repo_name
stringlengths
7
111
__id__
int64
16.6k
19,705B
blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
151
content_id
stringlengths
40
40
detected_licenses
list
license_type
stringclasses
2 values
repo_url
stringlengths
26
130
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
42
visit_date
timestamp[ns]
revision_date
timestamp[ns]
committer_date
timestamp[ns]
github_id
int64
14.6k
687M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
12 values
gha_fork
bool
2 classes
gha_event_created_at
timestamp[ns]
gha_created_at
timestamp[ns]
gha_updated_at
timestamp[ns]
gha_pushed_at
timestamp[ns]
gha_size
int64
0
10.2M
gha_stargazers_count
int32
0
178k
gha_forks_count
int32
0
88.9k
gha_open_issues_count
int32
0
2.72k
gha_language
stringlengths
1
16
gha_archived
bool
1 class
gha_disabled
bool
1 class
content
stringlengths
10
2.95M
src_encoding
stringclasses
5 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
10
2.95M
extension
stringclasses
19 values
num_repo_files
int64
1
202k
filename
stringlengths
4
112
num_lang_files
int64
1
202k
alphanum_fraction
float64
0.26
0.89
alpha_fraction
float64
0.2
0.89
hex_fraction
float64
0
0.09
num_lines
int32
1
93.6k
avg_line_length
float64
4.57
103
max_line_length
int64
7
931
elinlarsen/WordSegComprehension
8,924,942,051,281
03566b4f2b14d976d4f347a5ce83b6a33c27f808
04ae5108359803ad42081f73a5c63e35614f61bf
/wordsegcomp/pipeline/translate.py
adbe735ec6296a610e0a87334e485a961ee8c421
[]
no_license
https://github.com/elinlarsen/WordSegComprehension
0438ec0f2426888b9c91ce11501403081735dd13
42c368afbb5e58e39c433151aadbdc2c6ffa80a8
refs/heads/master
2021-05-07T06:00:31.446826
2018-07-24T10:41:35
2018-07-24T10:41:35
111,671,313
8
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- """ Created on Thu Dec 15 11:45:59 2016 @author: elinlarsen """ import collections try: # Python 2 from itertools import izip except ImportError: # Python 3 izip = zip import pandas as pd #import file import read def build_phono_to_ortho(phono_file, ortho_file): """ Dictionnary from phono text to ortho text # open ortho and gold file and check if in each line, the number of words match # if not, skip the line and count the error, # then create a dictionarry with key each phono token and value a dictionary of ortho token with their occurence """ count_errors = 0 d=collections.defaultdict(dict) with open(phono_file,'r') as phono, open(ortho_file,'r') as ortho: for line_phono, line_ortho in izip(phono, ortho): line_phono = line_phono.lower().split() line_ortho = line_ortho.lower().split() if len(line_phono) != len(line_ortho): count_errors += 1 else: for word_phono, word_ortho in izip(line_phono, line_ortho): count_freq = d[word_phono] try: count_freq[word_ortho] += 1 except: count_freq[word_ortho] = 1 print("There were {} errors".format(count_errors)) return d def build_phono_to_ortho_representative(d): """ list of two dictionaries: # 1. one of phono token and the most representative ortho token # 2. one linking token to their freqency """ res ={} token_freq={} for d_key,d_value in d.items(): value_max=0 key_max = 'undefined' for key, value in d_value.items(): if value > value_max: value_max = value key_max = key res[d_key] = key_max token_freq[value_max]=key_max #freq_token = {v: k for k, v in token_freq.iteritems()} freq_res=sorted(token_freq.items(),reverse=True) return([res,freq_res]) def create_file_word_freq(path_res, dic, sub, algos,unit="syllable", freq_file="/freq-top.txt"): """ look at true positive (ie well-segmented words) in all algos and in all subs-corpus from "freq-file.txt" in phonological form to orthographic form for each result of each algo in each subcorpus, create the file in the orthographic form Parameters : ----------- path_res : string, absolute path to the folder that will contain the results dic : dictionnary, created by the function build_phono_to_ortho sub : list, list of names of the sample of corpus algos : list, list of names of algorithms used in the package wordseg unit : string, either syllable or phoneme, default is syllable freq_file : string, name of the file output by wordseg containing word segmented by the algorithms ordered by frequency """ for SS in sub: for algo in algos: res_folder=path_res+"/"+SS+"/"+algo+ "/" +unit path=res_folder +freq_file df_token=pd.read_table(path,sep='\s+', header=None, names=('Freq','phono'), index_col=None) list_token=read.list_freq_token_per_algo(algo,SS,path_res,unit,freq_file) d={} for item in list_token: if item in dic.keys(): d[item]=dic[item] df_dic_token=pd.DataFrame(list(d.items()),columns=['phono', 'Type']) df_dic_token.columns=['phono', 'Type'] s=pd.merge(df_token, df_dic_token, how='inner', on=['phono']) del s['phono'] s.drop_duplicates(subset='Type', keep='first',inplace=True) path_out=res_folder+ "/freq-words.txt" s.to_csv(path_out, sep='\t', index=False) return(s)
UTF-8
Python
false
false
3,834
py
44
translate.py
34
0.592071
0.586333
0
102
36.588235
123
haakonvt/cognite-sdk-python
541,165,890,438
8ce5f960ef8ab295cb73d3b4a006b2a45a7a6823
6eefa36c107182bfa403b9bebf599a6736f75ae5
/cognite/client/data_classes/transformations/notifications.py
29cfb0850249b5fe7188ef9a0c0b291609944b52
[ "Apache-2.0" ]
permissive
https://github.com/haakonvt/cognite-sdk-python
056afc9ab46af73e1348099c98c7cf254bdfa293
70200ce771d630edb5f918a33a10381ba5112417
refs/heads/master
2022-09-08T07:41:30.667283
2022-08-01T11:17:22
2022-08-01T11:17:22
213,588,099
0
0
Apache-2.0
true
2022-08-25T13:15:59
2019-10-08T08:25:44
2022-06-23T16:38:06
2022-08-04T00:43:47
13,482
0
0
0
Python
false
false
from typing import TYPE_CHECKING, Dict, Optional, Union, cast from cognite.client.data_classes._base import CogniteFilter, CogniteResource, CogniteResourceList if TYPE_CHECKING: from cognite.client import CogniteClient class TransformationNotification(CogniteResource): """The transformation notification resource allows configuring email alerts on events related to a transformation run. Args: id (int): A server-generated ID for the object. transformation_id (int): Transformation Id. transformation_external_id (str): Transformation external Id. destination (str): Email address where notifications should be sent. created_time (int): Time when the notification was created. last_updated_time (int): Time when the notification was last updated. cognite_client (CogniteClient): The client to associate with this object. """ def __init__( self, id: int = None, transformation_id: int = None, transformation_external_id: str = None, destination: str = None, created_time: int = None, last_updated_time: int = None, cognite_client: "CogniteClient" = None, ): self.id = id self.transformation_id = transformation_id self.transformation_external_id = transformation_external_id self.destination = destination self.created_time = created_time self.last_updated_time = last_updated_time self._cognite_client = cast("CogniteClient", cognite_client) @classmethod def _load(cls, resource: Union[Dict, str], cognite_client: "CogniteClient" = None) -> "TransformationNotification": instance = super(TransformationNotification, cls)._load(resource, cognite_client) return instance def __hash__(self) -> int: return hash(self.id) class TransformationNotificationList(CogniteResourceList): _RESOURCE = TransformationNotification class TransformationNotificationFilter(CogniteFilter): """ Args: transformation_id (Optional[int]): Filter by transformation internal numeric ID. transformation_external_id (str): Filter by transformation externalId. destination (str): Filter by notification destination. """ def __init__( self, transformation_id: Optional[int] = None, transformation_external_id: str = None, destination: str = None ): self.transformation_id = transformation_id self.transformation_external_id = transformation_external_id self.destination = destination
UTF-8
Python
false
false
2,585
py
83
notifications.py
69
0.69207
0.69207
0
67
37.58209
122
CJFJack/cmdb
6,682,969,144,721
0de4d0d12b4a57ab76f6471d597e7d8d9b107e95
193a4ca08daeb3b3fc3a65ee32d2699ac59e07f3
/cmdb_update_loop_log.py
df02843e13490c00ef8aef89061ef7a851b11c6e
[]
no_license
https://github.com/CJFJack/cmdb
e3a512b640930407b63e8786ca9a13b32e7aefc1
fc8d8bf2462c8f4f7e685aed4fd6acc1e86b92ac
refs/heads/master
2020-12-12T08:14:44.316317
2020-01-15T13:27:25
2020-01-15T13:27:25
228,413,223
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- encoding: utf-8 -*- """外部的脚本,通过读取redis中 的cmdb:log的key记录,来更新日志文件到 前端页面中 """ import time import json import logging from logging.handlers import RotatingFileHandler import traceback from concurrent import futures import redis import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "cmdb.settings") import django django.setup() from cmdb.settings import REDIS_HOST from cmdb.settings import REDIS_PORT from cmdb.settings import REDIS_PASSWORD # from cmdb import asgi from channels import Channel redis_client = redis.Redis( host=REDIS_HOST, port=REDIS_PORT, password=REDIS_PASSWORD, db=2, charset="utf-8", decode_responses=True) # cl = asgi.get_channel_layer() # 默认的过期时间是十分钟 DEFAULT_INTERVAL = 60 * 5 MAX_WORKER = 15 class LoopLog(object): """记录工单流程的log""" def __init__(self): # create logger self.logger = logging.getLogger('cmdb_update_loop') self.logger.setLevel(logging.DEBUG) if not self.logger.handlers: # create file handler and set level to debug # fh = logging.FileHandler('/var/log/cmdb_update_loop.log', 'a', encoding='UTF-8') # fh.setLevel(logging.DEBUG) # create formatter formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') # add formatter # fh.setFormatter(formatter) # create handler rh = RotatingFileHandler('/var/log/cmdb_update_loop.log', maxBytes=1000 * 1000 * 10, backupCount=5) rh.setLevel(logging.DEBUG) rh.setFormatter(formatter) # add fh to logger # self.logger.addHandler(fh) self.logger.addHandler(rh) looplog = LoopLog() def yield_cmdb_log(reply_channel_name, uuid, row, heartbeat): """使用生成器获取从row 开始的log的内容 """ # filename = '/var/log/nginx/access.log' filename = os.path.join('/var/log/cmdb_hotupdate/', uuid) if not os.path.isfile(filename): looplog.logger.info('thread: %s end process no such file' % (reply_channel_name)) return None lines = '' with open(filename) as fp: fp.seek(row) for line in iter(fp.readline, ''): # time.sleep(.1) lines += line else: Channel(reply_channel_name).send({'text': lines}, immediately=True) row = fp.tell() # 更新reply_channel_name记录的行数 reply_channel_name_dic = {'uuid': uuid, 'row': row, 'heartbeat': heartbeat} name = 'hotupdate:cmdb:log' redis_client.hset(name, reply_channel_name, json.dumps(reply_channel_name_dic)) # print('thread: %s end process' % (reply_channel_name)) looplog.logger.info('thread: %s end process' % (reply_channel_name)) return None def main(): name = 'hotupdate:cmdb:log' # all_cmdb_log_reply_channels = [x for x in redis_client.hgetall(name)] while True: duplicate_reply_channels_name = [] to_do_map = {} with futures.ThreadPoolExecutor(max_workers=MAX_WORKER) as executor: looplog.logger.info('*** starting a new round thread ***') for reply_channel_name, reply_channel_info in redis_client.hgetall(name).items(): reply_channel_info = json.loads(reply_channel_info) uuid = reply_channel_info.get('uuid') row = reply_channel_info.get('row') heartbeat = reply_channel_info.get('heartbeat') current_time = int(time.time()) if current_time - heartbeat > DEFAULT_INTERVAL: duplicate_reply_channels_name.append(reply_channel_name) else: looplog.logger.info('Scheduled thread %s' % (reply_channel_name)) future = executor.submit(yield_cmdb_log, reply_channel_name, uuid, row, heartbeat) to_do_map[future] = reply_channel_name looplog.logger.info('Current to_do_map list is %s' % (to_do_map)) done_iter = futures.as_completed(to_do_map) for future in done_iter: try: future.result() except Exception as exc: print('------ find Exception -------', to_do_map[future]) traceback.print_exc() # 删除过期的 for rc in duplicate_reply_channels_name: # 主动断开ws连接,这样,正常的连接会通过 # 浏览器重新自动连接 # 如果是异常断开的无效的reply_channel # 还是需要从redis中删除 # 调用send({"close": True})会调用disconnect # 也就会删除redis里面的reply_channel Channel(rc).send({"close": True}) redis_client.hdel(name, rc) # 休眠一秒钟 time.sleep(1) if __name__ == "__main__": main()
UTF-8
Python
false
false
5,055
py
493
cmdb_update_loop_log.py
301
0.592345
0.587743
0
159
29.069182
111
vivekaxl/LexisNexis
19,585,050,902,119
2e77b398a0f9a461b4cc9f20a65cd97ac20c6846
1a2ca64839723ede3134a0781128b0dc0b5f6ab8
/ExtractFeatures/Data/kracekumar/2.py
3ef19b303974fd157f047b3205121b0b92244c56
[]
no_license
https://github.com/vivekaxl/LexisNexis
bc8ee0b92ae95a200c41bd077082212243ee248c
5fa3a818c3d41bd9c3eb25122e1d376c8910269c
refs/heads/master
2021-01-13T01:44:41.814348
2015-07-08T15:42:35
2015-07-08T15:42:35
29,705,371
9
3
null
null
null
null
null
null
null
null
null
null
null
null
null
import pygame WINDOW = WIDTH, HEIGHT = 400, 300 def main(): pygame.init() screen = pygame.display.set_mode(WINDOW) pygame.display.set_caption("Freed.in Demo") while True: pygame.display.flip() if __name__ == '__main__': main()
UTF-8
Python
false
false
259
py
936
2.py
924
0.610039
0.586873
0
14
17.5
47
ezember/Ezekiel-Bustillo
14,422,500,192,447
757e43a1eebd72d96b0d98623ce8ce4ebf36ea92
d4a98d50c3089ad3a96ae33ef4614b40d9ed8636
/buQ2p2.39.py
c52255cd3e3852d40464fd80e811e3f0966d6b85
[]
no_license
https://github.com/ezember/Ezekiel-Bustillo
e418d3a3cfc0e245f27e87ee64880af5c3ffee52
fb0fa49237636329e177f9ba30c0421a7828f2ee
refs/heads/master
2021-04-01T05:52:15.726058
2020-03-18T08:06:28
2020-03-18T08:06:28
248,161,153
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" Ezekiel M. Bustillo DATALOGO Lab04 Feb. 19, 2020 I have neither received nor provided any help on this (lab) activity, nor have I concealed any violation of the Honor Code. """ from abc import ABCMeta, abstractmethod class Polygon(metaclass=ABCMeta): def __init__(self, lengths): self.no_sides = len(lengths) self.lengths = [0] * self.no_sides self.val(lengths) def numsides(self): print('The polygon has ' + str(self.no_sides) + 'sides.') def val(self, lengths): a = 0 while a < len(lengths): self.lengths[a] = lengths[a] a += 1 @abstractmethod def area(self): pass @abstractmethod def perimeter(self): pass class Pentagon(Polygon): def __init__(self, lengths): super().__init__(lengths) assert 5, self.no_sides def area (self): x, y = self.lengths[0], self.lengths[1] return x * y def perimeter(self): x, y = self.lengths return (x+y)*2 class Hexagon(Polygon): def __init__(self, lengths): super().__init__(lengths) assert 6, self.no_sides def area(self): x, y = self.lengths[0], self.lengths[1] return x * y def perimeter(self): x, y = self.lengths return (x+y)*2 if __name__=="__main__":
UTF-8
Python
false
false
1,403
py
11
buQ2p2.39.py
10
0.54526
0.531718
0
49
26.632653
73
AmazingWood/simple-two-layers-mlp
3,710,851,781,784
801b8fd0a80fd240c0a03ebab671aaf54711b7ac
b7ca2afdfaa002b0260c12b4be40f8093b82fc9e
/buildConfig.py
5b3369f8c7e0559b4f6b97d49366f499e2f4d1c1
[]
no_license
https://github.com/AmazingWood/simple-two-layers-mlp
43968824b59ac4e6b0901ace0b15faec940b4594
7946884202654d089b62d035e9667df15c619008
refs/heads/master
2020-12-11T07:01:57.372806
2020-01-14T09:09:55
2020-01-14T09:09:55
233,795,463
0
0
null
true
2020-01-14T08:41:00
2020-01-14T08:40:59
2020-01-10T08:51:11
2020-01-10T08:51:09
69
0
0
0
null
false
false
class buildConfig(object): def __init__(self,isDebug): self.incDirs=["/home/robin/installFromSource/boost_1_72_0","/home/robin/installFromSource/eigen-git-mirror"] self.linkDir=["/home/robin/installFromSource/boost_1_72_0/stage/lib"] self.linkOpt=["pthread" ,"m","dl"] self.CC="gcc-9" self.CXX="g++-9" self.CCFLAGS=['-std=c++17', '-Wall',"-fpermissive"] self.mklroot="/home/robin/intel/mkl" self.isDebug=int(isDebug) if(self.isDebug==1): self.preDifines=['-DDEBUG'] self.CCFLAGS.append('-g') else: self.preDifines=['-DNDEBUG'] self.CCFLAGS.append('-O3') class MlpBuildConfig(buildConfig): def __init__(self,isDebug): buildConfig.__init__(self,isDebug) if(self.isDebug==1): self.targetName="mlpDebug" else: self.targetName="mlpRelease" self.incDirs.append(self.mklroot+"/include") self.linkDir.append(self.mklroot+"/lib/intel64") self.linkOpt.append(["mkl_intel_lp64","mkl_sequential" ,"mkl_core"]) self.preDifines.append("EIGEN_USE_MKL_ALL") #class LayersBuildConfig(buildConfig):
UTF-8
Python
false
false
1,214
py
11
buildConfig.py
9
0.596376
0.580725
0
33
35.787879
116
illulia/Baekjoon
2,628,520,000,718
380c4633e65fd6a3f070ee59114d70298e9a9282
ed60f34a00c24b5d6115c995ec796080d1c07687
/python/5543.py
13f4357cc35ec5865ca11711b7b729a0242dc37a
[]
no_license
https://github.com/illulia/Baekjoon
fe6613c0e344e081bb42d5b06396363e7f9614d2
0b816bd271028e1128a8c092aedf80cae5e5fbd8
refs/heads/master
2021-05-18T17:31:06.897050
2020-10-09T21:57:19
2020-10-09T21:57:19
251,338,754
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
b = 2000 d = 2000 for i in range(3): a = int(input()) if a < b: b = a for i in range(2): c = int(input()) if c < d: d = c print(b+d-50)
UTF-8
Python
false
false
175
py
28
5543.py
28
0.417143
0.348571
0
11
14.272727
20
jordy33/python_proxy
4,252,017,645,687
54759fec835d1d78980c52c9bcd4ee3173472223
1ea03ebaa0fcd8257f140db4ad88d8ed1002d3a5
/proxy/__init__.py
0709b421c670fe97181827d93e7c14c529b27ecc
[]
no_license
https://github.com/jordy33/python_proxy
208ca09c6c5c8a5a6e825decc2f29bd9c80a2251
572b4eaf0f830f4531b51a3533c783a046114e97
refs/heads/main
2023-02-20T03:55:53.120077
2021-01-22T00:10:07
2021-01-22T00:10:07
331,789,277
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
############################################################################### # Copyright (C) 2017 Aludirk Wong # # # # This file is part of TCP Proxy. # # # # TCP Proxy is free software: you can redistribute it and/or modify it # # under the terms of the GNU General Public License as published # # by the Free Software Foundation, either version 3 of the License, or # # (at your option) any later version. # # # # TCP Proxy is distributed in the hope that it will be useful, # # but WITHOUT ANY WARRANTY; without even the implied warranty of # # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # # GNU General Public License for more details. # # # # You should have received a copy of the GNU General Public License # # along with TCP Proxy. If not, see <http://www.gnu.org/licenses/>. # ############################################################################### import argparse import pkg_resources import signal import socket import threading from . import logger from .proxy import Proxy shutdownEvent = threading.Event() def parseArg(): """Parse the progrm arguements. Returns: argparse.Namespace: The parsed attributes. """ parser = argparse.ArgumentParser(description="TCP proxy.") parser.add_argument("upHost", help="the host of the upstream server for the proxy.", metavar="upstream-host") parser.add_argument("upPort", type=int, help="the port of the upstream server for the proxy.", metavar="upstream-port") parser.add_argument("-H", "--host", default="", help="the host of the downstream server for the proxy, default is \"\".", metavar="downstream-host", dest="downHost") parser.add_argument("-p", "--port", default=5354, type=int, help="the port of the downstream server for the proxy, default is 5354.", metavar="downstream-port", dest="downPort") parser.add_argument("-m", "--select-model", default="select", choices=["epoll", "kqueue", "select"], help=("the I/O select method for the socket connections, " "supports [\"epoll\", \"kqueue\", \"select\"], " "default is \"select\". " "This is platform dependant feature, " "some models may not support on your platform."), metavar="model", dest="select") parser.add_argument("-v", "--version", action="version", version="%(prog)s {}".format("1.0")) return parser.parse_args() def shutdownHandler(signal, frame): """Handler for shutdown process. Args: signal (int): The signal number. frame (frame): Current stack frame. """ shutdownEvent.set() def main(): """Main function.""" # Parse arguments. args = parseArg() # Set up shutdown handler. signal.signal(signal.SIGINT, shutdownHandler) # Set up logger. logger.setUpLogger() try: # Start the proxy. proxy = Proxy(args.upHost, args.upPort, args.downHost, args.downPort, shutdownEvent, args.select) proxy.daemon = True proxy.start() logger.info("Proxy established: upstream ({}:{}) <-> downstream ({}:{})". format(args.upHost, args.upPort, args.downHost, args.downPort)) while proxy.is_alive(): proxy.join(0.05) return proxy.err except socket.gaierror as e: logger.critical("Fail to initialize proxy (socket.gaierror: {}).".format(e)) except RuntimeError as e: logger.critical("\"{}\" is not supported.".format(e)) return 1
UTF-8
Python
false
false
4,797
py
3
__init__.py
2
0.452991
0.449031
0
125
37.376
97
rady1337/FirstYandexLyceumCourse
12,644,383,756,558
20d3e91dc93e8928791ad7310eb190aec7676a1a
338062cc2bb422f1364fd18ad5e721f6f713907a
/27. Обработка коллекций. Потоковый ввод sys.stdin/Домашняя работа/Есть ли 0.py
2135a4c06f9f7d5ec36e994627e8daf11e63d7ba
[]
no_license
https://github.com/rady1337/FirstYandexLyceumCourse
f3421d5eac7e7fbea4f5e266ebeb6479b89941cf
0d27e452eda046ddd487d6471eeb7d9eb475bd39
refs/heads/master
2022-06-17T03:07:51.017888
2020-05-12T22:17:34
2020-05-12T22:17:34
263,459,364
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
from sys import stdin as st print("0" in st.read().split())
UTF-8
Python
false
false
61
py
411
Есть ли 0.py
368
0.672131
0.655738
0
3
19.333333
31
kdriver/planes
11,656,541,276,321
3f7ee24706ce37d305ed230baee8829aac447bd9
d25fd9631f3567e4d1508c4d1d0398048a92f8d4
/mk2/detect.py
7248862dbdc8887591e1875c7223878b7451f017
[]
no_license
https://github.com/kdriver/planes
d88942b3dbf84ddcca6e25d073163eff58c39b62
0fed8c84df5576d55ab07eee7502d18661650351
refs/heads/master
2023-05-25T12:53:28.305503
2023-05-14T10:57:37
2023-05-14T10:57:37
142,787,180
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" A program to detect planes and tweet """ import json import time import math import os import zipfile import requests import sqldb import say from vrs import Vrs from loggit import loggit,init_loggit from loggit import BOTH from loggit import TO_SCREEN # from loggit import TO_FILE from loggit import GREEN_TEXT from loggit import YELLOW_TEXT from loggit import CYAN_TEXT #from loggit import RED_TEXT as RED_TEXT from Haversine import Haversine from reference_data import update_reference_data from reference_data import init_reference_data from reference_data import add_reference_data from reference_data import flush_suppression_list from reference_data import is_suppressed from twitter import tweet from web import start_webserver from web import update_plane_data from kml import kml_doc from kml import write_kmz from kml import three_d_vrs from my_queue import my_queue from my_queue import INFINITE from home import home from blessed import Terminal term = Terminal() all_planes={} # planes with closest approach to home of less that TWEET_RADIUS miles will be tweeted TWEET_RADIUS=2.0 osm = requests.Session() dump_planes = False dump_icao = None dump_time = 0 def get_term_width()->int: """ Return the current terminal width """ return term.width def get_time(clock=time.time()): """ Return an ascii string of the current time """ answer = time.asctime(time.localtime(clock)) return answer def enrich(icao_hex, the_plane): """ Given the icao hex for the plane, enrich the plane data from reference data """ if is_suppressed(icao_hex): return try: result = add_reference_data(icao_hex, the_plane) except Exception as my_exp: print(f"enrich exception {my_exp}") return # A tilde in the hex indicates a TIS-B record # Dumping planes around the record gives a chance to see which plane it is if result is None and '~' not in icao_hex: loggit("could not enrich plane {}".format(icao_hex)) return if result is None and '~' in icao_hex: # loggit("found tilde in icao , trigger a dump of planes around {}".format(icao)) global dump_time, dump_icao, dump_planes dump_time = time.time() + 60 dump_icao = icao_hex dump_planes = False the_plane['enriched'] = 1 def get_place(clat, clon): """ Use the Open Street Map API to look up the nearest place""" place = "unknown" try: req = "https://nominatim.openstreetmap.org/reverse?format=json&lat={}&lon={}".format( clat, clon) resp = osm.get(url=req) pos = json.loads(resp.text) if 'display_name' in pos: place = pos['display_name'] else: place = "somewhere" except Exception as e: loggit("could not access OSM API {} ".format(e)) return None return place[0:90] def nearest_point(the_plane): """ The plane has reached the nearest point to HOM, so collect the report data, print it and insert it into the sql database Also write out the kml file with tracked path. and if its within TWEET_RADIUS - tweet it too """ pd = "{} {}".format(get_time(the_plane["closest_time"]),the_plane['icao']) for item in ['icao_country','closest_miles','flight','tail','track','alt_baro','Owner','Manufacturer','plane','route']: if item in the_plane and the_plane[item] is not None: if item in {'closest_miles','track'}: pd = pd + " {:>7.2f} ".format(the_plane[item]) elif item in {'flight','tail','alt_baro'}: pd = pd + "{0:7} ".format(the_plane[item]) elif item in { 'icao_country'}: pd = pd + f" {the_plane['icao_country']:<15}" else: pd = pd + " {:<} ".format(the_plane[item]) else: if item in ['closest_miles','track','alt_baro']: the_plane[item] = 0 else: the_plane[item] = "unknown" try: sqldb.insert_data((time.time(),the_plane["flight"],the_plane["icao"],the_plane["tail"],the_plane['plane'],the_plane["alt_baro"],the_plane["track"],the_plane["closest_miles"],the_plane["closest_lat"],the_plane["closest_lon"])) except Exception as e: loggit("could not insert data iinto planes record {}".format(e)) name='' if 'tail' in the_plane: name=the_plane['tail'] else: name='unknown' if 'alt_baro' not in the_plane: the_plane["alt_baro"] = "0" kml_text = kml_doc(the_plane['closest_lon'],the_plane['closest_lat'], -1.9591988377888176,50.835736602072664, the_plane["alt_baro"],name,the_plane['closest_miles'],the_plane["tracks"]) #redo_miles = Haversine() #with open("kmls/{}.kml".format(name),"w") as f: # f.write(kml_text) # f.close() with zipfile.ZipFile("kmls/{}.kmz".format(name),"w") as zf: zf.writestr("{}.kml".format(name),kml_text) zf.close() if 'expired' in the_plane: pd = pd + ' expired ' linelen=145 pd = pd[0:linelen] if len(pd) < 145: pd = pd +" "*(linelen-len(pd)) place = get_place(the_plane['closest_lat'],the_plane['closest_lon']) if place is None: place = " API failed " the_plane['reported'] = 1 width = get_term_width()-1 try: if 'miles' not in the_plane: pd = pd + " " + json.dumps(the_plane) loggit(pd,BOTH,CYAN_TEXT) return if the_plane['miles'] < TWEET_RADIUS: # Twitter suspended the account tweet(pd) pd = pd + " : " + place loggit(pd[:width],BOTH,GREEN_TEXT) txt = "the_plane overhead " if 'Owner' in the_plane: txt = txt + " " + the_plane['Owner'] m = int(the_plane['miles']) if 'alt_baro' in the_plane: if the_plane['alt_baro'] != 'ground': h = math.floor(int(the_plane['alt_baro'])/100) if h > 9: txt = txt + " at " + str(h/10) + " thousand feet" else: txt = txt + " at " + str(h) + " hundred feet" else: txt = txt + " on ground" txt = txt + " distance {:>1.1f} miles".format(m) say.speak(txt) else: pd = pd + " : " + place if 'plane' in the_plane: if 'DA42' in the_plane['plane']: loggit(pd[:width],BOTH,YELLOW_TEXT) else: loggit(pd[:width],BOTH,CYAN_TEXT) #loggit("{}".format(the_plane["tracks"].get_values()),BOTH,CYAN_TEXT) except Exception as e: loggit("reporting failed {}".format(e)) # Read the file produced by dump1090 and cache each the_plane seen so we can track its position reletive to home # and check if it gets close. def read_planes(): """ read in the planes from dump1090 and cache the data """ try: with open('/var/run/dump1090-fa/aircraft.json', 'r') as f: try: data = json.load(f) except Exception: print("error - can't open aircraft.json") global all_planes planes = data["aircraft"] #num_planes = len(planes) #print("num planes {}".format(num_planes)) for plane in planes: start_miles = 1000 miles = start_miles try: icao = plane["hex"].strip().upper() if icao not in all_planes: all_planes[icao] = {"icao": icao, 'max_miles': 0.0, 'closest_miles': start_miles, 'closest_lat': 0.0, 'closest_lon': 0.0, 'miles': start_miles, 'tracks': my_queue(INFINITE,icao)} this_plane = all_planes[icao] this_plane['touched'] = time.time() except Exception as e_name: print(f"no icao code in plane record {e_name} ") continue for attr in ['lon', 'lat', 'flight', 'track', 'alt_baro']: if attr in plane: this_plane[attr] = plane[attr] if 'lat' in this_plane and 'lon' in this_plane and 'alt_baro' in this_plane: try: hv = Haversine( home, [this_plane["lon"], this_plane["lat"]]) miles = hv.miles bearing = int(hv.bearing) this_plane['current_miles'] = miles this_plane['tracks'].add( {'miles': miles, "lon": this_plane["lon"], "lat": this_plane["lat"], "alt": this_plane["alt_baro"]}) if miles < this_plane['miles']: this_plane['closest_lat'] = float(this_plane['lat']) this_plane['closest_lon'] = float(this_plane['lon']) this_plane['closest_alt'] = this_plane["alt_baro"] this_plane['closest_miles'] = miles this_plane["closest_time"] = time.time() if this_plane['miles'] == start_miles: #loggit("{:<7s} new plane @ {:<7.2f} miles".format(icao,miles),TO_FILE) pass if 'reported' in this_plane: del this_plane['reported'] this_plane['miles'] = miles if miles > this_plane['max_miles']: this_plane['max_miles'] = miles this_plane['max_lon'] = this_plane['lon'] this_plane['max_lat'] = this_plane['lat'] if isinstance(this_plane["alt_baro"], int): vrs.update_entry( bearing, this_plane["lat"], this_plane["lon"], this_plane["alt_baro"], miles, this_plane["icao"]) except Exception as e: print("oh dear haversine {} {}".format(e, json.dumps(this_plane))) continue if miles < 200 and 'enriched' not in this_plane: enrich(icao, this_plane) if (miles - this_plane['closest_miles']) > (this_plane['closest_miles']*0.1): if 'reported' not in this_plane and this_plane['closest_miles'] < 50: nearest_point(this_plane) except Exception as e_name: print(f" error in read_planes {e_name}\n") def dump_the_planes(icao_hex): """Called to dump planes with similar height and distance""" loggit(f"Dump planes with similar distance to {icao_hex}") if icao_hex not in all_planes: loggit(f"could not find {icao_hex} in all_planes") return target = all_planes[icao_hex] if 'miles' not in target: loggit("could not find 'miles' in all_planes") return if 'lat' not in target or 'lon' not in target: loggit("target plane does not have both lat and lon - exit") return ll_target = [target['lat'], target['lon']] # distance = int(target['miles']) alt = int(target['alt_baro']) # loggit("Dump icao {} distance {}, {}".format(icao, distance, json.dumps(target, indent=4))) target_time = target['touched'] for the_plane,_a_plane in all_planes.items(): this_plane = all_planes[the_plane] proximity = 100 if 'lat' in this_plane and 'lon' in this_plane: ll_this = [this_plane['lat'], this_plane['lon']] hv = Haversine(ll_target, ll_this) proximity = hv.miles h_diff = 1001 if 'alt_baro' in this_plane and this_plane['alt_baro'] != 'ground': h_diff = abs(alt - int(this_plane['alt_baro'])) if proximity < 20 and h_diff < 1000: txt = "{" + " hex:'{}',proximity:'{:.2f}'".format(icao, proximity) for item in ['icao', 'alt_baro', 'miles', 'track', 'tail', 'lat', 'lon']: if item in this_plane: txt = txt + ",{}:'{}'".format(item, this_plane[item]) txt = txt + ",version:'1'" txt = txt + ",tdiff:'{:.2f}', tn:'{}' ".format( (target_time - this_plane['touched']), get_time()) + "}," loggit(txt) init_loggit("output.txt","/tmp/debug.txt") init_reference_data() update_reference_data() start_webserver() last_tick = time.time() last_log = last_tick sqldb.attach_sqldb() vrs = Vrs("vrs_data.sqb") while 1: read_planes() delete_list = [] now = time.time() for icao,record in all_planes.items(): if (now - record['touched']) > 60: delete_list.append(icao) for plane in delete_list: p = all_planes[plane] if 'reported' not in p and 'miles' in p and p['miles'] < 50: p['expired'] = 1 nearest_point(p) write_kmz(home, p) del all_planes[plane] # check to see if we need to referesh any of the online databases update_reference_data() # update the cache used by the HTTP query to generate a table ( default port 4443 ) update_plane_data(all_planes) #triggered if we have seen a tilde encoded in the icao hex if dump_planes: if now > dump_time: dump_the_planes(dump_icao) dump_planes = False if os.path.exists("check_icao"): with open('check_icao') as f: s = f.read() dump_the_planes(str(s).strip().upper()) os.remove('check_icao') # every 60 seconds if (now - last_tick) > 60: if (now - last_log) > 300: loggit("{} planes being tracked ".format(len(all_planes)), TO_SCREEN) last_log = now flush_suppression_list() # write out a kml file with all the t planes we can see three_d_vrs(all_planes) last_tick = now time.sleep(5)
UTF-8
Python
false
false
14,331
py
33
detect.py
26
0.537436
0.527877
0
387
36.031008
233
leandreboris/XMatosBackend
4,964,982,242,822
c5276d8a0d8db5ee89a004feab741e40ee6cd959
5099bdf6ee8485e281f834ddcd71e2827bcce4d6
/Profile_updates/apps.py
abae4ee4473ed1189704eed80fb09be52112b522
[]
no_license
https://github.com/leandreboris/XMatosBackend
5c57a491ec3ffbe195389b02d0733ff31d66a243
2118bf08fbc9fdf099d35a1e8da5715610fd2c15
refs/heads/master
2023-08-11T08:28:46.106004
2021-09-28T10:03:31
2021-09-28T10:03:31
390,736,624
0
0
null
false
2021-08-06T15:59:54
2021-07-29T13:40:48
2021-07-29T16:20:43
2021-08-06T15:59:41
175
0
0
1
Python
false
false
from django.apps import AppConfig class ProfileUpdatesConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'Profile_updates'
UTF-8
Python
false
false
161
py
24
apps.py
24
0.763975
0.763975
0
6
25.833333
56
ghdus4185/SWEXPERT
11,141,145,200,089
52bc4462d88f81b8733b5f1fd29e86c487d58514
3e85618c79a1a934fec543e1327e772ca081a5b9
/N1486.py
1564c24d32ff1e1c9575221b39304ca0b3f96357
[]
no_license
https://github.com/ghdus4185/SWEXPERT
72d79aa4a668452327a676a644b952bab191c79b
4dc74ad74df7837450de4ce55526dac7760ce738
refs/heads/master
2020-07-16T18:31:22.153239
2019-12-20T04:18:30
2019-12-20T04:18:30
205,843,190
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import sys sys.stdin = open('input.txt', 'r') T = int(input()) for tc in range(1, T+1): N, B = map(int, input().split()) h = list(map(int, input().split())) subset_list = [] minV = 10000000 for i in range(1, 2**N): res = 0 for j in range(N): if i & (1 << j) != 0: res += h[j] if res >= B: if minV > res: minV = res print('#{} {}'.format(tc, minV - B))
UTF-8
Python
false
false
470
py
142
N1486.py
140
0.417021
0.385106
0
20
22.55
40
ChadDiaz/cs-Hash-Tables-I-project-5.21.21
10,943,576,671,492
e78845da445e86fa770494dd0778e24df1cfdc32
27c6db187a103a2b83ad403af8fd75cc2c10620c
/csCommonStrategyForHashCollisions.py
372e01b852afcaa0f94fff4e0ab679683fed4e84
[]
no_license
https://github.com/ChadDiaz/cs-Hash-Tables-I-project-5.21.21
9814bcfa5d54d40a7e663c67df20e48f664ad853
133ed4d21f758681ff62976f0f8dd03bcb3aba35
refs/heads/main
2023-05-03T21:02:32.068048
2021-05-22T02:28:04
2021-05-22T02:28:04
369,682,370
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" "What is the most common strategy for dealing with hash collisions?" A: Not storing the values directly at an index of the hash table's array. Instead, the array index stores a pointer to a linked list. Each node in the linked list stores a key, value, and a pointer to the next item in the linked list. """
UTF-8
Python
false
false
313
py
3
csCommonStrategyForHashCollisions.py
3
0.753994
0.753994
0
5
61.6
234
zaojiahua/flask_dn_server
2,147,483,673,266
8288694b82afdaf939cb33148819a49fedc82f0f
28f05b2ddb635f1577a09a502b29ee30c0dba0f0
/dn/common/lln.py
656b99df590c70c4aa03fbca9b3f8468f0a0c39e
[]
no_license
https://github.com/zaojiahua/flask_dn_server
709efeced512cfabdd35720373f75bb8ca8d7a96
9e5aa865633399f86242d9ebdd5a9ed8c623d203
refs/heads/master
2023-05-10T06:17:16.682532
2020-01-08T08:43:46
2020-01-08T08:43:46
232,228,795
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import urllib.error import urllib.parse import urllib.request import simplejson as json class LLNFormatError(Exception): pass _not_safe = '%|\r\n=' _safe_map = {} for i, c in zip(list(range(256)), str(bytearray(list(range(256))))): _safe_map[c] = c if c not in _not_safe else '%{:02x}'.format(i) def _encode_char(c): return _safe_map.get(c, c) def _encode(s): if s is None: return 'None' elif isinstance(s, bool): return str(s) elif isinstance(s, (int, float)): return repr(s) elif isinstance(s, str): return ''.join(map(_encode_char, s)) return s def _decode(s): if not s: return s if s.startswith('$'): return json.loads(urllib.parse.unquote(s[1:])) index = s.find('=') if index != -1: return urllib.parse.unquote( s[0:index]), \ urllib.parse.unquote(s[index + 1:]) return urllib.parse.unquote(s) def to_bytes(s, encoding='utf-8', errors='strict'): if isinstance(s, str): s = bytes(s, encoding) return s def to_str(s, decoding='utf-8'): if isinstance(s, bytes): s = s.decode(decoding) else: raise LLNFormatError('bytes input required.') return s def escape_string(data): _escape_map = { '\r': '\\r', '\n': '\\n', } escaped = data for k, v in list(_escape_map.items()): escaped = escaped.replace(k, v) return escaped # 这个逻辑应该不用if else 了 since python3 unified str and unicode def translate_left(left): filtered = '\r\n\t =!@#$:;,+-()[]~`' # if isinstance(left, str): # left = left.translate(None, filtered) # elif isinstance(left, str): # left = left.translate({ord(i): None for i in filtered}) if isinstance(left, str): left = left.translate({ord(i): None for i in filtered}) return left def dump_string(data): if not data: return str(data).encode("utf8") data = to_bytes(escape_string(data)) if b'|' in data or b'=' in data or data[0] == b'$'[0]: return b'$%d$ %s' % (len(data), data) else: return data def dump_binop(left, right): left = translate_left(to_bytes('%s' % (left))) if isinstance(right, (list, dict)): try: right = json.dumps(right) except Exception: right = '%s' % right right = to_bytes(escape_string('%s' % right)) if b'|' in left or b'=' in left or b'|' in right or left[0] == b'$'[0]: return b'$%d,%d$ %s=%s' % (len(left), len(right), left, right) else: return b'%s=%s' % (left, right) def dump_dict(data): try: d = json.dumps(data) if '|' in d or d[0] == '$': return b'$$%d$ %s' % (len(d), to_bytes(d)) else: return b'$%s' % (to_bytes(d)) except Exception: return dump_string(repr(data)) def dump_object(data): return dump_string(repr(data)) def dumps2(msgs): s = [] for msg in msgs: if msg is None: s.append(b'None') elif isinstance(msg, bool): s.append(to_bytes(str(msg))) elif isinstance(msg, (int, float)): s.append(to_bytes(repr(msg))) elif isinstance(msg, str): s.append(dump_string(msg)) elif isinstance(msg, tuple): if len(msg) == 2: s.append(dump_binop(msg[0], msg[1])) else: s.append(dump_string(repr(msg))) elif isinstance(msg, (list, dict)): s.append(dump_dict(msg)) else: s.append(dump_object(msg)) return b'|'.join(s) def string_list_to_bytes(str_lst): # make sure every item in str_lst is of type bytes, modified in place. for i in range(len(str_lst)): if isinstance(str_lst[i], str): str_lst[i] = to_bytes(str_lst[i]) def load_meta(s, i): m1 = s[i + 1:i + 2] if m1 == b'{' or m1 == b'[': return s[i:i + 1] elif m1 == b'$' or m1 in b'0123456789': j = s.find(b'$ ', i + 1) if j == -1: raise LLNFormatError( 'meta <%s> info not completed. <:> not found' % (s[i:])) else: return s[i:j + 2] else: raise LLNFormatError('meta <%s> is invalid' % (s[i:])) def load_data_withmeta(s, i, meta): meta = meta.rstrip() if meta == b'$': string = load_string(s, i) return json.loads(to_str(string)), len(string) exp = meta[1:-1].replace(b' ', b'') if not exp: raise LLNFormatError('meta <%s> is invalid' % (meta)) if b',' in exp: pair = exp.split(b',') if len(pair) != 2: raise LLNFormatError( 'meta <%s> only support one <,> now.' % (meta)) llen, rlen = int(pair[0]), int(pair[1]) left = s[i:i + llen] i += llen if s[i:i + 1] != b'=': raise LLNFormatError('LLN expect <=> but <%s> found.' % (s[i])) i += 1 right = s[i:i + rlen] i += rlen return {to_str(left): to_str(right)}, llen + rlen + 1 elif exp[0:1] == b'$': data_len = int(exp[1:]) string = s[i:i + data_len] return json.loads(to_str(string)), len(string) else: data_len = int(exp) string = s[i:i + data_len] return to_str(string), len(string) def load_string(s, i): j = s.find(b'|', i) if j == -1: return s[i:] return s[i:j] def loads2(s): if isinstance(s, str): s = to_bytes(s) loaded = [] check_separator = False i = 0 while i < len(s): c = s[i] if check_separator: if c == b'|'[0]: i += 1 check_separator = False continue else: raise LLNFormatError( 'separator | expected, but <%s> found.' % chr(c)) if c == b'$'[0]: meta = load_meta(s, i) i += len(meta) data, length = load_data_withmeta(s, i, meta) loaded.append(data) i += length else: string = load_string(s, i) if b'=' in string: loaded.append( dict((json_load_right( to_str(string).split('=', 1)[0:2]), ))) else: loaded.append(to_str(string)) i += len(string) check_separator = True return loaded def json_load_right(lst): if not isinstance(lst, list): raise LLNFormatError('in json_load_right function string required!') left = lst[0] right = lst[1] try: right = str(json.loads(right)) except Exception: right = '%s' % right return [left] + [right] loads = loads2 dumps = dumps2
UTF-8
Python
false
false
6,805
py
14
lln.py
11
0.509061
0.498748
0
261
25.003831
76
ShadyZOZ/zblog
3,513,283,252,039
55e2fa84e9765449a2de857c36555076abf8a189
d88ccd19b2f788affb5caec81122802f0418a09a
/zblog/views.py
0f75bc02b9008da6fba63ae6e324e0fd1b652a87
[]
no_license
https://github.com/ShadyZOZ/zblog
93900e6368006f991db031b004ff72b9942db631
df397d9deeb81a25e624b49b593ce188c5d70256
refs/heads/master
2016-09-22T10:30:57.859203
2016-07-25T18:48:30
2016-07-25T18:48:30
64,157,174
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.shortcuts import render def index(request): r = request.COOKIES print(r) return render(request, 'index.jinja')
UTF-8
Python
false
false
135
py
5
views.py
1
0.711111
0.711111
0
6
21.666667
41
Spredzy/ansible-builder
9,483,287,828,202
2d2d2d1b48ca3c563fcf05d697acc933d6b78293
efa5c0f6590750e97d7489e29e9d5fea5cda9147
/ansible_builder/main.py
4234a3c70a2c51ff3dbf43b787292c96cb35eb38
[]
no_license
https://github.com/Spredzy/ansible-builder
1c375f559f4125cbbf921268d3d345aafe70a1da
a1adc2aec9b40cb223b02613699dda77f7bcb110
refs/heads/master
2023-06-04T14:30:01.008282
2020-05-09T17:18:04
2020-05-09T17:18:04
265,592,353
0
0
null
true
2020-05-20T14:32:24
2020-05-20T14:32:23
2020-05-09T17:18:16
2020-05-09T17:18:13
37
0
0
0
null
false
false
import os import yaml from shutil import copy default_base_image = 'shanemcd/ansible-runner' class AnsibleBuilder: def __init__(self, filename='execution-environment.yml', base_image=default_base_image, build_context=None): self.definition = Definition(filename=filename) self.base_image = base_image self.build_context = build_context or os.path.join(os.getcwd(), 'context') self.containerfile = Containerfile( filename='Containerfile', definition=self.definition, base_image=base_image, build_context=self.build_context) @property def version(self): return self.definition.version def process(self): return self.containerfile.write() class Definition: def __init__(self, *args, filename): self.filename = filename with open(filename, 'r') as f: self.raw = yaml.load(f, Loader=yaml.FullLoader) @property def version(self): version = self.raw.get('version') if not version: raise ValueError("Expected top-level 'version' key to be present.") return str(version) @property def galaxy_requirements_file(self): return self.raw.get('dependencies', {}).get('galaxy') class Containerfile: newline_char = '\n' def __init__(self, *args, filename, definition, build_context, base_image): self.build_context = build_context os.makedirs(self.build_context, exist_ok=True) self.definition = definition self.path = os.path.join(self.build_context, filename) self.base_image = base_image self.build_steps() def build_steps(self): self.steps = [] self.steps.append("FROM {}".format(self.base_image)) self.steps.append(self.newline_char) [self.steps.append(step) for step in GalaxySteps(containerfile=self)] return self.steps def write(self): with open(self.path, 'w') as f: for step in self.steps: if step == self.newline_char: f.write(step) else: f.write(step + self.newline_char) return True class GalaxySteps: def __new__(cls, *args, containerfile): definition = containerfile.definition if not definition.galaxy_requirements_file: return [] src = definition.galaxy_requirements_file dest = containerfile.build_context copy(src, dest) basename = os.path.basename(definition.galaxy_requirements_file) return [ "ADD {} /build/".format(basename), "RUN ansible-galaxy role install -r /build/{}".format(basename), "RUN ansible-galaxy collection install -r /build/{}".format(basename) ]
UTF-8
Python
false
false
2,815
py
6
main.py
4
0.61492
0.61492
0
92
29.597826
112
W1rner/SITE_FOR_SCHOOL
8,933,532,015,511
6aba75a49029570ea0770198f877f6078bb94fa8
24c6132ae420ccada3b742aebca4c62044166d87
/main/models.py
66ea51308a73947c1af131907b32c9bcc0f7cda3
[]
no_license
https://github.com/W1rner/SITE_FOR_SCHOOL
207728e4314740b80e1d7a02efdf1027bc5fef90
c0e08816bb7aad2e1b9898b20a02a04f9be0da13
refs/heads/main
2023-04-30T12:39:07.888539
2021-05-14T11:00:19
2021-05-14T11:00:19
367,328,554
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.db import models from django.contrib.auth.models import User from django.db.models.signals import post_save from django.dispatch import receiver # Create your models here. class Votings(models.Model): name = models.TextField(unique=True) about = models.TextField() author = models.TextField() all_votes_quantity = models.IntegerField() variants = models.TextField() variants_values = models.TextField() participants = models.TextField() class Profile(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE) history = models.TextField() class Complaints(models.Model): author = models.TextField() user_id = models.IntegerField(default=None) message = models.TextField() @receiver(post_save, sender=User) def create_user_profile(sender, instance, created, **kwargs): if created: Profile.objects.create(user=instance) @receiver(post_save, sender=User) def save_user_profile(sender, instance, **kwargs): instance.profile.save()
UTF-8
Python
false
false
1,041
py
37
models.py
13
0.722382
0.722382
0
37
27.135135
63
loveunCG/linkedin-front-end
1,984,274,915,267
6666007b6ebc27d05f873cc62ca7273ca52ac377
8ddcf2bb34b3d2a69d84ea535ef2235db8e089ea
/app/migrations/0019_auto_20180513_1347.py
54383fdb892df2427e12c475f263d418402da0ae
[]
no_license
https://github.com/loveunCG/linkedin-front-end
2a8ada9603c0f0cfaee23dd7b6762752d86772cd
a96f51736ee5b9b882c9a7f3ba78f600ddb9f648
refs/heads/master
2022-12-10T08:08:56.182716
2018-06-24T13:29:50
2018-06-24T13:29:50
125,702,961
2
0
null
false
2021-06-10T20:29:42
2018-03-18T07:42:27
2019-10-17T12:56:54
2021-06-10T20:29:40
14,039
2
0
2
CSS
false
false
# Generated by Django 2.0.5 on 2018-05-13 13:47 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app', '0018_auto_20180513_1955'), ] operations = [ migrations.RemoveField( model_name='linkedinuser', name='is_pin_needed', ), migrations.AlterField( model_name='linkedinuser', name='status', field=models.CharField(choices=[('Queued', 'Queued'), ('Running', 'Running'), ('Pin Required', 'Pin Required'), ('Pin Invalid', 'Pin Invalid'), ('Error', 'Error'), ('Done', 'Done')], default='Queued', max_length=20), ), ]
UTF-8
Python
false
false
682
py
294
0019_auto_20180513_1347.py
114
0.573314
0.524927
0
22
30
228
momchil-lukanov/hack-bulgaria
824,633,767,036
75e34fb7acc995a6b60c238db2a96e75feada40c
78724939218b9023aed2b7d0256f2798d8a3f246
/programming-0/week-4/program.py
a1b6be02fb53fb8401028a3c15fdd27cf89fb9e7
[]
no_license
https://github.com/momchil-lukanov/hack-bulgaria
6968e80b654fe1b352d2289d652dca7395757914
bb6b8ea3db272577443b98de0af636fb022b0fbb
refs/heads/master
2020-12-25T18:22:28.467960
2015-11-22T16:17:18
2015-11-22T16:17:18
31,120,172
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
person = {} person["first_name"] = input() person["second_name"] = input() person["third_name"] = input() person["birth_year"] = int(input()) person["current_age"] = 2015 - person["birth_year"] print(person)
UTF-8
Python
false
false
208
py
164
program.py
144
0.653846
0.634615
0
7
28.714286
51
GavrilinEugene/geo2osm
12,498,354,832,123
6ffdf0a19a4c3e83b4dc8d4782260eb4d6f0f576
f0067fa81119fff7e9b7dfd03003b85fe7e75d77
/application/overpass_utils.py
c05badbfc9720dfdf30ffd0ea3130c35ce127476
[]
no_license
https://github.com/GavrilinEugene/geo2osm
06e68c5ac48284dbd0f134be70da012d99e965a5
eb8fbf62f637c8bd91421ec36c2709c4114c49d3
refs/heads/master
2023-03-01T23:59:37.595129
2021-02-13T13:19:57
2021-02-13T13:19:57
324,165,968
0
0
null
false
2021-02-13T13:19:58
2020-12-24T13:46:43
2021-02-13T11:24:38
2021-02-13T13:19:58
33
0
0
0
Python
false
false
import requests from osm2geojson import json2geojson def get_geojson(bbox, list_node_types = ['way["building"]']): """ """ (left, bottom, right, top) = bbox way_query = "" for node_type in list_node_types: way_query += f"{node_type}({bottom},{left},{top},{right});\n" query = f""" [out:json][timeout:25]; ({way_query} ); out body; >; out skel qt; """ url = "http://overpass-api.de/api/interpreter" r = requests.get(url, params={'data': query}) if r.status_code != 200: raise requests.exceptions.HTTPError(f'Overpass server respond with status {r.status_code}') data = json2geojson(r.json()) print(data) for x in range(0, len(data['features'])): data['features'][x]['id'] = data['features'][x]['properties']['id'] return data
UTF-8
Python
false
false
856
py
8
overpass_utils.py
4
0.570093
0.559579
0
29
28.517241
99
jiananarthurli/insight_api
12,549,894,461,015
1fa75a092d9185d18ef1d9d54cb38ac79f7794c6
539c267a58cb727c5f1925b67da0bbbae0b04de2
/insight_api_src/vectorizer/views.py
b22e6c6de88eac610c098d01f3abb25997cedab1
[]
no_license
https://github.com/jiananarthurli/insight_api
e228b7cbd193b4eb2a9c3ad5a9b490816c1f65ed
c6c46f1fa96e3fe6d182ef6b7a575deaa3d6bee9
refs/heads/master
2022-12-17T08:58:29.978049
2020-10-03T04:42:04
2020-10-03T04:42:04
191,235,576
6
1
null
false
2022-12-08T05:17:11
2019-06-10T19:49:08
2020-10-05T09:03:13
2022-12-08T05:17:10
166,118
6
1
5
Jupyter Notebook
false
false
from django.shortcuts import render import re import nltk import spacy import numpy as np from nltk.stem import WordNetLemmatizer from collections import defaultdict from nltk.corpus import stopwords lemmatizer = WordNetLemmatizer() nlp = spacy.load("en_core_web_sm") stop = set(stopwords.words('english')) stop_words = set(['event', 'collection', 'street', 'many', 'exhibition', 'work', 'monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday', 'new', 'york', 'new york', 'new york city', 'visit', 'museum', 'world', 'department', 'NYC' ]) stop.update(stop_words) def preprocess(text): # text cleaning text = text.replace('\n', ' ') text = text.replace('&#x27;', "'") text = text.replace('&#x2019;', "'") text = text.replace('B.C.', "BC") text = text.replace('A.D.', "AD") text = text.replace('&amp;', "and") # remove ',' in numbers text = re.sub('(\d+),(\d+)', lambda x: "{}{}".format(x.group(1).replace(',', ''), x.group(2)), text) text = re.sub('&#x(.*?);', ' ', text) text = re.sub('http(.+?) ', '', text) return text # PoS tagging for text def doc2tag(text): sentences = nltk.sent_tokenize(text) tag_list = [] for s in sentences: tokens = nltk.word_tokenize(s) text_tagged = nltk.pos_tag(tokens) pair = [(word, pos) for (word, pos) in text_tagged] tag_list.extend(pair) return tag_list # find PoS pattern of NNP, NNP, NN def nnp_nn(text): patterns = "NNP_NN: {<NNP>+(<NNS>|<NN>+)}" # at least one NNP followed by NNS or at least one NN parser = nltk.RegexpParser(patterns) p = parser.parse(doc2tag(text)) phrase = [] for node in p: if type(node) is nltk.Tree: phrase_str = '' for w in node: phrase_str += w[0] phrase_str += ' ' phrase_str = phrase_str.strip() phrase.append(phrase_str) return phrase # find PoS pattern of JJ, NN def jj_nn(text): patterns = "NNP_NN: {<JJ>+(<NN>+)}" # parser = nltk.RegexpParser(patterns) p = parser.parse(doc2tag(text)) phrase = [] for node in p: if type(node) is nltk.Tree: phrase_str = '' for w in node: phrase_str += w[0] phrase_str += ' ' phrase_str = phrase_str.strip() phrase.append(phrase_str) return phrase # calculate TF-IDF vector for the text, assume trigrams def tf_idf(text, key_tokens, idf_dict, ngram=3): tf_idf_dict = defaultdict(int) text = text.lower() # tokens been used for tf-idf tokens = nltk.word_tokenize(text) # get unigram, bigram, trigram token_list = [] for i in range(1, ngram + 1): token_list.extend(nltk.ngrams(tokens, i)) token_list = [' '.join(token) for token in token_list] # lemmatize the tokens for i, token in enumerate(token_list): token_list[i] = lemmatizer.lemmatize(token) # initialize the tf_idf_dict with all the tokens to be used for token in key_tokens: tf_idf_dict[token] = 0 # count frequency of each token for token in token_list: if token in key_tokens: tf_idf_dict[token] += 1 # tf-idf vector calculation for key in tf_idf_dict.keys(): tf_idf_dict[key] = tf_idf_dict[key] * idf_dict[key] tf_idf_vec = np.zeros((len(key_tokens),)) for i, key in enumerate(key_tokens): tf_idf_vec[i] = tf_idf_dict[key] # returns a normalized 1d np array tf_idf_vec = tf_idf_vec / np.linalg.norm(tf_idf_vec) return tf_idf_vec
UTF-8
Python
false
false
3,702
py
16
views.py
9
0.574014
0.568882
0
130
27.461538
104
yamaguchiyuto/location_inference
532,575,987,397
1fd6562079077366de858571ea6d3801fb427e61
02f82a98a1db5d9a28ad97b11b447194d3ec6aab
/lib/words.py
dbf28f07b7f24bd80f2de2848bda74c768578824
[ "MIT" ]
permissive
https://github.com/yamaguchiyuto/location_inference
d5301d71010016e23a0716e73776b30c2fe67b00
370a632cef843aa42a4a3662f8ee492789cbe053
refs/heads/master
2021-01-19T13:53:15.354412
2013-11-05T14:08:59
2013-11-05T14:08:59
13,535,937
4
1
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- import json class Words: def __init__(self, words={}): self.values = words def __str__(self): res = "" for word in self.values.values(): res += json.dumps(word) + "\n" return res[:-1] def set(self, words): self.values = words def load_file(self, filepath): for line in open(filepath, 'r'): word = json.loads(line.rstrip()) self.values[word['word']] = word def load_mysql(self, mysqldb): pass def load_mongodb(self, mongodb): pass def get(self, word_str): if word_str in self.values: return self.values[word_str] else: return None def contain(self, w): if w in self.values: return True else: return False def add(self, word): if not word['word'] in self.values: self.values[word['word']] = word def iter(self): for word in self.values.values(): yield word if __name__ == '__main__': import sys words = Words() words.load_file(sys.argv[1]) print words.get(u'那覇') print words.get(u'北浦和')
UTF-8
Python
false
false
1,220
py
35
words.py
22
0.513223
0.510744
0
54
21.407407
44
jm-begon/clustertools
1,821,066,182,091
5440ef01bd7a08e64f97370eb282710e2886c979
f52a5fdb795279f87df6bf61161dfe720ad97034
/clustertools/test/test_paramset.py
d22137a592d15474abe1c0ecbbc2629174b1fef8
[ "BSD-3-Clause" ]
permissive
https://github.com/jm-begon/clustertools
3ce5f96831b16b9f7a9f9bfaf3dcc4952674f6a8
264198d0ffbd60b883b7b6a2af79341425c7729b
refs/heads/master
2021-05-25T09:02:13.946550
2019-08-21T07:51:22
2019-08-21T07:51:22
43,871,227
8
3
BSD-3-Clause
false
2019-08-21T07:51:24
2015-10-08T07:51:56
2019-08-20T11:50:10
2019-08-21T07:51:23
745
5
2
15
Python
false
false
from nose.tools import assert_equal, assert_in, assert_less, assert_raises, \ with_setup, assert_true from clustertools import ParameterSet, ConstrainedParameterSet, \ PrioritizedParamSet, ExplicitParameterSet # --------------------------------------------------------- ExplicitParameterSet from clustertools.parameterset import CartesianMixer def test_explicit_paramset(): ps = ExplicitParameterSet() ps.add_parameter_tuple(p1=1, p2=2, p3="param") ps.add_parameter_tuple(p1=1, p2=3, p3="param") ps.add_parameter_tuple(p1=1, p2=5, p3="param") ps.add_parameter_tuple(p1=4, p2=2, p3="param") ps.add_parameter_tuple(p1=4, p2=3, p3="param") ps.add_parameter_tuple(p1=4, p2=5, p3="param") assert_equal(len(ps), 6) cart_prod = [ {"p1": 1, "p2": 2, "p3": "param"}, {"p1": 1, "p2": 3, "p3": "param"}, {"p1": 1, "p2": 5, "p3": "param"}, {"p1": 4, "p2": 2, "p3": "param"}, {"p1": 4, "p2": 3, "p3": "param"}, {"p1": 4, "p2": 5, "p3": "param"}, ] assert_equal(len(ps), 6) i = 0 for _, param_dict in ps: assert_in(param_dict, cart_prod) i += 1 assert_equal(i, 6) assert_equal(len(ps), 6) # ------------------------------------------------------- Cartesian ParameterSet def test_paramset_yield(): ps = ParameterSet() assert_equal(len(ps), 1) # The null dictionary ps.add_parameters(p1=1, p2=[2, 3], p3="param") ps.add_parameters(p1=4, p2=5) cart_prod = [ {"p1": 1, "p2": 2, "p3": "param"}, {"p1": 1, "p2": 3, "p3": "param"}, {"p1": 1, "p2": 5, "p3": "param"}, {"p1": 4, "p2": 2, "p3": "param"}, {"p1": 4, "p2": 3, "p3": "param"}, {"p1": 4, "p2": 5, "p3": "param"}, ] assert_equal(len(ps), 6) i = 0 for _, param_dict in ps: assert_in(param_dict, cart_prod) i += 1 assert_equal(i, 6) assert_equal(len(ps), 6) def test_paramset_list_insertion(): ps = ParameterSet() ps.add_single_values(p1=(1, 2, 3), p2=(1, 2)) assert_equal(len(ps), 1) for _, param_dict in ps: assert_equal(param_dict, {"p1": (1, 2, 3), "p2": (1, 2)}) def test_paramset_separator(): ps = ParameterSet() ps.add_parameters(p1=[1, 2], p2=["a", "b"]) ps.add_separator(p3="param") ps.add_parameters(p1=3) assert_equal(len(ps), 6) for i, param_dict in ps: assert_equal(param_dict["p3"], "param") if i < 4: assert_in(param_dict["p1"], [1, 2]) else: assert_equal(param_dict["p1"], 3) ps.add_parameters(p2="c") assert_equal(len(ps), 9) count = 0 for i, param_dict in ps: assert_equal(param_dict["p3"], "param") if i < 4: assert_in(param_dict["p1"], [1, 2]) assert_in(param_dict["p2"], ["a", "b"]) if param_dict["p1"] == 3 and param_dict["p2"] == "c": count += 1 assert_equal(count, 1) assert_raises(ValueError, ps.add_parameters, p4=10) def test_paramset_getitem(): ps = ParameterSet() ps.add_parameters(p1=[1, 2], p2=["a", "b"]) ps.add_separator(p3="param") ps.add_parameters(p1=3, p2="c") for i, param_dict in ps: assert_equal(param_dict, ps[i]) def test_paramset_get_indices_with(): ps = ParameterSet() ps.add_parameters(p1=[1, 2], p2=["a", "b"]) ps.add_separator(p3="param") ps.add_parameters(p1=3, p2="c") for index in ps.get_indices_with(p1={3}): assert_less(3, index) # 0,1,2,3 --> [1,2] x [a,b] assert_equal(ps[index]["p1"], 3) assert_equal(len(list(ps.get_indices_with(p1={4}))), 0) # ---------------------------------------------------------------- Cartesian mix def test_cartesianmix(): ps = ParameterSet() ps.add_parameters(p1=[1, 2], p2=["a", "b"]) ps1 = ExplicitParameterSet() ps1.add_parameter_tuple(p3=3, p4=10) ps1.add_parameter_tuple(p3=4, p4=11) c = CartesianMixer(ps, ps1) assert_equal(len(c), 8) expected = [ {"p1": 1, "p2": "a", "p3": 3, "p4": 10}, {"p1": 1, "p2": "a", "p3": 4, "p4": 11}, {"p1": 1, "p2": "b", "p3": 3, "p4": 10}, {"p1": 1, "p2": "b", "p3": 4, "p4": 11}, {"p1": 2, "p2": "a", "p3": 3, "p4": 10}, {"p1": 2, "p2": "a", "p3": 4, "p4": 11}, {"p1": 2, "p2": "b", "p3": 3, "p4": 10}, {"p1": 2, "p2": "b", "p3": 4, "p4": 11}, ] i = 0 for idx, tup in c: assert_equal(i, idx) assert_in(tup, expected) i += 1 assert_true(repr(c).startswith("CartesianMixer")) # ------------------------------------------------------ ConstrainedParameterSet def test_constrainparamset(): ps = ParameterSet() ps.add_parameters(p1=[1, 2, 3], p2=["a", "b"]) cps = ConstrainedParameterSet(ps) cps.add_constraints(c1=lambda p1, p2: True if p2 == "a" else p1 % 2 == 0) assert_equal(len(cps), 4) # (1, a), (2, a), (3, a), (2, b) expected = [{"p1": 1, "p2": "a"}, {"p1": 2, "p2": "a"}, {"p1": 3, "p2": "a"}, {"p1": 2, "p2": "b"}, ] for _, param_dict in cps: assert_in(param_dict, expected) # ---------------------------------------------------------- PrioritizedParamSet def test_prioritized_paramset(): ps = ParameterSet() ps.add_parameters(p1=[1, 2, 3, 4], p2=["a", "b", "c"]) pps = PrioritizedParamSet(ps) pps.prioritize("p2", "b") pps.prioritize("p1", 2) pps.prioritize("p1", 3) pps.prioritize("p2", "c") expected = [ (4, {"p1": 2, "p2": "b"}), # 12 = 0 2^0 + 0 2^1 + 1 2^2 + 1 2^ 3 (7, {"p1": 3, "p2": "b"}), # 10 = 0 2^0 + 1 2^1 + 0 2^2 + 1 2^ 3 (1, {"p1": 1, "p2": "b"}), # 8 = 0 2^0 + 0 2^1 + 0 2^2 + 1 2^ 3 (10, {"p1": 4, "p2": "b"}), # 8 = 0 2^0 + 0 2^1 + 0 2^2 + 1 2^ 3 (5, {"p1": 2, "p2": "c"}), # 5 = 1 2^0 + 0 2^1 + 1 2^2 + 0 2^ 3 (3, {"p1": 2, "p2": "a"}), # 4 = 0 2^0 + 0 2^1 + 1 2^2 + 0 2^ 3 (8, {"p1": 3, "p2": "c"}), # 3 = 1 2^0 + 1 2^1 + 0 2^2 + 0 2^ 3 (6, {"p1": 3, "p2": "a"}), # 2 = 0 2^0 + 2 2^1 + 0 2^2 + 0 2^ 3 (2, {"p1": 1, "p2": "c"}), # 1 = 1 2^0 + 0 2^1 + 0 2^2 + 0 2^ 3 (11, {"p1": 4, "p2": "c"}), # 1 = 1 2^0 + 0 2^1 + 0 2^2 + 0 2^ 3 (0, {"p1": 1, "p2": "a"}), # 0 = 0 2^0 + 0 2^1 + 0 2^2 + 0 2^ 3 (9, {"p1": 4, "p2": "a"}), # 0 = 0 2^0 + 0 2^1 + 0 2^2 + 0 2^ 3 ] result = list(pps) assert_equal(result, expected)
UTF-8
Python
false
false
6,526
py
69
test_paramset.py
42
0.46353
0.38339
0
212
29.787736
80
zrdsj/py-learning-for-u
19,542,101,203,855
e2898f7434aa4ee0fca5373e6ece57e1a5359e46
c658bc613ad430d563e4805c598258e2d1bd05d5
/01-07/06.py
5f10bc8104f9a495ee992d9ac97ea9e5fad2fd5a
[]
no_license
https://github.com/zrdsj/py-learning-for-u
5e7867a77c9a73eba2840827a3f1d89c6ec31060
a37d5a8c5dcc0f54868c419550dd59b8b358bef9
refs/heads/master
2020-08-03T11:59:41.917884
2019-10-13T06:51:12
2019-10-13T06:51:12
211,745,480
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# print('Hello, World!') # print(2**3) # print(9**(1/2)) # print(20 // 6) # 商 # print(1.25 % 0.5) # 余数 # 我爱你 # print('我爱你') # print("love u") # print("1231") # print(1231)9 # print(woaini我爱你),,,是错误的 input("Enter a number:")
UTF-8
Python
false
false
283
py
26
06.py
26
0.518519
0.427984
0
19
11.105263
25
arcaorm00/sba-2-api
3,805,341,056,960
47f491f97e90823911b503a1b6729841bb80ba89
63fab1fc9d7114c38280048c94ad71b3488f6f63
/model/cabbage_model.py
f6b65300d137783ffc45adea874045b0b0ed341a
[]
no_license
https://github.com/arcaorm00/sba-2-api
8122ef06e0c2a9b1c2a541d8f49b5772e7f2119f
fd383732684c339d6017ce9e33304982f14224c9
refs/heads/master
2022-12-25T03:33:37.768412
2020-09-28T06:01:09
2020-09-28T06:01:09
299,144,358
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import sys sys.path.insert(0, '/Users/saltQ/sbaProject') from util.file_handler import FileReader import pandas as pd import numpy as np import tensorflow as tf from dataclasses import dataclass @dataclass class Cabbage: # entity + service # year,avgTemp,minTemp,maxTemp,rainFall,avgPrice # 20100101,-4.9,-11,0.9,0,2123 # 멤버변수 year:int = 0 avgTemp:float = 0.0 minTemp:float = 0.0 maxTemp:float = 0.0 rainFall:float = 0.0 avgPrice:int = 0 # 클래스 내부에서 공유하는 객체, 상수값 def __init__(self): self.fileReader = FileReader() # 기능은 상수 self.context = '/Users/saltQ/sbaProject/price_prediction/data/' def new_model(self, payload): this = self.fileReader this.context = self.context this.fname = payload return pd.read_csv(this.context + this.fname, sep=',') def create_tf(self, payload): xy = np.array(payload, dtype=np.float32) x_data = xy[:, 1:-1] # feature y_data = xy[:, [-1]] # price x = tf.compat.v1.placeholder(tf.float32, shape=[None, 4]) y = tf.compat.v1.placeholder(tf.float32, shape=[None, 1]) w = tf.Variable(tf.random.normal([4, 1]), name='weight') b = tf.Variable(tf.random.normal([1]), name='bias') hyposthesis = tf.matmul(x, w) + b cost = tf.reduce_mean(tf.square(hyposthesis - y)) optimizer = tf.compat.v1.train.GradientDescentOptimizer(learning_rate=0.000005) train = optimizer.minimize(cost) sess = tf.compat.v1.Session() sess.run(tf.compat.v1.global_variables_initializer()) for step in range(100000): cost_, hypo_, _ = sess.run([cost, hyposthesis, train], feed_dict={x: x_data, y: y_data}) if step % 500 == 0: print(f'# {step} 손실비용: {cost_}') print(f'- 배추가격: {hypo_[0]}') saver = tf.compat.v1.train.Saver() saver.save(sess, self.context + 'saved_model.ckpt') print('저장 완료') def test(self): self.avgPrice = 100 return self.avgPrice def service(self): print('############# service #############') X = tf.compat.v1.placeholder(tf.float32, shape=[None, 4]) # year,avgTemp,minTemp,maxTemp,rainFall,avgPrice # 에서 avgTemp,minTemp,maxTemp,rainFall 입력 받겠다. # year는 모델에서 필요없는 값 -> 상관관계 없음 # avgPrice는 얻고자 하는 답. 종속변수 # avgTemp,minTemp,maxTemp,rainFall는 종속변수를 결정하는 독립변수이자 # avgPrice를 결정하는 요소로 사용되는 파라미터 (중요!) # 이제 우리는 통계와 확률로 들어가야 하니 용어를 잘 정의하자. # y = wx + b 선형관계 # X는 대문자를 사용하고 확률변수라고 한다. # 비교. 웹프로그래밍(Java, C)에서는 소문자로 x를 쓰는데 이것은 한 타인에 하나의 value # 그리고 그 값은 외부에서 주어지는 하나의 값이므로 그냥---변수 # 지금은 X의 값이 제한적이지만 집합상태로 많은 값이 있는 상태 # 이럴 때는 확률---변수. W = tf.Variable(tf.random.normal([4, 1]), name='weight') b = tf.Variable(tf.random.normal([1]), name='bias') # tensorflow에서 변수는 웹프로그래밍에서의 변수와 다르다. # 이 변수를 결정하는 것은 외부에서 주어진 값이 아니라 tensor가 내부에서 사용하는 변수이다. # 기존 웹에서 사용하는 변수는 placeholder. saver = tf.compat.v1.train.Saver() with tf.Session() as sess: sess.run(tf.compat.v1.global_variables_initializer()) saver.restore(sess, self.context + 'saved_model.ckpt') data = [[self.avgTemp, self.minTemp, self.maxTemp, self.rainFall], ] arr = np.array(data, dtype = np.float32) dict = sess.run(tf.matmul(X, W) + b, {X: arr[0:4]}) # matmul: 상호 곱 (매트릭스 구조이기 때문) # Y = WX + b를 코드로 표현하면 위와 같이 나타낼 수 있다. print(dict[0]) return int(dict[0]) if __name__ == '__main__': cabbage= Cabbage() # dframe = m.new_model('price_data.csv') # print(dframe.head()) # m.create_tf(dframe) print(cabbage.test())
UTF-8
Python
false
false
4,508
py
3
cabbage_model.py
3
0.574296
0.551877
0
100
37.32
93
arnabs542/BigO-Coding-material
12,549,894,473,163
4481ddaeaad78b4c4c22c38a032d67434ac0ae29
9b527131c291b735a163226d1daac2397c25b712
/BigO_Algorithm/algorithmreview/Algo practice/Eleven.py
dc67102af23c3ada8c98a7fa94885b859f706b92
[]
no_license
https://github.com/arnabs542/BigO-Coding-material
dbc8895ec6370933069b2e40e0610d4b05dddcf2
3b31bddb1240a407aa22f8eec78956d06b42efbc
refs/heads/master
2022-03-19T18:32:53.667852
2019-11-27T23:55:04
2019-11-27T23:55:04
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#Eleven chooses names n = int(input()) Fib_arr = [0 for i in range(n+5)] result = [] def Fib(i): if i == 0: return 0 elif i == 1 or i == 2: return 1 else: return Fib_arr[i-1] + Fib_arr[i-2] for i in range(n+5): Fib_arr[i] = Fib(i) for num in range(1,n+1,1): if num in Fib_arr: result.append('O') else: result.append('o') print(''.join(result))
UTF-8
Python
false
false
447
py
138
Eleven.py
127
0.47651
0.447427
0
22
17.681818
42
Rohan175/roadCompanion-SGH
18,425,409,724,598
12f905a98ab70f96858d4bb124e35bf92b1ad734
f2c95171d8094de7ab774cfea69cd8d27937c579
/roadG-master/roadGriev/migrations/0029_delete_prestoredloc.py
1a5d05c1d32ff69133f4ecf8e6112f65a9144935
[]
no_license
https://github.com/Rohan175/roadCompanion-SGH
1d96429bffe6ee5f73b1cb97c3bccc4efe1c63e3
ec949dc559a65bd7f417d4c1eab83207e91ca878
refs/heads/master
2022-12-14T20:59:41.907755
2018-09-09T07:44:02
2018-09-09T07:44:02
144,819,916
2
0
null
false
2022-12-07T23:52:10
2018-08-15T07:23:39
2019-01-21T15:17:28
2022-12-07T23:52:10
1,707
1
0
5
JavaScript
false
false
# Generated by Django 2.0.7 on 2018-08-12 16:37 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('roadGriev', '0028_roadmapping'), ] operations = [ migrations.DeleteModel( name='PreStoredLoc', ), ]
UTF-8
Python
false
false
296
py
127
0029_delete_prestoredloc.py
90
0.601351
0.537162
0
16
17.5
47
GabrielBergam0/Trabalho-de-FLA-4
10,282,151,739,857
f25385c498e490389b64c901d104ebd228978792
d14e222c70a4e599578a0f0f7ef6835fb1b5884f
/RINHA DE BARCO.py
284be5d1bd3b304e845447a443096274fb139f47
[]
no_license
https://github.com/GabrielBergam0/Trabalho-de-FLA-4
69addbcae73c1d4fadb3a486c6fc4b84a192246e
04c4e1d24e8aea0c3dd7daf1f5d582fa57bb4746
refs/heads/master
2022-01-04T17:51:42.565510
2019-11-23T18:46:03
2019-11-23T18:46:03
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import random barcos1 = 0 BARCO = u"\u2588\u2588" BARCO_ATINGIDO = "##" EMPTY = '@'.center(2) MISS = ")(" #============================================================================= #============================================================================= def tem_barco(tabuleiro): global BARCO for line in tabuleiro: if u"\u2588\u2588" in line: return True else: return False print("FIM DE JOGO, EXISTE UM GANHADOR!!!") break #============================================================================= #============================================================================= def cria_tabuleiro(n): tab = [] for i in range(n): line = [] for j in range(n * i, n * i + n, 1): line.append(EMPTY.center(2)) tab.append(line) return tab #============================================================================= #============================================================================= def mostra_tabuleiro(tab, vez = True): global BARCO_ATINGIDO, EMPTY n= len(tab[0]) print(" 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 ") print(" --------------------------------------------------") for i in range(n): line = [c if (c == BARCO_ATINGIDO or c == MISS or vez) else EMPTY for c in tab[i]] print(chr(ord('A') + i) + " " + (("| %s " * n) % tuple(line)) ) if i < (n - 1): print("---|----|----|----|----|----|----|----|----|----|----") print(" --------------------------------------------------") #============================================================================= #============================================================================= def get_pos(): pos = input("Digite a posição onde deseja colocar o barco acima : ").split(',') linha = ord(pos[0]) - ord('A') coluna = int(pos[1]) - 1 while not (0 <= linha <= 9 and 0 <= coluna <= 9): print("Voce esta saindo do oceano! Tente novamente!") pos = input("Digite a posição onde deseja colocar o barco acima : ").split(',') linha = ord(pos[0]) - ord('A') coluna = int(pos[1]) - 1 return linha, coluna #============================================================================= #============================================================================= def get_random_pos(): linhas = ["A","B","C","D","E","F","G","H","I","J"] colunas = ["1","2","3","4","5","6","7","8","9","10"] letra = random.choice(linhas) numero = random.choice(colunas) linha = ord(letra) - ord('A') coluna = int(numero) - 1 return linha, coluna #============================================================================= #============================================================================= Tabuleiro1 = cria_tabuleiro(10) Tabuleiro2 = cria_tabuleiro(10) #============================================================================= #============================================================================= def barcodepatrulha(tabuleiro, linha, coluna, direcao): try: if direcao == "H" or direcao == "h": if (not (tabuleiro[linha][coluna] == u"\u2588\u2588" or \ tabuleiro[linha][coluna +1] == u"\u2588\u2588")) and coluna +2 <= len(tabuleiro): tabuleiro[linha][coluna +1] = u"\u2588\u2588" tabuleiro[linha][coluna] = u"\u2588\u2588" return True elif direcao == "V" or direcao == "v": if (not (tabuleiro[linha][coluna] == u"\u2588\u2588" or \ tabuleiro[linha +1][coluna] == u"\u2588\u2588")) and linha + 2 <= len(tabuleiro): tabuleiro[linha +1][coluna] = u"\u2588\u2588" tabuleiro[linha][coluna] = u"\u2588\u2588" return True except: return False #modelo #============================================================================= #============================================================================= def destroyer(tabuleiro, linha, coluna, direcao): try: if direcao == "H" or direcao == "h": if (not (tabuleiro[linha][coluna] == u"\u2588\u2588" or \ tabuleiro[linha][coluna +1] == u"\u2588\u2588" or \ tabuleiro[linha][coluna +2] == u"\u2588\u2588")) and coluna + 3 <= len(tabuleiro): tabuleiro[linha][coluna +1] = u"\u2588\u2588" tabuleiro[linha][coluna +2] = u"\u2588\u2588" tabuleiro[linha][coluna] = u"\u2588\u2588" return True elif direcao == "V" or direcao == "v": if ( not (tabuleiro[linha][coluna] == u"\u2588\u2588" or \ tabuleiro[linha +1][coluna] == u"\u2588\u2588" or \ tabuleiro[linha +2][coluna] == u"\u2588\u2588")) and linha + 3 <= len(tabuleiro): tabuleiro[linha +1][coluna] = u"\u2588\u2588" tabuleiro[linha +2][coluna] = u"\u2588\u2588" tabuleiro[linha][coluna] = u"\u2588\u2588" return True except: return False #============================================================================= #============================================================================= def submarino(tabuleiro, linha, coluna, direcao): try: if direcao == "H" or direcao == "h": if (not (tabuleiro[linha][coluna] == u"\u2588\u2588" or \ tabuleiro[linha][coluna +1] == u"\u2588\u2588" or \ tabuleiro[linha][coluna +2] == u"\u2588\u2588" or \ tabuleiro[linha][coluna +3] == u"\u2588\u2588")) and coluna + 4 <= len(tabuleiro): tabuleiro[linha][coluna +1] = u"\u2588\u2588" tabuleiro[linha][coluna +2] = u"\u2588\u2588" tabuleiro[linha][coluna +3] = u"\u2588\u2588" tabuleiro[linha][coluna] = u"\u2588\u2588" return True elif direcao == "V" or direcao == "v": if (not (tabuleiro[linha][coluna] == u"\u2588\u2588" or \ tabuleiro[linha +1][coluna] == u"\u2588\u2588" or \ tabuleiro[linha +2][coluna] == u"\u2588\u2588" or \ tabuleiro[linha +3][coluna] == u"\u2588\u2588")) and linha + 4 <= len(tabuleiro): tabuleiro[linha +1][coluna] = u"\u2588\u2588" tabuleiro[linha +2][coluna] = u"\u2588\u2588" tabuleiro[linha +3][coluna] = u"\u2588\u2588" tabuleiro[linha][coluna] = u"\u2588\u2588" return True except: return False #============================================================================= #============================================================================= def porta_avioes(tabuleiro, linha, coluna, direcao): try: if direcao == "H" or direcao == "h": if (not(tabuleiro[linha][coluna] == u"\u2588\u2588" or \ tabuleiro[linha][coluna +1] == u"\u2588\u2588" or \ tabuleiro[linha][coluna +2] == u"\u2588\u2588" or \ tabuleiro[linha][coluna +3] == u"\u2588\u2588" or \ tabuleiro[linha][coluna +4] == u"\u2588\u2588")) and coluna + 5 <= len(tabuleiro): tabuleiro[linha][coluna +1] = u"\u2588\u2588" tabuleiro[linha][coluna +2] = u"\u2588\u2588" tabuleiro[linha][coluna +3] = u"\u2588\u2588" tabuleiro[linha][coluna +4] = u"\u2588\u2588" tabuleiro[linha][coluna] = u"\u2588\u2588" return True elif direcao == "V" or direcao == "v": if (not(tabuleiro[linha][coluna] == u"\u2588\u2588" or \ tabuleiro[linha +1][coluna] == u"\u2588\u2588" or\ tabuleiro[linha +2][coluna] == u"\u2588\u2588" or\ tabuleiro[linha +3][coluna] == u"\u2588\u2588" or\ tabuleiro[linha +4][coluna] == u"\u2588\u2588")) and linha + 5 <= len(tabuleiro): tabuleiro[linha +1][coluna] = u"\u2588\u2588" tabuleiro[linha +2][coluna] = u"\u2588\u2588" tabuleiro[linha +3][coluna] = u"\u2588\u2588" tabuleiro[linha +4][coluna] = u"\u2588\u2588" tabuleiro[linha][coluna] = u"\u2588\u2588" return True except: return False #============================================================================= #============================================================================= def encouraçado(tabuleiro, linha, coluna, direcao): try: if direcao == "H" or direcao == "h": if (not (tabuleiro[linha][coluna] == u"\u2588\u2588" or \ tabuleiro[linha][coluna +1] == u"\u2588\u2588" or \ tabuleiro[linha][coluna +2] == u"\u2588\u2588" or \ tabuleiro[linha][coluna +3] == u"\u2588\u2588" or \ tabuleiro[linha][coluna +4] == u"\u2588\u2588" or \ tabuleiro[linha][coluna +5] == u"\u2588\u2588")) and coluna + 6 <= len(tabuleiro): tabuleiro[linha][coluna +1] = u"\u2588\u2588" tabuleiro[linha][coluna +2] = u"\u2588\u2588" tabuleiro[linha][coluna +3] = u"\u2588\u2588" tabuleiro[linha][coluna +4] = u"\u2588\u2588" tabuleiro[linha][coluna +5] = u"\u2588\u2588" tabuleiro[linha][coluna] = u"\u2588\u2588" return True elif direcao == "V" or direcao == "v": if (not ( tabuleiro[linha][coluna] == u"\u2588\u2588" or \ tabuleiro[linha +1][coluna] == u"\u2588\u2588" or \ tabuleiro[linha +2][coluna] == u"\u2588\u2588" or \ tabuleiro[linha +3][coluna] == u"\u2588\u2588" or \ tabuleiro[linha +4][coluna] == u"\u2588\u2588" or \ tabuleiro[linha +5][coluna] == u"\u2588\u2588")) and linha + 6 <= len(tabuleiro): tabuleiro[linha +1][coluna] = u"\u2588\u2588" tabuleiro[linha +2][coluna] = u"\u2588\u2588" tabuleiro[linha +3][coluna] = u"\u2588\u2588" tabuleiro[linha +4][coluna] = u"\u2588\u2588" tabuleiro[linha +5][coluna] = u"\u2588\u2588" tabuleiro[linha][coluna] = u"\u2588\u2588" return True except: return False #============================================================================= #============================================================================= def atack(): pos = input("Digite a posição onde deseja lançar um missil : ").split(',') linha = ord(pos[0]) - ord('A') coluna = int(pos[1]) - 1 while not (0 <= linha <= 9 and 0 <= coluna <= 9): print("Voce esta saindo do oceano! Tente novamente!") pos = input("Digite a posição onde deseja lançar um missil : ").split(',') linha = ord(pos[0]) - ord('A') coluna = int(pos[1]) - 1 return linha, coluna #============================================================================= #============================================================================= def ran_atack(): linha = random.choice(["A","B","C","D","E","F","G","H","I","J"]) coluna = random.choice(["1","2","3","4","5","6","7","8","9","10"]) linha = ord(linha) - ord('A') coluna = int(coluna) - 1 return linha,coluna #============================================================================= #============================================================================= print("Ola, seja bem vindo ao meu codigo de batalha naval, carinhosmente apelidado de Rinha de Barco") print("Para jogar basta digitar a direção e a posicao desejada no formato Letra,numero...(A,1) ") print(" ") print("Este é o seu tabuleiro: ") print(" ") mostra_tabuleiro(Tabuleiro1) print(" ") print("Este é o tabuleiro do inimigo: ") print(" ") mostra_tabuleiro(Tabuleiro2, False) #-------------------------------------------------------------- print("Posicione um barco de patrulha 2x1") direcao = str(input("Digite H para horizontal e V para vertical: ")) linha, coluna = get_pos() while not barcodepatrulha(Tabuleiro1, linha, coluna, direcao): print("Voce nao pode colocar este barco ai!") direcao = str(input("Digite H para horizontal e V para vertical: ")) linha, coluna = get_pos() linha, coluna = get_random_pos() direcao = random.choice(['H', 'V']) while not barcodepatrulha(Tabuleiro2, linha, coluna, direcao): linha, coluna = get_random_pos() mostra_tabuleiro(Tabuleiro1) print(" ") mostra_tabuleiro(Tabuleiro2, False) #-------------------------------------------------------------- print("Posicione um barco de destroyer 3x1") direcao = str(input("Digite H para horizontal e V para vertical: ")) linha, coluna = get_pos() while not destroyer(Tabuleiro1, linha, coluna, direcao): print("Voce nao pode colocar este barco ai!") direcao = str(input("Digite H para horizontal e V para vertical: ")) linha, coluna = get_pos() linha, coluna = get_random_pos() direcao = random.choice(['H', 'V']) while not destroyer(Tabuleiro2, linha, coluna, direcao): linha, coluna = get_random_pos() mostra_tabuleiro(Tabuleiro1) print(" ") mostra_tabuleiro(Tabuleiro2, False) #-------------------------------------------------------------- print("Posicione um barco de submarino 3x1") direcao = str(input("Digite H para horizontal e V para vertical: ")) linha, coluna = get_pos() while not destroyer(Tabuleiro1, linha, coluna,direcao): print("Voce nao pode colocar este barco ai!") direcao = str(input("Digite H para horizontal e V para vertical: ")) linha, coluna = get_pos() direcao = random.choice(['H', 'V']) linha, coluna = get_random_pos() while not submarino(Tabuleiro2, linha, coluna, direcao): linha, coluna = get_random_pos() mostra_tabuleiro(Tabuleiro1) print(" ") mostra_tabuleiro(Tabuleiro2, False) #-------------------------------------------------------------- print("Posicione um barco de porta-avioes 5x1") direcao = str(input("Digite H para horizontal e V para vertical: ")) linha, coluna = get_pos() while not porta_avioes(Tabuleiro1, linha, coluna, direcao): print("Voce nao pode colocar este barco ai!") direcao = str(input("Digite H para horizontal e V para vertical: ")) linha, coluna = get_pos() direcao = random.choice(['H', 'V']) linha, coluna = get_random_pos() while not porta_avioes(Tabuleiro2, linha, coluna, direcao): linha, coluna = get_random_pos() mostra_tabuleiro(Tabuleiro1) print(" ") mostra_tabuleiro(Tabuleiro2, False) #-------------------------------------------------------------- print("Posicione um barco de encouraçado 6x1") direcao = str(input("Digite H para horizontal e V para vertical: ")) linha, coluna = get_pos() while not encouraçado(Tabuleiro1, linha, coluna, direcao): print("Voce nao pode colocar este barco ai!") direcao = str(input("Digite H para horizontal e V para vertical: ")) linha, coluna = get_pos() direcao = random.choice(['H', 'V']) linha, coluna = get_random_pos() while not encouraçado(Tabuleiro2, linha, coluna, direcao): linha, coluna = get_random_pos() mostra_tabuleiro(Tabuleiro1) print(" ") mostra_tabuleiro(Tabuleiro2, False) #-------------------------------------------------------------- def tem_barco(Tabuleiro2): global BARCO for line in Tabuleiro2: if BARCO in line: return False return True print("JOGO ENCERRADO, EXISTE UM GANHADOR") while not tem_barco(Tabuleiro2): linha,coluna = atack() if Tabuleiro2[linha][coluna] == (u"\u2588\u2588"): Tabuleiro2[linha][coluna] = (BARCO_ATINGIDO) else: Tabuleiro2[linha][coluna] = (MISS) linha, coluna = ran_atack() if Tabuleiro1[linha][coluna] == (u"\u2588\u2588"): Tabuleiro1[linha][coluna] = (BARCO_ATINGIDO) else: Tabuleiro1[linha][coluna] = (MISS) mostra_tabuleiro(Tabuleiro1) print(" ") mostra_tabuleiro(Tabuleiro2, False)
UTF-8
Python
false
false
16,423
py
1
RINHA DE BARCO.py
1
0.46559
0.412984
0
398
40.201005
104
ayushianan/Summarizer
712,964,578,755
1e02b3000715cc95c95279097ae273bed2c9b180
4c040d6bdccd3d0f7308ad8934b38c1363d7cda8
/venv/lib/python3.6/_collections_abc.py
7e2c2af484be8c7b454774fe8c49b8d810569f38
[]
no_license
https://github.com/ayushianan/Summarizer
456dc75b3f53b7b03ce2808c584ec12ee91f4ffd
ced46a48c1071a65f0d2b24d064d55aa575f58f2
refs/heads/master
2020-05-18T08:47:42.956905
2019-05-03T17:03:34
2019-05-03T17:03:34
184,304,942
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
/home/ayushi/anaconda3/lib/python3.6/_collections_abc.py
UTF-8
Python
false
false
56
py
44
_collections_abc.py
42
0.821429
0.767857
0
1
56
56
wuhuabushijie/sample
7,576,322,312,570
2e1e1b2f3a3029dc5498fe7279e05c9523d8ea3a
58fd635c519d573127bc2d4df2e46b9afb75c65c
/chapter05/bisect_test.py
1febe0ffad1ce8804cef842d124e8c22f977793e
[]
no_license
https://github.com/wuhuabushijie/sample
5be50cb5582233a6409e8e6ca9479a300ac1a8d4
b5ceb5c4f061732ecf27fff8242daa9372c18385
refs/heads/master
2020-03-30T06:07:55.742159
2018-10-13T15:39:51
2018-10-13T15:39:51
150,840,806
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import bisect # 用来处理和维持已排序的序列 # insort 将参数插入序列中 # bisect 查询参数将要插入的位置 aList = [] bisect.insort(aList,3) bisect.insort(aList,4) bisect.insort(aList,7) bisect.insort(aList,4) bisect.insort(aList,3) bisect.insort(aList,6) bisect.insort(aList,5) bisect.insort(aList,9) print(bisect.bisect(aList,8)) print(aList)
UTF-8
Python
false
false
372
py
36
bisect_test.py
36
0.772727
0.743506
0
17
17.176471
29
dbr/tvdb_api
1,803,886,264,870
53d6bbde21dd65915a1b33c0c13fd8303b0914a9
6faa73f33a4ce3f2d62588bc16f17d0cf787b10d
/tests/test_tvdb_api.py
2b3034f1e0123e1957dabca27a85839659779d6a
[ "Unlicense" ]
permissive
https://github.com/dbr/tvdb_api
326cad12fa8540cbb3e9ce1cb8db7695ba6fc636
ce0382181a9e08a5113bfee0fed2c78f8b1e613f
refs/heads/master
2023-08-17T08:08:09.660904
2021-09-03T13:30:43
2021-09-03T13:30:43
14,645
226
54
Unlicense
false
2023-06-29T18:08:42
2008-05-05T13:01:53
2023-06-28T13:34:07
2023-06-29T18:08:41
2,288
342
69
15
Python
false
false
#!/usr/bin/env python # encoding:utf-8 # author:dbr/Ben # project:tvdb_api # repository:http://github.com/dbr/tvdb_api # license:unlicense (http://unlicense.org/) """Unittests for tvdb_api """ import os import sys import types import datetime import pytest # Force parent directory onto path sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import tvdb_api # noqa: E402 from tvdb_api import ( # noqa: E402 tvdb_shownotfound, tvdb_seasonnotfound, tvdb_episodenotfound, tvdb_attributenotfound, ) import requests_cache.backends # noqa: E402 import requests_cache.backends.base # noqa: E402 try: from collections.abc import MutableMapping except ImportError: from collections import MutableMapping import pickle # noqa: E402 IS_PY2 = sys.version_info[0] == 2 if IS_PY2: # Not really but good enough for backwards-compat here FileNotFoundError = IOError # By default tests use persistent (committed to Git) cache. # Setting this env-var allows the cache to be populated. # This is necessary if, say, adding new test case or TVDB response changes. # It is recommended to clear the cache directory before re-populating the cache. ALLOW_CACHE_WRITE_ENV_VAR = "TVDB_API_TESTS_ALLOW_CACHE_WRITE" ALLOW_CACHE_WRITE = os.getenv(ALLOW_CACHE_WRITE_ENV_VAR, "0") == "1" class FileCacheDict(MutableMapping): def __init__(self, base_dir): self._base_dir = base_dir def __getitem__(self, key): path = os.path.join(self._base_dir, key) try: with open(path, "rb") as f: data = pickle.load(f) return data except FileNotFoundError: if not ALLOW_CACHE_WRITE: raise RuntimeError("No cache file found %s" % path) raise KeyError def __setitem__(self, key, item): if ALLOW_CACHE_WRITE: path = os.path.join(self._base_dir, key) with open(path, "wb") as f: # Dump with protocol 2 to allow Python 2.7 support f.write(pickle.dumps(item, protocol=2)) else: raise RuntimeError( "Requested uncached URL and $%s not set to 1" % (ALLOW_CACHE_WRITE_ENV_VAR) ) def __delitem__(self, key): raise RuntimeError("Removing items from test-cache not supported") def __len__(self): raise NotImplementedError() def __iter__(self): raise NotImplementedError() def clear(self): raise NotImplementedError() def __str__(self): return str(dict(self.items())) class FileCache(requests_cache.backends.base.BaseCache): def __init__(self, _name, fc_base_dir, **options): super(FileCache, self).__init__(**options) self.responses = FileCacheDict(base_dir=fc_base_dir) self.keys_map = FileCacheDict(base_dir=fc_base_dir) requests_cache.backends.registry['tvdb_api_file_cache'] = FileCache def get_test_cache_session(): here = os.path.dirname(os.path.abspath(__file__)) additional = "_py2" if sys.version_info[0] == 2 else "" sess = requests_cache.CachedSession( backend="tvdb_api_file_cache", fc_base_dir=os.path.join(here, "httpcache%s" % additional), include_get_headers=True, allowable_codes=(200, 404), ) sess.cache.create_key = types.MethodType(tvdb_api.create_key, sess.cache) return sess class TestTvdbBasic: # Used to store the cached instance of Tvdb() t = None @classmethod def setup_class(cls): if cls.t is None: cls.t = tvdb_api.Tvdb(cache=get_test_cache_session(), banners=False) def test_different_case(self): """Checks the auto-correction of show names is working. It should correct the weirdly capitalised 'sCruBs' to 'Scrubs' """ assert self.t['scrubs'][1][4]['episodeName'] == 'My Old Lady' assert self.t['sCruBs']['seriesName'] == 'Scrubs' def test_spaces(self): """Checks shownames with spaces """ assert self.t['My Name Is Earl']['seriesName'] == 'My Name Is Earl' assert self.t['My Name Is Earl'][1][4]['episodeName'] == 'Faked My Own Death' def test_numeric(self): """Checks numeric show names """ assert self.t['24'][2][20]['episodeName'] == 'Day 2: 3:00 A.M. - 4:00 A.M.' assert self.t['24']['seriesName'] == '24' def test_show_iter(self): """Iterating over a show returns each seasons """ assert len([season for season in self.t['scrubs']]) == 10 def test_season_iter(self): """Iterating over a show returns episodes """ assert len([episode for episode in self.t['scrubs'][1]]) == 24 def test_get_episode_overview(self): """Checks episode overview is retrieved correctly. """ assert self.t['Scrubs'][1][6]['overview'].startswith( 'Dr. Cox is still facing the threat of suspension' ) try: self.t['Scrubs']['something nonsensical'] except tvdb_attributenotfound: pass # good else: raise AssertionError("Expected attribute error") def test_get_parent(self): """Check accessing series from episode instance """ show = self.t['Scrubs'] season = show[1] episode = show[1][1] assert season.show == show assert episode.season == season assert episode.season.show == show def test_no_season(self): show = self.t['Katekyo Hitman Reborn'] print(tvdb_api) print(show[1][1]) class TestTvdbErrors: t = None @classmethod def setup_class(cls): if cls.t is None: cls.t = tvdb_api.Tvdb(cache=get_test_cache_session(), banners=False) def test_seasonnotfound(self): """Checks exception is thrown when season doesn't exist. """ with pytest.raises(tvdb_seasonnotfound): self.t['Scrubs'][42] def test_shownotfound(self): """Checks exception is thrown when episode doesn't exist. """ with pytest.raises(tvdb_shownotfound): self.t['the fake show thingy'] def test_shownotfound_by_id(self): """Checks exception is thrown when episode doesn't exist. """ with pytest.raises(tvdb_shownotfound): self.t[999999999999999999999999] def test_episodenotfound(self): """Checks exception is raised for non-existent episode """ with pytest.raises(tvdb_episodenotfound): self.t['Scrubs'][1][30] def test_attributenamenotfound(self): """Checks exception is thrown for if an attribute isn't found. """ with pytest.raises(tvdb_attributenotfound): self.t['Scrubs'][1][6]['afakeattributething'] self.t['Scrubs']['afakeattributething'] class TestTvdbSearch: # Used to store the cached instance of Tvdb() t = None @classmethod def setup_class(cls): if cls.t is None: cls.t = tvdb_api.Tvdb(cache=get_test_cache_session(), banners=False) def test_search_len(self): """There should be only one result matching """ assert len(self.t['My Name Is Earl'].search('Faked My Own Death')) == 1 def test_search_checkname(self): """Checks you can get the episode name of a search result """ assert self.t['Scrubs'].search('my first')[0]['episodeName'] == 'My First Day' assert ( self.t['My Name Is Earl'].search('Faked My Own Death')[0]['episodeName'] == 'Faked My Own Death' ) def test_search_multiresults(self): """Checks search can return multiple results """ assert len(self.t['Scrubs'].search('my first')) >= 3 def test_search_no_params_error(self): """Checks not supplying search info raises TypeError""" with pytest.raises(TypeError): self.t['Scrubs'].search() def test_search_season(self): """Checks the searching of a single season""" assert len(self.t['Scrubs'][1].search("First")) == 3 def test_search_show(self): """Checks the searching of an entire show""" assert len(self.t['CNNNN'].search('CNNNN', key='episodeName')) == 3 def test_aired_on(self): """Tests aired_on show method""" sr = self.t['Scrubs'].aired_on(datetime.date(2001, 10, 2)) assert len(sr) == 1 assert sr[0]['episodeName'] == u'My First Day' try: sr = self.t['Scrubs'].aired_on(datetime.date(1801, 1, 1)) except tvdb_episodenotfound: pass # Good else: raise AssertionError("expected episode not found exception") class TestTvdbData: # Used to store the cached instance of Tvdb() t = None @classmethod def setup_class(cls): if cls.t is None: cls.t = tvdb_api.Tvdb(cache=get_test_cache_session(), banners=False) def test_episode_data(self): """Check the firstaired value is retrieved """ assert self.t['lost']['firstAired'] == '2004-09-22' class TestTvdbMisc: # Used to store the cached instance of Tvdb() t = None @classmethod def setup_class(cls): if cls.t is None: cls.t = tvdb_api.Tvdb(cache=get_test_cache_session(), banners=False) def test_repr_show(self): """Check repr() of Season """ assert ( repr(self.t['CNNNN']).replace("u'", "'") == "<Show 'Chaser Non-Stop News Network (CNNNN)' (containing 3 seasons)>" ) def test_repr_season(self): """Check repr() of Season """ assert repr(self.t['CNNNN'][1]) == "<Season instance (containing 9 episodes)>" def test_repr_episode(self): """Check repr() of Episode """ assert repr(self.t['CNNNN'][1][1]).replace("u'", "'") == "<Episode 01x01 - 'Terror Alert'>" def test_available_langs(self): """Check available_languages returns something sane looking """ langs = self.t.available_languages() print(langs) assert "en" in langs class TestTvdbLanguages: def test_episode_name_french(self): """Check episode data is in French (language="fr") """ t = tvdb_api.Tvdb(cache=get_test_cache_session(), language="fr") assert t['scrubs'][1][1]['episodeName'] == "Mon premier jour" assert t['scrubs']['overview'].startswith(u"J.D. est un jeune m\xe9decin qui d\xe9bute") def test_episode_name_spanish(self): """Check episode data is in Spanish (language="es") """ t = tvdb_api.Tvdb(cache=get_test_cache_session(), language="es") assert t['scrubs'][1][1]['episodeName'] == u'Mi primer día' assert t['scrubs']['overview'].startswith(u'Scrubs es una divertida comedia') def test_multilanguage_selection(self): """Check selected language is used """ t_en = tvdb_api.Tvdb(cache=get_test_cache_session(), language="en") t_it = tvdb_api.Tvdb(cache=get_test_cache_session(), language="it") assert t_en['dexter'][1][2]['episodeName'] == "Crocodile" assert t_it['dexter'][1][2]['episodeName'] == "Lacrime di coccodrillo" class TestTvdbUnicode: def test_search_in_chinese(self): """Check searching for show with language=zh returns Chinese seriesname """ t = tvdb_api.Tvdb(cache=get_test_cache_session(), language="zh") show = t[u'T\xecnh Ng\u01b0\u1eddi Hi\u1ec7n \u0110\u1ea1i'] assert type(show) == tvdb_api.Show assert show['seriesName'] == u'T\xecnh Ng\u01b0\u1eddi Hi\u1ec7n \u0110\u1ea1i' @pytest.mark.skip('Новое API не возвращает сразу все языки') def test_search_in_all_languages(self): """Check search_all_languages returns Chinese show, with language=en """ t = tvdb_api.Tvdb(cache=get_test_cache_session(), search_all_languages=True, language="en") show = t[u'T\xecnh Ng\u01b0\u1eddi Hi\u1ec7n \u0110\u1ea1i'] assert type(show) == tvdb_api.Show assert show['seriesName'] == u'Virtues Of Harmony II' class TestTvdbBanners: # Used to store the cached instance of Tvdb() t = None @classmethod def setup_class(cls): if cls.t is None: cls.t = tvdb_api.Tvdb(cache=get_test_cache_session(), banners=True) def test_have_banners(self): """Check banners at least one banner is found """ assert len(self.t['scrubs']['_banners']) > 0 def test_banner_url(self): """Checks banner URLs start with http:// """ for banner_type, banner_data in self.t['scrubs']['_banners'].items(): for res, res_data in banner_data.items(): if res != 'raw': for bid, banner_info in res_data.items(): assert banner_info['_bannerpath'].startswith("http://") @pytest.mark.skip('В новом API нет картинки у эпизода') def test_episode_image(self): """Checks episode 'filename' image is fully qualified URL """ assert self.t['scrubs'][1][1]['filename'].startswith("http://") @pytest.mark.skip('В новом API у сериала кроме банера больше нет картинок') def test_show_artwork(self): """Checks various image URLs within season data are fully qualified """ for key in ['banner', 'fanart', 'poster']: assert self.t['scrubs'][key].startswith("http://") class TestTvdbActors: t = None @classmethod def setup_class(cls): if cls.t is None: cls.t = tvdb_api.Tvdb(cache=get_test_cache_session(), actors=True) def test_actors_is_correct_datatype(self): """Check show/_actors key exists and is correct type""" assert isinstance(self.t['scrubs']['_actors'], tvdb_api.Actors) def test_actors_has_actor(self): """Check show has at least one Actor """ assert isinstance(self.t['scrubs']['_actors'][0], tvdb_api.Actor) def test_actor_has_name(self): """Check first actor has a name""" names = [actor['name'] for actor in self.t['scrubs']['_actors']] assert u"Zach Braff" in names def test_actor_image_corrected(self): """Check image URL is fully qualified """ for actor in self.t['scrubs']['_actors']: if actor['image'] is not None: # Actor's image can be None, it displays as the placeholder # image on thetvdb.com assert actor['image'].startswith("http://") class TestTvdbDoctest: def test_doctest(self): """Check docstring examples works""" import doctest doctest.testmod(tvdb_api) class TestTvdbCustomCaching: def test_true_false_string(self): """Tests setting cache to True/False/string Basic tests, only checking for errors """ tvdb_api.Tvdb(cache=True) tvdb_api.Tvdb(cache=False) tvdb_api.Tvdb(cache="/tmp") def test_invalid_cache_option(self): """Tests setting cache to invalid value """ try: tvdb_api.Tvdb(cache=2.3) except ValueError: pass else: pytest.fail("Expected ValueError from setting cache to float") def test_custom_request_session(self): from requests import Session as OriginalSession class Used(Exception): pass class CustomCacheForTest(OriginalSession): call_count = 0 def request(self, *args, **kwargs): raise Used("Hurray") c = CustomCacheForTest() t = tvdb_api.Tvdb(cache=c) try: t['scrubs'] except Used: pass else: pytest.fail("Did not use custom session") class TestTvdbById: t = None @classmethod def setup_class(cls): if cls.t is None: cls.t = tvdb_api.Tvdb(cache=get_test_cache_session(), actors=True) def test_actors_is_correct_datatype(self): """Check show/_actors key exists and is correct type""" assert self.t[76156]['seriesName'] == 'Scrubs' class TestTvdbShowOrdering: def test_ordering(self): """Test Tvdb.search method """ t_dvd = tvdb_api.Tvdb(cache=get_test_cache_session(), dvdorder=True) t_air = tvdb_api.Tvdb(cache=get_test_cache_session()) assert u'The Train Job' == t_air['Firefly'][1][1]['episodeName'] assert u'Serenity' == t_dvd['Firefly'][1][1]['episodeName'] assert ( u'The Cat and the Claw (1)' == t_air['Batman The Animated Series'][1][1]['episodeName'] ) assert u'On Leather Wings' == t_dvd['Batman The Animated Series'][1][1]['episodeName'] class TestTvdbShowSearch: # Used to store the cached instance of Tvdb() t = None @classmethod def setup_class(cls): if cls.t is None: cls.t = tvdb_api.Tvdb(cache=get_test_cache_session()) def test_search(self): """Test Tvdb.search method """ results = self.t.search("my name is earl") all_ids = [x['id'] for x in results] assert 75397 in all_ids class TestTvdbAltNames: t = None @classmethod def setup_class(cls): if cls.t is None: cls.t = tvdb_api.Tvdb(cache=get_test_cache_session(), actors=True) def test_1(self): """Tests basic access of series name alias """ results = self.t.search("Don't Trust the B---- in Apartment 23") series = results[0] assert 'Apartment 23' in series['aliases'] if __name__ == '__main__': cache = get_test_cache_session() t = tvdb_api.Tvdb(cache=cache) t['scrubs'][1][2] t = tvdb_api.Tvdb(cache=cache) t['scrubs'][1][2] # pytest.main()
UTF-8
Python
false
false
18,071
py
13
test_tvdb_api.py
3
0.598676
0.58638
0.000278
569
30.586995
99
ksergie/testMobile
6,889,127,549,079
c4f3cbeaea7715e77482c979cff62e1aba4d89d0
d8b74852bc3856d6a7272c67c926facbe0b34b30
/test_main_page.py
da47ee5d3fba8b06a49bbd223d9eb75c0583bf64
[]
no_license
https://github.com/ksergie/testMobile
4cc9ee5bd4edf82197318474a613f1b033c66977
08d24bd3d94ac2e68761f9c242fa9eee3dc115f4
refs/heads/master
2021-06-30T19:04:12.666123
2020-01-05T11:11:52
2020-01-05T11:11:52
231,894,084
0
0
null
false
2021-06-02T00:54:52
2020-01-05T09:21:20
2020-01-05T11:12:01
2021-06-02T00:54:51
13,758
0
0
2
Python
false
false
from .pages.main_page import MainPage def test_open_main_page(browser): link = "https://www.lotteryheroes.com/" page = MainPage(browser, link) page.open() assert page.main_pages_title(), "Play Online Lottery | Bet on global lotteries jackpots | LotteryHeroes"
UTF-8
Python
false
false
278
py
3
test_main_page.py
2
0.71223
0.71223
0
8
33.75
108
hjcafaroUC/matique
12,936,441,508,382
b74bb6ea455f356181a1dc12a56288454a9e98ea
c864e8066b4ae2abf85e4e9fe85408d27b5c47d6
/diff.py
503c3a656e3c7feb8217bd1736d2bae6a46c37e6
[]
no_license
https://github.com/hjcafaroUC/matique
b7421cbd78d7328f109261e0e5231c279e080a98
bc733d7a87874d9b6483f896e91546322bc09388
refs/heads/master
2022-11-30T07:37:45.892478
2020-08-07T03:08:47
2020-08-07T03:08:47
279,121,823
0
0
null
false
2020-08-07T00:30:38
2020-07-12T18:13:12
2020-08-06T04:20:01
2020-08-07T00:30:37
64
0
0
2
Python
false
false
#diff utility for checking correctness of code-check against earlier versions print("Enter 1st file") f1 = open(input(),"r") print("Enter 2nd file") f2 = open(input(),"r") lines1 = f1.read().split(sep="\n") lines2 = f2.read().split(sep="\n") if(len(lines1) != len(lines2)): print("Lengths differ : " + str(len(lines1)) + " " + str(len(lines2))) for i in range(min(len(lines1),len(lines2))): if(lines1[i] !=lines2[i]): print("Difference on line " + str(i)) print(lines1[i]) print(lines2[i]) print("Diff is complete")
UTF-8
Python
false
false
555
py
16
diff.py
13
0.61982
0.587387
0
22
24.227273
77
dnanexus/dx-toolkit
3,393,024,202,844
2f04c6d67c05efbaadf8372d7965218b25e7bc4b
d75f33671fe9431c09b384a91d04bdcaaa6ae68c
/src/python/dxpy/toolkit_version.py
e7a7c36712315585f4e1456eca3ca710ce1c4459
[ "Apache-2.0" ]
permissive
https://github.com/dnanexus/dx-toolkit
df61a794c275f735b6216afe234fcff0240c422d
ad4f498ae80fb0cd2e591f63a7bf4fb983049c75
refs/heads/master
2023-08-30T20:19:06.383154
2023-08-30T18:06:44
2023-08-30T18:06:44
4,802,269
82
80
Apache-2.0
false
2023-09-14T18:35:09
2012-06-27T00:23:47
2023-08-14T11:42:53
2023-09-14T18:35:08
36,224
76
77
80
Python
false
false
version = '0.356.0'
UTF-8
Python
false
false
20
py
502
toolkit_version.py
312
0.6
0.35
0
1
19
19
HenReLili/FP02
4,939,212,430,612
c57d47c7a0d37452f39b4cda59783d4ca57841b0
40c2b31d6bca6bc16444d444cea4894f737ac761
/dataorganisator.py
f4edba12b64fe451b85580b3c4a360f23da38876
[]
no_license
https://github.com/HenReLili/FP02
bc8e4e842465faf162207e59dd7b49d2fb9130ca
5fe4c41bf55b640d930e194afa973292e67c78c0
refs/heads/main
2023-05-30T18:47:05.173962
2021-06-17T12:17:06
2021-06-17T12:17:06
377,820,877
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" reads data """ import os.path import numpy as np def datareader(datanumber): """Reads the data of a measurement from dataname Args: dataname is the name of the .txt-file wich data is to be read Returns: data is the data of the measurement in a numpy-array """ wavelengths = [] intensity = [] dataname = "spektrum{number}.txt".format(number=datanumber) fp = open(os.path.join("measurements", dataname)) readdata = fp.read().split() fp.close for i in range(len(readdata)): readdata[i] = float(readdata[i].replace(",", ".")) if i % 2 == 0: wavelengths.append(readdata[i]) else: intensity.append(readdata[i]) data = np.zeros((2, len(wavelengths))) data[0, :] = wavelengths data[1, :] = intensity return data
UTF-8
Python
false
false
823
py
5
dataorganisator.py
5
0.611179
0.605103
0
33
23.939394
71
Squiercg/recologia
515,396,078,843
0a325d78f94be414bcf539df041e6333699381b4
7ae64966a18056434545eec13a6fe6c563a8fb50
/project_euler/prob009.py
537c96689b28fdaf9fdb363a075c2fb55871f31f
[]
no_license
https://github.com/Squiercg/recologia
522812932fc26ae6f0f60df911365ef06b00d916
d873b3fa08bac3fe633506c8c3591b884526c728
refs/heads/master
2020-05-21T22:11:43.879102
2019-11-07T14:23:35
2019-11-07T14:23:35
9,555,220
7
6
null
null
null
null
null
null
null
null
null
null
null
null
null
def produto(l): """Calcula o produto dos itens de um iterable""" t = 1 for i in l: t *= int(i) return t def tripleto(n): """Encontra o tripleto pitagorico qual a soma é igual ao numero de entrada""" for c in range(n - 3, 1, -1): for b in range(c - 1, 1, -1): a = (c**2 - b**2)**.5 if a + b + c == n: return [c, b, int(a)] return False print tripleto(1000) print produto(tripleto(1000))
UTF-8
Python
false
false
476
py
195
prob009.py
180
0.513684
0.475789
0
19
23.894737
81
ChaoOnGitHub/psClean
10,900,627,002,742
579aafec4c3721704bcacc0d4e3609213a8892fb
7ad2468f1398f7f4eb6105ff06964bb51c84fc5c
/test/test_ipc_green_query.py
e6c71ddb091bc008316bf00cadec1fad403d71a1
[]
no_license
https://github.com/ChaoOnGitHub/psClean
ecd0e5450787eece5be2f03f6e457b4646ba36af
85e1a98f709e7ab8efe1b0f6a5418fe0b107f142
refs/heads/master
2021-01-18T11:33:40.816377
2013-01-25T18:44:44
2013-01-25T18:44:44
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import os import MySQLdb import csv import re import time os.chdir('/home/markhuberty/Documents/psClean') conn = open('./data/ipc_green_inventory_tags_8dig.csv') reader = csv.reader(conn) ipc_codes = [row[-1] for row in reader] conn.close() ## Format correctly ipc_codes = [re.sub(' ', ' ', code) for code in ipc_codes] ipc_strings = ','.join(['%s'] * len(ipc_codes)) dbconn = MySQLdb.connect(host="127.0.0.1", port=3306, user="markhuberty", passwd="patstat_huberty", db="patstatOct2011", use_unicode=True, charset='utf8' ) start_time = time.time() conn_cursor = dbconn.cursor() conn_cursor.execute(""" SELECT appln_id, ipc_class_symbol FROM tls209_appln_ipc WHERE ipc_class_symbol IN (%s) """ % ipc_strings, tuple(ipc_codes)) ipc_ids = conn_cursor.fetchall() conn_cursor.close() dbconn.close() end_time = time.time() time_diff = end_time - start_time print time_diff fieldnames = ['appln_id', 'ipc_code'] conn_out = open('./data/ipc_grn_class_ids.csv', 'wt') writer = csv.writer(conn_out) writer.writerow(fieldnames) for item in ipc_ids: writer.writerow([str(item[0]), item[1]]) conn_out.close()
UTF-8
Python
false
false
1,286
py
26
test_ipc_green_query.py
25
0.602644
0.585537
0
47
26.361702
86
calvinchankf/AlgoDaily
16,750,372,481,116
4645fd5d73e7b8b2cb944173855d4e7c8f70d3fb
e00f0f6a6f605532b1123d3e985a5902609eb30a
/codility/10-min_perimeter_rectangle/main.py
5571eaf511a9e96e44af9cede309df8cf68da7d6
[]
no_license
https://github.com/calvinchankf/AlgoDaily
b53c5ea5896e9b8662f4f97bce3eb41b480eb8e0
8ee5006e42442043816881ee88ccc485a3a56ec5
refs/heads/master
2023-08-25T11:48:47.415388
2023-08-25T08:55:22
2023-08-25T08:55:22
146,955,627
154
48
null
false
2023-09-09T09:02:43
2018-09-01T00:56:43
2023-09-03T17:36:52
2023-09-09T09:02:42
63,478
2
1
11
Python
false
false
import math """ 1st approach: math Time O(sqrt(N)) Space O(1) Result 100/100 https://app.codility.com/demo/results/training96RPGQ-5K6/ """ def solution(N): # write your code in Python 3.6 root = int(math.sqrt(N)) for i in range(root+1, 0, -1): quotient = N//i if i*quotient == N: return 2*(i+quotient)
UTF-8
Python
false
false
371
py
3,428
main.py
3,404
0.560647
0.512129
0
19
18.526316
61
derf/icinga2-check-submitter
2,903,397,935,590
9a72bea731457a81ffd90964dbf1dc9f97bc8648
e8f315c264b0bfffd1c9693e1aff966efe570196
/bin/icinga2-run-checks
47c9f37767f37f768264a576757186fd68f707d1
[ "MIT" ]
permissive
https://github.com/derf/icinga2-check-submitter
23fce502e297a29672d1df95e71e6d9526db71fc
7edf5f61313bb288f89546a05b407ce2ad31041f
refs/heads/master
2023-01-05T15:17:29.156674
2020-11-07T10:39:44
2020-11-07T10:40:23
310,821,495
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python3 import json import random import requests import subprocess import sys import time with open("/etc/nagios/icinga2-passive-checks.json", "r") as f: config = json.load(f) host = config["host"] passive_ping = config["passive_ping"] checks = config["checks"] api = config["api"] headers = {"Accept": "application/json"} auth = tuple(config["auth"]) if len(sys.argv) > 1 and sys.argv[1] == "cron": time.sleep(random.random() * 30) for check, command in checks.items(): check_result = subprocess.run(command, shell=True, capture_output=True) req = { "type": "Service", "filter": f"""host.name=="{host}" && service.name=="{check}" """, "exit_status": check_result.returncode, } check_output = check_result.stdout.decode("utf-8") if "|" in check_output: output, performance_data = check_output.split("|") req["plugin_output"] = output.strip() req["performance_data"] = performance_data.strip() else: req["plugin_output"] = check_output.strip() res = requests.post(api, auth=auth, headers=headers, json=req) if res.status_code != 200: print(f"Error {res.status_code} when submitting {check}: {res.json()}") if passive_ping: req = { "type": "Host", "filter": f"""host.name=="{host}" """, "exit_status": 0, "plugin_output": "Alive", } res = requests.post(api, auth=auth, headers=headers, json=req) if res.status_code != 200: print(res.json())
UTF-8
Python
false
false
1,523
3
icinga2-run-checks
1
0.613263
0.604071
0
52
28.288462
79
NeehaK/python_intermediate_project
19,344,532,717,253
f9b06fea2d0a8d7caf03a186ed6c62baef0c07e1
9fe355a0da2fd9e615322b8122b622a1cb20c2e2
/q08_get_total_extras/build.py
5edaf3cd70745f8274f85b6b91ae8cc2cc6bd363
[]
no_license
https://github.com/NeehaK/python_intermediate_project
af8af5d307abb0041199f54b4ab74c8475d9a1c2
ef4b317ae32495f6ad62196e798656b880c293df
refs/heads/master
2020-03-14T01:59:28.465710
2018-05-02T12:14:26
2018-05-02T12:14:26
131,389,663
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# %load q08_get_total_extras/build.py # Default Imports from greyatomlib.python_intermediate.q05_read_csv_data.build import read_ipl_data_csv import numpy as np path = 'data/ipl_matches_small.csv' def get_total_extras(): file_data = read_ipl_data_csv(path, dtype='|S50') extras_col =list(file_data[:,17]) extras_list= [int(x) for x in extras_col] extras=0 for i in range(0,len(extras_list),1): if extras_list[i]!=0: extras+=extras_list[i] return extras # Enter Code Here
UTF-8
Python
false
false
523
py
5
build.py
5
0.66348
0.640535
0
18
28
85
general-programming/tumblrarchives
11,098,195,505,639
669f59b19e02df11d063c678eac19e1b2db3971a
15c3febe00af3959c6e16bcc8b59920208fba962
/web/alembic/versions/9dafd4fd2d5f_last_crawl_update.py
9e442b7bce2cf6c0067324dd3a86023bd1e29fc1
[]
no_license
https://github.com/general-programming/tumblrarchives
26ee1ca5877b387a9356f200e9769def92b4f948
74386daf0f50d7dfd07042207ff29105fb3430fa
refs/heads/master
2020-04-09T16:36:24.500759
2018-12-13T23:51:29
2018-12-13T23:51:29
160,457,485
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
"""last_crawl_update Revision ID: 9dafd4fd2d5f Revises: d00401ed8599 Create Date: 2018-12-08 03:25:42.357038 """ # revision identifiers, used by Alembic. revision = '9dafd4fd2d5f' down_revision = 'd00401ed8599' branch_labels = None depends_on = None from alembic import op import sqlalchemy as sa def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('blogs', sa.Column('last_crawl_update', sa.DateTime(), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('blogs', 'last_crawl_update') # ### end Alembic commands ###
UTF-8
Python
false
false
677
py
64
9dafd4fd2d5f_last_crawl_update.py
40
0.686854
0.618907
0
28
23.178571
88
TheScottishFly/Netflux
7,464,653,161,255
76c4d7b855dbff4ff215578022cadb7b22080067
82975e04aea861c5f9b10fad270baf929bf67baa
/apps/users/models.py
ab39d0dbfc13126a300b600d8b600ef4ffb67889
[]
no_license
https://github.com/TheScottishFly/Netflux
a7d278c82f7de38bafe2ba57931a118777551379
4df0564c95f50dd8ee6dddab93e8dea84e252af0
refs/heads/master
2020-04-13T08:34:53.889224
2019-02-20T11:19:14
2019-02-20T11:19:14
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.db import models from django.contrib.auth.models import User class ExtendedUserManager(models.Manager): def get_queryset(self): return super(ExtendedUserManager, self).get_queryset().select_related('user') class ExtendedUserModel(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE) avatar = models.CharField(max_length=1500) default_lang = models.CharField(max_length=10, default="en") already_seen = models.ManyToManyField("home.Movie", related_name='already_seen') port = models.IntegerField(null=True) type = models.CharField(max_length=100, default='')
UTF-8
Python
false
false
633
py
54
models.py
40
0.742496
0.728278
0
16
38.5
85
YeFeiyangx/grownup_share
16,767,552,342,927
e6bc8775fccc59ea05c2426955a1e9206993584e
f13798ab8440948364bab96cbf23ce6b30c0a9f8
/rl-book-challenge-master/chapter6/driving.py
0fab24a334f716c9e85ab1c3731dae6eb2dd3579
[ "MIT" ]
permissive
https://github.com/YeFeiyangx/grownup_share
29de787d268e6abd6028296c6684adbc4097389c
a6686dbd614c62f62d55735bc95a5e58320e36e6
refs/heads/master
2022-12-07T05:57:48.336393
2021-05-06T12:17:21
2021-05-06T12:17:21
230,780,311
5
0
null
false
2022-11-21T21:04:58
2019-12-29T17:13:30
2021-05-06T12:17:35
2022-11-21T21:04:55
25,516
2
0
4
Jupyter Notebook
false
false
GO_HOME = 0 STATES = ["leaving office", "reach car", "exiting highway", "2ndary road", "home street", "arrive home"] TRAVEL_TIME = [5, 15, 10, 10, 3, 0] class DrivingEnv: def __init__(self): self.reset() @property def moves(self): return [GO_HOME] @property def states(self): return STATES def associated_reward(self, state): return TRAVEL_TIME[self.states.index(state)] def step(self, action): state_idx = self.states.index(self.state) done = state_idx == len(self.states) - 2 new_state = self.states[(state_idx + 1) % len(self.states)] self.state = new_state return new_state, TRAVEL_TIME[state_idx], done, {} def reset(self): self.state = self.states[0] return self.state def __str__(self): return self.state
UTF-8
Python
false
false
836
py
219
driving.py
147
0.599282
0.582536
0
37
21.594595
63
FeezyHendrix/colosseum
13,082,470,430,376
2060174420f96dafe050df01f0e8fed86502be46
e352a11ba612bc52b5e5d0f2635dd4cc54e972b0
/tests/web_platform/CSS2/normal_flow/test_block_in_inline_append_002_ref.py
1e30c6f942537a3f5ec8aadd09d4f3b04b54e587
[ "BSD-3-Clause" ]
permissive
https://github.com/FeezyHendrix/colosseum
6e8f4996a3d6531813a0a797c9a1cdb0771057ec
d6cffba96d732ac50dc514b600622a44c95ec616
refs/heads/master
2023-04-15T04:41:29.469230
2020-03-01T13:37:54
2020-03-01T13:37:54
226,541,151
0
1
NOASSERTION
true
2023-04-04T01:11:58
2019-12-07T16:14:59
2020-03-01T13:38:14
2023-03-24T22:34:23
27,292
0
0
0
Python
false
false
from tests.utils import W3CTestCase class TestBlockInInlineAppend002Ref(W3CTestCase): vars().update(W3CTestCase.find_tests(__file__, 'block-in-inline-append-002-ref'))
UTF-8
Python
false
false
174
py
721
test_block_in_inline_append_002_ref.py
492
0.775862
0.724138
0
4
42.25
85
bbhunter/boucanpy
15,075,335,215,361
63c8f1800d92cb0a182aff536e100428c775d04f
d3a0303ce235e131c8b14ce1bdf362bb85a31311
/boucanpy/db/models/zone.py
b32478f1ec8341074eb2d678ba40527b870a4a79
[ "MIT" ]
permissive
https://github.com/bbhunter/boucanpy
303f56d5134e615506435a9c12027d495f5aa11a
7d2fb105e7b1e90653a511534fb878bb62d02f17
refs/heads/master
2022-02-27T03:22:12.426415
2021-02-10T21:26:57
2021-02-10T21:26:57
224,160,082
0
0
MIT
true
2022-02-01T19:49:07
2019-11-26T10:06:39
2019-11-26T10:06:41
2022-02-01T19:49:05
1,669
0
0
0
null
false
false
from sqlalchemy import Boolean, Column, Integer, String, ForeignKey from sqlalchemy.orm import relationship from boucanpy.core import logger from boucanpy.broadcast import make_redis, make_broadcast_url from .base import Base class Zone(Base): __tablename__ = "zones" __searchable__ = ["domain", "ip"] id = Column(Integer, primary_key=True, index=True) domain = Column(String, unique=True, index=True) ip = Column(String, unique=False, index=True) is_active = Column(Boolean(), default=True) dns_server_id = Column(ForeignKey("dns_servers.id"), nullable=True) dns_server = relationship( "boucanpy.db.models.dns_server.DnsServer", foreign_keys="boucanpy.db.models.zone.Zone.dns_server_id", back_populates="zones", ) dns_requests = relationship( "boucanpy.db.models.dns_request.DnsRequest", foreign_keys="boucanpy.db.models.dns_request.DnsRequest.zone_id", back_populates="zone", ) dns_records = relationship( "boucanpy.db.models.dns_record.DnsRecord", foreign_keys="boucanpy.db.models.dns_record.DnsRecord.zone_id", back_populates="zone", ) http_server_id = Column(ForeignKey("http_servers.id"), nullable=True) http_server = relationship( "boucanpy.db.models.http_server.HttpServer", foreign_keys="boucanpy.db.models.zone.Zone.http_server_id", back_populates="zones", ) http_requests = relationship( "boucanpy.db.models.http_request.HttpRequest", foreign_keys="boucanpy.db.models.http_request.HttpRequest.zone_id", ) @staticmethod async def on_after_insert(mapper, connection, target): try: publisher = await make_redis() res = await publisher.publish_json( "channel:auth", {"type": "MESSAGE", "name": "ZONE_CREATED", "payload": ""}, ) except Exception as e: log.warning(f"on_after_insert error: {str(e)}") def __repr__(self): return f"<{str(self.__class__.__name__)}(id={str(self.id)},ip={str(self.ip)},domain={str(self.domain)},dns_server_id={str(self.dns_server_id)})>"
UTF-8
Python
false
false
2,183
py
179
zone.py
172
0.640861
0.640861
0
61
34.786885
153
grechko1985/Stepik-2021
12,893,491,853,813
9245b4462029518e8f9e42772cded2766f0c2c25
48e97f95cff37ff412c0b683145b9ef1a5c63306
/Chapter №2/10. Среднее арифметическое, которое кратно 3 (from part 2.3).py
db6c5fa2d4ab70c5c70336ac99916a3333380872
[]
no_license
https://github.com/grechko1985/Stepik-2021
7751e78d6074777421cad10533bc38bac5b76218
a077d7b71260fc0fdef269427547976691d0f475
refs/heads/main
2023-03-15T17:55:24.248213
2021-03-04T23:47:58
2021-03-04T23:47:58
330,654,184
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Напишите программу, которая считывает с клавиатуры два числа a и b, считает и выводит на консоль среднее # арифметическое всех чисел из отрезка [a; b], которые кратны числу 3. В приведенном ниже примере среднее # арифметическое считается для чисел на отрезке [-5; 12]. Всего чисел, делящихся на 3, на этом отрезке 6: -3, 0, 3, 6, # 9, 12. Их среднее арифметическое равно 4.5. # На вход программе подаются интервалы, внутри которых всегда есть хотя бы одно число, которое делится на 33. a, b = int(input('Введите число a: ')), int(input('Введите число b: ')) s = 0 n = 0 for i in range(a, b + 1): if i % 3 == 0: s += i n += 1 print(s / n)
UTF-8
Python
false
false
1,054
py
84
10. Среднее арифметическое, которое кратно 3 (from part 2.3).py
77
0.66716
0.633136
0
13
49.846154
118
joanna-janos/GestureRecognizer
11,914,239,328,359
2f9118e6858a97201a16915a431515904fe2bac5
3970a8df09b6e42919fe96e1d3f9938863f1dff7
/data_preparation/dataset.py
2484ac7fb3a7604e5bba009c9c99a40edd59a535
[]
no_license
https://github.com/joanna-janos/GestureRecognizer
b5cfddc9a092ebb085aebb973d06046c9d990095
62d9bd2f02d642901e094cfefbe4cb634b5e83ad
refs/heads/master
2022-04-03T01:21:07.337830
2020-02-13T10:25:56
2020-02-13T10:25:56
220,803,684
3
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import typing from PIL import Image from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True from torch.utils.data import Dataset from torchvision.transforms import Compose, Resize, ToTensor class GestureDataset(Dataset): """ Dataset for gestures where one sample is image-label. Parameters ---------- paths : typing.List[str] paths to images gestures : typing.List[str] labels (gestures names) transform : torchvision.transforms.Compose Transformations to carry out on image, default: changing to tensor Returns ------- torch.Tensor, torch.Tensor tensors representing gestures' image and label """ def __init__(self, paths: typing.List[str], gestures: typing.List[str], transform=Compose([Resize((512, 256)), ToTensor()])): self.paths = paths self.gestures = gestures self.transform = transform def __len__(self): return len(self.paths) def __getitem__(self, idx: int): img = Image.open(self.paths[idx]) return self.transform(img), _gesture_name_to_class_label(self.gestures[idx]) def _gesture_name_to_class_label(gesture_name: str) -> int: """ Get index of gesture name. Helpful while training a model (classification). Arguments ---------- gesture_name : str Name of a gesture Returns ------- int Index of gesture """ gestures = ('1', '2', '3', '4', '5', 'A', 'O', 'U') return gestures.index(gesture_name)
UTF-8
Python
false
false
1,575
py
16
dataset.py
13
0.612063
0.605079
0
61
24.819672
84
Hari025/syncupcall
13,477,607,391,977
396f84f1d8fb6eead0366a264375f563f7df48a6
edb8e1e83e862cda2884db184700ea77770f90bf
/testapp/admin.py
b222d0c5c35b76a39b9424349bf7395f8243bbf6
[]
no_license
https://github.com/Hari025/syncupcall
776c90bde36f47bec88b11f51a0c102f8ec6f32a
149fb732f516571ccaf8ac948f7b8d64d724f5a6
refs/heads/master
2023-06-09T02:51:35.403464
2021-06-30T13:40:57
2021-06-30T13:40:57
381,695,291
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.contrib import admin # Register your models here. from testapp.models import Truecomp from testapp.models import Smart from testapp.models import PDB from testapp.models import DMS # Register your models here. class TruecompAdmin(admin.ModelAdmin): list_display=['TC','title','content','attendees','date'] admin.site.register(Truecomp,TruecompAdmin) class SmartAdmin(admin.ModelAdmin): list_display=['TC','title','content','attendees','date'] admin.site.register(Smart,SmartAdmin) class PdbAdmin(admin.ModelAdmin): list_display=['TC','title','content','attendees','date'] admin.site.register(PDB,PdbAdmin) class DmsAdmin(admin.ModelAdmin): list_display=['TC','title','content','attendees','date'] admin.site.register(DMS,DmsAdmin)
UTF-8
Python
false
false
762
py
7
admin.py
3
0.761155
0.761155
0
22
33.636364
60
bleeptv/obey-sm-post-classification
17,695,265,277,327
eacda154e0eac84156faff702a68ec2d2e96571e
4fbb49ac49dc9bc9d68adac09eea43de49e09f94
/app/src/data_cleaning/custom_text_preprocessor.py
8ecb70dc3848a19c4ae23c0af63e937b0d145dc3
[]
no_license
https://github.com/bleeptv/obey-sm-post-classification
8948104d01644c8a51671310b83cd93a2345ed55
b14722737296c6a5df93f1dba3db4b57f14f34c6
refs/heads/master
2023-03-16T04:58:09.862950
2021-03-05T10:15:43
2021-03-05T10:15:43
344,027,299
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import nltk from nltk.stem import WordNetLemmatizer, PorterStemmer from string import punctuation from gensim.utils import simple_preprocess from gensim.parsing.preprocessing import STOPWORDS from gensim.parsing.preprocessing import strip_punctuation from gensim.parsing.preprocessing import strip_non_alphanum nltk.download('wordnet') stemmer = PorterStemmer() lemmatizer = WordNetLemmatizer() def lemmatize_stemming(input_text): """ Turn a word into it's original, dictionary form (i.e. turning fried into fry) Parameters ---------- input_text : str The word to convert to a language dictionary equivalent Returns ------- str lemmatized input text converted to language dictionary original word """ if lemmatizer.lemmatize(input_text).endswith('e'): return lemmatizer.lemmatize(input_text) return stemmer.stem(input_text) def preprocess(input_text): """ Turn a word into it's original, dictionary form (i.e. turning fried into fry) Parameters ---------- input_text : str The word to convert to a language dictionary equivalent Returns ------- list List of all the words in the input text """ result = [] stripped_text = strip_punctuation(input_text.lower()).split(" ") filtered_stripped_text = filter(None, stripped_text) for token in filtered_stripped_text: if token not in STOPWORDS and len(token) > 1: result.append(lemmatize_stemming(token)) return result
UTF-8
Python
false
false
1,585
py
9
custom_text_preprocessor.py
4
0.668139
0.667508
0
56
27.321429
85
kc8/UPC_API
13,786,845,067,985
46846bdcf92808ea07a212e2f0835552f7c9de56
c7422c7a1cd127c690b9f87d80b0d2692efa6a38
/tests.py
8b82b1b1dc921c59733d0a0b8f621ceb352f2e3a
[]
no_license
https://github.com/kc8/UPC_API
42e38cf11c5adf1b10171237cfea74acf71c9558
15465791a28169b47435eb518e2733d9ea44f686
refs/heads/master
2022-04-09T04:40:53.326498
2020-02-26T12:50:05
2020-02-26T12:50:05
241,003,215
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
''' This is an example test script. In its current state this will not run ''' import unittest #import module class TestModule(unittest.TestCase): def test_add(self): result = module.add(4,6) #this would be a test self.assertEqual(result, 15) if __name__ == "__main__": unittest.main() #this will kick off all the unit tests
UTF-8
Python
false
false
357
py
7
tests.py
5
0.658263
0.647059
0
17
19.941176
58
ngoodman90/CodingGame
14,851,996,927,012
762527730e2ca2ff1f31a97c9cfb6c764686fc58
d26b4c0eb87ccd861ff99d7b78bb052cd5d3e421
/python/RockPaperScissorsSpock/main.py
5901ae46aa64fe7ec290bb8790765980144389e2
[]
no_license
https://github.com/ngoodman90/CodingGame
6ad8226253b94cc20c18bdd019b3c880301017ff
529da15a964f92e5407522cea0c9b7a7063c05eb
refs/heads/master
2021-01-10T07:07:30.880015
2020-05-08T13:36:23
2020-05-08T13:36:23
48,571,145
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# https://www.codingame.com/ide/puzzle/rock-paper-scissors-lizard-spock from collections import defaultdict rules = { 'C': ['P', 'L'], 'P': ['R', 'S'], 'R': ['L', 'C'], 'L': ['S', 'P'], 'S': ['C', 'R'] } def winner(pl1, pl2): pl1_wins = pl2[1] in rules[pl1[1]] pl2_wins = pl1[1] in rules[pl2[1]] if pl1_wins and not pl2_wins: return pl1, pl2 if pl2_wins and not pl1_wins: return pl2, pl1 return (pl1, pl2) if pl1[0] < pl2[0] else (pl2, pl1) opponents = defaultdict(list) n = int(input()) games = [] for i in range(n): numplayer, signplayer = input().split() games.append((int(numplayer), signplayer)) while len(games) > 1: next_games = [] for p1, p2 in zip(games[::2], games[1::2]): w, l = winner(p1, p2) next_games.append(w) opponents[w[0]].append(l[0]) games = next_games print(games[0][0]) print(*opponents[games[0][0]])
UTF-8
Python
false
false
933
py
44
main.py
41
0.559486
0.514469
0
41
21.756098
71
AnchorFree/python-statuspageio
14,577,119,021,251
b8667f2a05ca8d0aa795e87e3a2b8db363848ff4
a33714d6344ae8449e973254d20ff27b151a0d10
/statuspageio/__init__.py
3b211b55c6863a9beaec0104b12763c93b06ab87
[ "MIT" ]
permissive
https://github.com/AnchorFree/python-statuspageio
916f1770a32f6cdbbd284c5a921b937ef8e5923f
54a87368c851de585043e2d8c05086b017b36015
refs/heads/master
2023-01-02T18:21:17.530675
2020-10-27T04:29:02
2020-10-27T04:29:02
299,762,396
0
0
MIT
true
2020-10-27T04:29:03
2020-09-29T23:36:42
2020-09-29T23:36:45
2020-10-27T04:29:02
17
0
0
0
null
false
false
""" StatusPage.io API V1 library client for Python. ~~~~~~~~~~~~~~~~~~~~~ Usage:: >>> import statuspageio >>> client = statuspageio.Client(api_key=os.environ.get('STATUSPAGE_API_KEY') >>> status = client.components.list() >>> print status :copyright: (c) 2016 by GameSparks TechOps (techops@gamesparks.com). :license: MIT, see LICENSE for more details. """ from statuspageio.version import VERSION from statuspageio.errors import ( ConfigurationError, RateLimitError, BaseError, RequestError, ResourceError, ServerError ) # from statuspageio.configuration import Configuration from statuspageio.http_client import HttpClient from statuspageio.services import ( PageService, ComponentsService, IncidentsService, SubscribersService, MetricsService, UsersService, ) from statuspageio.client import Client
UTF-8
Python
false
false
864
py
5
__init__.py
4
0.725694
0.719907
0
37
22.351351
79
dpq/spacetrack
12,618,613,953,960
693d1da1d7368092e410a1a022d6e2a864ac11cf
bdeebfa1b3f3abcfaa8881c086d9e0ea1ee7e635
/dupe.py
09289d4c4c9ca7b93d50fcaa7631827709863ba3
[]
no_license
https://github.com/dpq/spacetrack
4bfc7f113243ba72a32f60a0fd1a19284ab485ab
907d0bfcc9ab44993e0ca31fa8e7e6bdce55532f
refs/heads/master
2020-07-22T00:03:38.819325
2011-03-28T13:19:05
2011-03-28T13:19:05
1,541,691
3
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from google.appengine.api import memcache from google.appengine.ext import db import model def main(): print "Content-Type: text/plain" print "" print "Dupes" query = model.Object.gql("where orbiting = :1 order by noradid asc", True) res = {} sects = {} while True: result = query.fetch(1000) for x in result: if res.has_key(x.noradid): res[x.noradid] += 1 sects[x.noradid] += " " + x.section else: res[x.noradid] = 1 sects[x.noradid] = x.section if len(result) < 1000: break cursor = query.cursor() query.with_cursor(cursor) for x in res: if res[x] > 1: s = sects[x].split() if len(s) > len(set(s)): print x, "::", res[x], " ", sects[x] if __name__ == "__main__": main()
UTF-8
Python
false
false
898
py
16
dupe.py
11
0.495546
0.482183
0
33
26.242424
78
SvanderHeijden/SimpleMovingAverageModel
7,430,293,433,648
d31f72f48e85c3a412218ac0e014c3030e16ae71
7f3f3d85ab18a019ceaf953f768bf18ee44a6866
/SimpleMovingAverageModel.py
de496fb1f4ecec21d89eecc00fedf99ed1dbaac1
[]
no_license
https://github.com/SvanderHeijden/SimpleMovingAverageModel
98316e401a0687a6988d7f66843b25e25fc2a7e7
f1a9faca2f0b8fec7153c5e15a610661aef2f87a
refs/heads/master
2020-09-03T15:51:16.793378
2019-11-04T13:03:58
2019-11-04T13:03:58
219,502,998
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" This application serves as a simple plotting tool for the US stock market. For closing data the financial moddeling pred API is used. @author: Sjoerd van der Heijden """ import urllib.parse import json import requests import numpy as np import pandas as pd from tqdm import tqdm """ When this definition is called the API is requested. @return: myData is a dictionary containing the close and dates of the requested ticker. """ def request(ticker): myUrl = 'https://financialmodelingprep.com/api/v3/historical-price-full/' totalUrl = urllib.parse.urljoin(myUrl, ticker) request = requests.get(totalUrl) myData = json.loads(request.text.replace("<pre>","").replace("</pre>","")) return(myData) """ When this definition is called it computes the simple moving average for the last 50 and 200 days. Then, the score is computed by deviding the 50 days SMA by the 200 days SMA. @param: ticker is the Ticker for any given stock. @return: myScore is the score for any given stock. """ def score(ticker): try: myData = request(ticker) myPrice = [] for i in range(0, len(myData["historical"])): myPrice.append(float(myData["historical"][i]["close"])) moving = [50, 200] totalSMA = [] for h in range(0, len(moving)): mySMA = [] for i in range(moving[h]-1, len(myData["historical"])): mySum = 0 for j in range(0, moving[h]-1): mySum += float(myData["historical"][i-j]["close"]) mySMA.append(mySum/(moving[h]-1)) totalSMA.append(mySMA[len(mySMA)-1]) myScore = totalSMA[0]/totalSMA[1] except: myScore = 0 return(myScore) """ When this definition is called the summarizes the results of the program in a dataframe. The data frame is sorted by decending order and written to an excel file. @param: listTickers is a list of Tickers. """ def result(listTickers): myScore = [] myList = [] for i in tqdm(range(len(listTickers))): listTickers[i] = str(listTickers[i]).strip() myScore.append(score(listTickers[i])) myList.append(listTickers[i]) myResult = np.array(np.transpose(np.array([myList, myScore]))) df = pd.DataFrame(myResult, columns=['Ticker', 'Score']).sort_values(by=['Score'], ascending=False).head(50) df.to_excel(excel_writer = "/Users/SjoerdvanderHeijden/Documents/API/fcf_model/code/V1.0/result.xlsx") if __name__ == '__main__': listTickers = open("ticker.csv").readlines() result(listTickers)
UTF-8
Python
false
false
2,910
py
1
SimpleMovingAverageModel.py
1
0.578694
0.568041
0
123
22.666667
113
matrix-org/synapse
12,369,505,821,150
1fd595704053862eae81c16d53291297d53e2013
7343ece3b82ac87a594865c4074623b45b0297b4
/synapse/storage/databases/main/task_scheduler.py
9ab120eea9ca5f326f9470c6bdf4c4300a397d22
[ "Apache-2.0" ]
permissive
https://github.com/matrix-org/synapse
a00111f83310783b78e2996557f8bbae4d9fb229
d35bed8369514fe727b4fe1afb68f48cc8b2655a
refs/heads/develop
2023-09-05T05:24:20.808942
2023-09-04T16:14:09
2023-09-04T16:14:09
22,844,864
12,215
2,869
Apache-2.0
false
2023-09-14T15:20:48
2014-08-11T15:51:42
2023-09-14T11:01:28
2023-09-14T15:20:47
388,587
11,321
2,120
1,497
Python
false
false
# Copyright 2023 The Matrix.org Foundation C.I.C. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Any, Dict, List, Optional from synapse.storage._base import SQLBaseStore, db_to_json from synapse.storage.database import ( DatabasePool, LoggingDatabaseConnection, LoggingTransaction, make_in_list_sql_clause, ) from synapse.types import JsonDict, JsonMapping, ScheduledTask, TaskStatus from synapse.util import json_encoder if TYPE_CHECKING: from synapse.server import HomeServer class TaskSchedulerWorkerStore(SQLBaseStore): def __init__( self, database: DatabasePool, db_conn: LoggingDatabaseConnection, hs: "HomeServer", ): super().__init__(database, db_conn, hs) @staticmethod def _convert_row_to_task(row: Dict[str, Any]) -> ScheduledTask: row["status"] = TaskStatus(row["status"]) if row["params"] is not None: row["params"] = db_to_json(row["params"]) if row["result"] is not None: row["result"] = db_to_json(row["result"]) return ScheduledTask(**row) async def get_scheduled_tasks( self, *, actions: Optional[List[str]] = None, resource_id: Optional[str] = None, statuses: Optional[List[TaskStatus]] = None, max_timestamp: Optional[int] = None, ) -> List[ScheduledTask]: """Get a list of scheduled tasks from the DB. Args: actions: Limit the returned tasks to those specific action names resource_id: Limit the returned tasks to the specific resource id, if specified statuses: Limit the returned tasks to the specific statuses max_timestamp: Limit the returned tasks to the ones that have a timestamp inferior to the specified one Returns: a list of `ScheduledTask`, ordered by increasing timestamps """ def get_scheduled_tasks_txn(txn: LoggingTransaction) -> List[Dict[str, Any]]: clauses: List[str] = [] args: List[Any] = [] if resource_id: clauses.append("resource_id = ?") args.append(resource_id) if actions is not None: clause, temp_args = make_in_list_sql_clause( txn.database_engine, "action", actions ) clauses.append(clause) args.extend(temp_args) if statuses is not None: clause, temp_args = make_in_list_sql_clause( txn.database_engine, "status", statuses ) clauses.append(clause) args.extend(temp_args) if max_timestamp is not None: clauses.append("timestamp <= ?") args.append(max_timestamp) sql = "SELECT * FROM scheduled_tasks" if clauses: sql = sql + " WHERE " + " AND ".join(clauses) sql = sql + " ORDER BY timestamp" txn.execute(sql, args) return self.db_pool.cursor_to_dict(txn) rows = await self.db_pool.runInteraction( "get_scheduled_tasks", get_scheduled_tasks_txn ) return [TaskSchedulerWorkerStore._convert_row_to_task(row) for row in rows] async def insert_scheduled_task(self, task: ScheduledTask) -> None: """Insert a specified `ScheduledTask` in the DB. Args: task: the `ScheduledTask` to insert """ await self.db_pool.simple_insert( "scheduled_tasks", { "id": task.id, "action": task.action, "status": task.status, "timestamp": task.timestamp, "resource_id": task.resource_id, "params": None if task.params is None else json_encoder.encode(task.params), "result": None if task.result is None else json_encoder.encode(task.result), "error": task.error, }, desc="insert_scheduled_task", ) async def update_scheduled_task( self, id: str, timestamp: int, *, status: Optional[TaskStatus] = None, result: Optional[JsonMapping] = None, error: Optional[str] = None, ) -> bool: """Update a scheduled task in the DB with some new value(s). Args: id: id of the `ScheduledTask` to update timestamp: new timestamp of the task status: new status of the task result: new result of the task error: new error of the task Returns: `False` if no matching row was found, `True` otherwise """ updatevalues: JsonDict = {"timestamp": timestamp} if status is not None: updatevalues["status"] = status if result is not None: updatevalues["result"] = json_encoder.encode(result) if error is not None: updatevalues["error"] = error nb_rows = await self.db_pool.simple_update( "scheduled_tasks", {"id": id}, updatevalues, desc="update_scheduled_task", ) return nb_rows > 0 async def get_scheduled_task(self, id: str) -> Optional[ScheduledTask]: """Get a specific `ScheduledTask` from its id. Args: id: the id of the task to retrieve Returns: the task if available, `None` otherwise """ row = await self.db_pool.simple_select_one( table="scheduled_tasks", keyvalues={"id": id}, retcols=( "id", "action", "status", "timestamp", "resource_id", "params", "result", "error", ), allow_none=True, desc="get_scheduled_task", ) return TaskSchedulerWorkerStore._convert_row_to_task(row) if row else None async def delete_scheduled_task(self, id: str) -> None: """Delete a specific task from its id. Args: id: the id of the task to delete """ await self.db_pool.simple_delete( "scheduled_tasks", keyvalues={"id": id}, desc="delete_scheduled_task", )
UTF-8
Python
false
false
6,970
py
1,212
task_scheduler.py
932
0.562984
0.561693
0
202
33.50495
91
amimimor/questionnaire-poc-be
12,867,722,057,160
bffb04ae6384590447f77573a4c81dfa6be1ccb7
7ffc3497a6af48b6c1674ed948d3805c4a7cb28d
/app/neo/neo_transaction.py
6b071fd6b35b8a1d34debaa55414ed83e8dbf27f
[]
no_license
https://github.com/amimimor/questionnaire-poc-be
3597c32f3523506112c245d09f20c43e9b114f1f
5f2fbdd13427ab1ce81dda9d62cd0fb5368bfd0f
refs/heads/main
2023-07-30T14:05:24.458497
2021-09-02T16:33:40
2021-09-02T16:33:40
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from app.neo.neo_utils import * def create_new_respondent(tx, company_name, policy_request_id): query = "CREATE(r:Respondent:MatanDev $node) return r" node = { 'id': generate_node_id(), 'comapnyName': company_name, 'policyRequestId': policy_request_id } result = tx.run(query, node=node) record = result.single() return record[0].get("id") def get_questions_from_neo(tx, form_id): q = "MATCH (f:Form:MatanDev {Id:$form_id})-[:hasQuestion]-(q:Question:MatanDev)-[:hasAnswer]-(a:Answer:MatanDev) return q, collect(a) as optionalAnswers" result = tx.run(q, form_id=form_id) questions = [] for record in result: question = { 'id': record[0].get('Id'), 'name': record[0].get('Name'), 'question': record[0].get('BaseQuestion'), 'subQuestion': None, 'expectMinLen': record[0].get('ExpectMinLen'), 'expectMaxLen': record[0].get('ExpectMaxLen'), 'optionalAnswerList': extract_answers(record[1]) } questions.append(question) return questions def get_forms_id_from_neo(tx): q = "Match(f:Form:MatanDev {Name:'Opeining Form'}) return f " result = tx.run(q) record = result.single() return record[0].get("Id") def add_answer_of_respondent(tx, respondent_id, question_id, answer_ids): if answer_ids: query_to_insert = ('Match(r:Respondent:MatanDev ),(q:Question:MatanDev ),(a:Answer:MatanDev ) ' 'where r.id=$respondent_id and q.Id=$question_id and a.Id IN $answer_ids ' 'MERGE (r)-[rw:respondedWith]->(a) ' 'MERGE (r)-[rt:respondedTo]->(q) ' 'RETURN r,q,a') tx.run(query_to_insert, respondent_id=respondent_id, question_id=question_id, answer_ids=answer_ids) def delete_answer_of_respondent(tx, respondent_id, answer_ids): if answer_ids: query_to_delete = ('MATCH (r:Respondent:MatanDev)-[rw:respondedWith]->(a:Answer:MatanDev) ' 'WHERE r.id=$respondent_id and a.Id IN $answer_ids ' 'Delete rw') tx.run(query_to_delete, respondent_id=respondent_id, answer_ids=answer_ids) def update_respondent_answer(tx, respondent_id, question): # check if I answer the question # if No -> add new answer to question # if Yes -> # get all answers for this question from respondent # 1. if they not exacly like new - remove the unnececry # 2. don't do anything question_id = question['questionId'] answer_ids = extract_answer_ids(question['answersList']) query_to_check_question = ('MATCH (r:Respondent:MatanDev)-[:respondedTo]->(q:Question:MatanDev) ' 'WHERE r.id=$respondent_id and q.Id=$question_id ' 'RETURN count(q.Id) as isQuestionConnect') response = tx.run(query_to_check_question, respondent_id=respondent_id, question_id=question_id) is_question_connect = 0 for record in response: is_question_connect = record.get('isQuestionConnect') if is_question_connect: query_to_check_latest_respondent_answers = ( 'MATCH (r:Respondent)-[:respondedWith]->(a:Answer), (q:Question)-[:hasAnswer]->(a:Answer) ' 'WHERE r.id=$respondent_id and q.Id=$question_id ' 'return a.Id as answerId') response = tx.run(query_to_check_latest_respondent_answers, respondent_id=respondent_id, question_id=question_id) list_of_latest_answers = [] for record in response: list_of_latest_answers.append(record.get('answerId')) answer_to_remove = extract_in_the_first_list(list_of_latest_answers, answer_ids) answer_to_add = extract_in_the_first_list(answer_ids, list_of_latest_answers) else: answer_to_remove = [] answer_to_add = answer_ids add_answer_of_respondent(tx, respondent_id, question_id, answer_to_add) delete_answer_of_respondent(tx, respondent_id, answer_to_remove) def get_all_rules(tx): query = ('Match (r:Rule)-[aw:answerWith]-(a:Answer) return r.Id as ruleId, collect(a.Id) as answersId') response = tx.run(query) rules = {} for record in response: rules[record.get('ruleId')] = record.get('answersId') return rules def get_all_respondent_answers(tx, respondent_id): query = ('Match (r:Respondent)-[rw:respondedWith]-(a:Answer) WHERE r.id=$respondent_id ' 'return collect(a.Id) as respondent_answers') response = tx.run(query, respondent_id=respondent_id) for record in response: return record.get('respondent_answers') def get_question_to_show(tx, rules_ids): query = ('Match (r:Rule)-[:ruleTo]-(f:Form)-[:hasQuestion]-(q:Question) ' 'where r.Id in $rules_ids ' 'return collect(q.Id) as allQuestionToShow') response = tx.run(query, rules_ids=rules_ids) for record in response: return record.get('allQuestionToShow') def get_base_rule(tx): query = ('Match (r:Rule {Name:\'Base\'}) return r.Id as ruleId') response = tx.run(query) for record in response: return record.get('ruleId') def get_questions_by_ids(tx, questions_ids): query = ('MATCH (q:Question:MatanDev)-[:hasAnswer]-(a:Answer:MatanDev) where q.Id in $questions_ids ' 'return q, collect(a) as optionalAnswers') response = tx.run(query, questions_ids=questions_ids) questions = [] for record in response: question = { 'id': record[0].get('Id'), 'name': record[0].get('Name'), 'question': record[0].get('BaseQuestion'), 'subQuestion': None, 'expectMinLen': record[0].get('ExpectMinLen'), 'expectMaxLen': record[0].get('ExpectMaxLen'), 'optionalAnswerList': extract_answers(record[1]) } questions.append(question) return questions
UTF-8
Python
false
false
6,030
py
8
neo_transaction.py
6
0.612438
0.609619
0
149
39.469799
157
Erick-LONG/MxShop
4,767,413,702,428
42e950392aabc75f9c800d29ffdf3fe907bb40d4
ce741ade3d7ebfc64cf2736358f6e77b06168830
/apps/trade/models.py
9833ff9c0502730ca9e76d98bed3b6859c63e790
[]
no_license
https://github.com/Erick-LONG/MxShop
798a1ce4eb557973732ee6206640bdf9a247216b
783e5d66a4d49b3eceb3eb6d7c729fcfa69742cb
refs/heads/master
2021-04-03T08:31:41.588749
2018-03-22T04:01:46
2018-03-22T04:01:46
124,395,167
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from datetime import datetime from django.db import models from django.contrib.auth import get_user_model from goods.models import Goods # Create your models here. User = get_user_model() #返回User类 class ShoppingCart(models.Model): '''购物车''' user = models.ForeignKey(User,verbose_name='用户') goods = models.ForeignKey(Goods,verbose_name='商品') nums = models.IntegerField(default=0,verbose_name='购买数量') add_time = models.DateTimeField(default=datetime.now, verbose_name='添加时间') class Meta: verbose_name = '购物车' verbose_name_plural = verbose_name unique_together = ('user','goods') def __str__(self): return '%s(%d)' % (self.goods.name,self.nums) class OrderInfo(models.Model): '''订单信息''' ORDER_STATUS = ( ("TRADE_SUCCESS", "成功"), ("TRADE_CLOSED", "超时关闭"), ("WAIT_BUYER_PAY", "交易创建"), ("TRADE_FINISHED", "交易结束"), ("paying", "待支付"), ) # PAY_TYPE = ( # ('alipay','支付宝'), # ('wechat','微信'), # ) user = models.ForeignKey(User, verbose_name='用户') order_sn = models.CharField(max_length=30,unique=True,null=True,blank=True,verbose_name='订单号') trade_no = models.CharField(max_length=100,unique=True,null=True,blank=True,verbose_name='支付宝订单号') pay_status = models.CharField(choices=ORDER_STATUS,default='paying',max_length=30,verbose_name='订单状态') post_script = models.CharField(max_length=11,verbose_name='订单留言') order_mount = models.FloatField(default=0.0,verbose_name='订单金额') pay_time = models.DateTimeField(null=True,blank=True,verbose_name='支付时间') #用户信息 address = models.CharField(max_length=100,default='',verbose_name='收货地址') signer_name = models.CharField(max_length=20,default='',verbose_name='收件人 ') signer_mobile = models.CharField(max_length=11,default='',verbose_name='联系电话') add_time = models.DateTimeField(default=datetime.now, verbose_name='添加时间') class Meta: verbose_name = '订单信息' verbose_name_plural = verbose_name def __str__(self): return str(self.order_sn) class OrderGoods(models.Model): '''订单商品详情''' order = models.ForeignKey(OrderInfo,verbose_name='订单信息',related_name='goods') goods = models.ForeignKey(Goods,verbose_name='商品') goods_num = models.IntegerField(default=0,verbose_name='商品数量') add_time = models.DateTimeField(default=datetime.now, verbose_name='添加时间') class Meta: verbose_name = '订单商品详情' verbose_name_plural = verbose_name def __str__(self): return str(self.order.order_sn)
UTF-8
Python
false
false
2,831
py
7
models.py
7
0.654932
0.647195
0
79
31.734177
106
shalgrim/advent_of_code_2019
18,365,280,165,247
70cb77a144f512d2ff8f476e48b60e8d92fc8972
ac4f3bfa74fa452448757203a7b03786fbe6f40f
/day14_1.py
0e2e6f9d27a899ca01d732650530c098df34b16b
[]
no_license
https://github.com/shalgrim/advent_of_code_2019
e1f1f825f75597c10b6fda3141323ee162d36618
ffb6731254c48abe1decc769dab9580a86bf8e05
refs/heads/master
2021-10-31T00:41:03.263486
2021-10-21T14:35:16
2021-10-21T14:35:16
227,891,104
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from fuel_builder import FuelBuilder class Rule(object): def __init__(self, line): lhs, rhs = line.split('=>') lhs = [l.strip().split() for l in lhs.strip().split(',')] self.lhs = {t[1]: int(t[0]) for t in lhs} self.rhs_ingredient = rhs.strip().split()[1] self.rhs_quantity = int(rhs.strip().split()[0]) @property def output(self): return self.rhs_ingredient @property def num_produced(self): return self.rhs_quantity def does_produce(a, b, rules): """True if a produces b eventually""" if b not in rules: return False if rules[b].lhs.get(a, False): return True else: return any(does_produce(a, c, rules) for c in rules[b].lhs) num_inputs_produced = 0 resources = {} def find_missing_ingredient(rule): global resources lhs = rule.lhs for ingredient, required in lhs.items(): if resources.get(ingredient, 0) < required: return ingredient return None def get_required(input_ingredient, output_ingredient, rules): global resources, num_inputs_produced output_rule = rules[output_ingredient] missing_ingredient = find_missing_ingredient(output_rule) while missing_ingredient: if missing_ingredient == input_ingredient: total_needed = output_rule.lhs[missing_ingredient] new_inputs_needed = output_rule.lhs[input_ingredient] - resources.get(input_ingredient, 0) resources[input_ingredient] = total_needed num_inputs_produced += new_inputs_needed else: get_required(input_ingredient, missing_ingredient, rules) missing_ingredient = find_missing_ingredient(output_rule) try: resources[output_ingredient] += output_rule.num_produced except KeyError: resources[output_ingredient] = output_rule.num_produced for ing, num in output_rule.lhs.items(): resources[ing] -= num def main(lines, input_ingredient='ORE', outupt_ingredient = 'FUEL'): global resources, num_inputs_produced resources = {} num_inputs_produced = 0 rules = [Rule(line) for line in lines] rules = {rule.output: rule for rule in rules} get_required('ORE', 'FUEL', rules) return num_inputs_produced, resources def main_using_class(lines): rules = [Rule(line) for line in lines] rules = {rule.output: rule for rule in rules} fb = FuelBuilder(rules) min_to_produce_one, leftovers = fb.calc_min_to_produce_one() return min_to_produce_one if __name__ == '__main__': with open('data/input14.txt') as f: lines = [line.strip() for line in f.readlines()] print(main(lines)[0]) # 870051 print(resources)
UTF-8
Python
false
false
2,731
py
57
day14_1.py
57
0.639326
0.633101
0
92
28.684783
102
wakita/glvis
19,292,993,100,379
01b41ca3d18a4065ffed90081417355ac9147b6d
a052b3ecee8b5dd8d0857a80ba9b16f0e9b1515b
/lib/sn/gl/geometry/Geometry.py
7e62597deb2f80190ce37fbd84595ca6dc65e20a
[]
no_license
https://github.com/wakita/glvis
ae67d1f904e7e6e75cd4d5cb9c5aad27ec694d85
700a355a31e15eb920b73923b52ec9cf0db8bf52
refs/heads/kw
2021-09-19T22:18:18.552349
2018-08-01T04:57:15
2018-08-01T04:57:15
49,638,984
4
2
null
false
2017-08-04T04:14:14
2016-01-14T10:02:36
2017-04-21T05:02:14
2017-08-03T08:48:35
3,243
4
2
9
Python
null
null
#!/usr/bin/env python from collections import defaultdict import os, os.path, sys import numpy as np np.set_printoptions(precision=4) root_path = os.path.join(os.path.normpath(os.environ['DROPBOX']), 'work', 'pyqt') sys.path.append(os.path.join(root_path, 'lib')) def demo(Demo): try: Demo.start(Demo) except: pass def Point(): from sn.gl.geometry.point import D demo(D) def RegularPolygon(): from sn.gl.geometry.regularpolygon import D demo(D) def PointGrid(): from sn.gl.geometry.pointgrid import D demo(D) d = defaultdict(lambda: lambda: None) d['Point'] = Point d['RegularPolygon'] = RegularPolygon d['PointGrid'] = PointGrid for arg in sys.argv[1:]: d[arg]()
UTF-8
Python
false
false
705
py
114
Geometry.py
73
0.693617
0.69078
0
33
20.363636
81
JetErorr/Python3
14,963,666,096,704
bf7d22d24490160f0c3c2d02215b0e428d839193
6e79476207f4c114b374eaa0a149bde2d9b181ff
/1.Prints.py
1e47864dfa4673731845831a3105971841fe7c91
[]
no_license
https://github.com/JetErorr/Python3
e9493d1f7949c4af179b8fff927d504ab418927d
c7c9cb81f76e727211cfd3671c2f5da4532bb418
refs/heads/master
2020-03-19T16:38:21.050952
2019-07-31T07:03:04
2019-07-31T07:03:04
136,722,688
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#1 Print and comments print("#1 Print and Comments") #These are comments btw print("This will be displayed without any processing.!") print("These things are called prints") print("Just like the C printf() or the C++ cout()") print("Or the bash and cmd echo") #This line will not be proccessed or printed print("This line will not be processes as well, but it will be printed")
UTF-8
Python
false
false
378
py
18
1.Prints.py
16
0.743386
0.738095
0
9
41
72
eadasfa/LeetCode
6,786,048,352,636
ae77c27ee7503ce6584eb5716e226862216ff91b
33ca5a05a6dfa1a4b37c9fd33c870743886cb87d
/8.字符串转换整数-atoi.py
bc1e91e81339e3ff342b37d7e06c33367ba4c2bc
[]
no_license
https://github.com/eadasfa/LeetCode
b6c06f57cc2db7a16d9e18661bb43b239ba48659
924b8643279c14bd32d3d8b4b982e463b23f162b
refs/heads/master
2022-09-26T04:49:20.932243
2020-06-07T01:53:14
2020-06-07T01:53:14
255,844,958
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# # @lc app=leetcode.cn id=8 lang=python # # [8] 字符串转换整数 (atoi) # # @lc code=start class Solution(object): def myAtoi(self, str): """ :type str: str :rtype: int """ start,end=-1,-1 nums = '1234567890' for i in range(len(str)): if start==-1: if str[i] =='-' or str[i] == '+' or str[i] in nums: start = i elif str[i] != ' ': return 0 continue if str[i] not in nums: end = i break end = len(str) if end==-1 else end # 排除只有空格的字符串和只有+-的字符串 if start==-1 or (end-start==1 and (str[start] in '+-')): return 0 res = int(str[start:end]) if res > (1<<31)-1: return (1<<31)-1 if res < -(1<<31): return -(1<<31) return res # s = Solution() # print(s.myAtoi('2147483646')) # @lc code=end ''' 请你来实现一个 atoi 函数,使其能将字符串转换成整数。 首先,该函数会根据需要丢弃无用的开头空格字符,直到寻找到第一个非空格的字符为止。接下来的转化规则如下: 如果第一个非空字符为正或者负号时,则将该符号与之后面尽可能多的连续数字字符组合起来,形成一个有符号整数。 假如第一个非空字符是数字,则直接将其与之后连续的数字字符组合起来,形成一个整数。 该字符串在有效的整数部分之后也可能会存在多余的字符,那么这些字符可以被忽略,它们对函数不应该造成影响。 注意:假如该字符串中的第一个非空格字符不是一个有效整数字符、字符串为空或字符串仅包含空白字符时,则你的函数不需要进行转换,即无法进行有效转换。 在任何情况下,若函数不能进行有效的转换时,请返回 0 。 提示: 本题中的空白字符只包括空格字符 ' ' 。 假设我们的环境只能存储 32 位大小的有符号整数,那么其数值范围为 [−231, 231 − 1]。如果数值超过这个范围,请返回 INT_MAX (231 − 1) 或 INT_MIN (−231) 。 示例 1: 输入: "42" 输出: 42 示例 2: 输入: " -42" 输出: -42 解释: 第一个非空白字符为 '-', 它是一个负号。 我们尽可能将负号与后面所有连续出现的数字组合起来,最后得到 -42 。 示例 3: 输入: "4193 with words" 输出: 4193 解释: 转换截止于数字 '3' ,因为它的下一个字符不为数字。 示例 4: 输入: "words and 987" 输出: 0 解释: 第一个非空字符是 'w', 但它不是数字或正、负号。 因此无法执行有效的转换。 示例 5: 输入: "-91283472332" 输出: -2147483648 解释: 数字 "-91283472332" 超过 32 位有符号整数范围。 因此返回 INT_MIN (−231) 。 '''
UTF-8
Python
false
false
2,952
py
46
8.字符串转换整数-atoi.py
46
0.562432
0.493428
0
85
20.494118
103
wizh/codewars
8,340,826,536,550
9f5f6f475fefe6e75921125ef3641b4600c72530
d4453687d18351b53201b655433803763034ea51
/5kyu/Sudoku_solved/solution.py
8280d61615fad0c7d6f3e0e3f39282faa8283b77
[ "MIT" ]
permissive
https://github.com/wizh/codewars
3af2fc9c8d2fcabd4d626439d848632d47e8129b
bdb421720437a9fcafaa2eda8869a1cd4835bb47
refs/heads/master
2021-01-10T02:17:21.274346
2015-11-25T00:05:09
2015-11-25T00:05:09
46,823,367
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Obscure, non-understandable, but really cool! from itertools import chain def done_or_not(b): cs = [[b[j][i] for j in range(9)] for i in range(9)] rs = ([[[[b[3 * j + m][3 * i + n] for n in range(3)] for m in range(3)] for j in range(3)] for i in range(3)]) rs = ([set(chain(*rs[i][j])) for j in range(3) for i in range(3)]) return (('Try again!', 'Finished!') [all(len(set(x[i])) == 9 for i in range(3) for x in zip(b, cs, rs))])
UTF-8
Python
false
false
497
py
34
solution.py
18
0.519115
0.49497
0
11
44.181818
77
VatsalP/PythonScripts
1,417,339,221,213
f0415d407a4347a9b46f83eaf558af55f92d13d2
329b462f546f8524528cf6752d1e364c3ae14c14
/no-ip/AutoUpdateHost.py
aea576d46ab7acf226046e7646f7784477063f1b
[]
no_license
https://github.com/VatsalP/PythonScripts
a3d8f764073052a847b2796cc488e6fdfe8eb2ad
7aa1abfcccd5bb77622ad2e4811d75e643589573
refs/heads/master
2021-01-10T14:34:28.100128
2020-10-01T02:18:42
2020-10-01T02:18:42
49,646,764
3
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python from selenium import webdriver # use this instead: "browser = webdriver.Firefox()" if you don't have PhantomJS browser = webdriver.PhantomJS() browser.get('http://www.noip.com/login') username = browser.find_element_by_name('username') username.send_keys('yourusername') passwd = browser.find_element_by_name('password') passwd.send_keys('yourpassword') loginbtn = browser.find_element_by_name('Login') loginbtn.submit() browser.get('http://www.noip.com/members/dns/') hostdet = browser.find_element_by_class_name('bullet-modify') hostdet.click() updatebtn = browser.find_element_by_xpath("//input[@type='submit']") updatebtn.submit()
UTF-8
Python
false
false
661
py
20
AutoUpdateHost.py
17
0.750378
0.750378
0
21
30.52381
79
ATNoG/5gcontact
670,014,920,032
e59daf6576c443215d25e848f425254a33e7977d
d18abd71a7867eb40c5227e96295059ef14a78b2
/slimano/agents/osm/osm_error.py
35de537aa26a38aa1c8e79679181ceffc385977d
[ "MIT" ]
permissive
https://github.com/ATNoG/5gcontact
0a529ea15b7778a49c1989c4950c26fcd0c399cb
fb65ae919977fb6411932b986bd565b962d9c0b9
refs/heads/main
2023-03-27T23:10:42.058444
2021-04-01T08:30:26
2021-04-01T08:30:26
326,690,140
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import json class OsmError: def __init__(self, message=None): self.response = { 'message': message } def set_message(self, message): self.response['message'] = message def __str__(self): return json.dumps(self.response)
UTF-8
Python
false
false
281
py
90
osm_error.py
60
0.562278
0.562278
0
15
17.733333
42
paviprajansai/sai8
10,033,043,636,624
89d633273fd70de285431246af9e31fbfac37683
5d670e61c128c3e75b43e463c06a0cab0ef61b7a
/saira1.py
66f6a279f12ed46edd17b42e8c0954e04bd21b23
[]
no_license
https://github.com/paviprajansai/sai8
7499766f396da3885c9dbe82cb917381389a2dc5
45fb53ca081788c33cea2a83ebdc9dfbbfc4cc18
refs/heads/master
2020-06-27T00:44:46.262735
2019-07-31T07:48:40
2019-07-31T07:48:40
199,802,475
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
n11=int(input()) s11=0 while n11>0: r11=n11%10 s11=s11+r11 n11=n11//10 print(s11)
UTF-8
Python
false
false
85
py
8
saira1.py
8
0.670588
0.341176
0
7
11.142857
16
xyan36/measurement_codes
13,322,988,595,434
9dd44b1c2437516288a70ecdcccf3ede4a36de34
46d86c4dfa69d1eb7841501f293bfac4480df781
/suspended_wire/power_dependence_test2.py
f1da49b61c0a11057c24452b08af20842bff4b01
[]
no_license
https://github.com/xyan36/measurement_codes
01330e557a155316949bc37adc0d5df22776e366
fda03ac08c575bbe575bd6e557367c0db2194512
refs/heads/master
2021-07-21T17:42:23.758620
2021-07-19T18:29:42
2021-07-19T18:29:42
207,862,388
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- """ Created on Thu Apr 25 12:05:51 2019 @author: Administrator """ from datetime import datetime import time import visa import numpy as np import os ########### function defitions ################################################ ### lock in 1w initialize ### def lockinInit_1w(): lockin1.write("HARM 1") lockin2.write("HARM 1") ### lock in 3w initialize ### def lockinInit_3w(): #set lockins to measure the 3w voltage lockin1.write("HARM 3") lockin2.write("HARM 3") #reserve mode lockin1.write("RMOD 1") lockin2.write("RMOD 1") def lockin_set_pms(timeCon,sensitivity): #time constant lockin1.write("OFLT %d" %timeCon) lockin2.write("OFLT %d" %timeCon) #sensitivity lockin1.write("SENS %d" %sensitivity) lockin2.write("SENS %d" %sensitivity) def lockinsingle_set_pms(lockin, timeCon, sensitivity): #time constant lockin.write("OFLT %d" %timeCon) #sensitivity lockin.write("SENS %d" %sensitivity) def outputs_query(): v = lockin1.query('slvl?').rstrip() tc = lockin1.query('oflt?').rstrip() s_x3 = lockin1.query('sens?').rstrip() s_x1 = lockin2.query('sens?').rstrip() X3 = lockin1.query('outp?1').rstrip() Y3 = lockin1.query('outp?2').rstrip() X1_ref = lockin2.query('outp?1').rstrip() Y1_ref = lockin2.query('outp?2').rstrip() header = "V_input TC SENS_X3 SENS_X1 X3 Y3 X1_ref Y1_ref" print(header) print(v, tc, s_x3, s_x1, X3, Y3, X1_ref, Y1_ref, sep = " ") def settings_query(): f1 = lockin1.query('freq?').rstrip() f2 = lockin2.query('freq?').rstrip() tc1 = lockin1.query('oflt?').rstrip() tc2 = lockin2.query('oflt?').rstrip() sstvt1 = lockin1.query('sens?').rstrip() sstvt2 = lockin2.query('sens?').rstrip() header = "LOCKIN# FREQ TC SENS" print(header) print('lockin1', f1, tc1, sstvt1, sep = "\t") print('lockin2', f2, tc2, sstvt2, sep = "\t") def set_V_input(lockin, voltage): lockin.write('slvl %f' %voltage) print(datetime.now(), f"Set V = {voltage}") ### measurements ### def measurement(sens,initWaitTime, add_wait_time = 5): #sens= allowed error in reading X = float(lockin1.query("OUTP?1")) Y = float(lockin1.query("OUTP?2")) X_ref = float(lockin2.query("OUTP?1")) Y_ref = float(lockin2.query("OUTP?2")) time.sleep(initWaitTime) #initial wait time # #check reading to be stable while (np.abs(X - float(lockin1.query('OUTP?1')))> sens or np.abs(X_ref - float(lockin2.query('OUTP?1')))> sens): X = float(lockin1.query("OUTP?1")) Y = float(lockin1.query("OUTP?2")) X_ref = float(lockin2.query("OUTP?1")) Y_ref = float(lockin2.query("OUTP?2")) time.sleep(add_wait_time) #additional wait time line = str(X) + " " + str(Y) + " " \ + str(X_ref) + " " + str(Y_ref) + " " return line ### voltage swap ### def VoltageSweep(voltages,sens1, TC1, SENS1, initWaitTime1, sens3, TC3, SENS3, initWaitTime3): for v in voltages: lockin1.write("SLVL %f" %v) line = str(v) + " " time.sleep(5) #waiting for voltage stable lockinInit_1w() lockin_set_pms(TC1,SENS1) line += measurement(sens1,initWaitTime1) lockinInit_3w() lockin_set_pms(TC3,SENS3) line += measurement(sens3,initWaitTime3).rstrip() t = float(time.time()-t0) print(str(datetime.now()) + " " + str(t) + " " + line) with open(FILENAME,'a') as output: output.write(str(datetime.now()) + " " + str(t) + " " + line +"\n") def voltage_sweep_auto(voltages, initWaitTime): try: for v in voltages: lockin1.write('slvl %f' %v) time.sleep(initWaitTime) dt = str(datetime.now()) t = round(float(time.time()-t0), 4) vin = str(v) tc = lockin1.query('oflt?').rstrip() sens_x3 = lockin1.query('sens?').rstrip() sens_x1 = lockin2.query('sens?').rstrip() X3 = lockin1.query('outp?1').rstrip() Y3 = lockin1.query('outp?2').rstrip() X1_ref = lockin2.query('outp?1').rstrip() Y1_ref = lockin2.query('outp?2').rstrip() line = f"{dt},{t},{vin},{tc},{sens_x3},{sens_x1},{X3},{Y3},{X1_ref},{Y1_ref}" print(line) with open(FILENAME,'a') as output: output.write(line +"\n") except KeyboardInterrupt: print('keyboardinteeruupt') pass finally: lockin1.write("SLVL %f" %0.004) lockin1.write('FREQ %f' %17) lockin_set_pms(timeCon=9,sensitivity=22) lockinInit_1w() tf = datetime.now() print ("Program done! total time is: "+ str(tf-ti)) def voltage_sweep_manual(voltages, initWaitTime): try: for v in voltages: lockin1.write('slvl %f' %v) time.sleep(initWaitTime) dt = str(datetime.now()) t = round(float(time.time()-t0), 4) vin = str(v) tc = lockin1.query('oflt?').rstrip() sens_x3 = lockin1.query('sens?').rstrip() sens_x1 = lockin2.query('sens?').rstrip() X3 = lockin1.query('outp?1').rstrip() Y3 = lockin1.query('outp?2').rstrip() X1_ref = lockin2.query('outp?1').rstrip() Y1_ref = lockin2.query('outp?2').rstrip() line = f"{dt},{t},{vin},{tc},{sens_x3},{sens_x1},{X3},{Y3},{X1_ref},{Y1_ref}" print(line) usercheck = input('Is reading stable? Type \'y\' to record: ') while usercheck != 'y': print('Not recorded.') usercheck = input('Is reading stable? Type \'y\' to record: ') dt = str(datetime.now()) t = round(float(time.time()-t0), 4) vin = str(v) tc = lockin1.query('oflt?').rstrip() sens_x3 = lockin1.query('sens?').rstrip() sens_x1 = lockin2.query('sens?').rstrip() X3 = lockin1.query('outp?1').rstrip() Y3 = lockin1.query('outp?2').rstrip() X1_ref = lockin2.query('outp?1').rstrip() Y1_ref = lockin2.query('outp?2').rstrip() line = f"{dt},{t},{vin},{tc},{sens_x3},{sens_x1},{X3},{Y3},{X1_ref},{Y1_ref}" print(line) with open(FILENAME,'a') as output: output.write(line +"\n") print('Recorded.') except KeyboardInterrupt: print('keyboardinteeruupt') pass finally: lockin1.write("SLVL %f" %0.004) #output.close()# may record unfinished data tf = datetime.now() print ("Program done! total time is: "+ str(tf-ti)) ############################################################################## ### crate a folder with today's date and create a new file name ### date = '210714' try: os.mkdir(date) except FileExistsError: pass FILENAME = f"{date}//{date}_Bi2Te3_n10_power_dep_f3p4_1.txt" rm = visa.ResourceManager(); print(rm.list_resources()) lockin1 = rm.open_resource("GPIB2::8::INSTR") #sample & SINE_OUT source lockin2 = rm.open_resource("GPIB2::9::INSTR") #reference resistor header = "Date_time,Time,V_input,TC,SENS_X3,SENS_X1,X3,Y3,X1_ref,Y1_ref\n" print(header) with open(FILENAME,'w') as output: output.write(header) ### Set the parameters ### freq = 3.4 #Hz timeCon = 13 # voltages = np.array([0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5]) sensitivity1 = 24# sensitivity for 1w measurement sensitivity3 = 21# sensitivity for 3w measurement initWaitTime = 15 * 60#s lockin1.write('harm 3') lockin2.write('harm 1') ########################## lockin1.write('FREQ %f' %freq) t0 = time.time() ti = datetime.now() lockinsingle_set_pms(lockin1, timeCon, sensitivity3) lockinsingle_set_pms(lockin2, timeCon, sensitivity1) voltage_sweep_auto(voltages, initWaitTime)
UTF-8
Python
false
false
7,954
py
165
power_dependence_test2.py
20
0.562987
0.526905
0
222
34.828829
94
Volen/edsdtest
3,959,959,886,310
298737ae529c1eefc7deeef2f4d981c1a2b87f48
f433d026216c6c35fb6ac37d82409529260b75b8
/psychics/views.py
91a0ec32a183652f9d08b57ad8094c8e38f74d8d
[]
no_license
https://github.com/Volen/edsdtest
7db093be672919c0e3e7f375b681a679b1116223
7df9fb24b6b0df6ee1ad0b75d74e7c37166c577d
refs/heads/master
2023-04-11T11:02:15.949442
2021-04-09T17:31:16
2021-04-09T17:31:16
355,106,933
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.http.response import HttpResponseRedirect from django.views import View from django.shortcuts import render from django.urls import reverse from .forms import CorrectAnswerForm from .models import HistoryDB, PsychicsPool from edsdtest.settings import PSYCHICS_NAMES class HomePage(View): template_name = 'psychics/index.html' def get(self, request): history_db = HistoryDB(request) user_history = history_db.get_user_history() psychics_history = history_db.get_psychics_history(PSYCHICS_NAMES) credibility = history_db.get_psychics_credibility(PSYCHICS_NAMES) return render(request, self.template_name, {'user_history': user_history, 'psychics_history': psychics_history, 'credibility': credibility}) class GetGuess(View): form_class = CorrectAnswerForm template_name = 'psychics/guess.html' def post(self, request): form = self.form_class(request.POST) history_db = HistoryDB(request) if form.is_valid(): correct_answer = request.POST['correct_answer'] history_db.add_correct_answer(correct_answer) history_db.set_check_performed(False) return HttpResponseRedirect(reverse('check', args=[correct_answer])) else: user_history = history_db.get_user_history() psychics_history = history_db.get_psychics_history(PSYCHICS_NAMES) credibility = history_db.get_psychics_credibility(PSYCHICS_NAMES) guesses = history_db.get_psychics_guesses_cache() return render(request, self.template_name, {'form': form, 'user_history': user_history, 'guesses': guesses, 'psychics_history': psychics_history, 'credibility': credibility}) def get(self, request): history_db = HistoryDB(request) user_history = history_db.get_user_history() psychics_history = history_db.get_psychics_history(PSYCHICS_NAMES) credibility = history_db.get_psychics_credibility(PSYCHICS_NAMES) psychics_pool = PsychicsPool(PSYCHICS_NAMES) guesses = psychics_pool.generate_guesses() history_db.save_psychics_guesses_cache(guesses) form = self.form_class() return render(request, self.template_name, {'form': form, 'user_history': user_history, 'guesses': guesses, 'psychics_history': psychics_history, 'credibility': credibility}) class CheckResult(View): template_name = 'psychics/check.html' def get(self, request, correct_answer): history_db = HistoryDB(request) user_history = history_db.get_user_history() psychics_history = history_db.get_psychics_history(PSYCHICS_NAMES) check_performed = history_db.get_check_perfromed() result = history_db.get_final_result_with_check(PSYCHICS_NAMES, correct_answer) credibility = history_db.get_psychics_credibility(PSYCHICS_NAMES) return render(request, self.template_name, {'check_performed': check_performed, 'result': result, 'correct_answer': correct_answer, 'user_history': user_history, 'psychics_history': psychics_history, 'credibility': credibility})
UTF-8
Python
false
false
3,448
py
11
views.py
5
0.634281
0.634281
0
74
45.554054
140
innogames/serveradmin
10,746,008,208,510
431e3b5c4eb06d5da657dcc000efe2dcbec58289
df96f5d5555a8eb0f783598c6c4fc53bdfa629a7
/adminapi/exceptions.py
8cf8e6ce5e4891d5bd10c4eb8ce6c1d088534732
[ "MIT" ]
permissive
https://github.com/innogames/serveradmin
142b536f9516fc0e70630049e631fff42c1a38c8
f59755035a07abdeb8681db4b49729e6861e0967
refs/heads/main
2023-08-09T15:27:56.949189
2023-08-02T05:48:14
2023-08-02T05:48:14
82,291,244
46
18
MIT
false
2023-08-02T05:48:15
2017-02-17T11:33:27
2023-07-13T12:03:25
2023-08-02T05:48:14
4,495
43
17
4
Python
false
false
"""adminapi - Exceptions Copyright (c) 2019 InnoGames GmbH """ class AdminapiException(Exception): """Adminapi exception parent class.""" pass class ConfigurationError(AdminapiException): """Missing or invalid configuration""" class ApiError(AdminapiException): """An API request wasn't successful""" def __init__(self, *args, **kwargs): if 'status_code' in kwargs: self.status_code = kwargs.pop('status_code') else: self.status_code = 400 super(Exception, self).__init__(*args, **kwargs) class AuthenticationError(AdminapiException): """No suitable authentication credentials available""" pass class DatasetError(AdminapiException): """Something went wrong within a dataset instance""" pass class DatatypeError(AdminapiException): """A query or dataset attribute had the wrong value datatype""" pass # XXX: Sub-class ValueError for backwards compatibility class FilterValueError(DatatypeError, ValueError): """A filter value made no sense""" pass
UTF-8
Python
false
false
1,063
py
158
exceptions.py
111
0.688617
0.682032
0
44
23.159091
67
daisukeiot/OpenVINO-Toolkit-Setup
16,518,444,251,041
7a7d705628acfb5be9705eb329c63c82353927a6
38360de287983f99f1d5a49fba36a9dc4f142de5
/App/ObjectDetection/Python/VideoProcessor.py
54ee1e75dbadd3f42d25d069f5b73ef1f38bbc46
[ "MIT" ]
permissive
https://github.com/daisukeiot/OpenVINO-Toolkit-Setup
f71e801d4b47cefdf84dec74b940143f8742ef72
d5002e7f9cb12de0be14bf2d8c30c2767afc83e9
refs/heads/master
2022-07-06T02:01:31.767246
2021-01-06T20:37:57
2021-01-06T20:37:57
246,788,872
3
2
MIT
false
2022-06-22T01:51:16
2020-03-12T09:04:42
2021-01-06T20:38:01
2022-06-22T01:51:15
1,510
3
1
1
Python
false
false
import sys import logging import traceback import time import cv2 import asyncio import numpy as np from FPS import FPS from enum import IntEnum import json from OpenVINO_Engine import OpenVINO_Util, OpenVINO_Engine from OpenVINO_Config import Engine_State, Model_Flag from concurrent.futures import ThreadPoolExecutor, CancelledError from WebServer import ImageStreamHandler from pathlib import Path from Video_Data import Video_Data, Video_Device_Type, Video_Data_State, Video_Playback_Mode import youtube_dl class VideoProcessorState(IntEnum): Unknown = 0 Running = 1 Stop = 2 Pause = 3 Error = 4 class VideoProcessor(object): # # Initialization of Video Processor Class # Reads video frame from Video Stream class and process (AI Inference etc) # Set frame data to displayFrame for visualization # def __init__(self, videoPath = '/dev/video0', videoW = 1024, videoH = 768, fontScale = 1.0, verbose = True): self.verbose = verbose self._debug = False if self.verbose: logging.info('>> {0}:{1}()'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) logging.info('===============================================================') logging.info('Initializing Video Processor with the following parameters:') logging.info(' - OpenCV Version : {}'.format(cv2.__version__)) logging.info(' - Device Path : {}'.format(videoPath)) logging.info(' - Frame Size : {}x{}'.format(videoW, videoH)) logging.info('===============================================================') # To send message to clients (Browser) self.imageStreamHandler = None self.threadExecutor = None # Video source self.videoData = Video_Data(self, videoPath) self.displayFrame = np.array([]) self.frame_org = np.array([]) # for Frame Rate measurement self.fps = FPS() playback_mode = self.videoData.get_playback_mode() self._playback_sync = (playback_mode == Video_Playback_Mode.Sync) self._fps_target = 30 self._fps_wait = 1000.0/30 self.currentFps = 30.0 # For display self._fontScale = float(fontScale) self._annotate = False # Track states of this object self.set_video_processor_state(VideoProcessorState.Unknown) # OpenVINO self.inference_engine = None self.runInference = 0 self.ioLoop = None self.current_model_data = None # # Sets up Video Processor Class # Creates Video Stream Class for video capture # def __enter__(self): # async def __aenter__(self): if self.verbose: logging.info('>> {0}:{1}()'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) self.set_video_path('{{\"set_video_path\":\"{}\"}}'.format(self.videoData.videoPath)) self.inference_engine = OpenVINO_Engine(self) # with OpenVINO_Util() as openVino: # devices = openVino.get_supported_devices() # for device in devices: # logging.info('>> Device : {0}'.format(device)) # fullName = openVino.get_device_name(device) # logging.info('>> Name : {0}'.format(fullName)) # self.inference_engine.hwList.append(device) self.inference_engine.initialize_engine() return self # # Clean up Video Processor Class # def __exit__(self, exception_type, exception_value, traceback): # async def __aexit__(self, exception_type, exception_value, traceback): if self.verbose: logging.info('>> {0}:{1}()'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) if self.threadExecutor: self.threadExecutor.shutdown(wait=True) self.set_video_processor_state(VideoProcessorState.Stop) # # Send message to browser # def send_message(self, msg): if self.imageStreamHandler: ImageStreamHandler.broadcast_message(msg) # # Set Video Processor State flag # def set_video_processor_state(self, flag): self._state = flag # # Initializes Video Source # def _init_video_source(self): if self._debug: logging.info('>> {0}:{1}()'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) raise NotImplementedError # # Sets current video frame for display # def set_display_frame(self, frame): assert frame.size > 0, "Frame Empty" self.displayFrame = frame # # Resturns current video frame for display # Converts to byte data # def get_display_frame(self): if self.displayFrame.size == 0: if self.videoData.get_video_data_state() == Video_Data_State.PhotoReady: if self.videoData.videoH == 0 or self.videoData.videoW == 0: wallpaper = np.zeros((720, 1280, 3), np.uint8) else: wallpaper = np.zeros((self.videoData.videoH, self.videoData.videoW, 3), np.uint8) ret, buffer = cv2.imencode( '.jpg', wallpaper ) else: return None, 0 else: ret, buffer = cv2.imencode( '.jpg', self.displayFrame ) if ret and buffer.size > 0: return buffer.tobytes(), self.currentFps else: assert(False), '>> Display Frame Empty *************** ' # # Resturns Inference Engine Info # def get_inference_engine_info(self): if self.verbose: logging.info('>> {0}:{1}()'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) if self.inference_engine: devices = json.dumps(self.inference_engine.get_devices()) if self.runInference == 1: state = "On" else: state = "Off" return '{{\"{0}\":\"{1}\",\"devices\":{2},\"get_inference_state\":\"{3}\"}}'.format(sys._getframe().f_code.co_name, self.inference_engine.signature, devices, state) else: assert False, '>> {} : Inference Engine Not Set'.format(sys._getframe().f_code.co_name) return '{{\"{}\":\"Inference Engine Not Set\", \"isFailure\":1}}'.format(sys._getframe().f_code.co_name) # # Retrieve a list of models # def get_model_list(self): if self.verbose: logging.info('>> {0}:{1}()'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) if self.inference_engine: json_data = json.loads('{\"get_model_list\":[]}') model_list = self.inference_engine.get_model_list() for model in model_list: json_data["get_model_list"].append(json.loads(model.to_json())) else: assert False, '>> {} : Inference Engine Not Set'.format(sys._getframe().f_code.co_name) return '{{\"{}\":\"Inference Engine Not Set\", \"isFailure\":1}}'.format(sys._getframe().f_code.co_name) return json_data # # Set to keep FPS for video or not # def playback_mode(self, msg): if self.verbose: logging.info('>> {0}:{1}()'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) jsonData = json.loads(msg) playback_mode = jsonData["playback_mode"] self._playback_sync = playback_mode == "0" self.videoData.set_playback_mode(playback_mode) return '{{\"playback_mode\":\"{0}\"}}'.format(self.videoData.get_playback_mode()) # # Stop video process # def set_video_playback(self, msg): if self.verbose: logging.info('>> {0}:{1}()'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) jsonData = json.loads(msg) if jsonData['set_video_playback'] == "1": self.set_video_processor_state(VideoProcessorState.Running) else: self.set_video_processor_state(VideoProcessorState.Pause) return self.get_video_playback() # # Return current video playback state # def get_video_playback(self): if self.verbose: logging.info('>> {0}:{1}()'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) if self._state == VideoProcessorState.Pause: state = "0" elif self._state == VideoProcessorState.Running: state = "1" else: assert False, "Unexpected Video Processor State" return '{{\"get_video_playback\":\"{}\"}}'.format(state) # # Stop video process # def set_video_stop(self): if self.verbose: logging.info('>> {0}:{1}()'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) self.videoData.set_video_playback(isPause = True) self.set_video_processor_state(VideoProcessorState.Pause) # # Start video process # def set_video_start(self): if self.verbose: logging.info('>> {0}:{1}()'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) self.fps.reset(self.videoData.get_video_fps()) self.videoData.set_video_playback(isPause = False) self.set_video_processor_state(VideoProcessorState.Running) self.send_message('{\"frame_ready\":1}') # # Set Video Resolution # def set_video_path(self, msg, loop = None): if self.verbose: logging.info('>> {0}:{1}()'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) jsonData = json.loads(msg) if jsonData.get("set_video_path"): videoPath = jsonData["set_video_path"] else: videoPath = jsonData["videoPath"] self.set_video_processor_state(VideoProcessorState.Pause) video_data_state = self.videoData.set_video_path(videoPath, loop) if video_data_state == Video_Data_State.Running or video_data_state == Video_Data_State.PhotoReady: self.fps.reset(self.videoData.get_video_fps()) self.set_video_start() else: self.set_video_processor_state(VideoProcessorState.Pause) return self.get_video_path() # # Return current video path # def get_video_path(self): if self.verbose: logging.info('>> {0}:{1}()'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) return self.videoData.get_video_path() # # Set Video Resolution # def set_video_resolution(self, msg): if self._debug: logging.info('>> {0}:{1}()'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) return self.videoData.set_video_resolution(msg) # # Get Video Resolution # def get_video_resolution(self): if self._debug: logging.info('>> {0}:{1}()'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) return self.videoData.get_video_resolution() # # Set AI model to use # async def set_ai_model(self, loop, msg): if self.verbose: logging.info('>> {0}:{1}() {2}'.format(self.__class__.__name__, sys._getframe().f_code.co_name, msg)) try: self.ioLoop = loop #1 Get Model Data model_data = self.inference_engine.get_ai_model_data(msg) current_hw = json.loads(self.inference_engine.get_target_device()) current_precision = json.loads(self.inference_engine.get_precision()) if model_data.isFlagSet(Model_Flag.Loaded): json_data = json.loads(msg) device = json_data["set_target_device"] precision = json_data["set_precision"] if current_hw['get_target_device'] == device and current_precision['get_precision'] == precision: logging.info(">> Model {} is loaded to {}".format(model_data.modelName, current_hw)) self.runInference = 1 self.send_message('{{\"set_ai_model\":\"Running {}\",\"isComplete\":1}}'.format(model_data.modelName)) else: if self.current_model_data: self.current_model_data.clearFlag(Model_Flag.Loaded) self.current_model_data = None if not model_data is None: self.set_device_params(msg) # self.set_precision(msg) # self.set_target_device(msg) # create a task to download model from model zoo self.set_video_processor_state(VideoProcessorState.Pause) self.send_message('{{\"set_ai_model\":\"Downloading {}\"}}'.format(model_data.modelName)) task = self.ioLoop.run_in_executor(None, self.inference_engine.download_model, model_data) task.add_done_callback(self.model_download_callback) else: json_data = json.loads(msg) self.send_message('{{\"set_ai_model\":\"Failed to get model data for {}\",\"isFailure\":1}}'.format(json_data["SetAiModel"])) except CancelledError: logging.info('-- {0}() - Cancelled'.format(sys._getframe().f_code.co_name)) except Exception as ex: exc_type, exc_obj, exc_tb = sys.exc_info() traceback.print_exception(exc_type, exc_obj, exc_tb) logging.error('!! {0}:{1}() : Exception {2}'.format(self.__class__.__name__, sys._getframe().f_code.co_name, ex)) # # Callback function for model download # def model_download_callback(self, future): if self.verbose: logging.info('>> {0}:{1}()'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) model_data = future.result() assert(model_data is not None, "Model Data is None") if model_data.isFlagSet(Model_Flag.Downloaded): self.send_message('{{\"set_ai_model\":\"{} downloaded. Converting to IR\"}}'.format(model_data.modelName)) if model_data.framework == 'dldt': task = self.ioLoop.run_in_executor(None, self.inference_engine.load_model, model_data) task.add_done_callback(self.model_load_callback) else: task = self.ioLoop.run_in_executor(None, self.inference_engine.convert_model, model_data) task.add_done_callback(self.model_convert_callback) else: self.set_video_start() self.send_message('{{\"set_ai_model\":\"Download failed {}\",\"isFailure\":1}}'.format(model_data.errorMsg)) # # Callback function for model conversion # def model_convert_callback(self, future): if self.verbose: logging.info('>> {0}:{1}()'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) model_data = future.result() if model_data.isFlagSet(Model_Flag.Converted): logging.info(' FP16 {}'.format(str(model_data.ir_dir['FP16']))) logging.info(' FP32 {}'.format(str(model_data.ir_dir['FP32']))) self.send_message('{{\"set_ai_model\":\"{} converted to IR.\\nLoading....\", \"isSuccess\":1}}'.format(model_data.modelName)) self.inference_engine.remove_model_dir(model_data) task = self.ioLoop.run_in_executor(None, self.inference_engine.load_model, model_data) task.add_done_callback(self.model_load_callback) else: self.set_video_start() self.send_message('{{\"set_ai_model\":\"Convert Failed : {}\",\"isFailure\":1}}'.format(model_data.errorMsg)) # # Callback function for model load # def model_load_callback(self, future): if self.verbose: logging.info('>> {0}:{1}()'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) model_data = future.result() self.set_video_start() if model_data.isFlagSet(Model_Flag.Loaded): target_device = json.loads(self.inference_engine.get_target_device()) self.send_message('{{\"set_ai_model\":\"Successfully loaded {}\", \"isComplete\":1}}'.format(model_data.modelName)) self.send_message('{{\"get_inference_engine_info\":\"{} running on {}\"}}'.format(self.inference_engine.signature, target_device['get_target_device'])) self.current_model_data = model_data else: self.send_message('{{\"set_ai_model\":\"Load failed : {}\",\"isFailure\":1}}'.format(model_data.errorMsg)) # # Set hardware to run inference on # def set_device_params(self, msg, reload = False): if self.verbose: logging.info('>> {0}:{1}() {2}'.format(self.__class__.__name__, sys._getframe().f_code.co_name, msg)) if self.inference_engine: self.inference_engine.set_target_device(msg) self.inference_engine.set_precision(msg) if reload == True and self.current_model_data: # create a task to download model from model zoo self.set_video_processor_state(VideoProcessorState.Pause) self.send_message('{{\"set_ai_model\":\"Loading {}\"}}'.format(self.current_model_data.modelName)) task = self.ioLoop.run_in_executor(None, self.inference_engine.load_model, self.current_model_data) task.add_done_callback(self.model_download_callback) return self.inference_engine.set_target_device(msg) else: assert False, '>> {} : Inference Engine Not Set'.format(sys._getframe().f_code.co_name) return '{{\"{}\":\"Inference Engine Not Set\", \"isFailure\":1}}'.format(sys._getframe().f_code.co_name) # # Set hardware to run inference on # # def set_target_device(self, msg): # if self.verbose: # logging.info('>> {0}:{1}() {2}'.format(self.__class__.__name__, sys._getframe().f_code.co_name, msg)) # if self.inference_engine: # self.inference_engine.set_target_device(msg) # self.inference_engine.set_precision(msg) # if self.current_model_data: # # create a task to download model from model zoo # self.set_video_processor_state(VideoProcessorState.Pause # self.send_message('{{\"set_ai_model\":\"Loading {}\"}}'.format(self.current_model_data.modelName)) # task = self.ioLoop.run_in_executor(None, self.inference_engine.load_model, self.current_model_data) # task.add_done_callback(self.model_download_callback) # return self.inference_engine.set_target_device(msg) # else: # assert False, '>> {} : Inference Engine Not Set'.format(sys._getframe().f_code.co_name) # return '{{\"{}\":\"Inference Engine Not Set\", \"isFailure\":1}}'.format(sys._getframe().f_code.co_name) # # Return hardware to run inference on # def get_target_device(self): if self._debug: logging.info('>> {0}:{1}()'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) if self.inference_engine: return self.inference_engine.get_target_device() else: assert False, '>> {} : Inference Engine Not Set'.format(sys._getframe().f_code.co_name) return '{{\"{}\":\"Inference Engine Not Set\", \"isFailure\":1}}'.format(sys._getframe().f_code.co_name) # # Set Inference Precision # # def set_precision(self, msg): # if self.verbose: # logging.info('>> {0}:{1}() {2}'.format(self.__class__.__name__, sys._getframe().f_code.co_name, msg)) # if self.inference_engine: # self.inference_engine.set_precision(msg) # if self.current_model_data: # # create a task to download model from model zoo # self.set_video_processor_state(VideoProcessorState.Pause # self.send_message('{{\"set_ai_model\":\"Loading {}\"}}'.format(self.current_model_data.modelName)) # task = self.ioLoop.run_in_executor(None, self.inference_engine.load_model, self.current_model_data) # task.add_done_callback(self.model_download_callback) # return self.get_precision() # else: # assert False, '>> {} : Inference Engine Not Set'.format(sys._getframe().f_code.co_name) # return '{{\"{}\":\"Inference Engine Not Set\", \"isFailure\":1}}'.format(sys._getframe().f_code.co_name) # # Get Inference Precision # def get_precision(self): if self._debug: logging.info('>> {0}:{1}()'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) if self.inference_engine: return self.inference_engine.get_precision() else: assert False, '>> {} : Inference Engine Not Set'.format(sys._getframe().f_code.co_name) return '{{\"{}\":\"Inference Engine Not Set\", \"isFailure\":1}}'.format(sys._getframe().f_code.co_name) # # Set Confidence Level threshold # def set_confidence_level(self, msg): if self._debug: logging.info('>> {0}:{1}()'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) jsonData = json.loads(msg) confidenceLevel = int(jsonData["set_confidence_level"].replace('%','')) if self.inference_engine: return self.inference_engine.set_confidence_level(confidenceLevel) else: assert False, '>> {} : Inference Engine Not Set'.format(sys._getframe().f_code.co_name) return '{{\"{}\":\"Inference Engine Not Set\", \"isFailure\":1}}'.format(sys._getframe().f_code.co_name) # # Return Confidence Level threshold # def get_confidence_level(self): if self._debug: logging.info('>> {0}:{1}()'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) if self.inference_engine: return self.inference_engine.get_confidence_level() else: assert False, '>> {} : Inference Engine Not Set'.format(sys._getframe().f_code.co_name) return '{{\"{}\":\"Inference Engine Not Set\", \"isFailure\":1}}'.format(sys._getframe().f_code.co_name) # # Set Inference State # def set_inference_state(self, msg): if self.verbose: logging.info('>> {0}:{1}() {2}'.format(self.__class__.__name__, sys._getframe().f_code.co_name, msg)) jsonData = json.loads(msg) inferenceState = jsonData["set_inference_state"] if self.current_model_data: #make sure model is loaded if not self.current_model_data.isFlagSet(Model_Flag.Loaded): return '{{\"{}\":\"{} is not loaded\", \"isFailure\":1}}'.format(sys._getframe().f_code.co_name, self.current_model_data.modelName) else: self.runInference = int(inferenceState) return self.get_inference_state() else: return '{{\"{}\":\"Model Data Not Set\", \"isFailure\":1}}'.format(sys._getframe().f_code.co_name) # # Get Current Inference State # def get_inference_state(self): if self.verbose: logging.info('>> {0}:{1}()'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) return '{{\"{}\":\"{}\"}}'.format(sys._getframe().f_code.co_name, self.runInference) async def process_video_frame_async(self, executor): if self.verbose: logging.info('>> {0}:{1}()'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) try: loop = asyncio.get_event_loop() task = await loop.run_in_executor(executor, self.process_video_frame) return task except CancelledError: logging.info('-- {0}() - Cancelled'.format(sys._getframe().f_code.co_name)) self.set_video_processor_state(VideoProcessorState.Stop) return 0 except Exception as ex: exc_type, exc_obj, exc_tb = sys.exc_info() traceback.print_exception(exc_type, exc_obj, exc_tb) logging.error('!! {0}:{1}() : Exception {2}'.format(self.__class__.__name__, sys._getframe().f_code.co_name, ex)) return 1 # # Saves frame data to a file # def save_image(self): cv2.imwrite("./frame.png", self.displayFrame) #cv2.imwrite("./frame.png", self.frame_org) # # Process Video Frame # def process_video_frame(self): if self.verbose: logging.info('>> {0}:{1}()'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) textX, textY = cv2.getTextSize("FPS", cv2.FONT_HERSHEY_DUPLEX, self._fontScale, 1)[0] textX = int(textX * self._fontScale * 1.1) textY = int(textY * self._fontScale * 1.1) frame = np.array([]) self.fps.reset(self.videoData.get_video_fps()) while True: try: if self._state == VideoProcessorState.Stop: logging.info('>> {0}:{1}() : Stop Video Processor'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) break if self._state == VideoProcessorState.Pause: if self._debug: logging.info('>> {0}:{1}() : Pause Video Processor'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) time.sleep(1) continue if self.videoData is None: logging.info('>> {0}:{1}() : No Video Data'.format(self.__class__.__name__, sys._getframe().f_code.co_name)) time.sleep(0.5) continue grabbed, frame = self.videoData.read_frame_queue() if self._debug: logging.info("Grabbed {} frame size {}".format(grabbed, frame.size)) # if (grabbed == False or frame.size == 0): if (grabbed == False): time.sleep(1/30) continue else: self.frame_org = np.copy(frame) if self.runInference == 1: # Run Inference frame = self.inference_engine.inference(frame) if self._annotate: fps_annotation = 'FPS : {}'.format(self.currentFps) cv2.putText( frame, fps_annotation, (10, textY + 10), cv2.FONT_HERSHEY_SIMPLEX, self._fontScale, (0,0,255), 2) self.set_display_frame(frame) self.currentFps = self.fps.fps(self._playback_sync) except Exception as ex: exc_type, exc_obj, exc_tb = sys.exc_info() traceback.print_exception(exc_type, exc_obj, exc_tb) logging.error('!! {0}:{1}() : Exception {2}'.format(self.__class__.__name__, sys._getframe().f_code.co_name, ex)) if self.verbose: logging.info('<< {0}:{1}()'.format(self.__class__.__name__, sys._getframe().f_code.co_name))
UTF-8
Python
false
false
26,907
py
81
VideoProcessor.py
45
0.574089
0.566433
0
699
37.493562
176
bpJedisim/CS_ML_DL_Courses
4,698,694,247,774
4eb4f954d83129618674b1f83b4ce1b5e7ea3ef5
4746ae085e941eab7d3d98e07c4318104c61db47
/Machine_Learning_Univ_Course_(2017Fall)/Homeworks/hw06/prac/spam/create_vocab/gen_features.py
8d489de19d2d594bf765c5f20c62de08bd6b58cc
[]
no_license
https://github.com/bpJedisim/CS_ML_DL_Courses
b21b912d6f5cd8cb5b088405c1fc1a46c5d202bd
838f05915cb25605f574756fea77274692c1122e
refs/heads/master
2020-08-01T22:54:16.616123
2019-09-15T14:28:14
2019-09-15T14:28:14
211,144,312
0
0
null
true
2019-09-26T17:24:13
2019-09-26T17:24:12
2019-09-15T14:28:16
2019-09-15T14:28:15
191,185
0
0
0
null
false
false
#!python # -*- coding: utf-8 -*-# """ Spam Exercise (Qn 2) @author: Bhishan Poudel @date: Nov 9, 2017 @email: bhishanpdl@gmail.com """ # Imports import collections import numpy as np def create_vocab(fdata,min_freq,fvocab): # count the words and frequencies wordcount = collections.Counter() with open(fdata) as fi: for line in fi: wordcount.update(set(line[1:].split())) pairs = [(w,f) for w,f in wordcount.items() if f>=min_freq ] # do not include stopwords # fstopwords = 'stopwords.txt' # stopwords = np.loadtxt(fstopwords,dtype='str') # pairs = [(w,f) for w,f in wordcount.items() if f>=min_freq if w not in stopwords] # sort alphabetically pairs = sorted(pairs, key=lambda word: word[0], reverse=0) # sort by number of occurrence # pairs = sorted(pairs, key=lambda word: word[1], reverse=1) print("len(vocab) = {}".format(len(pairs))) with open(fvocab,'w') as fo: for i in range(len(pairs)): fo.write("{} {}\n".format(i+1,pairs[i][0])) # write index token freq # fo.write("{} {} {}\n".format(i+1,pairs[i][0], pairs[i][1])) def create_sparse(fdata,fvocab,fsparse): # read index token freq # idx,token,freq = np.genfromtxt(fvocab, dtype=str, unpack=True) # read index and token idx,token = np.genfromtxt(fvocab, dtype=str, unpack=True) d = dict(zip(token,idx)) with open(fdata) as fi, \ open(fsparse,'w') as fo: for i,line in enumerate(fi): nums = [ int(d[w]) for w in line[1:].split() if w in token ] nums = sorted(list(set(nums))) nums = [str(n)+":1" for n in nums ] sparse_line = line[0] + " " + " ".join(nums) + "\n" print("Writing sparse matrix line: {}".format(i+1)) fo.write(sparse_line) def create_dense(fsparse, fdense,fvocab): # number of lines in vocab lvocab = sum(1 for line in open(fvocab)) # create dense file with open(fsparse) as fi, open(fdense,'w') as fo: for i, line in enumerate(fi): words = line.strip('\n').split(':') words = " ".join(words).split() label = int(words[0]) indices = [int(w) for (i,w) in enumerate(words) if int(i)%2] row = [0]* (lvocab+1) row[0] = label # using for loop # for idx in indices: # row[idx] = 1 # use listcomps row = [ 1 if i in indices else row[i] for i in range(len(row))] l = " ".join(map(str,row)) + "\n" fo.write(l) print('Writing dense matrix line: ', i+1) # print("\nwords = {}".format(words)) # print("label = {}".format(label)) # print("idx = {}".format(idx)) # print("row = {}".format(row)) def main(): # datafiles # fdata, min_freq = 'data.txt', 2 fdata, min_freq = 'spam_train.txt', 30 fsparse = 'sparse.txt' fvocab = "vocab.txt" fdense = 'dense.txt' # create_vocab(fdata,min_freq, fvocab) # create_sparse(fdata,fvocab,fsparse) # create_dense(fsparse, fdense,fvocab) # compare labels l1 = np.loadtxt('label1.txt') l2 = np.loadtxt('label2.txt') for i,j in zip(l1,l2): print(i-j) if __name__ == "__main__": main()
UTF-8
Python
false
false
3,524
py
285
gen_features.py
165
0.523837
0.51277
0
122
27.885246
87
sntciitbhu/sntc_website_beta
10,711,648,477,225
0c5097a1c7069240c873f41ba914e6a8de0c56fc
5f6874113f86669d3220c9d5c247dab0a8abca01
/apps/tac/migrations/0005_auto_20200514_1918.py
b0d3abc104197b59d09afd1f7041cefde99ca7b9
[]
no_license
https://github.com/sntciitbhu/sntc_website_beta
f5e0f0b0deec9b291b7c4c6cf0d54b7cf069596c
26a17ac7a401229a53fd428132fe072bdbb260b9
refs/heads/master
2021-12-23T19:26:03.161225
2020-05-18T09:54:25
2020-05-18T09:54:25
252,948,125
0
0
null
false
2021-09-22T18:50:51
2020-04-04T08:35:08
2020-05-18T09:54:29
2021-09-22T18:50:49
38,516
0
0
4
JavaScript
false
false
# Generated by Django 3.0.5 on 2020-05-14 19:18 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('tac', '0004_auto_20200514_1900'), ] operations = [ migrations.RemoveField( model_name='tac_detail', name='facebook_link', ), migrations.RemoveField( model_name='tac_detail', name='git_link', ), migrations.RemoveField( model_name='tac_detail', name='insta_link', ), migrations.RemoveField( model_name='tac_detail', name='linkedin_link', ), migrations.RemoveField( model_name='tac_detail', name='twitter_link', ), migrations.RemoveField( model_name='tac_detail', name='youtube_link', ), migrations.AddField( model_name='tac_detail', name='facebook', field=models.URLField(blank=True, null = True ,default=None, max_length=500), ), migrations.AddField( model_name='tac_detail', name='git', field=models.URLField(blank=True, null = True ,default=None, max_length=500), ), migrations.AddField( model_name='tac_detail', name='insta', field=models.URLField(blank=True, null = True ,default=None, max_length=500), ), migrations.AddField( model_name='tac_detail', name='linkedin', field=models.URLField(blank=True, null = True ,default=None, max_length=500), ), migrations.AddField( model_name='tac_detail', name='twitter', field=models.URLField(blank=True, null = True ,default=None, max_length=500), ), migrations.AddField( model_name='tac_detail', name='youtube', field=models.URLField(blank=True, null = True ,default=None, max_length=500), ), ]
UTF-8
Python
false
false
2,069
py
62
0005_auto_20200514_1918.py
45
0.530691
0.507008
0
67
29.880597
89
jShainline/soens_sim
6,365,141,564,780
3be0605b8b65ebb2c342a6e0186fff09daeb6a0c
6a56fbd216432eb7f55e9ebd30275edd0d8fbcb9
/synapse/_bak/s__load_wr_synapse_test_data.py
cab187b22f6e3af79e6032ad44e19d0a50c5636f
[]
no_license
https://github.com/jShainline/soens_sim
fea00d736a0d5cdb1267e06cf0ee55a4ca8c7bb7
51784fcba09e563f7353c84572cebf31fb7aa11a
refs/heads/master
2021-04-02T23:03:28.019615
2021-03-31T01:46:51
2021-03-31T01:46:51
248,327,761
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#%% import numpy as np from matplotlib import pyplot as plt import time from scipy.signal import find_peaks from scipy.optimize import curve_fit # from soen_sim import input_signal, synapse, dendrite, neuron from _plotting import plot_fq_peaks, plot_fq_peaks__dt_vs_bias, plot_wr_data__currents_and_voltages, plot_wr_comparison__synapse from _functions import save_session_data, load_session_data, read_wr_data, V_fq__fit, inter_fluxon_interval__fit, inter_fluxon_interval, inter_fluxon_interval__fit_2, inter_fluxon_interval__fit_3, chi_squared_error from _function_more import synapse_model__parameter_sweep from util import physical_constants from soen_sim import input_signal, synapse p = physical_constants() # plt.close('all') #%% load wr data, determine quantities of interest I_sy_vec = [23,28,33,38,28,28,28,28,33,33,33,33]#uA L_si_vec = [77.5,77.5,77.5,77.5,7.75,77.5,775,7750,775,775,775,775]#nH tau_si_vec = [250,250,250,250,250,250,250,250,10,50,250,1250]#ns data_file_list = [] num_files = len(I_sy_vec) for ii in range(num_files): data_file_list.append('syn_Ispd20.00uA_Isy{:04.2f}uA_Lsi{:07.2f}nH_tausi{:04.0f}ns_dt10.0ps_tsim1000ns.dat'.format(I_sy_vec[ii],L_si_vec[ii],tau_si_vec[ii])) for ii in range(num_files): print('ii = {:d} of {:d}'.format(ii+1,num_files)) directory = 'wrspice_data/fitting_data' file_name = data_file_list[ii] data_dict = read_wr_data(directory+'/'+file_name) #plot wr time traces data_to_plot = ['L0#branch','L3#branch','v(2)'] plot_save_string = file_name plot_wr_data__currents_and_voltages(data_dict,data_to_plot,plot_save_string)
UTF-8
Python
false
false
1,639
py
161
s__load_wr_synapse_test_data.py
155
0.708359
0.633923
0
40
40
214
Oluwadurotimi10/Reuseable_pipeline_components
5,927,054,911,096
9baadc92b4af8f4ecb2c9518a5429768c594b459
bb568739839c42e023d32c625d2238c507c4f48f
/TensorFlow/components/visualization/visuals.py
b88dd451d179853cda92fc0ee92475f2589e0bf8
[]
no_license
https://github.com/Oluwadurotimi10/Reuseable_pipeline_components
dcfaac2dfcf0f626278cbf5bdbb80563bd30abe0
629ea1f247e18f49abb630850d844c9460e43aec
refs/heads/main
2023-05-26T19:45:55.095048
2021-06-09T12:53:11
2021-06-09T12:53:11
326,209,579
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
#importing libraries import argparse from typing import NamedTuple def visuals(test_loss,test_acc,matrix_data) -> NamedTuple('output', [('mlpipeline_ui_metadata', 'UI_metadata'), ('mlpipeline_metrics', 'Metrics')]): #importing libraries import joblib import numpy as np import pandas as pd import json #loading the metrics test_loss =joblib.load(test_loss) test_acc = joblib.load(test_acc) matrix_data = joblib.load(matrix_data) vocab = [0,1] metadata = { 'outputs' : [{ 'type': 'confusion_matrix', 'format': 'csv', 'schema':[ {'name': 'target', 'type': 'CATEGORY'}, {'name': 'predicted', 'type': 'CATEGORY'}, {'name': 'count', 'type': 'NUMBER'}, ], 'source': matrix_data.to_csv(header=False, index=False), 'storage':'inline', 'labels': list(map(str,vocab)), }] } metrics = { 'metrics': [{ 'name': 'Accuracy', 'numberValue': float(test_acc), 'format': "PERCENTAGE", }, { 'name': 'Loss', 'numberValue': float(test_loss), 'format': "PERCENTAGE", }]} from collections import namedtuple output = namedtuple('output', ['mlpipeline_ui_metadata', 'mlpipeline_metrics']) visual = output(json.dumps(metadata), json.dumps(metrics)) with open('mlpipeline-ui-metadata.json', 'w') as met: met.write(visual.mlpipeline_ui_metadata) with open('mlpipeline-metrics.json', 'w') as mat: mat.write(visual.mlpipeline_metrics) #defining and parsing arguments if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--test_loss') parser.add_argument('--test_acc') parser.add_argument('--matrix_data') args = parser.parse_args() visuals(args.test_loss, args.test_acc, args.matrix_data) """ #saving pred and actual as csv file vocab = [0,1] cm = confusion_matrix(y_test, y_pred, labels=vocab) cm_data = [] for target_index,target_row in enumerate(cm): for predicted_index, count in enumerate(target_row): cm_data.append((vocab[target_index], vocab[predicted_index], count)) cm_df = pd.DataFrame(cm_data, columns=['target','predicted','count']) #serialize data to be used for confusion matrix joblib.dump(cm_df, 'matrix_data') """
UTF-8
Python
false
false
2,460
py
26
visuals.py
8
0.584959
0.583333
0
75
31.813333
112
AlissonMacedo/gestao_escolar
4,767,413,748,378
8c9f965e1e1baa936dae799f41f34f53df2f7aeb
5f365910d9459e2ad17770565351e3f06889336c
/apps/departamentos/migrations/0003_auto_20190401_1529.py
7dffee2149f9ce71f2e9dbd6c53855a32485ba91
[]
no_license
https://github.com/AlissonMacedo/gestao_escolar
0d40fa84d627bc9a571314dd256a78692ecf57b0
cd42d950565496e8ffefbfac9603f8e1c3de85f0
refs/heads/master
2020-04-15T01:00:08.400258
2019-04-23T16:11:28
2019-04-23T16:11:28
164,259,591
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Generated by Django 2.1.7 on 2019-04-01 18:29 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('departamentos', '0002_departamento_empresa'), ] operations = [ migrations.AlterField( model_name='departamento', name='nome', field=models.CharField(max_length=18), ), ]
UTF-8
Python
false
false
398
py
112
0003_auto_20190401_1529.py
79
0.600503
0.547739
0
18
21.111111
55
mbenitezm/taskr
3,925,600,127,029
f3a4f3c940eabf5ebefa3b6ca2ef629abe4d2ffe
79ff9f61117e27f2fb54a7052f210e2a8e50e675
/bin/modules/render.py
c7bbe609cc128d2e709d5c1c13915debd6180449
[]
no_license
https://github.com/mbenitezm/taskr
b0f3a8976e9868a2920951f8dfe5b4347a30e66e
33f29d7ac9b90767804a974cfae8e021ea5b898f
refs/heads/master
2020-12-27T21:33:07.590557
2014-08-14T05:23:02
2014-08-14T05:23:02
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def open_html(): html = '''<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="description" content=""> <meta name="author" content=""> ''' def title(title="Untitled"): return "<title>"+title+"</title>" def html_assets(): g,c,b,go = read_assets() s.wfile.write('<script type="text/javascript">') s.wfile.write(g) s.wfile.write('</script>') s.wfile.write('<style>') s.wfile.write(b) s.wfile.write('</style>') s.wfile.write('<script type="text/javascript">') s.wfile.write(c) s.wfile.write('</script>') s.wfile.write('<script type="text/javascript">') s.wfile.write(go) s.wfile.write('</script>') s.wfile.write("</head>") s.wfile.write("<body>") html_body(s) s.wfile.write("</body></html>")
UTF-8
Python
false
false
928
py
13
render.py
11
0.602371
0.599138
0
31
28.935484
78
scottclowe/eat-it
12,884,901,905,492
a4149cc6aafa3a2865acc1cf216a33227b1f7efd
8971e9132cbcaca6f8513b3f451a71509f566a0e
/scripts/no_rfa_doubled3.py
67263f4323ced23b48c7c5dcb23b879743373074
[]
no_license
https://github.com/scottclowe/eat-it
5cb605b560050f47ab17920a5bed26da74b4928e
c55ac9a2f88012c7d08a1e7ea495097746730420
refs/heads/master
2016-09-01T23:28:29.928957
2015-09-12T12:48:46
2015-09-12T12:48:46
42,356,547
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import sklearn import pandas as pd import numpy as np import datetime import itertools import copy import pickle import sklearn.svm import sklearn.linear_model import sklearn.cross_validation import sklearn.decomposition import sklearn.manifold import sklearn.metrics from eat_it import StratifiedPercentileKFold from eat_it import scalers from eat_it import params train = pd.read_csv('data/train.csv', encoding="utf-8") # Add age in days end_dt = datetime.datetime.strptime('2015-1-1', "%Y-%m-%d") train['Age'] = [(end_dt - datetime.datetime.strptime(open_dt, "%m/%d/%Y")).days for open_dt in train['Open Date']] # add size as boolean field train['isBig'] = train['City Group']=='Big Cities' # add each of the big cities as boolean field #train['isIstanbul'] = train['City']=='İstanbul' #train['isAnkara'] = train['City']=='Ankara' #train['isIzmir'] = train['City']=='İzmir' # add boolean field for type train['isFC'] = train['Type']=='FC' train['isDT'] = train['Type']=='DT' train['isMB'] = train['Type']=='MB' # Note when there is the missing 17 fields train['missingSource'] = train[params.xor_cols].apply(lambda x: np.all(x==0), axis=1) with open('data/genuinetestmap.pkl', 'rb') as hf: gtm = pickle.load(hf) gtest = pd.read_csv('data/genuinetest.csv', encoding="utf-8") # Add age in days end_dt = datetime.datetime.strptime('2015-1-1', "%Y-%m-%d") gtest['Age'] = [(end_dt - datetime.datetime.strptime(open_dt, "%m/%d/%Y")).days for open_dt in gtest['Open Date']] # add size as boolean field gtest['isBig'] = gtest['City Group']=='Big Cities' # add each of the big cities as boolean field #gtest['isIstanbul'] = gtest['City']=='İstanbul' #gtest['isAnkara'] = gtest['City']=='Ankara' #gtest['isIzmir'] = gtest['City']=='İzmir' # add boolean field for type gtest['isFC'] = gtest['Type']=='FC' gtest['isDT'] = gtest['Type']=='DT' gtest['isMB'] = gtest['Type']=='MB' # Note when there is the missing 17 fields gtest['missingSource'] = gtest[params.xor_cols].apply(lambda x: np.all(x==0), axis=1) test = pd.read_csv('data/test.csv', encoding="utf-8") # Add age in days end_dt = datetime.datetime.strptime('2015-1-1', "%Y-%m-%d") test['Age'] = [(end_dt - datetime.datetime.strptime(open_dt, "%m/%d/%Y")).days for open_dt in test['Open Date']] # add size as boolean field test['isBig'] = test['City Group']=='Big Cities' # add each of the big cities as boolean field #test['isIstanbul'] = test['City']=='İstanbul' #test['isAnkara'] = test['City']=='Ankara' #test['isIzmir'] = test['City']=='İzmir' # add boolean field for type test['isFC'] = test['Type']=='FC' test['isDT'] = test['Type']=='DT' test['isMB'] = test['Type']=='MB' # Note when there is the missing 17 fields test['missingSource'] = test[params.xor_cols].apply(lambda x: np.all(x==0), axis=1) # Merge Test and Train together, without having revenue for all entries unlabelled_data = pd.concat((train, gtest), ignore_index=True) ##################################### # Don't use public test revenues #data = train # Add known revenues from public test data gtestrevenue = pd.read_csv('data/genuinetestrevenue.csv', encoding="utf-8") labelled_test = pd.merge(gtest, gtestrevenue, on='Id') # Merge all available training data together data = pd.concat((train, labelled_test), ignore_index=True) ##################################### # Assemble list of columns Pcols = ['P'+str(i) for i in range(1,38)] PMcols = params.xor_cols PVcols = [i for i in Pcols if i not in params.xor_cols] Gcols = ['Age'] Ocols = ['isBig','isFC','isDT','isMB'] cols = Pcols + Gcols + Ocols # Targets y = data['revenue'].values X_indices = data['Id'].values uX_indices = unlabelled_data['Id'].values index_is_labelled = np.array([i in X_indices for i in uX_indices]) index_is_train = np.array([i in train['Id'].values for i in uX_indices]) unlabelled_data_nomissing = np.logical_not(unlabelled_data['missingSource'].values) data_nomissing = np.logical_not(data['missingSource'].values) test_nomissing = np.logical_not(test['missingSource'].values) # Other (already one-hot columns) can stay as they are XO = data.as_matrix(Ocols).astype(np.float) tXO = test.as_matrix(Ocols).astype(np.float) # Need to take logs because sometimes Age can't be mapped correctly by BoxCox u = np.log(unlabelled_data.as_matrix(Gcols).astype(np.float)) d = np.log(data.as_matrix(Gcols).astype(np.float)) t = np.log(test.as_matrix(Gcols).astype(np.float)) s = scalers.BoxCoxScaler().fit(u) XG = s.transform(d) tXG = s.transform(t) # Valid-always columns u = unlabelled_data.as_matrix(PVcols).astype(np.float) d = data.as_matrix(PVcols).astype(np.float) t = test.as_matrix(PVcols).astype(np.float) s = scalers.BoxCoxScaler().fit(u) XPV = s.transform(d) uXPV = s.transform(u) tXPV = s.transform(t) # Missing-sometimes columns u = unlabelled_data.as_matrix(PMcols).astype(np.float)[unlabelled_data_nomissing] d = data.as_matrix(PMcols).astype(np.float) t = test.as_matrix(PMcols).astype(np.float) s = scalers.BoxCoxScaler(known_min=0).fit(u) XPM = s.transform(d) uXPM = s.transform(u) tXPM = s.transform(t) ############################### # Build model X_list = [] tX_list = [] cols_ = [] X_list.append(XG) tX_list.append(tXG) X_list.append(XO) tX_list.append(tXO) cols_ += Gcols cols_ += Ocols s = sklearn.decomposition.FastICA(n_components=2, random_state=889, tol=0.000001, max_iter=10000).fit(uXPV) XDR_ = s.transform(XPV) tXDR_ = s.transform(tXPV) PDRcols_ = ['PV_ICA_'+str(i) for i in range(XDR_.shape[1])] cols_ += PDRcols_ XS2 = sklearn.manifold.MDS(n_components=1, random_state=888).fit_transform(uXPV) XDR_2 = XS2[index_is_labelled,:] tXDR_2 = np.zeros((tXPV.shape[0],1)) my_ids = uX_indices[np.logical_not(index_is_train)] my_XS2 = XS2[np.logical_not(index_is_train),:] for i,uid in enumerate(my_ids): true_ids = gtm[uid] for true_id in true_ids: tXDR_2[true_id] = my_XS2[i] PDR2cols_ = ['PV_MDS_'+str(i) for i in range(XS2.shape[1])] cols_ += PDR2cols_ X_ = np.concatenate([XG, XO, XDR_], axis=1) tX_ = np.concatenate([tXG, tXO, tXDR_], axis=1) print(cols_) print(X_.shape) print(tX_.shape) clf = sklearn.linear_model.Lasso() clf.fit(X_, y) ty1 = clf.predict(tX_) ####### X_ = np.concatenate([XG, XO, XDR_2], axis=1) tX_ = np.concatenate([tXG, tXO, tXDR_2], axis=1) print(cols_) print(X_.shape) print(tX_.shape) clf = sklearn.linear_model.Lasso() clf.fit(X_, y) ty0 = clf.predict(tX_) ############################### X_list = [] tX_list = [] cols_ = [] X_list.append(XG[data_nomissing,:]) tX_list.append(tXG[test_nomissing,:]) X_list.append(XO[data_nomissing,:]) tX_list.append(tXO[test_nomissing,:]) cols_ += Gcols cols_ += Ocols s = sklearn.decomposition.FastICA(n_components=2, random_state=890, tol=0.000001, max_iter=100000).fit(uXPM) XDR_ = s.transform(XPM[data_nomissing,:]) tXDR_ = s.transform(tXPM[test_nomissing,:]) PDRcols_ = ['PM_ICA_'+str(i) for i in range(XDR_.shape[1])] X_list.append(XDR_) tX_list.append(tXDR_) cols_ += PDRcols_ X_ = np.concatenate(tuple(X_list), axis=1) tX_ = np.concatenate(tuple(tX_list), axis=1) print(cols_) print(X_.shape) print(tX_.shape) clf = sklearn.linear_model.Lasso() clf.fit(X_, y[data_nomissing]) ty2 = clf.predict(tX_) ############################### # Take geometric mean ty = (ty0 * ty1)**0.5 ty[test_nomissing] = (ty0[test_nomissing] * ty1[test_nomissing] * ty2) ** (1/3) li = np.isnan(ty) ty[li] = (ty0[li] + ty1[li]) * 0.5 ############################### ##################################### # Overwrite the revenues of known records uids = gtestrevenue['Id'].values revs = gtestrevenue['revenue'].values for uid,rev in zip(uids,revs): true_ids = gtm[uid] for true_id in true_ids: ty[true_id] = np.round(rev) ##################################### print(sum(np.isnan(ty))) print(ty1[1095:1100]) print(ty[1095:1100]) sub = pd.DataFrame(test['Id']) sub['Prediction'] = ty sub.to_csv('sub_no_rfa_ICA_doubled3_overwrite.csv', index=False)
UTF-8
Python
false
false
7,913
py
48
no_rfa_doubled3.py
14
0.661945
0.645125
0
261
29.291188
114
v-k-k/GalagaGameTestingPythonOpenCV
2,027,224,597,261
dd14cc890deaca44a4131d6581932fddd492b45c
545b7f7905897cb8a9d8082abb78c19551e62562
/constants.py
6d086959d06af36cc724e1c95c2ce214df189e80
[]
no_license
https://github.com/v-k-k/GalagaGameTestingPythonOpenCV
9083c7764d23d1bd8480189ce91fc3fdfb42d00f
9b1f96cc9498877c4a33a7e23acda0602101debf
refs/heads/master
2023-04-16T12:02:37.491064
2021-04-30T10:22:31
2021-04-30T10:22:31
362,190,353
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from utils import Area, Filters from dotenv import load_dotenv import os load_dotenv() TESSERACT_EXE = os.environ.get('TESSERACT_PATH') GAME_SOURCE = os.environ.get('GAME_SOURCE') DRIVER_PATH = os.environ.get('LOCAL_CHROME_DRIVER_PATH') BROWSER_PATH = os.environ.get('LOCAL_CHROME_EXECUTABLE_PATH') DEBUG_MODE = os.environ.get('DEBUG_MODE') == 'true' PLAYER_AXIS_Y = 0 BINARY_THRESHOLD = 254 CONNECTIVITY = 4 FILTERS = Filters(True, False, False, False) PLAYER_AREA = Area(411, 420) ENEMY_AREA = Area(101, 400) MISSILE_AREA = Area(30, 100)
UTF-8
Python
false
false
546
py
23
constants.py
20
0.730769
0.690476
0
22
23.818182
61
yc-Claire/machine_learning
18,597,208,410,380
5ce221213e987c610b7bec6b13116a3f2ed3505f
231d783eea300a8c3e6d108df031e6aff7035999
/1_project/GMM.py
0bb8c537dfb538fd36fca76c3c1ce2ef0d8fce50
[]
no_license
https://github.com/yc-Claire/machine_learning
c7b288c4882bfe86acb6397b6404d6cc4b04127e
6540def874cd4f7325984443ec10e3cc122aafb7
refs/heads/master
2022-11-06T23:35:53.415326
2020-07-06T10:58:43
2020-07-06T10:58:43
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np import torch import torchvision.datasets as dsets import torchvision.transforms as transforms import matplotlib as mpl import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.preprocessing import Normalizer from sklearn.metrics import accuracy_score from sklearn.decomposition import PCA def load_data(batch_size=100): train_dataset = dsets.MNIST(root = '../../dataset', #选择数据的根目录 train = True, # 选择训练集 transform = transforms.ToTensor(), #转换成tensor变量 download = False) # 不从网络上download图片 test_dataset = dsets.MNIST(root = '../../dataset', #选择数据的根目录 train = False, # 选择训练集 transform = transforms.ToTensor(), #转换成tensor变量 download = False) # 不从网络上download图片 train_loader = torch.utils.data.DataLoader( dataset=train_dataset, batch_size = batch_size ) test_loader = torch.utils.data.DataLoader( dataset=test_dataset, batch_size=batch_size ) return train_loader,test_loader class GMM: def __init__(self,Data,K,weights = None,means = None,covars = None): """ 这是GMM(高斯混合模型)类的构造函数 :param Data: 训练数据 :param K: 高斯分布的个数 :param weigths: 每个高斯分布的初始概率(权重) :param means: 高斯分布的均值向量 :param covars: 高斯分布的协方差矩阵集合 """ self.Data = Data self.K = K if weights is not None: self.weights = weights else: self.weights = np.random.rand(self.K) self.weights /= np.sum(self.weights) # 归一化 col = np.shape(self.Data)[1] if means is not None: self.means = means else: self.means = [] for i in range(self.K): mean = np.random.rand(col) #mean = mean / np.sum(mean) # 归一化 self.means.append(mean) if covars is not None: self.covars = covars else: self.covars = [] for i in range(self.K): cov = np.random.rand(col,col) #cov = cov / np.sum(cov) # 归一化 self.covars.append(cov) # cov是np.array,但是self.covars是list def Gaussian(self,x,mean,cov): """ 这是自定义的高斯分布概率密度函数 :param x: 输入数据 :param mean: 均值数组 :param cov: 协方差矩阵 :return: x的概率 """ dim = np.shape(cov)[0] # cov的行列式为零时的措施 covdet = np.linalg.det(cov + np.eye(dim) * 0.001) covinv = np.linalg.inv(cov + np.eye(dim) * 0.001) xdiff = (x - mean).reshape((1,dim)) # 概率密度 prob = 1.0/(np.power(np.power(2*np.pi,dim)*np.abs(covdet),0.5))*\ np.exp(-0.5*xdiff.dot(covinv).dot(xdiff.T))[0][0] return prob def GMM_EM(self): """ 这是利用EM算法进行优化GMM参数的函数 :return: 返回各组数据的属于每个分类的概率 """ loglikelyhood = 0 oldloglikelyhood = 1 len,dim = np.shape(self.Data) # gamma表示第n个样本属于第k个混合高斯的概率 gammas = [np.zeros(self.K) for i in range(len)] while np.abs(loglikelyhood-oldloglikelyhood) > 0.00000001: oldloglikelyhood = loglikelyhood # E-step for n in range(len): # respons是GMM的EM算法中的权重w,即后验概率 respons = [self.weights[k] * self.Gaussian(self.Data[n], self.means[k], self.covars[k]) for k in range(self.K)] respons = np.array(respons) sum_respons = np.sum(respons) gammas[n] = respons/sum_respons # M-step for k in range(self.K): #nk表示N个样本中有多少属于第k个高斯 nk = np.sum([gammas[n][k] for n in range(len)]) # 更新每个高斯分布的概率 self.weights[k] = 1.0 * nk / len # 更新高斯分布的均值 self.means[k] = (1.0/nk) * np.sum([gammas[n][k] * self.Data[n] for n in range(len)], axis=0) xdiffs = self.Data - self.means[k] # 更新高斯分布的协方差矩阵 self.covars[k] = (1.0/nk)*np.sum([gammas[n][k]*xdiffs[n].reshape((dim,1)).dot(xdiffs[n].reshape((1,dim))) for n in range(len)],axis=0) loglikelyhood = [] for n in range(len): tmp = [np.sum(self.weights[k]*self.Gaussian(self.Data[n],self.means[k],self.covars[k])) for k in range(self.K)] tmp = np.log(np.array(tmp)) loglikelyhood.append(list(tmp)) loglikelyhood = np.sum(loglikelyhood) for i in range(len): gammas[i] = gammas[i]/np.sum(gammas[i]) self.posibility = gammas self.prediction = [np.argmax(gammas[i]) for i in range(len)] def get_label(filepath): file=open(filepath,'r') y=[] for line in file.readlines(): line=line.rstrip('\n') y.append(int(line)) file.close() return y def load_tensor(filepath,pointnum): X=[] for i in range(pointnum): # 10000 data = np.load(filepath+'/arr_{}.npz'.format(i)) x = data['arr_0'] # x=x.ravel() data.close() X.append(x) X=np.array(X) return X def run(): # batch_size=10000 # train_loader, test_loader = load_data(batch_size) # for batch_index, (x,y) in enumerate(test_loader): # x=np.array(x) # data = x.reshape(batch_size, 784) # pca = PCA(n_components=4) # 降到4维 # pca.fit(data) # 训练 # data = pca.fit_transform(data) # label=np.array(y) # break filepath = 'LeNet/y2' # y1: 1000X400 y2: 1000X84 data = load_tensor(filepath, pointnum=1000) print(np.shape(data)) pca = PCA(n_components=4) # 降到4维 pca.fit(data) # 训练 data= pca.fit_transform(data) label=get_label('LeNet/label.txt') print("Mnist数据集的标签:\n",label) # 对数据进行预处理 data = Normalizer().fit_transform(data) # 解决画图的中文乱码问题 mpl.rcParams['font.sans-serif'] = [u'simHei'] mpl.rcParams['axes.unicode_minus'] = False # 数据可视化 plt.scatter(data[:,0],data[:,1],c = label) plt.title("Mnist数据集显示") plt.show() # GMM模型 K = 10 gmm = GMM(data,K) gmm.GMM_EM() y_pre = gmm.prediction print("GMM预测结果:\n",y_pre) print("GMM正确率为:\n",accuracy_score(label,y_pre)) plt.scatter(data[:, 0], data[:, 1], c=y_pre) plt.title("GMM结果显示") plt.show() if __name__ == '__main__': run()
UTF-8
Python
false
false
7,440
py
28
GMM.py
11
0.521025
0.507995
0
189
33.746032
150
disfear86/class-projects
19,473,381,753,467
4312269e925474c822b3bfc3b779665ed4d6fc23
c0316e7d525b81be015c68c512a8b590152cf44d
/python/codewars/maskify.py
2647be75df8abee85b107d4661a00d8926615f07
[]
no_license
https://github.com/disfear86/class-projects
73ff183e988e8f6232469d933a27591cc14ef8c7
d67b08f3529cf7e73495177d02d87d328082fff5
refs/heads/master
2021-01-17T18:23:48.369584
2017-05-16T17:51:56
2017-05-16T17:51:56
62,585,100
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def maskify(cc): lst = list(cc) for item in enumerate(lst): if item[0] < (len(lst) - 4): lst[item[0]] = '#' return ''.join(lst) str = "4556364607935616" print(maskify(str))
UTF-8
Python
false
false
210
py
8
maskify.py
5
0.528571
0.438095
0
9
22.333333
36
fybmain/DormitoryBackend
17,051,020,167,244
5093d799d8637c5a5114acece28918d25ac7dd94
19c974cbcd526b91d7e0dbe2fadedac553383268
/DormitoryBackend/src/dormitory.py
b9a1436608f34a9652c0baa46998663f6d61d9c3
[]
no_license
https://github.com/fybmain/DormitoryBackend
e7f7d2562f8cfa679f1e8ba6ef57574cdf2090e0
25bc697a504ae9f360ce459a65333062b3624606
refs/heads/master
2020-04-09T17:22:54.386592
2019-01-03T05:21:47
2019-01-03T05:21:47
160,479,238
6
1
null
null
null
null
null
null
null
null
null
null
null
null
null
from typing import List from .util import http, get_request_json, generate_pagination_list from .util import string_filter, id_filter, foreign_key_filter, get_filter_condition from .global_obj import app from .model import Dormitory, Building, ElectricityMeter, WaterMeter from .permission import get_permission_condition, check_permission_condition, PermissionDenied dormitory_filter_properties = { "id": id_filter, "number": string_filter, "building": foreign_key_filter, "electricity_meter": foreign_key_filter, "water_meter": foreign_key_filter, } dormitory_updatable_properties = { "number": { "type": "string", "pattern": "^[0-9]+$", }, "building": { "type": "integer", }, "electricity_meter": { "type": "integer", }, "water_meter": { "type": "integer", }, } dormitory_create_properties = { "number": { "type": "string", "pattern": "^[0-9]+$", }, "building": { "type": "integer", }, } def get_dormitories(filter: dict, allowed: List[str]): return Dormitory.select().where( get_filter_condition(filter, Dormitory) & get_permission_condition(allowed, Dormitory) ) def generate_dormitory_info(dormitory: Dormitory): return { "id": dormitory.id, "number": dormitory.number, "building": { "id": dormitory.building_id, "name": dormitory.building.name, }, "electricity_meter": { "id": dormitory.electricity_meter_id, "state": dormitory.electricity_meter.state, "remaining": float(dormitory.electricity_meter.remaining), }, "water_meter": { "id": dormitory.water_meter_id, "state": dormitory.water_meter.state, "remaining": float(dormitory.water_meter.remaining), }, } @app.route("/dormitory/list", methods=["POST"]) def get_dormitory_list(): instance = get_request_json(schema={ "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "properties": { "page": { "type": "integer", }, "limit": { "type": "integer", }, "filter": { "type": "object", "properties": dormitory_filter_properties, "additionalProperties": False, }, }, "required": ["page", "limit", "filter"], "additionalProperties": False, }) dormitories = get_dormitories(instance["filter"], ["Management", "Self"]) return http.Success(result=generate_pagination_list( objs=dormitories, instance_generator=generate_dormitory_info, page=instance["page"], limit=instance["limit"] )) def obj_process(obj: dict): if "building" in obj: building_id = obj["building"] building = Building.get(id=building_id) check_permission_condition(building, get_permission_condition(["Management"], Building)) if "electricity_meter" in obj: electricity_meter_id = obj["electricity_meter"] electricity_meter = ElectricityMeter.get(id=electricity_meter_id) check_permission_condition(electricity_meter, get_permission_condition(["Management"], ElectricityMeter)) if "water_meter" in obj: water_meter_id = obj["water_meter"] water_meter = WaterMeter.get(id=water_meter_id) check_permission_condition(water_meter, get_permission_condition(["Management"], WaterMeter)) @app.route("/dormitory/update", methods=["POST"]) def update_dormitory_info(): instance = get_request_json(schema={ "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "properties": { "filter": { "type": "object", "properties": dormitory_filter_properties, "additionalProperties": False, }, "obj": { "type": "object", "properties": dormitory_updatable_properties, "additionalProperties": False, }, }, "required": ["filter", "obj"], "additionalProperties": False, }) obj_process(instance["obj"]) allow_read_dormitory = get_dormitories(instance["filter"], ["Management", "Self"]) if allow_read_dormitory.count() < 1: raise Dormitory.DoesNotExist() allow_write_dormitory = get_dormitories(instance["filter"], ["Management"]) if allow_write_dormitory.count() < 1: raise PermissionDenied() for dormitory in allow_write_dormitory: for(key, value) in instance["obj"].items(): setattr(dormitory, key, value) dormitory.save() return http.Success() @app.route("/dormitory/create", methods=["POST"]) def create_dormitory(): instance = get_request_json(schema={ "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "properties": { "obj": { "type": "object", "properties": dormitory_create_properties, "required": list(dormitory_create_properties.keys()), "additionalProperties": False, }, }, "required": ["obj"], "additionalProperties": False, }) obj_process(instance["obj"]) dormitory = Dormitory() for (key, value) in instance["obj"].items(): setattr(dormitory, key, value) electricity_meter = ElectricityMeter(state="OK", remaining=0) electricity_meter.save() dormitory.electricity_meter_id = electricity_meter.id water_meter = WaterMeter(state="OK", remaining=0) water_meter.save() dormitory.water_meter_id = water_meter.id dormitory.save() return http.Success(result={ "id": dormitory.id, "electricity_meter": electricity_meter.id, "water_meter": water_meter.id, })
UTF-8
Python
false
false
6,001
py
39
dormitory.py
33
0.582403
0.58007
0
195
29.774359
113
cdevine49/ml_helpers
17,111,149,736,247
dfe620d14cc8b1015ade17cf5c5228703f2b5fe5
58d634d2bff5877102a7b7ea3944072b8cb56398
/ml_helpers/tf_helpers.py
6bc9b1eedd57401d9a1afd3414e7749759081231
[ "MIT" ]
permissive
https://github.com/cdevine49/ml_helpers
ab2aea538e53a78779a44990656b7ac465470ee4
7e0be9898822e4efeb736d0678aa9ed7746ea5f2
refs/heads/master
2020-04-03T04:07:13.251841
2019-04-07T16:28:04
2019-04-07T16:28:04
155,003,810
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import tensorflow as tf def create_placeholders(n_x, n_y): X = tf.placeholder(tf.float32, [n_x, None]) Y = tf.placeholder(tf.float32, [n_y, None]) return X, Y
UTF-8
Python
false
false
165
py
14
tf_helpers.py
12
0.672727
0.648485
0
6
26.666667
45
OpenBanking-Brasil/ressarcimento
19,155,554,153,428
0667712456916de387a84007a0bb60c1cda4abda
bdd2731705bdb50e58816509c671fddbfd095a28
/sdks-client/python-sdk-client/swagger_client/__init__.py
85227557618cf2818b6eb5a432a9920f3109d215
[]
no_license
https://github.com/OpenBanking-Brasil/ressarcimento
865ee9757e1d76f8ed9fe5f8e32e171e9a3500ee
50254340d95f9fae632238b8af422b08a3848b40
refs/heads/main
2023-06-07T00:17:51.583921
2021-07-01T21:13:59
2021-07-01T21:13:59
375,832,352
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# coding: utf-8 # flake8: noqa """ Plataforma de Ressarcimento do Open Banking Brasil APIs da plataforma de Ressarcimento do Open Banking Brasil para a comunicação online com a plaforma. Através da documentação das APIs abaixo é possível realizar os devidos testes de integração. # noqa: E501 OpenAPI spec version: beta-0.0.1 Contact: suporte-ressarcimento@openbankingbrasil.org.br Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import # import apis into sdk package from swagger_client.api.refund_api_v1_api import RefundAPIV1Api # import ApiClient from swagger_client.api_client import ApiClient from swagger_client.configuration import Configuration # import models into sdk package from swagger_client.models.refund_notification import RefundNotification from swagger_client.models.refund_process import RefundProcess
UTF-8
Python
false
false
912
py
46
__init__.py
17
0.796235
0.785161
0
24
36.625
211
ACCarnall/loch_nest_monster
8,237,747,294,849
351a7db767327e342bafe32a77b02b76a1247cef
fc0201220fa4d73c7e68289a80e096fb4215bc3d
/lochnest_monster/nball_sampler.py
106b426e81299e6d57fffa1488fb1419529570a8
[]
no_license
https://github.com/ACCarnall/loch_nest_monster
b1e817a60f1afa37ca0c65af056b169e8498cc29
166784bfc81f15d1af52fc19124c7d43be2f9b8a
refs/heads/master
2020-03-15T18:52:31.849544
2018-09-03T10:16:17
2018-09-03T10:16:17
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from __future__ import print_function, division, absolute_import import numpy as np from .bounds import nballs, nballs_fill_frac from .basic_sampler import basic_sampler class nball_sampler(basic_sampler): """ Nested sampling implementing the nballs boundary method. This uses a nearest-neighbours algorithm to draw spheres around each live point reaching some fraction of the way to its kth nearest neighbour then samples from within those spheres. Parameters ---------- lnlike : function A function which takes an array of parameter values and returns the natural log of the likelihood at that point. prior_trans : function A function which transforms a sample from the unit cube to the prior volume you wish to sample. n_dim : int The number of free parameters you wish to fit. n_live : int The number of live points you wish to use. stop_frac : float The fraction of the evidence you wish to integrate up to. This defaults to 0.9. verbose: bool Print progress updates as sampling takes place. live_plot : bool Show a live-updating plot of the live points during sampling. use_box : bool Also constrain samples to be drawn from an n-dimensional box drawn around the live points. Defaults to False. box_expansion : float If also using a bounding box, the volume of the box is expanded by this factor. """ def __init__(self, lnlike, prior_trans, n_dim, n_live=400, stop_frac=0.99, verbose=True, live_plot=False, use_box=False, box_expansion=1.): basic_sampler.__init__(self, lnlike, prior_trans, n_dim, n_live=n_live, stop_frac=stop_frac, verbose=verbose, live_plot=live_plot) self.use_box = use_box self.box_expansion = box_expansion # Update the bound every time the volume decreases by 10 percent self.update_interval = int(0.1*self.n_live) self.update_bound() def update_bound(self): """ Update the bounding object to draw points within. """ if not self.n_samples % self.update_interval: n_to_sample = int(10*self.update_interval/self.efficiency) self.bound = nballs(self.live_cubes, n_to_sample=n_to_sample, use_box=self.use_box, box_expansion=self.box_expansion) def draw_new_point(self): """ Select a new point from the prior within the bound. """ while True: new_cube = self.bound.draw_point() if new_cube.max() < 1 and new_cube.min() > 0: break return new_cube
UTF-8
Python
false
false
2,798
py
15
nball_sampler.py
14
0.619728
0.613653
0
87
31.16092
79
hardikkhurana19/spy_chat
7,610,682,086,749
9903307f97189aaf824ac438862ed6206f38bf87
783edb76ccd13d169cfda8affd4b304931c7ab9e
/Spy_Chat/select_friend.py
51db0883dfaf5459a9d82020b5070feb5e559649
[]
no_license
https://github.com/hardikkhurana19/spy_chat
c66c913f2bc40eec0b6611a7c04019197b648ff1
503b21ac8c893fdfd3d2b44b32e49bb1ba5de92a
refs/heads/master
2021-01-02T09:39:14.437830
2017-09-16T16:09:27
2017-09-16T16:09:27
99,266,762
3
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from globals import friends from termcolor import colored,cprint def select_friend(): counter = 1 for friend in friends: print str(counter)+". " + friend['name'] counter += 1 user_input = int(raw_input(colored("Choose the friend\n", 'yellow'))) if user_input <= counter: return user_input-1 else: cprint("wrong Choice", "red") return 1
UTF-8
Python
false
false
399
py
14
select_friend.py
14
0.611529
0.601504
0
16
23.9375
73
kumaraadi/AIcodes
14,224,931,699,194
aa4ff9b90817d1f47833a5eedcb8ba748d34ee47
21405f36d9b1ddcb3a20431b9b2d3a4123cea6f4
/Node.py
48fb19ffdf835812fda4d832aced87b7a08dfbb6
[]
no_license
https://github.com/kumaraadi/AIcodes
e503f8b5823eb50885aef72189eb3150f5843b53
cedb3e666d81bf09768e7580845b35dcdeafc0fe
refs/heads/master
2020-05-07T15:55:12.377177
2019-04-10T20:34:15
2019-04-10T20:34:15
180,659,632
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
ArrayList<Node> children = [] char[][] state int heuristic Node parent int depth int nodeNu int visited def __init__(self, char[][] state,int heuristic,Node parent,int depth,int Nodenum,int visited){ self.state = state self.heuristic = heuristic self.parent = parent self.depth= depth self.nodeNum = Nodenum self.visited = visited def addchild(Node n): children.add(n)
UTF-8
Python
false
false
482
py
2
Node.py
2
0.578838
0.578838
0
19
23.842105
99
pfisher3/kegmeter
19,018,115,206,866
25bf837a48d6a4ae19a53c21d581f451207474b3
7ce40ea908478c296d34bcf566796a6221ecf277
/kegmeter-app/kegmeter/app/Interface.py
019c92d011ffc1341096eadb567941303c77d28d
[ "MIT" ]
permissive
https://github.com/pfisher3/kegmeter
b73c74e88de19221d092d803384cd56df749837b
edd27ed824efb26dc9dc3abecb787646ba2ac9a6
refs/heads/master
2020-06-16T08:27:20.775059
2014-12-17T20:56:53
2014-12-17T20:56:53
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from PIL import Image, ImageTk from StringIO import StringIO import Tkinter import base64 import colormath.color_objects import colormath.color_conversions import logging import md5 import os import pkg_resources import re import requests import threading import time import ttk from kegmeter.common import Config, Beer, Checkin, DBClient pbu_file = pkg_resources.resource_filename(__name__, "images/pbu_40_grey.png") highlight_color = "#ffff6f" class ImageLabel(object): def __init__(self, *args, **kwargs): self.label = Tkinter.Label(*args, **kwargs) def pack(self, *args, **kwargs): self.label.pack(*args, **kwargs) def load_from_url(self, url, size=None): logging.debug("loading image from URL: {}".format(url)) try: imgreq = requests.get(url) imgreq.raise_for_status() pil_image = Image.open(StringIO(imgreq.content)) if size is not None: pil_image.thumbnail(size, Image.ANTIALIAS) self.image = ImageTk.PhotoImage(pil_image) self.label.config(image=self.image) except Exception as e: logging.error("Couldn't load image: {}".format(e)) class TapDisplay(object): pack_options = { "frame": { "side": Tkinter.LEFT, "expand": True, "fill": Tkinter.BOTH, "pady": 10, "padx": 5 }, "beer_name": { "pady": (30, 0) }, "beer_style": {}, "images": {}, "brewery_image": { "side": Tkinter.LEFT, "padx": 10 }, "beer_image": { "side": Tkinter.LEFT, "padx": 10 }, "tap_num": { "side": Tkinter.BOTTOM, "fill": Tkinter.X }, "pct_full_meter": { "side": Tkinter.BOTTOM, "fill": Tkinter.X, "padx": 10, "pady": 20 }, "abv": { "side": Tkinter.BOTTOM }, "brewery_loc": { "side": Tkinter.BOTTOM }, "brewery_name": { "side": Tkinter.BOTTOM }, "beer_description": { "expand": True, "fill": Tkinter.BOTH, "padx": 10 }, "amount_poured_frame": { "expand": True, "fill": Tkinter.Y }, "amount_poured_number": { "side": Tkinter.LEFT, "anchor": Tkinter.NW }, "amount_poured_text": { "side": Tkinter.LEFT, "anchor": Tkinter.NW }, } def __init__(self, tap_id, parent): self.tap_id = tap_id self.beer_id = None self.active = False self.frame = Tkinter.Frame(parent, borderwidth=1, relief=Tkinter.GROOVE) self.pack("frame") self.frame.pack_propagate(0) # From top down self.beer_name = Tkinter.Label(self.frame, text="<beer name>", font=("PT Sans", 24, "bold")) self.beer_style = Tkinter.Label(self.frame, text="<beer style>", font=("PT Sans", 17)) self.images = Tkinter.Frame(self.frame, pady=50) self.brewery_image = ImageLabel(self.images, background="#dfdfdf", height=100, width=100) self.beer_image = ImageLabel(self.images, background="#dfdfdf", height=100, width=100) self.pack("beer_name", "beer_style", "images", "brewery_image", "beer_image") # From bottom up self.tap_num = Tkinter.Label(self.frame, text=tap_id, font=("PT Sans", 16, "bold")) self.pct_full_meter = ttk.Progressbar(self.frame, maximum=1.0) self.abv = Tkinter.Label(self.frame, text="0.0%", font=("PT Sans", 20, "bold"), pady=10) self.brewery_loc = Tkinter.Label(self.frame, text="<brewery location>", font=("PT Sans", 14)) self.brewery_name = Tkinter.Label(self.frame, text="<brewery name>", font=("PT Sans", 18, "bold")) self.pack("tap_num", "pct_full_meter", "abv", "brewery_loc", "brewery_name") # Description or amount poured gets remaining space in between self.beer_description = Tkinter.Text(self.frame, font=("PT Sans", 12), borderwidth=0, wrap=Tkinter.WORD, pady=20) self.beer_description.tag_config("description", justify=Tkinter.CENTER) self.amount_poured_frame = Tkinter.Frame(self.frame, pady=20, background=highlight_color) self.amount_poured_number = Tkinter.Label(self.amount_poured_frame, font=("PT Sans", 36, "bold"), background=highlight_color) self.amount_poured_text = Tkinter.Label(self.amount_poured_frame, font=("PT Sans", 36), background=highlight_color, text=" ounces poured") self.pack("beer_description", "amount_poured_number", "amount_poured_text") self.set_background("#ffffff") def pack(self, *obj_names): for obj_name in obj_names: getattr(self, obj_name).pack(**self.pack_options[obj_name]) def unpack(self, *obj_names): for obj_name in obj_names: getattr(self, obj_name).pack_forget() def set_background(self, color_hex): for obj in ["frame", "beer_name", "beer_style", "images", "beer_description", "brewery_name", "brewery_loc", "abv"]: getattr(self, obj).config(background=color_hex) color = colormath.color_objects.sRGBColor.new_from_rgb_hex(color_hex) tap_num_color = colormath.color_conversions.convert_color(color, colormath.color_objects.HSLColor) tap_num_color.hsl_l -= 0.1 tap_num_color = colormath.color_conversions.convert_color(tap_num_color, colormath.color_objects.sRGBColor) self.tap_num.config(background=tap_num_color.get_rgb_hex()) def update(self, tap): self.pct_full_meter.config(value=tap["pct_full"]) if tap["beer_id"] == self.beer_id: return if not tap["beer_id"]: self.beer_name.config(text="Empty") self.beer_style.config(text="") self.unpack("images", "brewery_name", "brewery_loc", "beer_style", "abv", "pct_full_meter", "beer_description") self.set_background("#dfdfdf") return try: beer = Beer.new_from_id(tap["beer_id"]) except Exception as e: logging.error("Couldn't look up beer ID {}: {}".format(tap["beer_id"], e)) return self.beer = beer self.pack("images", "brewery_name", "brewery_loc", "beer_style", "abv", "pct_full_meter", "beer_description") self.set_background("#ffffff") self.beer_name.config(text=beer.beer_name) self.beer_style.config(text=beer.beer_style) self.brewery_name.config(text=beer.brewery_name) self.brewery_loc.config(text=beer.brewery_loc) self.abv.config(text="{}%".format(beer.abv)) self.beer_description.delete(1.0, Tkinter.END) self.beer_description.insert(Tkinter.END, self.beer.description, "description") self.brewery_image.load_from_url(beer.brewery_label, (100, 100)) self.beer_image.load_from_url(beer.beer_label, (100, 100)) self.beer_id = tap["beer_id"] def update_active_tap(self, tap): self.amount_poured = tap.pulses * Config.get("units_per_pulse")[str(tap.tap_id)] self.amount_poured_number.config(text="{:.2f}".format(self.amount_poured)) if self.active: return logging.debug("making tap {} active".format(self.tap_id)) self.active = True self.beer_description.pack_forget() self.pack("amount_poured_frame") self.set_background(highlight_color) def make_inactive(self): if not self.active: return logging.debug("making tap {} inactive".format(self.tap_id)) self.active = False self.amount_poured = None self.amount_poured_frame.pack_forget() self.pack("beer_description") self.set_background("#ffffff") class CheckinDisplay(object): def __init__(self, parent): self.checkin_id = None self.time_since = None self.frame = Tkinter.Frame(parent, borderwidth=1, relief=Tkinter.GROOVE) self.frame.pack(side=Tkinter.LEFT, expand=True, fill=Tkinter.BOTH, padx=5, pady=10) self.frame.pack_propagate(1) self.avatar_image = ImageLabel(self.frame, height=100, width=100, borderwidth=1, relief=Tkinter.GROOVE) self.avatar_image.pack(side=Tkinter.LEFT, pady=5, padx=5) self.description_frame = Tkinter.Frame(self.frame) self.description_frame.pack(side=Tkinter.LEFT, expand=True, fill=Tkinter.BOTH, padx=5, pady=10) self.description_frame.pack_propagate(0) self.description = Tkinter.Text(self.description_frame, font=("PT Sans", 11), borderwidth=0, wrap=Tkinter.WORD) self.description.pack(fill=Tkinter.BOTH) self.description.tag_config("b", font=("PT Sans", 11, "bold")) self.description.tag_config("i", font=("PT Sans", 11, "italic")) def update(self, checkin): if checkin.checkin_id == self.checkin_id and checkin.time_since == self.time_since: return if checkin.checkin_id != self.checkin_id: self.avatar_image.load_from_url(checkin.user_avatar, (100, 100)) self.checkin_id = checkin.checkin_id self.time_since = checkin.time_since self.description.delete(1.0, Tkinter.END) self.description.insert(Tkinter.END, checkin.user_name, "b") self.description.insert(Tkinter.END, " enjoyed a ") self.description.insert(Tkinter.END, checkin.beer.beer_name, "b") self.description.insert(Tkinter.END, " by ") self.description.insert(Tkinter.END, checkin.beer.brewery_name, "b") self.description.insert(Tkinter.END, "\n") self.description.insert(Tkinter.END, checkin.time_since, "i") class KegMeter(object): def __init__(self, kegmeter_status): self.kegmeter_status = kegmeter_status self.checkins = None def initialize_window(self): self.window = Tkinter.Tk() self.window.attributes("-fullscreen", True) self.window.tk_setPalette(background="White") self.window.rowconfigure(1, weight=1) self.title = Tkinter.Label(text="On Tap", font=("PT Sans", 32, "bold"), background="#cfcfcf", borderwidth=1, relief=Tkinter.GROOVE) self.title.pack(fill=Tkinter.X) # Taps self.tap_container = Tkinter.Frame(background="#bfbfc7", padx=10) self.tap_container.pack(expand=True, fill=Tkinter.BOTH) self.taps = dict() for i, tap in enumerate(DBClient.get_taps()): self.taps[tap["tap_id"]] = TapDisplay(tap["tap_id"], self.tap_container) # Checkins self.checkin_container = Tkinter.Frame(background="#dfe7ef", borderwidth=1, relief="sunken") self.checkin_container.pack(fill=Tkinter.X) self.checkin_displays = [] for i in range(Config.get("num_checkins")): self.checkin_displays.append(CheckinDisplay(self.checkin_container)) self.powered_image_pil = Image.open(pbu_file) self.powered_image = ImageTk.PhotoImage(self.powered_image_pil) self.powered_image_container = Tkinter.Label(self.checkin_container, height=40, width=166, image=self.powered_image, background="#dfe7ef") self.powered_image_container.pack(side=Tkinter.RIGHT, padx=10) def update_active_taps(self): for tap in self.kegmeter_status.tap_statuses.values(): if tap.is_active(): self.taps[tap.tap_id].update_active_tap(tap) else: self.taps[tap.tap_id].make_inactive() def update_tap_info(self): for tap in DBClient.get_taps(): self.taps[tap["tap_id"]].update(tap) def update_checkin_display(self): if self.checkins is not None: for checkin, display in zip(self.checkins, self.checkin_displays): display.update(checkin) def update_checkins(self): self.checkins = Checkin.get_latest() def repeat_call(self, interval, target): target() thread = threading.Timer(interval, self.repeat_call, [interval, target]) thread.start() def main(self): self.initialize_window() self.repeat_call(60.0, self.update_tap_info) self.repeat_call(120.0, self.update_checkins) self.repeat_call(15.0, self.update_checkin_display) self.listener = threading.Thread(target=self.update_listener) self.listener.daemon = True self.listener.start() Tkinter.mainloop() def shutdown(self): logging.error("Interface exiting") self.window.quit() def update_listener(self): while not self.kegmeter_status.interrupt_event.is_set(): self.kegmeter_status.tap_update_event.wait() self.kegmeter_status.tap_update_event.clear() self.update_active_taps() self.shutdown()
UTF-8
Python
false
false
12,579
py
30
Interface.py
21
0.628826
0.617299
0
314
39.06051
146
c15314356/FYP_Python
1,030,792,155,517
a34a28f26a53e29759b65bb52c25e2f06e23813d
bbe4c6a1a9f5c4a62c0dd451d307dca7c04a8805
/CrimeStatisticFiles/generate_crime_type_stats.py
cd3bd5cbede24dc166087e770c7e7ed86c387935
[]
no_license
https://github.com/c15314356/FYP_Python
5cc0065d208c0c92b2dc528fad1447c2b44a335c
1b919ad2b88da4f3a13e0b72b89805584d2a2ceb
refs/heads/master
2021-10-26T10:52:47.314441
2019-04-12T05:43:24
2019-04-12T05:43:24
159,813,532
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import logging import pandas as pd from cassandra.cluster import Cluster import math FILEPATH = './data/' dataset_location = FILEPATH + '2017-01-city-of-london-street.csv' dataset = pd.read_csv(dataset_location, header=None) ''' Structure of dataframe Crime ID 0 Month 1 Reported by 2 Falls within 3 Longitude 4 Latitude 5 Location 6 LSOA code 7 LSOA name 8 Crime type 9 Last outcome category 10 Context 11 ''' columns_names = ('Crime ID', 'Month', 'Reported by', 'Falls within', 'Longitude', 'Latitude', 'Location', 'LSOA code', 'LSOA name', 'Crime type', 'Last outcome category', 'Context') # crime_statistics = dataset.describe() # crime_statistics.columns = columns_names # crime_statistics = crime_statistics.T # crime_statistics.to_csv(FILEPATH + 'crime_statistics.csv', encoding='utf-8') # print(dataset[9].describe()) # print(dataset.groupby(9).size()) crime_type_statistics = dataset.groupby(9).size() crime_type_statistics.to_csv(FILEPATH + 'crime_type_statistics.csv', encoding='utf-8')
UTF-8
Python
false
false
1,212
py
746
generate_crime_type_stats.py
10
0.611386
0.590759
0
48
24.229167
86
divyachandana/objectDetectionKeras
12,086,038,005,968
c1bbee13341502fd549f35d1bdbeab107ecb8a80
c683597057303450536b6299adb22a611007b86c
/generateImageSet.py
1ec9c78dd9e04986b76a6010cffe8016d053d448
[ "MIT" ]
permissive
https://github.com/divyachandana/objectDetectionKeras
a69b0d9233f2e2c31832ad4a029c1e679148c7de
79d89fbf6684c451676c7a561637bb130b2c7883
refs/heads/master
2022-05-24T19:07:25.369044
2020-04-28T20:22:49
2020-04-28T20:22:49
259,394,773
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python # _*_ coding:utf-8 _*_ # 用于生成PASCAL VOC格式的训练和测试txt # Author:jefby # Email: jef199006@gmail.com import os import random import glob # trainval数据集占所有数据的比例 trainval_percent = 0.9 # train数据集占trainval数据的比例 train_percent = 1 xmlfilepath = 'data/VOC/Annotations' txtsavepath = 'data/VOC/ImageSets/Main' total_xml = glob.glob(os.path.join(xmlfilepath, '*.xml')) num=len(total_xml) list=range(num) tv=int(num*trainval_percent) tr=int(tv*train_percent) trainval= random.sample(list,tv) train=random.sample(trainval,tr) ftrainval = open('data/VOC/ImageSets/Main/trainval.txt', 'w') ftest = open('data/VOC/ImageSets/Main/test.txt', 'w') ftrain = open('data/VOC/ImageSets/Main/train.txt', 'w') fval = open('data/VOC/ImageSets/Main/val.txt', 'w') for i in list: name=os.path.basename(total_xml[i])[:-4]+'\n' if i in trainval: ftrainval.write(name) if i in train: ftrain.write(name) else: fval.write(name) else: ftest.write(name) ftrainval.close() ftrain.close() fval.close() ftest.close()
UTF-8
Python
false
false
1,137
py
34
generateImageSet.py
1
0.685341
0.67507
0
46
22.304348
61
sqeu/xinhualy
17,772,574,683,278
7801bca3b25831ffe7257c445a03b6ca999d70bc
f4a7b03a0aad58b844cc1af02595591cc311708b
/xinhualy.py
7bc911067405488e873390dea6a8b4c6d33b30b5
[]
no_license
https://github.com/sqeu/xinhualy
23cdeb1459ee0bff5fa97de0d5bd88114529b3ba
2049f4c0d6975cf8ccbe62eb57a3fbb1ddd17436
refs/heads/master
2022-09-13T15:52:16.660337
2019-05-10T22:42:49
2019-05-10T22:42:49
181,925,868
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed Apr 17 11:13:26 2019 @author: S80240 """ from __future__ import absolute_import, division, print_function, unicode_literals from bs4 import BeautifulSoup import hashlib import pprint import random import requests import time _GOOGLEID = hashlib.md5(str(random.random()).encode('utf-8')).hexdigest()[:16] _COOKIES = {'GSP': 'ID={0}:CF=4'.format(_GOOGLEID)} _HEADERS = { 'accept-language': 'en-US,en', 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Ubuntu Chromium/41.0.2272.76 Chrome/41.0.2272.76 Safari/537.36', 'accept': 'text/html,application/xhtml+xml,application/xml' } _SESSION = requests.Session() _ENCODING='utf-8' def _get_page(pagerequest): """Return the data for a page on telemetro.com""" # Note that we include a sleep to avoid overloading the scholar server time.sleep(2+random.uniform(0, 6)) _GOOGLEID = hashlib.md5(str(random.random()).encode('utf-8')).hexdigest()[:16] _COOKIES = {'GSP': 'ID={0}:CF=4'.format(_GOOGLEID)} resp_url = requests.get(pagerequest) if resp_url.status_code == 200: return resp_url.text else: raise Exception('Error: {0} {1}'.format(resp_url.status_code, resp_url.reason)) def _get_soup(pagerequest): """Return the BeautifulSoup for a page""" html = _get_page(pagerequest) return BeautifulSoup(html, 'lxml') def _search_in_soup(soup): """Generator that returns Publication objects from the search page""" return Publication(soup) def search_pubs_url(url): """Search by scholar query and return a generator of Publication objects""" #url='http://spanish.xinhuanet.com/2015-08/07/c_134489495.htm' soup = _get_soup(url) return _search_in_soup(soup) def _body_in_image_soup(soup,body): next_soup = _get_soup(soup.findAll("a",{"class": 'nextpage'})[-1]['href']) for domPC in next_soup.findAll("div", {"class": 'domPC'}): for row in domPC.findAll('p'): if not row.find('a'): body = body +" <br>"+ row.text #next_soup.findAll("a",{"class": 'nextpage'}) if next_soup.find("img",{"src": lambda L: L and L.endswith('xia.gif')}): body = _body_in_image_soup(next_soup,body) return body def _body_in_soup(soup): """Generator that returns Publication objects from the search page""" summary = soup.find("meta", {"name": 'description'})['content'] body= "" #soup.findAll('p') for domPC in soup.findAll("div", {"class": 'domPC'}): for row in domPC.findAll('p'): if not row.find('a'): if summary =="": summary=row.text body = body +" <br>"+ row.text if soup.find("a",{"class": 'nextpage'}): body = _body_in_image_soup(soup,body) return summary,body def clean_bad_chars(text): bad_chars=['\r','\n'] for bad_char in bad_chars: text=text.replace(bad_char,'') return text class Publication(object): """Returns an object for a single publication""" def __init__(self, __data): self.bib = dict() self.bib['title'] = clean_bad_chars(__data.find("h1").text) if __data.find("meta",{"name": 'section'}): self.bib['section'] = __data.find("meta",{"name": 'section'})['content'] else: self.bib['section']='' if __data.find("meta",{"name": 'pubdate'}): self.bib['date'] = clean_bad_chars(__data.find("meta",{"name": 'pubdate'})['content']) else: self.bib['date']='' summary,body=_body_in_soup(__data) self.bib['summary']=clean_bad_chars(summary) self.bib['body']=clean_bad_chars(body) def __str__(self): return pprint.pformat(self.__dict__) #############################33 import codecs, json import pandas as pd from tqdm import tqdm import requests main_path='C:\\Users\\S80240\\Desktop\\Everis\\IA\\scrapping\\Twitter\\' tweet_files=[ 'tweets-2015.json', 'tweets-2016.json', 'tweets-2017.json', 'tweets-2018.json', 'tweets-2019-04-15.json' ] def unshorten_url(session, url): #time.sleep(2+random.uniform(0, 6)) resp_url=url try: resp = session.head(url, allow_redirects=True) resp_url=resp.url except Exception as e: print(e) print(url) return resp_url session = requests.Session() for tweet_file in tweet_files: links=[] with codecs.open(main_path+tweet_file, 'r', 'utf-8') as f: tweets = json.load(f, encoding='utf-8') list_tweets = [list(elem.values()) for elem in tweets] list_columns = list(tweets[0].keys()) tweets_df = pd.DataFrame(list_tweets, columns=list_columns) for index, tweet in tqdm(tweets_df.iterrows()): text = tweet['text'].replace('\n',' ').replace(u'\xa0', u' ') text_list = text.split(' ') for word in text_list: if 'xhne.ws' in word: index = word.find('http') link = unshorten_url(session,word[index:index+20]) if link.find('spanish.xinhuanet.com')>0: links.append(link) len(links) for link in tqdm(links): q= search_pubs_url(link) f= open("..//xinhua_"+tweet_file+".txt","a+")#,errors = 'ignore' try: f.write(q.bib['title']+"|"+q.bib['section']+"|"+q.bib['date']+"|"+link+"|"+q.bib['summary']+"|"+q.bib['body']+"\n") except: f_e= open("..//xinhua_"+tweet_file+"_exception.txt","a+") f_e.write(q.bib['title']+"|"+q.bib['section']+"|"+q.bib['date']+"|"+link+"\n") f_e.close() f.close()
UTF-8
Python
false
false
6,053
py
3
xinhualy.py
2
0.551958
0.52949
0.000165
176
32.352273
154
polyswarm/polyswarm-artifact
16,655,883,210,640
2accb30bf8a415c9da7800f4a2a1421bb197eb6a
d8492e2ebe444157a7d85440d878f4f9c0163641
/src/polyswarmartifact/__init__.py
44cae5301619285ea2a973bd01af2e6e50cbcaa9
[ "MIT" ]
permissive
https://github.com/polyswarm/polyswarm-artifact
4c5c1d84e0634486a9992fdc49d3054eeeae900b
6e4f36fe7b6ec10fc6e94806b8f4b308619ad025
refs/heads/master
2022-04-27T13:34:56.076922
2022-03-24T17:29:02
2022-03-24T17:29:02
187,640,216
2
1
MIT
false
2021-10-14T20:42:50
2019-05-20T12:54:17
2021-10-14T19:14:50
2021-10-14T20:42:49
135
1
1
1
Python
false
false
from .artifact_type import ArtifactType from .exceptions import PolyswarmArtifactException, DecodeError __version__ = '1.4.4'
UTF-8
Python
false
false
127
py
18
__init__.py
13
0.795276
0.771654
0
4
30.75
63
hluk/pdc-client
9,689,446,237,170
358cab01f75bec9c4b0e9b48cc07ff2caebacb85
7cabf7117a74d38e92d1f7fad1cdfb188423186c
/tests/group_resource_permissions/tests.py
5e1b22ec51cc5feb43b9586c946b8ac183f0dd61
[ "MIT" ]
permissive
https://github.com/hluk/pdc-client
a20a88ada43a521911956269b421649d45230183
7236fd8b72e675ebb321bbe337289d9fbeb6119f
refs/heads/master
2021-06-27T02:45:23.205324
2018-03-29T11:28:21
2018-03-29T13:17:54
95,637,783
0
0
null
true
2017-06-28T06:45:44
2017-06-28T06:45:44
2017-04-04T19:38:22
2017-06-23T06:57:34
604
0
0
0
null
null
null
# -*- coding: utf-8 -*- # # Copyright (c) 2015 Red Hat # Licensed under The MIT License (MIT) # http://opensource.org/licenses/MIT # from pdc_client.test_helpers import CLITestCase from pdc_client.runner import Runner class GroupResourcePermissionTestCase(CLITestCase): def setUp(self): self.runner = Runner() self.runner.setup() def _setup_list(self, api): api.add_endpoint('auth/group-resource-permissions', 'GET', [ { "id": x, "group": "group" + str(x), "resource": "arches", "permission": "create" } for x in range(1, 30) ]) def test_list(self, api): self._setup_list(api) with self.expect_output('list.txt'): self.runner.run(['group-resource-permissions', 'list', '--resource', 'arches']) self.assertEqual(api.calls['auth/group-resource-permissions'], [('GET', {'page': 1, 'resource': 'arches'}), ('GET', {'page': 2, 'resource': 'arches'})]) def test_list_json(self, api): self._setup_list(api) with self.expect_output('list.json', parse_json=True): self.runner.run(['--json', 'group-resource-permissions', 'list', '--resource', 'arches']) self.assertEqual(api.calls['auth/group-resource-permissions'], [('GET', {'page': 1, 'resource': 'arches'}), ('GET', {'page': 2, 'resource': 'arches'})]) def _setup_detail(self, api): obj = { "id": 1, "group": "engops", "resource": "arches", "permission": "create" } api.add_endpoint('auth/group-resource-permissions/1', 'GET', obj) api.add_endpoint('auth/group-resource-permissions/1', 'PATCH', obj) api.add_endpoint('auth/group-resource-permissions', 'POST', obj) api.add_endpoint('auth/group-resource-permissions/1', 'DELETE', {}) def test_info(self, api): self._setup_detail(api) with self.expect_output('detail.txt'): self.runner.run(['group-resource-permissions', 'info', '1']) self.assertEqual(api.calls['auth/group-resource-permissions/1'], [('GET', {})]) def test_info_json(self, api): self._setup_detail(api) with self.expect_output('detail.json', parse_json=True): self.runner.run(['--json', 'group-resource-permissions', 'info', '1']) self.assertEqual(api.calls['auth/group-resource-permissions/1'], [('GET', {})]) def test_create(self, api): self._setup_detail(api) with self.expect_output('detail.txt'): self.runner.run(['group-resource-permissions', 'create', '--group', 'engops', '--resource', 'arches', '--permission', 'create' ]) expected_data = { "group": "engops", "resource": "arches", "permission": "create" } self.assertEqual(api.calls['auth/group-resource-permissions'], [('POST', expected_data)]) self.assertEqual(api.calls['auth/group-resource-permissions/1'], [('GET', {})]) def test_update(self, api): self._setup_detail(api) with self.expect_output('detail.txt'): self.runner.run(['group-resource-permissions', 'update', '1', '--group', 'engops', '--resource', 'arches', '--permission', 'create']) self.assertEqual(api.calls['auth/group-resource-permissions/1'], [('PATCH', {'resource': 'arches', 'permission': 'create', 'group': 'engops'}), ('GET', {})]) def test_delete(self, api): api.add_endpoint('auth/group-resource-permissions', 'DELETE', {}) self.runner.run(['group-resource-permissions', 'delete', '1']) self.assertEqual(api.calls['auth/group-resource-permissions'], [('DELETE', [1])]) def test_delete_many(self, api): api.add_endpoint('auth/group-resource-permissions', 'DELETE', {}) self.runner.run(['group-resource-permissions', 'delete', '1', '2']) self.assertEqual(api.calls['auth/group-resource-permissions'], [('DELETE', [1, 2])])
UTF-8
Python
false
false
4,509
py
123
tests.py
48
0.522289
0.515857
0
107
41.140187
101
tanveerahmad1517/grimesengineering
15,719,580,343,759
a256affc3f6c463d652108b5d7af342fa1fa5611
dbecbfe77d32abb7c56696eda44ffde6cb7cb396
/ga/services/views.py
eafa2b8bc52ce10e87e16b704dc06ae7ef659e80
[]
no_license
https://github.com/tanveerahmad1517/grimesengineering
1c3cb87f65d0c32c55365e330069bed7c9f76dac
88a539c83d2af899c89566018011d7e1cb533005
refs/heads/master
2020-03-30T01:43:06.462646
2018-09-08T15:41:55
2018-09-08T15:41:55
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.shortcuts import render_to_response from django.template.context import Context, RequestContext from ga.services.models import Department from django.http.response import HttpResponseRedirect from django.core.urlresolvers import reverse from ga.jobs.models import Job #=============================================================================== # HOME PAGE #=============================================================================== def services(request, department_id, department_slug): try: department = Department.objects.get(pk=department_id) jobs = Job.objects.select_related('images').filter( status__name='Completed', display=True, department=department ).order_by('date') except Department.DoesNotExist: return HttpResponseRedirect('/') for item in jobs: print item if not department.slug == department_slug: return HttpResponseRedirect( reverse('services:department', kwargs={'department_id':department.id, 'department_slug':department.slug})) context = { 'nav_selected': 'services', 'department': department, 'jobs': jobs, } return render_to_response( template_name = 'services.html', dictionary = Context(context), context_instance = RequestContext(request), )
UTF-8
Python
false
false
1,388
py
33
views.py
18
0.589337
0.589337
0
39
34.589744
118
pichetzh/jama16-retina-replication
5,703,716,592,561
cb7c8d7f79bb2417e13311a5e4a0928ce14fad6e
8ae20385243cb1d6d2e596bb506b382081aa9033
/preprocess_messidor2.py
0553892d4054d58cb9dcb897084b6da43be42353
[ "MIT" ]
permissive
https://github.com/pichetzh/jama16-retina-replication
7cdfe36991ad036843f5de3ed16ee68fd7520fa6
ec7ea0c270c8e371549b2c8a1817cbf7b947ec25
refs/heads/master
2020-04-23T07:59:08.726312
2019-02-16T21:08:33
2019-02-16T21:08:33
171,022,275
0
0
MIT
true
2019-02-16T16:04:18
2019-02-16T16:04:18
2019-02-03T19:56:03
2018-10-09T02:40:43
660
0
0
0
null
false
null
import argparse import csv import sys from shutil import rmtree from PIL import Image from glob import glob from os import makedirs, rename from os.path import join, splitext, basename, exists from lib.preprocess import resize_and_center_fundus parser = argparse.ArgumentParser(description='Preprocess Messidor-2 data set.') parser.add_argument("--data_dir", help="Directory where Messidor-2 resides.", default="data/messidor2") args = parser.parse_args() data_dir = str(args.data_dir) labels = join(data_dir, 'labels.csv') # Create directories for grades. [makedirs(join(data_dir, str(i))) for i in [0, 1] if not exists(join(data_dir, str(i)))] # Create a tmp directory for saving temporary preprocessing files. tmp_path = join(data_dir, 'tmp') if exists(tmp_path): rmtree(tmp_path) makedirs(tmp_path) failed_images = [] with open(labels, 'r') as f: reader = csv.reader(f, delimiter=',') next(reader) for i, row in enumerate(reader): basename, grade = row im_paths = glob(join(data_dir, "Messidor-2/{}*".format(basename))) # Find contour of eye fundus in image, and scale # diameter of fundus to 299 pixels and crop the edges. res = resize_and_center_fundus(save_path=tmp_path, image_paths=im_paths, diameter=299, verbosity=0) # Status message. msg = "\r- Preprocessing pair of image: {0:>7}".format(i+1) sys.stdout.write(msg) sys.stdout.flush() if res != 2: failed_images.append(basename) continue # Move the files from the tmp folder to the right grade folder. for j in range(2): new_filename = "{0}.00{1}.jpg".format(basename, j) rename(join(tmp_path, new_filename), join(data_dir, str(int(grade)), new_filename)) # Clean tmp folder. rmtree(tmp_path) print("Could not preprocess {} images.".format(len(failed_images))) print(", ".join(failed_images))
UTF-8
Python
false
false
2,057
py
16
preprocess_messidor2.py
10
0.629071
0.618376
0
67
29.701493
79
Reidond/workgate-service
7,834,020,394,850
c3f8581717efe419e0c4484a80824d5604a4f1d9
9e6eed34bf233388ad807845432af5212402e59a
/app/functions/trapmf.py
4ca36556fb593851eef4299ab9a33004f8c342b6
[]
no_license
https://github.com/Reidond/workgate-service
dc1523472573b32306eca11b03e8e21790589ddd
3e7db451ccbca81daba2563b6453272beb948afc
refs/heads/main
2023-02-13T16:03:32.897819
2021-01-11T09:59:05
2021-01-11T09:59:05
324,210,973
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" Трапецієподібно-пірамідальна функція належності Trapezoidal-pyramidal membership function """ import numpy as np from app.colors import palette import os from bokeh.io.export import export_png from app.browser import BROWSER from sanic import Blueprint, response from bokeh.plotting import figure from bokeh.embed import json_item import pathlib from aiofiles import os as async_os trapmf_bp = Blueprint('functions_trapmf', url_prefix='/trapmf') def trapmf(x, params): a, b, c, d = np.asarray(params) assert a <= b, 'First parameter must be less than or equal to second parameter.' assert b <= c, 'Second parameter must be less than or equal to third parameter.' assert c <= d, 'Third parameter must be less than or equal to fourth parameter.' if type(x) is not np.ndarray: x = np.asarray([x]) y = np.zeros(len(x)) # Left slope if a != b: index = np.logical_and(a < x, x < b) y[index] = (x[index] - a) / (b - a) # Right slope if c != d: index = np.logical_and(c < x, x < d) y[index] = (d - x[index]) / (d - c) # Top index = np.logical_and(b <= x, x <= c) y[index] = 1 return y @trapmf_bp.route('/', methods=[ "POST", ]) async def trapmf_route(request): start, stop = request.json['x'].split(':') x = np.linspace(int(start), int(stop)) a = int(request.json['a']) b = int(request.json['b']) c = int(request.json['c']) d = int(request.json['d']) y = trapmf(x, [a, b, c, d]) p = figure(plot_width=400, plot_height=400) p.line(x, y, line_width=2, line_color=palette('light').line_color) return response.json(json_item(p, "trapmf")) @trapmf_bp.route("/image") async def trapmf_image_route(request): start, stop = request.args['x'][0].split(':') x = np.linspace(int(start), int(stop)) a = int(request.args['a'][0]) b = int(request.args['b'][0]) c = int(request.args['c'][0]) d = int(request.args['d'][0]) y = trapmf(x, [a, b, c, d]) filename = "trapmf.png" p = figure(plot_width=400, plot_height=400) p.line(x, y, line_width=2, line_color=palette('light').line_color) p.toolbar.logo = None p.toolbar_location = None export_png(p, filename=filename, height=400, width=400, webdriver=BROWSER) file_path = os.path.join(pathlib.Path().absolute(), filename) file_stat = await async_os.stat(file_path) headers = {"Content-Length": str(file_stat.st_size)} return await response.file_stream( file_path, headers=headers, chunked=False, )
UTF-8
Python
false
false
2,625
py
17
trapmf.py
12
0.621465
0.611391
0
91
27.362637
84
massmutual/ddfg19_cliff_effect
4,999,341,941,813
ceb1c29ae915f6e4fe72ed5460f5ee06d4e1f3e5
cfe8b933e7f2af5d317529af7d2d6c0ea4588611
/services/data.py
7f58b909b94248c2283cd118584740fc07379480
[]
no_license
https://github.com/massmutual/ddfg19_cliff_effect
820d2133804f9473f799f9dc82ff064f074c91cb
462e5b6d1f64894e211bb9dd371361be8e4bd449
refs/heads/master
2020-06-26T15:55:28.901362
2019-12-16T21:42:15
2019-12-16T21:42:15
199,678,800
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import pandas as pd import numpy as np fip_assistance_payment_lookup_data = \ {'group_size': np.arange(1,13,1), 'eligible_grantee': [306,403,492,597,694,828,905,985,1065,1145,1225,1305], 'ineligible_grantee': [158,274,420,557,694,828,905,985,1065,1145,1225,1305]} fip_lookup_table = pd.DataFrame(fip_assistance_payment_lookup_data) import pandas as pd family_contribution_map=[ # array of: #family size #min monthly gross income #max monthly gross income #contribution tier [1,0,1005, 0], [1,1005,1307, 1], [1,1307, 1628, 2], [1,1628, 1949, 3], [1,1949, 2271, 4], [1,2271, 2592, 5], [1,2592, 2913, 6], [2,0,1353, 0], [2,1353, 1759, 1], [2,1759, 2169, 2], [2,2169, 2579, 3], [2,2579, 2989, 4], [2,2989, 3399, 5], [2,3399, 3809, 6], [3,0,1702, 0], [3,1702, 2213, 1], [3,2213, 2711, 2], [3,2711, 3210, 3], [3,3210, 3708, 4], [3,3708, 4207, 5], [3,4207, 4705, 6], [4,0,2050, 0], [4,2050, 2665, 1], [4,2665, 3252, 2], [4,3252, 3839, 3], [4,3839, 4427, 4], [4,4427, 5014, 5], [4,5014, 5601, 6], [5,0,2398, 0], [5,2398, 3117, 1], [5,3117, 3793, 2], [5,3793, 4469, 3], [5,4469, 5145, 4], [5,5145, 5821, 5], [5,5821, 6497, 6], [6,0,2747, 0], [6,2747, 3571, 1], [6,3571, 4336, 2], [6,4336, 5100, 3], [6,5100, 5865, 4], [6, 5865, 6629,5], [6,6629, 7394, 6], [7,0,3095, 0], [7,3095, 4024, 1], [7,4024, 4732, 2], [7,4732, 5439, 3], [7,5439, 6147, 4], [7,6147, 6854, 5], [7, 6854, 7562,6], [8,0,3443, 0], [8,3443, 4476, 1], [8,4476, 5127, 2], [8,5127, 5778, 3], [8,5778, 6428, 4], [8,6428, 7079, 5], [8, 7079, 7730,6], [9,0,3791, 0], [9,3791, 4928, 1], [9,4928, 5522, 2], [9,5522, 6116, 3], [9,6116, 6710, 4], [9,6710, 7304, 5], [9, 7304, 7898, 6], [10,0,4139, 0], [10,4139, 5381, 1], [10,5381, 5918, 2], [10,5918, 6455, 3], [10,6455, 6992, 4], [10,6992, 7529, 5], [10, 7529, 8066, 6] ] tier_values_map =[ #for each "tier" #$contribution per child per pay period #$cap per family per pay period (inclusive of all children) [0, 15, 30, 45, 60, 75, 90], [0, 45, 83, 121, 159, 197, 235] ] reimbursement_rate_map=[ #$ per hour per child ['CHILD_CARE_CENTER', 'INFANT', 1, 4], ['CHILD_CARE_CENTER', 'INFANT', 2, 4.25], ['CHILD_CARE_CENTER', 'INFANT', 3, 4.75], ['CHILD_CARE_CENTER', 'INFANT', 4, 5], ['CHILD_CARE_CENTER', 'INFANT', 5, 5.5], ['CHILD_CARE_CENTER', 'PRESCHOOL', 1, 2.75], ['CHILD_CARE_CENTER', 'PRESCHOOL', 2, 3], ['CHILD_CARE_CENTER', 'PRESCHOOL', 3, 3.5], ['CHILD_CARE_CENTER', 'PRESCHOOL', 4, 3.75], ['CHILD_CARE_CENTER', 'PRESCHOOL', 5, 4.25], ['GROUP_CHILD_CARE_HOME', 'INFANT', 1, 3.15], ['GROUP_CHILD_CARE_HOME', 'INFANT', 2, 3.4], ['GROUP_CHILD_CARE_HOME', 'INFANT', 3, 3.9], ['GROUP_CHILD_CARE_HOME', 'INFANT', 4, 4.15], ['GROUP_CHILD_CARE_HOME', 'INFANT', 5, 4.65], ['GROUP_CHILD_CARE_HOME', 'PRESCHOOL', 1, 2.65], ['GROUP_CHILD_CARE_HOME', 'PRESCHOOL', 2, 2.9], ['GROUP_CHILD_CARE_HOME', 'PRESCHOOL', 3, 3.4], ['GROUP_CHILD_CARE_HOME', 'PRESCHOOL', 4, 3.65], ['GROUP_CHILD_CARE_HOME', 'PRESCHOOL', 5, 4.15], ['FAMILY_CHILD_CARE_HOME', 'INFANT', 1, 3.15], ['FAMILY_CHILD_CARE_HOME', 'INFANT', 2, 3.4], ['FAMILY_CHILD_CARE_HOME', 'INFANT', 3, 3.9], ['FAMILY_CHILD_CARE_HOME', 'INFANT', 4, 4.15], ['FAMILY_CHILD_CARE_HOME', 'INFANT', 5, 4.65], ['FAMILY_CHILD_CARE_HOME', 'PRESCHOOL', 1, 2.65], ['FAMILY_CHILD_CARE_HOME', 'PRESCHOOL', 2, 2.9], ['FAMILY_CHILD_CARE_HOME', 'PRESCHOOL', 3, 3.4], ['FAMILY_CHILD_CARE_HOME', 'PRESCHOOL', 4, 3.65], ['FAMILY_CHILD_CARE_HOME', 'PRESCHOOL', 5, 4.15], ['LICENSE_EXCEPT', 'INFANT', 1, 1.6], ['LICENSE_EXCEPT', 'INFANT', 2, 2.95], ['LICENSE_EXCEPT', 'PRESCHOOL', 1, 1.6], ['LICENSE_EXCEPT', 'PRESCHOOL', 2, 2.6] ] tier_lookup_df = pd.DataFrame(family_contribution_map, columns=['fam_size', 'min', 'max', 'tier']) tier_values_df = pd.DataFrame(tier_values_map, index=['cont', 'lim']) reimb_values_df = pd.DataFrame(reimbursement_rate_map, columns=['center_type', 'child_age_group', 'center_score', 'value']) center_type_list = ['CHILD_CARE_CENTER', 'GROUP_CHILD_CARE_HOME', 'FAMILY_CHILD_CARE_HOME', 'LICENSE_EXCEPT'] child_type_list = ['INFANT', 'PRESCHOOL']
UTF-8
Python
false
false
4,149
py
47
data.py
30
0.593396
0.374548
0
59
69.338983
252
ZhangMeimei-pixel/iroko
16,681,653,007,379
1d6f98ee299de4a3d3b026bce2df3a2bceba7369
378ab867300998ea39d7b83f0975562615061f4b
/dc_gym/control/test_bw_control.py
513b48bb1326c25d4ad5753d5bdf0b89cf6b3c91
[ "Apache-2.0" ]
permissive
https://github.com/ZhangMeimei-pixel/iroko
02f62234d38e54802c17f7fc5dd1daef44af211a
874e8fd9fba54e53482c44c525c937defb8deeae
refs/heads/master
2022-01-09T12:04:47.500345
2019-05-28T13:19:47
2019-05-28T13:19:47
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
''' Simple test suite to verify the functionality of the bandwidth control library. Hardcoded. ''' import ctypes import os FILE_DIR = os.path.dirname(os.path.abspath(__file__)) class Ring(ctypes.Structure): pass bw_lib = ctypes.CDLL(FILE_DIR + '/libbw_control.so') bw_lib.init_ring.argtypes = [ctypes.c_char_p, ctypes.c_ushort, ctypes.c_uint] bw_lib.init_ring.restype = ctypes.POINTER(Ring) bw_lib.send_bw_allocation.argtypes = [ ctypes.c_ulong, ctypes.POINTER(Ring), ctypes.c_ushort] bw_lib.wait_for_reply.argtypes = [ctypes.POINTER(Ring)] PACKET_RX_RING = 5 PACKET_TX_RING = 13 rx_ring = bw_lib.init_ring("h1-eth0".encode('ascii'), 20135, PACKET_RX_RING) tx_ring = bw_lib.init_ring("h1-eth0".encode('ascii'), 20135, PACKET_TX_RING) bw_lib.send_bw_allocation(50000000, tx_ring, 20130) bw_lib.wait_for_reply(rx_ring) bw_lib.teardown_ring(rx_ring) bw_lib.teardown_ring(tx_ring)
UTF-8
Python
false
false
895
py
22
test_bw_control.py
19
0.721788
0.688268
0
27
32.148148
77
M4NS0/Workspaces
17,145,509,466,881
bc95233ef2909b3fa6816d0c1e4126c398fddaba
418e22b1eb5bf2c466a3cb63ef7b9b1177581365
/Python/Lógica de Programação I/Exercícios/Lista7/Exercicio5.py
b94b1f9b2768b5856d9c3a0cc4ae54502cb4643f
[]
no_license
https://github.com/M4NS0/Workspaces
2f85bb6f55eeaf93327021b2028716821062fa77
9376c30aa9538b6f80978aeb4b091bcb0e179a62
refs/heads/master
2021-07-06T07:39:08.089759
2021-06-16T11:14:16
2021-06-16T11:14:16
216,075,608
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
mulheresF = 0 homensF = 0 menos24 = 0 vivas = 0 falecidas = 0 nasc = int(input("Insira o numero de crianças nascidas no periodo: ")) for cadastro in range (0,nasc,1): escolha = str (input("Digite 'V' se a criança #{} está viva ou 'F' se falecida: ".format(cadastro))) if escolha == "V" or escolha == "v": vivas += 1 print("OK") if escolha == "F" or escolha == "f": falecidas += 1 print("OK") sexo = str(input("Digite 'M' se foi mulher ou 'H' se foi homem: ")) if sexo == "M" or sexo == "m": mulheresF += 1 if sexo == "H" or sexo == "h": homensF += 1 meses = int(input("Insira os meses de vida da criança {}: ".format(cadastro))) if meses<=24: menos24 += 1 percTotal = (falecidas*100) / (vivas+falecidas) percHomem = (homensF*100) / (vivas+falecidas) percMenos24 = (menos24*100) / falecidas print("\nMorreram {} crianças \n{}% do total das crianças cadastradas \n{}% eram meninos \n{}% morreram com menos de 24 meses ".format(falecidas,percTotal,percHomem,percMenos24))
UTF-8
Python
false
false
1,105
py
941
Exercicio5.py
738
0.589627
0.55778
0
36
29.527778
178
Allan-Perez/CStudies-
14,353,780,729,851
b461d2f3cf31af112a1420b58fa646b83931d119
d6cdb1317cc3ec40299955f821efa1f33ca2962c
/AI_studies/NonInformedSearch/BreadthFirstSearch.py
a947deb903549124fbd3989f4b6c8d2a8e2c5d6a
[]
no_license
https://github.com/Allan-Perez/CStudies-
37116f9b72e69b7427cbbeb9cd3727e78365e59e
c22ecf915828c70cc1884856acae4817f2c5a9d2
refs/heads/master
2020-03-28T21:09:42.460057
2018-11-11T21:49:30
2018-11-11T21:49:30
149,133,964
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from tree import StaticNode as Node import queue def BreadthFirstSearch(init_state, aim_state, transitionOps, mState_mNodes=False): visited_nodes = set() frontier_nodes = queue.Queue() frontier_nodes.put(Node(init_state, transitionOps=transitionOps, mState_mNodes=mState_mNodes)) while frontier_nodes.qsize()>0: exploring_node = frontier_nodes.get() visited_nodes.update([exploring_node]) if exploring_node._state == aim_state: return exploring_node offspring_nodes = exploring_node.produce_offspring() for son_node in offspring_nodes: if not son_node.in_list(list(visited_nodes)) and \ not son_node.in_list(list(frontier_nodes.queue)): frontier_nodes.put(son_node)
UTF-8
Python
false
false
707
py
72
BreadthFirstSearch.py
26
0.74116
0.739745
0
18
38
96
robertsawko/pde-and-uq
17,042,430,242,743
94ff73ccec2cbaeee2a291e1464b049178320546
a76206152efea48d4d2d568db600f46c37b3a285
/high_dimension/test_sh.py
6b6fe8a7c708325c734ced345fc3d299413a5ccb
[]
no_license
https://github.com/robertsawko/pde-and-uq
b84a2ebaf1f0b4cc54206ea3d18ebcc726709799
be4c4dda88d1c63cf355a88f16ecbc4eee1b6203
refs/heads/master
2021-01-17T11:35:21.718594
2016-04-01T09:44:02
2016-04-01T09:44:02
31,924,961
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
''' Testing Shinozuka method for signal generation. ''' from numpy import logspace, linspace, pi from numpy.random import seed, rand from matplotlib.pyplot import figure from scipy.signal import periodogram from scipy.integrate import trapz from synthesis import ftransform_analytical, shinozuka if __name__ == '__main__': L = 2 * pi N = 20000 x = linspace(0, L, N) repeats = 100 fig_corr = figure() fig_sig = figure() axs = fig_sig.gca() axc = fig_corr.gca() seed(123) b = 100 maxM = 2**12 target_energy = 0.5 for m in [maxM // 4, maxM // 2, maxM]: # larger nperseg makes smaller frequencies visible Sxxs = [] for n in range(repeats): Phi = rand(m) * 2 * pi y = shinozuka(x, b=b, delta_w=1 / L, Phi=Phi[0:m]) f, pxx = periodogram(y, fs=1 / (x[1] - x[0])) omega = 2 * pi * f Sxxs.append(pxx / 4 / pi) Sxx = sum(Sxxs) / repeats axc.loglog(omega, Sxx, label='Empirical m={0:n}'.format(m)) axs.plot(x, y, label='m={0:n}'.format(m)) print('Captured energy percentage with {1:d} modes: {0:0.1f}%'.format( trapz(Sxx, x=omega) / target_energy * 100, m)) omega = logspace(-1, 4, 10000) a = ftransform_analytical(omega, b=b) axc.set_ylim([10**-6, 5 * 10**-3]) axc.loglog(omega, a, label='Analytical') axs.legend() axc.legend() fig_sig.show() fig_corr.show()
UTF-8
Python
false
false
1,465
py
37
test_sh.py
30
0.571331
0.534471
0
48
29.520833
78
tomaThomas/3D-Scanner
4,105,988,735,388
3da6cbf90d685fcc8c8dfab8ec0365fcfe34f6be
7aaf691564f08708e1618f3bfbf49a1ab158e343
/stepper/__init__.py
a09d97a0bc50287ca1f7176ed1029e1c26bd893e
[]
no_license
https://github.com/tomaThomas/3D-Scanner
bceb8fbdeec9f23ad4aac521d06847c21b82e4a3
6a711330f736a6aed4f61bccb4147295250badf7
refs/heads/master
2020-03-17T10:44:25.138908
2018-06-14T11:10:53
2018-06-14T11:10:53
133,523,679
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from .gpio import * import asyncio import math startPin = 2 time_per_step = 0.002 steps_per_scan = 100 step_angle = 2 * math.pi / steps_per_scan current_angle = 0 print("Init stepper") def get_steps_per_scan(): return steps_per_scan def get_current_angle(): return current_angle def set_steps_per_scan(steps): global steps_per_scan global time_per_step if steps <= 50: time_per_step = 0.001 else: time_per_step = 0.002 steps_per_scan = steps calculate_step_angle() def calculate_step_angle(): global step_angle step_angle = 2 * math.pi / steps_per_scan async def scan_step(): global current_angle steps = 800 * 4 / steps_per_scan for i in range(0, int(steps)): await stepper_step() current_angle += step_angle async def stepper_step(): gpio.set(1, True) await asyncio.sleep(time_per_step) gpio.set(1, False) await asyncio.sleep(time_per_step) def cleanup(): gpio.cleanup() gpio.init(startPin)
UTF-8
Python
false
false
1,011
py
14
__init__.py
10
0.646884
0.619189
0
57
16.736842
45