code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def node_device(self, node_name):
if not self._debug_graphs:
raise LookupError('Node devices are not loaded from partition graphs yet.')
if node_name not in self._node_devices:
raise ValueError("Node '%s' does not exist in partition graphs." % node_name)
output = list(self._node_devices[node_name])
return output[0] if len(output) == 1 else output | Get the names of the devices that has nodes of the specified name.
Args:
node_name: (`str`) name of the node.
Returns:
(`str` or `list` of `str`) name of the device(s) on which the node of the
given name is found. Returns a `str` if there is only one such device,
otherwise return a `list` of `str`.
Raises:
LookupError: If node inputs and control inputs have not been loaded
from partition graphs yet.
ValueError: If the node does not exist in partition graphs. | github-repos |
def dv(self, orb):
orb = orb.copy(form="cartesian")
if self.frame == "QSW":
mat = to_qsw(orb).T
elif self.frame == "TNW":
mat = to_tnw(orb).T
else:
mat = np.identity(3)
return mat @ self._dv | Computation of the velocity increment in the reference frame of the orbit
Args:
orb (Orbit):
Return:
numpy.array: Velocity increment, length 3 | juraj-google-style |
def __init__(self, weight_shape: Sequence[int]) -> None:
self.filters = np.random.uniform(low=-1.0, high=1.0, size=weight_shape)
if bias_fn is not None:
self.bias = np.random.uniform(low=-1.0, high=1.0, size=weight_shape[-1]) | Initializes a MatmulModel.
Args:
weight_shape: Shape of the weight tensor. | github-repos |
def GetAutomountMasterMap(self):
master_map = self.GetAutomountMap(location='auto.master')
for map_entry in master_map:
map_entry.location = os.path.split(map_entry.location)[1]
self.log.debug('master map has: %s' % map_entry.location)
return master_map | Return the autmount master map from this source.
Returns:
an instance of automount.AutomountMap | github-repos |
def Parse(self, text):
self.parser.parse(text) | Parse |text| and store the parsed information in self.global_env.
Args:
text: The text to parse. | github-repos |
def __init__(self, image_processor: AutoImageProcessor, id2label: Mapping[int, str], threshold: float=0.0):
self.image_processor = image_processor
self.id2label = id2label
self.threshold = threshold
self.metric = self.get_metric() | Initialize evaluator with image processor, id2label mapping and threshold for filtering predictions.
Args:
image_processor (AutoImageProcessor): Image processor for
`post_process_instance_segmentation` method.
id2label (Mapping[int, str]): Mapping from class id to class name.
threshold (float): Threshold to filter predicted boxes by confidence. Defaults to 0.0. | github-repos |
def ParseNolintSuppressions(filename, raw_line, linenum, error):
matched = Search(r'\bNOLINT(NEXTLINE)?\b(\([^)]+\))?', raw_line)
if matched:
if matched.group(1):
suppressed_line = linenum + 1
else:
suppressed_line = linenum
category = matched.group(2)
if category in (None, '(*)'):
_error_suppressions.setdefault(None, set()).add(suppressed_line)
else:
if category.startswith('(') and category.endswith(')'):
category = category[1:-1]
if category in _ERROR_CATEGORIES:
_error_suppressions.setdefault(category, set()).add(suppressed_line)
elif category not in _LEGACY_ERROR_CATEGORIES:
error(filename, linenum, 'readability/nolint', 5,
'Unknown NOLINT error category: %s' % category) | Updates the global list of line error-suppressions.
Parses any NOLINT comments on the current line, updating the global
error_suppressions store. Reports an error if the NOLINT comment
was malformed.
Args:
filename: str, the name of the input file.
raw_line: str, the line of input text, with comments.
linenum: int, the number of the current line.
error: function, an error handler. | juraj-google-style |
def set_structure(self, structure, reset_camera=True, to_unit_cell=True):
self.ren.RemoveAllViewProps()
has_lattice = hasattr(structure, "lattice")
if has_lattice:
s = Structure.from_sites(structure, to_unit_cell=to_unit_cell)
s.make_supercell(self.supercell, to_unit_cell=to_unit_cell)
else:
s = structure
inc_coords = []
for site in s:
self.add_site(site)
inc_coords.append(site.coords)
count = 0
labels = ["a", "b", "c"]
colors = [(1, 0, 0), (0, 1, 0), (0, 0, 1)]
if has_lattice:
matrix = s.lattice.matrix
if self.show_unit_cell and has_lattice:
self.add_text([0, 0, 0], "o")
for vec in matrix:
self.add_line((0, 0, 0), vec, colors[count])
self.add_text(vec, labels[count], colors[count])
count += 1
for (vec1, vec2) in itertools.permutations(matrix, 2):
self.add_line(vec1, vec1 + vec2)
for (vec1, vec2, vec3) in itertools.permutations(matrix, 3):
self.add_line(vec1 + vec2, vec1 + vec2 + vec3)
if self.show_bonds or self.show_polyhedron:
elements = sorted(s.composition.elements, key=lambda a: a.X)
anion = elements[-1]
def contains_anion(site):
for sp in site.species.keys():
if sp.symbol == anion.symbol:
return True
return False
anion_radius = anion.average_ionic_radius
for site in s:
exclude = False
max_radius = 0
color = np.array([0, 0, 0])
for sp, occu in site.species.items():
if sp.symbol in self.excluded_bonding_elements \
or sp == anion:
exclude = True
break
max_radius = max(max_radius, sp.average_ionic_radius)
color = color + \
occu * np.array(self.el_color_mapping.get(sp.symbol,
[0, 0, 0]))
if not exclude:
max_radius = (1 + self.poly_radii_tol_factor) * \
(max_radius + anion_radius)
nn = structure.get_neighbors(site, float(max_radius))
nn_sites = []
for nnsite, dist in nn:
if contains_anion(nnsite):
nn_sites.append(nnsite)
if not in_coord_list(inc_coords, nnsite.coords):
self.add_site(nnsite)
if self.show_bonds:
self.add_bonds(nn_sites, site)
if self.show_polyhedron:
color = [i / 255 for i in color]
self.add_polyhedron(nn_sites, site, color)
if self.show_help:
self.helptxt_actor = vtk.vtkActor2D()
self.helptxt_actor.VisibilityOn()
self.helptxt_actor.SetMapper(self.helptxt_mapper)
self.ren.AddActor(self.helptxt_actor)
self.display_help()
camera = self.ren.GetActiveCamera()
if reset_camera:
if has_lattice:
lengths = s.lattice.abc
pos = (matrix[1] + matrix[2]) * 0.5 + \
matrix[0] * max(lengths) / lengths[0] * 3.5
camera.SetPosition(pos)
camera.SetViewUp(matrix[2])
camera.SetFocalPoint((matrix[0] + matrix[1] + matrix[2]) * 0.5)
else:
origin = s.center_of_mass
max_site = max(
s, key=lambda site: site.distance_from_point(origin))
camera.SetPosition(origin + 5 * (max_site.coords - origin))
camera.SetFocalPoint(s.center_of_mass)
self.structure = structure
self.title = s.composition.formula | Add a structure to the visualizer.
Args:
structure: structure to visualize
reset_camera: Set to True to reset the camera to a default
determined based on the structure.
to_unit_cell: Whether or not to fall back sites into the unit cell. | juraj-google-style |
def _respond(self, channel, text):
result = self._format_message(channel, text)
if result is not None:
logger.info(
'Sending message: %r',
truncate(result, max_len=50),
)
self.socket.send_str(result) | Respond to a message on the current socket.
Args:
channel (:py:class:`str`): The channel to send to.
text (:py:class:`str`): The message text to send. | juraj-google-style |
def start_with(self, request):
HTTPRequestHelper.patch_with_options(request, self.__options)
self.queue.add_request(request)
self.__crawler_start() | Start the crawler using the given request.
Args:
request (:class:`nyawc.http.Request`): The startpoint for the crawler. | juraj-google-style |
def credits(self, **kwargs):
path = self._get_id_path('credits')
response = self._GET(path, kwargs)
self._set_attrs_to_values(response)
return response | Get the cast and crew information for a specific movie id.
Args:
append_to_response: (optional) Comma separated, any movie method.
Returns:
A dict representation of the JSON returned from the API. | codesearchnet |
def create_blob(profile, content):
resource = '/blobs'
payload = {'content': content}
data = api.post_request(profile, resource, payload)
return data | Create a blob.
Args:
profile
A profile generated from ``simplygithub.authentication.profile``.
Such profiles tell this module (i) the ``repo`` to connect to,
and (ii) the ``token`` to connect with.
content
The (UTF-8 encoded) content to create in the blob.
Returns:
A dict with data about the newly created blob. | codesearchnet |
def _extract_hunt_results(self, output_file_path):
collection_paths = []
client_ids = set()
client_id_to_fqdn = {}
hunt_dir = None
try:
with zipfile.ZipFile(output_file_path) as archive:
items = archive.infolist()
for f in items:
if not hunt_dir:
hunt_dir = f.filename.split('/')[0]
if f.filename.split('/')[-1] == 'client_info.yaml':
client_id, fqdn = self._get_client_fqdn(archive.read(f))
client_id_to_fqdn[client_id] = fqdn
continue
client_id = f.filename.split('/')[1]
if client_id.startswith('C.'):
if client_id not in client_ids:
client_directory = os.path.join(self.output_path,
hunt_dir, client_id)
collection_paths.append((client_id, client_directory))
client_ids.add(client_id)
try:
archive.extract(f, self.output_path)
except KeyError as exception:
print('Extraction error: {0:s}'.format(exception))
return []
except OSError as exception:
msg = 'Error manipulating file {0:s}: {1!s}'.format(
output_file_path, exception)
self.state.add_error(msg, critical=True)
return []
except zipfile.BadZipfile as exception:
msg = 'Bad zipfile {0:s}: {1!s}'.format(
output_file_path, exception)
self.state.add_error(msg, critical=True)
return []
try:
os.remove(output_file_path)
except OSError as exception:
print('Output path {0:s} could not be removed: {1:s}'.format(
output_file_path, exception))
fqdn_collection_paths = []
for client_id, path in collection_paths:
fqdn = client_id_to_fqdn.get(client_id, client_id)
fqdn_collection_paths.append((fqdn, path))
if not fqdn_collection_paths:
self.state.add_error('Nothing was extracted from the hunt archive',
critical=True)
return []
return fqdn_collection_paths | Open a hunt output archive and extract files.
Args:
output_file_path: The path where the hunt archive is downloaded to.
Returns:
list: tuples containing:
str: The name of the client from where the files were downloaded.
str: The directory where the files were downloaded to. | juraj-google-style |
def get_mimetype(url):
filename = url.split('?')[0]
filename = filename.split('
(content_type, _) = mimetypes.guess_type(filename)
return (url, content_type) | Guess based on the file extension.
Args:
url (text): Web url that was linked to by a reddit submission.
Returns:
modified_url (text): The url (or filename) that will be used when
constructing the command to run.
content_type (text): The mime-type that will be used when
constructing the command to run. If the mime-type is unknown,
return None and the program will fallback to using the web
browser. | codesearchnet |
def list_projects(self, dataset_name):
url = ((self.url() + '/nd/resource/dataset/{}'.format(dataset_name)) + '/project/')
req = self.remote_utils.get_url(url)
if (req.status_code is not 200):
raise RemoteDataNotFoundError('Could not find {}'.format(req.text))
else:
return req.json() | Lists a set of projects related to a dataset.
Arguments:
dataset_name (str): Dataset name to search projects for
Returns:
dict: Projects found based on dataset query | codesearchnet |
def forward_tcp(self, host, port):
return self.transport.open_channel(
'direct-tcpip',
(host, port),
self.transport.getpeername()
) | Open a connection to host:port via an ssh tunnel.
Args:
host (str): The host to connect to.
port (int): The port to connect to.
Returns:
A socket-like object that is connected to the provided host:port. | juraj-google-style |
def group_by_reducer(key_func, reducer):
def _apply_fn(dataset):
return _GroupByReducerDataset(dataset, key_func, reducer)
return _apply_fn | A transformation that groups elements and performs a reduction.
This transformation maps element of a dataset to a key using `key_func` and
groups the elements by key. The `reducer` is used to process each group; its
`init_func` is used to initialize state for each group when it is created, the
`reduce_func` is used to update the state every time an element is mapped to
the matching group, and the `finalize_func` is used to map the final state to
an output value.
Args:
key_func: A function mapping a nested structure of tensors
(having shapes and types defined by `self.output_shapes` and
`self.output_types`) to a scalar `tf.int64` tensor.
reducer: An instance of `Reducer`, which captures the reduction logic using
the `init_func`, `reduce_func`, and `finalize_func` functions.
Returns:
A `Dataset` transformation function, which can be passed to
`tf.data.Dataset.apply`. | github-repos |
def update_script(self, information, timeout=(- 1)):
uri = '{}/script'.format(self.data['uri'])
return self._helper.update(information, uri=uri, timeout=timeout) | Updates the configuration script of the logical enclosure and on all enclosures in the logical enclosure with
the specified ID.
Args:
information: Updated script.
timeout: Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation
in OneView; it just stops waiting for its completion.
Return:
Configuration script. | codesearchnet |
def check_missing(self, args):
return [opt.name for opt in self if ((opt.name not in args) and (opt.default is None))] | Returns the names of all options that are required but were not specified.
All options that don't have a default value are required in order to run the
workflow.
Args:
args (dict): A dictionary of the provided arguments that is checked for
missing options.
Returns:
list: A list with the names of the options that are missing from the
provided arguments. | codesearchnet |
def find_or_build(cls, **kwargs):
keys = kwargs.pop('keys') if 'keys' in kwargs else []
return cls.first(**subdict(kwargs, keys)) or cls.build(**kwargs) | Checks if an instance already exists in db with these kwargs else
returns a new, saved instance of the service's model class.
Args:
**kwargs: instance parameters | juraj-google-style |
def FindFieldByName(self, full_name):
full_name = _NormalizeFullyQualifiedName(full_name)
message_name, _, field_name = full_name.rpartition('.')
message_descriptor = self.FindMessageTypeByName(message_name)
return message_descriptor.fields_by_name[field_name] | Loads the named field descriptor from the pool.
Args:
full_name: The full name of the field descriptor to load.
Returns:
The field descriptor for the named field.
Raises:
KeyError: if the field cannot be found in the pool. | juraj-google-style |
def mirror_sources(self, sourcedir, targetdir=None, recursive=True, excludes=[]):
sources = self.compilable_sources(sourcedir, absolute=False, recursive=recursive, excludes=excludes)
maplist = []
for filepath in sources:
src = filepath
dst = self.get_destination(src, targetdir=targetdir)
if targetdir:
src = os.path.join(sourcedir, src)
maplist.append((src, dst))
return maplist | Mirroring compilable sources filepaths to their targets.
Args:
sourcedir (str): Directory path to scan.
Keyword Arguments:
absolute (bool): Returned paths will be absolute using
``sourcedir`` argument (if True), else return relative paths.
recursive (bool): Switch to enabled recursive finding (if True).
Default to True.
excludes (list): A list of excluding patterns (glob patterns).
Patterns are matched against the relative filepath (from its
sourcedir).
Returns:
list: A list of pairs ``(source, target)``. Where ``target`` is the
``source`` path but renamed with ``.css`` extension. Relative
directory from source dir is left unchanged but if given,
returned paths will be absolute (using ``sourcedir`` for
sources and ``targetdir`` for targets). | codesearchnet |
def _parse_octet(self, octet_str):
if not octet_str:
raise ValueError("Empty octet not permitted")
if not self._DECIMAL_DIGITS.issuperset(octet_str):
msg = "Only decimal digits permitted in %r"
raise ValueError(msg % octet_str)
if len(octet_str) > 3:
msg = "At most 3 characters permitted in %r"
raise ValueError(msg % octet_str)
octet_int = int(octet_str, 10)
if octet_int > 7 and octet_str[0] == '0':
msg = "Ambiguous (octal/decimal) value in %r not permitted"
raise ValueError(msg % octet_str)
if octet_int > 255:
raise ValueError("Octet %d (> 255) not permitted" % octet_int)
return octet_int | Convert a decimal octet into an integer.
Args:
octet_str: A string, the number to parse.
Returns:
The octet as an integer.
Raises:
ValueError: if the octet isn't strictly a decimal from [0..255]. | juraj-google-style |
def setup_privnet(self, host=None):
self.setup(FILENAME_SETTINGS_PRIVNET)
if isinstance(host, str):
if ":" in host:
raise Exception("No protocol prefix or port allowed in host, use just the IP or domain.")
print("Using custom privatenet host:", host)
self.SEED_LIST = ["%s:20333" % host]
self.RPC_LIST = ["http:
print("- P2P:", ", ".join(self.SEED_LIST))
print("- RPC:", ", ".join(self.RPC_LIST))
self.check_privatenet() | Load settings from the privnet JSON config file
Args:
host (string, optional): if supplied, uses this IP or domain as neo nodes. The host must
use these standard ports: P2P 20333, RPC 30333. | juraj-google-style |
def csv_to_dict(csv_filepath, **kwargs):
callbacks = {'to_list': csv_tolist,
'row_csv_limiter': row_csv_limiter,
'csv_row_cleaner': csv_row_cleaner,
'row_headers_count': row_headers_count,
'get_col_header': get_csv_col_headers,
'get_row_headers': get_row_headers,
'populate_headers': populate_headers,
'csv_column_header_cleaner': csv_column_header_cleaner,
'csv_column_cleaner': csv_column_cleaner,
'retrieve_csv_data': retrieve_csv_data}
callbacks.update(kwargs.get('alt_callbacks', {}))
rows = kwargs.get('rows', [])
if not rows:
rows = callbacks.get('to_list')(csv_filepath, **kwargs)
if not rows:
msg = 'Empty rows obtained from {}'.format(csv_filepath)
logger.warning(msg)
raise ValueError(msg)
rows = callbacks.get('row_csv_limiter')(
rows, kwargs.get('limits', [None, None]))
rows = callbacks.get('csv_row_cleaner')(rows)
rows = callbacks.get('csv_column_cleaner')(rows)
num_row_headers = callbacks.get('row_headers_count')(rows)
c_headers_raw = callbacks.get('get_col_header')(rows, num_row_headers)
r_headers = callbacks.get('get_row_headers')(
rows, num_row_headers, len(c_headers_raw))
c_headers_dirty = callbacks.get('populate_headers')(
c_headers_raw) if len(c_headers_raw) > 1 else c_headers_raw[0]
c_headers = callbacks.get('csv_column_header_cleaner')(c_headers_dirty)
csv_data = callbacks.get('retrieve_csv_data')(
rows,
column_header=len(c_headers_raw),
row_header=num_row_headers,
limit_column=len(c_headers) - len(c_headers_dirty) or None)
if csv_data:
assert len(c_headers) == len(csv_data[0])
if r_headers:
assert len(r_headers) == len(csv_data)
kwargs.pop('rows', None)
result = csv_format(csv_data, c_headers, r_headers, rows, **kwargs)
return result | Turn csv into dict.
Args:
:csv_filepath: path to csv file to turn into dict.
:limits: path to csv file to turn into dict | juraj-google-style |
def temporal_segmentation(segments, min_time):
final_segments = []
for segment in segments:
final_segments.append([])
for point in segment:
if (point.dt > min_time):
final_segments.append([])
final_segments[(- 1)].append(point)
return final_segments | Segments based on time distant points
Args:
segments (:obj:`list` of :obj:`list` of :obj:`Point`): segment points
min_time (int): minimum required time for segmentation | codesearchnet |
def _decompress(self, compressed_payload):
if self._data:
raise RuntimeError('Cannot decompress to an instance with payload')
self._data = zlib.decompress(compressed_payload)
len_data = len(self._data)
counts_size = (len_data - payload_header_size)
if (payload_header_size > counts_size > MAX_COUNTS_SIZE):
raise HdrLengthException(('Invalid size:' + str(len_data)))
self.payload = PayloadHeader.from_buffer_copy(self._data)
cookie = self.payload.cookie
if (get_cookie_base(cookie) != V2_ENCODING_COOKIE_BASE):
raise HdrCookieException(('Invalid cookie: %x' % cookie))
word_size = get_word_size_in_bytes_from_cookie(cookie)
if (word_size != V2_MAX_WORD_SIZE_IN_BYTES):
raise HdrCookieException(('Invalid V2 cookie: %x' % cookie)) | Decompress a compressed payload into this payload wrapper.
Note that the decompressed buffer is saved in self._data and the
counts array is not yet allocated.
Args:
compressed_payload (string) a payload in zlib compressed form
Exception:
HdrCookieException:
the compressed payload has an invalid cookie
HdrLengthException:
the decompressed size is too small for the HdrPayload structure
or is not aligned or is too large for the passed payload class
HdrHistogramSettingsException:
mismatch in the significant figures, lowest and highest
trackable value | codesearchnet |
def batch_size(self):
raise NotImplementedError | Return the batch size of the dataset created.
For certain type of the data input, the batch size is known, and even
required, like numpy array. Whereas for dataset, the batch is unknown
unless we take a peek.
Returns:
int, the batch size of the dataset, or None if it is unknown. | github-repos |
def __init__(self, decode_module, methodName='runTest'):
super(DecodeProtoOpTestBase, self).__init__(methodName)
self._decode_module = decode_module | DecodeProtoOpTestBase initializer.
Args:
decode_module: a module containing the `decode_proto_op` method
methodName: the name of the test method (same as for test.TestCase) | github-repos |
def RunOnce(self, names=None, token=None):
del token
leased_jobs = data_store.REL_DB.LeaseCronJobs(
cronjob_ids=names, lease_time=rdfvalue.Duration("10m"))
logging.info("Leased %d cron jobs for processing.", len(leased_jobs))
if not leased_jobs:
return
errors = {}
processed_count = 0
for job in sorted(leased_jobs, key=lambda j: j.cron_job_id):
if self.TerminateStuckRunIfNeeded(job):
continue
if not self.JobDueToRun(job):
continue
try:
if self.RunJob(job):
processed_count += 1
else:
logging.info(
"Can't schedule cron job %s on a thread pool "
"(all threads are busy or CPU load is high)", job.cron_job_id)
break
except Exception as e:
logging.exception("Cron job %s has failed: %s", job.cron_job_id, e)
errors[job.cron_job_id] = e
logging.info("Processed %d cron jobs.", processed_count)
data_store.REL_DB.ReturnLeasedCronJobs(leased_jobs)
if errors:
raise OneOrMoreCronJobsFailedError(errors) | Tries to lock and run cron jobs.
Args:
names: List of cron jobs to run. If unset, run them all.
token: security token.
Raises:
OneOrMoreCronJobsFailedError: if one or more individual cron jobs fail.
Note: a failure of a single cron job doesn't preclude other cron jobs
from running. | juraj-google-style |
def get_all_users(configuration=None, **kwargs):
user = User(configuration=configuration)
user['id'] = 'all users'
result = user._write_to_hdx('list', kwargs, 'id')
users = list()
if result:
for userdict in result:
user = User(userdict, configuration=configuration)
users.append(user)
else:
logger.debug(result)
return users | Get all users in HDX
Args:
configuration (Optional[Configuration]): HDX configuration. Defaults to global configuration.
**kwargs: See below
q (str): Restrict to names containing a string. Defaults to all users.
order_by (str): Field by which to sort - any user field or edits (number_of_edits). Defaults to 'name'.
Returns:
List[User]: List of all users in HDX | codesearchnet |
def _flush_tensor_values_cache(self, tensor_fetches, op_fetches, on_tpu, tensor_trace_order, graph):
if not tensor_trace_order.traced_tensors:
logging.warn('No tensor values being traced. No flush cache op added.')
return tensor_fetches
with ops.control_dependencies(op_fetches + [tensor.op for tensor in tensor_fetches]):
flush_cache_op = self._generate_flush_cache_op(self._tt_config.num_replicas, on_tpu, tensor_trace_order, graph)
return control_flow_ops.tuple(tensor_fetches, control_inputs=[flush_cache_op]) | Flushes the intermediate tensor values in the graph to the cache.
Args:
tensor_fetches: list of tensor results returned by the model_fn.
op_fetches: list of ops that are returned by the model_fn, e.g., train_op.
on_tpu: if the graph is executed on TPU.
tensor_trace_order: TensorTraceOrder object holding tensorname to id map.
graph: TensorFlow graph.
Returns:
An identical copy of tensor_fetches. | github-repos |
def recipe_sheets_to_bigquery(config, auth_read, auth_write, sheets_url, sheets_tab, sheets_range, dataset, table, sheets_header):
sheets(config, {'auth': auth_read, 'sheet': sheets_url, 'tab': sheets_tab, 'range': sheets_range, 'header': sheets_header, 'out': {'auth': auth_write, 'bigquery': {'dataset': dataset, 'table': table}}}) | Import data from a sheet and move it to a BigQuery table.
Args:
auth_read (authentication) - Credentials used for reading data.
auth_write (authentication) - Credentials used for writing data.
sheets_url (string) - NA
sheets_tab (string) - NA
sheets_range (string) - NA
dataset (string) - NA
table (string) - NA
sheets_header (boolean) - NA | github-repos |
def list_keyvaults_sub(access_token, subscription_id):
endpoint = ''.join([get_rm_endpoint(), '/subscriptions/', subscription_id, '/providers/Microsoft.KeyVault/vaults', '?api-version=', KEYVAULT_API])
return do_get_next(endpoint, access_token) | Lists key vaults belonging to this subscription.
Args:
access_token (str): A valid Azure authentication token.
subscription_id (str): Azure subscription id.
Returns:
HTTP response. 200 OK. | codesearchnet |
def add_average_summary(self, var, tag=None, decay=0.999, ignore_nan=True):
if (not self.summary_collections):
return
with self.g.as_default():
if ((decay < 0.9) or (decay >= 1.0)):
raise ValueError(('Decay is %5.2f, but has to be in [0, 1).' % decay))
avg_var = self.exponential_moving_average(var, decay=decay, ignore_nan=ignore_nan)
if (tag is None):
tag = _bare_var_name(avg_var)
tag = self.g.unique_name(tag)
self.add_scalar_summary(avg_var, tag)
return avg_var | Add a summary with the moving average of var.
Adds a variable to keep track of the exponential moving average and adds an
update operation to the bookkeeper. The name of the variable is
'%s_average' % name prefixed with the current variable scope.
Args:
var: The variable for which a moving average should be computed.
tag: The tag of the summary. If None var.name[:-2] is used to strip off
the ':0' that is added by TF.
decay: How much history to use in the moving average.
Higher, means more history values [0.9, 1) accepted.
ignore_nan: If the value is NaN or Inf, skip it. Note that this default
is different than the exponential_moving_average one.
Returns:
The averaged variable.
Raises:
ValueError: if decay is not in [0.9, 1). | codesearchnet |
def find_emails_by_subject(self, subject, limit=50, match_recipient=None):
self._mail.select('inbox')
matching_uids = self.__search_email_by_subject(subject, match_recipient)
return matching_uids | Searches for Email by Subject. Returns email's imap message IDs
as a list if matching subjects is found.
Args:
subject (str) - Subject to search for.
Kwargs:
limit (int) - Limit search to X number of matches, default 50
match_recipient (str) - Recipient to exactly (don't care if not specified)
Returns:
list - List of Integers representing imap message UIDs. | codesearchnet |
def QueryAndOwn(self, queue, lease_seconds=10, limit=1):
with self.data_store.GetMutationPool() as mutation_pool:
return mutation_pool.QueueQueryAndOwn(queue, lease_seconds, limit,
self.frozen_timestamp) | Returns a list of Tasks leased for a certain time.
Args:
queue: The queue to query from.
lease_seconds: The tasks will be leased for this long.
limit: Number of values to fetch.
Returns:
A list of GrrMessage() objects leased. | juraj-google-style |
def _from_record(data):
if isinstance(data, dict):
return Schema._from_dict_record(data)
elif isinstance(data, list):
return Schema._from_list_record(data)
else:
raise Exception(('Cannot create a schema from record %s' % str(data))) | Infer a BigQuery table schema from a list of fields or a dictionary. The typeof the elements
is used. For a list, the field names are simply 'Column1', 'Column2', etc.
Args:
data: The list of fields or dictionary.
Returns:
A list of dictionaries containing field 'name' and 'type' entries, suitable for use in a
BigQuery Tables resource schema. | codesearchnet |
def next_weekday(date):
n_days = 7 - date.weekday()
if n_days > 3:
n_days = 1
return date + datetime.timedelta(days=n_days) | Return the first weekday after date
Args:
date (datetime or datetime.date)
Returns:
(datetime or datetime.date)
Raises:
- | juraj-google-style |
def define_saver(exclude=None):
variables = []
exclude = (exclude or [])
exclude = [re.compile(regex) for regex in exclude]
for variable in tf.global_variables():
if any((regex.match(variable.name) for regex in exclude)):
continue
variables.append(variable)
saver = tf.train.Saver(variables, keep_checkpoint_every_n_hours=5)
return saver | Create a saver for the variables we want to checkpoint.
Args:
exclude: List of regexes to match variable names to exclude.
Returns:
Saver object. | codesearchnet |
def setPollingValues(self, max_waits, wait_sleep):
self.m_max_waits = max_waits
self.m_wait_sleep = wait_sleep | Optional polling loop control
Args:
max_waits (int): waits
wait_sleep (int): ms per wait | codesearchnet |
def lint(exclude, skip_untracked, commit_only):
exclude = (list(exclude) + conf.get('lint.exclude', []))
runner = LintRunner(exclude, skip_untracked, commit_only)
if (not runner.run()):
exit(1) | Lint python files.
Args:
exclude (list[str]):
A list of glob string patterns to test against. If the file/path
matches any of those patters, it will be filtered out.
skip_untracked (bool):
If set to **True** it will skip all files not tracked by git.
commit_only (bool):
Only lint files that are staged for commit. | codesearchnet |
def store_object(self, obj):
self._check_obj_properties(obj)
with transaction.manager:
self._put_into_indexes(obj) | Save `obj` into database and into proper indexes.
Attr:
obj (obj): Indexable object.
Raises:
InvalidType: When the `obj` doesn't have right properties.
Unindexableobjlication: When there is no indexes defined. | codesearchnet |
def add_parser(self, func=None, name=None, **kwargs):
if func:
if (not func.__doc__):
raise ValueError('No docstrings given in {0}'.format(func.__name__))
info = _parse_doc(func.__doc__)
if ((_HELP not in kwargs) or (not kwargs[_HELP])):
kwargs[_HELP] = info['headline']
if ((_DESCRIPTION not in kwargs) or (not kwargs[_DESCRIPTION])):
kwargs[_DESCRIPTION] = info['description']
if ((_FORMAT_CLASS not in kwargs) or (not kwargs[_FORMAT_CLASS])):
kwargs[_FORMAT_CLASS] = argparse.RawTextHelpFormatter
if (not name):
name = (func.__name__ if hasattr(func, '__name__') else func)
res = self.__delegate.add_parser(name, argmap=info['args'], **kwargs)
res.set_defaults(cmd=func)
else:
res = self.__delegate.add_parser(name, **kwargs)
return res | Add parser.
This method makes a new sub command parser. It takes same arguments
as add_parser() of the action class made by
argparse.ArgumentParser.add_subparsers.
In addition to, it takes one positional argument `func`, which is the
function implements process of this sub command. The `func` will be used
to determine the name, help, and description of this sub command. The
function `func` will also be set as a default value of `cmd` attribute.
If you want to choose name of this sub command, use keyword argument
`name`.
Args:
func: function implements the process of this command.
name: name of this command. If not give, the function name is used.
Returns:
new ArgumentParser object.
Raises:
ValueError: if the given function does not have docstrings. | codesearchnet |
def validate(self, table: pd.DataFrame, failed_only=False) -> pd.DataFrame:
series = table[self.name]
self._check_series_name(series)
validators = self.validators
results = pd.DataFrame({validator: series for validator in validators}, index=series.index)
for name, func in validators.items():
results[name] = func(results[name])
results['dtype'] = self._validate_series_dtype(series)
if self.unique:
results['unique'] = v.funcs.unique(series)
if failed_only:
results = find_failed_rows(results)
return results | Return a dataframe of validation results for the appropriate series vs the vector of validators.
Args:
table (pd.DataFrame): A dataframe on which to apply validation logic.
failed_only (bool): If ``True``: return only the indexes that failed to validate. | juraj-google-style |
def raster_to_asc(raster_f, asc_f):
raster_r = RasterUtilClass.read_raster(raster_f)
RasterUtilClass.write_asc_file(asc_f, raster_r.data, raster_r.nCols, raster_r.nRows, raster_r.geotrans, raster_r.noDataValue) | Converting Raster format to ASCII raster.
Args:
raster_f: raster file.
asc_f: output ASCII file. | codesearchnet |
def convert_field(field_names: Optional[List[str]]=None):
if field_names is None:
field_names = []
def convert_field_decorator(convert_method):
convert_method.convert_field_names = field_names
@functools.wraps(convert_method)
def convert_field_wrapper(self, src_proto, dest_proto):
convert_method(self, src_proto, dest_proto)
return convert_field_wrapper
return convert_field_decorator | Decorator that converts proto fields.
Args:
field_names: list of field names from src proto this function handles.
Returns:
convert_field_decorator
Typical usage example:
@converter.convert_field(field_names=["hello"])
def hello_convert_function(self, src_proto, dest_proto):
... | github-repos |
def as_pyplot_figure(self, label=1, **kwargs):
import matplotlib.pyplot as plt
exp = self.as_list(label=label, **kwargs)
fig = plt.figure()
vals = [x[1] for x in exp]
names = [x[0] for x in exp]
vals.reverse()
names.reverse()
colors = [('green' if (x > 0) else 'red') for x in vals]
pos = (np.arange(len(exp)) + 0.5)
plt.barh(pos, vals, align='center', color=colors)
plt.yticks(pos, names)
if (self.mode == 'classification'):
title = ('Local explanation for class %s' % self.class_names[label])
else:
title = 'Local explanation'
plt.title(title)
return fig | Returns the explanation as a pyplot figure.
Will throw an error if you don't have matplotlib installed
Args:
label: desired label. If you ask for a label for which an
explanation wasn't computed, will throw an exception.
Will be ignored for regression explanations.
kwargs: keyword arguments, passed to domain_mapper
Returns:
pyplot figure (barchart). | codesearchnet |
def metadata(self, path):
try:
file_metadata = s3io.S3IO(options=self._options)._status(path)
return FileMetadata(path, file_metadata['size'], file_metadata['last_updated'])
except Exception as e:
raise BeamIOError('Metadata operation failed', {path: e}) | Fetch metadata fields of a file on the FileSystem.
Args:
path: string path of a file.
Returns:
:class:`~apache_beam.io.filesystem.FileMetadata`.
Raises:
``BeamIOError``: if path isn't a file or doesn't exist. | github-repos |
def FillDeviceAttributes(device, descriptor):
attributes = HidAttributes()
result = hid.HidD_GetAttributes(device, ctypes.byref(attributes))
if not result:
raise ctypes.WinError()
buf = ctypes.create_string_buffer(1024)
result = hid.HidD_GetProductString(device, buf, 1024)
if not result:
raise ctypes.WinError()
descriptor.vendor_id = attributes.VendorID
descriptor.product_id = attributes.ProductID
descriptor.product_string = ctypes.wstring_at(buf) | Fill out the attributes of the device.
Fills the devices HidAttributes and product string
into the descriptor.
Args:
device: A handle to the open device
descriptor: The DeviceDescriptor to populate with the
attributes.
Returns:
None
Raises:
WindowsError when unable to obtain attributes or product
string. | juraj-google-style |
def __init__(self, start, size, name="merge_dims"):
super(MergeDims, self).__init__(name=name)
self._start = start
self._size = size
if size <= 1:
raise ValueError("`size` should be strictly greater than 1.") | Constructs the MergeDims module.
Args:
start: Start of the range of dimensions to merge.
size: Size the range of dimensions to merge.
name: The name of the module.
Raises:
ValueError: If `size` is not strictly greater than 1. | juraj-google-style |
def _filter_valid_filepaths(self, df, x_col):
filepaths = df[x_col].map(lambda fname: os.path.join(self.directory, fname))
mask = filepaths.apply(validate_filename, args=(self.white_list_formats,))
n_invalid = (~mask).sum()
if n_invalid:
warnings.warn('Found {} invalid image filename(s) in x_col="{}". These filename(s) will be ignored.'.format(n_invalid, x_col))
return df[mask] | Keep only dataframe rows with valid filenames.
Args:
df: Pandas dataframe containing filenames in a column
x_col: string, column in `df` that contains the filenames or
filepaths
Returns:
absolute paths to image files | github-repos |
def ParseNotificationcenterRow(
self, parser_mediator, query, row, **unused_kwargs):
query_hash = hash(query)
event_data = MacNotificationCenterEventData()
event_data.bundle_name = self._GetRowValue(query_hash, row, 'bundle_name')
event_data.presented = self._GetRowValue(query_hash, row, 'presented')
blob = self._GetRowValue(query_hash, row, 'dataBlob')
try:
full_biplist = biplist.readPlistFromString(blob)
req = full_biplist['req']
except (biplist.InvalidPlistException, KeyError) as exception:
parser_mediator.ProduceExtractionWarning(
'unable to read plist from database with error: {0!s}'.format(
exception))
return
event_data.title = req.get('titl', None)
event_data.subtitle = req.get('subt', None)
event_data.body = req.get('body', None)
timestamp = self._GetRowValue(query_hash, row, 'timestamp')
date_time = dfdatetime_cocoa_time.CocoaTime(timestamp=timestamp)
event = time_events.DateTimeValuesEvent(
date_time, definitions.TIME_DESCRIPTION_CREATION)
parser_mediator.ProduceEventWithEventData(event, event_data) | Parses a message row.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
query (str): query that created the row.
row (sqlite3.Row): row. | juraj-google-style |
def from_dict(cls, metadata):
hyperparameters = metadata.get('hyperparameters')
tunable = metadata.get('tunable_hyperparameters')
pipeline = cls(metadata['primitives'], metadata.get('init_params'), metadata.get('input_names'), metadata.get('output_names'))
if hyperparameters:
pipeline.set_hyperparameters(hyperparameters)
if (tunable is not None):
pipeline._tunable_hyperparameters = tunable
return pipeline | Create a new MLPipeline from a dict specification.
The dict structure is the same as the one created by the `to_dict` method.
Args:
metadata (dict): Dictionary containing the pipeline specification.
Returns:
MLPipeline:
A new MLPipeline instance with the details found in the
given specification dictionary. | codesearchnet |
def get_image_features(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding: Optional[bool]=False, return_dict: Optional[bool]=False):
vision_outputs = self.vision_model(pixel_values=pixel_values, interpolate_pos_encoding=interpolate_pos_encoding, return_dict=True)
image_embeds = vision_outputs[0]
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_outputs = self.qformer(query_embeds=query_tokens, encoder_hidden_states=image_embeds, encoder_attention_mask=image_attention_mask, return_dict=True)
query_output = query_outputs[0]
if query_output.dtype != image_embeds.dtype:
query_output = query_output.to(image_embeds.dtype)
language_model_inputs = self.language_projection(query_output)
if return_dict:
return (language_model_inputs, vision_outputs, query_outputs)
return language_model_inputs | Encodes images into continuous embeddings that can be forwarded to the language model.
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
The tensors corresponding to the input images. | github-repos |
def _parse_single_video(self, example_proto):
context_features = {
"game_duration_loops": tf.io.FixedLenFeature([1], tf.int64),
"game_duration_seconds": tf.io.FixedLenFeature([1], tf.float32),
"n_steps": tf.io.FixedLenFeature([1], tf.int64),
"screen_size": tf.io.FixedLenFeature([2], tf.int64),
}
sequence_features = {
"rgb_screen": tf.io.FixedLenSequenceFeature([], tf.string),
}
_, seq_feat = tf.io.parse_single_sequence_example(
example_proto,
context_features=context_features,
sequence_features=sequence_features)
video_frames = tf.map_fn(
tf.image.decode_png, seq_feat["rgb_screen"], dtype=tf.uint8)
return video_frames | Parses single video from the input tfrecords.
Args:
example_proto: tfExample proto with a single video.
Returns:
dict with all frames, positions and actions. | juraj-google-style |
def auth_user(self, username, password):
response = self._post((self.rest_url + '/authentication'), data=json.dumps({'value': password}), params={'username': username})
if (not response.ok):
return None
return response.json() | Authenticate a user account against the Crowd server.
Attempts to authenticate the user against the Crowd server.
Args:
username: The account username.
password: The account password.
Returns:
dict:
A dict mapping of user attributes if the application
authentication was successful. See the Crowd documentation
for the authoritative list of attributes.
None: If authentication failed. | codesearchnet |
def compute_k(self, memory_antecedent):
if self.shared_kv:
raise ValueError('compute_k cannot be called with shared_kv')
ret = mtf.einsum([memory_antecedent, self.wk], reduced_dims=[self.memory_input_dim])
if self.combine_dims:
ret = mtf.replace_dimensions(ret, ret.shape.dims[(- 1)], self.k_dims)
return ret | Compute key Tensor k.
Args:
memory_antecedent: a Tensor with dimensions
{memory_input_dim} + other_dims
Returns:
a Tensor with dimensions
memory_heads_dims + {key_dim} + other_dims | codesearchnet |
def most_exposes(python_type):
_exposes = set()
try:
do_not_expose = set(python_type.__dir__(object) + \
['__slots__', '__module__', '__weakref__'])
empty = python_type.__new__(python_type)
except AttributeError:
try:
_exposes = python_type.__slots__
except AttributeError:
pass
except TypeError:
for _workaround in storable_workarounds:
try:
_exposes = _workaround(python_type)
except (SystemExit, KeyboardInterrupt):
raise
except:
pass
else:
break
else:
all_members = empty.__dir__()
for attr in all_members:
if attr in do_not_expose:
continue
try:
getattr(empty, attr)
except AttributeError as e:
if e.args:
msg = e.args[0]
if msg == attr or msg.endswith("' object has no attribute '{}'".format(attr)):
_exposes.add(attr)
except (SystemExit, KeyboardInterrupt):
raise
except:
pass
for attr in ('__dict__',):
if attr in all_members:
_exposes.add(attr)
return list(_exposes) | Core engine for the automatic generation of storable instances.
Finds the attributes exposed by the objects of a given type.
Mostly Python3-only.
Does not handle types which `__new__` method requires extra arguments either.
Arguments:
python_type (type): object type.
Returns:
list: attributes exposed. | juraj-google-style |
def set_tensor_final(self, tensor_name):
tensor = self._name_to_tensor(tensor_name)
self._final_tensors.add(tensor) | Denotes a tensor as a final output of the computation.
Args:
tensor_name: a string, name of a tensor in the graph. | juraj-google-style |
def get_context(self, max_frames=None, missing_entities=[]):
if not max_frames or max_frames > len(self.frame_stack):
max_frames = len(self.frame_stack)
missing_entities = list(missing_entities)
context = []
for i in xrange(max_frames):
frame_entities = [entity.copy() for entity in self.frame_stack[i].entities]
for entity in frame_entities:
entity['confidence'] = entity.get('confidence', 1.0) / (2.0 + i)
context += frame_entities
result = []
if len(missing_entities) > 0:
for entity in context:
if entity.get('data') in missing_entities:
result.append(entity)
missing_entities.remove(entity.get('data'))
else:
result = context
return result | Constructs a list of entities from the context.
Args:
max_frames(int): maximum number of frames to look back
missing_entities(list of str): a list or set of tag names, as strings
Returns:
list: a list of entities | juraj-google-style |
def nth(series, n, order_by=None):
if order_by is not None:
series = order_series_by(series, order_by)
try:
return series.iloc[n]
except:
return np.nan | Returns the nth value of a series.
Args:
series (pandas.Series): column to summarize.
n (integer): position of desired value. Returns `NaN` if out of range.
Kwargs:
order_by: a pandas.Series or list of series (can be symbolic) to order
the input series by before summarization. | juraj-google-style |
def getProperty(self, orgresource, dummy = 56184):
url = nurls['getProperty']
data = {'userid': self.user_id,
'useridx': self.useridx,
'dummy': dummy,
'orgresource': orgresource,
}
r = self.session.post(url = url, data = data)
j = json.loads(r.text)
if self.resultManager(r.text):
f = FileInfo()
result = j['resultvalue']
f.resourcetype = result['resourcetype']
f.resourceno = result['resourceno']
return f
else:
return False | GetProperty
Args:
dummy: ???
orgresource: File path
Returns:
FileInfo object:
False: Failed to get property | juraj-google-style |
def fetch_github_pull_request(destination_directory: str,
repository: github_repository.GithubRepository,
pull_request_number: int,
verbose: bool
) -> prepared_env.PreparedEnv:
branch = 'pull/{}/head'.format(pull_request_number)
os.chdir(destination_directory)
print('chdir', destination_directory, file=sys.stderr)
shell_tools.run_cmd(
'git',
'init',
None if verbose else '--quiet',
out=sys.stderr)
result = _git_fetch_for_comparison(remote=repository.as_remote(),
actual_branch=branch,
compare_branch='master',
verbose=verbose)
shell_tools.run_cmd(
'git',
'branch',
None if verbose else '--quiet',
'compare_commit',
result.compare_commit_id,
log_run_to_stderr=verbose)
shell_tools.run_cmd(
'git',
'checkout',
None if verbose else '--quiet',
'-b',
'actual_commit',
result.actual_commit_id,
log_run_to_stderr=verbose)
return prepared_env.PreparedEnv(
github_repo=repository,
actual_commit_id=result.actual_commit_id,
compare_commit_id=result.compare_commit_id,
destination_directory=destination_directory,
virtual_env_path=None) | Uses content from github to create a dir for testing and comparisons.
Args:
destination_directory: The location to fetch the contents into.
repository: The github repository that the commit lives under.
pull_request_number: The id of the pull request to clone. If None, then
the master branch is cloned instead.
verbose: When set, more progress output is produced.
Returns:
Commit ids corresponding to content to test/compare. | juraj-google-style |
def get_send_request_correct_body(self, path, action):
(path_name, path_spec) = self.get_path_spec(path)
if ((path_spec is not None) and (action in path_spec.keys())):
for (name, spec) in path_spec[action]['parameters'].items():
if (spec['in'] == 'body'):
if ('type' in spec.keys()):
return self.get_example_from_prop_spec(spec)
elif ('schema' in spec.keys()):
if (('type' in spec['schema'].keys()) and (spec['schema']['type'] == 'array')):
if ('$ref' in spec['schema']['items']):
definition_name = self.get_definition_name_from_ref(spec['schema']['items']['$ref'])
return [self.definitions_example[definition_name]]
else:
definition_name = self.get_definition_name_from_ref(spec['schema']['items']['type'])
return [definition_name]
elif ('type' in spec['schema'].keys()):
return self.get_example_from_prop_spec(spec['schema'])
else:
definition_name = self.get_definition_name_from_ref(spec['schema']['$ref'])
return self.definitions_example[definition_name] | Get an example body which is correct to send to the given path with the given action.
Args:
path: path of the request
action: action of the request (get, post, put, delete)
Returns:
A dict representing a correct body for the request or None if no
body is required. | codesearchnet |
def assert_key_has_value(self, key, caller):
assert key, ("key parameter must be specified.")
self.assert_key_exists(key, caller)
if self[key] is None:
raise KeyInContextHasNoValueError(
f"context['{key}'] must have a value for {caller}.") | Assert that context contains key which also has a value.
Args:
key: validate this key exists in context AND has a value that isn't
None.
caller: string. calling function name - this used to construct
error messages
Raises:
KeyNotInContextError: Key doesn't exist
KeyInContextHasNoValueError: context[key] is None
AssertionError: if key is None | juraj-google-style |
def is_valid(draco_query: List[str], debug=False) -> bool:
_, stdout = run_clingo(
draco_query,
files=["define.lp", "hard.lp", "hard-integrity.lp"],
silence_warnings=True,
debug=debug,
)
return json.loads(stdout)["Result"] != "UNSATISFIABLE" | Check a task.
Args:
draco_query: a list of facts
Returns:
whether the task is valid | juraj-google-style |
def unique(seen, *iterables):
_add = seen.add
return (i for i in chain(*iterables) if ((i not in seen) and (not _add(i)))) | Get the unique items in iterables while preserving order. Note that this
mutates the seen set provided only when the returned generator is used.
Args:
seen (set): either an empty set, or the set of things already seen
*iterables: one or more iterable lists to chain together
Returns:
generator: | codesearchnet |
def find_furious_yaml(config_file=__file__):
checked = set()
result = _find_furious_yaml(os.path.dirname(config_file), checked)
if (not result):
result = _find_furious_yaml(os.getcwd(), checked)
return result | Traverse directory trees to find a furious.yaml file
Begins with the location of this file then checks the
working directory if not found
Args:
config_file: location of this file, override for
testing
Returns:
the path of furious.yaml or None if not found | codesearchnet |
def setAccessPolicy(self, pid, accessPolicy, serialVersion, vendorSpecific=None):
response = self.setAccessPolicyResponse(
pid, accessPolicy, serialVersion, vendorSpecific
)
return self._read_boolean_response(response) | See Also: setAccessPolicyResponse()
Args:
pid:
accessPolicy:
serialVersion:
vendorSpecific:
Returns: | juraj-google-style |
def _sign_input(cls, input_, message, key_pairs):
if isinstance(input_.fulfillment, Ed25519Sha256):
return cls._sign_simple_signature_fulfillment(input_, message, key_pairs)
elif isinstance(input_.fulfillment, ThresholdSha256):
return cls._sign_threshold_signature_fulfillment(input_, message, key_pairs)
else:
raise ValueError("Fulfillment couldn't be matched to Cryptocondition fulfillment type.") | Signs a single Input.
Note:
This method works only for the following Cryptoconditions
currently:
- Ed25519Fulfillment
- ThresholdSha256.
Args:
input_ (:class:`~bigchaindb.common.transaction.
Input`) The Input to be signed.
message (str): The message to be signed
key_pairs (dict): The keys to sign the Transaction with. | codesearchnet |
def _FormatMessageShort(self, event):
_, message_short = self._output_mediator.GetFormattedMessages(event)
if message_short is None:
data_type = getattr(event, 'data_type', 'UNKNOWN')
raise errors.NoFormatterFound(
'Unable to find event formatter for: {0:s}.'.format(data_type))
return message_short | Formats the short message.
Args:
event (EventObject): event.
Returns:
str: short message field.
Raises:
NoFormatterFound: if no event formatter can be found to match the data
type in the event. | juraj-google-style |
def FlagCxx11Features(filename, clean_lines, linenum, error):
line = clean_lines.elided[linenum]
include = Match('\\s*
if (include and (include.group(1) in ('cfenv', 'condition_variable', 'fenv.h', 'future', 'mutex', 'thread', 'chrono', 'ratio', 'regex', 'system_error'))):
error(filename, linenum, 'build/c++11', 5, ('<%s> is an unapproved C++11 header.' % include.group(1)))
if (Match('\\s*
return
for top_name in ('alignment_of', 'aligned_union'):
if Search(('\\bstd::%s\\b' % top_name), line):
error(filename, linenum, 'build/c++11', 5, ('std::%s is an unapproved C++11 class or function. Send c-style an example of where it would make your code more readable, and they may let you use it.' % top_name)) | Flag those c++11 features that we only allow in certain places.
Args:
filename: The name of the current file.
clean_lines: A CleansedLines instance containing the file.
linenum: The number of the line to check.
error: The function to call with any errors found. | codesearchnet |
def load_users(path=settings.LOGIN_FILE):
if (not os.path.exists(path)):
return {}
data = ''
with open(path) as f:
data = f.read().splitlines()
users = {}
cnt = 1
for line in data:
line = line.split(':')
assert (len(line) == 7), ("Bad number of fields in '%s', at line %d!" % (path, cnt))
users[line[0]] = {'pass_hash': line[1], 'uid': line[2], 'gid': line[3], 'full_name': line[4], 'home': line[5], 'shell': line[6]}
cnt += 1
return users | Read passwd file and return dict with users and all their settings.
Args:
path (str, default settings.LOGIN_FILE): path of the file,
which will be loaded (default :attr:`ftp.settings.LOGIN_FILE`).
Returns:
(dict): username: {pass_hash, uid, gid, full_name, home, shell}
Example of returned data::
{
"xex": {
"pass_hash": "$asd$aiosjdaiosjdásghwasdjo",
"uid": "2000",
"gid": "2000",
"full_name": "ftftf",
"home": "/home/ftp/xex",
"shell": "/bin/false"
}
} | codesearchnet |
def GetFileEntryByPathSpec(self, path_spec):
return compressed_stream_file_entry.CompressedStreamFileEntry(
self._resolver_context, self, path_spec, is_root=True, is_virtual=True) | Retrieves a file entry for a path specification.
Args:
path_spec (PathSpec): a path specification.
Returns:
CompressedStreamFileEntry: a file entry or None if not available. | juraj-google-style |
def python_graph(self):
return self._python_graph | Get the Python graph.
Returns:
If the Python graph has been set, returns a `tf.Graph` object. Otherwise,
returns None. | github-repos |
class AsList(AsSideInput):
@staticmethod
def _from_runtime_iterable(it, options):
return list(it)
def _side_input_data(self) -> SideInputData:
return SideInputData(common_urns.side_inputs.ITERABLE.urn, self._window_mapping_fn, list) | Marker specifying that an entire PCollection is to be used as a side input.
Intended for use in side-argument specification---the same places where
AsSingleton and AsIter are used, but forces materialization of this
PCollection as a list.
Args:
pcoll: Input pcollection.
Returns:
An AsList-wrapper around a PCollection whose one element is a list
containing all elements in pcoll. | github-repos |
def avg(self, vars_list: List[str]) -> 'TensorFluent':
operand = self
if operand.dtype == tf.bool:
operand = operand.cast(tf.float32)
return self._aggregation_op(tf.reduce_mean, operand, vars_list) | Returns the TensorFluent for the avg aggregation function.
Args:
vars_list: The list of variables to be aggregated over.
Returns:
A TensorFluent wrapping the avg aggregation function. | juraj-google-style |
def get_subgraph_for_concept(self, concept: str, depth: int=1, reverse: bool=False):
nodeset = {concept}
if reverse:
func = self.predecessors
else:
func = self.successors
for i in range(depth):
nodeset.update(chain.from_iterable([list(func(n)) for n in nodeset]))
return AnalysisGraph(self.subgraph(nodeset).copy()) | Returns a new subgraph of the analysis graph for a single concept.
Args:
concept: The concept that the subgraph will be centered around.
depth: The depth to which the depth-first search must be performed.
reverse: Sets the direction of causal influence flow to examine.
Setting this to False (default) will search for upstream causal
influences, and setting it to True will search for
downstream causal influences.
Returns:
AnalysisGraph | codesearchnet |
def convert_obatoms_to_molecule(self, atoms, residue_name=None, site_property="ff_map"):
restore_site_props = True if residue_name is not None else False
if restore_site_props and not hasattr(self, "map_residue_to_mol"):
self._set_residue_map()
coords = []
zs = []
for atm in atoms:
coords.append(list(atm.coords))
zs.append(atm.atomicnum)
mol = Molecule(zs, coords)
if restore_site_props:
props = []
ref = self.map_residue_to_mol[residue_name].copy()
assert len(mol) == len(ref)
assert ref.formula == mol.formula
for i, site in enumerate(mol):
assert site.specie.symbol == ref[i].specie.symbol
props.append(getattr(ref[i], site_property))
mol.add_site_property(site_property, props)
return mol | Convert list of openbabel atoms to MOlecule.
Args:
atoms ([OBAtom]): list of OBAtom objects
residue_name (str): the key in self.map_residue_to_mol. Usec to
restore the site properties in the final packed molecule.
site_property (str): the site property to be restored.
Returns:
Molecule object | juraj-google-style |
def build_configuration(self):
configuration = config.Configuration()
pegtree = pegnode.parse(self.filestring)
for section_node in pegtree:
if isinstance(section_node, pegnode.GlobalSection):
configuration.globall = self.build_global(section_node)
elif isinstance(section_node, pegnode.FrontendSection):
configuration.frontends.append(self.build_frontend(section_node))
elif isinstance(section_node, pegnode.DefaultsSection):
configuration.defaults.append(self.build_defaults(section_node))
elif isinstance(section_node, pegnode.ListenSection):
configuration.listens.append(self.build_listen(section_node))
elif isinstance(section_node, pegnode.UserlistSection):
configuration.userlists.append(self.build_userlist(section_node))
elif isinstance(section_node, pegnode.BackendSection):
configuration.backends.append(self.build_backend(section_node))
return configuration | Parse the haproxy config file
Raises:
Exception: when there are unsupported section
Returns:
config.Configuration: haproxy config object | codesearchnet |
def get_configuration(self, uri):
req_headers = {
'Accept': 'application/vnd.onshape.v1+json',
'Content-Type': 'application/json'
}
return self._api.request('get', '/api/partstudios/d/' + uri["did"] + '/' + uri["wvm_type"] + '/' + uri["wvm"] + '/e/' + uri["eid"] + '/configuration', headers=req_headers) | get the configuration of a PartStudio
Args:
- uri (dict): points to a particular element
Returns:
- requests.Response: Onshape response data | juraj-google-style |
def AddMapping(self, filename, new_mapping):
for field in self._REQUIRED_MAPPING_FIELDS:
if field not in new_mapping:
raise problems.InvalidMapping(field)
if filename in self.GetKnownFilenames():
raise problems.DuplicateMapping(filename)
self._file_mapping[filename] = new_mapping | Adds an entry to the list of known filenames.
Args:
filename: The filename whose mapping is being added.
new_mapping: A dictionary with the mapping to add. Must contain all
fields in _REQUIRED_MAPPING_FIELDS.
Raises:
DuplicateMapping if the filename already exists in the mapping
InvalidMapping if not all required fields are present | juraj-google-style |
def call(self, input_values: tf.Tensor, attention_mask: tf.Tensor | None=None, token_type_ids: tf.Tensor | None=None, position_ids: tf.Tensor | None=None, head_mask: tf.Tensor | None=None, inputs_embeds: tf.Tensor | None=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, training: bool=False) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
output_hidden_states = output_hidden_states if output_hidden_states else self.config.output_hidden_states
output_attentions = output_attentions if output_attentions else self.config.output_attentions
return_dict = return_dict if return_dict else self.config.return_dict
outputs = self.wav2vec2(input_values=input_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training)
return outputs | Returns:
Example:
```python
>>> from transformers import AutoProcessor, TFWav2Vec2Model
>>> from datasets import load_dataset
>>> import soundfile as sf
>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
>>> model = TFWav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
>>> def map_to_array(batch):
... speech, _ = sf.read(batch["file"])
... batch["speech"] = speech
... return batch
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> ds = ds.map(map_to_array)
>>> input_values = processor(ds["speech"][0], return_tensors="tf").input_values # Batch size 1
>>> hidden_states = model(input_values).last_hidden_state
``` | github-repos |
def EnumValueName(self, enum, value):
return self.enum_types_by_name[enum].values_by_number[value].name | Returns the string name of an enum value.
This is just a small helper method to simplify a common operation.
Args:
enum: string name of the Enum.
value: int, value of the enum.
Returns:
string name of the enum value.
Raises:
KeyError if either the Enum doesn't exist or the value is not a valid
value for the enum. | juraj-google-style |
def get_weights(self):
self._check_sess()
return {k: v.eval(session=self.sess) for (k, v) in self.variables.items()} | Returns a dictionary containing the weights of the network.
Returns:
Dictionary mapping variable names to their weights. | codesearchnet |
def __init__(self, **kwinfo):
self._author_fakename = getpass.getuser()
self._author_truename = ProjectInfo.find_pakcage_info(
'author', SRC_FOLDER, PROJECT_NAME, '__init__.py')
self._email = ProjectInfo.find_pakcage_info(
'email', SRC_FOLDER, PROJECT_NAME, '__init__.py')
self._project_name = os.path.basename(
os.path.dirname(os.path.realpath(__file__)))
self._project_version = ProjectInfo.find_pakcage_info(
'version', SRC_FOLDER, PROJECT_NAME, '__init__.py')
for key, info in kwinfo.items():
key = '_' + key
setattr(self, key, info) | init project info
Args:
author_fakename (str): TODO
author_truename (str): TODO
email (str): TODO
project_name (str): TODO
project_version (str): TODO | juraj-google-style |
def mean_centroid(candidates):
sum_x = 0.0
sum_y = 0.0
for (centroid_x, centroid_y, _, _) in candidates:
sum_x += centroid_x
sum_y += centroid_y
denom = (3.0 * len(candidates))
return ((sum_x / denom), (sum_y / denom)) | Take the mean of all centroids in set of reference triangles.
.. note::
This is used **only** as a helper for :func:`locate_point`.
Args:
candidates (List[Tuple[float, float, float, numpy.ndarray]): List of
4-tuples, each of which has been produced by :func:`locate_point`.
Each 4-tuple contains
* Three times centroid ``x``-value
* Three times centroid ``y``-value
* "Width" of a parameter space for a surface
* Control points for a surface
We only use the first two values, which are triple the desired
value so that we can put off division by three until summing in
our average. We don't use the other two values, they are just an
artifact of the way ``candidates`` is constructed by the caller.
Returns:
Tuple[float, float]: The mean of all centroids. | codesearchnet |
def wrefs(self, index = None, recurse=True):
targets =[]
self._helper_wrefs(targets, recurse)
if index is None:
return targets
else:
return targets[index] | Returns a list of word references, these can be Words but also Morphemes or Phonemes.
Arguments:
index (int or None): If set to an integer, will retrieve and return the n'th element (starting at 0) instead of returning the list of all | juraj-google-style |
def _CompareStores(self, storage_reader, compare_storage_reader):
storage_counters = self._CalculateStorageCounters(storage_reader)
compare_storage_counters = self._CalculateStorageCounters(
compare_storage_reader)
return storage_counters == compare_storage_counters | Compares the contents of two stores.
Args:
storage_reader (StorageReader): storage reader.
compare_storage_reader (StorageReader): storage to compare against.
Returns:
bool: True if the content of the stores is identical. | juraj-google-style |
def softmax(x, axis=-1):
if isinstance(axis, int) and x.shape[axis] == 1:
warnings.warn(f'You are using a softmax over axis {axis} of a tensor of shape {x.shape}. This axis has size 1. The softmax operation will always return the value 1, which is likely not what you intended. Did you mean to use a sigmoid instead?')
if any_symbolic_tensors((x,)):
return Softmax(axis).symbolic_call(x)
if isinstance(axis, tuple):
axis_to_keep = [v for v in range(len(x.shape)) if v not in axis]
x_transposed = backend.numpy.transpose(x, axes=(*axis_to_keep, *axis))
x_reshaped = backend.numpy.reshape(x_transposed, (*[x.shape[v] for v in axis_to_keep], -1))
x = backend.nn.softmax(x_reshaped, axis=-1)
x = backend.numpy.reshape(x, x_transposed.shape)
x = backend.numpy.transpose(x, axes=list(backend.numpy.argsort([*axis_to_keep, *axis])))
return x
else:
return backend.nn.softmax(x, axis=axis) | Softmax activation function.
The elements of the output vector lie within the range `(0, 1)`, and their
total sum is exactly 1 (excluding the floating point rounding error).
Each vector is processed independently. The `axis` argument specifies the
axis along which the function is applied within the input.
It is defined as:
`f(x) = exp(x) / sum(exp(x))`
Args:
x: Input tensor.
axis: Integer, axis along which the softmax is applied.
Returns:
A tensor with the same shape as `x`.
Example:
>>> x = np.array([-1., 0., 1.])
>>> x_softmax = keras.ops.softmax(x)
>>> print(x_softmax)
array([0.09003057, 0.24472847, 0.66524096], shape=(3,), dtype=float64) | github-repos |
def recipe_dbm_to_sheets(config, auth_read, report_id, report_name, sheet, tab):
dbm(config, {'auth': auth_read, 'report': {'report_id': report_id, 'name': report_name}, 'out': {'sheets': {'sheet': sheet, 'tab': tab, 'range': 'A1'}}}) | Move existing DV360 report into a Sheets tab.
Args:
auth_read (authentication) - Credentials used for reading data.
report_id (integer) - DV360 report ID given in UI, not needed if name used.
report_name (string) - Name of report, not needed if ID used.
sheet (string) - Full URL to sheet being written to.
tab (string) - Existing tab in sheet to write to. | github-repos |
def LookupClients(self, keywords):
if isinstance(keywords, string_types):
raise ValueError(
"Keywords should be an iterable, not a string (got %s)." % keywords)
start_time, end_time, filtered_keywords, unversioned_keywords = (
self._AnalyzeKeywords(keywords))
last_seen_map = None
if unversioned_keywords:
last_seen_map = {}
raw_results = self.Lookup(
list(map(self._NormalizeKeyword, filtered_keywords)),
start_time=start_time.AsMicrosecondsSinceEpoch(),
end_time=end_time.AsMicrosecondsSinceEpoch(),
last_seen_map=last_seen_map)
if not raw_results:
return []
if unversioned_keywords:
universal_last_seen_raw = {}
self.ReadPostingLists(
list(map(self._NormalizeKeyword, raw_results)),
start_time=start_time.AsMicrosecondsSinceEpoch(),
end_time=end_time.AsMicrosecondsSinceEpoch(),
last_seen_map=universal_last_seen_raw)
universal_last_seen = {}
for (_, client_id), ts in iteritems(universal_last_seen_raw):
universal_last_seen[client_id] = ts
old_results = set()
for keyword in unversioned_keywords:
for result in raw_results:
if last_seen_map[(keyword, result)] < universal_last_seen[result]:
old_results.add(result)
raw_results -= old_results
return [rdf_client.ClientURN(result) for result in raw_results] | Returns a list of client URNs associated with keywords.
Args:
keywords: The list of keywords to search by.
Returns:
A list of client URNs.
Raises:
ValueError: A string (single keyword) was passed instead of an iterable. | juraj-google-style |
def cellsiter_to_dataframe(cellsiter, args, drop_allna=True):
from modelx.core.cells import shareable_parameters
if len(args):
indexes = shareable_parameters(cellsiter)
else:
indexes = get_all_params(cellsiter.values())
result = None
for cells in cellsiter.values():
df = cells_to_dataframe(cells, args)
if (drop_allna and df.isnull().all().all()):
continue
if (df.index.names != [None]):
if isinstance(df.index, pd.MultiIndex):
if (_pd_ver < (0, 20)):
df = _reset_naindex(df)
df = df.reset_index()
missing_params = (set(indexes) - set(df))
for params in missing_params:
df[params] = np.nan
if (result is None):
result = df
else:
try:
result = pd.merge(result, df, how='outer')
except MergeError:
result = pd.concat([result, df], axis=1)
except ValueError:
cols = (set(result.columns) & set(df.columns))
for col in cols:
if (len([str(frame[col].dtype) for frame in (result, df) if (str(frame[col].dtype) == 'object')]) == 1):
if (str(result[col].dtype) == 'object'):
frame = df
else:
frame = result
frame[[col]] = frame[col].astype('object')
result = pd.merge(result, df, how='outer')
if (result is None):
return pd.DataFrame()
else:
return (result.set_index(indexes) if indexes else result) | Convert multiple cells to a frame.
If args is an empty sequence, all values are included.
If args is specified, cellsiter must have shareable parameters.
Args:
cellsiter: A mapping from cells names to CellsImpl objects.
args: A sequence of arguments | codesearchnet |
def explain_text(self, labels, instance, column_name=None, num_features=10, num_samples=5000):
from lime.lime_text import LimeTextExplainer
if ((len(self._text_columns) > 1) and (not column_name)):
raise ValueError(('There are multiple text columns in the input of the model. ' + 'Please specify "column_name".'))
elif (column_name and (column_name not in self._text_columns)):
raise ValueError(('Specified column_name "%s" not found in the model input.' % column_name))
text_column_name = (column_name if column_name else self._text_columns[0])
if isinstance(instance, six.string_types):
instance = next(csv.DictReader([instance], fieldnames=self._headers))
predict_fn = self._make_text_predict_fn(labels, instance, text_column_name)
explainer = LimeTextExplainer(class_names=labels)
exp = explainer.explain_instance(instance[text_column_name], predict_fn, labels=range(len(labels)), num_features=num_features, num_samples=num_samples)
return exp | Explain a text field of a prediction.
It analyze the prediction by LIME, and returns a report of which words are most impactful
in contributing to certain labels.
Args:
labels: a list of labels to explain.
instance: the prediction instance. It needs to conform to model's input. Can be a csv
line string, or a dict.
column_name: which text column to explain. Can be None if there is only one text column
in the model input.
num_features: maximum number of words (features) to analyze. Passed to
LIME LimeTextExplainer directly.
num_samples: size of the neighborhood to learn the linear model. Passed to
LIME LimeTextExplainer directly.
Returns:
A LIME's lime.explanation.Explanation.
Throws:
ValueError if the given text column is not found in model input or column_name is None
but there are multiple text columns in model input. | codesearchnet |
def _GetMetadataRequest(self, metadata_url, params=None, timeout=None):
headers = {'Metadata-Flavor': 'Google'}
params = urlparse.urlencode(params or {})
url = '%s?%s' % (metadata_url, params)
request = urlrequest.Request(url, headers=headers)
request_opener = urlrequest.build_opener(urlrequest.ProxyHandler({}))
timeout = timeout or self.timeout
return request_opener.open(request, timeout=timeout*1.1) | Performs a GET request with the metadata headers.
Args:
metadata_url: string, the URL to perform a GET request on.
params: dictionary, the query parameters in the GET request.
timeout: int, timeout in seconds for metadata requests.
Returns:
HTTP response from the GET request.
Raises:
urlerror.HTTPError: raises when the GET request fails. | juraj-google-style |
def plot(self, ax_list=None, fontsize=12, **kwargs):
history = self.history
num_plots, ncols, nrows = len(history), 1, 1
if num_plots > 1:
ncols = 2
nrows = num_plots
ax_list, fig, plot = get_axarray_fig_plt(ax_list, nrows=nrows, ncols=ncols,
sharex=True, sharey=False, squeeze=False)
ax_list = np.array(ax_list).ravel()
iter_num = np.array(list(range(self.num_iterations))) + 1
label = kwargs.pop("label", None)
for i, ((key, values), ax) in enumerate(zip(history.items(), ax_list)):
ax.grid(True)
ax.set_xlabel('Relaxation Step')
ax.set_xticks(iter_num, minor=False)
ax.set_ylabel(key)
xx, yy = iter_num, values
if not kwargs and label is None:
ax.plot(xx, yy, "-o", lw=2.0)
else:
ax.plot(xx, yy, label=label if i == 0 else None, **kwargs)
if key in _VARS_SUPPORTING_LOGSCALE and np.all(yy > 1e-22):
ax.set_yscale("log")
if key in _VARS_WITH_YRANGE:
ymin, ymax = _VARS_WITH_YRANGE[key]
val_min, val_max = np.min(yy), np.max(yy)
if abs(val_max - val_min) > abs(ymax - ymin):
ax.set_ylim(ymin, ymax)
if label is not None:
ax.legend(loc="best", fontsize=fontsize, shadow=True)
if num_plots % ncols != 0:
ax_list[-1].plot(xx, yy, lw=0.0)
ax_list[-1].axis('off')
return fig | Plot relaxation history i.e. the results of the last iteration of each SCF cycle.
Args:
ax_list: List of axes. If None a new figure is produced.
fontsize: legend fontsize.
kwargs: keyword arguments are passed to ax.plot
Returns: matplotlib figure | juraj-google-style |
def _executeMassiveMethod(path, method, args=None, classArgs=None):
response = {}
if (args is None):
args = {}
if (classArgs is None):
classArgs = {}
sys.path.append(path)
exclude = ['__init__.py', 'base.py']
for f in AtomShieldsScanner._getFiles(path, '*.py', exclude=exclude):
try:
instance = AtomShieldsScanner._getClassInstance(path=f, args=classArgs)
if (instance is not None):
if callable(method):
args['instance'] = instance
output = method(**args)
response[instance.__class__.NAME] = output
elif hasattr(instance, method):
output = getattr(instance, method)(**args)
response[instance.__class__.NAME] = output
else:
continue
except Exception as e:
AtomShieldsScanner._debug(('[!] %s' % e))
sys.path.remove(path)
return response | Execute an specific method for each class instance located in path
Args:
path (str): Absolute path which contains the .py files
method (str): Method to execute into class instance
Returns:
dict: Dictionary which contains the response for every class instance.
The dictionary keys are the value of 'NAME' class variable. | codesearchnet |
def _ListActiveBreakpoints(self, service):
try:
response = service.debuggees().breakpoints().list(
debuggeeId=self._debuggee_id, waitToken=self._wait_token,
successOnTimeout=True).execute()
if not response.get('waitExpired'):
self._wait_token = response.get('nextWaitToken')
breakpoints = response.get('breakpoints') or []
if self._breakpoints != breakpoints:
self._breakpoints = breakpoints
native.LogInfo(
'Breakpoints list changed, %d active, wait token: %s' % (
len(self._breakpoints), self._wait_token))
self.on_active_breakpoints_changed(copy.deepcopy(self._breakpoints))
except BaseException:
native.LogInfo('Failed to query active breakpoints: ' +
traceback.format_exc())
self._debuggee_id = None
return (True, self.list_backoff.Failed())
self.list_backoff.Succeeded()
return (False, 0) | Single attempt query the list of active breakpoints.
Must not be called before the debuggee has been registered. If the request
fails, this function resets self._debuggee_id, which triggers repeated
debuggee registration.
Args:
service: client to use for API calls
Returns:
(registration_required, delay) tuple | juraj-google-style |
def query(self, sql_query, return_as='dataframe'):
if isinstance(sql_query, str):
pass
elif isinstance(sql_query, unicode):
sql_query = str(sql_query)
else:
raise QueryDbError('query() requires a str or unicode input.')
query = sqlalchemy.sql.text(sql_query)
if (return_as.upper() in ['DF', 'DATAFRAME']):
return self._to_df(query, self._engine)
elif (return_as.upper() in ['RESULT', 'RESULTPROXY']):
with self._engine.connect() as conn:
result = conn.execute(query)
return result
else:
raise QueryDbError('Other return types not implemented.') | Execute a raw SQL query against the the SQL DB.
Args:
sql_query (str): A raw SQL query to execute.
Kwargs:
return_as (str): Specify what type of object should be
returned. The following are acceptable types:
- "dataframe": pandas.DataFrame or None if no matching query
- "result": sqlalchemy.engine.result.ResultProxy
Returns:
result (pandas.DataFrame or sqlalchemy ResultProxy): Query result
as a DataFrame (default) or sqlalchemy result (specified with
return_as="result")
Raises:
QueryDbError | codesearchnet |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.