code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def __init__( self, pooling_type='max', window=2, stride=2, padding='SAME', named_tensors=None, scope='pool2d', summary_labels=() ): self.pooling_type = pooling_type if isinstance(window, int): self.window = (1, window, window, 1) elif len(window) == 2: self.window = (1, window[0], window[1], 1) else: raise TensorForceError('Invalid window {} for pool2d layer, must be of size 2'.format(window)) if isinstance(stride, int): self.stride = (1, stride, stride, 1) elif len(window) == 2: self.stride = (1, stride[0], stride[1], 1) else: raise TensorForceError('Invalid stride {} for pool2d layer, must be of size 2'.format(stride)) self.padding = padding super(Pool2d, self).__init__(named_tensors=named_tensors, scope=scope, summary_labels=summary_labels)
2-dimensional pooling layer. Args: pooling_type: Either 'max' or 'average'. window: Pooling window size, either an integer or pair of integers. stride: Pooling stride, either an integer or pair of integers. padding: Pooling padding, one of 'VALID' or 'SAME'.
juraj-google-style
def _prepare_4d_causal_attention_mask(attention_mask: Optional[torch.Tensor], input_shape: Union[torch.Size, tuple, list], inputs_embeds: torch.Tensor, past_key_values_length: int, sliding_window: Optional[int]=None): attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window) key_value_length = input_shape[-1] + past_key_values_length if attention_mask is not None and len(attention_mask.shape) == 2: attention_mask = attn_mask_converter.to_4d(attention_mask, input_shape[-1], key_value_length=key_value_length, dtype=inputs_embeds.dtype) elif attention_mask is not None and len(attention_mask.shape) == 4: expected_shape = (input_shape[0], 1, input_shape[1], key_value_length) if tuple(attention_mask.shape) != expected_shape: raise ValueError(f'Incorrect 4D attention_mask shape: {tuple(attention_mask.shape)}; expected: {expected_shape}.') else: inverted_mask = 1.0 - attention_mask attention_mask = inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min) else: attention_mask = attn_mask_converter.to_causal_4d(input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device) return attention_mask
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)` Args: attention_mask (`torch.Tensor` or `None`): A 2D attention mask of shape `(batch_size, key_value_length)` input_shape (`tuple(int)` or `list(int)` or `torch.Size`): The input shape should be a tuple that defines `(batch_size, query_length)`. inputs_embeds (`torch.Tensor`): The embedded inputs as a torch Tensor. past_key_values_length (`int`): The length of the key value cache. sliding_window (`int`, *optional*): If the model uses windowed attention, a sliding window should be passed.
github-repos
def usufyToPngExport(d, fPath): newGraph = _generateGraphData(d) import matplotlib.pyplot as plt nx.draw(newGraph) plt.savefig(fPath)
Workaround to export to a png file. Args: ----- d: Data to export. fPath: File path for the output file.
juraj-google-style
def nonzero(x): if any_symbolic_tensors((x,)): return Nonzero().symbolic_call(x) return backend.numpy.nonzero(x)
Return the indices of the elements that are non-zero. Args: x: Input tensor. Returns: Indices of elements that are non-zero.
github-repos
def __build_helper_map(cls): ret = {} for name in dir(cls): obj = getattr(cls, name) if ishelper(obj): for cmd in obj.__help_targets__: if (cmd in ret.keys()): raise PyShellError("The command '{}' already has helper method '{}', cannot register a second method '{}'.".format(cmd, ret[cmd], obj.__name__)) ret[cmd] = obj.__name__ return ret
Build a mapping from command names to helper names. One command name maps to at most one helper method. Multiple command names can map to the same helper method. Only used by __init__() to initialize self._cmd_map. MUST NOT be used elsewhere. Raises: PyShellError: A command maps to multiple helper methods.
codesearchnet
def _extract_filename(self, flagfile_str): if flagfile_str.startswith('--flagfile='): return os.path.expanduser((flagfile_str[(len('--flagfile=')):]).strip()) elif flagfile_str.startswith('-flagfile='): return os.path.expanduser((flagfile_str[(len('-flagfile=')):]).strip()) else: raise _exceptions.Error( 'Hit illegal --flagfile type: %s' % flagfile_str)
Returns filename from a flagfile_str of form -[-]flagfile=filename. The cases of --flagfile foo and -flagfile foo shouldn't be hitting this function, as they are dealt with in the level above this function. Args: flagfile_str: str, the flagfile string. Returns: str, the filename from a flagfile_str of form -[-]flagfile=filename. Raises: Error: Raised when illegal --flagfile is provided.
juraj-google-style
def find_user(cls, session, mailbox, user): return cls( '/mailboxes/%d/users/%s/conversations.json' % ( mailbox.id, user.id, ), session=session, )
Return conversations for a specific user in a mailbox. Args: session (requests.sessions.Session): Authenticated session. mailbox (helpscout.models.Mailbox): Mailbox to search. user (helpscout.models.User): User to search for. Returns: RequestPaginator(output_type=helpscout.models.Conversation): Conversations iterator.
juraj-google-style
def create_from_options(cls, pipeline_options): from apache_beam.options.pipeline_options import PipelineOptions if not isinstance(pipeline_options, PipelineOptions): raise ValueError('Element of class {}.{} does not subclass PipelineOptions'.format(pipeline_options.__module__, pipeline_options.__class__.__name__)) items = {k: v if DisplayDataItem._get_value_type(v) is not None else str(v) for k, v in pipeline_options.display_data().items()} return cls(pipeline_options._get_display_data_namespace(), items)
Creates :class:`~apache_beam.transforms.display.DisplayData` from a :class:`~apache_beam.options.pipeline_options.PipelineOptions` instance. When creating :class:`~apache_beam.transforms.display.DisplayData`, this method will convert the value of any item of a non-supported type to its string representation. The normal :meth:`.create_from()` method rejects those items. Returns: ~apache_beam.transforms.display.DisplayData: A :class:`~apache_beam.transforms.display.DisplayData` instance with populated items. Raises: ValueError: If the **has_display_data** argument is not an instance of :class:`HasDisplayData`.
github-repos
def _list_profile_filter(profile_datum, node_name_regex, file_path_regex, op_type_regex, op_time_interval, exec_time_interval, min_lineno=-1, max_lineno=-1): if node_name_regex and (not node_name_regex.match(profile_datum.node_exec_stats.node_name)): return False if file_path_regex: if not profile_datum.file_path or not file_path_regex.match(profile_datum.file_path): return False if min_lineno > 0 and profile_datum.line_number and (profile_datum.line_number < min_lineno): return False if max_lineno > 0 and profile_datum.line_number and (profile_datum.line_number >= max_lineno): return False if profile_datum.op_type is not None and op_type_regex and (not op_type_regex.match(profile_datum.op_type)): return False if op_time_interval is not None and (not op_time_interval.contains(profile_datum.op_time)): return False if exec_time_interval and (not exec_time_interval.contains(profile_datum.node_exec_stats.all_end_rel_micros)): return False return True
Filter function for list_profile command. Args: profile_datum: A `ProfileDatum` object. node_name_regex: Regular expression pattern object to filter by name. file_path_regex: Regular expression pattern object to filter by file path. op_type_regex: Regular expression pattern object to filter by op type. op_time_interval: `Interval` for filtering op time. exec_time_interval: `Interval` for filtering exec time. min_lineno: Lower bound for 1-based line number, inclusive. If <= 0, has no effect. max_lineno: Upper bound for 1-based line number, exclusive. If <= 0, has no effect. # TODO(cais): Maybe filter by function name. Returns: True iff profile_datum should be included.
github-repos
def _tf_extension_type_with_packed(self, value): copy = _create_object_from_type_and_dict(type(self), self.__dict__) copy.__dict__['_tf_extension_type_is_packed'] = value return copy
Returns a copy of this `TypeSpec` with `packed=value`. Args: value: A boolean value. Returns: A copy of `self` with `_tf_extension_type_is_packed=value`.
github-repos
def stats(self, *args): result = self._fetch_cmd(b'stats', args, False) for key, value in six.iteritems(result): converter = STAT_TYPES.get(key, int) try: result[key] = converter(value) except Exception: pass return result
The memcached "stats" command. The returned keys depend on what the "stats" command returns. A best effort is made to convert values to appropriate Python types, defaulting to strings when a conversion cannot be made. Args: *arg: extra string arguments to the "stats" command. See the memcached protocol documentation for more information. Returns: A dict of the returned stats.
juraj-google-style
def flat_values_spec(self): return self._flat_values_spec
The `TypeSpec` of the flat_values of RaggedTensor. Returns: - The TypeSpec of flat_values. - None when the flat_values is a Tensor.
github-repos
def init(args): dir_path = Path().absolute() if not args.project_name or args.project_name.find("/") >= 0: print( "{}You should specify a valid project name{}".format( utils.colors.FAIL, utils.colors.ENDC ) ) return project_path = dir_path / args.project_name if not project_path.exists(): project_path.mkdir() else: print( "{}This project already exists{}".format( utils.colors.FAIL, utils.colors.ENDC ) ) return home_doc_path = project_path / "docs" home_doc_path.mkdir() help_doc_path = home_doc_path / "help" help_doc_path.mkdir() file_path = Path(__file__).resolve().parent / "include" copyfile(file_path / "index.md", home_doc_path / "index.md") copyfile(file_path / "How_To_Use_Mkinx.md", help_doc_path / "How_To_Use_Mkinx.md") copyfile( file_path / "Writing_Sphinx_Documentation.md", help_doc_path / "Writing_Sphinx_Documentation.md", ) with open(file_path / "mkdocs.yml", "r") as f: lines = f.readlines() input_text = "What is your Documentation's name" input_text += " (it can be changed later in mkdocs.yml)?\n" input_text += "[Default: {} - Home Documentation]\n" site_name = input(input_text.format(args.project_name.capitalize())) if not site_name: site_name = "{} - Home Documentation".format(args.project_name.capitalize()) lines[0] = "site_name: {}\n".format(site_name) with open(project_path / "mkdocs.yml", "w") as f: f.writelines(lines) example_project_path = project_path / "example_project" / "example_project" windows = "y" if sys.platform in {"win32", "cygwin"} else "n" copytree(file_path / "example_project", example_project_path) move(str(example_project_path / "source"), str(project_path / "example_project")) move( str(project_path / "example_project" / "example_project" / "Makefile"), str(project_path / "example_project"), ) if windows == "y": move( str(project_path / "example_project" / "example_project" / "make.bat"), str(project_path / "example_project"), ) else: os.remove( str(project_path / "example_project" / "example_project" / "make.bat") ) static = project_path / "example_project" / "source" static /= "_static" if not static.exists(): static.mkdir() _ = subprocess.check_output( "cd {} && mkinx build -F -A > /dev/null".format(args.project_name), shell=True ) print( "\n\n", utils.colors.OKBLUE, "{}/{} created as a showcase of how mkinx works".format( args.project_name, "example_project" ), utils.colors.ENDC, ) print( "\n", utils.colors.OKGREEN, "Success!", utils.colors.ENDC, "You can now start your Docs in ./{}\n".format(args.project_name), utils.colors.HEADER, "$ cd ./{}".format(args.project_name), utils.colors.ENDC, ) print( " Start the server from within your Docs to see them \n (default", "port is 8443 but you can change it with the -s flag):", ) print( utils.colors.HEADER, " {} $ mkinx serve\n".format(args.project_name), utils.colors.ENDC, )
Initialize a Home Documentation's folder Args: args (ArgumentParser): Flags from the CLI
juraj-google-style
def _init_local_init_op(self, local_init_op=USE_DEFAULT): if local_init_op is Supervisor.USE_DEFAULT: local_init_op = self._get_first_op_from_collection(ops.GraphKeys.LOCAL_INIT_OP) if local_init_op is None: op_list = [variables.local_variables_initializer(), lookup_ops.tables_initializer()] if op_list: local_init_op = control_flow_ops.group(*op_list) ops.add_to_collection(ops.GraphKeys.LOCAL_INIT_OP, local_init_op) self._local_init_op = local_init_op
Initializes local_init_op. Args: local_init_op: `Operation` run for every new supervisor instance. If set to USE_DEFAULT, use the first op from the GraphKeys.LOCAL_INIT_OP collection. If the collection is empty, create an op that initializes all local variables and all tables.
github-repos
def num_samples(self, sr=None): native_sr = self.sampling_rate num_samples = units.seconds_to_sample(self.duration, native_sr) if (sr is not None): ratio = (float(sr) / native_sr) num_samples = int(np.ceil((num_samples * ratio))) return num_samples
Return the number of samples. Args: sr (int): Calculate the number of samples with the given sampling-rate. If None use the native sampling-rate. Returns: int: Number of samples
codesearchnet
def execute(self, triple_map, output, **kwargs): subjects = [] found_elements = self.source.xpath( str(triple_map.logicalSource.iterator), namespaces=self.xml_ns) for element in found_elements: subject = self.generate_term(term_map=triple_map.subjectMap, element=element, **kwargs) start = len(output) for row in triple_map.predicateObjectMap: predicate = row.predicate if row.template is not None: obj_ = self.generate_term(term_map=row, **kwargs) output.add((subject, predicate, obj_)) if row.parentTriplesMap is not None: self.__handle_parents__( output, parent_map=row.parentTriplesMap, subject=subject, predicate=predicate, **kwargs) new_subjects = self.__reference_handler__( output, predicate_obj_map=row, element=element, subject=subject) subjects.extend(new_subjects) if row.constant is not None: output.add((subject, predicate, row.constant)) if start < len(output): if triple_map.subjectMap.class_ is not None: output.add((subject, NS_MGR.rdf.type.rdflib, triple_map.subjectMap.class_)) subjects.append(subject) return subjects
Method executes mapping between source Args: ----- triple_map: SimpleNamespace, Triple Map
juraj-google-style
def MakeSimpleProtoClass(fields, full_name=None, pool=None): factory = message_factory.MessageFactory(pool=pool) if (full_name is not None): try: proto_cls = _GetMessageFromFactory(factory, full_name) return proto_cls except KeyError: pass field_items = fields.items() if (not isinstance(fields, OrderedDict)): field_items = sorted(field_items) fields_hash = hashlib.sha1() for (f_name, f_type) in field_items: fields_hash.update(f_name.encode('utf-8')) fields_hash.update(str(f_type).encode('utf-8')) proto_file_name = (fields_hash.hexdigest() + '.proto') if (full_name is None): full_name = ('net.proto2.python.public.proto_builder.AnonymousProto_' + fields_hash.hexdigest()) try: proto_cls = _GetMessageFromFactory(factory, full_name) return proto_cls except KeyError: pass factory.pool.Add(_MakeFileDescriptorProto(proto_file_name, full_name, field_items)) return _GetMessageFromFactory(factory, full_name)
Create a Protobuf class whose fields are basic types. Note: this doesn't validate field names! Args: fields: dict of {name: field_type} mappings for each field in the proto. If this is an OrderedDict the order will be maintained, otherwise the fields will be sorted by name. full_name: optional str, the fully-qualified name of the proto type. pool: optional DescriptorPool instance. Returns: a class, the new protobuf class with a FileDescriptor.
codesearchnet
def _generate_subtokens(token_counts, alphabet, min_count, num_iterations=4, reserved_tokens=None): if (reserved_tokens is None): reserved_tokens = RESERVED_TOKENS subtoken_list = (reserved_tokens + list(alphabet)) max_subtoken_length = 1 for i in xrange(num_iterations): tf.logging.info(('\tGenerating subtokens: iteration %d' % i)) subtoken_dict = _list_to_index_dict(subtoken_list) subtoken_counts = _count_and_gen_subtokens(token_counts, alphabet, subtoken_dict, max_subtoken_length) (subtoken_list, max_subtoken_length) = _gen_new_subtoken_list(subtoken_counts, min_count, alphabet, reserved_tokens) tf.logging.info(('\tVocab size: %d' % len(subtoken_list))) return subtoken_list
Create a list of subtokens in decreasing order of frequency. Args: token_counts: dict mapping str tokens -> int count alphabet: set of characters min_count: int minimum number of times a subtoken must appear before it is added to the vocabulary. num_iterations: int number of iterations to generate new tokens. reserved_tokens: list of tokens that will be added to the beginning to the returned subtoken list. Returns: Sorted list of subtokens (most frequent first)
codesearchnet
def pad_to_square(self, images: 'torch.Tensor', background_color: Union[int, Tuple[int, int, int]]=0) -> 'torch.Tensor': height, width = get_image_size(images, ChannelDimension.FIRST) if height == width: return images num_channels = images.shape[1] if len(images.shape) == 4 else images.shape[0] if isinstance(background_color, int): background_color = [background_color] + [0] * (num_channels - 1) elif len(background_color) != num_channels: raise ValueError(f'background_color must have no more than {num_channels} elements to match the number of channels') max_dim = max(height, width) paste_x_left = (max_dim - width) paste_y_left = (max_dim - height) paste_x_right = max_dim - width - paste_x_left paste_y_right = max_dim - height - paste_y_left padded_images = F.pad(images, padding=[paste_x_left, paste_y_left, paste_x_right, paste_y_right], fill=background_color) return padded_images
Pads an image to a square based on the longest edge. Args: images (`np.ndarray`): The images to pad. background_color (`int` or `Tuple[int, int, int]`, *optional*, defaults to 0): The color to use for the padding. Can be an integer for single channel or a tuple of integers representing for multi-channel images. If passed as integer in mutli-channel mode, it will default to `0` in subsequent channels. Returns: `torch.Tensor`: The padded images.
github-repos
def _sd_of_runs(stats, mean, key='runs'): num_runs = len(stats[key]) first = stats[key][0] standard_deviation = {} for stat_key in first: if isinstance(first[stat_key], numbers.Number): standard_deviation[stat_key] = math.sqrt( sum((run[stat_key] - mean[stat_key])**2 for run in stats[key]) / float(num_runs)) return standard_deviation
Obtain the standard deviation of stats. Args: stats: dict; A set of stats, structured as above. mean: dict; Mean for each key in stats. key: str; Optional key to determine where list of runs is found in stats
juraj-google-style
def convert_transpose(params, w_name, scope_name, inputs, layers, weights, names): print('Converting transpose ...') if (params['perm'][0] != 0): if (inputs[0] in layers): print('!!! Cannot permute batch dimension. Result may be wrong !!!') layers[scope_name] = layers[inputs[0]] else: print('Skip weight matrix transpose, result may be wrong.') else: if names: tf_name = ('PERM' + random_string(4)) else: tf_name = (w_name + str(random.random())) permute = keras.layers.Permute(params['perm'][1:], name=tf_name) layers[scope_name] = permute(layers[inputs[0]])
Convert transpose layer. Args: params: dictionary with layer parameters w_name: name prefix in state_dict scope_name: pytorch scope name inputs: pytorch node inputs layers: dictionary with keras tensors weights: pytorch state_dict names: use short names for keras layers
codesearchnet
def set_energy(self, spins, target_energy): spin_energy = self.energy(spins) self.assertions.add(Equals(spin_energy, limitReal(target_energy)))
Set the energy of Theta with spins fixed to target_energy. Args: spins (dict): Spin values for a subset of the variables in Theta. target_energy (float): The desired energy for Theta with spins fixed. Notes: Add equality constraint to assertions.
juraj-google-style
def create_branch(self, branch_name: str): LOGGER.info('creating branch: %s', branch_name) self._validate_branch_name(branch_name) if branch_name in self.list_branches(): LOGGER.error('branch already exists') sys.exit(-1) new_branch = self.repo.create_head(branch_name) new_branch.commit = self.repo.head.commit
Creates a new branch Args: branch_name: name of the branch
juraj-google-style
def _ParseAttribute(self, file_object): file_offset = file_object.tell() attribute_map = self._GetDataTypeMap('cups_ipp_attribute') try: (attribute, _) = self._ReadStructureFromFileObject(file_object, file_offset, attribute_map) except (ValueError, errors.ParseError) as exception: raise errors.ParseError('Unable to parse attribute with error: {0!s}'.format(exception)) value = None if (attribute.tag_value in self._INTEGER_TAG_VALUES): value = self._ParseIntegerValue(attribute.value_data, file_offset) elif (attribute.tag_value == self._TAG_VALUE_BOOLEAN): value = self._ParseBooleanValue(attribute.value_data) elif (attribute.tag_value == self._TAG_VALUE_DATE_TIME): value = self._ParseDateTimeValue(attribute.value_data, file_offset) elif (attribute.tag_value in self._STRING_WITHOUT_LANGUAGE_VALUES): value = attribute.value_data.decode(self._last_charset_attribute) elif (attribute.tag_value in self._ASCII_STRING_VALUES): value = attribute.value_data.decode('ascii') if (attribute.tag_value == self._TAG_VALUE_CHARSET): self._last_charset_attribute = value else: value = attribute.value_data return (attribute.name, value)
Parses a CUPS IPP attribute from a file-like object. Args: file_object (dfvfs.FileIO): file-like object. Returns: tuple[str, object]: attribute name and value. Raises: ParseError: if the attribute cannot be parsed.
codesearchnet
def _process_exception(e, body, tb): msg = e.message if hasattr(e, "message") else str(e) exception_type = str(e.__class__) exception_name = str(e.__class__.__name__) properties = pika.BasicProperties( content_type="application/text", delivery_mode=2, headers={ "exception": msg, "exception_type": exception_type, "exception_name": exception_name, "traceback": tb, "UUID": str(uuid.uuid4()) } ) send_message("harvester", body, properties=properties)
Process informations about exception and send them thru AMQP. Args: e (obj): Exception instance. body (str): Text which will be sent over AMQP. tb (obj): Traceback object with informations, which will be put to the headers.
juraj-google-style
def to_insert(table, d): columns = [] args = [] for (key, val) in d.items(): columns.append('"{}"'.format(key)) args.append(val) stmt = 'insert into {table} ({columns}) values ({params})'.format(table=table, columns=', '.join(columns), params=', '.join((['?'] * len(columns)))) return (stmt, args)
Generate an insert statement using the given table and dictionary. Args: table (str): table name d (dict): dictionary with column names as keys and values as values. Returns: tuple of statement and arguments >>> to_insert('doc.foobar', {'name': 'Marvin'}) ('insert into doc.foobar ("name") values (?)', ['Marvin'])
codesearchnet
def get_id(date: datetime.datetime) -> str: date = date.strftime('%Y%m%d') return 'PB-{}-{}-{:03d}'.format(date, 'sip', randint(0, 100))
Generate a Processing Block (PB) Instance ID. Args: date (datetime.datetime): UTC date of the PB Returns: str, Processing Block ID
juraj-google-style
def _try_parse_datetime(time_str, fmts): result = None for fmt in fmts: try: result = datetime.strptime(time_str, fmt) break except ValueError: pass return result
A helper function that attempts to parse the input time_str as a date. Args: time_str (str): A string representing the time fmts (list): A list of date format strings Returns: datetime: Returns a datetime object if parsed properly, otherwise None
juraj-google-style
def raster_erosion(rasterfile): if is_string(rasterfile): origin_raster = RasterUtilClass.read_raster(str(rasterfile)) elif isinstance(rasterfile, Raster): origin_raster = rasterfile.data elif isinstance(rasterfile, numpy.ndarray): origin_raster = rasterfile else: return 'Your rasterfile has a wrong type. Type must be string or numpy.array or class Raster in pygeoc.' max_value_raster = origin_raster.max() erosion_raster = numpy.zeros((origin_raster.shape[0], origin_raster.shape[1])) add_row = numpy.full((1, origin_raster.shape[1]), max_value_raster) temp_origin_raster = numpy.vstack((numpy.vstack((add_row, origin_raster)), add_row)) add_col = numpy.full(((origin_raster.shape[0] + 2), 1), max_value_raster) expand_origin_raster = numpy.hstack((numpy.hstack((add_col, temp_origin_raster)), add_col)) for i in range(origin_raster.shape[0]): for j in range(origin_raster.shape[1]): min_pixel_value = max_value_raster for k in range(3): for l in range(3): if (expand_origin_raster[((i + k), (j + l))] <= min_pixel_value): min_pixel_value = expand_origin_raster[((i + k), (j + l))] erosion_raster[(i, j)] = min_pixel_value return erosion_raster
Erode the raster image. Find the min pixel's value in 8-neighborhood. Then change the compute pixel's value into the min pixel's value. Args: rasterfile: input original raster image, type can be filename(string, like "test1.tif"), rasterfile(class Raster) or numpy.ndarray. Returns: erosion_raster: raster image after erosion, type is numpy.ndarray.
codesearchnet
def _parse_access_vlan(self, config): value = re.search(r'switchport access vlan (\d+)', config) return dict(access_vlan=value.group(1))
Scans the specified config and parse the access-vlan value Args: config (str): The interface configuration block to scan Returns: dict: A Python dict object with the value of switchport access value. The dict returned is intended to be merged into the resource dict
juraj-google-style
def assert_consumed(self): pretty_printer = ObjectGraphProtoPrettyPrinter(self._checkpoint.object_graph_proto) self.assert_existing_objects_matched() ignore_node_ids = [] if self._options.experimental_skip_slot_variables: for node in self._checkpoint.object_graph_proto.nodes: for sv in node.slot_variables: ignore_node_ids.append(sv.slot_variable_node_id) for node_id, node in enumerate(self._checkpoint.object_graph_proto.nodes): if not node.attributes: continue if node_id in ignore_node_ids: continue trackable = self._checkpoint.object_by_proto_id.get(node_id, None) if trackable is None: raise AssertionError(f'Unresolved object in checkpoint {pretty_printer.node_names[node_id]}: {node}') if not self._options.experimental_skip_slot_variables and self._checkpoint.slot_restorations: raise AssertionError(f'Unresolved slot restorations: {self._checkpoint.slot_restorations}') if self._checkpoint.unused_attributes: unused_attribute_messages = [] for node_id, attribute in self._checkpoint.unused_attributes.items(): obj = self._checkpoint.object_by_proto_id[node_id] unused_attribute_messages.append(f'{pretty_printer.node_names[node_id]} ({obj}): {attribute}') joined_attribute_messages = '\n'.join(unused_attribute_messages) raise AssertionError(f'Unused attributes in these objects (the attributes exist in the checkpoint but were not restored):\n{joined_attribute_messages}') return self
Asserts that all objects in the checkpoint have been created/matched. Returns: `self` for chaining. Raises: AssertionError: If there are any Python objects in the dependency graph which have not been restored from this checkpoint or a later `restore`, or if there are any checkpointed values which have not been matched to Python objects.
github-repos
def get_contrib_features(project_root): project = Project(project_root) contrib = project._resolve('.features.contrib') return _get_contrib_features(contrib)
Get contributed features for a project at project_root For a project ``foo``, walks modules within the ``foo.features.contrib`` subpackage. A single object that is an instance of ``ballet.Feature`` is imported if present in each module. The resulting ``Feature`` objects are collected. Args: project_root (str, path-like): Path to project root Returns: List[ballet.Feature]: list of Feature objects
juraj-google-style
def global_step(sess, global_step_tensor): if context.executing_eagerly(): return int(global_step_tensor.numpy()) return int(sess.run(global_step_tensor))
Small helper to get the global step. ```python # Create a variable to hold the global_step. global_step_tensor = tf.Variable(10, trainable=False, name='global_step') # Create a session. sess = tf.compat.v1.Session() # Initialize the variable sess.run(global_step_tensor.initializer) # Get the variable value. print('global_step: %s' % tf.compat.v1.train.global_step(sess, global_step_tensor)) global_step: 10 ``` Args: sess: A TensorFlow `Session` object. global_step_tensor: `Tensor` or the `name` of the operation that contains the global step. Returns: The global step value.
github-repos
def sg_summary_audio(tensor, sample_rate=16000, prefix=None, name=None): r prefix = '' if prefix is None else prefix + '/' name = prefix + _pretty_name(tensor) if name is None else prefix + name if not tf.get_variable_scope().reuse: tf.summary.audio(name + '-au', tensor, sample_rate)
r"""Register `tensor` to summary report as audio Args: tensor: A `Tensor` to log as audio sample_rate : An int. Sample rate to report. Default is 16000. prefix: A `string`. A prefix to display in the tensor board web UI. name: A `string`. A name to display in the tensor board web UI. Returns: None
juraj-google-style
def update(self, session, arrays=None, frame=None): new_config = self._get_config() if self._enough_time_has_passed(self.previous_config['FPS']): self.visualizer.update(new_config) self.last_update_time = time.time() final_image = self._update_frame(session, arrays, frame, new_config) self._update_recording(final_image, new_config)
Creates a frame and writes it to disk. Args: arrays: a list of np arrays. Use the "custom" option in the client. frame: a 2D np array. This way the plugin can be used for video of any kind, not just the visualization that comes with the plugin. frame can also be a function, which only is evaluated when the "frame" option is selected by the client.
codesearchnet
def _ReadTablesArray(self, file_object, tables_array_offset): data_type_map = self._GetDataTypeMap('keychain_tables_array') tables_array, _ = self._ReadStructureFromFileObject( file_object, tables_array_offset, data_type_map) tables = collections.OrderedDict() for table_offset in tables_array.table_offsets: self._ReadTable(tables, file_object, tables_array_offset + table_offset) return tables
Reads the tables array. Args: file_object (file): file-like object. tables_array_offset (int): offset of the tables array relative to the start of the file. Returns: dict[int, KeychainDatabaseTable]: tables per identifier. Raises: ParseError: if the tables array cannot be read.
juraj-google-style
def sin(x): if any_symbolic_tensors((x,)): return Sin().symbolic_call(x) return backend.numpy.sin(x)
Trigonometric sine, element-wise. Arguments: x: Input tensor. Returns: Output tensor of same shape as `x`.
github-repos
def _setup_test_logger(log_path, prefix=None): log = logging.getLogger() kill_test_logger(log) log.propagate = False log.setLevel(logging.DEBUG) terminal_format = log_line_format if prefix: terminal_format = '[%s] %s' % (prefix, log_line_format) c_formatter = logging.Formatter(terminal_format, log_line_time_format) ch = logging.StreamHandler(sys.stdout) ch.setFormatter(c_formatter) ch.setLevel(logging.INFO) f_formatter = logging.Formatter(log_line_format, log_line_time_format) fh_info = logging.FileHandler( os.path.join(log_path, records.OUTPUT_FILE_INFO_LOG)) fh_info.setFormatter(f_formatter) fh_info.setLevel(logging.INFO) fh_debug = logging.FileHandler( os.path.join(log_path, records.OUTPUT_FILE_DEBUG_LOG)) fh_debug.setFormatter(f_formatter) fh_debug.setLevel(logging.DEBUG) log.addHandler(ch) log.addHandler(fh_info) log.addHandler(fh_debug) log.log_path = log_path logging.log_path = log_path
Customizes the root logger for a test run. The logger object has a stream handler and a file handler. The stream handler logs INFO level to the terminal, the file handler logs DEBUG level to files. Args: log_path: Location of the log file. prefix: A prefix for each log line in terminal. filename: Name of the log file. The default is the time the logger is requested.
juraj-google-style
def standardize(self, x): if self.preprocessing_function: x = self.preprocessing_function(x) if self.rescale: x *= self.rescale if self.samplewise_center: x -= np.mean(x, keepdims=True) if self.samplewise_std_normalization: x /= np.std(x, keepdims=True) + 1e-06 if self.featurewise_center: if self.mean is not None: x -= self.mean else: warnings.warn("This ImageDataGenerator specifies `featurewise_center`, but it hasn't been fit on any training data. Fit it first by calling `.fit(numpy_data)`.") if self.featurewise_std_normalization: if self.std is not None: x /= self.std + 1e-06 else: warnings.warn("This ImageDataGenerator specifies `featurewise_std_normalization`, but it hasn't been fit on any training data. Fit it first by calling `.fit(numpy_data)`.") if self.zca_whitening: if self.zca_whitening_matrix is not None: flat_x = x.reshape(-1, np.prod(x.shape[-3:])) white_x = flat_x @ self.zca_whitening_matrix x = np.reshape(white_x, x.shape) else: warnings.warn("This ImageDataGenerator specifies `zca_whitening`, but it hasn't been fit on any training data. Fit it first by calling `.fit(numpy_data)`.") return x
Applies the normalization configuration in-place to a batch of inputs. `x` is changed in-place since the function is mainly used internally to standardize images and feed them to your network. If a copy of `x` would be created instead it would have a significant performance cost. If you want to apply this method without changing the input in-place you can call the method creating a copy before: standardize(np.copy(x)) Args: x: Batch of inputs to be normalized. Returns: The inputs, normalized.
github-repos
def set_active(self, username, active_state): if active_state not in (True, False): raise ValueError("active_state must be True or False") user = self.get_user(username) if user is None: return None if user['active'] is active_state: return True user['active'] = active_state response = self._put(self.rest_url + "/user", params={"username": username}, data=json.dumps(user)) if response.status_code == 204: return True return None
Set the active state of a user Args: username: The account username active_state: True or False Returns: True: If successful None: If no user or failure occurred
juraj-google-style
async def get_all(self, url, params=None): if not params: params = {} items = [] next_page_token = None while True: if next_page_token: params['pageToken'] = next_page_token response = await self.get_json(url, params=params) items.append(response) next_page_token = response.get('nextPageToken') if not next_page_token: break return items
Aggregate data from all pages of an API query. Args: url (str): Google API endpoint URL. params (dict): (optional) URL query parameters. Returns: list: Parsed JSON query response results.
juraj-google-style
def typical_or_extreme_period_name(self, value=None): if (value is not None): try: value = str(value) except ValueError: raise ValueError('value {} need to be of type str for field `typical_or_extreme_period_name`'.format(value)) if (',' in value): raise ValueError('value should not contain a comma for field `typical_or_extreme_period_name`') self._typical_or_extreme_period_name = value
Corresponds to IDD Field `typical_or_extreme_period_name` Args: value (str): value for IDD Field `typical_or_extreme_period_name` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
codesearchnet
async def get_tournaments(self, subdomain: str=None, force_update: bool=False) -> list: if (self.tournaments is None): force_update = True self._subdomains_searched.append(('' if (subdomain is None) else subdomain)) elif ((subdomain is None) and ('' not in self._subdomains_searched)): force_update = True self._subdomains_searched.append('') elif ((subdomain is not None) and (subdomain not in self._subdomains_searched)): force_update = True self._subdomains_searched.append(subdomain) if force_update: params = {'include_participants': (1 if AUTO_GET_PARTICIPANTS else 0), 'include_matches': (1 if AUTO_GET_MATCHES else 0)} if (subdomain is not None): params['subdomain'] = subdomain res = (await self.connection('GET', 'tournaments', **params)) if (len(res) == 0): self.tournaments = [] else: for t_data in res: self._refresh_tournament_from_json(t_data) return self.tournaments
gets all user's tournaments |methcoro| Args: subdomain: *optional* subdomain needs to be given explicitely to get tournaments in a subdomain force_update: *optional* set to True to force the data update from Challonge Returns: list[Tournament]: list of all the user tournaments Raises: APIException
codesearchnet
def sample_node_list(self, low, high, generator): statements = [] for _ in range(np.random.randint(low, high)): statements.append(generator()) return statements
Generate a list of statements of random length. Args: low: Fewest number of statements to generate. high: Highest number of statements to generate. generator: Function to call to generate nodes. Returns: A list of statements.
github-repos
def add(self, origin): digest = self._calc_digest(origin) if self.exists(digest): self.logger.debug('Added File: [{0}] ( Already exists. Skipping transfer)'.format(digest)) return digest absPath = self.get_file_path(digest) absFolderPath = os.path.dirname(absPath) self._makedirs(absFolderPath) self._copy_content(origin, absPath) self.logger.debug('Added file: "{0}" [{1}]'.format(digest, absPath)) return digest
Add new element to fsdb. Args: origin -- could be the path of a file or a readable/seekable object ( fileobject, stream, stringIO...) Returns: String rapresenting the digest of the file
juraj-google-style
def convert_variable_to_constant(self, incoming_edge, tensor_data): index = incoming_edge.destination.index for edge in self.outgoing_edges: if edge.source.index == index: edge.destination.convertible.convert_variable_to_constant(edge, tensor_data) function = self.converted_self().function function.signature.input_arg[index].type = tensor_data.dtype if '_input_shapes' in function.attr: function.attr['_input_shapes'].list.shape[index].unknown_rank = True del function.attr['_input_shapes'].list.shape[index].dim[:] arg_attrs = function.arg_attr[index].attr if '_output_shapes' in arg_attrs: arg_attrs['_output_shapes'].list.shape[0].unknown_rank = True del arg_attrs['_output_shapes'].list.shape[0].dim[:]
Converts one function argument into a constant. Args: incoming_edge: The edge into the argument to be converted. tensor_data: The constant value.
github-repos
def enum(cls): assert (cls.__bases__ == (object,)) d = dict(cls.__dict__) new_type = type(cls.__name__, (int,), d) new_type.__module__ = cls.__module__ map_ = {} for (key, value) in iteritems(d): if ((key.upper() == key) and isinstance(value, integer_types)): value_instance = new_type(value) setattr(new_type, key, value_instance) map_[value] = key def str_(self): if (self in map_): return ('%s.%s' % (type(self).__name__, map_[self])) return ('%d' % int(self)) def repr_(self): if (self in map_): return ('<%s.%s: %d>' % (type(self).__name__, map_[self], int(self))) return ('%d' % int(self)) setattr(new_type, '__repr__', repr_) setattr(new_type, '__str__', str_) return new_type
A decorator for creating an int enum class. Makes the values a subclass of the type and implements repr/str. The new class will be a subclass of int. Args: cls (type): The class to convert to an enum Returns: type: A new class :: @enum class Foo(object): FOO = 1 BAR = 2
codesearchnet
def trigger(self, attr, old, new, hint=None, setter=None): def invoke(): callbacks = self._callbacks.get(attr) if callbacks: for callback in callbacks: callback(attr, old, new) if hasattr(self, '_document') and self._document is not None: self._document._notify_change(self, attr, old, new, hint, setter, invoke) else: invoke()
Trigger callbacks for ``attr`` on this object. Args: attr (str) : old (object) : new (object) : Returns: None
juraj-google-style
def AddClient(self, client): keywords = self.AnalyzeClient(client) keywords.add(self._NormalizeKeyword(client.client_id)) data_store.REL_DB.AddClientKeywords(client.client_id, keywords)
Adds a client to the index. Args: client: A Client object record.
juraj-google-style
def createDirStruct(paths, verbose=True): for k, path in paths.items(): p = None try: pathlist = path if type(path) is list else [ path ] for p in pathlist: os.makedirs(p) if verbose: log.info('Creating directory: ' + p) except OSError, e: if e.errno == errno.EEXIST and os.path.isdir(p): pass else: raise return True
Loops ait.config._datapaths from AIT_CONFIG and creates a directory. Replaces year and doy with the respective year and day-of-year. If neither are given as arguments, current UTC day and year are used. Args: paths: [optional] list of directory paths you would like to create. doy and year will be replaced by the datetime day and year, respectively. datetime: UTC Datetime string in ISO 8601 Format YYYY-MM-DDTHH:mm:ssZ
juraj-google-style
def get_max_bond_distance(self, el1_sym, el2_sym): return sqrt( (self.el_radius[el1_sym] + self.el_radius[el2_sym] + self.tol) ** 2)
Use Jmol algorithm to determine bond length from atomic parameters Args: el1_sym: (str) symbol of atom 1 el2_sym: (str) symbol of atom 2 Returns: (float) max bond length
juraj-google-style
def get_cells_iterator(bq_read_client: BigQueryReadClient, table_metadata: TableMetadata, column: str) -> Generator[Any, None, None]: if '.' not in column and '[' not in column: rows = get_readrows_iterator(bq_read_client, table_metadata, [column], data_format=DataFormat.AVRO) for row in rows: yield row.get(column) else: nested_columns = parse_column_path(column) parent_column = nested_columns[0][0] rows = get_readrows_iterator(bq_read_client, table_metadata, [parent_column], data_format=DataFormat.AVRO) for current_value in rows: for column_name, key in nested_columns: if isinstance(current_value, dict): current_value = current_value.get(column_name) elif isinstance(current_value, list) and key: current_value = next((item for item in current_value if item.get(column_name) == key), None) if isinstance(current_value, dict) and 'value' in current_value: extracted_value = next((value for key, value in current_value['value'].items() if value is not None), None) current_value = extracted_value if extracted_value is not None else current_value if current_value is None: break yield current_value
Retrieves an iterator of cell values for a specified column, optimized for both simple and nested column access, including handling special value structures with dynamic value types for nested columns. Args: bq_read_client (BigQueryReadClient): The BigQuery Storage API Read client. table_metadata (TableMetadata): The table's metadata. column (str): The column name, supporting nested fields and array indices for complex cases. Returns: Generator[Any, None, None]: An iterator over cell values.
github-repos
def _prefix_from_prefix_int(self, prefixlen): if not isinstance(prefixlen, (int, long)): raise NetmaskValueError('%r is not an integer' % prefixlen) prefixlen = int(prefixlen) if not (0 <= prefixlen <= self._max_prefixlen): raise NetmaskValueError('%d is not a valid prefix length' % prefixlen) return prefixlen
Validate and return a prefix length integer. Args: prefixlen: An integer containing the prefix length. Returns: The input, possibly converted from long to int. Raises: NetmaskValueError: If the input is not an integer, or out of range.
juraj-google-style
def easeInOutCubic(n): _checkRange(n) n = 2 * n if n < 1: return 0.5 * n**3 else: n = n - 2 return 0.5 * (n**3 + 2)
A cubic tween function that accelerates, reaches the midpoint, and then decelerates. Args: n (float): The time progress, starting at 0.0 and ending at 1.0. Returns: (float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine().
juraj-google-style
def validate_primitive_without_value(fhir_primitive: message.Message) -> None: name = fhir_primitive.DESCRIPTOR.full_name if len(extensions.get_fhir_extensions(fhir_primitive)) < 2: raise fhir_errors.InvalidFhirError(f'{name!r} must have either extensions or a value present.') for field, _ in fhir_primitive.ListFields(): if field.name not in extensions.NON_VALUE_FIELDS: raise fhir_errors.InvalidFhirError(f'{name!r} contains PrimitiveHasNoValue but {field.name!r} is set.')
Validates a Message which has the PrimitiveWithoutValue extension. Given that there is a PrimitiveWithoutValue extension present, there must be at least one other extension. Otherwise, there is truly no value set other than id and/or extension (non-value fields). Args: fhir_primitive: The FHIR primitive Message to validate. Raises: fhir_errors.InvalidFhirError: In the event that there is less than one extension present, or there are values set other than id and/or extension.
github-repos
def decorate_event_js(js_code): def add_annotation(method): setattr(method, '__is_event', True) setattr(method, '_js_code', js_code) return method return add_annotation
setup a method as an event, adding also javascript code to generate Args: js_code (str): javascript code to generate the event client-side. js_code is added to the widget html as widget.attributes['onclick'] = js_code%{'emitter_identifier':widget.identifier, 'event_name':'onclick'}
codesearchnet
def get_reconciler(config, metrics, rrset_channel, changes_channel, **kw): builder = reconciler.GDNSReconcilerBuilder(config, metrics, rrset_channel, changes_channel, **kw) return builder.build_reconciler()
Get a GDNSReconciler client. A factory function that validates configuration, creates an auth and :class:`GDNSClient` instance, and returns a GDNSReconciler provider. Args: config (dict): Google Cloud Pub/Sub-related configuration. metrics (obj): :interface:`IMetricRelay` implementation. rrset_channel (asyncio.Queue): Queue from which to consume record set messages to validate. changes_channel (asyncio.Queue): Queue to publish message to make corrections to Cloud DNS. kw (dict): Additional keyword arguments to pass to the Reconciler. Returns: A :class:`GDNSReconciler` instance.
codesearchnet
def build_ann(N_input=None, N_hidden=2, N_output=1, hidden_layer_type='Linear', verbosity=1): N_input = (N_input or 1) N_output = (N_output or 1) N_hidden = (N_hidden or tuple()) if isinstance(N_hidden, (int, float, basestring)): N_hidden = (int(N_hidden),) hidden_layer_type = (hidden_layer_type or tuple()) hidden_layer_type = tuplify(normalize_layer_type(hidden_layer_type)) if (verbosity > 0): print(N_hidden, ' layers of type ', hidden_layer_type) assert (len(N_hidden) == len(hidden_layer_type)) nn = pb.structure.FeedForwardNetwork() nn.addInputModule(pb.structure.BiasUnit(name='bias')) nn.addInputModule(pb.structure.LinearLayer(N_input, name='input')) for (i, (Nhid, hidlaytype)) in enumerate(zip(N_hidden, hidden_layer_type)): Nhid = int(Nhid) nn.addModule(hidlaytype(Nhid, name=('hidden-{}'.format(i) if i else 'hidden'))) nn.addOutputModule(pb.structure.LinearLayer(N_output, name='output')) nn.addConnection(pb.structure.FullConnection(nn['bias'], (nn['hidden'] if N_hidden else nn['output']))) nn.addConnection(pb.structure.FullConnection(nn['input'], (nn['hidden'] if N_hidden else nn['output']))) for (i, (Nhid, hidlaytype)) in enumerate(zip(N_hidden[:(- 1)], hidden_layer_type[:(- 1)])): Nhid = int(Nhid) nn.addConnection(pb.structure.FullConnection(nn[('hidden-{}'.format(i) if i else 'hidden')], nn['hidden-{}'.format((i + 1))])) i = (len(N_hidden) - 1) nn.addConnection(pb.structure.FullConnection(nn[('hidden-{}'.format(i) if i else 'hidden')], nn['output'])) nn.sortModules() if FAST: try: nn.convertToFastNetwork() except: if (verbosity > 0): print('Unable to convert slow PyBrain NN to a fast ARAC network...') if (verbosity > 0): print(nn.connections) return nn
Build a neural net with the indicated input, hidden, and outout dimensions Arguments: params (dict or PyBrainParams namedtuple): default: {'N_hidden': 6} (this is the only parameter that affects the NN build) Returns: FeedForwardNetwork with N_input + N_hidden + N_output nodes in 3 layers
codesearchnet
def stop(self): self._logger.info('Cleaning up remaining connection threads.') for thread in threading.enumerate(): if (thread is not threading.current_thread()): try: thread.join(10.0) except Exception as e: self._logger.info('Error occurred while attempting to cleanup thread: {0}'.format(thread.name)) self._logger.exception(e) else: if thread.is_alive(): self._logger.warning('Cleanup failed for thread: {0}. Thread is still alive'.format(thread.name)) else: self._logger.info('Cleanup succeeded for thread: {0}'.format(thread.name)) self._logger.info('Shutting down server socket handler.') try: self._socket.shutdown(socket.SHUT_RDWR) self._socket.close() except Exception as e: self._logger.exception(e) raise exceptions.NetworkingError('Server failed to shutdown socket handler.') if hasattr(self, 'policy_monitor'): try: self.policy_monitor.stop() self.policy_monitor.join() except Exception as e: self._logger.exception(e) raise exceptions.ShutdownError('Server failed to clean up the policy monitor.')
Stop the server. Halt server client connections and clean up any existing connection threads. Raises: NetworkingError: Raised if a failure occurs while sutting down or closing the TLS server socket.
codesearchnet
def do_batch_status(args): rest_client = RestClient(args.url, args.user) batch_ids = args.batch_ids.split(',') if args.wait and args.wait > 0: statuses = rest_client.get_statuses(batch_ids, args.wait) else: statuses = rest_client.get_statuses(batch_ids) if args.format == 'yaml': fmt.print_yaml(statuses) elif args.format == 'json': fmt.print_json(statuses) else: raise AssertionError('Missing handler: {}'.format(args.format))
Runs the batch-status command, printing output to the console Args: args: The parsed arguments sent to the command at runtime
juraj-google-style
def git_checkout(branch_name, create=False): log.info('Checking out <33>{}'.format(branch_name)) shell.run('git checkout {} {}'.format(('-b' if create else ''), branch_name))
Checkout or create a given branch Args: branch_name (str): The name of the branch to checkout or create. create (bool): If set to **True** it will create the branch instead of checking it out.
codesearchnet
def __init__(self, sv, sess): super(SVSummaryThread, self).__init__(sv.coord, sv.save_summaries_secs) self._sv = sv self._sess = sess
Create a SVSummaryThread. Args: sv: A `Supervisor`. sess: A `Session`.
github-repos
def __call__(self, batch: List[List[str]], mean: bool = None) -> List[Union[list, np.ndarray]]: batch = [self._encode(sample, mean) for sample in batch] if self.pad_zero: batch = zero_pad(batch) return batch
Embed sentences from batch Args: batch: list of tokenized text samples mean: whether to return mean embedding of tokens per sample Returns: embedded batch
juraj-google-style
def _GetFlagValues(self, flags): event_types = [] for (event_flag, description) in self._FLAG_VALUES.items(): if (event_flag & flags): event_types.append(description) return ', '.join(event_types)
Determines which events are indicated by a set of fsevents flags. Args: flags (int): fsevents record flags. Returns: str: a comma separated string containing descriptions of the flag values stored in an fsevents record.
codesearchnet
def format_rpc(data): address, rpc_id, args, resp, _status = data name = rpc_name(rpc_id) if isinstance(args, (bytes, bytearray)): arg_str = hexlify(args) else: arg_str = repr(args) if isinstance(resp, (bytes, bytearray)): resp_str = hexlify(resp) else: resp_str = repr(resp) return "%s called on address %d, payload=%s, response=%s" % (name, address, arg_str, resp_str)
Format an RPC call and response. Args: data (tuple): A tuple containing the address, rpc_id, argument and response payloads and any error code. Returns: str: The formated RPC string.
juraj-google-style
def from_url(cls, path): if os.path.isfile(path): with open(path) as fd: data = fd.read() else: try: response = urllib.urlopen(path) if response.code >= 300: raise RuntimeError('Unable to load repo from %s' % path) data = response.read() response.close() except IOError: raise RuntimeError( 'Unable to load repo from %s (IO error)' % path ) return cls(json.loads(data), path)
Instantiate a :class:`TemplateRepository` instance from the data in a file or url Args: path (str): Path or url to the json file to load Returns: TemplateRepository: A new instance
juraj-google-style
def find_code_in_transformers(object_name: str, base_path: Optional[str]=None, return_indices: bool=False) -> Union[str, Tuple[List[str], int, int]]: parts = object_name.split('.') i = 0 if base_path is None: base_path = TRANSFORMERS_PATH if base_path == MODEL_TEST_PATH: base_path = 'tests' module = parts[i] while i < len(parts) and (not os.path.isfile(os.path.join(base_path, f'{module}.py'))): i += 1 if i < len(parts): module = os.path.join(module, parts[i]) if i >= len(parts): raise ValueError(f'`object_name` should begin with the name of a module of transformers but got {object_name}.') with open(os.path.join(base_path, f'{module}.py'), 'r', encoding='utf-8', newline='\n') as f: lines = f.readlines() indent = '' line_index = 0 for name in parts[i + 1:]: while line_index < len(lines) and re.search(f'^{indent}(class|def)\\s+{name}(\\(|\\:)', lines[line_index]) is None: line_index += 1 indent += ' ' line_index += 1 if line_index >= len(lines): raise ValueError(f' {object_name} does not match any function or class in {module}.') start_index = line_index - 1 end_index = find_block_end(lines, start_index, len(indent)) code = ''.join(lines[start_index:end_index]) return (code, (lines, start_index, end_index)) if return_indices else code
Find and return the source code of an object. Args: object_name (`str`): The name of the object we want the source code of. base_path (`str`, *optional*): The path to the base folder where files are checked. If not set, it will be set to `TRANSFORMERS_PATH`. return_indices(`bool`, *optional*, defaults to `False`): If `False`, will only return the code (as a string), otherwise it will also return the whole lines of the file where the object specified by `object_name` is defined, together the start/end indices of the block in the file that defines the object. Returns: `Union[str, Tuple[List[str], int, int]]`: If `return_indices=False`, only the source code of the object will be returned. Otherwise, it also returns the whole lines of the file where the object specified by `object_name` is defined, together the start/end indices of the block in the file that defines the object.
github-repos
def _contains_composite_function_call(self, graphdef: graph_pb2.GraphDef) -> bool: return any(map(self._is_composite_function, graphdef.library.function))
Determines if the graph def has composite function call. Args: graphdef: A GraphDef object. Returns: True if and only if the graph def contains a composite function call.
github-repos
def _single_shard_restore(file_prefix: tensor_lib.Tensor, shardable_tensors: Sequence[sharding_util.ShardableTensor], options: 'checkpoint_options.CheckpointOptions | None'=None) -> sharding_util.Shard: options = options or checkpoint_options.CheckpointOptions() tensor_names = [] tensor_dtypes = [] slice_specs = [] for shardable_tensor in shardable_tensors: if shardable_tensor._tensor_save_spec: name = shardable_tensor._tensor_save_spec.name spec = shardable_tensor._tensor_save_spec.slice_spec else: name, spec = (shardable_tensor.checkpoint_key, shardable_tensor.slice_spec) tensor_names.append(name) slice_specs.append(spec) tensor_dtypes.append(shardable_tensor.dtype) restore_device = options.experimental_io_device or 'cpu:0' with ops.device(restore_device): restored_tensors = io_ops.restore_v2(file_prefix, tensor_names, slice_specs, tensor_dtypes) restored_tensor_dict = {} for shardable_tensor in shardable_tensors: restored_tensor = restored_tensors.pop(0) restored_tensor_dict.setdefault(shardable_tensor.checkpoint_key, {})[shardable_tensor.slice_spec] = restored_tensor return restored_tensor_dict
Restore the saveable objects from a checkpoint with `file_prefix`. Args: file_prefix: A string or scalar string Tensor containing the prefix for files to read from. shardable_tensors: A list of ShardableTensors to restore. options: Optional `CheckpointOptions` object. Returns: A restored tensor dict (maps checkpoint_key -> slice_spec -> tensor).
github-repos
def ensure_list_size(list_, size_): lendiff = (size_ - len(list_)) if (lendiff > 0): extension = [None for _ in range(lendiff)] list_.extend(extension)
Allocates more space if needbe. Ensures len(``list_``) == ``size_``. Args: list_ (list): ``list`` to extend size_ (int): amount to exent by
codesearchnet
def invert_apply(self, pts: torch.Tensor) -> torch.Tensor: rot_mats = self.get_rot_mats() inv_rot_mats = invert_rot_mat(rot_mats) return rot_vec_mul(inv_rot_mats, pts)
The inverse of the apply() method. Args: pts: A [*, 3] set of points Returns: [*, 3] inverse-rotated points
github-repos
def shape(self): return self._ragged_shape._to_tensor_shape()
The static shape of this StructuredTensor. The returned `TensorShape` is guaranteed to have a known rank, but the individual dimension sizes may be unknown. Returns: `tf.TensorShape`
github-repos
def get(self, catID, includeRelationships=False): url = ('%(base_url)s/record/%(catID)s' % {'base_url': self.base_url, 'catID': catID}) r = self.gbdx_connection.get(url) r.raise_for_status() return r.json()
Retrieves the strip footprint WKT string given a cat ID. Args: catID (str): The source catalog ID from the platform catalog. includeRelationships (bool): whether to include graph links to related objects. Default False. Returns: record (dict): A dict object identical to the json representation of the catalog record
codesearchnet
def _combine_handle_data(handle, initial_value): assert handle.dtype == dtypes.resource variable_handle_data = get_eager_safe_handle_data(handle) if initial_value.dtype != dtypes.variant: return variable_handle_data extra_handle_data = get_eager_safe_handle_data(initial_value) if extra_handle_data is not None and extra_handle_data.is_set: if variable_handle_data is None or not variable_handle_data.is_set or len(variable_handle_data.shape_and_type) != 1: raise RuntimeError(f"Expected VarHandleOp to return a length==1 shape_and_type, but saw: '{variable_handle_data}'") variable_handle_data.shape_and_type.extend(extra_handle_data.shape_and_type) return variable_handle_data
Concats HandleData from tensors `handle` and `initial_value`. Args: handle: A `Tensor` of dtype `resource`. initial_value: A `Tensor`. Returns: A `CppShapeInferenceResult.HandleData`. If `initial_value` has dtype `variant`, the `HandleData` contains the concatenation of the shape_and_type from both `handle` and `initial_value`. Raises: RuntimeError: If handle, which was returned by VarHandleOp, either has no handle data, or its len(handle_data.shape_and_type) != 1.
github-repos
def _GetAnalysisPlugins(self, analysis_plugins_string): if not analysis_plugins_string: return [] analysis_plugins_list = [ name.strip() for name in analysis_plugins_string.split(',')] analysis_plugins = self._analysis_manager.GetPluginObjects( analysis_plugins_list) return analysis_plugins.values()
Retrieves analysis plugins. Args: analysis_plugins_string (str): comma separated names of analysis plugins to enable. Returns: list[AnalysisPlugin]: analysis plugins.
juraj-google-style
def _get_job_metadata(provider, user_id, job_name, script, task_ids, user_project, unique_job_id): create_time = dsub_util.replace_timezone(datetime.datetime.now(), tzlocal()) user_id = user_id or dsub_util.get_os_user() job_metadata = provider.prepare_job_metadata(script.name, job_name, user_id, create_time) if unique_job_id: job_metadata['job-id'] = uuid.uuid4().hex job_metadata['create-time'] = create_time job_metadata['script'] = script job_metadata['user-project'] = user_project if task_ids: job_metadata['task-ids'] = dsub_util.compact_interval_string(list(task_ids)) return job_metadata
Allow provider to extract job-specific metadata from command-line args. Args: provider: job service provider user_id: user submitting the job job_name: name for the job script: the script to run task_ids: a set of the task-ids for all tasks in the job user_project: name of the project to be billed for the request unique_job_id: generate a unique job id Returns: A dictionary of job-specific metadata (such as job id, name, etc.)
juraj-google-style
def histogram(namespace: Union[Type, str], name: str, bucket_type: 'BucketType', logger: Optional['MetricLogger']=None) -> 'Metrics.DelegatingHistogram': namespace = UserMetrics.get_namespace(namespace) return Metrics.DelegatingHistogram(MetricName(namespace, name), bucket_type, logger)
Obtains or creates a Histogram metric. Args: namespace: A class or string that gives the namespace to a metric name: A string that gives a unique name to a metric bucket_type: A type of bucket used in a histogram. A subclass of apache_beam.utils.histogram.BucketType logger: MetricLogger for logging locally aggregated metric Returns: A Histogram object.
github-repos
def view_structure(self, only_chains=None, opacity=1.0, recolor=False, gui=False): if ssbio.utils.is_ipynb(): import nglview as nv else: raise EnvironmentError('Unable to display structure - not running in a Jupyter notebook environment') if (not self.structure_file): raise ValueError('Structure file not loaded') only_chains = ssbio.utils.force_list(only_chains) to_show_chains = '( ' for c in only_chains: to_show_chains += ':{} or'.format(c) to_show_chains = to_show_chains.strip(' or ') to_show_chains += ' )' if ((self.file_type == 'mmtf') or (self.file_type == 'mmtf.gz')): view = nv.NGLWidget() view.add_component(self.structure_path) else: view = nv.show_structure_file(self.structure_path, gui=gui) if recolor: view.clear_representations() if only_chains: view.add_cartoon(selection='{} and (not hydrogen)'.format(to_show_chains), color='silver', opacity=opacity) else: view.add_cartoon(selection='protein', color='silver', opacity=opacity) elif only_chains: view.clear_representations() view.add_cartoon(selection='{} and (not hydrogen)'.format(to_show_chains), color='silver', opacity=opacity) return view
Use NGLviewer to display a structure in a Jupyter notebook Args: only_chains (str, list): Chain ID or IDs to display opacity (float): Opacity of the structure recolor (bool): If structure should be cleaned and recolored to silver gui (bool): If the NGLview GUI should show up Returns: NGLviewer object
codesearchnet
def _from_signer_and_info(cls, signer, info, **kwargs): return cls( signer, service_account_email=info['client_email'], token_uri=info['token_uri'], project_id=info.get('project_id'), **kwargs)
Creates a Credentials instance from a signer and service account info. Args: signer (google.auth.crypt.Signer): The signer used to sign JWTs. info (Mapping[str, str]): The service account info. kwargs: Additional arguments to pass to the constructor. Returns: google.auth.jwt.Credentials: The constructed credentials. Raises: ValueError: If the info is not in the expected format.
juraj-google-style
def get_atlas_per_gene_mutation_df(self, gene_id): g = self.reference_gempro.genes.get_by_id(gene_id) (single, fingerprint) = g.protein.sequence_mutation_summary(alignment_type='seqalign') structure_type_suffix = 'NA' appender = [] for (k, strains) in single.items(): to_append = {} orig_res = k[0] resnum = int(k[1]) mutated_res = k[2] num_strains_mutated = len(strains) strain_ids = [str(x.split((g.id + '_'))[1]) for x in strains] to_append['ref_residue'] = orig_res to_append['ref_resnum'] = resnum to_append['strain_residue'] = mutated_res to_append['num_strains_mutated'] = num_strains_mutated to_append['strains_mutated'] = ';'.join(strain_ids) to_append['at_disulfide_bridge'] = False origres_props = ssbio.protein.sequence.properties.residues.residue_biochemical_definition(orig_res) mutres_props = ssbio.protein.sequence.properties.residues.residue_biochemical_definition(mutated_res) to_append['ref_residue_prop'] = origres_props to_append['strain_residue_prop'] = mutres_props (grantham_s, grantham_txt) = ssbio.protein.sequence.properties.residues.grantham_score(orig_res, mutated_res) to_append['grantham_score'] = grantham_s to_append['grantham_annotation'] = grantham_txt to_append.update(g.protein.get_residue_annotations(seq_resnum=resnum, use_representatives=True)) if g.protein.representative_structure: if g.protein.representative_structure.is_experimental: to_append['structure_type'] = 'EXP' else: to_append['structure_type'] = 'HOM' repchain = g.protein.representative_chain repchain_annotations = g.protein.representative_structure.chains.get_by_id(repchain).seq_record.annotations if ('SSBOND-biopython' in repchain_annotations): structure_resnum = g.protein.map_seqprop_resnums_to_structprop_resnums(resnums=resnum, use_representatives=True) if (resnum in structure_resnum): ssbonds = repchain_annotations['SSBOND-biopython'] ssbonds_res = [] for x in ssbonds: ssbonds_res.append(x[0]) ssbonds_res.append(x[1]) if (structure_resnum in ssbonds_res): to_append['at_disulfide_bridge'] = True appender.append(to_append) if (not appender): return pd.DataFrame() cols = ['ref_residue', 'ref_resnum', 'strain_residue', 'num_strains_mutated', 'strains_mutated', 'ref_residue_prop', 'strain_residue_prop', 'grantham_score', 'grantham_annotation', 'at_disulfide_bridge', 'seq_SS-sspro', 'seq_SS-sspro8', 'seq_RSA-accpro', 'seq_RSA-accpro20', 'seq_TM-tmhmm', 'struct_SS-dssp', 'struct_RSA-dssp', 'struct_ASA-dssp', 'struct_CA_DEPTH-msms', 'struct_RES_DEPTH-msms', 'struct_PHI-dssp', 'struct_PSI-dssp', 'struct_resnum', 'struct_residuestrains_mutated'] df_gene_summary = pd.DataFrame.from_records(appender, columns=cols) df_gene_summary.dropna(axis=1, how='all', inplace=True) df_gene_summary.sort_values(by='ref_resnum', inplace=True) df_gene_summary = df_gene_summary.set_index('ref_resnum') return df_gene_summary
Create a single data frame which summarizes a gene and its mutations. Args: gene_id (str): Gene ID in the base model Returns: DataFrame: Pandas DataFrame of the results
codesearchnet
def compose_tree_url(tree, issn_url=False): url = compose_tree_path(tree, issn_url) if (WEB_PORT == 80): return ('%s: return ('%s:
Compose full url for given `tree`, with protocol, server's address and port. Args: tree (obj): :class:`.Tree` instance. issn_url (bool, default False): Compose URL using ISSN. Returns: str: URL of the tree
codesearchnet
def get_channel(self, chan_name, coll_name, exp_name): chan = ChannelResource(chan_name, coll_name, exp_name) return self.get_project(chan)
Helper that gets a fully initialized ChannelResource for an *existing* channel. Args: chan_name (str): Name of channel. coll_name (str): Name of channel's collection. exp_name (str): Name of channel's experiment. Returns: (intern.resource.boss.ChannelResource)
juraj-google-style
def FindFileByName(self, file_name): try: return self._file_descriptors[file_name] except KeyError: pass try: file_proto = self._internal_db.FindFileByName(file_name) except KeyError as error: if self._descriptor_db: file_proto = self._descriptor_db.FindFileByName(file_name) else: raise error if not file_proto: raise KeyError('Cannot find a file named %s' % file_name) return self._ConvertFileProtoToFileDescriptor(file_proto)
Gets a FileDescriptor by file name. Args: file_name: The path to the file to get a descriptor for. Returns: A FileDescriptor for the named file. Raises: KeyError: if the file cannot be found in the pool.
juraj-google-style
def _create_trial_info(self, expr_dir): meta = self._build_trial_meta(expr_dir) self.logger.debug("Create trial for %s" % meta) trial_record = TrialRecord.from_json(meta) trial_record.save()
Create information for given trial. Meta file will be loaded if exists, and the trial information will be saved in db backend. Args: expr_dir (str): Directory path of the experiment.
juraj-google-style
def bbox_line_intersect(nodes, line_start, line_end): (left, right, bottom, top) = _helpers.bbox(nodes) if (_helpers.in_interval(line_start[0], left, right) and _helpers.in_interval(line_start[1], bottom, top)): return BoxIntersectionType.INTERSECTION if (_helpers.in_interval(line_end[0], left, right) and _helpers.in_interval(line_end[1], bottom, top)): return BoxIntersectionType.INTERSECTION (s_bottom, t_bottom, success) = segment_intersection(np.asfortranarray([left, bottom]), np.asfortranarray([right, bottom]), line_start, line_end) if (success and _helpers.in_interval(s_bottom, 0.0, 1.0) and _helpers.in_interval(t_bottom, 0.0, 1.0)): return BoxIntersectionType.INTERSECTION (s_right, t_right, success) = segment_intersection(np.asfortranarray([right, bottom]), np.asfortranarray([right, top]), line_start, line_end) if (success and _helpers.in_interval(s_right, 0.0, 1.0) and _helpers.in_interval(t_right, 0.0, 1.0)): return BoxIntersectionType.INTERSECTION (s_top, t_top, success) = segment_intersection(np.asfortranarray([right, top]), np.asfortranarray([left, top]), line_start, line_end) if (success and _helpers.in_interval(s_top, 0.0, 1.0) and _helpers.in_interval(t_top, 0.0, 1.0)): return BoxIntersectionType.INTERSECTION return BoxIntersectionType.DISJOINT
r"""Determine intersection of a bounding box and a line. We do this by first checking if either the start or end node of the segment are contained in the bounding box. If they aren't, then checks if the line segment intersects any of the four sides of the bounding box. .. note:: This function is "half-finished". It makes no distinction between "tangent" intersections of the box and segment and other types of intersection. However, the distinction is worthwhile, so this function should be "upgraded" at some point. Args: nodes (numpy.ndarray): Points (``2 x N``) that determine a bounding box. line_start (numpy.ndarray): Beginning of a line segment (1D ``2``-array). line_end (numpy.ndarray): End of a line segment (1D ``2``-array). Returns: int: Enum from ``BoxIntersectionType`` indicating the type of bounding box intersection.
codesearchnet
def allocate(self, amount, child=None, update=True): if (child is not None): if (child not in self.children): c = SecurityBase(child) c.setup(self._universe) c.update(self.now) self._add_child(c) self.children[child].allocate(amount) else: if (self.parent == self): self.parent.adjust((- amount), update=False, flow=True) else: self.parent.adjust((- amount), update=False, flow=False) self.adjust(amount, update=False, flow=True) if (self.children is not None): [c.allocate((amount * c._weight), update=False) for c in self._childrenv] if update: self.root.stale = True
Allocate capital to Strategy. By default, capital is allocated recursively down the children, proportionally to the children's weights. If a child is specified, capital will be allocated to that specific child. Allocation also have a side-effect. They will deduct the same amount from the parent's "account" to offset the allocation. If there is remaining capital after allocation, it will remain in Strategy. Args: * amount (float): Amount to allocate. * child (str): If specified, allocation will be directed to child only. Specified by name. * update (bool): Force update.
codesearchnet
def write(self, output_stream, kmip_version=enums.KMIPVersion.KMIP_1_0): local_stream = utils.BytearrayStream() if self._unique_identifier: self._unique_identifier.write(local_stream, kmip_version=kmip_version) if self._cryptographic_parameters: self._cryptographic_parameters.write(local_stream, kmip_version=kmip_version) if self._data: self._data.write(local_stream, kmip_version=kmip_version) if self._digested_data: self._digested_data.write(local_stream, kmip_version=kmip_version) if self._signature_data: self._signature_data.write(local_stream, kmip_version=kmip_version) if self._correlation_value: self._correlation_value.write(local_stream, kmip_version=kmip_version) if self._init_indicator: self._init_indicator.write(local_stream, kmip_version=kmip_version) if self._final_indicator: self._final_indicator.write(local_stream, kmip_version=kmip_version) self.length = local_stream.length() super(SignatureVerifyRequestPayload, self).write(output_stream, kmip_version=kmip_version) output_stream.write(local_stream.buffer)
Write the data encoding the SignatureVerify request payload to a stream. Args: output_stream (stream): A data stream in which to encode object data, supporting a write method; usually a BytearrayStream object. kmip_version (KMIPVersion): An enumeration defining the KMIP version with which the object will be encoded. Optional, defaults to KMIP 1.0. Raises: ValueError: Raised if the data attribute is not defined.
codesearchnet
def util_granulate_time_series(time_series, scale): n = len(time_series) b = int(np.fix((n / scale))) temp = np.reshape(time_series[0:(b * scale)], (b, scale)) cts = np.mean(temp, axis=1) return cts
Extract coarse-grained time series Args: time_series: Time series scale: Scale factor Returns: Vector of coarse-grained time series with given scale factor
codesearchnet
class RunEnsembleDetector(beam.PTransform[beam.PCollection[NestedKeyedInputT], beam.PCollection[NestedKeyedOutputT]]): def __init__(self, ensemble_detector: EnsembleAnomalyDetector): self._ensemble_detector = ensemble_detector def expand(self, input: beam.PCollection[NestedKeyedInputT]) -> beam.PCollection[NestedKeyedOutputT]: model_uuid = f'{self._ensemble_detector._model_id}:{uuid.uuid4().hex[:6]}' assert self._ensemble_detector._sub_detectors is not None if not self._ensemble_detector._sub_detectors: raise ValueError(f'No detectors found at {model_uuid}') results = [] for idx, detector in enumerate(self._ensemble_detector._sub_detectors): if isinstance(detector, EnsembleAnomalyDetector): results.append(input | f'Run Ensemble Detector at index {idx} ({model_uuid})' >> RunEnsembleDetector(detector)) elif isinstance(detector, OfflineDetector): results.append(input | f'Run Offline Detector at index {idx} ({model_uuid})' >> RunOfflineDetector(detector)) else: results.append(input | f'Run One Detector at index {idx} ({model_uuid})' >> RunOneDetector(detector)) if self._ensemble_detector._aggregation_strategy is None: aggregation_type = 'Simple' else: aggregation_type = 'Custom' ret = results | beam.Flatten() | f'Run {aggregation_type} Aggregation Strategy ({model_uuid})' >> RunAggregationStrategy(self._ensemble_detector._aggregation_strategy, self._ensemble_detector._model_id) if self._ensemble_detector._threshold_criterion: ret = ret | f'Run Threshold Criterion ({model_uuid})' >> RunThresholdCriterion(self._ensemble_detector._threshold_criterion) return ret
Runs an ensemble of anomaly detectors on a PCollection of data. This PTransform applies an `EnsembleAnomalyDetector` to the input data, running each sub-detector and aggregating the results. Args: ensemble_detector: The `EnsembleAnomalyDetector` to run.
github-repos
def _page_to_title(page): start_tag = u"<title>" end_tag = u"</title>" start_pos = page.find(start_tag) end_pos = page.find(end_tag) assert start_pos != -1 assert end_pos != -1 start_pos += len(start_tag) return page[start_pos:end_pos]
Extract the title from a page. Args: page: a unicode string Returns: a unicode string
juraj-google-style
def get_course_certificate(self, course_id, username): return self.client.certificates(username).courses(course_id).get()
Retrieve the certificate for the given username for the given course_id. Args: * ``course_id`` (str): The string value of the course's unique identifier * ``username`` (str): The username ID identifying the user for which to retrieve the certificate Raises: HttpNotFoundError if no certificate found for the given user+course. Returns: a dict containing: * ``username``: A string representation of an user's username passed in the request. * ``course_id``: A string representation of a Course ID. * ``certificate_type``: A string representation of the certificate type. * ``created_date`: Datetime the certificate was created (tz-aware). * ``status``: A string representation of the certificate status. * ``is_passing``: True if the certificate has a passing status, False if not. * ``download_url``: A string representation of the certificate url. * ``grade``: A string representation of a float for the user's course grade.
codesearchnet
def delete(self, *names: str, pipeline=False): if pipeline: self._pipeline.delete(*names) else: self._db.delete(*names)
Delete one or more keys specified by names. Args: names (str): Names of keys to delete pipeline (bool): True, start a transaction block. Default false.
juraj-google-style
def write_to_fp(self, fp): urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) text_parts = self._tokenize(self.text) log.debug("text_parts: %i", len(text_parts)) assert text_parts, 'No text to send to TTS API' for idx, part in enumerate(text_parts): try: part_tk = self.token.calculate_token(part) except requests.exceptions.RequestException as e: log.debug(str(e), exc_info=True) raise gTTSError( "Connection error during token calculation: %s" % str(e)) payload = {'ie': 'UTF-8', 'q': part, 'tl': self.lang, 'ttsspeed': self.speed, 'total': len(text_parts), 'idx': idx, 'client': 'tw-ob', 'textlen': _len(part), 'tk': part_tk} log.debug("payload-%i: %s", idx, payload) try: r = requests.get(self.GOOGLE_TTS_URL, params=payload, headers=self.GOOGLE_TTS_HEADERS, proxies=urllib.request.getproxies(), verify=False) log.debug("headers-%i: %s", idx, r.request.headers) log.debug("url-%i: %s", idx, r.request.url) log.debug("status-%i: %s", idx, r.status_code) r.raise_for_status() except requests.exceptions.HTTPError: raise gTTSError(tts=self, response=r) except requests.exceptions.RequestException as e: raise gTTSError(str(e)) try: for chunk in r.iter_content(chunk_size=1024): fp.write(chunk) log.debug("part-%i written to %s", idx, fp) except (AttributeError, TypeError) as e: raise TypeError( "'fp' is not a file-like object or it does not take bytes: %s" % str(e))
Do the TTS API request and write bytes to a file-like object. Args: fp (file object): Any file-like object to write the ``mp3`` to. Raises: :class:`gTTSError`: When there's an error with the API request. TypeError: When ``fp`` is not a file-like object that takes bytes.
juraj-google-style
def parse_default_property_value(property_name, property_type_id, default_value_string): if ((property_type_id == PROPERTY_TYPE_EMBEDDED_SET_ID) and (default_value_string == '{}')): return set() elif ((property_type_id == PROPERTY_TYPE_EMBEDDED_LIST_ID) and (default_value_string == '[]')): return list() elif ((property_type_id == PROPERTY_TYPE_STRING_ID) and isinstance(default_value_string, six.string_types)): return default_value_string elif (property_type_id == PROPERTY_TYPE_BOOLEAN_ID): return _parse_bool_default_value(property_name, default_value_string) elif (property_type_id == PROPERTY_TYPE_DATETIME_ID): return _parse_datetime_default_value(property_name, default_value_string) elif (property_type_id == PROPERTY_TYPE_DATE_ID): return _parse_date_default_value(property_name, default_value_string) else: raise AssertionError(u'Unsupported default value for property "{}" with type id {}: {}'.format(property_name, property_type_id, default_value_string))
Parse the default value string into its proper form given the property type ID. Args: property_name: string, the name of the property whose default value is being parsed. Used primarily to construct meaningful error messages, should the default value prove invalid. property_type_id: int, one of the property type ID constants defined in this file that OrientDB uses to designate the native type of a given property. default_value_string: string, the textual representation of the default value for for the property, as returned by OrientDB's schema introspection code. Returns: an object of type matching the property that can be used as the property's default value. For example, if the property is of string type, the return type will be a string, and if the property is of list type, the return type will be a list. Raises: AssertionError, if the default value is not supported or does not match the property's declared type (e.g. if a default of "[]" is set on an integer property).
codesearchnet
def image_preprocessing(image_buffer, bbox, train, thread_id=0): if (bbox is None): raise ValueError('Please supply a bounding box.') image = decode_jpeg(image_buffer) height = FLAGS.image_size width = FLAGS.image_size if train: image = distort_image(image, height, width, bbox, thread_id) else: image = eval_image(image, height, width) image = tf.subtract(image, 0.5) image = tf.multiply(image, 2.0) return image
Decode and preprocess one image for evaluation or training. Args: image_buffer: JPEG encoded string Tensor bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords] where each coordinate is [0, 1) and the coordinates are arranged as [ymin, xmin, ymax, xmax]. train: boolean thread_id: integer indicating preprocessing thread Returns: 3-D float Tensor containing an appropriately scaled image Raises: ValueError: if user does not provide bounding box
codesearchnet
def camel_to_title(name): split = re.findall('[A-Z]?[a-z0-9]+|[A-Z]+(?=[A-Z]|$)', name) ret = ' '.join(split) ret = (ret[0].upper() + ret[1:]) return ret
Takes a camelCaseFieldName and returns an Title Case Field Name Args: name (str): E.g. camelCaseFieldName Returns: str: Title Case converted name. E.g. Camel Case Field Name
codesearchnet
def sorted(field_name, ascending=True, fields=None, count=5): if field_name is None: raise Exception('Sort field must be specified') direction = '' if ascending else ' DESC' projection = Sampling._create_projection(fields) return lambda sql: 'SELECT %s FROM (%s) ORDER BY %s%s LIMIT %d' % (projection, sql, field_name, direction, count)
Provides a sampling strategy that picks from an ordered set of rows. Args: field_name: the name of the field to sort the rows by. ascending: whether to sort in ascending direction or not. fields: an optional list of field names to retrieve. count: optional number of rows to limit the sampled results to. Returns: A sampling function that can be applied to get the initial few rows.
juraj-google-style
def process_cgmlst_results(df): assert isinstance(df, pd.DataFrame) markers = [] alleles = [] for x in df['qseqid']: (marker, allele) = x.split('|') markers.append(marker) alleles.append(int(allele)) df.loc[(:, 'marker')] = markers df.loc[(:, 'allele')] = alleles df.loc[(:, 'is_match')] = (((df['coverage'] >= 1.0) & (df['pident'] >= 90.0)) & (~ df['is_trunc'])) df.loc[(:, 'allele_name')] = df.apply((lambda x: allele_name(x.sseq.replace('-', ''))), axis=1) df.loc[(:, 'is_perfect')] = ((df['coverage'] == 1.0) & (df['pident'] == 100.0)) df_perf = df[df['is_perfect']] perf_markers = df_perf['marker'].unique() df.loc[(:, 'has_perfect_match')] = df['marker'].isin(perf_markers) (start_idxs, end_idxs, needs_revcomps, trunc, is_extended) = extend_subj_match_vec(df) df.loc[(:, 'start_idx')] = start_idxs df.loc[(:, 'end_idx')] = end_idxs df.loc[(:, 'needs_revcomp')] = needs_revcomps df.loc[(:, 'trunc')] = trunc df.loc[(:, 'is_extended')] = is_extended df.loc[(:, 'sseq_msa_gaps')] = np.zeros(df.shape[0], dtype=np.int64) df.loc[(:, 'sseq_msa_p_gaps')] = np.zeros(df.shape[0], dtype=np.float64) df.loc[(:, 'too_many_gaps')] = trunc return df
Append informative fields to cgMLST330 BLAST results DataFrame The `qseqid` column must contain cgMLST330 query IDs with `{marker name}|{allele number}` format. The `qseqid` parsed allele numbers and marker names are appended as new fields. `is_perfect` column contains boolean values for whether an allele result is 100% identity and coverage. `has_perfect_match` denotes if a cgMLST330 marker has a perfect allele match. The top result with the largest bitscore for a marker with no perfect match is used to retrieve the allele present at that marker locus. Args: df (pandas.DataFrame): DataFrame of cgMLST330 BLAST results Returns: pandas.DataFrame: cgMLST330 BLAST results DataFrame with extra fields (`marker`, `allele`, `is_perfect`, `has_perfect_match`)
codesearchnet
def metar_to_speech(metar: str) -> str: LOGGER.info('getting speech text from METAR: %s', metar) (metar_data, metar_units) = emiz.avwx.metar.parse_in(metar) speech = emiz.avwx.speech.metar(metar_data, metar_units) speech = str(speech).replace('Altimeter', 'Q N H') LOGGER.debug('resulting speech: %s', speech) return speech
Creates a speakable text from a METAR Args: metar: METAR string to use Returns: speakable METAR for TTS
codesearchnet
def title_of_design_condition(self, value=None): if value is not None: try: value = str(value) except ValueError: raise ValueError( 'value {} need to be of type str ' 'for field `title_of_design_condition`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `title_of_design_condition`') self._title_of_design_condition = value
Corresponds to IDD Field `title_of_design_condition` Args: value (str): value for IDD Field `title_of_design_condition` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
juraj-google-style