code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def alias_tags(tags_list, alias_map): def _alias_dict(tags): tags_ = [alias_map.get(t, t) for t in tags] return list(set([t for t in tags_ if (t is not None)])) tags_list_ = [_alias_dict(tags) for tags in tags_list] return tags_list_
update tags to new values Args: tags_list (list): alias_map (list): list of 2-tuples with regex, value Returns: list: updated tags CommandLine: python -m utool.util_tags alias_tags --show Example: >>> # DISABLE_DOCTEST >>> from utool.util_tags import * # NOQA >>> import utool as ut >>> tags_list = [['t1', 't2'], [], ['t3'], ['t4', 't5']] >>> ut.build_alias_map() >>> result = alias_tags(tags_list, alias_map) >>> print(result)
codesearchnet
def taubin(script, iterations=10, t_lambda=0.5, t_mu=(- 0.53), selected=False): filter_xml = ''.join([' <filter name="Taubin Smooth">\n', ' <Param name="lambda" ', 'value="{}" '.format(t_lambda), 'description="Lambda" ', 'type="RichFloat" ', '/>\n', ' <Param name="mu" ', 'value="{}" '.format(t_mu), 'description="mu" ', 'type="RichFloat" ', '/>\n', ' <Param name="stepSmoothNum" ', 'value="{:d}" '.format(iterations), 'description="Smoothing steps" ', 'type="RichInt" ', '/>\n', ' <Param name="Selected" ', 'value="{}" '.format(str(selected).lower()), 'description="Affect only selected faces" ', 'type="RichBool" ', '/>\n', ' </filter>\n']) util.write_filter(script, filter_xml) return None
The lambda & mu Taubin smoothing, it make two steps of smoothing, forth and back, for each iteration. Based on: Gabriel Taubin "A signal processing approach to fair surface design" Siggraph 1995 Args: script: the FilterScript object or script filename to write the filter to. iterations (int): The number of times that the taubin smoothing is iterated. Usually it requires a larger number of iteration than the classical laplacian. t_lambda (float): The lambda parameter of the Taubin Smoothing algorithm t_mu (float): The mu parameter of the Taubin Smoothing algorithm selected (bool): If selected the filter is performed only on the selected faces Layer stack: No impacts MeshLab versions: 2016.12 1.3.4BETA
codesearchnet
def get_channel_dimension_axis(image: np.ndarray, input_data_format: Optional[Union[ChannelDimension, str]]=None) -> int: if input_data_format is None: input_data_format = infer_channel_dimension_format(image) if input_data_format == ChannelDimension.FIRST: return image.ndim - 3 elif input_data_format == ChannelDimension.LAST: return image.ndim - 1 raise ValueError(f'Unsupported data format: {input_data_format}')
Returns the channel dimension axis of the image. Args: image (`np.ndarray`): The image to get the channel dimension axis of. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the image. If `None`, will infer the channel dimension from the image. Returns: The channel dimension axis of the image.
github-repos
def CopyToDateTimeString(self): if (self._timestamp is None): return None (number_of_days, hours, minutes, seconds) = self._GetTimeValues(int(self._timestamp)) (year, month, day_of_month) = self._GetDateValuesWithEpoch(number_of_days, self._EPOCH) microseconds = int(((self._timestamp % 1) * definitions.MICROSECONDS_PER_SECOND)) return '{0:04d}-{1:02d}-{2:02d} {3:02d}:{4:02d}:{5:02d}.{6:06d}'.format(year, month, day_of_month, hours, minutes, seconds, microseconds)
Copies the Cocoa timestamp to a date and time string. Returns: str: date and time value formatted as: YYYY-MM-DD hh:mm:ss.###### or None if the timestamp cannot be copied to a date and time string.
codesearchnet
def look_up(self, **keys: Dict[InstanceName, ScalarValue]) -> "ArrayEntry": if not isinstance(self.schema_node, ListNode): raise InstanceValueError(self.json_pointer(), "lookup on non-list") try: for i in range(len(self.value)): en = self.value[i] flag = True for k in keys: if en[k] != keys[k]: flag = False break if flag: return self._entry(i) raise NonexistentInstance(self.json_pointer(), "entry lookup failed") except KeyError: raise NonexistentInstance(self.json_pointer(), "entry lookup failed") from None except TypeError: raise InstanceValueError(self.json_pointer(), "lookup on non-list") from None
Return the entry with matching keys. Args: keys: Keys and values specified as keyword arguments. Raises: InstanceValueError: If the receiver's value is not a YANG list. NonexistentInstance: If no entry with matching keys exists.
juraj-google-style
def from_service_account_file(cls, filename, **kwargs): info, signer = _service_account_info.from_filename( filename, require=['client_email', 'token_uri']) return cls._from_signer_and_info(signer, info, **kwargs)
Creates a Credentials instance from a service account json file. Args: filename (str): The path to the service account json file. kwargs: Additional arguments to pass to the constructor. Returns: google.auth.service_account.Credentials: The constructed credentials.
juraj-google-style
def _fdopen(self, *args, **kwargs): if not is_int_type(args[0]): raise TypeError('an integer is required') return FakeFileOpen(self.filesystem)(*args, **kwargs)
Redirector to open() builtin function. Args: *args: Pass through args. **kwargs: Pass through kwargs. Returns: File object corresponding to file_des. Raises: TypeError: if file descriptor is not an integer.
juraj-google-style
def assertArrayNear(self, farray1, farray2, err, msg=None): self.assertEqual(len(farray1), len(farray2), msg=msg) for f1, f2 in zip(farray1, farray2): self.assertNear(float(f1), float(f2), err, msg=msg)
Asserts that two float arrays are near each other. Checks that for all elements of farray1 and farray2 |f1 - f2| < err. Asserts a test failure if not. Args: farray1: a list of float values. farray2: a list of float values. err: a float value. msg: Optional message to report on failure.
github-repos
def set_window_size(self, width, height, window_handle='current'): self._execute(Command.SET_WINDOW_SIZE, { 'width': int(width), 'height': int(height), 'window_handle': window_handle})
Sets the width and height of the current window. Support: Web(WebView) Args: width(int): the width in pixels. height(int): the height in pixels. window_handle(str): Identifier of window_handle, default to 'current'. Returns: WebDriver Object.
juraj-google-style
def matches_alias(self, alias: str) -> bool: del self del alias return False
Indicates whether the expression will be selected as the given alias. Intended to be over-ridden by sub-classes which can safely implement it. Given an expression and an alias, indicates whether the expression will be SELECT'd as the given alias. For example, an expression like `SELECT a.b` matches the alias 'b', making it equivalent to the expression `SELECT a.b AS b`. Args: alias: The alias to compare the expression against. Returns: True when the expression evaluates to the same name as the alias and False otherwise.
github-repos
def get_patched_request(requires, patchlist): rules = {'': (True, True, True), '!': (False, False, False), '~': (False, False, True), '^': (True, True, True)} requires = [(Requirement(x) if (not isinstance(x, Requirement)) else x) for x in requires] appended = [] for patch in patchlist: if (patch and (patch[0] in ('!', '~', '^'))): ch = patch[0] name = Requirement(patch[1:]).name else: ch = '' name = Requirement(patch).name rule = rules[ch] replaced = (ch == '^') for (i, req) in enumerate(requires): if ((req is None) or (req.name != name)): continue if (not req.conflict): replace = rule[0] elif (not req.weak): replace = rule[1] else: replace = rule[2] if replace: if replaced: requires[i] = None else: requires[i] = Requirement(patch) replaced = True if (not replaced): appended.append(Requirement(patch)) result = ([x for x in requires if (x is not None)] + appended) return result
Apply patch args to a request. For example, consider: >>> print get_patched_request(["foo-5", "bah-8.1"], ["foo-6"]) ["foo-6", "bah-8.1"] >>> print get_patched_request(["foo-5", "bah-8.1"], ["^bah"]) ["foo-5"] The following rules apply wrt how normal/conflict/weak patches override (note though that the new request is always added, even if it doesn't override an existing request): PATCH OVERRIDES: foo !foo ~foo ----- ---------- --- ---- ----- foo Y Y Y !foo N N N ~foo N N Y ^foo Y Y Y Args: requires (list of str or `version.Requirement`): Request. patchlist (list of str): List of patch requests. Returns: List of `version.Requirement`: Patched request.
codesearchnet
def __field_to_parameter_type(self, field): variant = field.variant if (variant == messages.Variant.MESSAGE): raise TypeError("A message variant can't be used in a parameter.") custom_variant_map = {messages.Variant.SINT32: 'int32', messages.Variant.SINT64: 'int64', messages.Variant.BOOL: 'boolean', messages.Variant.ENUM: 'string'} return (custom_variant_map.get(variant) or variant.name.lower())
Converts the field variant type into a string describing the parameter. Args: field: An instance of a subclass of messages.Field. Returns: A string corresponding to the variant enum of the field, with a few exceptions. In the case of signed ints, the 's' is dropped; for the BOOL variant, 'boolean' is used; and for the ENUM variant, 'string' is used. Raises: TypeError: if the field variant is a message variant.
codesearchnet
def copy_pkg(self, filename, id_=(- 1)): self._copy(filename, id_=id_, file_type=PKG_FILE_TYPE)
Copy a package to the distribution server. Bundle-style packages must be zipped prior to copying. Args: filename: Full path to file to upload. id_: ID of Package object to associate with, or -1 for new packages (default).
codesearchnet
def _Enter(tensor, frame_name, is_constant=False, parallel_iterations=10, use_ref=True, use_input_shape=True, name=None): tensor = ops.internal_convert_to_tensor_or_composite(tensor, as_ref=True) if isinstance(tensor, tensor_lib.Tensor): if tensor.dtype._is_ref_dtype and use_ref: result = gen_control_flow_ops.ref_enter(tensor, frame_name, is_constant, parallel_iterations, name=name) else: result = gen_control_flow_ops.enter(tensor, frame_name, is_constant, parallel_iterations, name=name) if use_input_shape: result.set_shape(tensor.get_shape()) return result elif isinstance(tensor, composite_tensor.CompositeTensor): def enter_component(t): return _Enter(t, frame_name, is_constant, parallel_iterations, use_ref, use_input_shape) return nest.map_structure(enter_component, tensor, expand_composites=True) else: raise TypeError(f"'tensor' must be a Tensor or CompositeTensor. Received: {type(tensor)}.")
Creates or finds a child frame, and makes `tensor` available to it. The unique `frame_name` is used by the `Executor` to identify frames. If `is_constant` is true, `tensor` is a constant in the child frame; otherwise it may be changed in the child frame. At most `parallel_iterations` iterations are run in parallel in the child frame. Args: tensor: The tensor to be made available to the child frame. frame_name: The name of the child frame. is_constant: If true, the output is constant within the child frame. parallel_iterations: The number of iterations allowed to run in parallel. use_ref: If true, use ref_enter if tensor is of ref type. use_input_shape: If true, set the result's shape based on tensor's shape. name: A name for this operation (optional). Returns: The same tensor as `tensor`. Raises: ValueError: If any tensor in `tensor` has a less specific shape than its corresponding shape in `shape_invariant`.
github-repos
def get_vep_info(vep_string, vep_header): vep_annotations = [ dict(zip(vep_header, vep_annotation.split('|'))) for vep_annotation in vep_string.split(',') ] return vep_annotations
Make the vep annotations into a dictionaries A vep dictionary will have the vep column names as keys and the vep annotations as values. The dictionaries are stored in a list Args: vep_string (string): A string with the CSQ annotation vep_header (list): A list with the vep header Return: vep_annotations (list): A list of vep dicts
juraj-google-style
def peek_step(self, val: ObjectValue, sn: 'DataNode') -> Tuple[(Value, 'DataNode')]: cn = sn.get_data_child(self.name, self.namespace) try: return (val[cn.iname()], cn) except (IndexError, KeyError, TypeError): return (None, cn)
Return member value addressed by the receiver + its schema node. Args: val: Current value (object). sn: Current schema node.
codesearchnet
def get_stats_for_node_def(graph, node, statistic_type) -> Any: try: stats_func = _stats_registry.lookup(node.op + ',' + statistic_type) result = stats_func(graph, node) except LookupError: result = OpStats(statistic_type) return result
Looks up the node's statistics function in the registry and calls it. This function takes a Graph object and a NodeDef from a GraphDef, and if there's an associated statistics method, calls it and returns a result. If no function has been registered for the particular node type, it returns an empty statistics object. Args: graph: A Graph object that's been set up with the node's graph. node: A NodeDef describing the operator. statistic_type: A string identifying the statistic we're interested in. Returns: An OpStats object containing information about resource usage.
github-repos
def add_archive_as_dir(self, zip_file_obj): BalancedDiscStorage._check_interface(zip_file_obj) file_hash = self._get_hash(zip_file_obj) dir_path = self._create_dir_path(file_hash) full_path = os.path.join(dir_path, file_hash) if os.path.exists(full_path): shutil.rmtree(full_path) os.mkdir(full_path) try: self._unpack_zip(zip_file_obj, full_path) except Exception: shutil.rmtree(full_path) raise return PathAndHash(path=full_path, hash=file_hash)
Add archive to the storage and unpack it. Args: zip_file_obj (file): Opened file-like object. Returns: obj: Path where the `zip_file_obj` was unpacked wrapped in \ :class:`.PathAndHash` structure. Raises: ValueError: If there is too many files in .zip archive. \ See :attr:`._max_zipfiles` for details. AssertionError: If the `zip_file_obj` is not file-like object.
juraj-google-style
def fetch_token(self, **kwargs): kwargs.setdefault('client_secret', self.client_config['client_secret']) return self.oauth2session.fetch_token(self.client_config['token_uri'], **kwargs)
Completes the Authorization Flow and obtains an access token. This is the final step in the OAuth 2.0 Authorization Flow. This is called after the user consents. This method calls :meth:`requests_oauthlib.OAuth2Session.fetch_token` and specifies the client configuration's token URI (usually Google's token server). Args: kwargs: Arguments passed through to :meth:`requests_oauthlib.OAuth2Session.fetch_token`. At least one of ``code`` or ``authorization_response`` must be specified. Returns: Mapping[str, str]: The obtained tokens. Typically, you will not use return value of this function and instead and use :meth:`credentials` to obtain a :class:`~google.auth.credentials.Credentials` instance.
codesearchnet
def attention_bias_batch(batch_coordinates_q, batch_coordinates_k=None, condition_fn=None): if batch_coordinates_k is None: batch_coordinates_k = batch_coordinates_q def to_float(bc): bc = tf.squeeze(bc, 1) bc = tf.to_float(bc) return bc bc_v = tf.expand_dims(to_float(batch_coordinates_q), 1) bc_h = tf.expand_dims(to_float(batch_coordinates_k), 0) bias_batch = bc_h - bc_v bias_batch = condition_fn(bias_batch) bias_batch *= -1e9 return bias_batch
Generate a mask to prevent the batch to attend to each others. Args: batch_coordinates_q: Int-like Tensor of shape [length_q, 1] containing the coordinates of the batches batch_coordinates_k: Int-like Tensor of shape [length_k, 1] containing the coordinates of the batches. If None, do self-attention. condition_fn: Callable defining the attention mask. Returns: Float-like Tensor of shape [length_q, length_k] containing either 0 or -infinity (-1e9).
juraj-google-style
def hashed(field_name, percent, fields=None, count=0): if (field_name is None): raise Exception('Hash field must be specified') def _hashed_sampling(sql): projection = Sampling._create_projection(fields) sql = ('SELECT %s FROM (%s) WHERE MOD(ABS(FARM_FINGERPRINT(CAST(%s AS STRING))), 100) < %d' % (projection, sql, field_name, percent)) if (count != 0): sql = ('%s LIMIT %d' % (sql, count)) return sql return _hashed_sampling
Provides a sampling strategy based on hashing and selecting a percentage of data. Args: field_name: the name of the field to hash. percent: the percentage of the resulting hashes to select. fields: an optional list of field names to retrieve. count: optional maximum count of rows to pick. Returns: A sampling function that can be applied to get a hash-based sampling.
codesearchnet
def parse(self, **global_args): if self.build_file not in ParseContext._parsed: butcher_context = {} for str_to_exec in self._strs_to_exec: ast = compile(str_to_exec, '<string>', 'exec') exec_function(ast, butcher_context) with ParseContext.activate(self): startdir = os.path.abspath(os.curdir) try: os.chdir(self.build_file.path_on_disk) if self.build_file not in ParseContext._parsed: ParseContext._parsed.add(self.build_file) eval_globals = copy.copy(butcher_context) eval_globals.update( {'ROOT_DIR': self.build_file.path_on_disk, '__file__': 'bogus please fix this'}) eval_globals.update(global_args) exec_function(self.build_file.code, eval_globals) finally: os.chdir(startdir)
Entry point to parsing a BUILD file. Args: **global_args: Variables to include in the parsing environment.
juraj-google-style
def __init__(self, root_path, root_url, site_title, site_desc=None): self.root_path = root_path self.root_url = root_url self.site_title = site_title self.site_desc = site_desc self.cm = russell.content.ContentManager(root_url) self.pages = self.cm.pages self.posts = self.cm.posts self.tags = self.cm.tags self.asset_hash = {} self.jinja = jinja2.Environment( loader=jinja2.FileSystemLoader(os.path.join(root_path, 'templates')), ) self.jinja.globals.update({ 'a': make_link, 'asset_hash': self.asset_hash, 'asset_url': self.get_asset_url, 'now': datetime.now(), 'root_url': self.root_url, 'site_description': self.site_desc, 'site_title': self.site_title, 'tags': self.tags, })
Constructor. Args: root_path (str): Full path to the directory which contains the posts, pages, templates etc. directories. root_url (str): The root URL of your website. site_title (str): The title of your website. site_desc (str): A subtitle or description of your website.
juraj-google-style
def query(self, expr, **kwargs): columns = self.columns def query_builder(df, **kwargs): df = df.copy() df.index = pandas.RangeIndex(len(df)) df.columns = columns df.query(expr, inplace=True, **kwargs) df.columns = pandas.RangeIndex(len(df.columns)) return df func = self._prepare_method(query_builder, **kwargs) new_data = self._map_across_full_axis(1, func) new_index = self.compute_index(0, new_data, True) return self.__constructor__(new_data, new_index, self.columns, self.dtypes)
Query columns of the DataManager with a boolean expression. Args: expr: Boolean expression to query the columns with. Returns: DataManager containing the rows where the boolean expression is satisfied.
codesearchnet
def read(self, nodes=None, **kwargs): if (nodes is None): required_nodes = (self.wishlist - set(self.datasets.keys())) nodes = self.dep_tree.leaves(nodes=required_nodes) return self._read_datasets(nodes, **kwargs)
Load datasets from the necessary reader. Args: nodes (iterable): DependencyTree Node objects **kwargs: Keyword arguments to pass to the reader's `load` method. Returns: DatasetDict of loaded datasets
codesearchnet
def create_resource(self, resource_type=None, uri=None): if (resource_type in [NonRDFSource, Binary, BasicContainer, DirectContainer, IndirectContainer]): return resource_type(self, uri) else: raise TypeError('expecting Resource type, such as BasicContainer or NonRDFSource')
Convenience method for creating a new resource Note: A Resource is instantiated, but is not yet created. Still requires resource.create(). Args: uri (rdflib.term.URIRef, str): uri of resource to create resource_type (NonRDFSource (Binary), BasicContainer, DirectContainer, IndirectContainer): resource type to create Returns: (NonRDFSource (Binary), BasicContainer, DirectContainer, IndirectContainer): instance of appropriate type
codesearchnet
def month_name_to_number(month, to_int=False): number = { 'Jan': '01', 'Feb': '02', 'Mar': '03', 'Apr': '04', 'May': '05', 'Jun': '06', 'Jul': '07', 'Aug': '08', 'Sep': '09', 'Oct': '10', 'Nov': '11', 'Dec': '12', }.get(month) return int(number) if to_int else number
Convert a month name (MMM) to its number (01-12). Args: month (str): 3-letters string describing month. to_int (bool): cast number to int or not. Returns: str/int: the month's number (between 01 and 12).
juraj-google-style
def pad(self, images: 'torch.Tensor', size: int) -> 'torch.Tensor': height, width = get_image_size(images, ChannelDimension.FIRST) pad_height = (height pad_width = (width return F.pad(images, (0, 0, pad_width, pad_height), padding_mode='symmetric')
Pad an image to make the height and width divisible by `size`. Args: images (`torch.Tensor`): Images to pad. size (`int`): The size to make the height and width divisible by. Returns: `torch.Tensor`: The padded images.
github-repos
def signature(cert, sig, body): body = six.b(body) sig = base64.decodestring(sig) padder = padding.PKCS1v15() public_key = cert.public_key() try: public_key.verify(sig, body, padder, hashes.SHA1()) return True except InvalidSignature: warnings.warn('Signature verification failed.') return False
Validate data request signature. See `validate.request` for additional info. Args: cert: cryptography.hazmat.backends.openssl.x509._Certificate. The Amazon signing certificate. sig: str. Signature header value sent by request. body: str. HTTPS request body. Returns: bool: True if valid, False otherwise.
codesearchnet
def get_cost_per_kg(self, comp): comp = comp if isinstance(comp, Composition) else Composition(comp) return self.get_cost_per_mol(comp) / ( comp.weight.to("kg") * const.N_A)
Get best estimate of minimum cost/kg based on known data Args: comp: Composition as a pymatgen.core.structure.Composition Returns: float of cost/kg
juraj-google-style
def Deserialize(self, reader): super(SpentCoinState, self).Deserialize(reader) self.TransactionHash = reader.ReadUInt256() self.TransactionHeight = reader.ReadUInt32() count = reader.ReadVarInt() items = [0] * count for i in range(0, count): index = reader.ReadUInt16() height = reader.ReadUInt32() items[i] = SpentCoinItem(index=index, height=height) self.Items = items
Deserialize full object. Args: reader (neocore.IO.BinaryReader):
juraj-google-style
def WriteSignedBinaryBlobs(binary_urn, blobs, token=None): if _ShouldUseLegacyDatastore(): aff4.FACTORY.Delete(binary_urn, token=token) with data_store.DB.GetMutationPool() as mutation_pool: with aff4.FACTORY.Create(binary_urn, collects.GRRSignedBlob, mode='w', mutation_pool=mutation_pool, token=token) as fd: for blob in blobs: fd.Add(blob, mutation_pool=mutation_pool) if data_store.RelationalDBEnabled(): blob_references = rdf_objects.BlobReferences() current_offset = 0 for blob in blobs: blob_id = data_store.BLOBS.WriteBlobWithUnknownHash(blob.SerializeToString()) blob_references.items.Append(rdf_objects.BlobReference(offset=current_offset, size=len(blob.data), blob_id=blob_id)) current_offset += len(blob.data) data_store.REL_DB.WriteSignedBinaryReferences(_SignedBinaryIDFromURN(binary_urn), blob_references)
Saves signed blobs to the datastore. If a signed binary with the given URN already exists, its contents will get overwritten. Args: binary_urn: RDFURN that should serve as a unique identifier for the binary. blobs: An Iterable of signed blobs to write to the datastore. token: ACL token to use with the legacy (non-relational) datastore.
codesearchnet
def initialize(self, prefix_name='default', *args, **kwargs): if self.loaded: raise WorkdirError(('Workdir %s already initialized' % self.path)) if (not os.path.exists(self.path)): LOGGER.debug('Creating workdir %s', self.path) os.makedirs(self.path) self.prefixes[prefix_name] = self.prefix_class(self.join(prefix_name), *args, **kwargs) self.prefixes[prefix_name].initialize() if (self.current is None): self._set_current(prefix_name) self.load() return self.prefixes[prefix_name]
Initializes a workdir by adding a new prefix to the workdir. Args: prefix_name(str): Name of the new prefix to add *args: args to pass along to the prefix constructor *kwargs: kwargs to pass along to the prefix constructor Returns: The newly created prefix Raises: PrefixAlreadyExists: if the prefix name already exists in the workdir
codesearchnet
def _get_dtype_from_nested_lists(list_or_tuple): for elem in list_or_tuple: if isinstance(elem, core.Tensor): return elem.dtype.base_dtype elif isinstance(elem, (list, tuple)): maybe_dtype = _get_dtype_from_nested_lists(elem) if maybe_dtype is not None: return maybe_dtype return None
Returns the dtype of any tensor-like object in `list_or_tuple`, if found. Args: list_or_tuple: A list or tuple representing an object that can be converted to a `tf.Tensor`. Returns: The dtype of any tensor-like object in `list_or_tuple`, or `None` if no such object exists.
github-repos
def make_value_from_datastore(self, value): if value is None: return None _json = json.loads(value, cls=JsonDecoder) if self.data_type == dict: return _json return self.data_type.from_json(_json)
Convert value from datastore representation. Args: value: datastore value. Returns: value to store in the model.
juraj-google-style
def job_stories(self, raw=False, limit=None): job_stories = self._get_stories('jobstories', limit) if raw: job_stories = [story.raw for story in job_stories] return job_stories
Returns list of item ids of latest Job stories Args: limit (int): specifies the number of stories to be returned. raw (bool): Flag to indicate whether to transform all objects into raw json. Returns: `list` object containing ids of Job stories.
codesearchnet
def register(cls, config_class, model_class, exist_ok=False) -> None: if hasattr(model_class, 'config_class') and model_class.config_class.__name__ != config_class.__name__: raise ValueError(f'The model class you are passing has a `config_class` attribute that is not consistent with the config class you passed (model has {model_class.config_class} and you passed {config_class}. Fix one of those so they match!') cls._model_mapping.register(config_class, model_class, exist_ok=exist_ok)
Register a new model for this class. Args: config_class ([`PretrainedConfig`]): The configuration corresponding to the model to register. model_class ([`PreTrainedModel`]): The model to register.
github-repos
def train_and_maybe_evaluate(hparams): schema = taxi.read_schema(hparams.schema_file) tf_transform_output = tft.TFTransformOutput(hparams.tf_transform_dir) train_input = lambda: model.input_fn(hparams.train_files, tf_transform_output, batch_size=TRAIN_BATCH_SIZE) eval_input = lambda: model.input_fn(hparams.eval_files, tf_transform_output, batch_size=EVAL_BATCH_SIZE) train_spec = tf_estimator.TrainSpec(train_input, max_steps=hparams.train_steps) serving_receiver_fn = lambda: model.example_serving_receiver_fn(tf_transform_output, schema) exporter = tf_estimator.FinalExporter('chicago-taxi', serving_receiver_fn) eval_spec = tf_estimator.EvalSpec(eval_input, steps=hparams.eval_steps, exporters=[exporter], name='chicago-taxi-eval') run_config = tf_estimator.RunConfig(save_checkpoints_steps=999, keep_checkpoint_max=1) serving_model_dir = os.path.join(hparams.output_dir, SERVING_MODEL_DIR) run_config = run_config.replace(model_dir=serving_model_dir) estimator = model.build_estimator(tf_transform_output, hidden_units=[max(2, int(FIRST_DNN_LAYER_SIZE * DNN_DECAY_FACTOR ** i)) for i in range(NUM_DNN_LAYERS)], config=run_config) tf_estimator.train_and_evaluate(estimator, train_spec, eval_spec) return estimator
Run the training and evaluate using the high level API. Args: hparams: Holds hyperparameters used to train the model as name/value pairs. Returns: The estimator that was used for training (and maybe eval)
github-repos
def SetAndLoadTagFile(self, tagging_file_path): tag_file = tagging_file.TaggingFile(tagging_file_path) self._tagging_rules = tag_file.GetEventTaggingRules()
Sets the tag file to be used by the plugin. Args: tagging_file_path (str): path of the tagging file.
juraj-google-style
def get_archive(self, path, chunk_size=DEFAULT_DATA_CHUNK_SIZE): return self.client.api.get_archive(self.id, path, chunk_size)
Retrieve a file or folder from the container in the form of a tar archive. Args: path (str): Path to the file or folder to retrieve chunk_size (int): The number of bytes returned by each iteration of the generator. If ``None``, data will be streamed as it is received. Default: 2 MB Returns: (tuple): First element is a raw tar data stream. Second element is a dict containing ``stat`` information on the specified ``path``. Raises: :py:class:`docker.errors.APIError` If the server returns an error. Example: >>> f = open('./sh_bin.tar', 'wb') >>> bits, stat = container.get_archive('/bin/sh') >>> print(stat) {'name': 'sh', 'size': 1075464, 'mode': 493, 'mtime': '2018-10-01T15:37:48-07:00', 'linkTarget': ''} >>> for chunk in bits: ... f.write(chunk) >>> f.close()
codesearchnet
def skip(reason, extras=None): raise signals.TestSkip(reason, extras)
Skip a test. Args: reason: The reason this test is skipped. extras: An optional field for extra information to be included in test result. Raises: signals.TestSkip: Mark a test as skipped.
github-repos
def stop(self, timeout_s=None): self._stopping.set() with self._current_phase_thread_lock: phase_thread = self._current_phase_thread if (not phase_thread): return if phase_thread.is_alive(): phase_thread.kill() _LOG.debug('Waiting for cancelled phase to exit: %s', phase_thread) timeout = timeouts.PolledTimeout.from_seconds(timeout_s) while (phase_thread.is_alive() and (not timeout.has_expired())): time.sleep(0.1) _LOG.debug('Cancelled phase %s exit', ("didn't" if phase_thread.is_alive() else 'did')) self.test_state.stop_running_phase()
Stops execution of the current phase, if any. It will raise a ThreadTerminationError, which will cause the test to stop executing and terminate with an ERROR state. Args: timeout_s: int or None, timeout in seconds to wait for the phase to stop.
codesearchnet
def parse_gene_panel(path, institute='cust000', panel_id='test', panel_type='clinical', date=datetime.now(), version=1.0, display_name=None, genes=None): LOG.info('Parsing gene panel %s', panel_id) gene_panel = {} gene_panel['path'] = path gene_panel['type'] = panel_type gene_panel['date'] = date gene_panel['panel_id'] = panel_id gene_panel['institute'] = institute version = (version or 1.0) gene_panel['version'] = float(version) gene_panel['display_name'] = (display_name or panel_id) if (not path): panel_handle = genes else: panel_handle = get_file_handle(gene_panel['path']) gene_panel['genes'] = parse_genes(gene_lines=panel_handle) return gene_panel
Parse the panel info and return a gene panel Args: path(str): Path to panel file institute(str): Name of institute that owns the panel panel_id(str): Panel id date(datetime.datetime): Date of creation version(float) full_name(str): Option to have a long name Returns: gene_panel(dict)
codesearchnet
def dot_product(p1, p2, o=(0, 0)): v1 = vector(o, p1) v2 = vector(o, p2) return v1[0] * v2[0] + v1[1] * v2[1]
Returns dot product Args: p1, p2: point (x, y) o: origin
juraj-google-style
def from_spec(cls, spec: Spec, _run_init: bool=True) -> Union[Self, type[Self]]: if spec.type is None: raise ValueError(f'Spec type not found in {spec}') subspace = _spec_type_to_subspace(spec.type) subclass: type[Self] = _KNOWN_SPECIFIABLE[subspace].get(spec.type, None) if subclass is None: raise ValueError(f"Unknown spec type '{spec.type}' in {spec}") if spec.config is None: return subclass kwargs = {k: _specifiable_from_spec_helper(v, _run_init) for k, v in spec.config.items()} if _run_init: kwargs['_run_init'] = True return subclass(**kwargs)
Generate a `Specifiable` subclass object based on a spec. Args: spec: the specification of a `Specifiable` subclass object _run_init: whether to call `__init__` or not for the initial instantiation Returns: Self: the `Specifiable` subclass object
github-repos
def _distributed_apply(self, distribution, grads_and_vars, global_step=None, name=None): reduced_grads = distribution.extended.batch_reduce_to(ds_reduce_util.ReduceOp.SUM, grads_and_vars) var_list = [v for _, v in grads_and_vars] grads_and_vars = zip(reduced_grads, var_list) with ops.init_scope(): self._create_slots(var_list) def update(v, g): assert v is not None try: g = indexed_slices.convert_to_tensor_or_indexed_slices(g) except TypeError: raise TypeError('Gradient must be convertible to a Tensor or IndexedSlices, or None: %s' % g) if not isinstance(g, (tensor.Tensor, indexed_slices.IndexedSlices)): raise TypeError('Gradient must be a Tensor, IndexedSlices, or None: %s' % g) p = _get_processor(v) if context.executing_eagerly() or (resource_variable_ops.is_resource_variable(v) and (not v._in_graph_mode)): scope_name = v.name.split(':')[0] else: scope_name = v.op.name with ops.name_scope('update_' + scope_name): return p.update_op(self, g) with ops.name_scope(name, self._name) as name: self._prepare() update_ops = [op for grad, var in grads_and_vars for op in distribution.extended.update(var, update, args=(grad,), group=False)] def finish(self, update_ops): return self._finish(update_ops, 'update') non_slot_devices = distribution.extended.non_slot_devices(var_list) finish_updates = distribution.extended.update_non_slot(non_slot_devices, finish, args=(self, update_ops), group=False) if global_step is None: apply_updates = distribution.group(finish_updates, name=name) else: with ops.control_dependencies(finish_updates): apply_updates = distribution.extended.update(global_step, state_ops.assign_add, args=(1,), kwargs={'name': name}) if not context.executing_eagerly(): if isinstance(apply_updates, tensor.Tensor): apply_updates = apply_updates.op train_op = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP) if apply_updates not in train_op: train_op.append(apply_updates) return apply_updates
A version of `apply_gradients` for cross-replica context. This is a version of `apply_gradients()` for when you are using a `DistributionStrategy` and are in a cross-replica context. If in a replica context, use `apply_gradients()` as normal. Args: distribution: A `DistributionStrategy` object. grads_and_vars: List of (gradient, variable) pairs as returned by `compute_gradients()`, and then aggregated across replicas. global_step: Optional (mirrored) `Variable` to increment by one after the variables have been updated. name: Optional name for the returned operation. Default to the name passed to the `Optimizer` constructor. Returns: An `Operation` that applies the specified gradients across all replicas. If `global_step` was not None, that operation also increments `global_step`
github-repos
def find_call(self, path, method): if (not path.endswith('/')): path += '/' path = path.split('/')[1:] return self._recursive_route_match(self._routes, path, method, [])
Find callable for the specified URL path and HTTP method. Args: path (:obj:`str`): URL path to match method (:obj:`str`): HTTP method Note: A trailing '/' is always assumed in the path.
codesearchnet
def _GetRowValue(self, query_hash, row, value_name): keys_name_to_index_map = self._keys_per_query.get(query_hash, None) if not keys_name_to_index_map: keys_name_to_index_map = { name: index for index, name in enumerate(row.keys())} self._keys_per_query[query_hash] = keys_name_to_index_map value_index = keys_name_to_index_map.get(value_name) return row[value_index]
Retrieves a value from the row. Args: query_hash (int): hash of the query, that uniquely identifies the query that produced the row. row (sqlite3.Row): row. value_name (str): name of the value. Returns: object: value.
juraj-google-style
def setup(self, puller: bool=None, subscriptions: Dict[(str, Any)]={}): if puller: puller = self._zmq.socket(zmq.PULL) (ip, port, host) = self.rslv('rcv') puller.bind('tcp: self.poll(puller) if subscriptions: for publisher in subscriptions: self.add(publisher, subscriptions[publisher].get('slots'), subscriptions[publisher].get('buffer-length')) logger.info('Listening to %s', {k: (1 if (subscriptions[k].get('slots') is None) else len(subscriptions[k].get('slots'))) for k in subscriptions})
Sets up this Node with the specified Interfaces before it is run. Args: puller: Indication if a Puller Interface should be created. subscriptions: Collection of the Subscriber Interfaces to be created and their Slots.
codesearchnet
def _take_lease(self, lease, uuid_path, safe=True): if safe: lease_taken_by = self._lease_valid(lease) if lease_taken_by and lease_taken_by != uuid_path: raise LagoSubnetLeaseTakenException( lease.subnet, lease_taken_by ) with open(uuid_path) as f: uuid = f.read() with open(lease.path, 'wt') as f: utils.json_dump((uuid_path, uuid), f) LOGGER.debug( 'Assigned subnet lease {} to {}'.format(lease.path, uuid_path) )
Persist the given lease to the store and make the prefix in uuid_path his owner Args: lease(lago.subnet_lease.Lease): Object representation of the lease uuid_path (str): Path to the prefix uuid safe (bool): If true (the default), validate the the lease isn't taken. Raises: LagoSubnetLeaseException: If safe == True and the lease is already taken.
juraj-google-style
def recipe_iam(config, auth_write, role, email): iam(config, {'auth': auth_write, 'role': role, 'email': email})
Sets project permissions for an email. Args: auth_write (authentication) - Credentials used for writing data. role (string) - projects/[project name]/roles/[role name] email (string) - Email address to grant role to.
github-repos
def create_from_binary(cls, ignore_signature_check, binary_view): sig, fx_offset, fx_count, lsn, seq_number, hard_link_count, first_attr_offset, \ usage_flags, entry_len, alloc_len, base_record, next_attr_id, record_n = \ cls._REPR.unpack(binary_view[:cls._REPR.size]) baad = None if not ignore_signature_check: if sig == b"FILE": baad = False elif sig == b"BAAD": baad = True else: raise HeaderError("Entry has no valid signature.", "MFTHeader") if fx_offset < MFTHeader._REPR.size: raise HeaderError("Fix up array begins within the header.", "MFTHeader") if first_attr_offset < cls._REPR.size: raise HeaderError("First attribute offset points to inside of the header.", "MFTHeader") if entry_len > alloc_len: raise HeaderError("Logical size of the MFT is bigger than MFT allocated size.", "MFTHeader") file_ref, file_seq = get_file_reference(base_record) nw_obj = cls((baad, fx_offset, fx_count, lsn, seq_number, hard_link_count, first_attr_offset, MftUsageFlags(usage_flags), entry_len, alloc_len, file_ref, file_seq, next_attr_id, record_n)) return nw_obj
Creates a new object MFTHeader from a binary stream. The binary stream can be represented by a byte string, bytearray or a memoryview of the bytearray. Args: binary_view (memoryview of bytearray) - A binary stream with the information of the attribute Returns: MFTHeader: New object using hte binary stream as source
juraj-google-style
def get_value(self): try: self.raw_value except (AttributeError, KeyError) as err: self._reraise_if_required(err) default_value = self.default_value if self.transform_default: return self.transform(default_value) return default_value else: value = {} for (key, subsetting) in self.settings.items(): value[key] = subsetting.get_value() return value
Return dictionary with values of subsettings. Returns: dict: values of subsettings.
codesearchnet
def make_legacy_input_feature_spec(include_label=True): result = {} if include_label: result['clicked'] = tf.io.FixedLenFeature(shape=[], dtype=tf.int64) for name in _INTEGER_COLUMN_NAMES: result[name] = tf.io.FixedLenFeature(shape=[], dtype=tf.int64, default_value=-1) for name in _CATEGORICAL_COLUMN_NAMES: result[name] = tf.io.FixedLenFeature(shape=[], dtype=tf.string, default_value='') return result
Input schema definition. Args: include_label: Indicates whether the label feature should be included. Returns: A `Schema` object.
github-repos
def register(self, type_name: str, cls: Type[Any], override_existing: bool=False) -> None: if type_name in self._type_to_cls_map and (not override_existing): raise KeyError(f'Type {type_name!r} has already been registered with class {self._type_to_cls_map[type_name].__name__}.') self._type_to_cls_map[type_name] = cls
Register a ``symbolic.Object`` class with a type name. Args: type_name: String identifier for the class, which will be used as the value of `_type` property when deciding which class to construct object when converting a JSON value to object. cls: Class to register. override_existing: Whether allow to override existing value if type name is already registered. Raises: KeyError: If type_name is already registered and override_existing is set to False.
github-repos
def __call__(self, input_ids: torch.LongTensor, z_threshold: float=3.0, return_dict: bool=False) -> Union[WatermarkDetectorOutput, np.array]: if input_ids[0, 0] == self.bos_token_id: input_ids = input_ids[:, 1:] if input_ids.shape[-1] - self.processor.context_width < 1: raise ValueError(f'Must have at least `1` token to score after the first min_prefix_len={self.processor.context_width} tokens required by the seeding scheme.') num_tokens_scored, green_token_count = self._score_ngrams_in_passage(input_ids) z_score = self._compute_z_score(green_token_count, num_tokens_scored) prediction = z_score > z_threshold if return_dict: p_value = self._compute_pval(z_score) confidence = 1 - p_value return WatermarkDetectorOutput(num_tokens_scored=num_tokens_scored, num_green_tokens=green_token_count, green_fraction=green_token_count / num_tokens_scored, z_score=z_score, p_value=p_value, prediction=prediction, confidence=confidence) return prediction
Args: input_ids (`torch.LongTensor`): The watermark generated text. It is advised to remove the prompt, which can affect the detection. z_threshold (`Dict`, *optional*, defaults to `3.0`): Changing this threshold will change the sensitivity of the detector. Higher z threshold gives less sensitivity and vice versa for lower z threshold. return_dict (`bool`, *optional*, defaults to `False`): Whether to return `~generation.WatermarkDetectorOutput` or not. If not it will return boolean predictions, ma Return: [`~generation.WatermarkDetectorOutput`] or `np.array`: A [`~generation.WatermarkDetectorOutput`] if `return_dict=True` otherwise a `np.array`.
github-repos
def get_profiles(adapter, vcf_file): vcf = get_file_handle(vcf_file) individuals = vcf.samples profiles = {individual: [] for individual in individuals} for profile_variant in adapter.profile_variants(): ref = profile_variant['ref'] alt = profile_variant['alt'] pos = profile_variant['pos'] end = (pos + 1) chrom = profile_variant['chrom'] region = f'{chrom}:{pos}-{end}' found_variant = False for variant in vcf(region): variant_id = get_variant_id(variant) if (variant_id == profile_variant['_id']): found_variant = True for (i, individual) in enumerate(individuals): genotype = GENOTYPE_MAP[variant.gt_types[i]] if (genotype == 'hom_alt'): gt_str = f'{alt}{alt}' elif (genotype == 'het'): gt_str = f'{ref}{alt}' else: gt_str = f'{ref}{ref}' profiles[individual].append(gt_str) break if (not found_variant): for individual in individuals: profiles[individual].append(f'{ref}{ref}') return profiles
Given a vcf, get a profile string for each sample in the vcf based on the profile variants in the database Args: adapter(MongoAdapter): Adapter to mongodb vcf_file(str): Path to vcf file Returns: profiles (dict(str)): The profiles (given as strings) for each sample in vcf.
codesearchnet
def _evolve(self, state, qargs=None): if qargs is not None: return SuperOp(self)._evolve(state, qargs) state = self._format_state(state, density_matrix=True) if state.shape[0] != self._input_dim: raise QiskitError( "QuantumChannel input dimension is not equal to state dimension." ) return np.einsum('AB,AiBj->ij', state, np.reshape(self._data, self._bipartite_shape))
Evolve a quantum state by the QuantumChannel. Args: state (QuantumState): The input statevector or density matrix. qargs (list): a list of QuantumState subsystem positions to apply the operator on. Returns: DensityMatrix: the output quantum state as a density matrix. Raises: QiskitError: if the operator dimension does not match the specified QuantumState subsystem dimensions.
juraj-google-style
def stop(self, drain_queue_and_join=True): with self.start_stop_lock: if not self.running: return self.running = False if drain_queue_and_join: while True: try: value = self.future_queue.get(block=True, timeout=0.1) if isinstance(value, Exception): raise value inputs = value.get() self.future_queue.task_done() if inputs is not None: self.ready_queue.put(inputs) except queue.Empty: break self.run_thread.join() self.run_thread = None _SHARED_SEQUENCES[self.uid] = None
Stops running threads and wait for them to exit, if necessary. This method is thread safe and is called from various threads. Note that the `drain_queue_and_join` argument must be set correctly. It is safe to call this method multiple times, extra calls are ignored. Args: drain_queue_and_join: set to True to drain the queue of pending items and wait for the worker thread to complete. Set to False if invoked from a worker thread to avoid deadlocks. Note that setting this to False means this enqueuer won't be reused.
github-repos
def Validate(self, problems, validate_children=True): self.ValidateRouteId(problems) self.ValidateServicePeriod(problems) self.ValidateDirectionId(problems) self.ValidateTripId(problems) self.ValidateShapeIdsExistInShapeList(problems) self.ValidateRouteIdExistsInRouteList(problems) self.ValidateServiceIdExistsInServiceList(problems) self.ValidateBikesAllowed(problems) self.ValidateWheelchairAccessible(problems) if (self._schedule and validate_children): self.ValidateChildren(problems)
Validate attributes of this object. Check that this object has all required values set to a valid value without reference to the rest of the schedule. If the _schedule attribute is set then check that references such as route_id and service_id are correct. Args: problems: A ProblemReporter object validate_children: if True and the _schedule attribute is set than call ValidateChildren
codesearchnet
def experimental_set_type(self, type_proto) -> None: with self.graph._c_graph.get() as c_graph: if type_proto.type_id not in (full_type_pb2.TFT_UNSET, full_type_pb2.TFT_PRODUCT): raise ValueError('error setting the type of ', self.name, ': expected TFT_UNSET or TFT_PRODUCT, got ', type_proto.type_id) with c_api_util.tf_buffer(type_proto.SerializeToString()) as serialized: pywrap_tf_session.SetFullType(c_graph, self._c_op, serialized)
Sets the corresponding node's `experimental_type` field. See the description of `NodeDef.experimental_type` for more info. Args: type_proto: A FullTypeDef proto message. The root type_if of this object must be `TFT_PRODUCT`, even for ops which only have a singlre return value.
github-repos
def volatility(self, strike: types.FloatTensor, expiry_dates: Optional[types.DateTensor]=None, expiry_times: Optional[types.FloatTensor]=None, term: Optional[types.Period]=None) -> types.FloatTensor: pass
Returns the interpolated volatility on a specified set of expiries. Args: strike: The strikes for which the interpolation is desired. expiry_dates: Optional input specifying the expiry dates for which interpolation is desired. The user should supply either `expiry_dates` or `expiry_times` for interpolation. expiry_times: Optional real `Tensor` containing the time to expiration for which interpolation is desired. The user should supply either `expiry_dates` or `expiry_times` for interpolation. term: Optional input specifying the term of the underlying rate for which the interpolation is desired. Relevant for interest rate implied volatility data. Returns: A `Tensor` of the same shape as `expiry` with the interpolated volatility from the volatility surface.
github-repos
def write_payload(payload=None, objectInput=None): temp = tempfile.mkstemp()[1] log.debug('Write payload in temp file {!r}'.format(temp)) with open(temp, 'wb') as f: if payload: payload = base64.b64decode(payload) elif objectInput: if six.PY3: payload = objectInput.buffer.read() elif six.PY2: payload = objectInput.read() f.write(payload) return temp
This function writes a base64 payload or file object on disk. Args: payload (string): payload in base64 objectInput (object): file object/standard input to analyze Returns: Path of file
codesearchnet
def adaptive_set( self, reannealing_per=50, thermostat=0.9, t_min=0.001, t_default=1.0 ): self.__reannealing_per = reannealing_per self.__thermostat = thermostat self.__t_min = t_min self.__t_default = t_default
Init for Adaptive Simulated Annealing. Args: reannealing_per: How often will this model reanneals there per cycles. thermostat: Thermostat. t_min: The minimum temperature. t_default: The default temperature.
juraj-google-style
def from_dict(cls, tx): inputs = [Input.from_dict(input_) for input_ in tx['inputs']] outputs = [Output.from_dict(output) for output in tx['outputs']] return cls(tx['operation'], tx['asset'], inputs, outputs, tx['metadata'], tx['version'], hash_id=tx['id'])
Transforms a Python dictionary to a Transaction object. Args: tx_body (dict): The Transaction to be transformed. Returns: :class:`~bigchaindb.common.transaction.Transaction`
juraj-google-style
def writeTable(self, tableName): lock_and_call((lambda : self._impl.writeTable(tableName)), self._lock)
Write the table corresponding to the specified name, equivalent to the AMPL statement .. code-block:: ampl write table tableName; Args: tableName: Name of the table to be written.
codesearchnet
def _get_offset_from_gcs(self): headers = {'content-range': 'bytes */*'} (status, response_headers, content) = self._api.put_object(self._path_with_token, headers=headers) errors.check_status(status, [308], self._path, headers, response_headers, content, {'upload_path': self._path_with_token}) val = response_headers.get('range') if (val is None): return (- 1) (_, offset) = val.rsplit('-', 1) return int(offset)
Get the last offset that has been written to GCS. This is a utility method that does not modify self. Returns: an int of the last offset written to GCS by this upload, inclusive. -1 means nothing has been written.
codesearchnet
def autodiscover(self, message): if message["version"] in self.allowed_versions: logger.debug("<%s> Client version matches server " "version." % message["cuuid"]) response = serialize_data({"method": "OHAI Client", "version": self.version, "server_name": self.server_name}, self.compression, encryption=False) else: logger.warning("<%s> Client version %s does not match allowed server " "versions %s" % (message["cuuid"], message["version"], self.version)) response = serialize_data({"method": "BYE REGISTER"}, self.compression, encryption=False) return response
This function simply returns the server version number as a response to the client. Args: message (dict): A dictionary of the autodiscover message from the client. Returns: A JSON string of the "OHAI Client" server response with the server's version number. Examples: >>> response '{"method": "OHAI Client", "version": "1.0"}'
juraj-google-style
def get_image_features(self, pixel_values: torch.FloatTensor): image_outputs = self.vision_tower(pixel_values).last_hidden_state return self.multi_modal_projector(image_outputs)
Obtains image last hidden states from the vision tower and apply multimodal projection. Args: pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`) Returns: image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
github-repos
def get_symmetric_wallace_tensor(self, tau): wallace = self.get_wallace_tensor(tau) return Tensor((0.5 * (wallace + np.transpose(wallace, [2, 3, 0, 1]))))
Gets the symmetrized wallace tensor for determining yield strength criteria. Args: tau (3x3 array-like): stress at which to evaluate the wallace tensor.
codesearchnet
class Constant(Initializer): def __init__(self, value=0): self.value = value def __call__(self, shape, dtype=None, **kwargs): del kwargs return constant_op.constant(self.value, dtype=_get_dtype(dtype), shape=shape) def get_config(self): return {'value': self.value}
Initializer that generates tensors with constant values. Also available via the shortcut function `tf.keras.initializers.constant`. Only scalar values are allowed. The constant value provided must be convertible to the dtype requested when calling the initializer. Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.Constant(3.) >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.Constant(3.) >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) Args: value: A Python scalar.
github-repos
def concrete(self, other=None): new_system = self.clone() if other: new_system.applyFeatures(other, missing="other") soft_features = self.getValue(SoftFeatures.SOFT, []) score = 0 for f in sorted(soft_features, key=lambda f: f.soft, reverse=True): try: new_system.applyFeatures(f, missing="other") score += f.soft except: pass new_system.delValue(SoftFeatures.SOFT) return new_system, score
Return copy and score after being applied other system and soft features. Args: - other(system, optional): system to apply just before soft features. Return(tuple): tuple of the resulting system and its score.
juraj-google-style
def find_custom_args_with_details(file_content: str, custom_args_var_name: str) -> list[dict]: escaped_variable_name = re.escape(custom_args_var_name) regex_pattern = f'^\\s*({escaped_variable_name})\\s*=\\s*(r?\\"\\"\\")(.*?)(\\"\\"\\")' flags = re.MULTILINE | re.DOTALL match = re.search(regex_pattern, file_content, flags) if match: content = match.group(3).strip() return content return None
Find the given custom args variable in the file content and return its content. Args: file_content: The string content of the Python file. custom_args_var_name: The name of the custom args variable.
github-repos
def from_string(rxn_string): (rct_str, prod_str) = rxn_string.split('->') def get_comp_amt(comp_str): return {Composition(m.group(2)): float((m.group(1) or 1)) for m in re.finditer('([\\d\\.]*(?:[eE]-?[\\d\\.]+)?)\\s*([A-Z][\\w\\.\\(\\)]*)', comp_str)} return BalancedReaction(get_comp_amt(rct_str), get_comp_amt(prod_str))
Generates a balanced reaction from a string. The reaction must already be balanced. Args: rxn_string: The reaction string. For example, "4 Li + O2-> 2Li2O" Returns: BalancedReaction
codesearchnet
def list_devices(device_type=None): return distribution_lib.list_devices(device_type)
Return all the available devices based on the device type. Note: in a distributed setting, global devices are returned. Args: device_type: string, one of `"cpu"`, `"gpu"` or `"tpu"`. Defaults to `"gpu"` or `"tpu"` if available when `device_type` is not provided. Otherwise will return the `"cpu"` devices. Return: List of devices that are available for distribute computation.
github-repos
def forward(self, hidden_states: List[torch.Tensor], patch_height, patch_width) -> List[torch.Tensor]: batch_size = hidden_states[0].shape[0] hidden_states = torch.cat(hidden_states, dim=0) cls_token, hidden_states = (hidden_states[:, 0], hidden_states[:, 1:]) total_batch_size, sequence_length, num_channels = hidden_states.shape hidden_states = hidden_states.reshape(total_batch_size, patch_height, patch_width, num_channels) hidden_states = hidden_states.permute(0, 3, 1, 2).contiguous() if self.readout_type == 'project': hidden_states = hidden_states.flatten(2).permute((0, 2, 1)) readout = cls_token.unsqueeze(dim=1).expand_as(hidden_states) hidden_states = torch.cat((hidden_states, readout), -1) elif self.readout_type == 'add': hidden_states = hidden_states + cls_token.unsqueeze(-1) out = [] for stage_idx, hidden_state in enumerate(hidden_states.split(batch_size, dim=0)): if self.readout_type == 'project': hidden_state = self.readout_projects[stage_idx](hidden_state) hidden_state = hidden_state.permute(0, 2, 1).reshape(batch_size, -1, patch_height, patch_width) hidden_state = self.layers[stage_idx](hidden_state) out.append(hidden_state) return out
Args: hidden_states (`List[torch.FloatTensor]`, each of shape `(batch_size, sequence_length + 1, hidden_size)`): List of hidden states from the backbone.
github-repos
def parse_case_data(config=None, ped=None, owner=None, vcf_snv=None, vcf_sv=None, vcf_cancer=None, vcf_str=None, peddy_ped=None, peddy_sex=None, peddy_check=None, delivery_report=None, multiqc=None): config_data = (copy.deepcopy(config) or {}) if ('analysis_date' not in config_data): config_data['analysis_date'] = datetime.datetime.now() if ped: (family_id, samples) = parse_ped(ped) config_data['family'] = family_id config_data['samples'] = samples if ('owner' not in config_data): if (not owner): raise SyntaxError('Case has no owner') else: config_data['owner'] = owner if ('gene_panels' in config_data): config_data['gene_panels'] = [panel.strip() for panel in config_data['gene_panels']] config_data['default_gene_panels'] = [panel.strip() for panel in config_data['default_gene_panels']] config_data['peddy_ped'] = (peddy_ped or config_data.get('peddy_ped')) config_data['peddy_sex_check'] = (peddy_sex or config_data.get('peddy_sex')) config_data['peddy_ped_check'] = (peddy_check or config_data.get('peddy_check')) add_peddy_information(config_data) config_data['multiqc'] = (multiqc or config_data.get('multiqc')) config_data['vcf_snv'] = (vcf_snv if vcf_snv else config_data.get('vcf_snv')) config_data['vcf_sv'] = (vcf_sv if vcf_sv else config_data.get('vcf_sv')) config_data['vcf_str'] = (vcf_str if vcf_str else config_data.get('vcf_str')) log.debug('Config vcf_str set to {0}'.format(config_data['vcf_str'])) config_data['vcf_cancer'] = (vcf_cancer if vcf_cancer else config_data.get('vcf_cancer')) config_data['delivery_report'] = (delivery_report if delivery_report else config_data.get('delivery_report')) config_data['rank_model_version'] = config_data.get('rank_model_version') config_data['rank_score_threshold'] = config_data.get('rank_score_threshold', 0) config_data['track'] = config_data.get('track', 'rare') if config_data['vcf_cancer']: config_data['track'] = 'cancer' return config_data
Parse all data necessary for loading a case into scout This can be done either by providing a VCF file and other information on the command line. Or all the information can be specified in a config file. Please see Scout documentation for further instructions. Args: config(dict): A yaml formatted config file ped(iterable(str)): A ped formatted family file owner(str): The institute that owns a case vcf_snv(str): Path to a vcf file vcf_str(str): Path to a VCF file vcf_sv(str): Path to a vcf file vcf_cancer(str): Path to a vcf file peddy_ped(str): Path to a peddy ped multiqc(str): Path to dir with multiqc information Returns: config_data(dict): Holds all the necessary information for loading Scout
codesearchnet
def switch_to_window(self, window_name): data = {'name': window_name} self._execute(Command.SWITCH_TO_WINDOW, data)
Switch to the given window. Support: Web(WebView) Args: window_name(str): The window to change focus to. Returns: WebDriver Object.
codesearchnet
def get(self, tx_id): pool = current_app.config['bigchain_pool'] with pool() as bigchain: tx = bigchain.get_transaction(tx_id) if not tx: return make_error(404) return tx.to_dict()
API endpoint to get details about a transaction. Args: tx_id (str): the id of the transaction. Return: A JSON string containing the data about the transaction.
juraj-google-style
def run_inference(self, batch: Sequence[np.ndarray], engine: TensorRTEngine, inference_args: Optional[dict[str, Any]]=None) -> Iterable[PredictionResult]: return self.inference_fn(batch, engine, inference_args)
Runs inferences on a batch of Tensors and returns an Iterable of TensorRT Predictions. Args: batch: A np.ndarray or a np.ndarray that represents a concatenation of multiple arrays as a batch. engine: A TensorRT engine. inference_args: Any additional arguments for an inference that are not applicable to TensorRT. Returns: An Iterable of type PredictionResult.
github-repos
def Images(self, run, tag): accumulator = self.GetAccumulator(run) return accumulator.Images(tag)
Retrieve the image events associated with a run and tag. Args: run: A string name of the run for which values are retrieved. tag: A string name of the tag for which values are retrieved. Raises: KeyError: If the run is not found, or the tag is not available for the given run. Returns: An array of `event_accumulator.ImageEvents`.
juraj-google-style
def join(self, *args, **kwargs): super(ThreadReturn, self).join(*args, **kwargs) return self._return
Joins the thread. Args: self (ThreadReturn): the ``ThreadReturn`` instance args: optional list of arguments kwargs: optional key-word arguments Returns: The return value of the exited thread.
juraj-google-style
def authenticate(self): basic_auth = request.authorization is_valid = False user = None if basic_auth: (is_valid, user) = self.check_basic_auth(basic_auth.username, basic_auth.password) else: token = request.headers.get('Authorization', None) param_token = request.args.get('access_token') if (token or param_token): if token: token = token[6:] else: token = param_token log.debug('Received token: %s', token) (is_valid, user) = self.check_token_auth(token) return (is_valid, user)
Authenticate user by any means and return either true or false. Args: Returns: tuple (is_valid, username): True is valid user, False if not
codesearchnet
def FindFileByName(self, file_name): try: return self._file_descriptors[file_name] except KeyError: pass try: file_proto = self._internal_db.FindFileByName(file_name) except KeyError as error: if self._descriptor_db: file_proto = self._descriptor_db.FindFileByName(file_name) else: raise error if (not file_proto): raise KeyError(('Cannot find a file named %s' % file_name)) return self._ConvertFileProtoToFileDescriptor(file_proto)
Gets a FileDescriptor by file name. Args: file_name: The path to the file to get a descriptor for. Returns: A FileDescriptor for the named file. Raises: KeyError: if the file cannot be found in the pool.
codesearchnet
def output_vars(self, transitive: bool=False) -> Set[str]: output_vars = set() def list_var_defs(k, v, p): del k, p if isinstance(v, SymbolDefinition): output_vars.add(v.name) if isinstance(v, Function): return pg.TraverseAction.CONTINUE return pg.TraverseAction.ENTER pg.traverse(self.line(), list_var_defs) if transitive: parent_func = self.parent_func() if parent_func is not None: for i in range(self.line_number(), len(parent_func.body)): line = parent_func.body[i] line_input_vars = line.input_vars() if output_vars & line_input_vars: output_vars.update(line.output_vars()) return output_vars
Returns the output context from this instruction. Args: transitive: If True, transitive output context will be included. Returns: A set of output variable names.
github-repos
def ParseFileObject(self, parser_mediator, file_object): file_offset = 0 try: (timestamp, event_data) = self._ReadEntry(parser_mediator, file_object, file_offset) except errors.ParseError as exception: raise errors.UnableToParseFile('Unable to parse first utmp entry with error: {0!s}'.format(exception)) if (not event_data.username): raise errors.UnableToParseFile('Unable to parse first utmp entry with error: missing username') if (not timestamp): raise errors.UnableToParseFile('Unable to parse first utmp entry with error: missing timestamp') date_time = dfdatetime_posix_time.PosixTimeInMicroseconds(timestamp=timestamp) event = time_events.DateTimeValuesEvent(date_time, definitions.TIME_DESCRIPTION_START) parser_mediator.ProduceEventWithEventData(event, event_data) file_offset = file_object.tell() file_size = file_object.get_size() while (file_offset < file_size): if parser_mediator.abort: break try: (timestamp, event_data) = self._ReadEntry(parser_mediator, file_object, file_offset) except errors.ParseError: break date_time = dfdatetime_posix_time.PosixTimeInMicroseconds(timestamp=timestamp) event = time_events.DateTimeValuesEvent(date_time, definitions.TIME_DESCRIPTION_START) parser_mediator.ProduceEventWithEventData(event, event_data) file_offset = file_object.tell()
Parses an utmp file-like object. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. file_object (dfvfs.FileIO): a file-like object. Raises: UnableToParseFile: when the file cannot be parsed.
codesearchnet
def _adjusted_script_code(self, script): script_code = ByteData() if script[0] == len(script) - 1: return script script_code += VarInt(len(script)) script_code += script return script_code
Checks if the script code pased in to the sighash function is already length-prepended This will break if there's a redeem script that's just a pushdata That won't happen in practice Args: script (bytes): the spend script Returns: (bytes): the length-prepended script (if necessary)
juraj-google-style
def _ParseFileEntry(self, knowledge_base, file_entry): if not file_entry or not file_entry.link: raise errors.PreProcessFail( 'Unable to read: {0:s} with error: not a symbolic link'.format( self.ARTIFACT_DEFINITION_NAME)) _, _, time_zone = file_entry.link.partition('zoneinfo/') if time_zone: try: knowledge_base.SetTimeZone(time_zone) except ValueError: pass
Parses artifact file system data for a preprocessing attribute. Args: knowledge_base (KnowledgeBase): to fill with preprocessing information. file_entry (dfvfs.FileEntry): file entry that contains the artifact value data. Raises: errors.PreProcessFail: if the preprocessing fails.
juraj-google-style
def _ExtractContentFromDataStream( self, mediator, file_entry, data_stream_name): self.processing_status = definitions.STATUS_INDICATOR_EXTRACTING if self._processing_profiler: self._processing_profiler.StartTiming('extracting') self._event_extractor.ParseDataStream( mediator, file_entry, data_stream_name) if self._processing_profiler: self._processing_profiler.StopTiming('extracting') self.processing_status = definitions.STATUS_INDICATOR_RUNNING self.last_activity_timestamp = time.time()
Extracts content from a data stream. Args: mediator (ParserMediator): mediates the interactions between parsers and other components, such as storage and abort signals. file_entry (dfvfs.FileEntry): file entry to extract its content. data_stream_name (str): name of the data stream whose content is to be extracted.
juraj-google-style
def affine_coupling(name, x, mid_channels=512, activation='relu', reverse=False, dropout=0.0): with tf.variable_scope(name, reuse=tf.AUTO_REUSE): x_shape = common_layers.shape_list(x) (x1, x2) = tf.split(x, num_or_size_splits=2, axis=(- 1)) z1 = x1 log_scale_and_shift = conv_stack('nn', x1, mid_channels, x_shape[(- 1)], activation=activation, dropout=dropout) shift = log_scale_and_shift[(:, :, :, 0::2)] scale = tf.nn.sigmoid((log_scale_and_shift[(:, :, :, 1::2)] + 2.0)) if (not reverse): z2 = ((x2 + shift) * scale) else: z2 = ((x2 / scale) - shift) objective = tf.reduce_sum(tf.log(scale), axis=[1, 2, 3]) if reverse: objective *= (- 1) return (tf.concat([z1, z2], axis=3), objective)
Reversible affine coupling layer. Args: name: variable scope. x: 4-D Tensor. mid_channels: number of channels in the coupling layer. activation: Can be either "relu" or "gatu". reverse: Forward or reverse operation. dropout: default, 0.0 Returns: output: x shifted and scaled by an affine transformation. objective: log-determinant of the jacobian
codesearchnet
def _Execute(self, http): message = mime_multipart.MIMEMultipart('mixed') setattr(message, '_write_headers', lambda self: None) for key in self.__request_response_handlers: msg = mime_nonmultipart.MIMENonMultipart('application', 'http') msg['Content-Transfer-Encoding'] = 'binary' msg['Content-ID'] = self._ConvertIdToHeader(key) body = self._SerializeRequest( self.__request_response_handlers[key].request) msg.set_payload(body) message.attach(msg) request = http_wrapper.Request(self.__batch_url, 'POST') request.body = message.as_string() request.headers['content-type'] = ( 'multipart/mixed; boundary="%s"') % message.get_boundary() response = http_wrapper.MakeRequest(http, request) if response.status_code >= 300: raise exceptions.HttpError.FromResponse(response) header = 'content-type: %s\r\n\r\n' % response.info['content-type'] content = response.content if isinstance(content, bytes) and self.__response_encoding: content = response.content.decode(self.__response_encoding) parser = email_parser.Parser() mime_response = parser.parsestr(header + content) if not mime_response.is_multipart(): raise exceptions.BatchError( 'Response not in multipart/mixed format.') for part in mime_response.get_payload(): request_id = self._ConvertHeaderToId(part['Content-ID']) response = self._DeserializeResponse(part.get_payload()) self.__request_response_handlers[request_id] = ( self.__request_response_handlers[request_id]._replace( response=response))
Serialize batch request, send to server, process response. Args: http: A httplib2.Http object to be used to make the request with. Raises: httplib2.HttpLib2Error if a transport error has occured. apiclient.errors.BatchError if the response is the wrong format.
juraj-google-style
def GetResults(self): result = analyzer_result.AnalyzerResult() result.analyzer_name = self.NAME result.attribute_name = self._ATTRIBUTE_NAME rule_names = [match.rule for match in self._matches] result.attribute_value = ','.join(rule_names) return [result]
Retrieves results of the most recent analysis. Returns: list[AnalyzerResult]: results.
codesearchnet
def get_proj(prj_code): if (prj_code in CUSTOM_PRJ): proj = pyproj.Proj(CUSTOM_PRJ[prj_code]) else: proj = pyproj.Proj(init=prj_code) return proj
Helper method for handling projection codes that are unknown to pyproj Args: prj_code (str): an epsg proj code Returns: projection: a pyproj projection
codesearchnet
def set_disk_timeout(timeout, power='ac', scheme=None): return _set_powercfg_value(scheme=scheme, sub_group='SUB_DISK', setting_guid='DISKIDLE', power=power, value=timeout)
Set the disk timeout in minutes for the given power scheme Args: timeout (int): The amount of time in minutes before the disk will timeout power (str): Set the value for AC or DC power. Default is ``ac``. Valid options are: - ``ac`` (AC Power) - ``dc`` (Battery) scheme (str): The scheme to use, leave as ``None`` to use the current. Default is ``None``. This can be the GUID or the Alias for the Scheme. Known Aliases are: - ``SCHEME_BALANCED`` - Balanced - ``SCHEME_MAX`` - Power saver - ``SCHEME_MIN`` - High performance Returns: bool: ``True`` if successful, otherwise ``False`` CLI Example: .. code-block:: bash # Sets the disk timeout to 30 minutes on battery salt '*' powercfg.set_disk_timeout 30 power=dc
codesearchnet
def _process_new(self, feed_item): if feed_item.get(FieldMap.AD_ACTIVE, None): self._wait_all_creative_activation(feed_item) campaign = self._campaign_dao.get(feed_item, required=True) creative_assignments = [] placement_assignments = [] event_tag_assignments = [] self._process_assignments(feed_item, creative_assignments, placement_assignments, event_tag_assignments, campaign) creative_rotation = {'creativeAssignments': creative_assignments} self._setup_rotation_strategy(creative_rotation, feed_item) delivery_schedule = {'impressionRatio': '1', 'priority': feed_item.get(FieldMap.AD_PRIORITY, None), 'hardCutoff': feed_item.get(FieldMap.AD_HARDCUTOFF, None)} ad = {'active': feed_item.get(FieldMap.AD_ACTIVE, None), 'archived': feed_item.get(FieldMap.AD_ARCHIVED, None), 'campaignId': campaign['id'], 'creativeRotation': creative_rotation, 'deliverySchedule': delivery_schedule, 'endTime': feed_item.get(FieldMap.AD_END_DATE, None) if 'T' in feed_item.get(FieldMap.AD_END_DATE, None) else StringExtensions.convertDateStrToDateTimeStr(feed_item.get(FieldMap.AD_END_DATE, None), '23:59:59'), 'name': feed_item.get(FieldMap.AD_NAME, None), 'placementAssignments': placement_assignments, 'startTime': feed_item.get(FieldMap.AD_START_DATE, None) if 'T' in feed_item.get(FieldMap.AD_START_DATE, None) else StringExtensions.convertDateStrToDateTimeStr(feed_item.get(FieldMap.AD_START_DATE, None)), 'type': feed_item.get(FieldMap.AD_TYPE, 'AD_SERVING_STANDARD_AD'), 'eventTagOverrides': event_tag_assignments} self._process_landing_page(ad, feed_item) return ad
Creates a new ad DCM object from a feed item representing an ad from the Bulkdozer feed. This function simply creates the object to be inserted later by the BaseDAO object. Args: feed_item: Feed item representing the ad from the Bulkdozer feed. Returns: An ad object ready to be inserted in DCM through the API.
github-repos
def set_window_position(self, x, y, window_handle='current'): self._execute(Command.SET_WINDOW_POSITION, {'x': int(x), 'y': int(y), 'window_handle': window_handle})
Sets the x,y position of the current window. Support: Web(WebView) Args: x(int): the x-coordinate in pixels. y(int): the y-coordinate in pixels. window_handle(str): Identifier of window_handle, default to 'current'. Returns: WebDriver Object.
codesearchnet
def ping(self, suffix='public_tokens/'): return self.remote_utils.ping(super(neuroRemote, self).url(), suffix)
Return the status-code of the API (estimated using the public-tokens lookup page). Arguments: suffix (str : 'public_tokens/'): The url endpoint to check Returns: int: status code
juraj-google-style
def add_to_gitignore(line: str): if not line.endswith('\n'): line = f'{line}\n' if GIT_IGNORE.exists(): if line in GIT_IGNORE.read_text(encoding='utf8'): return previous_content = GIT_IGNORE.read_text(encoding='utf8') else: previous_content = '' GIT_IGNORE.write_text(previous_content + line, encoding='utf8')
Adds a line to the .gitignore file of the repo Args: line: line to add
juraj-google-style
def normalize(array, min_value=0., max_value=1.): arr_min = np.min(array) arr_max = np.max(array) normalized = (array - arr_min) / (arr_max - arr_min + K.epsilon()) return (max_value - min_value) * normalized + min_value
Normalizes the numpy array to (min_value, max_value) Args: array: The numpy array min_value: The min value in normalized array (Default value = 0) max_value: The max value in normalized array (Default value = 1) Returns: The array normalized to range between (min_value, max_value)
juraj-google-style
def data(self, resource_value, return_value=False): if return_value: self._request_entity = None self._request.add_payload('returnValue', True) self._request_uri = '{}/{}/data'.format(self._request_uri, resource_value)
Alias for metric_name method +--------------+------------------------------------+ | HTTP Method | API Endpoint URI's | +==============+====================================+ | POST | /v2/customMetrics/{id}|{name}/data | +--------------+------------------------------------+ Example ------- The weight value is optional. .. code-block:: javascript { "value": 1, "weight": 1, } **Keyed Example** The weight value is optional. .. code-block:: javascript { "value": 1, "weight": 1, "name": "src1" } Args: resource_name (string): The metric name.
codesearchnet