code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def bytes_to_long(bytesdata: bytes) -> int: assert (len(bytesdata) == 8) return sum(((b << (k * 8)) for (k, b) in enumerate(bytesdata)))
Converts an 8-byte sequence to a long integer. Args: bytesdata: 8 consecutive bytes, as a ``bytes`` object, in little-endian format (least significant byte [LSB] first) Returns: integer
codesearchnet
def PushEventSource(self, event_source): if (event_source.file_entry_type == dfvfs_definitions.FILE_ENTRY_TYPE_DIRECTORY): weight = 1 else: weight = 100 heap_values = (weight, time.time(), event_source) heapq.heappush(self._heap, heap_values)
Pushes an event source onto the heap. Args: event_source (EventSource): event source.
codesearchnet
def backend(): return 'tensorflow'
Publicly accessible method for determining the current backend. Only exists for API compatibility with multi-backend Keras. Returns: The string "tensorflow".
github-repos
def postprocess_docs(self, docs, input_strings, prefix, n_docs, return_tensors=None): def cat_input_and_doc(doc_title, doc_text, input_string, prefix): if doc_title.startswith('"'): doc_title = doc_title[1:] if doc_title.endswith('"'): doc_title = doc_title[:-1] if prefix is None: prefix = '' out = (prefix + doc_title + self.config.title_sep + doc_text + self.config.doc_sep + input_string).replace(' ', ' ') return out rag_input_strings = [cat_input_and_doc(docs[i]['title'][j], docs[i]['text'][j], input_strings[i], prefix) for i in range(len(docs)) for j in range(n_docs)] contextualized_inputs = self.generator_tokenizer.batch_encode_plus(rag_input_strings, max_length=self.config.max_combined_length, return_tensors=return_tensors, padding='max_length', truncation=True) return (contextualized_inputs['input_ids'], contextualized_inputs['attention_mask'])
Postprocessing retrieved `docs` and combining them with `input_strings`. Args: docs (`dict`): Retrieved documents. input_strings (`str`): Input strings decoded by `preprocess_query`. prefix (`str`): Prefix added at the beginning of each input, typically used with T5-based models. Return: `tuple(tensors)`: a tuple consisting of two elements: contextualized `input_ids` and a compatible `attention_mask`.
github-repos
def list(self, path): self.__validate_storage_path(path) entity = self.api_client.get_entity_by_query(path=path) if (entity['entity_type'] not in self.__BROWSABLE_TYPES): raise StorageArgumentException('The entity type "{0}" cannot belisted'.format(entity['entity_type'])) entity_uuid = entity['uuid'] file_names = [] more_pages = True page_number = 1 while more_pages: response = self.api_client.list_folder_content(entity_uuid, page=page_number, ordering='name') more_pages = (response['next'] is not None) page_number += 1 for child in response['results']: pattern = ('/{name}' if (child['entity_type'] == 'folder') else '{name}') file_names.append(pattern.format(name=child['name'])) return file_names
List the entities found directly under the given path. Args: path (str): The path of the entity to be listed. Must start with a '/'. Returns: The list of entity names directly under the given path: u'/12345/folder_1' Raises: StorageArgumentException: Invalid arguments StorageForbiddenException: Server response code 403 StorageNotFoundException: Server response code 404 StorageException: other 400-600 error codes
codesearchnet
def set_scf_initial_guess(self, guess='SAD'): availabel_guesses = {'core', 'sad', 'gwh', 'read', 'fragmo'} if (guess.lower() not in availabel_guesses): raise ValueError((('The guess method ' + guess) + ' is not supported yet')) self.params['rem']['scf_guess'] = guess.lower()
Set initial guess method to be used for SCF Args: guess: The initial guess method. (str)
codesearchnet
def sed(regexpr, repl, force=False, recursive=False, dpath_list=None, fpath_list=None, verbose=None, include_patterns=None, exclude_patterns=[]): if (include_patterns is None): include_patterns = ['*.py', '*.pyx', '*.pxi', '*.cxx', '*.cpp', '*.hxx', '*.hpp', '*.c', '*.h', '*.html', '*.tex'] if (dpath_list is None): dpath_list = [os.getcwd()] if (verbose is None): verbose = ut.NOT_QUIET if (fpath_list is None): greater_exclude_dirs = get_standard_exclude_dnames() exclude_dirs = [] fpath_generator = matching_fpaths(dpath_list, include_patterns, exclude_dirs, greater_exclude_dirs=greater_exclude_dirs, recursive=recursive, exclude_patterns=exclude_patterns) else: fpath_generator = fpath_list if verbose: print(('sed-ing %r' % (dpath_list,))) print((' * regular expression : %r' % (regexpr,))) print((' * replacement : %r' % (repl,))) print((' * include_patterns : %r' % (include_patterns,))) print((' * recursive: %r' % (recursive,))) print((' * force: %r' % (force,))) from utool import util_str print((' * fpath_list: %s' % (util_str.repr3(fpath_list),))) regexpr = extend_regex(regexpr) num_changed = 0 num_files_checked = 0 fpaths_changed = [] for fpath in fpath_generator: num_files_checked += 1 changed_lines = sedfile(fpath, regexpr, repl, force, verbose=verbose) if (changed_lines is not None): fpaths_changed.append(fpath) num_changed += len(changed_lines) import utool as ut print(('num_files_checked = %r' % (num_files_checked,))) print(('fpaths_changed = %s' % (ut.repr3(sorted(fpaths_changed)),))) print(('total lines changed = %r' % (num_changed,)))
Python implementation of sed. NOT FINISHED searches and replaces text in files Args: regexpr (str): regx patterns to find repl (str): text to replace force (bool): recursive (bool): dpath_list (list): directories to search (defaults to cwd)
codesearchnet
def plot_main(pid, return_fig_ax=False): global WORKING_DIRECTORY, SNR_CUT if isinstance(pid, PlotInput): pid = pid.return_dict() WORKING_DIRECTORY = '.' if ('WORKING_DIRECTORY' not in pid['general'].keys()): pid['general']['WORKING_DIRECTORY'] = '.' SNR_CUT = 5.0 if ('SNR_CUT' not in pid['general'].keys()): pid['general']['SNR_CUT'] = SNR_CUT if ('switch_backend' in pid['general'].keys()): plt.switch_backend(pid['general']['switch_backend']) running_process = MakePlotProcess(**{**pid, **pid['general'], **pid['plot_info'], **pid['figure']}) running_process.input_data() running_process.setup_figure() running_process.create_plots() if ('save_figure' in pid['figure'].keys()): if (pid['figure']['save_figure'] is True): running_process.fig.savefig(((pid['general']['WORKING_DIRECTORY'] + '/') + pid['figure']['output_path']), **pid['figure']['savefig_kwargs']) if ('show_figure' in pid['figure'].keys()): if (pid['figure']['show_figure'] is True): plt.show() if (return_fig_ax is True): return (running_process.fig, running_process.ax) return
Main function for creating these plots. Reads in plot info dict from json file or dictionary in script. Args: return_fig_ax (bool, optional): Return figure and axes objects. Returns: 2-element tuple containing - **fig** (*obj*): Figure object for customization outside of those in this program. - **ax** (*obj*): Axes object for customization outside of those in this program.
codesearchnet
def add_node(self, node_id, name, labels): node = self.graph_db.get_or_create_indexed_node('Node', 'node_id', node_id, {'node_id': node_id, 'name': name}) try: node.add_labels(*labels) except NotImplementedError: pass
Add the node with name and labels. Args: node_id: Id for the node. name: Name for the node. labels: Label for the node. Raises: NotImplementedError: When adding labels is not supported.
juraj-google-style
def filter_by_pattern(self, pattern): _filt_values, _filt_datetimes = self._filter_by_pattern(pattern) collection = HourlyDiscontinuousCollection( self.header.duplicate(), _filt_values, _filt_datetimes) collection._validated_a_period = True return collection
Filter the Data Collection based on a list of booleans. Args: pattern: A list of True/False values. Typically, this is a list with a length matching the length of the Data Collections values but it can also be a pattern to be repeated over the Data Collection. Return: A new Data Collection with filtered data
juraj-google-style
def ensure_exe(exe_name: str, *paths: str): if not elib_run.find_executable(exe_name, *paths): LOGGER.error('could not find "%s.exe" on this system', exe_name) sys.exit(-1)
Makes sure that an executable can be found on the system path. Will exit the program if the executable cannot be found Args: exe_name: name of the executable paths: optional path(s) to be searched; if not specified, search the whole system
juraj-google-style
def intify(x): if isinstance(x, int): return x try: return int(x, 0) except (TypeError, ValueError): return None
Ensure ( or coerce ) a value into being an integer or None. Args: x (obj): An object to intify Returns: (int): The int value ( or None )
juraj-google-style
def _split_op(self, identifier, hs_label=None, dagger=False, args=None): if self._isinstance(identifier, 'SymbolicLabelBase'): identifier = QnetAsciiDefaultPrinter()._print_SCALAR_TYPES(identifier.expr) (name, total_subscript) = self._split_identifier(identifier) total_superscript = '' if (hs_label not in [None, '']): if (self._settings['show_hs_label'] == 'subscript'): if (len(total_subscript) == 0): total_subscript = (('(' + hs_label) + ')') else: total_subscript += ((',(' + hs_label) + ')') else: total_superscript += (('(' + hs_label) + ')') if dagger: total_superscript += self._dagger_sym args_str = '' if ((args is not None) and (len(args) > 0)): args_str = ((self._parenth_left + ','.join([self.doprint(arg) for arg in args])) + self._parenth_right) return (name, total_subscript, total_superscript, args_str)
Return `name`, total `subscript`, total `superscript` and `arguments` str. All of the returned strings are fully rendered. Args: identifier (str or SymbolicLabelBase): A (non-rendered/ascii) identifier that may include a subscript. The output `name` will be the `identifier` without any subscript hs_label (str): The rendered label for the Hilbert space of the operator, or None. Returned unchanged. dagger (bool): Flag to indicate whether the operator is daggered. If True, :attr:`dagger_sym` will be included in the `superscript` (or `subscript`, depending on the settings) args (list or None): List of arguments (expressions). Each element will be rendered with :meth:`doprint`. The total list of args will then be joined with commas, enclosed with :attr:`_parenth_left` and :attr:`parenth_right`, and returnd as the `arguments` string
codesearchnet
def create_attribute_model(self, initial_value=None): attr = self.attribute_class(meta=self, value=initial_value) return attr
Make an AttributeModel instance of the correct type for this Meta Args: initial_value: The initial value the Attribute should take Returns: AttributeModel: The created attribute model instance
juraj-google-style
def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: Optional[List[int]]=None) -> List[int]: sep = [self.sep_token_id] cls = [self.cls_token_id] result = cls + token_ids_0 + sep if token_ids_1 is not None: result += token_ids_1 + sep return result
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A CANINE sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
github-repos
def _md5sum(file_path): md5 = hashlib.md5() with open(file_path, 'rb') as md5_file: while True: data = md5_file.read(((1024 * 1024) * 4)) if (not data): break md5.update(data) return md5.digest()
Helper function that builds and md5sum from a file in chunks. Args: file_path: The path to the file you want an md5sum for. Returns: A string containing an md5sum.
codesearchnet
def CalculateWaitForRetry(retry_attempt, max_wait=60): wait_time = 2 ** retry_attempt max_jitter = wait_time / 4.0 wait_time += random.uniform(-max_jitter, max_jitter) return max(1, min(wait_time, max_wait))
Calculates amount of time to wait before a retry attempt. Wait time grows exponentially with the number of attempts. A random amount of jitter is added to spread out retry attempts from different clients. Args: retry_attempt: Retry attempt counter. max_wait: Upper bound for wait time [seconds]. Returns: Number of seconds to wait before retrying request.
juraj-google-style
def matrix_rank(a, tol=None, validate_args=False, name=None): with ops.name_scope(name or 'matrix_rank'): a = ops.convert_to_tensor(a, dtype_hint=dtypes.float32, name='a') assertions = _maybe_validate_matrix(a, validate_args) if assertions: with ops.control_dependencies(assertions): a = array_ops.identity(a) s = svd(a, compute_uv=False) if tol is None: if a.shape[-2:].is_fully_defined(): m = np.max(a.shape[-2:].as_list()) else: m = math_ops.reduce_max(array_ops.shape(a)[-2:]) eps = np.finfo(a.dtype.as_numpy_dtype).eps tol = eps * math_ops.cast(m, a.dtype) * math_ops.reduce_max(s, axis=-1, keepdims=True) return math_ops.reduce_sum(math_ops.cast(s > tol, dtypes.int32), axis=-1)
Compute the matrix rank of one or more matrices. Args: a: (Batch of) `float`-like matrix-shaped `Tensor`(s) which are to be pseudo-inverted. tol: Threshold below which the singular value is counted as 'zero'. Default value: `None` (i.e., `eps * max(rows, cols) * max(singular_val)`). validate_args: When `True`, additional assertions might be embedded in the graph. Default value: `False` (i.e., no graph assertions are added). name: Python `str` prefixed to ops created by this function. Default value: 'matrix_rank'. Returns: matrix_rank: (Batch of) `int32` scalars representing the number of non-zero singular values.
github-repos
def open_image(fn): flags = ((cv2.IMREAD_UNCHANGED + cv2.IMREAD_ANYDEPTH) + cv2.IMREAD_ANYCOLOR) if ((not os.path.exists(fn)) and (not str(fn).startswith('http'))): raise OSError('No such file or directory: {}'.format(fn)) elif (os.path.isdir(fn) and (not str(fn).startswith('http'))): raise OSError('Is a directory: {}'.format(fn)) elif isdicom(fn): slice = pydicom.read_file(fn) if slice.PhotometricInterpretation.startswith('MONOCHROME'): im = np.stack(([slice.pixel_array] * 3), (- 1)) return (im / ((1 << slice.BitsStored) - 1)) else: raise OSError('Unsupported DICOM image with PhotometricInterpretation=={}'.format(slice.PhotometricInterpretation)) else: try: if str(fn).startswith('http'): req = urllib.urlopen(str(fn)) image = np.asarray(bytearray(req.read()), dtype='uint8') im = (cv2.imdecode(image, flags).astype(np.float32) / 255) else: im = (cv2.imread(str(fn), flags).astype(np.float32) / 255) if (im is None): raise OSError(f'File not recognized by opencv: {fn}') return cv2.cvtColor(im, cv2.COLOR_BGR2RGB) except Exception as e: raise OSError('Error handling image at: {}'.format(fn)) from e
Opens an image using OpenCV given the file path. Arguments: fn: the file path of the image Returns: The image in RGB format as numpy array of floats normalized to range between 0.0 - 1.0
codesearchnet
def get_token(wallet: 'Wallet', token_str: str) -> 'NEP5Token.NEP5Token': if token_str.startswith('0x'): token_str = token_str[2:] token = None for t in wallet.GetTokens().values(): if (token_str in [t.symbol, t.ScriptHash.ToString()]): token = t break if (not isinstance(token, NEP5Token.NEP5Token)): raise ValueError('The given token argument does not represent a known NEP5 token') return token
Try to get a NEP-5 token based on the symbol or script_hash Args: wallet: wallet instance token_str: symbol or script_hash (accepts script hash with or without 0x prefix) Raises: ValueError: if token is not found Returns: NEP5Token instance if found.
codesearchnet
def __getitem__(self, slice_: Tuple[Union[slice, np.ndarray, int], Union[slice, np.ndarray, int]]) -> loompy.LoomView: if type(slice_) is not tuple or len(slice_) is not 2: raise ValueError("Views require slices along two dimensions") rows = slice_[0] cols = slice_[1] ra = self.ds.ra[rows] row_graphs = self.ds.row_graphs[rows] ca = self.ds.ca[cols] col_graphs = self.ds.col_graphs[cols] layers = self.ds.layer[rows, cols] return loompy.LoomView(layers, ra, ca, row_graphs, col_graphs, filename=self.ds.filename, file_attrs=self.ds.attrs)
Create a new view by slicing through the loom file or view Args: slice_ (2-tuple of slice, int or np.ndarray): How to slice the file or view Returns: A LoomView object, an in-memory representation of the sliced file
juraj-google-style
def loads(conditions_string): decoder = ConditionDecoder(_audience_condition_deserializer) json_decoder = json.JSONDecoder(object_hook=decoder.object_hook) condition_structure = json_decoder.decode(conditions_string) condition_list = decoder.condition_list return (condition_structure, condition_list)
Deserializes the conditions property into its corresponding components: the condition_structure and the condition_list. Args: conditions_string: String defining valid and/or conditions. Returns: A tuple of (condition_structure, condition_list). condition_structure: nested list of operators and placeholders for operands. condition_list: list of conditions whose index correspond to the values of the placeholders.
juraj-google-style
def resolve_context(self, verbosity=0, max_fails=(- 1), timestamp=None, callback=None, buf=None, package_load_callback=None): package_filter = PackageFilterList.from_pod(self.package_filter) context = ResolvedContext(self.request, package_paths=self.packages_path, package_filter=package_filter, verbosity=verbosity, max_fails=max_fails, timestamp=timestamp, buf=buf, callback=callback, package_load_callback=package_load_callback, caching=self.caching) if context.success: if (self._context and self._context.load_path): context.set_load_path(self._context.load_path) self._set_context(context) self._modified = True return context
Update the current context by performing a re-resolve. The newly resolved context is only applied if it is a successful solve. Returns: `ResolvedContext` object, which may be a successful or failed solve.
codesearchnet
def update(self, span: typing.Tuple[int, int], line_type: LineType) -> None: first_block_line, last_block_line = span for i in range(first_block_line, last_block_line + 1): try: self.__setitem__(i, line_type) except ValueError as error: raise ValidationError(i + self.fn_offset, 1, 'AAA99 {}'.format(error))
Updates line types for a block's span. Args: span: First and last relative line number of a Block. line_type: The type of line to update to. Raises: ValidationError: A special error on collision. This prevents Flake8 from crashing because it is converted to a Flake8 error tuple, but it indicates to the user that something went wrong with processing the function.
juraj-google-style
def save_config(config, logdir=None): if logdir: with config.unlocked: config.logdir = logdir message = 'Start a new run and write summaries and checkpoints to {}.' tf.logging.info(message.format(config.logdir)) tf.gfile.MakeDirs(config.logdir) config_path = os.path.join(config.logdir, 'config.yaml') with tf.gfile.FastGFile(config_path, 'w') as file_: yaml.dump(config, file_, default_flow_style=False) else: message = 'Start a new run without storing summaries and checkpoints since no logging directory was specified.' tf.logging.info(message) return config
Save a new configuration by name. If a logging directory is specified, is will be created and the configuration will be stored there. Otherwise, a log message will be printed. Args: config: Configuration object. logdir: Location for writing summaries and checkpoints if specified. Returns: Configuration object.
codesearchnet
def create_binary(self, key, value): data = None if ((key is not None) and (value is not None)): try: data = self.db.create(key.strip(), json.dumps(base64.b64encode(bytes(value)).decode('utf-8'))) except TypeError: data = self.db.create(key.strip(), json.dumps(base64.b64encode(bytes(value, 'utf-8')).decode('utf-8'))) else: self.tcex.log.warning(u'The key or value field was None.') return data
Create method of CRUD operation for binary data. Args: key (string): The variable to write to the DB. value (any): The data to write to the DB. Returns: (string): Result of DB write.
codesearchnet
def get_class_locals(cls_name: str, allow_methods: bool, ordering, ctx): out = collections.OrderedDict() if cls_name not in ctx.vm.local_ops: return out for op in ctx.vm.local_ops[cls_name]: local = ctx.vm.annotated_locals[cls_name][op.name] if not is_relevant_class_local(local, op.name, allow_methods): continue if ordering is Ordering.FIRST_ANNOTATE: if not op.is_annotate() or op.name in out: continue else: assert ordering is Ordering.LAST_ASSIGN if not op.is_assign(): continue elif op.name in out: out.move_to_end(op.name) out[op.name] = local return out
Gets a dictionary of the class's local variables. Args: cls_name: The name of an abstract.InterpreterClass. allow_methods: A bool, whether to allow methods as variables. ordering: A classgen.Ordering describing the order in which the variables should appear. ctx: The abstract context. Returns: A collections.OrderedDict of the locals.
github-repos
def _ImageDimensions(images, dynamic_shape=False): if dynamic_shape: return array_ops.unpack(array_ops.shape(images)) else: return images.get_shape().as_list()
Returns the dimensions of an image tensor. Args: images: 4-D Tensor of shape [batch, height, width, channels] dynamic_shape: Whether the input image has undertermined shape. If set to `True`, shape information will be retrieved at run time. Default to `False`. Returns: list of integers [batch, height, width, channels]
juraj-google-style
def __init__(self, definitions: fhir_package.FhirPackageManager, handler: primitive_handler.PrimitiveHandler, error_reporter: fhir_errors.ErrorReporter, options: Optional[SqlGenerationOptions]=None) -> None: self._options = options or SqlGenerationOptions() self._context = context.MockFhirPathContext(definitions.iter_structure_definitions()) self._primitive_handler = handler self._bq_interpreter = _bigquery_interpreter.BigQuerySqlInterpreter(value_set_codes_table=self._options.value_set_codes_table, value_set_codes_definitions=self._options.value_set_codes_definitions or definitions) self._error_reporter = error_reporter self._options.skip_keys.update(_SKIP_KEYS) self._ctx: List[expressions.Builder] = [] self._in_progress: Set[_PathStep] = set() self._type_code_to_regex_map: Dict[str, _RegexInfo] = {} self._regex_columns_generated = set() self._requirement_column_names: Set[str] = set() self._visited_element_definitions: Set[Tuple[str, str]] = set() self._visited_slices: Set[Tuple[str, str]] = set()
Creates a new instance of `FhirProfileStandardSqlEncoder`. Args: definitions: The FHIR resource "graph" for traversal and encoding of constraints. handler: Computes primitives with respect to the specification. error_reporter: A `fhir_errors.ErrorReporter` delegate for error-handling. options: Defines a list of optional settings that can be used to customize the behaviour of FhirProfileStandardSqlEncoder.
github-repos
def brake_on(self): data = [] data.append(0x0A) data.append(self.servoid) data.append(RAM_WRITE_REQ) data.append(TORQUE_CONTROL_RAM) data.append(0x01) data.append(0x40) send_data(data)
Set the Brakes of Herkulex In braked mode, position control and velocity control will not work, enable torque before that Args: none
juraj-google-style
def _clone_sequential_model(model, input_tensors=None, layer_fn=_clone_layer): if not isinstance(model, Sequential): raise ValueError('Expected `model` argument to be a `Sequential` model instance, but got:', model) if not callable(layer_fn): raise ValueError('Expected `layer_fn` argument to be a callable.') layers = [] layer_map = {} for layer in model._flatten_layers(include_self=False, recursive=False): if isinstance(layer, InputLayer) and input_tensors is not None: continue cloned_layer = _clone_layer(layer) if isinstance(layer, InputLayer) else layer_fn(layer) layers.append(cloned_layer) layer_map[layer] = cloned_layer layers, ancillary_layers = _remove_ancillary_layers(model, layer_map, layers) if input_tensors is None: cloned_model = Sequential(layers=layers, name=model.name) elif len(generic_utils.to_list(input_tensors)) != 1: raise ValueError('To clone a `Sequential` model, we expect at most one tensor as part of `input_tensors`.') else: if isinstance(input_tensors, tuple): input_tensors = list(input_tensors) x = generic_utils.to_list(input_tensors)[0] if backend.is_keras_tensor(x): origin_layer = x._keras_history.layer if isinstance(origin_layer, InputLayer): cloned_model = Sequential(layers=[origin_layer] + layers, name=model.name) else: raise ValueError('Cannot clone a `Sequential` model on top of a tensor that comes from a Keras layer other than an `InputLayer`. Use the functional API instead.') else: input_tensor = Input(tensor=x, name='input_wrapper_for_' + str(x.name)) input_layer = input_tensor._keras_history.layer cloned_model = Sequential(layers=[input_layer] + layers, name=model.name) if not ancillary_layers: return cloned_model tensor_map = {} for depth, cloned_nodes in cloned_model._nodes_by_depth.items(): nodes = model._nodes_by_depth[depth] for cloned_node, node in zip(cloned_nodes, nodes): if isinstance(cloned_node.output_tensors, list): for j, output_tensor in enumerate(cloned_node.output_tensors): tensor_map[node.output_tensors[j]] = output_tensor else: tensor_map[node.output_tensors] = cloned_node.output_tensors new_nodes = _make_new_nodes({depth: nodes for depth, nodes in model._nodes_by_depth.items() if depth < 0}, layer_fn, layer_map, tensor_map) _insert_ancillary_layers(cloned_model, ancillary_layers, model.metrics_names, new_nodes) return cloned_model
Clone a `Sequential` model instance. Model cloning is similar to calling a model on new inputs, except that it creates new layers (and thus new weights) instead of sharing the weights of the existing layers. Args: model: Instance of `Sequential`. input_tensors: optional list of input tensors to build the model upon. If not provided, placeholders will be created. layer_fn: callable to be applied on non-input layers in the model. By default it clones the layer. Another example is to preserve the layer to share the weights. This is required when we create a per-replica copy of the model with distribution strategy; we want the weights to be shared but still feed inputs separately so we create new input layers. Returns: An instance of `Sequential` reproducing the behavior of the original model, on top of new inputs tensors, using newly instantiated weights. Raises: ValueError: in case of invalid `model` argument value or `layer_fn` argument value.
github-repos
def __init__(self, unkeyed: ModelHandler[ExampleT, PredictionT, ModelT]): if len(unkeyed.get_preprocess_fns()) or len(unkeyed.get_postprocess_fns()): raise Exception('Cannot make make an unkeyed model handler with pre or postprocessing functions defined into a keyed model handler. All pre/postprocessing functions must be defined on the outer modelhandler.') self._unkeyed = unkeyed self._env_vars = getattr(unkeyed, '_env_vars', {})
A ModelHandler that takes examples that might have keys and returns predictions that might have keys. For example, if the original model is used with RunInference to take a PCollection[E] to a PCollection[P], this ModelHandler would take either PCollection[E] to a PCollection[P] or PCollection[tuple[K, E]] to a PCollection[tuple[K, P]], depending on the whether the elements are tuples. This pattern makes it possible to associate the outputs with the inputs based on the key. Note that you cannot use this ModelHandler if E is a tuple type. In addition, either all examples should be keyed, or none of them. Args: unkeyed: An implementation of ModelHandler that does not require keys.
github-repos
def split_string(str_src, spliters=None, elim_empty=False): if is_string(spliters): spliters = [spliters] if spliters is None or not spliters: spliters = [' ', '\t'] dest_strs = list() src_strs = [str_src] while True: old_dest_strs = src_strs[:] for s in spliters: for src_s in src_strs: temp_strs = src_s.split(s) for temp_s in temp_strs: temp_s = temp_s.strip() if temp_s == '' and elim_empty: continue if is_string(temp_s): temp_s = str(temp_s) dest_strs.append(temp_s) src_strs = dest_strs[:] dest_strs = list() if old_dest_strs == src_strs: dest_strs = src_strs[:] break return dest_strs
Split string by split character space(' ') and indent('\t') as default Examples: >>> StringClass.split_string('exec -ini test.ini', ' ') ['exec', '-ini', 'test.ini'] Args: str_src: source string spliters: e.g. [' ', '\t'], [], ' ', None elim_empty: Eliminate empty (i.e., '') or not. Returns: split sub-strings as list
juraj-google-style
def to_dict(self, remove_nones=False): content = {} for key in self._translation: if hasattr(self, key): content[key] = getattr(self, key) content['parent_id'] = self.parent_id content['item_id'] = self.item_id content['restricted'] = self.restricted content['title'] = self.title if self.resources != []: content['resources'] = [resource.to_dict(remove_nones=remove_nones) for resource in self.resources] content['desc'] = self.desc return content
Return the dict representation of the instance. Args: remove_nones (bool, optional): Optionally remove dictionary elements when their value is `None`. Returns: dict: a dict representation of the `DidlObject`.
juraj-google-style
def __init__(self, optimizer, scope='global-optimizer', summary_labels=()): super(GlobalOptimizer, self).__init__(optimizer=optimizer, scope=scope, summary_labels=summary_labels)
Creates a new global optimizer instance. Args: optimizer: The optimizer which is modified by this meta optimizer.
juraj-google-style
def on_core_metadata_event(self, event): raise NotImplementedError('on_core_metadata_event() is not implemented in the base servicer class')
Callback for core metadata. Args: event: The Event proto that carries a JSON string in its `log_message.message` field. Returns: `None` or an `EventReply` proto to be sent back to the client. If `None`, an `EventReply` proto construct with the default no-arg constructor will be sent back to the client.
github-repos
def check(self, uid=None, usage_limits_count=None, cryptographic_usage_mask=None, lease_time=None): if (uid is not None): if (not isinstance(uid, six.string_types)): raise TypeError('The unique identifier must be a string.') if (usage_limits_count is not None): if (not isinstance(usage_limits_count, six.integer_types)): raise TypeError('The usage limits count must be an integer.') if (cryptographic_usage_mask is not None): if ((not isinstance(cryptographic_usage_mask, list)) or (not all((isinstance(x, enums.CryptographicUsageMask) for x in cryptographic_usage_mask)))): raise TypeError('The cryptographic usage mask must be a list of CryptographicUsageMask enumerations.') if (lease_time is not None): if (not isinstance(lease_time, six.integer_types)): raise TypeError('The lease time must be an integer.') result = self.proxy.check(uid, usage_limits_count, cryptographic_usage_mask, lease_time) status = result.get('result_status') if (status == enums.ResultStatus.SUCCESS): return result.get('unique_identifier') else: raise exceptions.KmipOperationFailure(status, result.get('result_reason'), result.get('result_message'))
Check the constraints for a managed object. Args: uid (string): The unique ID of the managed object to check. Optional, defaults to None. usage_limits_count (int): The number of items that can be secured with the specified managed object. Optional, defaults to None. cryptographic_usage_mask (list): A list of CryptographicUsageMask enumerations specifying the operations possible with the specified managed object. Optional, defaults to None. lease_time (int): The number of seconds that can be leased for the specified managed object. Optional, defaults to None.
codesearchnet
def group(self, group_type=None, owner=None, **kwargs): group = None if not group_type: return Group(self.tcex, None, None, owner=owner, **kwargs) name = kwargs.pop('name', None) group_type = group_type.upper() if group_type == 'ADVERSARY': group = Adversary(self.tcex, name, owner=owner, **kwargs) if group_type == 'CAMPAIGN': group = Campaign(self.tcex, name, owner=owner, **kwargs) if group_type == 'DOCUMENT': group = Document(self.tcex, name, kwargs.pop('file_name', None), owner=owner, **kwargs) if group_type == 'EVENT': group = Event(self.tcex, name, owner=owner, **kwargs) if group_type == 'EMAIL': group = Email( self.tcex, name, kwargs.pop('to', None), kwargs.pop('from_addr', None), kwargs.pop('subject', None), kwargs.pop('body', None), kwargs.pop('header', None), owner=owner, **kwargs ) if group_type == 'INCIDENT': group = Incident(self.tcex, name, owner=owner, **kwargs) if group_type == 'INTRUSION SET': group = IntrusionSet(self.tcex, name, owner=owner, **kwargs) if group_type == 'REPORT': group = Report(self.tcex, name, owner=owner, **kwargs) if group_type == 'SIGNATURE': group = Signature( self.tcex, name, kwargs.pop('file_name', None), kwargs.pop('file_type', None), kwargs.pop('file_text', None), owner=owner, **kwargs ) if group_type == 'THREAT': group = Threat(self.tcex, name, owner=owner, **kwargs) if group_type == 'TASK': group = Task( self.tcex, name, kwargs.pop('status', 'Not Started'), kwargs.pop('due_date', None), kwargs.pop('reminder_date', None), kwargs.pop('escalation_date', None), owner=owner, **kwargs ) return group
Create the Group TI object. Args: owner: group_type: **kwargs: Return:
juraj-google-style
async def send_event(self, con, name, payload): message = dict(type='event', name=name, payload=payload) encoded = pack(message) (await con.send(encoded))
Send an event to a client connection. This method will push an event message to the client with the given name and payload. You need to have access to the the ``connection`` object for the client, which is only available once the client has connected and passed to self.prepare_conn(connection). Args: con (websockets.Connection): The connection to use to send the event. name (str): The name of the event to send. payload (object): The msgpack-serializable object so send as the event's payload.
codesearchnet
def create_blocking_connection(host): return pika.BlockingConnection( amqpdaemon.getConParams( settings.get_amqp_settings()[host.lower()]["vhost"] ) )
Return properly created blocking connection. Args: host (str): Host as it is defined in :func:`.get_amqp_settings`. Uses :func:`edeposit.amqp.amqpdaemon.getConParams`.
juraj-google-style
def get_schema_path(schema, resolved=False): def _strip_first_path_elem(path): "Pass doctests.\n\n Strip the first element of the given path, returning an empty string if\n there are no more elements. For example, 'something/other' will end up\n as 'other', but passing then 'other' will return ''\n " stripped_path = path.split(os.path.sep, 1)[1:] return ''.join(stripped_path) def _schema_to_normalized_path(schema): "Pass doctests.\n\n Extracts the path from the url, makes sure to get rid of any '..' in\n the path and adds the json extension if not there.\n " path = os.path.normpath((os.path.sep + urlsplit(schema).path)) if path.startswith(os.path.sep): path = path[1:] if (not path.endswith('.json')): path += '.json' return path path = _schema_to_normalized_path(schema) while path: if resolved: schema_path = os.path.abspath(os.path.join(_resolved_schema_root_path, path)) else: schema_path = os.path.abspath(os.path.join(_schema_root_path, path)) if os.path.exists(schema_path): return os.path.abspath(schema_path) path = _strip_first_path_elem(path) raise SchemaNotFound(schema=schema)
Retrieve the installed path for the given schema. Args: schema(str): relative or absolute url of the schema to validate, for example, 'records/authors.json' or 'jobs.json', or just the name of the schema, like 'jobs'. resolved(bool): if True, the returned path points to a fully resolved schema, that is to the schema with all `$ref` replaced by their targets. Returns: str: path to the given schema name. Raises: SchemaNotFound: if no schema could be found.
codesearchnet
def _add_new_ide_controller_helper(ide_controller_label, controller_key, bus_number): if (controller_key is None): controller_key = randint((- 200), 250) ide_spec = vim.vm.device.VirtualDeviceSpec() ide_spec.device = vim.vm.device.VirtualIDEController() ide_spec.operation = vim.vm.device.VirtualDeviceSpec.Operation.add ide_spec.device.key = controller_key ide_spec.device.busNumber = bus_number ide_spec.device.deviceInfo = vim.Description() ide_spec.device.deviceInfo.label = ide_controller_label ide_spec.device.deviceInfo.summary = ide_controller_label return ide_spec
Helper function for adding new IDE controllers .. versionadded:: 2016.3.0 Args: ide_controller_label: label of the IDE controller controller_key: if not None, the controller key to use; otherwise it is randomly generated bus_number: bus number Returns: created device spec for an IDE controller
codesearchnet
def noisy_operation(self, operation: 'cirq.Operation') -> 'cirq.OP_TREE': if not hasattr(self.noisy_moments, '_not_overridden'): return self.noisy_moments([ops.Moment([operation])], operation.qubits) if not hasattr(self.noisy_moment, '_not_overridden'): return self.noisy_moment(ops.Moment([operation]), operation.qubits) assert False, 'Should be unreachable.'
Adds noise to an individual operation. Args: operation: The operation to make noisy. Returns: An OP_TREE corresponding to the noisy operations implementing the noisy version of the given operation.
juraj-google-style
def decode_jpeg(image_buffer, scope=None): with tf.name_scope(values=[image_buffer], name=scope, default_name='decode_jpeg'): image = tf.image.decode_jpeg(image_buffer, channels=3) image = tf.image.convert_image_dtype(image, dtype=tf.float32) return image
Decode a JPEG string into one 3-D float image Tensor. Args: image_buffer: scalar string Tensor. scope: Optional scope for name_scope. Returns: 3-D float Tensor with values ranging from [0, 1).
juraj-google-style
def __init__(self, model, ncats, alpha_lambda=1.0, beta_lambda=2.0, freeparams=['alpha_lambda', 'beta_lambda']): new_max_beta = DiscreteGamma(self.PARAMLIMITS["alpha_lambda"][1], self.PARAMLIMITS["beta_lambda"][0], ncats)[-1] new_limits = model.PARAMLIMITS new_limits["beta"] = (new_limits["beta"][0], new_max_beta) model.PARAMLIMITS = new_limits super(GammaDistributedBetaModel, self).__init__(model, "beta", ncats, alpha_lambda=1.0, beta_lambda=2.0, freeparams=['alpha_lambda', 'beta_lambda']) assert all([scipy.allclose(new_max_beta, m.PARAMLIMITS["beta"][1]) for m in self._models]), ("{0}\n{1}".format( new_max_beta, '\n'.join([m.PARAMLIMITS["beta"][1] for m in self._models])))
Initialize an `GammaDistributedModel` object. The `lambda_param` is set to "beta". Args: `model` `ncats`,`alpha_lambda`, `beta_lambda`, `freeparams` Meaning described in main class doc string for `GammaDistributedModel`.
juraj-google-style
def run(self, dag): num_dag_qubits = sum([qreg.size for qreg in dag.qregs.values()]) if (num_dag_qubits > self.coupling_map.size()): raise TranspilerError('Number of qubits greater than device.') best_sub = self._best_subset(num_dag_qubits) layout = Layout() map_iter = 0 for qreg in dag.qregs.values(): for i in range(qreg.size): layout[(qreg, i)] = int(best_sub[map_iter]) map_iter += 1 self.property_set['layout'] = layout
Pick a convenient layout depending on the best matching qubit connectivity, and set the property `layout`. Args: dag (DAGCircuit): DAG to find layout for. Raises: TranspilerError: if dag wider than self.coupling_map
codesearchnet
def add_observer(self, callback): if callback in self._observers: raise ValueError('{} is already an observer of {}' .format(callback, self)) self._observers.append(callback)
Add an observer to this event. Args: callback: A function or coroutine callback to call when the event is fired. Raises: ValueError: If the callback has already been added.
juraj-google-style
def serialize(self): return gen_boosted_trees_ops.boosted_trees_serialize_ensemble(self.resource_handle)
Serializes the ensemble into proto and returns the serialized proto. Returns: stamp_token: int64 scalar Tensor to denote the stamp of the resource. serialized_proto: string scalar Tensor of the serialized proto.
github-repos
def _expand_to_beam_size(tensor, beam_size): tensor = tf.expand_dims(tensor, axis=1) tile_dims = [1] * tensor.shape.ndims tile_dims[1] = beam_size return tf.tile(tensor, tile_dims)
Tiles a given tensor by beam_size. Args: tensor: tensor to tile [batch_size, ...] beam_size: How much to tile the tensor by. Returns: Tiled tensor [batch_size, beam_size, ...]
juraj-google-style
def _text_checker(job, interval, _interval_set=False, quiet=False, output=sys.stdout): status = job.status() msg = status.value prev_msg = msg msg_len = len(msg) if not quiet: print('\r%s: %s' % ('Job Status', msg), end='', file=output) while status.name not in ['DONE', 'CANCELLED', 'ERROR']: time.sleep(interval) status = job.status() msg = status.value if status.name == 'QUEUED': msg += ' (%s)' % job.queue_position() if not _interval_set: interval = max(job.queue_position(), 2) else: if not _interval_set: interval = 2 if len(msg) < msg_len: msg += ' ' * (msg_len - len(msg)) elif len(msg) > msg_len: msg_len = len(msg) if msg != prev_msg and not quiet: print('\r%s: %s' % ('Job Status', msg), end='', file=output) prev_msg = msg if not quiet: print('', file=output)
A text-based job status checker Args: job (BaseJob): The job to check. interval (int): The interval at which to check. _interval_set (bool): Was interval time set by user? quiet (bool): If True, do not print status messages. output (file): The file like object to write status messages to. By default this is sys.stdout.
juraj-google-style
def format_error_message(exception_message, task_exception=False): lines = exception_message.split('\n') if task_exception: lines = (lines[0:1] + lines[3:]) pass return '\n'.join(lines)
Improve the formatting of an exception thrown by a remote function. This method takes a traceback from an exception and makes it nicer by removing a few uninformative lines and adding some space to indent the remaining lines nicely. Args: exception_message (str): A message generated by traceback.format_exc(). Returns: A string of the formatted exception message.
codesearchnet
def double_linked_dom(str_or_dom): dom = str_or_dom if not isinstance(str_or_dom, dhtmlparser.HTMLElement): dom = dhtmlparser.parseString(str_or_dom) dhtmlparser.makeDoubleLinked(dom) return dom
Create double linked DOM from input. In case of string, parse it, make it double-linked. In case of DOM, just make it double-linked. Args: str_or_dom (str/HTMLelement): String or HTMLelement instance. Returns: obj: HTMLelement with parsed, double-linked content from `str_or_dom`.
juraj-google-style
def get_logger(name): logger = logging.getLogger(name) logger.addHandler(logging.NullHandler()) return logger
Gets a logger Arguments: name - the name you wish to log as Returns: A logger!
codesearchnet
def get_restore_path(self, status=None): status = self.get_status() if status is None else status return config.get_restore_path(status.name.lower())
get_restore_path: get path to restoration file Args: status (str): step to get restore file (optional) Returns: string path to restoration file
juraj-google-style
def get_gated_grpc_tensors(self, matching_debug_op=None): with self._grpc_gated_lock: matching_debug_op = (matching_debug_op or 'DebugIdentity') if (matching_debug_op not in self._grpc_gated_tensors): node_name_to_op_type = dict(((node.name, node.op) for node in self._graph_def.node)) gated = [] for node in self._graph_def.node: if (node.op == matching_debug_op): for attr_key in node.attr: if ((attr_key == 'gated_grpc') and node.attr[attr_key].b): (node_name, output_slot, _, debug_op) = debug_graphs.parse_debug_node_name(node.name) gated.append((node_name, node_name_to_op_type[node_name], output_slot, debug_op)) break self._grpc_gated_tensors[matching_debug_op] = gated return self._grpc_gated_tensors[matching_debug_op]
Extract all nodes with gated-gRPC debug ops attached. Uses cached values if available. This method is thread-safe. Args: graph_def: A tf.GraphDef proto. matching_debug_op: Return tensors and nodes with only matching the specified debug op name (optional). If `None`, will extract only `DebugIdentity` debug ops. Returns: A list of (node_name, op_type, output_slot, debug_op) tuples.
codesearchnet
def _create_output_from_match(self, match_result): if isinstance(match_result, dict): return LinterOutput(self.name, **match_result) return LinterOutput(self.name, *match_result)
Create Result instance from pattern match results. Args: match: Pattern match.
codesearchnet
def write_var_int(self, value, little_endian=True): if not isinstance(value, int): raise SDKException(ErrorCode.param_err('%s not int type.' % value)) if value < 0: raise SDKException(ErrorCode.param_err('%d too small.' % value)) elif value < 0xfd: return self.write_byte(value) elif value <= 0xffff: self.write_byte(0xfd) return self.write_uint16(value, little_endian) elif value <= 0xFFFFFFFF: self.write_byte(0xfe) return self.write_uint32(value, little_endian) else: self.write_byte(0xff) return self.write_uint64(value, little_endian)
Write an integer value in a space saving way to the stream. Args: value (int): little_endian (bool): specify the endianness. (Default) Little endian. Raises: SDKException: if `value` is not of type int. SDKException: if `value` is < 0. Returns: int: the number of bytes written.
juraj-google-style
def _GetDictFromStringsTable(self, parser_mediator, table): if (not table): return {} record_values = {} for record in table.records: if parser_mediator.abort: break if (record.get_number_of_values() != 2): continue identification = self._GetRecordValue(record, 0) filename = self._GetRecordValue(record, 1) if (not identification): continue record_values[identification] = filename return record_values
Build a dictionary of the value in the strings table. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. table (pyesedb.table): strings table. Returns: dict[str,object]: values per column name.
codesearchnet
def __init__(self, schema, max_files_per_bundle=_DEFAULT_MAX_WRITERS_PER_BUNDLE, max_file_size=_DEFAULT_MAX_FILE_SIZE, file_format=None): self.schema = schema self.max_files_per_bundle = max_files_per_bundle self.max_file_size = max_file_size self.file_format = file_format or bigquery_tools.FileFormat.JSON
Initialize a :class:`WriteRecordsToFile`. Args: max_files_per_bundle (int): The maximum number of files that can be kept open during execution of this step in a worker. This is to avoid over- whelming the worker memory. max_file_size (int): The maximum size in bytes for a file to be used in an export job.
github-repos
def set_agent(self, agent): self.agent = agent self.queue = asyncio.Queue(loop=self.agent.loop) self.presence = agent.presence self.web = agent.web
Links behaviour with its owner agent Args: agent (spade.agent.Agent): the agent who owns the behaviour
juraj-google-style
def __init__(self, initial_learning_rate, decay_steps, initial_variance=1.0, variance_decay=0.55, num_periods=0.5, alpha=0.0, beta=0.001, name=None): super(NoisyLinearCosineDecay, self).__init__() self.initial_learning_rate = initial_learning_rate self.decay_steps = decay_steps self.initial_variance = initial_variance self.variance_decay = variance_decay self.num_periods = num_periods self.alpha = alpha self.beta = beta self.name = name
Applies noisy linear cosine decay to the learning rate. Args: initial_learning_rate: A scalar `float32` or `float64` Tensor or a Python number. The initial learning rate. decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number. Number of steps to decay over. initial_variance: initial variance for the noise. See computation above. variance_decay: decay for the noise's variance. See computation above. num_periods: Number of periods in the cosine part of the decay. See computation above. alpha: See computation above. beta: See computation above. name: String. Optional name of the operation. Defaults to 'NoisyLinearCosineDecay'.
github-repos
def _generate_unique_name(self, symbol_name: str) -> str: normalized_symbol_name = self._NON_SYMBOL_NAME_CHARS_REGEX.sub('_', symbol_name) normalized_name_conflict_count = self._num_symbols_with_normalized_name.get(normalized_symbol_name, 0) self._num_symbols_with_normalized_name[normalized_symbol_name] = normalized_name_conflict_count + 1 optional_disambiguation_suffix = '' if normalized_name_conflict_count == 0 else f'_{normalized_name_conflict_count}' return f'{normalized_symbol_name}{optional_disambiguation_suffix}'
Translates a symbol name to a unique FileCheck capture name. Replaces all characters other than letters, numbers, and underscores with underscores. If the resulting name has already been used, appends a counter to disambiguate it. For example, this could result in the following sequence of replacements: 1.) "foo.bar.baz" -> "foo_bar_baz" 2.) "foo.bar_baz" -> "foo_bar_baz_1" 3.) "foo_bar.baz" -> "foo_bar_baz_2" 4.) "foo_bar_baz" -> "foo_bar_baz_3" Args: symbol_name: The original symbol name. Returns: The generated FileCheck capture name.
github-repos
def load_and_print_resfile(filename, info_dict=None): if (info_dict is None): info_dict = dict() info_dict['mass'] = 1.23 info_dict['nom_cap'] = 3600 info_dict['tot_mass'] = 2.33 d = CellpyData() print('filename:', filename) print('info_dict in:', end=' ') print(info_dict) d.from_raw(filename) d.set_mass(info_dict['mass']) d.make_step_table() d.make_summary() for test in d.datasets: print('newtest') print(test) return info_dict
Load a raw data file and print information. Args: filename (str): name of the resfile. info_dict (dict): Returns: info (str): string describing something.
codesearchnet
def compress(element): element_spec = structure.type_spec_from_value(element) tensor_list = structure.to_tensor_list(element_spec, element) return ged_ops.compress_element(tensor_list)
Compress a dataset element. Args: element: A nested structure of types supported by Tensorflow. Returns: A variant tensor representing the compressed element. This variant can be passed to `uncompress` to get back the original element.
github-repos
def _RemoveAllFlagAppearances(self, name): flag_dict = self.FlagDict() if (name not in flag_dict): raise exceptions.UnrecognizedFlagError(name) flag = flag_dict[name] names_to_remove = {name} names_to_remove.add(flag.name) if flag.short_name: names_to_remove.add(flag.short_name) for n in names_to_remove: self.__delattr__(n)
Removes flag with name for all appearances. A flag can be registered with its long name and an optional short name. This method removes both of them. This is different than __delattr__. Args: name: Either flag's long name or short name. Raises: UnrecognizedFlagError: When flag name is not found.
codesearchnet
def test_enrichment(pcoll, enrichment_handler: str, handler_config: Dict[str, Any], timeout: Optional[float]=30): if enrichment_handler == 'BigTable': row_key = handler_config['row_key'] bt_data = INPUT_TABLES['BigTable', handler_config['instance_id'], handler_config['table_id']] products = {str(data[row_key]): data for data in bt_data} def _fn(row): left = row._asdict() right = products[str(left[row_key])] left['product'] = left.get('product', None) or right return beam.Row(**left) elif enrichment_handler == 'BigQuery': row_key = handler_config['fields'] dataset, table = handler_config['table_name'].split('.')[-2:] bq_data = INPUT_TABLES['BigQuery', str(dataset), str(table)] bq_data = {tuple((str(data[key]) for key in row_key)): data for data in bq_data} def _fn(row): left = row._asdict() right = bq_data[tuple((str(left[k]) for k in row_key))] row = {key: left.get(key, None) or right[key] for key in {*left.keys(), *right.keys()}} return beam.Row(**row) else: raise ValueError(f'{enrichment_handler} is not a valid enrichment_handler.') return pcoll | beam.Map(_fn)
Mocks the Enrichment transform for testing purposes. This PTransform simulates the behavior of the Enrichment transform by looking up data from predefined in-memory tables based on the provided `enrichment_handler` and `handler_config`. Note: The Github action that invokes these tests does not have gcp dependencies installed which is a prerequisite to apache_beam.transforms.enrichment.Enrichment as a top-level import. Args: pcoll: The input PCollection. enrichment_handler: A string indicating the type of enrichment handler to simulate (e.g., 'BigTable', 'BigQuery'). handler_config: A dictionary containing configuration details for the simulated handler (e.g., table names, row keys, fields). timeout: An optional timeout value (ignored in this mock). Returns: A PCollection containing the enriched data.
github-repos
def capture_image(self, device_label): response = None try: response = requests.post( urls.imagecapture(self._giid, device_label), headers={ 'Content-Type': 'application/json', 'Cookie': 'vid={}'.format(self._vid)}) except requests.exceptions.RequestException as ex: raise RequestError(ex) _validate_response(response)
Capture smartcam image Args: device_label (str): device label of camera
juraj-google-style
def stream_sync(self, report, timeout=120.0): done = AwaitableResponse() self.stream(report, callback=done.set_result) return done.wait(timeout)
Send a report and wait for it to finish. This awaitable coroutine wraps VirtualIOTileDevice.stream() and turns the callback into an awaitable object. The appropriate usage of this method is by calling it inside the event loop as: await device.stream_sync(data) Args: report (IOTileReport): The report that should be streamed. timeout (float): The maximum number of seconds to wait before timing out. Returns: awaitable: An awaitable object with the result. The result will be True if the data was sent successfully or False if the data could not be sent in its entirety. When False is returned, there is no guarantee about how much of the data was sent, if any, just that it was not known to be successfully sent.
codesearchnet
def nr_cases(self, institute_id=None): query = {} if institute_id: query['collaborators'] = institute_id LOG.debug("Fetch all cases with query {0}".format(query)) nr_cases = self.case_collection.find(query).count() return nr_cases
Return the number of cases This function will change when we migrate to 3.7.1 Args: collaborator(str): Institute id Returns: nr_cases(int)
juraj-google-style
def _Inputs(op: ops.Operation, xs_set): if _IsFunction(op.graph): inputs = [] for t in op.inputs: if t not in xs_set: t = _MaybeCaptured(t) inputs.append(t) return inputs else: return op.inputs
Returns the inputs of op, crossing closure boundaries where necessary. Args: op: Operation xs_set: ObjectIdentitySet of Tensors we are differentiating w.r.t. Returns: A list of tensors. The tensors may be from multiple Graph/FuncGraphs if op is in a FuncGraph and has captured inputs.
github-repos
def _index_to_ansi_values(self, index): if self.__class__.__name__[0] == 'F': if index < 8: index += ANSI_FG_LO_BASE else: index += (ANSI_FG_HI_BASE - 8) else: if index < 8: index += ANSI_BG_LO_BASE else: index += (ANSI_BG_HI_BASE - 8) return [str(index)]
Converts an palette index to the corresponding ANSI color. Arguments: index - an int (from 0-15) Returns: index as str in a list for compatibility with values.
juraj-google-style
def notify_batches_finished(self, statuses): with self._wait_condition: self._statuses = statuses self._wait_condition.notify()
Called by the BatchTracker the _BatchWaiter is observing. Should not be called by handlers. Args: statuses (dict of int): A dict with keys of batch ids, and values of status enums
juraj-google-style
def add_sample(a_float, dist): (dist_type, _) = _detect_bucket_option(dist) if (dist_type == u'exponentialBuckets'): _update_general_statistics(a_float, dist) _update_exponential_bucket_count(a_float, dist) elif (dist_type == u'linearBuckets'): _update_general_statistics(a_float, dist) _update_linear_bucket_count(a_float, dist) elif (dist_type == u'explicitBuckets'): _update_general_statistics(a_float, dist) _update_explicit_bucket_count(a_float, dist) else: _logger.error(u'Could not determine bucket option type for %s', dist) raise ValueError(u'Unknown bucket option type')
Adds `a_float` to `dist`, updating its existing buckets. Args: a_float (float): a new value dist (:class:`endpoints_management.gen.servicecontrol_v1_messages.Distribution`): the Distribution being updated Raises: ValueError: if `dist` does not have known bucket options defined ValueError: if there are not enough bucket count fields in `dist`
codesearchnet
def metadata(self): if (self._info is None): try: self._info = self._api.buckets_get(self._name) except Exception as e: raise e return (BucketMetadata(self._info) if self._info else None)
Retrieves metadata about the bucket. Returns: A BucketMetadata instance with information about this bucket. Raises: Exception if there was an error requesting the bucket's metadata.
codesearchnet
def load_extra_data(cls, data): try: cls._extra_config.update(json.loads(data)) except ValueError as exception: sys.stderr.write('Could convert to JSON. {0:s}'.format(exception)) exit(-1)
Loads extra JSON configuration parameters from a data buffer. The data buffer must represent a JSON object. Args: data: str, the buffer to load the JSON data from.
juraj-google-style
def potcar_eatom_list_from_outcar(filename='OUTCAR'): with open(filename) as f: outcar = f.read() eatom_re = re.compile('energy of atom\\s+\\d+\\s+EATOM=\\s*([-\\d\\.]+)') eatom = [float(e) for e in eatom_re.findall(outcar)] return eatom
Returns a list of EATOM values for the pseudopotentials used. Args: filename (Str, optional): OUTCAR filename. Defaults to 'OUTCAR'. Returns: (List(Float)): A list of EATOM values, in the order they appear in the OUTCAR.
codesearchnet
def build_graph(device, n, m, k, transpose_a, transpose_b, dtype): with ops.device('%s' % device): if not transpose_a: x = variable_v1.VariableV1(random_ops.random_uniform([n, m], dtype=dtype), use_resource=False) else: x = variable_v1.VariableV1(random_ops.random_uniform([m, n], dtype=dtype), use_resource=False) if not transpose_b: y = variable_v1.VariableV1(random_ops.random_uniform([m, k], dtype=dtype), use_resource=False) else: y = variable_v1.VariableV1(random_ops.random_uniform([k, m], dtype=dtype), use_resource=False) z = math_ops.matmul(x, y, transpose_a=transpose_a, transpose_b=transpose_b) return control_flow_ops.group(z)
Build a graph containing a sequence of matmul operations. Args: device: String, the device to run on. n: tensor A's first dimension size. m: tensor A's second dimension size. k: tensor B's second dimension size. transpose_a: boolean value to show if tensor A is transposed. transpose_b: boolean value to show if tensor B is transposed. dtype: numpy data type of the input tensor. Returns: A matmul operation to run()
github-repos
def __init__(self, val, unit, unit_type=None): if unit_type is not None and str(unit) not in ALL_UNITS[unit_type]: raise UnitError( "{} is not a supported unit for {}".format(unit, unit_type)) self._unit = Unit(unit) self._unit_type = unit_type
Initializes a float with unit. Args: val (float): Value unit (Unit): A unit. E.g., "C". unit_type (str): A type of unit. E.g., "charge"
juraj-google-style
def cancel(self): try: del self._protocol._consumers[self.queue] except (KeyError, AttributeError): pass try: del self._protocol.factory._consumers[self.queue] except (KeyError, AttributeError): pass self._running = False (yield self._read_loop) try: (yield self._channel.basic_cancel(consumer_tag=self._tag)) except pika.exceptions.AMQPChannelError: pass try: (yield self._channel.close()) except pika.exceptions.AMQPChannelError: pass if (not self.result.called): self.result.callback(self)
Cancel the consumer and clean up resources associated with it. Consumers that are canceled are allowed to finish processing any messages before halting. Returns: defer.Deferred: A deferred that fires when the consumer has finished processing any message it was in the middle of and has been successfully canceled.
codesearchnet
def _new_open_bin(self, width=None, height=None, rid=None): factories_to_delete = set() new_bin = None for (key, binfac) in self._empty_bins.items(): if (not binfac.fits_inside(width, height)): continue new_bin = binfac.new_bin() if (new_bin is None): continue self._open_bins.append(new_bin) if binfac.is_empty(): factories_to_delete.add(key) break for f in factories_to_delete: del self._empty_bins[f] return new_bin
Extract the next empty bin and append it to open bins Returns: PackingAlgorithm: Initialized empty packing bin. None: No bin big enough for the rectangle was found
codesearchnet
def __init__(self, cls): super(EnumType, self).__init__() self._cls = cls
Create a new EnumType. This new EnumType requires a class object in the constructor. The class is used to construct new instances of the Enum when the integer value is retrieved from the database. Args: cls(class): An Enum class used to create new instances from integer values.
juraj-google-style
def with_params(self, params): copy = params.copy() copy.update(self._params) return self.__copy_and_set('params', copy)
Adds parameters to the request params Args: params (dict): The parameters to add to the request params Returns: The request builder instance in order to chain calls
codesearchnet
def convert_dict_to_params(src_dict): return '&'.join(['{}={}'.format(key, value) for (key, value) in src_dict.items()])
convert dict to params string Args: src_dict (dict): source mapping data structure Returns: str: string params data Examples: >>> src_dict = { "a": 1, "b": 2 } >>> convert_dict_to_params(src_dict) >>> "a=1&b=2"
codesearchnet
def __split_off_extra_attributes(self, mapping: CommentedMap, known_attrs: List[str]) -> CommentedMap: attr_names = list(mapping.keys()) main_attrs = mapping.copy() extra_attrs = OrderedDict(mapping.items()) for name in attr_names: if ((name not in known_attrs) or (name == 'yatiml_extra')): del main_attrs[name] else: del extra_attrs[name] main_attrs['yatiml_extra'] = extra_attrs return main_attrs
Separates the extra attributes in mapping into yatiml_extra. This returns a mapping containing all key-value pairs from \ mapping whose key is in known_attrs, and an additional key \ yatiml_extra which maps to a dict containing the remaining \ key-value pairs. Args: mapping: The mapping to split known_attrs: Attributes that should be kept in the main \ map, and not moved to yatiml_extra. Returns: A map with attributes reorganised as described above.
codesearchnet
def fetch(self, card_id, data={}, **kwargs): return super(Card, self).fetch(card_id, data, **kwargs)
Fetch Card for given Id Args: card_id : Id for which card object has to be retrieved Returns: Card dict for given card Id
codesearchnet
def _ClassifyInclude(fileinfo, include, is_system): is_cpp_h = (include in _CPP_HEADERS) if (is_system and (os.path.splitext(include)[1] in ['.hpp', '.hxx', '.h++'])): is_system = False if is_system: if is_cpp_h: return _CPP_SYS_HEADER else: return _C_SYS_HEADER (target_dir, target_base) = os.path.split(_DropCommonSuffixes(fileinfo.RepositoryName())) (include_dir, include_base) = os.path.split(_DropCommonSuffixes(include)) target_dir_pub = os.path.normpath((target_dir + '/../public')) target_dir_pub = target_dir_pub.replace('\\', '/') if ((target_base == include_base) and ((include_dir == target_dir) or (include_dir == target_dir_pub))): return _LIKELY_MY_HEADER target_first_component = _RE_FIRST_COMPONENT.match(target_base) include_first_component = _RE_FIRST_COMPONENT.match(include_base) if (target_first_component and include_first_component and (target_first_component.group(0) == include_first_component.group(0))): return _POSSIBLE_MY_HEADER return _OTHER_HEADER
Figures out what kind of header 'include' is. Args: fileinfo: The current file cpplint is running over. A FileInfo instance. include: The path to a #included file. is_system: True if the #include used <> rather than "". Returns: One of the _XXX_HEADER constants. For example: >>> _ClassifyInclude(FileInfo('foo/foo.cc'), 'stdio.h', True) _C_SYS_HEADER >>> _ClassifyInclude(FileInfo('foo/foo.cc'), 'string', True) _CPP_SYS_HEADER >>> _ClassifyInclude(FileInfo('foo/foo.cc'), 'foo/foo.h', False) _LIKELY_MY_HEADER >>> _ClassifyInclude(FileInfo('foo/foo_unknown_extension.cc'), ... 'bar/foo_other_ext.h', False) _POSSIBLE_MY_HEADER >>> _ClassifyInclude(FileInfo('foo/foo.cc'), 'foo/bar.h', False) _OTHER_HEADER
codesearchnet
def generate_output_entities(self, json_data=None, hr=True, show_name=False, colorize=True): output = '' short = (HR_RDAP['entities']['_short'] if hr else 'entities') name = (HR_RDAP['entities']['_name'] if (hr and show_name) else None) output += generate_output(line='0', short=short, name=name, is_parent=(False if ((json_data is None) or (json_data['entities'] is None)) else True), value=('None' if ((json_data is None) or (json_data['entities'] is None)) else None), colorize=colorize) if (json_data is not None): for ent in json_data['entities']: output += generate_output(line='1', value=ent, colorize=colorize) return output
The function for generating CLI output RDAP entity results. Args: json_data (:obj:`dict`): The data to process. Defaults to None. hr (:obj:`bool`): Enable human readable key translations. Defaults to True. show_name (:obj:`bool`): Show human readable name (default is to only show short). Defaults to False. colorize (:obj:`bool`): Colorize the console output with ANSI colors. Defaults to True. Returns: str: The generated output.
codesearchnet
def response_data_to_model_instance(self, response_data): response_data["datetime_created"] = dateutil.parser.parse( response_data["datetime_created"] ) if response_data["datetime_finished"]: response_data["datetime_finished"] = dateutil.parser.parse( response_data["datetime_finished"] ) return super( BaseTaskInstanceManager, self ).response_data_to_model_instance(response_data)
Convert response data to a task instance model. Args: response_data (dict): The data from the request's response. Returns: :class:`saltant.models.base_task_instance.BaseTaskInstance`: A task instance model instance representing the task instance from the reponse data.
juraj-google-style
def send_recv(self, message, timeout=10.0): response_queue = self.send(message) response = self.recv(response_queue, timeout) return response
Send a message to a PandABox and wait for the response Args: message (str): The message to send timeout (float): How long to wait before raising queue.Empty Returns: str: The response
juraj-google-style
def _check_positional_parameter_annotations(method_signature, base_signature, is_subtype): for param_index in range(max(len(base_signature.param_names), len(method_signature.param_names))): if param_index == 0: continue if param_index < len(base_signature.param_names): base_param_name = base_signature.param_names[param_index] elif base_signature.varargs_name: base_param_name = base_signature.varargs_name else: break try: base_param_type = base_signature.annotations[base_param_name] except KeyError: continue if base_param_name == base_signature.varargs_name: base_param_type = _get_varargs_annotation_type(base_param_type) if base_param_type is None: continue if param_index < method_signature.posonly_count: method_param_name = method_signature.param_names[param_index] elif param_index < len(method_signature.param_names): if base_param_name == '_' or method_signature.param_names[param_index] == '_': method_param_name = method_signature.param_names[param_index] else: method_param_name = base_param_name elif method_signature.varargs_name: method_param_name = method_signature.varargs_name else: break try: method_param_type = method_signature.annotations[method_param_name] except KeyError: continue if method_param_name == method_signature.varargs_name: method_param_type = _get_varargs_annotation_type(method_param_type) if method_param_type is None: continue if not is_subtype(base_param_type, method_param_type): return SignatureError(SignatureErrorType.POSITIONAL_PARAMETER_TYPE_MISMATCH, f"Type mismatch for parameter '{method_param_name}'.") return None
Checks type annotations for positional parameters of the overriding method. Args: method_signature: signature of the overriding method. base_signature: signature of the overridden method. is_subtype: a binary function to compare types. Returns: SignatureError if a mismatch is detected. Otherwise returns None.
github-repos
def plot_ticks(ax, tick_fontsize=12, xticks=None, xticks_args=None, yticks=None, yticks_args=None, zticks=None, zticks_args=None): if (xticks is not None): ax.set_xticks(xticks) xticks_args = dict_if_none(xticks_args) ax.xaxis.set_tick_params(labelsize=tick_fontsize, **xticks_args) if (yticks is not None): ax.set_yticks(yticks) yticks_args = dict_if_none(yticks_args) ax.yaxis.set_tick_params(labelsize=tick_fontsize, **yticks_args) if (zticks is not None): ax.set_zticks(zticks) zticks_args = dict_if_none(zticks_args) ax.zaxis.set_tick_params(labelsize=tick_fontsize, **zticks_args)
Function that defines the labels options of a matplotlib plot. Args: ax: matplotlib axes tick_fontsize (int): Defines the size of the ticks' font xticks([list of ticks]): Defines the values of x ticks in the figure xticks_arg(dict): Passsed into matplotlib as xticks arguments yticks([list of ticks]): Defines the values of y ticks in the figure yticks_arg(dict): Passsed into matplotlib as yticks arguments zticks([list of ticks]): Defines the values of z ticks in the figure zticks_arg(dict): Passsed into matplotlib as zticks arguments
codesearchnet
class CSVLogger(Callback): def __init__(self, filename, separator=',', append=False): self.sep = separator self.filename = path_to_string(filename) self.append = append self.writer = None self.keys = None self.append_header = True super(CSVLogger, self).__init__() def on_train_begin(self, logs=None): if self.append: if file_io.file_exists_v2(self.filename): with gfile.GFile(self.filename, 'r') as f: self.append_header = not bool(len(f.readline())) mode = 'a' else: mode = 'w' self.csv_file = gfile.GFile(self.filename, mode) def on_epoch_end(self, epoch, logs=None): logs = logs or {} def handle_value(k): is_zero_dim_ndarray = isinstance(k, np.ndarray) and k.ndim == 0 if isinstance(k, str): return k elif isinstance(k, collections.abc.Iterable) and (not is_zero_dim_ndarray): return '"[%s]"' % ', '.join(map(str, k)) else: return k if self.keys is None: self.keys = sorted(logs.keys()) if self.model.stop_training: logs = dict(((k, logs[k]) if k in logs else (k, 'NA') for k in self.keys)) if not self.writer: class CustomDialect(csv.excel): delimiter = self.sep fieldnames = ['epoch'] + self.keys self.writer = csv.DictWriter(self.csv_file, fieldnames=fieldnames, dialect=CustomDialect) if self.append_header: self.writer.writeheader() row_dict = collections.OrderedDict({'epoch': epoch}) row_dict.update(((key, handle_value(logs[key])) for key in self.keys)) self.writer.writerow(row_dict) self.csv_file.flush() def on_train_end(self, logs=None): self.csv_file.close() self.writer = None
Callback that streams epoch results to a CSV file. Supports all values that can be represented as a string, including 1D iterables such as `np.ndarray`. Example: ```python csv_logger = CSVLogger('training.log') model.fit(X_train, Y_train, callbacks=[csv_logger]) ``` Args: filename: Filename of the CSV file, e.g. `'run/log.csv'`. separator: String used to separate elements in the CSV file. append: Boolean. True: append if file exists (useful for continuing training). False: overwrite existing file.
github-repos
def batch_insert(self, insertions: Iterable[Tuple[(int, ops.OP_TREE)]]) -> None: copy = self.copy() shift = 0 insertions = sorted(insertions, key=(lambda e: e[0])) groups = _group_until_different(insertions, key=(lambda e: e[0]), value=(lambda e: e[1])) for (i, group) in groups: insert_index = (i + shift) next_index = copy.insert(insert_index, reversed(group), InsertStrategy.EARLIEST) if (next_index > insert_index): shift += (next_index - insert_index) self._moments = copy._moments
Applies a batched insert operation to the circuit. Transparently handles the fact that earlier insertions may shift the index that later insertions should occur at. For example, if you insert an operation at index 2 and at index 4, but the insert at index 2 causes a new moment to be created, then the insert at "4" will actually occur at index 5 to account for the shift from the new moment. All insertions are done with the strategy 'EARLIEST'. When multiple inserts occur at the same index, the gates from the later inserts end up before the gates from the earlier inserts (exactly as if you'd called list.insert several times with the same index: the later inserts shift the earliest inserts forward). Args: insertions: A sequence of (insert_index, operations) pairs indicating operations to add into the circuit at specific places.
codesearchnet
def stack(self, value): if value == self._defaults['stack'] and 'stack' in self._values: del self._values['stack'] else: self._values['stack'] = value
The stack property. Args: value (string). the property value.
juraj-google-style
def add_snmp_community(self, **kwargs): community = kwargs.pop('community') callback = kwargs.pop('callback', self._callback) config = ET.Element('config') snmp_server = ET.SubElement(config, 'snmp-server', xmlns='urn:brocade.com:mgmt:brocade-snmp') community_el = ET.SubElement(snmp_server, 'community') community_name = ET.SubElement(community_el, 'community') community_name.text = community return callback(config)
Add SNMP Community to NOS device. Args: community (str): Community string to be added to device. callback (function): A function executed upon completion of the method. The only parameter passed to `callback` will be the ``ElementTree`` `config`. Returns: Return value of `callback`. Raises: KeyError: if `community` is not defined.
codesearchnet
def scatter_mul(self, sparse_delta, use_locking=False, name=None): if not isinstance(sparse_delta, indexed_slices.IndexedSlices): raise TypeError(f'Argument `sparse_delta` must be a `tf.IndexedSlices`. Received arg: {sparse_delta}') return self._lazy_read(gen_resource_variable_ops.resource_scatter_mul(self.handle, sparse_delta.indices, ops.convert_to_tensor(sparse_delta.values, self.dtype), name=name))
Multiply this variable by `tf.IndexedSlices`. Args: sparse_delta: `tf.IndexedSlices` to multiply this variable by. use_locking: If `True`, use locking during the operation. name: the name of the operation. Returns: The updated variable. Raises: TypeError: if `sparse_delta` is not an `IndexedSlices`.
github-repos
def _FormatNotes(self, event): inode = event.inode if (inode is None): inode = '-' notes = getattr(event, 'notes', '') if (not notes): display_name = getattr(event, 'display_name', '') notes = 'File: {0:s} inode: {1!s}'.format(display_name, inode) return self._SanitizeField(notes)
Formats the notes. Args: event (EventObject): event. Returns: str: formatted notes field.
codesearchnet
def __set__(self, instance, value): if value is None and self.default: self._cache[instance] = self.default else: try: cleaned_value = self.field_value(value) except NodeTypeError as node_error: raise SchemaNodeError('{}.{}: {}'.format( instance.__class__.__name__, self.alias, node_error.args[0]) ) try: self.is_valid(cleaned_value) except SchemaNodeValidatorError as error: raise SchemaNodeError( '{}.{} Error for value `{}` : {}'.format( instance.__class__.__name__, self.alias, value, error.args[0] ) ) self._cache[instance] = cleaned_value
Python descriptor protocol `__set__` magic method. Args: instance (object): The instance with descriptor attribute. value (object): The value for instance attribute.
juraj-google-style
def parse(self, data): data = '\n'.join(self.strip(data.split('\n'))) tag_re = re.compile('^:\\n?(?P<full_tag>(?P<tag>[0-9]{2}|NS)(?P<sub_tag>[A-Z])?):', re.MULTILINE) matches = list(tag_re.finditer(data)) valid_matches = list(self.sanatize_tag_id_matches(matches)) for (i, match) in enumerate(valid_matches): tag_id = self.normalize_tag_id(match.group('tag')) tag = (self.tags.get(match.group('full_tag')) or self.tags[tag_id]) if valid_matches[(i + 1):]: tag_data = data[match.end():valid_matches[(i + 1)].start()].strip() else: tag_data = data[match.end():].strip() tag_dict = tag.parse(self, tag_data) for processor in self.processors.get(('pre_%s' % tag.slug), []): tag_dict = processor(self, tag, tag_dict) result = tag(self, tag_dict) for processor in self.processors.get(('post_%s' % tag.slug), []): result = processor(self, tag, tag_dict, result) if isinstance(tag, mt940.tags.Statement): if (not self.transactions): transaction = Transaction(self) self.transactions.append(transaction) if transaction.data.get('id'): transaction = Transaction(self, result) self.transactions.append(transaction) else: transaction.data.update(result) elif (issubclass(tag.scope, Transaction) and self.transactions): for (k, v) in _compat.iteritems(result): if ((k in transaction.data) and hasattr(v, 'strip')): transaction.data[k] += ('\n%s' % v.strip()) else: transaction.data[k] = v elif issubclass(tag.scope, Transactions): self.data.update(result) return self.transactions
Parses mt940 data, expects a string with data Args: data (str): The MT940 data Returns: :py:class:`list` of :py:class:`Transaction`
codesearchnet
def register(model_type, config, exist_ok=False) -> None: if issubclass(config, PretrainedConfig) and config.model_type != model_type: raise ValueError(f'The config you are passing has a `model_type` attribute that is not consistent with the model type you passed (config has {config.model_type} and you passed {model_type}. Fix one of those so they match!') CONFIG_MAPPING.register(model_type, config, exist_ok=exist_ok)
Register a new configuration for this class. Args: model_type (`str`): The model type like "bert" or "gpt". config ([`PretrainedConfig`]): The config to register.
github-repos