code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def _dequeue_return_value(self, tensors): if self._names: return {n: tensors[i] for i, n in enumerate(self._names)} elif len(tensors) == 1: return tensors[0] else: return tensors
Return the value to return from a dequeue op. If the queue has names, return a dictionary with the names as keys. Otherwise return either a single tensor or a list of tensors depending on the length of `tensors`. Args: tensors: List of tensors from the dequeue op. Returns: A single tensor, a list of tensors, or a dictionary of tensors.
github-repos
def CheckDependencies(self, verbose_output=True): print('Checking availability and versions of dependencies.') check_result = True for module_name, dependency in sorted(self.dependencies.items()): if module_name == 'sqlite3': result, status_message = self._CheckSQLite3() else: result, status_message = self._CheckPythonModule(dependency) if not result and module_name == 'lzma': dependency.name = 'backports.lzma' result, status_message = self._CheckPythonModule(dependency) if not result and not dependency.is_optional: check_result = False self._PrintCheckDependencyStatus( dependency, result, status_message, verbose_output=verbose_output) if check_result and not verbose_output: print('[OK]') print('') return check_result
Checks the availability of the dependencies. Args: verbose_output (Optional[bool]): True if output should be verbose. Returns: bool: True if the dependencies are available, False otherwise.
juraj-google-style
def __init__(self, name_context, spec, counter_factory, state_sampler): assert isinstance(name_context, common.NameContext) self.name_context = name_context self.spec = spec self.counter_factory = counter_factory self.execution_context = None self.consumers = collections.defaultdict(list) self.metrics_container = MetricsContainer(self.name_context.metrics_name()) self.state_sampler = state_sampler self.scoped_start_state = self.state_sampler.scoped_state(self.name_context, 'start', metrics_container=self.metrics_container) self.scoped_process_state = self.state_sampler.scoped_state(self.name_context, 'process', metrics_container=self.metrics_container) self.scoped_finish_state = self.state_sampler.scoped_state(self.name_context, 'finish', metrics_container=self.metrics_container) self.receivers = [] self.setup_done = False self.step_name = None self.data_sampler: Optional[DataSampler] = None
Initializes a worker operation instance. Args: name_context: A NameContext instance, with the name information for this operation. spec: A operation_specs.Worker* instance. counter_factory: The CounterFactory to use for our counters. state_sampler: The StateSampler for the current operation.
github-repos
def __init__(self, residual_restriction=None, process_continuation=None, future_output_watermark=None): self.residual_restriction = residual_restriction self.process_continuation = process_continuation self.future_output_watermark = future_output_watermark
Returned as a result of a `invoke_process_element()` invocation. Args: residual_restriction: a restriction for the unprocessed part of the element. process_continuation: a `ProcessContinuation` if one was returned as the last element of the SDF `process()` invocation. future_output_watermark: output watermark of the results that will be produced when invoking the Splittable `DoFn` for the current element with `residual_restriction`.
github-repos
def _dict_to_tensor(self, x, k): return array_ops_stack.stack([x[i] for i in range(k)])
Convert a dictionary to a tensor. Args: x: A dictionary of length k. k: Dimension of x. Returns: A tensor with the same dimension.
github-repos
def log_( message: str, logger: logging.Logger, level: int = logging.INFO, extra: Optional[Dict] = None, trim: bool = False, ) -> None: if extra is None: extra = {} if message: message = message.replace("\n", "").replace(" ", " ").replace("{ ", "{") if trim: message = _trim_message(message) logger.log(level, message, extra=extra)
Log a request or response Args: message: JSON-RPC request or response string. logger: level: Log level. extra: More details to include in the log entry. trim: Abbreviate log messages.
juraj-google-style
def untar_to_directory(tarfile: str, directory: str, verbose: bool=False, gzipped: bool=False, skip_if_dir_exists: bool=True, run_func: Callable[([List[str]], Any)]=None, chdir_via_python: bool=True) -> None: if (skip_if_dir_exists and os.path.isdir(directory)): log.info('Skipping extraction of {} as directory {} exists', tarfile, directory) return log.info('Extracting {} -> {}', tarfile, directory) require_executable(TAR) mkdir_p(directory) args = [TAR, '-x'] if verbose: args.append('-v') if gzipped: args.append('-z') if (platform.system() != 'Darwin'): args.append('--force-local') args.extend(['-f', tarfile]) if chdir_via_python: with pushd(directory): run_func(args) else: args.extend(['-C', directory]) run_func(args)
Unpacks a TAR file into a specified directory. Args: tarfile: filename of the ``.tar`` file directory: destination directory verbose: be verbose? gzipped: is the ``.tar`` also gzipped, e.g. a ``.tar.gz`` file? skip_if_dir_exists: don't do anything if the destrination directory exists? run_func: function to use to call an external command chdir_via_python: change directory via Python, not via ``tar``. Consider using this via Windows, because Cygwin ``tar`` v1.29 falls over when given a Windows path for its ``-C`` (or ``--directory``) option.
codesearchnet
def _get_new_node_defs(self): node_def_bytes = self.node_file.read() node_defs = [] cur_pos = 0 while cur_pos < len(node_def_bytes): size_bytes = node_def_bytes[cur_pos:cur_pos + 8] size, = struct.unpack('<Q', size_bytes) cur_pos += 8 node_def = node_def_pb2.NodeDef() node_def.ParseFromString(node_def_bytes[cur_pos:cur_pos + size]) ignored_ops = [] if context.run_eager_op_as_function_enabled(): ignored_ops.extend(['_Arg', '_Retval', 'NoOp']) ignored_ops.extend(['_Recv', '_HostRecv']) if node_def.op not in ignored_ops: node_defs.append(node_def) cur_pos += size self.assertEqual(cur_pos, len(node_def_bytes)) return node_defs
Gets new NodeDefs written by the NodeFileWriter. Returns: A list of new NodeDefs in the file written by NodeDefWriter since the last time this method was called.
github-repos
def __init__(self, s3_conn, es_client): self.s3_conn = s3_conn self.es_client = es_client
Base class for Elasticsearch indexers Subclasses implement the index setting definition and transformation of data, The base class handles index management and bulk indexing with ES Args: s3_conn - a boto s3 connection es_client - an Elasticsearch indices client
juraj-google-style
def _wait_for_any_job(provider, job_ids, poll_interval): if (not job_ids): return while True: tasks = provider.lookup_job_tasks({'*'}, job_ids=job_ids) running_jobs = set() failed_jobs = set() for t in tasks: status = t.get_field('task-status') job_id = t.get_field('job-id') if (status in ['FAILURE', 'CANCELED']): failed_jobs.add(job_id) if (status == 'RUNNING'): running_jobs.add(job_id) remaining_jobs = running_jobs.difference(failed_jobs) if (failed_jobs or (len(remaining_jobs) != len(job_ids))): return remaining_jobs SLEEP_FUNCTION(poll_interval)
Waits until any of the listed jobs is not running. In particular, if any of the jobs sees one of its tasks fail, we count the whole job as failing (but do not terminate the remaining tasks ourselves). Args: provider: job service provider job_ids: a list of job IDs (string) to wait for poll_interval: integer seconds to wait between iterations Returns: A set of the jobIDs with still at least one running task.
codesearchnet
def poll_stack(self): logging.info('polling stack status, POLL_INTERVAL={}'.format(POLL_INTERVAL)) time.sleep(POLL_INTERVAL) completed_states = ['CREATE_COMPLETE', 'UPDATE_COMPLETE', 'DELETE_COMPLETE'] stack_name = self._config.get('environment', {}).get('stack_name', None) while True: try: response = self._cloudFormation.describe_stacks(StackName=stack_name) stack = response['Stacks'][0] current_status = stack['StackStatus'] logging.info('current status of {}: {}'.format(stack_name, current_status)) if (current_status.endswith('COMPLETE') or current_status.endswith('FAILED')): if (current_status in completed_states): return True else: return False time.sleep(POLL_INTERVAL) except ClientError as wtf: if (str(wtf).find('does not exist') == (- 1)): logging.error('Exception caught in wait_for_stack(): {}'.format(wtf)) traceback.print_exc(file=sys.stdout) return False else: logging.info('{} is gone'.format(stack_name)) return True except Exception as wtf: logging.error('Exception caught in wait_for_stack(): {}'.format(wtf)) traceback.print_exc(file=sys.stdout) return False
Spin in a loop while the Cloud Formation process either fails or succeeds Args: None Returns: Good or bad; True or False
codesearchnet
def ops_used_by_graph_def(graph_def): name_to_function = {} for fun in graph_def.library.function: name_to_function[fun.signature.name] = fun used_ops = set() functions_to_process = [] def mark_op_as_used(op): if op not in used_ops and op in name_to_function: functions_to_process.append(name_to_function[op]) used_ops.add(op) def process_node(node): mark_op_as_used(node.op) if node.op in ['PartitionedCall', 'StatefulPartitionedCall']: mark_op_as_used(node.attr['f'].func.name) for node in graph_def.node: process_node(node) while functions_to_process: fun = functions_to_process.pop() for node in fun.node_def: process_node(node) return [op for op in used_ops if op not in name_to_function]
Collect the list of ops used by a graph. Does not validate that the ops are all registered. Args: graph_def: A `GraphDef` proto, as from `graph.as_graph_def()`. Returns: A list of strings, each naming an op used by the graph.
github-repos
def Lookup(self, name): if not self._name2item: self._InitCache() return self._name2item[name]
Convenience function: Look up a given name in the global namespace. Tries to find a constant, function or class by this name. Args: name: Name to look up. Returns: A Constant, Function or Class. Raises: KeyError: if this identifier doesn't exist.
github-repos
def get_field_to_observations_map(generator, query_for_tag=''): def increment(stat, event, tag=''): assert (stat in TRACKED_FIELDS) field_to_obs[stat].append(Observation(step=event.step, wall_time=event.wall_time, tag=tag)._asdict()) field_to_obs = dict([(t, []) for t in TRACKED_FIELDS]) for event in generator: if (event.HasField('graph_def') and (not query_for_tag)): increment('graph', event) if (event.HasField('session_log') and (not query_for_tag)): status = event.session_log.status if (status == event_pb2.SessionLog.START): increment('sessionlog:start', event) elif (status == event_pb2.SessionLog.STOP): increment('sessionlog:stop', event) elif (status == event_pb2.SessionLog.CHECKPOINT): increment('sessionlog:checkpoint', event) elif event.HasField('summary'): for value in event.summary.value: if (query_for_tag and (value.tag != query_for_tag)): continue for (proto_name, display_name) in SUMMARY_TYPE_TO_FIELD.items(): if value.HasField(proto_name): increment(display_name, event, value.tag) return field_to_obs
Return a field to `Observations` dict for the event generator. Args: generator: A generator over event protos. query_for_tag: A string that if specified, only create observations for events with this tag name. Returns: A dict mapping keys in `TRACKED_FIELDS` to an `Observation` list.
codesearchnet
def _count_objs(self, obj, path=None, **kwargs): sub_val = None if isinstance(obj, dict): for key, value in obj.items(): if isinstance(value, (list, dict)): kwargs = self._count_objs(value, self.make_path(key, path), **kwargs) else: if self.make_path(key, path) == self.sub_total: sub_val = value kwargs['current'] = self._increment_prop(key, path, **kwargs) elif isinstance(obj, list): for item in obj: if isinstance(item, (list, dict)): kwargs = self._count_objs(item, path, **kwargs) else: if path == self.sub_total: pdb.set_trace() sub_val = item kwargs['current'] = self._increment_prop(path, **kwargs) else: kwargs['current'] = self._increment_prop(path, **kwargs) if path == self.sub_total: pdb.set_trace() sub_val = item if kwargs.get('sub_val') is None: kwargs['sub_val'] = sub_val return kwargs
cycles through the object and adds in count values Args: ----- obj: the object to parse path: the current path kwargs: ------- current: a dictionary of counts for current call sub_val: the value to use for subtotal aggregation
juraj-google-style
def _evolve(self, state, qargs=None): if qargs is not None: return SuperOp(self)._evolve(state, qargs) state = self._format_state(state) if state.shape[0] != self._input_dim: raise QiskitError( "QuantumChannel input dimension is not equal to state dimension." ) if state.ndim == 1 and self._data[1] is None and \ self._data[0].shape[0] return np.dot(self._data[0], state) state = self._format_state(state, density_matrix=True) stine_l, stine_r = self._data if stine_r is None: stine_r = stine_l din, dout = self.dim dtr = stine_l.shape[0] shape = (dout, dtr, din) return np.einsum('iAB,BC,jAC->ij', np.reshape(stine_l, shape), state, np.reshape(np.conjugate(stine_r), shape))
Evolve a quantum state by the QuantumChannel. Args: state (QuantumState): The input statevector or density matrix. qargs (list): a list of QuantumState subsystem positions to apply the operator on. Returns: QuantumState: the output quantum state. Raises: QiskitError: if the operator dimension does not match the specified QuantumState subsystem dimensions.
juraj-google-style
def _handle_azure_exception(): try: (yield) except _AzureHttpError as exception: if (exception.status_code in _ERROR_CODES): raise _ERROR_CODES[exception.status_code](str(exception)) raise
Handles Azure exception and convert to class IO exceptions Raises: OSError subclasses: IO error.
codesearchnet
def _run_using_default_session(operation, feed_dict, graph, session=None) -> None: if session is None: session = stack.get_default_session() if session is None: raise ValueError('Cannot execute operation using `run()`: No default session is registered. Use `with sess.as_default():` or pass an explicit session to `run(session=sess)`') if session.graph is not graph: raise ValueError("Cannot use the default session to execute operation: the operation's graph is different from the session's graph. Pass an explicit session to run(session=sess).") elif session.graph is not graph: raise ValueError("Cannot use the given session to execute operation: the operation's graph is different from the session's graph.") session.run(operation, feed_dict)
Uses the default session to run "operation". Args: operation: The Operation to be run. feed_dict: A dictionary that maps Tensor objects (or tensor names) to lists, numpy ndarrays, TensorProtos, or strings. graph: The graph in which "operation" is defined. session: (Optional) A different session to use to run "operation". Raises: ValueError: If no default session is available; the default session does not have "graph" as its graph; or if "session" is specified, and it does not have "graph" as its graph.
github-repos
def FilterItems(self, filterFn, key=None): with self._mutex: if key: if key in self._buckets: return self._buckets[key].FilterItems(filterFn) else: return 0 else: return sum(bucket.FilterItems(filterFn) for bucket in self._buckets.values())
Filter items within a Reservoir, using a filtering function. Args: filterFn: A function that returns True for the items to be kept. key: An optional bucket key to filter. If not specified, will filter all all buckets. Returns: The number of items removed.
juraj-google-style
def Sample(self, tasks_status): sample_time = time.time() sample = '{0:f}\t{1:d}\t{2:d}\t{3:d}\t{4:d}\t{5:d}\n'.format( sample_time, tasks_status.number_of_queued_tasks, tasks_status.number_of_tasks_processing, tasks_status.number_of_tasks_pending_merge, tasks_status.number_of_abandoned_tasks, tasks_status.total_number_of_tasks) self._WritesString(sample)
Takes a sample of the status of queued tasks for profiling. Args: tasks_status (TasksStatus): status information about tasks.
juraj-google-style
def make_qq_plot(kev, obs, mdl, unit, key_text): import omega as om kev = np.asarray(kev) obs = np.asarray(obs) mdl = np.asarray(mdl) c_obs = np.cumsum(obs) c_mdl = np.cumsum(mdl) mx = max(c_obs[(- 1)], c_mdl[(- 1)]) p = om.RectPlot() p.addXY([0, mx], [0, mx], '1:1') p.addXY(c_mdl, c_obs, key_text) locs = (np.array([0, 0.05, 0.08, 0.11, 0.17, 0.3, 0.4, 0.7, 1]) * (kev.size - 2)) c0 = (mx * 1.05) c1 = (mx * 1.1) for loc in locs: i0 = int(np.floor(loc)) frac = (loc - i0) kevval = (((1 - frac) * kev[i0]) + (frac * kev[(i0 + 1)])) mdlval = (((1 - frac) * c_mdl[i0]) + (frac * c_mdl[(i0 + 1)])) obsval = (((1 - frac) * c_obs[i0]) + (frac * c_obs[(i0 + 1)])) p.addXY([mdlval, mdlval], [c0, c1], ('%.2f keV' % kevval), dsn=2) p.addXY([c0, c1], [obsval, obsval], None, dsn=2) p.setLabels(('Cumulative model ' + unit), ('Cumulative data ' + unit)) p.defaultKeyOverlay.vAlign = 0.3 return p
Make a quantile-quantile plot comparing events and a model. *kev* A 1D, sorted array of event energy bins measured in keV. *obs* A 1D array giving the number or rate of events in each bin. *mdl* A 1D array giving the modeled number or rate of events in each bin. *unit* Text describing the unit in which *obs* and *mdl* are measured; will be shown on the plot axes. *key_text* Text describing the quantile-quantile comparison quantity; will be shown on the plot legend. Returns: An :class:`omega.RectPlot` instance. *TODO*: nothing about this is Sherpa-specific. Same goes for some of the plotting routines in :mod:`pkwit.environments.casa.data`; might be reasonable to add a submodule for generic X-ray-y plotting routines.
codesearchnet
def parse_unique_urlencoded(content): urlencoded_params = urllib.parse.parse_qs(content) params = {} for (key, value) in six.iteritems(urlencoded_params): if (len(value) != 1): msg = ('URL-encoded content contains a repeated value:%s -> %s' % (key, ', '.join(value))) raise ValueError(msg) params[key] = value[0] return params
Parses unique key-value parameters from urlencoded content. Args: content: string, URL-encoded key-value pairs. Returns: dict, The key-value pairs from ``content``. Raises: ValueError: if one of the keys is repeated.
codesearchnet
def batch_workflow_status(self, batch_workflow_id): self.logger.debug('Get status of batch workflow: ' + batch_workflow_id) url = '%(base_url)s/batch_workflows/%(batch_id)s' % { 'base_url': self.base_url, 'batch_id': batch_workflow_id } r = self.gbdx_connection.get(url) return r.json()
Checks GBDX batch workflow status. Args: batch workflow_id (str): Batch workflow id. Returns: Batch Workflow status (str).
juraj-google-style
def get_user_groups(self, user): self.project_service.set_auth(self._token_project) return self.project_service.get_user_groups(user)
Get user's group memberships. Args: user (string): User name. Returns: (list): User's groups. Raises: requests.HTTPError on failure.
juraj-google-style
def __getattr__(self, name): self._conn.send((self._ACCESS, name)) return self._receive()
Request an attribute from the environment. Note that this involves communication with the external process, so it can be slow. Args: name: Attribute to access. Returns: Value of the attribute.
juraj-google-style
def get_mnemonics(self, mnemonics, uwis=None, alias=None): uwis = (uwis or self.uwis) wells = [w for w in self.__list if (w.uwi in uwis)] all_wells = [] for w in wells: this_well = [w.get_mnemonic(m, alias=alias) for m in mnemonics] all_wells.append(this_well) return all_wells
Looks at all the wells in turn and returns the highest thing in the alias table. Args: mnemonics (list) alias (dict) Returns: list. A list of lists.
codesearchnet
def checkDeterminism(self, dataset_fn, expect_determinism, expected_elements): if expect_determinism: dataset = dataset_fn(100) actual = self.getDatasetOutput(dataset) self.assertAllEqual(expected_elements, actual) return for delay_ms in [10, 100, 1000, 20000, 100000]: dataset = dataset_fn(delay_ms) actual = self.getDatasetOutput(dataset) self.assertCountEqual(expected_elements, actual) for i in range(len(actual)): if actual[i] != expected_elements[i]: return self.fail('Failed to observe nondeterministic ordering')
Tests whether a dataset produces its elements deterministically. `dataset_fn` takes a delay_ms argument, which tells it how long to delay production of the first dataset element. This gives us a way to trigger out-of-order production of dataset elements. Args: dataset_fn: A function taking a delay_ms argument. expect_determinism: Whether to expect deterministic ordering. expected_elements: The elements expected to be produced by the dataset, assuming the dataset produces elements in deterministic order.
github-repos
def as_object(obj): LOGGER.debug('as_object(%s)', obj) if isinstance(obj, datetime.date): return as_date(obj) elif hasattr(obj, '__dict__'): out = {k: obj.__dict__[k] for k in obj.__dict__ if (not k.startswith('_'))} for (k, v) in ((p, getattr(obj, p)) for (p, _) in inspect.getmembers(obj.__class__, (lambda x: isinstance(x, property)))): out[k] = v return out
Return a JSON serializable type for ``o``. Args: obj (:py:class:`object`): the object to be serialized. Raises: :py:class:`AttributeError`: when ``o`` is not a Python object. Returns: (dict): JSON serializable type for the given object.
codesearchnet
def compareBulk(self, retina_name, body): resourcePath = '/compare/bulk' method = 'POST' queryParams = {} headerParams = {'Accept': 'Application/json', 'Content-Type': 'application/json'} postData = None queryParams['retina_name'] = retina_name postData = body response = self.apiClient._callAPI(resourcePath, method, queryParams, postData, headerParams) return [metric.Metric(**r) for r in response.json()]
Bulk compare Args: retina_name, str: The retina name (required) body, ExpressionOperation: Bulk comparison of elements 2 by 2 (required) Returns: Array[Metric]
juraj-google-style
def add_report(self, specification_name, report): self._reports[specification_name] = report self._total = self._total + report.testsRun self._failures = self._failures + len(report.failures) self._errors = self._errors + len(report.errors) self._success = self._total - self._failures - self._errors
Adds a given report with the given specification_name as key to the reports list and computes the number of success, failures and errors Args: specification_name: string representing the specification (with ".spec") report: The
juraj-google-style
def _extend_before(self, other): other_num_lines = other.num_lines() self._lines = other.lines + self._lines new_font_attr_segs = {} for line_index in self.font_attr_segs: new_font_attr_segs[other_num_lines + line_index] = self.font_attr_segs[line_index] new_font_attr_segs.update(other.font_attr_segs) self._font_attr_segs = new_font_attr_segs new_annotations = {} for key in self._annotations: if isinstance(key, int): new_annotations[other_num_lines + key] = self.annotations[key] else: new_annotations[key] = other.annotations[key] new_annotations.update(other.annotations) self._annotations = new_annotations
Add another RichTextLines object to the front. Args: other: (RichTextLines) The other object to add to the front to this object.
github-repos
def join(self, timeout_s=None): if (not self.thread): return False self.thread.join(timeout_s) return self.running
Joins blocking until the interval ends or until timeout is reached. Args: timeout_s: The time in seconds to wait, defaults to forever. Returns: True if the interval is still running and we reached the timeout.
codesearchnet
def add_to_dumper(dumper: Type, classes: List[Type]) -> None: if not isinstance(classes, list): classes = [classes] for class_ in classes: if issubclass(class_, enum.Enum): dumper.add_representer(class_, EnumRepresenter(class_)) elif issubclass(class_, str) or issubclass(class_, UserString): dumper.add_representer(class_, UserStringRepresenter(class_)) else: dumper.add_representer(class_, Representer(class_))
Register user-defined classes with the Dumper. This enables the Dumper to write objects of your classes to a \ YAML file. Note that all the arguments are types, not instances! Args: dumper: Your dumper class(!), derived from yatiml.Dumper classes: One or more classes to add.
juraj-google-style
def _forward_backward_log(state_trans_log_probs, initial_state_log_probs, final_state_log_probs, observed_log_probs, sequence_length): if state_trans_log_probs.shape.ndims == 2: perm = [1, 0] elif state_trans_log_probs.shape.ndims == 3: perm = [0, 2, 1] else: raise ValueError(f'Rank of argument `state_trans_log_probs` must be known and equal to 2 or 3. Received state_trans_log_probs={state_trans_log_probs} of rank {state_trans_log_probs.shape.ndims}') bwd_state_trans_log_probs = array_ops.transpose(state_trans_log_probs, perm) batch_size = _get_dim(observed_log_probs, 1) def _forward(state_log_prob, obs_log_prob): state_log_prob = array_ops.expand_dims(state_log_prob, axis=1) state_log_prob += state_trans_log_probs state_log_prob = math_ops.reduce_logsumexp(state_log_prob, axis=-1) state_log_prob += obs_log_prob log_prob_sum = math_ops.reduce_logsumexp(state_log_prob, axis=-1, keepdims=True) state_log_prob -= log_prob_sum return state_log_prob fwd = _scan(_forward, observed_log_probs, initial_state_log_probs, inclusive=True) def _backward(accs, elems): state_log_prob, cum_log_sum = accs obs_log_prob, mask = elems state_log_prob += obs_log_prob state_log_prob = array_ops.expand_dims(state_log_prob, axis=1) state_log_prob += bwd_state_trans_log_probs state_log_prob = math_ops.reduce_logsumexp(state_log_prob, axis=-1) log_prob_sum = math_ops.reduce_logsumexp(state_log_prob, axis=-1, keepdims=True) state_log_prob -= log_prob_sum cum_log_sum += array_ops.squeeze(log_prob_sum, axis=[-1]) * mask batched_mask = array_ops.expand_dims(mask, axis=1) out = state_log_prob * batched_mask out += final_state_log_probs * (1.0 - batched_mask) return (out, cum_log_sum) zero_log_sum = array_ops.zeros([batch_size]) maxlen = _get_dim(observed_log_probs, 0) mask = array_ops.sequence_mask(sequence_length, maxlen, dtypes.float32) mask = array_ops.transpose(mask, perm=[1, 0]) bwd, cum_log_sum = _scan(_backward, (observed_log_probs, mask), (final_state_log_probs, zero_log_sum), reverse=True, inclusive=True) fwd_bwd_log_probs = fwd[1:] + bwd[1:] fwd_bwd_log_probs_sum = math_ops.reduce_logsumexp(fwd_bwd_log_probs, axis=2, keepdims=True) fwd_bwd_log_probs -= fwd_bwd_log_probs_sum fwd_bwd_log_probs += math_ops.log(array_ops.expand_dims(mask, axis=2)) log_likelihood = bwd[0, :, 0] + cum_log_sum[0] return (fwd_bwd_log_probs, log_likelihood)
Forward-backward algorithm computed in log domain. Args: state_trans_log_probs: tensor of shape [states, states] or if different transition matrix per batch [batch_size, states, states] initial_state_log_probs: tensor of shape [batch_size, states] final_state_log_probs: tensor of shape [batch_size, states] observed_log_probs: tensor of shape [frames, batch_size, states] sequence_length: tensor of shape [batch_size] Returns: forward backward log probabilities: tensor of shape [frames, batch, states] log_likelihood: tensor of shape [batch_size] Raises: ValueError: If state_trans_log_probs has unknown or incorrect rank.
github-repos
def get_blocks(self, block_structure=None): if (block_structure is None): block_structure = self.block_structure try: return self._get_blocks(block_structure) except IncompatibleBlockStructures as e: raise e
For a reducible circuit, get a sequence of subblocks that when concatenated again yield the original circuit. The block structure given has to be compatible with the circuits actual block structure, i.e. it can only be more coarse-grained. Args: block_structure (tuple): The block structure according to which the subblocks are generated (default = ``None``, corresponds to the circuit's own block structure) Returns: A tuple of subblocks that the circuit consists of. Raises: .IncompatibleBlockStructures
codesearchnet
def quantile_for_list_of_values(self, **kwargs): if self._is_transposed: kwargs['axis'] = (kwargs.get('axis', 0) ^ 1) return self.transpose().quantile_for_list_of_values(**kwargs) axis = kwargs.get('axis', 0) q = kwargs.get('q') numeric_only = kwargs.get('numeric_only', True) assert isinstance(q, (pandas.Series, np.ndarray, pandas.Index, list)) if numeric_only: new_columns = self.numeric_columns() else: new_columns = [col for (col, dtype) in zip(self.columns, self.dtypes) if (is_numeric_dtype(dtype) or is_datetime_or_timedelta_dtype(dtype))] if axis: nonnumeric = [col for (col, dtype) in zip(self.columns, self.dtypes) if (not is_numeric_dtype(dtype))] query_compiler = self.drop(columns=nonnumeric) new_columns = query_compiler.index else: query_compiler = self def quantile_builder(df, **kwargs): result = df.quantile(**kwargs) return (result.T if (axis == 1) else result) func = query_compiler._prepare_method(quantile_builder, **kwargs) q_index = pandas.Float64Index(q) new_data = query_compiler._map_across_full_axis(axis, func) if (axis == 1): q_index = new_columns new_columns = pandas.Float64Index(q) result = self.__constructor__(new_data, q_index, new_columns) return (result.transpose() if (axis == 1) else result)
Returns Manager containing quantiles along an axis for numeric columns. Returns: DataManager containing quantiles of original DataManager along an axis.
codesearchnet
def find_dependencies(self, dataset_keys, **dfilter): unknown_datasets = set() for key in dataset_keys.copy(): (n, unknowns) = self._find_dependencies(key, **dfilter) dataset_keys.discard(key) if (n is not None): dataset_keys.add(n.name) if unknowns: unknown_datasets.update(unknowns) continue self.add_child(self, n) return unknown_datasets
Create the dependency tree. Args: dataset_keys (iterable): Strings or DatasetIDs to find dependencies for **dfilter (dict): Additional filter parameters. See `satpy.readers.get_key` for more details. Returns: (Node, set): Root node of the dependency tree and a set of unknown datasets
codesearchnet
def get(self) -> Union[(Event, None)]: message = self._queue.get_message() if (message and (message['type'] == 'message')): event_id = DB.get_event(self._pub_key, self._processed_key) event_data_str = DB.get_hash_value(self._data_key, event_id) event_dict = ast.literal_eval(event_data_str) event_dict['id'] = event_id event_dict['subscriber'] = self._subscriber return Event.from_config(event_dict) return None
Get the latest event from the queue. Call this method to query the queue for the latest event. If no event has been published None is returned. Returns: Event or None
codesearchnet
def GetTSKFileByPathSpec(self, path_spec): inode = getattr(path_spec, 'inode', None) location = getattr(path_spec, 'location', None) if inode is not None: tsk_file = self._tsk_file_system.open_meta(inode=inode) elif location is not None: tsk_file = self._tsk_file_system.open(location) else: raise errors.PathSpecError( 'Path specification missing inode and location.') return tsk_file
Retrieves the SleuthKit file object for a path specification. Args: path_spec (PathSpec): path specification. Returns: pytsk3.File: TSK file. Raises: PathSpecError: if the path specification is missing inode and location.
juraj-google-style
def pdb_downloader_and_metadata(self, outdir=None, pdb_file_type=None, force_rerun=False): if (not outdir): outdir = self.structure_dir if (not outdir): raise ValueError('Output directory must be specified') if (not pdb_file_type): pdb_file_type = self.pdb_file_type if (self.num_structures_experimental == 0): log.debug('{}: no structures available - nothing will be downloaded'.format(self.id)) return downloaded_pdb_ids = [] for s in self.get_experimental_structures(): log.debug('{}: downloading structure file from the PDB...'.format(s.id)) s.download_structure_file(outdir=outdir, file_type=pdb_file_type, force_rerun=force_rerun, load_header_metadata=True) downloaded_pdb_ids.append(s.id) return downloaded_pdb_ids
Download ALL mapped experimental structures to the protein structures directory. Args: outdir (str): Path to output directory, if protein structures directory not set or other output directory is desired pdb_file_type (str): Type of PDB file to download, if not already set or other format is desired force_rerun (bool): If files should be re-downloaded if they already exist Returns: list: List of PDB IDs that were downloaded Todo: * Parse mmtf or PDB file for header information, rather than always getting the cif file for header info
codesearchnet
def confirmdir(self, target_directory): try: directory = self.resolve(target_directory) except IOError as exc: self.raise_os_error(exc.errno, target_directory) if not directory.st_mode & S_IFDIR: if self.is_windows_fs and IS_PY2: error_nr = errno.EINVAL else: error_nr = errno.ENOTDIR self.raise_os_error(error_nr, target_directory, 267) return directory
Test that the target is actually a directory, raising OSError if not. Args: target_directory: Path to the target directory within the fake filesystem. Returns: The FakeDirectory object corresponding to target_directory. Raises: OSError: if the target is not a directory.
juraj-google-style
def args_to_dict(args): arguments = dict() for arg in args.split(','): (key, value) = arg.split('=') arguments[key] = value return arguments
Convert command line arguments in a comma separated string to a dictionary Args: args (str): Command line arguments Returns: DictUpperBound[str,str]: Dictionary of arguments
codesearchnet
def _compile_expression(self, expr: Expression, scope: Dict[str, TensorFluent], batch_size: Optional[int] = None, noise: Optional[List[tf.Tensor]] = None) -> TensorFluent: etype2compiler = { 'constant': self._compile_constant_expression, 'pvar': self._compile_pvariable_expression, 'randomvar': self._compile_random_variable_expression, 'arithmetic': self._compile_arithmetic_expression, 'boolean': self._compile_boolean_expression, 'relational': self._compile_relational_expression, 'func': self._compile_function_expression, 'control': self._compile_control_flow_expression, 'aggregation': self._compile_aggregation_expression } etype = expr.etype if etype[0] not in etype2compiler: raise ValueError('Expression type unknown: {}'.format(etype)) with self.graph.as_default(): compiler_fn = etype2compiler[etype[0]] return compiler_fn(expr, scope, batch_size, noise)
Compile the expression `expr` into a TensorFluent in the given `scope` with optional batch size. Args: expr (:obj:`rddl2tf.expr.Expression`): A RDDL expression. scope (Dict[str, :obj:`rddl2tf.fluent.TensorFluent`]): A fluent scope. batch_size (Optional[size]): The batch size. Returns: :obj:`rddl2tf.fluent.TensorFluent`: The compiled TensorFluent.
juraj-google-style
def returns_collection(self) -> bool: return self.cardinality == Cardinality.COLLECTION or self.cardinality == Cardinality.CHILD_OF_COLLECTION
Indicates if the data type will evaluate to a collection. Returns: True in the following circumstances - The data type represents an element with cardinality greater than one. - The data type represents an element with a cardinality less than or equal to one, but that element is a child of a collection and will evaluate to a collection. For example, the path Patient.name.use will return a collection, despite 'use' being a scalar, because it is a child of the collection, 'name.' False if the data type represents a scalar element whose parents are all also scalars.
github-repos
def generate_entry_label(entry): if isinstance(entry, MultiEntry): return ' + '.join([latexify_ion(e.name) for e in entry.entry_list]) else: return latexify_ion(latexify(entry.name))
Generates a label for the pourbaix plotter Args: entry (PourbaixEntry or MultiEntry): entry to get a label for
codesearchnet
def level_cond_prior(prior_dist, z, latent, hparams, state): latent_dist_encoder = hparams.get('latent_dist_encoder', None) latent_skip = hparams.get('latent_skip', False) if (latent_dist_encoder == 'pointwise'): last_latent = latent merge_std = hparams.level_scale latent_shape = common_layers.shape_list(latent) z_shape = common_layers.shape_list(z) if (latent_shape != z_shape): raise ValueError(('Expected latent_shape to be %s, got %s' % (latent_shape, z_shape))) latent_dist = scale_gaussian_prior('latent_prior', latent, logscale_factor=3.0) cond_dist = merge_level_and_latent_dist(prior_dist, latent_dist, merge_std=merge_std) elif (latent_dist_encoder == 'conv_net'): output_channels = common_layers.shape_list(z)[(- 1)] last_latent = latent[(- 1)] latent_stack = tf.concat(([prior_dist.loc] + latent), axis=(- 1)) latent_stack = noise_op(latent_stack, hparams) cond_dist = latent_to_dist('latent_stack', latent_stack, hparams=hparams, output_channels=output_channels) elif (latent_dist_encoder == 'conv3d_net'): last_latent = latent[(- 1)] output_channels = common_layers.shape_list(last_latent)[(- 1)] num_steps = len(latent) cond_latents = tf.stack(latent, axis=1) prev_latents = tf.tile(tf.expand_dims(prior_dist.loc, axis=1), [1, num_steps, 1, 1, 1]) cond_latents = tf.concat((cond_latents, prev_latents), axis=(- 1)) cond_latents = noise_op(cond_latents, hparams) cond_dist = temporal_latent_to_dist('latent_stack', cond_latents, hparams, output_channels=output_channels) elif (latent_dist_encoder == 'conv_lstm'): last_latent = latent output_channels = common_layers.shape_list(z)[(- 1)] latent_stack = tf.concat((prior_dist.loc, latent), axis=(- 1)) latent_stack = noise_op(latent_stack, hparams) (_, state) = common_video.conv_lstm_2d(latent_stack, state, hparams.latent_encoder_width, kernel_size=3, name='conv_lstm') cond_dist = single_conv_dist('state_to_dist', state.h, output_channels=output_channels) if latent_skip: new_mean = (cond_dist.loc + last_latent) cond_dist = tfp.distributions.Normal(new_mean, cond_dist.scale) return (cond_dist.loc, cond_dist.scale, state)
Returns a conditional prior for each level. Args: prior_dist: Distribution conditioned on the previous levels. z: Tensor, output of the previous levels. latent: Tensor or a list of tensors to condition the latent_distribution. hparams: next_frame_glow hparams. state: Current LSTM state. Used only if hparams.latent_dist_encoder is a lstm. Raises: ValueError: If hparams.latent_dist_encoder is "pointwise" and if the shape of latent is different from z.
codesearchnet
def credits(self, **kwargs): path = self._get_series_id_season_number_episode_number_path('credits') response = self._GET(path, kwargs) self._set_attrs_to_values(response) return response
Get the TV episode credits by combination of season and episode number. Returns: A dict respresentation of the JSON returned from the API.
codesearchnet
def save_summaries(frames, keys, selected_summaries, batch_dir, batch_name): if (not frames): logger.info('Could save summaries - no summaries to save!') logger.info('You have no frames - aborting') return None if (not keys): logger.info('Could save summaries - no summaries to save!') logger.info('You have no keys - aborting') return None selected_summaries_dict = create_selected_summaries_dict(selected_summaries) summary_df = pd.concat(frames, keys=keys, axis=1) for (key, value) in selected_summaries_dict.items(): _summary_file_name = os.path.join(batch_dir, ('summary_%s_%s.csv' % (key, batch_name))) _summary_df = summary_df.iloc[(:, (summary_df.columns.get_level_values(1) == value))] _header = _summary_df.columns _summary_df.to_csv(_summary_file_name, sep=';') logger.info(('saved summary (%s) to:\n %s' % (key, _summary_file_name))) logger.info('finished saving summaries') return summary_df
Writes the summaries to csv-files Args: frames: list of ``cellpy`` summary DataFrames keys: list of indexes (typically run-names) for the different runs selected_summaries: list defining which summary data to save batch_dir: directory to save to batch_name: the batch name (will be used for making the file-name(s)) Returns: a pandas DataFrame with your selected summaries.
codesearchnet
def DeleteRecords(cls, ids, token): with data_store.DB.GetMutationPool() as mutation_pool: mutation_pool.QueueDeleteRecords(ids)
Delete records identified by ids. Args: ids: A list of ids provided by ClaimRecords. token: The database access token to delete with. Raises: LockError: If the queue is not locked.
codesearchnet
def __str__(self): text = super(Baken, self).__format__('dms') if self._locator: text = '%s (%s)' % (self._locator, text) return text
Pretty printed location string. Args: mode (str): Coordinate formatting system to use Returns: str: Human readable string representation of ``Baken`` object
juraj-google-style
def __init__(self, user_pipeline: beam.Pipeline, pcolls: Optional[Set[beam.pvalue.PCollection]]=None): assert not pcolls or all((pcoll.pipeline is user_pipeline for pcoll in pcolls)), 'All %s need to belong to %s' % (pcolls, user_pipeline) self._user_pipeline = user_pipeline self._pcolls = pcolls self._cache_manager = ie.current_env().get_cache_manager(self._user_pipeline, create_if_absent=True) if background_caching_job.has_source_to_cache(self._user_pipeline): self._cache_manager = ie.current_env().get_cache_manager(self._user_pipeline) _, self._context = self._user_pipeline.to_runner_api(return_context=True) self._context.component_id_map = copy.copy(self._user_pipeline.component_id_map) self._cacheables = self.cacheables()
Initializes a pipelilne for augmenting interactive flavor. Args: user_pipeline: a beam.Pipeline instance defined by the user. pcolls: cacheable pcolls to be computed/retrieved. If the set is empty, all intermediate pcolls assigned to variables are applicable.
github-repos
def start(self, extra_args='', tag=''): if self.started: return utils.create_dir(self.log_path) if tag: tag = tag + ',' out_file_name = 'IPerfServer,{},{}{}.log'.format(self.port, tag, len(self.log_files)) full_out_path = os.path.join(self.log_path, out_file_name) cmd = '%s %s > %s' % (self.iperf_str, extra_args, full_out_path) self.iperf_process = utils.start_standing_subprocess(cmd, shell=True) self.log_files.append(full_out_path) self.started = True
Starts iperf server on specified port. Args: extra_args: A string representing extra arguments to start iperf server with. tag: Appended to log file name to identify logs from different iperf runs.
github-repos
def _bits_in_condition(self, cond): all_bits = [] if (cond is not None): all_bits.extend([(cond[0], j) for j in range(self.cregs[cond[0].name].size)]) return all_bits
Return a list of bits in the given condition. Args: cond (tuple or None): optional condition (ClassicalRegister, int) Returns: list[(ClassicalRegister, idx)]: list of bits
codesearchnet
def heightmap_count_cells(hm: np.ndarray, mi: float, ma: float) -> int: return int(lib.TCOD_heightmap_count_cells(_heightmap_cdata(hm), mi, ma))
Return the number of map cells which value is between ``mi`` and ``ma``. Args: hm (numpy.ndarray): A numpy.ndarray formatted for heightmap functions. mi (float): The lower bound. ma (float): The upper bound. Returns: int: The count of values which fall between ``mi`` and ``ma``. .. deprecated:: 8.1 Can be replaced by an equivalent NumPy function such as: ``numpy.count_nonzero((mi <= hm) & (hm < ma))``
juraj-google-style
def value_loss_given_predictions(value_prediction, rewards, reward_mask, gamma=0.99): (B, T) = rewards.shape assert ((B, T) == reward_mask.shape) assert ((B, (T + 1), 1) == value_prediction.shape) value_prediction = np.squeeze(value_prediction, axis=2) value_prediction = (value_prediction[(:, :(- 1))] * reward_mask) r2g = rewards_to_go(rewards, reward_mask, gamma=gamma) loss = ((value_prediction - r2g) ** 2) return (np.sum(loss) / np.sum(reward_mask))
Computes the value loss given the prediction of the value function. Args: value_prediction: np.ndarray of shape (B, T+1, 1) rewards: np.ndarray of shape (B, T) of rewards. reward_mask: np.ndarray of shape (B, T), the mask over rewards. gamma: float, discount factor. Returns: The average L2 value loss, averaged over instances where reward_mask is 1.
codesearchnet
def _checkResponseWriteData(payload, writedata): _checkString(payload, minlength=4, description='payload') _checkString(writedata, minlength=2, maxlength=2, description='writedata') BYTERANGE_FOR_WRITEDATA = slice(2, 4) receivedWritedata = payload[BYTERANGE_FOR_WRITEDATA] if receivedWritedata != writedata: raise ValueError('Wrong write data in the response: {0!r}, but commanded is {1!r}. The data payload is: {2!r}'.format( \ receivedWritedata, writedata, payload))
Check that the write data as given in the response is correct. The bytes 2 and 3 (zero based counting) in the payload holds the write data. Args: * payload (string): The payload * writedata (string): The data to write, length should be 2 bytes. Raises: TypeError, ValueError
juraj-google-style
def __gt__(self, other): if other.__class__ is not self.__class__: return NotImplemented return not self <= other
Test if self is greater than an object of the same class. Args: other: The object to compare against. Returns: True if self is greater than other; else False. Raises: TypeError: Raised if the objects are not of the same class.
juraj-google-style
def menu(title, options, cancel_label="Cancel", flag_allow_empty=False, flag_cancel=True, ch='.'): num_options, flag_ok = len(options), 0 option = None min_allowed = 0 if flag_cancel else 1 while True: print("") for line in format_box(title, ch): print(" "+line) for i, s in enumerate(options): print((" {0:d} - {1!s}".format(i+1, s))) if flag_cancel: print((" 0 - << (*{0!s}*)".format(cancel_label))) try: s_option = input('? ') except KeyboardInterrupt: raise except: print("") n_try = 0 while True: if n_try >= 10: print('You are messing up!') break if len(s_option) == 0 and flag_allow_empty: flag_ok = True break try: option = int(s_option) if min_allowed <= option <= num_options: flag_ok = True break except ValueError: print("Invalid integer value!") print(("Invalid option, range is [{0:d}, {1:d}]!".format(0 if flag_cancel else 1, num_options))) n_try += 1 s_option = input("? ") if flag_ok: break return option
Text menu. Arguments: title -- menu title, to appear at the top options -- sequence of strings cancel_label='Cancel' -- label to show at last "zero" option flag_allow_empty=0 -- Whether to allow empty option flag_cancel=True -- whether there is a "0 - Cancel" option ch="." -- character to use to draw frame around title Returns: option -- an integer: None; 0-Back/Cancel/etc; 1, 2, ... Adapted from irootlab menu.m
juraj-google-style
def category(msg): if ((common.typecode(msg) < 1) or (common.typecode(msg) > 4)): raise RuntimeError(('%s: Not a identification message' % msg)) msgbin = common.hex2bin(msg) return common.bin2int(msgbin[5:8])
Aircraft category number Args: msg (string): 28 bytes hexadecimal message string Returns: int: category number
codesearchnet
def _iterdump(self, file_name, headers=None): if headers is None: headers = ["Discharge_Capacity", "Charge_Capacity"] step_txt = self.headers_normal['step_index_txt'] point_txt = self.headers_normal['data_point_txt'] cycle_txt = self.headers_normal['cycle_index_txt'] self.logger.debug("iterating through file: %s" % file_name) if not os.path.isfile(file_name): print("Missing file_\n %s" % file_name) filesize = os.path.getsize(file_name) hfilesize = humanize_bytes(filesize) txt = "Filesize: %i (%s)" % (filesize, hfilesize) self.logger.info(txt) table_name_global = TABLE_NAMES["global"] table_name_stats = TABLE_NAMES["statistic"] table_name_normal = TABLE_NAMES["normal"] temp_dir = tempfile.gettempdir() temp_filename = os.path.join(temp_dir, os.path.basename(file_name)) shutil.copy2(file_name, temp_dir) constr = self.__get_res_connector(temp_filename) if use_ado: conn = dbloader.connect(constr) else: conn = dbloader.connect(constr, autocommit=True) self.logger.debug("tmp file: %s" % temp_filename) self.logger.debug("constr str: %s" % constr) self.logger.debug("reading global data table") sql = "select * from %s" % table_name_global global_data_df = pd.read_sql_query(sql, conn) self.logger.debug("sql statement: %s" % sql) tests = global_data_df[self.headers_normal['test_id_txt']] number_of_sets = len(tests) self.logger.debug("number of datasets: %i" % number_of_sets) self.logger.debug("only selecting first test") test_no = 0 self.logger.debug("setting data for test number %i" % test_no) loaded_from = file_name start_datetime = global_data_df[self.headers_global['start_datetime_txt']][test_no] test_ID = int(global_data_df[self.headers_normal['test_id_txt']][test_no]) test_name = global_data_df[self.headers_global['test_name_txt']][test_no] self.logger.debug("reading raw-data") columns = ["Data_Point", "Step_Index", "Cycle_Index"] columns.extend(headers) columns_txt = ", ".join(["%s"] * len(columns)) % tuple(columns) sql_1 = "select %s " % columns_txt sql_2 = "from %s " % table_name_normal sql_3 = "where %s=%s " % (self.headers_normal['test_id_txt'], test_ID) sql_5 = "order by %s" % self.headers_normal['data_point_txt'] import time info_list = [] info_header = ["cycle", "row_count", "start_point", "end_point"] info_header.extend(headers) self.logger.info(" ".join(info_header)) self.logger.info("-------------------------------------------------") for cycle_number in range(1, 2000): t1 = time.time() self.logger.debug("picking cycle %i" % cycle_number) sql_4 = "AND %s=%i " % (cycle_txt, cycle_number) sql = sql_1 + sql_2 + sql_3 + sql_4 + sql_5 self.logger.debug("sql statement: %s" % sql) normal_df = pd.read_sql_query(sql, conn) t2 = time.time() dt = t2 - t1 self.logger.debug("time: %f" % dt) if normal_df.empty: self.logger.debug("reached the end") break row_count, _ = normal_df.shape start_point = normal_df[point_txt].min() end_point = normal_df[point_txt].max() last = normal_df.iloc[-1, :] step_list = [cycle_number, row_count, start_point, end_point] step_list.extend([last[x] for x in headers]) info_list.append(step_list) self._clean_up_loadres(None, conn, temp_filename) info_dict = pd.DataFrame(info_list, columns=info_header) return info_dict
Function for dumping values from a file. Should only be used by developers. Args: file_name: name of the file headers: list of headers to pick default: ["Discharge_Capacity", "Charge_Capacity"] Returns: pandas.DataFrame
juraj-google-style
def installed_capabilities(image=None): if (salt.utils.versions.version_cmp(__grains__['osversion'], '10') == (- 1)): raise NotImplementedError('`installed_capabilities` is not available on this version of Windows: {0}'.format(__grains__['osversion'])) return _get_components('Capability Identity', 'Capabilities', 'Installed')
List the capabilities installed on the system Args: image (Optional[str]): The path to the root directory of an offline Windows image. If `None` is passed, the running operating system is targeted. Default is None. Raises: NotImplementedError: For all versions of Windows that are not Windows 10 and later. Server editions of Windows use ServerManager instead. Returns: list: A list of installed capabilities CLI Example: .. code-block:: bash salt '*' dism.installed_capabilities
codesearchnet
def get_existing_pipelines(self): url = '{0}/applications/{1}/pipelineConfigs'.format(API_URL, self.app_name) resp = requests.get(url, verify=GATE_CA_BUNDLE, cert=GATE_CLIENT_CERT) assert resp.ok, 'Failed to lookup pipelines for {0}: {1}'.format(self.app_name, resp.text) return resp.json()
Get existing pipeline configs for specific application. Returns: str: Pipeline config json
codesearchnet
def get_lowest_values(self, count): count = int(count) assert (count <= len(self._values)), 'count must be <= to Data Collection len. {} > {}.'.format(count, len(self._values)) assert (count > 0), 'count must be greater than 0. Got {}.'.format(count) lowest_values = sorted(self._values)[0:count] lowest_values_index = sorted(list(xrange(len(self._values))), key=(lambda k: self._values[k]))[0:count] return (lowest_values, lowest_values_index)
Get a list of the the x lowest values of the Data Collection and their indices. This is useful for situations where one needs to know the times of the year when the smallest values of a data collection occur. Args: count: Integer representing the number of lowest values to account for. Returns: highest_values: The n lowest values in data list, ordered from lowest to lowest. lowest_values_index: Indicies of the n lowest values in data list, ordered from lowest to lowest.
codesearchnet
def GetRawDevice(path): path = CanonicalPathToLocalPath(path) try: path = win32file.GetLongPathName(path) except pywintypes.error: pass try: mount_point = win32file.GetVolumePathName(path) except pywintypes.error as details: logging.info("path not found. %s", details) raise IOError("No mountpoint for path: %s" % path) if not path.startswith(mount_point): stripped_mp = mount_point.rstrip("\\") if not path.startswith(stripped_mp): raise IOError("path %s is not mounted under %s" % (path, mount_point)) corrected_path = LocalPathToCanonicalPath(path[len(mount_point):]) corrected_path = utils.NormalizePath(corrected_path) volume = win32file.GetVolumeNameForVolumeMountPoint(mount_point).rstrip("\\") volume = LocalPathToCanonicalPath(volume) result = rdf_paths.PathSpec( path=volume, pathtype=rdf_paths.PathSpec.PathType.OS, mount_point=mount_point.rstrip("\\")) return result, corrected_path
Resolves the raw device that contains the path. Args: path: A path to examine. Returns: A pathspec to read the raw device as well as the modified path to read within the raw device. This is usually the path without the mount point. Raises: IOError: if the path does not exist or some unexpected behaviour occurs.
juraj-google-style
def convert_frame_change(self, shift, instruction): command_dict = { 'name': 'fc', 't0': shift+instruction.start_time, 'ch': instruction.channels[0].name, 'phase': instruction.command.phase } return self._qobj_model(**command_dict)
Return converted `FrameChangeInstruction`. Args: shift(int): Offset time. instruction (FrameChangeInstruction): frame change instruction. Returns: dict: Dictionary of required parameters.
juraj-google-style
def potential_purviews(self, direction, mechanism, purviews=False): if purviews is False: purviews = self.network.potential_purviews(direction, mechanism) purviews = [purview for purview in purviews if set(purview).issubset(self.node_indices)] return irreducible_purviews(self.cm, direction, mechanism, purviews)
Return all purviews that could belong to the |MIC|/|MIE|. Filters out trivially-reducible purviews. Args: direction (Direction): |CAUSE| or |EFFECT|. mechanism (tuple[int]): The mechanism of interest. Keyword Args: purviews (tuple[int]): Optional subset of purviews of interest.
juraj-google-style
def _make_pr_entry(self, step, wall_time, data_array, thresholds): true_positives = [int(v) for v in data_array[metadata.TRUE_POSITIVES_INDEX]] false_positives = [int(v) for v in data_array[metadata.FALSE_POSITIVES_INDEX]] tp_index = metadata.TRUE_POSITIVES_INDEX fp_index = metadata.FALSE_POSITIVES_INDEX positives = data_array[([tp_index, fp_index], :)].astype(int).sum(axis=0) end_index_inclusive = (len(positives) - 1) while ((end_index_inclusive > 0) and (positives[end_index_inclusive] == 0)): end_index_inclusive -= 1 end_index = (end_index_inclusive + 1) return {'wall_time': wall_time, 'step': step, 'precision': data_array[(metadata.PRECISION_INDEX, :end_index)].tolist(), 'recall': data_array[(metadata.RECALL_INDEX, :end_index)].tolist(), 'true_positives': true_positives[:end_index], 'false_positives': false_positives[:end_index], 'true_negatives': [int(v) for v in data_array[metadata.TRUE_NEGATIVES_INDEX][:end_index]], 'false_negatives': [int(v) for v in data_array[metadata.FALSE_NEGATIVES_INDEX][:end_index]], 'thresholds': thresholds[:end_index]}
Creates an entry for PR curve data. Each entry corresponds to 1 step. Args: step: The step. wall_time: The wall time. data_array: A numpy array of PR curve data stored in the summary format. thresholds: An array of floating point thresholds. Returns: A PR curve entry.
codesearchnet
def get_metadata(self): if (self._metadata is None): self._metadata = self._source.get_metadata(self._handle) return self._metadata
Returns the associated metadata info for this template version Returns: dict: Metadata for this version
codesearchnet
def load_values(self, dictionary, as_defaults=False, flat=False): if flat: separator = self.settings.str_path_separator flat_dictionary = dictionary dictionary = collections.OrderedDict() for k, v in flat_dictionary.items(): k_parts = k.split(separator) c = dictionary for i, kp in enumerate(k_parts): if i >= len(k_parts) - 1: c[kp] = v else: if kp not in c: c[kp] = collections.OrderedDict() c = c[kp] for name, value in dictionary.items(): if name not in self: if as_defaults: if isinstance(value, dict): self[name] = self.create_section() self[name].load_values(value, as_defaults=as_defaults) else: self[name] = self.create_item(name, default=value) else: pass continue resolution = self._get_item_or_section(name, handle_not_found=False) if is_config_item(resolution): if as_defaults: resolution.default = value else: resolution.value = value else: resolution.load_values(value, as_defaults=as_defaults)
Import config values from a dictionary. When ``as_defaults`` is set to ``True``, the values imported will be set as defaults. This can be used to declare the sections and items of configuration. Values of sections and items in ``dictionary`` can be dictionaries as well as instances of :class:`.Item` and :class:`.Config`. Args: dictionary: as_defaults: if ``True``, the imported values will be set as defaults.
juraj-google-style
def filter_list(lst, takeout, case_sensitive=True): takeout = force_list(takeout) if (not case_sensitive): lst = [x.lower() for x in lst] takeout = [y.lower() for y in takeout] return [x for x in lst if (x not in takeout)]
Return a modified list removing items specified. Args: lst: Original list of values takeout: Object or objects to remove from lst case_sensitive: if the search should be case sensitive Returns: list: Filtered list of values
codesearchnet
def add(self, key, value, expire=0, noreply=None): if (noreply is None): noreply = self.default_noreply return self._store_cmd(b'add', {key: value}, expire, noreply)[key]
The memcached "add" command. Args: key: str, see class docs for details. value: str, see class docs for details. expire: optional int, number of seconds until the item is expired from the cache, or zero for no expiry (the default). noreply: optional bool, True to not wait for the reply (defaults to self.default_noreply). Returns: If noreply is True, the return value is always True. Otherwise the return value is True if the value was stored, and False if it was not (because the key already existed).
codesearchnet
def max_pool(x, pool_size, strides, padding): x = tf_np.asarray(x) return tf_np.asarray(nn_ops.pool(input=x, window_shape=pool_size, pooling_type='MAX', strides=strides, padding=padding))
Performs an N-D max pooling. Args: x: ndarray of rank N+2, of shape `[batch_size] + input_spatial_shape + [num_channels]`. Pooling happens over the spatial dimensions only. pool_size: sequence of N ints. strides: sequence of N ints. padding: a string, the padding algorithm. Must be "SAME" or "VALID". Returns: An (N+2)-D array, of shape [batch_size] + output_spatial_shape + [num_channels], where `output_spatial_shape` depends on the value of padding: If padding = "SAME": output_spatial_shape[i] = ceil(input_spatial_shape[i] / strides[i]) If padding = "VALID": output_spatial_shape[i] = ceil((input_spatial_shape[i] - (pool_size[i] - 1)) / strides[i]).
github-repos
def pprint(self, initials_only=False): last_name = self.last suffixes = ((', ' + self.suffix) if self.suffix else '') if (initials_only and (last_name != u'')): first_names = self.first_initials else: first_names = self.first return u'{} {}{}'.format(first_names, last_name, suffixes).strip()
Pretty print the name. Args: initials_only (bool): ``True`` if we want the first names to be displayed with only the initial followed by a dot. ``False`` otherwise. Examples: >>> ParsedName('Lieber, Stanley Martin').pprint() u'Stanley Martin Lieber' >>> ParsedName('Lieber, Stanley Martin').pprint(initials_only=True) u'S. M. Lieber' >>> ParsedName('Downey, Robert Jr.').pprint(initials_only=True) u'R. Downey Jr.'
codesearchnet
def valueWritePreprocessor(valueString, replaceParamsFile=None): if (type(valueString) is bool): log.warning('Only numerical variable types can be handled by the valueReadPreprocessor function.') return valueString variableString = valueString if (replaceParamsFile is not None): if (variableString == REPLACE_NO_VALUE): variableString = '[NO_VARIABLE]' else: try: number = int(valueString) if (number < 0): parameterID = (number * (- 1)) for targetParam in replaceParamsFile.targetParameters: if (targetParam.id == parameterID): variableString = targetParam.targetVariable break except: pass return variableString
Look up variable name in replace param file for the negative id given and return it. Args: valueString (str): String representing the value to be preprocessed. replaceParamsFile (gsshapy.orm.ReplaceParamFile, optional): Instance of the replace param file. Required if replacement variables are included in the project. Returns: str: Processed value as a string
codesearchnet
def all_max(tensors): return _apply_all_reduce('max', tensors)
Returns a list of tensors with the all-reduce max across `tensors`. The computation is done with an all-reduce operation, so if only some of the returned tensors are evaluated then the computation will hang. Args: tensors: The input tensors across which to reduce; must be assigned to GPU devices. Returns: List of tensors, each with the maximum of the input tensors, where tensor i has the same device as `tensors[i]`.
github-repos
def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False): if already_has_special_tokens: return super().get_special_tokens_mask(token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True) if token_ids_1 is not None: return [1] + [0] * len(token_ids_0) + [1] + [0] * len(token_ids_1) + [1] return [1] + [0] * len(token_ids_0) + [1]
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
github-repos
def add_file(profile, branch, file_path, file_contents, is_executable=False, commit_message=None): branch_sha = get_branch_sha(profile, branch) tree = get_files_in_branch(profile, branch_sha) new_tree = add_file_to_tree(tree, file_path, file_contents, is_executable) data = trees.create_tree(profile, new_tree) sha = data.get('sha') if (not commit_message): commit_message = (('Added ' + file_path) + '.') parents = [branch_sha] commit_data = commits.create_commit(profile, commit_message, sha, parents) commit_sha = commit_data.get('sha') ref_data = refs.update_ref(profile, ('heads/' + branch), commit_sha) return ref_data
Add a file to a branch. Args: profile A profile generated from ``simplygithub.authentication.profile``. Such profiles tell this module (i) the ``repo`` to connect to, and (ii) the ``token`` to connect with. branch The name of a branch. file_path The path of the new file in the tree. file_contents The (UTF-8 encoded) contents of the new file. is_executable If ``True``, the new file will get executable permissions (0755). Otherwise, it will get 0644 permissions. commit_message A commit message to give to the commit. Returns: A dict with data about the branch's new ref (it includes the new SHA the branch's HEAD points to, after committing the new file).
codesearchnet
def _image_url(array, fmt='png', mode='data', quality=90, domain=None): supported_modes = 'data' if (mode not in supported_modes): message = "Unsupported mode '%s', should be one of '%s'." raise ValueError(message, mode, supported_modes) image_data = serialize_array(array, fmt=fmt, quality=quality) base64_byte_string = base64.b64encode(image_data).decode('ascii') return ((('data:image/' + fmt.upper()) + ';base64,') + base64_byte_string)
Create a data URL representing an image from a PIL.Image. Args: image: a numpy mode: presently only supports "data" for data URL Returns: URL representing image
codesearchnet
def _embedding_lookup_for_sparse_tensor(self, inp: sparse_tensor.SparseTensor, weight: Optional[sparse_tensor.SparseTensor], table: tf_variables.Variable, feature: tpu_embedding_v2_utils.FeatureConfig) -> tensor.Tensor: def sparse_to_dense_computation(inp, weight): if weight is None: weight = sparse_tensor.SparseTensor(inp.indices, array_ops.ones_like(inp.values, dtype=dtypes.float32), dense_shape=inp.dense_shape) inp = sparse_ops.sparse_tensor_to_dense(inp) weight = sparse_ops.sparse_tensor_to_dense(weight) return (inp, weight) inp, weight = tpu_replication.outside_compilation(sparse_to_dense_computation, inp=inp, weight=weight) embeddings = embedding_ops.embedding_lookup_v2(table, inp) weight = array_ops.expand_dims(weight, -1) embeddings *= weight if not feature.output_shape and feature.max_sequence_length > 0: embeddings = self._pad_or_truncate_with_sequence_length(embeddings, feature.max_sequence_length) else: embeddings = self._apply_combiner_to_embeddings(embeddings, weight, feature.table.combiner) return embeddings
Embedding lookup for sparse tensor based on its feature config. Args: inp: a single SparseTensor input. weight: None or SparseTensor which has the same shape of the input. table: a table variable. feature: a feature config. Returns: Embedding lookup result.
github-repos
def reduce_sum(self, x): return self.reduce(lambda y: math_ops.reduce_sum(y, axis=0), x)
Performs a sum reduction on `x` across pfor iterations. Note that this currently may not work inside a control flow construct. Args: x: an unvectorized Tensor. Returns: A Tensor that has same rank as `x`. The value is the sum of the values of `x` across the pfor iterations.
github-repos
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size): if not isinstance(grid_pinpoints, list): raise TypeError('grid_pinpoints should be a list of tuples or lists') if not isinstance(image_size, (list, tuple)): if not isinstance(image_size, (torch.Tensor, np.ndarray)): raise TypeError(f'image_size invalid type: {type(image_size)} not valid, should be either list, tuple, np.ndarray or tensor') image_size = image_size.tolist() height, width = select_best_resolution(image_size, grid_pinpoints) return (height
Calculate the shape of the image patch grid after the preprocessing for images of any resolution. Args: image_size (`tuple`): The size of the input image in the format (width, height). grid_pinpoints (`List`): A list containing possible resolutions. Each item in the list should be a tuple or list of the form `(height, width)`. patch_size (`int`): The size of each image patch. Returns: tuple: The shape of the image patch grid in the format (width, height).
github-repos
def get_sns_topic_arn(topic_name, account, region): if ((topic_name.count(':') == 5) and topic_name.startswith('arn:aws:sns:')): return topic_name session = boto3.Session(profile_name=account, region_name=region) sns_client = session.client('sns') topics = sns_client.list_topics()['Topics'] matched_topic = None for topic in topics: topic_arn = topic['TopicArn'] if (topic_name == topic_arn.split(':')[(- 1)]): matched_topic = topic_arn break else: LOG.critical('No topic with name %s found.', topic_name) raise SNSTopicNotFound('No topic with name {0} found'.format(topic_name)) return matched_topic
Get SNS topic ARN. Args: topic_name (str): Name of the topic to lookup. account (str): Environment, e.g. dev region (str): Region name, e.g. us-east-1 Returns: str: ARN for requested topic name
codesearchnet
def convert_to_torch_compatible(cls, x): return x
Convert a tensor to something that the Torch backend can consume. This can be a Torch tensor, NumPy array or any other type of tensor that `keras.backend.torch.core.convert_to_tensor()` can consume. Only called after slicing using `__getitem__`. Used to densify sparse tensors and ragged tensors. Args: x: the tensor to convert. Returns: the converted tensor.
github-repos
def get_block_header(self, block_hash, id=None, endpoint=None): return self._call_endpoint(GET_BLOCK_HEADER, params=[block_hash, 1], id=id, endpoint=endpoint)
Get the corresponding block header information according to the specified script hash. Args: block_hash: (str) the block scripthash (e.g. 'a5508c9b6ed0fc09a531a62bc0b3efcb6b8a9250abaf72ab8e9591294c1f6957') id: (int, optional) id to use for response tracking endpoint: (RPCEndpoint, optional) endpoint to specify to use Returns: json object of the result or the error encountered in the RPC call
juraj-google-style
def rationalize(flt: float, denominators: Set[int]=None) -> Fraction: if (denominators is None): denominators = _DENOMINATORS frac = Fraction.from_float(flt).limit_denominator() if (frac.denominator not in denominators): raise ValueError('Cannot rationalize') return frac
Convert a floating point number to a Fraction with a small denominator. Args: flt: A floating point number denominators: Collection of standard denominators. Default is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 Raises: ValueError: If cannot rationalize float
codesearchnet
def deploy_ray_axis_func(axis, func, num_splits, kwargs, *partitions): table = concat_arrow_table_partitions(axis, partitions) try: result = func(table, **kwargs) except Exception: result = pyarrow.Table.from_pandas(func(table.to_pandas(), **kwargs)) return split_arrow_table_result( axis, result, len(partitions), num_splits, table.schema.metadata )
Deploy a function along a full axis in Ray. Args: axis: The axis to perform the function along. func: The function to perform. num_splits: The number of splits to return (see `split_result_of_axis_func_pandas`) kwargs: A dictionary of keyword arguments. partitions: All partitions that make up the full axis (row or column) Returns: A list of Pandas DataFrames.
juraj-google-style
def save_headers(cls, filename: str, response: HTTPResponse): new_filename = (filename + '-new') with open('wb') as new_file: new_file.write(response.header()) with wpull.util.reset_file_offset(response.body): response.body.seek(0) shutil.copyfileobj(response.body, new_file) os.remove(filename) os.rename(new_filename, filename)
Prepend the HTTP response header to the file. Args: filename: The path of the file response: Response
codesearchnet
def new_random_wallet(cls, user_entropy=None, network=BitcoinMainNet): seed = str(urandom(64)) seed += str(int((time.time() * (10 ** 6)))) if user_entropy: user_entropy = str(user_entropy) seed += user_entropy return cls.from_master_secret(seed, network=network)
Generate a new wallet using a randomly generated 512 bit seed. Args: user_entropy: Optional user-supplied entropy which is combined combined with the random seed, to help counteract compromised PRNGs. You are encouraged to add an optional `user_entropy` string to protect against a compromised CSPRNG. This will be combined with the output from the CSPRNG. Note that if you do supply this value it only adds additional entropy and will not be sufficient to recover the random wallet. If you're even saving `user_entropy` at all, you're doing it wrong.
codesearchnet
def wait_for_batches(self, batch_ids, timeout=None): self._batch_tracker.watch_statuses(self, batch_ids) timeout = (timeout or DEFAULT_TIMEOUT) start_time = time() with self._wait_condition: while True: if (self._statuses is not None): return _format_batch_statuses(self._statuses, batch_ids, self._batch_tracker) if ((time() - start_time) > timeout): statuses = self._batch_tracker.get_statuses(batch_ids) return _format_batch_statuses(statuses, batch_ids, self._batch_tracker) self._wait_condition.wait((timeout - (time() - start_time)))
Locks until a list of batch ids is committed to the block chain or a timeout is exceeded. Returns the statuses of those batches. Args: batch_ids (list of str): The ids of the batches to wait for timeout(int): Maximum time in seconds to wait for Returns: list of BatchStatus: BatchStatuses to send back to client
codesearchnet
def get_unit(self, name): return Unit(client=self, data=self._single_request('Units.Get', unitName=name))
Retreive a specifi unit from the fleet cluster by name Args: name (str): If specified, only this unit name is returned Returns: Unit: The unit identified by ``name`` in the fleet cluster Raises: fleet.v1.errors.APIError: Fleet returned a response code >= 400
juraj-google-style
def resolve_prefix_path(cls, start_path=None): if not start_path or start_path == 'auto': start_path = os.path.curdir cur_path = start_path LOGGER.debug('Checking if %s is a prefix', os.path.abspath(cur_path)) if cls.is_prefix(cur_path): return os.path.abspath(cur_path) cur_path = join(start_path, '.lago') while not cls.is_prefix(cur_path): LOGGER.debug('%s is not a prefix', cur_path) cur_path = os.path.normpath( os.path.join(cur_path, '..', '..', '.lago') ) LOGGER.debug('Checking %s for a prefix', cur_path) if os.path.realpath(join(cur_path, '..')) == '/': raise RuntimeError( 'Unable to find prefix for %s' % os.path.abspath(start_path) ) return os.path.abspath(cur_path)
Look for an existing prefix in the given path, in a path/.lago dir, or in a .lago dir under any of it's parent directories Args: start_path (str): path to start the search from, if None passed, it will use the current dir Returns: str: path to the found prefix Raises: RuntimeError: if no prefix was found
juraj-google-style
def initial_sql(self, value): self._initial_sql = value if (value is None): try: del self._connectionXML.attrib['one-time-sql'] except KeyError: pass else: self._connectionXML.set('one-time-sql', value)
Set the connection's initial_sql property. Args: value: New initial_sql value. String. Returns: Nothing.
codesearchnet
def ExistsWithType(self, urn, aff4_type=None, follow_symlinks=True, age=NEWEST_TIME, token=None): if (not aff4_type): raise ValueError("aff4_type can't be None") try: self.Open(urn, aff4_type=aff4_type, follow_symlinks=follow_symlinks, age=age, token=token) return True except InstantiationError: return False
Checks if an object with a given URN and type exists in the datastore. Args: urn: The urn to check. aff4_type: Expected object type. follow_symlinks: If object opened is a symlink, follow it. age: The age policy used to check this object. Should be either NEWEST_TIME or a time range given as a tuple (start, end) in microseconds since Jan 1st, 1970. token: The Security Token to use for opening this item. Raises: ValueError: if aff4_type is not specified. Returns: True if there's an object with a matching type at a given URN, False otherwise.
codesearchnet
def GenerateCostReport(metagraph, per_node_report=False, verbose=False, cluster=None): if cluster is None: cluster = gcluster.Cluster(disable_detailed_stats=False) return tf_wrap.GenerateCostReport(metagraph.SerializeToString(), per_node_report, verbose, cluster.tf_cluster)
Analyze the cost of each TensorFlow op and node in the provided metagraph. Args: metagraph: A TensorFlow MetaGraphDef. per_node_report: by default the report contains stats aggregated on a per op type basis, setting per_node_report to True adds results for each individual node to the report. verbose: Prints out the entire operation proto instead of a summary table. cluster: Analyze the costs using the specified cluster, or the local machine if no cluster was specified. Returns: A string of cost report.
github-repos
def attach_template(self, _template, _key, **unbound_var_values): if (_key in unbound_var_values): raise ValueError(('%s specified twice.' % _key)) unbound_var_values[_key] = self return _DeferredLayer(self.bookkeeper, _template.as_layer().construct, [], unbound_var_values, scope=self._scope, defaults=self._defaults, partial_context=self._partial_context)
Attaches the template to this with the _key is supplied with this layer. Note: names were chosen to avoid conflicts. Args: _template: The template to construct. _key: The key that this layer should replace. **unbound_var_values: The values for the unbound_vars. Returns: A new layer with operation applied. Raises: ValueError: If _key is specified twice or there is a problem computing the template.
codesearchnet
def fetch(self, plan_id, data={}, **kwargs): return super(Plan, self).fetch(plan_id, data, **kwargs)
Fetch Plan for given Id Args: plan_id : Id for which Plan object has to be retrieved Returns: Plan dict for given subscription Id
codesearchnet
def get_expectations_config(self, discard_failed_expectations=True, discard_result_format_kwargs=True, discard_include_configs_kwargs=True, discard_catch_exceptions_kwargs=True, suppress_warnings=False): config = dict(self._expectations_config) config = copy.deepcopy(config) expectations = config['expectations'] discards = defaultdict(int) if discard_failed_expectations: new_expectations = [] for expectation in expectations: if (('success_on_last_run' in expectation) and (expectation['success_on_last_run'] == False)): discards['failed_expectations'] += 1 else: new_expectations.append(expectation) expectations = new_expectations for expectation in expectations: if ('success_on_last_run' in expectation): del expectation['success_on_last_run'] if discard_result_format_kwargs: if ('result_format' in expectation['kwargs']): del expectation['kwargs']['result_format'] discards['result_format'] += 1 if discard_include_configs_kwargs: if ('include_configs' in expectation['kwargs']): del expectation['kwargs']['include_configs'] discards['include_configs'] += 1 if discard_catch_exceptions_kwargs: if ('catch_exceptions' in expectation['kwargs']): del expectation['kwargs']['catch_exceptions'] discards['catch_exceptions'] += 1 if (not suppress_warnings): '\nWARNING: get_expectations_config discarded\n 12 failing expectations\n 44 result_format kwargs\n 0 include_config kwargs\n 1 catch_exceptions kwargs\nIf you wish to change this behavior, please set discard_failed_expectations, discard_result_format_kwargs, discard_include_configs_kwargs, and discard_catch_exceptions_kwargs appropirately.\n ' if any([discard_failed_expectations, discard_result_format_kwargs, discard_include_configs_kwargs, discard_catch_exceptions_kwargs]): print('WARNING: get_expectations_config discarded') if discard_failed_expectations: print(('\t%d failing expectations' % discards['failed_expectations'])) if discard_result_format_kwargs: print(('\t%d result_format kwargs' % discards['result_format'])) if discard_include_configs_kwargs: print(('\t%d include_configs kwargs' % discards['include_configs'])) if discard_catch_exceptions_kwargs: print(('\t%d catch_exceptions kwargs' % discards['catch_exceptions'])) print('If you wish to change this behavior, please set discard_failed_expectations, discard_result_format_kwargs, discard_include_configs_kwargs, and discard_catch_exceptions_kwargs appropirately.') config['expectations'] = expectations return config
Returns _expectation_config as a JSON object, and perform some cleaning along the way. Args: discard_failed_expectations (boolean): \ Only include expectations with success_on_last_run=True in the exported config. Defaults to `True`. discard_result_format_kwargs (boolean): \ In returned expectation objects, suppress the `result_format` parameter. Defaults to `True`. discard_include_configs_kwargs (boolean): \ In returned expectation objects, suppress the `include_configs` parameter. Defaults to `True`. discard_catch_exceptions_kwargs (boolean): \ In returned expectation objects, suppress the `catch_exceptions` parameter. Defaults to `True`. Returns: An expectation config. Note: get_expectations_config does not affect the underlying config at all. The returned config is a copy of _expectations_config, not the original object.
codesearchnet
def recent_all_projects(self, limit=30, offset=0): method = 'GET' url = '/recent-builds?circle-token={token}&limit={limit}&offset={offset}'.format(token=self.client.api_token, limit=limit, offset=offset) json_data = self.client.request(method, url) return json_data
Return information about recent builds across all projects. Args: limit (int), Number of builds to return, max=100, defaults=30. offset (int): Builds returned from this point, default=0. Returns: A list of dictionaries.
codesearchnet
def watch_printer(watch, value): print('({: 8} s) {}: {}'.format(value.raw_time, watch, value.value))
Print a watched value. Args: watch (DataStream): The stream that was watched value (IOTileReading): The value to was seen
codesearchnet
def __init__(self, policies=None, database_path=None): self._logger = logging.getLogger('kmip.server.engine') self._cryptography_engine = engine.CryptographyEngine() self.database_path = 'sqlite: if not database_path: self.database_path = 'sqlite: self._data_store = sqlalchemy.create_engine( self.database_path, echo=False, connect_args={'check_same_thread': False} ) sqltypes.Base.metadata.create_all(self._data_store) self._data_store_session_factory = sqlalchemy.orm.sessionmaker( bind=self._data_store ) self._lock = threading.RLock() self._id_placeholder = None self._protocol_versions = [ contents.ProtocolVersion(1, 4), contents.ProtocolVersion(1, 3), contents.ProtocolVersion(1, 2), contents.ProtocolVersion(1, 1), contents.ProtocolVersion(1, 0) ] self.default_protocol_version = self._protocol_versions[2] self._protocol_version = self._protocol_versions[2] self._object_map = { enums.ObjectType.CERTIFICATE: objects.X509Certificate, enums.ObjectType.SYMMETRIC_KEY: objects.SymmetricKey, enums.ObjectType.PUBLIC_KEY: objects.PublicKey, enums.ObjectType.PRIVATE_KEY: objects.PrivateKey, enums.ObjectType.SPLIT_KEY: None, enums.ObjectType.TEMPLATE: None, enums.ObjectType.SECRET_DATA: objects.SecretData, enums.ObjectType.OPAQUE_DATA: objects.OpaqueObject } self._attribute_policy = policy.AttributePolicy(self._protocol_version) self._operation_policies = policies self._client_identity = [None, None]
Create a KmipEngine. Args: policy_path (string): The path to the filesystem directory containing PyKMIP server operation policy JSON files. Optional, defaults to None. database_path (string): The path to the SQLite database file used to store all server data. Optional, defaults to None. If none, database path defaults to '/tmp/pykmip.database'.
juraj-google-style