('Sections:', sections) opts = cp.options('sec_a') print('Options in sec_a:', opts) kvs = cp.items('sec_a') print('Items in sec_a:', kvs) str_val = cp.get('sec_a', 'a_key1') int_val = cp.getint('sec_a', 'a_key2') print('Value for sec_a[a_key1]', str_val) print('Value for sec_a[a_key2]', int_val) cp.set("sec_b", "b_key3", "new-$r") cp.set("sec_b", "b_newkey", "new-value") cp.add_section('a_new_section') cp.set('a_new_section', 'new_key', 'new_value') cp.write(open("config.conf", "w"))
UTF-8
Python
false
false
761
py
121
config-parser.py
121
0.666667
0.649123
0
25
28.64
47
js-tutul/Jsblog
369,367,212,494
98ca2a5015a86ae0e452014de6646746f096ef2e
b0fdc04fab517802ca3277d19099c61211a609f5
/accounts/views.py
a00e91e9591d13fd50c753959484749aa846d742
[]
no_license
https://github.com/js-tutul/Jsblog
38aff00d9be652a9f83e30ff3058acaf5a04dbed
da001fd7eac1a60e1785669f96cf2dbf73212b33
refs/heads/master
2022-12-12T16:24:38.466319
2020-09-12T17:49:14
2020-09-12T17:49:14
275,648,059
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
import tempfile from django.utils.html import strip_tags import requests from django.contrib.auth import logout, authenticate, login from django.contrib.auth.models import User from django.contrib.sites.shortcuts import get_current_site from django.core import files from django.core.mail import EmailMessage from django.http import HttpResponse from django.shortcuts import render, redirect, get_object_or_404 from django.contrib import messages from accounts.models import RegularUser,OrganizationUser from mediablog.models import MediaBlog # Create your views here. from django.template.loader import render_to_string from django.utils.encoding import force_bytes, force_text from django.utils.http import urlsafe_base64_encode, urlsafe_base64_decode from io import BytesIO from accounts.tokens import account_activation_token def CreateR(user,city,phone,fb,photo,about): regular=RegularUser(user_r=user) regular.city=city regular.phone=phone regular.about_you=about regular.photo=photo regular.fb=fb regular.save() def CreateO(user,city,phone,web,address,purpose,photo,org_name): organization = OrganizationUser(user_o=user) organization.city=city organization.phone=phone organization.fb=web organization.address=address organization.purpose=purpose organization.photo=photo organization.o_name=org_name organization.save() def SIgnupView(request): return render(request,'user/signup.html') def LoginView(request): if request.user.is_authenticated: return redirect('Mainhome') else: if request.method == 'POST': username=request.POST['username'] password=request.POST['password'] print(username,password) user=authenticate(request,username=username,password=password) if user is not None: login(request,user) return redirect('Mainhome') else: messages.info(request,"Enter correct username and password") return redirect('login') else: return render(request, 'user/login.html') def Logout_view(request): logout(request) return redirect('login') def RegularView(request): if request.method=="POST": username=request.POST['username'] first_name=request.POST['first_name'] last_name=request.POST['last_name'] email=request.POST['email'] password=request.POST['password'] comfirm_password=request.POST['comfirm_password'] facebook=request.POST['facebook'] city=request.POST['city'] phone=request.POST['phone'] about_you=request.POST['about_you'] photo=request.FILES['photo'] print(username,email,first_name,last_name,password,comfirm_password,city,facebook,phone,about_you,photo) if password==comfirm_password: if len(password)<8: messages.info(request, "password must be 8 character and strong") return redirect("signup") elif User.objects.filter(username=username).exists(): messages.info(request, "user taken already") return redirect("signup") elif User.objects.filter(email=email).exists(): messages.info(request, "email already taken") return redirect("signup") else: user = User.objects.create_user(username=username, first_name=first_name, last_name=last_name, email=email, password=password) user.save() user.refresh_from_db() CreateR(get_object_or_404(User,username=username),city,phone,facebook,photo,about_you) current_site = get_current_site(request) mail_subject = 'Activate your account.' message = render_to_string('user/acc_active_email.html', { 'user': user, 'domain': current_site.domain, 'uid': urlsafe_base64_encode(force_bytes(user.pk)), 'token': account_activation_token.make_token(user), }) to_email = email email = EmailMessage( mail_subject, message, to=[to_email] ) email.send() return HttpResponse('<h1>Please confirm your email address to complete the registration and back to login</h1>') else: messages.info(request,"Password not matching") return redirect('signup') else: return redirect('signup') def OrganizationView(request): if request.method=="POST": email=request.POST['org_email'] password=request.POST['password'] org_name=request.POST['org_name'] comfirm_password=request.POST['comfirm_password'] website=request.POST['website'] city=request.POST['org_city'] phone=request.POST['org_phone'] address=request.POST['org_address'] purpose = request.POST['purpose'] photo=request.FILES['org_photo'] if password==comfirm_password: if len(password)<8: messages.info(request, "password must be 8 character and strong") return redirect("signup") elif User.objects.filter(email=email).exists(): messages.info(request, "email already taken") return redirect("signup") else: user = User.objects.create_user(username=email,email=email,password=password) user.save() user.refresh_from_db() CreateO(get_object_or_404(User,username=email),city,phone,website,address,purpose,photo,org_name) current_site = get_current_site(request) mail_subject = 'Activate your account.' message = render_to_string('user/acc_active_email.html', { 'user': user, 'domain': current_site.domain, 'uid': urlsafe_base64_encode(force_bytes(user.pk)), 'token': account_activation_token.make_token(user), }) to_email = email email = EmailMessage( mail_subject, message, to=[to_email] ) email.send() return HttpResponse('<h1>Please confirm your email address to complete the registration and back to login</h1>') else: messages.info(request,"Password not matching") return redirect('signup') else: return redirect('signup') def activate(request, uidb64, token): try: uid = force_text(urlsafe_base64_decode(uidb64)) user = User.objects.get(pk=uid) except(TypeError, ValueError, OverflowError, User.DoesNotExist): user = None if user is not None and account_activation_token.check_token(user, token): user.is_active = True user.save() login(request, user) # return redirect('home') return HttpResponse('<h2>Thank you for your email confirmation. Now you can login your account.</h2>') else: return HttpResponse('Activation link is invalid!') def Dashboard(request): if request.user.is_authenticated: return render(request,'admin/index.html') else: return redirect('Mainhome') def CreateMedia(user,title,link,des): video_id = link.split('v=')[+1] thumbnail_url = f"http://img.youtube.com/vi/{video_id}/sddefault.jpg" request = requests.get(thumbnail_url,stream=True) lf = tempfile.NamedTemporaryFile() for block in request.iter_content(1024*8): if not block: break lf.write(block) media = MediaBlog(author=user) media.title=title media.link=link media.description=des media.thumbnail.save("thumbnail.jpg",files.File(lf)) def PostMedia(request): if request.method=="POST": post_title = request.POST['title'] link = request.POST['link'] description = request.POST['editor'] print(post_title,link,description) CreateMedia(get_object_or_404(User,username=request.user),post_title,link,description) return redirect('postmedia') else: return render(request,'user/postmedia.html')
UTF-8
Python
false
false
8,435
py
30
views.py
14
0.620747
0.615768
0
215
38.237209
128
sangyu1996/PythonByte
12,704,513,303,922
9b9e1315cf373cde21ad08c85d9540ea9d564ade
2128bc02edfda53ee1d9a85521e6afc5ac2fde74
/advanced_train/multi_threaded_and_multi_process/version_1.py
7b038f540bbe420526833c74e24596b8146add44
[]
no_license
https://github.com/sangyu1996/PythonByte
9853d8b16c5040cee54451d04a36e97b6e4f3053
3c4024198f120954f0275e1a6236c90292897fff
refs/heads/master
2020-03-23T09:31:01.982063
2019-03-11T03:35:17
2019-03-11T03:35:17
141,392,484
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# coding=utf-8 # version 1 :下载.csv格式的文件并转换为.xml格式 import tushare as ts import csv from xml.etree.ElementTree import Element, ElementTree def download(sid, cfname): df = ts.get_hist_data(sid) df.to_csv(cfname) def csvToXml(cfname): with open(cfname, 'rb') as cf: reader = csv.reader(cf) headers = reader.next() root = Element('Data') for row in reader: eRow = Element('Row') root.append(eRow) for tag, text in zip(headers, row): e = Element(tag) e.text = text eRow.append(e) return ElementTree(root) if __name__ == '__main__': sid = '000875' cfname = sid + '.csv' xfname = sid + '.xml' download(sid, cfname) et = csvToXml(cfname) et.write(xfname)
UTF-8
Python
false
false
838
py
96
version_1.py
88
0.560345
0.550493
0
38
20.368421
54
fcherqui/Mind4stormwater
16,956,530,899,058
91e577d85fc0ff0c3b769a465fe2eb6667994b80
5e7dbdb33c25682bef058847fd8fd7ac6afbfd9c
/Pressure-sensor/config.py
c1d5359bed1b6f384b1507956e8216466e7346bd
[]
no_license
https://github.com/fcherqui/Mind4stormwater
0bac3ac11e3550ee4d6223e7c9db75ac4f73d72a
ad5ff727c1591657a0db3f5cc3aa3daa91cb2674
refs/heads/master
2022-11-01T12:14:04.444174
2022-10-31T14:33:52
2022-10-31T14:33:52
240,187,448
3
0
null
null
null
null
null
null
null
null
null
null
null
null
null
######################## # CONFIG FILE !!!! ######################## # PARAMETERS loraok= False # Send data through Lora ? sigfoxok=True # Send data through Sigfox ? needsleep= True # Enable deep sleep powersaving= True # Optimize the code for power saving nsensors=2 #number of probes, min=1, max=3 withRTC=False #True if there is a RTC clock sdmandatory=False #True if there is a SD card to save the data batcoeff=2.08 # Realvoltage=batcoeff * measurevoltage (was 1.98) sleeptime=2 #sleep time in minutes, default=10mn (must be an integer) # SIGFOX CONFIGURATION # ==> device needs to be registered on SIGFOX !!! # cf. sigfoxinit.py # LORAWAN create an ABP authentication params to secure data TTNregion="EU868" # "AU915" or "AS923" or "Special" (Special for the mono frequency choosen below) # YOU NEED TO CREATE AN APP AND A DEVICE (ABP) ON TTN FIRST: #for the ads1115multiproberj ttn app: dev_addr='26011E9C' nwk_swkey='7BB07A03D70812905BCC1C092FA84278' app_swkey='284C2EDC9FCD7F53C134AAC329D0BD3B' frequency = 868100000 #use for the "Special" Lora sf = 7 #spreading factor (integer between 7 and 12) dr = 5 #Data Rate # PINs configuration relay = 'P19' #P19 coonected to the nano timer relay done pin sclPin='P22' # RTC SCL PIN (or OLED SCL PIN) sdaPin='P23' # RTC SDA PIN (or OLED SCL PIN) # led colors OFF = 0x000000 WHITE=0xFFFFCC YELLOW = 0x7f7f00 ORANGE = 0xFF9900 RED = 0xff0000 PURPLE = 0x7f007f GREEN = 0x00ff00 BLUE = 0x0000ff
UTF-8
Python
false
false
1,491
py
49
config.py
18
0.705567
0.619048
0
44
31.886364
98
Harshit-Poddar90/hacktoberfest2K
9,861,244,955,368
ea255d0e7684852258b98492dc6261ac42079c61
9d460da8d8d81a7b79abeef2b06f729a49cfe268
/2k20/scripts2020/vokey-nick.py
52c5c1640b9a71cef9c0fa90eb32d54388a3e591
[]
no_license
https://github.com/Harshit-Poddar90/hacktoberfest2K
fc9ab524af2325ad278dff3c368aadae53fcec81
c67ba3c3b7150b20d5ae0fff42a19323f7f0289f
refs/heads/master
2023-08-14T12:03:41.894852
2021-10-01T19:34:57
2021-10-01T19:34:57
412,990,115
1
0
null
true
2021-10-03T05:58:44
2021-10-03T05:58:43
2021-10-01T19:35:00
2021-10-02T15:51:36
105
0
0
0
null
false
false
def hacktoberfest(): a = "hack" b = "tober" c = "fest" return (a+b+c) print(hacktoberfest())
UTF-8
Python
false
false
110
py
24
vokey-nick.py
21
0.536364
0.536364
0
7
14.714286
22
zmanaa/Lane-Detection
10,548,439,722,851
dd6470764ff0460ee361149b6bacd1100a9214c0
c4cec2815d27a7974564173cbc19db518250739f
/Utils/constants.py
29d7356ccc59f7f8619f214ed75b0273ffb1b237
[]
no_license
https://github.com/zmanaa/Lane-Detection
b28dd2ef8027a901a157367091ed10f62196f012
f4362463490cbd9499abcdeaa5d63a1d807a72ed
refs/heads/main
2023-08-10T19:13:15.611726
2021-10-06T21:08:15
2021-10-06T21:08:15
413,600,365
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np PIXELS = 2 PERC = np.pi/180 THRESHOLD = 100 LINEPIX = 40 LINEGAPS = 5 LINEWIDTH = 10
UTF-8
Python
false
false
128
py
5
constants.py
4
0.578125
0.484375
0
8
15
23
anthony-aylward/wasp_map
1,778,116,465,113
b3baeefa275bfe6bd2da25e9b2a35a08e16d8492
528ca20a0b137b2ad82a0217e52e9c68ac9d27ff
/wasp_map/download.py
558714f85003786ffe5a29c5fdb00e26937584eb
[ "MIT" ]
permissive
https://github.com/anthony-aylward/wasp_map
6de4df8a26d8903beb7cdec1c6accca5162b3470
eadf96c44bb81e416c43ce2e33b7fbb164772cce
refs/heads/master
2021-06-23T07:44:26.617311
2021-02-26T10:04:02
2021-02-26T10:04:02
194,727,772
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#=============================================================================== # download.py #=============================================================================== # Imports ====================================================================== import os import os.path import subprocess from argparse import ArgumentParser from git import Git from hashlib import sha256 from shutil import copyfileobj from tempfile import TemporaryDirectory from urllib.request import urlopen from wasp_map.env import ANACONDA_DIR, DIR # Constants ==================================================================== ANACONDA_URL = os.environ.get( 'WASP_MAP_ANACONDA_URL', 'https://repo.anaconda.com/archive/Anaconda3-2019.03-Linux-x86_64.sh' ) ANACONDA_HASH = os.environ.get( 'WASP_MAP_ANACONDA_HASH', '45c851b7497cc14d5ca060064394569f724b67d9b5f98a926ed49b834a6bb73a' ) CONDA_PATH = os.path.join(ANACONDA_DIR, 'bin', 'conda') WASP_GITHUB_REPO = 'https://github.com/bmvdgeijn/WASP.git' # Functions ==================================================================== def download_anaconda_install_script(anaconda_install_script_path): print( 'Downloading Anaconda3 install script to ' f'{anaconda_install_script_path}' ) with urlopen(ANACONDA_URL) as ( response ), open(anaconda_install_script_path, 'wb') as ( f ): copyfileobj(response, f) def check_hash(anaconda_install_script_path): print(f'checking hash of {anaconda_install_script_path}') with open(anaconda_install_script_path, 'rb') as f: if sha256(f.read()).hexdigest() != ANACONDA_HASH: raise RuntimeError(f'hash check failed for {ANACONDA_URL}') def install_anaconda(anaconda_install_script_path): input( 'installing Anaconda3. When prompted, specify the following ' f'install location:\n{ANACONDA_DIR}\npress ENTER to ' 'continue >>>' ) subprocess.run(('bash', anaconda_install_script_path)) def configure_anaconda(): print('configuring Anaconda3') subprocess.run((CONDA_PATH, 'config', '--add', 'channels', 'r')) subprocess.run((CONDA_PATH, 'config', '--add', 'channels', 'bioconda')) subprocess.run((CONDA_PATH, 'install', 'pysam')) def clone_wasp(): print( 'cloning the WASP github repo to ' f"{os.path.join(os.path.dirname(DIR), 'WASP')}" ) Git(os.path.dirname(DIR)).clone(WASP_GITHUB_REPO) def parse_arguments(): parser = ArgumentParser(description='download and install WASP') parser.add_argument( '--tmp-dir', metavar='<dir/for/temp/files>', help='directory to use for temporary files' ) return parser.parse_args() def main(): args = parse_arguments() if os.path.isdir(ANACONDA_DIR): use_existing_anaconda_dir = ( input( f'There is already a directory at {ANACONDA_DIR} - is this the ' 'anaconda you wish to use? ([y]/n) >>>' ).casefold() in {'', 'y', 'yes'} ) if not use_existing_anaconda_dir: print( 'Please change the value of environment variable ' 'WASP_MAP_ANACONDA_DIR or remove the existing directory at ' 'that location.' ) return elif os.path.exists(ANACONDA_DIR): raise RuntimeError( f'There is a non-directory file at {ANACONDA_DIR}. Please change ' 'the value of environment variable WASP_MAP_ANACONDA_DIR or ' 'remove the existing file at that location.' ) else: use_existing_anaconda_dir = False if os.path.isdir(DIR): use_existing_wasp_dir = ( input( f'There is already a directory at {DIR} - is this the ' 'WASP you wish to use? ([y]/n) >>>' ).casefold() in {'', 'y', 'yes'} ) if not use_existing_wasp_dir: print( 'Please change the value of environment variable WASP_MAP_DIR ' 'or remove the existing directory at that location.' ) return elif os.path.exists(DIR): raise RuntimeError( f'There is a non-directory file at {DIR} Please change ' 'the value of environment variable WASP_MAP_DIR or ' 'remove the existing file at that location.' ) else: use_existing_wasp_dir = False if not use_existing_anaconda_dir: with TemporaryDirectory(dir=args.tmp_dir) as temp_dir: anaconda_install_script_path = os.path.join( temp_dir, 'Anaconda3-2019.03-Linux-x86_64.sh' ) download_anaconda_install_script(anaconda_install_script_path) check_hash(anaconda_install_script_path) install_anaconda(anaconda_install_script_path) configure_anaconda() if not use_existing_wasp_dir: clone_wasp()
UTF-8
Python
false
false
4,989
py
8
download.py
7
0.569854
0.554821
0
151
32.039735
80
sthomen/zc
6,717,328,863,504
8d3ffd3cb2682161584439a594d8b377367e466a
7eb3bd3389b15f90fe4e8eb556ec566ff6db832b
/zc/dns/rr/a.py
f4898f696b7615458c86bd5195cac2541ab0f815
[]
no_license
https://github.com/sthomen/zc
d69ce685d0579dd8d0a5e938e04d40a2ca956774
7d26a2b4d073fa8dedf15fb5492ff706ab095c92
refs/heads/master
2023-06-03T22:38:31.047734
2020-11-14T20:08:03
2020-11-14T20:08:03
377,566,555
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from struct import unpack from .rdata import RData from ..util import sub from .rrplugin import RRPlugin @RRPlugin.register(type=1) class A(RData): def decode(self): self.raw = sub(self.raw, self.offset, 4) self.address = [ int(v) for v in unpack('!BBBB', self.raw) ] return self def encode(self): self.raw = pack('!BBBB', *self.address)
UTF-8
Python
false
false
351
py
38
a.py
36
0.698006
0.692308
0
15
22.4
62
hammal/PythonADC
11,373,073,447,266
0166034cf389efdd527b004bf21b930a73cbf3ab
fa72108bf319e00e40b3cd05b3213bdfbb5dcb51
/Experiments/s3scripts/download_from_bucket.py
596310bdafb4a0627f9ab50a0c37632b855f38e5
[]
no_license
https://github.com/hammal/PythonADC
b51faad98926afb63711570a107412b43be0e412
1f9be8298bf2992196ede7e01d7c3287048bc4a3
refs/heads/master
2023-03-26T17:01:45.354175
2021-03-21T17:09:54
2021-03-21T17:09:54
335,706,884
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import boto3 import uuid import argparse from s3utils import downloadFromS3 BUCKET_NAME = 'paralleladcexperiments5b70cd4e-74d3-4496-96fa-f4025220d48c' def main(file_name, destination): s3_resource = boto3.resource('s3') downloadFromS3(s3_resource, BUCKET_NAME, file_name, destination) if __name__ == "__main__": arg_parser = argparse.ArgumentParser() arg_parser.add_argument('-f', '--file_name', type=str) arg_parser.add_argument('-d', '--destination', type=str) args = vars(arg_parser.parse_args()) main(**args)
UTF-8
Python
false
false
551
py
58
download_from_bucket.py
52
0.696915
0.642468
0
21
25.285714
74
zconn/PythonCert220Assign
8,675,833,942,408
ac98c4e5e25a8ae058e256bb7efad9398a08de8c
0c72282d601ccf840dd4e41b675c0675de7bc916
/students/HABTAMU/lesson03/assignment/basic_operations.py
0abbf2d973b7ae3e01d0f8a6fcab80841989899a
[]
no_license
https://github.com/zconn/PythonCert220Assign
c7fedd9ffae4f9e74e5e4dfc59bc6c511c7900ab
99271cd60485bd2e54f8d133c9057a2ccd6c91c2
refs/heads/master
2020-04-15T14:42:08.765699
2019-03-14T09:13:36
2019-03-14T09:13:36
164,763,504
2
0
null
true
2019-01-09T01:34:40
2019-01-09T01:34:40
2019-01-08T20:21:44
2019-01-08T20:21:43
788
0
0
0
null
false
null
""" Learning persistence with Peewee and sqlite delete the database to start over (but running this program does not require it) Person: 1. insert records 2. display all records 3. show transactions 4. show error checking 5. show logging (to explain what's going on) """ from customers_model import Customer as cls_Customer import logging from peewee import SqliteDatabase logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) database = SqliteDatabase('Customer.db') CUSTOMER_ID = 0 FIRST_NAME = 1 LAST_NAME = 2 HOME_ADDRESS = 3 PHONE_NUMBER = 4 EMAIL_ADDRESS = 5 STATUS = 6 CREDIT_LIMIT = 7 # def add_customer(customer_id, first_name, last_name, home_address, phone_number, email_address, status, credit_limit): # """ # add customer to database # :type credit_limit: object # customer_id, first_name, last_name, home_address, phone_number, email_address, status, credit_limit # """ # # customers = [ # # # # ('123', 'Andrew', 'John','123th 32nd NE,SEA, 98101, WA', '123-131-3331','andrew_john@uw.edi', 'True', '3,320.00'), # # ('234', 'And', 'Joe', '321th 2nd NE, SEA, 98101, WA', '300-131-3331', 'and@uw.edi', 'True', '2,220.00'), # # ('345', 'Joe', 'La', '12th 2nd NE, SEA, 98101, WA', '434-131-3331', 'joe@uw.edi', 'True', '20,220.00') # (customer_id, first_name, last_name, home_address, phone_number, email_address, status, credit_limit) # ] # # logger.info('Creating customer records: iterate through the list of tuples') # logger.info('Prepare to explain any errors with exceptions') # logger.info('and the transaction tells the database to rollback on error') # # try: # database.connect() # database.execute_sql('PRAGMA foreign_keys = ON;') # for customer in customers: # with database.transaction(): # new_customer = cls_Customer.create( # customer_id = customer[CUSTOMER_ID], # first_name = customer[FIRST_NAME], # last_name = customer[LAST_NAME], # home_address = customer[HOME_ADDRESS], # phone_number = customer[PHONE_NUMBER], # email_address = customer[EMAIL_ADDRESS], # status = customer[STATUS], # credit_limit = customer[CREDIT_LIMIT] # ) # new_customer.save() # logger.info('Database add successful') # # logger.info('Print the Customer records we just added ...') # for added_customer in cls_Customer: # logger.info(f'customer whose id {added_customer.customer_id} known to be with his first name ' +\ # f'{added_customer.first_name} lives in {added_customer.home_address} just added') # except Exception as e: # logger.info(f'Error creating = {customer[FIRST_NAME]}') # logger.info(e) # logger.info('see how the database protects our data') # # finally: # logger.info('database closes') # database.close() # def search_customer(customer_id): # """ # This function will return a dictionary object with name, lastname, # email address and phone number of a customer # or an empty dictionary object if no customer was found. # :param customer_id: # :return: dictionary object with name, lastname, email address and phone number of a customer # """ # # try: # database.connect() # database.execute_sql('PRAGMA foreign_keys = ON;') # # a_customer = cls_Customer.get(cls_Customer.customer_id == '234') # with database.transaction(): # for customer in cls_Customer.select().where(cls_Customer.customer_id == '234'): # logger.info(f' Here is the search item returned with dict below \n ' +\ # f'\n FIRST_NAME: {a_customer.first_name} ' +\ # f'\n LAST_NAME: {a_customer.last_name}, ' +\ # f'\n EMAIL_ADDRESS: {a_customer.email_address} ' +\ # f'\n PHONE_NUMBER: {a_customer.phone_number}') # except Exception as e: # logger.info(f'Error finding = {customer[FIRST_NAME]}') # logger.info(e) # logger.info('see how the database protects our data') # # finally: # logger.info('database closes') # database.close() # # def delete_customer(customer_id): # """ # This function will delete a customer from the sqlite3 database. # :param customer_id: # """ # # try: # with database.transaction(): # a_customer = cls_Customer.get(cls_Customer.customer_id == '123') # logger.info(f'Trying to delete as customer with customer id {a_customer.customer_id} and his first name was {a_customer.first_name}') # a_customer.delete_instance() # # except Exception as e: # logger.info('Delete failed because Andrew has Jobs') # logger.info(f'Delete failed: {a_customer.first_name}') # logger.info(e) # finally: # logger.info('database closes') # database.close() # # def update_customer_credit(customer_id, credit_limit): # """ # This function will search an existing customer by customer_id and update their credit limit or # raise a ValueError exception if the customer does not exist. # # :param customer_id: # :param credit_limit: # :return: # """ # try: # database.connect() # database.execute_sql('PRAGMA foreign_keys = ON;') # # a_customer = cls_Customer.get(cls_Customer.customer_id == '345') # a_customer = cls_Customer.get(cls_Customer.customer_id == customer_id) # with database.transaction(): # # for customer in cls_Customer.select().where(cls_Customer.customer_id == '345'): # for customer in cls_Customer.select().where(cls_Customer.customer_id == a_customer): # logger.info(f' customer with id {customer.customer_id} have a credit limit: {customer.credit_limit}') # # if customer.customer_id == '345': # logger.info('Update the credit limit here') # customer.credit_limit = credit_limit # customer.save() # # else: # # logger.info(f'Not giving a credit limit to {customer.customer_id}') # # logger.info(f'And here is where we prove it by finding current credit limit as {a_customer.credit_limit }') # # a_customer = cls_Customer.get(a_customer.customer_id == '345') # logger.info(f'{customer.customer_id} now has a credit limit of {customer.credit_limit}') # # except Exception as e: # logger.info('update failed because ....') # logger.info(f'update failed: {a_customer.credit_limit}') # logger.info(e) # finally: # logger.info('database closes') # database.close() def list_active_customers(): """ :return: This function will return an integer with the number of customers whose status is currently active. """ try: database.connect() database.execute_sql('PRAGMA foreign_keys = ON;') with database.transaction(): for customer in cls_Customer.select().where(cls_Customer.status == 1): logger.info(f'customers whose first name is {customer.first_name} current status is active') except Exception as e: logger.info('there could be no active ') logger.info(e) finally: logger.info('database closes') database.close() if __name__ == '__main__': # add_customer('567', 'Simon', 'Derike', '3rd 2nd NE,SEA, 98111, WA', '765-131-3331', 'Simon@uw.edi', False, 5320.00) # search_customer(234) # delete_customer(123) # update_customer_credit(345, 7213.00) list_active_customers()
UTF-8
Python
false
false
8,044
py
375
basic_operations.py
326
0.594107
0.573968
0
198
39.616162
147
bmeurer/emscripten
111,669,193,284
a51ce333cce958a5c8d37b745f201843bf15a3e5
b2766f8cf250120b341a6150303d97033139663c
/site/source/api_items.py
01766673931b8f08715961656bbfe15f2d2e719e
[ "NCSA", "MIT" ]
permissive
https://github.com/bmeurer/emscripten
dbca4d0f1d0db1ea30b1eece7a4a4b9eec473f68
59a416cb3f72d746678fc44a4d2626eb6be98151
refs/heads/master
2023-02-15T03:31:17.464894
2020-07-09T17:40:24
2020-07-09T17:40:24
265,643,199
1
0
NOASSERTION
true
2020-05-20T17:47:05
2020-05-20T17:47:04
2020-05-20T17:01:14
2020-05-20T17:34:26
208,961
0
0
0
null
false
false
# Auto-generated file (see get_api_items.py) def get_mapped_items(): mapped_wiki_inline_code = dict() mapped_wiki_inline_code['*emscripten_get_preloaded_image_data'] = ':c:func:`*emscripten_get_preloaded_image_data`' mapped_wiki_inline_code['*emscripten_get_preloaded_image_data()'] = ':c:func:`*emscripten_get_preloaded_image_data`' mapped_wiki_inline_code['*emscripten_get_preloaded_image_data_from_FILE'] = ':c:func:`*emscripten_get_preloaded_image_data_from_FILE`' mapped_wiki_inline_code['*emscripten_get_preloaded_image_data_from_FILE()'] = ':c:func:`*emscripten_get_preloaded_image_data_from_FILE`' mapped_wiki_inline_code['*emscripten_run_script_string'] = ':c:func:`*emscripten_run_script_string`' mapped_wiki_inline_code['*emscripten_run_script_string()'] = ':c:func:`*emscripten_run_script_string`' mapped_wiki_inline_code[':'] = ':cpp:class:`:`' mapped_wiki_inline_code['AsciiToString'] = ':js:func:`AsciiToString`' mapped_wiki_inline_code['AsciiToString()'] = ':js:func:`AsciiToString`' mapped_wiki_inline_code['DOM_DELTA_LINE'] = ':c:macro:`DOM_DELTA_LINE`' mapped_wiki_inline_code['DOM_DELTA_PAGE'] = ':c:macro:`DOM_DELTA_PAGE`' mapped_wiki_inline_code['DOM_DELTA_PIXEL'] = ':c:macro:`DOM_DELTA_PIXEL`' mapped_wiki_inline_code['DOM_KEY_LOCATION'] = ':c:macro:`DOM_KEY_LOCATION`' mapped_wiki_inline_code['EMSCRIPTEN_BINDINGS'] = ':cpp:func:`EMSCRIPTEN_BINDINGS`' mapped_wiki_inline_code['EMSCRIPTEN_BINDINGS()'] = ':cpp:func:`EMSCRIPTEN_BINDINGS`' mapped_wiki_inline_code['EMSCRIPTEN_EVENT_BATTERYCHARGINGCHANGE'] = ':c:macro:`EMSCRIPTEN_EVENT_BATTERYCHARGINGCHANGE`' mapped_wiki_inline_code['EMSCRIPTEN_EVENT_BEFOREUNLOAD'] = ':c:macro:`EMSCRIPTEN_EVENT_BEFOREUNLOAD`' mapped_wiki_inline_code['EMSCRIPTEN_EVENT_BLUR'] = ':c:macro:`EMSCRIPTEN_EVENT_BLUR`' mapped_wiki_inline_code['EMSCRIPTEN_EVENT_CLICK'] = ':c:macro:`EMSCRIPTEN_EVENT_CLICK`' mapped_wiki_inline_code['EMSCRIPTEN_EVENT_DEVICEMOTION'] = ':c:macro:`EMSCRIPTEN_EVENT_DEVICEMOTION`' mapped_wiki_inline_code['EMSCRIPTEN_EVENT_DEVICEORIENTATION'] = ':c:macro:`EMSCRIPTEN_EVENT_DEVICEORIENTATION`' mapped_wiki_inline_code['EMSCRIPTEN_EVENT_FULLSCREENCHANGE'] = ':c:macro:`EMSCRIPTEN_EVENT_FULLSCREENCHANGE`' mapped_wiki_inline_code['EMSCRIPTEN_EVENT_GAMEPADCONNECTED'] = ':c:macro:`EMSCRIPTEN_EVENT_GAMEPADCONNECTED`' mapped_wiki_inline_code['EMSCRIPTEN_EVENT_KEYPRESS'] = ':c:macro:`EMSCRIPTEN_EVENT_KEYPRESS`' mapped_wiki_inline_code['EMSCRIPTEN_EVENT_ORIENTATIONCHANGE'] = ':c:macro:`EMSCRIPTEN_EVENT_ORIENTATIONCHANGE`' mapped_wiki_inline_code['EMSCRIPTEN_EVENT_POINTERLOCKCHANGE'] = ':c:macro:`EMSCRIPTEN_EVENT_POINTERLOCKCHANGE`' mapped_wiki_inline_code['EMSCRIPTEN_EVENT_POINTERLOCKERROR'] = ':c:macro:`EMSCRIPTEN_EVENT_POINTERLOCKERROR`' mapped_wiki_inline_code['EMSCRIPTEN_EVENT_RESIZE'] = ':c:macro:`EMSCRIPTEN_EVENT_RESIZE`' mapped_wiki_inline_code['EMSCRIPTEN_EVENT_TOUCHSTART'] = ':c:macro:`EMSCRIPTEN_EVENT_TOUCHSTART`' mapped_wiki_inline_code['EMSCRIPTEN_EVENT_VISIBILITYCHANGE'] = ':c:macro:`EMSCRIPTEN_EVENT_VISIBILITYCHANGE`' mapped_wiki_inline_code['EMSCRIPTEN_EVENT_WEBGLCONTEXTLOST'] = ':c:macro:`EMSCRIPTEN_EVENT_WEBGLCONTEXTLOST`' mapped_wiki_inline_code['EMSCRIPTEN_EVENT_WHEEL'] = ':c:macro:`EMSCRIPTEN_EVENT_WHEEL`' mapped_wiki_inline_code['EMSCRIPTEN_FULLSCREEN_CANVAS_SCALE'] = ':c:macro:`EMSCRIPTEN_FULLSCREEN_CANVAS_SCALE`' mapped_wiki_inline_code['EMSCRIPTEN_FULLSCREEN_CANVAS_SCALE_HIDEF'] = ':c:macro:`EMSCRIPTEN_FULLSCREEN_CANVAS_SCALE_HIDEF`' mapped_wiki_inline_code['EMSCRIPTEN_FULLSCREEN_CANVAS_SCALE_NONE'] = ':c:macro:`EMSCRIPTEN_FULLSCREEN_CANVAS_SCALE_NONE`' mapped_wiki_inline_code['EMSCRIPTEN_FULLSCREEN_CANVAS_SCALE_STDDEF'] = ':c:macro:`EMSCRIPTEN_FULLSCREEN_CANVAS_SCALE_STDDEF`' mapped_wiki_inline_code['EMSCRIPTEN_FULLSCREEN_FILTERING'] = ':c:macro:`EMSCRIPTEN_FULLSCREEN_FILTERING`' mapped_wiki_inline_code['EMSCRIPTEN_FULLSCREEN_FILTERING_BILINEAR'] = ':c:macro:`EMSCRIPTEN_FULLSCREEN_FILTERING_BILINEAR`' mapped_wiki_inline_code['EMSCRIPTEN_FULLSCREEN_FILTERING_DEFAULT'] = ':c:macro:`EMSCRIPTEN_FULLSCREEN_FILTERING_DEFAULT`' mapped_wiki_inline_code['EMSCRIPTEN_FULLSCREEN_FILTERING_NEAREST'] = ':c:macro:`EMSCRIPTEN_FULLSCREEN_FILTERING_NEAREST`' mapped_wiki_inline_code['EMSCRIPTEN_FULLSCREEN_SCALE'] = ':c:macro:`EMSCRIPTEN_FULLSCREEN_SCALE`' mapped_wiki_inline_code['EMSCRIPTEN_FULLSCREEN_SCALE_ASPECT'] = ':c:macro:`EMSCRIPTEN_FULLSCREEN_SCALE_ASPECT`' mapped_wiki_inline_code['EMSCRIPTEN_FULLSCREEN_SCALE_DEFAULT'] = ':c:macro:`EMSCRIPTEN_FULLSCREEN_SCALE_DEFAULT`' mapped_wiki_inline_code['EMSCRIPTEN_FULLSCREEN_SCALE_STRETCH'] = ':c:macro:`EMSCRIPTEN_FULLSCREEN_SCALE_STRETCH`' mapped_wiki_inline_code['EMSCRIPTEN_KEEPALIVE'] = ':c:macro:`EMSCRIPTEN_KEEPALIVE`' mapped_wiki_inline_code['EMSCRIPTEN_ORIENTATION_LANDSCAPE_PRIMARY'] = ':c:macro:`EMSCRIPTEN_ORIENTATION_LANDSCAPE_PRIMARY`' mapped_wiki_inline_code['EMSCRIPTEN_ORIENTATION_LANDSCAPE_SECONDARY'] = ':c:macro:`EMSCRIPTEN_ORIENTATION_LANDSCAPE_SECONDARY`' mapped_wiki_inline_code['EMSCRIPTEN_ORIENTATION_PORTRAIT_PRIMARY'] = ':c:macro:`EMSCRIPTEN_ORIENTATION_PORTRAIT_PRIMARY`' mapped_wiki_inline_code['EMSCRIPTEN_ORIENTATION_PORTRAIT_SECONDARY'] = ':c:macro:`EMSCRIPTEN_ORIENTATION_PORTRAIT_SECONDARY`' mapped_wiki_inline_code['EMSCRIPTEN_RESULT'] = ':c:macro:`EMSCRIPTEN_RESULT`' mapped_wiki_inline_code['EMSCRIPTEN_VISIBILITY_HIDDEN'] = ':c:macro:`EMSCRIPTEN_VISIBILITY_HIDDEN`' mapped_wiki_inline_code['EMSCRIPTEN_VISIBILITY_PRERENDER'] = ':c:macro:`EMSCRIPTEN_VISIBILITY_PRERENDER`' mapped_wiki_inline_code['EMSCRIPTEN_VISIBILITY_UNLOADED'] = ':c:macro:`EMSCRIPTEN_VISIBILITY_UNLOADED`' mapped_wiki_inline_code['EMSCRIPTEN_VISIBILITY_VISIBLE'] = ':c:macro:`EMSCRIPTEN_VISIBILITY_VISIBLE`' mapped_wiki_inline_code['EMSCRIPTEN_WEBGL_CONTEXT_HANDLE'] = ':c:type:`EMSCRIPTEN_WEBGL_CONTEXT_HANDLE`' mapped_wiki_inline_code['EMSCRIPTEN_WRAPPER'] = ':cpp:func:`EMSCRIPTEN_WRAPPER`' mapped_wiki_inline_code['EMSCRIPTEN_WRAPPER()'] = ':cpp:func:`EMSCRIPTEN_WRAPPER`' mapped_wiki_inline_code['EM_ASM'] = ':c:macro:`EM_ASM`' mapped_wiki_inline_code['EM_ASM_INT'] = ':c:macro:`EM_ASM_INT`' mapped_wiki_inline_code['EM_BOOL'] = ':c:macro:`EM_BOOL`' mapped_wiki_inline_code['EM_JS'] = ':c:macro:`EM_JS`' mapped_wiki_inline_code['EM_LOG_CONSOLE'] = ':c:macro:`EM_LOG_CONSOLE`' mapped_wiki_inline_code['EM_LOG_C_STACK'] = ':c:macro:`EM_LOG_C_STACK`' mapped_wiki_inline_code['EM_LOG_DEMANGLE'] = ':c:macro:`EM_LOG_DEMANGLE`' mapped_wiki_inline_code['EM_LOG_ERROR'] = ':c:macro:`EM_LOG_ERROR`' mapped_wiki_inline_code['EM_LOG_FUNC_PARAMS'] = ':c:macro:`EM_LOG_FUNC_PARAMS`' mapped_wiki_inline_code['EM_LOG_JS_STACK'] = ':c:macro:`EM_LOG_JS_STACK`' mapped_wiki_inline_code['EM_LOG_NO_PATHS'] = ':c:macro:`EM_LOG_NO_PATHS`' mapped_wiki_inline_code['EM_LOG_WARN'] = ':c:macro:`EM_LOG_WARN`' mapped_wiki_inline_code['EM_LOG_INFO'] = ':c:macro:`EM_LOG_INFO`' mapped_wiki_inline_code['EM_LOG_DEBUG'] = ':c:macro:`EM_LOG_DEBUG`' mapped_wiki_inline_code['EM_UTF8'] = ':c:macro:`EM_UTF8`' mapped_wiki_inline_code['EmscriptenBatteryEvent'] = ':c:type:`EmscriptenBatteryEvent`' mapped_wiki_inline_code['EmscriptenDeviceMotionEvent'] = ':c:type:`EmscriptenDeviceMotionEvent`' mapped_wiki_inline_code['EmscriptenDeviceOrientationEvent'] = ':c:type:`EmscriptenDeviceOrientationEvent`' mapped_wiki_inline_code['EmscriptenFocusEvent'] = ':c:type:`EmscriptenFocusEvent`' mapped_wiki_inline_code['EmscriptenFullscreenChangeEvent'] = ':c:type:`EmscriptenFullscreenChangeEvent`' mapped_wiki_inline_code['EmscriptenFullscreenStrategy'] = ':c:type:`EmscriptenFullscreenStrategy`' mapped_wiki_inline_code['EmscriptenGamepadEvent'] = ':c:type:`EmscriptenGamepadEvent`' mapped_wiki_inline_code['EmscriptenKeyboardEvent'] = ':c:type:`EmscriptenKeyboardEvent`' mapped_wiki_inline_code['EmscriptenMouseEvent'] = ':c:type:`EmscriptenMouseEvent`' mapped_wiki_inline_code['EmscriptenOrientationChangeEvent'] = ':c:type:`EmscriptenOrientationChangeEvent`' mapped_wiki_inline_code['EmscriptenPointerlockChangeEvent'] = ':c:type:`EmscriptenPointerlockChangeEvent`' mapped_wiki_inline_code['EmscriptenTouchEvent'] = ':c:type:`EmscriptenTouchEvent`' mapped_wiki_inline_code['EmscriptenTouchPoint'] = ':c:type:`EmscriptenTouchPoint`' mapped_wiki_inline_code['EmscriptenUiEvent'] = ':c:type:`EmscriptenUiEvent`' mapped_wiki_inline_code['EmscriptenVisibilityChangeEvent'] = ':c:type:`EmscriptenVisibilityChangeEvent`' mapped_wiki_inline_code['EmscriptenWebGLContextAttributes'] = ':c:type:`EmscriptenWebGLContextAttributes`' mapped_wiki_inline_code['EmscriptenWheelEvent'] = ':c:type:`EmscriptenWheelEvent`' mapped_wiki_inline_code['FS.chmod'] = ':js:func:`FS.chmod`' mapped_wiki_inline_code['FS.chmod()'] = ':js:func:`FS.chmod`' mapped_wiki_inline_code['FS.chown'] = ':js:func:`FS.chown`' mapped_wiki_inline_code['FS.chown()'] = ':js:func:`FS.chown`' mapped_wiki_inline_code['FS.close'] = ':js:func:`FS.close`' mapped_wiki_inline_code['FS.close()'] = ':js:func:`FS.close`' mapped_wiki_inline_code['FS.createLazyFile'] = ':js:func:`FS.createLazyFile`' mapped_wiki_inline_code['FS.createLazyFile()'] = ':js:func:`FS.createLazyFile`' mapped_wiki_inline_code['FS.createPreloadedFile'] = ':js:func:`FS.createPreloadedFile`' mapped_wiki_inline_code['FS.createPreloadedFile()'] = ':js:func:`FS.createPreloadedFile`' mapped_wiki_inline_code['FS.cwd'] = ':js:func:`FS.cwd`' mapped_wiki_inline_code['FS.cwd()'] = ':js:func:`FS.cwd`' mapped_wiki_inline_code['FS.fchmod'] = ':js:func:`FS.fchmod`' mapped_wiki_inline_code['FS.fchmod()'] = ':js:func:`FS.fchmod`' mapped_wiki_inline_code['FS.fchown'] = ':js:func:`FS.fchown`' mapped_wiki_inline_code['FS.fchown()'] = ':js:func:`FS.fchown`' mapped_wiki_inline_code['FS.ftruncate'] = ':js:func:`FS.ftruncate`' mapped_wiki_inline_code['FS.ftruncate()'] = ':js:func:`FS.ftruncate`' mapped_wiki_inline_code['FS.getMode'] = ':js:func:`FS.getMode`' mapped_wiki_inline_code['FS.getMode()'] = ':js:func:`FS.getMode`' mapped_wiki_inline_code['FS.getPath'] = ':js:func:`FS.getPath`' mapped_wiki_inline_code['FS.getPath()'] = ':js:func:`FS.getPath`' mapped_wiki_inline_code['FS.handleFSError'] = ':js:func:`FS.handleFSError`' mapped_wiki_inline_code['FS.handleFSError()'] = ':js:func:`FS.handleFSError`' mapped_wiki_inline_code['FS.init'] = ':js:func:`FS.init`' mapped_wiki_inline_code['FS.init()'] = ':js:func:`FS.init`' mapped_wiki_inline_code['FS.isBlkdev'] = ':js:func:`FS.isBlkdev`' mapped_wiki_inline_code['FS.isBlkdev()'] = ':js:func:`FS.isBlkdev`' mapped_wiki_inline_code['FS.isChrdev'] = ':js:func:`FS.isChrdev`' mapped_wiki_inline_code['FS.isChrdev()'] = ':js:func:`FS.isChrdev`' mapped_wiki_inline_code['FS.isDir'] = ':js:func:`FS.isDir`' mapped_wiki_inline_code['FS.isDir()'] = ':js:func:`FS.isDir`' mapped_wiki_inline_code['FS.isFile'] = ':js:func:`FS.isFile`' mapped_wiki_inline_code['FS.isFile()'] = ':js:func:`FS.isFile`' mapped_wiki_inline_code['FS.isLink'] = ':js:func:`FS.isLink`' mapped_wiki_inline_code['FS.isLink()'] = ':js:func:`FS.isLink`' mapped_wiki_inline_code['FS.isSocket'] = ':js:func:`FS.isSocket`' mapped_wiki_inline_code['FS.isSocket()'] = ':js:func:`FS.isSocket`' mapped_wiki_inline_code['FS.lchmod'] = ':js:func:`FS.lchmod`' mapped_wiki_inline_code['FS.lchmod()'] = ':js:func:`FS.lchmod`' mapped_wiki_inline_code['FS.lchown'] = ':js:func:`FS.lchown`' mapped_wiki_inline_code['FS.lchown()'] = ':js:func:`FS.lchown`' mapped_wiki_inline_code['FS.llseek'] = ':js:func:`FS.llseek`' mapped_wiki_inline_code['FS.llseek()'] = ':js:func:`FS.llseek`' mapped_wiki_inline_code['FS.lookupPath'] = ':js:func:`FS.lookupPath`' mapped_wiki_inline_code['FS.lookupPath()'] = ':js:func:`FS.lookupPath`' mapped_wiki_inline_code['FS.lstat'] = ':js:func:`FS.lstat`' mapped_wiki_inline_code['FS.lstat()'] = ':js:func:`FS.lstat`' mapped_wiki_inline_code['FS.makedev'] = ':js:func:`FS.makedev`' mapped_wiki_inline_code['FS.makedev()'] = ':js:func:`FS.makedev`' mapped_wiki_inline_code['FS.mkdev'] = ':js:func:`FS.mkdev`' mapped_wiki_inline_code['FS.mkdev()'] = ':js:func:`FS.mkdev`' mapped_wiki_inline_code['FS.mkdir'] = ':js:func:`FS.mkdir`' mapped_wiki_inline_code['FS.mkdir()'] = ':js:func:`FS.mkdir`' mapped_wiki_inline_code['FS.mount'] = ':js:func:`FS.mount`' mapped_wiki_inline_code['FS.mount()'] = ':js:func:`FS.mount`' mapped_wiki_inline_code['FS.open'] = ':js:func:`FS.open`' mapped_wiki_inline_code['FS.open()'] = ':js:func:`FS.open`' mapped_wiki_inline_code['FS.read'] = ':js:func:`FS.read`' mapped_wiki_inline_code['FS.read()'] = ':js:func:`FS.read`' mapped_wiki_inline_code['FS.readFile'] = ':js:func:`FS.readFile`' mapped_wiki_inline_code['FS.readFile()'] = ':js:func:`FS.readFile`' mapped_wiki_inline_code['FS.readlink'] = ':js:func:`FS.readlink`' mapped_wiki_inline_code['FS.readlink()'] = ':js:func:`FS.readlink`' mapped_wiki_inline_code['FS.registerDevice'] = ':js:func:`FS.registerDevice`' mapped_wiki_inline_code['FS.registerDevice()'] = ':js:func:`FS.registerDevice`' mapped_wiki_inline_code['FS.rename'] = ':js:func:`FS.rename`' mapped_wiki_inline_code['FS.rename()'] = ':js:func:`FS.rename`' mapped_wiki_inline_code['FS.rmdir'] = ':js:func:`FS.rmdir`' mapped_wiki_inline_code['FS.rmdir()'] = ':js:func:`FS.rmdir`' mapped_wiki_inline_code['FS.stat'] = ':js:func:`FS.stat`' mapped_wiki_inline_code['FS.stat()'] = ':js:func:`FS.stat`' mapped_wiki_inline_code['FS.symlink'] = ':js:func:`FS.symlink`' mapped_wiki_inline_code['FS.symlink()'] = ':js:func:`FS.symlink`' mapped_wiki_inline_code['FS.syncfs'] = ':js:func:`FS.syncfs`' mapped_wiki_inline_code['FS.syncfs()'] = ':js:func:`FS.syncfs`' mapped_wiki_inline_code['FS.truncate'] = ':js:func:`FS.truncate`' mapped_wiki_inline_code['FS.truncate()'] = ':js:func:`FS.truncate`' mapped_wiki_inline_code['FS.unlink'] = ':js:func:`FS.unlink`' mapped_wiki_inline_code['FS.unlink()'] = ':js:func:`FS.unlink`' mapped_wiki_inline_code['FS.unmount'] = ':js:func:`FS.unmount`' mapped_wiki_inline_code['FS.unmount()'] = ':js:func:`FS.unmount`' mapped_wiki_inline_code['FS.utime'] = ':js:func:`FS.utime`' mapped_wiki_inline_code['FS.utime()'] = ':js:func:`FS.utime`' mapped_wiki_inline_code['FS.write'] = ':js:func:`FS.write`' mapped_wiki_inline_code['FS.write()'] = ':js:func:`FS.write`' mapped_wiki_inline_code['FS.writeFile'] = ':js:func:`FS.writeFile`' mapped_wiki_inline_code['FS.writeFile()'] = ':js:func:`FS.writeFile`' mapped_wiki_inline_code['HEAP16'] = ':js:data:`HEAP16`' mapped_wiki_inline_code['HEAP32'] = ':js:data:`HEAP32`' mapped_wiki_inline_code['HEAP8'] = ':js:data:`HEAP8`' mapped_wiki_inline_code['HEAPF32'] = ':js:data:`HEAPF32`' mapped_wiki_inline_code['HEAPF64'] = ':js:data:`HEAPF64`' mapped_wiki_inline_code['HEAPU16'] = ':js:data:`HEAPU16`' mapped_wiki_inline_code['HEAPU32'] = ':js:data:`HEAPU32`' mapped_wiki_inline_code['HEAPU8'] = ':js:data:`HEAPU8`' mapped_wiki_inline_code['Module.arguments'] = ':js:attribute:`Module.arguments`' mapped_wiki_inline_code['Module.destroy'] = ':js:func:`Module.destroy`' mapped_wiki_inline_code['Module.destroy()'] = ':js:func:`Module.destroy`' mapped_wiki_inline_code['Module.getPreloadedPackage'] = ':js:func:`Module.getPreloadedPackage`' mapped_wiki_inline_code['Module.getPreloadedPackage()'] = ':js:func:`Module.getPreloadedPackage`' mapped_wiki_inline_code['Module.instantiateWasm'] = ':js:func:`Module.instantiateWasm`' mapped_wiki_inline_code['Module.instantiateWasm()'] = ':js:func:`Module.instantiateWasm`' mapped_wiki_inline_code['Module.locateFile'] = ':js:attribute:`Module.locateFile`' mapped_wiki_inline_code['Module.logReadFiles'] = ':js:attribute:`Module.logReadFiles`' mapped_wiki_inline_code['Module.noExitRuntime'] = ':js:attribute:`Module.noExitRuntime`' mapped_wiki_inline_code['Module.noInitialRun'] = ':js:attribute:`Module.noInitialRun`' mapped_wiki_inline_code['Module.onAbort'] = ':js:attribute:`Module.onAbort`' mapped_wiki_inline_code['Module.onCustomMessage'] = ':js:func:`Module.onCustomMessage`' mapped_wiki_inline_code['Module.onCustomMessage()'] = ':js:func:`Module.onCustomMessage`' mapped_wiki_inline_code['Module.onRuntimeInitialized'] = ':js:attribute:`Module.onRuntimeInitialized`' mapped_wiki_inline_code['Module.preInit'] = ':js:attribute:`Module.preInit`' mapped_wiki_inline_code['Module.preRun'] = ':js:attribute:`Module.preRun`' mapped_wiki_inline_code['Module.preinitializedWebGLContext'] = ':js:attribute:`Module.preinitializedWebGLContext`' mapped_wiki_inline_code['Module.print'] = ':js:attribute:`Module.print`' mapped_wiki_inline_code['Module.printErr'] = ':js:attribute:`Module.printErr`' mapped_wiki_inline_code['PointeeType>'] = ':cpp:type:`PointeeType>`' mapped_wiki_inline_code['UTF16ToString'] = ':js:func:`UTF16ToString`' mapped_wiki_inline_code['UTF16ToString()'] = ':js:func:`UTF16ToString`' mapped_wiki_inline_code['UTF32ToString'] = ':js:func:`UTF32ToString`' mapped_wiki_inline_code['UTF32ToString()'] = ':js:func:`UTF32ToString`' mapped_wiki_inline_code['UTF8ToString'] = ':js:func:`UTF8ToString`' mapped_wiki_inline_code['UTF8ToString()'] = ':js:func:`UTF8ToString`' mapped_wiki_inline_code['V>>'] = ':cpp:func:`V>>`' mapped_wiki_inline_code['V>>()'] = ':cpp:func:`V>>`' mapped_wiki_inline_code['VRDisplayCapabilities'] = ':c:type:`VRDisplayCapabilities`' mapped_wiki_inline_code['VREyeParameters'] = ':c:type:`VREyeParameters`' mapped_wiki_inline_code['VRFrameData'] = ':c:type:`VRFrameData`' mapped_wiki_inline_code['VRLayerInit'] = ':c:type:`VRLayerInit`' mapped_wiki_inline_code['VRPose'] = ':c:type:`VRPose`' mapped_wiki_inline_code['VRQuaternion'] = ':c:type:`VRQuaternion`' mapped_wiki_inline_code['VRVector3'] = ':c:type:`VRVector3`' mapped_wiki_inline_code['VR_EYE_LEFT'] = ':c:macro:`VR_EYE_LEFT`' mapped_wiki_inline_code['VR_LAYER_DEFAULT_LEFT_BOUNDS'] = ':c:macro:`VR_LAYER_DEFAULT_LEFT_BOUNDS`' mapped_wiki_inline_code['VR_POSE_POSITION'] = ':c:macro:`VR_POSE_POSITION`' mapped_wiki_inline_code['__getDynamicPointerType'] = ':cpp:func:`__getDynamicPointerType`' mapped_wiki_inline_code['__getDynamicPointerType()'] = ':cpp:func:`__getDynamicPointerType`' mapped_wiki_inline_code['addRunDependency'] = ':js:func:`addRunDependency`' mapped_wiki_inline_code['addRunDependency()'] = ':js:func:`addRunDependency`' mapped_wiki_inline_code['allocate'] = ':js:func:`allocate`' mapped_wiki_inline_code['allocate()'] = ':js:func:`allocate`' mapped_wiki_inline_code['allow_raw_pointer'] = ':cpp:type:`allow_raw_pointer`' mapped_wiki_inline_code['allow_raw_pointers'] = ':cpp:type:`allow_raw_pointers`' mapped_wiki_inline_code['arg'] = ':cpp:type:`arg`' mapped_wiki_inline_code['base'] = ':cpp:type:`base`' mapped_wiki_inline_code['ccall'] = ':js:func:`ccall`' mapped_wiki_inline_code['ccall()'] = ':js:func:`ccall`' mapped_wiki_inline_code['char*'] = ':c:func:`char*`' mapped_wiki_inline_code['char*()'] = ':c:func:`char*`' mapped_wiki_inline_code['class_'] = ':cpp:class:`class_`' mapped_wiki_inline_code['constant'] = ':cpp:func:`constant`' mapped_wiki_inline_code['constant()'] = ':cpp:func:`constant`' mapped_wiki_inline_code['constructor'] = ':cpp:type:`constructor`' mapped_wiki_inline_code['cwrap'] = ':js:func:`cwrap`' mapped_wiki_inline_code['cwrap()'] = ':js:func:`cwrap`' mapped_wiki_inline_code['default_smart_ptr_trait'] = ':cpp:type:`default_smart_ptr_trait`' mapped_wiki_inline_code['em_arg_callback_func'] = ':c:type:`em_arg_callback_func`' mapped_wiki_inline_code['em_async_wget2_data_onerror_func'] = ':c:type:`em_async_wget2_data_onerror_func`' mapped_wiki_inline_code['em_async_wget2_data_onload_func'] = ':c:type:`em_async_wget2_data_onload_func`' mapped_wiki_inline_code['em_async_wget2_data_onprogress_func'] = ':c:type:`em_async_wget2_data_onprogress_func`' mapped_wiki_inline_code['em_async_wget2_onload_func'] = ':c:type:`em_async_wget2_onload_func`' mapped_wiki_inline_code['em_async_wget2_onstatus_func'] = ':c:type:`em_async_wget2_onstatus_func`' mapped_wiki_inline_code['em_async_wget_onload_func'] = ':c:type:`em_async_wget_onload_func`' mapped_wiki_inline_code['em_battery_callback_func'] = ':c:type:`em_battery_callback_func`' mapped_wiki_inline_code['em_beforeunload_callback'] = ':c:type:`em_beforeunload_callback`' mapped_wiki_inline_code['em_callback_func'] = ':c:type:`em_callback_func`' mapped_wiki_inline_code['em_devicemotion_callback_func'] = ':c:type:`em_devicemotion_callback_func`' mapped_wiki_inline_code['em_deviceorientation_callback_func'] = ':c:type:`em_deviceorientation_callback_func`' mapped_wiki_inline_code['em_focus_callback_func'] = ':c:type:`em_focus_callback_func`' mapped_wiki_inline_code['em_fullscreenchange_callback_func'] = ':c:type:`em_fullscreenchange_callback_func`' mapped_wiki_inline_code['em_gamepad_callback_func'] = ':c:type:`em_gamepad_callback_func`' mapped_wiki_inline_code['em_key_callback_func'] = ':c:type:`em_key_callback_func`' mapped_wiki_inline_code['em_mouse_callback_func'] = ':c:type:`em_mouse_callback_func`' mapped_wiki_inline_code['em_orientationchange_callback_func'] = ':c:type:`em_orientationchange_callback_func`' mapped_wiki_inline_code['em_pointerlockchange_callback_func'] = ':c:type:`em_pointerlockchange_callback_func`' mapped_wiki_inline_code['em_pointerlockerror_callback_func'] = ':c:type:`em_pointerlockerror_callback_func`' mapped_wiki_inline_code['em_run_preload_plugins_data_onload_func'] = ':c:type:`em_run_preload_plugins_data_onload_func`' mapped_wiki_inline_code['em_socket_callback'] = ':c:type:`em_socket_callback`' mapped_wiki_inline_code['em_socket_error_callback'] = ':c:type:`em_socket_error_callback`' mapped_wiki_inline_code['em_str_callback_func'] = ':c:type:`em_str_callback_func`' mapped_wiki_inline_code['em_touch_callback_func'] = ':c:type:`em_touch_callback_func`' mapped_wiki_inline_code['em_ui_callback_func'] = ':c:type:`em_ui_callback_func`' mapped_wiki_inline_code['em_visibilitychange_callback_func'] = ':c:type:`em_visibilitychange_callback_func`' mapped_wiki_inline_code['em_webgl_context_callback'] = ':c:type:`em_webgl_context_callback`' mapped_wiki_inline_code['em_wheel_callback_func'] = ':c:type:`em_wheel_callback_func`' mapped_wiki_inline_code['em_worker_callback_func'] = ':c:type:`em_worker_callback_func`' mapped_wiki_inline_code['emscripten'] = ':cpp:namespace:`emscripten`' mapped_wiki_inline_code['emscripten::val'] = ':cpp:class:`emscripten::val`' mapped_wiki_inline_code['emscripten_align1_short'] = ':c:type:`emscripten_align1_short`' mapped_wiki_inline_code['emscripten_async_call'] = ':c:func:`emscripten_async_call`' mapped_wiki_inline_code['emscripten_async_call()'] = ':c:func:`emscripten_async_call`' mapped_wiki_inline_code['emscripten_async_load_script'] = ':c:func:`emscripten_async_load_script`' mapped_wiki_inline_code['emscripten_async_load_script()'] = ':c:func:`emscripten_async_load_script`' mapped_wiki_inline_code['emscripten_async_run_script'] = ':c:func:`emscripten_async_run_script`' mapped_wiki_inline_code['emscripten_async_run_script()'] = ':c:func:`emscripten_async_run_script`' mapped_wiki_inline_code['emscripten_async_wget'] = ':c:func:`emscripten_async_wget`' mapped_wiki_inline_code['emscripten_async_wget()'] = ':c:func:`emscripten_async_wget`' mapped_wiki_inline_code['emscripten_async_wget2'] = ':c:func:`emscripten_async_wget2`' mapped_wiki_inline_code['emscripten_async_wget2()'] = ':c:func:`emscripten_async_wget2`' mapped_wiki_inline_code['emscripten_async_wget2_abort'] = ':c:func:`emscripten_async_wget2_abort`' mapped_wiki_inline_code['emscripten_async_wget2_abort()'] = ':c:func:`emscripten_async_wget2_abort`' mapped_wiki_inline_code['emscripten_async_wget2_data'] = ':c:func:`emscripten_async_wget2_data`' mapped_wiki_inline_code['emscripten_async_wget2_data()'] = ':c:func:`emscripten_async_wget2_data`' mapped_wiki_inline_code['emscripten_async_wget_data'] = ':c:func:`emscripten_async_wget_data`' mapped_wiki_inline_code['emscripten_async_wget_data()'] = ':c:func:`emscripten_async_wget_data`' mapped_wiki_inline_code['emscripten_call_worker'] = ':c:func:`emscripten_call_worker`' mapped_wiki_inline_code['emscripten_call_worker()'] = ':c:func:`emscripten_call_worker`' mapped_wiki_inline_code['emscripten_cancel_animation_frame'] = ':c:func:`emscripten_cancel_animation_frame`' mapped_wiki_inline_code['emscripten_cancel_animation_frame()'] = ':c:func:`emscripten_cancel_animation_frame`' mapped_wiki_inline_code['emscripten_cancel_main_loop'] = ':c:func:`emscripten_cancel_main_loop`' mapped_wiki_inline_code['emscripten_cancel_main_loop()'] = ':c:func:`emscripten_cancel_main_loop`' mapped_wiki_inline_code['emscripten_clear_immediate'] = ':c:func:`emscripten_clear_immediate`' mapped_wiki_inline_code['emscripten_clear_immediate()'] = ':c:func:`emscripten_clear_immediate`' mapped_wiki_inline_code['emscripten_clear_interval'] = ':c:func:`emscripten_clear_interval`' mapped_wiki_inline_code['emscripten_clear_interval()'] = ':c:func:`emscripten_clear_interval`' mapped_wiki_inline_code['emscripten_clear_timeout'] = ':c:func:`emscripten_clear_timeout`' mapped_wiki_inline_code['emscripten_clear_timeout()'] = ':c:func:`emscripten_clear_timeout`' mapped_wiki_inline_code['emscripten_console_error'] = ':c:func:`emscripten_console_error`' mapped_wiki_inline_code['emscripten_console_error()'] = ':c:func:`emscripten_console_error`' mapped_wiki_inline_code['emscripten_console_log'] = ':c:func:`emscripten_console_log`' mapped_wiki_inline_code['emscripten_console_log()'] = ':c:func:`emscripten_console_log`' mapped_wiki_inline_code['emscripten_console_warn'] = ':c:func:`emscripten_console_warn`' mapped_wiki_inline_code['emscripten_console_warn()'] = ':c:func:`emscripten_console_warn`' mapped_wiki_inline_code['emscripten_coroutine'] = ':c:type:`emscripten_coroutine`' mapped_wiki_inline_code['emscripten_coroutine_create'] = ':c:func:`emscripten_coroutine_create`' mapped_wiki_inline_code['emscripten_coroutine_create()'] = ':c:func:`emscripten_coroutine_create`' mapped_wiki_inline_code['emscripten_coroutine_next'] = ':c:func:`emscripten_coroutine_next`' mapped_wiki_inline_code['emscripten_coroutine_next()'] = ':c:func:`emscripten_coroutine_next`' mapped_wiki_inline_code['emscripten_create_worker'] = ':c:func:`emscripten_create_worker`' mapped_wiki_inline_code['emscripten_create_worker()'] = ':c:func:`emscripten_create_worker`' mapped_wiki_inline_code['emscripten_date_now'] = ':c:func:`emscripten_date_now`' mapped_wiki_inline_code['emscripten_date_now()'] = ':c:func:`emscripten_date_now`' mapped_wiki_inline_code['emscripten_debugger'] = ':c:func:`emscripten_debugger`' mapped_wiki_inline_code['emscripten_debugger()'] = ':c:func:`emscripten_debugger`' mapped_wiki_inline_code['emscripten_destroy_worker'] = ':c:func:`emscripten_destroy_worker`' mapped_wiki_inline_code['emscripten_destroy_worker()'] = ':c:func:`emscripten_destroy_worker`' mapped_wiki_inline_code['emscripten_enter_soft_fullscreen'] = ':c:func:`emscripten_enter_soft_fullscreen`' mapped_wiki_inline_code['emscripten_enter_soft_fullscreen()'] = ':c:func:`emscripten_enter_soft_fullscreen`' mapped_wiki_inline_code['emscripten_exit_fullscreen'] = ':c:func:`emscripten_exit_fullscreen`' mapped_wiki_inline_code['emscripten_exit_fullscreen()'] = ':c:func:`emscripten_exit_fullscreen`' mapped_wiki_inline_code['emscripten_exit_pointerlock'] = ':c:func:`emscripten_exit_pointerlock`' mapped_wiki_inline_code['emscripten_exit_pointerlock()'] = ':c:func:`emscripten_exit_pointerlock`' mapped_wiki_inline_code['emscripten_exit_soft_fullscreen'] = ':c:func:`emscripten_exit_soft_fullscreen`' mapped_wiki_inline_code['emscripten_exit_soft_fullscreen()'] = ':c:func:`emscripten_exit_soft_fullscreen`' mapped_wiki_inline_code['emscripten_exit_with_live_runtime'] = ':c:func:`emscripten_exit_with_live_runtime`' mapped_wiki_inline_code['emscripten_exit_with_live_runtime()'] = ':c:func:`emscripten_exit_with_live_runtime`' mapped_wiki_inline_code['emscripten_force_exit'] = ':c:func:`emscripten_force_exit`' mapped_wiki_inline_code['emscripten_force_exit()'] = ':c:func:`emscripten_force_exit`' mapped_wiki_inline_code['emscripten_get_battery_status'] = ':c:func:`emscripten_get_battery_status`' mapped_wiki_inline_code['emscripten_get_battery_status()'] = ':c:func:`emscripten_get_battery_status`' mapped_wiki_inline_code['emscripten_get_callstack'] = ':c:func:`emscripten_get_callstack`' mapped_wiki_inline_code['emscripten_get_callstack()'] = ':c:func:`emscripten_get_callstack`' mapped_wiki_inline_code['emscripten_get_canvas_element_size'] = ':c:func:`emscripten_get_canvas_element_size`' mapped_wiki_inline_code['emscripten_get_canvas_element_size()'] = ':c:func:`emscripten_get_canvas_element_size`' mapped_wiki_inline_code['emscripten_get_compiler_setting'] = ':c:func:`emscripten_get_compiler_setting`' mapped_wiki_inline_code['emscripten_get_compiler_setting()'] = ':c:func:`emscripten_get_compiler_setting`' mapped_wiki_inline_code['emscripten_get_device_pixel_ratio'] = ':c:func:`emscripten_get_device_pixel_ratio`' mapped_wiki_inline_code['emscripten_get_device_pixel_ratio()'] = ':c:func:`emscripten_get_device_pixel_ratio`' mapped_wiki_inline_code['emscripten_get_devicemotion_status'] = ':c:func:`emscripten_get_devicemotion_status`' mapped_wiki_inline_code['emscripten_get_devicemotion_status()'] = ':c:func:`emscripten_get_devicemotion_status`' mapped_wiki_inline_code['emscripten_get_deviceorientation_status'] = ':c:func:`emscripten_get_deviceorientation_status`' mapped_wiki_inline_code['emscripten_get_deviceorientation_status()'] = ':c:func:`emscripten_get_deviceorientation_status`' mapped_wiki_inline_code['emscripten_get_element_css_size'] = ':c:func:`emscripten_get_element_css_size`' mapped_wiki_inline_code['emscripten_get_element_css_size()'] = ':c:func:`emscripten_get_element_css_size`' mapped_wiki_inline_code['emscripten_get_fullscreen_status'] = ':c:func:`emscripten_get_fullscreen_status`' mapped_wiki_inline_code['emscripten_get_fullscreen_status()'] = ':c:func:`emscripten_get_fullscreen_status`' mapped_wiki_inline_code['emscripten_get_gamepad_status'] = ':c:func:`emscripten_get_gamepad_status`' mapped_wiki_inline_code['emscripten_get_gamepad_status()'] = ':c:func:`emscripten_get_gamepad_status`' mapped_wiki_inline_code['emscripten_get_main_loop_timing'] = ':c:func:`emscripten_get_main_loop_timing`' mapped_wiki_inline_code['emscripten_get_main_loop_timing()'] = ':c:func:`emscripten_get_main_loop_timing`' mapped_wiki_inline_code['emscripten_get_mouse_status'] = ':c:func:`emscripten_get_mouse_status`' mapped_wiki_inline_code['emscripten_get_mouse_status()'] = ':c:func:`emscripten_get_mouse_status`' mapped_wiki_inline_code['emscripten_get_now'] = ':c:func:`emscripten_get_now`' mapped_wiki_inline_code['emscripten_get_now()'] = ':c:func:`emscripten_get_now`' mapped_wiki_inline_code['emscripten_get_num_gamepads'] = ':c:func:`emscripten_get_num_gamepads`' mapped_wiki_inline_code['emscripten_get_num_gamepads()'] = ':c:func:`emscripten_get_num_gamepads`' mapped_wiki_inline_code['emscripten_get_orientation_status'] = ':c:func:`emscripten_get_orientation_status`' mapped_wiki_inline_code['emscripten_get_orientation_status()'] = ':c:func:`emscripten_get_orientation_status`' mapped_wiki_inline_code['emscripten_get_pointerlock_status'] = ':c:func:`emscripten_get_pointerlock_status`' mapped_wiki_inline_code['emscripten_get_pointerlock_status()'] = ':c:func:`emscripten_get_pointerlock_status`' mapped_wiki_inline_code['emscripten_get_visibility_status'] = ':c:func:`emscripten_get_visibility_status`' mapped_wiki_inline_code['emscripten_get_visibility_status()'] = ':c:func:`emscripten_get_visibility_status`' mapped_wiki_inline_code['emscripten_get_worker_queue_size'] = ':c:func:`emscripten_get_worker_queue_size`' mapped_wiki_inline_code['emscripten_get_worker_queue_size()'] = ':c:func:`emscripten_get_worker_queue_size`' mapped_wiki_inline_code['emscripten_hide_mouse'] = ':c:func:`emscripten_hide_mouse`' mapped_wiki_inline_code['emscripten_hide_mouse()'] = ':c:func:`emscripten_hide_mouse`' mapped_wiki_inline_code['emscripten_idb_async_delete'] = ':c:func:`emscripten_idb_async_delete`' mapped_wiki_inline_code['emscripten_idb_async_delete()'] = ':c:func:`emscripten_idb_async_delete`' mapped_wiki_inline_code['emscripten_idb_async_exists'] = ':c:func:`emscripten_idb_async_exists`' mapped_wiki_inline_code['emscripten_idb_async_exists()'] = ':c:func:`emscripten_idb_async_exists`' mapped_wiki_inline_code['emscripten_idb_async_load'] = ':c:func:`emscripten_idb_async_load`' mapped_wiki_inline_code['emscripten_idb_async_load()'] = ':c:func:`emscripten_idb_async_load`' mapped_wiki_inline_code['emscripten_idb_async_store'] = ':c:func:`emscripten_idb_async_store`' mapped_wiki_inline_code['emscripten_idb_async_store()'] = ':c:func:`emscripten_idb_async_store`' mapped_wiki_inline_code['emscripten_idb_delete'] = ':c:func:`emscripten_idb_delete`' mapped_wiki_inline_code['emscripten_idb_delete()'] = ':c:func:`emscripten_idb_delete`' mapped_wiki_inline_code['emscripten_idb_exists'] = ':c:func:`emscripten_idb_exists`' mapped_wiki_inline_code['emscripten_idb_exists()'] = ':c:func:`emscripten_idb_exists`' mapped_wiki_inline_code['emscripten_idb_load'] = ':c:func:`emscripten_idb_load`' mapped_wiki_inline_code['emscripten_idb_load()'] = ':c:func:`emscripten_idb_load`' mapped_wiki_inline_code['emscripten_idb_store'] = ':c:func:`emscripten_idb_store`' mapped_wiki_inline_code['emscripten_idb_store()'] = ':c:func:`emscripten_idb_store`' mapped_wiki_inline_code['emscripten_is_webgl_context_lost'] = ':c:func:`emscripten_is_webgl_context_lost`' mapped_wiki_inline_code['emscripten_is_webgl_context_lost()'] = ':c:func:`emscripten_is_webgl_context_lost`' mapped_wiki_inline_code['emscripten_lock_orientation'] = ':c:func:`emscripten_lock_orientation`' mapped_wiki_inline_code['emscripten_lock_orientation()'] = ':c:func:`emscripten_lock_orientation`' mapped_wiki_inline_code['emscripten_log'] = ':c:func:`emscripten_log`' mapped_wiki_inline_code['emscripten_log()'] = ':c:func:`emscripten_log`' mapped_wiki_inline_code['emscripten_pause_main_loop'] = ':c:func:`emscripten_pause_main_loop`' mapped_wiki_inline_code['emscripten_pause_main_loop()'] = ':c:func:`emscripten_pause_main_loop`' mapped_wiki_inline_code['emscripten_performance_now'] = ':c:func:`emscripten_performance_now`' mapped_wiki_inline_code['emscripten_performance_now()'] = ':c:func:`emscripten_performance_now`' mapped_wiki_inline_code['emscripten_print_double'] = ':c:func:`emscripten_print_double`' mapped_wiki_inline_code['emscripten_print_double()'] = ':c:func:`emscripten_print_double`' mapped_wiki_inline_code['emscripten_push_main_loop_blocker'] = ':c:func:`emscripten_push_main_loop_blocker`' mapped_wiki_inline_code['emscripten_push_main_loop_blocker()'] = ':c:func:`emscripten_push_main_loop_blocker`' mapped_wiki_inline_code['emscripten_random'] = ':c:func:`emscripten_random`' mapped_wiki_inline_code['emscripten_random()'] = ':c:func:`emscripten_random`' mapped_wiki_inline_code['emscripten_request_animation_frame'] = ':c:func:`emscripten_request_animation_frame`' mapped_wiki_inline_code['emscripten_request_animation_frame()'] = ':c:func:`emscripten_request_animation_frame`' mapped_wiki_inline_code['emscripten_request_animation_frame_loop'] = ':c:func:`emscripten_request_animation_frame_loop`' mapped_wiki_inline_code['emscripten_request_animation_frame_loop()'] = ':c:func:`emscripten_request_animation_frame_loop`' mapped_wiki_inline_code['emscripten_request_fullscreen'] = ':c:func:`emscripten_request_fullscreen`' mapped_wiki_inline_code['emscripten_request_fullscreen()'] = ':c:func:`emscripten_request_fullscreen`' mapped_wiki_inline_code['emscripten_request_fullscreen_strategy'] = ':c:func:`emscripten_request_fullscreen_strategy`' mapped_wiki_inline_code['emscripten_request_fullscreen_strategy()'] = ':c:func:`emscripten_request_fullscreen_strategy`' mapped_wiki_inline_code['emscripten_request_pointerlock'] = ':c:func:`emscripten_request_pointerlock`' mapped_wiki_inline_code['emscripten_request_pointerlock()'] = ':c:func:`emscripten_request_pointerlock`' mapped_wiki_inline_code['emscripten_run_preload_plugins'] = ':c:func:`emscripten_run_preload_plugins`' mapped_wiki_inline_code['emscripten_run_preload_plugins()'] = ':c:func:`emscripten_run_preload_plugins`' mapped_wiki_inline_code['emscripten_run_preload_plugins_data'] = ':c:func:`emscripten_run_preload_plugins_data`' mapped_wiki_inline_code['emscripten_run_preload_plugins_data()'] = ':c:func:`emscripten_run_preload_plugins_data`' mapped_wiki_inline_code['emscripten_run_script'] = ':c:func:`emscripten_run_script`' mapped_wiki_inline_code['emscripten_run_script()'] = ':c:func:`emscripten_run_script`' mapped_wiki_inline_code['emscripten_run_script_int'] = ':c:func:`emscripten_run_script_int`' mapped_wiki_inline_code['emscripten_run_script_int()'] = ':c:func:`emscripten_run_script_int`' mapped_wiki_inline_code['emscripten_sample_gamepad_data'] = ':c:func:`emscripten_sample_gamepad_data`' mapped_wiki_inline_code['emscripten_sample_gamepad_data()'] = ':c:func:`emscripten_sample_gamepad_data`' mapped_wiki_inline_code['emscripten_set_batterychargingchange_callback'] = ':c:func:`emscripten_set_batterychargingchange_callback`' mapped_wiki_inline_code['emscripten_set_batterychargingchange_callback()'] = ':c:func:`emscripten_set_batterychargingchange_callback`' mapped_wiki_inline_code['emscripten_set_beforeunload_callback'] = ':c:func:`emscripten_set_beforeunload_callback`' mapped_wiki_inline_code['emscripten_set_beforeunload_callback()'] = ':c:func:`emscripten_set_beforeunload_callback`' mapped_wiki_inline_code['emscripten_set_blur_callback'] = ':c:func:`emscripten_set_blur_callback`' mapped_wiki_inline_code['emscripten_set_blur_callback()'] = ':c:func:`emscripten_set_blur_callback`' mapped_wiki_inline_code['emscripten_set_canvas_element_size'] = ':c:func:`emscripten_set_canvas_element_size`' mapped_wiki_inline_code['emscripten_set_canvas_element_size()'] = ':c:func:`emscripten_set_canvas_element_size`' mapped_wiki_inline_code['emscripten_set_click_callback'] = ':c:func:`emscripten_set_click_callback`' mapped_wiki_inline_code['emscripten_set_click_callback()'] = ':c:func:`emscripten_set_click_callback`' mapped_wiki_inline_code['emscripten_set_devicemotion_callback'] = ':c:func:`emscripten_set_devicemotion_callback`' mapped_wiki_inline_code['emscripten_set_devicemotion_callback()'] = ':c:func:`emscripten_set_devicemotion_callback`' mapped_wiki_inline_code['emscripten_set_deviceorientation_callback'] = ':c:func:`emscripten_set_deviceorientation_callback`' mapped_wiki_inline_code['emscripten_set_deviceorientation_callback()'] = ':c:func:`emscripten_set_deviceorientation_callback`' mapped_wiki_inline_code['emscripten_set_element_css_size'] = ':c:func:`emscripten_set_element_css_size`' mapped_wiki_inline_code['emscripten_set_element_css_size()'] = ':c:func:`emscripten_set_element_css_size`' mapped_wiki_inline_code['emscripten_set_fullscreenchange_callback'] = ':c:func:`emscripten_set_fullscreenchange_callback`' mapped_wiki_inline_code['emscripten_set_fullscreenchange_callback()'] = ':c:func:`emscripten_set_fullscreenchange_callback`' mapped_wiki_inline_code['emscripten_set_gamepadconnected_callback'] = ':c:func:`emscripten_set_gamepadconnected_callback`' mapped_wiki_inline_code['emscripten_set_gamepadconnected_callback()'] = ':c:func:`emscripten_set_gamepadconnected_callback`' mapped_wiki_inline_code['emscripten_set_immediate'] = ':c:func:`emscripten_set_immediate`' mapped_wiki_inline_code['emscripten_set_immediate()'] = ':c:func:`emscripten_set_immediate`' mapped_wiki_inline_code['emscripten_set_immediate_loop'] = ':c:func:`emscripten_set_immediate_loop`' mapped_wiki_inline_code['emscripten_set_immediate_loop()'] = ':c:func:`emscripten_set_immediate_loop`' mapped_wiki_inline_code['emscripten_set_interval'] = ':c:func:`emscripten_set_interval`' mapped_wiki_inline_code['emscripten_set_interval()'] = ':c:func:`emscripten_set_interval`' mapped_wiki_inline_code['emscripten_set_keypress_callback'] = ':c:func:`emscripten_set_keypress_callback`' mapped_wiki_inline_code['emscripten_set_keypress_callback()'] = ':c:func:`emscripten_set_keypress_callback`' mapped_wiki_inline_code['emscripten_set_main_loop'] = ':c:func:`emscripten_set_main_loop`' mapped_wiki_inline_code['emscripten_set_main_loop()'] = ':c:func:`emscripten_set_main_loop`' mapped_wiki_inline_code['emscripten_set_main_loop_arg'] = ':c:func:`emscripten_set_main_loop_arg`' mapped_wiki_inline_code['emscripten_set_main_loop_arg()'] = ':c:func:`emscripten_set_main_loop_arg`' mapped_wiki_inline_code['emscripten_set_main_loop_expected_blockers'] = ':c:func:`emscripten_set_main_loop_expected_blockers`' mapped_wiki_inline_code['emscripten_set_main_loop_expected_blockers()'] = ':c:func:`emscripten_set_main_loop_expected_blockers`' mapped_wiki_inline_code['emscripten_set_main_loop_timing'] = ':c:func:`emscripten_set_main_loop_timing`' mapped_wiki_inline_code['emscripten_set_main_loop_timing()'] = ':c:func:`emscripten_set_main_loop_timing`' mapped_wiki_inline_code['emscripten_set_orientationchange_callback'] = ':c:func:`emscripten_set_orientationchange_callback`' mapped_wiki_inline_code['emscripten_set_orientationchange_callback()'] = ':c:func:`emscripten_set_orientationchange_callback`' mapped_wiki_inline_code['emscripten_set_pointerlockchange_callback'] = ':c:func:`emscripten_set_pointerlockchange_callback`' mapped_wiki_inline_code['emscripten_set_pointerlockchange_callback()'] = ':c:func:`emscripten_set_pointerlockchange_callback`' mapped_wiki_inline_code['emscripten_set_pointerlockerror_callback'] = ':c:func:`emscripten_set_pointerlockerror_callback`' mapped_wiki_inline_code['emscripten_set_pointerlockerror_callback()'] = ':c:func:`emscripten_set_pointerlockerror_callback`' mapped_wiki_inline_code['emscripten_set_resize_callback'] = ':c:func:`emscripten_set_resize_callback`' mapped_wiki_inline_code['emscripten_set_resize_callback()'] = ':c:func:`emscripten_set_resize_callback`' mapped_wiki_inline_code['emscripten_set_socket_close_callback'] = ':c:func:`emscripten_set_socket_close_callback`' mapped_wiki_inline_code['emscripten_set_socket_close_callback()'] = ':c:func:`emscripten_set_socket_close_callback`' mapped_wiki_inline_code['emscripten_set_socket_connection_callback'] = ':c:func:`emscripten_set_socket_connection_callback`' mapped_wiki_inline_code['emscripten_set_socket_connection_callback()'] = ':c:func:`emscripten_set_socket_connection_callback`' mapped_wiki_inline_code['emscripten_set_socket_error_callback'] = ':c:func:`emscripten_set_socket_error_callback`' mapped_wiki_inline_code['emscripten_set_socket_error_callback()'] = ':c:func:`emscripten_set_socket_error_callback`' mapped_wiki_inline_code['emscripten_set_socket_listen_callback'] = ':c:func:`emscripten_set_socket_listen_callback`' mapped_wiki_inline_code['emscripten_set_socket_listen_callback()'] = ':c:func:`emscripten_set_socket_listen_callback`' mapped_wiki_inline_code['emscripten_set_socket_message_callback'] = ':c:func:`emscripten_set_socket_message_callback`' mapped_wiki_inline_code['emscripten_set_socket_message_callback()'] = ':c:func:`emscripten_set_socket_message_callback`' mapped_wiki_inline_code['emscripten_set_socket_open_callback'] = ':c:func:`emscripten_set_socket_open_callback`' mapped_wiki_inline_code['emscripten_set_socket_open_callback()'] = ':c:func:`emscripten_set_socket_open_callback`' mapped_wiki_inline_code['emscripten_set_timeout'] = ':c:func:`emscripten_set_timeout`' mapped_wiki_inline_code['emscripten_set_timeout()'] = ':c:func:`emscripten_set_timeout`' mapped_wiki_inline_code['emscripten_set_timeout_loop'] = ':c:func:`emscripten_set_timeout_loop`' mapped_wiki_inline_code['emscripten_set_timeout_loop()'] = ':c:func:`emscripten_set_timeout_loop`' mapped_wiki_inline_code['emscripten_set_touchstart_callback'] = ':c:func:`emscripten_set_touchstart_callback`' mapped_wiki_inline_code['emscripten_set_touchstart_callback()'] = ':c:func:`emscripten_set_touchstart_callback`' mapped_wiki_inline_code['emscripten_set_visibilitychange_callback'] = ':c:func:`emscripten_set_visibilitychange_callback`' mapped_wiki_inline_code['emscripten_set_visibilitychange_callback()'] = ':c:func:`emscripten_set_visibilitychange_callback`' mapped_wiki_inline_code['emscripten_set_webglcontextlost_callback'] = ':c:func:`emscripten_set_webglcontextlost_callback`' mapped_wiki_inline_code['emscripten_set_webglcontextlost_callback()'] = ':c:func:`emscripten_set_webglcontextlost_callback`' mapped_wiki_inline_code['emscripten_set_wheel_callback'] = ':c:func:`emscripten_set_wheel_callback`' mapped_wiki_inline_code['emscripten_set_wheel_callback()'] = ':c:func:`emscripten_set_wheel_callback`' mapped_wiki_inline_code['emscripten_sleep'] = ':c:func:`emscripten_sleep`' mapped_wiki_inline_code['emscripten_sleep()'] = ':c:func:`emscripten_sleep`' mapped_wiki_inline_code['emscripten_sleep_with_yield'] = ':c:func:`emscripten_sleep_with_yield`' mapped_wiki_inline_code['emscripten_sleep_with_yield()'] = ':c:func:`emscripten_sleep_with_yield`' mapped_wiki_inline_code['emscripten_throw_number'] = ':c:func:`emscripten_throw_number`' mapped_wiki_inline_code['emscripten_throw_number()'] = ':c:func:`emscripten_throw_number`' mapped_wiki_inline_code['emscripten_throw_string'] = ':c:func:`emscripten_throw_string`' mapped_wiki_inline_code['emscripten_throw_string()'] = ':c:func:`emscripten_throw_string`' mapped_wiki_inline_code['emscripten_trace_annotate_address_type'] = ':c:func:`emscripten_trace_annotate_address_type`' mapped_wiki_inline_code['emscripten_trace_annotate_address_type()'] = ':c:func:`emscripten_trace_annotate_address_type`' mapped_wiki_inline_code['emscripten_trace_associate_storage_size'] = ':c:func:`emscripten_trace_associate_storage_size`' mapped_wiki_inline_code['emscripten_trace_associate_storage_size()'] = ':c:func:`emscripten_trace_associate_storage_size`' mapped_wiki_inline_code['emscripten_trace_close'] = ':c:func:`emscripten_trace_close`' mapped_wiki_inline_code['emscripten_trace_close()'] = ':c:func:`emscripten_trace_close`' mapped_wiki_inline_code['emscripten_trace_configure'] = ':c:func:`emscripten_trace_configure`' mapped_wiki_inline_code['emscripten_trace_configure()'] = ':c:func:`emscripten_trace_configure`' mapped_wiki_inline_code['emscripten_trace_configure_for_google_wtf'] = ':c:func:`emscripten_trace_configure_for_google_wtf`' mapped_wiki_inline_code['emscripten_trace_configure_for_google_wtf()'] = ':c:func:`emscripten_trace_configure_for_google_wtf`' mapped_wiki_inline_code['emscripten_trace_enter_context'] = ':c:func:`emscripten_trace_enter_context`' mapped_wiki_inline_code['emscripten_trace_enter_context()'] = ':c:func:`emscripten_trace_enter_context`' mapped_wiki_inline_code['emscripten_trace_exit_context'] = ':c:func:`emscripten_trace_exit_context`' mapped_wiki_inline_code['emscripten_trace_exit_context()'] = ':c:func:`emscripten_trace_exit_context`' mapped_wiki_inline_code['emscripten_trace_log_message'] = ':c:func:`emscripten_trace_log_message`' mapped_wiki_inline_code['emscripten_trace_log_message()'] = ':c:func:`emscripten_trace_log_message`' mapped_wiki_inline_code['emscripten_trace_mark'] = ':c:func:`emscripten_trace_mark`' mapped_wiki_inline_code['emscripten_trace_mark()'] = ':c:func:`emscripten_trace_mark`' mapped_wiki_inline_code['emscripten_trace_record_allocation'] = ':c:func:`emscripten_trace_record_allocation`' mapped_wiki_inline_code['emscripten_trace_record_allocation()'] = ':c:func:`emscripten_trace_record_allocation`' mapped_wiki_inline_code['emscripten_trace_record_frame_end'] = ':c:func:`emscripten_trace_record_frame_end`' mapped_wiki_inline_code['emscripten_trace_record_frame_end()'] = ':c:func:`emscripten_trace_record_frame_end`' mapped_wiki_inline_code['emscripten_trace_record_frame_start'] = ':c:func:`emscripten_trace_record_frame_start`' mapped_wiki_inline_code['emscripten_trace_record_frame_start()'] = ':c:func:`emscripten_trace_record_frame_start`' mapped_wiki_inline_code['emscripten_trace_record_free'] = ':c:func:`emscripten_trace_record_free`' mapped_wiki_inline_code['emscripten_trace_record_free()'] = ':c:func:`emscripten_trace_record_free`' mapped_wiki_inline_code['emscripten_trace_record_reallocation'] = ':c:func:`emscripten_trace_record_reallocation`' mapped_wiki_inline_code['emscripten_trace_record_reallocation()'] = ':c:func:`emscripten_trace_record_reallocation`' mapped_wiki_inline_code['emscripten_trace_report_error'] = ':c:func:`emscripten_trace_report_error`' mapped_wiki_inline_code['emscripten_trace_report_error()'] = ':c:func:`emscripten_trace_report_error`' mapped_wiki_inline_code['emscripten_trace_report_memory_layout'] = ':c:func:`emscripten_trace_report_memory_layout`' mapped_wiki_inline_code['emscripten_trace_report_memory_layout()'] = ':c:func:`emscripten_trace_report_memory_layout`' mapped_wiki_inline_code['emscripten_trace_report_off_heap_data'] = ':c:func:`emscripten_trace_report_off_heap_data`' mapped_wiki_inline_code['emscripten_trace_report_off_heap_data()'] = ':c:func:`emscripten_trace_report_off_heap_data`' mapped_wiki_inline_code['emscripten_trace_set_enabled'] = ':c:func:`emscripten_trace_set_enabled`' mapped_wiki_inline_code['emscripten_trace_set_enabled()'] = ':c:func:`emscripten_trace_set_enabled`' mapped_wiki_inline_code['emscripten_trace_set_session_username'] = ':c:func:`emscripten_trace_set_session_username`' mapped_wiki_inline_code['emscripten_trace_set_session_username()'] = ':c:func:`emscripten_trace_set_session_username`' mapped_wiki_inline_code['emscripten_trace_task_associate_data'] = ':c:func:`emscripten_trace_task_associate_data`' mapped_wiki_inline_code['emscripten_trace_task_associate_data()'] = ':c:func:`emscripten_trace_task_associate_data`' mapped_wiki_inline_code['emscripten_trace_task_end'] = ':c:func:`emscripten_trace_task_end`' mapped_wiki_inline_code['emscripten_trace_task_end()'] = ':c:func:`emscripten_trace_task_end`' mapped_wiki_inline_code['emscripten_trace_task_resume'] = ':c:func:`emscripten_trace_task_resume`' mapped_wiki_inline_code['emscripten_trace_task_resume()'] = ':c:func:`emscripten_trace_task_resume`' mapped_wiki_inline_code['emscripten_trace_task_start'] = ':c:func:`emscripten_trace_task_start`' mapped_wiki_inline_code['emscripten_trace_task_start()'] = ':c:func:`emscripten_trace_task_start`' mapped_wiki_inline_code['emscripten_trace_task_suspend'] = ':c:func:`emscripten_trace_task_suspend`' mapped_wiki_inline_code['emscripten_trace_task_suspend()'] = ':c:func:`emscripten_trace_task_suspend`' mapped_wiki_inline_code['emscripten_unlock_orientation'] = ':c:func:`emscripten_unlock_orientation`' mapped_wiki_inline_code['emscripten_unlock_orientation()'] = ':c:func:`emscripten_unlock_orientation`' mapped_wiki_inline_code['emscripten_vibrate'] = ':c:func:`emscripten_vibrate`' mapped_wiki_inline_code['emscripten_vibrate()'] = ':c:func:`emscripten_vibrate`' mapped_wiki_inline_code['emscripten_vibrate_pattern'] = ':c:func:`emscripten_vibrate_pattern`' mapped_wiki_inline_code['emscripten_vibrate_pattern()'] = ':c:func:`emscripten_vibrate_pattern`' mapped_wiki_inline_code['emscripten_vr_cancel_display_render_loop'] = ':c:func:`emscripten_vr_cancel_display_render_loop`' mapped_wiki_inline_code['emscripten_vr_cancel_display_render_loop()'] = ':c:func:`emscripten_vr_cancel_display_render_loop`' mapped_wiki_inline_code['emscripten_vr_count_displays'] = ':c:func:`emscripten_vr_count_displays`' mapped_wiki_inline_code['emscripten_vr_count_displays()'] = ':c:func:`emscripten_vr_count_displays`' mapped_wiki_inline_code['emscripten_vr_deinit'] = ':c:func:`emscripten_vr_deinit`' mapped_wiki_inline_code['emscripten_vr_deinit()'] = ':c:func:`emscripten_vr_deinit`' mapped_wiki_inline_code['emscripten_vr_display_connected'] = ':c:func:`emscripten_vr_display_connected`' mapped_wiki_inline_code['emscripten_vr_display_connected()'] = ':c:func:`emscripten_vr_display_connected`' mapped_wiki_inline_code['emscripten_vr_display_presenting'] = ':c:func:`emscripten_vr_display_presenting`' mapped_wiki_inline_code['emscripten_vr_display_presenting()'] = ':c:func:`emscripten_vr_display_presenting`' mapped_wiki_inline_code['emscripten_vr_exit_present'] = ':c:func:`emscripten_vr_exit_present`' mapped_wiki_inline_code['emscripten_vr_exit_present()'] = ':c:func:`emscripten_vr_exit_present`' mapped_wiki_inline_code['emscripten_vr_get_display_capabilities'] = ':c:func:`emscripten_vr_get_display_capabilities`' mapped_wiki_inline_code['emscripten_vr_get_display_capabilities()'] = ':c:func:`emscripten_vr_get_display_capabilities`' mapped_wiki_inline_code['emscripten_vr_get_display_handle'] = ':c:func:`emscripten_vr_get_display_handle`' mapped_wiki_inline_code['emscripten_vr_get_display_handle()'] = ':c:func:`emscripten_vr_get_display_handle`' mapped_wiki_inline_code['emscripten_vr_get_eye_parameters'] = ':c:func:`emscripten_vr_get_eye_parameters`' mapped_wiki_inline_code['emscripten_vr_get_eye_parameters()'] = ':c:func:`emscripten_vr_get_eye_parameters`' mapped_wiki_inline_code['emscripten_vr_get_frame_data'] = ':c:func:`emscripten_vr_get_frame_data`' mapped_wiki_inline_code['emscripten_vr_get_frame_data()'] = ':c:func:`emscripten_vr_get_frame_data`' mapped_wiki_inline_code['emscripten_vr_init'] = ':c:func:`emscripten_vr_init`' mapped_wiki_inline_code['emscripten_vr_init()'] = ':c:func:`emscripten_vr_init`' mapped_wiki_inline_code['emscripten_vr_ready'] = ':c:func:`emscripten_vr_ready`' mapped_wiki_inline_code['emscripten_vr_ready()'] = ':c:func:`emscripten_vr_ready`' mapped_wiki_inline_code['emscripten_vr_request_present'] = ':c:func:`emscripten_vr_request_present`' mapped_wiki_inline_code['emscripten_vr_request_present()'] = ':c:func:`emscripten_vr_request_present`' mapped_wiki_inline_code['emscripten_vr_set_display_render_loop'] = ':c:func:`emscripten_vr_set_display_render_loop`' mapped_wiki_inline_code['emscripten_vr_set_display_render_loop()'] = ':c:func:`emscripten_vr_set_display_render_loop`' mapped_wiki_inline_code['emscripten_vr_set_display_render_loop_arg'] = ':c:func:`emscripten_vr_set_display_render_loop_arg`' mapped_wiki_inline_code['emscripten_vr_set_display_render_loop_arg()'] = ':c:func:`emscripten_vr_set_display_render_loop_arg`' mapped_wiki_inline_code['emscripten_vr_submit_frame'] = ':c:func:`emscripten_vr_submit_frame`' mapped_wiki_inline_code['emscripten_vr_submit_frame()'] = ':c:func:`emscripten_vr_submit_frame`' mapped_wiki_inline_code['emscripten_vr_version_major'] = ':c:func:`emscripten_vr_version_major`' mapped_wiki_inline_code['emscripten_vr_version_major()'] = ':c:func:`emscripten_vr_version_major`' mapped_wiki_inline_code['emscripten_vr_version_minor'] = ':c:func:`emscripten_vr_version_minor`' mapped_wiki_inline_code['emscripten_vr_version_minor()'] = ':c:func:`emscripten_vr_version_minor`' mapped_wiki_inline_code['emscripten_webgl_commit_frame'] = ':c:func:`emscripten_webgl_commit_frame`' mapped_wiki_inline_code['emscripten_webgl_commit_frame()'] = ':c:func:`emscripten_webgl_commit_frame`' mapped_wiki_inline_code['emscripten_webgl_create_context'] = ':c:func:`emscripten_webgl_create_context`' mapped_wiki_inline_code['emscripten_webgl_create_context()'] = ':c:func:`emscripten_webgl_create_context`' mapped_wiki_inline_code['emscripten_webgl_destroy_context'] = ':c:func:`emscripten_webgl_destroy_context`' mapped_wiki_inline_code['emscripten_webgl_destroy_context()'] = ':c:func:`emscripten_webgl_destroy_context`' mapped_wiki_inline_code['emscripten_webgl_enable_extension'] = ':c:func:`emscripten_webgl_enable_extension`' mapped_wiki_inline_code['emscripten_webgl_enable_extension()'] = ':c:func:`emscripten_webgl_enable_extension`' mapped_wiki_inline_code['emscripten_webgl_get_context_attributes'] = ':c:func:`emscripten_webgl_get_context_attributes`' mapped_wiki_inline_code['emscripten_webgl_get_context_attributes()'] = ':c:func:`emscripten_webgl_get_context_attributes`' mapped_wiki_inline_code['emscripten_webgl_get_current_context'] = ':c:func:`emscripten_webgl_get_current_context`' mapped_wiki_inline_code['emscripten_webgl_get_current_context()'] = ':c:func:`emscripten_webgl_get_current_context`' mapped_wiki_inline_code['emscripten_webgl_get_drawing_buffer_size'] = ':c:func:`emscripten_webgl_get_drawing_buffer_size`' mapped_wiki_inline_code['emscripten_webgl_get_drawing_buffer_size()'] = ':c:func:`emscripten_webgl_get_drawing_buffer_size`' mapped_wiki_inline_code['emscripten_webgl_init_context_attributes'] = ':c:func:`emscripten_webgl_init_context_attributes`' mapped_wiki_inline_code['emscripten_webgl_init_context_attributes()'] = ':c:func:`emscripten_webgl_init_context_attributes`' mapped_wiki_inline_code['emscripten_webgl_make_context_current'] = ':c:func:`emscripten_webgl_make_context_current`' mapped_wiki_inline_code['emscripten_webgl_make_context_current()'] = ':c:func:`emscripten_webgl_make_context_current`' mapped_wiki_inline_code['emscripten_wget'] = ':c:func:`emscripten_wget`' mapped_wiki_inline_code['emscripten_wget()'] = ':c:func:`emscripten_wget`' mapped_wiki_inline_code['emscripten_wget_data'] = ':c:func:`emscripten_wget_data`' mapped_wiki_inline_code['emscripten_wget_data()'] = ':c:func:`emscripten_wget_data`' mapped_wiki_inline_code['emscripten_worker_respond'] = ':c:func:`emscripten_worker_respond`' mapped_wiki_inline_code['emscripten_worker_respond()'] = ':c:func:`emscripten_worker_respond`' mapped_wiki_inline_code['emscripten_yield'] = ':c:func:`emscripten_yield`' mapped_wiki_inline_code['emscripten_yield()'] = ':c:func:`emscripten_yield`' mapped_wiki_inline_code['enum_'] = ':cpp:class:`enum_`' mapped_wiki_inline_code['function'] = ':cpp:func:`function`' mapped_wiki_inline_code['function()'] = ':cpp:func:`function`' mapped_wiki_inline_code['getValue'] = ':js:func:`getValue`' mapped_wiki_inline_code['getValue()'] = ':js:func:`getValue`' mapped_wiki_inline_code['intArrayFromString'] = ':js:func:`intArrayFromString`' mapped_wiki_inline_code['intArrayFromString()'] = ':js:func:`intArrayFromString`' mapped_wiki_inline_code['intArrayToString'] = ':js:func:`intArrayToString`' mapped_wiki_inline_code['intArrayToString()'] = ':js:func:`intArrayToString`' mapped_wiki_inline_code['internal::CalculateLambdaSignature<LambdaType>::type'] = ':cpp:func:`internal::CalculateLambdaSignature<LambdaType>::type`' mapped_wiki_inline_code['internal::CalculateLambdaSignature<LambdaType>::type()'] = ':cpp:func:`internal::CalculateLambdaSignature<LambdaType>::type`' mapped_wiki_inline_code['internal::MemberFunctionType<ClassType,'] = ':cpp:func:`internal::MemberFunctionType<ClassType,`' mapped_wiki_inline_code['internal::MemberFunctionType<ClassType,()'] = ':cpp:func:`internal::MemberFunctionType<ClassType,`' mapped_wiki_inline_code['pure_virtual'] = ':cpp:type:`pure_virtual`' mapped_wiki_inline_code['register_vector'] = ':cpp:func:`register_vector`' mapped_wiki_inline_code['register_vector()'] = ':cpp:func:`register_vector`' mapped_wiki_inline_code['removeRunDependency'] = ':js:func:`removeRunDependency`' mapped_wiki_inline_code['removeRunDependency()'] = ':js:func:`removeRunDependency`' mapped_wiki_inline_code['ret_val'] = ':cpp:type:`ret_val`' mapped_wiki_inline_code['select_const'] = ':cpp:func:`select_const`' mapped_wiki_inline_code['select_const()'] = ':cpp:func:`select_const`' mapped_wiki_inline_code['setValue'] = ':js:func:`setValue`' mapped_wiki_inline_code['setValue()'] = ':js:func:`setValue`' mapped_wiki_inline_code['sharing_policy'] = ':cpp:type:`sharing_policy`' mapped_wiki_inline_code['smart_ptr_trait'] = ':cpp:type:`smart_ptr_trait`' mapped_wiki_inline_code['stackTrace'] = ':js:func:`stackTrace`' mapped_wiki_inline_code['stackTrace()'] = ':js:func:`stackTrace`' mapped_wiki_inline_code['std::add_pointer<Signature>::type'] = ':cpp:func:`std::add_pointer<Signature>::type`' mapped_wiki_inline_code['std::add_pointer<Signature>::type()'] = ':cpp:func:`std::add_pointer<Signature>::type`' mapped_wiki_inline_code['stringToUTF16'] = ':js:func:`stringToUTF16`' mapped_wiki_inline_code['stringToUTF16()'] = ':js:func:`stringToUTF16`' mapped_wiki_inline_code['stringToUTF32'] = ':js:func:`stringToUTF32`' mapped_wiki_inline_code['stringToUTF32()'] = ':js:func:`stringToUTF32`' mapped_wiki_inline_code['stringToUTF8'] = ':js:func:`stringToUTF8`' mapped_wiki_inline_code['stringToUTF8()'] = ':js:func:`stringToUTF8`' mapped_wiki_inline_code['worker_handle'] = ':c:var:`worker_handle`' mapped_wiki_inline_code['writeArrayToMemory'] = ':js:func:`writeArrayToMemory`' mapped_wiki_inline_code['writeArrayToMemory()'] = ':js:func:`writeArrayToMemory`' mapped_wiki_inline_code['writeAsciiToMemory'] = ':js:func:`writeAsciiToMemory`' mapped_wiki_inline_code['writeAsciiToMemory()'] = ':js:func:`writeAsciiToMemory`' mapped_wiki_inline_code['writeStringToMemory'] = ':js:func:`writeStringToMemory`' mapped_wiki_inline_code['writeStringToMemory()'] = ':js:func:`writeStringToMemory`' return mapped_wiki_inline_code
UTF-8
Python
false
false
63,319
py
91
api_items.py
48
0.715709
0.714193
0
667
93.931034
154
erraa/kresets
2,731,599,236,036
14458bfab447687a76eb8e0ff52f4c126f91aa6c
975bd514c540b4c7376e0165af24a3cac657af8c
/app/views.py
663fb32cb98b26b0889aef147ebcd6a730919927
[]
no_license
https://github.com/erraa/kresets
421c9f9f4fe77be6896d366c0a69837c86aa4af3
1f62cfecf00ed6d69a2f3a32993b25d69b0a6ef4
refs/heads/master
2020-04-06T06:57:20.069087
2016-09-11T08:14:07
2016-09-11T08:14:07
64,059,193
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from flask import render_template from app import app @app.route('/') @app.route('/index') def index(): posts = [{'body': 'ONYXIA'}, {'body', 'ZG'}] wberg = {'wberg': 'Wbergs Mamma'} return render_template('index.html', title='Home', wberg=wberg, posts=posts )
UTF-8
Python
false
false
382
py
3
views.py
1
0.455497
0.455497
0
13
28.384615
48
jacealan/booktalk
5,514,738,010,046
63287efae402d896ae7aea2959dc85c7f7ac4377
5c874d83da5c246b7fdf8a1cd778bd9eba0f963d
/jacevenv/lib/python3.6/re.py
5eba8bbaea92008a5738bb3004cf80d138008a0d
[]
no_license
https://github.com/jacealan/booktalk
29a5061436ec9ebf571b32b7e7831363a2a824ba
fb3f823966de8f280caead2b0519804d6ff45028
refs/heads/master
2021-08-28T07:11:00.763662
2017-12-11T14:35:30
2017-12-11T14:35:30
113,454,681
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
/Users/jace/anaconda3/lib/python3.6/re.py
UTF-8
Python
false
false
41
py
54
re.py
48
0.804878
0.731707
0
1
41
41
ZipluxLHS/pyziplux
12,953,621,371,989
5dec25f49b107e7cf7df4344e4fde3c0bf4b1e94
d91f24ae8b47947af0241ad81dbbe9d20dcbe431
/microsoft/office.py
1057fdeaaf001f0512ab87cc7d227175db68ff90
[ "MIT" ]
permissive
https://github.com/ZipluxLHS/pyziplux
e404cbb883d30a3007bb94476568c0c8393b52fc
1d8ada67e6237b30c35805b4b34c01f14865164f
refs/heads/main
2023-08-25T00:09:07.173748
2021-10-20T09:52:00
2021-10-20T09:52:00
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import openpyxl from openpyxl import Workbook from openpyxl.comments import Comment class Xlsx: def __init__(self, filePath): self.path = filePath def writeWorkbook(self, source): self.wb = Workbook() ws = self.wb.active for each in source: ws.append(each) self.wb.save(self.path) def writeComment(self, **comments): for each in comments: self.ws["{}".format(each)].comment = Comment('{}'.format(comments[each]), 'Ziplux') self.wb.save(self.path) def readWorkbook(self): self.wb = openpyxl.load_workbook(self.path) memory.msm.info(tagName='readWorkbook(filePath) :', tag=self.path) return self.wb.sheetnames def readWorksheet(self, sheetname): memory.msm.info(tagName='sheetname :', tag=sheetname) ws = self.wb[sheetname] df = pd.DataFrame(ws.values) return df
UTF-8
Python
false
false
988
py
3
office.py
3
0.580972
0.580972
0
31
29.935484
95
m-nez/mtg_deck_compiler
5,102,421,186,922
1984fd2d40874571b0b057a3ae8953015b0ee5b7
57592c985f0823264c7025f59151681ab4b0d192
/mtg_deck_compiler.py
06ffe21e161c931b6df7703ebc63b569100ba738
[]
no_license
https://github.com/m-nez/mtg_deck_compiler
1a317601789536eebc6a7fcfd06daf03abf02af7
36b76e91ee26f733bed7729694de489c288499ee
refs/heads/master
2020-12-25T19:39:22.923284
2018-12-30T14:23:03
2018-12-30T14:23:03
64,498,380
2
1
null
false
2017-10-15T17:51:48
2016-07-29T17:25:46
2016-07-29T17:29:04
2017-10-15T17:51:47
4
0
1
0
Python
null
null
#!/usr/bin/python3 # -*- coding: UTF-8 -*- """ MTG deck compiler Copyright (C) 2016, 2017 Michał Nieznański This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import re import requests import os.path import urllib import argparse import uuid import logging from subprocess import call from fpdf import FPDF def exists_abort(*args): for p in args: if os.path.exists(p): ans = input("".join(["Warning: ", p, " already exists. Do you want to overwrite it? [y/n] "])) if ans != "y": print("Aborting") exit(0) class MagicCards: _root = "http://magiccards.info" def make_query(cardname): cname = cardname.replace(" ", "+") query = "http://magiccards.info/query?q=%s&v=card&s=cname" % cname return query def img_url(site, card): m = re.search(r'img\s+src="([^"]+)"\s+alt="%s"' % card, site, re.M) if m == None: raise LookupError("Could not find image for: %s" % card) return m.group(1) def change_lang(url, lang): spl = url.split("/") spl[2] = language return "/".join(spl) @classmethod def get_img_url(cls, card): q = MagicCards.make_query(card) r = requests.get(q) url = MagicCards.img_url(r.text, card) if not url.startswith("http://"): url = urllib.parse.urljoin(cls._root, url) return url class Gatherer: def make_query(cardname): query = "http://gatherer.wizards.com/Pages/Search/Default.aspx?name=+[%s]" % cardname return query def get_img_url(card): q = Gatherer.make_query(card) r = requests.get(q) mvid = r.url[r.url.find("=") + 1:] url = "".join(["http://gatherer.wizards.com/Handlers/Image.ashx?multiverseid=", mvid, "&type=card"]) return url class Scryfall: def save_img(cardname, filename): response = requests.get( "https://api.scryfall.com/cards/named", params={"exact" : cardname, "format" : "image"} ) with open(filename, "wb") as f: f.write(response.content) def save_img(url, filename): r = requests.get(url) if len(r.content) == 0: print("Error: Incorrect url", url, "for", filename) return with open(filename, "wb") as f: f.write(r.content) class ImageMagic: _resolution = (312, 445) @classmethod def resize(cls, img): """ Use ImageMagic to resize images to the common size """ new_size = '%dx%d!' % cls._resolution call(['convert', img, '-resize', new_size, img]) @classmethod def montage3x3(cls, images, output): """ Make an image with a 3x3 table from input images """ size = "%dx%d+8+8" % (cls._resolution) call(["montage", "-tile", "3x3", "-geometry", size, "-depth", "8", *images, output]) @staticmethod def convert(images, output): call(["convert", *images, output]) class ImageTools: _w = 210 _h = 297 @classmethod def pdf_from_images(cls, images, output): pdf = FPDF() for image in images: pdf.add_page() pdf.image(image, x=0, y=0, w=cls._w, h=cls._h) pdf.output(output, "F") class Compiler: def __init__(self, deck, directory="", prefix="page", img_format="png", overwrite=False): self._directory = directory self._deck = deck self._dict = {} self._prefix = prefix self._suffix = "".join([".", img_format]) self.load_dec(deck) self._images = [] self._overwrite = overwrite def load_dec(self, filename): f = open(filename, "r") self._dict = {} self._size = 0 for l in f: if l[0] == "#" or l[0] == "\n": continue if l.startswith("SB:"): count, name = l.split(maxsplit = 2)[1:] else: count, name = l.split(maxsplit=1) count = int(count) name = name.strip() if name not in self._dict: self._dict[name] = count else: self._dict[name] += count self._size += count def download_img(self): """ Download deck cards from magiccards or gatherer """ for card in self._dict: if self.check_cache(card): print("Found cached: %s" % card) else: print("Downloading: %s" % card) path = os.path.join(self._directory, card) exists_abort(path) try: Scryfall.save_img(card, path) except Exception as e: logging.info(e) try: url = MagicCards.get_img_url(card) except LookupError as e: logging.info(e) url = Gatherer.get_img_url(card) if not self._overwrite: exists_abort(path) save_img(url, path) ImageMagic.resize(path) def check_cache(self, img): """ Check if image is in the cache """ return os.path.isfile(os.path.join(self._directory, img)) def make_montage(self): num_pages = (self._size - 1) // 9 + 1 images = [os.path.join(self._directory, im) for im in self._dict for i in range(self._dict[im])] self._images = [] for i in range(num_pages): output = "".join([self._prefix, str(i), self._suffix]) if not self._overwrite: exists_abort(output) ImageMagic.montage3x3(images[i * 9 : (i + 1) * 9], output) self._images.append(output) def merge_pdf(self, output): if not output.lower().endswith(".pdf"): output = "".join([output, ".pdf"]) if not self._overwrite: exists_abort(output) ImageTools.pdf_from_images(self._images, output) def remove_images(self): call(["rm", *self._images]) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Generate pages containg up to 9 cards from a deck file.") parser.add_argument("deck_file", type=str, help="path to a deck file with each line being: quantity cardname") parser.add_argument("-p", "--prefix", default=uuid.uuid1().hex, type=str, help="prefix attached to each generated file") parser.add_argument("-c", "--cache", default="/tmp/mtg_deck_compiler_cache", type=str, help="directory with cached card images") parser.add_argument("-f", "--format", default="png", type=str, help="image format of the generated images") parser.add_argument("-m", "--merge", default="", help="path to merged pdf file generated from images") parser.add_argument("-k", "--keep", action="store_true", help="don't delete the images after generating the merged pdf") parser.add_argument("-o", "--overwrite", action="store_true", help="overwrite files without asking") parser.add_argument("-l", "--log-level", default="INFO", choices=["CRITICAL", "INFO"], help="set log level") args = parser.parse_args() logging.basicConfig(level=args.log_level) if not os.path.exists(args.cache): os.makedirs(args.cache) p = Compiler( args.deck_file, directory=args.cache, prefix=args.prefix, img_format=args.format, overwrite=args.overwrite) p.download_img() p.make_montage() if args.merge: p.merge_pdf(args.merge) if not args.keep: p.remove_images()
UTF-8
Python
false
false
8,517
py
2
mtg_deck_compiler.py
1
0.549031
0.542572
0
254
32.523622
108
kenpuca/db.science.uoit.ca
18,528,488,956,972
83d5c61d22d614005973eb782b4da2fc3e7371ac
93cafda4d25704cf00e11eb3457918c427a83cad
/courses/algorithms/mst/code/mst.py
629ea729d589110961bbdd530da9ae9c87ea8ecf
[]
no_license
https://github.com/kenpuca/db.science.uoit.ca
92983a0188be294d4891a6fd8410823749a2ea76
970cbbeb691ef72bb6cec4def59c0640ccf5ee81
refs/heads/master
2020-05-21T22:49:41.674556
2017-10-25T02:17:01
2017-10-25T02:17:01
63,455,393
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def minimal_edge(H, V0): """pick an edge with the minimal weight from V0 to the rest of the nodes""" w_min = None e_min = None for e in H.E.keys(): if e[0] in V0 and e[1] not in V0: w = H.E[e]["weight"] if w_min == None or w < w_min: e_min = e w_min = w return e_min def prims(G, debug=None): "returns a list of edges" tree_nodes = set() tree_edges = set() # start with an arbitrarily picked vertex N = len(G.V) v = G.V.keys()[0] tree_nodes.add(v) for i in range(N-1): if debug: debug(i, tree_nodes, tree_edges) e = minimal_edge(G, tree_nodes) if not e: print "graph is not fully connected" return tree_edges tree_nodes.add(e[1]) tree_edges.add(e) if debug: debug(i, tree_nodes, tree_edges) return tree_edges #================================ # Kruskal #================================ def find_set(partition, v): for i,p in enumerate(partition): if v in p: return i return None def join_sets(partition, i1, i2): p1 = partition[i1] p2 = partition[i2] j1 = min(i1, i2) j2 = max(i1, i2) partition[j2:j2+1] = [] # remove the later one partition[j1:j1+1] = [p1 | p2] def kruskal(G, debug=None): "returns a list of edges" # get the edges and short by the weights tree_edges = set() edges = [e for e in G.E.keys() if e[0] < e[1]] edges.sort(key=lambda e: G.E[e]["weight"]) partition = [set([v]) for v in G.V.keys()] for i,e in enumerate(edges): if len(partition) == 1: break i1 = find_set(partition, e[0]) i2 = find_set(partition, e[1]) if not i1 == i2: join_sets(partition, i1, i2) tree_edges.add(e) if debug: debug(i, None, tree_edges) return tree_edges
UTF-8
Python
false
false
1,916
py
72
mst.py
20
0.518789
0.497912
0
70
26.371429
50
rscgh/BA4445_Classifier
5,970,004,570,729
52a6bdebb325175d41b46ce3a79c298c630f73be
3579859cc04f12aa4554feb7f5f7c01bc9dab449
/hcp_tools.py
8b1a72440a9437ba844280e56032683ad40a1367
[]
no_license
https://github.com/rscgh/BA4445_Classifier
bcbebd852555874b251d1a8aedb66298ccf8205e
e92093f2a2e4a74584575d1485fca383b9a4ffc7
refs/heads/main
2023-07-29T18:23:22.624979
2021-09-14T11:22:54
2021-09-14T11:22:54
302,207,034
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/local/bin/python # -*- coding: utf-8 -*- ''' preprocess_and_load_tseries is based off the original script by Şeyma Bayrak, https://github.com/sheyma repository located on: https://github.com/NeuroanatomyAndConnectivity/hcp_corr code was a bit more streamlined and put up to date furthermore the option for smoothing was added; for that the wb_command needs to be available from the systems terminal ''' ## called from ICA_HCP like: ## t_series(subject = "/scr/murg2/HCP_Q3_glyphsets_left-only/100307", hemisphere='LH', N_first=0, N_cnt=32492) ## K = t_series(subject = "/data/t_hcp/S500_2014-06-25/_all/100307", hemisphere='LH', N_first=0, N_cnt=32492) # from load_hcp_annotated_rsc import t_series from glob import glob import os import nibabel as nib import numpy as np import subprocess from matplotlib import pyplot as plt ############################ # Global import data cort = np.loadtxt('res/indices_LH_29696_of_32492.txt').astype(np.int).tolist() mask = np.zeros((32492)); np.put(mask, cort, 1) bm_leftown = nib.cifti2.BrainModelAxis.from_mask(mask, "LEFT_CORTEX") ############################ # Saving files def save_LH_29k_dtseries(): pass; # this is not really functional yet ... def get_LH_29k_brainmodel(mask_indices = None, extract_brain_mode_from_file = None, area_list = ["LH"] ): if mask_indices is None: if extract_brain_mode_from_file is None: extract_brain_mode_from_file = '/data/t_hcp/S500_2014-06-25/_all/100307/MNINonLinear/Results/rfMRI_REST1_LR/rfMRI_REST1_LR_Atlas_hp2000_clean.dtseries.nii'; img = nib.load(extract_brain_mode_from_file) cort = list(img.header.matrix._mims[1].brain_models)[0].vertex_indices._indices mask_indices = cort mask = np.zeros((32492)); np.put(mask, mask_indices, 1) brainmodel = nib.cifti2.BrainModelAxis.from_mask(mask, "LEFT_CORTEX") return brainmodel # data should be numpy array of (n_scalars, n_vertices) i.e. 10, 29696 def save_dscalar(filename, data, brainmodel, scalar_names = None, subset = None): n_scalars = data.shape[1]; n_vertices = brainmodel.size; # i.e. 29696 for only left hemisphere in 32k_FS_LR if scalar_names is None: scalar_names = [str(x) for x in range(data.shape[1])] new_scalar_axis = nib.cifti2.ScalarAxis(scalar_names); ni_header = nib.cifti2.Cifti2Header.from_axes((new_scalar_axis, brainmodel)) if not(subset is None): newdata = np.zeros((n_scalars, n_vertices)) newdata[:,subset] = data; data = newdata; nib.Cifti2Image( data, ni_header).to_filename(filename); return; # Visualization and saving helper functions: def quick_cifti_ds(data, dsnames = None, fn = None, return_img=False): global bm_leftown; if dsnames is None: dsnames = ['img%i' % (x) for x in range(data.shape[0])] cimgvis4 = nib.Cifti2Image(data, nib.cifti2.Cifti2Header.from_axes((nib.cifti2.ScalarAxis(dsnames), bm_leftown))) if not (fn is None): cimgvis4.to_filename(fn); if return_img: return cimgvis4; return; def quick_show_FS32k(mesh="flat", ref="S1200"): #global ... pass from matplotlib.ticker import MaxNLocator def imtlshow(img, plot = plt, ax = plt.gca(), show = True): plt.imshow(img.T) tlshow(show=show) def tlshow(plot = plt, ax = plt.gca(), show=True): #ax.set_ylim(ax.get_ylim()[::-1]) # invert the axis #ax.yaxis._update_ticks() #ax.yaxis.set_ticks(ax.yaxis.get_major_ticks()[::-1]) # set y-ticks #ax.yaxis.tick_left() # remove right y-Ticks ax.invert_yaxis() ax.set_ylim(ax.get_ylim()[::-1]) ax.xaxis.tick_top() # and move the X-Axis ax.yaxis.set_major_locator(MaxNLocator(integer=True)) ax.xaxis.set_major_locator(MaxNLocator(integer=True)) if show: plt.show() def get_individual_IFG(sub, hcp_all_path = '/data/t_hcp/S500_2014-06-25/_all'): anatlabp = os.path.join(hcp_all_path, sub, 'MNINonLinear/fsaverage_LR32k/%s.L.aparc.32k_fs_LR.label.gii' % (sub)) AnatLabels = nib.load(anatlabp) #AnatLabels2 = nib.gifti.giftiio.read(anatlabp) #AnatLabels.print_summary() #AnatLabels.get_labeltable().labels[20].label #-> u'L_parstriangularis' #AnatLabels.darrays[0].data.shape #-> (32492,); elements: array([10, 29, 24, ..., 15, 15, 15], dtype=int32) AnatLabelsData= AnatLabels.darrays[0].data op = AnatLabelsData == 18; # shape: (32492,) tri = AnatLabelsData == 20; #np.count_nonzero((op+tri)) # -> 989 voxels in the combined region return [op, tri]; #previously called: t_series def preprocess_and_load_tseries(subject_dir, # i.e. "/scr/murg2/HCP_Q3_glyphsets_left-only/100307" subject_id, # i.e. 100307 template = None, cnt_files=4, hemisphere='LH', N_first=None, # i.e. 0 N_cnt=None, # i.e. 32492 svoxels of one hemisphere dtype=None, smoothing=False, # recently added, done before normalization and concatenation; temp_dir ="", # used for storing the intermediate smoothing files, if none is given, the script execution dir is used keep_tmp_files = False, normalize=True): """Load/write Human Connectome Project (HCP) neuroimaging files via NiBabel module. The HCP data is released in GIFTI format (*nii extention) for almost 500 subjects. This script aims to get concetanation of all time-series for each subject. subject : string subject = data_path + subject_id. e.g. subject = '/a/documents/connectome/_all/100307' template : string Template is the sketch-name of *.nii files (GIFTI format), it is hard- coded as template_flag and template_orig... cnt_files : int Number of *.nii files of interest for a subject. The template above has 4 forms in total, therefore cnt_files = 4 hemisphere : string # LH: CORTEX_LEFT >> N_first = 0, N_cnt = 29696 # RH: CORTEX_RIGHT >> N_first = 29696, N_cnt = 29716 # UL: ACCUMBENS_LEFT >> N_first = 59412, N_cnt = 135 # UR: ACCUMBENS_RIGHT >> N_first = 59547, N_cnt = 140 # ML: AMYGDALA_LEFT >> N_first = 59687, N_cnt = 315 # MR: AMYGDALA_RIGHT >> N_first = 60002, N_cnt = 332 # BS: BRAIN_STEM >> N_first = 60334, N_cnt = 3472 # CL: CAUDATE_LEFT >> N_first = 63806, N_cnt = 728 # CR: CAUDATE_RIGHT >> N_first = 64534, N_cnt = 755 # EL: CEREBELLUM_LEFT >> N_first = 65289, N_cnt = 8709 # ER: CEREBELLUM_RIGHT >> N_first = 73998, N_cnt = 9144 # DL: DIENCEPHALON_VENTRAL_LEFT >> N_first = 83142, N_cnt = 706 # DR: DIENCEPHALON_VENTRAL_RIGHT >> N_first = 83848, N_cnt = 712 # HL: HIPPOCAMPUS_LEFT >> N_first = 84560, N_cnt = 764 # HR: HIPPOCAMPUS_RIGHT >> N_first = 85324, N_cnt = 795 # PL: PALLIDUM_LEFT >> N_first = 86119, N_cnt = 297 # PR: PALLIDUM_RIGHT >> N_first = 86416, N_cnt = 260 # AL: PUTAMEN_LEFT >> N_first = 86676, N_cnt = 1060 # AR: PUTAMEN_RIGHT >> N_first = 87736, N_cnt = 1010 # TL: THALAMUS_LEFT >> N_first = 88746, N_cnt = 1288 # TR: THALAMUS_RIGHT >> N_first = 90034, N_cnt = 1248 # full : all of them >> N_first = 0, N_cnt = 91282 K : output, numpy.ndarray Concetanation of time-series matrices obtained from each *.nii file. References : http://www.humanconnectome.org/ https://github.com/satra/nibabel/tree/enh/cifti2 right nibabel version to download: $ git clone --branch enh/cifti2 https://github.com/satra/nibabel.git """ ''' subject='/data/t_hcp/S500_2014-06-25/_all/100307' subject='/data/t_hcp/S500_2014-06-25/_all/103414' ''' template_flat = 'rfMRI_REST?_??_Atlas_hp2000_clean.dtseries.nii' template_orig = 'MNINonLinear/Results/rfMRI_REST?_??/rfMRI_REST?_??_Atlas_hp2000_clean.dtseries.nii' ''' from glob import glob glob(os.path.join(subject, template_flat)) files = glob(os.path.join(subject, template_orig)) -> yields 4 files: /data/t_hcp/S500_2014-06-25/_all/100307/MNINonLinear/Results/rfMRI_REST1_LR/rfMRI_REST1_LR_Atlas_hp2000_clean.dtseries.nii /data/t_hcp/S500_2014-06-25/_all/100307/MNINonLinear/Results/rfMRI_REST1_LR/rfMRI_REST[1|2]_[LR|RL]_Atlas_hp2000_clean.dtseries.nii ''' # search files in given and default templates files = [] if template != None: files = [val for val in sorted(glob(os.path.join(subject_dir, template)))] if len(files) == 0: files = [val for val in sorted(glob(os.path.join(subject_dir, template_flat)))] if len(files) == 0: files = [val for val in sorted(glob(os.path.join(subject_dir, template_orig)))] if len(files) < cnt_files: return [] #raise Exception('Not enough files found!') files = files[:cnt_files] print(files) smooth_files = [] ### Smoothing if smoothing: for filen in files: local_tar_filename = os.path.join(temp_dir,"smooth_tmp_%s_" %(subject_id) + os.path.split(filen)[-1]) left_surface_file = os.path.join(subject_dir, "MNINonLinear/fsaverage_LR32k/%s.L.midthickness.32k_fs_LR.surf.gii" % (subject_id)) right_surface_file = os.path.join(subject_dir, "MNINonLinear/fsaverage_LR32k/%s.R.midthickness.32k_fs_LR.surf.gii" % (subject_id)) print("left_surface_file: ", left_surface_file) if os.path.exists(local_tar_filename): smooth_files.append(local_tar_filename) continue; command = "wb_command -cifti-smoothing %s 2 2 COLUMN %s -left-surface %s -right-surface %s" % (filen, local_tar_filename, left_surface_file, right_surface_file) print("Smoothing now: ", filen, " using the following command:\n", command) subprocess.call(command.split()) print("Done.") smooth_files.append(local_tar_filename) files = smooth_files; print("Final smooth files: ", smooth_files) # dictionary for brain structures label_index = { 'LH':0, 'RH':1, 'UL':2, 'UR':3, 'ML':4, 'MR':5, 'BS':6, 'CL':7, 'CR':8, 'EL':9, 'ER':10, 'DL':11, 'DR':12, 'HL':13, 'HR': 14, 'PL':15, 'PR':16, 'AL': 17, 'AR':18, 'TL':19, 'TR':20 } for x in range(0, cnt_files): # x = 1; x=2... # import nibabel as nb print("load file: ", files[x]) img = nib.load(files[x]) # if beginning and end indices given manually if (N_first != None and N_cnt != None): # img.data is decrepeted; now usw img.get_fdata() (should be the same as img.get_data()) # img.get_fdata().shape ~ (1200, 91282), 1200 timepoints x 91282 svoxels; just select the left hemisphere voxels #single_t_series = img.data[:, N_first:N_first+N_cnt].T single_t_series = img.get_fdata()[:, N_first:N_first+N_cnt].T # yields a numpy.ndarray of shape (32492, 1200) with floating point values float64 ... # if a particular brain structure wanted # seems like hemisphere is ignored if N_first and N_cnt are given elif hemisphere != 'full': # find out the indices of brain structure of interest hem = label_index[hemisphere] # yields 0 for 'LH' print("BRAIN STRUCTURE: ") # print img.header.matrix.mims[1].brainModels[hem].brainStructure print(list(img.header.matrix._mims[1].brain_models)[hem].brain_structure) # -> CIFTI_STRUCTURE_CORTEX_LEFT N_first = list(img.header.matrix._mims[1].brain_models)[hem].index_offset # -> 0 N_cnt = list(img.header.matrix._mims[1].brain_models)[hem].index_count # -> 29696 #single_t_series = img.data[:, N_first:N_first+N_cnt].T single_t_series = img.get_fdata()[:, N_first:N_first+N_cnt].T # if all brain nodes wanted elif hemisphere == 'full': N_first = 0 hem = 1 N_tmp = list(img.header.matrix._mims[1].brain_models)[hem].index_offset N_cnt = list(img.header.matrix._mims[1].brain_models)[hem].index_count N_cnt += N_tmp #single_t_series = img.data[:, N_first:N_first+N_cnt].T single_t_series = img.get_fdata()[:, N_first:N_first+N_cnt].T # length of time series m = single_t_series.shape[1] n = single_t_series.shape[0] m_last = m n_last = n if x == 0: # In first loop we initialize matrix K to be filled up and returned # By default we are using the same dtype like input file (float32) init_dtype = single_t_series.dtype if dtype == None else dtype K = np.ndarray(shape=[n,m], dtype=init_dtype, order='F') else: if m_last != m: print("Warning, %s contains time series of different length" % (subject_dir)) if n_last != n: print("Warning, %s contains different count of brain nodes" % (subject_dir)) K.resize([n, K.shape[1]+m]) # concatenation of (normalized) time-series, column-wise if normalize: mean_series = single_t_series.mean(axis=1) std_series = single_t_series.std(axis=1) K[:, -m:] = ((single_t_series.T - mean_series) / std_series).T else: K[:, -m:] = single_t_series del img del single_t_series # remove the tempoary smooth files if not keep_tmp_files: print("Remove files: ", smooth_files) for file in smooth_files: os.remove(file) return K
UTF-8
Python
false
false
13,989
py
11
hcp_tools.py
5
0.603732
0.561982
0
366
37.213115
168
art32fil/slam_3d_tbm
12,549,894,461,341
49a36439831b200261eab2f78a411461e269cbab
e242e8ecabe19af42e3962fce75c696e4ecbb132
/python_ros_packages/bag_reader/src/bag_to_3D_points_with_poses.py
97ff7c8a0e5bfc3931fa46cef7d6d9ba70004178
[]
no_license
https://github.com/art32fil/slam_3d_tbm
956931e72273134922618608a884850b8d0bfe1b
3ab07daeb743807ec211b0776621454a1294e9a2
refs/heads/master
2020-09-10T04:00:53.116074
2020-04-13T09:19:31
2020-04-13T09:19:31
221,643,189
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python3 import rospy import rosbag import sensor_msgs from sensor_msgs.msg import PointCloud2 as pcl2 from sensor_msgs import point_cloud2 as pcl2_handler import tf2_ros import tf2_py as tf2 from tf2_sensor_msgs.tf2_sensor_msgs import do_transform_cloud from geometry_msgs.msg import TransformStamped from geometry_msgs.msg import Vector3 from geometry_msgs.msg import Quaternion import tf.transformations as tr import numpy as np from ros_numpy import point_cloud2 import math from sensor_msgs.msg import ChannelFloat32 from visualization_msgs.msg import Marker from map import Map from map import cell_to_prob from map import merge_cells from bresenham import bresenhamline from bresenham import _bresenhamlines from cloud_to_marker import cloud_to_marker class Cloud: def __init__(self, name="", values=np.array([[]])): self.name = name self.values = values def position_to_cell(pose, scale): i = int(math.floor(pose[0]/scale)) j = int(math.floor(pose[1]/scale)) k = int(math.floor(pose[2]/scale)) return np.array([[i,j,k]]) def positions_to_cell(array, scale): return np.floor(array/scale).astype(int) def get_pose_angle(transform): if not isinstance(transform, TransformStamped): rospy.logwarn("try to convert tansform of incorrect type.\nThe type is %s\nThe possible type is %s", type(transform).__name__, "TransformStamped") pose = transform.transform.translation orientation = transform.transform.rotation p = np.array([pose.x, pose.y, pose.z]) a = np.array(tr.euler_from_quaternion([orientation.x, orientation.y, orientation.z, orientation.w])) return p,a def getSE3_matrix(pose,angels): # pose = np.array([x, y, z]) # angels = np.array([ax, ay, az]) g = tr.euler_matrix(angels[0], angels[1], angels[2]) g[0:3, -1] = pose return g def transformStamped_to_SE3(transform): if not isinstance(transform, TransformStamped): rospy.logwarn("try to convert tansform of incorrect type.\nThe type is %s\nThe possible type is %s", type(transform).__name__, "TransformStamped") p,a = get_pose_angle(transform) g = getSE3_matrix(p,a) return g def transform_cloud(SE3, new_frame, cloud): cloud_out = Cloud() cloud_out.name = new_frame cloud_out.values = np.matmul(SE3, cloud.values) return cloud_out def cost_of_scan(grid_map, scan, robot_pose): occupied_points = scan + np.array([grid_map.Zx, grid_map.Zy, grid_map.Zz]) occ_cells = grid_map.map[occupied_points[:,0],occupied_points[:,1],occupied_points[:,2]] value = np.sum(cell_to_prob(merge_cells(occ_cells, np.array([0.9,0.5,0.5])))) return value#accumulator def find_best_pose(grid_map, scan_meters, robot_pose_meters, robot_angles, scale, world_frame): final_pose = robot_pose_meters final_angles = robot_angles SE3 = getSE3_matrix(final_pose, final_angles) cloud_out = transform_cloud(SE3, world_frame, scan_meters) cloud_cells = positions_to_cell(np.transpose(cloud_out.values[0:-1]), scale) robot_cells = position_to_cell(robot_pose_meters, scale) max_cost = cost_of_scan(grid_map, cloud_cells, robot_cells) final_robot_cells = robot_cells final_cloud_cells = cloud_cells final_pose_delta = np.array([0.0, 0.0, 0.0]) final_angles_delta = np.array([0.0, 0.0, 0.0]) for i in range(1000): delta_pose = 0.5*scale*np.random.randn(3) delta_angles = 0.01*np.random.randn(3) if scan_matcher_is_used == False: delta_pose = np.array([0,0,0]) delta_angles = np.array([0,0,0]) new_pose = final_pose + delta_pose new_angles = final_angles + delta_angles new_SE3 = getSE3_matrix(new_pose, new_angles) #print(SE3 - new_SE3) #print("before transform_cloud") #t = rospy.Time.now() cloud_out = transform_cloud(new_SE3, world_frame, scan_meters) #print("transform_cloud executes: ", rospy.Time.now() - t) #print("after transform_cloud") cloud_cells = positions_to_cell(np.transpose(cloud_out.values[0:-1]), scale) robot_cells = position_to_cell(new_pose, scale) #print("before cost_of_scan") #t = rospy.Time.now() cost = cost_of_scan(grid_map, cloud_cells, robot_cells) #print("min_cost: ", min_cost, ", cost: ", cost) #print("cost_of_scan executes: ", rospy.Time.now() - t) #print("after cost_of_scan") if cost > max_cost*1.05: max_cost = cost final_pose = new_pose final_angles = new_angles final_robot_cells = robot_cells final_cloud_cells = cloud_cells final_pose_delta = delta_pose final_angles_delta = delta_angles return final_pose, final_angles, final_robot_cells, final_cloud_cells, final_pose_delta, final_angles_delta def get_tf_transform(in_which_frame, what_frame, tf_buffer): try: trans = tf_buffer.lookup_transform(in_which_frame, what_frame, rospy.Time(0), rospy.Duration(4)) except tf2.LookupException as ex: rospy.logwarn(ex) return None except tf2.ExtrapolationException as ex: rospy.logwarn(ex) return None return trans def time_to_s_ms_ns(t): t = t.to_nsec() secs = int(t/1000000000) msecs = int(t/1000000) - 1000*secs mksecs = int(t/1000) - 1000*msecs - 1000000*secs nsecs = t - 1000*mksecs - 1000000*msecs - 1000000000*secs return "%ss %sms %smks %sns"%(secs,msecs,mksecs,nsecs) if __name__ == '__main__': rospy.init_node("name_by_default") np.random.seed(int(rospy.get_param('~seed'))) rospy.loginfo("begin") pose_out_file = open(str(rospy.get_param('~out/file_poses')), 'w') bag_name = str(rospy.get_param('~bag/file_path')) bag = rosbag.Bag(bag_name, 'r') topic_pcl2_name = str(rospy.get_param('~bag/topic_pcl')) world_frame = str(rospy.get_param('~tf/world_frame')) odom_frame = str(rospy.get_param('~tf/odom_frame')) camera_frame = str(rospy.get_param('~tf/pcl_frame')) scan_matcher_is_used = bool(rospy.get_param('~sm/allow_scan_matcher')) rospy.loginfo("before_for") tf_buffer = tf2_ros.Buffer() tf_bc = tf2_ros.TransformBroadcaster() tf_listener = tf2_ros.TransformListener(tf_buffer) pub1 = rospy.Publisher("~/transormed_pc", Marker, queue_size=10) pub2 = rospy.Publisher("~/original_pc", Marker, queue_size=10) scale = float(rospy.get_param("~map/meters_per_cell")) r = rospy.Rate(1) m = Map(scale) t3 = rospy.Time.now() dp = np.array([0., 0., 0.]) dp_abs = np.array([0., 0., 0.]) da = np.array([0., 0., 0.]) pose = np.array([0., 0., 0.]) angle = np.array([0., 0., 0.]) for topic, msg, time in bag.read_messages(topics = [topic_pcl2_name, "/tf", "/tf_static"]): if rospy.is_shutdown(): break if topic == "/tf" or topic == "/tf_static": transorms = msg for msg_tf in transorms.transforms: tf_bc.sendTransform(msg_tf) msg_tf = TransformStamped() msg_tf.header.stamp = time msg_tf.header.frame_id = world_frame msg_tf.child_frame_id = odom_frame msg_tf.transform.translation = Vector3(dp[0],dp[1],dp[2]) q = tr.quaternion_from_euler(da[0],da[1],da[2]) msg_tf.transform.rotation = Quaternion(q[0],q[1],q[2],q[3]) tf_bc.sendTransform(msg_tf) elif topic == topic_pcl2_name: cloud = Cloud(msg.name, np.reshape(np.array(msg.values, dtype=np.float32),(4,-1),'F')) #pts = pcl2_handler.read_points(msg, skip_nans=True, field_names=("x", "y", "z")) pts = cloud.values #print(pts.shape) trans = get_tf_transform(in_which_frame = world_frame, what_frame = camera_frame, tf_buffer = tf_buffer) if (trans == None): continue p,a = get_pose_angle(trans) print("p: ", p, " a: ", a) pose = p angle = a #SE3 = getSE3_matrix(p,a) camera_pose_cell = position_to_cell(p, scale) #print(camera_pose_cell) #cloud_out = transform_cloud(SE3, trans.header.frame_id, cloud) #pts = cloud_out.values t1 = rospy.Time.now() print("pub markers: ", time_to_s_ms_ns(t1 - t3)) #print(cloud_out.values.shape) #occupied_cells = np.transpose(positions_to_cell(pts[0:-1,:],scale)) (best_camera_pose_meters, best_camera_angles, best_camera_cells, best_cloud_cells, delta_pose, delta_angle) = find_best_pose(m, cloud, pose, angle, scale, world_frame) pose_quaternion = tr.quaternion_from_euler(best_camera_angles[0], best_camera_angles[1], best_camera_angles[2]) pose_out_file.write(str(time.to_sec())+" "+ str(best_camera_pose_meters[0])+" "+ str(best_camera_pose_meters[1]) + " " + str(best_camera_pose_meters[2])+ " "+ str(pose_quaternion[0])+" "+str(pose_quaternion[1])+" "+str(pose_quaternion[2])+" "+str(pose_quaternion[3])+"\n") cloud_out = transform_cloud(getSE3_matrix(best_camera_pose_meters, best_camera_angles), world_frame, cloud) print("dp: ", positions_to_cell(delta_pose,scale), " da: ", delta_angle) trans = get_tf_transform(in_which_frame = world_frame, what_frame = odom_frame, tf_buffer = tf_buffer) p,a = get_pose_angle(trans) dp = p + delta_pose da = a + delta_angle print("dp_: ", positions_to_cell(dp,scale), " da_ ", da) lines = _bresenhamlines(best_cloud_cells, best_camera_cells,-1) t2 = rospy.Time.now() print("scan matcher: ", time_to_s_ms_ns(t2 - t1)) #print(type(line[0][0]).__name__) #m.update_cells(line,np.array([0.05, 0.9, 0.05])) #m.update_cells(best_cloud_cells,np.array([0.9, 0.05, 0.05])) for line in lines: l = -0.5 exp = 0.95*np.exp(l*np.arange(0,len(line))) cell_values = np.transpose(np.array([exp, 0.95 - exp, 0.05*np.ones(len(line))])) m.update_cells(line,cell_values) t3 = rospy.Time.now() print("update cells: ", time_to_s_ms_ns(t3 - t2)) #pub1.publish(cloud_to_marker(cloud_out,1,0,0)) #pub2.publish(m.to_marker()) #pub2.publish(cloud_to_marker(cloud,0,1,0)) #r.sleep() #input("Press Enter to continue...") pose_out_file.close() rospy.loginfo("after_for")
UTF-8
Python
false
false
9,837
py
14
bag_to_3D_points_with_poses.py
11
0.663312
0.637694
0
271
35.239852
136
ellenmconsidine/Python-Slang-Dictionary
4,088,808,893,962
ce4a0ae2beb1e86304a41d43b2a5222efe572075
6095fbed62280243314037da2f9ab3bc7570e041
/Assignment10_Considine.py
d38fc21515d1a427771de540ac7059d4087bfaac
[]
no_license
https://github.com/ellenmconsidine/Python-Slang-Dictionary
dfb84442c1f4a60a00c47bf6b2f51083e498e0c1
329870cba94390ea463fceb68c747cfb3febbc95
refs/heads/master
2021-01-11T20:03:09.338352
2017-01-19T13:51:39
2017-01-19T13:51:39
79,457,978
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#Ellen Considine, TA: Ranga, Assignment 10 def CreateDictionary(filename): my_dict = {} lines = [] f = open(filename, 'r') #opening input file x = f.readline() while x != "": lines.append(x) x = f.readline() f.close() #closing input file for i in range(len(lines)): key = "" value = "" for j in range(lines[i].find(',')): key = key + lines[i][j] for k in range(len(key)+1,len(lines[i])): value = value + lines[i][k] my_dict[key] = value #making dictionary entries return my_dict def Deslang(str, dict): words = str.split(' ') English = "" for word in words: #building the phrase in English if word in dict: #checking if each key is in the dictionary English = English + dict[word].strip("\n") + " " else: English = English + word + " " return English def main(): #1 slang_dict = CreateDictionary("textTOEnglish.txt") #2 text = raw_input("Enter a text abbreviation: ") if text in slang_dict: print Deslang(text, slang_dict) else: print "Not found" text = raw_input("Enter a text abbreviation, or 'quit': ") while text != "quit": if text in slang_dict: print Deslang(text, slang_dict) else: print "Not found" text = raw_input("Enter a text abbreviation, or 'quit': ") #3 text = raw_input("Enter some text abbreviations, separated by a space: ") texts = text.split() valid = True for t in texts: if t in slang_dict: valid = True else: valid = False if valid: print Deslang(text, slang_dict) else: print "Not found" text = raw_input("Enter some text abbreviations, separated by a space, or 'quit': ") while text != "quit": texts = text.split() valid = True for t in texts: if t in slang_dict: valid = True else: valid = False if valid: print Deslang(text, slang_dict) else: print "Not found" text = raw_input("Enter some text abbreviations, separated by a space, or 'quit': ") if __name__ == '__main__': main()
UTF-8
Python
false
false
2,299
py
1
Assignment10_Considine.py
1
0.5398
0.53719
0
77
28.857143
92
daniel-reich/ubiquitous-fiesta
2,937,757,676,275
0316b972c911e49a3da6fb7e890538ee696e3b62
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/quMt6typruySiNSAJ_12.py
c1a325dca146548eb733dfed62d4554554f6df03
[]
no_license
https://github.com/daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from math import ceil def shuffle_count(num): d=[i for i in range(num)] ds=[0]*num k=0 while True: d1=d[:num//2] d2=d[num//2:] for i in range(0,num-1,2): ds[i]=d1[ceil(i/2)] ds[i+1]=d2[ceil(i/2)] k+=1 d=ds if d==sorted(d): return k
UTF-8
Python
false
false
334
py
38,088
quMt6typruySiNSAJ_12.py
38,088
0.434132
0.389222
0
15
21.133333
34
briancabbott/GitHub-Repository-Downloader
1,872,605,750,131
2f5483b73e6c932ebf877dd6f2c39f8b97630100
5c157c4e76ca54d30f543e0393eae29d49d90962
/TypeScript/resources/code/ts_lib/Apollo-Latest/apollographql/tap-orbit/tap_orbit/streams/members.py
4f6c836273471a2692c63c145013bd21395610aa
[ "Apache-2.0" ]
permissive
https://github.com/briancabbott/GitHub-Repository-Downloader
a69ccc97100947525fd77e822544b84b82c5636a
b2ea9502f68e64ff4c8e02ff6113f4f4dc927f60
refs/heads/master
2023-05-25T07:21:43.908126
2023-05-21T08:05:45
2023-05-21T08:05:45
148,926,714
1
0
null
false
2022-12-08T23:32:10
2018-09-15T17:59:55
2022-07-10T13:31:30
2022-12-08T23:32:10
126,905
0
0
3
TypeScript
false
false
from tap_orbit.streams.base import BaseStream import singer LOGGER = singer.get_logger() class MembersStream(BaseStream): API_METHOD = "GET" TABLE = "members" KEY_PROPERTIES = ["id"] def response_key(self): return "data" @property def path(self): return "members" @property def api_method(self): return "GET"
UTF-8
Python
false
false
371
py
3,942
members.py
1,770
0.625337
0.625337
0
21
16.666667
45
legendAhsan/commentAnalyzer
8,727,373,564,884
f1b40adf6ab1eaa74d8769f7655a34ffdf5905ee
3fa66cef8a6ffe4546b235304d00e8c9266fcbc1
/app.py
881a6f6d48aed161aa67c8f35ec788f5d9e55447
[]
no_license
https://github.com/legendAhsan/commentAnalyzer
d25c5b2eb010b95d4030494a42b9a919b28c46d1
ef8b7cfa4dff37f9b2b5a631cd9525d882efcb47
refs/heads/master
2023-02-16T18:37:40.828355
2021-01-13T07:39:07
2021-01-13T07:39:07
324,924,056
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from flask import Flask, render_template, request, redirect from sklearn.feature_extraction.text import CountVectorizer import nltk from nltk.corpus import stopwords import string from nltk.stem.snowball import SnowballStemmer import pandas as pd import pickle hell=Flask(__name__) model = pickle.load(open('model.pkl','rb')) cv = pickle.load(open('cv.pkl','rb')) data=[{'name':'Nokia 3310','price':'$50/-','review':0,'comments':[]},{'name':'samsung 3310','price':'$10/-','review':0,'comments':[]}] @hell.route('/') def helloWorld(): return render_template('index.html',data=data) @hell.route('/about/<mobilenumber>') def about(mobilenumber): return render_template('about.html',mobileName=mobilenumber,data=data) @hell.route('/feedback/<mobileName>', methods=['GET','POST']) def comment(mobileName): user=[[request.form['post']]] myword=(user[0])[0] stop=set(stopwords.words('english')) stop.remove('no') stop.remove('not') stop.remove('nor') myword = ' '.join(e for e in myword.split() if e not in stop) myword.lower().strip() s = SnowballStemmer("english") p=[] for word in myword.split(): p.append(s.stem(word)) myword=' '.join(p) y= cv.transform([myword]) prediction= model.predict(y)[0] global data for msg in data: if msg['name']==mobileName: msg['comments'].append((user[0])[0]) if prediction==0: msg['review']-=1 elif prediction==1: msg['review']+=1 break data = sorted(data, key=lambda k: k['review'],reverse=True) return render_template('index.html', data=data) if __name__ == "__main__": hell.run(debug=True)
UTF-8
Python
false
false
1,722
py
8
app.py
3
0.624855
0.611498
0
65
25.492308
134
ben1lam8/USMB-BachelorDIM-Lectures-Algorithms
7,791,070,692,326
61d2a9bb0f43b012e5071620adc655212df9ebd7
1cdfc01aef51ec4872e88fac9347c90ab9483244
/assignments/Session1/S1_dice.py
9960dc160e0fec6063d98a578cdb6d3c3507a4c0
[ "MIT" ]
permissive
https://github.com/ben1lam8/USMB-BachelorDIM-Lectures-Algorithms
8bb89ce974ddafe49e33e47b70723be66bbfdcff
c7a8905462bdda40cb9d567dfa63de14649def5b
refs/heads/master
2021-01-23T19:57:41.416899
2017-10-31T20:29:59
2017-10-31T20:29:59
102,835,826
0
0
null
true
2017-09-08T08:06:46
2017-09-08T08:06:45
2017-08-14T13:32:52
2017-09-07T14:44:48
15
0
0
0
null
null
null
## @namespace S1_dice # A dice game simulation # # @author Benoit Lamit, LPro DIM, IUT Annecy le vieux, FRANCE import random; # Global variables player_score = 0; computer_score = 0; turn_count = 0; ## Game main logic # def main(): #Init the game print("========================================================================"); print("=== Yay! Welcome to the Incredible Dice Game ! ==="); print("========================================================================\n"); print("Rules are easy :"); print("- You play against the computer"); print("- You can throw the dice as many times as you want"); print("- Each time, the dice value will be added to your turn score"); print("- If the dice shows a 1, your turn ends and you lose your turn score"); print("- Reach 100 points to win ! GOOD LUCK\n"); #Iterate trough turns until someone wins while(player_score < 100 and computer_score < 100): #Init the turn global turn_count; turn_count += 1; print("---------------------------------------------"); print(" ROUND {t} ! ".format(t=turn_count)); print("Player : {p} pts | vs | Computer : {c} pts\n".format(p=player_score, c=computer_score)) print("---------------------------------------------"); #Switch between turns if turn_count%2 == 1: player_turn(); else: computer_turn(); #Quit if someone wins if player_score >= 100 : print("YOU WIN !"); print("Congratulations !"); break; elif computer_score >= 100 : print("COMPUTER WINS"); print("Sorry. Come back soon... and retry ;)"); break; #That' all, Folks ! print("End of the game !"); print("Final scores : "); print("Player : {p} pts | vs | Computer : {c} pts\n".format(p=player_score, c=computer_score)) print("Goodbye !"); ## Handles a player round # def player_turn(): print("PLAYER TURN !"); print("-------------"); turn_score = 0; keep_playing=True; raw_input("Press ENTER to throw the dice..."); while keep_playing: dice = random.randint(1, 6); if dice==1: print("Too Bad... it's a 1"); turn_score=0; break; else: print("Got a {d}".format(d=dice)); turn_score += dice; print("Your turn-score is {ts} pts".format(ts=turn_score)); while True: key = raw_input("Keep playing ? y/n (a 1 will make you lose the turn..."); if key == 'y': break; elif key == 'n': keep_playing = False; break; else : print("I don't understand your answer... "); raw_input("You won {p} points (press enter to continue)\n".format(p=turn_score)); global player_score; player_score += turn_score; ## Handles a computer round # def computer_turn(): print("COMPUTER TURN !"); print("---------------"); turn_score = 0; keep_playing=True; while keep_playing: print("Throwing the dice..."); dice = random.randint(1, 6); if dice==1: print("Too Bad... it's a 1"); turn_score=0; break; else: print("Got a {d}".format(d=dice)); turn_score += dice; print("Keep playing ? y/n (a 1 will make you lose the turn...") key = random.choice(['y', 'y', 'y', 'y', 'y', 'n',]); print("{k}".format(k=key)); if key == 'y': continue; elif key == 'n': keep_playing = False; break; raw_input("Computer won {p} points (press enter to continue)\n".format(p=turn_score)); global computer_score; computer_score += turn_score; #Launch the game ! main();
UTF-8
Python
false
false
4,210
py
20
S1_dice.py
18
0.456532
0.447743
0
139
29.258993
104
ayush-sri323/Feedback
7,249,904,812,459
f73f4a0d6f96c09dd12d00c40f005bbee3aea41a
5cfc94c1ae77ae140e639952045fe0454a0263af
/review/urls.py
ef20497355d40014b2b0c170705c73a0793070eb
[]
no_license
https://github.com/ayush-sri323/Feedback
b4e65bd9a8dd08bb8978739ce7735f23f41b26e9
3c833c44681046ef50b42489f532b0a26b2a3759
refs/heads/master
2023-06-09T15:01:00.479432
2021-07-03T17:44:59
2021-07-03T17:44:59
382,660,526
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.urls import path from . import views urlpatterns = [ path('',views.ReviewView.as_view()), path('thank_you',views.thank_you.as_view()), path('Review List',views.ReviewList.as_view(), name = 'review list'), path('favorite',views.AddfavoriteReview.as_view()), path('Detail Reviews<int:pk>',views.DetailReview.as_view(),name='Detail review') ]
UTF-8
Python
false
false
373
py
7
urls.py
5
0.686327
0.686327
0
10
36.3
84
jun-harashima/msnc
2,834,678,443,548
807afd48f45fb260c44a5bf5156cd46d5ecf0c8f
466218363656c212e29d10ac288fb00818d81adf
/msnc/dataset.py
66d83e062fd5eebbf86e4dd0176110db844f8956
[ "MIT" ]
permissive
https://github.com/jun-harashima/msnc
9c791b8a01ff3079791c738bce88d37e8698cb72
f6770b183a6bc65f1774deeaee3b326fca326770
refs/heads/master
2023-01-09T22:51:12.164799
2021-06-15T08:44:50
2021-06-15T08:44:50
187,233,556
1
1
MIT
false
2022-12-26T20:47:38
2019-05-17T14:45:55
2021-06-15T08:44:53
2022-12-26T20:47:38
86
1
1
2
Python
false
false
# x: a token (e.g., character, subword, word). # X: a sequence of tokens. # X_set: a set of sequences. # xs: a concatnation of sets. # y: a number for an example # ys: numbers for examples import math from msnc.util import Util class Dataset(): def __init__(self, examples, x_to_index=None, isregression=False): self.util = Util() self.pad_index = self.util.PAD_INDEX self.unk_index = self.util.UNK_INDEX X_sets = [[example['Xs'][i] for example in examples] for i in range(len(examples[0]['Xs']))] self.x_to_index = x_to_index if x_to_index is None: self.x_to_index = [] for i in range(len(examples[0]['Xs'])): xs = [x for X in X_sets[i] for x in X] self.x_to_index.append(self._make_index(xs)) self.Xs = [] self.raw_Xs = [] # for debug for i in range(len(examples[0]['Xs'])): self.Xs.append(self._degitize(X_sets[i], self.x_to_index[i])) self.raw_Xs.append(X_sets[i]) # indices self.indices = [example['index'] for example in examples] if isregression: self.ys = [math.log10(example['y']) for example in examples] else: self.ys = [example['y'] for example in examples] def _make_index(self, xs): x_to_index = {'<PAD>': self.pad_index, '<UNK>': self.unk_index} for x in xs: if x not in x_to_index: x_to_index[x] = len(x_to_index) return x_to_index def _get_index(self, x, x_to_index): if x not in x_to_index: return x_to_index['<UNK>'] return x_to_index[x] def _degitize(self, X_set, x_to_index): X = [] for _X in X_set: _X = [self._get_index(x, x_to_index) for x in _X] X.append(_X) return X def split(self, batch_size): example_num = len(self.Xs[0]) batch_num = int(example_num / batch_size) batches = [[] for _ in range(batch_num)] for X_set in self.Xs: self._append(batches, X_set, batch_size) self._append(batches, self.ys, batch_size) return batches def _append(self, batches, Z_set, batch_size): # Z_set is X_set or ys for i in range(len(batches)): start = batch_size * i end = batch_size * (i + 1) batches[i].append(Z_set[start:end])
UTF-8
Python
false
false
2,439
py
14
dataset.py
9
0.536695
0.533825
0
74
31.959459
74
Rohan-Deshamudre/Smart-traffic-management-system
9,337,258,906,605
b75dbab737eeae717fc151b2aae36aea78d4ed77
3f0f3d2d20581a247bffc1aa36fdd1ff50bca968
/backend/api/instruments/instrument_actions/compression.py
bdb684555d9adb8dadb0b2a3e161dda6977a8936
[]
no_license
https://github.com/Rohan-Deshamudre/Smart-traffic-management-system
1c92a4de26c55d103d954c53d0cd207bba68a26b
618440303dcbf819cd61aa5e593b4b50483f0070
refs/heads/master
2022-12-09T14:51:21.206001
2020-06-25T16:27:15
2020-06-25T16:27:15
295,766,737
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from api.instruments.instrument_actions.models import InstrumentAction from api.road_conditions.road_condition_actions.models import \ RoadConditionActionToInstrumentAction id_key = 'id' def to_json_instrument_action(instrument_action: InstrumentAction): instrument_action_object = {id_key: instrument_action.id} return instrument_action_object def import_instrument_action(json_instrument_action, road_condition_action_id): RoadConditionActionToInstrumentAction( road_condition_action_id=road_condition_action_id, instrument_action_id=json_instrument_action[id_key]).save()
UTF-8
Python
false
false
613
py
330
compression.py
170
0.786297
0.786297
0
17
35.058824
79
lakshmikodi/Python
16,260,746,189,749
68d23754db466aac2081869c88a69892dcba5cfa
e1a98eb88f719108250b8ef31070a72b830f3f98
/String Datatypes/Data_Types_String_Example_Methods_1-23.py
ff54405c380b2dc4e5046b773784a65d663f2f6d
[]
no_license
https://github.com/lakshmikodi/Python
bcaf181b751576b5731dd83e991782e86f233a88
4346ded89f6b4d747913513ca6d3f0cf930953c5
refs/heads/master
2020-12-07T15:23:47.676376
2017-06-27T02:59:32
2017-06-27T02:59:32
95,507,980
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python strLower = "a this a is a lower case string" #0123456789101112131415161718 strLow = "spyder and pycharm" ''' strUpper = "THIS IS AN UPPER CASE STRING" numSet = '123' print(strLower.capitalize()) print(len(strLow)) print(type(strLow)) ''' print (strLow.center(23, '*'),len(strLow)) ''' print (strLower.count('a',2, 15)) #print (strLower.encode('utf_8', 'strict')) #print (strLower.encode('cp1252', 'strict')) #tempStr = "dGhpcyBpcyBhIGxvd2VyIGNhc2Ugc3RyaW5n" #print (tempStr.decode('utf_8', 'strict')) #print (tempStr.decode('cp1252', 'strict')) print (strUpper.endswith('string')) print (strLower.find('lower')) print (numSet.isdigit()) '''
UTF-8
Python
false
false
672
py
18
Data_Types_String_Example_Methods_1-23.py
17
0.690476
0.616071
0
26
24.846154
49
Biking0/test
4,363,686,782,748
214496c29e468a53af6a50db62496d81652b69b7
92eee50b8dcdace89077f31065e56322c9920456
/202107/test.py
ba5100d17e13f174bc7f09810acdd25bf2c16e70
[]
no_license
https://github.com/Biking0/test
37878b7c2eb61bf0224459b4a313fadaa437534a
3d57193c56bd2c9b6c8ad9c5b3fb785de4a90d9a
refs/heads/master
2021-07-23T18:43:26.693462
2021-07-14T16:06:36
2021-07-14T16:06:36
125,614,881
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import akshare as ak stock_circulate_stock_holder_df = ak.stock_circulate_stock_holder(stock="600000") # print(stock_circulate_stock_holder_df) print(stock_circulate_stock_holder_df[0:3]) # print(stock_circulate_stock_holder_df[0:22]['占流通股比例(%)']) new_sum=0 old_sum=0 for i in stock_circulate_stock_holder_df[0:10]['占流通股比例(%)']: # print(i) new_sum=new_sum+round(float(i),2) for j in stock_circulate_stock_holder_df[10:20]['占流通股比例(%)']: # print(j) old_sum=old_sum+round(float(j),2) # print('11',new_sum) print(old_sum,new_sum,new_sum-old_sum)
UTF-8
Python
false
false
597
py
150
test.py
122
0.695187
0.652406
0
19
28.578947
81
abs-tudelft/vhdmmio
6,614,249,662,022
74540e8fdb1ec0caf18ea2f2f8bb171bd9c51121
ea97980b8c9dbbf987b2e470cea11cedde8efb9f
/vhdmmio/config/interrupt.py
544be0503375ced927bad399a4eb39eee7cb3c4e
[ "Apache-2.0" ]
permissive
https://github.com/abs-tudelft/vhdmmio
634ec13fc9ce573d0628336195bdd1dcece1db1a
d0417925cd72dfb973431d6948e65b662a75c5fa
refs/heads/master
2023-06-22T21:04:01.548057
2023-06-19T16:15:11
2023-06-19T16:15:11
185,991,290
5
1
Apache-2.0
false
2023-06-19T16:15:12
2019-05-10T13:15:28
2023-06-06T14:57:14
2023-06-19T16:15:12
1,549
7
2
1
Python
false
false
"""Submodule for `InterruptConfig` configurable.""" import re from ..configurable import configurable, Configurable, choice, embedded from .metadata import MetadataConfig @configurable(name='Interrupt descriptors') class InterruptConfig(Configurable): r"""In addition to MMIO, `vhdmmio` can handle interrupt routing for you. Each AXI4-lite bus is equiped with an additional signal in the slave-to-master direction that serves as an interrupt request flag. This flag is connected to a (masked) wired-or network of any incoming interrupts you define. ## Behavior The interrupts can be monitored and controlled through fields with the (`interrupt`)[interrupt.md] behavior. There are up to three internal registers for each interrupt, named `enab` (short for enable), `flag`, and `umsk` (short for unmask). `enab` controls whether incoming interrupts are passed on to the flag register. The flag register stores whether the interrupt is pending regardless of whether it is enabled; if an interrupt comes in while the interrupt is enabled, and the interrupt is then disabled, the flag remains asserted until it is explicitly cleared (usually by an interrupt handler). `umsk` (unmask) has a similar function, but is placed after the flag register. Thus, masking an interrupt immediately stops it from being requested, but once the interrupt is unmasked again, it will be requested again. This logic is shown schematically below. ``` .--[raw> | ____ flag IRQ --------o--------| \ _____ .----. .-[flag> | )----\ \ |> | | ____ .--|____/ ) )---|S Q|---o--------| \ to enab | [pend>-/____/ .-|R | umsk | )--> wired .----. | [clear>--------' '----' .----. .--|____/ OR |> | | |> | | [enable>--|S Q|--o--[enabled> [unmask>-|S Q|--o--[unmasked> [disable>-|R | [mask>---|R | '----' '----' ``` Each of the three registers are accessible in read, write, set, and clear modes through fields with (`interrupt`)[interrupt.md] behavior. The raw incoming interrupt signal and the masked output signal of an interrupt can also be monitored directly. Interrupts can be made level-sensitive by not specifying a way to clear the interrupt. In this case, the logic is automatically simplified to the following. ``` .--[raw> | ____ .-[flag> IRQ --------o--------| \ | ____ | )---------------o--------| \ to .--|____/ | )--> wired enab | umsk .--|____/ OR .----. | .----. | |> | | |> | | [enable>--|S Q|--o--[enabled> [unmask>-|S Q|--o--[unmasked> [disable>-|R | [mask>---|R | '----' '----' ``` Furthermore, if there is no way to enable/unmask an interrupt, the respective AND gate and the register is effectively optimized away. If there *is* a way, the reset state is disabled/masked. ## Interrupt sources A `vhdmmio` interrupt can currently be requested through an internal or synchronous external signal, or by software using the [`interrupt-pend`](interruptpend.md) field behavior. An external synchronizer is needed to accept asynchronous interrupts. These are often vendor-specific, therefore they are not included in vhdmmio.""" #pylint: disable=E0211,E0213,E0202 @choice def repeat(): """This value specifies whether this interrupt descriptor describes a single interrupt or an array of interrupts.""" yield None, 'the descriptor describes a single interrupt.' yield (1, None), ('the descriptor describes an array of interrupts of ' 'the given size.') @embedded def metadata(): """This configuration structure is used to name and document the interrupt.""" return MetadataConfig @choice def internal(): """This key specifies whether the interrupt is requested by an internal or external signal.""" yield None, 'the interrupt request source is an input port.' yield (re.compile(r'[a-zA-Z][a-zA-Z0-9_]*'), 'the interrupt request source is the internal signal with the ' 'given name. The arrayness of the signal must match this ' 'interrupt\'s repetition. Level-sensitive interrupts cannot be ' 'associated with strobe signals.') @choice def active(): """This key specifies the event that the interrupt is sensitive to.""" yield 'high', 'the interrupt is level/strobe-sensitive, active-high.' yield 'low', 'the interrupt is level/strobe-sensitive, active-low.' yield 'rising', 'the interrupt is rising-edge sensitive.' yield 'falling', 'the interrupt is falling-edge sensitive.' yield 'edge', 'the interrupt is sensitive to any edge.' @choice def group(): """The interrupt request port for the internal signal can optionally be grouped along with other ports in a record. This key specifies the name of the group record.""" yield None, 'port grouping is determined by the global default.' yield False, 'the port is not grouped in a record.' yield (re.compile(r'[a-zA-Z][a-zA-Z0-9_]*'), 'the port is grouped in a record with the specified name.')
UTF-8
Python
false
false
5,947
py
185
interrupt.py
118
0.565663
0.562637
0
124
46.959677
80
Sahel95/messenger-backend
15,771,119,936,875
3e2e498c823c901a2f7b30239879dc8801894082
beb5cdab2ec52c5cc53fd82bc9d700e268d2a2d7
/user/models.py
beaf9d50404c08c7df8cbb836adadd35c45aadc7
[]
no_license
https://github.com/Sahel95/messenger-backend
d30e02690927e3e15ed9e7ab4282f83f28daf01b
db9b0ce88163969c343b91c465cadeed828c2e33
refs/heads/master
2020-07-09T03:22:00.319634
2019-09-17T06:06:17
2019-09-17T06:06:17
203,861,256
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.db import models # from django.contrib.auth.models import User from django.contrib.auth.models import AbstractUser import uuid class Users(AbstractUser): verificationtoken = models.UUIDField( default=uuid.uuid4, null=True ) is_verified = models.BooleanField( null=True, default=False ) # token= models.CharField( # null=True, # max_length=200 # ) profile_pic = models.ImageField( upload_to='profile-pictures', null=True, blank=True ) contacts = models.ManyToManyField( 'self', related_name='contactlist', default=None ) def __str__(self): return self.first_name + ' ' + self.last_name # class ContactList(models.models): # user_id = models.ForeignKey( # Users, # on_delete=models.CASCADE, # related_name='name' # ) # members = models.ManyToManyField(Users, related_name='contactlist') # # def __str__(self): # return self.user_id
UTF-8
Python
false
false
1,043
py
36
models.py
34
0.601151
0.597315
0
44
22.704545
73
MysticSoul/Codes
4,999,341,970,830
cda944273310ebd4950c6f90179bb7ac6ae3a4c1
deb07632f77383bea0a79bc1f62924b5db72fd1f
/python/learning.py
795c538c01e62fdd822e49419363f0ec6d81cddb
[]
no_license
https://github.com/MysticSoul/Codes
e559677e5badd4504794ebc38c2309318dc35c5d
c61d1206b7cd42ac9d2d8dab38d4653ce129c9b3
refs/heads/master
2020-07-24T07:58:08.943033
2019-09-11T09:18:03
2019-09-11T09:18:03
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#learning loops #n = input("Enter the length of the array : ") a = [1, 2, 3, 4, 5, 6, 7, 8] print("Prefixes of", a) for i in range(0, len(a) + 1): print(a[0:i]) print("----------------------------------") print("Suffixes of" , a) for i in range(0, len(a) + 1): print(a[i:len(a)+1])
UTF-8
Python
false
false
290
py
146
learning.py
128
0.493103
0.444828
0
10
28.1
47
avenrainbow/aven_su
3,822,520,939,828
6f1a42f88ca680a7a7875b0e7598cc025aee4e26
536ea383510428e49c3304fd957e4ae27fa13f80
/com.aven.jdk.python/test/RestHandlerTest.py
99a44b2b493f1fe4ca8a5635576fd560f35eded3
[]
no_license
https://github.com/avenrainbow/aven_su
716e3d0d77f607cb481c5e5c1bef45239d7bc35c
f985123a164d5c2f8cfd5deef26d37c60ac9eae3
refs/heads/master
2016-09-06T10:07:13.539963
2015-07-30T07:55:45
2015-07-30T07:55:45
39,938,124
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#encoding=utf8 ''' Created on 2014-4-10 @author: Kee.Li ''' from com.huadi.winserver.RestHandler import DataConnect from com.huadi.winserver import RestHandler ''' GET请求Rest接口demo 获取所有虚拟机 ''' def testGet(): #连接参数 dataConnect = DataConnect() dataConnect.ip = "10.0.0.100" dataConnect.port = "8080" dataConnect.account = "admin" dataConnect.password = "passw0rd" apiKey = "wce/api/vms" params = "name=服务器" placeholder = "" data = "" RestHandler.getRest(dataConnect, apiKey, params, placeholder, data); ''' PUT请求Rest接口demo 虚拟机开关机 ''' def testPut(): #连接参数 dataConnect = DataConnect() dataConnect.ip = "10.0.0.100" dataConnect.port = "8080" dataConnect.account = "admin" dataConnect.password = "passw0rd" apiKey = "wce/api/vms/{0}" params = "" placeholder = "449" data = "{'state':'OK'}" RestHandler.putRest(dataConnect, apiKey, params, placeholder, data); ''' DELETE请求Rest接口demo 删除虚拟机 ''' def testDelete(): #连接参数 dataConnect = DataConnect() dataConnect.ip = "10.0.0.100" dataConnect.port = "8080" dataConnect.account = "admin" dataConnect.password = "passw0rd" apiKey = "wce/api/vms/{0}" params = "" placeholder = "515" data = "" RestHandler.deleteRest(dataConnect, apiKey, params, placeholder, data); def testPost(): #连接参数 dataConnect = DataConnect() dataConnect.ip = "10.0.0.100" dataConnect.port = "8080" dataConnect.account = "admin" dataConnect.password = "passw0rd" apiKey = "wce/api/vms" params = "" placeholder = "" data = '{"name":"kee_vm_中文","targetId":"17","state":"EXECUTING","targetType":"host","vcpu":"1","cpu":0.3,"memory":1024,"disk":"8","storagePoolId":"91","ip":"192.168.100.17","templateId":"169","vnetConfig":{ "vnetwokrId":"171", "gateway":"192.168.100.1", "netmask":"255.255.255.0", "qos":""},"customization": {"cpuWeight":384}}' RestHandler.postRest(dataConnect, apiKey, params, placeholder, data); if __name__ == '__main__': testGet() #testPut() #testDelete() #testPost()
UTF-8
Python
false
false
2,315
py
33
RestHandlerTest.py
23
0.601898
0.54948
0
98
21.489796
346
scottyuecao/RIXS-utilities
15,307,263,477,441
0db4b758a971a784966ac6bd3714de531c3a1510
e1b999ea5a734ce2cd7c39be08bcbc243216ba2b
/SLS_examples/get_plot_Emaps.py
58d0f7985aab3c472f26f1190c2fe292162c99cd
[]
no_license
https://github.com/scottyuecao/RIXS-utilities
870f279e2fdbf97f47a79f09fa634c7ea4cd43cd
1a20198f27084351c06aba7c2b640503ce02a9b1
refs/heads/master
2021-01-24T02:18:10.415188
2015-03-17T19:48:50
2015-03-17T19:48:50
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np import scipy as sp import matplotlib.pyplot as plt import scipy.interpolate plt.ion() def getParam(filename, param): fid = open(filename) alltxt = fid.read().lower() # everything in lowercase param = param.lower() for line in alltxt.splitlines(): if line.find(param) != -1: variable, valuestr = line.split(' = ') try: return float(valuestr) except NameError: print "{} not found in file {}".format(param, filename) def getM(scan_list, base_name, eloss, ein, IDPolar_val): epoints = [] for scanno in scan_list: filename = '{}{:04d}.dat'.format(base_name, scanno) if getParam(filename, 'idpolar') == IDPolar_val: epoints.append(getParam(filename, 'monoenergy')) epoints = np.array(epoints) print epoints M_at_epoints = np.zeros((len(eloss),len(epoints))) i = 0 for scanno in scan_list: filename = '{}{:04d}.dat'.format(base_name, scanno) if getParam(filename, 'idpolar') == IDPolar_val: print filename data = np.loadtxt(filename) plt.plot(-1*data[:,0], data[:,1], label=filename[-8:-4]) f = scipy.interpolate.interp1d(-1*data[:,0], data[:,1], kind='linear', bounds_error=True, fill_value=np.nan) # last two added MPMD M_at_epoints[:,i] = f(eloss) i += 1 f = scipy.interpolate.interp2d(epoints, eloss, M_at_epoints, kind='linear', bounds_error=False, fill_value=np.nan) M = f(ein, eloss) return M #return M, M_at_epoints, epoints # vectors to interpolate on eloss = np.linspace(-1, 8, 900) ein = np.arange(851, 857.3, 0.1) # LTNAO #scan_list = range(412,467+1) scan_list = range(430, 435) base_name = '../RIXS/LTNAO_L3_l2/LTNAO_' IDPolar_val = 0.0 # LH print "############ RA_LH ###############" plt.clf() M_LTNAO_LH = getM(scan_list, base_name, eloss, ein, IDPolar_val) plt.show() print "############ RA_LV ###############" IDPolar_val = 1.0 # LV M_LTNAO_LV = getM(scan_list, base_name, eloss, ein, IDPolar_val) plt.legend()
UTF-8
Python
false
false
2,087
py
3
get_plot_Emaps.py
3
0.598467
0.574509
0
66
30.621212
142
huawei-noah/HEBO
9,337,258,921,341
53d18340a0133c28c077e9c06eda0117b26461c2
5072e65b8b10b333fff2142bfc70896d4abca2b4
/HEBO/archived_submissions/hebo/bo/models/scalers.py
e0b75e69037bdd94dc2803b788c73130d2e5c12b
[ "MIT" ]
permissive
https://github.com/huawei-noah/HEBO
a0ececc2fe9812fd319d8ff4af1d5706276937bc
2bccb4edef79711ff81d660b80c9121b1bb95c82
refs/heads/master
2023-09-01T08:14:57.603747
2023-08-30T15:39:48
2023-08-30T15:39:48
404,973,348
1,748
313
null
false
2023-08-23T20:36:22
2021-09-10T06:02:05
2023-08-23T18:35:20
2023-08-23T20:36:21
152,176
1,882
362
10
Jupyter Notebook
false
false
# Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # This program is free software; you can redistribute it and/or modify it under # the terms of the MIT license. # This program is distributed in the hope that it will be useful, but WITHOUT ANY # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. See the MIT License for more details. import sys import numpy as np from sklearn.preprocessing import MinMaxScaler, StandardScaler import torch import torch.nn as nn import torch.nn.functional as F class TorchIdentityScaler(nn.Module): def __init__(self): super().__init__() def fit(self, x : torch.FloatTensor): return self def forward(self, x : torch.FloatTensor) -> torch.FloatTensor: return x def transform(self, x : torch.FloatTensor) -> torch.FloatTensor: return self.forward(x) def inverse_transform(self, x : torch.FloatTensor) -> torch.FloatTensor: return x class TorchStandardScaler(nn.Module): def __init__(self): super().__init__() self.mean = None self.std = None self.fitted = False def fit(self, x : torch.FloatTensor): assert(x.dim() == 2) with torch.no_grad(): scaler = StandardScaler() scaler.fit(x.detach().numpy()) self.mean = torch.FloatTensor(scaler.mean_.copy()).view(-1) self.std = torch.FloatTensor(scaler.scale_.copy()).view(-1) invalid = ~(torch.isfinite(self.mean) & torch.isfinite(self.std)) self.mean[invalid] = 0. # somethime we face data with some all-NaN columns self.std[invalid] = 1. return self def forward(self, x : torch.FloatTensor) -> torch.FloatTensor: return (x - self.mean) / self.std def transform(self, x : torch.FloatTensor) -> torch.FloatTensor: return self.forward(x) def inverse_transform(self, x : torch.FloatTensor) -> torch.FloatTensor: return x * self.std + self.mean class TorchMinMaxScaler(nn.Module): def __init__(self, range : tuple = (0, 1)): super().__init__() self.range_lb = range[0] self.range_ub = range[1] self.data_lb = None self.data_ub = None self.fitted = False def fit(self, x : torch.FloatTensor): assert(x.dim() == 2) with torch.no_grad(): self.data_lb = x.min(dim = 0).values.detach().clone() self.data_ub = x.max(dim = 0).values.detach().clone() self.fitted = True assert(torch.isfinite(self.data_lb).all()) assert(torch.isfinite(self.data_ub).all()) return self def to_unit(self, x, lb, ub): return (x - lb) / (ub - lb) def forward(self, x : torch.FloatTensor) -> torch.FloatTensor: return self.to_unit(x, self.data_lb, self.data_ub) * (self.range_ub - self.range_lb) + self.range_lb def transform(self, x : torch.FloatTensor) -> torch.FloatTensor: return self.forward(x) def inverse_transform(self, x : torch.FloatTensor) -> torch.FloatTensor: return self.to_unit(x, self.range_lb, self.range_ub) * (self.data_ub - self.data_lb) + self.data_lb
UTF-8
Python
false
false
3,355
py
747
scalers.py
633
0.604471
0.599702
0
91
34.868132
108
tomasra/venus_volcanoes
13,932,873,941,191
a1c6f883b9f734febbb3dd704c65acae373bd121
da1843a1ededfd6f3470965f0024391912c1e299
/lib/experiments/__init__.py
b453c20f2a7f62b3e6f76034404cfbf51c7532c7
[]
no_license
https://github.com/tomasra/venus_volcanoes
6cda36be507690ad17b4c2c7ead87f08de90765c
1db7c8b46db25c9f158dfa96a8d22fde4e12c43d
refs/heads/master
2020-05-31T20:51:29.821742
2014-05-24T11:37:32
2014-05-24T11:37:32
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from experiment import Experiment from experiment_set import ExperimentSet
UTF-8
Python
false
false
74
py
32
__init__.py
26
0.891892
0.891892
0
2
36.5
40
jarekzha/JingDongSpider
2,748,779,076,708
44d8aeef82eb5b96fd1ea5c95154adb40b6ee311
baf93a6c55b9784d0ffe61410e5728bcb778e671
/Crawler/crawler.py
e696fb22a76b89aa9c1220cae15e1f70352826c2
[]
no_license
https://github.com/jarekzha/JingDongSpider
a766c9a04aae35e1995ecd899e0fff52e2d8a9ac
a37a4299f1a23fd9d5303fa56e5bdb4259b5f86d
refs/heads/master
2021-01-21T11:38:00.422899
2016-05-12T15:03:31
2016-05-12T15:03:33
48,053,324
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- ''' Created on 2016年4月9日 @author: jarekzhang ''' import config from jdItemPage import JDItemPage from mysqlSaver import MysqlSaver import codecs import time if __name__ == '__main__': ''' 解析页面 ''' itemPage = JDItemPage(config.URL) itemPage.parsePage() ''' 写日志 ''' with codecs.open(config.LOG_FILE, 'a', 'utf-8') as logFile: infoStr = u'%s itemID:%s, itemName:%s, price:%s, inStock:%s \n' % (time.ctime(), itemPage.itemID, itemPage.itemName, itemPage.price, itemPage.inStock) logFile.write(infoStr) saver = MysqlSaver() saver.execute(itemPage)
UTF-8
Python
false
false
687
py
10
crawler.py
9
0.61919
0.607196
0
27
23.481481
106
DavidGG66/active-nlp
10,428,180,633,499
615431716ee5444782bfbc9a0f6989c95533d7fc
8a4cf805b293fab0c0c844794a1b8f1688bff264
/src/network/node.py
0d5b444911201e2e9fd82f447d553be16b6c4d09
[]
no_license
https://github.com/DavidGG66/active-nlp
906b18e37a68c92d508c0a446c5b65fcd9045751
508beec00eca482319d8f7f1e972e0e6b09fd158
refs/heads/master
2020-09-01T07:25:07.601575
2020-03-14T00:34:58
2020-03-14T00:34:58
218,907,862
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Parser nodes and networks class Error(Exception): pass class SynCat(): def __init__(self): self.cat = None self.features = {} class LexCat(SynCat): def __init__(self): SynCat.__init__(self) self.lex = {} class PhraseCat(SynCat): def __init__(self): SynCat.__init__(self) self.filled = [] self.open = [] class Node(): def __init__(self): self.activation = None self.range = None self.parents = [] self.__analysis = None self.operations = [] def add_analysis(self, analysis): if analysis.cat == None: raise SynCatError(analysis, "No category set") self.__analysis = analysis def get_analysis(self): return self.__analysis class NodeError(Error): def __init__(self, node, message): self.node = node, self.message = message class Network(): def __init__(self): self.__next_node = 1 self.__nodes = {} def add_node(self, node): if node.activation == None: raise NodeError(node, "No activation set") elif node.range == None: raise NodeError(node, "No range set") elif node.analysis == None: raise NodeError(node, "No analysis set") self.__nodes[self.__next_node] = node self.next_node += 1 def get_node(self, idx): return self.__nodes[idx]
UTF-8
Python
false
false
1,462
py
43
node.py
25
0.53762
0.536252
0
67
20.820896
58
ericfp87/Day-26-exercise3
13,194,139,576,574
14a66cef35a40c4fefaa47db3b931e50c0a2e1f8
e09416565a0a7825021be242ef2597d009b0c319
/main.py
85ded4487d29f972d222c84de9e71ebc5de580a4
[]
no_license
https://github.com/ericfp87/Day-26-exercise3
cd6bb7e74155a554ff6ec62c8c6a4f40ac5a3b92
c8f7bc0c144a97790eac922cfa0e5f650729d66b
refs/heads/master
2023-03-18T10:45:08.222936
2021-03-08T13:17:14
2021-03-08T13:17:14
345,661,839
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
with open("file1.txt") as file1: list1 = file1.readlines() with open("file2.txt") as file2: list2 = file2.readlines() result= [int(number) for number in list1 if number in list2] # Write your code above 👆 print(result)
UTF-8
Python
false
false
236
py
1
main.py
1
0.682403
0.639485
0
11
20
60
vene/ambra
4,827,543,255,159
91938ea1184225b740711bebd1621a2516158975
0b517fd0ca467fdfccf1ba1f32bd652ae95349c2
/ambra/features.py
4a8047954788c4f6e683fa5197b83b302d4938d5
[ "BSD-2-Clause" ]
permissive
https://github.com/vene/ambra
520e721eeeae8a44e38fff241b9a738519f2e33e
e220dbb332b86ed60ecb025efbefbb33080118b7
refs/heads/master
2016-09-06T12:42:34.633206
2015-01-30T21:40:31
2015-01-30T21:40:31
27,673,648
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np from sklearn.base import BaseEstimator, TransformerMixin class LengthFeatures(BaseEstimator, TransformerMixin): def fit(self, X, y=None): return self def _doc_features(self, doc): n_sents = len(doc) all_toks = [tok for sent in doc for tok in sent] n_tokens = len(all_toks) n_types = len(set(all_toks)) #type_token_ratio = n_tokens / float(n_types) return np.array([n_sents, n_tokens, n_types, #type_token_ratio ], dtype=np.float) def transform(self, X, y=None): #x in X is a list of sents return np.row_stack([self._doc_features(doc) for doc in X]) def get_feature_names(self): return ['n_sents', 'n_tokens', 'n_types', #'type_token_ratio' ] class StylisticFeatures(BaseEstimator, TransformerMixin): def __init__(self, lower=True): self.lower = lower def fit(self, X, y=None): return self def _doc_features(self, doc): # doc is a dict tokens = doc['tokens'] lemmas = doc['lemmas'] all_tokens = [w.lower() if self.lower else w for sent in tokens for w in sent] all_lemmas = [w.lower() if self.lower else w for sent in lemmas for w in sent] avg_sent_len = np.mean([len(sent) for sent in tokens]) avg_word_len = np.mean([len(w) for w in tokens]) lex_density = len(set(all_tokens)) / len(all_tokens) lex_richness = len(set(all_lemmas)) / len(all_lemmas) return np.array([avg_sent_len, avg_word_len, lex_density, lex_richness], dtype=np.float) def transform(self, X, y=None): #x in X is a list of sents return np.row_stack([self._doc_features(doc) for doc in X]) def get_feature_names(self): return ['ASL', 'AWL', 'LD', 'LR'] class NgramLolAnalyzer(BaseEstimator): """Analyzer for pre-tokenized list-of-lists sentences-words structures""" def _word_ngrams(self, tokens, stop_words=None): """Turn tokens into a sequence of n-grams after stop words filtering""" # handle stop words if stop_words is not None: tokens = [w for w in tokens if w not in stop_words] if self.lower: tokens = [w.lower() for w in tokens] # handle token n-grams min_n, max_n = self.ngram_range if max_n != 1: original_tokens = tokens tokens = [] n_original_tokens = len(original_tokens) for n in xrange(min_n, min(max_n + 1, n_original_tokens + 1)): for i in xrange(n_original_tokens - n + 1): tokens.append(" ".join(original_tokens[i: i + n])) return tokens def __init__(self, ngram_range=(1,1), lower=False): self.ngram_range=ngram_range self.lower = lower def __call__(self, doc): return [feature for sentence in doc for feature in self._word_ngrams(sentence)]
UTF-8
Python
false
false
3,114
py
15
features.py
14
0.560694
0.558767
0
86
35.209302
80
xieguotian/caffe
16,295,105,957,126
bea8cac2f7c0e89948272e2b110e8a391df0392c
11d564f26a40d5b5da034568ff4bf3ffec8b94db
/python/convert_model_triplet.py
b6774cf29fcd1579d08c210ba0a9cb046e7d043a
[ "LicenseRef-scancode-public-domain", "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-generic-cla" ]
permissive
https://github.com/xieguotian/caffe
110673db35c41360a5ecdbec6e64a8d2cda31784
fed8340608102c489ed6a1e61f2890cf0b0079ea
refs/heads/master
2020-04-04T04:23:01.004276
2017-11-23T07:34:20
2017-11-23T07:34:33
38,590,922
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import sys import os if len(sys.argv)<3: print 'Usage: python convert_model.py net_proto net_posfix' net_proto = sys.argv[1] pos_fix = sys.argv[2] base_name = os.path.basename(net_proto).strip().split('.') net_new_proto = base_name[0]+'_'+pos_fix+'.'+base_name[1] with open(net_new_proto,'w') as fout: with open(net_proto) as fid: count = 0 print >>fout,"################ net 1 ############" for line in fid: print >> fout,line.strip('\n') if 'lr_mult' in line: print >>fout,'name: \"w%d\"'%(count) count+=1 with open(net_proto) as fid: print >>fout print >>fout,"################ net 2 ############" print >>fout count = 0 for line in fid: line = line.strip('\n') if 'bottom' in line or 'top' in line or 'name' in line: if not 'data' in line: pos = line.rfind('\"') line = line[:pos] + '_' + pos_fix +'1' +line[pos:] if 'lr_mult' in line: print >>fout,'name: \"w%d\"'%(count) count+=1 print >>fout,line with open(net_proto) as fid: print >>fout print >>fout,"################ net 2 ############" print >>fout count = 0 for line in fid: line = line.strip('\n') if 'bottom' in line or 'top' in line or 'name' in line: if not 'data' in line: pos = line.rfind('\"') line = line[:pos] + '_' + pos_fix +'2' +line[pos:] if 'lr_mult' in line: print >>fout,'name: \"w%d\"'%(count) count+=1 print >>fout,line #net = caffe.Net(net_proto,net_param,caffe.TEST) #net2 = caffe.Net(net_new_proto,caffe.TEST) #for name,param in net.params.items(): # print 'copy param '+name # new_name =name+'_' + pos_fix # for ix,sub_param in enumerate(param): # net2.params[new_name][ix].data[:] = sub_param.data.copy() #base_name = os.path.basename(net_param).strip().split('.') #net_new_param = base_name[0]+'_'+pos_fix+'.'+base_name[1] #net2.save(net_new_param)
UTF-8
Python
false
false
2,210
py
161
convert_model_triplet.py
110
0.481448
0.471946
0
65
32.984615
70
Podidiving/catalyst
4,664,334,529,492
441751de0a52199f9b7575aee1c3da512e669fc7
9b6bc3f768ec86caf2074141be90262c9662762a
/catalyst/loggers/tensorboard.py
1b777aa4c201da32fa79c54bab9ec15c32fa80f5
[ "Apache-2.0" ]
permissive
https://github.com/Podidiving/catalyst
298dca23e5cf51dda6bbc0a744874ae2c8787bc5
ac8567dc389fb7a265e3104e8a743497aa903165
refs/heads/master
2021-12-03T21:48:48.232619
2021-11-03T05:29:19
2021-11-03T05:29:19
225,822,776
2
0
Apache-2.0
true
2019-12-04T08:59:03
2019-12-04T08:59:03
2019-12-04T08:30:59
2019-12-04T08:42:44
11,052
0
0
0
null
false
false
from typing import Dict import os import numpy as np from tensorboardX import SummaryWriter from catalyst.core.logger import ILogger from catalyst.loggers.functional import image_to_tensor class TensorboardLogger(ILogger): """Tensorboard logger for parameters, metrics, images and other artifacts. Args: logdir: path to logdir for tensorboard use_logdir_postfix: boolean flag to use extra ``tensorboard`` prefix in the logdir .. note:: This logger is used by default by ``dl.Runner`` and ``dl.SupervisedRunner`` in case of specified logdir during ``runner.train(..., logdir=/path/to/logdir)``. .. note:: This logger is used by default by ``dl.ConfigRunner`` and ``dl.HydraRunner`` in case of specified logdir in config ``args``. Notebook API examples: .. code-block:: python from catalyst import dl runner = dl.SupervisedRunner() runner.train( ..., loggers={"tensorboard": dl.TensorboardLogger(logdir="./logdir/tensorboard"} ) .. code-block:: python from catalyst import dl class CustomRunner(dl.IRunner): # ... def get_loggers(self): return { "console": dl.ConsoleLogger(), "tensorboard": dl.TensorboardLogger(logdir="./logdir/tensorboard") } # ... runner = CustomRunner().run() Config API example: .. code-block:: yaml loggers: tensorboard: _target_: TensorboardLogger logdir: ./logdir/tensorboard ... Hydra API example: .. code-block:: yaml loggers: tensorboard: _target_: catalyst.dl.TensorboardLogger logdir: ./logdir/tensorboard ... """ def __init__(self, logdir: str, use_logdir_postfix: bool = False): """Init.""" if use_logdir_postfix: logdir = os.path.join(logdir, "tensorboard") self.logdir = logdir self.loggers = {} os.makedirs(self.logdir, exist_ok=True) def _check_loader_key(self, loader_key: str): if loader_key not in self.loggers.keys(): logdir = os.path.join(self.logdir, f"{loader_key}") self.loggers[loader_key] = SummaryWriter(logdir) def _log_metrics(self, metrics: Dict[str, float], step: int, loader_key: str, suffix=""): for key, value in metrics.items(): self.loggers[loader_key].add_scalar(f"{key}{suffix}", float(value), step) def log_metrics( self, metrics: Dict[str, float], scope: str = None, # experiment info run_key: str = None, global_epoch_step: int = 0, global_batch_step: int = 0, global_sample_step: int = 0, # stage info stage_key: str = None, stage_epoch_len: int = 0, stage_epoch_step: int = 0, stage_batch_step: int = 0, stage_sample_step: int = 0, # loader info loader_key: str = None, loader_batch_len: int = 0, loader_sample_len: int = 0, loader_batch_step: int = 0, loader_sample_step: int = 0, ) -> None: """Logs batch and epoch metrics to Tensorboard.""" if scope == "batch": self._check_loader_key(loader_key=loader_key) # metrics = {k: float(v) for k, v in metrics.items()} self._log_metrics( metrics=metrics, step=global_sample_step, loader_key=loader_key, suffix="/batch" ) elif scope == "loader": self._check_loader_key(loader_key=loader_key) self._log_metrics( metrics=metrics, step=global_epoch_step, loader_key=loader_key, suffix="/epoch" ) elif scope == "epoch": # @TODO: remove naming magic loader_key = "_epoch_" per_loader_metrics = metrics[loader_key] self._check_loader_key(loader_key=loader_key) self._log_metrics( metrics=per_loader_metrics, step=global_epoch_step, loader_key=loader_key, suffix="/epoch", ) def log_image( self, tag: str, image: np.ndarray, scope: str = None, # experiment info run_key: str = None, global_epoch_step: int = 0, global_batch_step: int = 0, global_sample_step: int = 0, # stage info stage_key: str = None, stage_epoch_len: int = 0, stage_epoch_step: int = 0, stage_batch_step: int = 0, stage_sample_step: int = 0, # loader info loader_key: str = None, loader_batch_len: int = 0, loader_sample_len: int = 0, loader_batch_step: int = 0, loader_sample_step: int = 0, ) -> None: """Logs image to Tensorboard for current scope on current step.""" assert loader_key is not None self._check_loader_key(loader_key=loader_key) tensor = image_to_tensor(image) self.loggers[loader_key].add_image(f"{tag}/{scope}", tensor, global_step=global_epoch_step) def flush_log(self) -> None: """Flushes the loggers.""" for logger in self.loggers.values(): logger.flush() def close_log(self, scope: str = None) -> None: """Closes the loggers.""" if scope is None or scope == "experiment": for logger in self.loggers.values(): logger.close() __all__ = ["TensorboardLogger"]
UTF-8
Python
false
false
5,650
py
161
tensorboard.py
126
0.554159
0.550265
0
181
30.21547
99
ethanjperez/convince
6,940,667,152,806
9a49b71e7a8644514247d500f9f27ce54bcb7b30
79e1d04867c4298b23c907f92c7119e4bea8ef02
/allennlp/allennlp/modules/text_field_embedders/basic_text_field_embedder.py
a4e1fd2830dd711054aa69b3beaf69969601ee01
[ "Apache-2.0" ]
permissive
https://github.com/ethanjperez/convince
53db0bcd978831799c68fe63ecb0c91473ec40c4
ccf60824b28f0ce8ceda44a7ce52a0d117669115
refs/heads/master
2023-01-08T09:12:16.722614
2021-11-03T18:50:30
2021-11-03T18:50:30
205,189,291
27
8
Apache-2.0
false
2023-01-05T22:43:12
2019-08-29T15:03:34
2021-11-03T18:51:00
2023-01-05T22:43:07
108,155
24
6
7
Python
false
false
from typing import Dict, List import warnings import torch from overrides import overrides from allennlp.common import Params from allennlp.common.checks import ConfigurationError from allennlp.data import Vocabulary from allennlp.modules.text_field_embedders.text_field_embedder import TextFieldEmbedder from allennlp.modules.time_distributed import TimeDistributed from allennlp.modules.token_embedders.token_embedder import TokenEmbedder @TextFieldEmbedder.register("basic") class BasicTextFieldEmbedder(TextFieldEmbedder): """ This is a ``TextFieldEmbedder`` that wraps a collection of :class:`TokenEmbedder` objects. Each ``TokenEmbedder`` embeds or encodes the representation output from one :class:`~allennlp.data.TokenIndexer`. As the data produced by a :class:`~allennlp.data.fields.TextField` is a dictionary mapping names to these representations, we take ``TokenEmbedders`` with corresponding names. Each ``TokenEmbedders`` embeds its input, and the result is concatenated in an arbitrary order. Parameters ---------- token_embedders : ``Dict[str, TokenEmbedder]``, required. A dictionary mapping token embedder names to implementations. These names should match the corresponding indexer used to generate the tensor passed to the TokenEmbedder. embedder_to_indexer_map : ``Dict[str, List[str]]``, optional, (default = None) Optionally, you can provide a mapping between the names of the TokenEmbedders that you are using to embed your TextField and an ordered list of indexer names which are needed for running it. In most cases, your TokenEmbedder will only require a single tensor, because it is designed to run on the output of a single TokenIndexer. For example, the ELMo Token Embedder can be used in two modes, one of which requires both character ids and word ids for the same text. Note that the list of token indexer names is `ordered`, meaning that the tensors produced by the indexers will be passed to the embedders in the order you specify in this list. allow_unmatched_keys : ``bool``, optional (default = False) If True, then don't enforce the keys of the ``text_field_input`` to match those in ``token_embedders`` (useful if the mapping is specified via ``embedder_to_indexer_map``). """ def __init__(self, token_embedders: Dict[str, TokenEmbedder], embedder_to_indexer_map: Dict[str, List[str]] = None, allow_unmatched_keys: bool = False) -> None: super(BasicTextFieldEmbedder, self).__init__() self._token_embedders = token_embedders self._embedder_to_indexer_map = embedder_to_indexer_map for key, embedder in token_embedders.items(): name = 'token_embedder_%s' % key self.add_module(name, embedder) self._allow_unmatched_keys = allow_unmatched_keys @overrides def get_output_dim(self) -> int: output_dim = 0 for embedder in self._token_embedders.values(): output_dim += embedder.get_output_dim() return output_dim def forward(self, text_field_input: Dict[str, torch.Tensor], num_wrapping_dims: int = 0) -> torch.Tensor: embedder_keys = self._token_embedders.keys() input_keys = text_field_input.keys() # Check for unmatched keys if not self._allow_unmatched_keys: if embedder_keys < input_keys: # token embedder keys are a strict subset of text field input keys. message = (f"Your text field is generating more keys ({list(input_keys)}) " f"than you have token embedders ({list(embedder_keys)}. " f"If you are using a token embedder that requires multiple keys " f"(for example, the OpenAI Transformer embedder or the BERT embedder) " f"you need to add allow_unmatched_keys = True " f"(and likely an embedder_to_indexer_map) to your " f"BasicTextFieldEmbedder configuration. " f"Otherwise, you should check that there is a 1:1 embedding " f"between your token indexers and token embedders.") raise ConfigurationError(message) elif self._token_embedders.keys() != text_field_input.keys(): # some other mismatch message = "Mismatched token keys: %s and %s" % (str(self._token_embedders.keys()), str(text_field_input.keys())) raise ConfigurationError(message) embedded_representations = [] keys = sorted(embedder_keys) for key in keys: # If we pre-specified a mapping explictly, use that. if self._embedder_to_indexer_map is not None: tensors = [text_field_input[indexer_key] for indexer_key in self._embedder_to_indexer_map[key]] else: # otherwise, we assume the mapping between indexers and embedders # is bijective and just use the key directly. tensors = [text_field_input[key]] # Note: need to use getattr here so that the pytorch voodoo # with submodules works with multiple GPUs. embedder = getattr(self, 'token_embedder_{}'.format(key)) for _ in range(num_wrapping_dims): embedder = TimeDistributed(embedder) token_vectors = embedder(*tensors) embedded_representations.append(token_vectors) return torch.cat(embedded_representations, dim=-1) # This is some unusual logic, it needs a custom from_params. @classmethod def from_params(cls, vocab: Vocabulary, params: Params) -> 'BasicTextFieldEmbedder': # type: ignore # pylint: disable=arguments-differ,bad-super-call # The original `from_params` for this class was designed in a way that didn't agree # with the constructor. The constructor wants a 'token_embedders' parameter that is a # `Dict[str, TokenEmbedder]`, but the original `from_params` implementation expected those # key-value pairs to be top-level in the params object. # # This breaks our 'configuration wizard' and configuration checks. Hence, going forward, # the params need a 'token_embedders' key so that they line up with what the constructor wants. # For now, the old behavior is still supported, but produces a DeprecationWarning. embedder_to_indexer_map = params.pop("embedder_to_indexer_map", None) if embedder_to_indexer_map is not None: embedder_to_indexer_map = embedder_to_indexer_map.as_dict(quiet=True) allow_unmatched_keys = params.pop_bool("allow_unmatched_keys", False) token_embedder_params = params.pop('token_embedders', None) if token_embedder_params is not None: # New way: explicitly specified, so use it. token_embedders = { name: TokenEmbedder.from_params(subparams, vocab=vocab) for name, subparams in token_embedder_params.items() } else: # Warn that the original behavior is deprecated warnings.warn(DeprecationWarning("the token embedders for BasicTextFieldEmbedder should now " "be specified as a dict under the 'token_embedders' key, " "not as top-level key-value pairs")) token_embedders = {} keys = list(params.keys()) for key in keys: embedder_params = params.pop(key) token_embedders[key] = TokenEmbedder.from_params(vocab=vocab, params=embedder_params) params.assert_empty(cls.__name__) return cls(token_embedders, embedder_to_indexer_map, allow_unmatched_keys) def extend_vocab(self, extended_vocab: Vocabulary) -> None: """ It assures that ``basic_text_field_embedder`` can embed with the extended vocab. It iterates over each ``token_embedder`` and assures each of them can embed with extended vocab. """ for key, _ in self._token_embedders.items(): token_embedder = getattr(self, 'token_embedder_{}'.format(key)) token_embedder.extend_vocab(extended_vocab)
UTF-8
Python
false
false
8,587
py
840
basic_text_field_embedder.py
586
0.635379
0.634797
0
162
52.006173
109
hyucel/ili9342c_mpy
15,822,659,539,740
96cbcca9b0c666b79f8464a53a442bacd5177524
652f531205a5701205cd6758ee159eb698f9e55a
/examples/M5STACK/rot.py
850144c5926f31075b5c5e03aed4a665158b1207
[ "MIT" ]
permissive
https://github.com/hyucel/ili9342c_mpy
4c8863f2335ec058d1fb4a6bcf78a3993dfea169
4022a8372b586358a3e9a4f45fafe82c1d5469e7
refs/heads/main
2023-06-24T20:00:21.420299
2021-07-21T02:51:30
2021-07-21T02:51:30
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" fonts.py Pages through all characters of four fonts on the M5Stack Display. """ import utime import random from machine import Pin, SPI import ili9342c import vga1_bold_16x32 as font def main(): tft = ili9342c.ILI9342C( SPI( 2, baudrate=60000000, polarity=1, phase=1, sck=Pin(18), mosi=Pin(23)), 320, 240, reset=Pin(33, Pin.OUT), cs=Pin(14, Pin.OUT), dc=Pin(27, Pin.OUT), backlight=Pin(32, Pin.OUT), rotation=0, buffer_size=16*32*2) tft.init() tft.fill(ili9342c.BLACK) utime.sleep(1) while True: for rot in range(8): if rot in [0, 4]: tft.fill(ili9342c.BLACK) tft.rotation(rot) s = "Rot {}".format(rot) tft.text( font, s, 0, 0, ili9342c.WHITE) utime.sleep(3) main()
UTF-8
Python
false
false
1,012
py
20
rot.py
14
0.470356
0.399209
0
53
18.09434
70
Sirius79/fuzzy-logic-controller
4,784,593,613,319
e20dc752ba30debd2c84d3e73ebf6dcacfce799f
e7626895a0832d345f65e408fb54e4d317e7eb35
/Fuzzy logic controller/defuzzify.py
98973a6f5076974a222a433ed062fe60f2ee7d4c
[ "MIT" ]
permissive
https://github.com/Sirius79/fuzzy-logic-controller
761be9b773a8509c3ca472296427b36a8c514014
0b67015eedd25e560d77e1b548a684138e5a7337
refs/heads/master
2020-04-22T16:24:22.626389
2019-02-18T18:13:07
2019-02-18T18:13:07
170,506,554
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def maximum(**kwargs): maxim = 0 max_key = None for key, value in kwargs.items(): if value > maxim: max_key = key maxim = value return max_key, maxim def get_area(fuel): centre = 0 area = 0 if fuel == 0: area = 50 centre = 50 elif fuel == 1: area = 100 centre = 100 elif fuel == 2: area = 175 centre = 237.5 elif fuel == 3: area = 150 centre = 350 elif fuel == 4: area = 575 centre = 616.66 return centre, area
UTF-8
Python
false
false
577
py
6
defuzzify.py
5
0.467938
0.400347
0
29
18.862069
37
Hunter2809/revolt.py
11,562,052,000,549
ccdcdd017fa632b586cdfc1f11c5e6012f40a848
e97251549ad7f2a3d0ecb6d1233d693b20dc02e8
/revolt/server.py
7e0aea25cf918a8849fa85294f329d2be275eb03
[ "MIT" ]
permissive
https://github.com/Hunter2809/revolt.py
541a27c371c1190367534a178595194b053137f9
31fc9b4de6e3007107a149eddae9680417c4c8d8
refs/heads/master
2023-09-01T18:42:42.908895
2021-10-24T17:34:05
2021-10-24T17:34:05
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from __future__ import annotations from typing import TYPE_CHECKING, Optional, cast from .channel import Channel from .permissions import ServerPermissions from .role import Role if TYPE_CHECKING: from .member import Member from .state import State from .types import Server as ServerPayload __all__ = ("Server",) class Server: """Represents a server Attributes ----------- id: :class:`str` The id of the server name: :class:`str` The name of the server owner: Optional[:class:`Member`] The owner of the server """ __slots__ = ("state", "id", "name", "owner_id", "default_permissions", "_members", "_roles", "_channels") def __init__(self, data: ServerPayload, state: State): self.state = state self.id = data["_id"] self.name = data["name"] self.owner_id = data["owner"] self.default_permissions = ServerPermissions(*data["default_permissions"]) self._members: dict[str, Member] = {} self._roles: dict[str, Role] = {role_id: Role(role, role_id, state, self) for role_id, role in data.get("roles", {}).items()} channels = cast(list[Channel], list(filter(bool, [state.get_channel(channel_id) for channel_id in data["channels"]]))) self._channels: dict[str, Channel] = {channel.id: channel for channel in channels} @property def roles(self) -> list[Role]: """list[:class:`Role`] Gets all roles in the server in decending order""" return list(self._roles.values()) @property def members(self) -> list[Member]: """list[:class:`Member`] Gets all members in the server""" return list(self._members.values()) @property def channels(self) -> list[Channel]: """list[:class:`Member`] Gets all channels in the server""" return list(self._channels.values()) def get_role(self, role_id: str) -> Role: """Gets a role from the cache Parameters ----------- id: :class:`str` The id of the role Returns -------- :class:`Role` The role """ return self._roles[role_id] def get_member(self, member_id: str) -> Member: """Gets a member from the cache Parameters ----------- id: :class:`str` The id of the member Returns -------- :class:`Member` The member """ return self._members[member_id] def get_channel(self, channel_id: str) -> Channel: """Gets a channel from the cache Parameters ----------- id: :class:`str` The id of the channel Returns -------- :class:`Channel` The channel """ return self._channels[channel_id] @property def owner(self) -> Optional[Member]: owner_id = self.owner_id if not owner_id: return return self.get_member(owner_id) async def set_default_permissions(self, permissions: ServerPermissions) -> None: """Sets the default server permissions. Parameters ----------- permissions: :class:`ServerPermissions` The new default server permissions """ await self.state.http.set_default_permissions(self.id, *permissions.value)
UTF-8
Python
false
false
3,444
py
13
server.py
12
0.55662
0.55662
0
119
27.941176
133
llanesm/life_generator_project
8,091,718,426,853
a3b9b0559ff0a88ed7e78af4e40e826e99c8735e
2de7a12a5d983b5e7ba52b2dbc24af641d45a752
/life-generator.py
a4729ad15614b5502f33cb1d230d336ee0e5810a
[]
no_license
https://github.com/llanesm/life_generator_project
6a54e343d12bf17903b78c6a6badfa1b789ad04a
417fe26da9b8d0bc381db716496596be93cc3d1d
refs/heads/main
2023-03-09T11:23:14.904789
2021-03-01T02:41:24
2021-03-01T02:41:24
338,403,947
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Matthew Llanes # Last Update: 2/28/2021 import csv import sys from tkinter import * from tkinter import ttk import os def search_sort(search_results, top_amount): """ Performs a series of sorts and slices to provide the top toys in given category :param search_results: list of products whose category matches user search :param top_amount: number of products to return :return: list of top_amount of top rated products from search results """ search_results.sort(key=lambda item: item.uniq_id) # sort by uniq_id search_results.sort(key=lambda item: item.num_of_reviews, reverse=True) # then by number_of_reviews search_results = search_results[0:top_amount * 10] # take top X*10 search_results.sort(key=lambda item: item.uniq_id) # re-sort by uniq_id search_results.sort(key=lambda item: item.avg_review_rating, reverse=True) # then by average_review_rating search_results = search_results[0:top_amount] # take top X return search_results class CSVData: def __init__(self, infile): """Parse input file and create attributes from rows of dictionaries for easier access""" self.infile = infile # csv file, in our case the kaggle amazon data self.main_product_list = [] reader = csv.DictReader(open(infile, encoding='utf-8')) for row in reader: self.make_product(row) def make_product(self, row): """ Creates Product object from DictReader dictionary and adds it to main product list :param row: one line from the csv file, one product with all info :return: None """ uniq_id, product_name = row['uniq_id'], row['product_name'] num_of_reviews, avg_review_rating = row['number_of_reviews'], row['average_review_rating'] cat_and_sub_cat = row['amazon_category_and_sub_category'] product = Product(uniq_id, product_name, num_of_reviews, avg_review_rating, cat_and_sub_cat) self.main_product_list.append(product) def user_search(self, category, top_amount): """ Search CSVData for all items by input category to create new list of products :param category: user search category :param top_amount: how many toys to output :return: sorted list of top toys """ search_results = [] # new list contains products whose main category matches search category for product in self.main_product_list: if product.main_category == category: search_results.append(product) return search_sort(search_results, top_amount) class Product: """Represents a product from the kaggle dataset""" def __init__(self, uniq_id, product_name, num_of_reviews, avg_review_rating, cat_and_sub_cat): """ Most attributes are retrieved directly from the CSV file, some are further extracted for pertinent meaning. """ self.uniq_id = uniq_id self.product_name = product_name self.num_of_reviews = num_of_reviews self.avg_review_rating = avg_review_rating self.category_and_sub_category = cat_and_sub_cat self.main_category = self.get_main_category() def get_main_category(self): """ Retrieves main category that the user will search for :return: string indicating the main category of a product """ main_category = '' for letter in self.category_and_sub_category: if letter == ' ': break else: main_category += letter return main_category def make_search_results_table(results): """ :param results: products from user search :return: tuple containing lists of lists containing results data, and size of largest product name """ out_table = [('item_name', 'item_rating', 'item_num_reviews')] size_of_longest_product_name = 0 for product in results: out_table.append((product.product_name, product.avg_review_rating, product.num_of_reviews)) if len(product.product_name) > size_of_longest_product_name: size_of_longest_product_name = len(product.product_name) return out_table, size_of_longest_product_name class Window: def __init__(self, master, data): """Initializes GUI with its attributes""" self.main_window = master self.main_window.title('Life Generator') self.product_data = data prompt = 'Enter a category and number of top toys in that category to generate' self.prompt = ttk.Label(master, text=prompt, font=('Arial', 12)).pack() self.category_options = self.make_category_combobox() self.selected_number_to_generate = self.make_number_to_generate_spinbox() self.search_button = ttk.Button(master, text='See Results', command=self.process_search).pack() self.search_results = ttk.Frame(self.main_window) self.table_entry = ttk.Label(self.search_results) def get_categories(self): """:return: list of categories from kaggle dataset""" categories = [] for product in self.product_data.main_product_list: if product.main_category not in categories and product.main_category != '': categories.append(product.main_category) else: continue return categories def make_category_combobox(self): """:return: combobox full of categories from kaggle data for user to choose from""" combobox = ttk.Combobox(self.main_window) categories = self.get_categories() combobox['values'] = categories combobox.set(categories[0]) combobox.pack() return combobox def make_number_to_generate_spinbox(self): """:return: spinbox for reference by window object""" number_to_generate_spinbox = ttk.Spinbox(self.main_window, from_=1, to=10000, increment=10) number_to_generate_spinbox.set('1') number_to_generate_spinbox.pack() return number_to_generate_spinbox def perform_search(self): """:return: results from user user search""" category = self.category_options.get() top_amount = self.selected_number_to_generate.get() results = self.product_data.user_search(category, int(top_amount)) input_data = ['toys', category, top_amount] return input_data, results def display_results_in_gui(self, out_table): """ :param out_table: tuple containing lists of lists containing results data, and size of largest product name :return: None """ for i in range(len(out_table[0])): for j in range(3): if j == 0: width = out_table[1] else: width = 20 self.table_entry = ttk.Label(self.search_results, width=width) self.table_entry.grid(row=i, column=j) self.table_entry.config(text=out_table[0][i][j]) def process_search(self): """ Function to process search and output data to outfile and/or GUI table :return: None """ self.search_results.destroy() self.search_results = ttk.Frame(self.main_window) results = self.perform_search() make_outfile(results[0], results[1]) out_table = make_search_results_table(results[1]) self.display_results_in_gui(out_table) self.search_results.pack() class ContentGenerator: """Microservice provided by other student, will use output file to display information to the user""" def __init__(self): self.path = "C:\\Users\\Idabeard\\SoftwareEngineering1\\Daniel D's Content Generator\\output.csv" self.wiki_paragraph = None self.primary_keyword = None self.secondary_keyword = None self.process_content_generated() def does_path_exist(self): """ :return: """ return os.path.exists(self.path) def process_content_generated(self): """ :return: """ if os.path.exists(self.path): reader = csv.reader(open(self.path)) next(reader) next(reader) content = next(reader) self.make_keywords(content[0]) self.wiki_paragraph = content[1] def make_keywords(self, keywords): """ :param keywords: string with a primary and secondary keyword, separated by a ; :return: None """ primary = '' i = 0 while keywords[i] != ';': primary += keywords[i] i += 1 self.primary_keyword, self.secondary_keyword = primary, keywords[i + 1:] def process_infile(filename): """ :param filename: input file from command line :return: search criteria from input file """ reader = csv.reader(open(filename)) line_data = next(reader) return line_data def make_outfile(search_criteria, output): """ Formats and outputs csv file from results obtained from user search :param search_criteria: search criteria :param output: list of product objects(toys) :return: None, writes outfile """ with open('output.csv', 'w') as outfile: first_head_half = 'input_item_type,input_item_category,input_number_to_generate,output_item_name,' second_head_half = 'output_item_rating,output_item_num_reviews' outfile.write(first_head_half + second_head_half + '\n') for product in output: criteria_str = search_criteria[0] + ',' + search_criteria[1] + ',' + search_criteria[2] + ',' product_info = product.product_name + ',' + product.avg_review_rating + ',' + product.num_of_reviews outfile.write(criteria_str + product_info + '\n') def main(): """ Driver code to start program. Decision based on whether program is started with input file on command line or used with GUI :return: None """ content = ContentGenerator() kaggle_data = CSVData('amazon_co-ecommerce_sample.csv') if len(sys.argv) == 2: # if there's an input file, make an output file w/o GUI infile_data = process_infile(sys.argv[1]) results = kaggle_data.user_search(infile_data[1], int(infile_data[2])) make_outfile(infile_data, results) else: # otherwise, start GUI root = Tk() app = Window(root, kaggle_data) root.mainloop() if __name__ == '__main__': main()
UTF-8
Python
false
false
10,543
py
2
life-generator.py
1
0.628758
0.624016
0
273
37.619048
115
AchimGoral/DI_Bootcamp
5,274,219,864,861
48558ca97bbaf6d263c09edd405475d08c415fd8
b37fdefb01d7b93a4f56a7c7cc60f9f78549de4c
/DI_Bootcamp/Week_8/Day_3/Exercise_XP/gifapp_root/gif/admin.py
4629c5c5f6b11a9d241a082b372f10ef64e99394
[]
no_license
https://github.com/AchimGoral/DI_Bootcamp
e7b13d7397ab5c9e5ad8041430c8bfbafec13c88
9345731503e2bb298bd3a579ffad590350f13df5
refs/heads/main
2023-04-18T20:06:45.631067
2021-05-01T08:08:45
2021-05-01T08:08:45
328,769,128
0
1
null
false
2021-01-27T14:30:09
2021-01-11T19:24:48
2021-01-27T14:26:29
2021-01-27T14:30:09
20,055
0
0
0
HTML
false
false
from django.contrib import admin from.models import * # Gif(mtm), Category # Register your models here. admin.site.register(Gif) admin.site.register(Category)
UTF-8
Python
false
false
159
py
281
admin.py
154
0.786164
0.786164
0
6
25.666667
41
TerminusEst/E_Field_Calc
300,647,731,619
377f5a530ee2ba08b8682e17c0796bee92d6a74d
24300761c3c8846196600b7111370e5c3fbc6305
/CCMC_analysis_scripts/1_READ_B.py
92a57d33c0e624c5a58798b44cb6c428ce4fb8d5
[]
no_license
https://github.com/TerminusEst/E_Field_Calc
18a9150e4d45c051501ec17fa12ffbb0785f8641
83d533bd8853b3a17e2c38360e6eddd7ad9da534
refs/heads/master
2021-01-23T07:51:16.356803
2019-04-10T15:28:03
2019-04-10T15:28:03
80,513,869
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import os from draco import EField as ef import aacgmv2 import matplotlib.dates as mdates #/usr/bin/ffmpeg -r 30 -f image2 -i %03d.png -vf "scale=trunc(iw/2)*2:trunc(ih/2)*2" -vcodec libx264 -crf 10 -pix_fmt yuv420p 2003_11_20_Scan.mp4 ########################################################################################## def time2float(x): """converts datetime to float, so that interpolation/smoothing can be performed""" if (type(x) == numpy.ndarray) or (type(x) == list): emptyarray = [] for i in x: z = (i - datetime.datetime(1970, 1, 1, 0)).total_seconds() emptyarray.append(z) emptyarray = numpy.array([emptyarray]) return emptyarray[0] else: return (x - datetime.datetime(1970, 1, 1, 0)).total_seconds() #-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#- def float2time(x): """converts array back to datetime so that it can be plotted with time on the axis""" if (type(x) == numpy.ndarray) or (type(x) == list): emptyarray = [] for i in x: z = datetime.datetime.utcfromtimestamp(i) emptyarray.append(z) emptyarray = numpy.array([emptyarray]) return emptyarray[0] else: return datetime.datetime.utcfromtimestamp(x) #-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#- def get_date(aaa, filetype): """get datetime from filename""" if filetype == "iono": year = int(aaa[13:17]) month = int(aaa[17:19]) day = int(aaa[19:21]) hour = int(aaa[22:24]) minute = int(aaa[24:26]) elif filetype == "mag": year = int(aaa[10:14]) month = int(aaa[14:16]) day = int(aaa[16:18]) hour = int(aaa[19:21]) minute = int(aaa[21:23]) timedate = datetime.datetime(year, month, day, hour, minute) dayfrac = ((minute/60.) + hour)/24. loncorrect = ((1 - dayfrac)*360) - 180. #print(timedate, dayfrac, loncorrect) return timedate, dayfrac, loncorrect #-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#- def calculate_magnetic_latitude(glon, glat, dtime): for height in arange(0, 100, 0.5): calclat, calclon, z = aacgmv2.get_aacgm_coord(glat, glon, height, start) if np.isnan(calclat) != True: return calclat, calclon, height return nan, nan, nan def get_td_1(a): b = a.split("_") year = int(b[2][:4]) month = int(b[2][4:6]) day = int(b[2][6:]) hour = int(b[-1][:2]) minute = int(b[-1][2:4]) second = int(b[-1][4:6]) td = datetime.datetime(year, month, day, hour, minute, second) return td def get_td_2(a): b = a[10:] year = int(b[:4]) month = int(b[4:6]) day = int(b[6:8]) hour = int(b[9:11]) minute = int(b[11:13]) second = int(b[13:15]) td = datetime.datetime(year, month, day, hour, minute, second) return td ########################################################################################## if 1: input_filename = "/home/blake/Drive/NASA_Data/CCMC_Runs_With_Changes/outputs/Sean_Blake_040519_1/DST_CCMC_output.txt" output_filename = "/home/blake/Drive/NASA_Data/CCMC_Runs_With_Changes/outputs/Sean_Blake_040519_1/Numpy_Data/DST" eff.read_write_dst(input_filename, output_filename) ########################################################################################## folder_mag = "/home/blake/Drive/NASA_Data/CCMC_Runs_With_Changes/outputs/Sean_Blake_040519_1/Mag_Data/" files_mag = sorted(os.listdir(folder_mag)) lenfiles = len(files_mag) * 1.0 geolon, geolat = np.loadtxt(folder_mag + files_mag[0], usecols = (0, 1), unpack = True, skiprows = 10) #------------------------------------------------------------------------------- # set up the master objects to be populated # read in the files average the files for each minute print("Reading in files") timedate1 = [] masterBx = np.ones((int(len(files_mag)), len(geolon))) masterBy, masterBz = np.copy(masterBx), np.copy(masterBx) masterMx, masterMy, masterMz = np.copy(masterBx), np.copy(masterBx), np.copy(masterBx) masterFx, masterFy, masterFz = np.copy(masterBx), np.copy(masterBx), np.copy(masterBx) masterHx, masterHy, masterHz = np.copy(masterBx), np.copy(masterBx), np.copy(masterBx) masterPx, masterPy, masterPz = np.copy(masterBx), np.copy(masterBx), np.copy(masterBx) for i, v in enumerate(files_mag): dBn, dBe, dBd = np.loadtxt(folder_mag + v, skiprows = 4, usecols = (5, 6, 7), unpack = True) masterBx[i], masterBy[i], masterBz[i] = dBn, dBe, dBd timedate1.append(get_td_1(v)) if i%10 == 0: print(i, v) numpysavefolder = "/home/blake/Drive/NASA_Data/CCMC_Runs_With_Changes/outputs/Sean_Blake_040519_1/Numpy_Data/" np.save(numpysavefolder + "BX", masterBx) np.save(numpysavefolder + "BY", masterBy) lonlat = np.concatenate((np.array([geolon]).T, np.array([geolat]).T), axis = 1) np.save(numpysavefolder + "LONLAT", lonlat) np.save(numpysavefolder + "TD", timedate1) ##########################################################################################
UTF-8
Python
false
false
5,149
py
26
1_READ_B.py
22
0.550204
0.51408
0
139
35.647482
145
nohtanoj/autorubric
12,206,297,104,092
f99459d6795b6758ba8500cc0192e17aed1d1533
5053aca9fc86fcc372446f5339df7137f598d64e
/autorubric/rubric/proc_data.py
91627bed185554107a3787b92521746d7301a058
[]
no_license
https://github.com/nohtanoj/autorubric
d795dac4369a79838052d72d4e8e5f203098a9a6
54b7b65c50bd28474fb08be8548ca0c8b65b239a
refs/heads/master
2020-04-10T14:53:29.711742
2019-05-16T15:07:34
2019-05-16T15:07:34
161,090,576
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" Process response and reference data files """ from rubric.utils import normalize import collections import csv EMAIL_COL_RESPONSES = 'Email Address' def proc_responses(fname, problem, students=None): """ Generate valid and invalid submissions (in terms of compilability) for a particular problem. Arguments: fname: filename of responses to read problem: name of problem to process students: specific set of students to consider (iterable containing email addresses) Returns: valid_submissions, invalid_submissions, and nones valid_submissions: dict with key as email and value as the code submission invalid_submissions: dicts with key as email and value as the code submission nones: set of students who submitted None """ valid_submissions = {} invalid_submissions = {} with open(fname, encoding='windows-1252') as csvfile: response_reader = csv.DictReader(csvfile) for _, row in enumerate(response_reader): if students is not None and row[EMAIL_COL_RESPONSES] not in students: continue else: code = row[problem] split_lines = code.splitlines() res = [] for ll in split_lines: if ll.strip(): rstrip_str = ll.rstrip() lspace = rstrip_str[:-len(ll.rstrip().lstrip())] res.append(lspace + normalize(ll.strip())) code = "\n".join(res) email = row[EMAIL_COL_RESPONSES] try: compile(code, '<string>', 'exec') if email in invalid_submissions: del invalid_submissions[email] valid_submissions[email] = code except SyntaxError: try: code = code.replace('_', '') split_lines = code.splitlines() res = [] for ll in split_lines: if ll.strip(): rstrip_str = ll.rstrip() lspace = rstrip_str[:-len(ll.rstrip().lstrip())] res.append(lspace + normalize(ll.strip())) code = "\n".join(res) compile(code, '<string>', 'exec') if email in invalid_submissions: del invalid_submissions[email] valid_submissions[email] = code except SyntaxError: invalid_submissions[email] = code # Get rid of Nones nones = set() for key, value in valid_submissions.items(): if value.strip() == 'None' or value.strip() == '"None"': nones.add(key) for k in nones: del valid_submissions[k] return valid_submissions, invalid_submissions, nones COLNAME = 'c' EMAIL_COL_REF = 'Email' def gen_ref_scores(emails, fname, num_features): """ Generates reference truth values for submissions. Args: emails: set of emails fname: Gradescope-generated csv file for scores num_features: number of features, an integer Returns: dictionary containing mapping from emails to truth values """ with open(fname) as csvfile: grader_scores = csv.reader(csvfile) column_names = next(grader_scores) submission_time_index = column_names.index('Submission Time') adjustment_index = column_names.index('Adjustment') rubric_feature_names = column_names[submission_time_index+1:adjustment_index] newcols = [] for j in range(len(rubric_feature_names)): newcols.append(COLNAME + str(j)) newcolumns = tuple(column_names[: submission_time_index + 1] + newcols + column_names[adjustment_index:]) ref_rubric_scores = collections.defaultdict(list) with open(fname) as csvfile: f = csv.DictReader(csvfile, fieldnames = newcolumns) for row in f: if row[EMAIL_COL_REF] in emails: for i in range(num_features): actual_item = True if row[COLNAME + str(i)] == 'true' else False ref_rubric_scores[row[EMAIL_COL_REF]].append(actual_item) return ref_rubric_scores
UTF-8
Python
false
false
4,411
py
27
proc_data.py
26
0.560871
0.55951
0
116
37.025862
109
dambergn-codefellows/py401_data-structures-and-algorithms
2,516,850,874,253
df2369ff2d0330ef45c1ddd3e076d51303e386b5
c328b3fdcffbe7dc879e5304358aef2cd8061cfb
/challenges/array_shift/test_array_shift.py
2816917f172bc05eeccf79b3fdbe5bcf65c26ef3
[ "MIT" ]
permissive
https://github.com/dambergn-codefellows/py401_data-structures-and-algorithms
35652237173192a0b1779310a351df0ec77ae930
64ca78a70c9de8bee37459481eb8ce0d359b1bb8
refs/heads/master
2020-03-26T06:43:56.841490
2018-09-28T20:50:01
2018-09-28T20:50:01
144,619,223
0
0
MIT
false
2018-09-28T20:50:02
2018-08-13T18:36:39
2018-09-06T06:36:55
2018-09-28T20:50:02
22,833
0
0
0
Python
false
null
from .array_shift import insertShiftArray import pytest def test_array_array_module_exists(): assert insertShiftArray def test_array_add_middle_even(): expected = [1,2,3,4,5] actual = insertShiftArray([1,2,4,5], 3) assert expected == actual def test_array_add_middle_odd(): expected = [1,2,3,4,5,6] actual = insertShiftArray([1,2,3,5,6], 4) assert expected == actual def test_array_add_middle_example1(): expected = [2,4,5,6,8] actual = insertShiftArray([2,4,6,8], 5) assert expected == actual def test_array_add_middle_example2(): expected = [4,8,15,16,23,42] actual = insertShiftArray([4,8,15,23,42], 16) assert expected == actual
UTF-8
Python
false
false
668
py
31
test_array_shift.py
18
0.685629
0.60479
0
30
21.3
47
VorTECHsa/python-sdk
13,305,808,689,364
b84c740e33f367097dcf1a6eec930e682fa41de0
f853366f0f7574610034bf83585269775d3dd03a
/docs/examples/2_crude_from_saudi_arabia_to_india.py
a0708ece0781fa58ee6f2ef42bdbff4a4f450d11
[ "Apache-2.0" ]
permissive
https://github.com/VorTECHsa/python-sdk
0355094bc245bf1b1c9c6f396fadf30196bf6729
f994d6a0c5a87e3e08a0bdec4b5b2cdb9e125c10
refs/heads/master
2023-09-01T21:42:15.633706
2023-08-31T09:14:00
2023-08-31T09:14:00
218,062,510
10
8
Apache-2.0
false
2023-09-14T08:16:26
2019-10-28T14:13:16
2022-12-14T23:07:23
2023-09-14T08:16:25
37,598
19
7
39
Python
false
false
""" Let's find all crude cargo movements from Saudi Arabia to India that loaded in the last month. The below script returns a `pd.DataFrame`, similar to the table given in the movements tab of `https://analytics.vortexa.com`, filtering on `Products: Crude` with `Origin: Saudi Arabia`, `Destination: India` and `Date Range: Departures in the last Month`. """ from datetime import datetime from dateutil.relativedelta import relativedelta from vortexasdk import CargoMovements, Geographies, Products if __name__ == "__main__": now = datetime.utcnow() one_month_ago = now - relativedelta(months=1) # For this analysis we need the geography ID for India, and the geography ID for Saudi Arabia. We're going to # show 2 ways to retrieve geography IDs. You'll want to chose method 1 or 2 depending on your use case. # Option 1. We look up a geography with an exact matching name saudi_arabia = ( Geographies() .search("Saudi Arabia", exact_term_match=True) .to_list()[0] .id ) # Option 2. We search for geographies with similar names, then pick the one we're looking for # First we find the ID for the country India. Note that when searching geographies with the term 'india', we'll # retrieve all geographies with india in the name, ie Indiana, British Indian Ocean Territory... all_geogs_with_india_in_the_name = Geographies().search("india").to_list() # If running interactively, you may want to print all the names here to inspect them for yourself for g in all_geogs_with_india_in_the_name: print(g.name) # We're only interested in the country India here india = [ g.id for g in all_geogs_with_india_in_the_name if g.name == "India" ] # Check we've only got one ID for India assert len(india) == 1 # Let's find the Crude ID, # here we know the exact name of the product we're looking for so we set exact_term_match=True crude = Products().search("Crude", exact_term_match=True).to_list()[0].id # Query the API. search_result = CargoMovements().search( filter_activity="loading_end", filter_origins=saudi_arabia, filter_destinations=india, filter_products=crude, filter_time_min=one_month_ago, filter_time_max=now, ) # A complete list of available columns can be found at https://vortechsa.github.io/python-sdk/endpoints/cargo_movements/#notes # We only require a subset of available columns here required_columns = [ # A cargo movement can be carried by multiple vessels across various STS transfers. You can find all the vessels that # the cargo was onboard by inspecting the 'vessels.0', 'vessels.1' columns etc. # The 'vessels.0' columns shows the primary vessel associated with the cargo movement "vessels.0.name", "vessels.0.vessel_class", # Here we show any corporate information associated with the primary vessel "vessels.0.corporate_entities.charterer.label", "vessels.0.corporate_entities.time_charterer.label", "vessels.0.corporate_entities.effective_controller.label", # Show the product information and quantity "product.group.label", "product.grade.label", "quantity", # Is the vessel in transit, has it already discharged, or is it in floating storage? "status", # Show the loading Port name, and the loading timestamp "events.cargo_port_load_event.0.location.port.label", "events.cargo_port_load_event.0.end_timestamp", # Show the discharge Port name, and the discharge timestamp "events.cargo_port_unload_event.0.location.port.label", "events.cargo_port_unload_event.0.end_timestamp", ] # Convert the search result to a dataframe df = search_result.to_df(columns=required_columns) # Sort the dataframe by loading timestamp df = df.sort_values(by=["events.cargo_port_load_event.0.end_timestamp"])
UTF-8
Python
false
false
4,021
py
231
2_crude_from_saudi_arabia_to_india.py
146
0.687143
0.681671
0
90
43.677778
130
jrying/algorithm_practice
3,315,714,796,205
e053ce850e4e89da6e223e9822a84dcdd2063c24
3c15c260736cafd9e691585fb50512e844345fd5
/codelets/connected_component.py
937fc356964d1735ae387c76bbbe20c040b464d9
[]
no_license
https://github.com/jrying/algorithm_practice
10a94033723144a45cd656aff5562957c8667438
da1ba84e4a552dfefc6ee0079858aa508e8ab2da
refs/heads/master
2020-12-22T07:59:20.211871
2016-08-10T10:53:46
2016-08-10T10:53:46
16,938,384
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import itertools # With library # Without library
UTF-8
Python
false
false
53
py
62
connected_component.py
50
0.754717
0.754717
0
6
7.833333
17