code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def source(self, value=None):
if (value is not None):
try:
value = str(value)
except ValueError:
raise ValueError('value {} need to be of type str for field `source`'.format(value))
if (',' in value):
raise ValueError('value should not contain a comma for field `source`')
self._source = value
|
Corresponds to IDD Field `source`
Args:
value (str): value for IDD Field `source`
if `value` is None it will not be checked against the
specification and is assumed to be a missing value
Raises:
ValueError: if `value` is not a valid value
|
codesearchnet
|
def set_user_info(self, nick, user='*', real='*'):
if self.connected:
raise Exception("Can't set user info now, we're already connected!")
if (not self.connected):
self.nick = nick
self.connect_info['user'] = {'nick': nick, 'user': user, 'real': real}
|
Sets user info for this server, to be used before connection.
Args:
nick (str): Nickname to use.
user (str): Username to use.
real (str): Realname to use.
|
codesearchnet
|
def validate_id_pool(self, id_or_uri, ids_pools):
uri = ((self._client.build_uri(id_or_uri) + '/validate?idList=') + '&idList='.join(ids_pools))
return self._client.get(uri)
|
Validates an ID pool.
Args:
id_or_uri:
ID or URI of range.
ids_pools (list):
List of Id Pools.
Returns:
dict: A dict containing a list with IDs.
|
codesearchnet
|
def update_from_json(self, path=join('config', 'hdx_dataset_static.json')):
super(Dataset, self).update_from_json(path)
self.separate_resources()
|
Update dataset metadata with static metadata from JSON file
Args:
path (str): Path to JSON dataset metadata. Defaults to config/hdx_dataset_static.json.
Returns:
None
|
juraj-google-style
|
def __init__(self, *args, **kwargs):
super(MinerTransaction, self).__init__(*args, **kwargs)
self.Type = TransactionType.MinerTransaction
|
Create an instance.
Args:
*args:
**kwargs:
|
juraj-google-style
|
def IsActiveOn(self, date, date_object=None):
if (date in self.date_exceptions):
(exception_type, _) = self.date_exceptions[date]
if (exception_type == self._EXCEPTION_TYPE_ADD):
return True
else:
return False
if (self.start_date and self.end_date and (self.start_date <= date) and (date <= self.end_date)):
if (date_object is None):
date_object = util.DateStringToDateObject(date)
return self.day_of_week[date_object.weekday()]
return False
|
Test if this service period is active on a date.
Args:
date: a string of form "YYYYMMDD"
date_object: a date object representing the same date as date.
This parameter is optional, and present only for performance
reasons.
If the caller constructs the date string from a date object
that date object can be passed directly, thus avoiding the
costly conversion from string to date object.
Returns:
True iff this service is active on date.
|
codesearchnet
|
def get_task_states(self, job_configs):
if self._context_handle:
job_names, task_nums = zip(*job_configs)
return pywrap_tfe.TFE_GetTaskStates(self._context_handle, job_names, task_nums)
else:
raise ValueError('Context is not initialized.')
|
Get task states from the Coordination Service.
Args:
job_configs: A list of tuples of job name and task number.
Returns:
A list of TF_Status.
|
github-repos
|
def getById(self, Id):
csvsource = CSVSource(self.source, self.factory, self.key())
try:
for item in csvsource.items():
if Id == item.getId():
return item
except StopIteration:
return None
|
Returns ICachableItem that matches id
Args:
id: String that identifies the item to return whose key matches
|
juraj-google-style
|
def shuffle(self, func, lengths, **kwargs):
num_splits = len(lengths)
kwargs['manual_partition'] = True
kwargs['_lengths'] = lengths
args = [self.axis, func, num_splits, kwargs, False]
args.extend(self.list_of_blocks)
return self._wrap_partitions(self.deploy_axis_func(*args))
|
Shuffle the order of the data in this axis based on the `lengths`.
Extends `BaseFrameAxisPartition.shuffle`.
Args:
func: The function to apply before splitting.
lengths: The list of partition lengths to split the result into.
Returns:
A list of RemotePartition objects split by `lengths`.
|
codesearchnet
|
def create_graph_from_data(self, data):
warnings.warn("An exhaustive search of the causal structure of CGNN without"
" skeleton is super-exponential in the number of variables.")
nb_vars = len(list(data.columns))
data = scale(data.values).astype('float32')
candidates = [np.reshape(np.array(i), (nb_vars, nb_vars)) for i in itertools.product([0, 1], repeat=nb_vars*nb_vars)
if (np.trace(np.reshape(np.array(i), (nb_vars, nb_vars))) == 0
and nx.is_directed_acyclic_graph(nx.DiGraph(np.reshape(np.array(i), (nb_vars, nb_vars)))))]
warnings.warn("A total of {} graphs will be evaluated.".format(len(candidates)))
scores = [parallel_graph_evaluation(data, i, nh=self.nh, nb_runs=self.nb_runs, gpu=self.gpu,
nb_jobs=self.nb_jobs, lr=self.lr, train_epochs=self.train_epochs,
test_epochs=self.test_epochs, verbose=self.verbose) for i in candidates]
final_candidate = candidates[scores.index(min(scores))]
output = np.zeros(final_candidate.shape)
for (i, j), x in np.ndenumerate(final_candidate):
if x > 0:
cand = final_candidate
cand[i, j] = 0
output[i, j] = min(scores) - scores[candidates.index(cand)]
return nx.DiGraph(candidates[output],
{idx: i for idx, i in enumerate(data.columns)})
|
Use CGNN to create a graph from scratch. All the possible structures
are tested, which leads to a super exponential complexity. It would be
preferable to start from a graph skeleton for large graphs.
Args:
data (pandas.DataFrame): Observational data on which causal
discovery has to be performed.
Returns:
networkx.DiGraph: Solution given by CGNN.
|
juraj-google-style
|
def get_snapshots(self):
data = self.get_data(('volumes/%s/snapshots/' % self.id))
snapshots = list()
for jsond in data[u'snapshots']:
snapshot = Snapshot(**jsond)
snapshot.token = self.token
snapshots.append(snapshot)
return snapshots
|
Retrieve the list of snapshots that have been created from a volume.
Args:
|
codesearchnet
|
def log(self, logger=None, label=None, eager=False):
if self.closed():
raise ValueError('Attempt to call log() on a closed Queryable.')
if (logger is None):
return self
if (label is None):
label = repr(self)
if eager:
return self._create(self._eager_log_result(logger, label))
return self._create(self._generate_lazy_log_result(logger, label))
|
Log query result consumption details to a logger.
Args:
logger: Any object which supports a debug() method which accepts a
str, such as a Python standard library logger object from the
logging module. If logger is not provided or is None, this
method has no logging side effects.
label: An optional label which will be inserted into each line of
logging output produced by this particular use of log
eager: An optional boolean which controls how the query result will
be consumed. If True, the sequence will be consumed and logged
in its entirety. If False (the default) the sequence will be
evaluated and logged lazily as it consumed.
Warning: Use of eager=True requires use of sufficient memory to
hold the entire sequence which is obviously not possible with
infinite sequences. Use with care!
Returns:
A queryable over the unaltered source sequence.
Raises:
AttributeError: If logger does not support a debug() method.
ValueError: If the Queryable has been closed.
|
codesearchnet
|
def square(duration: int, amp: complex, period: float=None, phase: float=0, name: str=None) -> SamplePulse:
if (period is None):
period = duration
return _sampled_square_pulse(duration, amp, period, phase=phase, name=name)
|
Generates square wave `SamplePulse`.
Applies `left` sampling strategy to generate discrete pulse from continuous function.
Args:
duration: Duration of pulse. Must be greater than zero.
amp: Pulse amplitude. Wave range is [-amp, amp].
period: Pulse period, units of dt. If `None` defaults to single cycle.
phase: Pulse phase.
name: Name of pulse.
|
codesearchnet
|
def download(path='.', url=None, unpack=False):
if url is None:
url = 'https:
if os.path.exists(path) and os.path.isdir(path):
basename = os.path.basename(url).split('?')[0]
filename = os.path.join(path, basename)
else:
filename = path
f = open(filename, 'wb')
u = urlopen(url)
file_size = int(u.headers["Content-Length"][0])
print("Downloading the latest Neurosynth files: {0} bytes: {1}".format(
url, file_size))
bytes_dl = 0
block_size = 8192
while True:
buffer = u.read(block_size)
if not buffer:
break
bytes_dl += len(buffer)
f.write(buffer)
p = float(bytes_dl) / file_size
status = r"{0} [{1:.2%}]".format(bytes_dl, p)
status = status + chr(8) * (len(status) + 1)
sys.stdout.write(status)
f.close()
if unpack:
import tarfile
tarfile.open(filename, 'r:gz').extractall(os.path.dirname(filename))
|
Download the latest data files.
Args:
path (str): Location to save the retrieved data files. Defaults to
current directory.
unpack (bool): If True, unzips the data file post-download.
|
juraj-google-style
|
def qrandom(n):
import quantumrandom
return np.concatenate([
quantumrandom.get_data(data_type='uint16', array_length=1024)
for i in range(int(np.ceil(n/1024.0)))
])[:n]
|
Creates an array of n true random numbers obtained from the quantum random
number generator at qrng.anu.edu.au
This function requires the package quantumrandom and an internet connection.
Args:
n (int):
length of the random array
Return:
array of ints:
array of truly random unsigned 16 bit int values
|
juraj-google-style
|
def save_feature_names(self, feature_names, feature_list_id):
save_lines(feature_names, self.features_dir + 'X_train_{}.names'.format(feature_list_id))
|
Save the names of the features for the given feature list to a metadata file.
Example: `save_feature_names(['num_employees', 'stock_price'], 'company')`.
Args:
feature_names: A list containing the names of the features, matching the column order.
feature_list_id: The name for this feature list.
|
juraj-google-style
|
def make_gym_env(name, rl_env_max_episode_steps=(- 1), maxskip_env=False, rendered_env=False, rendered_env_resize_to=None, sticky_actions=False):
env = gym.make(name)
return gym_env_wrapper(env, rl_env_max_episode_steps, maxskip_env, rendered_env, rendered_env_resize_to, sticky_actions)
|
Create a gym env optionally with a time limit and maxskip wrapper.
NOTE: The returned env may already be wrapped with TimeLimit!
Args:
name: `str` - base name of the gym env to make.
rl_env_max_episode_steps: `int` or None - Using any value < 0 returns the
env as-in, otherwise we impose the requested timelimit. Setting this to
None returns a wrapped env that doesn't have a step limit.
maxskip_env: whether to also use MaxAndSkip wrapper before time limit.
rendered_env: whether to force render for observations. Use this for
environments that are not natively rendering the scene for observations.
rendered_env_resize_to: a list of [height, width] to change the original
resolution of the native environment render.
sticky_actions: whether to use sticky_actions before MaxAndSkip wrapper.
Returns:
An instance of `gym.Env` or `gym.Wrapper`.
|
codesearchnet
|
def from_dict(cls, config_dict, **kwargs):
config = cls(**config_dict)
to_remove = []
for key, value in kwargs.items():
if hasattr(config, key):
setattr(config, key, value)
to_remove.append(key)
for key in to_remove:
kwargs.pop(key, None)
return config
|
Constructs a CacheConfig instance from a dictionary of parameters.
Args:
config_dict (Dict[str, Any]): Dictionary containing configuration parameters.
**kwargs: Additional keyword arguments to override dictionary values.
Returns:
CacheConfig: Instance of CacheConfig constructed from the dictionary.
|
github-repos
|
def __init__(self, access_token=None, rate_limit=True):
super(Search, self).__init__()
self.session = self.get_session(access_token=access_token,
rate_limit=rate_limit)
self._ignore_codes = []
if rate_limit:
self._ignore_codes.append(429)
|
Construct a Search object.
Args:
access_token (str): A valid Companies House API. If an
access token isn't specified then looks for *CompaniesHouseKey*
or COMPANIES_HOUSE_KEY environment variables. Defaults to None.
|
juraj-google-style
|
def __init__(self, quant_debug_model_path: Optional[str]=None, quant_debug_model_content: Optional[bytes]=None, float_model_path: Optional[str]=None, float_model_content: Optional[bytes]=None, debug_dataset: Optional[Callable[[], Iterable[Sequence[np.ndarray]]]]=None, debug_options: Optional[QuantizationDebugOptions]=None, converter: Optional[TFLiteConverter]=None) -> None:
self._data_gen = debug_dataset
self._debug_options = debug_options or QuantizationDebugOptions()
self.converter = None
self.calibrated_model = None
self.float_model = None
self._float_interpreter = None
if converter is not None:
if self._debug_options.model_debug_metrics:
old_optimizations = converter.optimizations
self.converter = self._set_converter_options_for_float(converter)
self.float_model = self.converter.convert()
converter.optimizations = old_optimizations
self.converter = self._set_converter_options_for_calibration(converter)
self.calibrated_model = self.converter.convert()
self._init_from_converter(self._debug_options, self.converter, self.calibrated_model, float_model=self.float_model)
else:
self._quant_interpreter = _interpreter.Interpreter(quant_debug_model_path, quant_debug_model_content, experimental_preserve_all_tensors=self._debug_options.layer_direct_compare_metrics is not None)
if self._debug_options.model_debug_metrics:
self._float_interpreter = _interpreter.Interpreter(float_model_path, float_model_content)
self._initialize_stats()
|
Runs the TFLite debugging model with given debug options.
Args:
quant_debug_model_path: Path to the quantized debug TFLite model file.
quant_debug_model_content: Content of the quantized debug TFLite model.
float_model_path: Path to float TFLite model file.
float_model_content: Content of the float TFLite model.
debug_dataset: a factory function that returns dataset generator which is
used to generate input samples (list of np.ndarray) for the model. The
generated elements must have same types and shape as inputs to the
model.
debug_options: Debug options to debug the given model.
converter: Optional, use converter instead of quantized model.
Raises:
ValueError: If the debugger was unable to be created.
Attributes:
layer_statistics: results of error metrics for each NumericVerify op
results. in {layer_name: {metric_name: metric}} format.
model_statistics: results of error metrics for difference between float
and quantized models. in {metric_name: metric} format.
|
github-repos
|
def _has_no_variables(sess: session.Session) -> bool:
for op in sess.graph.get_operations():
if op.type.startswith('Variable') or op.type.endswith('VariableOp'):
return False
return True
|
Determines if the graph has any variables.
Args:
sess: TensorFlow Session.
Returns:
Bool.
|
github-repos
|
def resolve(node, source_info, graphs, definition_factory=Definition):
visitor = TreeAnnotator(source_info, graphs, definition_factory)
node = visitor.visit(node)
return node
|
Resolves reaching definitions for each symbol.
Args:
node: ast.AST
source_info: transformer.SourceInfo
graphs: Dict[ast.FunctionDef, cfg.Graph]
definition_factory: Callable[[], Definition]
Returns:
ast.AST
|
github-repos
|
def from_file(filename, file_format='xyz'):
mols = list(pb.readfile(str(file_format), str(filename)))
return BabelMolAdaptor(mols[0].OBMol)
|
Uses OpenBabel to read a molecule from a file in all supported formats.
Args:
filename: Filename of input file
file_format: String specifying any OpenBabel supported formats.
Returns:
BabelMolAdaptor object
|
codesearchnet
|
def send_eager_tracebacks(destinations, origin_stack, send_source=True):
_send_call_tracebacks(destinations, origin_stack, is_eager_execution=True, send_source=send_source)
|
Send the tracebacks of an eager execution call to debug server(s).
Args:
destinations: gRPC destination addresses, a `str` or a `list` of `str`s,
e.g., "localhost:4242". If a `list`, gRPC requests containing the same
origin_stack: The traceback of the eager operation invocation.
send_source: Whether the source files involved in the op tracebacks but
outside the TensorFlow library are to be sent.
|
github-repos
|
def _finalize_outputs(cls, mapreduce_spec, mapreduce_state):
if (mapreduce_spec.mapper.output_writer_class() and (mapreduce_state.result_status == model.MapreduceState.RESULT_SUCCESS)):
mapreduce_spec.mapper.output_writer_class().finalize_job(mapreduce_state)
|
Finalize outputs.
Args:
mapreduce_spec: an instance of MapreduceSpec.
mapreduce_state: an instance of MapreduceState.
|
codesearchnet
|
def init_class_and_forward_node(self, node, cls, container=None, extra_key=None):
cls_key = cls.expr if cls.is_late_annotation() and (not cls.resolved) else cls
cache = self._instance_cache[cls_key]
key = (self.current_opcode, extra_key)
status = instance = cache.get(key)
if not instance or isinstance(instance, _InitClassState):
clsvar = cls.to_variable(node)
instantiate_directly = any((v is _InitClassState.INSTANTIATING for v in cache.values()))
cache[key] = _InitClassState.INSTANTIATING
node, instance = self._instantiate_var(node, clsvar, container, instantiate_directly)
if instantiate_directly or status is _InitClassState.INITIALIZING:
self._mark_maybe_missing_members(instance.data)
else:
cache[key] = _InitClassState.INITIALIZING
node = self.call_init(node, instance)
cache[key] = instance
return (node, instance)
|
Instantiate a class, and also call __init__.
Calling __init__ can be expensive, so this method caches its created
instances. If you don't need __init__ called, use cls.instantiate instead.
Args:
node: The current node.
cls: The class to instantiate.
container: Optionally, a container to pass to the class's instantiate()
method, so that type parameters in the container's template are
instantiated to TypeParameterInstance.
extra_key: Optionally, extra information about the location at which the
instantion occurs. By default, this method keys on the current opcode
and the class, which sometimes isn't enough to disambiguate callers that
shouldn't get back the same cached instance.
Returns:
A tuple of node and instance variable.
|
github-repos
|
def optimizer_arguments(self, states, internals, actions, terminal, reward, next_states, next_internals):
arguments = dict(time=self.global_timestep, variables=self.get_variables(), arguments=dict(states=states, internals=internals, actions=actions, terminal=terminal, reward=reward, next_states=next_states, next_internals=next_internals, update=tf.constant(value=True)), fn_reference=self.fn_reference, fn_loss=self.fn_loss)
if (self.global_model is not None):
arguments['global_variables'] = self.global_model.get_variables()
return arguments
|
Returns the optimizer arguments including the time, the list of variables to optimize,
and various functions which the optimizer might require to perform an update step.
Args:
states (dict): Dict of state tensors.
internals (dict): Dict of prior internal state tensors.
actions (dict): Dict of action tensors.
terminal: 1D boolean is-terminal tensor.
reward: 1D (float) rewards tensor.
next_states (dict): Dict of successor state tensors.
next_internals (dict): Dict of posterior internal state tensors.
Returns:
Optimizer arguments as dict to be used as **kwargs to the optimizer.
|
codesearchnet
|
def create_sample(question: Union[str, List[str]], context: Union[str, List[str]]) -> Union[SquadExample, List[SquadExample]]:
if isinstance(question, list):
return [SquadExample(None, q, c, None, None, None) for q, c in zip(question, context)]
else:
return SquadExample(None, question, context, None, None, None)
|
QuestionAnsweringPipeline leverages the [`SquadExample`] internally. This helper method encapsulate all the
logic for converting question(s) and context(s) to [`SquadExample`].
We currently support extractive question answering.
Arguments:
question (`str` or `List[str]`): The question(s) asked.
context (`str` or `List[str]`): The context(s) in which we will look for the answer.
Returns:
One or a list of [`SquadExample`]: The corresponding [`SquadExample`] grouping question and context.
|
github-repos
|
def info(name):
try:
groupObj = _get_group_object(name)
gr_name = groupObj.Name
gr_mem = [_get_username(x) for x in groupObj.members()]
except pywintypes.com_error as exc:
msg = 'Failed to access group {0}. {1}'.format(
name, win32api.FormatMessage(exc.excepinfo[5]))
log.debug(msg)
return False
if not gr_name:
return False
return {'name': gr_name,
'passwd': None,
'gid': None,
'members': gr_mem}
|
Return information about a group
Args:
name (str):
The name of the group for which to get information
Returns:
dict: A dictionary of information about the group
CLI Example:
.. code-block:: bash
salt '*' group.info foo
|
juraj-google-style
|
def get_special_tokens_mask(self, token_ids_0: List[int], token_ids_1: Optional[List[int]]=None, already_has_special_tokens: bool=False) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True)
prefix_ones = [1] * len(self.prefix_tokens)
suffix_ones = [1] * len(self.suffix_tokens)
if token_ids_1 is None:
return prefix_ones + [0] * len(token_ids_0) + suffix_ones
return prefix_ones + [0] * len(token_ids_0) + [0] * len(token_ids_1) + suffix_ones
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
github-repos
|
def _pre_commit(self, transaction, *args, **kwargs):
transaction._clean_up()
transaction._begin(retry_id=self.retry_id)
self.current_id = transaction._id
if (self.retry_id is None):
self.retry_id = self.current_id
try:
return self.to_wrap(transaction, *args, **kwargs)
except:
transaction._rollback()
raise
|
Begin transaction and call the wrapped callable.
If the callable raises an exception, the transaction will be rolled
back. If not, the transaction will be "ready" for ``Commit`` (i.e.
it will have staged writes).
Args:
transaction (~.firestore_v1beta1.transaction.Transaction): A
transaction to execute the callable within.
args (Tuple[Any, ...]): The extra positional arguments to pass
along to the wrapped callable.
kwargs (Dict[str, Any]): The extra keyword arguments to pass
along to the wrapped callable.
Returns:
Any: result of the wrapped callable.
Raises:
Exception: Any failure caused by ``to_wrap``.
|
codesearchnet
|
def from_pickle(cls, path):
with open(os.path.expanduser(path), 'rb') as pickle:
return cPickle.Unpickler(pickle).load()
|
Load all objects from pickle file and return as dict.
The dict returned will have keys named the same as the
JSSObject classes contained, and the values will be
JSSObjectLists of all full objects of that class (for example,
the equivalent of my_jss.Computer().retrieve_all()).
This method can potentially take a very long time!
Pickling is Python's method for serializing/deserializing
Python objects. This allows you to save a fully functional
JSSObject to disk, and then load it later, without having to
retrieve it from the JSS.
Args:
path: String file path to the file you wish to load from.
Path will have ~ expanded prior to opening.
|
codesearchnet
|
def _create_variables_and_slots(self) -> Dict[str, Dict[str, tf_variables.Variable]]:
variables = {}
for stacked_table_name, tables in self._stacked_table_to_tables.items():
variables[stacked_table_name] = self._create_variables(tables, stacked_table_name=stacked_table_name)
return variables
|
Create variables for TPU embeddings.
Returns:
A dict of dicts. The outer dict is keyed by the table names and the inner
dicts are keyed by 'parameters' and the slot variable names.
|
github-repos
|
def bulk_write(self, metrics):
actions = []
index = self.get_index()
for metric in metrics:
actions.append({'index': {'_index': index, '_type': self.doc_type}})
actions.append(metric)
try:
self.client.bulk(actions)
except TransportError as exc:
logger.warning('bulk_write metrics %r failure %r', metrics, exc)
|
Write multiple metrics to elasticsearch in one request
Args:
metrics (list): data with mappings to send to elasticsearch
|
codesearchnet
|
def register_add_grad(left_type, right_type, add_grad_function):
key = (left_type, right_type)
if (key in grad_adders):
raise ValueError(('Types %s already mapped to %s' % (key, grad_adders[key])))
grad_adders[key] = add_grad_function
|
Register a new gradient adder supporting the given types.
Gradient adders are used to add (in the sense of arithmetic addition)
intermediate adjoint and tangent variables.
TODO: Link to the document explaining the overall terminology and mechanics.
Args:
left_type: A Python type object. The data type of the left operand
supported by the adder.
right_type: A Python type object. The data type of the right operand
supported by the adder.
add_grad_function: A binary function that takes two arguments, left and
right, of the types left_type and right_type respectively, and returns
their sum. For example, the gradient adder for Numpy objects is np.add.
Raises:
ValueError: If the given type pair was already registered.
|
codesearchnet
|
def _full_axis_reduce(self, axis, func, alternate_index=None):
result = self.data.map_across_full_axis(axis, func)
if axis == 0:
columns = alternate_index if alternate_index is not None else self.columns
return self.__constructor__(result, index=["__reduced__"], columns=columns)
else:
index = alternate_index if alternate_index is not None else self.index
return self.__constructor__(result, index=index, columns=["__reduced__"])
|
Applies map that reduce Manager to series but require knowledge of full axis.
Args:
func: Function to reduce the Manager by. This function takes in a Manager.
axis: axis to apply the function to.
alternate_index: If the resulting series should have an index
different from the current query_compiler's index or columns.
Return:
Pandas series containing the reduced data.
|
juraj-google-style
|
def __init__(self, data_store, subject, lease_time=None):
self.subject = utils.SmartStr(subject)
self.store = data_store
self.expires = None
self.locked = False
if lease_time is None:
raise ValueError("Trying to lock without a lease time.")
self._Acquire(lease_time)
self.lease_time = lease_time
|
Obtain the subject lock for lease_time seconds.
This is never called directly but produced from the
DataStore.LockedSubject() factory.
Args:
data_store: A data_store handler.
subject: The name of a subject to lock.
lease_time: The minimum length of time the lock will remain valid in
seconds. Note this will be converted to usec for storage.
Raises:
ValueError: No lease time was provided.
|
juraj-google-style
|
def read(self, input_stream, kmip_version=enums.KMIPVersion.KMIP_1_0):
super(SignatureVerifyResponsePayload, self).read(input_stream, kmip_version=kmip_version)
local_stream = utils.BytearrayStream(input_stream.read(self.length))
if self.is_tag_next(enums.Tags.UNIQUE_IDENTIFIER, local_stream):
self._unique_identifier = primitives.TextString(tag=enums.Tags.UNIQUE_IDENTIFIER)
self._unique_identifier.read(local_stream, kmip_version=kmip_version)
else:
raise ValueError('Parsed payload encoding is missing the unique identifier field.')
if self.is_tag_next(enums.Tags.VALIDITY_INDICATOR, local_stream):
self._validity_indicator = primitives.Enumeration(enums.ValidityIndicator, tag=enums.Tags.VALIDITY_INDICATOR)
self._validity_indicator.read(local_stream, kmip_version=kmip_version)
else:
raise ValueError('Parsed payload encoding is missing the validity indicator field.')
if self.is_tag_next(enums.Tags.DATA, local_stream):
self._data = primitives.ByteString(tag=enums.Tags.DATA)
self._data.read(local_stream, kmip_version=kmip_version)
if self.is_tag_next(enums.Tags.CORRELATION_VALUE, local_stream):
self._correlation_value = primitives.ByteString(tag=enums.Tags.CORRELATION_VALUE)
self._correlation_value.read(local_stream, kmip_version=kmip_version)
self.is_oversized(local_stream)
|
Read the data encoding the SignatureVerify response payload and decode
it into its constituent parts.
Args:
input_stream (stream): A data stream containing encoded object
data, supporting a read method; usually a BytearrayStream
object.
kmip_version (KMIPVersion): An enumeration defining the KMIP
version with which the object will be decoded. Optional,
defaults to KMIP 1.0.
Raises:
ValueError: Raised if the data attribute is missing from the
encoded payload.
|
codesearchnet
|
def __init__(self, *, object_hook=None, parse_float=None, parse_int=None,
parse_constant=None, strict=True, object_pairs_hook=None):
try:
super().__init__(
object_hook=self.object_hook,
parse_float=parse_float,
parse_int=parse_int,
parse_constant=parse_constant,
strict=strict,
object_pairs_hook=object_pairs_hook
)
except Exception:
log.exception('Failed loading JSON data')
|
Initialize the class, overriding the object hook
Args:
object_hook:
parse_float:
parse_int:
parse_constant:
strict:
object_pairs_hook:
|
juraj-google-style
|
def _output_dir(self, ext, is_instance=False, interpolatable=False, autohinted=False, is_variable=False):
assert (not (is_variable and any([is_instance, interpolatable])))
if is_variable:
dir_prefix = 'variable_'
elif is_instance:
dir_prefix = 'instance_'
else:
dir_prefix = 'master_'
dir_suffix = ('_interpolatable' if interpolatable else '')
output_dir = ((dir_prefix + ext) + dir_suffix)
if autohinted:
output_dir = os.path.join('autohinted', output_dir)
return output_dir
|
Generate an output directory.
Args:
ext: extension string.
is_instance: The output is instance font or not.
interpolatable: The output is interpolatable or not.
autohinted: The output is autohinted or not.
is_variable: The output is variable font or not.
Return:
output directory string.
|
codesearchnet
|
def add_send_last_message(self, connection, send_last_message):
self._send_last_message[connection] = send_last_message
LOGGER.debug("Added send_last_message function "
"for connection %s", connection)
|
Adds a send_last_message function to the Dispatcher's
dictionary of functions indexed by connection.
Args:
connection (str): A locally unique identifier
provided by the receiver of messages.
send_last_message (fn): The method that should be called
by the dispatcher to respond to messages which
arrive via connection, when the connection should be closed
after the message has been sent.
|
juraj-google-style
|
def print(self, format=TEXT, output=sys.stdout, **kwargs):
if format is None:
format = TEXT
if format == TEXT:
print(self._to_text(**kwargs), file=output)
elif format == CSV:
print(self._to_csv(**kwargs), file=output)
elif format == JSON:
print(self._to_json(**kwargs), file=output)
|
Print the object in a file or on standard output by default.
Args:
format (str): output format (csv, json or text).
output (file):
descriptor to an opened file (default to standard output).
**kwargs (): additional arguments.
|
juraj-google-style
|
def stop_rot_gradient(self) -> Rigid:
return self.apply_rot_fn(lambda r: r.detach())
|
Detaches the underlying rotation object
Returns:
A transformation object with detached rotations
|
github-repos
|
def _Initialize(self, http, url):
self.EnsureUninitialized()
if (self.http is None):
self.__http = (http or http_wrapper.GetHttp())
self.__url = url
|
Initialize this download by setting self.http and self.url.
We want the user to be able to override self.http by having set
the value in the constructor; in that case, we ignore the provided
http.
Args:
http: An httplib2.Http instance or None.
url: The url for this transfer.
Returns:
None. Initializes self.
|
codesearchnet
|
def Compile(self, filter_implementation):
self.attribute = self.swap_source.get(self.attribute, self.attribute)
arguments = [self.attribute]
op_str = self.operator.lower()
operator = filter_implementation.OPS.get(op_str, None)
if not operator:
raise errors.ParseError('Unknown operator {0:s} provided.'.format(
self.operator))
if self.attribute == 'timestamp':
args = []
for argument in self.args:
args.append(DateCompareObject(argument))
self.args = args
for argument in self.args:
if isinstance(argument, DateCompareObject):
if 'Less' in str(operator):
TimeRangeCache.SetUpperTimestamp(argument.data)
else:
TimeRangeCache.SetLowerTimestamp(argument.data)
arguments.extend(self.args)
expander = filter_implementation.FILTERS['ValueExpander']
ops = operator(arguments=arguments, value_expander=expander)
if not self.bool_value:
if hasattr(ops, 'FlipBool'):
ops.FlipBool()
return ops
|
Compiles the filter implementation.
Args:
filter_implementation: a filter object (instance of objectfilter.TODO).
Returns:
A filter operator (instance of TODO).
Raises:
ParserError: if an unknown operator is provided.
|
juraj-google-style
|
def _client_receive(self):
try:
response = self._client.readline()
self.log.debug('Snippet received: %s', response)
return response
except socket.error as e:
raise Error(self._ad, ('Encountered socket error reading RPC response "%s"' % e))
|
Receives the server's response of an Rpc message.
Returns:
Raw byte string of the response.
Raises:
Error: a socket error occurred during the read.
|
codesearchnet
|
def getServerSSLContext(self, hostname=None):
sslctx = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)
if hostname is None:
hostname = socket.gethostname()
certfile = self.getHostCertPath(hostname)
if certfile is None:
raise s_exc.NoCertKey('Missing .crt for %s' % hostname)
keyfile = self.getHostKeyPath(hostname)
if keyfile is None:
raise s_exc.NoCertKey('Missing .key for %s' % hostname)
sslctx.load_cert_chain(certfile, keyfile)
return sslctx
|
Returns an ssl.SSLContext appropriate to listen on a socket
Args:
hostname: if None, the value from socket.gethostname is used to find the key in the servers directory.
This name should match the not-suffixed part of two files ending in .key and .crt in the hosts subdirectory
|
juraj-google-style
|
def start(self, host, nornir):
self.host = host
self.nornir = nornir
try:
logger.debug('Host %r: running task %r', self.host.name, self.name)
r = self.task(self, **self.params)
if (not isinstance(r, Result)):
r = Result(host=host, result=r)
except NornirSubTaskError as e:
tb = traceback.format_exc()
logger.error('Host %r: task %r failed with traceback:\n%s', self.host.name, self.name, tb)
r = Result(host, exception=e, result=str(e), failed=True)
except Exception as e:
tb = traceback.format_exc()
logger.error('Host %r: task %r failed with traceback:\n%s', self.host.name, self.name, tb)
r = Result(host, exception=e, result=tb, failed=True)
r.name = self.name
r.severity_level = (logging.ERROR if r.failed else self.severity_level)
self.results.insert(0, r)
return self.results
|
Run the task for the given host.
Arguments:
host (:obj:`nornir.core.inventory.Host`): Host we are operating with. Populated right
before calling the ``task``
nornir(:obj:`nornir.core.Nornir`): Populated right before calling
the ``task``
Returns:
host (:obj:`nornir.core.task.MultiResult`): Results of the task and its subtasks
|
codesearchnet
|
def fork(self, command: Command) \
-> Tuple['SelectedMailbox', Iterable[Response]]:
frozen = _Frozen(self)
cls = type(self)
copy = cls(self._guid, self._readonly, self._permanent_flags,
self._session_flags, self._selected_set, self._lookup,
_mod_sequence=self._mod_sequence,
_prev=frozen, _messages=self._messages)
if self._prev is not None:
with_uid: bool = getattr(command, 'uid', False)
untagged = self._compare(self._prev, frozen, with_uid)
else:
untagged = []
return copy, untagged
|
Compares the state of the current object to that of the last fork,
returning the untagged responses that reflect any changes. A new copy
of the object is also returned, ready for the next command.
Args:
command: The command that was finished.
|
juraj-google-style
|
def pluralize(singular):
if (singular in UNCOUNTABLES):
return singular
for i in IRREGULAR:
if (i[0] == singular):
return i[1]
for i in PLURALIZE_PATTERNS:
if re.search(i[0], singular):
return re.sub(i[0], i[1], singular)
|
Convert singular word to its plural form.
Args:
singular: A word in its singular form.
Returns:
The word in its plural form.
|
codesearchnet
|
def add_prefix(self, prefix, flags, prf):
self._req(('prefix add %s %s %s' % (prefix, flags, prf)))
time.sleep(1)
self._req('netdataregister')
|
Add network prefix.
Args:
prefix (str): network prefix.
flags (str): network prefix flags, please refer thread documentation for details
prf (str): network prf, please refer thread documentation for details
|
codesearchnet
|
def resolve_symbols(self, database, link_resolver, page=None):
page = page or self.root
if page.ast is None and not page.generated:
with io.open(page.source_file, 'r', encoding='utf-8') as _:
page.ast = cmark.hotdoc_to_ast(_.read(), self)
page.resolve_symbols(self, database, link_resolver)
self.__update_dep_map(page, page.symbols)
for pagename in page.subpages:
cpage = self.__all_pages[pagename]
self.resolve_symbols(database, link_resolver, page=cpage)
|
Will call resolve_symbols on all the stale subpages of the tree.
Args:
page: hotdoc.core.tree.Page, the page to resolve symbols in,
will recurse on potential subpages.
|
juraj-google-style
|
def remove_codeblock_syntax_sentinals(code_text):
r
flags = re.MULTILINE | re.DOTALL
code_text_ = code_text
code_text_ = re.sub(r'^ *
code_text_ = re.sub(r'^ *
code_text_ = re.sub(r'^ *
code_text_ = code_text_.rstrip()
return code_text_
|
r"""
Removes template comments and vim sentinals
Args:
code_text (str):
Returns:
str: code_text_
|
juraj-google-style
|
async def init(
self,
*,
advertise_addr: str = None,
listen_addr: str = "0.0.0.0:2377",
force_new_cluster: bool = False,
swarm_spec: Mapping = None
) -> str:
data = {
"AdvertiseAddr": advertise_addr,
"ListenAddr": listen_addr,
"ForceNewCluster": force_new_cluster,
"Spec": swarm_spec,
}
response = await self.docker._query_json("swarm/init", method="POST", data=data)
return response
|
Initialize a new swarm.
Args:
ListenAddr: listen address used for inter-manager communication
AdvertiseAddr: address advertised to other nodes.
ForceNewCluster: Force creation of a new swarm.
SwarmSpec: User modifiable swarm configuration.
Returns:
id of the swarm node
|
juraj-google-style
|
def path_set_md5(url):
(scheme, netloc, path, query_string, fragment) = urlsplit(url)
path += '.md5'
return urlunsplit((scheme, netloc, path, query_string, fragment))
|
Given a file URL, return a md5 query of the file
Args:
url: a given URL
Returns:
URL of the md5 file
|
codesearchnet
|
def near_reduce(self, coords_set, threshold=1e-4):
unique_coords = []
coords_set = [self.slab.lattice.get_fractional_coords(coords)
for coords in coords_set]
for coord in coords_set:
if not in_coord_list_pbc(unique_coords, coord, threshold):
unique_coords += [coord]
return [self.slab.lattice.get_cartesian_coords(coords)
for coords in unique_coords]
|
Prunes coordinate set for coordinates that are within
threshold
Args:
coords_set (Nx3 array-like): list or array of coordinates
threshold (float): threshold value for distance
|
juraj-google-style
|
async def addNodeTag(self, iden, tag, valu=(None, None)):
buid = s_common.uhex(iden)
parts = tag.split('.')
self._reqUserAllowed('tag:add', *parts)
async with await self.cell.snap(user=self.user) as snap:
with s_provenance.claim('coreapi', meth='tag:add', user=snap.user.iden):
node = await snap.getNodeByBuid(buid)
if node is None:
raise s_exc.NoSuchIden(iden=iden)
await node.addTag(tag, valu=valu)
return node.pack()
|
Add a tag to a node specified by iden.
Args:
iden (str): A hex encoded node BUID.
tag (str): A tag string.
valu (tuple): A time interval tuple or (None, None).
|
juraj-google-style
|
def validate_element(self, value):
if isinstance(value, bytes):
try:
six.text_type(value, 'UTF-8')
except UnicodeDecodeError as err:
try:
_ = self.name
except AttributeError:
validation_error = ValidationError(('Field encountered non-UTF-8 string %r: %s' % (value, err)))
else:
validation_error = ValidationError(('Field %s encountered non-UTF-8 string %r: %s' % (self.name, value, err)))
validation_error.field_name = self.name
raise validation_error
else:
return super(StringField, self).validate_element(value)
return value
|
Validate StringField allowing for str and unicode.
Raises:
ValidationError if a str value is not UTF-8.
|
codesearchnet
|
def set_control_scheme(self, agent_name, control_scheme):
if (agent_name not in self.agents):
print(('No such agent %s' % agent_name))
else:
self.agents[agent_name].set_control_scheme(control_scheme)
|
Set the control scheme for a specific agent.
Args:
agent_name (str): The name of the agent to set the control scheme for.
control_scheme (int): A control scheme value (see :obj:`holodeck.agents.ControlSchemes`)
|
codesearchnet
|
def dvds_top_rentals(self, **kwargs):
path = self._get_path('dvds_top_rentals')
response = self._GET(path, kwargs)
self._set_attrs_to_values(response)
return response
|
Gets the current opening movies from the API.
Args:
limit (optional): limits the number of movies returned, default=10
country (optional): localized data for selected country, default="us"
Returns:
A dict respresentation of the JSON returned from the API.
|
juraj-google-style
|
def learn(self, grad_arr):
if grad_arr.ndim > 3:
grad_arr = grad_arr.reshape((
grad_arr.shape[0],
grad_arr.shape[1],
-1
))
grad_arr = grad_arr[:, -1]
elif grad_arr.ndim == 3:
grad_arr = grad_arr[:, -1]
delta_arr, _, grads_list = self.__lstm_model.hidden_back_propagate(grad_arr)
grads_list.insert(0, None)
grads_list.insert(0, None)
self.__lstm_model.optimize(
grads_list,
self.__learning_rate,
1
)
return delta_arr
|
Update this Discriminator by ascending its stochastic gradient.
Args:
grad_arr: `np.ndarray` of gradients.
Returns:
`np.ndarray` of delta or gradients.
|
juraj-google-style
|
async def send_command(self, command):
command = "{}\r\n".format(command).encode("ascii", errors="backslashreplace")
self.write(command)
await self.drain()
|
Sends the given command to the server.
Args:
command (str): Command to send to the server.
Raises:
ConnectionResetError: If the connection with the server is lost.
(Shouldn't it raise BrokenPipeError too ?)
|
juraj-google-style
|
def random(cls, num_qubits, seed=None):
if seed is not None:
np.random.seed(seed)
z = np.random.randint(2, size=num_qubits).astype(np.bool)
x = np.random.randint(2, size=num_qubits).astype(np.bool)
return cls(z, x)
|
Return a random Pauli on number of qubits.
Args:
num_qubits (int): the number of qubits
seed (int): Optional. To set a random seed.
Returns:
Pauli: the random pauli
|
juraj-google-style
|
def ReadByte(self, do_ord=True):
try:
if do_ord:
return ord(self.stream.read(1))
return self.stream.read(1)
except Exception as e:
logger.error('ord expected character but got none')
return 0
|
Read a single byte.
Args:
do_ord (bool): (default True) convert the byte to an ordinal first.
Returns:
bytes: a single byte if successful. 0 (int) if an exception occurred.
|
codesearchnet
|
def quaternion_from_euler(angles, order='yzy'):
angles = np.asarray(angles, dtype=float)
quat = quaternion_from_axis_rotation(angles[0], order[0])\
* (quaternion_from_axis_rotation(angles[1], order[1])
* quaternion_from_axis_rotation(angles[2], order[2]))
quat.normalize(inplace=True)
return quat
|
Generate a quaternion from a set of Euler angles.
Args:
angles (array_like): Array of Euler angles.
order (str): Order of Euler rotations. 'yzy' is default.
Returns:
Quaternion: Quaternion representation of Euler rotation.
|
juraj-google-style
|
def merge_layouts(layouts):
layout = layouts[0].clone()
for l in layouts[1:]:
layout.files.update(l.files)
layout.domains.update(l.domains)
for (k, v) in l.entities.items():
if (k not in layout.entities):
layout.entities[k] = v
else:
layout.entities[k].files.update(v.files)
return layout
|
Utility function for merging multiple layouts.
Args:
layouts (list): A list of BIDSLayout instances to merge.
Returns:
A BIDSLayout containing merged files and entities.
Notes:
Layouts will be merged in the order of the elements in the list. I.e.,
the first Layout will be updated with all values in the 2nd Layout,
then the result will be updated with values from the 3rd Layout, etc.
This means that order matters: in the event of entity or filename
conflicts, later layouts will take precedence.
|
codesearchnet
|
def aoi(self, **kwargs):
g = self._parse_geoms(**kwargs)
if (g is None):
return self
else:
return self[g]
|
Subsets the Image by the given bounds
Args:
bbox (list): optional. A bounding box array [minx, miny, maxx, maxy]
wkt (str): optional. A WKT geometry string
geojson (str): optional. A GeoJSON geometry dictionary
Returns:
image: an image instance of the same type
|
codesearchnet
|
def SetCodepage(self, codepage):
try:
codecs.getencoder(codepage)
self._codepage = codepage
except LookupError:
raise ValueError('Unsupported codepage: {0:s}'.format(codepage))
|
Sets the codepage.
Args:
codepage (str): codepage.
Raises:
ValueError: if the codepage is not supported.
|
codesearchnet
|
def _partitioner(shape, dtype):
if axis >= len(shape):
raise ValueError(f'Cannot partition variable along axis {axis} when shape is only {shape}')
dtype = dtypes.as_dtype(dtype)
if dtype.base_dtype == dtypes.string:
bytes_per_element = bytes_per_string_element
else:
bytes_per_element = dtype.size
total_size_bytes = shape.num_elements() * bytes_per_element
partitions = total_size_bytes / min_slice_size
partitions_list = [1] * len(shape)
partitions_list[axis] = max(1, min(shape.dims[axis].value, max_partitions, int(math.ceil(partitions))))
return partitions_list
|
Partitioner that partitions list for a variable of given shape and type.
Ex: Consider partitioning a variable of type float32 with
shape=[1024, 1024].
If `max_partitions` >= 16, this function would return
[(1024 * 1024 * 4) / (256 * 1024), 1] = [16, 1].
If `max_partitions` < 16, this function would return
[`max_partitions`, 1].
Args:
shape: Shape of the variable.
dtype: Type of the variable.
Returns:
List of partitions for each axis (currently only one axis can be
partitioned).
Raises:
ValueError: If axis to partition along does not exist for the variable.
|
github-repos
|
def handle_import_error(caught_exc, name):
for template in TEMPLATES:
expected_msg = template.format(name)
if (caught_exc.args == (expected_msg,)):
return
raise caught_exc
|
Allow or re-raise an import error.
This is to distinguish between expected and unexpected import errors.
If the module is not found, it simply means the Cython / Fortran speedups
were not built with the package. If the error message is different, e.g.
``... undefined symbol: __curve_intersection_MOD_all_intersections``, then
the import error **should** be raised.
Args:
caught_exc (ImportError): An exception caught when trying to import
a Cython module.
name (str): The name of the module. For example, for the module
``bezier._curve_speedup``, the name is ``"_curve_speedup"``.
Raises:
ImportError: If the error message is different than the basic
"missing module" error message.
|
codesearchnet
|
def code_memory_read(self, addr, num_bytes):
buf_size = num_bytes
buf = (ctypes.c_uint8 * buf_size)()
res = self._dll.JLINKARM_ReadCodeMem(addr, buf_size, buf)
if (res < 0):
raise errors.JLinkException(res)
return list(buf)[:res]
|
Reads bytes from code memory.
Note:
This is similar to calling ``memory_read`` or ``memory_read8``,
except that this uses a cache and reads ahead. This should be used
in instances where you want to read a small amount of bytes at a
time, and expect to always read ahead.
Args:
self (JLink): the ``JLink`` instance
addr (int): starting address from which to read
num_bytes (int): number of bytes to read
Returns:
A list of bytes read from the target.
Raises:
JLinkException: if memory could not be read.
|
codesearchnet
|
def _update_replica(self, update_fn, value, **kwargs):
if self._policy:
return self._policy._update_replica(self, update_fn, value, **kwargs)
raise NotImplementedError(f'DistributedVariable._update_replica requires a valid VariablePolicy. Please set the policy via the `var_policy` argument in the constructor, or override this method in sub-classes which support cross-replica accesses. Type name is {type(self)}')
|
Applies updates in one replica.
Args:
update_fn: A callable to update the variable. It should has the same
signature as `Variable.assign()`.
value: value to be passed to `update_fn`.
**kwargs: remaining arguments to `update_fn`.
Returns:
Updated variable or `tf.Operation`.
|
github-repos
|
def overlapping(self, variant_obj):
category = ('snv' if (variant_obj['category'] == 'sv') else 'sv')
query = {'$and': [{'case_id': variant_obj['case_id']}, {'category': category}, {'hgnc_ids': {'$in': variant_obj['hgnc_ids']}}]}
sort_key = [('rank_score', pymongo.DESCENDING)]
variants = self.variant_collection.find(query).sort(sort_key).limit(30)
return variants
|
Return overlapping variants.
Look at the genes that a variant overlaps to.
Then return all variants that overlap these genes.
If variant_obj is sv it will return the overlapping snvs and oposite
There is a problem when SVs are huge since there are to many overlapping variants.
Args:
variant_obj(dict)
Returns:
variants(iterable(dict))
|
codesearchnet
|
def get_job(self, job_resource_name: str) -> Dict:
return self.service.projects().programs().jobs().get(name=job_resource_name).execute()
|
Returns metadata about a previously created job.
See get_job_result if you want the results of the job and not just
metadata about the job.
Params:
job_resource_name: A string of the form
`projects/project_id/programs/program_id/jobs/job_id`.
Returns:
A dictionary containing the metadata.
|
codesearchnet
|
def filter_out_spontaneous_genes(genes, custom_spont_id=None):
new_genes = DictList()
for gene in genes:
if not is_spontaneous(gene, custom_id=custom_spont_id):
new_genes.append(gene)
return new_genes
|
Return the DictList of genes that are not spontaneous in a model.
Args:
genes (DictList): Genes DictList
custom_spont_id (str): Optional custom spontaneous ID if it does not match the regular expression ``[Ss](_|)0001``
Returns:
DictList: genes excluding ones that are spontaneous
|
juraj-google-style
|
def atan(cls, x: 'TensorFluent') -> 'TensorFluent':
return cls._unary_op(x, tf.atan2, tf.float32)
|
Returns a TensorFluent for the arctan function.
Args:
x: The input fluent.
Returns:
A TensorFluent wrapping the arctan function.
|
juraj-google-style
|
def _GetArchiveTypes(self, mediator, path_spec):
try:
type_indicators = analyzer.Analyzer.GetArchiveTypeIndicators(
path_spec, resolver_context=mediator.resolver_context)
except IOError as exception:
type_indicators = []
warning_message = (
'analyzer failed to determine archive type indicators '
'with error: {0!s}').format(exception)
mediator.ProduceExtractionWarning(warning_message, path_spec=path_spec)
return type_indicators
|
Determines if a data stream contains an archive such as: TAR or ZIP.
Args:
mediator (ParserMediator): mediates the interactions between
parsers and other components, such as storage and abort signals.
path_spec (dfvfs.PathSpec): path specification of the data stream.
Returns:
list[str]: dfVFS archive type indicators found in the data stream.
|
juraj-google-style
|
def generate_defect_structure(self, supercell=(1, 1, 1)):
defect_structure = self.bulk_structure.copy()
defect_structure.make_supercell(supercell)
defect_properties = self.site.properties.copy()
if ('velocities' in self.bulk_structure.site_properties) and \
'velocities' not in defect_properties:
if all( vel == self.bulk_structure.site_properties['velocities'][0]
for vel in self.bulk_structure.site_properties['velocities']):
defect_properties['velocities'] = self.bulk_structure.site_properties['velocities'][0]
else:
raise ValueError("No velocity property specified for defect site and "
"bulk_structure velocities are not homogeneous. Please specify this "
"property within the initialized defect_site object.")
site_properties_for_fake_struct = {prop: [val] for prop,val in defect_properties.items()}
struct_for_defect_site = Structure( self.bulk_structure.copy().lattice,
[self.site.specie],
[self.site.frac_coords],
to_unit_cell=True,
site_properties = site_properties_for_fake_struct)
struct_for_defect_site.make_supercell(supercell)
defect_site = struct_for_defect_site[0]
defect_structure.append(self.site.specie.symbol, defect_site.coords, coords_are_cartesian=True,
properties = defect_site.properties)
defect_structure.set_charge(self.charge)
return defect_structure
|
Returns Defective Interstitial structure, decorated with charge
Args:
supercell (int, [3x1], or [[]] (3x3)): supercell integer, vector, or scaling matrix
|
juraj-google-style
|
def matmul_and_same_scale(self, input_tensor: core.Tensor) -> Mapping[str, core.Tensor]:
out = math_ops.matmul(input_tensor, self.filters, name='sample/matmul')
if self.same_scale_op == 'concatenate':
ones = array_ops.ones_like(out)
out = array_ops.concat([out, ones], 0)
elif self.same_scale_op == 'gather':
out = array_ops.gather(out, indices=[0], axis=0)
elif self.same_scale_op == 'max_pool':
out = nn_ops.max_pool(out, ksize=3, strides=1, padding='SAME')
elif self.same_scale_op == 'pad':
paddings = array_ops.ones((array_ops.rank(out), 2), dtype=dtypes.int32)
out = array_ops.pad(out, paddings, 'CONSTANT')
elif self.same_scale_op == 'reshape':
out = array_ops.reshape(out, [-1])
elif self.same_scale_op == 'select':
rng = np.random.default_rng(seed=1234)
condition = ops.convert_to_tensor(rng.uniform(low=0.0, high=1.0, size=out.shape) < 0.5)
ones = array_ops.ones_like(out)
out = math_ops.select(condition, out, ones)
elif self.same_scale_op == 'slice':
begin = array_ops.zeros(array_ops.rank(out), dtype=dtypes.int32)
size = array_ops.ones(array_ops.rank(out), dtype=dtypes.int32)
out = array_ops.slice(out, begin, size)
elif self.same_scale_op == 'transpose':
out = array_ops.transpose(out)
else:
raise NotImplementedError('{} is not implemented for integration test.'.format(self.same_scale_op))
return {'output': out}
|
Performs a matrix multiplication.
Args:
input_tensor: Input tensor to matmul with the filter.
Returns:
A map of: output key -> output result.
|
github-repos
|
def get_image_features(self, pixel_values: torch.FloatTensor, vision_feature_layer: Optional[Union[int, List[int]]]=None, vision_feature_select_strategy: Optional[str]=None, **kwargs):
vision_feature_layer = vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
vision_feature_select_strategy = vision_feature_select_strategy if vision_feature_select_strategy is not None else self.config.vision_feature_select_strategy
if vision_feature_select_strategy not in ['default', 'full']:
raise ValueError(f'Unexpected select feature strategy: {self.config.vision_feature_select_strategy}')
kwargs = {k: v for k, v in kwargs.items() if v is not None}
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True, **kwargs)
if isinstance(vision_feature_layer, int):
selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
if vision_feature_select_strategy == 'default':
selected_image_feature = selected_image_feature[:, 1:]
else:
hs_pool = [image_outputs.hidden_states[layer_idx] for layer_idx in vision_feature_layer]
if vision_feature_select_strategy == 'default':
hs_pool = [hs[:, 1:] for hs in hs_pool]
selected_image_feature = torch.cat(hs_pool, dim=-1)
image_features = self.multi_modal_projector(selected_image_feature)
return image_features
|
Obtains image last hidden states from the vision tower and apply multimodal projection.
Args:
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`):
The tensors corresponding to the input images.
vision_feature_layer (`Union[int, List[int]]`, *optional*):
The index of the layer to select the vision feature. If multiple indices are provided,
the vision feature of the corresponding indices will be concatenated to form the
vision features.
vision_feature_select_strategy (`str`, *optional*):
The feature selection strategy used to select the vision feature from the vision backbone.
Can be one of `"default"` or `"full"`
Returns:
image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
|
github-repos
|
def get_slices(lines, clean_lines):
indices = np.zeros(len(lines))
for i in range(len(lines) - 1):
j = i + 1
while not clean_lines[j] and j < len(lines) - 1:
j += 1
if len(clean_lines[i]) < 200 and len(clean_lines[i]) > 3 and (len(clean_lines[j]) < 200) and (len(clean_lines[j]) > 3) and (not clean_lines[i].startswith('[MISSING_PAGE')) and (clean_lines[i] == clean_lines[j] or ratio(clean_lines[i], clean_lines[j]) > 0.9):
indices[i:j] = 1
ids = np.where(indices)[0]
slices = []
if len(ids) == 0:
return slices
j0 = 0
for j, x in enumerate(np.diff(ids) > 3):
if x:
slices.append((ids[j0], ids[j] + 2))
j0 = j + 1
slices.append((ids[j0], ids[-1] + 2))
return [sli for sli in slices if sli[1] - sli[0] > 15]
|
Get slices of text based on specific criteria within the lines.
This function identifies and returns slices of text from the input lines based on certain conditions.
These conditions were chosen by the Nougat authors:
- The slice is less than 200 characters long.
- The slice is more than 3 characters long.
- The slice does not start with "[MISSING_PAGE".
- The slice is either the same as the next slice or the ratio of the two in terms of Levensthein distance is
greater than 0.9.
Args:
lines (`List[str]`):
The list of lines containing the text.
clean_lines (`List[str]`):
A cleaned version of the text (without numbers).
Returns:
`List[tuple]`: A list of tuples representing the start and end indices of text slices.
|
github-repos
|
def extract_attribute_array(self, data_array, var_name):
if var_name not in self.attributes.keys():
self.attributes[var_name] = []
for t in range(self.times.size):
self.attributes[var_name].append(data_array[self.i[t], self.j[t]])
|
Extracts data from a 2D array that has the same dimensions as the grid used to identify the object.
Args:
data_array: 2D numpy array
|
juraj-google-style
|
def update_phase(self, environment, data, prediction, user, item, correct, time, answer_id, **kwargs):
pass
|
After the prediction update the environment and persist some
information for the predictive model.
Args:
environment (proso.models.environment.Environment):
environment where all the important data are persist
data (object):
data from the prepare phase
user (int):
identifier of the user answering the question
item (int):
identifier of the question item
correct (bool):
corretness of the answer
|
codesearchnet
|
def __init__(
self, resolver_context, file_system, path_spec, is_root=False,
is_virtual=False, vslvm_logical_volume=None):
if not is_virtual and vslvm_logical_volume is None:
vslvm_logical_volume = file_system.GetLVMLogicalVolumeByPathSpec(
path_spec)
if not is_virtual and vslvm_logical_volume is None:
raise errors.BackEndError(
'Missing vslvm logical volume in non-virtual file entry.')
super(LVMFileEntry, self).__init__(
resolver_context, file_system, path_spec, is_root=is_root,
is_virtual=is_virtual)
self._name = None
self._vslvm_logical_volume = vslvm_logical_volume
if self._is_virtual:
self.entry_type = definitions.FILE_ENTRY_TYPE_DIRECTORY
else:
self.entry_type = definitions.FILE_ENTRY_TYPE_FILE
|
Initializes a file entry.
Args:
resolver_context (Context): resolver context.
file_system (FileSystem): file system.
path_spec (PathSpec): path specification.
is_root (Optional[bool]): True if the file entry is the root file entry
of the corresponding file system.
is_virtual (Optional[bool]): True if the file entry is a virtual file
vslvm_logical_volume (Optional[pyvslvm.logical_volume]): a LVM logical
volume.
|
juraj-google-style
|
def _extract_storage_api_response_error(message):
try:
if len(message) == 3:
data = json.loads(message[2])
return data['error']['errors'][0]['message']
except Exception:
pass
return message
|
A helper function to extract user-friendly error messages from service exceptions.
Args:
message: An error message from an exception. If this is from our HTTP client code, it
will actually be a tuple.
Returns:
A modified version of the message that is less cryptic.
|
juraj-google-style
|
def get_logfile_name(tags):
if not os.path.exists(sd.LOG_DIR):
os.mkdir(sd.LOG_DIR)
filename = "log"
for tag in tags:
filename += "_{}".format(tag)
filename += ".txt"
filename = os.path.join(sd.LOG_DIR,filename)
return filename
|
Formulates a log file name that incorporates the provided tags.
The log file will be located in ``scgpm_seqresults_dnanexus.LOG_DIR``.
Args:
tags: `list` of tags to append to the log file name. Each tag will be '_' delimited. Each tag
will be added in the same order as provided.
|
juraj-google-style
|
def _list_to_complex_array(complex_list):
arr = np.asarray(complex_list, dtype=np.complex_)
if not arr.shape[-1] == 2:
raise QiskitError('Inner most nested list is not of length 2.')
return arr[..., 0] + 1j*arr[..., 1]
|
Convert nested list of shape (..., 2) to complex numpy array with shape (...)
Args:
complex_list (list): List to convert.
Returns:
np.ndarray: Complex numpy aray
Raises:
QiskitError: If inner most array of input nested list is not of length 2.
|
juraj-google-style
|
def _TabbedContinuationAlignPadding(spaces, align_style, tab_width):
if align_style in ('FIXED', 'VALIGN-RIGHT'):
if spaces > 0:
return '\t' * int((spaces + tab_width - 1) / tab_width)
return ''
return ' ' * spaces
|
Build padding string for continuation alignment in tabbed indentation.
Arguments:
spaces: (int) The number of spaces to place before the token for alignment.
align_style: (str) The alignment style for continuation lines.
tab_width: (int) Number of columns of each tab character.
Returns:
A padding string for alignment with style specified by align_style option.
|
github-repos
|
def ReadVFS(pathspec, offset, length, progress_callback=None):
fd = VFSOpen(pathspec, progress_callback=progress_callback)
fd.Seek(offset)
return fd.Read(length)
|
Read from the VFS and return the contents.
Args:
pathspec: path to read from
offset: number of bytes to skip
length: number of bytes to read
progress_callback: A callback to indicate that the open call is still
working but needs more time.
Returns:
VFS file contents
|
juraj-google-style
|
def clear_operations_touching(self,
qubits: Iterable[ops.Qid],
moment_indices: Iterable[int]):
qubits = frozenset(qubits)
for k in moment_indices:
if 0 <= k < len(self._moments):
self._moments[k] = self._moments[k].without_operations_touching(
qubits)
|
Clears operations that are touching given qubits at given moments.
Args:
qubits: The qubits to check for operations on.
moment_indices: The indices of moments to check for operations
within.
|
juraj-google-style
|
def read_stream(self, start_offset=0, byte_count=None):
try:
return self._api.object_download(self._bucket, self._key, start_offset=start_offset, byte_count=byte_count)
except Exception as e:
raise e
|
Reads the content of this object as text.
Args:
start_offset: the start offset of bytes to read.
byte_count: the number of bytes to read. If None, it reads to the end.
Returns:
The text content within the object.
Raises:
Exception if there was an error requesting the object's content.
|
codesearchnet
|
def get_local_aws_session():
if (not all((app_config.aws_api.access_key, app_config.aws_api.secret_key))):
return boto3.session.Session()
else:
session_args = [app_config.aws_api.access_key, app_config.aws_api.secret_key]
if app_config.aws_api.session_token:
session_args.append(app_config.aws_api.session_token)
return boto3.session.Session(*session_args)
|
Returns a session for the local instance, not for a remote account
Returns:
:obj:`boto3:boto3.session.Session`
|
codesearchnet
|
def maybe_download_image_dataset(image_ids, target_dir):
tf.gfile.MakeDirs(target_dir)
num_images = len(image_ids)
for i, image_id in enumerate(image_ids):
destination = os.path.join(target_dir, "%s.jpg" % i)
tmp_destination = "%s.temp" % destination
source_url = ("http:
"section_image_download/%s" % image_id)
if tf.gfile.Exists(destination):
tf.logging.info("Image with ID already present, "
"skipping download (%s of %s)." % (
i+1, num_images
))
continue
tf.logging.info("Downloading image with id %s (%s of %s)" % (
image_id, i+1, num_images
))
response = requests.get(source_url, stream=True)
response.raise_for_status()
with tf.gfile.Open(tmp_destination, "w") as f:
for block in response.iter_content(1024):
f.write(block)
tf.gfile.Rename(tmp_destination, destination)
|
Download a set of images from api.brain-map.org to `target_dir`.
Args:
image_ids: list, a list of image ids.
target_dir: str, a directory to which to download the images.
|
juraj-google-style
|
def ExpectedEnginesToBuild(self, run_params):
if run_params.dynamic_shape:
return ['TRTEngineOp_000']
else:
return ['TRTEngineOp_000', 'TRTEngineOp_001']
|
Check that the expected engine is built.
Args:
run_params: the run parameters.
Returns:
the expected engines to build.
The squeeze op is not converted by TensorRT in implicit batch mode.
Because of this we have two TRTEngineOp in the graphs: one for the
subgraph before 'squeeze(q,0)', and another one for the rest of the ops
after the 'squeeze(q,0)'.
In explicit batch mode the whole graph is converted using a single engine.
|
github-repos
|
def as_data_frame(self, **kwargs):
try:
import pandas as pd
except ImportError:
raise ImportError("What are you doing trying to export a Layout as a pandas DataFrame when you don't have pandas installed? Eh? Eh?")
if kwargs:
files = self.get(return_type='obj', **kwargs)
else:
files = self.files.values()
data = pd.DataFrame.from_records([f.entities for f in files])
data.insert(0, 'path', [f.path for f in files])
return data
|
Return information for all Files tracked in the Layout as a pandas
DataFrame.
Args:
kwargs: Optional keyword arguments passed on to get(). This allows
one to easily select only a subset of files for export.
Returns:
A pandas DataFrame, where each row is a file, and each column is
a tracked entity. NaNs are injected whenever a file has no
value for a given attribute.
|
codesearchnet
|
def _container_handler(ion_type, ctx):
transition = None
first = True
at_top = ctx.depth == 0
while True:
data_event, self = (yield transition)
if data_event is not None and data_event.type is ReadEventType.SKIP:
yield ctx.read_data_transition(ctx.remaining, self, skip=True)
if ctx.queue.position == ctx.limit:
yield Transition(
IonEvent(IonEventType.CONTAINER_END, ion_type, depth=ctx.depth-1),
ctx.whence
)
if ion_type is IonType.STRUCT:
self_handler = _create_delegate_handler(self)
(field_sid, _), _ = yield ctx.immediate_transition(
_var_uint_field_handler(self_handler, ctx)
)
field_name = SymbolToken(None, field_sid)
else:
field_name = None
expects_ivm = first and at_top
transition = ctx.immediate_transition(
_start_type_handler(field_name, self, ctx, expects_ivm, at_top=at_top)
)
first = False
|
Handler for the body of a container (or the top-level stream).
Args:
ion_type (Optional[IonType]): The type of the container or ``None`` for the top-level.
ctx (_HandlerContext): The context for the container.
|
juraj-google-style
|
def _ProcessFileEntryDataStream(self, mediator, file_entry, data_stream):
display_name = mediator.GetDisplayName()
data_stream_name = getattr(data_stream, 'name', '') or ''
logger.debug((
'[ProcessFileEntryDataStream] processing data stream: "{0:s}" of '
'file entry: {1:s}').format(data_stream_name, display_name))
mediator.ClearEventAttributes()
if data_stream and self._analyzers:
self._AnalyzeDataStream(mediator, file_entry, data_stream.name)
self._ExtractMetadataFromFileEntry(mediator, file_entry, data_stream)
if not data_stream:
return
skip_content_extraction = self._CanSkipContentExtraction(file_entry)
if skip_content_extraction:
display_name = mediator.GetDisplayName()
logger.debug(
'Skipping content extraction of: {0:s}'.format(display_name))
self.processing_status = definitions.STATUS_INDICATOR_IDLE
return
path_spec = copy.deepcopy(file_entry.path_spec)
if data_stream and not data_stream.IsDefault():
path_spec.data_stream = data_stream.name
archive_types = []
compressed_stream_types = []
if self._process_compressed_streams:
compressed_stream_types = self._GetCompressedStreamTypes(
mediator, path_spec)
if not compressed_stream_types:
archive_types = self._GetArchiveTypes(mediator, path_spec)
if archive_types:
if self._process_archives:
self._ProcessArchiveTypes(mediator, path_spec, archive_types)
if dfvfs_definitions.TYPE_INDICATOR_ZIP in archive_types:
self._ExtractContentFromDataStream(
mediator, file_entry, data_stream.name)
elif compressed_stream_types:
self._ProcessCompressedStreamTypes(
mediator, path_spec, compressed_stream_types)
else:
self._ExtractContentFromDataStream(
mediator, file_entry, data_stream.name)
|
Processes a specific data stream of a file entry.
Args:
mediator (ParserMediator): mediates the interactions between
parsers and other components, such as storage and abort signals.
file_entry (dfvfs.FileEntry): file entry containing the data stream.
data_stream (dfvfs.DataStream): data stream or None if the file entry
has no data stream.
|
juraj-google-style
|
def get_lower_bound(self):
lower_bounds = []
for distribution in self.distribs.values():
lower_bound = distribution.percent_point((distribution.mean / 10000))
if (not pd.isnull(lower_bound)):
lower_bounds.append(lower_bound)
return min(lower_bounds)
|
Compute the lower bound to integrate cumulative density.
Returns:
float: lower bound for cumulative density integral.
|
codesearchnet
|
def iter_archive(self, resource):
if isinstance(resource, six.string_types):
resource = resource_lib.Resource(path=resource)
return extractor.iter_archive(resource.path, resource.extract_method)
|
Returns iterator over files within archive.
**Important Note**: caller should read files as they are yielded.
Reading out of order is slow.
Args:
resource: path to archive or `tfds.download.Resource`.
Returns:
Generator yielding tuple (path_within_archive, file_obj).
|
codesearchnet
|
def snake_case_to_headless_camel_case(snake_string):
return ''.join([snake_string.split('_')[0]] +
list(sub_string.capitalize()
for sub_string in snake_string.split('_')[1:]))
|
Convert snake_case to headlessCamelCase.
Args:
snake_string: The string to be converted.
Returns:
The input string converted to headlessCamelCase.
|
juraj-google-style
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.