code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def _check_cores_output_sizes(self):
for core_sizes in zip(*tuple(_get_flat_core_sizes(self._cores))):
first_core_list = core_sizes[0][1:]
for (i, core_list) in enumerate(core_sizes[1:]):
if (core_list[1:] != first_core_list):
raise ValueError(('The outputs of the provided cores are not able to be concatenated along the first feature dimension. Core 0 has shape %s, whereas Core %d has shape %s - these must only differ in the first dimension' % (core_sizes[0], (i + 1), core_list))) | Checks the output_sizes of the cores of the DeepRNN module.
Raises:
ValueError: if the outputs of the cores cannot be concatenated along their
first dimension. | codesearchnet |
def _post_process_apply(self, result_data, axis, try_scale=True):
if try_scale:
try:
internal_index = self.compute_index(0, result_data, True)
except IndexError:
internal_index = self.compute_index(0, result_data, False)
try:
internal_columns = self.compute_index(1, result_data, True)
except IndexError:
internal_columns = self.compute_index(1, result_data, False)
else:
internal_index = self.compute_index(0, result_data, False)
internal_columns = self.compute_index(1, result_data, False)
if (not axis):
index = internal_index
if (len(internal_columns) != len(self.columns)):
columns = internal_columns
else:
columns = self.columns
else:
columns = internal_columns
if (len(internal_index) != len(self.index)):
index = internal_index
else:
index = self.index
return self.__constructor__(result_data, index, columns) | Recompute the index after applying function.
Args:
result_data: a BaseFrameManager object.
axis: Target axis along which function was applied.
Returns:
A new PandasQueryCompiler. | codesearchnet |
def tensor_name(self):
return _get_tensor_name(self.node_name, self.output_slot) | Name of the tensor watched by the debug op.
Returns:
(`str`) `Tensor` name, in the form of `node_name`:`output_slot` | github-repos |
def find_function(self, context, funname):
if (funname in self.builtins):
return self.builtins[funname]
func = None
if isinstance(context, dict):
if (funname in context):
func = context[funname]
if isinstance(func, str):
func = self._deferred_add(func)
context[funname] = func
elif hasattr(context, funname):
func = getattr(context, funname)
if (func is None):
raise NotFoundError('Function not found', function=funname)
return func | Find a function in the given context by name.
This function will first search the list of builtins and if the
desired function is not a builtin, it will continue to search
the given context.
Args:
context (object): A dict or class that is a typedargs context
funname (str): The name of the function to find
Returns:
callable: The found function. | codesearchnet |
def update_conversation(self, conversation):
new_state = conversation.self_conversation_state
old_state = self._conversation.self_conversation_state
self._conversation = conversation
if not new_state.delivery_medium_option:
new_state.delivery_medium_option.extend(
old_state.delivery_medium_option
)
old_timestamp = old_state.self_read_state.latest_read_timestamp
new_timestamp = new_state.self_read_state.latest_read_timestamp
if new_timestamp == 0:
new_state.self_read_state.latest_read_timestamp = old_timestamp
for new_entry in conversation.read_state:
tstamp = parsers.from_timestamp(new_entry.latest_read_timestamp)
if tstamp == 0:
continue
uid = parsers.from_participantid(new_entry.participant_id)
if uid not in self._watermarks or self._watermarks[uid] < tstamp:
self._watermarks[uid] = tstamp | Update the internal state of the conversation.
This method is used by :class:`.ConversationList` to maintain this
instance.
Args:
conversation: ``Conversation`` message. | juraj-google-style |
def __init__(self, file_object):
if not file_object:
raise ValueError('Missing file-like object.')
self._file_object = file_object
tsk_img_type = getattr(
pytsk3, 'TSK_IMG_TYPE_EXTERNAL', pytsk3.TSK_IMG_TYPE_RAW)
pytsk3.Img_Info.__init__(self, url='', type=tsk_img_type) | Initializes an image object.
Args:
file_object (FileIO): file-like object.
Raises:
ValueError: if the file-like object is invalid. | juraj-google-style |
def decode_metar(self, metar):
try:
from metar import Metar
except:
return 'Unable to parse metars. Please install parser from https:
m = Metar.Metar(metar)
return m.string() | Simple method that decodes a given metar string.
Args:
metar (str): The metar data
Returns:
The metar data in readable format
Example::
from pyflightdata import FlightData
f=FlightData()
f.decode_metar('WSSS 181030Z 04009KT 010V080 9999 FEW018TCU BKN300 29/22 Q1007 NOSIG') | codesearchnet |
def GetLVMLogicalVolumeByPathSpec(self, path_spec):
volume_index = lvm.LVMPathSpecGetVolumeIndex(path_spec)
if volume_index is None:
return None
return self._vslvm_volume_group.get_logical_volume(volume_index) | Retrieves a LVM logical volume for a path specification.
Args:
path_spec (PathSpec): path specification.
Returns:
pyvslvm.logical_volume: a LVM logical volume or None if not available. | juraj-google-style |
def __init__(self, file_system, mount_point):
if not file_system or not mount_point:
raise ValueError('Missing file system or mount point value.')
if path_spec_factory.Factory.IsSystemLevelTypeIndicator(
file_system.type_indicator):
if not hasattr(mount_point, 'location'):
raise errors.PathSpecError(
'Mount point path specification missing location.')
super(FileSystemSearcher, self).__init__()
self._file_system = file_system
self._mount_point = mount_point | Initializes a file system searcher.
Args:
file_system (FileSystem): file system.
mount_point (PathSpec): mount point path specification that refers
to the base location of the file system.
Raises:
PathSpecError: if the mount point path specification is incorrect.
ValueError: when file system or mount point is not set. | juraj-google-style |
def _dump_to_pages(dump):
pos = 0
ret = []
start_tag = u'<page>\n'
end_tag = u'</page>\n'
while True:
start_pos = dump.find(start_tag, pos)
if (start_pos == (- 1)):
break
start_pos += len(start_tag)
end_pos = dump.find(end_tag, start_pos)
if (end_pos == (- 1)):
break
ret.append(dump[start_pos:end_pos])
pos = (end_pos + len(end_tag))
return ret | Extract pages from an xml dump.
Args:
dump: a unicode string
Returns:
a list of unicode strings | codesearchnet |
def trace2(A, B):
r
A = asarray(A, float)
B = asarray(B, float)
layout_error = "Wrong matrix layout."
if not (len(A.shape) == 2 and len(B.shape) == 2):
raise ValueError(layout_error)
if not (A.shape[1] == B.shape[0] and A.shape[0] == B.shape[1]):
raise ValueError(layout_error)
return _sum(A.T * B) | r"""Trace of :math:`\mathrm A \mathrm B^\intercal`.
Args:
A (array_like): Left-hand side.
B (array_like): Right-hand side.
Returns:
float: Trace of :math:`\mathrm A \mathrm B^\intercal`. | juraj-google-style |
def thread_safe_client(client, lock=None):
if lock is None:
lock = threading.Lock()
return _ThreadSafeProxy(client, lock) | Create a thread-safe proxy which locks every method call
for the given client.
Args:
client: the client object to be guarded.
lock: the lock object that will be used to lock client's methods.
If None, a new lock will be used.
Returns:
A thread-safe proxy for the given client. | juraj-google-style |
def as_list(self):
if self._dims is None:
raise ValueError('as_list() is not defined on an unknown TensorShape.')
return list(self._dims) | Returns a list of integers or `None` for each dimension.
Returns:
A list of integers or `None` for each dimension.
Raises:
ValueError: If `self` is an unknown shape with an unknown rank. | github-repos |
def _to_df(self, result, handle_annotations=None):
annotations = result._data
if (handle_annotations == 'first'):
annotations = [annotations[0]]
face_results = []
for (i, annotation) in enumerate(annotations):
data_dict = {}
for (field, val) in annotation.items():
if ('Confidence' in field):
data_dict[('face_' + field)] = val
elif ('oundingPoly' in field):
for (j, vertex) in enumerate(val['vertices']):
for dim in ['x', 'y']:
name = ('%s_vertex%d_%s' % (field, (j + 1), dim))
val = (vertex[dim] if (dim in vertex) else np.nan)
data_dict[name] = val
elif (field == 'landmarks'):
for lm in val:
name = (('landmark_' + lm['type']) + '_%s')
lm_pos = {(name % k): v for (k, v) in lm['position'].items()}
data_dict.update(lm_pos)
else:
data_dict[field] = val
face_results.append(data_dict)
return pd.DataFrame(face_results) | Converts a Google API Face JSON response into a Pandas Dataframe.
Args:
result (ExtractorResult): Result object from which to parse out a
Dataframe.
handle_annotations (str): How returned face annotations should be
handled in cases where there are multiple faces.
'first' indicates to only use the first face JSON object, all
other values will default to including every face. | codesearchnet |
def expand_docstring(**kwargs):
def _fn_wrapped(fn):
doc = inspect.cleandoc(fn.__doc__)
for k, v in six.iteritems(kwargs):
pattern = r'\$\{' + str(k) + r'\}'
doc = re.sub(pattern, lambda match: v, doc)
fn.__doc__ = doc
return fn
return _fn_wrapped | Decorator to programmatically expand the docstring.
Args:
**kwargs: Keyword arguments to set. For each key-value pair `k` and `v`,
the key is found as `${k}` in the docstring and replaced with `v`.
Returns:
Decorated function. | juraj-google-style |
def _match_dbname(self, dbname):
for config in self._clusters:
if re.match(config['pattern'], dbname):
return config
raise Exception('No such database %s.' % dbname) | Map a database name to the Cluster that holds the database.
Args:
dbname: A database name.
Returns:
A dict containing the information about the Cluster that holds the
database. | juraj-google-style |
def get_arrive_stop(self, **kwargs):
params = {'idStop': kwargs.get('stop_number'), 'cultureInfo': util.language_code(kwargs.get('lang'))}
result = self.make_request('geo', 'get_arrive_stop', **params)
if (not util.check_result(result, 'arrives')):
return (False, 'UNKNOWN ERROR')
values = util.response_list(result, 'arrives')
return (True, [emtype.Arrival(**a) for a in values]) | Obtain bus arrival info in target stop.
Args:
stop_number (int): Stop number to query.
lang (str): Language code (*es* or *en*).
Returns:
Status boolean and parsed response (list[Arrival]), or message string
in case of error. | codesearchnet |
def is_active(self):
if ((not self._is_active) and self._is_active_lock.acquire(False)):
if self._is_active:
self._is_active_lock.release()
else:
def compute_is_active():
self._is_active = any(self.generate_run_to_tools())
self._is_active_lock.release()
new_thread = threading.Thread(target=compute_is_active, name='ProfilePluginIsActiveThread')
new_thread.start()
return self._is_active | Whether this plugin is active and has any profile data to show.
Detecting profile data is expensive, so this process runs asynchronously
and the value reported by this method is the cached value and may be stale.
Returns:
Whether any run has profile data. | codesearchnet |
def _get_help_for_command_prefix(self, cmd_prefix):
lines = []
resolved_prefix = self._resolve_prefix(cmd_prefix)
if not resolved_prefix:
lines.append('Invalid command prefix: "%s"' % cmd_prefix)
return lines
lines.append(resolved_prefix)
if resolved_prefix in self._prefix_to_aliases:
lines.append(HELP_INDENT + 'Aliases: ' + ', '.join(self._prefix_to_aliases[resolved_prefix]))
lines.append('')
help_lines = self._prefix_to_help[resolved_prefix].split('\n')
for line in help_lines:
lines.append(HELP_INDENT + line)
return lines | Compile the help information for a given command prefix.
Args:
cmd_prefix: Command prefix, as the prefix itself or one of its aliases.
Returns:
A list of str as the help information for cmd_prefix. If the cmd_prefix
does not exist, the returned list of str will indicate that. | github-repos |
def projection_name(self, **kwargs: Dict[(str, Any)]) -> str:
return self.projection_name_format.format(**kwargs) | Define the projection name for this projector.
Note:
This function is just a basic placeholder and likely should be overridden.
Args:
kwargs: Projection information dict combined with additional arguments passed to the
projection function.
Returns:
Projection name string formatted with the passed options. By default, it returns
``projection_name_format`` formatted with the arguments to this function. | codesearchnet |
def from_prediction(features: FeatureDict, result: ModelOutput, b_factors: Optional[np.ndarray]=None, chain_index: Optional[np.ndarray]=None, remark: Optional[str]=None, parents: Optional[Sequence[str]]=None, parents_chain_index: Optional[Sequence[int]]=None) -> Protein:
return Protein(aatype=features['aatype'], atom_positions=result['final_atom_positions'], atom_mask=result['final_atom_mask'], residue_index=features['residue_index'] + 1, b_factors=b_factors if b_factors is not None else np.zeros_like(result['final_atom_mask']), chain_index=chain_index, remark=remark, parents=parents, parents_chain_index=parents_chain_index) | Assembles a protein from a prediction.
Args:
features: Dictionary holding model inputs.
result: Dictionary holding model outputs.
b_factors: (Optional) B-factors to use for the protein.
chain_index: (Optional) Chain indices for multi-chain predictions
remark: (Optional) Remark about the prediction
parents: (Optional) List of template names
Returns:
A protein instance. | github-repos |
def values(self, column_major=False):
if column_major:
return list(map(list, zip(*self._values)))
return [row[:] for row in self._values] | Return a nested list with the worksheet values.
Args:
column_major (bool): as list of columns (default list of rows)
Returns:
list: list of lists with values | juraj-google-style |
def plot_carriers(self, temp=300):
import matplotlib.pyplot as plt
plt.semilogy(self._bz.mu_steps,
abs(self._bz._carrier_conc[temp] / (self._bz.vol * 1e-24)),
linewidth=3.0, color='r')
self._plot_bg_limits()
self._plot_doping(temp)
plt.xlim(-0.5, self._bz.gap + 0.5)
plt.ylim(1e14, 1e22)
plt.ylabel("carrier concentration (cm-3)", fontsize=30.0)
plt.xlabel("E-E$_f$ (eV)", fontsize=30)
plt.xticks(fontsize=25)
plt.yticks(fontsize=25)
return plt | Plot the carrier concentration in function of Fermi level
Args:
temp: the temperature
Returns:
a matplotlib object | juraj-google-style |
def _getlatest_ami_id(context):
try:
response = context.aws_client("ec2").describe_images(
Filters=[
{"Name": "is-public", "Values": ["false"]},
{"Name": "name", "Values": [context.service_name + EFConfig.AMI_SUFFIX + "*"]}
])
except:
return None
if len(response["Images"]) > 0:
return sorted(response["Images"], key=itemgetter('CreationDate'), reverse=True)[0]["ImageId"]
else:
return None | Get the most recent AMI ID for a service
Args:
context: a populated EFVersionContext object
Returns:
ImageId or None if no images exist or on error | juraj-google-style |
def read_avro(file_path_or_buffer, schema=None, **kwargs):
if isinstance(file_path_or_buffer, six.string_types):
with open(file_path_or_buffer, 'rb') as f:
return __file_to_dataframe(f, schema, **kwargs)
else:
return __file_to_dataframe(file_path_or_buffer, schema, **kwargs) | Avro file reader.
Args:
file_path_or_buffer: Input file path or file-like object.
schema: Avro schema.
**kwargs: Keyword argument to pandas.DataFrame.from_records.
Returns:
Class of pd.DataFrame. | juraj-google-style |
def MultiOpenOrdered(self, urns, **kwargs):
precondition.AssertIterableType(urns, rdfvalue.RDFURN)
urn_filedescs = {}
for filedesc in self.MultiOpen(urns, **kwargs):
urn_filedescs[filedesc.urn] = filedesc
filedescs = []
for urn in urns:
try:
filedescs.append(urn_filedescs[urn])
except KeyError:
raise IOError(('No associated AFF4 object for `%s`' % urn))
return filedescs | Opens many URNs and returns handles in the same order.
`MultiOpen` can return file handles in arbitrary order. This makes it more
efficient and in most cases the order does not matter. However, there are
cases where order is important and this function should be used instead.
Args:
urns: A list of URNs to open.
**kwargs: Same keyword arguments as in `MultiOpen`.
Returns:
A list of file-like objects corresponding to the specified URNs.
Raises:
IOError: If one of the specified URNs does not correspond to the AFF4
object. | codesearchnet |
def __init__(self, name, aliases=None, description=None, urls=None):
super(DataTypeDefinition, self).__init__()
self.aliases = aliases or []
self.description = description
self.name = name
self.urls = urls | Initializes a data type definition.
Args:
name (str): name.
aliases (Optional[list[str]]): aliases.
description (Optional[str]): description.
urls (Optional[list[str]]): URLs. | juraj-google-style |
def cvt2frames(self,
frame_dir,
file_start=0,
filename_tmpl='{:06d}.jpg',
start=0,
max_num=0,
show_progress=True):
mkdir_or_exist(frame_dir)
if max_num == 0:
task_num = self.frame_cnt - start
else:
task_num = min(self.frame_cnt - start, max_num)
if task_num <= 0:
raise ValueError('start must be less than total frame number')
if start > 0:
self._set_real_position(start)
def write_frame(file_idx):
img = self.read()
filename = osp.join(frame_dir, filename_tmpl.format(file_idx))
cv2.imwrite(filename, img)
if show_progress:
track_progress(write_frame, range(file_start,
file_start + task_num))
else:
for i in range(task_num):
img = self.read()
if img is None:
break
filename = osp.join(frame_dir,
filename_tmpl.format(i + file_start))
cv2.imwrite(filename, img) | Convert a video to frame images
Args:
frame_dir (str): Output directory to store all the frame images.
file_start (int): Filenames will start from the specified number.
filename_tmpl (str): Filename template with the index as the
placeholder.
start (int): The starting frame index.
max_num (int): Maximum number of frames to be written.
show_progress (bool): Whether to show a progress bar. | juraj-google-style |
def __init__(self, x=0, y=0, w=0, h=0):
self._ptr = ffi.new('SDL_Rect *', [x, y, w, h]) | Construct a new Rect with the given position and size.
Args:
x (int): The x position of the upper left corner of the rectangle.
y (int): The y position of the upper left corner of the rectangle.
w (int): The width of the rectangle.
h (int): The height of the rectangle. | juraj-google-style |
def run(self, source, **kwargs):
kwargs['output'] = self.__graph__()
if isinstance(source, str):
import json
source = json.loads(source)
self.source = source
super(JSONProcessor, self).run(**kwargs)
self.output = kwargs['output']
return output | Method takes a JSON source and any keywords and transforms from
JSON to Lean BIBFRAME 2.0 triples
Args:
----
source: str, dict | codesearchnet |
def process_and_frame(self, doc: Document):
nested_docs = self.process_ems(doc)
parent_kg = doc.cdr_document.get('knowledge_graph', None)
if parent_kg:
if nested_docs and len(nested_docs) > 0:
for nested_doc in nested_docs:
json_doc = nested_doc.cdr_document
doc_id = json_doc['doc_id']
if doc_id != doc.doc_id:
for field_name in list(parent_kg):
field_extractions = parent_kg[field_name]
if not isinstance(field_extractions, list):
field_extractions = [field_extractions]
for i in range(0, len(field_extractions)):
field_extraction = field_extractions[i]
if 'value' in field_extraction and field_extraction['value'] == doc_id:
del field_extractions[i]
field_extractions.append(
{'value': json_doc, 'key': field_extraction['key'], 'is_nested': True}) | Processes a document and if it has child docs, embeds them in the parent document. Only works for 1 level of
nesting. Kind of hack, will implement properly later
Args:
doc: input document to be run etk modules on
Returns: | juraj-google-style |
def deployment_groups(self):
if (not self.__deployment_groups):
self.__deployment_groups = DeploymentGroups(self.__connection)
return self.__deployment_groups | Gets the Deployment Groups API client.
Returns:
DeploymentGroups: | codesearchnet |
def reduce(x, op='sum'):
import warnings
warnings.warn(
"Deprecated API. Use ``sum`` or ``mean`` instead.", DeprecationWarning)
from .function_bases import reduce_sum, reduce_mean
if op == 'sum':
return reduce_sum(x)
elif op == 'mean':
return reduce_mean(x)
raise ValueError() | Reduction function with given operation.
Args:
x (Variable): An input.
op (str): 'sum' or 'mean'.
Note:
This is deprecated. Use ``mean`` or ``sum`` instead. | juraj-google-style |
def filter_with_legacy_function(self, predicate) -> 'DatasetV2':
from tensorflow.python.data.ops import filter_op
return filter_op._FilterDataset(self, predicate, use_legacy_function=True) | Filters this dataset according to `predicate`.
Note: This is an escape hatch for existing uses of `filter` that do not work
with V2 functions. New uses are strongly discouraged and existing uses
should migrate to `filter` as this method will be removed in V2.
Args:
predicate: A function mapping a (nested) structure of tensors (having
shapes and types defined by `self.output_shapes` and
`self.output_types`) to a scalar `tf.bool` tensor.
Returns:
Dataset: The `Dataset` containing the elements of this dataset for which
`predicate` is `True`. | github-repos |
def skip(self, delta):
def update_fn(v):
return self._skip_single_var(v, delta)
if values_util.is_saving_non_distributed():
return update_fn(self.state)
if self._distribution_strategy is not None:
with distribute_lib.enter_or_assert_strategy(self._distribution_strategy):
if distribute_lib.in_cross_replica_context():
values_util.mark_as_unsaveable()
if distribute_lib.in_cross_replica_context() or 'CentralStorage' in type(self._distribution_strategy).__name__:
return distribute_lib.get_strategy().extended.update(self.state, update_fn)
return update_fn(self.state) | Advance the counter of a counter-based RNG.
Args:
delta: the amount of advancement. The state of the RNG after
`skip(n)` will be the same as that after `normal([n])`
(or any other distribution). The actual increment added to the
counter is an unspecified implementation detail.
Returns:
A `Tensor` of type `int64`. | github-repos |
def transpose(self, name=None, activate_final=None):
if (name is None):
name = (self.module_name + '_transpose')
if (activate_final is None):
activate_final = self.activate_final
output_sizes = [(lambda l=layer: l.input_shape[1]) for layer in self._layers]
output_sizes.reverse()
return MLP(name=name, output_sizes=output_sizes, activation=self.activation, activate_final=activate_final, initializers=self.initializers, partitioners=self.partitioners, regularizers=self.regularizers, use_bias=self.use_bias, use_dropout=self.use_dropout) | Returns transposed `MLP`.
Args:
name: Optional string specifying the name of the transposed module. The
default name is constructed by appending "_transpose"
to `self.module_name`.
activate_final: Optional boolean determining if the activation and batch
normalization, if turned on, are applied to the final layer.
Returns:
Matching transposed `MLP` module. | codesearchnet |
def clean_df(df, fill_nan=True, drop_empty_columns=True):
if fill_nan:
df = df.fillna(value=np.nan)
if drop_empty_columns:
df = df.dropna(axis=1, how='all')
return df.sort_index() | Clean a pandas dataframe by:
1. Filling empty values with Nan
2. Dropping columns with all empty values
Args:
df: Pandas DataFrame
fill_nan (bool): If any empty values (strings, None, etc) should be replaced with NaN
drop_empty_columns (bool): If columns whose values are all empty should be dropped
Returns:
DataFrame: cleaned DataFrame | juraj-google-style |
def _arguments(code, module):
arg_parser = CommandParser.create('')
try:
builtins = {'source': _table, 'datestring': _datestring}
env = {}
env.update(builtins)
exec(code, env)
for key in env:
if ((key in builtins) or (key[0] == '_')):
continue
val = env[key]
key = ('--%s' % key)
if isinstance(val, bool):
if val:
arg_parser.add_argument(key, default=val, action='store_true')
else:
arg_parser.add_argument(key, default=val, action='store_false')
elif (isinstance(val, basestring) or isinstance(val, int) or isinstance(val, float) or isinstance(val, int)):
arg_parser.add_argument(key, default=val)
elif isinstance(val, list):
arg_parser.add_argument(key, default=val, nargs='+')
elif isinstance(val, tuple):
arg_parser.add_argument(key, default=list(val), nargs='+')
elif (isinstance(val, dict) and ('type' in val)):
if (val['type'] == 'datestring'):
arg_parser.add_argument(key, default='', type=_make_string_formatter(val['format'], offset=val['offset']))
elif (val['type'] == 'table'):
if (val['format'] is not None):
arg_parser.add_argument(key, default='', type=_make_table_formatter(val['format'], offset=val['offset']))
else:
arg_parser.add_argument(key, default=val['name'], type=_make_table)
else:
raise Exception(('Cannot generate argument for %s of type %s' % (key, type(val))))
else:
raise Exception(('Cannot generate argument for %s of type %s' % (key, type(val))))
except Exception as e:
print(("%%sql arguments: %s from code '%s'" % (str(e), str(code))))
return arg_parser | Define pipeline arguments.
Args:
code: the Python code to execute that defines the arguments. | codesearchnet |
def cost_matrix(self, set_a, set_b, time_a, time_b):
costs = np.zeros((len(set_a), len(set_b)))
for a, item_a in enumerate(set_a):
for b, item_b in enumerate(set_b):
costs[a, b] = self.total_cost_function(item_a, item_b, time_a, time_b)
return costs | Calculates the costs (distances) between the items in set a and set b at the specified times.
Args:
set_a: List of STObjects
set_b: List of STObjects
time_a: time at which objects in set_a are evaluated
time_b: time at whcih object in set_b are evaluated
Returns:
A numpy array with shape [len(set_a), len(set_b)] containing the cost matrix between the items in set a
and the items in set b. | juraj-google-style |
def rebalance(self, weight, child, base=np.nan, update=True):
if (weight == 0):
if (child in self.children):
return self.close(child)
else:
return
if np.isnan(base):
base = self.value
if (child not in self.children):
c = SecurityBase(child)
c.setup(self._universe)
c.update(self.now)
self._add_child(c)
c = self.children[child]
delta = (weight - c.weight)
c.allocate((delta * base)) | Rebalance a child to a given weight.
This is a helper method to simplify code logic. This method is used
when we want to se the weight of a particular child to a set amount.
It is similar to allocate, but it calculates the appropriate allocation
based on the current weight.
Args:
* weight (float): The target weight. Usually between -1.0 and 1.0.
* child (str): child to allocate to - specified by name.
* base (float): If specified, this is the base amount all weight
delta calculations will be based off of. This is useful when we
determine a set of weights and want to rebalance each child
given these new weights. However, as we iterate through each
child and call this method, the base (which is by default the
current value) will change. Therefore, we can set this base to
the original value before the iteration to ensure the proper
allocations are made.
* update (bool): Force update? | codesearchnet |
def DeleteGRRTempFile(path):
precondition.AssertType(path, Text)
if not os.path.isabs(path):
raise ErrorBadPath("Path must be absolute")
prefix = config.CONFIG["Client.tempfile_prefix"]
directories = [
GetTempDirForRoot(root) for root in config.CONFIG["Client.tempdir_roots"]
]
if not _CheckIfPathIsValidForDeletion(
path, prefix=prefix, directories=directories):
msg = ("Can't delete temp file %s. Filename must start with %s "
"or lie within any of %s.")
raise ErrorNotTempFile(msg % (path, prefix, ";".join(directories)))
if os.path.exists(path):
files.FILE_HANDLE_CACHE.Flush()
os.remove(path)
else:
raise ErrorNotAFile("%s does not exist." % path) | Delete a GRR temp file.
To limit possible damage the path must be absolute and either the
file must be within any of the Client.tempdir_roots or the file name
must begin with Client.tempfile_prefix.
Args:
path: path string to file to be deleted.
Raises:
OSError: Permission denied, or file not found.
ErrorBadPath: Path must be absolute.
ErrorNotTempFile: Filename must start with Client.tempfile_prefix.
ErrorNotAFile: File to delete does not exist. | juraj-google-style |
def find_usbserial(vendor, product):
if platform.system() == 'Linux':
vendor, product = [('%04x' % (x)).strip() for x in (vendor, product)]
return linux_find_usbserial(vendor, product)
elif platform.system() == 'Darwin':
return osx_find_usbserial(vendor, product)
else:
raise NotImplementedError('Cannot find serial ports on %s'
% platform.system()) | Find the tty device for a given usbserial devices identifiers.
Args:
vendor: (int) something like 0x0000
product: (int) something like 0x0000
Returns:
String, like /dev/ttyACM0 or /dev/tty.usb... | juraj-google-style |
def CreateStorageWriter(cls, storage_format, session, path):
if storage_format == definitions.STORAGE_FORMAT_SQLITE:
return sqlite_writer.SQLiteStorageFileWriter(session, path)
return None | Creates a storage writer.
Args:
session (Session): session the storage changes are part of.
path (str): path to the storage file.
storage_format (str): storage format.
Returns:
StorageWriter: a storage writer or None if the storage file cannot be
opened or the storage format is not supported. | juraj-google-style |
def convex_hull_collide(nodes1, nodes2):
polygon1 = _helpers.simple_convex_hull(nodes1)
_, polygon_size1 = polygon1.shape
polygon2 = _helpers.simple_convex_hull(nodes2)
_, polygon_size2 = polygon2.shape
if polygon_size1 == 2 and polygon_size2 == 2:
return line_line_collide(polygon1, polygon2)
else:
return _helpers.polygon_collide(polygon1, polygon2) | Determine if the convex hulls of two curves collide.
.. note::
This is a helper for :func:`from_linearized`.
Args:
nodes1 (numpy.ndarray): Control points of a first curve.
nodes2 (numpy.ndarray): Control points of a second curve.
Returns:
bool: Indicating if the convex hulls collide. | juraj-google-style |
def _AvgPoolAlongRows(self, input_matrix, row_seq, overlapping):
output_image = np.zeros(input_matrix.shape[1])
row_max = row_seq[-1]
for i in range(row_seq.shape[0] - 1):
row_start = row_seq[i]
row_end = row_seq[i + 1] + 1 if overlapping else row_seq[i + 1]
row_end = min(row_end, row_max)
output_image = np.vstack((output_image, np.mean(input_matrix[row_start:row_end, :], axis=0)))
return output_image[1:, :] | Perform average pool along row of a 2-D matrix based on row_seq.
Args:
input_matrix: A 2-D matrix.
row_seq: Cumulative pooling sequence along row.
overlapping: Whether or not use overlapping when pooling.
Returns:
A 2-D matrix, with
* num_rows = len(row_seq)-1
* num_cols = input_matrix.num_cols. | github-repos |
def _format_time(self, time_per_unit, unit_name):
formatted = ''
if time_per_unit >= 1 or time_per_unit == 0:
formatted += f' {time_per_unit:.0f}s/{unit_name}'
elif time_per_unit >= 0.001:
formatted += f' {time_per_unit * 1000.0:.0f}ms/{unit_name}'
else:
formatted += f' {time_per_unit * 1000000.0:.0f}us/{unit_name}'
return formatted | format a given duration to display to the user.
Given the duration, this function formats it in either milliseconds
or seconds and displays the unit (i.e. ms/step or s/epoch).
Args:
time_per_unit: the duration to display
unit_name: the name of the unit to display
Returns:
A string with the correctly formatted duration and units | github-repos |
def __init__(self, hash=None, height=None, items=None):
self.TransactionHash = hash
self.TransactionHeight = height
if items is None:
self.Items = []
else:
self.Items = items | Create an instance.
Args:
hash (UInt256):
height (int):
items (list): | juraj-google-style |
def has_current_path(self, path, **kwargs):
try:
return self.assert_current_path(path, **kwargs)
except ExpectationNotMet:
return False | Checks if the page has the given path.
Args:
path (str | RegexObject): The string or regex that the current "path" should match.
**kwargs: Arbitrary keyword arguments for :class:`CurrentPathQuery`.
Returns:
bool: Whether it matches. | juraj-google-style |
def list_datasets(self):
def _row_gen(attributes):
for attr in attributes.values():
(yield (attr.name, attr.display_name))
return pd.DataFrame.from_records(_row_gen(self.datasets), columns=['name', 'display_name']) | Lists available datasets in a readable DataFrame format.
Returns:
pd.DataFrame: Frame listing available datasets. | codesearchnet |
def byte_swap_string_content(buffer, from_endiness, to_endiness):
num_of_strings = int.from_bytes(buffer.data[0:4], from_endiness)
string_content = bytearray(buffer.data[4 * (num_of_strings + 2):])
prefix_data = b''.join([int.from_bytes(buffer.data[i:i + 4], from_endiness).to_bytes(4, to_endiness) for i in range(0, (num_of_strings + 1) * 4 + 1, 4)])
buffer.data = prefix_data + string_content | Helper function for byte-swapping the string buffer.
Args:
buffer: TFLite string buffer of from_endiness format.
from_endiness: The original endianness format of the string buffer.
to_endiness: The destined endianness format of the string buffer. | github-repos |
def get_transcript_ids_for_ensembl_gene_ids(self, gene_ids, hgnc_symbols):
chroms = {"1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", \
"12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", \
"X", "Y"}
headers = {"content-type": "application/json"}
transcript_ids = []
for gene_id in gene_ids:
self.attempt = 0
ext = "/overlap/id/{}?feature=transcript".format(gene_id)
r = self.ensembl_request(ext, headers)
for item in json.loads(r):
if item["biotype"] not in ["protein_coding", "polymorphic_pseudogene"]:
continue
if item["Parent"] != gene_id or item["seq_region_name"] not in \
chroms or \
all([symbol not in item["external_name"] for symbol in hgnc_symbols]):
continue
transcript_ids.append(item["id"])
return transcript_ids | fetch the ensembl transcript IDs for a given ensembl gene ID.
Args:
gene_ids: list of Ensembl gene IDs for the gene
hgnc_symbols: list of possible HGNC symbols for gene | juraj-google-style |
def random_inputs(num_devices, input_shape=gin.REQUIRED, input_dtype=np.int32, input_range=(0, 255), output_shape=gin.REQUIRED, output_dtype=np.int32, output_range=(0, 9)):
if ((input_shape[0] % num_devices) != 0):
tf.logging.fatal('num_devices[%d] should divide the first dimension of input_shape[%s]', num_devices, input_shape)
if ((output_shape[0] % num_devices) != 0):
tf.logging.fatal('num_devices[%d] should divide the first dimension of output_shape[%s]', num_devices, output_shape)
def random_minibatches():
'Generate a stream of random mini-batches.'
if (input_dtype in [np.float16, np.float32, np.float64]):
rand = np.random.uniform
else:
rand = np.random.random_integers
while True:
inp = rand(input_range[0], input_range[1], input_shape)
inp = inp.astype(input_dtype)
out = rand(output_range[0], output_range[1], output_shape)
out = out.astype(output_dtype)
(yield (inp, out))
input_shape_without_batch = list(input_shape)[1:]
return Inputs(train_stream=random_minibatches, train_eval_stream=random_minibatches, eval_stream=random_minibatches, input_shape=input_shape_without_batch) | Make random Inputs for debugging.
Args:
num_devices: how many devices to build the inputs for.
input_shape: the shape of inputs (including batch dimension).
input_dtype: the type of the inputs (int32 by default).
input_range: the range of inputs (defaults to (0, 255)).
output_shape: the shape of outputs (including batch dimension).
output_dtype: the type of the outputs (int32 by default).
output_range: the range of outputs (defaults to (0, 9)).
Returns:
trax.inputs.Inputs | codesearchnet |
def occurrence(self, file_name=None, path=None, date=None):
if self._indicator_data.get('type') != 'File':
return None
occurrence_obj = FileOccurrence(file_name, path, date)
self._occurrences.append(occurrence_obj)
return occurrence_obj | Add a file Occurrence.
Args:
file_name (str, optional): The file name for this occurrence.
path (str, optional): The file path for this occurrence.
date (str, optional): The datetime expression for this occurrence.
Returns:
obj: An instance of Occurrence. | juraj-google-style |
def _ReadUUIDDataTypeDefinition(self, definitions_registry, definition_values, definition_name, is_member=False):
return self._ReadFixedSizeDataTypeDefinition(definitions_registry, definition_values, data_types.UUIDDefinition, definition_name, self._SUPPORTED_ATTRIBUTES_FIXED_SIZE_DATA_TYPE, default_size=16, is_member=is_member, supported_size_values=(16,)) | Reads an UUID data type definition.
Args:
definitions_registry (DataTypeDefinitionsRegistry): data type definitions
registry.
definition_values (dict[str, object]): definition values.
definition_name (str): name of the definition.
is_member (Optional[bool]): True if the data type definition is a member
data type definition.
Returns:
UUIDDataTypeDefinition: UUID data type definition.
Raises:
DefinitionReaderError: if the definitions values are missing or if
the format is incorrect. | codesearchnet |
def get_recipe(self, recipe_name):
if recipe_name.endswith('.yaml'):
recipe = self._recipes.get(RecipeObject.FromFile(recipe_name, self._recipe_actions, self._recipe_resources).name)
else:
recipe = self._recipes.get(recipe_name)
if (recipe is None):
raise RecipeNotFoundError('Could not find recipe', recipe_name=recipe_name, known_recipes=[x for x in self._recipes.keys()])
return recipe | Get a recipe by name.
Args:
recipe_name (str): The name of the recipe to fetch. Can be either the
yaml file name or the name of the recipe. | codesearchnet |
def connection_required(func):
@functools.wraps(func)
def wrapper(self, *args, **kwargs):
if not self.target_connected():
raise errors.JLinkException('Target is not connected.')
return func(self, *args, **kwargs)
return wrapper | Decorator to specify that a target connection is required in order
for the given method to be used.
Args:
func (function): function being decorated
Returns:
The wrapper function. | juraj-google-style |
def unsplat(f: Callable[[Iterable], A]) -> Callable[..., A]:
def unsplatted(*args):
return f(args)
return unsplatted | Convert a function taking a single iterable argument into a function taking multiple arguments.
Args:
f: Any function taking a single iterable argument
Returns:
A function that accepts multiple arguments. Each argument of this function is passed as an element of an
iterable to ``f``.
Example:
$ def f(a):
$ return a[0] + a[1] + a[2]
$
$ f([1, 2, 3]) # 6
$ g = unsplat(f)
$ g(1, 2, 3) # 6 | juraj-google-style |
def assert_not_visible(self, selector, testid=None, **kwargs):
self.info_log(
"Assert not visible selector(%s) testid(%s)" % (selector, testid)
)
highlight = kwargs.get(
'highlight',
BROME_CONFIG['highlight']['highlight_on_assertion_failure']
)
self.debug_log("effective highlight: %s" % highlight)
wait_until_not_visible = kwargs.get(
'wait_until_not_visible',
BROME_CONFIG['proxy_driver']['wait_until_not_visible_before_assert_not_visible']
)
self.debug_log(
"effective wait_until_not_visible: %s" % wait_until_not_visible
)
if wait_until_not_visible:
self.wait_until_not_visible(selector, raise_exception=False)
element = self.find(
selector,
raise_exception=False,
wait_until_visible=False,
wait_until_present=False
)
if element and element.is_displayed(raise_exception=False):
data = self.execute_script(
"return arguments[0].getBoundingClientRect();",
element._element
)
if highlight:
element.highlight(
style=BROME_CONFIG['highlight']['style_on_assertion_failure']
)
if testid is not None:
self.create_test_result(testid, False, extra_data={
'bounding_client_rect': data,
'video_x_offset': self.browser_config.get('video_x_offset', 0),
'video_y_offset': self.browser_config.get('video_y_offset', 0)
})
return False
else:
if testid is not None:
self.create_test_result(testid, True)
return True | Assert that the element is not visible in the dom
Args:
selector (str): the selector used to find the element
test_id (str): the test_id or a str
Kwargs:
wait_until_not_visible (bool)
highlight (bool)
Returns:
bool: True is the assertion succeed; False otherwise. | juraj-google-style |
def to_step_result(func):
@ft.wraps(func)
def wrapper(*args, **kwargs):
res = func(*args, **kwargs)
if not res:
res = [StepResult.OK]
if not hasattr(res, "__iter__"):
res = [res]
return res
return wrapper | Convert a function return to a list of StepResults.
All Step subclasses automatically wrap the result of their
__call__ method's result with this wrapper.
If the result is not a list of StepResult values, one will
be generated.
result of `[StepResult.OK]`, or convert the given result into
a list.
Args:
func: The function to wrap. | juraj-google-style |
def greater(x, y):
return math_ops.greater(x, y) | Element-wise truth value of (x > y).
Args:
x: Tensor or variable.
y: Tensor or variable.
Returns:
A bool tensor. | github-repos |
def register_file_reader(*args):
def do_registration(file_reader_fn, is_readable_fn):
if (file_reader_fn not in list(zip(*_FILE_READERS))[0]):
_FILE_READERS.append((file_reader_fn, is_readable_fn))
if (len(args) == 1):
return functools.partial(do_registration, is_readable_fn=args[0])
elif (len(args) == 2):
do_registration(*args)
else:
err_str = 'register_file_reader() takes 1 or 2 arguments ({} given)'
raise TypeError(err_str.format(len(args))) | Register a file reader for use in parse_config_file.
Registered file readers will be used to try reading files passed to
`parse_config_file`. All file readers (beginning with the default `open`) will
be tried until one of them succeeds at opening the file.
This function may also be be used used as a decorator. For example:
@register_file_reader(IOError)
def exotic_data_source(filename):
...
Args:
*args: (When used as a decorator, only the existence check is supplied.)
- file_reader_fn: The file reader function to register. This should be a
function that can be used as a context manager to open a file and
provide a file-like object, similar to Python's built-in `open`.
- is_readable_fn: A function taking the file path and returning a boolean
indicating whether the file can be read by `file_reader_fn`.
Returns:
`None`, or when used as a decorator, a function that will perform the
registration using the supplied readability predicate. | codesearchnet |
def _validate_config(config):
if not isinstance(config, list):
raise TypeError('Config must be a list')
for config_dict in config:
if not isinstance(config_dict, dict):
raise TypeError('Config must be a list of dictionaries')
label = config_dict.keys()[0]
cfg = config_dict[label]
if not isinstance(cfg, dict):
raise TypeError('Config structure is broken')
if 'host' not in cfg:
raise TypeError('Config entries must have a value for host')
if not isinstance(cfg['host'], str) and not isinstance(cfg['host'], list):
raise TypeError('Host must be a string or a list.')
if 'port' not in cfg:
raise TypeError('Config entries must have a value for port')
if not isinstance(cfg['port'], int):
raise TypeError('Port must be an int')
if 'dbpath' not in cfg:
raise TypeError('Config entries must have a value for dbpath')
if not isinstance(cfg['dbpath'], str):
if not isinstance(cfg['dbpath'], list):
raise TypeError('Dbpath must either a string or a list of '
'strings')
for dbpath in cfg['dbpath']:
if not isinstance(dbpath, str):
raise TypeError('Dbpath must either a string or a list '
'of strings')
if ('read_preference' in cfg and
not isinstance(cfg['read_preference'], str)):
raise TypeError('Read_preference must be a string')
if ('replicaSet' in cfg and
not isinstance(cfg['replicaSet'], str)):
raise TypeError('replicaSet must be a string') | Validate that the provided configurtion is valid.
Each dictionary in the configuration list must have the following
mandatory entries :
{label: {host(string), port(int), dbpath(string|list of strings)}}
It can also contain 1 optional key:
{read_preference(string)}
Args:
config: the list of configurations provided at instantiation
Raises:
TypeError: a fault in the configurations is found | juraj-google-style |
def push_error_to_driver(worker, error_type, message, driver_id=None):
if driver_id is None:
driver_id = ray.DriverID.nil()
worker.raylet_client.push_error(driver_id, error_type, message,
time.time()) | Push an error message to the driver to be printed in the background.
Args:
worker: The worker to use.
error_type (str): The type of the error.
message (str): The message that will be printed in the background
on the driver.
driver_id: The ID of the driver to push the error message to. If this
is None, then the message will be pushed to all drivers. | juraj-google-style |
def apply_grad_cartesian_tensor(grad_X, zmat_dist):
columns = ['bond', 'angle', 'dihedral']
C_dist = zmat_dist.loc[:, columns].values.T
try:
C_dist = C_dist.astype('f8')
C_dist[[1, 2], :] = np.radians(C_dist[[1, 2], :])
except (TypeError, AttributeError):
C_dist[[1, 2], :] = sympy.rad(C_dist[[1, 2], :])
cart_dist = np.tensordot(grad_X, C_dist, axes=([3, 2], [0, 1])).T
from chemcoord.cartesian_coordinates.cartesian_class_main import Cartesian
return Cartesian(atoms=zmat_dist['atom'],
coords=cart_dist, index=zmat_dist.index) | Apply the gradient for transformation to cartesian space onto zmat_dist.
Args:
grad_X (:class:`numpy.ndarray`): A ``(3, n, n, 3)`` array.
The mathematical details of the index layout is explained in
:meth:`~chemcoord.Cartesian.get_grad_zmat()`.
zmat_dist (:class:`~chemcoord.Zmat`):
Distortions in Zmatrix space.
Returns:
:class:`~chemcoord.Cartesian`: Distortions in cartesian space. | juraj-google-style |
def has_no_narrow_start(neuron, frac=0.9):
bad_ids = [(neurite.root_node.id, [neurite.root_node.points[1]])
for neurite in neuron.neurites
if neurite.root_node.points[1][COLS.R] < frac * neurite.root_node.points[2][COLS.R]]
return CheckResult(len(bad_ids) == 0, bad_ids) | Check if neurites have a narrow start
Arguments:
neuron(Neuron): The neuron object to test
frac(float): Ratio that the second point must be smaller than the first
Returns:
CheckResult with a list of all first segments of neurites with a narrow start | juraj-google-style |
def _get_args(cls, args):
if not isinstance(args, tuple) or not len(args) == 2:
raise TypeError(
"{}[...] takes exactly two arguments.".format(cls.__name__)
)
return super(_LengthBoundedMeta, cls)._get_args(args + (len,)) | Return the parameters necessary to check type boundaries.
Args:
args: A tuple with two parameters: a type, and a slice representing
the minimum and maximum lengths allowed for values of that
type.
Returns:
A tuple with three parameters: a type, a slice, and the len
function. | juraj-google-style |
def write_content(self, content, destination):
directory = os.path.dirname(destination)
if (directory and (not os.path.exists(directory))):
os.makedirs(directory)
with io.open(destination, 'w', encoding='utf-8') as f:
f.write(content)
return destination | Write given content to destination path.
It will create needed directory structure first if it contain some
directories that does not allready exists.
Args:
content (str): Content to write to target file.
destination (str): Destination path for target file.
Returns:
str: Path where target file has been written. | codesearchnet |
def find_from(path):
realpath = os.path.realpath(path)
config_path = os.path.join(realpath, '.ensime')
if os.path.isfile(config_path):
return config_path
elif (realpath == os.path.abspath('/')):
return None
else:
dirname = os.path.dirname(realpath)
return ProjectConfig.find_from(dirname) | Find path of an .ensime config, searching recursively upward from path.
Args:
path (str): Path of a file or directory from where to start searching.
Returns:
str: Canonical path of nearest ``.ensime``, or ``None`` if not found. | codesearchnet |
def enable_argscope_for_module(module, log_shape=True):
if is_tfv2() and module == tf.layers:
module = tf.compat.v1.layers
for name, obj in getmembers(module):
if isfunction(obj):
setattr(module, name, enable_argscope_for_function(obj,
log_shape=log_shape)) | Overwrite all functions of a given module to support argscope.
Note that this function monkey-patches the module and therefore could
have unexpected consequences.
It has been only tested to work well with ``tf.layers`` module.
Example:
.. code-block:: python
import tensorflow as tf
enable_argscope_for_module(tf.layers)
Args:
log_shape (bool): print input/output shapes of each function. | juraj-google-style |
def now_playing(self, **kwargs):
path = self._get_path('now_playing')
response = self._GET(path, kwargs)
self._set_attrs_to_values(response)
return response | Get the list of movies playing in theatres. This list refreshes
every day. The maximum number of items this list will include is 100.
Args:
page: (optional) Minimum value of 1. Expected value is an integer.
language: (optional) ISO 639-1 code.
Returns:
A dict representation of the JSON returned from the API. | codesearchnet |
def _from_any_pb(pb_type, any_pb):
msg = pb_type()
if not any_pb.Unpack(msg):
raise TypeError(
"Could not convert {} to {}".format(
any_pb.__class__.__name__, pb_type.__name__
)
)
return msg | Converts an Any protobuf to the specified message type
Args:
pb_type (type): the type of the message that any_pb stores an instance
of.
any_pb (google.protobuf.any_pb2.Any): the object to be converted.
Returns:
pb_type: An instance of the pb_type message.
Raises:
TypeError: if the message could not be converted. | juraj-google-style |
def _convert_service_account_credentials(credentials):
info = credentials.serialization_data.copy()
info['token_uri'] = credentials.token_uri
return google.oauth2.service_account.Credentials.from_service_account_info(
info) | Converts to :class:`google.oauth2.service_account.Credentials`.
Args:
credentials (Union[
oauth2client.service_account.ServiceAccountCredentials,
oauth2client.service_account._JWTAccessCredentials]): The
credentials to convert.
Returns:
google.oauth2.service_account.Credentials: The converted credentials. | juraj-google-style |
class PerceiverBasicVideoAutoencodingDecoder(PerceiverAbstractDecoder):
def __init__(self, config: PerceiverConfig, output_shape: List[int], position_encoding_type: str, **decoder_kwargs) -> None:
super().__init__()
if len(output_shape) != 4:
raise ValueError(f'Expected rank 4 output_shape, got {output_shape}.')
self.output_shape = output_shape
self.output_num_channels = decoder_kwargs['output_num_channels']
self.decoder = PerceiverBasicDecoder(config, output_index_dims=self.output_shape[1:4], position_encoding_type=position_encoding_type, **decoder_kwargs)
@property
def num_query_channels(self) -> int:
return self.decoder.num_query_channels
def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
return self.decoder.decoder_query(inputs, modality_sizes=modality_sizes, inputs_without_pos=inputs_without_pos, subsampled_points=subsampled_points)
def forward(self, query: torch.Tensor, z: torch.FloatTensor, query_mask: Optional[torch.FloatTensor]=None) -> PerceiverDecoderOutput:
decoder_outputs = self.decoder(query, z)
logits = decoder_outputs.logits
logits = torch.reshape(logits, self.output_shape + [logits.shape[-1]])
return PerceiverDecoderOutput(logits=logits, cross_attentions=decoder_outputs.cross_attentions) | Cross-attention based video-autoencoding decoder. Light-weight wrapper of [*PerceiverBasicDecoder*] with video
reshaping logic.
Args:
config ([*PerceiverConfig*]):
Model configuration.
output_shape (`List[int]`):
Shape of the output as (batch_size, num_frames, height, width), excluding the channel dimension.
position_encoding_type (`str`):
The type of position encoding to use. Can be either "trainable", "fourier", or "none". | github-repos |
def get_hash_of_dirs(directory):
import hashlib
sha = hashlib.sha512()
if (not os.path.exists(directory)):
return (- 1)
for (root, _, files) in os.walk(directory):
for name in files:
filepath = (local.path(root) / name)
if filepath.exists():
with open(filepath, 'rb') as next_file:
for line in next_file:
sha.update(line)
return sha.hexdigest() | Recursively hash the contents of the given directory.
Args:
directory (str): The root directory we want to hash.
Returns:
A hash of all the contents in the directory. | codesearchnet |
def add_device(self, device, container):
if self.findtext("is_smart") == "false":
self.add_object_to_path(device, container)
else:
raise ValueError("Devices may not be added to smart groups.") | Add a device to a group. Wraps JSSObject.add_object_to_path.
Args:
device: A JSSObject to add (as list data), to this object.
location: Element or a string path argument to find() | juraj-google-style |
def get_object(self, object_ids):
for object_id in object_ids:
if not isinstance(object_id, ObjectID):
raise TypeError(
"Attempting to call `get` on the value {}, "
"which is not an ray.ObjectID.".format(object_id))
plain_object_ids = [
plasma.ObjectID(object_id.binary()) for object_id in object_ids
]
for i in range(0, len(object_ids),
ray._config.worker_fetch_request_size()):
self.raylet_client.fetch_or_reconstruct(
object_ids[i:(i + ray._config.worker_fetch_request_size())],
True)
final_results = self.retrieve_and_deserialize(plain_object_ids, 0)
unready_ids = {
plain_object_ids[i].binary(): i
for (i, val) in enumerate(final_results)
if val is plasma.ObjectNotAvailable
}
if len(unready_ids) > 0:
while len(unready_ids) > 0:
object_ids_to_fetch = [
plasma.ObjectID(unready_id)
for unready_id in unready_ids.keys()
]
ray_object_ids_to_fetch = [
ObjectID(unready_id) for unready_id in unready_ids.keys()
]
fetch_request_size = ray._config.worker_fetch_request_size()
for i in range(0, len(object_ids_to_fetch),
fetch_request_size):
self.raylet_client.fetch_or_reconstruct(
ray_object_ids_to_fetch[i:(i + fetch_request_size)],
False,
self.current_task_id,
)
results = self.retrieve_and_deserialize(
object_ids_to_fetch,
max([
ray._config.get_timeout_milliseconds(),
int(0.01 * len(unready_ids)),
]),
)
for i, val in enumerate(results):
if val is not plasma.ObjectNotAvailable:
object_id = object_ids_to_fetch[i].binary()
index = unready_ids[object_id]
final_results[index] = val
unready_ids.pop(object_id)
self.raylet_client.notify_unblocked(self.current_task_id)
assert len(final_results) == len(object_ids)
return final_results | Get the value or values in the object store associated with the IDs.
Return the values from the local object store for object_ids. This will
block until all the values for object_ids have been written to the
local object store.
Args:
object_ids (List[object_id.ObjectID]): A list of the object IDs
whose values should be retrieved. | juraj-google-style |
def v4_int_to_packed(address):
if (address > _BaseV4._ALL_ONES):
raise ValueError('Address too large for IPv4')
return Bytes(struct.pack('!I', address)) | The binary representation of this address.
Args:
address: An integer representation of an IPv4 IP address.
Returns:
The binary representation of this address.
Raises:
ValueError: If the integer is too large to be an IPv4 IP
address. | codesearchnet |
def get_embedded_tweet(tweet):
if tweet.retweeted_tweet is not None:
return tweet.retweeted_tweet
elif tweet.quoted_tweet is not None:
return tweet.quoted_tweet
else:
return None | Get the retweeted Tweet OR the quoted Tweet and return it as a dictionary
Args:
tweet (Tweet): A Tweet object (not simply a dict)
Returns:
dict (or None, if the Tweet is neither a quote tweet or a Retweet):
a dictionary representing the quote Tweet or the Retweet | juraj-google-style |
def Serialize(self, writer):
writer.WriteByte(self.Usage)
if isinstance(self.Data, UIntBase):
self.Data = self.Data.Data
length = len(self.Data)
if length > self.MAX_ATTR_DATA_SIZE:
raise Exception("Invalid transaction attribute")
if self.Usage == TransactionAttributeUsage.ContractHash or self.Usage == TransactionAttributeUsage.Vote or \
(self.Usage >= TransactionAttributeUsage.Hash1 and self.Usage <= TransactionAttributeUsage.Hash15):
writer.WriteBytes(self.Data)
elif self.Usage == TransactionAttributeUsage.ECDH02 or self.Usage == TransactionAttributeUsage.ECDH03:
writer.WriteBytes(self.Data[1:33])
elif self.Usage == TransactionAttributeUsage.Script:
writer.WriteBytes(self.Data)
elif self.Usage == TransactionAttributeUsage.DescriptionUrl:
writer.WriteVarString(self.Data)
elif self.Usage == TransactionAttributeUsage.Description or self.Usage >= TransactionAttributeUsage.Remark:
writer.WriteVarString(self.Data)
else:
logger.error("format error!!!") | Serialize object.
Args:
writer (neo.IO.BinaryWriter):
Raises:
Exception: if the length exceeds the maximum allowed number of attributes in a transaction. | juraj-google-style |
def shutdown_tpu_system(cluster_resolver=None):
tpu_strategy_util.shutdown_tpu_system_impl(cluster_resolver, TPUClusterResolver) | Shuts down the TPU devices.
This will clear all caches, even those that are maintained through sequential
calls to tf.tpu.experimental.initialize_tpu_system, such as the compilation
cache.
Args:
cluster_resolver: A tf.distribute.cluster_resolver.TPUClusterResolver,
which provides information about the TPU cluster.
Raises:
RuntimeError: If no TPU devices found for eager execution or if run in a
tf.function. | github-repos |
def start(self, device):
super(NativeBLEVirtualInterface, self).start(device)
self.set_advertising(True) | Start serving access to this VirtualIOTileDevice
Args:
device (VirtualIOTileDevice): The device we will be providing access to | juraj-google-style |
def register_subclass(cls, typeid):
def decorator(subclass):
cls._subcls_lookup[typeid] = subclass
subclass.typeid = typeid
return subclass
return decorator | Register a subclass so from_dict() works
Args:
typeid (str): Type identifier for subclass | juraj-google-style |
def _expand_place_ids(self, terms):
place_vids = []
first_type = None
for result in self.backend.identifier_index.search(terms):
if not first_type:
first_type = result.type
if result.type != first_type:
continue
place_vids.append(result.vid)
if place_vids:
all_set = set(itertools.chain.from_iterable(iallval(GVid.parse(x)) for x in place_vids))
place_vids += list(str(x) for x in all_set)
return place_vids
else:
return terms | Lookups all of the place identifiers to get gvids
Args:
terms (str or unicode): terms to lookup
Returns:
str or list: given terms if no identifiers found, otherwise list of identifiers. | juraj-google-style |
def _get_initial_step(parameters, lower_bounds, upper_bounds, max_step_sizes):
nmr_params = parameters.shape[1]
initial_step = np.zeros_like(parameters)
if (max_step_sizes is None):
max_step_sizes = 0.1
if isinstance(max_step_sizes, Number):
max_step_sizes = ([max_step_sizes] * nmr_params)
max_step_sizes = np.array(max_step_sizes)
for ind in range(parameters.shape[1]):
minimum_allowed_step = np.minimum(np.abs((parameters[(:, ind)] - lower_bounds[ind])), np.abs((upper_bounds[ind] - parameters[(:, ind)])))
initial_step[(:, ind)] = np.minimum(minimum_allowed_step, max_step_sizes[ind])
return (initial_step / 2.0) | Get an initial step size to use for every parameter.
This chooses the step sizes based on the maximum step size and the lower and upper bounds.
Args:
parameters (ndarray): The parameters at which to evaluate the gradient. A (d, p) matrix with d problems,
p parameters and n samples.
lower_bounds (list): lower bounds
upper_bounds (list): upper bounds
max_step_sizes (list or None): the maximum step size, or the maximum step size per parameter. Defaults to 0.1
Returns:
ndarray: for every problem instance the vector with the initial step size for each parameter. | codesearchnet |
def inverse(self, name=None):
if (self._num_coeff != 6):
raise tf.errors.UnimplementedError('AffineGridWarper currently supportsinversion only for the 2D case.')
def _affine_grid_warper_inverse(inputs):
'Assembles network to compute inverse affine transformation.\n\n Each `inputs` row potentially contains [a, b, tx, c, d, ty]\n corresponding to an affine matrix:\n\n A = [a, b, tx],\n [c, d, ty]\n\n We want to generate a tensor containing the coefficients of the\n corresponding inverse affine transformation in a constraints-aware\n fashion.\n Calling M:\n\n M = [a, b]\n [c, d]\n\n the affine matrix for the inverse transform is:\n\n A_in = [M^(-1), M^-1 * [-tx, -tx]^T]\n\n where\n\n M^(-1) = (ad - bc)^(-1) * [ d, -b]\n [-c, a]\n\n Args:\n inputs: Tensor containing a batch of transformation parameters.\n\n Returns:\n A tensorflow graph performing the inverse affine transformation\n parametrized by the input coefficients.\n '
batch_size = tf.expand_dims(tf.shape(inputs)[0], 0)
constant_shape = tf.concat([batch_size, tf.convert_to_tensor((1,))], 0)
index = iter(range(6))
def get_variable(constraint):
if (constraint is None):
i = next(index)
return inputs[(:, i:(i + 1))]
else:
return tf.fill(constant_shape, tf.constant(constraint, dtype=inputs.dtype))
constraints = chain.from_iterable(self.constraints)
(a, b, tx, c, d, ty) = (get_variable(constr) for constr in constraints)
det = ((a * d) - (b * c))
a_inv = (d / det)
b_inv = ((- b) / det)
c_inv = ((- c) / det)
d_inv = (a / det)
m_inv = basic.BatchReshape([2, 2])(tf.concat([a_inv, b_inv, c_inv, d_inv], 1))
txy = tf.expand_dims(tf.concat([tx, ty], 1), 2)
txy_inv = basic.BatchFlatten()(tf.matmul(m_inv, txy))
tx_inv = txy_inv[(:, 0:1)]
ty_inv = txy_inv[(:, 1:2)]
inverse_gw_inputs = tf.concat([a_inv, b_inv, (- tx_inv), c_inv, d_inv, (- ty_inv)], 1)
agw = AffineGridWarper(self.output_shape, self.source_shape)
return agw(inverse_gw_inputs)
if (name is None):
name = (self.module_name + '_inverse')
return base.Module(_affine_grid_warper_inverse, name=name) | Returns a `sonnet` module to compute inverse affine transforms.
The function first assembles a network that given the constraints of the
current AffineGridWarper and a set of input parameters, retrieves the
coefficients of the corresponding inverse affine transform, then feeds its
output into a new AffineGridWarper setup to correctly warp the `output`
space into the `source` space.
Args:
name: Name of module implementing the inverse grid transformation.
Returns:
A `sonnet` module performing the inverse affine transform of a reference
grid of points via an AffineGridWarper module.
Raises:
tf.errors.UnimplementedError: If the function is called on a non 2D
instance of AffineGridWarper. | codesearchnet |
def multi_choice_spec(self) -> Optional['DecisionPoint']:
self._ensure_dna_spec()
multi_choice_spec = None
if self.children:
child_spec = self.children[0].spec
if child_spec.is_subchoice:
multi_choice_spec = child_spec.parent_spec
return multi_choice_spec | Returns the multi-choice spec for child DNAs.
Returns:
If the children of this DNA are decisions of a multi-choice's subchoices,
return the multi-choice spec (`pg.geno.Choices`). Otherwise returns None. | github-repos |
def live_processes(self):
result = []
for (process_type, process_infos) in self.all_processes.items():
for process_info in process_infos:
if (process_info.process.poll() is None):
result.append((process_type, process_info.process))
return result | Return a list of the live processes.
Returns:
A list of the live processes. | codesearchnet |
def variants(self, case_id, skip=0, count=1000, filters=None):
filters = (filters or {})
case_obj = self.case(case_id=case_id)
limit = (count + skip)
genes = set()
if filters.get('gene_ids'):
genes = set([gene_id.strip() for gene_id in filters['gene_ids']])
frequency = None
if filters.get('frequency'):
frequency = float(filters['frequency'])
cadd = None
if filters.get('cadd'):
cadd = float(filters['cadd'])
genetic_models = None
if filters.get('genetic_models'):
genetic_models = set(filters['genetic_models'])
sv_len = None
if filters.get('sv_len'):
sv_len = float(filters['sv_len'])
impact_severities = None
if filters.get('impact_severities'):
impact_severities = set(filters['impact_severities'])
vcf_file_path = case_obj.variant_source
self.head = get_header(vcf_file_path)
self.vep_header = self.head.vep_columns
self.snpeff_header = self.head.snpeff_columns
variants = self._get_filtered_variants(vcf_file_path, filters)
result = []
skip_index = 0
for (index, variant) in enumerate(variants):
index += 1
if (skip_index >= skip):
variant_obj = self._format_variants(variant=variant, index=index, case_obj=case_obj)
if (genes and variant_obj):
if (not set(variant_obj['gene_symbols']).intersection(genes)):
variant_obj = None
if (impact_severities and variant_obj):
if (not (variant_obj['impact_severity'] in impact_severities)):
variant_obj = None
if (frequency and variant_obj):
if (variant_obj.max_freq > frequency):
variant_obj = None
if (cadd and variant_obj):
if (variant_obj['cadd_score'] < cadd):
variant_obj = None
if (genetic_models and variant_obj):
models = set(variant_obj.genetic_models)
if (not models.intersection(genetic_models)):
variant_obj = None
if (sv_len and variant_obj):
if (variant_obj.sv_len < sv_len):
variant_obj = None
if variant_obj:
skip_index += 1
if (skip_index <= limit):
result.append(variant_obj)
else:
break
else:
skip_index += 1
return Results(result, len(result)) | Return all variants in the VCF.
This function will apply the given filter and return the 'count' first
variants. If skip the first 'skip' variants will not be regarded.
Args:
case_id (str): Path to a vcf file (for this adapter)
skip (int): Skip first variants
count (int): The number of variants to return
filters (dict): A dictionary with filters. Currently this will
look like: {
gene_list: [] (list of hgnc ids),
frequency: None (float),
cadd: None (float),
sv_len: None (float),
consequence: [] (list of consequences),
is_lof: None (Bool),
genetic_models [] (list of genetic models)
sv_type: List (list of sv types),
}
Returns:
puzzle.constants.Results : Named tuple with variants and
nr_of_variants | codesearchnet |
def to_python(self, value: Union[dict, str, None]) -> LocalizedValue:
try:
deserialized_value = super(LocalizedField, self).to_python(value)
except json.JSONDecodeError:
deserialized_value = value
if not deserialized_value:
return self.attr_class()
return self.attr_class(deserialized_value) | Turns the specified database value into its Python
equivalent.
Arguments:
value:
The value that is stored in the database and
needs to be converted to its Python equivalent.
Returns:
A :see:LocalizedValue instance containing the
data extracted from the database. | juraj-google-style |
def maybe_get_static_value(x, dtype=None):
if x is None:
return x
try:
x_ = tensor_util.constant_value(x)
except TypeError:
x_ = x
if x_ is None or dtype is None:
return x_
return np.array(x_, dtype) | Helper which tries to return a static value.
Given `x`, extract it's value statically, optionally casting to a specific
dtype. If this is not possible, None is returned.
Args:
x: `Tensor` for which to extract a value statically.
dtype: Optional dtype to cast to.
Returns:
Statically inferred value if possible, otherwise None. | github-repos |
def build_metagraph_list(self):
ops = []
self.ignore_unknown_dtypes = True
for key in sorted(self.meta_params):
value = self.convert_data_to_string(self.meta_params[key])
if (len(value) == 0):
continue
if isinstance(value, str):
ops.append(tf.contrib.summary.generic(name=key, tensor=tf.convert_to_tensor(str(value))))
else:
ops.append(tf.contrib.summary.generic(name=key, tensor=tf.as_string(tf.convert_to_tensor(value))))
return ops | Convert MetaParams into TF Summary Format and create summary_op.
Returns:
Merged TF Op for TEXT summary elements, should only be executed once to reduce data duplication. | codesearchnet |
def _make_unique_slug(slug: str, language: str, is_unique: Callable[([str], bool)]) -> str:
index = 1
unique_slug = slug
while (not is_unique(unique_slug, language)):
unique_slug = ('%s-%d' % (slug, index))
index += 1
return unique_slug | Guarentees that the specified slug is unique by appending
a number until it is unique.
Arguments:
slug:
The slug to make unique.
is_unique:
Function that can be called to verify
whether the generate slug is unique.
Returns:
A guarenteed unique slug. | codesearchnet |
def original(self, index=None):
if (index is None):
try:
return next(self.select(Original, None, False, False))
except StopIteration:
raise NoSuchAnnotation
else:
for e in self.select(Original, None, False, False):
return e[index]
raise NoSuchAnnotation | Get the old annotation prior to correction.
This returns only one annotation if multiple exist, use `index` to select another in the sequence.
Returns:
an annotation element (:class:`AbstractElement`)
Raises:
:class:`NoSuchAnnotation` | codesearchnet |
def get_psd(self, omega):
w = np.asarray(omega)
(alpha_real, beta_real, alpha_complex_real, alpha_complex_imag,
beta_complex_real, beta_complex_imag) = self.coefficients
p = get_psd_value(
alpha_real, beta_real,
alpha_complex_real, alpha_complex_imag,
beta_complex_real, beta_complex_imag,
w.flatten(),
)
return p.reshape(w.shape) | Compute the PSD of the term for an array of angular frequencies
Args:
omega (array[...]): An array of frequencies where the PSD should
be evaluated.
Returns:
The value of the PSD for each ``omega``. This will have the same
shape as ``omega``. | juraj-google-style |
def read_cifar10(filename_queue):
class CIFAR10Record(object):
pass
result = CIFAR10Record()
label_bytes = 1
result.height = 32
result.width = 32
result.depth = 3
image_bytes = ((result.height * result.width) * result.depth)
record_bytes = (label_bytes + image_bytes)
reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
(result.key, value) = reader.read(filename_queue)
record_bytes = tf.decode_raw(value, tf.uint8)
result.label = tf.cast(tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)
depth_major = tf.reshape(tf.strided_slice(record_bytes, [label_bytes], [(label_bytes + image_bytes)]), [result.depth, result.height, result.width])
result.uint8image = tf.transpose(depth_major, [1, 2, 0])
return result | Reads and parses examples from CIFAR10 data files.
Recommendation: if you want N-way read parallelism, call this function
N times. This will give you N independent Readers reading different
files & positions within those files, which will give better mixing of
examples.
Args:
filename_queue: A queue of strings with the filenames to read from.
Returns:
An object representing a single example, with the following fields:
height: number of rows in the result (32)
width: number of columns in the result (32)
depth: number of color channels in the result (3)
key: a scalar string Tensor describing the filename & record number
for this example.
label: an int32 Tensor with the label in the range 0..9.
uint8image: a [height, width, depth] uint8 Tensor with the image data | codesearchnet |
def CreateFile(filename):
with gcs.open(filename, 'w') as f:
f.write('abcde\n')
blobstore_filename = '/gs' + filename
return blobstore.create_gs_key(blobstore_filename) | Create a GCS file with GCS client lib.
Args:
filename: GCS filename.
Returns:
The corresponding string blobkey for this GCS file. | juraj-google-style |
def parse_selinux(parts):
(owner, group) = parts[:2]
selinux = parts[2].split(':')
lsel = len(selinux)
(path, link) = parse_path(parts[(- 1)])
result = {'owner': owner, 'group': group, 'se_user': selinux[0], 'se_role': (selinux[1] if (lsel > 1) else None), 'se_type': (selinux[2] if (lsel > 2) else None), 'se_mls': (selinux[3] if (lsel > 3) else None), 'name': path}
if link:
result['link'] = link
return result | Parse part of an ls output line that is selinux.
Args:
parts (list): A four element list of strings representing the initial
parts of an ls line after the permission bits. The parts are owner
group, selinux info, and the path.
Returns:
A dict containing owner, group, se_user, se_role, se_type, se_mls, and
name. If the raw name was a symbolic link, link is always included. | codesearchnet |
def poisson_ll(data, means):
if sparse.issparse(data):
return sparse_poisson_ll(data, means)
(genes, cells) = data.shape
clusters = means.shape[1]
ll = np.zeros((cells, clusters))
for i in range(clusters):
means_i = np.tile(means[(:, i)], (cells, 1))
means_i = (means_i.transpose() + eps)
ll[(:, i)] = np.sum((xlogy(data, means_i) - means_i), 0)
return ll | Calculates the Poisson log-likelihood.
Args:
data (array): 2d numpy array of genes x cells
means (array): 2d numpy array of genes x k
Returns:
cells x k array of log-likelihood for each cell/cluster pair | codesearchnet |
def _MergeField(self, tokenizer, message):
message_descriptor = message.DESCRIPTOR
if (hasattr(message_descriptor, 'syntax') and
message_descriptor.syntax == 'proto3'):
self._allow_multiple_scalars = True
if tokenizer.TryConsume('['):
name = [tokenizer.ConsumeIdentifier()]
while tokenizer.TryConsume('.'):
name.append(tokenizer.ConsumeIdentifier())
name = '.'.join(name)
if not message_descriptor.is_extendable:
raise tokenizer.ParseErrorPreviousToken(
'Message type "%s" does not have extensions.' %
message_descriptor.full_name)
field = message.Extensions._FindExtensionByName(name)
if not field:
if self.allow_unknown_extension:
field = None
else:
raise tokenizer.ParseErrorPreviousToken(
'Extension "%s" not registered.' % name)
elif message_descriptor != field.containing_type:
raise tokenizer.ParseErrorPreviousToken(
'Extension "%s" does not extend message type "%s".' %
(name, message_descriptor.full_name))
tokenizer.Consume(']')
else:
name = tokenizer.ConsumeIdentifierOrNumber()
if self.allow_field_number and name.isdigit():
number = ParseInteger(name, True, True)
field = message_descriptor.fields_by_number.get(number, None)
if not field and message_descriptor.is_extendable:
field = message.Extensions._FindExtensionByNumber(number)
else:
field = message_descriptor.fields_by_name.get(name, None)
if not field:
field = message_descriptor.fields_by_name.get(name.lower(), None)
if field and field.type != descriptor.FieldDescriptor.TYPE_GROUP:
field = None
if (field and field.type == descriptor.FieldDescriptor.TYPE_GROUP and
field.message_type.name != name):
field = None
if not field:
raise tokenizer.ParseErrorPreviousToken(
'Message type "%s" has no field named "%s".' %
(message_descriptor.full_name, name))
if field:
if not self._allow_multiple_scalars and field.containing_oneof:
which_oneof = message.WhichOneof(field.containing_oneof.name)
if which_oneof is not None and which_oneof != field.name:
raise tokenizer.ParseErrorPreviousToken(
'Field "%s" is specified along with field "%s", another member '
'of oneof "%s" for message type "%s".' %
(field.name, which_oneof, field.containing_oneof.name,
message_descriptor.full_name))
if field.cpp_type == descriptor.FieldDescriptor.CPPTYPE_MESSAGE:
tokenizer.TryConsume(':')
merger = self._MergeMessageField
else:
tokenizer.Consume(':')
merger = self._MergeScalarField
if (field.label == descriptor.FieldDescriptor.LABEL_REPEATED and
tokenizer.TryConsume('[')):
while True:
merger(tokenizer, message, field)
if tokenizer.TryConsume(']'):
break
tokenizer.Consume(',')
else:
merger(tokenizer, message, field)
else:
assert self.allow_unknown_extension
_SkipFieldContents(tokenizer)
if not tokenizer.TryConsume(','):
tokenizer.TryConsume(';') | Merges a single protocol message field into a message.
Args:
tokenizer: A tokenizer to parse the field name and values.
message: A protocol message to record the data.
Raises:
ParseError: In case of text parsing problems. | juraj-google-style |
def convert_seeded_answers(answers):
converted = {}
for (index, answer) in enumerate(answers):
converted.setdefault(answer['answer'], {})
converted[answer['answer']][('seeded' + str(index))] = answer['rationale']
return converted | Convert seeded answers into the format that can be merged into student answers.
Args:
answers (list): seeded answers
Returns:
dict: seeded answers with student answers format:
{
0: {
'seeded0': 'rationaleA'
}
1: {
'seeded1': 'rationaleB'
}
} | codesearchnet |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.