repo_name
stringlengths
7
111
__id__
int64
16.6k
19,705B
blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
151
content_id
stringlengths
40
40
detected_licenses
list
license_type
stringclasses
2 values
repo_url
stringlengths
26
130
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
42
visit_date
timestamp[ns]
revision_date
timestamp[ns]
committer_date
timestamp[ns]
github_id
int64
14.6k
687M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
12 values
gha_fork
bool
2 classes
gha_event_created_at
timestamp[ns]
gha_created_at
timestamp[ns]
gha_updated_at
timestamp[ns]
gha_pushed_at
timestamp[ns]
gha_size
int64
0
10.2M
gha_stargazers_count
int32
0
178k
gha_forks_count
int32
0
88.9k
gha_open_issues_count
int32
0
2.72k
gha_language
stringlengths
1
16
gha_archived
bool
1 class
gha_disabled
bool
1 class
content
stringlengths
10
2.95M
src_encoding
stringclasses
5 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
10
2.95M
extension
stringclasses
19 values
num_repo_files
int64
1
202k
filename
stringlengths
4
112
num_lang_files
int64
1
202k
alphanum_fraction
float64
0.26
0.89
alpha_fraction
float64
0.2
0.89
hex_fraction
float64
0
0.09
num_lines
int32
1
93.6k
avg_line_length
float64
4.57
103
max_line_length
int64
7
931
ktc312/tw_perm_data_analysis_web
7,713,761,303,201
67d9ad40a14eb246eaca883e3ad02fe49595c8fe
253b9c42bffbcd7b0c3fe3880e0370359b1aedb0
/tw_perm_data_analysis/data_cleaning.py
66b1805450a4a4d2a979043efb4ed7b39c1132ff
[ "MIT" ]
permissive
https://github.com/ktc312/tw_perm_data_analysis_web
40c78bf1511f98da07054ae8c6287a53da1e0c73
98302d45afb0d47b230a603279699351739ba34c
refs/heads/master
2021-01-13T01:07:52.923291
2017-03-02T22:17:12
2017-03-02T22:17:12
81,408,337
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# __author__ = 'ktc312' import pandas as pd import numpy as np import os data_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'tw_perm_data_analysis/') # Read the CSV file (cities) ny_cities_df = pd.read_csv(data_path + 'data/NY_cities.csv', names='c', dtype=str) ny_cities = [] for x in ny_cities_df['c']: ny_cities.append(x) bay_cities_df = pd.read_csv(data_path + 'data/Bay_Area_cities.csv', names='city', dtype=str) bay_cities = [] for x in bay_cities_df['c']: bay_cities.append(x) # Convert DateTime def convert_datetime(input_data, input_date): input_data[input_date] = pd.to_datetime(input_data[input_date]) # Convert to equivalent annual salary def equivalent_annual_salary(input_data, input_wage): annual_salary = [] for input_wage_str in input_data[input_wage]: wage = float(input_wage_str.split('/')[0].replace(",", "")) keyword = input_wage_str.split('/')[1].lower() if keyword in ('year', 'yr'): annual_salary.append(wage) elif keyword in ('hour', 'hr'): if wage < 1000: annual_salary.append(wage * 2080) else: annual_salary.append(wage) elif keyword in ('mth', 'month'): if wage < 100000: annual_salary.append(wage * 12) else: annual_salary.append(wage) elif keyword in ('week', 'wk'): if wage < 90000: annual_salary.append(wage * 52) else: annual_salary.append(wage) elif keyword == 'bi': annual_salary.append(wage * 26) elif float(input_wage_str[:-1]) <= 100: annual_salary.append(float(input_wage_str[:-1]) * 2080) else: annual_salary.append(float(input_wage_str[:-1])) input_data['Salary'] = np.asarray(annual_salary) input_data.drop(input_wage, axis=1, inplace=True) # remove outliers input_data.ix[input_data.Salary > 500000, 'Salary'] = '-999' # Clean Case Status def clean_case_status(input_data, input_status): input_data[input_status] = np.where(input_data[input_status] == 'Certified-expired', 'Certified-Expired', input_data[input_status]) # Separate State and City def separate_tate_city(input_data, input_region): city = [] state = [] for s_c in input_data[input_region]: if len(s_c.split(',')[1]) > 3: city.append(s_c.split(',')[0]) state.append(s_c.split(',')[1][1:3].upper()) else: city.append(s_c.split(',')[0]) state.append(s_c.split(',')[1][1:3].upper()) state = ['-999' if v is '' else v for v in state] input_data['City'] = np.asarray(city) input_data['State'] = np.asarray(state) # Clean employer name def clean_employer_name(input_data, input_employer): com_list = [] com_list_2 = [] for employer in input_data[input_employer]: com_list.append(employer.replace(',', '')) for com in com_list: com_list_2.append(com.replace('!', '')) input_data['Company'] = np.asarray(com_list_2) input_data.drop(input_employer, axis=1, inplace=True) # Add Area def add_area(input_data, input_region): area = [] for s_c in input_data[input_region]: city = s_c.split(',')[0].upper() state = s_c.split(',')[1][1:3].upper() if state in ('NY', 'NJ', 'CT'): if city in ny_cities: area.append('New York Metro') else: area.append('-999') elif state == 'CA': if city in bay_cities: area.append('Bay Area') else: area.append('-999') else: area.append('-999') input_data['Area'] = np.asarray(area) # NaN def clear_nan_value(input_data): input_data['State'] = input_data['State'].replace({'-999': np.nan}) input_data['Salary'] = input_data['Salary'].replace({'-999': np.nan}) input_data['Area'] = input_data['Area'].replace({'-999': np.nan}) # Remove Rare Cases in Pandas Data Frame def remove_rare_case(input_data, col_name, freq): col = col_name bin_freq = float(freq) / float(100) filtered_df = pd.DataFrame() for i in input_data[col].unique(): counts = input_data[input_data[col] == i].count()[col] total_counts = input_data[col].count() freq = float(counts) / float(total_counts) if freq > bin_freq: filtered_df = pd.concat([input_data[input_data[col] == i], filtered_df]) return filtered_df
UTF-8
Python
false
false
4,610
py
73
data_cleaning.py
10
0.572234
0.552278
0
137
32.649635
111
paoladuran0618/PythonPractices
8,083,128,497,233
5a6e81ba848920b3575f1a1e23fd3abec9c011ee
d5aa3dbe3133ebed014033b1d98d006259b29ccd
/control-de-flujo/ejercicio6.py
afbb153618d94ba8943b13399ccf173d5d4f7aeb
[]
no_license
https://github.com/paoladuran0618/PythonPractices
b5f82df3e033bd6c2100619f01c85adb0426870c
66693e71f911d76a39dd7947d11389847d386873
refs/heads/master
2023-05-25T07:19:10.788523
2021-01-17T22:04:46
2021-01-17T22:04:46
282,688,247
0
0
null
false
2023-05-23T00:56:55
2020-07-26T16:23:38
2021-01-17T22:07:17
2023-05-23T00:56:54
10,772
0
0
1
Python
false
false
""" Utilizando la función range() y la conversión a listas genera las siguientes listas dinámicamente: Todos los números del 0 al 10 [0, 1, 2, ..., 10] Todos los números del -10 al 0 [-10, -9, -8, ..., 0] Todos los números pares del 0 al 20 [0, 2, 4, ..., 20] Todos los números impares entre -20 y 0 [-19, -17, -15, ..., -1] Todos los números múltiples de 5 del 0 al 50 [0, 5, 10, ..., 50] """ print( list( range(0, 11) ) ) print( list( range(-10, 1) ) ) print( list( range(0, 21, 2) ) ) print( list( range(-19, 0, 2) ) ) print( list( range(0, 51, 5) ) )
UTF-8
Python
false
false
570
py
23
ejercicio6.py
22
0.602496
0.491979
0
20
27.1
64
DhawalRank-zz/LibApp
11,596,411,723,025
23a33b094e34811bf3d4b4481a1f9ed435bdb256
40298fa8620011276a2d77d8af430c5d5fcf7dee
/app/views.py
8ffa2c98d9a64d6b98ba2cf5c451b1668c21bb3e
[]
no_license
https://github.com/DhawalRank-zz/LibApp
5df0e734114f874bef9adf5d8aaf0bfa7484cb9a
db0711e3accb5b0209fb93f73803c23c3b713a7e
refs/heads/master
2021-09-26T17:44:49.839768
2016-06-29T18:29:12
2016-06-29T18:29:12
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import os from random import randint from django.contrib.auth import authenticate, login, logout from django.contrib.auth.decorators import login_required, user_passes_test from django.shortcuts import render, get_object_or_404, get_list_or_404 from django.views.decorators.csrf import csrf_protect from django.http import HttpResponseRedirect from django.core import serializers from django.views.generic import View from app.forms import SuggestionForm, SearchlibForm, LoginForm, Register, MyAcct from app.models import Book, Dvd, Libuser, Libitem, Suggestion from django.core.mail import send_mail # Create your views here. @csrf_protect def login_user(request): form = LoginForm() if request.method == 'POST': username = request.POST['username'] password = request.POST['password'] user = authenticate(username=username, password=password) if user is not None and user.is_active: login(request, user) userob = Libuser.objects.get(username=request.user.username) luckynum = randint(0, 9) request.session['luckynum'] = luckynum request.session['profilepic'] = userob.profilepic.url request.session.set_expiry(3600) userob = Libuser.objects.filter(username=request.user.username) request.session['userob'] = serializers.serialize('json', userob) response = HttpResponseRedirect('/app/index/') response.flush() return response elif user is None: return render(request, 'libapp/login.html', {'notlogin': True, 'form': form}) else: return render(request, 'libapp/login.html', {'notactive': True, 'form': form}) else: return render(request, 'libapp/login.html', {'form': form}) @login_required def user_logout(request): del request.session['userob'] response = HttpResponseRedirect('/') response.delete_cookie('about_visits') logout(request) return response def index(request): itemlist = Libitem.objects.all().order_by('title')[:10] itemlistper = Libitem.objects.filter(user_id__exact=request.user.id) userob = Libuser.objects.filter(username=request.user.username) return render(request, "libapp/index.html", {'itemlist': itemlist, 'itemlistper': itemlistper, 'userob': userob}) def about(request): userob = Libuser.objects.filter(username=request.user.username) if 'about_visits' in request.COOKIES: about_visits = int(request.COOKIES['about_visits']) about_visits += 1 response = render(request, 'libapp/about.html', {'about_visits': about_visits, 'userob': userob}) response.set_cookie('about_visits', about_visits) return response else: about_visits = 1 response = render(request, 'libapp/about.html', {'about_visits': about_visits, 'userob': userob}) response.set_cookie('about_visits', about_visits) return response def detail(request, item_id): libitem = get_object_or_404(Libitem, id=item_id) userob = Libuser.objects.filter(username=request.user.username) if libitem.itemtype == 'Book': book = get_list_or_404(Book, id=item_id) return render(request, 'libapp/detail.html', {'book': book, 'userob': userob}) else: dvd = get_list_or_404(Dvd, id=item_id) return render(request, 'libapp/detail.html', {'dvd': dvd, 'userob': userob}) def suggestions(request): userob = Libuser.objects.filter(username=request.user.username) suggestionlist = Suggestion.objects.all()[:10] return render(request, 'libapp/suggestions.html', {'itemlist': suggestionlist, 'userob': userob}) def newitem(request): suggestionsob = Suggestion.objects.all() userob = Libuser.objects.filter(username=request.user.username) if request.method == 'POST': form = SuggestionForm(request.POST) if form.is_valid(): suggestion = form.save(commit=False) suggestion.num_interested = 1 suggestion.save() return HttpResponseRedirect('/app/suggestions/') else: return render(request, 'libapp/newitem.html', {'form': form, 'suggestions': suggestionsob, 'userob': userob}) else: form = SuggestionForm() return render(request, 'libapp/newitem.html', {'form': form, 'suggestions': suggestionsob, 'userob': userob}) def searchitem(request): userob = Libuser.objects.filter(username=request.user.username) if request.method == 'POST': title1 = request.POST['title'] author1 = request.POST['author'] if title1 != '' and author1 != '': # Title and User not null bookob = Book.objects.filter(title__contains=title1, author__contains=author1) dvdob = Dvd.objects.filter(title__contains=title1, maker__contains=author1) form = SearchlibForm() if bookob and dvdob: return render(request, 'libapp/searchitem.html', {'bookob': bookob, 'dvdob': dvdob, 'form': form, 'userob': userob}) elif not bookob and dvdob: return render(request, 'libapp/searchitem.html', {'dvdob': dvdob, 'form': form, 'userob': userob}) elif bookob and not dvdob: return render(request, 'libapp/searchitem.html', {'bookob': bookob, 'form': form, 'userob': userob}) else: return render(request, 'libapp/searchitem.html', {'notfound': True, 'form': form, 'userob': userob}) elif title1 != '' and author1 == '': # Only Title searched bookob = Book.objects.filter(title__contains=title1) dvdob = Dvd.objects.filter(title__contains=title1) form = SearchlibForm() if bookob and dvdob: return render(request, 'libapp/searchitem.html', {'bookob': bookob, 'dvdob': dvdob, 'form': form, 'userob': userob}) elif bookob and not dvdob: return render(request, 'libapp/searchitem.html', {'bookob': bookob, 'form': form, 'userob': userob}) elif not bookob and dvdob: return render(request, 'libapp/searchitem.html', {'dvdob': dvdob, 'form': form, 'userob': userob}) else: return render(request, 'libapp/searchitem.html', {'notfound': True, 'form': form, 'userob': userob}) elif author1 != '' and title1 == '': # Only Author searched bookob = Book.objects.filter(author__contains=author1) dvdob = Dvd.objects.filter(maker__contains=author1) form = SearchlibForm() if bookob and dvdob: return render(request, 'libapp/searchitem.html', {'bookob': bookob, 'dvdob': dvdob, 'form': form, 'userob': userob}) elif bookob and not dvdob: return render(request, 'libapp/searchitem.html', {'bookob': bookob, 'form': form, 'userob': userob}) elif not dvdob and bookob: return render(request, 'libapp/searchitem.html', {'dvdob': dvdob, 'form': form, 'userob': userob}) else: form = SearchlibForm() return render(request, 'libapp/searchitem.html', {'notfound': True, 'form': form, 'userob': userob}) else: # Author and Title null form = SearchlibForm() return render(request, 'libapp/searchitem.html', {'notinput': True, 'form': form, 'userob': userob}) else: form = SearchlibForm() return render(request, 'libapp/searchitem.html', {'form': form, 'userob': userob}) class SuggestionView(View): def get(self, request, item_id): suggestionsob = Suggestion.objects.filter(id=item_id) userob = Libuser.objects.filter(username=request.user.username) return render(request, 'libapp/suggestionsdet.html', {'suggestionob': suggestionsob, 'userob': userob}) @login_required def myacct(request): userob1 = Libuser.objects.filter(username=request.user.username) if request.method == 'POST': userob = Libuser.objects.get(id=request.user.id) form = MyAcct(request.POST or None, request.FILES or None, instance=userob) if form.is_valid(): form.save() userob = Libuser.objects.get(id=request.user.id) form = MyAcct(instance=userob) return render(request, 'libapp/myacct.html', {"form": form, "added": True, 'userob': userob1}) else: userob = Libuser.objects.get(id=request.user.id) form = MyAcct(instance=userob) return render(request, 'libapp/myacct.html', {"form": form, 'userob': userob1, 'failed': True}) else: userob = Libuser.objects.get(id=request.user.id) form = MyAcct(instance=userob) return render(request, 'libapp/myacct.html', {"form": form, 'userob': userob1}) def register(request): if request.method == 'POST': form = Register(request.POST, request.FILES) if form.is_valid(): user = Libuser.objects.create( username=form.cleaned_data['username'], first_name=form.cleaned_data['first_name'], last_name=form.cleaned_data['last_name'], email=form.cleaned_data['email'], address=form.cleaned_data['address'], city=form.cleaned_data['city'], province=form.cleaned_data['province'], phone=form.cleaned_data['phone'] ) password = form.cleaned_data['password'] user.profilepic = form.cleaned_data['profilepic'] user.set_password(password) user.save() form = Register() return render(request, 'libapp/register.html', {'form': form, 'added': True}) else: form = Register() return render(request, 'libapp/register.html', {'form': form, 'failed': True}) else: form = Register() return render(request, 'libapp/register.html', {'form': form}) def myitems(request): userob = Libuser.objects.filter(username=request.user.username) itemob = Libitem.objects.filter(user__username=request.user.username, checked_out=True) return render(request, 'libapp/myitem.html', {'itemob': itemob, 'userob': userob}) def forgotpwd(request): if request.method == 'POST': username = request.POST['username'] userob = Libuser.objects.get(username=username) password = str(os.urandom(4)) userob.set_password(password) userob.save() send_mail( 'LibApp Password', 'Your new Password is:' + password, 'sojitradhawal@gmail.com', [userob.email], ) return render(request, 'libapp/forgotpwd.html', {'emailSent': True}) else: return render(request, 'libapp/forgotpwd.html') @csrf_protect def checkuname(request): from app.models import Libuser from django.http import HttpResponse username = request.POST.get('username', False) if username: userob = Libuser.objects.filter(username=username).count() if userob: responce = True else: responce = False else: responce = "" return HttpResponse(responce) def setpwd(request): userob = Libuser.objects.filter(username=request.user.username) if request.method == 'POST': userob = Libuser.objects.get(username=request.user.username) password = request.POST.get('npassword', 0) userob.set_password(password) userob.save() return render(request, 'libapp/setpwd.html', {'changed': True, 'userob': userob}) else: return render(request, 'libapp/setpwd.html', {'userob': userob})
UTF-8
Python
false
false
11,879
py
16
views.py
13
0.622527
0.618318
0
278
41.730216
117
yoshi112da/Instacart
4,131,758,572,789
40893191ab08b38b9313de6e1ace88dc0480c118
19dfc947c052ea113306b3ae4bf1e2e1a069f0a9
/appendix/317_.py
fca9453ca0ed2da4cc209cbfd01b81264c1595e6
[ "MIT" ]
permissive
https://github.com/yoshi112da/Instacart
25bd6035bb1c764ec25c6e011949a71f122084f5
2cb49dc95a2ce3f1cbd3fccb54ce15b624a5d503
refs/heads/master
2023-04-26T12:21:28.709941
2023-04-16T02:08:23
2023-04-16T02:08:23
579,041,637
0
0
MIT
true
2022-12-16T14:09:39
2022-12-16T14:09:38
2022-12-08T09:42:11
2018-05-07T06:51:15
4,687
0
0
0
null
false
false
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Jun 18 12:55:38 2017 @author: konodera https://twitter.com/jeremystan/status/911357665481080832 6/ most novel feature: binary user by product purchase sequence -> decimal -> XGBoost learns non-trivial sequence patterns """ import pandas as pd import numpy as np from tqdm import tqdm from decimal import Decimal import utils #utils.start(__file__) #============================================================================== # load #============================================================================== col = ['order_id', 'user_id', 'product_id', 'order_number', 'order_number_rev'] log = utils.read_pickles('../input/mk/log', col).sort_values(['user_id', 'product_id', 'order_number']) #============================================================================== # def #============================================================================== def conv_bi2dec(seq, onb_max, reverse=True, deci=10): """ ex. seq = [1,3,4] onb_max = 6 101100 -> 44 001101 -> 13 """ bi = [0]*onb_max for i in seq: bi[i-1] = 1 if reverse: bi = ''.join(map(str, bi))[::-1] else: bi = ''.join(map(str, bi)) if deci==10: return int(bi, 2) elif deci==2: return int(bi) elif deci==.2: return float(bi[0] + '.' + bi[1:]) else: raise def make(T): """ T = 0 folder = 'trainT-0' """ if T==-1: folder = 'test' else: folder = 'trainT-'+str(T) log_ = log[log.order_number_rev>T] log_['onb_max'] = log_.groupby('user_id').order_number.transform(np.max) r1_d10 = [] r1_d2 = [] r1_df2 = [] r0_d10 = [] r0_d2 = [] r0_df2 = [] seq = [] uid_bk = pid_bk = onb_max_bk = None for uid,pid,onb,onb_max in tqdm(log_[['user_id', 'product_id', 'order_number', 'onb_max']].values): if uid_bk is None: pass elif uid==uid_bk and pid==pid_bk: pass elif uid!=uid_bk or pid!=pid_bk: r1_d10.append(conv_bi2dec(seq, onb_max_bk, True, 10)) r1_d2.append(conv_bi2dec(seq, onb_max_bk, True, 2)) r1_df2.append(conv_bi2dec(seq, onb_max_bk, False, .2)) r0_d10.append(conv_bi2dec(seq, onb_max_bk, True, 10)) r0_d2.append(conv_bi2dec(seq, onb_max_bk, True, 2)) r0_df2.append(conv_bi2dec(seq, onb_max_bk, False, .2)) seq = [] seq.append(onb) uid_bk = uid pid_bk = pid onb_max_bk = onb_max r1_d10.append(conv_bi2dec(seq, onb_max_bk, True, 10)) r1_d2.append(conv_bi2dec(seq, onb_max_bk, True, 2)) r1_df2.append(conv_bi2dec(seq, onb_max_bk, False, .2)) r0_d10.append(conv_bi2dec(seq, onb_max_bk, True, 10)) r0_d2.append(conv_bi2dec(seq, onb_max_bk, True, 2)) r0_df2.append(conv_bi2dec(seq, onb_max_bk, False, .2)) df = log_[['user_id', 'product_id']].drop_duplicates(keep='first').reset_index(drop=True) df['seq2dec_r1_d10'] = r1_d10 df['seq2dec_r1_d2'] = r1_d2 df['seq2dec_r1_df2'] = r1_df2 df['seq2dec_r0_d10'] = r0_d10 df['seq2dec_r0_d2'] = r0_d2 df['seq2dec_r0_df2'] = r0_df2 df.to_pickle('../feature/{}/f317_user-product.p'.format(folder)) #============================================================================== # main #============================================================================== make(0) #make(1) #make(2) make(-1) #============================================================================== utils.end(__file__)
UTF-8
Python
false
false
3,743
py
74
317_.py
58
0.456051
0.407694
0
135
26.718519
103
huang8228541/upload_look_photo_system
2,181,843,402,255
50892cd7c2dcf88e23348ecc3809e0fe5dbbce4f
357fb20ace48919be3512b819cdf969cbaa8429b
/established_photo_v1.0/create_db.py
a6e6fb5edeaa348dd083d5918b9035041193df9e
[]
no_license
https://github.com/huang8228541/upload_look_photo_system
823fe5b9eed8806ba883d78951a7c3f9a9f80386
8b1690665b1a295f0b80aa045838a81de61f1044
refs/heads/master
2021-09-19T11:39:43.506868
2018-07-27T13:09:46
2018-07-27T13:09:46
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
''' 实现持久层: 本引用需要两个表。分别存放用户信息和相片信息。 用户信息主要保存:用户名,密码等信息。 相片信息,则保存相片的标题,相片对应的文件名,以及该相片的属主 等。 因此,用户表和相片表有主从表关联关系,一个用户可以对应于多个相片。 ''' import pymysql class CreateMysqlTable(object): def __init__(self): #连接数据库, self.db=pymysql.connect("localhost","root","new_password","manager_user") #创建游标 self.cursor=self.db.cursor() def run(self): #写创建表的SQL语句 user_table=""" CREATE TABLE user_infomation( id INT NOT NULL AUTO_INCREMENT, user_name CHAR(20) NOT NULL, pass CHAR(50) NOT NULL, PRIMARY KEY(id), UNIQUE (user_name) ); """ photo_table=""" CREATE TABLE photo_infomation( id INT NOT NULL AUTO_INCREMENT, image_name CHAR(20) NOT NULL, img_path CHAR(50) NOT NULL, img_time DATE NOT NULL, img_size FLOAT NOT NULL, img_acription CHAR(20) NOT NULL, one_img_id INT NOT NULL, PRIMARY KEY(id), UNIQUE(img_path) ); """ #执行sql语句 # self.cursor.execute(user_table) self.cursor.execute(photo_table) #提交事务 self.db.commit() #关闭数据库 self.db.close() def main(): create_mysql_table=CreateMysqlTable() create_mysql_table.run() if __name__ == '__main__': main()
UTF-8
Python
false
false
1,921
py
7
create_db.py
4
0.466832
0.460632
0
64
24.203125
81
ulicar/sentry-cli
4,535,485,477,519
a1b0645dad451cfa8b4dbb5203abf24ff6924320
9f071beeeab8adb28e2c8bbf77c2af7b2a66f506
/sentry/client.py
2f24f61c51432bd0224e0418dbb60d1f9828394b
[ "MIT" ]
permissive
https://github.com/ulicar/sentry-cli
b23714cf4a2265bdbf97f2f95bfd301b67a50f3d
c95a77f8b74ced7c41dc8ab61fd31fdf64c08880
refs/heads/master
2021-05-02T13:45:57.346689
2016-11-02T19:33:03
2016-11-02T19:33:03
72,670,663
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python import requests class Client(object): def __init__(self, token, domain, debug=False): assert isinstance(token, str) assert isinstance(domain, str) self.token = token self.domain = domain self.debug = debug def _do_query(self, resource): base = 'http://{domain}/api/0'.format(token=self.token, domain=self.domain) url = base + resource if self.debug: print (url) return requests.get(url, auth=requests.auth.HTTPBasicAuth(self.token, '')).json() def get_organizations(self): return self._do_query('/organizations/') def get_organization(self, organization_slug): return self._do_query('/organizations/{o}/'.format(o=organization_slug)) def get_projects(self, organization_slug): return self._do_query('/{o}/projects/'.format(o=organization_slug)) def get_project(self, project, organization_slug): return self._do_query('/projects/{o}/{p}/'.format(o=organization_slug, p=project)) def get_groups(self, project, organization_slug): return self._do_query('/projects/{o}/{p}/groups/'.format(o=organization_slug, p=project)) def get_group(self, group_id): return self._do_query('/groups/{g}/'.format(g=str(group_id))) def get_events(self, group_id): return self._do_query('/groups/{g}/events/'.format(g=str(group_id))) def get_event(self, event_id): return self._do_query('/events/{e}/'.format(e=str(event_id)))
UTF-8
Python
false
false
1,528
py
4
client.py
3
0.631545
0.63089
0
46
32.195652
97
jasonshih/googleads-python-legacy-lib
18,305,150,623,495
1bc99012d5c3b1c149a83dfde3acad2602fe625c
93f47ba04fc18c4e537f0a48fe6232e2a89a4d30
/tests/adspygoogle/dfa/v1_18/dfa_logger_unittest.py
02825a198a2779854fd758cf3143ca4abf1f023f
[ "Apache-2.0" ]
permissive
https://github.com/jasonshih/googleads-python-legacy-lib
c56dc52a1dab28b9de461fd5db0fcd6020b84a04
510fad41ecf986fe15258af64b90f99a96dc5548
refs/heads/master
2021-04-30T22:12:12.900275
2015-03-06T15:35:21
2015-03-06T15:35:21
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python # # Copyright 2011 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests to cover Logger.""" __author__ = 'api.jdilallo@gmail.com (Joseph DiLallo)' import logging import os import sys sys.path.insert(0, os.path.join('..', '..', '..', '..')) import unittest from adspygoogle.common import Utils from tests.adspygoogle.dfa.v1_18 import client from tests.adspygoogle.dfa.v1_18 import HTTP_PROXY from tests.adspygoogle.dfa.v1_18 import SERVER_V1_18 from tests.adspygoogle.dfa.v1_18 import VERSION_V1_18 class DfaLoggerTestV1_18(unittest.TestCase): """Unittest suite for Logger using v1_18.""" SERVER = SERVER_V1_18 VERSION = VERSION_V1_18 TMP_LOG = os.path.join('..', '..', '..', '..', 'logs', 'logger_unittest.log') DEBUG_MSG1 = 'Message before call to an API method.' DEBUG_MSG2 = 'Message after call to an API method.' client.debug = False def setUp(self): """Prepare unittest.""" print self.id() def testUpperStackLogging(self): """Tests whether we can define logger at client level and log before and after the API request is made. """ logger = logging.getLogger(self.__class__.__name__) logger.setLevel(logging.DEBUG) fh = logging.FileHandler(self.__class__.TMP_LOG) fh.setLevel(logging.DEBUG) logger.addHandler(fh) # Clean up temporary log file. Utils.PurgeLog(self.__class__.TMP_LOG) logger.debug(self.__class__.DEBUG_MSG1) advertiser_service = client.GetAdvertiserService( self.__class__.SERVER, self.__class__.VERSION, HTTP_PROXY) advertiser_service.GetAdvertisers({}) logger.debug(self.__class__.DEBUG_MSG2) data = Utils.ReadFile(self.__class__.TMP_LOG) self.assertEqual(data.find(self.__class__.DEBUG_MSG1), 0) self.assertEqual(data.find(self.__class__.DEBUG_MSG2), len(self.__class__.DEBUG_MSG1) + 1) # Clean up and remove temporary log file. Utils.PurgeLog(self.__class__.TMP_LOG) os.remove(self.__class__.TMP_LOG) if __name__ == '__main__': unittest.main()
UTF-8
Python
false
false
2,579
py
76
dfa_logger_unittest.py
60
0.688639
0.670027
0
79
31.64557
79
kristinyanah/backendrepo
1,039,382,099,143
fe07d1bcbd17c03eadbfab36a1ca5bf335fabc11
e3f34e3fe9783c3e6405b128d0cf1a6be79a7ec8
/models/cnn_gnn/code/preprocess_data.py
c83dc99f62f5d17c315dc85bd6e778fdd90f3a58
[ "Apache-2.0" ]
permissive
https://github.com/kristinyanah/backendrepo
e1586e93afbc35b3c99d96b533c96de7da3d25ea
251fd350dbde04bf0428da1e5ee2128acc6c5d10
refs/heads/master
2020-05-24T12:47:34.003108
2019-05-19T09:50:09
2019-05-19T09:50:09
187,275,140
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from collections import defaultdict import os import pickle import sys import numpy as np from rdkit import Chem def load_dictionary(file_name): with open(file_name, 'rb') as f: d = pickle.load(f) dictionary = defaultdict(lambda: len(d)) dictionary.update(d) return dictionary def create_atoms(atom_dict, mol): # NOTE: my error handling try: atoms = [atom_dict[a.GetSymbol()] for a in mol.GetAtoms()] except Exception as e: print("Error creating atoms: {}".format(str(e))) return None return np.array(atoms) def create_ijbonddict(bond_dict, mol): i_jbond_dict = defaultdict(lambda: []) for b in mol.GetBonds(): i, j = b.GetBeginAtomIdx(), b.GetEndAtomIdx() bond = bond_dict[str(b.GetBondType())] i_jbond_dict[i].append((j, bond)) i_jbond_dict[j].append((i, bond)) return i_jbond_dict def create_fingerprints(fingerprint_dict, atoms, i_jbond_dict, radius): """Extract r-radius subgraphs (i.e., fingerprints) from a molecular graph using WeisfeilerLehman-like algorithm.""" if (len(atoms) == 1) or (radius == 0): fingerprints = [fingerprint_dict[a] for a in atoms] else: vertices = atoms for _ in range(radius): fingerprints = [] for i, j_bond in i_jbond_dict.items(): neighbors = [(vertices[j], bond) for j, bond in j_bond] fingerprint = (vertices[i], tuple(sorted(neighbors))) fingerprints.append(fingerprint_dict[fingerprint]) vertices = fingerprints return np.array(fingerprints) def create_adjacency(mol): adjacency = Chem.GetAdjacencyMatrix(mol) return np.array(adjacency) def split_sequence(word_dict, sequence, ngram): sequence = '-' + sequence + '=' words = [word_dict[sequence[i:i+ngram]] for i in range(len(sequence)-ngram+1)] return np.array(words) def dump_dictionary(dictionary, file_name): with open(file_name, 'wb') as f: pickle.dump(dict(dictionary), f) if __name__ == "__main__": DATASET, radius, ngram, test = sys.argv[1:] radius, ngram = map(int, [radius, ngram]) # make boolean test = test.lower() == 'true' # TODO: replace this so it isn't hardcoded # with open('../dataset/' + DATASET + '/original/' # 'smiles_sequence_interaction.txt', 'r') as f: # cpi_list = f.read().strip().split('\n') # if we're generating test data, pull from test set if test: testset_name = "comp_seq_list_C1013_S1" with open('../dataset/' + DATASET + '/test_original/' + testset_name + '.txt', 'r') as f: cpi_list = f.read().strip().split('\n') # with open('../dataset/' + DATASET + '/test_original/' # 'comp_seq_list_C1013_S2.txt', 'r') as f: # cpi_list = f.read().strip().split('\n') else: with open('../dataset/' + DATASET + '/original/' '50_pos_50_neg_composite_interactions_no_period_no_failure.txt', 'r') as f: cpi_list = f.read().strip().split('\n') """Exclude data contains "." in the smiles.""" cpi_list = list(filter(lambda x: '.' not in x.strip().split()[0], cpi_list)) N = len(cpi_list) atom_dict = defaultdict(lambda: len(atom_dict)) bond_dict = defaultdict(lambda: len(bond_dict)) fingerprint_dict = defaultdict(lambda: len(fingerprint_dict)) word_dict = defaultdict(lambda: len(word_dict)) Compounds, Adjacencies, Proteins, Interactions = [], [], [], [] for no, cpi in enumerate(cpi_list): print('/'.join(map(str, [no+1, N]))) # TODO: make this nicer (perhaps we unpack first two, then third is in try/except block where we pass if we except) # check for cpi data interaction # has_interaction = False cpi_data = cpi.strip().split() smiles = cpi_data[0] sequence = cpi_data[1] try: interaction = cpi_data[2] except: print("CPI line did not have a third element; setting -999 as sentinel") interaction = -999 # if len(cpi_data) == 3: # smiles, sequence, interaction = cpi.strip().split() # elif len(cpi_data) == 2: # smiles, sequence = cpi.strip().split() # else: # raise Exception ("Unexpected input, CPI file line has {} elements: {}".format(len(cpi_data), cpi_data)) mol = Chem.MolFromSmiles(smiles) atoms = create_atoms(atom_dict, mol) # NOTE: my error handling if atoms is None: print("failure in sequence no {}, {}".format(no, cpi)) continue i_jbond_dict = create_ijbonddict(bond_dict, mol) fingerprints = create_fingerprints(fingerprint_dict, atoms, i_jbond_dict, radius) Compounds.append(fingerprints) adjacency = create_adjacency(mol) Adjacencies.append(adjacency) words = split_sequence(word_dict, sequence, ngram) Proteins.append(words) interaction = np.array([int(interaction)]) Interactions.append(interaction) # change dir name according to whether or not this is a test set if test: dir_input = ('../dataset/' + DATASET + '/test_input/' 'radius' + str(radius) + '_ngram' + str(ngram) + '/' + testset_name + '/') else: dir_input = ('../dataset/' + DATASET + '/input/' 'radius' + str(radius) + '_ngram' + str(ngram) + '/') # NOTE: this is a python3 thing, so doing it in python2 # os.makedirs(dir_input, exist_ok=True) try: os.makedirs(dir_input) except: pass np.save(dir_input + 'compounds', Compounds) np.save(dir_input + 'adjacencies', Adjacencies) np.save(dir_input + 'proteins', Proteins) np.save(dir_input + 'interactions', Interactions) dump_dictionary(atom_dict, dir_input + 'atom_dict.pickle') dump_dictionary(bond_dict, dir_input + 'bond_dict.pickle') dump_dictionary(fingerprint_dict, dir_input + 'fingerprint_dict.pickle') dump_dictionary(word_dict, dir_input + 'word_dict.pickle') print('The preprocess of ' + DATASET + ' dataset has finished!')
UTF-8
Python
false
false
6,305
py
18
preprocess_data.py
8
0.591594
0.58636
0
182
33.642857
123
Rlogarisation/NihaoPython
790,274,031,418
0a235366197728375ac4358e6c8596b13af10fe0
cb0119df748ac0d83f9f6ce1c82910e1e9232fe2
/lab03/lab03_timetable/timetable_test.py
74f2c9e4616d0447c0e8c95c88aa91e7c31bde2c
[]
no_license
https://github.com/Rlogarisation/NihaoPython
3bf7cb37fea068695e0f483ab426bd75d4e68482
6a302ba548a110378a3460cb46e93607d4e58f48
refs/heads/main
2023-05-13T18:19:13.256740
2021-05-20T05:03:15
2021-05-20T05:03:15
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from timetable import timetable from datetime import date, time, datetime import datetime def test_for_timetable(): assert(timetable([date(2019,9,27)], [time(14,10)]) == [datetime.datetime(2019, 9, 27, 14, 10)]) assert(timetable([date(2019,9,27), date(2019,9,30)], [time(14,10), time(10,30)]) == [datetime.datetime(2019, 9, 27, 10, 30), datetime.datetime(2019, 9, 27, 14, 10), datetime.datetime(2019, 9, 30, 10, 30), datetime.datetime(2019, 9, 30, 14, 10)])
UTF-8
Python
false
false
471
py
39
timetable_test.py
35
0.673036
0.4862
0
7
65.714286
249
npolshakova/nnet
1,254,130,459,556
7a85a63c1a12d63969b768991fc858fd5d1e0271
d711f546a22d6942e74f0def14ce819f20b3ffff
/stencil/generate_data.py
12a3d8330e5ce3ed212f96c6813798b6b949eb6f
[]
no_license
https://github.com/npolshakova/nnet
dda50dab3e1e35b3e262c5ca5f4453604a0bbfca
4a9b8e96a179059b1b01d96a227a8d1db8eff60c
refs/heads/master
2021-10-27T15:26:42.174227
2019-04-18T00:43:00
2019-04-18T00:43:00
181,326,965
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np import random def generate_data(): X = [[1 if np.random.normal() > 0 else 0, 1 if np.random.normal() > 0 else 0] for ix in range(100)] Y = [1 if c[0] != c[1] else 0 for c in X] return np.array(X),np.array(Y)
UTF-8
Python
false
false
240
py
3
generate_data.py
2
0.608333
0.554167
0
7
33.285714
103
nuxeo-cps/zope2--PortalTransforms
15,539,191,721,312
bc685dda6bef446eedc8f1804ff2ae2a24943c05
ae5a60fb7105533eb46a7113b709f49f9525b419
/zope/MimeTypesTool.py
a0f347c7f0e4f4feac59700b25fd149a85e73956
[ "BSD-3-Clause" ]
permissive
https://github.com/nuxeo-cps/zope2--PortalTransforms
61cab5a168c254a5850bcb0fb182b064ce1ba78f
753f67202b016d0b07edd3bc65fd827cb39e50db
refs/heads/main
2023-01-30T03:53:56.400774
2012-01-21T21:23:51
2012-01-21T21:23:51
317,994,731
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from OFS.Folder import Folder try: from Products.CMFCore.permissions import ManagePortal except ImportError: # BBB: CMF 1.4 from Products.CMFCore.CMFCorePermissions import ManagePortal from Products.CMFCore.ActionProviderBase import ActionProviderBase from Products.CMFCore.TypesTool import FactoryTypeInformation from Products.CMFCore.utils import UniqueObject from Products.PageTemplates.PageTemplateFile import PageTemplateFile from Globals import InitializeClass from Acquisition import aq_parent from AccessControl import ClassSecurityInfo from Products.PortalTransforms.interfaces import isourceAdapter, imimetypes_registry from Products.PortalTransforms.utils import log, _www from Products.PortalTransforms.MimeTypesRegistry import MimeTypesRegistry from Products.PortalTransforms.zope.MimeTypeItem import MimeTypeItem __revision__ = '$Id$' class MimeTypesTool(UniqueObject, ActionProviderBase, Folder, MimeTypesRegistry): """extend the MimeTypesRegistry of CMF compliance """ __implements__ = (imimetypes_registry, isourceAdapter) id = 'mimetypes_registry' meta_type = 'MimeTypes Registry' isPrincipiaFolderish = 1 # Show up in the ZMI meta_types = all_meta_types = ( { 'name' : 'MimeType', 'action' : 'manage_addMimeTypeForm'}, ) manage_options = ( ( { 'label' : 'MimeTypes', 'action' : 'manage_main'},) + Folder.manage_options[2:] ) manage_addMimeTypeForm = PageTemplateFile('addMimeType', _www) manage_main = PageTemplateFile('listMimeTypes', _www) manage_editMimeTypeForm = PageTemplateFile('editMimeType', _www) security = ClassSecurityInfo() security.declareProtected(ManagePortal, 'register') security.declareProtected(ManagePortal, 'unregister') security.declarePublic('mimetypes') security.declarePublic('list_mimetypes') security.declarePublic('lookup') security.declarePublic('lookupExtension') security.declarePublic('classify') # FIXME __allow_access_to_unprotected_subobjects__ = 1 def __init__(self, fill=1): MimeTypesRegistry.__init__(self, fill=1) del self.defaultMimetype self.manage_addProperty('defaultMimetype', 'text/plain', 'string') del self.unicodePolicy self.manage_addProperty('unicodePolicies', 'strict ignore replace', 'tokens') self.manage_addProperty('unicodePolicy', 'unicodePolicies', 'selection') def lookup(self, mimetypestring): result = MimeTypesRegistry.lookup(self, mimetypestring) return tuple([m.__of__(self) for m in result]) security.declareProtected(ManagePortal, 'manage_delObjects') def manage_delObjects(self, ids, REQUEST=None): """ delete the selected mime types """ for id in ids: self.unregister(self.lookup(id)[0]) if REQUEST is not None: REQUEST['RESPONSE'].redirect(self.absolute_url()+'/manage_main') security.declareProtected(ManagePortal, 'manage_addMimeType') def manage_addMimeType(self, id, mimetypes, extensions, icon_path, binary=0, REQUEST=None): """add a mime type to the tool""" mt = MimeTypeItem(id, mimetypes, extensions, binary, icon_path) self.register(mt) if REQUEST is not None: REQUEST['RESPONSE'].redirect(self.absolute_url()+'/manage_main') security.declareProtected(ManagePortal, 'manage_editMimeType') def manage_editMimeType(self, name, new_name, mimetypes, extensions, icon_path, binary=0, REQUEST=None): """edit a mime type by name""" mt = self.lookup(name)[0] self.unregister(mt) mt.edit(new_name, mimetypes, extensions, icon_path, binary) self.register(mt) if REQUEST is not None: REQUEST['RESPONSE'].redirect(self.absolute_url()+'/manage_main') InitializeClass(MimeTypesTool)
UTF-8
Python
false
false
3,955
py
60
MimeTypesTool.py
43
0.694817
0.692035
0
101
38.158416
93
rrada/playground
10,943,576,691,955
ec80876e136a1c328ed32ec88a8dac6521c15f02
41c72c519a40354fb84b6dfcb73d5f9506354ee5
/controlserver/server.py
08af23ca62c03fbcbd3237dce3fd2ab8f0c0e718
[]
no_license
https://github.com/rrada/playground
c8f1b96a645ac9b49014aa1b158a73f09c7aaadd
fdabe925d1829dd9182d9daafe5a0dd4b041bec2
refs/heads/main
2023-02-18T08:03:20.791161
2021-01-20T19:25:11
2021-01-20T19:25:11
331,373,273
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import os import sys import socket import struct import time import signal import argparse from threading import Thread, get_ident from socketserver import ( BaseServer, BaseRequestHandler, UDPServer, UnixStreamServer, StreamRequestHandler, ThreadingMixIn, ) from enum import IntEnum from cmd import Cmd VERSION = '0.1' SERVER_HOST = '0.0.0.0' SERVER_PORT = 10000 SERVER_ID = 0 BUFFER_SIZE = 1024 CLEANUP_INTERNVAL = 10 REMOTE_LIFETIME_MAX = 10 # 48 bytes max size # 8B | 2B | 38B # -------------- # ID | CMD | MSG HEADER_FMT = '!QH38s' # 38B bytes max size # 2B | 36B # -------------- # STATE | MSG MSG_FMT = '!H36s' DEBUG=True def dbgprint(args): if DEBUG: print(args) class EMsgType(IntEnum): PING = 0 JOB_OFFER = 1 class ERemoteState(IntEnum): IDLE = 0 WORKING = 1 ERROR = 2 class ControlServerRemoteHandler(BaseRequestHandler): """Handle incomming communication with remote""" def handle(self): data = self.request[0].strip() socket = self.request[1] id, cmd, msg = struct.unpack(HEADER_FMT, data) if cmd == EMsgType.PING: # unpack and decode msg part of custom dgram state, desc = struct.unpack(MSG_FMT, msg) self.server.add_remote(id, self.client_address[0], self.client_address[1], state) desc_decoded = desc.decode('utf-8') if state == ERemoteState.IDLE: pass elif state == ERemoteState.WORKING: pass dbgprint(f"Remote state {ERemoteState(state).name} || desc: {desc_decoded}") # sent same data back to client in uppercase socket.sendto(data.upper(), self.client_address) else: dbgprint(f"Received cmd {EMsgType(cmd)}, remote should PING only") class ControlServer(ThreadingMixIn, UDPServer): remotes = {} last_cleanup = time.time() last_test_send = time.time() def __init__(self, server_address, RequestHandlerClass, bind_and_activate=True): UDPServer.__init__(self, server_address, RequestHandlerClass, bind_and_activate) def add_remote(self, id, addr, port, state): """Adds or updates the remote""" if not self.remote_exist(id): self.remotes[id] = {} self.remotes[id]['addr'] = addr self.remotes[id]['port'] = port self.remotes[id]['state'] = state self.remotes[id]['last_seen'] = time.time() dbgprint(f'Adding remote: {id}') else: self.remotes[id]['addr'] = addr self.remotes[id]['port'] = port self.remotes[id]['state'] = state self.remotes[id]['last_seen'] = time.time() dbgprint(f'Updating remote: {id}') def remove_remote(self, id): if self.remote_exist(id): dbgprint(f'Removing stale remote: {id}') del self.remotes[id] def cleanup_remotes(self): """cleanup stale clients in defined interval""" if time.time() - self.last_cleanup > CLEANUP_INTERNVAL: if len(self.remotes) > 0: for remote in self.remotes.copy(): if time.time() - self.remotes[remote]['last_seen'] > REMOTE_LIFETIME_MAX: self.remove_remote(remote) # update cleanup timer self.last_cleanup = time.time() def remote_exist(self, id) -> bool: return True if id in self.remotes else False def is_remote_alive(self, id) -> bool: if self.remote_exist(id): return True if (time.time() - self.remotes[id]['last_seen'] < REMOTE_LIFETIME_MAX) else False def is_remote_idle(self, id) -> bool: if self.remote_exist(id): return self.remotes[id]['state'] == ERemoteState.IDLE def service_actions(self): self.cleanup_remotes() # just testing communication sent to client in 1 s interval if time.time() - self.last_test_send > 1: for remote in self.remotes.keys(): if self.is_remote_alive(remote) and self.is_remote_idle(remote): sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) pack = struct.pack(HEADER_FMT, SERVER_ID, EMsgType.JOB_OFFER, "Job offer from server".encode('utf-8')) sock.sendto(pack, (self.remotes[remote]['addr'], self.remotes[remote]['port'])) sock.close() self.last_test_send = time.time() def server_activate(self): pass def signal_handler(signalNumber, frame): raise ExitApp class ExitApp(Exception): pass if __name__ == '__main__': signal.signal(signal.SIGTERM, signal_handler) signal.signal(signal.SIGINT, signal_handler) # Arguments parser ap = argparse.ArgumentParser() ap.add_argument("-H", "--host", action='store', type=str, default=SERVER_HOST, help=f"Control server host [{SERVER_HOST}]") ap.add_argument("-p", "--port", action='store', type=int, default=SERVER_PORT, help=f"Control server port [{SERVER_PORT}]") args = vars(ap.parse_args()) server = ControlServer((args['host'], args['port']), ControlServerRemoteHandler) try: server.serve_forever() except ExitApp: # close & cleanup server.shutdown()
UTF-8
Python
false
false
5,333
py
4
server.py
2
0.600225
0.591037
0
181
28.469613
127
zahrafali/comp5107
6,786,048,354,761
e6ce4222cbe4a10e335ee145203e253b016bc5cd
8578e5a5a6f32c2e56f554ced60ad7287aebdf71
/Project/testing.py
651e07e05757ced82501efb3d7e4c68a968eb47e
[]
no_license
https://github.com/zahrafali/comp5107
334bdb17d8119823e3e73023121369ef03bf145d
b64f631d8e8dca32ba30e57ceceae2c9a2b65862
refs/heads/master
2022-03-01T21:57:47.055407
2018-04-24T04:36:00
2018-04-24T04:36:00
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import helper as h import numpy as np import max_likelihood as ml import bayesian_method as bl import parzen_window as pz import ho_kashyab as hk import k_nn as kn import fishers_disc as fd def test_classifier(class1_test_points, class2_test_points, x1_ml_estimated_cov, x2_ml_estimated_cov, x1_ml_estimated_mean, x2_ml_estimated_mean, class1_testing_points_count, class2_testing_points_count, p1, p2): # classification results class1_true = 0.0 class1_false = 0.0 class2_true = 0.0 class2_false = 0.0 # print(class1_test_points[:, 1]) # print(class1_testing_points_count) # classify each point for j in range(class1_testing_points_count): discriminant_value = h.calculate_discriminant(class1_test_points[:, j], x1_ml_estimated_cov, x2_ml_estimated_cov, x1_ml_estimated_mean, x2_ml_estimated_mean, p1, p2) # print("class1 Disc Val: ", discriminant_value) if discriminant_value > 0: class1_true += 1 else: class1_false += 1 for j in range(class2_testing_points_count): discriminant_value = h.calculate_discriminant(class2_test_points[:, j], x1_ml_estimated_cov, x2_ml_estimated_cov, x1_ml_estimated_mean, x2_ml_estimated_mean, p1, p2) # print("class2 Disc Val: ", discriminant_value) if discriminant_value < 0: class2_true += 1 else: class2_false += 1 class1_accuracy = (class1_true / len(class1_test_points[0])) * 100 class2_accuracy = (class2_true / len(class2_test_points[0])) * 100 total_accuracy = (class1_true + class2_true) * 100 / (len(class1_test_points[0]) + len(class2_test_points[0])) # print(class1_true, class1_false) # print(class2_true, class2_false) print(total_accuracy) return class1_accuracy, class2_accuracy, total_accuracy def ml_k_cross_validation(class1_data, class2_data, p1, p2, k, n1, n2): test_results_ml_class1 = [] test_results_ml_class2 = [] accuracies = [] for i in range(0, k, 1): print('Cross:' + str(i + 1)) class1_testing_points_count = int(n1 / k) class1_training_points_count = int(n1 - n1 / k) class1_start = int(n1 * i / k) class1_end = int((i + 1) * n1 / k) class2_testing_points_count = int(n2 / k) class2_training_points_count = int(n2 - n2 / k) class2_start = int(n2 * i / k) class2_end = int((i + 1) * n2 / k) # print("start:", class1_start, "\tend:", class1_end) # print("start:", class2_start, "\tend:", class2_end) class1_test_points = class1_data[:, class1_start: class1_end] class1_train_points = class1_data[:, 0:class1_start] class1_train_points = np.append(class1_train_points, class1_data[:, class1_end:], axis=1) class2_test_points = class2_data[:, class2_start: class2_end] class2_train_points = class2_data[:, 0:class2_start] class2_train_points = np.append(class2_train_points, class2_data[:, class2_end:], axis=1) # estimated mean and cov using ML x1_ml_estimated_mean = ml.estimate_mean_ml(class1_train_points, len(class1_train_points[0])) x1_ml_estimated_cov = ml.estimate_cov_ml(class1_train_points, x1_ml_estimated_mean, class1_training_points_count) x2_ml_estimated_mean = ml.estimate_mean_ml(class2_train_points, len(class2_train_points[0])) x2_ml_estimated_cov = ml.estimate_cov_ml(class2_train_points, x2_ml_estimated_mean, class2_training_points_count) ml_class1_accuracy, ml_class2_accuracy, total_accuracy = test_classifier(class1_test_points, class2_test_points, x1_ml_estimated_cov, x2_ml_estimated_cov, x1_ml_estimated_mean, x2_ml_estimated_mean, class1_testing_points_count, class2_testing_points_count, p1, p2) # print(ml_class1_accuracy, ml_class2_accuracy) test_results_ml_class1 = np.append(test_results_ml_class1, ml_class1_accuracy) test_results_ml_class2 = np.append(test_results_ml_class2, ml_class2_accuracy) accuracies = np.append(accuracies, total_accuracy) print('\nML Average Accuracy:', np.mean(accuracies)) return test_results_ml_class1, test_results_ml_class2 def bl_k_cross_validation(class1_data, class2_data, p1, p2, k, n1, n2): test_results_bl_class1 = [] test_results_bl_class2 = [] accuracies = [] for i in range(0, k, 1): print('Cross:' + str(i + 1)) class1_testing_points_count = int(n1 / k) class1_training_points_count = int(n1 - n1 / k) class1_start = int(n1 * i / k) class1_end = int((i + 1) * n1 / k) class2_testing_points_count = int(n2 / k) class2_training_points_count = int(n2 - n2 / k) class2_start = int(n2 * i / k) class2_end = int((i + 1) * n2 / k) # print("start:", class1_start, "\tend:", class1_end) # print("start:", class2_start, "\tend:", class2_end) class1_test_points = class1_data[:, class1_start: class1_end] class1_train_points = class1_data[:, 0:class1_start] class1_train_points = np.append(class1_train_points, class1_data[:, class1_end:], axis=1) class2_test_points = class2_data[:, class2_start: class2_end] class2_train_points = class2_data[:, 0:class2_start] class2_train_points = np.append(class2_train_points, class2_data[:, class2_end:], axis=1) class1_ml_est_mean = ml.estimate_mean_ml(class1_train_points, len(class1_train_points[0])) class1_ml_est_cov = ml.estimate_cov_ml(class1_train_points, class1_ml_est_mean, class1_training_points_count) class2_ml_est_mean = ml.estimate_mean_ml(class2_train_points, len(class2_train_points[0])) class2_ml_est_cov = ml.estimate_cov_ml(class2_train_points, class2_ml_est_mean, class2_training_points_count) # Estimating the means using BL class1_bl_initial_mean = np.ones((len(class1_data), 1)) class1_bl_initial_cov = np.identity(len(class1_data)) class2_bl_initial_mean = np.ones((len(class2_data), 1)) class2_bl_initial_cov = np.identity(len(class2_data)) class1_bl_est_mean = bl.estimate_mean_bl(class1_train_points, class1_bl_initial_mean, class1_bl_initial_cov, class1_ml_est_cov, len(class1_train_points[0])) class2_bl_est_mean = bl.estimate_mean_bl(class2_train_points, class2_bl_initial_mean, class2_bl_initial_cov, class2_ml_est_cov, len(class2_train_points[0])) bl_class1_accuracy, bl_class2_accuracy, total_accuracy = test_classifier(class1_test_points, class2_test_points, class1_ml_est_cov, class2_ml_est_cov, class1_bl_est_mean, class2_bl_est_mean, class1_testing_points_count, class2_testing_points_count, p1, p2) # print(bl_class1_accuracy, bl_class2_accuracy) test_results_bl_class1 = np.append(test_results_bl_class1, bl_class1_accuracy) test_results_bl_class2 = np.append(test_results_bl_class2, bl_class2_accuracy) accuracies = np.append(accuracies, total_accuracy) print('\nBL Average Accuracy:', np.mean(accuracies)) return test_results_bl_class1, test_results_bl_class2 # def parzen_k_cross_validation(class1_data, class2_data, p1, p2, k, n1, n2, kernel_cov, step_size): # test_results_parzen_class1 = [] # test_results_parzen_class2 = [] # # accuracies = [] # # for i in range(0, k, 1): # print('Cross:' + str(i + 1)) # class1_testing_points_count = int(n1 / k) # class1_training_points_count = int(n1 - n1 / k) # class1_start = int(n1 * i / k) # class1_end = int((i + 1) * n1 / k) # # class2_testing_points_count = int(n2 / k) # class2_training_points_count = int(n2 - n2 / k) # class2_start = int(n2 * i / k) # class2_end = int((i + 1) * n2 / k) # # # print("start:", class1_start, "\tend:", class1_end) # # print("start:", class2_start, "\tend:", class2_end) # # class1_test_points = class1_data[:, class1_start: class1_end] # class1_train_points = class1_data[:, 0:class1_start] # class1_train_points = np.append(class1_train_points, class1_data[:, class1_end:], axis=1) # # class2_test_points = class2_data[:, class2_start: class2_end] # class2_train_points = class2_data[:, 0:class2_start] # class2_train_points = np.append(class2_train_points, class2_data[:, class2_end:], axis=1) # # # estimated mean and cov using parzen window # x1_parzen_estimated_mean, x1_parzen_estimated_covariance, x2_parzen_estimated_mean, x2_parzen_estimated_covariance = h.estimated_mean_parzen( # class1_train_points, class2_train_points, kernel_cov, step_size) # # class1_parzen_est_mean, class1_parzen_est_cov, class2_parzen_est_mean, class2_parzen_est_cov = pz.estimated_mean_parzen( # class1_data, class2_data, len(class1_data), kernel_cov, step_size) # # parzen_class1_accuracy, parzen_class2_accuracy = test_classifier(class1_test_points, class2_test_points, # x1_parzen_estimated_covariance, # x2_parzen_estimated_covariance, # x1_parzen_estimated_mean, # x2_parzen_estimated_mean, # class1_testing_points_count, # class2_testing_points_count, p1, p2) # test_results_parzen_class1 = np.append(test_results_parzen_class1, parzen_class1_accuracy) # test_results_parzen_class2 = np.append(test_results_parzen_class2, parzen_class2_accuracy) # # return test_results_parzen_class1, test_results_parzen_class2 def knn_k_cross_validation(class1_data, class2_data, k, n1, n2, k_nn): test_results_knn_class1 = [] test_results_knn_class2 = [] accuracies = [] for i in range(0, k, 1): print('Cross:' + str(i + 1)) class1_testing_points_count = int(n1 / k) class1_training_points_count = int(n1 - n1 / k) class1_start = int(n1 * i / k) class1_end = int((i + 1) * n1 / k) class2_testing_points_count = int(n2 / k) class2_training_points_count = int(n2 - n2 / k) class2_start = int(n2 * i / k) class2_end = int((i + 1) * n2 / k) class1_test_points = class1_data[:, class1_start: class1_end] class1_train_points = class1_data[:, 0:class1_start] class1_train_points = np.append(class1_train_points, class1_data[:, class1_end:], axis=1) class2_test_points = class2_data[:, class2_start: class2_end] class2_train_points = class2_data[:, 0:class2_start] class2_train_points = np.append(class2_train_points, class2_data[:, class2_end:], axis=1) class1_test_points = np.array(class1_test_points).transpose() class2_test_points = np.array(class2_test_points).transpose() class1_true = 0 class1_false = 0 class2_true = 0 class2_false = 0 for x in class1_test_points: classification = kn.get_neighbors(x, class1_train_points, class2_train_points, k_nn) if classification == 1: class1_true = class1_true + 1 else: class1_false = class1_false + 1 for x in class2_test_points: classification = kn.get_neighbors(x, class1_train_points, class2_train_points, k_nn) if classification == 2: class2_true = class2_true + 1 else: class2_false = class2_false + 1 class1_accuracy = (class1_true / len(class1_test_points)) * 100 class2_accuracy = (class2_true / len(class2_test_points)) * 100 test_results_knn_class1 = np.append(test_results_knn_class1, class1_accuracy) test_results_knn_class2 = np.append(test_results_knn_class2, class2_accuracy) accuracy = (class1_true + class2_true) * 100 / (len(class1_test_points) + len(class2_test_points)) accuracies = np.append(accuracies, accuracy) # print(class1_testing_points_count, class2_testing_points_count) # # print(class1_true, class1_false) # print(class2_true, class2_false) print(accuracy) print('\nK-NN Average Accuracy:', np.mean(accuracies)) return test_results_knn_class1, test_results_knn_class2 def fd_k_cross_validation(class1_data, class2_data, k, n1, n2, w, p1, p2): test_results_fd_class1 = [] test_results_fd_class2 = [] accuracies = [] for i in range(0, k, 1): print('Cross:' + str(i + 1)) class1_testing_points_count = int(n1 / k) class1_training_points_count = int(n1 - n1 / k) class1_start = int(n1 * i / k) class1_end = int((i + 1) * n1 / k) class2_testing_points_count = int(n2 / k) class2_training_points_count = int(n2 - n2 / k) class2_start = int(n2 * i / k) class2_end = int((i + 1) * n2 / k) class1_test_points = class1_data[:, class1_start: class1_end] class1_train_points = class1_data[:, 0:class1_start] class1_train_points = np.append(class1_train_points, class1_data[:, class1_end:], axis=1) class2_test_points = class2_data[:, class2_start: class2_end] class2_train_points = class2_data[:, 0:class2_start] class2_train_points = np.append(class2_train_points, class2_data[:, class2_end:], axis=1) class1_ml_est_mean = ml.estimate_mean_ml(class1_train_points, len(class1_train_points[0])) class1_ml_est_cov = ml.estimate_cov_ml(class1_train_points, class1_ml_est_mean, class1_training_points_count) class2_ml_est_mean = ml.estimate_mean_ml(class2_train_points, len(class2_train_points[0])) class2_ml_est_cov = ml.estimate_cov_ml(class2_train_points, class2_ml_est_mean, class2_training_points_count) fd_mean1 = w.transpose() @ class1_ml_est_mean fd_mean2 = w.transpose() @ class2_ml_est_mean fd_cov1 = w.transpose() @ class1_ml_est_cov @ w fd_cov2 = w.transpose() @ class2_ml_est_cov @ w class1_test_points = np.array(class1_test_points).transpose() class2_test_points = np.array(class2_test_points).transpose() class1_true = 0 class1_false = 0 class2_true = 0 class2_false = 0 for x in class1_test_points: x_test = w.transpose() @ x classification = fd.classify(x_test, fd_mean1, fd_mean2, fd_cov1, fd_cov2, p1, p2) if classification == 1: class1_true = class1_true + 1 else: class1_false = class1_false + 1 for x in class2_test_points: x_test = w.transpose() @ x classification = fd.classify(x_test, fd_mean1, fd_mean2, fd_cov1, fd_cov2, p1, p2) if classification == 2: class2_true = class2_true + 1 else: class2_false = class2_false + 1 class1_accuracy = (class1_true / len(class1_test_points)) * 100 class2_accuracy = (class2_true / len(class2_test_points)) * 100 test_results_fd_class1 = np.append(test_results_fd_class1, class1_accuracy) test_results_fd_class2 = np.append(test_results_fd_class2, class2_accuracy) accuracy = (class1_true + class2_true) * 100 / (len(class1_test_points) + len(class2_test_points)) accuracies = np.append(accuracies, accuracy) print(accuracy) print('\nFisher\'s Disc. Average Accuracy:', np.mean(accuracies)) return test_results_fd_class1, test_results_fd_class2 def hk_k_cross_validation(class1_data, class2_data, k, n1, n2): test_results_hk_class1 = [] test_results_hk_class2 = [] accuracies = [] a = [] # b = [] for i in range(0, k, 1): print('Cross:' + str(i + 1)) class1_testing_points_count = int(n1 / k) class1_training_points_count = int(n1 - n1 / k) class1_start = int(n1 * i / k) class1_end = int((i + 1) * n1 / k) class2_testing_points_count = int(n2 / k) class2_training_points_count = int(n2 - n2 / k) class2_start = int(n2 * i / k) class2_end = int((i + 1) * n2 / k) class1_test_points = class1_data[:, class1_start: class1_end] class1_train_points = class1_data[:, 0:class1_start] class1_train_points = np.append(class1_train_points, class1_data[:, class1_end:], axis=1) class2_test_points = class2_data[:, class2_start: class2_end] class2_train_points = class2_data[:, 0:class2_start] class2_train_points = np.append(class2_train_points, class2_data[:, class2_end:], axis=1) a, b = hk.ho_kashyap(class1_train_points, class2_train_points) class1_ones = np.ones(len(class1_test_points[0])) class2_ones = np.ones(len(class2_test_points[0])) print('Adding ones:') class1_test_points = np.insert(class1_test_points, 0, class1_ones, axis=0) class2_test_points = np.insert(class2_test_points, 0, class2_ones, axis=0) print('Done') class1_test_points = np.array(class1_test_points).transpose() class2_test_points = -1*np.array(class2_test_points).transpose() class1_true = 0 class1_false = 0 class2_true = 0 class2_false = 0 for x in class1_test_points: classification = a.transpose() @ x if classification > 0: class1_true = class1_true + 1 else: class1_false = class1_false + 1 for x in class2_test_points: classification = a.transpose() @ x if classification < 0: class2_true = class2_true + 1 else: class2_false = class2_false + 1 class1_accuracy = (class1_true / len(class1_test_points)) * 100 class2_accuracy = (class2_true / len(class2_test_points)) * 100 test_results_hk_class1 = np.append(test_results_hk_class1, class1_accuracy) test_results_hk_class2 = np.append(test_results_hk_class2, class2_accuracy) accuracy = (class1_true + class2_true) * 100 / (len(class1_test_points) + len(class2_test_points)) accuracies = np.append(accuracies, accuracy) print(accuracy) # hk.plot_disc(a[0],) print('\nHo-Kashyap Average Accuracy:', np.mean(accuracies)) return test_results_hk_class1, test_results_hk_class2
UTF-8
Python
false
false
20,142
py
31
testing.py
15
0.566528
0.527008
0
440
44.777273
151
irfankhan309/Dealer_2
13,082,470,409,108
a0d1dbb6642769f52bad32653c9b039b425eaece
feb3431bf792d2e7ea17bd89b9feb8750dcf286f
/Dealer/DealerApp/models.py
7e53f28209751f62b99c51799035606576bb1672
[]
no_license
https://github.com/irfankhan309/Dealer_2
6275f964bccc04c71732bb0260e8e5f343f597b6
3cc9ad9097f12e75ed5f6ada05af1c6fed8a1fbd
refs/heads/master
2020-05-01T01:54:05.318100
2019-03-22T20:37:04
2019-03-22T20:37:04
177,205,879
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.db import models # Create your models here. class PostEnquiry(models.Model): Name=models.CharField(max_length=40) uploaded_at=models.DateTimeField(auto_now_add=True) Vehicle=models.CharField(max_length=40) BIKE_Model=models.CharField(max_length=35) Color=models.CharField(max_length=35) Contact_Number=models.CharField(max_length=15) class Sale(models.Model): Name_Of_Bike=models.CharField(max_length=45) Image=models.FileField() Model=models.CharField(max_length=30) Color=models.CharField(max_length=30) Description=models.CharField(max_length=100, blank=True)
UTF-8
Python
false
false
622
py
14
models.py
8
0.750804
0.720257
0
18
33.555556
60
pallabpain/programming-problems
18,700,287,638,832
4308118e33091f57987b99e49804590fc2502871
b71bb819113600c76d5c22f9660c8243b532ab87
/longest_common_substring.py
a428e086fc7c59a84d1cbd85e24d9a6561f54fb7
[]
no_license
https://github.com/pallabpain/programming-problems
be4cb18018e0d7772b6e1d75f4c598c6ed3a3caf
1ffe0633bc0ae131e03350d8e5a16ad0bed5a223
refs/heads/master
2021-07-06T16:25:32.004406
2020-08-11T18:54:44
2020-08-11T18:54:44
163,048,031
0
0
null
false
2020-08-11T18:56:19
2018-12-25T05:12:51
2020-02-03T10:38:35
2020-08-11T18:55:54
5
0
0
0
Python
false
false
from pprint import pprint def longest_common_substring(A, B): len_A = len(A) len_B = len(B) dp = [[0 for _ in range(len_B + 1)] for _ in range(len_A + 1)] max_length = 0 for i in range(len_A + 1): for j in range(len_B + 1): if i == 0 or j == 0: dp[i][j] = 0 elif A[i-1] == B[j-1]: dp[i][j] = dp[i-1][j-1] + 1 max_length = max(max_length, dp[i][j]) else: dp[i][j] = 0 pprint(dp) return max_length if __name__ == "__main__": A = "SomeRandomText" B = "SomeMoreRandomText" expected = 11 # eRandomText actual = longest_common_substring(A, B) if actual == expected: print("Passed.") else: print("Failed.")
UTF-8
Python
false
false
778
py
7
longest_common_substring.py
5
0.473008
0.451157
0
28
26.785714
66
s14004/tek
2,121,713,872,632
dc2f2a6b6f18a6fc44374ac96e16ceef5839bc33
99c2ac6f6e631b32222eca717515fb7844619546
/a/Animal.py
b0d09be3840f78bef8c65b256d290df781628bd1
[]
no_license
https://github.com/s14004/tek
f9388e0ffe3dde2eb2d07f1e3911a57ea1848ad9
ae8ffa3597152696d47c6b1095389da696cd58bc
refs/heads/master
2021-01-10T21:50:45.639530
2015-06-26T04:40:10
2015-06-26T04:40:10
37,701,963
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
class Animal: def __init__(self, name, voice): self.name = name self.voice = voice def say(self): print(self.voice) class Dog(Animal): pass if __name__ == '__main__': puppy = Dog(name='shima', voice='nyan!') puppy.say()
UTF-8
Python
false
false
267
py
6
Animal.py
6
0.535581
0.535581
0
15
16.866667
44
Best1s/python_re
15,341,623,216,068
f7d811839f98410cf439b468cf1d39db7457e6b2
cec0cdfbd057c2d2ba153aa6f163adb250565e9a
/python_web_spider/web_spider/data_Spider/random_ip.py
a6cf60215e6fd4c9e64193346e3b5efc350833e0
[]
no_license
https://github.com/Best1s/python_re
91117cd5b1f896c2b2f3987f1625663aa1952354
abd526743c67a1bf72ddce39a0268b8e9fe15d26
refs/heads/master
2020-05-05T13:37:41.428881
2020-02-25T03:41:00
2020-02-25T03:41:00
180,086,606
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import random def random_ip(): ip = str(random.randint(0,255)) + '.' + str(random.randint(0,255)) + '.' \ + str(random.randint(0,255)) + '.' + str(random.randint(0,255)) + '\n' return ip def write_ip1(num): n = 1 with open ('ip1','w+') as ip1: while True: ip1.write(random_ip()) n += 1 if n > num: break ip1.close() def write_ip2(num): with open ('ip2','w+') as ip2: for i in range(num): ip2.write(random_ip()) ip2.close() if __name__ == '__main__': print random_ip() num = 100 num = num / 2 write_ip1(num) write_ip2(num)
UTF-8
Python
false
false
617
py
120
random_ip.py
91
0.518639
0.463533
0
27
21.222222
77
uncharted-distil/simon
15,264,313,778,932
50ed987345c7ac65707b8278b43ece4c810dd7ce
dc42c2638262502ce0cbc003d8cc6e8298ef5fac
/Simon/dev/graphutils/getFromDatalake.py
a92350ee7370e8ff5d287bd28d1c1a386f3741f8
[ "MIT" ]
permissive
https://github.com/uncharted-distil/simon
0d8722e7e031135571cdd09b7d8ffec844142ce8
26e4e54e6de455bde8ee1a24634d060e1ec7babb
refs/heads/master
2021-12-01T11:33:42.697819
2021-03-25T03:47:59
2021-03-25T03:47:59
261,869,244
0
1
MIT
true
2021-03-25T03:47:59
2020-05-06T20:18:04
2021-01-27T14:53:30
2021-03-25T03:47:59
391,589
0
1
1
null
false
false
import azure_utils.client as client import graphutils.printSample as printSample import graphutils.getConnection as gc import graphutils.insertColumnDatasetJoin as insert import pandas import sys import random import pyodbc def graphDoesntContainFile(filename,cnxn): cursor = cnxn.cursor() cursor.execute("SELECT top(1) * FROM datasets where name=?",filename) name = cursor.fetchone() return name == None store_name = 'nktraining' adl = client.get_adl_client(store_name) files = adl.ls('training-data/CKAN') random.shuffle(files) cnxn = gc.getConnection() i = 0 for file in files: if(i > 1000): break if graphDoesntContainFile(file, cnxn): try: with adl.open(file, blocksize=2**20) as f: if(file.startswith('training-data/CKAN/BroadcastLogs') or file.startswith('training-data/CKAN/barrownndremptyexemption')): continue if(file.endswith('csv')): print("Loading (" + str(i) + "): " + file + " into metadata store") frame = pandas.read_csv(f,nrows=3,sep=None) # else: # frame = pandas.read_excel(f) for colName in frame.columns: if not str(colName).startswith('Unnamed'): insert.insertColumnDatasetJoin(colName, file, cnxn) i = i + 1 cnxn.commit() except UnicodeEncodeError: print("Failed to parse filename") except ValueError: print("Encountered poorly formatted file: " + str(file)) except TypeError: print("Encountered bad delimiter in: " + str(file)) except: print("It broke and I don't know why, possibly something about newlines " + str(file)) print(sys.exc_info()) else: print("Skipping " + file + " because it is already in db") printSample.printSample(cnxn.cursor()) cnxn.close()
UTF-8
Python
false
false
1,696
py
50
getFromDatalake.py
27
0.706958
0.700472
0
63
25.936508
126
loloxwg/PythonExperiments
10,934,986,780,085
3172b0d39c3b58d71dfb6cf01bda9a4bb3565b8e
d86c072cccd474a9e63498b7c143d30860a10852
/experiment1/hello.py
626ba563268a33d2253debb624392bc73d576000
[]
no_license
https://github.com/loloxwg/PythonExperiments
4003b95346f1ba85075d72006e1010377730efbb
1812d377ca7f5211c890e8cc9e6b5e9102729d05
refs/heads/main
2023-02-15T23:16:05.740507
2020-12-29T09:12:46
2020-12-29T09:12:46
307,132,580
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
print("123.456\n" "hello\n" "who do you think i am?\n" "'nice guy'\n" "On,yes,i am a\n" "nice guy")
UTF-8
Python
false
false
131
py
102
hello.py
90
0.458015
0.412214
0
6
20.666667
32
panggggg/TDD
1,752,346,668,382
5273cb4934621bd8f1a58f311a8f122236541f40
66bf25e702479199d357a2e4c827087220153c3a
/fizzbuzz.py
63c034c6243f374b4d381ac6c784fbde89802e03
[]
no_license
https://github.com/panggggg/TDD
0e797b9380a46722c398d6344690c583d889bbb0
8803ced7b0df80acd58b65437f4d525b0231865e
refs/heads/master
2023-08-11T22:35:02.995309
2021-09-27T09:05:24
2021-09-27T09:05:24
371,554,987
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# หาร3ลงตัว -> fizz , หาร5ลงตัว -> buzz ถ้าไม่ใช่ return ตัวเลข # 3, 6, 9 -> fizz # 5, 10, 20 -> buzz # 15, 30, 45 -> fizzbuzz # 1, 2, 4 -> number def fizzbuzz(num): result = get_result_buzz(num, str(num)) if is_divide_by_three(num): result = "fizz" result += get_result_buzz(num, "") return result def is_divide_by_three(num): return num % 3 == 0 def get_result_buzz(num, default): result = ["buzz", default, default, default, default] return result[num % 5] # result = [ # "buzz", # default, # default, # default, # default, # ] # return result[num % 5] # if num % 15 == 0: # return "fizzbuzz" # if num % 3 == 0: # return "fizz" # if num % 5 == 0: # return "buzz" # if num % 2 == 0: # return "bang" # return str(num) # for i in range(10): # print(i, fizzbuzz(i))
UTF-8
Python
false
false
990
py
19
fizzbuzz.py
16
0.501078
0.46444
0
50
17.56
63
mart00n/introto6.00
893,353,221,773
a41d84af340805ab52607c710494320d8a0026ec
776367ad388fc3452b2da5f70d1792d3b584e710
/ps1/ps1c_redo.py
0809cc4679588814ab38da85179410d5c8ef317e
[]
no_license
https://github.com/mart00n/introto6.00
e3bc0f72ff47ca53e3180fc6234ebac3adc589d5
ea0e828d063a94bf521bb0db471144bcb9e25d07
refs/heads/master
2021-01-10T07:17:24.702867
2017-02-12T17:44:15
2017-02-12T17:44:15
36,614,728
0
1
null
false
2017-01-29T16:26:50
2015-05-31T17:49:35
2017-01-14T21:52:17
2017-01-29T16:26:50
420
0
1
0
Python
null
null
# mart00n # 10/09/2016 eps = 0.01 bal = float(input('Enter balance: ')) intrate = float(input('Enter your annual interest rate: ')) monthrate = intrate / 12.0 low = bal / 12.0 hi = (bal * (1.0 + monthrate) ** 12.0) / 12.0 loopbal = bal payment = (hi - low) / 2.0 while abs(loopbal) >= eps: for i in range(1,13): loopbal = loopbal * (1.0 + monthrate) - payment if loopbal < -eps: hi = payment loopbal = bal payment = (hi - low) / 2.0 + low elif loopbal > eps: low = payment loopbal = bal payment = (hi - low) / 2.0 + low else: break print('Pay', payment, 'per month to pay off your debt within 1 year.')
UTF-8
Python
false
false
689
py
12
ps1c_redo.py
12
0.560232
0.503628
0
27
24.444444
70
chaitanyanettem/code-challenges
4,690,104,327,768
0b1c06bed49552be156e20c45dcec21f56f9c3a8
15303640ce88b6610367bab723ddb89c764b58d0
/clever/authorization.py
fa5364180f974d699f829d521321aa094be0a006
[]
no_license
https://github.com/chaitanyanettem/code-challenges
693f862577b968d9f077b3dc248517d308df9143
13d4029c1f293e96c47f085e2659eda884dde1fa
refs/heads/master
2021-05-16T02:56:41.772970
2014-05-01T13:56:03
2014-05-01T13:56:03
15,516,277
1
4
null
false
2017-01-25T06:52:44
2013-12-29T22:49:12
2014-05-01T13:56:14
2014-05-01T13:56:19
148
0
1
1
C
null
null
header = {'Authorization' : 'Bearer DEMO_TOKEN'} base_url = 'https://api.clever.com' rel_uri = '/v1.1/sections'
UTF-8
Python
false
false
111
py
5
authorization.py
2
0.675676
0.657658
0
3
36.333333
48
whitney-mitchell/python--family-dictionary
7,421,703,523,367
1755cd675b948ec7e45d1bd8e62ef843a50ba303
e2cb86ba1d62c126663ac2c189cc3634d570407e
/family_dict.py
17da2ef17a29b0977ff8c0b7b63799676c2a5202
[]
no_license
https://github.com/whitney-mitchell/python--family-dictionary
96baca8bacec144b4b35073fc95135e57701435e
5856e5658c9911b75e01cd4033554bb334bc2cc2
refs/heads/master
2021-01-20T18:29:00.136635
2016-07-08T19:51:40
2016-07-08T19:51:40
62,907,458
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Define a dictionary that contains information about several members of your family. my_family = { 'cat': { 'name': 'Georgia', 'age': 13 }, 'mother': { 'name': 'Mary', 'age': 66 }, 'boyfriend': { 'name': 'Jesse', 'age': 30 } } # Using a dictionary comprehension, produce output that looks like the following example. # Krista is my sister and is 42 years old. # Helpful hint: To convert an integer into a string in Python, it's str(integer_value) # for key, value in my_family.items(): # name = value['name'] # age = value['age'] # output = ['{0} is my {1} and is {2} years old'.format(name, key, age)] output = {value['name']+" is my "+key+" and is "+str(value['age'])+" years old." for key, value in my_family.items()} print(output) import code code.interact(local=locals())
UTF-8
Python
false
false
805
py
1
family_dict.py
1
0.64472
0.631056
0
20
39.25
117
bernardoduran95/Coursera
13,443,247,667,288
ffef7a245ee1b16bf89de3c8975f844694fa644a
bcfe4be80262c90ab27c492ec931ed0dbcc156af
/Dados (2).py
7665b18a1d84b5b307cedb9c0c5ef7d8fc7e3b06
[]
no_license
https://github.com/bernardoduran95/Coursera
d000cf4afb302b39ae687fb705aaddfd9073b1b1
f98c666166755d7fcbe35e4bc272b11d97ef44b0
refs/heads/main
2023-08-19T11:22:57.482284
2021-09-02T15:11:25
2021-09-02T15:11:25
402,456,923
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import random respuesta = input("Desea lanzar los dados?(si/no): ") suma = 0 while respuesta == 'si' or respuesta == 'SI': n1 = random.randint(1,6) n2 = random.randint(1,6) suma = n1 + n2 print("Lanzamiento N°1: ", n1) print("Lanzamiento N°2: ", n2) print("La suma de los lanzamientos es: ", suma) respuesta = input("Desea seguir lanzando los dados?: ") else: print("Fin del Programa")
UTF-8
Python
false
false
450
py
4
Dados (2).py
3
0.587054
0.558036
0
18
22.777778
59
underdogYnino/mysite
7,249,904,819,678
5176b3d8a0b55c604e1f0ba2e2905b919e92eef4
26bd16e3c3a4386a7a7ebc598d01957746d71528
/upload/migrations/0003_auto_20201129_1341.py
69afd3420a0e1fe88a5894abb451e6cc120f9c09
[]
no_license
https://github.com/underdogYnino/mysite
d035afe7e51db065f6ecb23416b37ae1fba7c0bc
9aa75c4444388c11ae3579d2d201445bef079f03
refs/heads/main
2023-01-31T13:26:25.258192
2020-12-13T09:02:12
2020-12-13T09:02:12
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Generated by Django 3.1.3 on 2020-11-29 05:41 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('upload', '0002_auto_20201129_1338'), ] operations = [ migrations.RenameModel( old_name='upload_images', new_name='uploadImage', ), ]
UTF-8
Python
false
false
341
py
19
0003_auto_20201129_1341.py
8
0.589443
0.498534
0
17
19.058824
47
bawigga/opencv_sandbox
10,788,957,866,828
4486c306d901bffc9eae6d50dd70d61eeb8492c7
be5ba307a5715b2e48344f65954ec7168ac7f138
/facial_detection/detect.py
dd176cb112482430073e9a4f32e05c0403e87de2
[]
no_license
https://github.com/bawigga/opencv_sandbox
8887aee94bcc9e08c4f654e65d6b4799b9b98055
a760746d60d4c5220f6ba41a5a96aac1c3f95e8c
refs/heads/master
2016-09-05T13:30:18.415066
2015-05-14T04:57:13
2015-05-14T04:57:13
35,590,900
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import os import numpy as np import cv2 cascadeFile = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'haarcascade_frontalface_default.xml') faceCascade = cv2.CascadeClassifier(cascadeFile) cam = cv2.VideoCapture(0) cam.set(3,640) cam.set(4,480) while(cam.isOpened()): ret, frame = cam.read() if ret==True: # frame = cv2.flip(frame,0) faces = faceCascade.detectMultiScale( frame, scaleFactor=1.2, minNeighbors=5, minSize=(30, 30), flags=cv2.cv.CV_HAAR_SCALE_IMAGE ) for (x, y, w, h) in faces: cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) cv2.imshow('frame',frame) if cv2.waitKey(1) & 0xFF == ord('q'): break else: break # Release everything if job is finished cam.release() cv2.destroyAllWindows()
UTF-8
Python
false
false
878
py
1
detect.py
1
0.585421
0.546697
0
36
23.416667
110
aschmid/bats_pitch_implementation
16,295,105,935,166
b20a949b29ccf8b9946a37dd32fcbcff1b5b766f
e124852138d1125f342867007a944c82d49eff95
/bats_pitch_web/utils.py
2165ce74b8a442455e461561c50c7f05bd955855
[]
no_license
https://github.com/aschmid/bats_pitch_implementation
08f7129fdda0402bf6fd601a5f332767ea59364b
785af065d18dde8b8534b63a81bd3774883b5d2b
refs/heads/master
2021-01-21T23:23:26.838571
2017-01-29T23:19:30
2017-01-29T23:19:30
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from collections import OrderedDict from bats_pitch.message_types import KNOWN_MESSAGE_TYPES from bats_pitch.message_types.validator import get_message_type __author__ = 'Dominic Dumrauf' UNRECOGNIZED_LINES = 'Unrecognized Lines' TOTAL_MESSAGES = 'Number of Lines' def _get_line(l): """ Removes a leading 'S' if present in the given line 'l'. """ if l.startswith('S'): return l[1:] else: return l def _get_new_analysis_dict(): """ Returns a dictionary which contains all known messages and an initial count of zero messages for each type. """ detected_messages = OrderedDict() for known_message_type in KNOWN_MESSAGE_TYPES: detected_messages[known_message_type.name] = 0 detected_messages[UNRECOGNIZED_LINES] = 0 detected_messages[TOTAL_MESSAGES] = 0 return detected_messages def analyze_stream(stream): """ Analyzes a given 'stream' and creates a statistic about the number of message types in the stream. """ detected_messages = _get_new_analysis_dict() analysis = [] for line_nr, raw_line in enumerate(stream): clean_line = _get_line(raw_line) detected_messages_type = get_message_type(clean_line) if detected_messages_type: detected_messages[detected_messages_type.name] += 1 else: detected_messages[UNRECOGNIZED_LINES] += 1 detected_messages[TOTAL_MESSAGES] += 1 analysis.append({ 'line_nr': line_nr, 'raw_line': raw_line, 'clean_line': clean_line, 'detected_messages_type': detected_messages_type, }) return detected_messages, analysis
UTF-8
Python
false
false
1,689
py
55
utils.py
48
0.649497
0.645352
0
54
30.277778
81
openstack/murano
309,237,693,125
54857b19632f3bd5fc58210cff32103bf2167345
b26f8032f3ffb23a5d8cb7e9d470d718fd505870
/murano/tests/unit/dsl/test_gc.py
92573244bc75f854785fd97e5417f74b67de4c86
[ "Apache-2.0" ]
permissive
https://github.com/openstack/murano
e678ced3a52056317447aa90c7b3ae0d78d59a06
c898a310afbc27f12190446ef75d8b0bd12115eb
refs/heads/master
2023-08-29T11:52:02.745223
2023-05-09T04:19:01
2023-05-09T04:19:01
9,971,852
94
63
Apache-2.0
false
2021-02-07T06:04:46
2013-05-10T01:10:31
2021-02-07T03:32:23
2021-02-07T03:32:49
19,347
105
64
0
Python
false
false
# Copyright (c) 2016 Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from murano.dsl import exceptions from murano.dsl.principal_objects import garbage_collector from murano.tests.unit.dsl.foundation import object_model as om from murano.tests.unit.dsl.foundation import test_case class TestGC(test_case.DslTestCase): def setUp(self): super(TestGC, self).setUp() self.package_loader.load_package('io.murano', None).register_class( garbage_collector.GarbageCollector) self.runner = self.new_runner(om.Object('TestGC')) def test_model_destroyed(self): model = om.Object( 'TestGCNode', 'root', value='root', nodes=[ om.Object( 'TestGCNode', 'node1', value='node1', nodes=['root', 'node2'] ), om.Object( 'TestGCNode', 'node2', value='node2', nodes=['root', 'node1'] ), ] ) model = {'Objects': None, 'ObjectsCopy': model} self.new_runner(model) self.assertCountEqual(['node1', 'node2'], self.traces[:2]) self.assertEqual('root', self.traces[-1]) def test_collect_from_code(self): self.runner.testObjectsCollect() self.assertEqual(['B', 'A'], self.traces) def test_collect_with_subscription(self): self.runner.testObjectsCollectWithSubscription() self.assertEqual( ['Destroy A', 'Destroy B', 'Destruction of B', 'B', 'A'], self.traces) def test_call_on_destroyed_object(self): self.assertRaises( exceptions.ObjectDestroyedError, self.runner.testCallOnDestroyedObject) self.assertEqual(['foo', 'X'], self.traces) def test_destruction_dependencies_serialization(self): self.runner.testDestructionDependencySerialization() node1 = self.runner.serialized_model['Objects']['outNode'] node2 = node1['nodes'][0] deps = { 'onDestruction': [{ 'subscriber': self.runner.root.object_id, 'handler': '_handler' }] } self.assertEqual(deps, node1['?'].get('dependencies')) self.assertEqual( node1['?'].get('dependencies'), node2['?'].get('dependencies')) model = self.runner.serialized_model model['Objects']['outNode'] = None self.new_runner(model) self.assertEqual(['Destroy A', 'Destroy B', 'B', 'A'], self.traces) def test_is_doomed(self): self.runner.testIsDoomed() self.assertEqual([[], True, 'B', [True], False, 'A'], self.traces) def test_is_destroyed(self): self.runner.testIsDestroyed() self.assertEqual([False, True], self.traces) def test_static_property_not_destroyed(self): self.runner.testStaticProperties() self.assertEqual([], self.traces) def test_args_not_destroyed(self): self.runner.testDestroyArgs() self.assertEqual([], self.traces) def test_runtime_property_not_destroyed(self): self.runner.testReachableRuntimeProperties() self.assertEqual([False, ], self.traces)
UTF-8
Python
false
false
3,830
py
674
test_gc.py
262
0.602611
0.596084
0
107
34.794393
78
chahushui/zhihu-monitor
14,044,543,094,147
996dd6a6a11d3e6a5e9da6e5583c1d1c52296c16
b6419a3ddacdf528bce5382da315b48ca75af8fd
/api/app/resources/crawler.py
742c8e60effe9ac0c463da397c470cbff2ce9f23
[]
no_license
https://github.com/chahushui/zhihu-monitor
ca168237475f301ef18d0067dcfeaab6e414b574
35b1c7fc89a37ba19ecf5dc334d245c97e1ebd70
refs/heads/master
2023-03-31T20:52:12.726175
2021-03-21T07:48:53
2021-03-21T07:48:53
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python # encoding: utf-8 import datetime from copy import deepcopy from app.crawler.crawler_task import update_data from app.extensions import scheduler from flask_restful import reqparse from app.resources import BaseResource class Crawler(BaseResource): def __init__(self): super(Crawler, self).__init__() # 接受的数据类型 self.parser = reqparse.RequestParser() # get请求参数 # self.parser.add_argument('page', type=int, location='args') # self.parser.add_argument('size', type=int, location='args') # self.fields = deepcopy(base_settings.answers_fields) def get(self): response_data = deepcopy(self.base_response_data) scheduler.add_job(func=update_data, id="start_crawler", trigger="date", next_run_time=datetime.datetime.now() + datetime.timedelta(seconds=5)) return response_data, 200
UTF-8
Python
false
false
936
py
32
crawler.py
20
0.66849
0.66302
0
27
32.851852
96
jumbokh/pyclass
4,569,845,250,075
ea614bd0ea875f5ea7ae3edd0559146fa6ece8b7
9fc768c541145c1996f2bdb8a5d62d523f24215f
/code/HomeWork/ch5/H_5_5.py
90325c1d4155513c8efa8323fdad423ca6361f65
[]
no_license
https://github.com/jumbokh/pyclass
3b624101a8e43361458130047b87865852f72734
bf2d5bcca4fff87cb695c8cec17fa2b1bbdf2ce5
refs/heads/master
2022-12-25T12:15:38.262468
2020-09-26T09:08:46
2020-09-26T09:08:46
283,708,159
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# H_5_5.py 功能:輸入頭和腳的數量,並判斷出有多少馴鹿及聖誕老人 # 輸入頭及腳的數量 head = int(input('請輸入頭的數量 : ')) foot = int(input('請輸入腳的數量 : ')) # 計算馴鹿和聖誕老人的數量 reindeer = (foot/2) - head Santa = head - reindeer # 將結果顯示出來 print('聖誕老人有 : %d 位' %(Santa)) print('馴鹿有 : %d 隻' %(reindeer))
UTF-8
Python
false
false
403
py
194
H_5_5.py
181
0.649402
0.63745
0
10
24.2
37
zcmail/vbpp
2,671,469,673,086
d239cbb458a9d6a8278f224680ef2d2f1fb3ea7a
401aae1a063e98e2c98ba366e1a17f36f2bedb5c
/tests/test_Gtilde.py
ae5f30574a76717f8bceee28d1b490f3c1a29ed7
[ "Apache-2.0" ]
permissive
https://github.com/zcmail/vbpp
66df32f2d6268a16e8033c7a7b6871ffa9040296
00668f3b84b62a9ecf1f580630e8bb59df38ba87
refs/heads/master
2022-04-20T01:44:59.946539
2020-01-08T16:51:02
2020-01-08T16:51:02
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np import pytest import tensorflow as tf from vbpp.Gtilde import np_Gtilde_lookup, tf_Gtilde_lookup class Data: z = - np.concatenate([np.random.randn(101)**2, 10**np.random.uniform(0, 11, 1000), np.r_[0.0, 0.001, 1.0, 1.001, 1.01, 10.0, 11.0]]) z.sort() def test_Gtilde_errors_for_positive_values(): with pytest.raises(ValueError): np_Gtilde_lookup(np.r_[0.1, -0.1, -1.2]) def test_Gtilde_at_zero(): npG, _ = np_Gtilde_lookup(0.0) assert np.allclose(npG, 0.0) def test_Gtilde_with_scalar(): z = np.float64(- 12.3) # give explicit type so np and tf match up npG, _ = np_Gtilde_lookup(z) tfG = tf_Gtilde_lookup(z).numpy() assert npG == tfG @pytest.mark.parametrize('shape', [(-1,), (-1, 1), (-1, 2), (2, -1)]) def test_Gtilde(shape): z = Data.z.reshape(shape) npG, _ = np_Gtilde_lookup(z) assert npG.shape == z.shape tfG = tf_Gtilde_lookup(z).numpy() assert tfG.shape == z.shape np.testing.assert_equal(npG, tfG, "tensorflowed should equal numpy version") if shape == (-1,): assert list(npG) == sorted(npG), "Gtilde should be monotonous" def test_Gtilde_gradient_matches(): z = Data.z _, npgrad = np_Gtilde_lookup(z) assert npgrad.shape == z.shape z_tensor = tf.identity(z) with tf.GradientTape() as tape: tape.watch(z_tensor) tf_res = tf_Gtilde_lookup(z_tensor) tfgrad = tape.gradient(tf_res, z_tensor).numpy() assert tfgrad.shape == z.shape np.testing.assert_equal(npgrad, tfgrad, "tensorflowed should equal numpy version")
UTF-8
Python
false
false
1,628
py
5
test_Gtilde.py
5
0.617322
0.58231
0
48
32.916667
86
x1001000/BERT_NLU
11,759,620,495,374
da9677807e382ee419dc740b6bbca672cf8dd9b2
e17fa313bbc98b82fa9166635d2c6b29f7cafae1
/BERT_run_classifier.py
cdc7d0d251eb23ecde5467d89b88a2a9ef5de34a
[]
no_license
https://github.com/x1001000/BERT_NLU
2c09c212fa829176f13864f81b01bd448bc07066
d6e5769d7493730657d4434faaabbf3cd25703e1
refs/heads/master
2020-11-28T11:44:15.802489
2019-11-06T06:00:14
2019-11-06T06:00:14
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#run_classifier.py class C(DataProcessor): """Processor for Demo data set.""" def __init__(self): self.labels = set() def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" # return list(self.labels) return ["fashion", "houseliving","game"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, i) text_a = tokenization.convert_to_unicode(line[1]) label = tokenization.convert_to_unicode(line[0]) self.labels.add(label) examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples # DemoProcessor processors = { "cola": ColaProcessor, "mnli": MnliProcessor, "mrpc": MrpcProcessor, "xnli": XnliProcessor, "demo": C, } #Run export BERT_Chinese_DIR=chinese_L-12_H-768_A-12 export Demo_DIR=input python3 run_classifier.py \ --task_name=demo \ --do_train=true \ --do_eval=true \ --data_dir=$Demo_DIR \ --vocab_file=$BERT_Chinese_DIR/vocab.txt \ --bert_config_file=$BERT_Chinese_DIR/bert_config.json \ --init_checkpoint=$BERT_Chinese_DIR/bert_model.ckpt \ --max_seq_length=128 \ --train_batch_size=32 \ --learning_rate=2e-5 \ --num_train_epochs=3.0 \ --output_dir=Demo_output export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12 export Demo_DIR=input export TRAINED_CLASSIFIER=Demo_output python3 run_classifier.py \ --task_name=demo \ --do_predict=true \ --data_dir=$Demo_DIR \ --vocab_file=$BERT_Chinese_DIR/vocab.txt \ --bert_config_file=$BERT_Chinese_DIR/bert_config.json \ --init_checkpoint=$BERT_Chinese_DIR/bert_model.ckpt \ --max_seq_length=128 \ --output_dir=test_output
UTF-8
Python
false
false
2,427
py
1
BERT_run_classifier.py
1
0.609806
0.597445
0
88
26.568182
81
HsOjo/PyJSONEditor
19,301,583,038,442
eb2c13c7a8d87f6f61cebe4ddfa10eceab952aac
5b3090dece7d3d276922f53bfba18fdff3a5ba12
/app/config.py
78537a503e7bcc7c1423585e4736732f3ec285c5
[ "MIT" ]
permissive
https://github.com/HsOjo/PyJSONEditor
338978b36a545982bec7285ba1de9aa5704f39b0
c2cf5398fa569ba0575048f3deebbf23028a61a1
refs/heads/master
2020-06-30T00:35:40.215143
2019-10-15T11:27:01
2019-10-15T11:27:01
200,668,517
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from app.base.config import ConfigBase class Config(ConfigBase): _protect_fields = [ 'baidu_app_id', 'baidu_key', ] baidu_app_id = '' baidu_key = ''
UTF-8
Python
false
false
183
py
12
config.py
10
0.562842
0.562842
0
10
17.3
38
siddharthcurious/Pythonic3-Feel
10,222,022,200,262
a9767ff8584097a72971d1e8644b417eb926a01d
78d23de227a4c9f2ee6eb422e379b913c06dfcb8
/LeetCode/846.py
384d03f6466286d2c3fad09a5cdd6413b61dcffb
[]
no_license
https://github.com/siddharthcurious/Pythonic3-Feel
df145293a3f1a7627d08c4bedd7e22dfed9892c0
898b402b7a65073d58c280589342fc8c156a5cb1
refs/heads/master
2020-03-25T05:07:42.372477
2019-09-12T06:26:45
2019-09-12T06:26:45
143,430,534
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from collections import Counter class Solution: def isNStraightHand(self, hand, W): """ :type hand: List[int] :type W: int :rtype: bool """ L = len(hand) if L%W != 0: return False counter = Counter(hand) while counter: tmin = min(counter) for k in range(tmin, tmin+W): v = counter.get(k) if not v: return False if v == 1: del counter[k] else: counter[k] = v-1 return True if __name__ == "__main__": s = Solution() hand = [1, 2, 3, 6, 2, 3, 4, 7, 8] W = 3 s.isNStraightHand(hand, W)
UTF-8
Python
false
false
746
py
360
846.py
343
0.41689
0.399464
0
33
21.636364
41
Saket-mangalam/ESwingGolf
10,127,532,925,612
1c3cdba7454e74f22e5bef994c6eda258dbcac10
bd1958595f8524b423beb3dbde0f3b93cdd1f790
/Testset/matcher.py
ea9460d11d68af1a3b639c91e8abd796bbb83539
[]
no_license
https://github.com/Saket-mangalam/ESwingGolf
0d42a35e1248c9e8748b39aa93e2327519c2ef4d
2f48d314431be498d7f29594b35dacd62071e823
refs/heads/master
2020-04-13T03:05:40.834055
2019-03-19T02:55:37
2019-03-19T02:55:37
162,921,387
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
''' author: saket''' import os import utils import time import cv2 import numpy as np import torch from get_args import get_args from datetime import datetime from tqdm import tqdm from process_functions import * # different file names left_image_suffix = "im0.png" left_gt_suffix = "disp0GT.pfm" right_image_suffix = "im1.png" right_gt_suffix = "disp1GT.pfm" calib_suffix = "calib.txt" out_file = "disp0MCCNN.pfm" out_img_file = "disp0MCCNN.pgm" out_time_file = "timeMCCNN.txt" def main(): args = get_args() # Decide which device we want to run on device = torch.device("cuda:0" if (torch.cuda.is_available() and args.ngpu > 0) else "cpu") patch_height = args.patch_size patch_width = args.patch_size ###################### left_image_list = args.list_dir #save_dir = args.save_dir #data_dir = args.data_dir #save_res_dir = os.path.join(save_dir, "submit_{}".format(args.tag)) #save_img_dir = os.path.join(save_dir, "submit_{}_imgs".format(args.tag)) #util.testMk(save_res_dir) #util.testMk(save_img_dir) #index = 0 #start = args.start #end = args.end with open(left_image_list, "r") as i: img_paths = i.readlines() #################### # do matching for left_path in tqdm(img_paths): # get data path left_path = left_path.strip() right_path = left_path.replace(left_image_suffix, right_image_suffix) calib_path = left_path.replace(left_image_suffix, calib_suffix) # generate output path out_path = left_path.replace(left_image_suffix, out_file) out_time_path = left_path.replace(left_image_suffix, out_time_file) out_img_path = left_path.replace(left_image_suffix, out_img_file) height, width, ndisp = utils.parseCalib(calib_path) print ("left_image: {}\nright_image: {}".format(left_path, right_path)) print ("height: {}, width: {}, ndisp: {}".format(height, width, ndisp)) #print "out_path: {}\nout_time_path: {}\nout_img_path: {}".format(out_path, out_time_path, out_img_path) # reading images left_image = cv2.imread(left_path, cv2.IMREAD_GRAYSCALE).astype(np.float32) right_image = cv2.imread(right_path, cv2.IMREAD_GRAYSCALE).astype(np.float32) left_image = (left_image - np.mean(left_image, axis=(0, 1))) / np.std(left_image, axis=(0, 1)) right_image = (right_image - np.mean(right_image, axis=(0, 1))) / np.std(right_image, axis=(0, 1)) left_image = np.expand_dims(left_image, axis=2) right_image = np.expand_dims(right_image, axis=2) assert left_image.shape == (height, width, 1) assert right_image.shape == (height, width, 1) print ("{}: images read".format(datetime.now())) # start timer for time file stTime = time.time() # compute features left_feature, right_feature = compute_features(left_image, right_image, patch_height, patch_width, args) left_feature = np.array(left_feature.detach()) right_feature = np.array(right_feature.detach()) #print (left_feature.shape) print ("{}: features computed".format(datetime.now())) # form cost-volume left_cost_volume, right_cost_volume = compute_cost_volume(left_feature, right_feature, ndisp) print ("{}: cost-volume computed".format(datetime.now())) # cost-volume aggregation print ("{}: begin cost-volume aggregation. This could take long".format(datetime.now())) left_cost_volume, right_cost_volume = cost_volume_aggregation(left_image, right_image, left_cost_volume, right_cost_volume, \ args.cbca_intensity, args.cbca_distance, args.cbca_num_iterations1) print ("{}: cost-volume aggregated".format(datetime.now())) # semi-global matching print ("{}: begin semi-global matching. This could take long".format(datetime.now())) left_cost_volume, right_cost_volume = SGM_average(left_cost_volume, right_cost_volume, left_image, right_image, \ args.sgm_P1, args.sgm_P2, args.sgm_Q1, args.sgm_Q2, args.sgm_D, args.sgm_V) print ("{}: semi-global matched".format(datetime.now())) # cost-volume aggregation afterhand print ("{}: begin cost-volume aggregation. This could take long".format(datetime.now())) left_cost_volume, right_cost_volume = cost_volume_aggregation(left_image, right_image, left_cost_volume, right_cost_volume, \ args.cbca_intensity, args.cbca_distance, args.cbca_num_iterations2) print ("{}: cost-volume aggregated".format(datetime.now())) # disparity map making left_disparity_map, right_disparity_map = disparity_prediction(left_cost_volume, right_cost_volume) print ("{}: disparity predicted".format(datetime.now())) # interpolation left_disparity_map = interpolation(left_disparity_map, right_disparity_map, ndisp) print ("{}: disparity interpolated".format(datetime.now())) # subpixel enhancement left_disparity_map = subpixel_enhance(left_disparity_map, left_cost_volume) print ("{}: subpixel enhanced".format(datetime.now())) # refinement # 5*5 median filter left_disparity_map = median_filter(left_disparity_map, 5, 5) # bilateral filter left_disparity_map = bilateral_filter(left_image, left_disparity_map, 5, 5, 0, args.blur_sigma, args.blur_threshold) print ("{}: refined".format(datetime.now())) # end timer endTime = time.time() # save as pgm and pfm utils.saveDisparity(left_disparity_map, out_img_path) utils.writePfm(left_disparity_map, out_path) utils.saveTimeFile(endTime - stTime, out_time_path) print ("{}: saved".format(datetime.now())) if __name__ == "__main__": main()
UTF-8
Python
false
false
6,405
py
19
matcher.py
15
0.58548
0.578767
0
150
41.706667
121
EmuKit/emukit
11,347,303,604,540
f9abdcec8a95b6c4d26dcf18ba0c92700746d3f2
3a9865cfc313b461727358ea427bab898e0c3bf1
/tests/emukit/bayesian_optimization/test_mean_plugin_expected_improvement.py
47d4fbba96c500cbcc93a8662b4dbf20ee16ca3e
[ "Apache-2.0" ]
permissive
https://github.com/EmuKit/emukit
12df214366a989e85a03ead695ad36569fbf1f38
22e11c216840427d2d0766bddad25a0606e606bc
refs/heads/main
2023-08-28T15:04:44.776523
2023-08-23T13:28:23
2023-08-23T13:28:23
147,290,595
274
66
Apache-2.0
false
2023-08-23T13:28:25
2018-09-04T05:01:34
2023-08-15T06:35:23
2023-08-23T13:28:24
17,626
530
124
42
Python
false
false
from unittest.mock import MagicMock import numpy as np import pytest from emukit.bayesian_optimization.acquisitions.expected_improvement import ( ExpectedImprovement, MeanPluginExpectedImprovement, ) from emukit.core.interfaces import IModel, IModelWithNoise from emukit.model_wrappers import GPyModelWrapper class MockIModel(IModel): def __init__(self, X, Y): self._X = X self._Y = Y @property def X(self): return self._X @property def Y(self): return self._Y def deterministic_test_func(x: np.ndarray) -> np.ndarray: return np.sin(x * 30 + x**2).sum(axis=-1, keepdims=True) class MockNoiselessModel(MockIModel, IModelWithNoise): """ A mock model with zero observation noise (predict() and predict_noiseless() will return the same predictive distribution). This model mocks predictions for the deterministic_test_func() (the mean prediction will be the same as function output). """ @staticmethod def _mean_func(X): return deterministic_test_func(X) @staticmethod def _var_func(X): return (np.cos(X * 10) + 1.2).sum(axis=-1, keepdims=True) def predict(self, X): return self._mean_func(X), self._var_func(X) def predict_noiseless(self, X): return self.predict(X) class MockConstantModel(MockIModel, IModelWithNoise): """Model the predicts the same output distribution everywhere""" def predict(self, X): # Return mean 1 and variance 8 return np.ones([X.shape[0], 1]), 8 * np.ones([X.shape[0], 1]) def predict_noiseless(self, X): # Return mean 1 and variance 1 return np.ones([X.shape[0], 1]), np.ones([X.shape[0], 1]) def test_mean_plugin_ei_same_as_standard_on_noiseless(): np.random.seed(42) X = np.random.randn(10, 3) Y = deterministic_test_func(X) model = MockNoiselessModel(X, Y) mean_plugin_ei = MeanPluginExpectedImprovement(model) standard_ei = ExpectedImprovement(model) x_new = np.random.randn(100, 3) ## Assert the two expected improvement are equal assert pytest.approx(standard_ei.evaluate(x_new)) == mean_plugin_ei.evaluate(x_new) def test_mean_plugin_expected_improvement_returns_expected(): np.random.seed(43) X = np.random.randn(10, 3) Y = np.random.randn(10, 1) model = MockConstantModel(X, Y) mean_plugin_ei = MeanPluginExpectedImprovement(model) x_new = np.random.randn(100, 3) acquisition_values = mean_plugin_ei.evaluate(x_new) # The mean at every previously observed point will be 1, hence y_minimum will be 1.0. # The predicted values in the batch should all have mean 1 and variance 1 # The correct expected improvement for Gaussian Y ~ Normal(1, 1), and y_minimum = 1.0 is 0.3989422804014327 assert pytest.approx(0.3989422804014327, abs=0, rel=1e-7) == acquisition_values
UTF-8
Python
false
false
2,897
py
331
test_mean_plugin_expected_improvement.py
252
0.679213
0.648481
0
98
28.55102
111
mbusc1/Python-Projects
9,749,575,798,908
eb3776d3bb10a533b7ec11a83f63817290ba77f5
876c0fcfcc6201ab36e3eefe61feac5053acd642
/program3/pcollections.py
56955da32323255b3b3f103885bd97ffd5323daf
[]
no_license
https://github.com/mbusc1/Python-Projects
10ca8b6c229681007ff9af84fcdf6b964213deff
0d28b8f3f1d82fdce958172b84a06c384c0d5d7b
refs/heads/master
2021-01-09T04:27:57.604419
2020-02-21T23:17:03
2020-02-21T23:17:03
242,245,375
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
# Submitter: mbuscemi(Buscemi, Matthew) # Partner : wbuscemi(Buscemi, William) # We certify that we worked cooperatively on this programming # assignment, according to the rules for pair programming import re, traceback, keyword def pnamedtuple(type_name, field_names, mutable=False, defaults={}): def show_listing(s): for line_number, line_text in enumerate( s.split('\n'),1 ): print(f' {line_number: >3} {line_text.rstrip()}') # put your code here # bind class_definition (used below) to the string constructed for the class #check that type_name is vaild def _is_legal(name): if type(name) != str: raise SyntaxError("Name is not valid string. Use a charachter followed by any number of alphanumerics, which are not python keywords") if name in keyword.kwlist: raise SyntaxError("Name is not valid string. Use a charachter followed by any number of alphanumerics, which are not python keywords") checked_name = re.search(r'^[a-zA-Z]\w*$',name) if checked_name == None: raise SyntaxError("Name is not valid string. Use a charachter followed by any number of alphanumerics, which are not python keywords") else: return(checked_name.group(0)) def _is_legal_list(names): if type(names) == str: checked_names = re.split(r'[, ]+',names) for checked_name in checked_names: #group 1 in a match _is_legal(checked_name) return checked_names elif type(names) == list: for name in names: cn = re.search(r'^[a-zA-Z]\w*$',name) if cn == None: raise SyntaxError("Name is not valid string. Use a charachter followed by any number of alphanumerics, which are not python keywords") return names else: raise SyntaxError("Name is not valid string. Use a charachter followed by any number of alphanumerics, which are not python keywords") class_name = _is_legal(type_name) class_fields = _is_legal_list(field_names) #begin building class string class_definition = f'''class {class_name}: _fields = {class_fields} _mutable = {mutable} ''' #INIT class_init = 'def __init__(self, {}):\n'.format(', '.join([f if f not in defaults.keys() else f'{f}={defaults[f]}' for f in class_fields])) for f in class_fields: class_init += f' self.{f} = {f}\n' class_definition += class_init + '\n' #REPR arg_str = ','.join([f'{f}={{{f}}}' for f in class_fields]) f_str = ','.join([f'{f}=self.{f}' for f in class_fields]) class_repr=f" def __repr__(self):\n return '{class_name}({arg_str})'.format({f_str})\n\n" class_definition += class_repr #Simple Query for f in class_fields: class_definition += f''' def get_{f}(self): return self.{f} \n''' #GET ITEM class_definition += f''' def __getitem__(self,arg): indexes = {class_fields} if type(arg) == int and arg in range(len(indexes)): cmd = f'self.get_{{indexes[arg]}}()' return eval(cmd) elif type(arg) == str and arg in indexes: cmd = f'self.get_{{arg}}()' return eval(cmd) else: raise IndexError('Argument is not a feild or is out of range') \n''' #equals class_definition += f''' def __eq__(self,right): if type(self) != type(right): return False if self.__dict__ != right.__dict__: return False return True \n''' #_asdict class_definition += f''' def _asdict(self): return dict(self.__dict__) \n''' #_make class_definition += f''' def _make(iterable): args = ','.join([str(x) for x in iterable]) cmd = f'{class_name}({{args}})' return eval(cmd) \n''' #_replace class_definition += f''' def _replace(self,**kargs): for arg in kargs: if arg not in {class_fields}: raise TypeError("_replace arguments must match keyword arguments of class.") if self._mutable: for arg,val in kargs.items(): self.__dict__[arg] = val else: class_list = [] for key in {class_fields}: if key in kargs: class_list.append(kargs[key]) else: class_list.append(self.__dict__[key]) return {class_name}._make(class_list) \n''' # When debugging, uncomment following line to show source code for the class #show_listing(class_definition) # Execute this class_definition, a str, in a local name space; then bind the # the source_code attribute to class_definition; after try/except return the # class object created; if there is a syntax error, list the class and # also show the error name_space = dict( __name__ = f'pnamedtuple_{type_name}' ) try: exec(class_definition,name_space) name_space[type_name].source_code = class_definition except (TypeError,SyntaxError): show_listing(class_definition) traceback.print_exc() return name_space[type_name] if __name__ == '__main__': # Test pnamedtuple below in script with Point = pnamedtuple('Point','x,y') Point = pnamedtuple('Point','x,y') #driver tests import driver driver.default_file_name = 'bscp3F19.txt' # driver.default_show_exception= True # driver.default_show_exception_message= True # driver.default_show_traceback= True driver.driver()
UTF-8
Python
false
false
5,797
py
35
pcollections.py
22
0.574263
0.573055
0
160
35.23125
154
ignaciovillaverde/PythonInterpreter
17,016,660,448,112
c5a1cb6a2f39cf02c0a3394156a40f469afda692
a7bf5a72c3565b2ecc48d2277f69c2e4c3b48dbe
/test/integrationTest/programs/if_else.py
106d93faa34cb0fa16fc0931bd37d98ba7057d3e
[]
no_license
https://github.com/ignaciovillaverde/PythonInterpreter
862a5ee1895487df20682746fbf7b3218fefe317
3a9c8b19d889d19dd6f10bda48772b7b38f075b3
refs/heads/master
2016-08-08T01:40:44.926259
2015-07-18T01:30:21
2015-07-18T01:30:21
37,035,841
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
a = "hola" if a == "hola": print "Correcto" else: print "Incorrecto" a = 4 if a <= 4: a = 5 print a else: print "Incorrecto" a = "a" b = "b" if (a > b): print "Incoreecto" else: print "Correcto" if -4: print "Correcto" else: print "Incoreecto"
UTF-8
Python
false
false
253
py
74
if_else.py
67
0.600791
0.58498
0
21
11.047619
19
zrbruce/PythonCFD
3,968,549,804,567
cbdb3bbeea0670561e99cf23e5c588edd3e6061d
0805f521d48e9a05138de022a320bf525b6377c7
/Step5 - 2D Linear Convection.py
f34caa257717a27c3fb93e8b2c92bcf04da70e54
[]
no_license
https://github.com/zrbruce/PythonCFD
61a0ed80f3cc9c9a008979fcf5f6dd728eb6d814
6ecdb1a7ca73bda5c5cd281d7078fbe957c722e1
refs/heads/master
2021-06-03T19:34:43.474115
2016-03-12T19:16:54
2016-03-12T19:16:54
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#2D linear convection from mpl_toolkits.mplot3d import Axes3D import numpy from matplotlib import pyplot nx = 81 ny = 81 nt = 100 c = 1 dx = 2/(nx-1) dy = 2/(ny-1) sigma = 0.2 dt = sigma*dx x = numpy.linspace(0,2,nx) y = numpy.linspace(0,2,ny) u = numpy.ones((ny,nx)) #create a 1xn vector of 1's un = numpy.ones((ny,nx)) #assign initial conditions u[ .5/dy : 1/dy+1, .5/dx : 1/dx+1] = 2 ##set hat function I.C. : u(.5<=x<=1 && .5<=y<=1 ) is 2 for n in range(nt + 1): #looping across time steps un = u.copy() u[1:,1:] = un[1:,1:] - (c*dt/dx*(un[1:,1:] - un[1:, :-1])) - (c*dt/dy*(un[1:,1:] - un[:-1,1:])) u[0,:] = 1 u[-1,:] = 1 u[:,0] = 1 u[:,-1] = 1 #plot the initial condition fig = pyplot.figure(figsize = (11,7), dpi = 100) ax = fig.gca(projection = '3d') X, Y = numpy.meshgrid(x,y) surf2 = ax.plot_surface(X,Y, u[:])
UTF-8
Python
false
false
885
py
9
Step5 - 2D Linear Convection.py
8
0.544633
0.472316
0
40
21.15
99
anselus/server
7,189,775,277,692
2e62bc9be1f73e54357d430e717d5d88b0f3c007
4290c4d9b75c12982b4e1fc1f9308998dece15fd
/utils/genkeypair.py
d0833ac780fc93607d610b62e4d98a5c9aef8ba2
[]
no_license
https://github.com/anselus/server
18f1a8ac78a6e0c662fb0531f4612317eb7e4780
6ea909ab0602205a176d09b82f4bc4891ac2990d
refs/heads/master
2020-08-11T10:10:04.258015
2020-07-13T17:56:38
2020-07-13T17:56:38
214,547,219
1
1
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python3 import nacl.public import nacl.secret import nacl.utils from os import path import sys def encode_file(file_name): keypair = nacl.public.PrivateKey.generate() pub_name = file_name + '.pub' if path.exists(pub_name): response = input("%s exists. Overwrite? [y/N]: " % pub_name) if not response or response.casefold()[0] != 'y': return try: out = open(pub_name, 'wb') out.write(bytes(keypair.public_key)) except Exception as e: print('Unable to save %s: %s' % (pub_name, e)) priv_name = file_name + '.priv' try: out = open(priv_name, 'wb') out.write(bytes(keypair)) except Exception as e: print('Unable to save %s: %s' % (priv_name, e)) if __name__ == '__main__': if len(sys.argv) != 2: print("Usage: %s <namebase>" % path.basename(sys.argv[0])) else: encode_file(sys.argv[1])
UTF-8
Python
false
false
839
py
10
genkeypair.py
6
0.644815
0.638856
0
35
22.942857
62
dStass/programming_challenges
17,016,660,452,789
85e52f706f0e6fbbe0657933c1e12d389528f57a
c9849593c53060bec8fbcea6275c0ba8e68ac968
/HackerRank/wendy_and_bob/string_divisibility.py
1cf58fd80be008e5dc4bb887d7bbc00140b7cc5e
[]
no_license
https://github.com/dStass/programming_challenges
f6e21ad42f71f05656a5966af24749539ab436bb
e17097c1808e418fc28d8ee627b23340e381df58
refs/heads/master
2023-04-30T13:55:38.589234
2022-08-21T12:43:39
2022-08-21T12:43:39
203,951,732
0
0
null
false
2023-04-21T20:43:42
2019-08-23T07:55:39
2022-08-21T12:43:45
2023-04-21T20:43:42
5,513
0
0
4
Python
false
false
def findSmallestDivisor(s, t): divisible = isDivisible(s, t) if not divisible: return -1 for i in range(1, len(t) + 1): divisor = t[:i] if isDivisible(s, divisor): return len(divisor) return len(t) def isDivisible(s, t): s_split = s.split(t) divisible = True if len(s_split) == 1: return False for each in s_split: if each != '': divisible = False break return divisible s = 'rbrb' t = 'rbrb' print(findSmallestDivisor(s,t))
UTF-8
Python
false
false
544
py
119
string_divisibility.py
118
0.544118
0.536765
0
26
19.961538
35
ianagpawa/json_builder
8,048,768,730,645
973efe0983c0dd45ab18b7c4a2217752b366fb51
646af1afd978c13858b576ad2d3e34a63a9e8866
/Project.py
195e4dc6e918a613dab0d23a312e5292c119fb8a
[]
no_license
https://github.com/ianagpawa/json_builder
2c1d490f6d71f09204f55140cf28e45ee440de39
270e3e80072deb8063e0bf8b0ee14d3f18d4e545
refs/heads/master
2020-04-26T16:13:25.100980
2019-03-05T03:19:03
2019-03-05T03:19:03
173,671,391
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
class Project: def __init__(self, title, summary, description, link, github, tech, name, date): self.title = title self.summary = summary self.description = description self.link = link self.github = github self.tech = tech self.name = name self.date = date def details(self): return { "title": self.title, "summary": self.summary, "description": self.description, "link": self.link, "github": self.github, "tech": self.tech, "name": self.name, "data": self.date }
UTF-8
Python
false
false
654
py
7
Project.py
5
0.507645
0.507645
0
23
27.478261
84
schifzt/statistics_ML
14,456,859,919,098
75f5a2d77cb7b75e9755ad3f7c122c9dd75bb4a0
11049c6f1a1b9bc223856fad6eefa2f5f4085463
/exact-sparse-recovery/create_input.py
42e5c49b98ecc7f0104a3c9cfb73f4e30770b592
[]
no_license
https://github.com/schifzt/statistics_ML
77341c32b5961ba959e98e34c74d22cca3b3fc77
2c61b0fdbbd785c8ecc4d666d24f94eb7c445f91
refs/heads/master
2023-03-03T19:16:09.337416
2023-02-17T15:48:27
2023-02-17T15:48:27
200,043,161
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np # ------------------------------------------------------------------------- # (rho, alpha)がrho < alphaを満たすならば、L0ノルム最小化により再構成可能 rho = 0.3 # sparsity parameter alpha = 0.3 # dim_measurement / dim_signal dim_signal = 100 dim_measurement = int(alpha*dim_signal) is_integer = False # ------------------------------------------------------------------------- np.set_printoptions( formatter={'all':lambda x: '{:<10d}'.format(int(x)) if x == 0 else "{:.3f}".format(x)}, threshold=np.inf ) # Create a true signal x0. dim = dim_signal x0 = np.zeros(dim_signal) K = 0 for n in range(dim_signal): if np.random.rand() > rho: x0[n] = np.random.normal(0, 1) K += 1 if is_integer: x0[n] = int(x0[n]) else: pass # Create measurement matrix A. dim = dim_measurement x dim_signal mean = np.zeros(dim_measurement*dim_signal) cov = np.identity(dim_measurement*dim_signal) * 1/dim_signal A = np.random.multivariate_normal(mean, cov).reshape((dim_measurement, dim_signal)) if is_integer: A = A.astype(int) # Create measurement vector y := Ag y = A@x0 print(x0) # print(K) # print(A) print(y) # Create output string for matrix def matrix2string(A: np.ndarray): M, N = A.shape out = "[" for m in range(M): out += "| " for n in range(N-1): out += "{:.3f}".format(A[m][n]) + ", " out += "{:.3f}".format(A[m][N-1]) out += "\n" out += " " out += "|]" return out # Create dzn file with open("input.dzn", "w") as f: s = "" s += f"dim_signal = {dim_signal};\n" s += f"dim_measurement = {dim_measurement};\n" s += f"K = {K};\n" s += "\n" s += "x0 = " + np.array2string(x0, separator=", ") + ";\n" s += "y = " + np.array2string(y, separator=", ") + ";\n" s += "\n" s += "A = " + matrix2string(A) + ";\n" f.write(s)
UTF-8
Python
false
false
1,945
py
18
create_input.py
16
0.509742
0.491838
0
73
25.013699
91
AK-1121/code_extraction
12,781,822,702,167
4520798c8511e0e147216c5a61eb2225bb1567a3
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_8536.py
cc151469c0821398d71d450da621e1753f8907f5
[]
no_license
https://github.com/AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Python: Check if one dictionary is a subset of another larger dictionary all(item in superset.items() for item in subset.items())
UTF-8
Python
false
false
132
py
29,367
python_8536.py
29,367
0.772727
0.772727
0
2
65
74
cdbethune/goat-d3m-wrapper
8,031,588,857,069
e6c11f1b90767de9a69a3c134384d242763277b1
964ee35103d97cb09c3c35e70f5f7d73a6929cdf
/GoatD3MWrapper/reverse.py
4811336ecff2ed7db6a6d667f992e178f3f019b0
[ "MIT" ]
permissive
https://github.com/cdbethune/goat-d3m-wrapper
a4d1aa9423d1eda6f123f67a9a0d4b4636cc6d0e
7e033a555cd1db3e3b029fdfa476c4f8f0db78c9
refs/heads/master
2020-04-07T17:20:44.211660
2019-11-22T16:47:13
2019-11-22T16:47:13
158,566,061
0
0
null
true
2018-11-21T15:07:43
2018-11-21T15:07:43
2018-10-30T00:57:58
2018-10-30T00:57:56
81
0
0
0
null
false
null
import os import sys import subprocess import collections import pandas as pd import requests import time import typing from json import JSONDecoder from typing import List, Tuple from d3m.primitive_interfaces.transformer import TransformerPrimitiveBase from d3m.primitive_interfaces.base import CallResult from d3m import container, utils from d3m.metadata import hyperparams, base as metadata_base, params from d3m.container import DataFrame as d3m_DataFrame from common_primitives import utils as utils_cp from .forward import check_geocoding_server __author__ = 'Distil' __version__ = '1.0.7' __contact__ = 'mailto:numa@yonder.co' Inputs = container.pandas.DataFrame Outputs = container.pandas.DataFrame # LRU Cache helper class class LRUCache: def __init__(self, capacity): self.capacity = capacity self.cache = collections.OrderedDict() def get(self, key): key = ''.join(str(e) for e in key) try: value = self.cache.pop(key) self.cache[key] = value return value except KeyError: return -1 def set(self, key, value): key = ''.join(str(e) for e in key) try: self.cache.pop(key) except KeyError: if len(self.cache) >= self.capacity: self.cache.popitem(last=False) self.cache[key] = value class Hyperparams(hyperparams.Hyperparams): geocoding_resolution = hyperparams.Enumeration(default = 'city', semantic_types = ['https://metadata.datadrivendiscovery.org/types/TuningParameter'], values = ['city', 'country', 'state', 'postcode'], description = 'type of clustering algorithm to use') rampup_timeout = hyperparams.UniformInt(lower=1, upper=sys.maxsize, default=100, semantic_types=[ 'https://metadata.datadrivendiscovery.org/types/TuningParameter'], description='timeout, how much time to give elastic search database to startup, may vary based on infrastructure') class reverse_goat(TransformerPrimitiveBase[Inputs, Outputs, Hyperparams]): """ Accept a set of lat/long pair, processes it and returns a set corresponding geographic location names Parameters ---------- inputs : pandas dataframe containing 2 coordinate float values, i.e., [longitude,latitude] representing each geographic location of interest - a pair of values per location/row in the specified target column Returns ------- Outputs Pandas dataframe containing one location per longitude/latitude pair (if reverse geocoding possible, otherwise NaNs) appended as new columns """ # Make sure to populate this with JSON annotations... # This should contain only metadata which cannot be automatically determined from the code. metadata = metadata_base.PrimitiveMetadata( { # Simply an UUID generated once and fixed forever. Generated using "uuid.uuid4()". 'id': "f6e4880b-98c7-32f0-b687-a4b1d74c8f99", 'version': __version__, 'name': "Goat_reverse", # Keywords do not have a controlled vocabulary. Authors can put here whatever they find suitable. 'keywords': ['Reverse Geocoder'], 'source': { 'name': __author__, 'contact': __contact__, 'uris': [ # Unstructured URIs. "https://github.com/NewKnowledge/goat-d3m-wrapper", ], }, # A list of dependencies in order. These can be Python packages, system packages, or Docker images. # Of course Python packages can also have their own dependencies, but sometimes it is necessary to # install a Python package first to be even able to run setup.py of another package. Or you have # a dependency which is not on PyPi. 'installation': [{ 'type': metadata_base.PrimitiveInstallationType.PIP, 'package_uri': 'git+https://github.com/NewKnowledge/goat-d3m-wrapper.git@{git_commit}#egg=GoatD3MWrapper'.format( git_commit=utils.current_git_commit(os.path.dirname(__file__)), ), }, { "type": "UBUNTU", "package": "default-jre", "version": "2:1.8-56ubuntu2" }, { "type": "TGZ", "key": "photon-db-latest", "file_uri": "http://public.datadrivendiscovery.org/photon.tar.gz", "file_digest":"d7e3d5c6ae795b5f53d31faa3a9af63a9691070782fa962dfcd0edf13e8f1eab" }], # The same path the primitive is registered with entry points in setup.py. 'python_path': 'd3m.primitives.data_cleaning.geocoding.Goat_reverse', # Choose these from a controlled vocabulary in the schema. If anything is missing which would # best describe the primitive, make a merge request. 'algorithm_types': [ metadata_base.PrimitiveAlgorithmType.NUMERICAL_METHOD, ], 'primitive_family': metadata_base.PrimitiveFamily.DATA_CLEANING, } ) def __init__(self, *, hyperparams: Hyperparams, random_seed: int = 0, volumes: typing.Dict[str, str] = None)-> None: super().__init__(hyperparams=hyperparams, random_seed=random_seed, volumes=volumes) self._decoder = JSONDecoder() self.volumes = volumes def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> CallResult[Outputs]: """ Accept a set of lat/long pair, processes it and returns a set corresponding geographic location names Parameters ---------- inputs : pandas dataframe containing 2 coordinate float values, i.e., [longitude,latitude] representing each geographic location of interest - a pair of values per location/row in the specified target column Returns ------- Outputs Pandas dataframe containing one location per longitude/latitude pair (if reverse geocoding possible, otherwise NaNs) """ # confirm that server is responding before proceeding address = 'http://localhost:2322/' PopenObj = check_geocoding_server(address, self.volumes, self.hyperparams['rampup_timeout']) # find location columns, real columns, and real-vector columns targets = inputs.metadata.get_columns_with_semantic_type('https://metadata.datadrivendiscovery.org/types/Location') real_values = inputs.metadata.get_columns_with_semantic_type('http://schema.org/Float') real_values += inputs.metadata.get_columns_with_semantic_type('http://schema.org/Integer') real_values = list(set(real_values)) real_vectors = inputs.metadata.get_columns_with_semantic_type('https://metadata.datadrivendiscovery.org/types/FloatVector') target_column_idxs = [] target_columns = [] # convert target columns to list if they have single value and are adjacent in the df for target, target_col in zip(targets, [list(inputs)[idx] for idx in targets]): if target in real_vectors: target_column_idxs.append(target) target_columns.append(target_col) # pair of individual lat / lon columns already in list elif list(inputs)[target - 1] in target_columns: continue elif target in real_values: if target+1 in real_values: # convert to single column with list of [lat, lon] col_name = "new_col_" + target_col inputs[col_name] = inputs.iloc[:,target:target+2].values.tolist() target_columns.append(col_name) target_column_idxs.append(target) target_column_idxs.append(target + 1) target_column_idxs.append(inputs.shape[1] - 1) # make sure columns are structured as 1) lat , 2) lon pairs for col in target_columns: if inputs[col].apply(lambda x: x[0]).max() > 90: inputs[col] = inputs[col].apply(lambda x: x[::-1]) # delete columns with path names of nested media files outputs = inputs.remove_columns(target_column_idxs) goat_cache = LRUCache(10) out_df = pd.DataFrame(index=range(inputs.shape[0]),columns=target_columns) # reverse-geocode each requested location for i,ith_column in enumerate(target_columns): j = 0 for longlat in inputs[ith_column]: cache_ret = goat_cache.get(longlat) if(cache_ret==-1): r = requests.get(address+'reverse?lat='+str(longlat[0])+'&lon='+str(longlat[1])) tmp = self._decoder.decode(r.text) if len(tmp['features']) == 0: if self.hyperparams['geocoding_resolution'] == 'postcode': out_df.iloc[j,i] = float('nan') else: out_df.iloc[j,i] = '' elif self.hyperparams['geocoding_resolution'] not in tmp['features'][0]['properties'].keys(): if self.hyperparams['geocoding_resolution'] == 'postcode': out_df.iloc[j,i] = float('nan') else: out_df.iloc[j,i] = '' else: out_df.iloc[j,i] = tmp['features'][0]['properties'][self.hyperparams['geocoding_resolution']] goat_cache.set(longlat,out_df.iloc[j,i]) else: out_df.iloc[j,i] = cache_ret j=j+1 # need to cleanup by closing the server when done... PopenObj.kill() # Build d3m-type dataframe d3m_df = d3m_DataFrame(out_df) for i,ith_column in enumerate(target_columns): # for every column col_dict = dict(d3m_df.metadata.query((metadata_base.ALL_ELEMENTS, i))) if self.hyperparams['geocoding_resolution'] == 'postcode': col_dict['structural_type'] = type(1) col_dict['semantic_types'] = ('http://schema.org/Integer', 'https://metadata.datadrivendiscovery.org/types/Attribute') else: col_dict['structural_type'] = type("it is a string") col_dict['semantic_types'] = ('http://schema.org/Text', 'https://metadata.datadrivendiscovery.org/types/Attribute') col_dict['name'] = target_columns[i] d3m_df.metadata = d3m_df.metadata.update((metadata_base.ALL_ELEMENTS, i), col_dict) df_dict = dict(d3m_df.metadata.query((metadata_base.ALL_ELEMENTS, ))) df_dict_1 = dict(d3m_df.metadata.query((metadata_base.ALL_ELEMENTS, ))) df_dict['dimension'] = df_dict_1 df_dict_1['name'] = 'columns' df_dict_1['semantic_types'] = ('https://metadata.datadrivendiscovery.org/types/TabularColumn',) df_dict_1['length'] = d3m_df.shape[1] d3m_df.metadata = d3m_df.metadata.update((metadata_base.ALL_ELEMENTS,), df_dict) return CallResult(outputs.append_columns(d3m_df)) if __name__ == '__main__': input_df = pd.DataFrame(data={'Name':['Paul','Ben'],'Long/Lat':[list([-97.7436995, 30.2711286]),list([-73.9866136, 40.7306458])]}) volumes = {} # d3m large primitive architecture dict of large files volumes["photon-db-latest"] = "/geocodingdata" from d3m.primitives.data_cleaning.multitable_featurization import Goat_reverse as reverse_goat # form of import client = reverse_goat(hyperparams={'target_columns':['Long/Lat'],'rampup':8},volumes=volumes) print("reverse geocoding...") print("result:") start = time.time() result = client.produce(inputs = input_df) end = time.time() print(result) print("time elapsed is (in sec):") print(end-start)
UTF-8
Python
false
false
12,163
py
4
reverse.py
4
0.603963
0.59015
0
256
46.511719
134
hyh-sherry/python-challenge
12,197,707,159,202
1176755564806ca77b20bd9b50ed3c6f8a3b3b94
12d8399723ff086e57152c41faf54df151adc2d8
/PyPoll/main.py
99d70837bf70841649ca6e0f40a43957f42d25b6
[]
no_license
https://github.com/hyh-sherry/python-challenge
222de41f783aea42ed10904b6d6d081d40f81018
623b94d6e176c80bee7b6d996d7586c5f39a830e
refs/heads/master
2020-06-01T15:04:40.403887
2019-06-12T02:56:46
2019-06-12T02:56:46
190,826,652
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#Create a Python script that analyzes the votes and calculates each of the following: #The total number of votes cast #A complete list of candidates who received votes #The percentage of votes each candidate won #The total number of votes each candidate won #The winner of the election based on popular vote. import os import csv election_csv = os.path.join(os.path.dirname( __file__ ), "..","Resources","election_data.csv") with open(election_csv, "r") as csvfile: csvreader = csv.reader(csvfile, delimiter=',') header = next(csvreader) total = 0 candidates = [] #The total number of votes cast #A complete list of candidates who received votes for row in csvreader: total += 1 if row[2] not in candidates: candidates.append(row[2]) print(len(candidates)) votes_for_each = [0,0,0,0] percent_of_votes = [] #The percentage of votes each candidate won #The total number of votes each candidate won with open(election_csv, "r") as csvfile: csvreader = csv.reader(csvfile, delimiter=',') header = next(csvreader) for row in csvreader: if row[2] == candidates[0]: votes_for_each[0] += 1 elif row[2] == candidates[1]: votes_for_each[1] += 1 elif row[2] == candidates[2]: votes_for_each[2] += 1 else: votes_for_each[3] += 1 percent_of_votes.append(round(votes_for_each[0]/total*100,3)) percent_of_votes.append(round(votes_for_each[1]/total*100,3)) percent_of_votes.append(round(votes_for_each[2]/total*100,3)) percent_of_votes.append(round(votes_for_each[3]/total*100,3)) election_list = list(zip(candidates,percent_of_votes,votes_for_each)) print(election_list) #The winner of the election based on popular vote. max_votes = max(percent_of_votes) for i in range(len(election_list)): if election_list[i][1] == max_votes: winner = election_list[i][0] #Print Result print("Election Results") print("-------------------------") print(f"Total Votes: {total}") print("-------------------------") for i in range(len(candidates)): print(f"{candidates[i]}: {percent_of_votes[i]}% ({votes_for_each[i]})") print("-------------------------") print(f"Winner: {winner}") print("-------------------------") #Write a txt file with results result_file = open("PyPoll/PyPoll_Results.txt","w+") print("Election Results",file = result_file) print("-------------------------",file = result_file) print(f"Total Votes: {total}",file = result_file) print("-------------------------",file = result_file) for i in range(len(candidates)): print(f"{candidates[i]}: {percent_of_votes[i]}% ({votes_for_each[i]})",file = result_file) print("-------------------------",file = result_file) print(f"Winner: {winner}",file = result_file) print("-------------------------",file = result_file) result_file.close()
UTF-8
Python
false
false
3,209
py
2
main.py
2
0.555002
0.54129
0
84
37.214286
102
chati757/python-learning-space
15,822,659,545,412
ebde30fdb3bd051881397dbadb360ff1a5d12d51
47128c6ff1277eedf851670d33f7a288fdfe2246
/selenium/chrome.py
7cd84bf4f18849bf1475ec1e23dda9d08bbe4465
[]
no_license
https://github.com/chati757/python-learning-space
5de7f11a931cf95bc076473da543331b773c07fb
bc33749254d12a47523007fa9a32668b8dc12a24
refs/heads/master
2023-08-13T19:19:52.271788
2023-07-26T14:09:58
2023-07-26T14:09:58
83,208,590
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from selenium import webdriver import time from selenium.webdriver.remote.remote_connection import LOGGER, logging LOGGER.setLevel(logging.WARNING) ''' https://chromedriver.chromium.org/downloads โหลดมาแล้วสร้างที่อยู่สักที พร้อมกับ set path env (system level) ในที่นี้ Ex.C:\chrome_webdriver\chromedriver.exe ทดสอบ run chromedriver.exe และ enable firewall และ permission ที่ติดทั้งหมดออก ''' path = "C:\chrome_webdriver\chromedriver.exe" options = webdriver.ChromeOptions(); options.add_experimental_option("excludeSwitches", ["enable-logging"]) options.add_argument('--disable-logging') #if linux use service_log_path='/dev/null' browser = webdriver.Chrome(executable_path=path,chrome_options=options,service_log_path='NUL') browser.get("https://www.google.com") time.sleep(10) browser.close()
UTF-8
Python
false
false
937
py
387
chrome.py
312
0.779172
0.776662
0
20
38.9
113
jorgemarpa/HiTS-local
12,240,656,797,639
6364fbb4dfaff7a5a03b0d54d9cf7906bbd7bb0d
69e0d1fd511b0c15d7009bdc1f71ec4eb0e7e8fc
/download_sdss_spec.py
f51d7ed81a0345fd7362119d8205a2bdeafffca0
[]
no_license
https://github.com/jorgemarpa/HiTS-local
a46773b12246ea6be08b2ec76fa5415d4f1125dd
a6e5baefa08ac093af8a0d2baa5263c7aad17ff4
refs/heads/master
2019-01-01T02:56:49.699492
2018-11-01T01:18:09
2018-11-01T01:18:09
45,215,511
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import pyfits import numpy as np import urllib import astropy import astropy.cosmology import astropy.units as u import sdss_reader import os import pylab import sys from astroquery.irsa_dust import IrsaDust import astropy.coordinates as coord import astropy.units as u if len(sys.argv)<3: id0=0 id1=1000 else: id0=np.int(sys.argv[1]) id1=np.int(sys.argv[2]) def extinction_correction(xarr1,data1,error1,RA,DEC): """ Corrects spectra from galatic reddening. Input: xarr1: Wavelenght in Angstroms. It MUST be OBSFRAME data1: Flux does not matter the units error1:FluxError does not matter the units RA, DEC: coordinate RA and DEC in degrees. ICRS system. To properly run this routhine you need to import: from astroquery.irsa_dust import IrsaDust import astropy.coordinates as coord import astropy.units as u import numpy as np Returns: xarr,data,error """ c = coord.SkyCoord(RA,DEC , unit="deg") table = IrsaDust.get_extinction_table(c) wlext1=table['LamEff']*1e4 Aext1=table['A_SFD'] wlext=np.zeros(len(wlext1)-8) # Aext=np.zeros(len(Aext1)-8) # This is to avoid repetition of close WL in different wlext=wlext1[8:] #photometric systems Aext=Aext1[8:] sorted=np.argsort(wlext) wlext=wlext[sorted] Aext=Aext[sorted] Adata=np.interp(np.log10(xarr),np.log10(wlext),np.log10(Aext)) Adata=10**Adata data=10**Adata*data1 error=10**Adata*error1 return xarr,data,error def Flux_to_Luminosity(data,error, redshift,units=1e-17, Ho=70,OmegaM=0.3 ): """ Converts flux to luminosity data: flux error: flux error units: 1e-17 erg/(scm2AA) by default. Always in erg/(scm2AA) Ho: Hubble constant in km/s OmegaM: Normalized matter density wr to critical density Here we assume a FlatLCDM model: OmegaDE v= 1- OmegaM Return: data,error in erg/(s\AA) """ cos=astropy.cosmology.FlatLambdaCDM(Ho,OmegaM) dL=cos.luminosity_distance(redshift) dL=dL.to(u.cm).value #print data data=4*np.pi*data*units*dL**2 error=4*np.pi*error*units*dL**2 return data, error CATALOG='BOSSDR12' # Can also be 'SDSSDR7' plot=0 #Plot downloaded spectra ? download=1 SDSS_info_dir='../SDSS_data/' #dir related with the spectra that will be downloaded #SDSS_spec_root='http://das.sdss.org/spectro/1d_26/' #SDSS DR7 . Root of the web page to #download spectra. # Objects with CIV emission that will be downloaded # Organized by Plate MedianJulianDate fibre #plate,MJD,fibre=np.genfromtxt(SDSS_info_dir+CIVobjs,unpack=1,dtype='str') if CATALOG=='SDSSDR7': redshift_cut=1.79 # Minimum redshift to guarantee SiIV+OIV]1400 coverage. SDSS_spec_root='http://dr12.sdss3.org/sas/dr12/sdss/spectro/redux/26/spectra/' #DR12, for old DR7 spec savespec='../spec/' #where to save the downloaded spectra if not os.path.exists(savespec): os.mkdir(savespec) #--------------------------------------------------------------------- CIVobjs='CIV_PlateMJdFiber.txt' CIVobjs='TN12_MgIIxCIV.dat' index, plate, MJD, fibre, logL3000, FWHMMgII, logL1450, FWHMCIV=np.genfromtxt(SDSS_info_dir+CIVobjs,unpack=1,dtype='str',skip_header=3) plate=np.array([str(np.int(np.float(pl))) for pl in plate]) MJD=np.array([str(np.int(np.float(mj))) for mj in MJD]) fibre=np.array([str(np.int(np.float(fib))) for fib in fibre]) CIVsel='CIV_selected.txt' if os.path.exists(CIVsel) and os.path.isfile(CIVsel): os.remove(CIVsel) #--------------------------------------------------------------------- fn = SDSS_info_dir + CIVsel f = open(fn, "w") f.write("#plate\tMJD\tfiber\n") f.close() #--------------------------------------------------------------------- redshift_info='HewettWild2010redshift.txt' zinfo=np.loadtxt(SDSS_info_dir+redshift_info,dtype='str',skiprows=20) plz=np.array([ np.int(zinfo[:,8][i]) for i in range(len(zinfo[:,8])) ]) mjdz=np.array([ np.int(zinfo[:,9][i]) for i in range(len(zinfo[:,9])) ]) fibz=np.array([ np.int(zinfo[:,10][i]) for i in range(len(zinfo[:,10])) ]) z=np.array([ np.float(zinfo[:,3][i]) for i in range(len(zinfo[:,3])) ]) #---------------------------------------------------------------------- if CATALOG=='BOSSDR12': redshift_cut=1.7 # Minimum redshift to guarantee SiIV+OIV]1400 coverage. CIVobjs='CIV_selectedBOSS.txt' pyfits_hdu = pyfits.open(SDSS_info_dir+'DR12Q.fits') # Full SDSSDR12 QUASAR CATALOG # Complete description and furter information in #http://www.sdss.org/dr12/algorithms/boss-dr12-quasar-catalog/ QDR12= pyfits_hdu[1].data #extracting the data #Selecting redshift between 1.67 to 2.4 to guarantee rest-frame spectral coverage between # ~1350 to ~3080AA to cover from SiOIV to MgII. Spectral obs-frame coverage of BOSS 3600 to 10500AA zup=2.3 zlow=1.7 wherelow=QDR12['Z_VI']>zlow whereup=QDR12['Z_VI']<zup np.savetxt(SDSS_info_dir+CIVobjs,np.transpose([QDR12['PLATE'][whereup*wherelow],QDR12['MJD'][whereup*wherelow],QDR12['FIBERID'][whereup*wherelow],QDR12['Z_VI'][whereup*wherelow]]),fmt='%10i %10i %10i %10.3f', header='plate MJD fiber redshift') #Selecting redshift between 1.67 to 2.4 to guarantee rest-frame spectral coverage between # ~1350 to ~3080AA to cover from SiOIV to MgII. Spectral obs-frame coverage of BOSS 3600 to 10500AA SDSS_spec_root='http://data.sdss3.org/sas/dr12/boss/spectro/redux/v5_7_0/spectra/' # DR12 BOSS savespec='../spec/BOSS/' #where to save the downloaded spectra if not os.path.exists(savespec): os.mkdir(savespec) plate, MJD, fibre, redshifts=np.genfromtxt(SDSS_info_dir+CIVobjs,unpack=1,dtype='str',skip_header=1) plate=np.array([str(np.int(np.float(pl))) for pl in plate])[id0:id1] MJD=np.array([str(np.int(np.float(mj))) for mj in MJD])[id0:id1] fibre=np.array([str(np.int(np.float(fib))) for fib in fibre])[id0:id1] redshifts=np.array([np.float(red) for red in redshifts])[id0:id1] CIVsel='CIV_selected_BOSS.txt' if os.path.exists(CIVsel) and os.path.isfile(CIVsel): os.remove(CIVsel) #--------------------------------------------------------------------- fn = SDSS_info_dir + CIVsel f = open(fn, "w") f.write("#plate\tMJD\tfiber\n") f.close() #Dowloaded from http://mnras.oxfordjournals.org/content/suppl/2013/01/18/j.1365-2966.2010.16648.x.DC1/mnras0408-2302-SD1.txt # Col. 1: SDSS name # Col. 2: RA # Col. 3: DEC # Col. 4: z # Col. 5: z_e # Col. 6: FIRST Detection status # Col. 7: Alternate redshift # Col. 8: z estimation method code # Col. 9: Plate # Col. 10: MJD # Col. 11: fibre #--------------------------------------------------------------------- #for pl,mjd,fib in zip(plate,MJD,fibre): for index in range(len(plate)): pl=plate[index] mjd=MJD[index] fib=fibre[index] #------DOWNLOADING SDSS DR12 FILE WITH THE APPROPIATE STRUCTURE---# if len(pl)==3: pl1='0'+pl else: pl1=pl if len(fib)==2: fib1='00'+fib elif len(fib)==1: fib1='000'+fib elif len(fib)==3: fib1='0'+fib else: fib1=fib print pl1, mjd, fib1 #---Cross matching HW2010 redshifts with DR12 if CATALOG=='SDSSDR7': wp=(plz==np.int(pl1)) wf=(fibz==np.int(fib1)) wm=(mjdz==np.int(mjd)) try: redshift=z[wp*wf*wm][0] except: print 'object does not match with HW2010' continue #---Cross matching HW2010 redshifts with DR12 if CATALOG=='BOSSDR12': redshift=redshifts[index] print redshift #fileroot= 'spSpec' +'-'+ mjd + '-' + pl1 + '-' + fib1 SDSS DR7 fileroot= 'spec' +'-' + pl1 + '-' + mjd + '-' + fib1 #SDSS DR12. I am downloading SDSSDR7 from the DR12 webpage. That is why # the file structure is the same. filename= fileroot+ '.fits' sdss_file=savespec+filename if download==1: #download_site=SDSS_spec_root + pl1 + '/1d/' + filename #SDSS DR7 download_site=SDSS_spec_root + pl1 + '/'+filename urllib.urlretrieve(download_site, filename=sdss_file) try: data,error,xarr,hdr=sdss_reader.read_sdss(sdss_file) os.remove(sdss_file) except: os.remove(sdss_file) print download_site, 'could not be downloaded' continue #------DOWNLOADING SDSS DR12 FILE WITH THE APPROPIATE STRUCTURE---# if redshift> redshift_cut-0.00001: if download==1: #-----Correcting for extinction-----# RA=hdr['RA'];DEC=hdr['DEC'] xarr,data,error=extinction_correction(xarr,data,error,RA,DEC) #-----Correcting for extinction-----# xarr=xarr/(1.0+redshift) data,error=Flux_to_Luminosity(data,error, redshift,units=np.float(hdr['BUNIT'][0:5]) ) np.savetxt(savespec+fileroot+'.txt',np.transpose([xarr,data,error]),header='Wavelenght AA Flux Error in erg/(sAA)') if plot==1: pylab.figure() pylab.plot(xarr,data) f = open(fn, "a") f.write("\n".join(["\t".join([str(q) for q in [pl1, mjd, fib1]])]) ) #"\n".join(["\t".join([str(q) for q in p]) f.write("\n") f.close() #np.savetxt(np.transpose([xarr,data,error]),savespec+fileroot+'.txt') #table = pyfits_hdu[0].data #pyfits_hdu=pyfits.open(sdss_file) #hdr = pyfits_hdu[0]._header #x0=hdr['COEFF0'] #dx=hdr['COEFF1'] #table = pyfits_hdu[0].data #xarr=np.array([ 10**(x0+dx*i) for i in range(hdr['NAXIS1']) ]) #--------------------------------------------------------------------- # Total structure of the file: # SDSS_spec_root + plate[id] + '/' + 'spSpec' +'-'+ MJD[id] + '-' + plate[id] + '-' fibre + '.fit' # example: http://das.sdss.org/spectro/1d_26/0276/1d/spSpec-51909-0276-006.fit # #--------- SDSS_spec_root-------#plate#----------#MJD-plate-fiber #--------------------------------------------------------------------- #download_string=
UTF-8
Python
false
false
10,414
py
32
download_sdss_spec.py
1
0.589015
0.553006
0
327
30.834862
264
mjsphdev/my_expenses
3,092,376,493,772
c34ac04d01fb59a1e7d13a6144ac76ff9736e58e
36c4fd01715ee2b495f0540e4a91709e513f407c
/main/migrations/0002_billspayments_month.py
99e9d0b33cf45f59d817f8ad2bf9fc0a78755a33
[]
no_license
https://github.com/mjsphdev/my_expenses
41f72f8f1cb240d039a769814e2259798c83421a
4b2b7485a9eaa8c7460aba3ff7c34121e27c3346
refs/heads/main
2023-07-23T04:52:18.517589
2021-08-18T03:53:46
2021-08-18T03:53:46
396,293,312
0
0
null
false
2021-08-18T03:53:47
2021-08-15T09:21:23
2021-08-15T09:28:23
2021-08-18T03:53:46
6,709
0
0
0
CSS
false
false
# Generated by Django 3.2.5 on 2021-08-05 03:11 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('main', '0001_initial'), ] operations = [ migrations.AddField( model_name='billspayments', name='month', field=models.CharField(default='8,2021', max_length=50, unique=True), ), ]
UTF-8
Python
false
false
407
py
30
0002_billspayments_month.py
18
0.589681
0.525799
0
18
21.611111
81
TeraMatrix/unmp-m2m
1,425,929,154,651
53482ddfe33154db27edff41fbd3f8e8ad407965
384daeb81f238ef6a3b09e66a8f77ffab653a1d2
/htdocs/advanced_status_controller.py
d46a17131d0a9cff0aea6cc2f6e097adc59011ba
[]
no_license
https://github.com/TeraMatrix/unmp-m2m
a446fae084ffdfc9b1c210eac3a93cc5b2eeb23f
a962173a503e19d60dd56a67d0b7c12c9a55bf35
refs/heads/master
2021-05-01T10:46:46.721522
2014-06-04T23:47:19
2014-06-04T23:47:19
19,937,512
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python2.6 from datetime import datetime from datetime import timedelta from json import JSONEncoder from advanced_status_bll import AdvancedStatusBll from advanced_status_view import AdvancedStatusView # from common_controller import * # from nms_config import * # from odu_controller import * global bll_obj bll_obj = AdvancedStatusBll() def get_advanced_status_value(h): """ @param h: """ global html, bll_obj html = h device_type_dict = {'ap25': 'AP25', 'odu16': 'RM18', 'odu100': 'RM', 'idu4': 'IDU'} ip_address = html.var('ip_address') device_type_id = html.var('device_type_id') user_id = html.req.session["user_id"] selected_listing = "" if device_type_id == 'odu100' or device_type_id == 'odu16': selected_listing = "odu_listing.py" elif device_type_id == 'idu4': selected_listing = "idu_listing.py" elif device_type_id == 'ap25': selected_listing = "ap_listing.py" elif device_type_id == 'ccu': selected_listing = "ccu_listing.py" css_list = [ "css/style.css", "css/custom.css", "calendrical/calendrical.css", "css/demo_table_jui.css", "css/jquery-ui-1.8.4.custom.css"] javascript_list = ["js/lib/main/highcharts.js", "js/unmp/main/advanced_status.js", "calendrical/calendrical.js", "js/lib/main/jquery.dataTables.min.js"] html.new_header( '%s %s Historical Status' % (device_type_dict[device_type_id], ip_address.replace("'", "")), selected_listing, "", css_list, javascript_list) html_content = AdvancedStatusView.ap_set_variable( ip_address, device_type_id, user_id) html.write(str(html_content)) html.new_footer() def ap_total_status_name(h): """ @param h: """ global html, bll_obj html = h user_id = html.req.session["user_id"] device_type_id = html.var('device_type_id') ip_address = html.var('ip_address') result_dict = bll_obj.total_graph_name_display(device_type_id, user_id) controller_dict = AdvancedStatusView.graph_name_listing( result_dict, ip_address) html.req.content_type = 'application/json' html.req.write(str(JSONEncoder().encode(controller_dict))) def advanced_status_json_creation(h): """ @param h: """ global html, bll_obj html = h graph_id = html.var('graph_id') device_type_id = html.var('device_type_id') ip_address = html.var('ip_address') user_id = html.req.session["user_id"] controller_dict = bll_obj.advanced_graph_json( graph_id, device_type_id, user_id, ip_address) h.req.content_type = 'application/json' h.req.write(str(JSONEncoder().encode(controller_dict))) def advanced_status_update_date_time(h): """ @param h: """ global html html = h try: now = datetime.now() end_date = now.strftime("%d/%m/%Y") end_time = now.strftime("%H:%M") output_dict = {'success': 0, 'end_date': end_date, 'end_time': end_time} except Exception as e: output_dict = {'success': 1, 'output': str(e[-1])} finally: html.req.content_type = 'application/json' html.req.write(str(JSONEncoder().encode(output_dict))) def advanced_status_creation(h): """ @param h: """ global html, bll_obj html = h graph_type = html.var('graph_type') table_name = html.var('table_name') column_value = html.var('field') cal_type = html.var('calType') interface_value = html.var('tab') graph_type = html.var('type') start_date = html.var('start_date') start_time = html.var('start_time') end_date = html.var('end_date') end_time = html.var('end_time') flag = html.var('flag') ip_address = html.var('ip_address') update_field = html.var('update') start = html.var('start') limit = html.var('limit') start_date = datetime.strptime( start_date + ' ' + start_time, "%d/%m/%Y %H:%M") end_date = datetime.strptime(end_date + ' ' + end_time, "%d/%m/%Y %H:%M") column_name = column_value.split(",") table_name = table_name.split(",") user_id = html.req.session["user_id"] if update_field == '' or update_field == None: update_field_name = '' else: update_field_name = update_field controller_dict = bll_obj.advanced_graph_data( 'graph', user_id, table_name[0], table_name[1], table_name[-2], table_name[-1], start, limit, flag, start_date, end_date, ip_address, graph_type, update_field_name, interface_value, cal_type, column_name) html.req.content_type = 'application/json' html.req.write(str(JSONEncoder().encode(controller_dict))) def status_data_table_creation(h): """ @param h: """ global html, bll_obj html = h result1 = '' ip_address = html.var('ip_address') # take ip_address from js side start_date = html.var('start_date') start_time = html.var('start_time') end_date = html.var('end_date') end_time = html.var('end_time') device_type = html.var('device_type') graph_id = html.var('graph_id') start_date = datetime.strptime( start_date + ' ' + start_time, "%d/%m/%Y %H:%M") end_date = datetime.strptime(end_date + ' ' + end_time, "%d/%m/%Y %H:%M") user_id = html.req.session["user_id"] controller_dict = bll_obj.ap_data_table( user_id, ip_address, start_date, end_date, graph_id, device_type) html.req.content_type = 'application/json' html.req.write(str(JSONEncoder().encode(controller_dict))) def advanced_status_excel_creating(h): """ @param h: """ global html, bll_obj html = h result1 = '' device_type = html.var('device_type_id') ip_address = html.var('ip_address') # take ip_address from js side start_date = html.var('start_date') start_time = html.var('start_time') end_date = html.var('end_date') end_time = html.var('end_time') report_type = html.var("type") graph_id = html.var("graph_id") select_option = html.var("select_option") if int(select_option) > 0: end_date = str(datetime.date(datetime.now())) start_time = '00:00' end_time = '23:59' if int(select_option) == 1: start_date = str(datetime.date(datetime.now())) elif int(select_option) == 2: start_date = str( datetime.date(datetime.now()) + timedelta(days=-7)) elif int(select_option) == 3: start_date = str( datetime.date(datetime.now()) + timedelta(days=-15)) elif int(select_option) == 4: start_date = str( datetime.date(datetime.now()) + timedelta(days=-30)) start_date = datetime.strptime( start_date + ' ' + start_time, "%Y-%m-%d %H:%M") end_date = datetime.strptime( end_date + ' ' + end_time, "%Y-%m-%d %H:%M") else: start_date = datetime.strptime( start_date + ' ' + start_time, "%d/%m/%Y %H:%M") end_date = datetime.strptime( end_date + ' ' + end_time, "%d/%m/%Y %H:%M") user_id = html.req.session["user_id"] controller_dict = bll_obj.advaeced_excel_report( report_type, device_type, user_id, ip_address, start_date, end_date, graph_id, select_option) # html.req.content_type = 'application/json' # html.req.write(str(JSONEncoder().encode(controller_dict))) html.write(str(controller_dict)) # def page_tip_advanced_status(h): # global html # html = h # import defaults # f = open(defaults.web_dir + "/htdocs/locale/page_tip_advanced_status.html", "r") # html_view = f.read() # f.close() # html.write(str(html_view))
UTF-8
Python
false
false
7,833
py
167
advanced_status_controller.py
110
0.594281
0.587642
0
230
33.056522
115
ParthasarathySubburaj/Algorithms-Data-Structures-specilization
8,632,884,310,488
226aeacde2239209028d4eca85f14c68864ac04e
45f843360039a162d6b7daad963bc0accdbcb2c3
/Algorithmic_Tool_Box/week6_dynamic_programming2/knapsack.py
9b557113111f7bd3d99c2f1a240b0baee7554715
[]
no_license
https://github.com/ParthasarathySubburaj/Algorithms-Data-Structures-specilization
b41c4fd07d34e56f2d98f28867eeed23761da7a4
78794fbb3c2b907ea91a188d44d3424ea77395e5
refs/heads/master
2022-04-12T19:35:11.173645
2020-03-15T15:26:30
2020-03-15T15:26:30
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Uses python3 import sys import numpy as np def optimal_weight(W, w): # write your code here matrix = np.full((W+1, len(w)+1),0, dtype=int) for i in range(1, len(w)+1): for weight in range(1, W+1): matrix[weight, i] = matrix[weight, i-1] if w[i-1] <= weight: value = matrix[weight - w[i-1], i-1] + w[i-1] if value > matrix[weight, i]: matrix[weight, i] = value return matrix[W, len(w)] if __name__ == '__main__': input = sys.stdin.read() W, n, *w = list(map(int, input.split())) print(optimal_weight(W, w))
UTF-8
Python
false
false
622
py
24
knapsack.py
23
0.517685
0.496785
0
20
30.1
61
prerna-khanna/torchtuples
283,467,865,834
58dcdb4744f9f2e26ac9328557b93bcd7ba8e794
fd7803084ffa8258244605c42140f85fec6d5d2a
/torchtuples/testing.py
c04cee2ad48344f96912ebb3f5134ace3585b4f9
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
https://github.com/prerna-khanna/torchtuples
c1ab42f30f2b120fec840165f0b59119e7f7d41c
1e02f1f8ed4f4758796e3d77573af321a7e5ca09
refs/heads/master
2020-06-28T23:45:39.255464
2019-08-03T13:03:29
2019-08-03T13:03:29
200,374,627
0
0
BSD-2-Clause
true
2019-08-03T12:45:30
2019-08-03T12:45:29
2019-07-16T10:47:45
2019-07-15T14:26:50
420
0
0
0
null
false
false
import numpy as np import torch from torchtuples.tupletree import TupleTree, tuplefy def assert_tupletree_equal(a, b, check_dtypes=True): assert type(a) == type(b) == TupleTree, 'Not TupleTree' assert a.numerate() == b.numerate(), 'Not same structure' assert a.types() == b.types(), 'Not same types' if check_dtypes: ad, bd = (tuplefy(a, b) .apply(lambda x: x.dtype if hasattr(x, 'dtype') else 'not_tensor')) assert ad == bd, 'Not same dtype' for aa, bb in zip(a.flatten(), b.flatten()): if hasattr(aa, 'dtype'): assert (aa == bb).all(), 'Not equal values' else: assert aa == bb, 'Not equal values'
UTF-8
Python
false
false
696
py
20
testing.py
14
0.591954
0.591954
0
19
35.684211
85
cambridge-cares/TheWorldAvatar
15,238,543,982,211
50958c249efc596666e92ba575a073f7b0bd042b
65c84146c9f3871f54fe51ab437bd14927ade706
/Agents/AirQualityAgent/agent/dataretrieval/readings.py
01dc52d7df55298bec0c16644cdf777bc1c94123
[ "MIT" ]
permissive
https://github.com/cambridge-cares/TheWorldAvatar
3a227c629acb10b9be7effe58696aef48b27dd21
01a7d108754e0249d8d3b5b75708345c399c1ee9
refs/heads/main
2023-08-21T11:05:09.147655
2023-08-18T07:46:57
2023-08-18T07:46:57
345,141,689
57
26
MIT
false
2023-09-13T14:16:57
2021-03-06T16:33:07
2023-09-13T10:16:00
2023-09-13T14:16:57
433,486
48
19
149
Java
false
false
################################################ # Authors: Markus Hofmeister (mh807@cam.ac.uk) # # Date: 05 Apr 2022 # ################################################ # The purpose of this module is to provide functions to retrieve # readings data from KG import re import datetime as dt import pandas as pd from agent.kgutils import kgclient from agent.kgutils.kgclient import KGClient from agent.kgutils.timeseries import TSClient from agent.kgutils.querytemplates import * from agent.errorhandling.exceptions import InvalidInput, TSException from agent.utils.stack_configs import DB_PASSWORD, DB_URL, DB_USER, QUERY_ENDPOINT, UPDATE_ENDPOINT from agent.utils.readings_mapping import TIME_FORMAT # Initialise logger from py4jps import agentlogging logger = agentlogging.get_logger("prod") def get_instantiated_observations(stations: list = None, query_endpoint: str = QUERY_ENDPOINT, update_endpoint: str = UPDATE_ENDPOINT): """ Returns DataFrame of (all) instantiated observations in KG (data for all stations is returned if no stations list is provided) Arguments: stations - list of ReportingStation IRIs (WITHOUT trailing '<' and '>' for which to retrieve data) Returns DataFrame with columns: ['station', 'stationID', 'quantityType', 'dataIRI', 'comment', 'reading'] station: station IRI stationID: created unique UK Air station ID for that station quantityType: IRI of OntoEMS quantity, e.g. https://www.theworldavatar.com/kg/ontoems/OzoneConcentration dataIRI: IRI of quantity instance to which time series is attached comment: label of measured pollutant reading: shorthand of OntoEMS quantity, e.g. OzoneConcentration """ # Construct KG client and execute query query_string = instantiated_observations(station_iris=stations) kg_client = KGClient(query_endpoint, update_endpoint) results = kg_client.performQuery(query=query_string) # Parse results into DataFrame df = pd.DataFrame(columns=['station', 'stationID', 'quantityType', 'dataIRI', 'comment'], data=results) # Add column with shorthand of quantity type df['reading'] = df['quantityType'].apply(lambda x: x.split('/')[-1]) return df def get_instantiated_observation_timeseries(stations: list = None, query_endpoint: str = QUERY_ENDPOINT, update_endpoint: str = UPDATE_ENDPOINT): """ Returns DataFrame of (all) instantiated observation timeseries in KG (data for all stations is returned if no stations list is provided) Arguments: stations - list of ReportingStation IRIs (WITHOUT trailing '<' and '>' for which to retrieve data) Returns DataFrame with columns: ['station', 'stationID', 'quantityType', 'dataIRI', 'comment', 'tsIRI', 'unit', 'reading'] station: station IRI stationID: created unique UK Air station ID for that station quantityType: IRI of OntoEMS quantity, e.g. https://www.theworldavatar.com/kg/ontoems/OzoneConcentration dataIRI: IRI of quantity instance to which time series is attached comment: label of measured pollutant tsIRI: IRI of time series instance unit - unit for time series, e.g. mg/m3 reading: shorthand of OntoEMS quantity, e.g. OzoneConcentration """ # Construct KG client and execute query query_string = instantiated_observation_timeseries(stations) kg_client = KGClient(query_endpoint, update_endpoint) results = kg_client.performQuery(query=query_string) # Parse results into DataFrame df = pd.DataFrame(columns=['station', 'stationID', 'quantityType', 'dataIRI', 'comment', 'tsIRI', 'unit'], data=results) # Add column with shorthand of quantity type df['reading'] = df['quantityType'].apply(lambda x: x.split('/')[-1]) return df def get_time_series_data(station_iris: list = None, observation_types: list = None, tmin: str = None, tmax: str = None, query_endpoint: str = QUERY_ENDPOINT, update_endpoint: str = UPDATE_ENDPOINT): """ Retrieve time series data for provided observation types and stations from KG Arguments station_iris - list of station IRIs for which to retrieve time series data (all stations if None) observation_types - list of observation types (e.g., PM10Concentration) for which to retrieve data (all if None) tmin - oldest time step for which to retrieve data tmax - latest time step for which to retrieve data Returns List of (Java) time series objects List of dictionaries with ts names (i.e. [{dataIRI: name}, ...]) List of dictionaries with ts units (i.e. [{dataIRI: unit}, ...]) """ def _validate_time_format(time_string): rec = re.compile(r'\d{4}-\d{1,2}-\d{1,2}T\d{1,2}:\d{1,2}:\d{1,2}Z') if bool(rec.match(time_string)): return time_string else: t = None # Adding potentially missing Z at end of time string rec = re.compile(r'Z$') if not bool(rec.match(time_string)): time_string += 'Z' logger.info('Provided time string assumed in UTC.') rec = re.compile(r'\d{4}-\d{1,2}-\d{1,2}T\d{1,2}:\d{1,2}Z') if bool(rec.match(time_string)): t = dt.datetime.strptime(time_string, '%Y-%m-%dT%H:%MZ') else: rec = re.compile(r'\d{4}-\d{1,2}-\d{1,2}T\d{1,2}Z') if bool(rec.match(time_string)): t = dt.datetime.strptime(time_string, '%Y-%m-%dT%HZ') else: rec = re.compile(r'\d{4}-\d{1,2}-\d{1,2}Z') if bool(rec.match(time_string)): t = dt.datetime.strptime(time_string, '%Y-%m-%dZ') # Return properly formatted time string if format could be derived return dt.datetime.strftime(t, TIME_FORMAT) # Validate format of provided tmin and tmax if tmin: try: tmin = _validate_time_format(tmin) except Exception as ex: logger.error(f'Provided format of tmin could not be derived. Expected format: {TIME_FORMAT}') raise InvalidInput(f'Provided format of tmin could not be derived. Expected format: {TIME_FORMAT}') from ex if tmax: try: tmax = _validate_time_format(tmax) except Exception as ex: logger.error(f'Provided format of tmax could not be derived. Expected format: {TIME_FORMAT}') raise InvalidInput(f'Provided format of tmax could not be derived. Expected format: {TIME_FORMAT}') from ex # Create DataFrame from instantiated observation time series # ['station', 'stationID', 'quantityType', 'dataIRI', 'comment', 'tsIRI', 'unit', 'reading'] df = get_instantiated_observation_timeseries(station_iris, query_endpoint, update_endpoint) # Get relevant subset of available time series data if observation_types: observation_types = [str(i).lower() for i in observation_types] df = df[df['reading'].str.lower().isin(observation_types)] # Get list of lists of dataIRIs to retrieve dataIRIs_list = [list(df.loc[df['tsIRI'] == tsIRI, 'dataIRI']) for tsIRI in df['tsIRI'].unique()] # Initialise return list ts_data = [] ts_names = [] ts_units = [] # Initialise KG and TimeSeries Clients kg_client = KGClient(query_endpoint, update_endpoint) ts_client = TSClient(kg_client=kg_client, rdb_url=DB_URL, rdb_user=DB_USER, rdb_password=DB_PASSWORD) for dataIRIs in dataIRIs_list: # Get time series within desired bounds try: with ts_client.connect() as conn: ts_data.append(ts_client.tsclient.getTimeSeriesWithinBounds(dataIRIs, tmin, tmax, conn)) except Exception as ex: logger.error(f'Error while retrieving time series data for dataIRIs: {dataIRIs}') raise TSException(f'Error while retrieving time series data for dataIRIs: {dataIRIs}') from ex # Get time series names and units (as dict with dataIRIs as key) df_sub = df.loc[df['dataIRI'].isin(dataIRIs), ['dataIRI','unit', 'comment']] ts_names.append(dict(zip(df_sub['dataIRI'], df_sub['comment'].str.capitalize()))) ts_units.append(dict(zip(df_sub['dataIRI'], df_sub['unit']))) return ts_data, ts_names, ts_units
UTF-8
Python
false
false
9,087
py
9,300
readings.py
4,926
0.60394
0.598767
0
193
46.082902
119
HugheHuang/core-python-applications-programming-3rd-edition-
3,779,571,222,707
f3052ebb556f12a9468c7834e90c7fc594231e2a
749ac3de7856dba11693181061fe9d9cc1c5d840
/CH2/tsUclnt.py
35f4e49a5c7b47a8e452f6bd029b826049de373c
[]
no_license
https://github.com/HugheHuang/core-python-applications-programming-3rd-edition-
08a238901b948f3335543dd72741b927b35b49f1
2b54fbcbf01d9f36d2e1e18cc40d7be3f13a7557
refs/heads/master
2021-01-20T02:53:14.628435
2017-04-26T09:19:47
2017-04-26T09:19:47
89,461,688
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ __title__ = tsUclnt.py __author__ = Hughe __time__ = 2017-04-22 22:36 """ from socket import * HOST='localhost' PORT=21567 BUFSIZ=1024 ADDR=(HOST,PORT) udpClnSock=socket(AF_INET,SOCK_DGRAM) while True: data=raw_input('> ') if not data: break udpClnSock.sendto(data,ADDR) data,ADDR=udpClnSock.recvfrom(BUFSIZ) if not data: break print data udpClnSock.close() if __name__ == '__main__': pass
UTF-8
Python
false
false
520
py
22
tsUclnt.py
19
0.576923
0.534615
0
30
15.4
41
mavrick202/troposphere
9,955,734,223,007
a207d72df7a67b9585a3b2c8d11a99d4b4123e0d
8ee47a223b9e245fc6744802278d42b8a7062716
/troposphere/dlm.py
a3a95083b810b5138e2ff2f04b7d1b5dc8f36701
[ "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
https://github.com/mavrick202/troposphere
14693be8920b3d4ac6e7c098c1f6f1674485e7c8
4eb213162cd8018fe0f82dc9597cc306ade49b04
refs/heads/master
2020-11-25T10:42:36.993519
2019-12-08T22:32:03
2019-12-08T22:32:03
228,624,641
1
8
BSD-2-Clause
true
2019-12-17T13:38:51
2019-12-17T13:38:50
2019-12-17T08:04:10
2019-12-11T15:17:58
2,299
0
0
0
null
false
false
# Copyright (c) 2015, Mark Peek <mark@peek.org> # All rights reserved. # # See LICENSE file for full license. from . import AWSObject, AWSProperty, Tags from .validators import (integer, boolean) VALID_STATES = ('ENABLED', 'DISABLED') VALID_RESOURCE_TYPES = ('VOLUME') VALID_INTERVALS = (2, 3, 4, 6, 8, 12, 24) VALID_INTERVAL_UNITS = ('HOURS') def validate_interval(interval): """Interval validation rule.""" if interval not in VALID_INTERVALS: raise ValueError("Interval must be one of : %s" % ", ".join(VALID_INTERVALS)) return interval def validate_interval_unit(interval_unit): """Interval unit validation rule.""" if interval_unit not in VALID_INTERVAL_UNITS: raise ValueError("Interval unit must be one of : %s" % ", ".join(VALID_INTERVAL_UNITS)) return interval_unit def validate_state(state): """State validation rule.""" if state not in VALID_STATES: raise ValueError("State must be one of : %s" % ", ".join(VALID_STATES)) return state class Parameters(AWSProperty): props = { 'ExcludeBootVolume': (boolean, False), } class CreateRule(AWSProperty): props = { 'Interval': (validate_interval, True), 'IntervalUnit': (validate_interval_unit, True), 'Times': ([basestring], False), } class RetainRule(AWSProperty): props = { 'Count': (integer, True), } class Schedule(AWSProperty): props = { 'CopyTags': (boolean, False), 'CreateRule': (CreateRule, False), 'Name': (basestring, False), 'RetainRule': (RetainRule, False), 'TagsToAdd': ((Tags, list), False), } class PolicyDetails(AWSProperty): props = { 'Parameters': (Parameters, False), 'PolicyType': (basestring, False), 'ResourceTypes': ([basestring], False), 'Schedules': ([Schedule], False), 'TargetTags': ((Tags, list), False), } class LifecyclePolicy(AWSObject): resource_type = "AWS::DLM::LifecyclePolicy" props = { 'Description': (basestring, False), 'ExecutionRoleArn': (basestring, False), 'PolicyDetails': (PolicyDetails, False), 'State': (validate_state, False), }
UTF-8
Python
false
false
2,296
py
220
dlm.py
199
0.601916
0.596254
0
90
24.511111
62
WooWan/Koala-Algorithm
17,016,660,458,356
d142ca42e8225e318d7c743ebc4a76378fbd95bd
44335d7e1b2d40298ecac50a4192adfe7a518552
/study/week2/team1/BOJ_2156_우창완.py
ed1356b0e454c1c0a35c7f9bde36a7f88d0014c9
[]
no_license
https://github.com/WooWan/Koala-Algorithm
d9ffb96cf68b32eb976f28a02a61014cd691ac97
65d8c38e80edb56a976824d28f5afd4cc9cbff0b
refs/heads/master
2023-04-21T05:02:17.853995
2021-05-26T05:33:25
2021-05-26T05:33:25
345,525,519
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import sys n= int(input()) arr=[0]*(n+3) dp=[-1]*(n+3) for i in range(n): arr[i]=int(sys.stdin.readline()) dp[0]=arr[0] dp[1]=arr[1]+arr[0] dp[2]= max(arr[0]+arr[1],arr[0]+arr[2],arr[1]+arr[2]) for i in range(3,n): dp[i]=max(dp[i-1], arr[i]+dp[i-2], arr[i]+arr[i-1]+dp[i-3]) print(dp[n-1])
UTF-8
Python
false
false
295
py
62
BOJ_2156_우창완.py
62
0.559322
0.484746
0
15
18.666667
60
s0217391/DifferentProjects
18,004,502,927,859
7256fec4de81f1042fa3535723bb5a6a1517d079
bc167f434158921bcf2c678155c5cdfec1c9b0c9
/PI_code/simulator/behaviourGeneration/group/behav150.py
eef84581a8f638db5a280805c63202488c2e68a2
[]
no_license
https://github.com/s0217391/DifferentProjects
6450efc89c64ecd21b86c705737e89e5c69433a6
7f4da153660817b6cbf72d2e823aa29c0c2f95a9
refs/heads/master
2021-01-17T02:58:46.219240
2015-05-26T22:45:46
2015-05-26T22:45:46
34,995,164
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python import sys def compute(prey, otherHunter, dist): temp0 = otherHunter[0] * prey[0] temp1 = min( dist , prey[0] ) temp1 = otherHunter[0] - otherHunter[1] temp1 = prey[1] - otherHunter[0] return [ otherHunter[0] , dist ]
UTF-8
Python
false
false
242
py
969
behav150.py
924
0.669421
0.619835
0
9
25.888889
40
huhaiqng/YWSystemB
16,217,796,520,125
15721fa6cd33abd41f5f84af091b2425cd1c948b
23f754a39b996ad3e50e539ac1ea88217545df8b
/app/models/project_rabbitmq.py
bf5dc53a46fe71f5976f087c5dcfdae106856856
[]
no_license
https://github.com/huhaiqng/YWSystemB
576b0310cfe49086eaafb99eaa83042621d6fab5
cf601fe4b97e96187e66a084a7e43a0cd259e92f
refs/heads/master
2022-12-11T06:19:46.025055
2021-04-27T07:48:46
2021-04-27T07:48:46
245,122,835
0
0
null
false
2022-12-08T11:57:56
2020-03-05T09:40:26
2021-04-27T07:49:06
2022-12-08T11:57:54
1,386
0
0
11
Python
false
false
from django.db import models from django.utils import timezone from .instance_rabbitmq import RabbitmqInstance from .project import Project # Rabbitmq class ProjectRabbitmq(models.Model): instance = models.ForeignKey(RabbitmqInstance, on_delete=models.PROTECT, blank=True) env = models.CharField('环境', max_length=200) project = models.ForeignKey(Project, on_delete=models.PROTECT) username = models.CharField('用户名', max_length=200, blank=True) password = models.CharField('密码', max_length=200, blank=True) created = models.DateTimeField('创建时间', default=timezone.now)
UTF-8
Python
false
false
615
py
136
project_rabbitmq.py
132
0.762226
0.747049
0
14
41.357143
88
mrjeffstevenson3/mmimproc
17,085,379,943,650
9839d30e1ad89a0874c8ee1ad93577d8adcb3f57
b83de7b1c7fa7cecd5cdc63554902f4b5746fceb
/mmimproc/qt1/spdft.py
e3e33b5ff05299570141fcabb26f871522af32a1
[]
no_license
https://github.com/mrjeffstevenson3/mmimproc
195c2d660e041c68ea9b9db524c444ee111291e0
1aed4b1ce0ef5606a702af02b341ce3291a86283
refs/heads/master
2021-11-27T12:21:59.356889
2021-09-15T20:06:11
2021-09-15T20:06:11
171,966,939
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
""" Python interface to spdft.m """ from StringIO import StringIO import matlab.engine from matlab import double as mdouble from mmimproc.utils import getnetworkdataroot, mmimproc_dir def fit(X, Y): """ :param X: multi dim :param Y: flip angle :return: """ Xm = mdouble(X.tolist()) Ym = mdouble(Y.tolist()) matlabOut = StringIO() eng = matlab.engine.start_matlab() eng.addpath(eng.genpath(str(mmimproc_dir))) dYm = [] options = {'Xc': mdouble([0, float(X.max())])} output = eng.spdft(Xm, Ym, dYm, options, nargout=1, stdout=matlabOut) eng.quit() print('stdout: {}'.format(matlabOut.getvalue())) print('output: {}'.format(output)) print('Done') return output #/home/toddr/Software/matlab2017b/bin/matlab
UTF-8
Python
false
false
788
py
461
spdft.py
264
0.639594
0.63198
0
31
24.387097
73
JetBrains/intellij-community
2,851,858,319,832
aaed8a7f5bc98d0a9128be52cc5161529a706a20
eb9f655206c43c12b497c667ba56a0d358b6bc3a
/python/testData/inspections/PyTypeCheckerInspection/NewTypeAsParameter.py
6f4d22f037cbd040e55262dc3170ea7dd6e22ff6
[ "Apache-2.0" ]
permissive
https://github.com/JetBrains/intellij-community
2ed226e200ecc17c037dcddd4a006de56cd43941
05dbd4575d01a213f3f4d69aa4968473f2536142
refs/heads/master
2023-09-03T17:06:37.560889
2023-09-03T11:51:00
2023-09-03T12:12:27
2,489,216
16,288
6,635
Apache-2.0
false
2023-09-12T07:41:58
2011-09-30T13:33:05
2023-09-12T03:37:30
2023-09-12T06:46:46
4,523,919
15,754
4,972
237
null
false
false
from typing import NewType UserId = NewType("UserId", int) def get_user(user: UserId) -> str: pass get_user(UserId(5)) get_user(<warning descr="Expected type 'UserId', got 'LiteralString' instead">"John"</warning>) get_user(<warning descr="Expected type 'UserId', got 'int' instead">4</warning>)
UTF-8
Python
false
false
303
py
127,182
NewTypeAsParameter.py
70,394
0.709571
0.70297
0
11
26.636364
95
jameskschull/phylo
12,987,981,137,939
d6ca812f1833f5d49528020bd5529c14b0f899a3
c85f3f1cadebefde31c7efa4a76c545a2ab65ce5
/scripts/compare_to_query.py
fc26223e6aab01af52701621e48552bb005d8b11
[]
no_license
https://github.com/jameskschull/phylo
4e0e33ab893cab530da0483a39f1dd48801333fe
f2e6f5a3a85dfcecbcdfafad34aed419ba073602
refs/heads/master
2021-07-21T18:56:55.615258
2018-10-01T03:10:39
2018-10-01T03:10:39
132,056,354
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Given a file containing query insertions/deletions (hg38 reference), compares # to provided query and writes results to file. # There are two cases: # 1. infile contains mm10 or canFam3 deletions. In this case, we search canFam3 or mm10 # (respectively), writing to the outfile any loci that are not deleted in the other query. # This supports the HM/HD hypothesis. # Infile contains hg38 coordinates of deletion as well as chainID mapping to 2nd query # 2. infile contains mm10 or canFam3 insertions. In this case, we use the hg38 coordinates # of each locus to get the chain for canFam3/mm10 respectively. We then find # Infile contains hg38 coordinates of insertion as well as the chainID mapping to 2nd query # python compare_to_query.py ../sorted/mm10/hg38plus_mm10minus.bed.canFam3.pickled ../chains/canFam3/hg38.canFam3.all.chain.pickled ../sorted/evidence/hg38plus_mm10minus_canFam3plus.bed 'deletion' # python compare_to_query.py ../sorted/loxAfr3/hg38.canFam3.dels.mm10.ins.txt.loxAfr3ID ../chains/loxAfr3/hg38.loxAfr3.all.chain import sys import time import pickle # import edlib from Bio import SeqIO from collections import defaultdict MARGIN = 5 UPPER_THRESHOLD = 0.8 LOWER_THRESHOLD = 0.7 # for filtering outgroup def search_for_q2_deletions(sites_dict, chain_dict, outfile): print "Searching for insertions in query2." print "Writing results to {}.".format(outfile) out = open(outfile, 'w') chain_ids = sites_dict.keys() found_evidence = set([]) # For each chain mapped to in the querydels file for chain_id in chain_ids: chain = chain_dict.get(chain_id, None) if chain == None: print 'Chain not found!' continue else: print "Chain {} found.".format(chain_id) chain_len = len(chain) ref_chain_start = int(chain[0][5]) # For each querydel that maps to that chain for site in sites_dict[chain_id]: ref_insertion_start = int(site[3]) ref_insertion_end = int(site[4]) ref_curr_coord = ref_chain_start site_missing = True # Search chain for line in chain[1:]: print "Current reference coordinate: {}".format(ref_curr_coord) gapless_block_size = int(line[0]) print "Gapless block size: {}".format(gapless_block_size) print "Current allowable range: {}-{} + \n".format(ref_curr_coord - MARGIN, ref_curr_coord + gapless_block_size + MARGIN) # print "Ref coord: {}, insertion start: {}, gapless_block_size: {}.".format(ref_curr_coord, ref_insertion_start, gapless_block_size) # If we have gone beyond the insertion, break if ref_curr_coord - MARGIN > ref_insertion_start: print "Gone past insertion start, breaking." break # If whole insertion is contained in a gapless block, site is not evidence if ref_curr_coord - MARGIN <= ref_insertion_start and ref_curr_coord + gapless_block_size + MARGIN >= ref_insertion_end: print "Insertion found in query 2." site_missing = False break # If on last line of chain, end loop if len(line) == 1: print "Last line of chain" continue query_gap_size = int(line[1]) ref_curr_coord += gapless_block_size + query_gap_size if site_missing == True: print "Insertion missing in query2: evidence found." found_evidence.add('\t'.join(site) + '\n') for evidence in found_evidence: out.write(evidence) return # For hg + q1 - q2 + case and filtering by outgroup def compare_to_q2_chain(sites_dict, chain_dict, outfile, mode): print "Searching for evidence, looking for {}s in second query.".format(mode) print "Writing results to {}.".format(outfile) out = open(outfile, 'w') chain_ids = sites_dict.keys() found_evidence = set([]) # For each chain mapped to in the querydels file for chain_id in chain_ids: chain = chain_dict.get(chain_id, None) if chain == None: print 'Chain not found!' continue else: print "Chain {} found.".format(chain_id) # Reference coordinate of chain start ref_chain_start = int(chain[0][5]) # For each site that maps to that chain for site in sites_dict[chain_id]: rangeOver = False ref_curr_coord = ref_chain_start ref_ins_start, ref_ins_end = int(site[3]), int(site[4]) # reference coords of insertion gapless_bp, gap_bp = 0, 0 # number of bp within insertion range that are gapless/gap ################ SEARCH CHAIN ################ for line in chain[1:]: # Edge case: last line of chain has only gapless block if len(line) < 3: break gapless_block_size = int(line[0]) query_gap_size = int(line[1]) # If moved past insertion, stop search if rangeOver == True: break ########## PROCESS GAPLESS BLOCK AND QUERY GAP ########## for i, block_size in enumerate([gapless_block_size, query_gap_size]): # Case 1: Insertion range starts within the block if ref_curr_coord + block_size > ref_ins_start and ref_curr_coord <= ref_ins_start: # i): only part of insertion range is contained within block if ref_curr_coord + block_size < ref_ins_end: if i == 0: gapless_bp += ref_curr_coord + block_size - ref_ins_start elif i == 1: gap_bp += ref_curr_coord + block_size - ref_ins_start # ii): whole insertion range is contained within block elif ref_curr_coord + block_size >= ref_ins_end: rangeOver = True if i == 0: gapless_bp += ref_ins_end - ref_ins_start elif i == 1: gap_bp += ref_ins_end - ref_ins_start # Case 2: We are already in the range of the insertion elif ref_curr_coord + block_size > ref_ins_start and ref_curr_coord > ref_ins_start: # i) only part of insertion range is contained within block if ref_curr_coord + block_size < ref_ins_end: if i == 0: gapless_bp += block_size elif i == 1: gap_bp += block_size # ii) rest of insertion range is contained within block: elif ref_curr_coord + block_size >= ref_ins_end: rangeOver = True if i == 0: gapless_bp += ref_ins_end - ref_curr_coord elif i == 1: gap_bp += ref_ins_end - ref_curr_coord if rangeOver == False: ref_curr_coord += block_size else: break ######################################################### if gapless_bp == 0 and gap_bp == 0: continue print "Gapless bp: {}, gap bp: {}. Total insertion size: {}.".format(gapless_bp, gap_bp, ref_ins_end-ref_ins_start) gapless_percentage = gapless_bp/float(gapless_bp + gap_bp) if gapless_percentage > UPPER_THRESHOLD and mode=='insertion': print "Insertion found! Gapless percentage: {}".format(gapless_percentage) found_evidence.add('\t'.join(site) + '\n') elif gapless_percentage < LOWER_THRESHOLD and mode=='deletion': print "Deletion found! Gapless percentage: {}".format(gapless_percentage) found_evidence.add('\t'.join(site) + '\n') for evidence in found_evidence: out.write(evidence) return # 1. Use the query (mouse) coordinates of the insertion to get the mouse sequence # 2. Use the reference (human) coordinates (where start and end are actually the same) to get the dog chain and find the corresponding dog coordinates # 3. Use those coordinates to get the dog sequence # 4. Find edit distance between dog/mouse sequence def double_insertion(sites_dict, chain_dict, outfile): out = open(outfile, 'w') print "Writing evidence to {}/.".format(outfile) query1_whole_genome = SeqIO.to_dict(SeqIO.parse('/cluster/u/jschull/phylo/wholegenomes/fasta/mm10.fa', 'fasta')) print "Loaded query1 genome." query2_whole_genome = SeqIO.to_dict(SeqIO.parse('/cluster/u/jschull/phylo/wholegenomes/fasta/canFam3.fa', 'fasta')) print "Loaded query2 genome." # For each chain for chain_id in sites_dict.keys(): chain = chain_dict.get(chain_id, None) if chain is None: print "Chain not found!" continue q2_chr = chain[0][7] q2_strand = chain[0][9] q2_chain_start = int(chain[0][10]) ref_chain_start = int(chain[0][5]) # For each insertion that maps to that chain for site in sites_dict[chain_id]: print '\t'.join(site) insertion_size = int(site[1]) # GET Q1 SEQUENCE q1_chr = site[5] q1_strand = site[6] q1_start = int(site[7]) q1_end = int(site[8]) q1_seq = query1_whole_genome[q1_chr][q1_start:q1_end] print "Mouse coordinates (from site): {}: {}-{} (strand: {})".format(q1_chr, q1_start, q1_end, q1_strand) # GET Q2 SEQUENCE ref_position = int(site[3]) # since this is an insertion, ref start and end are the same print "Human insertion start position: {}".format(ref_position) ref_left = ref_position - ref_chain_start # bp to ref start point q2_curr = q2_chain_start for line in chain[1:]: #if on last chain line, break if len(line) < 3: break gapless_block_size = int(line[0]) ref_block_size = int(line[1]) query_block_size = int(line[2]) if ref_left - gapless_block_size < 0: q2_start = q2_curr + ref_left break ref_left -= gapless_block_size q2_curr += gapless_block_size if ref_left - ref_block_size < 0: q2_start = q2_curr + ref_left break ref_left -= ref_block_size q2_curr += query_block_size q2_seq = query2_whole_genome[q2_chr][q2_start:q2_start + insertion_size] # Account for strand if q2_strand == '-': q2_seq = q2_seq.reverse_complement() if q1_strand == '-': q1_seq = q1_seq.reverse_complement() q1_seq, q2_seq = str(q1_seq), str(q2_seq) print "Mouse sequence: {}".format(q1_seq) print "Dog sequence: {}".format(q2_seq) # Calculate similarity len_longer_seq = max(len(q1_seq), len(q2_seq)) # similarity = (len_longer_seq - int(edlib.align(q1_seq, q2_seq)["editDistance"]))/float(len_longer_seq) # compare to threshold, write if they're similar enough if similarity > THRESHOLD: print "Sites have similarity of {}: evidence found!".format(similarity) out.write('\t'.join(site) + '\n') else: print "Sites have similarity of {}: insufficient.".format(similarity) return # returns dictionary with (chainID : list of sites) items def get_sites_dict(sitesfile, start, end): print "Loading sites." sites_dict = defaultdict(list) with open(sitesfile, 'r') as f: for lineNum, line in enumerate(f.readlines(), 1): if lineNum < start: continue if lineNum > end: break line = line.split() sites_dict[line[len(line) - 1]].append(line) print "Sites loaded. \n" return sites_dict # returns dictionary of (chainID : chain) items def get_chain_dict(chainfile, sites_dict): print "Loading chains." begin_chainload = time.time() # strings chainIDs = sites_dict.keys() # print "Num chain IDs: {}".format(len(chainIDs)) maxID = str(max([int(chainID) for chainID in chainIDs])) # print "Max ID to load: {}.".format(maxID) minID = str(min([int(chainID) for chainID in chainIDs])) # print "Min ID to load: {}.".format(minID) foundFirstChain = False loadedAllChains = False chain_dict = defaultdict(list) with open(chainfile, 'r') as f: # Initialize 'current chain' curr_chain_id = -1 curr_chain = [] num_chains = 0 for line in f.readlines(): line = [word.strip() for word in line.split()] # ignore comments and blank line at end of each chain if len(line) == 0 or line[0].startswith('#'): continue ################ Deal with line ################ # Only start building dict once reached min chainID if foundFirstChain == False: # Set to true once we've reached our first relevant chain if line[0] == 'chain' and line[12] == minID: foundFirstChain = True curr_chain_id = line[12] else: continue # In relevant section of chain files else: if line[0] == 'chain': # Add loaded chain to dictionary chain_dict[curr_chain_id] = curr_chain curr_chain = [] # print "Adding chain to dictionary." # If we've reached designated limit, open new file if curr_chain_id == maxID: loadedAllChains = True break curr_chain_id = line[12] curr_chain.append(line) ################ Move to next line ################ # Edge case: maxID is last ID in file if not loadedAllChains: chain_dict[curr_chain_id] = curr_chain print "Loaded chains in {} minutes.\n".format((time.time() - begin_chainload)/60) # print "Loaded these keys: {}.".format(sorted(chain_dict.keys())) return chain_dict def main(): sitesfile = sys.argv[1] # file containing indels chainfile = sys.argv[2] # name of query2 (to compare to) outfile = sys.argv[3] # file to write evidence to # 0 = deletion in query 1 (look for insertion in q2), # 1 = insertion in query 1 (look for insertion in q2) # 2 = __ in query 1 (look for deletion in q2) mode = int(sys.argv[4]) # first line to look at in sitesfile start = int(sys.argv[5]) # last line to look at in sitesfile if len(sys.argv)==7: end = int(sys.argv[6]) else: end = float('inf') sites_dict = get_sites_dict(sitesfile, start, end) chain_dict = get_chain_dict(chainfile, sites_dict) # hg + q1 - q2 + if mode == 0: compare_to_q2_chain(sites_dict, chain_dict, outfile, 'insertion') # hg - q1 + q2 + elif mode == 1: double_insertion(sites_dict, chain_dict, outfile) # hg + q1 - q2 + outgroup - elif mode == 2: compare_to_q2_chain(sites_dict, chain_dict, outfile, 'deletion') return if __name__ == '__main__': main()
UTF-8
Python
false
false
13,443
py
11
compare_to_query.py
10
0.655508
0.639366
0
461
28.16269
196
Henriquefalconi/PROCESSAMENTO-DE-IMAGENS
18,408,229,848,126
5279297ce24b16de4ae3b178dc01049013c1786a
2ebfea87e5970229db5de52b6a0709b9fc9877bc
/Processamento de Imagens/P2.py
005ffd0c3c279cff419e40fb4bb21a991ee78d41
[]
no_license
https://github.com/Henriquefalconi/PROCESSAMENTO-DE-IMAGENS
dd7714780a050441a59f2d3273ba7b11dc40a5fd
7c93b802cce64d40f7d918e40f66b211dcf3d697
refs/heads/master
2020-08-06T09:26:44.015825
2019-10-05T18:13:50
2019-10-05T18:13:50
212,923,686
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import cv2 im = cv2.imread('MULHERES.jpg') cv2.imshow('imagem',im) cv2.waitKey(0) cv2.destroyAllWindows()
UTF-8
Python
false
false
107
py
9
P2.py
9
0.738318
0.682243
0
6
16.833333
31
Guaxinim5573/audacious-player
6,476,810,688,582
ac997210f727cef75ca4f791476f27407d53411c
9d3123cd4ca0f38f55488e8446681ea0dd018948
/audtool/__init__.py
38005601c897e3e947cdabb62140e650a9ec4e7f
[ "MIT" ]
permissive
https://github.com/Guaxinim5573/audacious-player
deffdef48b7feae495ab3cf0b07c45e79504358c
7bcd2afdd91bb18a41fb70500aaf76eaa17da837
refs/heads/master
2023-01-03T13:13:03.176366
2020-10-28T03:09:17
2020-10-28T03:09:17
307,890,542
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import subprocess import logging logger = logging.getLogger(__name__) # Run a command line command and returns stdout def _run(command): result = subprocess.run(command, check=True, stdout=subprocess.PIPE, text=True) result.stdout = result.stdout[:-1] return result.stdout def is_playing(): result = subprocess.run(["audtool", "playback-status"], stdout=subprocess.PIPE, text=True) logger.debug(result.stdout) if result.returncode == 0 and result.stdout is not None and result.stdout != "stopped": return True return False def status(): return _run(["audtool", "playback-status"]) # Get current song def get_current_song(): return _run(["audtool", "current-song"]) # Skip to next song def next(): _run(["audtool", "playlist-advance"]) _run(["audtool", "playback-play"]) def prev(): _run(["audtool", "playlist-reverse"]) _run(["audtool", "playback-play"]) def volume(amount): _run(["audtool", "set-volume", amount]) def playpause(): _run(["audtool", "playback-playpause"]) # Display all songs in current playlist def display_songs(): lines = _run(["audtool", "playlist-display"]).splitlines() lines.pop() # Removes last item, whe don't need that lines.pop(0) # We also don't need the first item songs = [] for line in lines: [pos, name, length] = line.split(" | ") pos = pos.lstrip() name = name.rstrip() songs.append({"name": name, "pos": pos, "length": length}) return songs def jump(pos): _run(["audtool", "playlist-jump", pos])
UTF-8
Python
false
false
1,473
py
7
__init__.py
4
0.684997
0.68296
0
55
25.8
91
Ruitongliu224/590-CODES
14,302,241,100,897
2046c75646b8815c5bd9312b415cca94765e5116
834b826a2dda410e43e7e16315508ee26775dbed
/LECTURE-CODES/WEEK8/WIKI/02-wiki-topic-search.py
8081e5ca4c44cee1f77d2dccc061f9d8a0cc10e6
[]
no_license
https://github.com/Ruitongliu224/590-CODES
92249ed7ad995bc3b8ccdc07167bc3ba776ce7e6
43f581664888efcaa8495c27e6d150da5abfe33e
refs/heads/main
2023-08-28T04:17:53.995551
2021-11-06T18:09:36
2021-11-06T18:09:36
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# conda install -c conda-forge wikipedia # conda install -c conda-forge wordcloud # pip install wikipedia_sections import wikipedia # see https://meta.wikimedia.org/wiki/List_of_Wikipedias # for langages prefixes # wikipedia.set_lang('es') #es=spanish en=english #-------------------------- # USER INPUTS #-------------------------- max_num_pages=2 #max num pages returned by wiki search verbose=False #------------------------ #WORD CLOUD PLOT #------------------------ def generate_word_cloud(my_text): from wordcloud import WordCloud, STOPWORDS import matplotlib.pyplot as plt # exit() # Import package # Define a function to plot word cloud def plot_cloud(wordcloud): # Set figure size plt.figure(figsize=(40, 30)) # Display image plt.imshow(wordcloud) # No axis details plt.axis("off"); # Generate word cloud wordcloud = WordCloud( width = 3000, height = 2000, random_state=1, background_color='salmon', colormap='Pastel1', collocations=False, stopwords = None).generate(my_text) plot_cloud(wordcloud) plt.show() #------------------------ #QUERY WIKI #------------------------ country_list=['japan','mexico'] # stop_words=['mexi', 'spani', 'japan','food','references','china','chinese','external', 'see','citation', 'links', 'works','cited',] stop_words=[''] for country in country_list: # topic='food in '+country topic='food '+country #-------------------------- #SEARCH FOR RELEVANT PAGES #-------------------------- titles=wikipedia.search(topic,results=max_num_pages) print("TITLES=",titles) #FUNCTION TO PRINT BASIC ABOUT WIKI PAGE def print_info(wiki_page): print("-------------------------") print(wiki_page.title) print(wiki_page.url) # print(wiki_page.sections) if(verbose): print(wiki_page.sections) print(wiki_page.categories) print(wiki_page.html) print(wiki_page.images) print(wiki_page.content) print(wikipedia.summary(wiki_page.title, auto_suggest=False)) print(wiki_page.references) print(wiki_page.links[0],len(page.links)) #-------------------------- #LOOP OVER TITLES #-------------------------- num_files=0 sections=[] for title in titles: try: page = wikipedia.page(title, auto_suggest=False) #print_info(page) sections=sections+page.sections num_files+=1 except: print("SOMETHING WENT WRONG:", title); #CONVERT TO ONE LONG STRING text='' for string in sections: words=string.lower().split() for word in words: if(word not in stop_words): text=text+word+' ' # # print(string) print(text); generate_word_cloud(text) #exit()
UTF-8
Python
false
false
2,714
py
45
02-wiki-topic-search.py
38
0.595431
0.588799
0
112
23.232143
133
jxylon/BCD2017
5,437,428,631,162
672b61e4e3c15e47ba7a6072ce17c0eda683d6a6
e9d3c8966aa8414d4103e5d9a9e54494d4d59bd3
/read.py
ab7c70108da8b42ddd31a103bca093de3994bcaa
[]
no_license
https://github.com/jxylon/BCD2017
5561f1def4314275805beb6be31c0ee35e2a1931
af5a278d3247ab423857e2dc4a2fe57d6cf32abb
refs/heads/master
2021-05-16T07:33:10.797171
2019-07-25T12:27:44
2019-07-25T12:27:44
103,833,773
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# 读取文件内容 import numpy as np import pandas as pd import matplotlib.pyplot as plt from itertools import chain def read_file(i): # 文件名 fn = ['dsjtzs_txfz_training_sample', 'dsjtzs_txfz_test_sample', 'dsjtzs_txfz_training', 'dsjtzs_txfz_test1'] index_name = ['a1', 'a2', 'a3', 'a4'] # 读取文件 df = pd.read_csv(fn[i] + '.txt', sep=' ', header=None) # 自定义列索引名称 # 返回Dataframe return df def x_y_t(df): # 得到x,y,t,target,label x, y, t, label, target, squ = [], [], [], [], [], [] # Dataframe行遍历 for l in range(len(df)): # 第0列:序号 squ.append(df[0][l]) # 第1列:坐标轨迹 line = df[1][l].split(';') # 第2列:目标坐标 target1=(df[2][l]) target1=target1.split(',') target.append([target1[0],target1[1]]) # 第3列:label label.append(df[3][l]) # 一次轨迹 x1, y1, t1= [], [], [] # 拆分坐标轨迹 for i in range(len(line) - 1): line1 = line[i].split(',') # x x1.append(line1[0]) # y y1.append(line1[1]) # time t1.append(line1[2]) x.append(x1) y.append(y1) t.append(t1) return x, y, t, label, target, squ def draw(x, y, t, label, squ): count = 0 for i in chain(range(30,60), range(2940, 2970)): plt.subplot(6, 10, count + 1) plt.scatter(x[i], y[i], c=t[i], s=20) plt.xticks([]) plt.yticks([]) plt.title(str(squ[i]) + ' ' + str(label[i])) count += 1 plt.show() if __name__ == '__main__': df = read_file(2) x, y, t, label, target, squ = x_y_t(df) draw(x, y, t, label, squ)
UTF-8
Python
false
false
1,859
py
4
read.py
3
0.466935
0.433583
0
67
23.985075
112
nordic-institute/X-Road-tests
10,402,410,834,385
ad7832dc33fcc15f59f201346fdd1f3e027da101
c01a58ecd6614128e3c29a70e3e768b220a2a4a2
/common/xrd-ui-tests-python/tests/xroad_member_access_229/xroad_member_access.py
c35f0be1594007630296e01e9291ccc1a3b05a4d
[ "MIT" ]
permissive
https://github.com/nordic-institute/X-Road-tests
772a6d7485606c1f10b61a1260b8fb66111bf0be
e030661a0ad8ceab74dd8122b751e88025a3474a
refs/heads/develop
2021-06-03T01:38:20.542859
2019-03-18T12:16:18
2019-03-18T12:16:18
125,643,677
2
3
MIT
false
2018-06-14T15:09:21
2018-03-17T15:36:32
2018-06-12T17:53:11
2018-06-14T15:09:21
11,233
0
0
0
Python
false
null
# coding=utf-8 from view_models import clients_table_vm, popups from helpers import xroad, soaptestclient from tests.xroad_add_to_acl_218 import add_to_acl # These faults are checked when we need the result to be unsuccessful. Otherwise the checking function returns True. faults_unsuccessful = ['Server.ServerProxy.AccessDenied'] # These faults are checked when we need the result to be successful. Otherwise the checking function returns False. faults_successful = ['Server.ServerProxy.AccessDenied', 'Server.ServerProxy.UnknownService', 'Server.ServerProxy.ServiceDisabled', 'Server.ClientProxy.*', 'Client.*'] def test_xroad_member_access(case, client=None, client_id=None, requester=None, wsdl_index=None, wsdl_url=None, service_name=None): ''' MainController test function. Tests XRoad member access. :return: ''' self = case client_id = xroad.get_xroad_subsystem(client) requester_id = xroad.get_xroad_subsystem(requester) query_url = self.config.get('ss2.service_path') query_filename = self.config.get('services.request_template_filename') query = self.get_xml_query(query_filename) sync_retry = 0 sync_max_seconds = 0 testclient_params = { 'xroadProtocolVersion': self.config.get('services.xroad_protocol'), 'xroadIssue': self.config.get('services.xroad_issue'), 'xroadUserId': self.config.get('services.xroad_userid'), 'serviceMemberInstance': client['instance'], 'serviceMemberClass': client['class'], 'serviceMemberCode': client['code'], 'serviceSubsystemCode': client['subsystem'], 'serviceCode': xroad.get_service_name(service_name), 'serviceVersion': xroad.get_service_version(service_name), 'memberInstance': requester['instance'], 'memberClass': requester['class'], 'memberCode': requester['code'], 'subsystemCode': requester['subsystem'], 'requestBody': self.config.get('services.testservice_2_request_body') } testclient = soaptestclient.SoapTestClient(url=query_url, body=query, retry_interval=sync_retry, fail_timeout=sync_max_seconds, faults_successful=faults_successful, faults_unsuccessful=faults_unsuccessful, params=testclient_params) def xroad_member_access(): """ :param self: MainController class object :return: None """ self.log('*** SERVICE_17 / SERVICE_18') # UC SERVICE_17 / SERVICE_18 Giving and removing access to XRoad member # UC SERVICE_17/SERVICE_18 test query (1) from SS2 client subsystem to service bodyMassIndex. Query should fail. self.log('SERVICE_17/SERVICE_18 test query (1) {0} to service bodyMassIndex. Query should fail.'.format( query_filename)) case.is_true(testclient.check_fail(), msg='2.2.9-1 test query (1) succeeded') # UC SERVICE_17/SERVICE_18 set bodyMassIndex address and ACL (give access to SS2 client subsystem) self.log('SERVICE_17/SERVICE_18 set bodyMassIndex address and ACL (give access to {0}'.format(requester_id)) add_acl = add_to_acl.test_add_subjects(self, client=client, wsdl_url=wsdl_url, service_name=service_name, service_subjects=[requester_id], remove_data=False, allow_remove_all=False) try: # Try to add subject to ACL add_acl() # UC SERVICE_17/SERVICE_18 test query (2) from SS2 client subsystem to service bodyMassIndex. Query should succeed. self.log('SERVICE_17/SERVICE_18 test query (2) {0} to service bodyMassIndex. Query should succeed.'.format( query_filename)) case.is_true(testclient.check_success(), msg='SERVICE_17/SERVICE_18 test query (2) failed') finally: # Always try to remove access # UC SERVICE_17/SERVICE_18 Remove added subject from test service ACL self.log('SERVICE_17/SERVICE_18 Remove added subject from test service ACL.') # Open client popup using shortcut button to open it directly at Services tab. clients_table_vm.open_client_popup_services(self, client_id=client_id) # Find the table that lists all WSDL files and services services_table = self.by_id(popups.CLIENT_DETAILS_POPUP_SERVICES_TABLE_ID) # Wait until that table is visible (opened in a popup) self.wait_until_visible(services_table) # Find the WSDL, expand it and select service clients_table_vm.client_services_popup_open_wsdl_acl(self, services_table=services_table, service_name=service_name, wsdl_index=wsdl_index, wsdl_url=wsdl_url) add_to_acl.remove_subjects_from_acl(self, [requester_id], select_duplicate=True) # Check if removal was successful - create a test query that should fail. # UC SERVICE_17/SERVICE_18 test query (3) from SS2 client subsystem to service bodyMassIndex. Query should fail. self.log('SERVICE_17/SERVICE_18 test query (3) {0} to service bodyMassIndex. Query should fail.'.format( query_filename)) case.is_true(testclient.check_fail(), msg='SERVICE_17/SERVICE_18 test query (3) succeeded') return xroad_member_access
UTF-8
Python
false
false
5,722
py
383
xroad_member_access.py
329
0.62618
0.611325
0
114
49.192982
127
DrCrow89/meine_python_uebungen
9,311,489,105,618
bc2a47c851ea5a8923e2c7a3a4fec708c79b05d5
564154d8bf9899495f8e92727f7279906894382c
/EinstiegInPython/u_modul.py
a759aaf8a9a83e9b1125e21ef589d3862e2297ae
[]
no_license
https://github.com/DrCrow89/meine_python_uebungen
2d690fe5862ba83466e8e8f81ca63248f81bb50d
0a07585451ecd3ab3d9798912cae62d8fac21639
refs/heads/master
2020-04-17T09:44:58.400529
2019-05-21T21:56:22
2019-05-21T21:56:22
166,471,684
0
0
null
false
2019-05-21T21:56:23
2019-01-18T20:58:29
2019-05-19T08:15:45
2019-05-21T21:56:22
758
0
0
0
Python
false
false
import u_modul_finanz # Ausgabe print("Es ergibt sich ein Steuerbetrag von", u_modul_finanz.steuer(1800), "Euro") print("Es ergibt sich ein Steuerbetrag von", u_modul_finanz.steuer(2200), "Euro") print("Es ergibt sich ein Steuerbetrag von", u_modul_finanz.steuer(2500), "Euro") print("Es ergibt sich ein Steuerbetrag von", u_modul_finanz.steuer(2900), "Euro")
UTF-8
Python
false
false
360
py
42
u_modul.py
37
0.747222
0.702778
0
6
59
81
Cookinne/Mario
6,004,364,316,507
c6ce4873f37862ccf294668725d097b5020ded4a
27c2fe12518a9f487b7fd5495439709a3c14507a
/Mario.py
664a7eadece3078f51c0397bdf2be9cf8791d301
[]
no_license
https://github.com/Cookinne/Mario
75f522ad249cbedc28d5bbea84850bc3d3c8b63b
89f614a31443cbfdb682f9f2a32f2f0528d56946
refs/heads/master
2022-03-27T08:46:44.159792
2019-12-23T05:25:58
2019-12-23T05:25:58
229,912,230
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import os import sys import api.analyze from api.ip import ipAnalysis from lib.data import config from core.webserver import webserver def check_env(): config['ip'] = ipAnalysis.get_local_ip() def start(): if get_mod() == "python": results = api.analyze.analyze_suricata( "files/suricata/eve.json", data="xy", language="en") print(results) elif get_mod() == "web": webserver() def get_mod(): if len(sys.argv) == 2: return "web" else: return "python" if __name__ == "__main__": check_env() start()
UTF-8
Python
false
false
585
py
10
Mario.py
6
0.591453
0.589744
0
31
17.870968
64
Grap3fruit22/ChessEngine
876,173,360,772
5475a0a73bd18568e540dcab76fabe540ed77f1c
2bf3fff514709e93c2491989c2babc31f537655e
/BFTestBasic.py
09385ac313a8244e47c677ad27e60d0b6154ee8a
[]
no_license
https://github.com/Grap3fruit22/ChessEngine
ff1132b34f188b9bf8e910d97ebb8f93bfbc29f4
bc60792a153d4a9cdcf860824e539e67de8f510a
refs/heads/master
2020-05-05T03:25:35.791516
2019-05-07T17:07:55
2019-05-07T17:07:55
179,671,641
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- """ Created on Fri Mar 15 17:38:15 2019 @author: 44775 """ import chess import chess.syzygy import chess.polyglot #import pdb; pdb.set_trace() global totalNodes totalNodes = 0 from ChessCore import calcMinimaxMoveBF def CalcBranchFact(Quantity): """Calculates the average branching fact per move, on average for a game, and then takes this avg over X number of games.""" alpha = float("-inf") beta = float("inf") depth = 1 depthmax = 4 arr = [0] * 781 TT = {} GameBF = [] EpochBF = [] for num in range(0,Quantity): """Loops through to play X games.""" board = chess.Board() totalNodes = 0 MoveBF = [] GameBF = [] while (not board.is_game_over(claim_draw=False)): depth = 1 totalNodes = 0 if (board.turn): """Plays for W""" moveval, move, totalNodes, null = calcMinimaxMoveBF(board,depth,board.turn,alpha,beta,0,[]) depth += 1 while(depth<depthmax): moveval, move, totalNodes, MoveBF = calcMinimaxMoveBF(board,depth,board.turn,alpha,beta,0,[]) display([moveval, move]) depth += 1 GameBF.append(sum(MoveBF)/len(MoveBF)) board.push_uci(move.uci()) else: """Plays for B""" moveval, move, totalNodes, null = calcMinimaxMoveBF(board,depth,board.turn,alpha,beta,0,[]) depth += 1 while(depth<depthmax): moveval, move, totalNodes, MoveBF = calcMinimaxMoveBF(board,depth,board.turn,alpha,beta,0,[]) depth += 1 GameBF.append(sum(MoveBF)/len(MoveBF)) board.push_uci(move.uci()) """Keeps track of each game BF as its recorded""" EpochBF.append(sum(GameBF)/len(GameBF)) return EpochBF, sum(EpochBF)/Quantity X, Y = CalcBranchFact(1) print(X) print(Y)
UTF-8
Python
false
false
2,172
py
16
BFTestBasic.py
15
0.515654
0.498158
0
73
27.780822
113
madclumsil33t/atat
12,343,736,016,828
f62445c6588936f817e170307cd931948ad0f2bb
9ba33919959f8cdb722682296e94c7ddad8e9410
/script/reset_database.py
dd815d095498a37ceb922dcca1ba7a7f08b8c981
[ "MIT" ]
permissive
https://github.com/madclumsil33t/atat
59657549a9fa9561ec640e64035987d0c6c21a5c
290b4adc58791e95dac73ad17ec6645f55307609
refs/heads/main
2023-04-02T16:37:03.567866
2020-12-18T21:26:58
2020-12-18T21:26:58
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python # Add root application dir to the python path import os import sys parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) sys.path.append(parent_dir) import sqlalchemy from alembic import config as alembic_config from seed_roles import seed_roles from atat.database import db from atat.app import make_config, make_app def reset_database(): conn = db.engine.connect() meta = sqlalchemy.MetaData(bind=conn) meta.reflect() trans = conn.begin() # drop all tables meta.drop_all() trans.commit() # rerun the migrations alembic_config.main(argv=["upgrade", "head"]) # seed the permission sets seed_roles() if __name__ == "__main__": config = make_config({"default": {"DEBUG": False}}) app = make_app(config) print(f"Creating extension {app}") with app.app_context(): reset_database()
UTF-8
Python
false
false
901
py
479
reset_database.py
298
0.664817
0.664817
0
41
20.97561
75
Anirudh-Muthukumar/Leetcode-Solutions
13,194,139,559,015
ab7d55d939a1a28df1d60479e365a353f38c6d8f
e5afe031dcf0e7d11f95d3c39b4d750b7a8cc8de
/More Problems/First Unique Number.py
28da1f3fe7e0cb200fab020b43199905c7ba588c
[]
no_license
https://github.com/Anirudh-Muthukumar/Leetcode-Solutions
f172695297ac72a94d0a0313e8df08511e3991ba
5904949fcfab9a842ba2269f68f25d7bd0149a55
refs/heads/August
2023-04-01T08:32:40.682661
2021-01-12T13:44:22
2021-01-12T13:44:22
247,761,302
0
0
null
false
2021-01-12T13:55:49
2020-03-16T16:15:48
2021-01-12T13:44:33
2021-01-12T13:55:49
1,184
0
0
0
Python
false
false
class Node: def __init__(self, val): self.value = val self.prev = None self.next = None class FirstUnique: def __init__(self, A): self.queue = set() self.cache = {} # mapping {value: Node} self.size = 0 self.head = Node(float('-inf')) # pointer to first ndoe self.tail = Node(float('inf')) # pointer to last node # Connect head and tail self.head.next = self.tail self.tail.prev = self.head for value in A: if value not in self.queue: # unique number new_node = Node(value) self.appendNode(new_node) self.cache[value] = new_node self.size += 1 elif value in self.cache: # not unique number not_unique_node = self.cache[value] self.removeNode(not_unique_node) # remove node from linked list del self.cache[value] # remove value from cache self.size -= 1 self.queue.add(value) def appendNode(self, node): ''' Adds node to the tail of the linked list ''' node.prev = self.tail.prev self.tail.prev.next = node self.tail.prev = node node.next = self.tail def removeNode(self, node): ''' Removes node from the linked list ''' prev_node, next_node = node.prev, node.next prev_node.next = next_node next_node.prev = prev_node def showFirstUnique(self): ''' Displays the node pointed by head''' if self.size==0: return -1 first_unique_node = self.head.next return first_unique_node.value def add(self, value): ''' Check occurence of new value and add/delete''' if value not in self.queue: # unique number new_node = Node(value) self.appendNode(new_node) self.cache[value] = new_node self.size += 1 elif value in self.cache: # not unique number not_unique_node = self.cache[value] self.removeNode(not_unique_node) # remove node from linked list del self.cache[value] # remove value from cache self.size -= 1 self.queue.add(value)
UTF-8
Python
false
false
2,486
py
504
First Unique Number.py
502
0.501609
0.498793
0
87
27.586207
79
drmckinney75/SDEV140
8,761,733,318,212
87c23c4d8c498f18f0c33760584dc21b200c4282
297b5da85847639cb827a2e8e4cac1518e660d1f
/M02_Assn1_Ex12_Mckinney_David.py
1b7245c6e4b4d2934866525d03e9587b8f39a958
[]
no_license
https://github.com/drmckinney75/SDEV140
6067389eb9ec66598e0bc3b604af53e41e49264d
109a14e6da003f31e3318e8e9c7f292fa0976f18
refs/heads/main
2023-03-18T17:02:32.055366
2021-03-17T04:53:05
2021-03-17T04:53:05
348,164,807
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# David Ryan McKinney # SDEV140 M02_Assn1 Ex12 # 1/26/2021 11am # V1.0 # Software Volume Discount Calculator # quantityOrdered (int) quantity of software ordered # discountDec (float) discount percent as decimal # discountAmt (float) discount amount in $USD # softwareCost (int) cost of software package # totalDiscount (float) total savings # finalPrice (float) price after discounts # Welcome message for user print("Hello consumer. Thank you very kindly for choosing DRM Enterprises for your software needs.") print("We have a sliding scale discount, depending on the quantity ordered.") quantityOrdered = int(input("How many packages would you like to order? ")) # assigning software package cost softwareCost = 99 #calculating subtotal subtotal = (softwareCost * quantityOrdered) # calculating discount percentage if quantityOrdered < 10: discountDec = 0.0 elif quantityOrdered < 20: discountDec = 0.10 elif quantityOrdered < 50: discountDec = 0.20 elif quantityOrdered < 100: discountDec = 0.30 elif quantityOrdered >= 100: discountDec = 0.40 #calculating total discount totalDiscount = (subtotal * discountDec) #calculating finalPrice finalPrice = (subtotal - totalDiscount) #User display screen of total calculations print("Quantity of Software Purchases: ", quantityOrdered) print("Pre-Discount Total: $", subtotal) print("Discount Percentage: ", (discountDec * 100), "%" ) print("Discount :", totalDiscount) print("Final Sale Price: $", finalPrice)
UTF-8
Python
false
false
1,533
py
26
M02_Assn1_Ex12_Mckinney_David.py
24
0.737769
0.705153
0
45
32.066667
100
snakemake/snakemake
19,335,942,806,812
d89d662c5fe6a95a1e82f90ac9e6f91097b464ca
dacdebab897f9287f37a2e85c5705a926ddd36aa
/tests/test_groupid_expand/Snakefile
0d30974de9b2ba40e45b2c62421c02a0116b85b9
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
https://github.com/snakemake/snakemake
5d4528193d87786d7b372ca7653ece302ff46965
27b224ed12448df8aebc7d1ff8f25e3bf7622232
refs/heads/main
2023-09-02T08:37:04.323976
2023-08-11T10:02:34
2023-08-11T10:02:34
212,840,200
1,941
536
MIT
false
2023-09-11T09:51:44
2019-10-04T14:58:11
2023-09-09T18:40:58
2023-09-11T09:51:43
92,176
1,914
467
879
HTML
false
false
shell.executable("bash") rule all: input: expand("bar{i}.txt", i=range(3)), rule grouplocal: output: "foo.{groupid}.txt", group: "foo" shell: "echo {wildcards.groupid} > {output}" def get_input(wildcards, groupid): return f"foo.{groupid}.txt" rule consumer: input: get_input, output: "bar{i}.txt", group: "foo" shell: "cp {input} {output}"
UTF-8
Python
false
false
448
675
Snakefile
474
0.522321
0.520089
0
30
13.933333
45
orangedeer/Airbnb
14,843,407,013,760
d8540b4f9bd3ecc8d462dfdc04d13fe8aa5668d6
357bad603e85d3b22d7d7b996e640803b6fa7595
/3-crawler/listing/listing/spiders/listing.py
821f44513f024123c8a864b4171018dd2e3d6312
[]
no_license
https://github.com/orangedeer/Airbnb
2750c83aac6ed6b92146c629b5874ee5af1e3196
6c34497785ab59c2945bd6ba4e499d6eff0c203a
refs/heads/master
2018-12-20T14:29:41.629522
2018-03-05T02:34:43
2018-03-05T02:34:43
84,370,170
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : # @Author : # @Usage : from lxml import etree import scrapy import urllib2 import json import re import time import requests import os import sys reload(sys) sys.setdefaultencoding('utf8') class Listing(scrapy.Spider): name = 'listing' path = '/Users/CJW/Desktop/thu/科研/工作/论文第三弹/data/NYC/' start_urls = ['https://www.airbnb.com/rooms/' + line.strip() for line in open('/Users/CJW/Desktop/thu/科研/工作/论文第三弹/data/NYC/merge/listings_undone_merge.txt', 'r').readlines()] handle_httpstatus_list = [404] def start_requests(self): file = open(self.path + 'output/listing_info.txt', 'w') file.close() file = open(self.path + 'output/listing_similar.txt', 'w') file.close() for url in self.start_urls: yield scrapy.Request(url = url, callback = self.parse) def parse(self, response): url = response.url pattern_listing = re.compile(r'\D+rooms/(\d+)\D*') listing_id = pattern_listing.sub(r'\1', url) if not listing_id.isdigit(): return content = response.body page = etree.HTML(content) about_this_listing = page.xpath(".//span[text()='About this listing']") about = '' if len(about_this_listing) == 1: about_this_listing = about_this_listing[0].getparent().getnext() if about_this_listing is not None: for about_text in about_this_listing.getchildren(): about_text_lines = about_text.getchildren() for about_text_line in about_text_lines: if about_text_line.text is not None: about += re.sub(r'[\t\r\n]+', ' ', about_text_line.text) the_space = page.xpath(".//span[text()='The space']") if len(the_space) == 0: the_space = [] if the_space is not None: slideshow_info = page.find(".//script[@data-hypernova-key='p3hero_and_slideshowbundlejs']").text slideshow_info = json.loads(slideshow_info[4:len(slideshow_info)-3]) if about_this_listing is None: about = slideshow_info['slideshowProps']['listing']['summary'] for row in slideshow_info['slideshowProps']['listing']['space_interface']: key = row['label'] value = row['value'] if value is None: value = '' the_space.append(key + value) else: for i in range(len(the_space)): columns = the_space[i].getparent().getparent().getnext().getchildren()[0].getchildren() if len(columns) == 2: break the_space = [] for column in columns: rows = column.findall(".//div") for row in rows: row_children = row.getchildren() if len(row_children) >= 5: key = row_children[0].tail value = row_children[4].text if value is None: value = '' the_space.append(key + value) else: row_children = row_children[0].getchildren() key = row_children[0].tail if key is not None: value = row_children[4].text if value is None: value = '' the_space.append(key + value) the_space = ';'.join(the_space) listing_info = page.find(".//script[@data-hypernova-key='listingbundlejs']").text listing_info = json.loads(listing_info[4:len(listing_info)-3]) host_id = str(listing_info['listing']['user']['id']) photo_count = len(listing_info['listing']['photos']) amenities = [] for amenity in listing_info['listing']['listing_amenities']: if amenity['is_present']: amenities.append(amenity['tag'] + ':1') else: amenities.append(amenity['tag'] + ':0') listing_amenities = ';'.join(amenities) prices = [] for key in listing_info['listing']['price_interface'].keys(): if listing_info['listing']['price_interface'][key] is None: prices.append(key + ':None') else: prices.append(key + ':' + listing_info['listing']['price_interface'][key]['value']) price_interface = ';'.join(prices) description = '' if listing_info['listing'].has_key('description'): description = re.sub(r'[\t\r\n]+', ' ', listing_info['listing']['description']) elif listing_info['listing'].has_key('sectioned_description'): if listing_info['listing']['sectioned_description'] is not None: for section in listing_info['listing']['sectioned_description'].keys(): if listing_info['listing']['sectioned_description'][section] is not None: description += section + ':' + re.sub(r'[\t\r\n]+', ' ', listing_info['listing']['sectioned_description'][section]) description = description.replace('@@', ' ') structured_house_rules = ';'.join(listing_info['listing']['guest_controls']['structured_house_rules']) pattern = re.compile(r'\D+(\d+)\D*') localized_minimum_nights_description = pattern.sub(r'\1', listing_info['listing']['localized_minimum_nights_description']) review_details_interface = listing_info['listing']['review_details_interface'] review_summary = [] if len(review_details_interface) > 0: for dimension in review_details_interface['review_summary']: review_summary.append(dimension['category'] + ':' + str(dimension['value'])) review_summary = ';'.join(review_summary) review_count = review_details_interface['review_count'] host_other_property_review_count = review_details_interface['host_other_property_review_count'] review_score = review_details_interface['review_score'] else: review_summary = '' review_count = 0 host_other_property_review_count = 0 review_score = 0 host_details = listing_info['aboutTheHost']['host_details'] response_rate = host_details['response_rate'] if response_rate is None: response_rate = 'None' else: response_rate = response_rate['rate'] response_time = host_details['response_time'] if response_time is None: response_time = 'None' is_superhost = 0 if host_details['show_superhost_badge']: is_superhost = 1 slideshow_info = page.find(".//script[@data-hypernova-key='p3hero_and_slideshowbundlejs']").text slideshow_info = json.loads(slideshow_info[4:len(slideshow_info)-3]) if slideshow_info['heroProps'].has_key('pricing_quote'): pricing_quote = slideshow_info['heroProps']['pricing_quote'] rate = pricing_quote['rate']['amount'] rate_type = pricing_quote['rate_type'] cleaning_fee_as_guest = pricing_quote['cleaning_fee_as_guest'] can_instant_book = 0 if pricing_quote['can_instant_book']: can_instant_book = 1 else: cleaning_fee_as_guest = 0 if slideshow_info['slideshowProps']['listing']['price_interface']['cleaning_fee'] is not None: cleaning_fee_as_guest = slideshow_info['slideshowProps']['listing']['price_interface']['cleaning_fee']['value'] can_instant_book = 0 if slideshow_info['slideshowProps']['listing']['instant_bookable']: can_instant_book = 1 slideshow_info = json.loads(page.find(".//meta[@id='_bootstrap-room_options']").get('content')) rate = slideshow_info['nightly_price'] rate_type = 'nightly' if slideshow_info['isMonthly']: rate_type = 'monthly' latitude = page.find(".//meta[@property='airbedandbreakfast:location:latitude']").get('content') longitude = page.find(".//meta[@property='airbedandbreakfast:location:longitude']").get('content') wishlist_count = page.find(".//span[@class='wishlist-button-subtitle-text']") if wishlist_count is None: wishlist_count = 0 else: pattern = re.compile(r'\D+(\d+)\D*') wishlist_count = pattern.sub(r'\1', wishlist_count.text) file = open(self.path + 'output/listing_info.txt', 'a') result = [listing_id, host_id, str(photo_count), about, the_space, listing_amenities, price_interface, description, structured_house_rules, localized_minimum_nights_description, review_summary, str(review_count), str(host_other_property_review_count), str(review_score), response_rate, response_time, str(is_superhost), str(rate), rate_type, str(cleaning_fee_as_guest), str(can_instant_book), latitude, longitude, wishlist_count] file.write(('%s\n') % ('@@'.join(result))) file.close() url = 'https://www.airbnb.com/rooms/' + listing_id + '/similar_listings' yield scrapy.Request(url = url, callback = self.parse_similar_api) def parse_similar_api(self, response): url = response.url pattern = re.compile(r'\D+(\d+)\D+') listing_id = pattern.sub(r'\1', url) if response.status == 404: url = 'https://www.airbnb.com/api/v2/similar_listings?key=d306zoyjsyarp7ifhu67rjxn52tv0t20&currency=USD&locale=en&_format=for_listing_card&listing_id=' + listing_id yield scrapy.Request(url = url, callback = self.parse_similar_api_v2) return content = response.body content = json.loads(content) file = open(self.path + 'output/listing_similar.txt', 'a') if content.has_key('properties'): for similar_listing in content['properties']: similar_listing_id = similar_listing['id'] host_id = similar_listing['user']['id'] room_type = similar_listing['room_type'] price_to_display = similar_listing['price_to_display'] instant_book = 0 if similar_listing['instant_book']: instant_book = 1 review_count = similar_listing['review_count'] picture_count = similar_listing['picture_count'] raw_distance = similar_listing['raw_distance'] result = [listing_id, str(similar_listing_id), str(host_id), room_type, str(price_to_display), str(instant_book), str(review_count), str(picture_count), raw_distance] file.write(('%s\n') % (','.join(result))) file.close() def parse_similar_api_v2(self, response): url = response.url pattern = re.compile(r'.+listing_id=(\d+)\D*') listing_id = pattern.sub(r'\1', url) content = response.body content = json.loads(content) file = open(self.path + 'output/listing_similar.txt', 'a') if content.has_key('similar_listings'): for similar_listing in content['similar_listings']: similar_listing_id = similar_listing['listing']['id'] host_id = similar_listing['listing']['user_id'] room_type = similar_listing['listing']['room_type'] price_to_display = similar_listing['pricing_quote']['rate']['amount'] instant_book = 0 if similar_listing['listing']['instant_bookable']: instant_book = 1 review_count = similar_listing['listing']['reviews_count'] picture_count = similar_listing['listing']['picture_count'] raw_distance = similar_listing['distance'] result = [listing_id, str(similar_listing_id), str(host_id), room_type, str(price_to_display), str(instant_book), str(review_count), str(picture_count), raw_distance] file.write(('%s\n') % (','.join(result))) file.close()
UTF-8
Python
false
false
10,392
py
44
listing.py
44
0.672943
0.666667
0
232
43.637931
431
Michael-py/coding_challenges
18,794,776,915,149
14eed64d024b4cf6bd077676d5e07057600da0b3
74db2f30b62f6524c716fc3bc301b4177ec96876
/occur.py
be2b9cb8f3c85bfa22fad698568ce1e86aa6b2d2
[]
no_license
https://github.com/Michael-py/coding_challenges
a2e8015f2e936b2e356b8ff0f3e089fbff549140
fe5b343552fc510ef2eb4511f295767a64f455a2
refs/heads/main
2023-05-03T17:58:06.087414
2021-05-17T09:29:54
2021-05-17T09:29:54
368,127,866
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
counts = 0 def occur(s, t, count=0): global counts if len(s) == 1 and s[0] == t: count += 1 for i in range(len(s)): if s[i] == t: count+=1 else: counts += 1 occur(s[i+1:], t, count) return count print(occur("propylleucineglycogen", "i")) print(counts)
UTF-8
Python
false
false
279
py
24
occur.py
23
0.569892
0.541219
0
23
11.173913
42
infoaed/ckanext-harvest
8,813,272,922,447
7ffc8fdd6dd5cda11727227c4c20bb467a53f595
474b190ecb13b3385544925e67fe7b219ac265d0
/ckanext/harvest/plugin.py
8521bb1848235fc18b016cf5843bdfb05a2afd52
[]
no_license
https://github.com/infoaed/ckanext-harvest
e959c27879b14d6e884aec9591b1b643dc8168b6
52c9fc67a53c0ef27af0f386448a8954a61dbe61
refs/heads/look_feel_est
2021-01-12T07:18:19.031748
2017-01-06T11:35:06
2017-01-06T11:35:06
76,940,794
0
0
null
true
2016-12-20T09:04:24
2016-12-20T09:04:24
2015-02-25T20:26:35
2015-02-25T20:49:30
1,086
0
0
0
null
null
null
import os from logging import getLogger from pylons import config from genshi.input import HTML from genshi.filters import Transformer import ckan.lib.helpers as h from ckan.plugins import implements, SingletonPlugin from ckan.plugins import IRoutes, IConfigurer from ckan.plugins import IConfigurable, IActions, IAuthFunctions from ckanext.harvest.model import setup as model_setup log = getLogger(__name__) assert not log.disabled class Harvest(SingletonPlugin): implements(IConfigurable) implements(IRoutes, inherit=True) implements(IConfigurer, inherit=True) implements(IActions) implements(IAuthFunctions) def configure(self, config): # Setup harvest model model_setup() def before_map(self, map): controller = 'ckanext.harvest.controllers.view:ViewController' map.redirect('/harvest/', '/harvest') # because there are relative links map.connect('harvest', '/harvest',controller=controller,action='index') map.connect('/harvest/new', controller=controller, action='new') map.connect('/harvest/edit/:id', controller=controller, action='edit') map.connect('/harvest/delete/:id',controller=controller, action='delete') map.connect('/harvest/:id', controller=controller, action='read') map.connect('harvesting_job_create', '/harvest/refresh/:id',controller=controller, action='create_harvesting_job') map.connect('/harvest/object/:id', controller=controller, action='show_object') return map def update_config(self, config): here = os.path.dirname(__file__) template_dir = os.path.join(here, 'templates') public_dir = os.path.join(here, 'public') if config.get('extra_template_paths'): config['extra_template_paths'] += ',' + template_dir else: config['extra_template_paths'] = template_dir if config.get('extra_public_paths'): config['extra_public_paths'] += ',' + public_dir else: config['extra_public_paths'] = public_dir ## IActions def get_actions(self): module_root = 'ckanext.harvest.logic.action' action_functions = _get_logic_functions(module_root) return action_functions ## IAuthFunctions def get_auth_functions(self): module_root = 'ckanext.harvest.logic.auth' auth_functions = _get_logic_functions(module_root) return auth_functions def _get_logic_functions(module_root, logic_functions={}): for module_name in ['get', 'create', 'update', 'delete']: module_path = '%s.%s' % (module_root, module_name,) module = __import__(module_path) for part in module_path.split('.')[1:]: module = getattr(module, part) for key, value in module.__dict__.items(): if not key.startswith('_') and (hasattr(value, '__call__') and (value.__module__ == module_path)): logic_functions[key] = value return logic_functions
UTF-8
Python
false
false
3,060
py
28
plugin.py
20
0.647059
0.646732
0
95
31.210526
90
unhyperbolic/SnapRepr
9,019,431,357,823
5d40e311b7fa34ef5771b38606585d5bc8d7ca17
48b062ce35ab2917f2e23fb62df5e91107ad3a3e
/src/bin/SnapReprMagmaSl3NeumannZagier.py
604675b8e1bcc303d0f4fca37c7062322a6815cb
[]
no_license
https://github.com/unhyperbolic/SnapRepr
8e7deedd293e4b8f2835058221400cb395c6ec8c
27cd01f86244c76a1c2881feeda14a480715f2e6
refs/heads/master
2020-12-25T17:28:19.781929
2016-08-16T06:09:23
2016-08-16T06:09:23
2,908,257
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python import os import sys this_path, this_file = os.path.split(sys.argv[0]) abs_path = os.path.abspath(this_path) base_path, this_dir = os.path.split(abs_path) sys.path.append(base_path) try: from manifold import sl3NeumannZagierType from manifold.triangulation import read_triangulation_from_file import algebra.magma except ImportError as e: print e print print "This program was called as :", sys.argv[0] print "Absolute path to this program is :", abs_path print "Base path is :", base_path sys.exit(1) def get_term_order(polys, pre_vars = [], post_vars = []): all_vars = sum([p.variables() for p in polys], []) sort_vars = set(all_vars) - set(pre_vars) - set(post_vars) sort_vars = list(sort_vars) sort_vars.sort() return pre_vars + sort_vars + post_vars def produce_magma_out(trig): eqns = sl3NeumannZagierType.produce_all_equations_non_degenerate(trig) term_order = get_term_order(eqns, pre_vars = ['t']) return algebra.magma.primary_decomposition(eqns, term_order = term_order) def main(): trig_filename = sys.argv[1] if trig_filename[-5:] == '.trig': base_filename = trig_filename[:-5] else: base_filename = trig_filename trig = read_triangulation_from_file(trig_filename) open(base_filename+'_sl3NeumannZagier.magma','w').write( produce_magma_out(trig)) main()
UTF-8
Python
false
false
1,440
py
50
SnapReprMagmaSl3NeumannZagier.py
47
0.655556
0.649306
0
52
26.692308
77
MaxSac/cubic_interpolation
7,172,595,416,070
df528fe1aa05e58fed98bef9bbdca88d0d76d249
1d9a7cc16d67c3e3e166ed26907c71e276ed70f9
/conanfile.py
63258a512b9c36dcf76b8c13bd3621617c44f818
[ "MIT" ]
permissive
https://github.com/MaxSac/cubic_interpolation
4c2d58394be5e96c66872bfe73f7199ab8d8240e
d8ba7a19f06afa010747750bdb1c34fd9f811ba5
refs/heads/main
2023-08-22T14:45:31.505342
2022-12-01T02:55:25
2022-12-01T02:55:25
310,883,494
2
3
null
null
null
null
null
null
null
null
null
null
null
null
null
from conans import ConanFile, CMake, tools from conans.errors import ConanInvalidConfiguration import os required_conan_version = ">=1.32.0" class CubicInterpolationConan(ConanFile): name = "cubicinterpolation" homepage = "https://github.com/MaxSac/cubic_interpolation" license = "MIT" url = "https://github.com/conan-io/conan-center-index" description = "Leightweight interpolation library based on boost and eigen." topics = ("interpolation", "splines", "cubic", "bicubic", "boost", "eigen3") settings = "os", "compiler", "build_type", "arch" options = { "shared": [True, False], "fPIC": [True, False], } default_options = { "shared": True, "fPIC": True } exports_sources = "*" generators = "cmake_find_package", "cmake_paths" _cmake = None # def config_options(self): # if self.settings.os == "Windows": # del self.options.fPIC # def configure(self): # if self.options.shared: # del self.options.fPIC def requirements(self): self.requires("boost/1.72.0") self.requires("eigen/3.3.9") @property def _minimum_compilers_version(self): return { "Visual Studio": "16", "gcc": "5", "clang": "5", "apple-clang": "5.1", } @property def _required_boost_components(self): return ["filesystem", "math", "serialization"] def validate(self): miss_boost_required_comp = any(getattr(self.options["boost"], "without_{}".format(boost_comp), True) for boost_comp in self._required_boost_components) if self.options["boost"].header_only or miss_boost_required_comp: raise ConanInvalidConfiguration("{0} requires non header-only boost with these components: {1}".format(self.name, ", ".join(self._required_boost_components))) if self.settings.compiler.cppstd: tools.check_min_cppstd(self, "14") minimum_version = self._minimum_compilers_version.get( str(self.settings.compiler), False ) if not minimum_version: self.output.warn( "CubicInterpolation requires C++14. Your compiler is unknown. Assuming it supports C++14." ) elif tools.Version(self.settings.compiler.version) < minimum_version: raise ConanInvalidConfiguration( "CubicInterpolation requires C++14, which your compiler does not support." ) if self.settings.compiler == "Visual Studio" and self.options.shared: raise ConanInvalidConfiguration("cubicinterpolation shared is not supported with Visual Studio") def _configure_cmake(self): if self._cmake: return self._cmake self._cmake = CMake(self) self._cmake.definitions["BUILD_EXAMPLE"] = False self._cmake.definitions["BUILD_DOCUMENTATION"] = False self._cmake.configure() return self._cmake def build(self): cmake = self._configure_cmake() cmake.build() def package(self): self.copy("LICENSE", dst="licenses" ) cmake = self._configure_cmake() cmake.install() tools.rmdir(os.path.join(self.package_folder, "lib", "cmake")) def package_info(self): self.cpp_info.names["cmake_find_package"] = "CubicInterpolation" self.cpp_info.names["cmake_find_package_multi"] = "CubicInterpolation" self.cpp_info.libs = ["CubicInterpolation"] self.cpp_info.requires = ["boost::headers", "boost::filesystem", "boost::math", "boost::serialization", "eigen::eigen"]
UTF-8
Python
false
false
3,657
py
7
conanfile.py
1
0.618266
0.61061
0
101
35.207921
170
goggle/aur
19,602,230,772,238
e8d4af1700381168fa497877531a1d841f23ab06
d823c59cf74fef1d3f3f7be338e7a1c3084c958b
/scripts/generate_readme.py
be914fb22be2840f58c3da30771a43b333aa4da9
[ "MIT" ]
permissive
https://github.com/goggle/aur
134966dd0f097d8ff3948418fd6820c10336c08a
c6f13640d64032094ed1143a81b63fd1a20a61d3
refs/heads/master
2023-08-30T20:02:40.130499
2023-08-30T01:39:34
2023-08-30T01:39:34
112,211,050
0
0
MIT
false
2023-09-04T13:13:38
2017-11-27T15:07:41
2022-04-12T00:35:49
2023-09-04T13:13:36
146
0
0
1
Shell
false
false
#!/usr/bin/env python import argparse import io import os import re import sys AUR_USER = 'aexl' # Prefer to show links to the development repository instead # to e.g. PyPI PROJECT_LINKS = { 'kodi-addon-checker': 'https://github.com/xbmc/addon-check', 'python-kodistubs': 'https://github.com/romanvm/Kodistubs', 'python-tableone': 'https://github.com/tompollard/tableone', } def main(): parser = argparse.ArgumentParser( description='Generate README.md for github') parser.add_argument( '--check', '-c', action='store_true', help='Check if the current README.md matches the output of the script') args = parser.parse_args() if args.check: if check(): print('No update of README.md needed.') else: print('README.md needs to be updated.') sys.exit(1) else: print(generate_readme(), end='') def get_dir_names(): return sorted([d for d in os.listdir('..') if os.path.isdir( os.path.join('..', d)) and '.SRCINFO' in os.listdir( os.path.join('..', d))]) def parse_package_info(pkgname): srcinfo = os.path.join('..', pkgname, '.SRCINFO') d = { 'name': pkgname, } regex_template = r'%s\s*=\s*(.+)' with open(srcinfo, 'r') as f: content = f.read() for k in ('pkgdesc', 'pkgver', 'url', 'license'): reg = regex_template % k value = re.search(reg, content).group(1) d.update({k: value}) return d def generate_readme(): title = '# AUR (Arch User Repository) Packages' badges = [('![](https://github.com/goggle/aur/workflows/' 'New%20upstream%20releases/badge.svg)')] description = ('My [aur](https://aur.archlinux.org/packages/' '?K=%s&SeB=m) packages.' % AUR_USER) packages = [parse_package_info(name) for name in get_dir_names()] sio = io.StringIO('') sio.writelines([title, '\n\n']) for badge in badges: sio.writelines(badge) sio.writelines('\n') sio.writelines(['\n', description, '\n\n## Packages\n\n']) sio.writelines( '| Name | Description | License | Project page | AUR page |') sio.writelines('\n') sio.writelines('|---|---|---|:---:|:---:|') sio.writelines('\n') pline_template = ('| **%s** | %s | %s | [:heavy_check_mark:](%s) ' '| [:heavy_check_mark:](%s) |') for p in packages: url = PROJECT_LINKS.get(p['name']) url = url if url else p['url'] line = pline_template % ( p['name'], p['pkgdesc'], p['license'], url, 'https://aur.archlinux.org/packages/%s/' % p['name']) sio.writelines(line) sio.writelines('\n') sio.seek(0) output = sio.read() sio.close() return output def check(): with open(os.path.join('..', 'README.md'), 'r') as f: current = f.read() return current == generate_readme() if __name__ == '__main__': main()
UTF-8
Python
false
false
3,012
py
10
generate_readme.py
6
0.554781
0.552457
0
103
28.242718
79
Lazy-LZY/droidlet
12,884,901,903,076
353bde026a5e38a461dcb0ad0aa13365afe181f5
7c3742e2aa0f97b7f9e9250e8fdf852aa153ea38
/droidlet/tools/hitl/utils/hitl_logging.py
85a7bdd8ff4d4e625d829b5a588a568b3acf70e2
[ "MIT" ]
permissive
https://github.com/Lazy-LZY/droidlet
c811d37a053f79f88e6d214ff1fc74687c40d353
0a01a7fa7a7c65b2f9a3aebf5e79040940daf9d2
refs/heads/main
2023-07-08T17:37:43.190410
2023-02-01T19:34:23
2023-02-01T19:34:23
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" Copyright (c) Facebook, Inc. and its affiliates. The hitl_logging.py include a HitlLogging class for logging in HiTL module. """ from datetime import datetime, timezone import logging import os import inspect HITL_TMP_DIR = ( os.environ["HITL_TMP_DIR"] if os.getenv("HITL_TMP_DIR") else f"{os.path.expanduser('~')}/.hitl" ) DEFAULT_LOG_FORMATTER = logging.Formatter( "%(asctime)s [%(filename)s:%(lineno)s - %(funcName)s() %(levelname)s]: %(message)s" ) class HitlLogging: """ The HitlLogging class is a wrapper for the python basic logging, allows the caller class to registering for a logger name and logs into separate files. The logger generated by this class provides same APIs as the python logging library. The log would be output to both console and a log file, the log file is located under the HiTL temporary directory following the below format: {Hitl Tmp Dir}/{Batch Id}/{Logger Name}{Timestamp}.log Parameters: - batch_id: required - batch_id of the hitl jobs - logger_name: optional, default is set to caller class name - formatter: optional, default is DEFAULT_LOG_FORMATTER - level: optional, default is logging.WARNING (same as python logging module) """ def __init__( self, batch_id: int, logger_name=None, formatter=DEFAULT_LOG_FORMATTER, level=logging.WARNING, ): # Get caller class to use as logger name if logger name is not specified if logger_name is None: logger_name = inspect.stack()[1][0].f_locals["self"].__class__.__name__ # get timestamp to differentiate different instance timestamp = datetime.now(timezone.utc).isoformat() logger_name = f"{logger_name}{timestamp}" log_dir = os.path.join(HITL_TMP_DIR, f"{batch_id}/pipeline_logs") os.makedirs(log_dir, exist_ok=True) log_file = f"{log_dir}/{logger_name}.log" fh = logging.FileHandler(log_file) fh.setFormatter(formatter) sh = logging.StreamHandler() sh.setFormatter(formatter) logger = logging.getLogger(logger_name) logger.setLevel(level) logger.addHandler(fh) logger.addHandler(sh) self._logger = logger self._log_file = log_file def get_logger(self): return self._logger def get_log_file(self): return self._log_file def shutdown(self): for handler in self._logger.handlers: self._logger.removeHandler(handler) handler.close()
UTF-8
Python
false
false
2,596
py
1,005
hitl_logging.py
752
0.644453
0.643683
0
83
30.277108
118
karafede/WRF_Chem
6,313,601,930,717
4f129425a08e7c57ba685fc9aff96c64f30de14a
1c5840724994dcb2451eb6a4cc9632e4a658da20
/WRFChem_new_postproc/sendMail.py
f63e0068b9539d8c0d5a64ad086756a292b3f4b1
[]
no_license
https://github.com/karafede/WRF_Chem
a4714fa276ffd060c9732bc2de638b2d9455dd7d
2e51daaa5bbf30672e99938b3cad623292e6fb47
refs/heads/master
2020-12-14T10:34:47.803226
2020-01-12T07:56:16
2020-01-12T07:56:16
95,371,002
12
2
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python import os ; import sys ; import smtplib ; import mimetypes ; from smtplib import SMTP from smtplib import SMTPException from email.mime.multipart import MIMEMultipart ; from email import encoders from email.message import Message ; from email.mime.image import MIMEImage from email.mime.text import MIMEText #_from = "fog.masdar.ac.ae" ; _to = ["fkaragulian@masdar.ac.ae","vkvalappil@masdar.ac.ae","mtemimi@masdar.ac.ae","mjweston@masdar.ac.ae"] ; _sub = "WRF Chem Run" _content = str(sys.argv[1]) _text_subtype = "plain" _to=','.join(_to) mail=MIMEMultipart('alternative') mail["Subject"] = _sub #mail["From"] = _from mail["To"] = _to mail.attach(MIMEText(_content, _text_subtype )) try: _from = "fog@masdar.ac.ae" ; smtpObj = smtplib.SMTP('mail.masdar.ac.ae',587) smtpObj.ehlo() smtpObj.starttls() smtpObj.login('fog', 'P@ssword321') smtpObj.sendmail(_from, _to, mail.as_string()) smtpObj.close() print 'Success' except: try: _from = "fog.masdar@gmail.com" ; smtpObj = SMTP('smtp.gmail.com',587) #Identify yourself to GMAIL ESMTP server. smtpObj.ehlo() #Put SMTP connection in TLS mode and call ehlo again. smtpObj.starttls() smtpObj.ehlo() #Login to service smtpObj.login(user='fog.masdar@gmail.com', password='fog@masdar123') #Send email smtpObj.sendmail(_from, _to, mail.as_string()) #close connection and session. smtpObj.quit() except SMTPException as error: print "Error: unable to send email : {err}".format(err=error) quit()
UTF-8
Python
false
false
1,817
py
45
sendMail.py
40
0.585581
0.578426
0
52
32.942308
118
CamiloAguilar/openpose-tda-action-recognition
12,850,542,197,742
3c5f70e5c4607e4013e60cba53f7be330bba6db2
40d081db87258dc9c7dd2452f9c665df48f4aab0
/live_prediction.py
324eda953a7253ae9368a00808ea9c089f86e303
[]
no_license
https://github.com/CamiloAguilar/openpose-tda-action-recognition
dc1d62503d650f7beb5083596dfaae1dc6471df6
0e95ca353335acdb2f9e15958c59a1074d705441
refs/heads/master
2020-06-23T02:06:14.042757
2018-08-31T11:59:25
2018-08-31T11:59:25
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import argparse from sklearn.externals import joblib import copy from time import time import numpy as np import logging import os from shutil import copyfile from action_recognition.tracker import Tracker, TrackVisualiser from action_recognition.detector import CaffeOpenpose from action_recognition.analysis import PostProcessor, ChunkVisualiser from action_recognition import transforms def main(args): os.makedirs(args.out_directory, exist_ok=True) _, video_ending = os.path.splitext(args.video) # Copy video file so we can create multiple different videos # with it as base simultaneously. tmp_video_file = "output/tmp" + video_ending copyfile(args.video, tmp_video_file) classifier = joblib.load(args.classifier) detector = CaffeOpenpose(args.model_path) tracker = Tracker(detector, out_dir=args.out_directory) logging.info("Classes: {}".format(classifier.classes_)) valid_predictions = [] track_people_start = time() for tracks, img, current_frame in tracker.video_generator(args.video, args.draw_frames): # Don't predict every frame, not enough has changed for it to be valuable. if current_frame % 20 != 0 or len(tracks) <= 0: write_predictions(valid_predictions, img) continue # We only care about recently updated tracks. tracks = [track for track in tracks if track.recently_updated(current_frame)] track_people_time = time() - track_people_start logging.debug("Number of tracks: {}".format(len(tracks))) predict_people_start = time() valid_predictions = predict(tracks, classifier, current_frame, args.confidence_threshold) predict_people_time = time() - predict_people_start write_predictions(valid_predictions, img) save_predictions(valid_predictions, args.video, tmp_video_file, args.out_directory) logging.info("Predict time: {:.3f}, Track time: {:.3f}".format( predict_people_time, track_people_time)) track_people_start = time() def predict(tracks, classifier, current_frame, confidence_threshold): # Extract the latest frames, as we don't want to copy # too much data here, and we've already predicted for the rest processor = PostProcessor() processor.tracks = [copy.deepcopy(t.copy(-50)) for t in tracks] processor.post_process_tracks() predictions = [predict_per_track(t, classifier) for t in processor.tracks] valid_predictions = filter_bad_predictions( predictions, confidence_threshold, classifier.classes_) save_predictions_to_track(predictions, classifier.classes_, tracks, current_frame) no_stop_predictions = [predict_no_stop(track, confidence_threshold) for track in tracks] for t in [t for p, t in no_stop_predictions if p]: valid_predictions.append(t) log_predictions(predictions, no_stop_predictions, classifier.classes_) return valid_predictions def predict_per_track(track, classifier): all_chunks = [] all_frames = [] divisions = [(50, 0), (30, 10), (25, 0), (20, 5)] for frames_per_chunk, overlap in divisions: chunks, chunk_frames = track.divide_into_chunks(frames_per_chunk, overlap) if len(chunks) > 0: all_chunks.append(chunks[-1]) all_frames.append(chunk_frames[-1]) if len(all_chunks) > 0: predictions = classifier.predict_proba(all_chunks) average_prediction = np.amax(predictions, axis=0) return all_chunks[0], all_frames[0], average_prediction else: return None, None, [0] * len(classifier.classes_) def write_predictions(valid_predictions, img): for label, confidence, position, _, _ in valid_predictions: TrackVisualiser().draw_text(img, "{}: {:.3f}".format(label, confidence), position) def save_predictions(valid_predictions, video_name, video, out_directory): for i, (label, _, _, chunk, frames) in enumerate(valid_predictions): write_chunk_to_file(video_name, video, frames, chunk, label, out_directory, i) def filter_bad_predictions(predictions, threshold, classes): valid_predictions = [] for chunk, frames, prediction in predictions: label, confidence = get_best_pred(prediction, classes) if confidence > threshold: position = tuple(chunk[-1, 0, :2].astype(np.int)) prediction_tuple = (label, confidence, position, chunk, frames) valid_predictions.append(prediction_tuple) return valid_predictions def save_predictions_to_track(predictions, classes, tracks, current_frame): for t, (_, _, prediction) in zip(tracks, predictions): label, confidence = get_best_pred(prediction, classes) t.add_prediction(label, confidence, current_frame) def get_best_pred(prediction, classes): best_pred_i = np.argmax(prediction) confidence = prediction[best_pred_i] label = classes[best_pred_i] return label, confidence def write_chunk_to_file(video_name, video, frames, chunk, label, out_dir, i): _, video_name = os.path.split(video_name) video_name, _ = os.path.splitext(video_name) file_name = "{}-{}-{}-{}.avi".format(video_name, frames[-1], i, label) out_file = os.path.join(out_dir, file_name) ChunkVisualiser().chunk_to_video_scene(video, chunk, out_file, frames, label) def predict_no_stop(track, confidence_threshold): if len(track) < 50: return False, () classifier_prediction = classifier_predict_no_stop(track, confidence_threshold) # Copy last 200 frames to chunk for visusalisation. track = track.copy(-200) chunks, chunk_frames = track.divide_into_chunks(len(track) - 1, 0) position = tuple(chunks[0, -1, 1, :2].astype(np.int)) prediction_tuple = ("Has not stopped", classifier_prediction, position, chunks[0], chunk_frames[0]) return classifier_prediction > confidence_threshold, prediction_tuple def classifier_predict_no_stop(track, confidence_threshold): # If there haven't been that many predictions, we can't say anything. if len(track.predictions) < 5: return 0 number_moving = sum(prediction['label'] == 'moving' and prediction['confidence'] > confidence_threshold for prediction in list(track.predictions.values())[-20:]) return number_moving / len(track.predictions) def log_predictions(predictions, no_stop_predictions, classes): prints = [] for _, _, prediction in predictions: prints.append(get_best_pred(prediction, classes)) if no_stop_predictions: for label, confidence, _, _, _ in [t for p, t in no_stop_predictions if p]: prints.append((label, confidence)) logging.info("Predictions: " + ", ".join( ["{}: {:.3f}".format(*t) for t in prints])) if __name__ == '__main__': parser = argparse.ArgumentParser( description=('Generates action predictions live given a video and a pre-trained classifier. ' 'Uses Tracker.tracker.video_generator which yields every track every frame, ' 'from which it predicts the class of action using the pre-trained classifier. ' 'To get a better prediction, it takes the latest 50, 30, 25, and 20 frames ' 'as chunks and selects the likliest prediction among the five * n_classes. ' 'It also predicts if a person has not stopped moving (e.g. if they are moving ' 'through a self-checkout area without scanning anything) by checking if ' 'a proportion of the latest identified actions for a track/person is moving.')) parser.add_argument('--classifier', type=str, help='Path to a .pkl file with a pre-trained action recognition classifier.') parser.add_argument('--video', type=str, help='Path to video file to predict actions for.') parser.add_argument('--model-path', type=str, default='../openpose/models/', help='The model path for OpenPose.') parser.add_argument('--confidence-threshold', type=float, default=0.6, help='Threshold for how confident the model should be in each prediction.') parser.add_argument('--draw-frames', action='store_true', help='Flag for if the frames with identified frames should be drawn or not.') parser.add_argument('--out-directory', type=str, default='output/prediction', help=('Output directory to where the processed video and identified ' 'chunks are saved.')) logging.basicConfig(level=logging.INFO) args = parser.parse_args() main(args)
UTF-8
Python
false
false
8,845
py
67
live_prediction.py
52
0.658112
0.650763
0
217
39.760369
101
dr-dos-ok/Code_Jam_Webscraper
9,285,719,302,576
0d8d360946f0197ea13043df01396035d73f0870
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_145/611.py
3a95e997fc1e04e0f164fe490791c54600cc2dce
[]
no_license
https://github.com/dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
__author__ = 'j0hnny' if __name__ == '__main__': results = [] with open('A-small-attempt2.in', 'r') as input: cases = int(input.readline()) for case in range(cases): (P, Q) = input.readline().split('/') P = int(P) Q = int(Q) print P, Q div = 3 while div <= P: if P % div == 0 and Q % div == 0: P /= div Q /= div div += 1 g = 0 while Q > 1: if Q % 2 != 0: g = None break else: if P < Q: g += 1 Q /= 2 if g is None: results.append('impossible') else: results.append(g) with open('output', 'w') as output: for case in range(cases): res = results[case] s = 'Case #%d: %s\n' % (case+1, res) print s output.write(s)
UTF-8
Python
false
false
1,101
py
60,747
611.py
60,742
0.321526
0.309718
0
42
24.261905
51
niemasd/tools
6,004,364,300,037
ea2b3138b2c2189abee29ad6c1752fac8f8b071b
bb8ea165bfdbe0f79c89c3e0ca6d3f9c66c9c247
/hamming.py
3b94b16d38e0dec182efc0d0b9ffe8c65ec5c455
[]
no_license
https://github.com/niemasd/tools
3ace96922893131db77063ce960bec133c94ada6
6c411987c810a28cbddb9e6bf37ed87c87e235b4
refs/heads/master
2023-07-10T18:56:32.538450
2023-06-27T21:24:56
2023-06-27T21:24:56
71,021,185
14
8
null
null
null
null
null
null
null
null
null
null
null
null
null
#! /usr/bin/env python3 ''' Niema Moshiri 2017 Compute all pairwise Hamming distances from a given multiple sequence alignment ''' import argparse from sys import stdin,stdout from common import hamming,readFASTA # parse arguments def parseArgs(): parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-i', '--input', required=False, type=argparse.FileType('r'), default=stdin, help="Input FASTA") parser.add_argument('-o', '--output', required=False, type=argparse.FileType('w'), default=stdout, help="Output") parser.add_argument('-p', '--proportion', action='store_true', help="Hamming Distance as proportion of length (instead of count)") args = parser.parse_args() return args.input, args.output, args.proportion # main code execution infile, outfile, prop = parseArgs() seqs = readFASTA(infile) infile.close() keys = list(seqs.keys()) L = None for k in keys: if L is None: L = len(seqs[k]) assert L == len(seqs[k]), "All sequences must be of equal length" for i in range(len(keys)-1): for j in range(i+1,len(keys)): if prop: outfile.write('%f\n'%hamming(seqs[keys[i]],seqs[keys[j]],prop=True)) else: outfile.write('%d\n'%hamming(seqs[keys[i]],seqs[keys[j]],prop=False))
UTF-8
Python
false
false
1,340
py
50
hamming.py
47
0.686567
0.681343
0
35
37.285714
134
PauloVitorRocha/TPPE-Trab1
16,140,487,131,022
bb1ec2ddb7f9c3329e497227b20062e2bfda9268
4ac845992c77391a97fe024dafac9a1323787fa1
/src/decision_node.py
9da36461eb6ac7b41a2751d488b0c461c856cb49
[]
no_license
https://github.com/PauloVitorRocha/TPPE-Trab1
d2fb7b41bba87ea0686fa363dc5b4dabdd7e41d1
c239f96a54bac4ef7519506d1c10a39e77d3648d
refs/heads/main
2023-03-31T01:35:19.980234
2021-04-04T22:34:51
2021-04-04T22:34:51
352,805,525
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from transitions import ActivityTransitions class DecisionStream(): def __init__(self): self.transitions = [] self.merge_node = None self.final_node = None self.activity_node = [] self.elements = [] def read_activity(self): act_name = input("Nome da atividade: ") self.activity_node.append(act_name) self.elements.append(0) def read_transition(self): transition_name = input("Nome da transicao: ") transition_prob = input("Probabilidade da transicao: ") transition = ActivityTransitions(transition_name, transition_prob) self.transitions.append(transition) def read_final(self): final_name = input("Nome do no final: ") self.final_node = final_name self.elements.append(1) def read_merge(self): merge_name = input("Nome do no de merge: ") self.merge_node = merge_name self.elements.append(2) def decision_stream_to_xml(self, f, k): f.write("\t\t\t<DecisionStream count=\"{}\">\n".format(k+1)) a_count = 0 m_count = 0 f_count = 0 for i in self.elements: if i == 0: f.write("\t\t\t\t<Activity name=\"{}\"/>\n".format(self.activity_node[a_count])) a_count += 1 elif i == 1: f.write("\t\t\t\t<FinalNode name=\"{}\"/>\n".format(self.final_node[f_count])) f_count += 1 elif i == 2: f.write("\t\t\t\t<MergeNode name=\"{}\"/>\n".format(self.merge_node[m_count])) m_count += 1 f.write("\t\t\t\t<DecisionStreamTransitions>\n".format(k+1)) for transition in self.transitions: transition.transition_to_xml(f, True) f.write("\t\t\t\t</DecisionStreamTransitions>\n") f.write("\t\t\t</DecisionStream>\n")
UTF-8
Python
false
false
1,936
py
8
decision_node.py
5
0.542872
0.53564
0
54
34.537037
96
Paccy10/ampersand_app_api
2,534,030,743,499
f751ca7c76142bd084c4708abfc74786c6d31a31
24f505c2617b766c20244b38883a5e9784b7e250
/api/models/station.py
03e7d587fe718caefec2b4ac4639e2e628744569
[]
no_license
https://github.com/Paccy10/ampersand_app_api
5fce3edf4b0b137e8b6d1e46bacf2e40d677cc5b
7945e0f92408a9754de43cc398b587018df81c6c
refs/heads/develop
2022-12-19T04:58:43.027383
2020-10-01T11:19:13
2020-10-01T11:19:13
299,681,483
0
1
null
false
2020-10-01T11:19:14
2020-09-29T16:54:52
2020-09-30T11:05:26
2020-10-01T11:19:14
50
0
0
0
Python
false
false
""" Module for Station Model """ from config.db import db from .base import BaseModel class Station(BaseModel): """ Station Model class """ __tablename__ = 'stations' location = db.Column(db.String(250), nullable=False, unique=True) number_of_batteries = db.Column( db.Integer, nullable=False, unique=True)
UTF-8
Python
false
false
336
py
25
station.py
22
0.672619
0.66369
0
14
23
69
tkcroat/SC
15,101,105,035,591
a5ffce0017924344df4e4cb12bee447017a99896
6e8bb755c0ea46670a7fb8f5dda8c10d9c308d4c
/SC_messaging_main.py
6220ca6ef305f9c77ed51646e8d2088705dd91bd
[ "MIT" ]
permissive
https://github.com/tkcroat/SC
2e3c120f000fdea249b185b127734f4c8a0b577a
4c2c7663298cbd454ff7aba535b689b44b48a7d1
refs/heads/master
2021-07-17T17:03:25.214498
2020-08-25T16:36:12
2020-08-25T16:36:12
204,846,677
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed Feb 1 17:41:41 2017 @author: tkc """ import pandas as pd import os, sys if 'C:\\Users\\tkc\\Documents\\Python_Scripts\\SC' not in sys.path: sys.path.append('C:\\Users\\tkc\\Documents\\Python_Scripts\\SC') print ('SC folder added') import pkg.SC_signup_functions as SC import pkg.SC_messaging_functions as SCmess import pkg.SC_config as cnf # specifies input/output file directories #%% from importlib import reload reload(SCmess) #%% os.chdir('C:\\Users\\tkc\\Documents\\Python_Scripts\\SC') signupfile='Winter2017_signups.xlsx' signupfile='Spring2017_signups.xlsx' signupfile='Fall2018_signups.xlsx' # Load signups,player and family contact info; format names/numbers, eliminate duplicates players, famcontact, SCsignup, season, year = SC.loadprocessfiles(signupfile) teams=pd.read_csv(cnf._INPUT_DIR +'\\Teams_2019.csv', encoding='cp437') coaches=pd.read_csv(cnf._INPUT_DIR +'\\coaches.csv', encoding='cp437') # common excel file encoding #teams=pd.read_excel(cnf._INPUT_DIR+'\\Teams_coaches.xlsx', sheetname='Teams') #teams=pd.read_csv(cnf._INPUT_DIR+'\\Teams_2019.csv', encoding='cp437') #coaches=pd.read_excel(cnf._INPUT_DIR+'\\Teams_coaches.xlsx', sheetname='Coaches') # load coach info Mastersignups = pd.read_csv(cnf._INPUT_DIR+'\\master_signups.csv', encoding='cp437') # Teams folder under each season? gdrivedict={ '$GDRIVEWINTER':'https://drive.google.com/drive/u/0/folders/1oQQUiIKneC36P7mvJrVQNfC5M70NFrDW', '$GDRIVEFALL':'https://drive.google.com/open?id=1DU-6x6wqOkiiAh5OvlzKAsombspgYAnq', '$GDRIVE_SCHEDULING':'https://docs.google.com/forms/d/e/1FAIpQLSf_f7d1eHXn8Kfm75sqM0Wvv3CKPUemI-GWRWddSkIAqdd_6Q/viewform' } #%% ''' Messages to parents: 1) team assignment 2) Recruit missing players 3) missing unis 4) send schedule 5) other message 6) all parent message ''' SCmess.emailparent_tk(teams, season, year) # testing ssl connections/ troubleshooting from urllib.request import urlopen res = urlopen('https://www.howsmyssl.com/a/check').read() # tls version is 1.2 #%% Messages to coaches # 1) missing uniforms (coach summary) 2) send team contact lists 3) send bill summary # 4) other/generic # missing unis will auto-load old teams # TODO add sendschedule option SCmess.emailcoach_tk(teams, coaches, gdrivedict) # Testing notifyfamilies(teams, Mastersignups, year, famcontact, emailtitle, blankmess, **kwargs) teams=teams.drop_duplicates('Team') mtype='recruit' mtype='teamassign' # notification of team assignment and CYC card status #%% Messages to recruits (load after editing) Recruits=pd.read_excel(signupfile, sheetname='Recruits') emailtitle='Cabrini-Soulard sports for $FIRST this fall?' messagefile='messages\\player_recruiting.txt' SCmess.emailrecruits(Recruits, emailtitle, messagefile) #%% Messages to all sports parents (typically last 3 seasons) # Return email list for all players this season and up to prior year of same season emaillist=SCmess.makeemaillist(Mastersignups, famcontact, season, year, SMS=False) emailstr=', \r\n'.join(emaillist) emaillist.to_csv('email_list_3Oct18.csv') #%% Messages to coaches SCmess.emailcoach_tk(teams, coaches, gdrivedict) # Send team billing summary to (head) coaches: team bill summary, contact list, mtype='bills'; mtype='contacts'; mtype='unis'; # choose message type kwargs={} # needed for billing emailtitle='Fees still owed by your Cabrini team' messagefile='messages\\coach_email_outstanding_bills.txt' kwargs.update({'asst':False}) # Optional send to asst. coaches if set to True billlist=pd.read_csv('Billlist_18Jan17.csv', encoding='cp437') # pruned bill list current season only balances owed Mastersignups = pd.read_csv('master_signups.csv', encoding='cp437') kwargs.update({'bills':billlist, 'SUs':Mastersignups}) # needed for team contacts (mtype contacts) emailtitle='Contact list for your Cabrini team' messagefile='messages\\coach_email_contacts.txt' gdrive='https://drive.google.com/open?id=0B9k6lJXBTjfiVDJ3cU9DRkxEMVU' # Sharable link for this season kwargs.update({'asst':True}) # Optional send to asst. coaches if set to True kwargs.update({'SUs':Mastersignups,'players':players,'famcontact':famcontact}) kwargs.update({'gdrive':gdrive}) # google drive link for this season # Needed for outstanding uniform return kwargs={} mtype='unis' missing=pd.read_csv('missingunilist_27Apr17.csv', encoding='cp437') oldteams=pd.read_excel('Teams_coaches.xlsx', sheetname='Oldteams') # loads all old teams in list kwargs.update({'mformat':'txt'}) # html or string/text message format (testing only) kwargs.update({'oldteams':oldteams,'missing':missing}) kwargs.update({'asst':False}) # Optional send to asst. coaches if set to True messagefile='messages\\coach_email_outstanding_unis.txt' emailtitle='Return of uniforms for your Cabrini team' messagefile='coach_email_log_29Apr17.html' # test send # Write batch e-mails to coaches into html log file SCbill.testcoachemail(teams, coaches, mtype, emailtitle, messagefile, **kwargs) SCbill.emailcoaches(teams, coaches, mtype, emailtitle, messagefile, **kwargs)
UTF-8
Python
false
false
5,097
py
27
SC_messaging_main.py
25
0.757504
0.736512
0
113
44.097345
126
cristina-cojocaru/syntax-project-with-SpaCy
9,526,237,468,881
cb3a647891db1321bd39f1c8998238e220437a52
fce81535e93d68ab6a07880df3611c682fc65b4a
/Syntax_work.py
49fecde55a93bacdb15300911e22d346a5b38593
[]
no_license
https://github.com/cristina-cojocaru/syntax-project-with-SpaCy
cee00732a5e95c65b15869fe3c449f93695fdb66
3abea86d5f89399b4723869311a7944960a05952
refs/heads/master
2022-11-27T17:18:07.951962
2020-08-12T12:56:09
2020-08-12T12:56:09
286,997,264
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import spacy import sys from collections import Counter nlp_fr = spacy.load('fr') class Textfile: def __init__(self, name, encoding="utf-8"): self._name = name self._encoding = encoding self._content = "" def read(self): try: f = open(self._name, encoding=self._encoding, mode='r') self._content = f.read() f.close() except OSError as err: print("OS error: {0}".format(err)) def calcul(self, outputfile): try: f = open(outputfile, encoding=self._encoding, mode='w') verbs={} doc=nlp_fr(self._content) counts=Counter() #calcul d'occurences de chaque verbe for sent in doc.sents: for tok in sent: # skip spaces if tok.pos_ == 'SPACE': continue if tok.pos_ == "VERB": counts[tok.lemma_]+=1 #créer une liste ordonnée de tous les verbes (ordonnée en fonction du nombre d'occurences) verbes = sorted(counts, key=counts.get, reverse=True) #créer un dictionnaire qui a comme clé le verbe et comme valeurs les pourcentages des compléments # chercher les compléments pour chaque lemme verbal #dictionnaire avec tous les compléments for verb in verbes: complements={'obj':0,'obl':0,'iobj':0,'ccomp':0,'xcomp':0} for sent in doc.sents: for tok in sent: # skip spaces if tok.pos_ == 'SPACE': continue #si le mot est dépendant du verbe if tok.head.text == verb: for key in complements.keys(): if tok.dep_==key: complements[key]+=1 for key in complements.keys(): # on calcule les pourcentages complements[key] = int(complements[key]*100/counts[verb]) # pour chaque verbe on écrit dans le fichier le nombre d'occurences f.write(str(counts[verb])) f.write(" ") # le lemme verbal f.write(verb) f.write(" ") #et les pourcentages f.write(str(complements)) f.write("\n") f.close() except OSError as err: print("OS error: {0}".format(err)) def main(): #condition d'existence du paramètre if sys.argv is None or len(sys.argv) <2: print("you need to insert the name of the file") exit() filename = sys.argv[1] #le programme prend comme parametre le nom du fichier tf=Textfile(filename) #on instantie la classe Textfile tf.read() #on appelle la fonction read() pour lire le fichier tf.calcul("verbes.txt") #appel de la fonction calcul if __name__ == "__main__": main()
UTF-8
Python
false
false
3,148
py
3
Syntax_work.py
1
0.495697
0.490915
0
89
33.224719
109
stwobe/dropboxcopy01
15,650,860,844,275
2a6d485821ab8b84ac77d71dca9bb8e7bfdce660
0f46ff5c2cc972dc6636fc3a3b90dd42e732bced
/1Python/Python3/11_Scripts_2016/fishies.py
baeb3455ccfc30617a930cf74f1c8b4086b8a32c
[]
no_license
https://github.com/stwobe/dropboxcopy01
a01b93397d38c42545f7d5b62385ddf16c9645dd
12eab06f1004d00198536ac15c3d112bd3b5da7d
refs/heads/master
2021-01-13T13:56:45.594145
2019-01-15T23:21:11
2019-01-15T23:21:11
72,943,249
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#title: fishies.py #author: Steve Roberts #date: Sunday February 21st 2016 #usage: Run this script and it will print stuff...with a value of #alternative usage - import time def fish(x): time.sleep(0.7) print("\n" * 600) time.sleep(0.9) print ("Fishy wishers!!!!!\n" * x) print("") time.sleep(0.6) print(x) time.sleep(0.7) print (x ** x) print("") time.sleep(0.8) print ("""Blooop Blooooooop Bloooooooooop Bloooooooooooooooooop Bloooooooooooooooooooooooooooop Bloooooooooooooooooooooooooooooooooooooooop Bloooooooooooooooooooooooooooooooooooooooooooooooop Blooooooooooooooooooooooooooooooooooooooooooooooooooooooooop""" * x) time.sleep(0.8) print("Yayyy!") time.sleep(1.2) fish(10) #comment this line out if you wan to use this a function to be imported. #and call it with fishies.fish(3), for example
UTF-8
Python
false
false
859
py
139
fishies.py
129
0.718277
0.688009
0
31
26.548387
81
declangallen/AWS_admin
2,731,599,222,630
1c6756cbd34dc0754253222c3f27744cfc0b2d07
35f47325babc9b267fc5999aabd1ab614eb2baf2
/upload_to_S3.py
180c6c7f21250c4b2bf35712a3b1a329fec07fa5
[]
no_license
https://github.com/declangallen/AWS_admin
1e183d507780c0ceab4e8e9ad001c4e4259b721a
00db2c125b65590e6e2c711fad1ff78b7952b266
refs/heads/master
2020-08-14T13:47:50.337219
2019-10-15T01:36:59
2019-10-15T01:36:59
215,179,639
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import boto3 import os import uuid s3_client = boto3.client('s3') s3_resource = boto3.resource('s3') # s3_resource.create_bucket(Bucket='dgallens3testpython1', # CreateBucketConfiguration={ # 'LocationConstraint': 'eu-west-1'}) def create_bucket_name(bucket_prefix): # The generated bucket name must be between 3 and 63 chars long return ''.join([bucket_prefix, str(uuid.uuid4())]) def create_bucket(bucket_prefix, s3_connection): session = boto3.session.Session() current_region = session.region_name bucket_name = create_bucket_name(bucket_prefix) bucket_response = s3_connection.create_bucket( Bucket=bucket_name, CreateBucketConfiguration={ 'LocationConstraint': current_region}) print(bucket_name, current_region) return bucket_name, bucket_response # first_bucket_name, first_response = create_bucket( # bucket_prefix='dgtest123', # s3_connection=s3_resource.meta.client) first_bucket = s3_resource.Bucket(name='dgallens3testpython') first_object = s3_resource.Object( bucket_name='dgallens3testpython', key='table.txt') first_object.upload_file('table.txt') def copy_to_bucket(bucket_from_name, bucket_to_name, file_name): copy_source = { 'Bucket': bucket_from_name, 'Key': file_name } s3_resource.Object(bucket_to_name, file_name).copy(copy_source) copy_to_bucket('dgallens3testpython', 'dgallens3testpython1', 'table.txt')
UTF-8
Python
false
false
1,492
py
3
upload_to_S3.py
2
0.688338
0.66756
0
44
32.931818
74
Nebula1084/crowd
4,526,895,540,850
6b624821f67b16f9921675970717af972dae474d
0aad0d91502da270b40224fcfaa96d8fbc972736
/loader/word2vec.py
f5470bd326d6f8df58dc8f8c5432416184b83147
[]
no_license
https://github.com/Nebula1084/crowd
5836b247db0d4821e06940befddbeaa1010dd1fb
12c52c2edbc92b009f30c3011bccc9b67f899b4b
refs/heads/master
2021-05-01T10:03:23.797342
2018-03-12T04:34:15
2018-03-12T04:34:15
121,073,744
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import gc import os import pickle import gensim import numpy as np class Word2Vec(object): def __init__(self, path, embed_size): self.path = path self.word2vec = None self.embeddings = None self.vocabulary_word2index = None self.vocabulary_index2word = None self.embed_size = embed_size self.vocab_size = 0 def load(self): print("Start to load model from %s" % self.path) self.word2vec = gensim.models.KeyedVectors.load_word2vec_format(self.path, binary=True) self.vocabulary_word2index, self.vocabulary_index2word = self.create_vocabulary() self.vocab_size = len(self.vocabulary_index2word) self.embeddings = self.create_embeddings() def create_vocabulary(self, name_scope='word2vec'): cache_path = './data/' + name_scope + "_word_vocabulary.pik" print('Cache_path:', cache_path, 'file_exists:', os.path.exists(cache_path)) if os.path.exists(cache_path): print('Use exist vocabulary cache') with open(cache_path, 'rb') as data_f: vocabulary_word2index, vocabulary_index2word = pickle.load(data_f) return vocabulary_word2index, vocabulary_index2word else: print('Create new vocabulary') vocabulary_word2index = {'PAD_ID': 0, 'EOS': 1} vocabulary_index2word = {0: 'PAD_ID', 1: 'EOS'} special_index = 1 for i, vocab in enumerate(self.word2vec.vocab): vocabulary_word2index[vocab] = i + 1 + special_index vocabulary_index2word[i + 1 + special_index] = vocab with open(cache_path, 'wb') as data_f: pickle.dump((vocabulary_word2index, vocabulary_index2word), data_f) return vocabulary_word2index, vocabulary_index2word def create_indices(self, text): print('Create new indices') indices = [] for i, sentence in enumerate(text): index = [self.vocabulary_word2index.get(word, 0) for word in sentence] indices.append(index) return np.array(indices) def create_embeddings(self): print('Start to create embeddings') count_exist = 0 count_not_exist = 0 word_embedding = [[]] * self.vocab_size # create an empty word_embedding list. word_embedding[0] = np.zeros(self.embed_size) # assign empty for first word:'PAD' bound = np.sqrt(6.0) / np.sqrt(self.vocab_size) # bound for random variables. for i in range(1, self.vocab_size): # loop each word word = self.vocabulary_index2word[i] # get a word # noinspection PyBroadException try: embedding = self.word2vec[word] # try to get vector:it is an array. except Exception: embedding = None if embedding is not None: # the 'word' exist a embedding word_embedding[i] = embedding count_exist = count_exist + 1 # assign array to this word. else: # no embedding for this word word_embedding[i] = np.random.uniform(-bound, bound, self.embed_size) count_not_exist = count_not_exist + 1 # init a random value for the word. del self.word2vec gc.collect() word_embedding_final = np.array(word_embedding) # covert to 2d array. return word_embedding_final
UTF-8
Python
false
false
3,444
py
21
word2vec.py
15
0.606562
0.593496
0
81
41.518519
95
rymate1234/Gnome-IRC
14,774,687,507,077
df8da40fc07b40d9762dfc906f9530f649ebaf2c
eedce303b54ba9c7db482b36b9da7aa4312a799a
/gnomeirc/MainWindow.py
aa291b909e8ba18a4e2bb80e17127d7c46cd04f1
[ "MIT" ]
permissive
https://github.com/rymate1234/Gnome-IRC
a9b65cfb39435fcdf58aafe050ca6e6fcc99e51f
5f6269b5cd414f8a6e122099f4496949d183f219
refs/heads/master
2021-01-17T16:59:49.332087
2015-06-21T11:10:06
2015-06-21T11:10:06
30,494,811
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python2 from twisted.internet import gtk3reactor from gnomeirc import Utils from gnomeirc.ChannelDialog import ChannelDialog from gnomeirc.GtkChannelListBoxItem import GtkChannelListBoxItem, GtkChannelCloseButton from twisted.internet import defer from gnomeirc.TabCompletionEntry import TabCompletionEntry from gnomeirc.UserList import UserList gtk3reactor.install() from twisted.internet import reactor from gi.repository import Gtk, Gio, Gdk import time, os from gnomeirc.ConnectDialog import ConnectDialog # twisted imports from twisted.words.protocols import irc from twisted.internet import protocol if os.path.dirname(os.path.realpath(__file__)).startswith("/usr/local/"): DATADIR = "/usr/local/share/gnome-irc/" elif os.path.dirname(os.path.realpath(__file__)).startswith("/usr/"): DATADIR = "/usr/share/gnome-irc/" else: DATADIR = "" css = """ #toolbar-gnomeirc { border-radius: 0; } """ class Client(irc.IRCClient): def __init__(self, *args, **kwargs): self._namescallback = {} self._whoiscallback = {} self.channels = {} self.channel_users = {} self.chan_list_items = {} self.selected = "" def _get_nickname(self): return self.factory.username def _get_password(self): return self.factory.password nickname = property(_get_nickname) password = property(_get_password) versionName = "GnomeIRC Alpha" def connectionMade(self): irc.IRCClient.connectionMade(self) builder = Gtk.Builder() builder.add_from_file(DATADIR + "data/main_view.glade") self.message_entry_container = builder.get_object("message_entry_container") self.messages_view = builder.get_object("messages") self.messages_scroll = builder.get_object("messages_scroll") self.ircview = builder.get_object("ircviewpane") self.chan_list = builder.get_object("channel_list") self.message_entry = TabCompletionEntry(self.update_completion) self.message_entry_container.add(self.message_entry) # get some stuff self.parent = self.factory.parent self.parent.addTab(self.ircview, self.factory.server_name, self) self.addChannel(self.factory.server_name) self.log("[Connected established at %s]" % time.asctime(time.localtime(time.time())), self.factory.server_name) def signedOn(self): """Called when the client has succesfully signed on to server.""" self.log("Successfuly connected!", self.factory.server_name) self.message_entry.connect("key-press-event", self.keypress) self.chan_list.connect("row-selected", self.channel_selected) self.messages_view.connect('size-allocate', self.on_new_line) self.join(self.factory.channel) def receivedMOTD(self, motd): """Called when the client gets the motd""" self.log("Server MOTD is: ", self.factory.server_name) self.log("\n".join(motd), self.factory.server_name) def show_users(self): users = self.channel_users[self.selected] users.get_users().sort() self.users_popover = Gtk.Popover().new(self.parent.users_button) self.users_popover.set_border_width(6); self.users_popover.set_position(Gtk.PositionType.TOP) self.users_popover.set_modal(True) self.users_popover.set_vexpand(False) self.users_popover.connect("closed", self.users_list_closed) self.users_popover.set_size_request(160,300) self.populate_users_menu(users) self.users_popover.add(self.users_list_container) self.users_popover.show_all() def populate_users_menu(self, users): self.users_list_add("Operators", True) ops = [user for user in users if user.startswith("@")] for s in ops: self.users_list_add(s) self.users_list_add("Voiced", True) voiced = [user for user in users if user.startswith("+")] for s in voiced: self.users_list_add(s) self.users_list_add("Users", True) users = [user for user in users if not(user.startswith("+") or user.startswith("@"))] for s in users: self.users_list_add(s) def users_list_add(self, user, bold=False): row = Gtk.ListBoxRow() hbox = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL, spacing=10) row.add(hbox) vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL) hbox.pack_start(vbox, True, True, 0) if bold: label1 = Gtk.Label() label1.set_markup("<b>" + user + "</b>") else: label1 = Gtk.Label(user, xalign=0) vbox.pack_start(label1, True, True, 0) row.show_all() self.users_list.add(row) def users_list_closed(self, *args): self.users_popover.remove(self.users_list) self.users_list.destroy() del self.users_list self.users_popover.destroy() del self.users_popover def dialog_response_join(self, dialog, response): if response == Gtk.ResponseType.OK: channel = dialog.channel.get_text() dialog.destroy() self.join(channel) elif response == Gtk.ResponseType.CANCEL: dialog.destroy() def connectionLost(self, reason): irc.IRCClient.connectionLost(self, reason) self.log("[Disconnected at %s]" % time.asctime(time.localtime(time.time())), self.factory.server_name) # callbacks for events def keypress(self, widget, event): adj = self.messages_scroll.get_vadjustment() adj.set_value(adj.get_upper() - adj.get_page_size()) if event.keyval == Gdk.KEY_Return: self.handle_message(widget.get_text()) widget.set_text("") return True if event.keyval == Gdk.KEY_Tab: return True return False def handle_message(self, message): if message.startswith("/"): cmd_args = message.split(" ") if cmd_args[0] == "/me": message = message.replace("/me ", "") self.describe(self.selected, message) self.log("* %s %s" % (self.nickname, message), self.selected) elif cmd_args[0] == "/join": channel = message.replace("/join ", "") self.join(channel) else: self.msg(self.selected, message) self.log("<%s> %s" % (self.nickname, message), self.selected) def channel_selected(self, widget, selected): self.selected = selected.channel self.messages_view.set_buffer(self.channels[selected.channel]) def update_completion(self, prefix): user_store = Gtk.ListStore(str) if self.selected == "": user_store.append([""]) return user_store for user in self.channel_users[self.selected].get_raw_users(): if user.startswith(prefix): user_store.append([user]) return user_store def joined(self, channel): self.addChannel(channel) self.selected = channel self.channel_users[channel] = UserList() self.log("[You have joined %s]" % channel, channel) def on_new_line(self, widget, event, data=None): adj = self.messages_scroll.get_vadjustment() adj.set_value(adj.get_upper() - adj.get_page_size()) def privmsg(self, user, channel, msg): """This will get called when the bot receives a message.""" if not any(channel in s for s in self.channels): self.addChannel(channel) # multiple messages_scrollchannels for znc if channel == self.selected: adj = self.messages_scroll.get_vadjustment() adj.set_value(adj.get_upper() - adj.get_page_size()) user = user.split('!', 1)[0] self.log("<%s> %s" % (user, msg), channel) def action(self, user, channel, msg): """This will get called when the bot sees someone do an action.""" user = user.split('!', 1)[0] self.log("* %s %s" % (user, msg), channel) # irc callbacks def irc_NICK(self, prefix, params): """Called when an IRC user changes their nickname.""" old_nick = prefix.split('!')[0] new_nick = params[0] for channel, users in self.channel_users.iteritems(): if users.has_user(old_nick): self.log("%s is now known as %s" % (old_nick, new_nick), channel) users.change_user(old_nick, new_nick) # For fun, override the method that determines how a nickname is changed on # collisions. The default method appends an underscore. def alterCollidedNick(self, nickname): """ Generate an altered version of a nickname that caused a collision in an effort to create an unused related name for subsequent registration. """ return nickname + '_' def log(self, message, channel): end_iter = self.channels[channel].get_end_iter() timestamp = time.strftime("[%H:%M:%S]", time.localtime(time.time())) self.channels[channel].insert(end_iter, '%s %s\n' % (timestamp, message)) def addChannel(self, channel): row = GtkChannelListBoxItem(channel) hbox = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL, spacing=10) row.add(hbox) vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL) hbox.pack_start(vbox, True, True, 0) label1 = Gtk.Label(channel, xalign=0) vbox.pack_start(label1, True, False, 0) button = GtkChannelCloseButton(channel) button.props.valign = Gtk.Align.CENTER button.connect("clicked", self.on_close_clicked) hbox.pack_start(button, False, False, 0) row.show_all() self.chan_list.add(row) self.channels[channel] = Gtk.TextBuffer.new(None) self.chan_list_items[channel] = row self.chan_list.select_row(row) def on_close_clicked(self, widget): chan_list_item = self.chan_list_items[widget.channel] prev_chan_list_item = self.chan_list.get_row_at_index(chan_list_item.get_index() - 1) self.chan_list.remove(chan_list_item) self.part(widget.channel) self.chan_list.show_all() self.selected = "" self.chan_list.select_row(prev_chan_list_item) # Names command - used for the users list def names(self, channel): channel = channel.lower() d = defer.Deferred() if channel not in self._namescallback: self._namescallback[channel] = ([], []) self._namescallback[channel][0].append(d) self.sendLine("NAMES %s" % channel) return d def irc_RPL_NAMREPLY(self, prefix, params): channel = params[2] nicklist = params[3].split(' ') if channel not in self._namescallback: self.channel_users[channel].add_users(nicklist) return n = self._namescallback[channel][1] n += nicklist def irc_RPL_ENDOFNAMES(self, prefix, params): channel = params[1] if channel not in self._namescallback: return callbacks, namelist = self._namescallback[channel] for cb in callbacks: cb.callback(namelist) del self._namescallback[channel] # handling for the WHOIS command def performWhois(self, username): username = username.lower() d = defer.Deferred() if username not in self._whoiscallback: self._whoiscallback[username] = ([], []) self._whoiscallback[username][0].append(d) self.whois(username) return d def irc_RPL_WHOISCHANNELS(self, prefix, params): nickname = params[1].lower() callbacks, namelist = self._whoiscallback[nickname] n = self._whoiscallback[nickname][1] n += params for cb in callbacks: cb.callback(namelist) del self._whoiscallback[nickname] class IRCFactory(protocol.ClientFactory): """A factory for Clients. A new protocol instance will be created each time we connect to the server. """ # the class of the protocol to build when new connection is made protocol = Client def __init__(self, username, channel, password, server_name, parent): self.channel = channel self.username = username self.password = password self.server_name = server_name self.parent = parent def clientConnectionLost(self, connector, reason): """If we get disconnected, show an error.""" self.showError('Connection lost! Reason: %s\n' % (reason)) # connector.connect() def clientConnectionFailed(self, connector, reason): self.showError('Connection failed! Reason: %s\n' % (reason)) # reactor.stop() def showError(self, error): dialog = Gtk.MessageDialog(self, 0, Gtk.MessageType.ERROR, Gtk.ButtonsType.OK, "Error with connection") dialog.format_secondary_text( error) dialog.show() class MainWindow(Gtk.Window): def __init__(self): Gtk.Window.__init__(self, title="Gnome IRC") self.clients = {} self.set_default_size(1024, 600) style_provider = Gtk.CssProvider() style_provider.load_from_data(css) Gtk.StyleContext.add_provider_for_screen( Gdk.Screen.get_default(), style_provider, Gtk.STYLE_PROVIDER_PRIORITY_APPLICATION ) if Utils.isGnome(): # we're in gnome, so use the gnome UI self.hb = Gtk.HeaderBar() self.hb.set_show_close_button(True) self.hb.props.title = "Gnome IRC" self.set_titlebar(self.hb) self.server_tabs = Gtk.Notebook.new() self.add(self.server_tabs) else: # not gnome, use the header bar as a toolbar layout = Gtk.Box(orientation=Gtk.Orientation.VERTICAL, spacing=6) self.add(layout) self.hb = Gtk.HeaderBar() self.hb.set_name("toolbar-gnomeirc") layout.pack_start(self.hb, False, True, 0) self.server_tabs = Gtk.Notebook.new() layout.pack_start(self.server_tabs, True, True, 0) # add the buttons to the toolbar self.connect_button = Gtk.Button("Quick Connect") self.connect_button.connect("clicked", self.on_connect_clicked) self.hb.pack_start(self.connect_button) # Join Channel Button button = Gtk.Button() icon = Gio.ThemedIcon(name="list-add") image = Gtk.Image.new_from_gicon(icon, Gtk.IconSize.BUTTON) button.add(image) button.connect("clicked", self.on_join_clicked) # Users list button button2 = Gtk.Button() icon = Gio.ThemedIcon(name="avatar-default-symbolic") image = Gtk.Image.new_from_gicon(icon, Gtk.IconSize.BUTTON) button2.add(image) self.users_button = button2 button2.connect("clicked", self.on_users_clicked) self.hb.pack_end(button) self.hb.pack_end(button2) self.show_all() self.connect("delete_event", self.on_quit) def on_connect_clicked(self, widget): dialog = ConnectDialog(self) dialog.connect('response', self.dialog_response_cb) dialog.show() def dialog_response_cb(self, dialog, response): if response == Gtk.ResponseType.OK: server = dialog.address_entry.get_text() port = int(dialog.port_entry.get_text()) nickname = dialog.nick_entry.get_text() password = dialog.password.get_text() channel = dialog.channel.get_text() server_name = dialog.server_name.get_text() dialog.destroy() factory = IRCFactory(nickname, channel, password, server_name, self) # connect factory to this host and port reactor.connectTCP(server, port, factory) # disable the button once connected, at least until we have a proper multiple server implementation # self.connect_button.set_sensitive(False); # self.connect_button.set_label("Connected to " + server); win.show_all() elif response == Gtk.ResponseType.CANCEL: dialog.destroy() def addTab(self, widget, server, client): self.server_tabs.append_page(widget, Gtk.Label(server)) self.clients[server] = client self.show_all() def on_join_clicked(self, widget): if not self.clients: return current_client = self.clients[self.get_current_page()] dialog = ChannelDialog(self) dialog.connect('response', current_client.dialog_response_join) dialog.show() def on_users_clicked(self, widget): if not self.clients: return current_client = self.clients[self.get_current_page()] if not hasattr(current_client, "users_popover"): builder = Gtk.Builder() builder.add_from_file(DATADIR + "data/users_list.glade") current_client.users_list = builder.get_object("users_list") current_client.users_list_container = builder.get_object("users_list_container") #current_client.names(current_client.selected).addCallback(current_client.got_users) current_client.show_users() def get_current_page(self): page_num = self.server_tabs.get_current_page() page_widget = self.server_tabs.get_nth_page(page_num) page_name = self.server_tabs.get_tab_label_text(page_widget) return page_name def on_quit(self, *args): #Gtk.main_quit() reactor.stop() win = MainWindow() win.set_wmclass ("Gnome IRC", "Gnome IRC") win.set_title ("Gnome IRC") win.show_all() reactor.run()
UTF-8
Python
false
false
18,482
py
13
MainWindow.py
8
0.598474
0.595174
0
529
32.941399
111
fahad-gcet/tasks_api
11,836,929,877,769
dc7fc2d7ab494cc363b1b403763ada06635dc8ba
324a59acbd10605e5200f1e858c5aa699843ce66
/api/views.py
d48aa4aa65f8cd764e4269c1850e81e4c325dc03
[]
no_license
https://github.com/fahad-gcet/tasks_api
0a0c7abcdb9a4c407515eeb66d771232c72e46d7
307b2548f014d002b4c7c574d35ba8f403b10073
refs/heads/master
2021-06-27T03:52:48.401495
2017-09-19T11:09:51
2017-09-19T11:09:51
104,043,206
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from rest_framework.generics import ListCreateAPIView, RetrieveUpdateDestroyAPIView from api.models import Task from api.serializers import TaskSerializer from api.permissions import IsOwnerOrReadOnly class TaskMixin: queryset = Task.objects.all() serializer_class = TaskSerializer permission_classes = (IsOwnerOrReadOnly,) def perform_create(self, serializer): serializer.save(owner=self.request.user) class TaskList(TaskMixin, ListCreateAPIView): pass class TaskDetail(TaskMixin, RetrieveUpdateDestroyAPIView): pass
UTF-8
Python
false
false
558
py
2
views.py
2
0.78853
0.78853
0
19
28.421053
83
bryanm92s/Python
17,995,912,985,600
2011b2ccb19860c71cc006909b41aab8831e7fd3
19d63b7769f02d3f94cb8b8c3e77361bdbc518e9
/Ejercicios en python 1/Tiemposolmar_5.py
ee3278b34890f7279d43437bb50f87a8e6def841
[]
no_license
https://github.com/bryanm92s/Python
ff964de7deb535ee34387900835f1b3d7bc935d3
8c8aee7399a448e6b38e704ddc19160a7b252de5
refs/heads/master
2022-04-14T07:23:59.015588
2020-04-12T20:21:52
2020-04-12T20:21:52
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
''' CALCULAR CANTIDAD DE SEGUNDOS QUE LE TOMA A LA LUZ VIAJAR DEL SOL A MARTE ''' print ("CALCULAR CANTIDAD DE SEGUNDOS QUE LE TOMA A LA LUZ VIAJAR DEL SOL A MARTE") veloc_luz= 300000 dist_marte=227940000 # dist_tierra= 150000000 segun_minutos=60 #tiempo_s =dist_marte/veloc_luz tiempo_s =dist_marte/veloc_luz tiempo_m =tiempo_s/segun_minutos print ("La cantidad de segundos que le toma a la luz viajar del SOL a MARTE es : ", float(tiempo_s), "Segundos") print ("La cantidad de minutos que le toma a la luz viajar del SOL a MARTE es : ", float(tiempo_m), "Minutos")
UTF-8
Python
false
false
600
py
24
Tiemposolmar_5.py
24
0.7
0.656667
0
19
30.631579
112
MasoniteFramework/core
7,662,221,692,642
8a2d5c6274d4222e18d0b5fae952f03dcf3b2c3b
ae645d5694ac7dbb49d4c6dfc6dd98ef82b1fafa
/masonite/testing/TestCase.py
8c9f32a912eda447cfec00a3565d1e816c93a187
[ "MIT" ]
permissive
https://github.com/MasoniteFramework/core
39d541286aa707423c4f7ddc464092b4d530c6f7
235ee98a20f7359b0201aa4d2b2e7cf7b6c36f8b
refs/heads/2.2
2021-05-13T13:38:20.286037
2019-11-29T14:28:32
2019-11-29T14:28:32
116,712,367
97
101
MIT
false
2023-08-02T01:36:52
2018-01-08T18:23:39
2023-05-23T19:12:38
2020-03-03T07:25:33
4,545
84
55
6
Python
false
false
import io import json import sys import unittest from contextlib import contextmanager from urllib.parse import urlencode from masonite import env from masonite.exceptions import RouteNotFoundException from masonite.helpers.migrations import Migrations from masonite.helpers.routes import create_matchurl, flatten_routes from masonite.testsuite import generate_wsgi from orator.orm import Factory from masonite.app import App from .MockRoute import MockRoute class TestCase(unittest.TestCase): sqlite = True transactions = True refreshes_database = False _transaction = False _with_subdomains = False def setUp(self): from wsgi import container self.container = container self.acting_user = False self.factory = Factory() self.withoutExceptionHandling() self.withoutCsrf() if not self._transaction: self.startTransaction() if hasattr(self, 'setUpFactories'): self.setUpFactories() if self.sqlite and env('DB_CONNECTION') != 'sqlite': raise Exception("Cannot run tests without using the 'sqlite' database.") if not self.transactions and self.refreshes_database: self.refreshDatabase() self.route_middleware = False self.http_middleware = False self.headers = {} def buildOwnContainer(self): self.container = self.create_container() return self @classmethod def setUpClass(cls): cls.staticSetUpDatabase() @classmethod def tearDownClass(cls): if not cls.refreshes_database and cls.transactions: cls.staticStopTransaction() else: cls.staticTearDownDatabase() def refreshDatabase(self): if not self.refreshes_database and self.transactions: self.stopTransaction() self.startTransaction() if hasattr(self, 'setUpFactories'): self.setUpFactories() else: self.tearDownDatabase() self.setUpDatabase() def startTransaction(self): from config.database import DB DB.begin_transaction() self.__class__._transaction = True def stopTransaction(self): from config.database import DB DB.rollback() self.__class__._transaction = False @classmethod def staticStopTransaction(cls): from config.database import DB DB.rollback() cls._transaction = False def make(self, model, factory, amount=50): self.registerFactory(model, factory) self.makeFactory(model, amount) def makeFactory(self, model, amount): return self.factory(model, amount).create() def registerFactory(self, model, callable_factory): self.factory.register(model, callable_factory) def setUpDatabase(self): self.tearDownDatabase() Migrations().run() if hasattr(self, 'setUpFactories'): self.setUpFactories() def tearDownDatabase(self): Migrations().reset() @staticmethod def staticSetUpDatabase(): Migrations().run() @staticmethod def staticTearDownDatabase(): Migrations().reset() def tearDown(self): if not self.transactions and self.refreshes_database: self.tearDownDatabase() if self.container.has('Request'): self.container.make('Request').get_and_reset_headers() def call(self, method, url, params, wsgi={}): custom_wsgi = { 'PATH_INFO': url, 'REQUEST_METHOD': method } custom_wsgi.update(wsgi) if not self._with_csrf: params.update({'__token': 'tok'}) custom_wsgi.update({ 'HTTP_COOKIE': 'csrf_token=tok', 'CONTENT_LENGTH': len(str(json.dumps(params))), 'wsgi.input': io.BytesIO(bytes(json.dumps(params), 'utf-8')), }) custom_wsgi.update({ 'QUERY_STRING': urlencode(params), }) self.run_container(custom_wsgi) self.container.make('Request').request_variables = params return self.route(url, method) def get(self, url, params={}, wsgi={}): return self.call('GET', url, params, wsgi=wsgi) def withSubdomains(self): self._with_subdomains = True return self def json(self, method, url, params={}): return self.call(method, url, params, wsgi={ 'CONTENT_TYPE': 'application/json', 'CONTENT_LENGTH': len(str(json.dumps(params))), 'wsgi.input': io.BytesIO(bytes(json.dumps(params), 'utf-8')), }) def post(self, url, params={}): return self.call('POST', url, params) def put(self, url, params={}): return self.json('PUT', url, params) def patch(self, url, params={}): return self.json('PATCH', url, params) def delete(self, url, params={}): return self.json('DELETE', url, params) def actingAs(self, user): if not user: raise TypeError("Cannot act as a user of type: {}".format(type(user))) self.acting_user = user return self def route(self, url, method=False): for route in self.container.make('WebRoutes'): matchurl = create_matchurl(url, route) if self.container.make('Request').has_subdomain(): # Check if the subdomain matches the correct routes domain if not route.has_required_domain(): continue if matchurl.match(url) and method in route.method_type: return MockRoute(route, self.container) raise RouteNotFoundException("Could not find a route based on the url '{}'".format(url)) def routes(self, routes=[], only=False): if only: self.container.bind('WebRoutes', flatten_routes(only)) return self.container.bind('WebRoutes', flatten_routes(self.container.make('WebRoutes') + routes)) @contextmanager def captureOutput(self): new_out, new_err = io.StringIO(), io.StringIO() old_out, old_err = sys.stdout, sys.stderr try: sys.stdout, sys.stderr = new_out, new_err yield sys.stdout finally: sys.stdout, sys.stderr = old_out, old_err def run_container(self, wsgi_values={}): wsgi = generate_wsgi() wsgi.update(wsgi_values) self.container.bind('Environ', wsgi) self.container.make('Request')._test_user = self.acting_user self.container.make('Request').load_app(self.container).load_environ(wsgi) if self._with_subdomains: self.container.make('Request').activate_subdomains() if self.headers: self.container.make('Request').header(self.headers) if self.route_middleware is not False: self.container.bind('RouteMiddleware', self.route_middleware) if self.http_middleware is not False: self.container.bind('HttpMiddleware', self.http_middleware) try: for provider in self.container.make('WSGIProviders'): self.container.resolve(provider.boot) except Exception as e: if self._exception_handling: self.container.make('ExceptionHandler').load_exception(e) else: raise e def withExceptionHandling(self): self._exception_handling = True def withoutExceptionHandling(self): self._exception_handling = False def withCsrf(self): self._with_csrf = True return self def withoutCsrf(self): self._with_csrf = False return self def assertDatabaseHas(self, schema, value): from config.database import DB table = schema.split('.')[0] column = schema.split('.')[1] self.assertTrue(DB.table(table).where(column, value).first()) def assertDatabaseNotHas(self, schema, value): from config.database import DB table = schema.split('.')[0] column = schema.split('.')[1] self.assertFalse(DB.table(table).where(column, value).first()) def on_bind(self, obj, method): self.container.on_bind(obj, method) return self def withRouteMiddleware(self, middleware): self.route_middleware = middleware return self def withHttpMiddleware(self, middleware): self.http_middleware = middleware return self def withHeaders(self, headers={}): self.headers = headers return self def withoutHttpMiddleware(self): self.http_middleware = [] return self def create_container(self): container = App() from config import application from config import providers container.bind('WSGI', generate_wsgi()) container.bind('Application', application) container.bind('Container', container) container.bind('ProvidersConfig', providers) container.bind('Providers', []) container.bind('WSGIProviders', []) """Bind all service providers Let's register everything into the Service Container. Once everything is in the container we can run through all the boot methods. For reasons some providers don't need to execute with every request and should only run once when the server is started. Providers will be ran once if the wsgi attribute on a provider is False. """ for provider in container.make('ProvidersConfig').PROVIDERS: located_provider = provider() located_provider.load_app(container).register() if located_provider.wsgi: container.make('WSGIProviders').append(located_provider) else: container.make('Providers').append(located_provider) for provider in container.make('Providers'): container.resolve(provider.boot) """Get the application from the container Some providers may change the WSGI Server like wrapping the WSGI server in a Whitenoise container for an example. Let's get a WSGI instance from the container and pass it to the application variable. This will allow WSGI servers to pick it up from the command line """ return container
UTF-8
Python
false
false
10,408
py
274
TestCase.py
238
0.620388
0.61962
0
326
30.92638
99
ibell/achp
12,317,966,249,364
669da02540b90f70dac527ae3fa4d0ce22096608
3859ee7a1694f30c69e4cb4ee392f3e197b23aaa
/src/Compressor.py
1ea0a6e5a2d98b1772525ca57663885f8434916e
[]
no_license
https://github.com/ibell/achp
71467905986ae5f0c7dcab0b2ca98bfd0aa30977
1003d16c651447d0068173e6d3186ebae9672bb1
refs/heads/master
2016-08-02T21:40:56.971781
2013-10-26T23:33:45
2013-10-26T23:33:45
12,282,085
8
1
null
null
null
null
null
null
null
null
null
null
null
null
null
# This file was automatically generated by SWIG (http://www.swig.org). # Version 2.0.11 # # Do not make changes to this file unless you know what you are doing--modify # the SWIG interface file instead. from sys import version_info if version_info >= (2,6,0): def swig_import_helper(): from os.path import dirname import imp fp = None try: fp, pathname, description = imp.find_module('_Compressor', [dirname(__file__)]) except ImportError: import _Compressor return _Compressor if fp is not None: try: _mod = imp.load_module('_Compressor', fp, pathname, description) finally: fp.close() return _mod _Compressor = swig_import_helper() del swig_import_helper else: import _Compressor del version_info try: _swig_property = property except NameError: pass # Python < 2.2 doesn't have 'property'. def _swig_setattr_nondynamic(self,class_type,name,value,static=1): if (name == "thisown"): return self.this.own(value) if (name == "this"): if type(value).__name__ == 'SwigPyObject': self.__dict__[name] = value return method = class_type.__swig_setmethods__.get(name,None) if method: return method(self,value) if (not static): self.__dict__[name] = value else: raise AttributeError("You cannot add attributes to %s" % self) def _swig_setattr(self,class_type,name,value): return _swig_setattr_nondynamic(self,class_type,name,value,0) def _swig_getattr(self,class_type,name): if (name == "thisown"): return self.this.own() method = class_type.__swig_getmethods__.get(name,None) if method: return method(self) raise AttributeError(name) def _swig_repr(self): try: strthis = "proxy of " + self.this.__repr__() except: strthis = "" return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,) try: _object = object _newclass = 1 except AttributeError: class _object : pass _newclass = 0 class SwigPyIterator(_object): __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, SwigPyIterator, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, SwigPyIterator, name) def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract") __repr__ = _swig_repr __swig_destroy__ = _Compressor.delete_SwigPyIterator __del__ = lambda self : None; def value(self): return _Compressor.SwigPyIterator_value(self) def incr(self, n=1): return _Compressor.SwigPyIterator_incr(self, n) def decr(self, n=1): return _Compressor.SwigPyIterator_decr(self, n) def distance(self, *args): return _Compressor.SwigPyIterator_distance(self, *args) def equal(self, *args): return _Compressor.SwigPyIterator_equal(self, *args) def copy(self): return _Compressor.SwigPyIterator_copy(self) def next(self): return _Compressor.SwigPyIterator_next(self) def __next__(self): return _Compressor.SwigPyIterator___next__(self) def previous(self): return _Compressor.SwigPyIterator_previous(self) def advance(self, *args): return _Compressor.SwigPyIterator_advance(self, *args) def __eq__(self, *args): return _Compressor.SwigPyIterator___eq__(self, *args) def __ne__(self, *args): return _Compressor.SwigPyIterator___ne__(self, *args) def __iadd__(self, *args): return _Compressor.SwigPyIterator___iadd__(self, *args) def __isub__(self, *args): return _Compressor.SwigPyIterator___isub__(self, *args) def __add__(self, *args): return _Compressor.SwigPyIterator___add__(self, *args) def __sub__(self, *args): return _Compressor.SwigPyIterator___sub__(self, *args) def __iter__(self): return self SwigPyIterator_swigregister = _Compressor.SwigPyIterator_swigregister SwigPyIterator_swigregister(SwigPyIterator) class vectord(_object): __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, vectord, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, vectord, name) __repr__ = _swig_repr def iterator(self): return _Compressor.vectord_iterator(self) def __iter__(self): return self.iterator() def __nonzero__(self): return _Compressor.vectord___nonzero__(self) def __bool__(self): return _Compressor.vectord___bool__(self) def __len__(self): return _Compressor.vectord___len__(self) def pop(self): return _Compressor.vectord_pop(self) def __getslice__(self, *args): return _Compressor.vectord___getslice__(self, *args) def __setslice__(self, *args): return _Compressor.vectord___setslice__(self, *args) def __delslice__(self, *args): return _Compressor.vectord___delslice__(self, *args) def __delitem__(self, *args): return _Compressor.vectord___delitem__(self, *args) def __getitem__(self, *args): return _Compressor.vectord___getitem__(self, *args) def __setitem__(self, *args): return _Compressor.vectord___setitem__(self, *args) def append(self, *args): return _Compressor.vectord_append(self, *args) def empty(self): return _Compressor.vectord_empty(self) def size(self): return _Compressor.vectord_size(self) def clear(self): return _Compressor.vectord_clear(self) def swap(self, *args): return _Compressor.vectord_swap(self, *args) def get_allocator(self): return _Compressor.vectord_get_allocator(self) def begin(self): return _Compressor.vectord_begin(self) def end(self): return _Compressor.vectord_end(self) def rbegin(self): return _Compressor.vectord_rbegin(self) def rend(self): return _Compressor.vectord_rend(self) def pop_back(self): return _Compressor.vectord_pop_back(self) def erase(self, *args): return _Compressor.vectord_erase(self, *args) def __init__(self, *args): this = _Compressor.new_vectord(*args) try: self.this.append(this) except: self.this = this def push_back(self, *args): return _Compressor.vectord_push_back(self, *args) def front(self): return _Compressor.vectord_front(self) def back(self): return _Compressor.vectord_back(self) def assign(self, *args): return _Compressor.vectord_assign(self, *args) def resize(self, *args): return _Compressor.vectord_resize(self, *args) def insert(self, *args): return _Compressor.vectord_insert(self, *args) def reserve(self, *args): return _Compressor.vectord_reserve(self, *args) def capacity(self): return _Compressor.vectord_capacity(self) __swig_destroy__ = _Compressor.delete_vectord __del__ = lambda self : None; vectord_swigregister = _Compressor.vectord_swigregister vectord_swigregister(vectord) class OutputEntryClass(_object): __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, OutputEntryClass, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, OutputEntryClass, name) __repr__ = _swig_repr def __init__(self, *args): this = _Compressor.new_OutputEntryClass(*args) try: self.this.append(this) except: self.this = this __swig_destroy__ = _Compressor.delete_OutputEntryClass __del__ = lambda self : None; OutputEntryClass_swigregister = _Compressor.OutputEntryClass_swigregister OutputEntryClass_swigregister(OutputEntryClass) class ACHPComponentClass(_object): __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, ACHPComponentClass, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, ACHPComponentClass, name) def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract") __repr__ = _swig_repr __swig_destroy__ = _Compressor.delete_ACHPComponentClass __del__ = lambda self : None; ACHPComponentClass_swigregister = _Compressor.ACHPComponentClass_swigregister ACHPComponentClass_swigregister(ACHPComponentClass) class CompressorClass(_object): __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, CompressorClass, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, CompressorClass, name) __repr__ = _swig_repr def __init__(self): this = _Compressor.new_CompressorClass() try: self.this.append(this) except: self.this = this __swig_destroy__ = _Compressor.delete_CompressorClass __del__ = lambda self : None; __swig_setmethods__["Tsat_s_K"] = _Compressor.CompressorClass_Tsat_s_K_set __swig_getmethods__["Tsat_s_K"] = _Compressor.CompressorClass_Tsat_s_K_get if _newclass:Tsat_s_K = _swig_property(_Compressor.CompressorClass_Tsat_s_K_get, _Compressor.CompressorClass_Tsat_s_K_set) __swig_setmethods__["Tsat_d_K"] = _Compressor.CompressorClass_Tsat_d_K_set __swig_getmethods__["Tsat_d_K"] = _Compressor.CompressorClass_Tsat_d_K_get if _newclass:Tsat_d_K = _swig_property(_Compressor.CompressorClass_Tsat_d_K_get, _Compressor.CompressorClass_Tsat_d_K_set) __swig_setmethods__["DT_sh_K"] = _Compressor.CompressorClass_DT_sh_K_set __swig_getmethods__["DT_sh_K"] = _Compressor.CompressorClass_DT_sh_K_get if _newclass:DT_sh_K = _swig_property(_Compressor.CompressorClass_DT_sh_K_get, _Compressor.CompressorClass_DT_sh_K_set) __swig_setmethods__["Tsat_s"] = _Compressor.CompressorClass_Tsat_s_set __swig_getmethods__["Tsat_s"] = _Compressor.CompressorClass_Tsat_s_get if _newclass:Tsat_s = _swig_property(_Compressor.CompressorClass_Tsat_s_get, _Compressor.CompressorClass_Tsat_s_set) __swig_setmethods__["Tsat_d"] = _Compressor.CompressorClass_Tsat_d_set __swig_getmethods__["Tsat_d"] = _Compressor.CompressorClass_Tsat_d_get if _newclass:Tsat_d = _swig_property(_Compressor.CompressorClass_Tsat_d_get, _Compressor.CompressorClass_Tsat_d_set) __swig_setmethods__["power_map"] = _Compressor.CompressorClass_power_map_set __swig_getmethods__["power_map"] = _Compressor.CompressorClass_power_map_get if _newclass:power_map = _swig_property(_Compressor.CompressorClass_power_map_get, _Compressor.CompressorClass_power_map_set) __swig_setmethods__["Vdot_ratio"] = _Compressor.CompressorClass_Vdot_ratio_set __swig_getmethods__["Vdot_ratio"] = _Compressor.CompressorClass_Vdot_ratio_get if _newclass:Vdot_ratio = _swig_property(_Compressor.CompressorClass_Vdot_ratio_get, _Compressor.CompressorClass_Vdot_ratio_set) __swig_setmethods__["P1"] = _Compressor.CompressorClass_P1_set __swig_getmethods__["P1"] = _Compressor.CompressorClass_P1_get if _newclass:P1 = _swig_property(_Compressor.CompressorClass_P1_get, _Compressor.CompressorClass_P1_set) __swig_setmethods__["P2"] = _Compressor.CompressorClass_P2_set __swig_getmethods__["P2"] = _Compressor.CompressorClass_P2_get if _newclass:P2 = _swig_property(_Compressor.CompressorClass_P2_get, _Compressor.CompressorClass_P2_set) __swig_setmethods__["F"] = _Compressor.CompressorClass_F_set __swig_getmethods__["F"] = _Compressor.CompressorClass_F_get if _newclass:F = _swig_property(_Compressor.CompressorClass_F_get, _Compressor.CompressorClass_F_set) __swig_setmethods__["T1_actual"] = _Compressor.CompressorClass_T1_actual_set __swig_getmethods__["T1_actual"] = _Compressor.CompressorClass_T1_actual_get if _newclass:T1_actual = _swig_property(_Compressor.CompressorClass_T1_actual_get, _Compressor.CompressorClass_T1_actual_set) __swig_setmethods__["v_map"] = _Compressor.CompressorClass_v_map_set __swig_getmethods__["v_map"] = _Compressor.CompressorClass_v_map_get if _newclass:v_map = _swig_property(_Compressor.CompressorClass_v_map_get, _Compressor.CompressorClass_v_map_set) __swig_setmethods__["v_actual"] = _Compressor.CompressorClass_v_actual_set __swig_getmethods__["v_actual"] = _Compressor.CompressorClass_v_actual_get if _newclass:v_actual = _swig_property(_Compressor.CompressorClass_v_actual_get, _Compressor.CompressorClass_v_actual_set) __swig_setmethods__["mdot"] = _Compressor.CompressorClass_mdot_set __swig_getmethods__["mdot"] = _Compressor.CompressorClass_mdot_get if _newclass:mdot = _swig_property(_Compressor.CompressorClass_mdot_get, _Compressor.CompressorClass_mdot_set) __swig_setmethods__["fp"] = _Compressor.CompressorClass_fp_set __swig_getmethods__["fp"] = _Compressor.CompressorClass_fp_get if _newclass:fp = _swig_property(_Compressor.CompressorClass_fp_get, _Compressor.CompressorClass_fp_set) __swig_setmethods__["eta_oi"] = _Compressor.CompressorClass_eta_oi_set __swig_getmethods__["eta_oi"] = _Compressor.CompressorClass_eta_oi_get if _newclass:eta_oi = _swig_property(_Compressor.CompressorClass_eta_oi_get, _Compressor.CompressorClass_eta_oi_set) __swig_setmethods__["Wdot"] = _Compressor.CompressorClass_Wdot_set __swig_getmethods__["Wdot"] = _Compressor.CompressorClass_Wdot_get if _newclass:Wdot = _swig_property(_Compressor.CompressorClass_Wdot_get, _Compressor.CompressorClass_Wdot_set) __swig_setmethods__["CycleEnergyIn"] = _Compressor.CompressorClass_CycleEnergyIn_set __swig_getmethods__["CycleEnergyIn"] = _Compressor.CompressorClass_CycleEnergyIn_get if _newclass:CycleEnergyIn = _swig_property(_Compressor.CompressorClass_CycleEnergyIn_get, _Compressor.CompressorClass_CycleEnergyIn_set) __swig_setmethods__["Vdot_pumped"] = _Compressor.CompressorClass_Vdot_pumped_set __swig_getmethods__["Vdot_pumped"] = _Compressor.CompressorClass_Vdot_pumped_get if _newclass:Vdot_pumped = _swig_property(_Compressor.CompressorClass_Vdot_pumped_get, _Compressor.CompressorClass_Vdot_pumped_set) __swig_setmethods__["P"] = _Compressor.CompressorClass_P_set __swig_getmethods__["P"] = _Compressor.CompressorClass_P_get if _newclass:P = _swig_property(_Compressor.CompressorClass_P_get, _Compressor.CompressorClass_P_set) __swig_setmethods__["M"] = _Compressor.CompressorClass_M_set __swig_getmethods__["M"] = _Compressor.CompressorClass_M_get if _newclass:M = _swig_property(_Compressor.CompressorClass_M_get, _Compressor.CompressorClass_M_set) __swig_setmethods__["inlet_state"] = _Compressor.CompressorClass_inlet_state_set __swig_getmethods__["inlet_state"] = _Compressor.CompressorClass_inlet_state_get if _newclass:inlet_state = _swig_property(_Compressor.CompressorClass_inlet_state_get, _Compressor.CompressorClass_inlet_state_set) __swig_setmethods__["outlet_state"] = _Compressor.CompressorClass_outlet_state_set __swig_getmethods__["outlet_state"] = _Compressor.CompressorClass_outlet_state_get if _newclass:outlet_state = _swig_property(_Compressor.CompressorClass_outlet_state_get, _Compressor.CompressorClass_outlet_state_set) def set_P(self, *args): return _Compressor.CompressorClass_set_P(self, *args) def speed_test(self, *args): return _Compressor.CompressorClass_speed_test(self, *args) def calculate(self): return _Compressor.CompressorClass_calculate(self) def test(self): return _Compressor.CompressorClass_test(self) def OutputList(self): return _Compressor.CompressorClass_OutputList(self) CompressorClass_swigregister = _Compressor.CompressorClass_swigregister CompressorClass_swigregister(CompressorClass) # This file is compatible with both classic and new-style classes.
UTF-8
Python
false
false
15,784
py
13
Compressor.py
9
0.687532
0.685251
0
264
57.772727
141
ox-it/moxie
14,723,147,899,793
dede27f101dbe8ce7c3d49dc852628f03ab85cd1
6f3bf2bb9c8cb90e32a2514765fae3ee06bde405
/moxie/tests/test_authentication_hmac.py
0651a23f2e4e6932f187e370717c0efa8932ba2c
[ "Apache-2.0" ]
permissive
https://github.com/ox-it/moxie
cf298ed6d4107ae1e6ab96f41655fa48e7ce97c1
cc234a4170358c62b86d9fdb7760949b33a81937
refs/heads/master
2020-03-03T00:18:37.056387
2019-06-14T14:30:15
2019-06-14T14:30:15
5,481,115
2
2
Apache-2.0
false
2020-07-01T07:41:30
2012-08-20T12:49:13
2020-06-30T12:38:12
2020-07-01T07:41:29
1,735
13
2
1
Python
false
false
import unittest from moxie import create_app from moxie.core.views import accepts from moxie.authentication import HMACView class DummyUser(object): def __init__(self, secret_key): self.secret_key = secret_key self.name = 'Dave' class TestAuthenticatedView(HMACView): def handle_request(self): one_user = DummyUser('mysupersecretkey') if self.check_auth(one_user.secret_key): return {'name': one_user.name} @accepts('foo/bar') def basic_response(self, response): return 'Hello %s!' % response['name'], 200 class HMACAuthenticationTestCase(unittest.TestCase): def setUp(self): self.user = DummyUser('mysupersecretkey') self.app = create_app() self.app.add_url_rule('/test', 'test', TestAuthenticatedView.as_view('test')) def test_successful_hmac(self): headers = [ ('Accept', 'foo/bar'), ('Date', 'Wednesday'), ('X-HMAC-Nonce', 'foobarbaz'), ('Authorization', '668db85d1dff6718d778454fc8c1d368a906f675'), ] with self.app.test_client() as c: rv = c.get('/test', headers=headers) self.assertEqual(rv.status_code, 200) def test_hmac_signature_mismatch(self): headers = [ ('Accept', 'foo/bar'), ('Date', 'Wednesday'), ('X-HMAC-Nonce', 'foobarbaz'), ('Authorization', 'wrong-wrong'), ] with self.app.test_client() as c: rv = c.get('/test', headers=headers) self.assertEqual(rv.status_code, 401) def test_missing_header(self): headers = [ ('Accept', 'foo/bar'), ('Date', 'Wednesday'), ('Authorization', 'wrong-wrong'), ] with self.app.test_client() as c: rv = c.get('/test', headers=headers) self.assertEqual(rv.status_code, 401) self.assertIn("missing header", rv.headers['WWW-Authenticate'])
UTF-8
Python
false
false
1,995
py
139
test_authentication_hmac.py
74
0.574937
0.555388
0
63
30.666667
85
alvinr/data-modeling
6,786,048,366,191
aa9136c95fa51d7f7d56658425e758d2077d6739
a8738df3536e25ebbbe134df19d74ec69c323769
/redis/faceting/all.py
3cab02d1ad2f908f6d0eaf7e667e6e4a64a82fdf
[]
no_license
https://github.com/alvinr/data-modeling
3c53ef8b15d540d8bd5866f0acdbdf6986916f39
54e7a39f73393e9f75acaa6df7af94d4fafda618
refs/heads/master
2021-09-08T03:52:36.916432
2021-08-25T17:35:52
2021-08-25T17:35:52
64,255,246
2
1
null
null
null
null
null
null
null
null
null
null
null
null
null
from redis import StrictRedis import os import hashlib import json redis = StrictRedis(host=os.environ.get("REDIS_HOST", "localhost"), port=os.environ.get("REDIS_PORT", 6379), db=0) redis.flushall() def create_event(product): p = redis.pipeline() p.sadd("reserve_seating:" + str(product['reserve_seating']), product['sku']) p.sadd("medal_event:" + str(product['medal_event']), product['sku']) p.sadd("venue:" + str(product['venue']), product['sku']) p.hmset("products:" + product['sku'], product) p.execute() def create_events(): m100m_final = { 'sku': "123-ABC-723", 'name': "Men's 100m Final", 'reserve_seating': True, 'medal_event': True, 'venue': "Olympic Stadium", 'category': ["Track & Field", "Mens"] } w4x100_heat = { 'sku': "737-DEF-911", 'name': "Women's 4x100m Heats", 'reserve_seating': True, 'medal_event': False, 'venue': "Olympic Stadium", 'category': ["Track & Field", "Womens"] } wjudo_qual = { 'sku': "320-GHI-921", 'name': "Womens Judo Qualifying", 'reserve_seating': False, 'medal_event': False, 'venue': "Nippon Budokan", 'category': ["Martial Arts", "Womens"] } create_event(m100m_final) create_event(w4x100_heat) create_event(wjudo_qual) def match(*keys): m = [] matches = redis.sinter(keys) for sku in matches: record = redis.hgetall("products:" + sku) m.append(record) return m # Find matches based on two criteria create_events() # Find the match matches = match("reserve_seating:True", "medal_event:False") for m in matches: print m matches = match("reserve_seating:True", "medal_event:False", "venue:Olympic Stadium") for m in matches: print m def create_hashed_lookups(lookup_key, products): h = hashlib.new("ripemd160") h.update(str(lookup_key)) for sku in products: redis.sadd("lookups:" + h.hexdigest(), sku) def match_hashed(lookup_key): m = [] h = hashlib.new("ripemd160") h.update(str(lookup_key)) matches = redis.smembers("lookups:" + h.hexdigest()) for sku in matches: record = redis.hgetall("products:" + sku) m.append(record) return m # Find matches based on hashed criteria lookup_key={'reserve_seating': True, 'medal_event': True} create_hashed_lookups(lookup_key, ["123-ABC-723"] ) # Find the match matches = match_hashed(lookup_key) for m in matches: print m
UTF-8
Python
false
false
2,651
py
29
all.py
13
0.582045
0.56092
0
87
29.45977
85
Anonymous20XXcodes/KS-GNN
3,487,513,461,134
ddbe55c91c52fe384bb193173b62f03c96c37e28
4dafc6f337728f711480c6609d32d64bbb06aa8c
/utils.py
b473690b4c043f699ac2b5790c989b29f08b70fa
[]
no_license
https://github.com/Anonymous20XXcodes/KS-GNN
de1c1d03b628c96e6bbeac3e5a8fcbf10c68baaf
b608b304551f1640cefe6e98dd9a5111f9b2dbe8
refs/heads/main
2023-02-28T17:25:21.381610
2021-02-09T09:26:50
2021-02-09T09:26:50
336,988,084
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np import scipy.sparse as sp from scipy.sparse import lil_matrix import torch from torch_geometric.nn import MessagePassing from torch_geometric.utils import add_self_loops, degree, to_undirected import os import pandas as pd args_list = ['dataset','alpha','beta','gamma','sigma','kw','topk','he','hw','lr', 'hid_d', 'd', 'layer_num', 'conv_num'] #data_size def to_str(s): return "'"+str(s)+"'" def get_saved_model_path(args): return args.model_dir+f'/{args.dataset}{args.comment}.model' def load_data(args): dataset_dir = f"./data/{args.dataset}/" if args.hw and args.hw!='0': spX_path = dataset_dir+str(args.hw)+"%hidden_spX.npz" print('Loading hidden attributed graph') else: spX_path = dataset_dir+"spX.npz" if args.he: edges_path = dataset_dir+f'edge_{args.he}_edge_index.npz' else: edges_path = dataset_dir+'edge_index.npz' edge_index = load_edge_index(edges_path) coo_X = load_spX(spX_path) return coo_X, edge_index def load_spX(path): return sp.load_npz(path) def load_edge_index(path): return np.load(path)['arr_0'] def str2int(s): return list(map(int,s.strip().split())) def queries2tensor(qs, attr_num): q_num = len(qs) t = torch.zeros(q_num, attr_num) for i in range(q_num): t[i,qs[i]] = 1 return t def eval_Z(Z,q_emb,ans, k=100, verbose=False): scores = q_emb @ Z.t() rank = scores.sort(dim=-1, descending=True)[1] hits = [] nodes_num = Z.shape[0] for i in range(len(q_emb)): mark = torch.zeros(nodes_num) mark[ans[i]]=1 tmp_hit = mark[rank[i,:k]].sum()/k # print(f'Q_{i} hit@{k}:{tmp_hit:.4f}') hits.append(tmp_hit) hits = torch.stack(hits) if verbose: print(hits) res = hits.sort(descending=True) print('Top 30:', res[1][:30]) return hits.mean().item() # eval_PCA def eval_PCA(X, qX, ans, k=100, verbose=False): u,s,v = torch.svd(X) SVD_res = eval_Z(X@v[:,:64],qX@v[:,:64],ans,k, verbose=verbose) return SVD_res def coo2torch(coo): values = coo.data indices = np.vstack((coo.row, coo.col)) i = torch.LongTensor(indices) v = torch.FloatTensor(values) shape = coo.shape return torch.sparse.FloatTensor(i, v, torch.Size(shape)) def load_gt(path): # gt is a dictionary {query_str:[nodes_int]} groud_truth = {} with open(path,'r') as f: for line in f.readlines(): query,ans = line.strip().split('\t') groud_truth[query] = list(map(int,ans.split())) return groud_truth
UTF-8
Python
false
false
2,503
py
134
utils.py
5
0.63324
0.622853
0
103
22.271845
131
adrian13579/CoolInterpreter
3,959,959,855,950
2c9cf81e228ca7bffbc98eecbdd1457db52b681a
f47383f90e794416e12d34d4c15b354a0cc4d271
/cmp/parsers/shift_reduce_parser.py
42fd5a8403dc21350f69d05ce2b64c418a0806cd
[]
no_license
https://github.com/adrian13579/CoolInterpreter
ecff721c7c92e0e5d9cc5f7f2bf4855abcc54d36
154bd734a9111a1510e5591ed9d79844c72496a5
refs/heads/master
2023-03-07T02:00:18.532393
2021-02-18T23:09:10
2021-02-18T23:09:10
262,991,104
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
class ShiftReduceParser: SHIFT = 'SHIFT' REDUCE = 'REDUCE' OK = 'OK' def __init__(self, G, verbose=False): self.G = G self.verbose = verbose self.action = {} self.goto = {} self._build_parsing_table() def _build_parsing_table(self): raise NotImplementedError() def __call__(self, w, get_shift_reduce=False): stack = [0] cursor = 0 output = [] operations = [] while True: state = stack[-1] lookahead = w[cursor] if self.verbose: print(stack, w[cursor:]) try: action, tag = self.action[state, lookahead.token_type.Name][0] if action == ShiftReduceParser.SHIFT: operations.append(self.SHIFT) stack.append(tag) cursor += 1 elif action == ShiftReduceParser.REDUCE: operations.append(self.REDUCE) for _ in range(len(tag.Right)): stack.pop() stack.append(self.goto[stack[-1], tag.Left.Name][0]) output.append(tag) elif action == ShiftReduceParser.OK: return output if not get_shift_reduce else (output, operations) else: assert False, 'Must be something wrong!' except KeyError: raise ParsingException( f'Syntax error near token {lookahead.lex}') class ParsingException(Exception): @property def text(self) -> str: return self.args[0]
UTF-8
Python
false
false
1,618
py
28
shift_reduce_parser.py
19
0.509889
0.504944
0
49
32.020408
83