code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def _load_schema_for_record(data, schema=None): if schema is None: if '$schema' not in data: raise SchemaKeyNotFound(data=data) schema = data['$schema'] if isinstance(schema, six.string_types): schema = load_schema(schema_name=schema) return schema
Load the schema from a given record. Args: data (dict): record data. schema (Union[dict, str]): schema to validate against. Returns: dict: the loaded schema. Raises: SchemaNotFound: if the given schema was not found. SchemaKeyNotFound: if ``schema`` is ``None`` and no ``$schema`` key was found in ``data``. jsonschema.SchemaError: if the schema is invalid.
juraj-google-style
def model_from_config(config, custom_objects=None): if isinstance(config, list): raise TypeError('`model_from_config` expects a dictionary, not a list. Maybe you meant to use `Sequential.from_config(config)`?') from tensorflow.python.keras.layers import deserialize return deserialize(config, custom_objects=custom_objects)
Instantiates a Keras model from its config. Usage: ``` # for a Functional API model tf.keras.Model().from_config(model.get_config()) # for a Sequential model tf.keras.Sequential().from_config(model.get_config()) ``` Args: config: Configuration dictionary. custom_objects: Optional dictionary mapping names (strings) to custom classes or functions to be considered during deserialization. Returns: A Keras model instance (uncompiled). Raises: TypeError: if `config` is not a dictionary.
github-repos
def _get_showcase_dataset_dict(self, dataset): if (isinstance(dataset, hdx.data.dataset.Dataset) or isinstance(dataset, dict)): if ('id' not in dataset): dataset = hdx.data.dataset.Dataset.read_from_hdx(dataset['name']) dataset = dataset['id'] elif (not isinstance(dataset, str)): raise hdx.data.hdxobject.HDXError(('Type %s cannot be added as a dataset!' % type(dataset).__name__)) if (is_valid_uuid(dataset) is False): raise hdx.data.hdxobject.HDXError(('%s is not a valid dataset id!' % dataset)) return {'showcase_id': self.data['id'], 'package_id': dataset}
Get showcase dataset dict Args: showcase (Union[Showcase,Dict,str]): Either a showcase id or Showcase metadata from a Showcase object or dictionary Returns: Dict: showcase dataset dict
codesearchnet
def __init__(self, class_to_mock): MockAnything.__dict__['__init__'](self) self._known_methods = set() self._known_vars = set() self._class_to_mock = class_to_mock for method in dir(class_to_mock): if callable(getattr(class_to_mock, method)): self._known_methods.add(method) else: self._known_vars.add(method)
Initialize a mock object. This determines the methods and properties of the class and stores them. Args: # class_to_mock: class to be mocked class_to_mock: class
juraj-google-style
def forge_relationship(self, left_id, left_type, right_id, right_type, rel_type='Related To', rel_date=None, rel_confidence='high', rel_reason=''): if (not rel_date): rel_date = datetime.datetime.now() type_trans = self._type_translation(left_type) submit_url = '{}/{}/{}/'.format(self.url, type_trans, left_id) params = {'api_key': self.api_key, 'username': self.username} data = {'action': 'forge_relationship', 'right_type': right_type, 'right_id': right_id, 'rel_type': rel_type, 'rel_date': rel_date, 'rel_confidence': rel_confidence, 'rel_reason': rel_reason} r = requests.patch(submit_url, params=params, data=data, proxies=self.proxies, verify=self.verify) if (r.status_code == 200): log.debug('Relationship built successfully: {0} <-> {1}'.format(left_id, right_id)) return True else: log.error('Error with status code {0} and message {1} between these indicators: {2} <-> {3}'.format(r.status_code, r.text, left_id, right_id)) return False
Forges a relationship between two TLOs. Args: left_id: The CRITs ID of the first indicator left_type: The CRITs TLO type of the first indicator right_id: The CRITs ID of the second indicator right_type: The CRITs TLO type of the second indicator rel_type: The relationships type ("Related To", etc) rel_date: datetime.datetime object for the date of the relationship. If left blank, it will be datetime.datetime.now() rel_confidence: The relationship confidence (high, medium, low) rel_reason: Reason for the relationship. Returns: True if the relationship was created. False otherwise.
codesearchnet
def _OpenFileObject(self, path_spec): if not path_spec.HasParent(): raise errors.PathSpecError( 'Unsupported path specification without parent.') file_object = resolver.Resolver.OpenFileObject( path_spec.parent, resolver_context=self._resolver_context) vhdi_file = pyvhdi.file() vhdi_file.open_file_object(file_object) if vhdi_file.parent_identifier: file_system = resolver.Resolver.OpenFileSystem( path_spec.parent, resolver_context=self._resolver_context) try: self._OpenParentFile(file_system, path_spec.parent, vhdi_file) finally: file_system.Close() self._sub_file_objects.append(file_object) self._parent_vhdi_files.reverse() self._sub_file_objects.reverse() return vhdi_file
Opens the file-like object defined by path specification. Args: path_spec (PathSpec): path specification. Returns: pyvhdi.file: a file-like object. Raises: PathSpecError: if the path specification is incorrect.
juraj-google-style
def extract_cluster(self, target_sites, **kwargs): cluster = list(target_sites) others = [site for site in self if (site not in cluster)] size = 0 while (len(cluster) > size): size = len(cluster) new_others = [] for site in others: for site2 in cluster: if CovalentBond.is_bonded(site, site2, **kwargs): cluster.append(site) break else: new_others.append(site) others = new_others return cluster
Extracts a cluster of atoms based on bond lengths Args: target_sites ([Site]): List of initial sites to nucleate cluster. \\*\\*kwargs: kwargs passed through to CovalentBond.is_bonded. Returns: [Site/PeriodicSite] Cluster of atoms.
codesearchnet
def match_pattern(self, pat, word): segs = self.word_fts(word) if (len(pat) != len(segs)): return None elif all([(set(p) <= s) for (p, s) in zip(pat, segs)]): return segs
Implements fixed-width pattern matching. Matches just in case pattern is the same length (in segments) as the word and each of the segments in the pattern is a featural subset of the corresponding segment in the word. Matches return the corresponding list of feature sets; failed matches return None. Args: pat (list): pattern consisting of a sequence of sets of (value, feature) tuples word (unicode): a Unicode IPA string consisting of zero or more segments Returns: list: corresponding list of feature sets or, if there is no match, None
codesearchnet
def search(self, scope, search, **kwargs): data = {'scope': scope, 'search': search} return self.http_list('/search', query_data=data, **kwargs)
Search GitLab resources matching the provided string.' Args: scope (str): Scope of the search search (str): Search string **kwargs: Extra options to send to the server (e.g. sudo) Raises: GitlabAuthenticationError: If authentication is not correct GitlabSearchError: If the server failed to perform the request Returns: GitlabList: A list of dicts describing the resources found.
juraj-google-style
def dumps(ms, single=False, pretty_print=False, **kwargs): if single: ms = [ms] return serialize(ms, pretty_print=pretty_print, **kwargs)
Serialize an Xmrs object to the Prolog representation Args: ms: an iterator of Xmrs objects to serialize (unless the *single* option is `True`) single: if `True`, treat *ms* as a single Xmrs object instead of as an iterator pretty_print: if `True`, add newlines and indentation Returns: the Prolog string representation of a corpus of Xmrs
juraj-google-style
def unbind(self, devices_to_unbind): if (self.entity_api_key == ''): return {'status': 'failure', 'response': 'No API key found in request'} url = (self.base_url + 'api/0.1.0/subscribe/unbind') headers = {'apikey': self.entity_api_key} data = {'exchange': 'amq.topic', 'keys': devices_to_unbind, 'queue': self.entity_id} with self.no_ssl_verification(): r = requests.delete(url, json=data, headers=headers) print(r) response = dict() if ('No API key' in str(r.content.decode('utf-8'))): response['status'] = 'failure' r = json.loads(r.content.decode('utf-8'))['message'] elif ('unbind' in str(r.content.decode('utf-8'))): response['status'] = 'success' r = r.content.decode('utf-8') else: response['status'] = 'failure' r = r.content.decode('utf-8') response['response'] = str(r) return response
This function allows an entity to unbound devices that are already bound. Args: devices_to_unbind (list): an array of devices that are to be unbound ( stop listening) Example unbind(["test10","testDemo105"])
codesearchnet
def main_op(): init = variables.global_variables_initializer() init_local = variables.local_variables_initializer() init_tables = lookup_ops.tables_initializer() return control_flow_ops.group(init, init_local, init_tables)
Returns a main op to init variables and tables. Returns the main op including the group of ops that initializes all variables, initializes local variables and initialize all tables. Returns: The set of ops to be run as part of the main op upon the load operation.
github-repos
def _get_label_encoder_and_max(self, x): label_count = x.fillna(NAN_INT).value_counts() n_uniq = label_count.shape[0] label_count = label_count[label_count >= self.min_obs] n_uniq_new = label_count.shape[0] offset = 0 if n_uniq == n_uniq_new else 1 label_encoder = pd.Series(np.arange(n_uniq_new) + offset, index=label_count.index) max_label = label_encoder.max() label_encoder = label_encoder.to_dict() return label_encoder, max_label
Return a mapping from values and its maximum of a column to integer labels. Args: x (pandas.Series): a categorical column to encode. Returns: label_encoder (dict): mapping from values of features to integers max_label (int): maximum label
juraj-google-style
def get_actual_replica(self, service_id: str) -> str: if (not self._manager): raise RuntimeError('Only the Swarm manager node can retrieve replication level of the service') service_details = self.get_service_details(service_id) actual_replica = service_details['Spec']['Mode']['Replicated']['Replicas'] return actual_replica
Get the actual replica level of a service. Args: service_id (str): docker swarm service id Returns: str, replicated level of the service
codesearchnet
def paginate_resources(cls, request, resources, on_fail_status): if (not resources): return (resources, client_list_control_pb2.ClientPagingResponse()) paging = request.paging limit = (min(paging.limit, MAX_PAGE_SIZE) or DEFAULT_PAGE_SIZE) try: if paging.start: start_index = cls.index_by_id(paging.start, resources) else: start_index = 0 if ((start_index < 0) or (start_index >= len(resources))): raise AssertionError except AssertionError: raise _ResponseFailed(on_fail_status) paged_resources = resources[start_index:(start_index + limit)] if ((start_index + limit) < len(resources)): paging_response = client_list_control_pb2.ClientPagingResponse(next=cls.id_by_index((start_index + limit), resources), start=cls.id_by_index(start_index, resources), limit=limit) else: paging_response = client_list_control_pb2.ClientPagingResponse(start=cls.id_by_index(start_index, resources), limit=limit) return (paged_resources, paging_response)
Truncates a list of resources based on ClientPagingControls Args: request (object): The parsed protobuf request object resources (list of objects): The resources to be paginated Returns: list: The paginated list of resources object: The ClientPagingResponse to be sent back to the client
codesearchnet
def add(self, other): if not isinstance(other, SuperOp): other = SuperOp(other) if self.dim != other.dim: raise QiskitError("other QuantumChannel dimensions are not equal") return SuperOp(self._data + other.data, self.input_dims(), self.output_dims())
Return the QuantumChannel self + other. Args: other (QuantumChannel): a quantum channel. Returns: SuperOp: the linear addition self + other as a SuperOp object. Raises: QiskitError: if other cannot be converted to a channel or has incompatible dimensions.
juraj-google-style
def graph_structure(self, x, standalone=True): if standalone: x = tf.concat(tf.split(x, 2, axis=0), axis=1) with argscope([tf.layers.conv2d], activation=lambda x: tf.nn.leaky_relu(x, 0.1), padding='valid', strides=2, kernel_size=3, data_format='channels_first'), \ argscope([tf.layers.conv2d_transpose], padding='same', activation=tf.identity, data_format='channels_first', strides=2, kernel_size=4): x = tf.layers.conv2d(pad(x, 3), 64, kernel_size=7, name='conv1') conv2 = tf.layers.conv2d(pad(x, 2), 128, kernel_size=5, name='conv2') x = tf.layers.conv2d(pad(conv2, 2), 256, kernel_size=5, name='conv3') conv3 = tf.layers.conv2d(pad(x, 1), 256, name='conv3_1', strides=1) x = tf.layers.conv2d(pad(conv3, 1), 512, name='conv4') conv4 = tf.layers.conv2d(pad(x, 1), 512, name='conv4_1', strides=1) x = tf.layers.conv2d(pad(conv4, 1), 512, name='conv5') conv5 = tf.layers.conv2d(pad(x, 1), 512, name='conv5_1', strides=1) x = tf.layers.conv2d(pad(conv5, 1), 1024, name='conv6') conv6 = tf.layers.conv2d(pad(x, 1), 1024, name='conv6_1', strides=1) flow6 = tf.layers.conv2d(pad(conv6, 1), 2, name='predict_flow6', strides=1, activation=tf.identity) flow6_up = tf.layers.conv2d_transpose(flow6, 2, name='upsampled_flow6_to_5', use_bias=False) x = tf.layers.conv2d_transpose(conv6, 512, name='deconv5', activation=lambda x: tf.nn.leaky_relu(x, 0.1)) concat5 = tf.concat([conv5, x, flow6_up], axis=1, name='concat5') flow5 = tf.layers.conv2d(pad(concat5, 1), 2, name='predict_flow5', strides=1, activation=tf.identity) flow5_up = tf.layers.conv2d_transpose(flow5, 2, name='upsampled_flow5_to_4', use_bias=False) x = tf.layers.conv2d_transpose(concat5, 256, name='deconv4', activation=lambda x: tf.nn.leaky_relu(x, 0.1)) concat4 = tf.concat([conv4, x, flow5_up], axis=1, name='concat4') flow4 = tf.layers.conv2d(pad(concat4, 1), 2, name='predict_flow4', strides=1, activation=tf.identity) flow4_up = tf.layers.conv2d_transpose(flow4, 2, name='upsampled_flow4_to_3', use_bias=False) x = tf.layers.conv2d_transpose(concat4, 128, name='deconv3', activation=lambda x: tf.nn.leaky_relu(x, 0.1)) concat3 = tf.concat([conv3, x, flow4_up], axis=1, name='concat3') flow3 = tf.layers.conv2d(pad(concat3, 1), 2, name='predict_flow3', strides=1, activation=tf.identity) flow3_up = tf.layers.conv2d_transpose(flow3, 2, name='upsampled_flow3_to_2', use_bias=False) x = tf.layers.conv2d_transpose(concat3, 64, name='deconv2', activation=lambda x: tf.nn.leaky_relu(x, 0.1)) concat2 = tf.concat([conv2, x, flow3_up], axis=1, name='concat2') flow2 = tf.layers.conv2d(pad(concat2, 1), 2, name='predict_flow2', strides=1, activation=tf.identity) return tf.identity(flow2, name='flow2')
Architecture of FlowNetSimple in Figure 2 of FlowNet 1.0. Args: x: 2CHW if standalone==True, else NCHW where C=12 is a concatenation of 5 tensors of [3, 3, 3, 2, 1] channels. standalone: If True, this model is used to predict flow from two inputs. If False, this model is used as part of the FlowNet2.
juraj-google-style
def get_densities(self, spin=None): if (self.densities is None): result = None elif (spin is None): if (Spin.down in self.densities): result = (self.densities[Spin.up] + self.densities[Spin.down]) else: result = self.densities[Spin.up] else: result = self.densities[spin] return result
Returns the density of states for a particular spin. Args: spin: Spin Returns: Returns the density of states for a particular spin. If Spin is None, the sum of all spins is returned.
codesearchnet
def unpack(self, buff=None, offset=0): length = UBInt16() length.unpack(buff, offset) length.unpack(buff, offset=offset+MeterStats.meter_id.get_size()) super().unpack(buff[:offset+length.value], offset=offset)
Unpack *buff* into this object. This method will convert a binary data into a readable value according to the attribute format. Args: buff (bytes): Binary buffer. offset (int): Where to begin unpacking. Raises: :exc:`~.exceptions.UnpackException`: If unpack fails.
juraj-google-style
def GetEntries(self, parser_mediator, match=None, **unused_kwargs): format_version = match.get('WebHistoryFileVersion', None) if format_version != 1: parser_mediator.ProduceExtractionWarning( 'unsupported Safari history version: {0!s}'.format(format_version)) return if 'WebHistoryDates' not in match: return for history_entry in match.get('WebHistoryDates', {}): last_visited_date = history_entry.get('lastVisitedDate', None) if last_visited_date is None: parser_mediator.ProduceExtractionWarning('missing last visited date') continue try: timestamp = float(last_visited_date) except (TypeError, ValueError): parser_mediator.ProduceExtractionWarning( 'unable to convert last visited date {0:s}'.format( last_visited_date)) continue display_title = history_entry.get('displayTitle', None) event_data = SafariHistoryEventData() if display_title != event_data.title: event_data.display_title = display_title event_data.title = history_entry.get('title', None) event_data.url = history_entry.get('', None) event_data.visit_count = history_entry.get('visitCount', None) event_data.was_http_non_get = history_entry.get( 'lastVisitWasHTTPNonGet', None) timestamp = int(timestamp) date_time = dfdatetime_cocoa_time.CocoaTime(timestamp=timestamp) event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_LAST_VISITED) parser_mediator.ProduceEventWithEventData(event, event_data)
Extracts Safari history items. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. match (Optional[dict[str: object]]): keys extracted from PLIST_KEYS.
juraj-google-style
def add_comments(self, comments): for comment in comments: if ((comment not in self.comments) and (len(comment) > 0)): self.comments.append(comment) if (len(self.comments[0]) == 0): self.comments.pop(0)
Add comments to the localization entry Args: comments (list of str): The comments to be added to the localization entry.
codesearchnet
def list(self, *args, **kwargs): return [ self.prepare_model(n) for n in self.client.api.nodes(*args, **kwargs) ]
List swarm nodes. Args: filters (dict): Filters to process on the nodes list. Valid filters: ``id``, ``name``, ``membership`` and ``role``. Default: ``None`` Returns: A list of :py:class:`Node` objects. Raises: :py:class:`docker.errors.APIError` If the server returns an error. Example: >>> client.nodes.list(filters={'role': 'manager'})
juraj-google-style
def eigvals(self, name='eigvals'): if not self.is_self_adjoint: raise NotImplementedError('Only self-adjoint matrices are supported.') with self._name_scope(name): return self._eigvals()
Returns the eigenvalues of this linear operator. If the operator is marked as self-adjoint (via `is_self_adjoint`) this computation can be more efficient. Note: This currently only supports self-adjoint operators. Args: name: A name for this `Op`. Returns: Shape `[B1,...,Bb, N]` `Tensor` of same `dtype` as `self`.
github-repos
def edit_distance_1(self, word): word = word.lower() if (self._check_if_should_check(word) is False): return {word} letters = self._word_frequency.letters splits = [(word[:i], word[i:]) for i in range((len(word) + 1))] deletes = [(L + R[1:]) for (L, R) in splits if R] transposes = [(((L + R[1]) + R[0]) + R[2:]) for (L, R) in splits if (len(R) > 1)] replaces = [((L + c) + R[1:]) for (L, R) in splits if R for c in letters] inserts = [((L + c) + R) for (L, R) in splits for c in letters] return set((((deletes + transposes) + replaces) + inserts))
Compute all strings that are one edit away from `word` using only the letters in the corpus Args: word (str): The word for which to calculate the edit distance Returns: set: The set of strings that are edit distance one from the \ provided word
codesearchnet
def delete(self, dry=False, meta=None, index_fields=None): from datetime import datetime if (not dry): self.pre_delete() (results, errors) = self._delete_relations(dry) if (not (dry or errors)): self.deleted = True self.deleted_at = datetime.now() self.save(internal=True, meta=meta, index_fields=index_fields) self.post_delete() if settings.ENABLE_CACHING: cache.delete(self.key) return (results, errors)
Sets the objects "deleted" field to True and, current time to "deleted_at" fields then saves it to DB. Args: dry (bool): False. Do not execute the actual deletion. Just list what will be deleted as a result of relations. meta (dict): JSON serializable meta data for logging of save operation. {'lorem': 'ipsum', 'dolar': 5} index_fields (list): Tuple list for secondary indexing keys in riak (with 'bin' or 'int'). bin is used for string fields, int is used for integer fields. [('lorem','bin'),('dolar','int')] Returns: Tuple. (results [], errors [])
codesearchnet
def _del_conversation(self, conversation_key: str) -> None: if (conversation_key in self.conversations.keys()): del self.conversations[conversation_key] log.info(f'Deleted conversation, key: {conversation_key}')
Deletes Conversation instance. Args: conversation_key: Conversation key.
codesearchnet
def _get_parameter_conversion_entry(parameter_config): entry = _PARAM_CONVERSION_MAP.get(parameter_config.get('type')) if entry is None and 'enum' in parameter_config: entry = _PARAM_CONVERSION_MAP['enum'] return entry
Get information needed to convert the given parameter to its API type. Args: parameter_config: The dictionary containing information specific to the parameter in question. This is retrieved from request.parameters in the method config. Returns: The entry from _PARAM_CONVERSION_MAP with functions/information needed to validate and convert the given parameter from a string to the type expected by the API.
juraj-google-style
def most_specific_common_supertype(self, others): try: for other in others: self.sanity_check_type(other) nest.assert_same_structure(self._element_spec, other._element_spec) except (TypeError, ValueError): return None self_elements = nest.flatten(self._element_spec) others_elements = [nest.flatten(other._element_spec) for other in others] common_elements = [None] * len(self_elements) for i, self_element in enumerate(self_elements): common_elements[i] = self_element.most_specific_common_supertype([other_elements[i] for other_elements in others_elements]) if common_elements[i] is None: return None common_element_spec = nest.pack_sequence_as(self._element_spec, common_elements) return type(self)(self._input_workers, common_element_spec, self._strategy, self._options, cardinality=self._cardinality, enable_get_next_as_optional=self._enable_get_next_as_optional)
Returns the most specific supertype of `self` and `others`. Args: others: A Sequence of `TypeSpec`. Returns `None` if a supertype does not exist.
github-repos
def load_from_file(self, filename=None, *, strict=True): self.set_to_default() if filename: self._update_from_file(filename) elif (LIGHTFLOW_CONFIG_ENV not in os.environ): if os.path.isfile(os.path.join(os.getcwd(), LIGHTFLOW_CONFIG_NAME)): self._update_from_file(os.path.join(os.getcwd(), LIGHTFLOW_CONFIG_NAME)) elif os.path.isfile(expand_env_var('~/{}'.format(LIGHTFLOW_CONFIG_NAME))): self._update_from_file(expand_env_var('~/{}'.format(LIGHTFLOW_CONFIG_NAME))) elif strict: raise ConfigLoadError('Could not find the configuration file.') else: self._update_from_file(expand_env_var(os.environ[LIGHTFLOW_CONFIG_ENV])) self._update_python_paths()
Load the configuration from a file. The location of the configuration file can either be specified directly in the parameter filename or is searched for in the following order: 1. In the environment variable given by LIGHTFLOW_CONFIG_ENV 2. In the current execution directory 3. In the user's home directory Args: filename (str): The location and name of the configuration file. strict (bool): If true raises a ConfigLoadError when the configuration cannot be found. Raises: ConfigLoadError: If the configuration cannot be found.
codesearchnet
def execute(self, action): if self.env.game_over(): return self.env.getScreenRGB(), True, 0 action_space = self.env.getActionSet() reward = self.env.act(action_space[action]) new_state = self.env.getScreenRGB() done = self.env.game_over() return new_state, done, reward
Executes action, observes next state and reward. Args: actions: Action to execute. Returns: (Dict of) next state(s), boolean indicating terminal, and reward signal.
juraj-google-style
def _load_data(self, data, from_db=False): self._data = data[:] self.setattrs( values=[], node_stack=[], node_dict={}, ) self._from_db = from_db
Stores the data at self._data, actual object creation done at _generate_instances() Args: data (list): List of dicts. from_db (bool): Default False. Is this data coming from DB or not.
juraj-google-style
def concurrent_exec(func, param_list, max_workers=30, raise_on_exception=False): with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor: future_to_params = {executor.submit(func, *p): p for p in param_list} return_vals = [] exceptions = [] for future in concurrent.futures.as_completed(future_to_params): params = future_to_params[future] try: return_vals.append(future.result()) except Exception as exc: logging.exception('%s generated an exception: %s', params, traceback.format_exc()) return_vals.append(exc) exceptions.append(exc) if raise_on_exception and exceptions: error_messages = [] for exception in exceptions: error_messages.append(''.join(traceback.format_exception(exception.__class__, exception, exception.__traceback__))) raise RuntimeError('\n\n'.join(error_messages)) return return_vals
Executes a function with different parameters pseudo-concurrently. This is basically a map function. Each element (should be an iterable) in the param_list is unpacked and passed into the function. Due to Python's GIL, there's no true concurrency. This is suited for IO-bound tasks. Args: func: The function that performs a task. param_list: A list of iterables, each being a set of params to be passed into the function. max_workers: int, the number of workers to use for parallelizing the tasks. By default, this is 30 workers. raise_on_exception: bool, raises all of the task failures if any of the tasks failed if `True`. By default, this is `False`. Returns: A list of return values from each function execution. If an execution caused an exception, the exception object will be the corresponding result. Raises: RuntimeError: If executing any of the tasks failed and `raise_on_exception` is True.
github-repos
def set_error_message(self, error_message): self._empty = False self.error_message = error_message
Sets an error message on an instrumentation block. This method is used exclusively to indicate that a test method failed to complete, which is usually cause by a crash of some sort such that the test method is marked as error instead of ignored. Args: error_message: string, an error message to be added to the TestResultRecord to explain that something wrong happened.
github-repos
def parse_cgmlst_alleles(cgmlst_fasta): out = defaultdict(list) for header, seq in parse_fasta(cgmlst_fasta): if not '|' in header: raise Exception('Unexpected format for cgMLST fasta file header. No "|" (pipe) delimiter present! Header="{}"'.format(header)) marker_name, allele_name = header.split('|') out[marker_name].append(seq) return out
Parse cgMLST alleles from fasta file cgMLST FASTA file must have a header format of ">{marker name}|{allele name}" Args: cgmlst_fasta (str): cgMLST fasta file path Returns: dict of list: Marker name to list of allele sequences
juraj-google-style
def on(self, evnt, func, base=None): funcs = self._syn_funcs[evnt] if (func in funcs): return funcs.append(func) if (base is not None): def fini(): self.off(evnt, func) base.onfini(fini)
Add an base function callback for a specific event with optional filtering. If the function returns a coroutine, it will be awaited. Args: evnt (str): An event name func (function): A callback function to receive event tufo Examples: Add a callback function and fire it: async def baz(event): x = event[1].get('x') y = event[1].get('y') return x + y d.on('foo', baz) # this fire triggers baz... await d.fire('foo', x=10, y=20) Returns: None:
codesearchnet
def bbox_rot90(bbox, factor, rows, cols): if factor < 0 or factor > 3: raise ValueError('Parameter n must be in range [0;3]') x_min, y_min, x_max, y_max = bbox if factor == 1: bbox = [y_min, 1 - x_max, y_max, 1 - x_min] if factor == 2: bbox = [1 - x_max, 1 - y_max, 1 - x_min, 1 - y_min] if factor == 3: bbox = [1 - y_max, x_min, 1 - y_min, x_max] return bbox
Rotates a bounding box by 90 degrees CCW (see np.rot90) Args: bbox (tuple): A tuple (x_min, y_min, x_max, y_max). factor (int): Number of CCW rotations. Must be in range [0;3] See np.rot90. rows (int): Image rows. cols (int): Image cols.
juraj-google-style
def fetch(url: str, **kwargs) -> Selector: kwargs.setdefault('headers', DEFAULT_HEADERS) try: res = requests.get(url, **kwargs) res.raise_for_status() except requests.RequestException as e: print(e) else: html = res.text tree = Selector(text=html) return tree
Send HTTP request and parse it as a DOM tree. Args: url (str): The url of the site. Returns: Selector: allows you to select parts of HTML text using CSS or XPath expressions.
juraj-google-style
def CreateStorageWriterForFile(cls, session, path): if sqlite_file.SQLiteStorageFile.CheckSupportedFormat(path): return sqlite_writer.SQLiteStorageFileWriter(session, path) return None
Creates a storage writer based on the file. Args: session (Session): session the storage changes are part of. path (str): path to the storage file. Returns: StorageWriter: a storage writer or None if the storage file cannot be opened or the storage format is not supported.
juraj-google-style
def save(self, filename, image_format="eps", width=8, height=6): self.get_plot(width, height).savefig(filename, format=image_format)
Save the plot to an image file. Args: filename: Filename to save to. image_format: Format to save to. Defaults to eps.
juraj-google-style
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id] if token_ids_1 is not None: output += token_ids_1 + [self.sep_token_id] return output
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A ELECTRA sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
github-repos
def setValue(self, value): if value >= self.minimum() and value <= self.maximum(): self._lineEdit.setText(str(value)) elif value < self.minimum(): self._lineEdit.setText(str(self.minimum())) elif value > self.maximum(): self._lineEdit.setText(str(self.maximum())) return True
setter function to _lineEdit.text. Sets minimum/maximum as new value if value is out of bounds. Args: value (int/long): new value to set. Returns True if all went fine.
juraj-google-style
def read_vocab(args, column_name): vocab_path = os.path.join(args.analysis, feature_transforms.VOCAB_ANALYSIS_FILE % column_name) if not file_io.file_exists(vocab_path): return [] vocab, _ = feature_transforms.read_vocab_file(vocab_path) return vocab
Reads a vocab file if it exists. Args: args: command line flags column_name: name of column to that has a vocab file. Returns: List of vocab words or [] if the vocab file is not found.
juraj-google-style
def get_connectable_volume_templates(self, start=0, count=(- 1), filter='', query='', sort=''): uri = (self.URI + '/connectable-volume-templates') get_uri = self._client.build_query_uri(start=start, count=count, filter=filter, query=query, sort=sort, uri=uri) return self._client.get(get_uri)
Gets the storage volume templates that are available on the specified networks based on the storage system port's expected network connectivity. If there are no storage volume templates that meet the specified connectivity criteria, an empty collection will be returned. Returns: list: Storage volume templates.
codesearchnet
def get_changes_since(self, timestamp: str) -> Dict[str, List]: rg = [] cg = [] ra = [] ca = [] layers = [] if self.last_modified() > timestamp: if self.row_graphs.last_modified() > timestamp: for name in self.row_graphs.keys(): if self.row_graphs.last_modified(name) > timestamp: rg.append(name) if self.col_graphs.last_modified() > timestamp: for name in self.col_graphs.keys(): if self.col_graphs.last_modified(name) > timestamp: cg.append(name) if self.ra.last_modified() > timestamp: for name in self.ra.keys(): if self.ra.last_modified(name) > timestamp: ra.append(name) if self.ca.last_modified() > timestamp: for name in self.ca.keys(): if self.ca.last_modified(name) > timestamp: ca.append(name) if self.layers.last_modified() > timestamp: for name in self.layers.keys(): if self.layers.last_modified(name) > timestamp: layers.append(name) return {"row_graphs": rg, "col_graphs": cg, "row_attrs": ra, "col_attrs": ca, "layers": layers}
Get a summary of the parts of the file that changed since the given time Args: timestamp: ISO8601 timestamp Return: dict: Dictionary like ``{"row_graphs": rg, "col_graphs": cg, "row_attrs": ra, "col_attrs": ca, "layers": layers}`` listing the names of objects that were modified since the given time
juraj-google-style
def MakeSuiteFromHist(hist, name=None): if name is None: name = hist.name d = dict(hist.GetDict()) return MakeSuiteFromDict(d, name)
Makes a normalized suite from a Hist object. Args: hist: Hist object name: string name Returns: Suite object
juraj-google-style
def installed(name, source): ret = {'name': name, 'changes': {}, 'result': False, 'comment': ''} if (not name): raise SaltInvocationError('Must specify a KB "name"') if (not source): raise SaltInvocationError('Must specify a "source" file to install') if __salt__['wusa.is_installed'](name): ret['result'] = True ret['comment'] = '{0} already installed'.format(name) return ret if (__opts__['test'] is True): ret['result'] = None ret['comment'] = '{0} would be installed'.format(name) ret['result'] = None return ret cached_source_path = __salt__['cp.cache_file'](path=source, saltenv=__env__) if (not cached_source_path): msg = 'Unable to cache {0} from saltenv "{1}"'.format(salt.utils.url.redact_http_basic_auth(source), __env__) ret['comment'] = msg return ret __salt__['wusa.install'](cached_source_path) if __salt__['wusa.is_installed'](name): ret['comment'] = '{0} was installed'.format(name) ret['changes'] = {'old': False, 'new': True} ret['result'] = True else: ret['comment'] = '{0} failed to install'.format(name) return ret
Ensure an update is installed on the minion Args: name(str): Name of the Windows KB ("KB123456") source (str): Source of .msu file corresponding to the KB Example: .. code-block:: yaml KB123456: wusa.installed: - source: salt://kb123456.msu
codesearchnet
def _split_ir_into_match_steps(pruned_ir_blocks): output = [] current_tuple = None for block in pruned_ir_blocks: if isinstance(block, OutputSource): continue elif isinstance(block, root_block_types): if current_tuple is not None: output.append(current_tuple) current_tuple = (block,) elif isinstance(block, (CoerceType, Filter, MarkLocation)): current_tuple += (block,) else: raise AssertionError(u'Unexpected block type when converting to MATCH query: ' u'{} {}'.format(block, pruned_ir_blocks)) if current_tuple is None: raise AssertionError(u'current_tuple was unexpectedly None: {}'.format(pruned_ir_blocks)) output.append(current_tuple) return [_per_location_tuple_to_step(x) for x in output]
Split a list of IR blocks into per-location MATCH steps. Args: pruned_ir_blocks: list of IR basic block objects that have gone through a lowering step. Returns: list of MatchStep namedtuples, each of which contains all basic blocks that correspond to a single MATCH step.
juraj-google-style
def _token_to_subtoken_ids(self, token): cache_location = hash(token) % self._cache_size cache_key, cache_value = self._cache[cache_location] if cache_key == token: return cache_value ret = self._escaped_token_to_subtoken_ids( _escape_token(token, self._alphabet)) self._cache[cache_location] = (token, ret) return ret
Converts token to a list of subtoken ids. Args: token: a string. Returns: a list of integers in the range [0, vocab_size)
juraj-google-style
def add_defaults_to_kwargs(defaults, **kwargs): defaults = dict(defaults) defaults.update(kwargs) return defaults
Updates `kwargs` with dict of `defaults` Args: defaults: A dictionary of keys and values **kwargs: The kwargs to update. Returns: The updated kwargs.
codesearchnet
def _create_uninitialized_mirrored_tpu_variables(**kwargs): if kwargs.get('initial_value', None) is None: return _create_mirrored_tpu_variables(**kwargs) value_list = [] initial_value = None for i, d in enumerate(devices): with ops.device(d): if i == 0: initial_value = kwargs.get('initial_value', None) with maybe_init_scope(): if initial_value is not None: if callable(initial_value): initial_value = initial_value() initial_value = ops.convert_to_tensor(initial_value, dtype=kwargs.get('dtype', None)) if i > 0: var0name = value_list[0].name.split(':')[0] kwargs['name'] = '%s/replica_%d/' % (var0name, i) kwargs['initial_value'] = initial_value if kwargs.get('dtype', None) is None: kwargs['dtype'] = kwargs['initial_value'].dtype if kwargs.get('shape', None) is None: kwargs['shape'] = kwargs['initial_value'].shape with context.device_policy(context.DEVICE_PLACEMENT_SILENT): v = uninitialized_variable_creator(**kwargs) assert not isinstance(v, tpu_values.TPUMirroredVariable) value_list.append(v) return value_list
Returns a list of `tf.Variable`s. The list contains `number_replicas` `tf.Variable`s and can be used to initialize a `TPUMirroredVariable`. Args: **kwargs: the keyword arguments for creating a variable
github-repos
def _run_dnb_normalization(self, dnb_data, sza_data): dnb_data = xr.DataArray(dnb_data, dims=('y', 'x')) sza_data = xr.DataArray(sza_data, dims=('y', 'x')) good_mask = ~(dnb_data.isnull() | sza_data.isnull()) output_dataset = dnb_data.where(good_mask) output_dataset = output_dataset.values.copy() dnb_data = dnb_data.values sza_data = sza_data.values day_mask, mixed_mask, night_mask = make_day_night_masks( sza_data, good_mask.values, self.high_angle_cutoff, self.low_angle_cutoff, stepsDegrees=self.mixed_degree_step) did_equalize = False if day_mask.any(): LOG.debug("Histogram equalizing DNB day data...") histogram_equalization(dnb_data, day_mask, out=output_dataset) did_equalize = True if mixed_mask: for mask in mixed_mask: if mask.any(): LOG.debug("Histogram equalizing DNB mixed data...") histogram_equalization(dnb_data, mask, out=output_dataset) did_equalize = True if night_mask.any(): LOG.debug("Histogram equalizing DNB night data...") histogram_equalization(dnb_data, night_mask, out=output_dataset) did_equalize = True if not did_equalize: raise RuntimeError("No valid data found to histogram equalize") return output_dataset
Scale the DNB data using a histogram equalization method. Args: dnb_data (ndarray): Day/Night Band data array sza_data (ndarray): Solar Zenith Angle data array
juraj-google-style
async def build_task_dependencies(chain, task, name, my_task_id): log.info("build_task_dependencies {} {}".format(name, my_task_id)) if name.count(':') > chain.context.config['max_chain_length']: raise CoTError("Too deep recursion!\n{}".format(name)) sorted_dependencies = find_sorted_task_dependencies(task, name, my_task_id) for task_name, task_id in sorted_dependencies: if task_id not in chain.dependent_task_ids(): link = LinkOfTrust(chain.context, task_name, task_id) json_path = link.get_artifact_full_path('task.json') try: task_defn = await chain.context.queue.task(task_id) link.task = task_defn chain.links.append(link) makedirs(os.path.dirname(json_path)) with open(json_path, 'w') as fh: fh.write(format_json(task_defn)) await build_task_dependencies(chain, task_defn, task_name, task_id) except TaskclusterFailure as exc: raise CoTError(str(exc))
Recursively build the task dependencies of a task. Args: chain (ChainOfTrust): the chain of trust to add to. task (dict): the task definition to operate on. name (str): the name of the task to operate on. my_task_id (str): the taskId of the task to operate on. Raises: CoTError: on failure.
juraj-google-style
def guess_peb_size(path): file_offset = 0 offsets = [] f = open(path, 'rb') f.seek(0,2) file_size = f.tell()+1 f.seek(0) for _ in range(0, file_size, FILE_CHUNK_SZ): buf = f.read(FILE_CHUNK_SZ) for m in re.finditer(UBI_EC_HDR_MAGIC, buf): start = m.start() if not file_offset: file_offset = start idx = start else: idx = start+file_offset offsets.append(idx) file_offset += FILE_CHUNK_SZ f.close() occurances = {} for i in range(0, len(offsets)): try: diff = offsets[i] - offsets[i-1] except: diff = offsets[i] if diff not in occurances: occurances[diff] = 0 occurances[diff] += 1 most_frequent = 0 block_size = None for offset in occurances: if occurances[offset] > most_frequent: most_frequent = occurances[offset] block_size = offset return block_size
Determine the most likely block size Arguments: Str:path -- Path to file. Returns: Int -- PEB size. Searches file for Magic Number, picks most common length between them.
juraj-google-style
def union_update(self, *others): _elements = self._elements _total = self._total for other in map(self._as_mapping, others): for (element, multiplicity) in other.items(): old_multiplicity = _elements.get(element, 0) if (multiplicity > old_multiplicity): _elements[element] = multiplicity _total += (multiplicity - old_multiplicity) self._total = _total
r"""Update the multiset, adding elements from all others using the maximum multiplicity. >>> ms = Multiset('aab') >>> ms.union_update('bc') >>> sorted(ms) ['a', 'a', 'b', 'c'] You can also use the ``|=`` operator for the same effect. However, the operator version will only accept a set as other operator, not any iterable, to avoid errors. >>> ms = Multiset('aab') >>> ms |= Multiset('bccd') >>> sorted(ms) ['a', 'a', 'b', 'c', 'c', 'd'] For a variant of the operation which does not modify the multiset, but returns a new multiset instead see :meth:`union`. Args: others: The other sets to union this multiset with. Can also be any :class:`~typing.Iterable`\[~T] or :class:`~typing.Mapping`\[~T, :class:`int`] which are then converted to :class:`Multiset`\[~T].
codesearchnet
def tflite_convert(fn, input_templates): fn = def_function.function(fn) concrete_func = fn.get_concrete_function(*input_templates) converter = lite.TFLiteConverterV2([concrete_func]) return converter.convert()
Converts the provided fn to tf.lite model. Args: fn: A callable that expects a list of inputs like input_templates that returns a tensor or structure of tensors. input_templates: A list of Tensors, ndarrays or TensorSpecs describing the inputs that fn expects. The actual values of the Tensors or ndarrays are unused. Returns: The serialized tf.lite model.
github-repos
def __eq__(self, other): if self._begin == other._begin and self._end == other._end: return True return False
Two intervals are the same if they have the same begin and end. Args: other (Interval): other Interval Returns: bool: are self and other equal.
juraj-google-style
def GetAPFSVolumeByPathSpec(self, path_spec): volume_index = apfs_helper.APFSContainerPathSpecGetVolumeIndex(path_spec) if (volume_index is None): return None return self._fsapfs_container.get_volume(volume_index)
Retrieves an APFS volume for a path specification. Args: path_spec (PathSpec): path specification. Returns: pyfsapfs.volume: an APFS volume or None if not available.
codesearchnet
def _GetDisplayPath(self, path_spec, full_path, data_stream_name): display_path = '' if path_spec.HasParent(): parent_path_spec = path_spec.parent if parent_path_spec and parent_path_spec.type_indicator == ( dfvfs_definitions.TYPE_INDICATOR_TSK_PARTITION): display_path = ''.join([display_path, parent_path_spec.location]) display_path = ''.join([display_path, full_path]) if data_stream_name: display_path = ':'.join([display_path, data_stream_name]) return display_path
Retrieves a path to display. Args: path_spec (dfvfs.PathSpec): path specification of the file entry. full_path (str): full path of the file entry. data_stream_name (str): name of the data stream. Returns: str: path to display.
juraj-google-style
def get_scan_plot(self, coords=None): from pymatgen.util.plotting import pretty_plot plt = pretty_plot(12, 8) d = self.read_scan() if (coords and (coords in d['coords'])): x = d['coords'][coords] plt.xlabel(coords) else: x = range(len(d['energies'])) plt.xlabel('points') plt.ylabel('Energy (eV)') e_min = min(d['energies']) y = [((e - e_min) * Ha_to_eV) for e in d['energies']] plt.plot(x, y, 'ro--') return plt
Get a matplotlib plot of the potential energy surface. Args: coords: internal coordinate name to use as abcissa.
codesearchnet
def generate_cot_body(context): try: cot = {'artifacts': get_cot_artifacts(context), 'chainOfTrustVersion': 1, 'runId': context.claim_task['runId'], 'task': context.task, 'taskId': context.claim_task['status']['taskId'], 'workerGroup': context.claim_task['workerGroup'], 'workerId': context.config['worker_id'], 'workerType': context.config['worker_type'], 'environment': get_cot_environment(context)} except (KeyError,) as exc: raise ScriptWorkerException("Can't generate chain of trust! {}".format(str(exc))) return cot
Generate the chain of trust dictionary. This is the unsigned and unformatted chain of trust artifact contents. Args: context (scriptworker.context.Context): the scriptworker context. Returns: dict: the unsignd and unformatted chain of trust artifact contents. Raises: ScriptWorkerException: on error.
codesearchnet
def _read_from_seg(self, n): result = self._seg.read(size=n) if result == "": return result offset = self._seg.tell() if offset > self._seg_valid_length: extra = offset - self._seg_valid_length result = result[:-1*extra] self._offset += len(result) return result
Read from current seg. Args: n: max number of bytes to read. Returns: valid bytes from the current seg. "" if no more is left.
juraj-google-style
def DataIsInteger(self): return (self.data_type in (definitions.REG_DWORD, definitions.REG_DWORD_BIG_ENDIAN, definitions.REG_QWORD))
Determines, based on the data type, if the data is an integer. The data types considered strings are: REG_DWORD (REG_DWORD_LITTLE_ENDIAN), REG_DWORD_BIG_ENDIAN and REG_QWORD. Returns: bool: True if the data is an integer, False otherwise.
codesearchnet
def browse(self, path=None): params = None if path: assert isinstance(path, string_types) params = {'current': path} return self.get('browse', params=params)
Returns a list of directories matching the path given. Args: path (str): glob pattern. Returns: List[str]
codesearchnet
def reset_logical_devices(device_type, count): reset_context() devices = tf_config.list_physical_devices(device_type) if device_type.upper() not in ('CPU', 'GPU'): raise ValueError('resetting logical device for non-supported device type : %s' % device_type) if count < len(devices): devices = devices[:count] tf_config.set_visible_devices(devices, device_type=device_type.upper()) for i, device in enumerate(devices): n = (i + 1) * count assert n > 0 configs = [] for ordinal in range(n): if device_type.upper() == 'GPU': dev_config = context.LogicalDeviceConfiguration(memory_limit=_DEFAULT_GPU_MEMORY_LIMIT, experimental_device_ordinal=ordinal) else: dev_config = context.LogicalDeviceConfiguration() configs.append(dev_config) tf_config.set_logical_device_configuration(device, configs)
Resets logical devices for CPU/GPU. Logical devices can only be instantiated once on a particular context. For now, context re-use is triggering some function duplication errors, so we reset the context on each call. Args: device_type: The device_type to reset. count: numbers of virtual device to reset to.
github-repos
def refill_main_wallet(self, from_address, to_address, nfees, ntokens, password, min_confirmations=6, sync=False): (path, from_address) = from_address unsigned_tx = self._t.simple_transaction(from_address, (([(to_address, self.fee)] * nfees) + ([(to_address, self.token)] * ntokens)), min_confirmations=min_confirmations) signed_tx = self._t.sign_transaction(unsigned_tx, password) txid = self._t.push(signed_tx) return txid
Refill the Federation wallet with tokens and fees. This keeps the federation wallet clean. Dealing with exact values simplifies the transactions. No need to calculate change. Easier to keep track of the unspents and prevent double spends that would result in transactions being rejected by the bitcoin network. Args: from_address (Tuple[str]): Refill wallet address. Refills the federation wallet with tokens and fees to_address (str): Federation wallet address nfees (int): Number of fees to transfer. Each fee is 10000 satoshi. Used to pay for the transactions ntokens (int): Number of tokens to transfer. Each token is 600 satoshi. Used to register hashes in the blockchain password (str): Password for the Refill wallet. Used to sign the transaction min_confirmations (int): Number of confirmations when chosing the inputs of the transaction. Defaults to 6 sync (bool): Perform the transaction in synchronous mode, the call to the function will block until there is at least on confirmation on the blockchain. Defaults to False Returns: str: transaction id
codesearchnet
def snyder_opt(self, structure): nsites = structure.num_sites volume = structure.volume num_density = 1e30 * nsites / volume return 1.66914e-23 * \ (self.long_v(structure) + 2.*self.trans_v(structure))/3. \ / num_density ** (-2./3.) * (1 - nsites ** (-1./3.))
Calculates Snyder's optical sound velocity (in SI units) Args: structure: pymatgen structure object Returns: Snyder's optical sound velocity (in SI units)
juraj-google-style
def ToDebugString(self, indentation_level=1): indentation = (' ' * indentation_level) text_parts = ['{0:s}path segment index: {1:d}\n'.format(indentation, self.path_segment_index)] for (path_segment, scan_object) in self._path_segments.items(): text_parts.append('{0:s}path segment: {1:s}\n'.format(indentation, path_segment)) if isinstance(scan_object, PathFilterScanTreeNode): text_parts.append('{0:s}scan tree node:\n'.format(indentation)) text_parts.append(scan_object.ToDebugString((indentation_level + 1))) elif isinstance(scan_object, py2to3.STRING_TYPES): text_parts.append('{0:s}path: {1:s}\n'.format(indentation, scan_object)) text_parts.append('{0:s}default value:\n'.format(indentation)) if isinstance(self.default_value, PathFilterScanTreeNode): text_parts.append('{0:s}scan tree node:\n'.format(indentation)) text_parts.append(self.default_value.ToDebugString((indentation_level + 1))) elif isinstance(self.default_value, py2to3.STRING_TYPES): text_parts.append('{0:s}pattern: {1:s}\n'.format(indentation, self.default_value)) text_parts.append('\n') return ''.join(text_parts)
Converts the path filter scan tree node into a debug string. Args: indentation_level: an integer containing the text indentation level. Returns: A string containing a debug representation of the path filter scan tree node.
codesearchnet
def execute(self, triple_map, output, **kwargs): subjects = [] logical_src_iterator = str(triple_map.logicalSource.iterator) json_object = kwargs.get('obj', self.source) if logical_src_iterator == ".": results = [None,] else: json_path_exp = jsonpath_ng.parse(logical_src_iterator) results = [r.value for r in json_path_exp.find(json_object)][0] for row in results: subject = self.generate_term(term_map=triple_map.subjectMap, **kwargs) for pred_obj_map in triple_map.predicateObjectMap: predicate = pred_obj_map.predicate if pred_obj_map.template is not None: output.add(( subject, predicate, self.generate_term(term_map=pred_obj_map, **kwargs))) if pred_obj_map.parentTriplesMap is not None: self.__handle_parents__( output, parent_map=pred_obj_map.parentTriplesMap, subject=subject, predicate=predicate, obj=row, **kwargs) if pred_obj_map.reference is not None: ref_exp = jsonpath_ng.parse(str(pred_obj_map.reference)) found_objects = [r.value for r in ref_exp.find(row)] for obj in found_objects: if rdflib.term._is_valid_uri(obj): rdf_obj = rdflib.URIRef(str(obj)) else: rdf_obj = rdflib.Literal(str(obj)) output.add((subject, predicate, rdf_obj)) if pred_obj_map.constant is not None: output.add((subject, predicate, pred_obj_map.constant)) subjects.append(subject) return subjects
Method executes mapping between JSON source and output RDF Args: ----- triple_map: SimpleNamespace
juraj-google-style
def needs_summary(self, value: Any, *, name: Optional[str]=None, parent: Any=None, title: Union[str, Html, None]=None, enable_summary: Optional[bool]=None, enable_summary_for_str: bool=True, max_summary_len_for_str: int=80) -> bool: del parent if isinstance(enable_summary, bool): return enable_summary assert enable_summary is None if not enable_summary_for_str and isinstance(value, str): return False if name is None and title is None and (isinstance(value, (int, float, bool, type(None))) or (isinstance(value, str) and len(value) <= max_summary_len_for_str)): return False return True
Returns True if the object needs a summary. Args: value: The value to render. name: The referred field name of the value. parent: The parent of the value. title: The title of the summary. enable_summary: Whether to enable the summary. If None, summary will be enabled for complex types or when string exceeds `max_summary_len_for_str`. enable_summary_for_str: Whether to enable the summary for strings. max_summary_len_for_str: The maximum length of the string to display. Returns: True if the object needs a summary.
github-repos
def _CreateTaskStorageWriter(self, path, task): return SQLiteStorageFileWriter(self._session, path, storage_type=definitions.STORAGE_TYPE_TASK, task=task)
Creates a task storage writer. Args: path (str): path to the storage file. task (Task): task. Returns: SQLiteStorageFileWriter: storage writer.
codesearchnet
def add_vlan_int(self, vlan_id): config = ET.Element('config') vlinterface = ET.SubElement(config, 'interface-vlan', xmlns=("urn:brocade.com:mgmt:" "brocade-interface")) interface = ET.SubElement(vlinterface, 'interface') vlan = ET.SubElement(interface, 'vlan') name = ET.SubElement(vlan, 'name') name.text = vlan_id try: self._callback(config) return True except Exception as error: logging.error(error) return False
Add VLAN Interface. VLAN interfaces are required for VLANs even when not wanting to use the interface for any L3 features. Args: vlan_id: ID for the VLAN interface being created. Value of 2-4096. Returns: True if command completes successfully or False if not. Raises: None
juraj-google-style
def prefixsearch(self, prefix, results=10): self._check_query(prefix, 'Prefix must be specified') query_params = {'list': 'prefixsearch', 'pssearch': prefix, 'pslimit': ('max' if (results > 500) else results), 'psnamespace': 0, 'psoffset': 0} raw_results = self.wiki_request(query_params) self._check_error_response(raw_results, prefix) return [rec['title'] for rec in raw_results['query']['prefixsearch']]
Perform a prefix search using the provided prefix string Args: prefix (str): Prefix string to use for search results (int): Number of pages with the prefix to return Returns: list: List of page titles Note: **Per the documentation:** "The purpose of this module is \ similar to action=opensearch: to take user input and provide \ the best-matching titles. Depending on the search engine \ backend, this might include typo correction, redirect \ avoidance, or other heuristics."
codesearchnet
def create_sequence_pretty_tensor(sequence_input, shape=None, save_state=True): inputs = prettytensor.wrap_sequence(sequence_input.inputs, tensor_shape=shape) targets = prettytensor.wrap_sequence(sequence_input.targets) if save_state: bookkeeper.set_recurrent_state_saver(sequence_input) return (inputs, targets)
Creates a PrettyTensor object for the given sequence. The first dimension is treated as a time-dimension * batch and a default is set for `unroll` and `state_saver`. TODO(eiderman): Remove shape. Args: sequence_input: A SequenceInput or StateSavingSequenceInput shape: The shape of each item in the sequence (including batch). save_state: If true, use the sequence_input's state and save_state methods. Returns: 2 Layers: inputs, targets
codesearchnet
def pauseProducing(self): if (not self._running): return self._running = False for consumer in self._consumers.values(): (yield consumer.channel.basic_cancel(consumer_tag=consumer.tag)) _legacy_twisted_log.msg('Paused retrieval of messages for the server queue')
Pause the reception of messages by canceling all existing consumers. This does not disconnect from the server. Message reception can be resumed with :meth:`resumeProducing`. Returns: Deferred: fired when the production is paused.
codesearchnet
def extract_class(jar, name): with jar.open(name) as entry: return LinkableClass(javatools.unpack_class(entry))
Extracts a LinkableClass from a jar. Args: jar: An open ZipFile instance. name: A string containing the binary name of a class. Raises: KeyError: The class does not exist in the jar.
codesearchnet
def get_logging_dir(appname='default'): from utool._internal import meta_util_cache from utool._internal import meta_util_cplat from utool import util_cache if ((appname is None) or (appname == 'default')): appname = util_cache.get_default_appname() resource_dpath = meta_util_cplat.get_resource_dir() default = join(resource_dpath, appname, 'logs') log_dir = meta_util_cache.global_cache_read(logdir_cacheid, appname=appname, default=default) log_dir_realpath = realpath(log_dir) return log_dir_realpath
The default log dir is in the system resource directory But the utool global cache allows for the user to override where the logs for a specific app should be stored. Returns: log_dir_realpath (str): real path to logging directory
codesearchnet
def alexa(self) -> dict: response = {'response': {'shouldEndSession': False, 'outputSpeech': {'type': 'PlainText', 'text': self.content}, 'card': {'type': 'Simple', 'content': self.content}}} return response
Returns Amazon Alexa compatible state of the PlainText instance. Creating Amazon Alexa response blank with populated "outputSpeech" and "card sections. Returns: response: Amazon Alexa representation of PlainText state.
codesearchnet
def interpret_obj(self, obj, v_level_indexes, h_level_indexes, v_level_visibility, h_level_visibility, v_level_sort_keys, h_level_sort_keys, v_level_titles, h_level_titles): if (not isinstance(obj, NonStringIterable)): raise self.error('Cannot make a table from object {!r}'.format(obj)) rectangular_rows = tabulate(obj, v_level_indexes=v_level_indexes, h_level_indexes=h_level_indexes, v_level_visibility=v_level_visibility, h_level_visibility=h_level_visibility, v_level_sort_keys=v_level_sort_keys, h_level_sort_keys=h_level_sort_keys, v_level_titles=v_level_titles, h_level_titles=h_level_titles) assert is_rectangular(rectangular_rows) (num_rows, num_cols) = size(rectangular_rows) return (rectangular_rows, num_cols)
Interpret the given Python object as a table. Args: obj: A sequence (later a mapping, too) Returns: A list of lists represents rows of cells. Raises: TypeError: If the type couldn't be interpreted as a table.
codesearchnet
def create_member(self, member_json): return trolly.member.Member(trello_client=self, member_id=member_json['id'], name=member_json['fullName'], data=member_json)
Create a Member object from JSON object Returns: Member: The member from the given `member_json`.
codesearchnet
def topological_sort(self): graph = self.graph in_degree = {} for u in graph: in_degree[u] = 0 for u in graph: for v in graph[u]: in_degree[v] += 1 queue = deque() for u in in_degree: if (in_degree[u] == 0): queue.appendleft(u) sorted_graph = [] while queue: u = queue.pop() sorted_graph.append(u) for v in sorted(graph[u]): in_degree[v] -= 1 if (in_degree[v] == 0): queue.appendleft(v) if (len(sorted_graph) == len(graph)): return sorted_graph else: raise ValueError('graph is not acyclic')
Returns a topological ordering of the DAG. Returns: list: A list of topologically sorted nodes in the graph. Raises: ValueError: Raised if the graph is not acyclic.
codesearchnet
def institute(self, institute_id): LOG.debug("Fetch institute {}".format(institute_id)) institute_obj = self.institute_collection.find_one({ '_id': institute_id }) if institute_obj is None: LOG.debug("Could not find institute {0}".format(institute_id)) return institute_obj
Featch a single institute from the backend Args: institute_id(str) Returns: Institute object
juraj-google-style
def _MaybePurgeOrphanedData(self, event): if not self.purge_orphaned_data: return if self.file_version and self.file_version >= 2: self._CheckForRestartAndMaybePurge(event) else: self._CheckForOutOfOrderStepAndMaybePurge(event)
Maybe purge orphaned data due to a TensorFlow crash. When TensorFlow crashes at step T+O and restarts at step T, any events written after step T are now "orphaned" and will be at best misleading if they are included in TensorBoard. This logic attempts to determine if there is orphaned data, and purge it if it is found. Args: event: The event to use as a reference, to determine if a purge is needed.
juraj-google-style
def name_from_class(cls, measurement_class): if (not getattr(cls, '_measurements_initialized', False)): cls._measurement_map = dict(((m.name, m) for m in all_measurements())) cls._measurements_initialized = True try: name = getattr(measurement_class, 'name') except AttributeError: raise UnrecognizedMeasurementError(("No 'name' attribute in %s" % measurement_class)) else: cls._measurement_map[name] = measurement_class return name
For a given measurement class, return its generic name. The given class is expected to have a ``name`` attribute, otherwise this function will raise an execption. The point of using this method instead of just trying to grab that attribute in the application is to cache measurement name to class mappings for future use. Returns: the generic OpenXC name for a measurement class. Raise: UnrecognizedMeasurementError: if the class does not have a valid generic name
codesearchnet
def add_snmp_host(self, **kwargs): host_info = kwargs.pop('host_info') community = kwargs.pop('community') callback = kwargs.pop('callback', self._callback) config = ET.Element('config') snmp_server = ET.SubElement(config, 'snmp-server', xmlns='urn:brocade.com:mgmt:brocade-snmp') host = ET.SubElement(snmp_server, 'host') ip_addr = ET.SubElement(host, 'ip') ip_addr.text = host_info[0] com = ET.SubElement(host, 'community') com.text = community udp_port = ET.SubElement(host, 'udp-port') udp_port.text = host_info[1] return callback(config)
Add SNMP host to NOS device. Args: host_info (tuple(str, str)): Tuple of host IP and port. community (str): Community string to be added to device. callback (function): A function executed upon completion of the method. The only parameter passed to `callback` will be the ``ElementTree`` `config`. Returns: Return value of `callback`. Raises: KeyError: if `host_info` or `community` is not defined.
codesearchnet
def _create_in_hdx(self, object_type, id_field_name, name_field_name, file_to_upload=None): self.check_required_fields() if id_field_name in self.data and self._load_from_hdx(object_type, self.data[id_field_name]): logger.warning('%s exists. Updating %s' % (object_type, self.data[id_field_name])) self._merge_hdx_update(object_type, id_field_name, file_to_upload) else: self._save_to_hdx('create', name_field_name, file_to_upload)
Helper method to check if resource exists in HDX and if so, update it, otherwise create it Args: object_type (str): Description of HDX object type (for messages) id_field_name (str): Name of field containing HDX object identifier name_field_name (str): Name of field containing HDX object name file_to_upload (Optional[str]): File to upload to HDX (if url not supplied) Returns: None
juraj-google-style
async def get(self, public_key): if settings.SIGNATURE_VERIFICATION: super().verify() compiler = re.compile('\\((.*?)\\)') match = compiler.search(self.request.headers.get('User-Agent')) try: source = match.group(1) except: source = None (await self.account.logsource(public_key=public_key, source=source)) logging.debug('\n\n [+] -- Get account data.') response = (await self.account.getaccountdata(public_key=public_key)) logging.debug('\n') logging.debug(response) logging.debug('\n') if ('error' in response.keys()): self.set_status(response['error']) self.write(response) raise tornado.web.Finish wallets = (await self.account.balance.get_wallets(uid=response['id'])) if isinstance(wallets, dict): if ('error' in wallets.keys()): self.set_status(wallets['error']) self.write(wallets) raise tornado.web.Finish response.update({'wallets': json.dumps([i for i in wallets['wallets'] if (i.get('coinid') not in ['BTC', 'LTC', 'ETH'])])}) self.write(response)
Receive account data Accepts: Query string: - "public_key" - str Query string params: - message ( signed dictionary ): - "timestamp" - str Returns: - "device_id" - str - "phone" - str - "public_key" - str - "count" - int ( wallets amount ) - "level" - int (2 by default) - "news_count" - int (0 by default) - "email" - str - "wallets" - list Verified: True
codesearchnet
def forward(self, hidden_features): hidden_features = self.dropout_layer(hidden_features) forecast = self.base_pt_block(hidden_features) return forecast
Args: hidden_features (`torch.Tensor` of shape `(batch_size x num_patch x d_model)` in `flatten` mode or `(batch_size x n_vars x num_patch x d_model)` in `common_channel`/`mix_channel` mode.): Input hidden features. Returns: `torch.Tensor` of shape `(batch_size x n_vars x num_patch x patch_length)`.
github-repos
def check_regularizers(regularizers, keys): if (regularizers is None): return {} _assert_is_dictlike(regularizers, valid_keys=keys) keys = set(keys) if (not (set(regularizers) <= keys)): extra_keys = (set(regularizers) - keys) raise KeyError('Invalid regularizer keys {}, regularizers can only be provided for {}'.format(', '.join(("'{}'".format(key) for key in extra_keys)), ', '.join(("'{}'".format(key) for key in keys)))) _check_nested_callables(regularizers, 'Regularizer') return dict(regularizers)
Checks the given regularizers. This checks that `regularizers` is a dictionary that only contains keys in `keys`, and furthermore the entries in `regularizers` are functions or further dictionaries (the latter used, for example, in passing regularizers to modules inside modules) that must satisfy the same constraints. Args: regularizers: Dictionary of regularizers (allowing nested dictionaries) or None. keys: Iterable of valid keys for `regularizers`. Returns: Copy of checked dictionary of regularizers. If `regularizers=None`, an empty dictionary will be returned. Raises: KeyError: If an regularizers is provided for a key not in `keys`. TypeError: If a provided regularizer is not a callable function, or `regularizers` is not a Mapping.
codesearchnet
def ssa(scatterer, h_pol=True): ext_xs = ext_xsect(scatterer, h_pol=h_pol) return ((sca_xsect(scatterer, h_pol=h_pol) / ext_xs) if (ext_xs > 0.0) else 0.0)
Single-scattering albedo for the current setup, with polarization. Args: scatterer: a Scatterer instance. h_pol: If True (default), use horizontal polarization. If False, use vertical polarization. Returns: The single-scattering albedo.
codesearchnet
def _decorator(func): func.__doc__ = '\n Assert the condition `x {sym} y` holds element-wise.\n\n This Op checks that `x[i] {sym} y[i]` holds for every pair of (possibly\n broadcast) elements of `x` and `y`. If both `x` and `y` are empty, this is\n trivially satisfied.\n\n If `x` {sym} `y` does not hold, `message`, as well as the first `summarize`\n entries of `x` and `y` are printed, and `InvalidArgumentError` is raised.\n\n When using inside `tf.function`, this API takes effects during execution.\n It\'s recommended to use this API with `tf.control_dependencies` to\n ensure the correct execution order.\n\n In the following example, without `tf.control_dependencies`, errors may\n not be raised at all.\n Check `tf.control_dependencies` for more details.\n\n >>> def check_size(x):\n ... with tf.control_dependencies([\n ... tf.debugging.{opname}(tf.size(x), {test_var},\n ... message=\'Bad tensor size\')]):\n ... return x\n\n >>> check_size(tf.ones([2, 3], tf.float32))\n Traceback (most recent call last):\n ...\n InvalidArgumentError: ...\n\n Args:\n x: Numeric `Tensor`.\n y: Numeric `Tensor`, same dtype as and broadcastable to `x`.\n message: A string to prefix to the default message. (optional)\n summarize: Print this many entries of each tensor. (optional)\n name: A name for this operation (optional). Defaults to "{opname}".\n\n Returns:\n Op that raises `InvalidArgumentError` if `x {sym} y` is False. This can\n be used with `tf.control_dependencies` inside of `tf.function`s to\n block followup computation until the check has executed.\n @compatibility(eager)\n returns None\n @end_compatibility\n\n Raises:\n InvalidArgumentError: if the check can be performed immediately and\n `x == y` is False. The check can be performed immediately during eager\n execution or if `x` and `y` are statically known.\n '.format(sym=sym, opname=opname, test_var=test_var) return func
Decorator that adds docstring to the function for symbol `sym`. Args: func: Function for a TensorFlow op Returns: A version of `func` with documentation attached.
github-repos
def InterpolatePath(path, knowledge_base, users=None, path_args=None, depth=0): sys_formatters = { "systemroot": "c:\\Windows" } if path_args: sys_formatters.update(path_args) if users: results = [] for user in users: user = GetUserInfo(knowledge_base, user) if user: formatters = dict((x.name, y) for x, y in user.ListSetFields()) formatters.update(sys_formatters) try: results.append(path.format(**formatters)) except KeyError: pass return results else: try: path = path.format(**sys_formatters) except KeyError: logging.warning("Failed path interpolation on %s", path) return "" if "{" in path and depth < 10: path = InterpolatePath( path, knowledge_base=knowledge_base, users=users, path_args=path_args, depth=depth + 1) return path
Take a string as a path on a client and interpolate with client data. Args: path: A single string/unicode to be interpolated. knowledge_base: An rdf_client.KnowledgeBase object. users: A list of string usernames, or None. path_args: A dict of additional args to use in interpolation. These take precedence over any system provided variables. depth: A counter for recursion depth. Returns: A single string if users is None, otherwise a list of strings.
juraj-google-style
def rr_history(self, ips): api_name = 'opendns-rr_history' fmt_url_path = u'dnsdb/ip/a/{0}.json' return self._multi_get(api_name, fmt_url_path, ips)
Get the domains related to input ips. Args: ips: an enumerable of strings as ips Returns: An enumerable of resource records and features
juraj-google-style
def run_tag_processor(self, tag_proc_name): tag_processor = self.tag_procs[tag_proc_name] for tag in tag_processor.find(self.soup): self.process_tag(tag_proc_name, tag)
Run a tag processor. Args: tag_proc_name: A string key that maps to the TagProcessor to run.
juraj-google-style
def run_bottleneck_on_image(sess, image_data, image_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor): resized_input_values = sess.run(decoded_image_tensor, {image_data_tensor: image_data}) bottleneck_values = sess.run(bottleneck_tensor, {resized_input_tensor: resized_input_values}) bottleneck_values = np.squeeze(bottleneck_values) return bottleneck_values
Runs inference on an image to extract the 'bottleneck' summary layer. Args: sess: Current active TensorFlow Session. image_data: String of raw JPEG data. image_data_tensor: Input data layer in the graph. decoded_image_tensor: Output of initial image resizing and preprocessing. resized_input_tensor: The input node of the recognition graph. bottleneck_tensor: Layer before the final softmax. Returns: Numpy array of bottleneck values.
juraj-google-style
def __init__(self, num_shards): self._num_shards = num_shards
Creates a new `FixedShardsPartitioner`. Args: num_shards: `int`, number of shards to partition.
github-repos
def _parse_package(cls, package_string): (pkg, arch) = rsplit(package_string, cls._arch_sep(package_string)) if (arch not in KNOWN_ARCHITECTURES): (pkg, arch) = (package_string, None) (pkg, release) = rsplit(pkg, '-') (name, version) = rsplit(pkg, '-') (epoch, version) = (version.split(':', 1) if (':' in version) else ['0', version]) if (name.startswith('oracleasm') and name.endswith('.el5')): (name, version2) = name.split('-', 1) version = ((version2 + '-') + version) return {'name': name, 'version': version, 'release': release, 'arch': arch, 'epoch': epoch}
Helper method for parsing package string. Args: package_string (str): dash separated package string such as 'bash-4.2.39-3.el7' Returns: dict: dictionary containing 'name', 'version', 'release' and 'arch' keys
codesearchnet
def _check_put_dtypes(self, vals, indices=None): if isinstance(vals, dict): if not self._names: raise ValueError('Staging areas must have names to enqueue a dictionary') if not set(vals.keys()).issubset(self._names): raise ValueError(f'Keys in dictionary to put do not match names of staging area. Dictionary: {sorted(vals.keys())}Queue: {sorted(self._names)}') vals, indices, _ = zip(*[(vals[k], i, k) for i, k in enumerate(self._names) if k in vals]) else: if self._names: raise ValueError('You must enqueue a dictionary in a staging area with names') if indices is None: raise ValueError('Indices must be supplied when inserting a list of tensors') if len(indices) != len(vals): raise ValueError(f"Number of indices {len(indices)} doesn't match number of values {len(vals)}") if not isinstance(vals, (list, tuple)): vals = [vals] indices = [0] if not len(vals) <= len(self._dtypes): raise ValueError(f'Unexpected number of inputs {len(vals)} vs {len(self._dtypes)}') tensors = [] for val, i in zip(vals, indices): dtype, shape = (self._dtypes[i], self._shapes[i]) if val.dtype != dtype: raise ValueError(f'Datatypes do not match. Received val.dtype {str(val.dtype)} and dtype {str(dtype)}') val.get_shape().assert_is_compatible_with(shape) tensors.append(ops.convert_to_tensor(val, dtype=dtype, name='component_%d' % i)) return (tensors, indices)
Validate and convert `vals` to a list of `Tensor`s. The `vals` argument can be a Tensor, a list or tuple of tensors, or a dictionary with tensor values. If `vals` is a list, then the appropriate indices associated with the values must be provided. If it is a dictionary, the staging area must have been constructed with a `names` attribute and the dictionary keys must match the staging area names. `indices` will be inferred from the dictionary keys. If the staging area was constructed with a `names` attribute, `vals` must be a dictionary. Checks that the dtype and shape of each value matches that of the staging area. Args: vals: A tensor, a list or tuple of tensors, or a dictionary. Returns: A (tensors, indices) tuple where `tensors` is a list of `Tensor` objects and `indices` is a list of indices associated with the tensors. Raises: ValueError: If `vals` or `indices` is invalid.
github-repos
def add_root(self, model, setter=None): if (model in self._roots): return self._push_all_models_freeze() try: self._roots.append(model) finally: self._pop_all_models_freeze() self._trigger_on_change(RootAddedEvent(self, model, setter))
Add a model as a root of this Document. Any changes to this model (including to other models referred to by it) will trigger ``on_change`` callbacks registered on this document. Args: model (Model) : The model to add as a root of this document. setter (ClientSession or ServerSession or None, optional) : This is used to prevent "boomerang" updates to Bokeh apps. (default: None) In the context of a Bokeh server application, incoming updates to properties will be annotated with the session that is doing the updating. This value is propagated through any subsequent change notifications that the update triggers. The session can compare the event setter to itself, and suppress any updates that originate from itself.
codesearchnet
def minimize_best_n(Members): return(list(reversed(sorted( Members, key=lambda Member: Member.fitness_score ))))
Orders population members from lowest fitness to highest fitness Args: Members (list): list of PyGenetics Member objects Returns: lsit: ordered lsit of Members, from highest fitness to lowest fitness
juraj-google-style
def initialize(): dst_path = get_user_config_path() copied = False if (not os.path.exists(dst_path)): src_path = os.path.join(os.path.dirname(__file__), 'defaultconfig.py') shutil.copyfile(src_path, dst_path) copied = True return (copied, dst_path)
Initialize a default config file if it doesn't exist yet. Returns: tuple: A tuple of (copied, dst_path). `copied` is a bool indicating if this function created the default config file. `dst_path` is the path of the user config file.
codesearchnet