code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def convert(self, point): x, y = point (x1, y1) = x - self.x_offset, y - self.y_offset logger.debug("converted {} {} ==> {} {}".format(x, y, x1, y1)) return x1, y1
Convert a point from one coordinate system to another. Args: point: tuple(int x, int y) The point in the original coordinate system. Returns: converted_point: tuple(int x, int y) The point in the new coordinate system. Example: convert coordinate from original image into a pixel location within a cutout image. @rtype: list(float,float)
juraj-google-style
def _event_size(event_shape, name=None): with tf.compat.v1.name_scope(name, 'event_size', [event_shape]): event_shape = tf.convert_to_tensor( value=event_shape, dtype=tf.int32, name='event_shape') event_shape_const = tf.get_static_value(event_shape) if event_shape_const is not None: return np.prod(event_shape_const) else: return tf.reduce_prod(input_tensor=event_shape)
Computes the number of elements in a tensor with shape `event_shape`. Args: event_shape: A tensor shape. name: The name to use for the tensor op to compute the number of elements (if such an op needs to be created). Returns: event_size: The number of elements in `tensor_shape`. Returns a numpy int when the number of elements can be computed immediately. Otherwise, returns a scalar tensor.
juraj-google-style
def from_row_lengths(cls, row_lengths, validate=True, dtype=None, dtype_hint=None): if not isinstance(validate, bool): raise TypeError('validate must have type bool') with ops.name_scope(None, 'RowPartitionFromRowLengths', [row_lengths]): row_lengths = cls._convert_row_partition(row_lengths, 'row_lengths', dtype_hint=dtype_hint, dtype=dtype) row_lengths.shape.assert_has_rank(1) if validate: msg = 'Arguments to from_row_lengths do not form a valid RowPartition' checks = [check_ops.assert_rank(row_lengths, 1, message=msg), check_ops.assert_non_negative(row_lengths, message=msg)] row_lengths = control_flow_ops.with_dependencies(checks, row_lengths) row_limits = math_ops.cumsum(row_lengths) row_splits = array_ops.concat([[0], row_limits], axis=0) return cls(row_splits=row_splits, row_lengths=row_lengths, internal=_row_partition_factory_key)
Creates a `RowPartition` with rows partitioned by `row_lengths`. This `RowPartition` divides a sequence `values` into rows by indicating the length of each row: ```python partitioned_rows = [[values.pop(0) for _ in range(length)] for length in row_lengths] ``` Args: row_lengths: A 1-D integer tensor with shape `[nrows]`. Must be nonnegative. validate: If true, then use assertions to check that the arguments form a valid `RowPartition`. dtype: Optional dtype for the RowPartition. If missing, the type is inferred from the type of `row_lengths`, dtype_hint, or tf.int64. dtype_hint: Optional dtype for the RowPartition, used when dtype is None. In some cases, a caller may not have a dtype in mind when converting to a tensor, so dtype_hint can be used as a soft preference. If the conversion to `dtype_hint` is not possible, this argument has no effect. Returns: A `RowPartition`.
github-repos
def freeze_graph(session, outputs): return convert_to_constants.convert_variables_to_constants(session, session.graph.as_graph_def(), [x.op.name for x in outputs])
Freeze the current graph. Args: session: Tensorflow sessions containing the graph outputs: List of output tensors Returns: The frozen graph_def.
github-repos
def resolves_for(self, session): if self.url: self.actual_path = session.current_url else: result = urlparse(session.current_url) if self.only_path: self.actual_path = result.path else: request_uri = result.path if result.query: request_uri += '?{0}'.format(result.query) self.actual_path = request_uri if isregex(self.expected_path): return self.expected_path.search(self.actual_path) else: return (normalize_url(self.actual_path) == normalize_url(self.expected_path))
Returns whether this query resolves for the given session. Args: session (Session): The session for which this query should be executed. Returns: bool: Whether this query resolves.
codesearchnet
def replace(self, **kwargs): clone = copy(self) clone.transforms = list(clone.transforms) for (key, value) in kwargs.items(): if (not hasattr(clone, key)): raise TypeError(u'replace() got an unexpected keyword argument {!r}'.format(key)) setattr(clone, key, value) return clone
Return a copy of this `Query`, but with attributes specified as keyword arguments replaced by the keyword values. Keyword Args: Attributes/values to replace in the copy. Returns: A copy of the query that has its attributes updated with the specified values. Raises: TypeError: The `Query` does not have the specified attribute.
codesearchnet
def GetFileObject(self, data_stream_name=''): if data_stream_name: return None return resolver.Resolver.OpenFileObject( self.path_spec, resolver_context=self._resolver_context)
Retrieves the file-like object. Args: data_stream_name (Optional[str]): name of the data stream, where an empty string represents the default data stream. Returns: FileIO: a file-like object or None if not available.
juraj-google-style
def get_user_info(self): resp = self.requester.get(urljoin(self.base_url, '/api/mobile/v0.5/my_user_info')) resp.raise_for_status() return Info(resp.json())
Returns a UserInfo object for the logged in user. Returns: UserInfo: object representing the student current grades
codesearchnet
def add_config(self, slot, config_id, config_type, value): if (slot not in self.config_database): self.config_database[slot] = {} self.config_database[slot][config_id] = (config_type, value)
Add a config variable assignment to this sensor graph. Args: slot (SlotIdentifier): The slot identifier that this config variable is assigned to. config_id (int): The 16-bit id of this config_id config_type (str): The type of the config variable, currently supported are fixed width integer types, strings and binary blobs. value (str|int|bytes): The value to assign to the config variable.
codesearchnet
class _EmbeddingHandler(ModelHandler): def __init__(self, embeddings_manager: EmbeddingsManager): self.embedding_config = embeddings_manager self._underlying = self.embedding_config.get_model_handler() self.columns = self.embedding_config.get_columns_to_apply() def load_model(self): model = self._underlying.load_model() return model def _validate_column_data(self, batch): pass def run_inference(self, batch: Sequence[dict[str, list[str]]], model: ModelT, inference_args: Optional[dict[str, Any]]=None) -> list[dict[str, Union[list[float], list[str]]]]: embedding_input = self.embedding_config.type_adapter.input_fn(batch) self._validate_column_data(batch=embedding_input) prediction = self._underlying.run_inference(embedding_input, model, inference_args) if isinstance(prediction, np.ndarray): prediction_seq = prediction.tolist() elif isinstance(prediction, Iterable) and (not isinstance(prediction, (str, bytes))): prediction_seq = list(prediction) else: prediction_seq = [prediction] return self.embedding_config.type_adapter.output_fn(batch, prediction_seq) def get_metrics_namespace(self) -> str: return self._underlying.get_metrics_namespace() or 'BeamML_EmbeddingHandler' def batch_elements_kwargs(self) -> Mapping[str, Any]: batch_sizes_map = {} if self.embedding_config.max_batch_size: batch_sizes_map['max_batch_size'] = self.embedding_config.max_batch_size if self.embedding_config.min_batch_size: batch_sizes_map['min_batch_size'] = self.embedding_config.min_batch_size return self._underlying.batch_elements_kwargs() or batch_sizes_map def __repr__(self): return self._underlying.__repr__() def validate_inference_args(self, _): pass
A ModelHandler intended to be work on list[dict[str, Any]] inputs. The inputs to the model handler are expected to be a list of dicts. For example, if the original mode is used with RunInference to take a PCollection[E] to a PCollection[P], this ModelHandler would take a PCollection[dict[str, E]] to a PCollection[dict[str, P]]. _EmbeddingHandler will accept an EmbeddingsManager instance, which contains the details of the model to be loaded and the inference_fn to be used. The purpose of _EmbeddingHandler is to generate embeddings for general inputs using the EmbeddingsManager instance. This is an internal class and offers no backwards compatibility guarantees. Args: embeddings_manager: An EmbeddingsManager instance.
github-repos
def get_global_namespace(decls): found = [ decl for decl in scopedef.make_flatten(decls) if decl.name == '::' and isinstance(decl, namespace_t)] if len(found) == 1: return found[0] raise RuntimeError("Unable to find global namespace.")
Get the global namespace (::) from a declaration tree. Args: decls (list[declaration_t]): a list of declarations Returns: namespace_t: the global namespace_t object (::)
juraj-google-style
def parse_options(cls, options): d = {} for filename_check, dictionary in cls.filename_checks.items(): filename_data = getattr(options, filename_check) if len(filename_data) != 0: parsed_params = {} for single_line in filename_data: a = [s.strip() for s in single_line.split('=')] if a[0] in ['filter_regex', 'filename_regex']: parsed_params[a[0]] = a[1] d[filename_check] = parsed_params cls.filename_checks.update(d) cls.filename_checks = {x: y for x, y in cls.filename_checks.items() if len(y) > 0}
Required by flake8 parse the options, called after add_options Args: options (dict): options to be parsed
juraj-google-style
def to_value_list(original_strings, corenlp_values=None): assert isinstance(original_strings, (list, tuple, set)) if (corenlp_values is not None): assert isinstance(corenlp_values, (list, tuple, set)) assert (len(original_strings) == len(corenlp_values)) return list(set((to_value(x, y) for (x, y) in zip(original_strings, corenlp_values)))) else: return list(set((to_value(x) for x in original_strings)))
Convert a list of strings to a list of Values Args: original_strings (list[basestring]) corenlp_values (list[basestring or None]) Returns: list[Value]
codesearchnet
def list_files_by_mtime(dirpath): files = [f for f in os.listdir(dirpath) if is_real_file(dirpath, f)] return sorted(files, key=lambda f: get_mtime(dirpath, f))
Return a list of files in the directory, sorted in increasing "mtime". Return a list of files in the given directory, sorted from older to newer file according to their modification times. Only return actual files, skipping directories, symbolic links, pipes, etc. Args: dirpath: directory pathname Returns: A list of file names relative to the given directory path.
github-repos
def __init__(self, value: Any, compute_derived: bool=False, where: Optional[Callable[[base.HyperPrimitive], bool]]=None): super().__init__() self._value = value self._root_path = utils.KeyPath() self._compute_derived = compute_derived self._where = where self._parse_generators()
Constructor. Args: value: Value (maybe) annotated with generators to use as template. compute_derived: Whether to compute derived value at this level. We only want to compute derived value at root level since reference path may go out of scope of a non-root ObjectTemplate. where: Function to filter hyper primitives. If None, all hyper primitives from `value` will be included in the encoding/decoding process. Otherwise only the hyper primitives on which 'where' returns True will be included. `where` can be useful to partition a search space into separate optimization processes. Please see 'ObjectTemplate' docstr for details.
github-repos
def autorotate(image, orientation=None): orientation_value = orientation if orientation else \ image._getexif().get(EXIF_KEYS.get('Orientation')) if orientation_value is None: raise ImDirectException("No orientation available in Exif " "tag or given explicitly.") if orientation_value in (1, 2): i = image elif orientation_value in (3, 4): i = image.transpose(Image.ROTATE_180) elif orientation_value in (5, 6): i = image.transpose(Image.ROTATE_270) elif orientation_value in (7, 8): i = image.transpose(Image.ROTATE_90) else: i = image if orientation_value in (2, 4, 5, 7): i = i.transpose(Image.FLIP_LEFT_RIGHT) return i
Rotate and return an image according to its Exif information. ROTATION_NEEDED = { 1: 0, 2: 0 (Mirrored), 3: 180, 4: 180 (Mirrored), 5: -90 (Mirrored), 6: -90, 7: 90 (Mirrored), 8: 90, } Args: image (PIL.Image.Image): PIL image to rotate orientation (): Optional orientation value in [1, 8] Returns: A :py:class:`~PIL.Image.Image` image.
juraj-google-style
def _tensor_product(self, other, reverse=False): if not isinstance(other, Chi): other = Chi(other) if reverse: input_dims = self.input_dims() + other.input_dims() output_dims = self.output_dims() + other.output_dims() data = np.kron(other.data, self._data) else: input_dims = other.input_dims() + self.input_dims() output_dims = other.output_dims() + self.output_dims() data = np.kron(self._data, other.data) return Chi(data, input_dims, output_dims)
Return the tensor product channel. Args: other (QuantumChannel): a quantum channel. reverse (bool): If False return self ⊗ other, if True return if True return (other ⊗ self) [Default: False Returns: Chi: the tensor product channel as a Chi object. Raises: QiskitError: if other is not a QuantumChannel subclass.
juraj-google-style
def _ConvertInputMapValues(name, input_map): if not all((isinstance(v, tensor.Tensor) for v in input_map.values())): if name == '': raise ValueError('tf.import_graph_def() requires a non-empty `name` if `input_map` contains non-Tensor values. Try calling tf.convert_to_tensor() on `input_map` values before calling tf.import_graph_def().') with ops.name_scope('_inputs'): input_map = {k: ops.convert_to_tensor(v) for k, v in input_map.items()} return input_map
Ensures all input map values are tensors. This should be called from inside the import name scope. Args: name: the `name` argument passed to import_graph_def input_map: the `input_map` argument passed to import_graph_def. Returns: An possibly-updated version of `input_map`. Raises: ValueError: if input map values cannot be converted due to empty name scope.
github-repos
def acquire_multi(self, n=1): browsers = [] with self._lock: if (len(self._in_use) >= self.size): raise NoBrowsersAvailable while ((len(self._in_use) < self.size) and (len(browsers) < n)): browser = self._fresh_browser() browsers.append(browser) self._in_use.add(browser) return browsers
Returns a list of up to `n` browsers. Raises: NoBrowsersAvailable if none available
codesearchnet
def execute_work_items(work_items, config): return celery.group((worker_task.s(work_item, config) for work_item in work_items))
Execute a suite of tests for a given set of work items. Args: work_items: An iterable of `work_db.WorkItem`s. config: The configuration to use for the test execution. Returns: An iterable of WorkItems.
codesearchnet
def is_user_profile_valid(user_profile): if not user_profile: return False if not type(user_profile) is dict: return False if UserProfile.USER_ID_KEY not in user_profile: return False if UserProfile.EXPERIMENT_BUCKET_MAP_KEY not in user_profile: return False experiment_bucket_map = user_profile.get(UserProfile.EXPERIMENT_BUCKET_MAP_KEY) if not type(experiment_bucket_map) is dict: return False for decision in experiment_bucket_map.values(): if type(decision) is not dict or UserProfile.VARIATION_ID_KEY not in decision: return False return True
Determine if provided user profile is valid or not. Args: user_profile: User's profile which needs to be validated. Returns: Boolean depending upon whether profile is valid or not.
juraj-google-style
def __init__(self, max_size=-1, client_timeout=-1, autoclose=False, **client_kwargs): self.max_size = max_size self.client_timeout = client_timeout self.client_kwargs = client_kwargs self.__ioloop = client_kwargs.get('ioloop', tornado.ioloop.IOLoop.instance()) self.autoclose = autoclose self.__pool = deque() if self.max_size != -1: self.__sem = tornado.locks.Semaphore(self.max_size) else: self.__sem = None self.__autoclose_periodic = None if self.autoclose and self.client_timeout > 0: every = int(self.client_timeout) * 100 if int(tornado.version[0]) >= 5: cb = tornado.ioloop.PeriodicCallback(self._autoclose, every) else: cb = tornado.ioloop.PeriodicCallback(self._autoclose, every, self.__ioloop) self.__autoclose_periodic = cb self.__autoclose_periodic.start()
Constructor. Args: max_size (int): max size of the pool (-1 means "no limit"). client_timeout (int): timeout in seconds of a connection released to the pool (-1 means "no timeout"). autoclose (boolean): automatically disconnect released connections with lifetime > client_timeout (test made every client_timeout/10 seconds). client_kwargs (dict): Client constructor arguments.
juraj-google-style
def ccy_pair(local, base='USD') -> CurrencyPair: ccy_param = param.load_info(cat='ccy') if (f'{local}{base}' in ccy_param): info = ccy_param[f'{local}{base}'] elif (f'{base}{local}' in ccy_param): info = ccy_param[f'{base}{local}'] info['factor'] = (1.0 / info.get('factor', 1.0)) info['power'] = (- info.get('power', 1)) elif (base.lower() == local.lower()): info = dict(ticker='') info['factor'] = 1.0 if (base[(- 1)].lower() == base[(- 1)]): info['factor'] /= 100.0 if (local[(- 1)].lower() == local[(- 1)]): info['factor'] *= 100.0 else: logger = logs.get_logger(ccy_pair) logger.error(f'incorrect currency - local {local} / base {base}') return CurrencyPair(ticker='', factor=1.0, power=1) if ('factor' not in info): info['factor'] = 1.0 if ('power' not in info): info['power'] = 1 return CurrencyPair(**info)
Currency pair info Args: local: local currency base: base currency Returns: CurrencyPair Examples: >>> ccy_pair(local='HKD', base='USD') CurrencyPair(ticker='HKD Curncy', factor=1.0, power=1) >>> ccy_pair(local='GBp') CurrencyPair(ticker='GBP Curncy', factor=100, power=-1) >>> ccy_pair(local='USD', base='GBp') CurrencyPair(ticker='GBP Curncy', factor=0.01, power=1) >>> ccy_pair(local='XYZ', base='USD') CurrencyPair(ticker='', factor=1.0, power=1) >>> ccy_pair(local='GBP', base='GBp') CurrencyPair(ticker='', factor=0.01, power=1) >>> ccy_pair(local='GBp', base='GBP') CurrencyPair(ticker='', factor=100.0, power=1)
codesearchnet
def recipe_dcm(config, auth_read, account, body, delete): dcm(config, {'auth': auth_read, 'report': {'account': account, 'body': body}, 'delete': delete})
Create a CM report from a JSON definition. Args: auth_read (authentication) - Credentials used for reading data. account (string) - NA body (json) - NA delete (boolean) - NA
github-repos
def __init__(self, loss_tensor, fail_on_nan_loss=True): self._loss_tensor = loss_tensor self._fail_on_nan_loss = fail_on_nan_loss
Initializes a `NanTensorHook`. Args: loss_tensor: `Tensor`, the loss tensor. fail_on_nan_loss: `bool`, whether to raise exception when loss is NaN.
github-repos
def _global_report_benchmark(name, iters=None, cpu_time=None, wall_time=None, throughput=None, extras=None, metrics=None): logging.info('Benchmark [%s] iters: %d, wall_time: %g, cpu_time: %g,throughput: %g, extras: %s, metrics: %s', name, iters if iters is not None else -1, wall_time if wall_time is not None else -1, cpu_time if cpu_time is not None else -1, throughput if throughput is not None else -1, str(extras) if extras else 'None', str(metrics) if metrics else 'None') entries = test_log_pb2.BenchmarkEntries() entry = entries.entry.add() entry.name = name if iters is not None: entry.iters = iters if cpu_time is not None: entry.cpu_time = cpu_time if wall_time is not None: entry.wall_time = wall_time if throughput is not None: entry.throughput = throughput if extras is not None: if not isinstance(extras, dict): raise TypeError('extras must be a dict') for k, v in extras.items(): if isinstance(v, numbers.Number): entry.extras[k].double_value = v else: entry.extras[k].string_value = str(v) if metrics is not None: if not isinstance(metrics, list): raise TypeError('metrics must be a list') for metric in metrics: if 'name' not in metric: raise TypeError("metric must has a 'name' field") if 'value' not in metric: raise TypeError("metric must has a 'value' field") metric_entry = entry.metrics.add() metric_entry.name = metric['name'] metric_entry.value = metric['value'] if 'min_value' in metric: metric_entry.min_value.value = metric['min_value'] if 'max_value' in metric: metric_entry.max_value.value = metric['max_value'] test_env = os.environ.get(TEST_REPORTER_TEST_ENV, None) if test_env is None: print(str(entries)) return serialized_entry = entries.SerializeToString() mangled_name = name.replace('/', '__') output_path = '%s%s' % (test_env, mangled_name) if gfile.Exists(output_path): raise IOError('File already exists: %s' % output_path) with gfile.GFile(output_path, 'wb') as out: out.write(serialized_entry)
Method for recording a benchmark directly. Args: name: The BenchmarkEntry name. iters: (optional) How many iterations were run cpu_time: (optional) Total cpu time in seconds wall_time: (optional) Total wall time in seconds throughput: (optional) Throughput (in MB/s) extras: (optional) Dict mapping string keys to additional benchmark info. metrics: (optional) A list of dict representing metrics generated by the benchmark. Each dict should contain keys 'name' and'value'. A dict can optionally contain keys 'min_value' and 'max_value'. Raises: TypeError: if extras is not a dict. IOError: if the benchmark output file already exists.
github-repos
def output(self, filename): if not filename.endswith('.dot'): filename += '.dot' if filename == ".dot": filename = "all_contracts.dot" with open(filename, 'w', encoding='utf8') as f: self.info(f'Call Graph: {filename}') f.write('\n'.join(['strict digraph {'] + [self._process_functions(self.slither.functions)] + ['}'])) for derived_contract in self.slither.contracts_derived: with open(f'{derived_contract.name}.dot', 'w', encoding='utf8') as f: self.info(f'Call Graph: {derived_contract.name}.dot') f.write('\n'.join(['strict digraph {'] + [self._process_functions(derived_contract.functions)] + ['}']))
Output the graph in filename Args: filename(string)
juraj-google-style
def _inquire(self, **kwargs): if (rname_rfc6680 is None): raise NotImplementedError('Your GSSAPI implementation does not support RFC 6680 (the GSSAPI naming extensions)') if (not kwargs): default_val = True else: default_val = False attrs = kwargs.get('attrs', default_val) mech_name = kwargs.get('mech_name', default_val) return rname_rfc6680.inquire_name(self, mech_name=mech_name, attrs=attrs)
Inspect this name for information. This method inspects the name for information. If no keyword arguments are passed, all available information is returned. Otherwise, only the keyword arguments that are passed and set to `True` are returned. Args: mech_name (bool): get whether this is a mechanism name, and, if so, the associated mechanism attrs (bool): get the attributes names for this name Returns: InquireNameResult: the results of the inquiry, with unused fields set to None Raises: GSSError
codesearchnet
def get_memory_region(x, query_block_shape, memory_flange, q_indices): x_query_padded = pad_to_multiple_2d(x, query_block_shape) x_center = gather_blocks_2d(x_query_padded, q_indices) paddings = [[0, 0], [0, 0], [memory_flange[0], 0], [memory_flange[1], memory_flange[1]], [0, 0]] x_memory_padded = tf.pad(x_query_padded, paddings) left_x = None top_x = None if memory_flange[1] > 0: left_x_region = x_memory_padded[:, :, memory_flange[ 0]:, :-(query_block_shape[1] + memory_flange[1]), :] left_memory_shape = (query_block_shape[0], memory_flange[1]) left_indices = gather_indices_2d(left_x_region, left_memory_shape, query_block_shape) left_x = gather_blocks_2d(left_x_region, left_indices) if memory_flange[0] > 0: top_x_region = x_memory_padded[:, :, :-query_block_shape[0], :, :] top_memory_shape = (memory_flange[0], query_block_shape[1] + 2 * memory_flange[1]) top_indices = gather_indices_2d(top_x_region, top_memory_shape, query_block_shape) top_x = gather_blocks_2d(top_x_region, top_indices) x_flange = None if top_x is not None and left_x is not None: x_flange = tf.concat([top_x, left_x], axis=3) else: x_flange = top_x if top_x is not None else left_x return x_flange, x_center
Get the memory regions that surround a 2d query. The memory regions will be the left and top right. Args: x: A tensor with shape [batch, heads, height, width, depth] query_block_shape: a 2-d tuple of integers memory_flange: a 2-d tuple of integers q_indices: a tensor of indices for each of the center blocks. [num_blocks, block_length] Returns: x_flange: A tensor of shape [batch, heads, #blocks, block_length, depth]
juraj-google-style
def make_group_index(self, groupby_cols, bool_arr): factor_list, values_list = self.factorize_groupby_cols(groupby_cols) if len(factor_list) == 0: tmp_rootdir = self.create_tmp_rootdir() carray_factor = bcolz.zeros(len(self), dtype='int64', rootdir=tmp_rootdir, mode='w') carray_values = ['Total'] elif len(factor_list) == 1: carray_factor = factor_list[0] carray_values = values_list[0] else: if self.group_cache_valid(col_list=groupby_cols): col_rootdir = os.path.join(self.rootdir, self.create_group_base_name(groupby_cols)) col_factor_rootdir = col_rootdir + '.factor' carray_factor = bcolz.carray(rootdir=col_factor_rootdir) col_values_rootdir = col_rootdir + '.values' carray_values = bcolz.carray(rootdir=col_values_rootdir) else: carray_factor, carray_values = \ self.create_group_column_factor(factor_list, groupby_cols, cache=self.auto_cache) nr_groups = len(carray_values) skip_key = None if bool_arr is not None: tmp_rootdir = self.create_tmp_rootdir() carray_factor = bcolz.eval( '(factor + 1) * bool - 1', user_dict={'factor': carray_factor, 'bool': bool_arr}, rootdir=tmp_rootdir, mode='w') tmp_rootdir = self.create_tmp_rootdir() labels = bcolz.carray([], dtype='int64', expectedlen=len(carray_factor), rootdir=tmp_rootdir, mode='w') carray_factor, values = ctable_ext.factorize(carray_factor, labels) filter_check = \ [key for key, value in values.items() if value == -1] if filter_check: skip_key = filter_check[0] nr_groups = len(values) if skip_key is None: skip_key = nr_groups return carray_factor, nr_groups, skip_key
Create unique groups for groupby loop Args: factor_list: values_list: groupby_cols: bool_arr: Returns: carray: (carray_factor) int: (nr_groups) the number of resulting groups int: (skip_key)
juraj-google-style
def learn(self, grad_arr): deconvolution_layer_list = self.__deconvolution_layer_list[::-1] for i in range(len(deconvolution_layer_list)): try: grad_arr = deconvolution_layer_list[i].back_propagate(grad_arr) except: self.__logger.debug("Error raised in Convolution layer " + str(i + 1)) raise self.__optimize_deconvolution_layer(self.__learning_rate, 1) layerable_cnn_list = self.__convolutional_auto_encoder.layerable_cnn_list[::-1] for i in range(len(layerable_cnn_list)): try: grad_arr = layerable_cnn_list[i].back_propagate(grad_arr) except: self.__logger.debug( "Delta computation raised an error in CNN layer " + str(len(layerable_cnn_list) - i) ) raise self.__convolutional_auto_encoder.optimize(self.__learning_rate, 1) return grad_arr
Update this Discriminator by ascending its stochastic gradient. Args: grad_arr: `np.ndarray` of gradients. Returns: `np.ndarray` of delta or gradients.
juraj-google-style
def decode_datetime(encoded_datetime): time_zone_match = _TIME_ZONE_RE.search(encoded_datetime) if time_zone_match: time_string = encoded_datetime[:time_zone_match.start(1)].upper() else: time_string = encoded_datetime.upper() if '.' in time_string: format_string = '%Y-%m-%dT%H:%M:%S.%f' else: format_string = '%Y-%m-%dT%H:%M:%S' decoded_datetime = datetime.datetime.strptime(time_string, format_string) if not time_zone_match: return decoded_datetime if time_zone_match.group('z'): offset_minutes = 0 else: sign = time_zone_match.group('sign') hours, minutes = [int(value) for value in time_zone_match.group('hours', 'minutes')] offset_minutes = hours * 60 + minutes if sign == '-': offset_minutes *= -1 return datetime.datetime(decoded_datetime.year, decoded_datetime.month, decoded_datetime.day, decoded_datetime.hour, decoded_datetime.minute, decoded_datetime.second, decoded_datetime.microsecond, TimeZoneOffset(offset_minutes))
Decode a DateTimeField parameter from a string to a python datetime. Args: encoded_datetime: A string in RFC 3339 format. Returns: A datetime object with the date and time specified in encoded_datetime. Raises: ValueError: If the string is not in a recognized format.
juraj-google-style
def _ReadSelectedVolumes(self, volume_system, prefix='v'): volume_identifiers_string = self._input_reader.Read() volume_identifiers_string = volume_identifiers_string.strip() if not volume_identifiers_string: return [] selected_volumes = self._ParseVolumeIdentifiersString( volume_identifiers_string, prefix=prefix) if selected_volumes == ['all']: return [ '{0:s}{1:d}'.format(prefix, volume_index) for volume_index in range(1, volume_system.number_of_volumes + 1)] return selected_volumes
Reads the selected volumes provided by the user. Args: volume_system (APFSVolumeSystem): volume system. prefix (Optional[str]): volume identifier prefix. Returns: list[str]: selected volume identifiers including prefix. Raises: KeyboardInterrupt: if the user requested to abort. ValueError: if the volume identifiers string could not be parsed.
juraj-google-style
def read_xyz(cls, buf, start_index=0, get_bonds=True, nrows=None, engine=None): frame = pd.read_table(buf, skiprows=2, comment=' remove_digits = partial(re.sub, '[0-9]+', '') frame['atom'] = frame['atom'].apply(remove_digits) molecule = cls(frame) molecule.index = range(start_index, (start_index + len(molecule))) if get_bonds: molecule.get_bonds(use_lookup=False, set_lookup=True) return molecule
Read a file of coordinate information. Reads xyz-files. Args: inputfile (str): start_index (int): get_bonds (bool): nrows (int): Number of rows of file to read. Note that the first two rows are implicitly excluded. engine (str): Wrapper for argument of :func:`pandas.read_csv`. Returns: Cartesian:
codesearchnet
def create_version(self, version_label): version_response = self.repo.api.http_request('POST', ('%s/fcr:versions' % self.uri), data=None, headers={'Slug': version_label}) if (version_response.status_code == 201): logger.debug(('version created: %s' % version_response.headers['Location'])) self._affix_version(version_response.headers['Location'], version_label)
method to create a new version of the resource as it currently stands - Note: this will create a version based on the current live instance of the resource, not the local version, which might require self.update() to update. Args: version_label (str): label to be used for version Returns: (ResourceVersion): instance of ResourceVersion, also appended to self.versions
codesearchnet
def _create_extractors(col_params): result = [] for col_param in col_params: result.append(_create_extractor(col_param)) return result
Creates extractors to extract properties corresponding to 'col_params'. Args: col_params: List of ListSessionGroupsRequest.ColParam protobufs. Returns: A list of extractor functions. The ith element in the returned list extracts the column corresponding to the ith element of _request.col_params
juraj-google-style
def with_target_audience(self, target_audience): return self.__class__( self._signer, service_account_email=self._service_account_email, token_uri=self._token_uri, target_audience=target_audience, additional_claims=self._additional_claims.copy())
Create a copy of these credentials with the specified target audience. Args: target_audience (str): The intended audience for these credentials, used when requesting the ID Token. Returns: google.auth.service_account.IDTokenCredentials: A new credentials instance.
juraj-google-style
def members(name, members_list, **kwargs): members_list = [salt.utils.win_functions.get_sam_name(m) for m in members_list.split(",")] if not isinstance(members_list, list): log.debug('member_list is not a list') return False try: obj_group = _get_group_object(name) except pywintypes.com_error as exc: msg = 'Failed to access group {0}. {1}'.format( name, win32api.FormatMessage(exc.excepinfo[5])) log.error(msg) return False existing_members = [_get_username(x) for x in obj_group.members()] existing_members.sort() members_list.sort() if existing_members == members_list: log.info('%s membership is correct', name) return True success = True for member in members_list: if member not in existing_members: try: obj_group.Add('WinNT: log.info('User added: %s', member) except pywintypes.com_error as exc: msg = 'Failed to add {0} to {1}. {2}'.format( member, name, win32api.FormatMessage(exc.excepinfo[5])) log.error(msg) success = False for member in existing_members: if member not in members_list: try: obj_group.Remove('WinNT: log.info('User removed: %s', member) except pywintypes.com_error as exc: msg = 'Failed to remove {0} from {1}. {2}'.format( member, name, win32api.FormatMessage(exc.excepinfo[5])) log.error(msg) success = False return success
Ensure a group contains only the members in the list Args: name (str): The name of the group to modify members_list (str): A single user or a comma separated list of users. The group will contain only the users specified in this list. Returns: bool: ``True`` if successful, otherwise ``False`` CLI Example: .. code-block:: bash salt '*' group.members foo 'user1,user2,user3'
juraj-google-style
def send_email_message(self, recipient, subject, html_message, text_message, sender_email, sender_name): if (not current_app.testing): from flask_sendmail import Message message = Message(subject, recipients=[recipient], html=html_message, body=text_message) self.mail.send(message)
Send email message via Flask-Sendmail. Args: recipient: Email address or tuple of (Name, Email-address). subject: Subject line. html_message: The message body in HTML. text_message: The message body in plain text.
codesearchnet
def parsetime(text): mins, maxs = text.split('-', 1) minv = s_time.parse(mins) maxv = s_time.parse(maxs, base=minv) return minv, maxv
Parse an interval time string and return a (min,max) tuple. Args: text (str): A time interval string Returns: ((int,int)): A epoch millis epoch time string
juraj-google-style
def reply(self, reply_comment): payload = '{ "Comment": "' + reply_comment + '"}' endpoint = 'https: self._make_api_call('post', endpoint, data=payload)
Reply to the Message. Notes: HTML can be inserted in the string and will be interpreted properly by Outlook. Args: reply_comment: String message to send with email.
juraj-google-style
def bottleneck_block(cnn, depth, depth_bottleneck, stride, pre_activation): if pre_activation: bottleneck_block_v2(cnn, depth, depth_bottleneck, stride) else: bottleneck_block_v1(cnn, depth, depth_bottleneck, stride)
Bottleneck block with identity short-cut. Args: cnn: the network to append bottleneck blocks. depth: the number of output filters for this bottleneck block. depth_bottleneck: the number of bottleneck filters for this block. stride: Stride used in the first layer of the bottleneck block. pre_activation: use pre_activation structure used in v2 or not.
juraj-google-style
def solveAsync(self, callback): def async_call(): self._lock.acquire() try: self._impl.solve() except Exception: self._lock.release() raise else: self._lock.release() callback.run() Thread(target=async_call).start()
Solve the current model asynchronously. Args: callback: Callback to be executed when the solver is done.
juraj-google-style
def dropout(inputs, keep_prob=0.5, is_training=True, scope=None): if (is_training and (keep_prob > 0)): with tf.name_scope(scope, 'Dropout', [inputs]): return tf.nn.dropout(inputs, keep_prob) else: return inputs
Returns a dropout layer applied to the input. Args: inputs: the tensor to pass to the Dropout layer. keep_prob: the probability of keeping each input unit. is_training: whether or not the model is in training mode. If so, dropout is applied and values scaled. Otherwise, inputs is returned. scope: Optional scope for name_scope. Returns: a tensor representing the output of the operation.
codesearchnet
def _parse_dataset(file_path, tmp_dir, train): input_path = file_path file_name = 'train' if train else 'dev' gen_output_path = os.path.join(tmp_dir, file_name + '.txt') example_output_path = os.path.join(tmp_dir, _EXAMPLES_FILE) print('input path: ' + input_path) print('gen_output_path: ' + gen_output_path) print('example_output_path: ' + example_output_path) input_file = tf.gfile.Open(input_path, mode='r') examples = [] for counter, line in enumerate(input_file): if counter == 0: continue line_split = line.split('\t') parse1 = line_split[_PARSE1_INDEX] parse2 = line_split[_PARSE2_INDEX] consensus_label = line_split[_LABEL_INDEX] tokens1 = _get_tokens_and_tags(parse1) tokens2 = _get_tokens_and_tags(parse2) tokens1_str = ' '.join(tokens1) tokens2_str = ' '.join(tokens2) if consensus_label != '-': examples.append([tokens1_str, tokens2_str, consensus_label]) input_file.close() with tf.gfile.GFile(gen_output_path, 'w') as f: for tokens1_str, tokens2_str, consensus_label in examples: f.write('%s\t%s\t%s\n' % (tokens1_str, tokens2_str, consensus_label)) if train: with tf.gfile.GFile(example_output_path, 'w') as f: for tokens1_str, tokens2_str, consensus_label in examples: f.write('%s %s\n' % (tokens1_str, tokens2_str))
Convert the dataset in to a simpler format. This function creates two files. One for being processed to produce a vocab and another to generate the data. Args: file_path: string, path to the file to parse. tmp_dir: string, path to the directory to output the files. train: bool, indicating if we are parsing the training set.
juraj-google-style
def load_profile_variants(adapter, variant_file): vcf_info = check_vcf(variant_file) nr_variants = vcf_info['nr_variants'] variant_type = vcf_info['variant_type'] if variant_type != 'snv': LOG.critical('Variants used for profiling must be SNVs only') raise VcfError vcf = get_vcf(variant_file) profile_variants = [build_profile_variant(variant) for variant in vcf] adapter.add_profile_variants(profile_variants)
Loads variants used for profiling Args: adapter (loqusdb.plugins.Adapter): initialized plugin variant_file(str): Path to variant file
juraj-google-style
def by_issn(issn): old_url = aleph.ALEPH_URL aleph.ALEPH_URL = NTK_ALEPH_URL records = aleph.getISSNsXML(issn, base='STK02') aleph.ALEPH_URL = old_url for record in records: marc = MARCXMLRecord(record) additional_info = {'222': marc.get('222', None), 'PER': marc.get('PER', None), '776': marc.get('776', None), '008': marc.get('008', None), 'alt_end_date': ''} additional_info = {key: val for (key, val) in additional_info.iteritems() if val} alt_end_date = None alt_creation_date = None if additional_info['008']: alt_creation_date = additional_info['008'][7:11] alt_end_date = additional_info['008'][11:15] if (alt_end_date in ['9999', '****']): alt_creation_date += '-' alt_end_date = None additional_info['alt_end_date'] = alt_end_date author = Author.parse_author(marc) model = Model(url=_first_or_none(marc.get('856u')), conspect=_first_or_none(marc.get('072a')), annotation_tags=_first_or_none(marc.get('520a')), periodicity=_first_or_none(marc.get('310a')), title_tags=_first_or_none(marc.get('222a')), subtitle_tags=_first_or_none(marc.get('245b')), place_tags=remove_hairs((_first_or_none(marc.get('260a')) or '')), author_tags=(author._asdict() if author else None), publisher_tags=remove_hairs(((_first_or_none(marc.get('260b')) or _first_or_none(marc.get('264b')) or ''),), ', '), creation_dates=_first_or_none(marc.get('260c', [alt_creation_date])), lang_tags=_first_or_none(marc.get('040b')), keyword_tags=marc.get('650a07'), source_info=_first_or_none(marc.get('500a')), original_xml=record, additional_info=additional_info) (yield _add_source(model))
Query aleph for records with given `issn`. The lookup is directed to the NTK's Aleph. Args: issn (str): ISSN of the periodical. Returns: obj: :class:`Model` instances for each record.
codesearchnet
def _init_profile_batch(self, profile_batch): profile_batch_error_message = f'profile_batch must be a non-negative integer or 2-tuple of positive integers. A pair of positive integers signifies a range of batches to profile. Found: {profile_batch}' if isinstance(profile_batch, str): profile_batch = str(profile_batch).split(',') profile_batch = tree.map_structure(int, profile_batch) if isinstance(profile_batch, int): self._start_batch = profile_batch self._stop_batch = profile_batch elif isinstance(profile_batch, (tuple, list)) and len(profile_batch) == 2: self._start_batch, self._stop_batch = profile_batch else: raise ValueError(profile_batch_error_message) if self._start_batch < 0 or self._stop_batch < self._start_batch: raise ValueError(profile_batch_error_message) self._profiler_started = False self._batch_trace_context = None if self._start_batch > 0: self._start_profiler(logdir='') self._stop_profiler(save=False) self._is_tracing = False self._should_trace = not (self._start_batch == 0 and self._stop_batch == 0)
Validate profile_batch value and set the range of batches to profile. Sets values of _start_batch and _stop_batch attributes, specifying the start and stop batch to profile. Setting `profile_batch=0` disables profiling. Args: profile_batch: The range of batches to profile. Should be a non-negative integer or a comma separated string of pair of positive integers. A pair of positive integers signify a range of batches to profile. Raises: ValueError: If profile_batch is not an integer or a comma separated pair of positive integers.
github-repos
def get_volume(): if (system.get_name() == 'windows'): pass elif (system.get_name() == 'mac'): volume = system.get_cmd_out(['osascript', '-e', 'set ovol to output volume of (get volume settings); return the quoted form of ovol']) return (int(volume) * 10) else: volume = system.get_cmd_out("amixer get Master |grep % |awk '{print $5}'|sed -e 's/\\[ return int(volume.replace('%', ''))
Get the volume. Get the current volume. Returns: int: The current volume (percentage, between 0 and 100).
codesearchnet
def codemirror_field_css_bundle(field): manifesto = CodemirrorAssetTagRender() manifesto.register_from_fields(field) try: bundle_name = manifesto.css_bundle_names()[0] except IndexError: msg = "Given field with configuration name '{}' does not have a Javascript bundle name" raise CodeMirrorFieldBundleError(msg.format(field.config_name)) return bundle_name
Filter to get CodeMirror CSS bundle name needed for a single field. Example: :: {% load djangocodemirror_tags %} {{ form.myfield|codemirror_field_css_bundle }} Arguments: field (djangocodemirror.fields.CodeMirrorField): A form field. Raises: CodeMirrorFieldBundleError: Raised if Codemirror configuration from field does not have a bundle name. Returns: string: Bundle name to load with webassets.
codesearchnet
def constant_value(pred): if isinstance(pred, int): if pred == 1: pred = True elif pred == 0: pred = False if isinstance(pred, variables.Variable): return None return smart_module.smart_constant_value(pred)
Return the bool value for `pred`, or None if `pred` had a dynamic value. Args: pred: A scalar, either a Python bool or a TensorFlow boolean variable or tensor, or the Python integer 1 or 0. Returns: True or False if `pred` has a constant boolean value, None otherwise. Raises: TypeError: If `pred` is not a Variable, Tensor or bool, or Python integer 1 or 0.
github-repos
def _path_components(self, path): if ((not path) or (path == self._path_separator(path))): return [] (drive, path) = self.splitdrive(path) path_components = path.split(self._path_separator(path)) assert (drive or path_components) if (not path_components[0]): if ((len(path_components) > 1) and (not path_components[1])): path_components = [] else: path_components = path_components[1:] if drive: path_components.insert(0, drive) return path_components
Breaks the path into a list of component names. Does not include the root directory as a component, as all paths are considered relative to the root directory for the FakeFilesystem. Callers should basically follow this pattern: .. code:: python file_path = self.absnormpath(file_path) path_components = self._path_components(file_path) current_dir = self.root for component in path_components: if component not in current_dir.contents: raise IOError _do_stuff_with_component(current_dir, component) current_dir = current_dir.get_entry(component) Args: path: Path to tokenize. Returns: The list of names split from path.
codesearchnet
def thread_safe_client(client, lock=None): if (lock is None): lock = threading.Lock() return _ThreadSafeProxy(client, lock)
Create a thread-safe proxy which locks every method call for the given client. Args: client: the client object to be guarded. lock: the lock object that will be used to lock client's methods. If None, a new lock will be used. Returns: A thread-safe proxy for the given client.
codesearchnet
def deserialize_ndarray_npy(d): with io.BytesIO() as f: f.write(json.loads(d['npy']).encode('latin-1')) f.seek(0) return np.load(f)
Deserializes a JSONified :obj:`numpy.ndarray` that was created using numpy's :obj:`save` function. Args: d (:obj:`dict`): A dictionary representation of an :obj:`ndarray` object, created using :obj:`numpy.save`. Returns: An :obj:`ndarray` object.
juraj-google-style
def open_stream(self, destination, timeout_ms=None): timeout = timeouts.PolledTimeout.from_millis(timeout_ms) stream_transport = self._make_stream_transport() self.transport.write_message(adb_message.AdbMessage(command='OPEN', arg0=stream_transport.local_id, arg1=0, data=(destination + '\x00')), timeout) if (not stream_transport.ensure_opened(timeout)): return None return AdbStream(destination, stream_transport)
Opens a new stream to a destination service on the device. Not the same as the posix 'open' or any other Open methods, this corresponds to the OPEN message described in the ADB protocol documentation mentioned above. It creates a stream (uniquely identified by remote/local ids) that connects to a particular service endpoint. Args: destination: The service:command string, see ADB documentation. timeout_ms: Timeout in milliseconds for the Open to succeed (or as a PolledTimeout object). Raises: AdbProtocolError: Wrong local_id sent to us, or we didn't get a ready response. Returns: An AdbStream object that can be used to read/write data to the specified service endpoint, or None if the requested service couldn't be opened.
codesearchnet
def get_subject_without_validation(jwt_bu64): try: jwt_dict = get_jwt_dict(jwt_bu64) except JwtException as e: return log_jwt_bu64_info(logging.error, str(e), jwt_bu64) try: return jwt_dict['sub'] except LookupError: log_jwt_dict_info(logging.error, 'Missing "sub" key', jwt_dict)
Extract subject from the JWT without validating the JWT. - The extracted subject cannot be trusted for authn or authz. Args: jwt_bu64: bytes JWT, encoded using a a URL safe flavor of Base64. Returns: str: The subject contained in the JWT.
codesearchnet
def _get_validation_labels(val_path): labels_path = tfds.core.get_tfds_path(_VALIDATION_LABELS_FNAME) with tf.io.gfile.GFile(labels_path) as labels_f: labels = labels_f.read().strip().split('\n') with tf.io.gfile.GFile(val_path, 'rb') as tar_f_obj: tar = tarfile.open(mode='r:', fileobj=tar_f_obj) images = sorted(tar.getnames()) return dict(zip(images, labels))
Returns labels for validation. Args: val_path: path to TAR file containing validation images. It is used to retrieve the name of pictures and associate them to labels. Returns: dict, mapping from image name (str) to label (str).
juraj-google-style
def diff_charsToLines(self, diffs, lineArray): for i in range(len(diffs)): text = [] for char in diffs[i][1]: text.append(lineArray[ord(char)]) diffs[i] = (diffs[i][0], ''.join(text))
Rehydrate the text in a diff from a string of line hashes to real lines of text. Args: diffs: Array of diff tuples. lineArray: Array of unique strings.
codesearchnet
def forward(self, x): head_outputs = [None] * self.t if isinstance(self.input_layer, list): input_outputs = [mod(x) for mod, x in zip(self.input_layer, x)] x = torch.stack(input_outputs, dim=1) for t in self.task_map[0]: head = self.heads[t] head_outputs[t] = head(input_outputs[t]) else: x = self.input_layer(x) for t in self.task_map[0]: head = self.heads[t] head_outputs[t] = head(x) for i, layer in enumerate(self.middle_layers, start=1): x = layer(x) for t in self.task_map[i]: head = self.heads[t] if self.config["pass_predictions"] and bool(self.task_graph.parents[t]): task_input = [x] for p in self.task_graph.parents[t]: task_input.append(head_outputs[p]) task_input = torch.stack(task_input, dim=1) else: task_input = x head_outputs[t] = head(task_input) return head_outputs
Returns a list of outputs for tasks 0,...t-1 Args: x: a [batch_size, ...] batch from X
juraj-google-style
def send_message( self, request: str, response_expected: bool, **kwargs: Any ) -> Response: payload = str(request) + self.delimiter self.socket.send(payload.encode(self.encoding)) response = bytes() decoded = None while True: response += self.socket.recv(1024) decoded = response.decode(self.encoding) if len(decoded) < self.delimiter_length: continue elif decoded[-self.delimiter_length :] == self.delimiter: break assert decoded is not None return Response(decoded[: -self.delimiter_length])
Transport the message to the server and return the response. Args: request: The JSON-RPC request string. response_expected: Whether the request expects a response. Returns: A Response object.
juraj-google-style
def userhome(username=None): if username is None: if 'HOME' in os.environ: userhome_dpath = os.environ['HOME'] else: if sys.platform.startswith('win32'): if 'USERPROFILE' in os.environ: userhome_dpath = os.environ['USERPROFILE'] elif 'HOMEPATH' in os.environ: drive = os.environ.get('HOMEDRIVE', '') userhome_dpath = join(drive, os.environ['HOMEPATH']) else: raise OSError("Cannot determine the user's home directory") else: import pwd userhome_dpath = pwd.getpwuid(os.getuid()).pw_dir else: if sys.platform.startswith('win32'): c_users = dirname(userhome()) userhome_dpath = join(c_users, username) if not exists(userhome_dpath): raise KeyError('Unknown user: {}'.format(username)) else: import pwd try: pwent = pwd.getpwnam(username) except KeyError: raise KeyError('Unknown user: {}'.format(username)) userhome_dpath = pwent.pw_dir return userhome_dpath
Returns the user's home directory. If `username` is None, this is the directory for the current user. Args: username (str): name of a user on the system Returns: PathLike: userhome_dpath: path to the home directory Example: >>> import getpass >>> username = getpass.getuser() >>> assert userhome() == expanduser('~') >>> assert userhome(username) == expanduser('~')
juraj-google-style
def quantization_mode(self): return self._quantization_mode
The quantization mode of this policy. Returns: The quantization mode of this policy, as a string. If this policy is not quantized, it will return `None`.
github-repos
def index_update(x, idx, y): return _index_update_helper(tf_np.ndarray._with_index_update, x, idx, y)
Pure equivalent of `x[idx] = y`. Returns the value of x that would result from the NumPy-style indexed assignment `x[idx] = y`. Because it's a pure function, `x` itself won't be changed. Args: x: an array with the values to be updated. idx: a Numpy-style index, consisting of `None`, integers, slice objects, ellipses, ndarrays with integer dtypes, or a tuple of the above. y: the array of updates. `y` must be broadcastable to the shape of the array that would be returned by `x[idx]`. Returns: The updated version of `x`.
github-repos
def _cmd_quote(cmd): r pattern = re.compile('^(\\"|\').*|.*(\\"|\')$') while pattern.match(cmd) is not None: cmd = cmd.strip('"').strip('\'') cmd = '"{0}"'.format(cmd) return cmd
r''' Helper function to properly format the path to the binary for the service Must be wrapped in double quotes to account for paths that have spaces. For example: ``"C:\Program Files\Path\to\bin.exe"`` Args: cmd (str): Full path to the binary Returns: str: Properly quoted path to the binary
juraj-google-style
def parse_pair_args(labels, argclass): label_data = set() for arg in labels: (name, value) = split_pair(arg, '=', nullable_idx=1) label_data.add(argclass(name, value)) return label_data
Parse flags of key=value pairs and return a list of argclass. For pair variables, we need to: * split the input into name=value pairs (value optional) * Create the EnvParam object Args: labels: list of 'key' or 'key=value' strings. argclass: Container class for args, must instantiate with argclass(k, v). Returns: list of argclass objects.
codesearchnet
def GetCommand(self, include_separators=True): args = [] if self.name: args.append(self.name) for element in self.elements: if element.HasError(): continue if element.args: args.extend(element.args) if element.HasSeparator() and include_separators: args.append(self.separator) if self.NeedsSeparator() and include_separators: args.append(self.separator) return ' '.join((self._Quote(arg) for arg in args))
Returns the command representing the trace up to this point. Args: include_separators: Whether or not to include separators in the command. Returns: A string representing a Fire CLI command that would produce this trace.
github-repos
def update_endpoint(self, endpoint_name, endpoint_config_name): if not _deployment_entity_exists(lambda: self.sagemaker_client.describe_endpoint(EndpointName=endpoint_name)): raise ValueError('Endpoint with name "{}" does not exist; please use an existing endpoint name' .format(endpoint_name)) self.sagemaker_client.update_endpoint(EndpointName=endpoint_name, EndpointConfigName=endpoint_config_name) return endpoint_name
Update an Amazon SageMaker ``Endpoint`` according to the endpoint configuration specified in the request Raise an error if endpoint with endpoint_name does not exist. Args: endpoint_name (str): Name of the Amazon SageMaker ``Endpoint`` to update. endpoint_config_name (str): Name of the Amazon SageMaker endpoint configuration to deploy. Returns: str: Name of the Amazon SageMaker ``Endpoint`` being updated.
juraj-google-style
def _extract_relative_dates(self, text: str) -> List[Extraction]: if not text or not self._etk: return list() base = self._settings[RELATIVE_BASE] if self._settings[RELATIVE_BASE] else datetime.datetime.now() if not self._settings[RETURN_AS_TIMEZONE_AWARE]: base = base.replace(tzinfo=None) elif not base.tzinfo: base = base.astimezone(self._default_tz) res = SpacyRuleExtractor(self._etk.default_nlp, spacy_rules, 'relative_date_extractor').extract(text) ans = list() for relative_date in res: if relative_date.rule_id == 'direction_number_unit': direction, measure, unit = relative_date.value.split() measure = num_to_digit[measure.lower()] elif relative_date.rule_id == 'number_unit_direction': measure, unit, direction = relative_date.value.split() measure = num_to_digit[measure.lower()] elif relative_date.rule_id == 'direction_digit_unit': direction, measure, unit = relative_date.value.split() elif relative_date.rule_id == 'digit_unit_direction': measure, unit, direction = relative_date.value.split() elif relative_date.rule_id == 'direction_unit': direction, unit = relative_date.value.split() measure = '1' elif relative_date.rule_id == 'the_day': unit = 'days' key_ = relative_date.value.split()[-1].lower() if key_ == 'today': direction = 'ago' measure = '0' else: direction = 'ago' if key_ == 'yesterday' else 'later' measure = '1' if len(relative_date.value.split()) == 1 else '2' else: continue unit = unit if unit[-1] == 's' else unit+'s' direction = directions[direction.lower()] if direction.lower() in directions else '+' delta_args = {unit: int(direction+measure)} relative_delta = relativedelta(**delta_args) date = self._post_process_date(base+relative_delta) if date: extraction_date = self._wrap_extraction(date, relative_date.value, relative_date.provenance['start_char'], relative_date.provenance['end_char']) if extraction_date: ans.append(extraction_date) return ans
Extract relative dates using spaCy rules Args: text: str - the text to extract the relative date strings from Returns: List of Extraction(s)
juraj-google-style
def flatten_dict_items(dictionary): return _pywrap_nest.FlattenDictItems(dictionary)
Returns a dictionary with flattened keys and values. This function flattens the keys and values of a dictionary, which can be arbitrarily nested structures, and returns the flattened version of such structures: ```python example_dictionary = {(4, 5, (6, 8)): ("a", "b", ("c", "d"))} result = {4: "a", 5: "b", 6: "c", 8: "d"} flatten_dict_items(example_dictionary) == result ``` The input dictionary must satisfy two properties: 1. Its keys and values should have the same exact nested structure. 2. The set of all flattened keys of the dictionary must not contain repeated keys. Args: dictionary: the dictionary to zip Returns: The zipped dictionary. Raises: TypeError: If the input is not a dictionary. ValueError: If any key and value do not have the same structure layout, or if keys are not unique.
github-repos
def convert_tanh(params, w_name, scope_name, inputs, layers, weights, names): print('Converting tanh ...') if names == 'short': tf_name = 'TANH' + random_string(4) elif names == 'keep': tf_name = w_name else: tf_name = w_name + str(random.random()) tanh = keras.layers.Activation('tanh', name=tf_name) layers[scope_name] = tanh(layers[inputs[0]])
Convert tanh layer. Args: params: dictionary with layer parameters w_name: name prefix in state_dict scope_name: pytorch scope name inputs: pytorch node inputs layers: dictionary with keras tensors weights: pytorch state_dict names: use short names for keras layers
juraj-google-style
def get_package(self, name) -> 'EffectPackage': name, cls_name = parse_package_string(name) try: return self.package_map[name] except KeyError: raise EffectError("No package '{}' registered".format(name))
Get a package by python path. Can also contain path to an effect. Args: name (str): Path to effect package or effect Returns: The requested EffectPackage Raises: EffectError when no package is found
juraj-google-style
def _events_from_file(filepath): records = list(tf.compat.v1.python_io.tf_record_iterator(filepath)) result = [] for r in records: event = tf.compat.v1.Event() event.ParseFromString(r) result.append(event) return result
Returns all events in a single event file. Args: filepath: Path to the event file. Returns: A list of all tf.compat.v1.Event protos in the event file.
github-repos
def _parse_peer_link(self, config): match = re.search(r'peer-link (\S+)', config) value = match.group(1) if match else None return dict(peer_link=value)
Scans the config block and parses the peer-link value Args: config (str): The config block to scan Returns: dict: A dict object that is intended to be merged into the resource dict
juraj-google-style
def get_path(self, url): cache_path = self._url_to_path(url) if os.path.exists(cache_path): return cache_path return None
Returns the path of a cached resource. Args: url: The url of the resource Returns: The path to the cached resource or None if not in the cache
juraj-google-style
def evaluate(conditions, leaf_evaluator): if isinstance(conditions, list): if (conditions[0] in list(EVALUATORS_BY_OPERATOR_TYPE.keys())): return EVALUATORS_BY_OPERATOR_TYPE[conditions[0]](conditions[1:], leaf_evaluator) else: return EVALUATORS_BY_OPERATOR_TYPE[ConditionOperatorTypes.OR](conditions, leaf_evaluator) leaf_condition = conditions return leaf_evaluator(leaf_condition)
Top level method to evaluate conditions. Args: conditions: Nested array of and/or conditions, or a single leaf condition value of any type. Example: ['and', '0', ['or', '1', '2']] leaf_evaluator: Function which will be called to evaluate leaf condition values. Returns: Boolean: Result of evaluating the conditions using the operator rules and the leaf evaluator. None: if conditions couldn't be evaluated.
codesearchnet
def forward(self, s: torch.Tensor, z: Optional[torch.Tensor], r: Rigid, mask: torch.Tensor, _offload_inference: bool=False, _z_reference_list: Optional[Sequence[torch.Tensor]]=None) -> torch.Tensor: z = [z] q = self.linear_q(s) kv = self.linear_kv(s) q = q.view(q.shape[:-1] + (self.num_heads, -1)) kv = kv.view(kv.shape[:-1] + (self.num_heads, -1)) k, v = torch.split(kv, self.hidden_dim, dim=-1) q_pts = self.linear_q_points(s) q_pts = torch.split(q_pts, q_pts.shape[-1] q_pts = torch.stack(q_pts, dim=-1) q_pts = r[..., None].apply(q_pts) q_pts = q_pts.view(q_pts.shape[:-2] + (self.num_heads, self.num_qk_points, 3)) kv_pts = self.linear_kv_points(s) kv_pts = torch.split(kv_pts, kv_pts.shape[-1] kv_pts = torch.stack(kv_pts, dim=-1) kv_pts = r[..., None].apply(kv_pts) kv_pts = kv_pts.view(kv_pts.shape[:-2] + (self.num_heads, -1, 3)) k_pts, v_pts = torch.split(kv_pts, [self.num_qk_points, self.num_v_points], dim=-2) b = self.linear_b(z[0]) if _offload_inference: assert sys.getrefcount(z[0]) == 2 z[0] = z[0].cpu() if is_fp16_enabled(): with torch.cuda.amp.autocast(enabled=False): a = torch.matmul(permute_final_dims(q.float(), (1, 0, 2)), permute_final_dims(k.float(), (1, 2, 0))) else: a = torch.matmul(permute_final_dims(q, (1, 0, 2)), permute_final_dims(k, (1, 2, 0))) a *= math.sqrt(1.0 / (3 * self.hidden_dim)) a += math.sqrt(1.0 / 3) * permute_final_dims(b, (2, 0, 1)) pt_att = q_pts.unsqueeze(-4) - k_pts.unsqueeze(-5) pt_att = pt_att ** 2 pt_att = sum(torch.unbind(pt_att, dim=-1)) head_weights = self.softplus(self.head_weights).view(*(1,) * len(pt_att.shape[:-2]) + (-1, 1)) head_weights = head_weights * math.sqrt(1.0 / (3 * (self.num_qk_points * 9.0 / 2))) pt_att = pt_att * head_weights pt_att = torch.sum(pt_att, dim=-1) * -0.5 square_mask = mask.unsqueeze(-1) * mask.unsqueeze(-2) square_mask = self.config.inf * (square_mask - 1) pt_att = permute_final_dims(pt_att, (2, 0, 1)) a = a + pt_att a = a + square_mask.unsqueeze(-3) a = self.softmax(a) o = torch.matmul(a, v.transpose(-2, -3).to(dtype=a.dtype)).transpose(-2, -3) o = flatten_final_dims(o, 2) o_pt = torch.sum(a[..., None, :, :, None] * permute_final_dims(v_pts, (1, 3, 0, 2))[..., None, :, :], dim=-2) o_pt = permute_final_dims(o_pt, (2, 0, 3, 1)) o_pt = r[..., None, None].invert_apply(o_pt) o_pt_norm = flatten_final_dims(torch.sqrt(torch.sum(o_pt ** 2, dim=-1) + self.config.epsilon), 2) o_pt = o_pt.reshape(*o_pt.shape[:-3], -1, 3) if _offload_inference: z[0] = z[0].to(o_pt.device) o_pair = torch.matmul(a.transpose(-2, -3), z[0].to(dtype=a.dtype)) o_pair = flatten_final_dims(o_pair, 2) s = self.linear_out(torch.cat((o, *torch.unbind(o_pt, dim=-1), o_pt_norm, o_pair), dim=-1).to(dtype=z[0].dtype)) return s
Args: s: [*, N_res, C_s] single representation z: [*, N_res, N_res, C_z] pair representation r: [*, N_res] transformation object mask: [*, N_res] mask Returns: [*, N_res, C_s] single representation update
github-repos
def Open(self, file_object): self._file_object = file_object self._regf_file.open_file_object(self._file_object) return True
Opens the Windows Registry file using a file-like object. Args: file_object (file): file-like object. Returns: bool: True if successful or False if not.
juraj-google-style
def _retrieve_offsets(self, timestamps, timeout_ms=float('inf')): if (not timestamps): return {} start_time = time.time() remaining_ms = timeout_ms while (remaining_ms > 0): future = self._send_offset_requests(timestamps) self._client.poll(future=future, timeout_ms=remaining_ms) if future.succeeded(): return future.value if (not future.retriable()): raise future.exception elapsed_ms = ((time.time() - start_time) * 1000) remaining_ms = (timeout_ms - elapsed_ms) if (remaining_ms < 0): break if future.exception.invalid_metadata: refresh_future = self._client.cluster.request_update() self._client.poll(future=refresh_future, timeout_ms=remaining_ms) else: time.sleep((self.config['retry_backoff_ms'] / 1000.0)) elapsed_ms = ((time.time() - start_time) * 1000) remaining_ms = (timeout_ms - elapsed_ms) raise Errors.KafkaTimeoutError(('Failed to get offsets by timestamps in %s ms' % (timeout_ms,)))
Fetch offset for each partition passed in ``timestamps`` map. Blocks until offsets are obtained, a non-retriable exception is raised or ``timeout_ms`` passed. Arguments: timestamps: {TopicPartition: int} dict with timestamps to fetch offsets by. -1 for the latest available, -2 for the earliest available. Otherwise timestamp is treated as epoch miliseconds. Returns: {TopicPartition: (int, int)}: Mapping of partition to retrieved offset and timestamp. If offset does not exist for the provided timestamp, that partition will be missing from this mapping.
codesearchnet
def internal_convert_n_to_tensor_or_composite(values, dtype=None, name=None, as_ref=False) -> list[Union[EagerTensor, SymbolicTensor, composite_tensor.CompositeTensor, type(None)]]: if not isinstance(values, collections_abc.Sequence): raise TypeError('values must be a sequence.') ret = [] for i, value in enumerate(values): if value is None: ret.append(value) else: n = None if name is None else '%s_%d' % (name, i) ret.append(internal_convert_to_tensor_or_composite(value, dtype=dtype, name=n, as_ref=as_ref)) return ret
Converts `values` to a list of `Tensor` or `CompositeTensor` objects. Any `CompositeTensor` objects in `values` are returned unmodified. Args: values: A list of `None`, `CompositeTensor`, or objects that can be consumed by `convert_to_tensor()`. dtype: (Optional.) The required `DType` of the returned `Tensor`s or `CompositeTensor`s. name: (Optional.) A name prefix to used when a new `Tensor` is created, in which case element `i` will be given the name `name + '_' + i`. as_ref: True if the caller wants the results as ref tensors. Returns: A list of `Tensor`, `CompositeTensor`, and/or `None` objects. Raises: TypeError: If no conversion function is registered for an element in `values`. RuntimeError: If a registered conversion function returns an invalid value.
github-repos
def get_new_requests(self): content_type = self.__queue_item.response.headers.get('content-type') scrapers = self.__get_all_scrapers() new_requests = [] for scraper in scrapers: instance = scraper(self.__options, self.__queue_item) if self.__content_type_matches(content_type, instance.content_types): new_requests.extend(instance.get_requests()) return new_requests
Retrieve all the new request that were found in this request. Returns: list(:class:`nyawc.http.Request`): A list of request objects.
codesearchnet
def get_examples(self, compact=False): examples = copy.deepcopy(self._examples) if (not compact): return examples def make_compact(d): if (not isinstance(d, dict)): return for key in d: if isinstance(d[key], dict): inner_d = d[key] if ((len(inner_d) == 1) and ('.tag' in inner_d)): d[key] = inner_d['.tag'] else: make_compact(inner_d) if isinstance(d[key], list): for item in d[key]: make_compact(item) for example in examples.values(): if (isinstance(example.value, dict) and (len(example.value) == 1) and ('.tag' in example.value)): example.value = example.value['.tag'] else: make_compact(example.value) return examples
Returns an OrderedDict mapping labels to Example objects. Args: compact (bool): If True, union members of void type are converted to their compact representation: no ".tag" key or containing dict, just the tag as a string.
codesearchnet
def get_chain(self, name, table="filter"): return [r for r in self.rules if r["table"] == table and r["chain"] == name]
Get the list of rules for a particular chain. Chain order is kept intact. Args: name (str): chain name, e.g. `` table (str): table name, defaults to ``filter`` Returns: list: rules
juraj-google-style
def __init__(self, channel): self.ListNotificationChannelDescriptors = channel.unary_unary( "/google.monitoring.v3.NotificationChannelService/ListNotificationChannelDescriptors", request_serializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_notification__service__pb2.ListNotificationChannelDescriptorsRequest.SerializeToString, response_deserializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_notification__service__pb2.ListNotificationChannelDescriptorsResponse.FromString, ) self.GetNotificationChannelDescriptor = channel.unary_unary( "/google.monitoring.v3.NotificationChannelService/GetNotificationChannelDescriptor", request_serializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_notification__service__pb2.GetNotificationChannelDescriptorRequest.SerializeToString, response_deserializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_notification__pb2.NotificationChannelDescriptor.FromString, ) self.ListNotificationChannels = channel.unary_unary( "/google.monitoring.v3.NotificationChannelService/ListNotificationChannels", request_serializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_notification__service__pb2.ListNotificationChannelsRequest.SerializeToString, response_deserializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_notification__service__pb2.ListNotificationChannelsResponse.FromString, ) self.GetNotificationChannel = channel.unary_unary( "/google.monitoring.v3.NotificationChannelService/GetNotificationChannel", request_serializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_notification__service__pb2.GetNotificationChannelRequest.SerializeToString, response_deserializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_notification__pb2.NotificationChannel.FromString, ) self.CreateNotificationChannel = channel.unary_unary( "/google.monitoring.v3.NotificationChannelService/CreateNotificationChannel", request_serializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_notification__service__pb2.CreateNotificationChannelRequest.SerializeToString, response_deserializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_notification__pb2.NotificationChannel.FromString, ) self.UpdateNotificationChannel = channel.unary_unary( "/google.monitoring.v3.NotificationChannelService/UpdateNotificationChannel", request_serializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_notification__service__pb2.UpdateNotificationChannelRequest.SerializeToString, response_deserializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_notification__pb2.NotificationChannel.FromString, ) self.DeleteNotificationChannel = channel.unary_unary( "/google.monitoring.v3.NotificationChannelService/DeleteNotificationChannel", request_serializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_notification__service__pb2.DeleteNotificationChannelRequest.SerializeToString, response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString, ) self.SendNotificationChannelVerificationCode = channel.unary_unary( "/google.monitoring.v3.NotificationChannelService/SendNotificationChannelVerificationCode", request_serializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_notification__service__pb2.SendNotificationChannelVerificationCodeRequest.SerializeToString, response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString, ) self.GetNotificationChannelVerificationCode = channel.unary_unary( "/google.monitoring.v3.NotificationChannelService/GetNotificationChannelVerificationCode", request_serializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_notification__service__pb2.GetNotificationChannelVerificationCodeRequest.SerializeToString, response_deserializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_notification__service__pb2.GetNotificationChannelVerificationCodeResponse.FromString, ) self.VerifyNotificationChannel = channel.unary_unary( "/google.monitoring.v3.NotificationChannelService/VerifyNotificationChannel", request_serializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_notification__service__pb2.VerifyNotificationChannelRequest.SerializeToString, response_deserializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_notification__pb2.NotificationChannel.FromString, )
Constructor. Args: channel: A grpc.Channel.
juraj-google-style
def write_to_file(self, filename='material_index.dat', plot=True): path = os.path.dirname(sys.modules[__name__].__file__) + '/' dir_plot = 'material_index/' if not os.path.exists(dir_plot): os.makedirs(dir_plot) for axis, name in zip(self.axes, self.axes_str): root, ext = os.path.splitext(filename) fn = dir_plot + root + '_'+ name + ext with open(fn, 'w') as fs: for n_row in np.abs(axis.n[::-1]): n_str = ','.join([str(v) for v in n_row]) fs.write(n_str+'\n') if plot: filename_image_prefix, _ = os.path.splitext(fn) filename_image = filename_image_prefix + '.png' args = { 'title': 'Refractive Index Profile: %s' % name, 'x_pts': self.xx.x_pts, 'y_pts': self.xx.y_pts, 'x_min': self.xx.x_min, 'x_max': self.xx.x_max, 'y_min': self.xx.y_min, 'y_max': self.xx.y_max, 'filename_data': fn, 'filename_image': filename_image } if MPL: heatmap = np.loadtxt(args['filename_data'], delimiter=',') plt.clf() plt.title(args['title']) plt.xlabel('$x$') plt.ylabel('$y$') plt.imshow(np.flipud(heatmap), extent=(args['x_min'], args['x_max'], args['y_min'], args['y_max']), aspect="auto") plt.colorbar() plt.savefig(filename_image) else: gp.gnuplot(path+'structure.gpi', args, silent=False)
Write the refractive index profile to file. Args: filename (str): The nominal filename the refractive index data should be saved to. plot (bool): `True` if plots should be generates, otherwise `False`. Default is `True`.
juraj-google-style
def _database_string(self): if (self._database_string_internal is None): db_str = firestore_client.FirestoreClient.database_root_path(self.project, self._database) self._database_string_internal = db_str return self._database_string_internal
The database string corresponding to this client's project. This value is lazy-loaded and cached. Will be of the form ``projects/{project_id}/databases/{database_id}`` but ``database_id == '(default)'`` for the time being. Returns: str: The fully-qualified database string for the current project. (The default database is also in this string.)
codesearchnet
def smear(self, sigma): diff = [self.x[i + 1] - self.x[i] for i in range(len(self.x) - 1)] avg_x_per_step = np.sum(diff) / len(diff) if len(self.ydim) == 1: self.y = gaussian_filter1d(self.y, sigma / avg_x_per_step) else: self.y = np.array([ gaussian_filter1d(self.y[:, k], sigma / avg_x_per_step) for k in range(self.ydim[1])]).T
Apply Gaussian smearing to spectrum y value. Args: sigma: Std dev for Gaussian smear function
juraj-google-style
def parse(cls, buf: memoryview, params: Params) \ -> Tuple[Parseable, memoryview]: for data_type in params.expected: try: return data_type.parse(buf, params) except NotParseable: pass raise UnexpectedType(buf)
Parses the given buffer by attempting to parse the list of :attr:`~Params.expected` types until one of them succeeds, then returns the parsed object. Args: buf: The bytes containing the data to be parsed. params: The parameters used by some parseable types.
juraj-google-style
def _get_segments(self, start, request_size): if not request_size: return [] end = start + request_size futures = [] while request_size > self._max_request_size: futures.append(self._get_segment(start, self._max_request_size)) request_size -= self._max_request_size start += self._max_request_size if start < end: futures.append(self._get_segment(start, end - start)) return [fut.get_result() for fut in futures]
Get segments of the file from Google Storage as a list. A large request is broken into segments to avoid hitting urlfetch response size limit. Each segment is returned from a separate urlfetch. Args: start: start offset to request. Inclusive. Have to be within the range of the file. request_size: number of bytes to request. Returns: A list of file segments in order
juraj-google-style
def lock(vcs, lock_object, wait=True): if wait: timeout = (- 1) else: timeout = 0 lock_path = _get_lock_path(vcs, lock_object) lock = filelock.FileLock(lock_path) with lock.acquire(timeout=timeout): (yield)
A context manager that grabs the lock and releases it when done. This blocks until the lock can be acquired. Args: vcs (easyci.vcs.base.Vcs) lock_object (Lock) wait (boolean) - whether to wait for the lock or error out Raises: Timeout
codesearchnet
def get_shape(value: Union[types.FloatTensor, types.IntTensor]) -> types.IntTensor: result = value.shape return tf.shape(value) if None in result.as_list() else result
Returns the `shape` of a given `Tensor`. Args: value: Scalar `Tensor of integers or real values. Returns: `Tensor` of integers with rank 1.
github-repos
def is_registered(self, prefix): return self._resolve_prefix(prefix) is not None
Test if a command prefix or its alias is has a registered handler. Args: prefix: A prefix or its alias, as a str. Returns: True iff a handler is registered for prefix.
github-repos
def parse(self, text, key=None): try: data = json.loads(text) except ValueError as e: raise ValueError(('%s: Value: [%s]' % (e, text))) if (data and key): if (key not in data): raise ValueError(('Invalid response (key %s not found): %s' % (key, data))) data = data[key] return data
Parses a response. Args: text (str): Text to parse Kwargs: key (str): Key to look for, if any Returns: Parsed value Raises: ValueError
codesearchnet
def plot_heldout_prediction(input_vals, probs, fname, n=10, title=''): fig = figure.Figure(figsize=(9, (3 * n))) canvas = backend_agg.FigureCanvasAgg(fig) for i in range(n): ax = fig.add_subplot(n, 3, ((3 * i) + 1)) ax.imshow(input_vals[(i, :)].reshape(IMAGE_SHAPE[:(- 1)]), interpolation='None') ax = fig.add_subplot(n, 3, ((3 * i) + 2)) for prob_sample in probs: sns.barplot(np.arange(10), prob_sample[(i, :)], alpha=0.1, ax=ax) ax.set_ylim([0, 1]) ax.set_title('posterior samples') ax = fig.add_subplot(n, 3, ((3 * i) + 3)) sns.barplot(np.arange(10), np.mean(probs[(:, i, :)], axis=0), ax=ax) ax.set_ylim([0, 1]) ax.set_title('predictive probs') fig.suptitle(title) fig.tight_layout() canvas.print_figure(fname, format='png') print('saved {}'.format(fname))
Save a PNG plot visualizing posterior uncertainty on heldout data. Args: input_vals: A `float`-like Numpy `array` of shape `[num_heldout] + IMAGE_SHAPE`, containing heldout input images. probs: A `float`-like Numpy array of shape `[num_monte_carlo, num_heldout, num_classes]` containing Monte Carlo samples of class probabilities for each heldout sample. fname: Python `str` filename to save the plot to. n: Python `int` number of datapoints to vizualize. title: Python `str` title for the plot.
codesearchnet
def from_text_vision_configs(cls, text_config: BlipTextConfig, vision_config: BlipVisionConfig, **kwargs): return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
Instantiate a [`BlipConfig`] (or a derived class) from blip text model configuration and blip vision model configuration. Returns: [`BlipConfig`]: An instance of a configuration object
github-repos
def printMe(self, selfKey, selfValue): text = '<key>{keyName}</key>\n'.format(keyName=selfKey) if len(selfValue) == 0: return '' else: valueText = '' for element in selfValue: if singleOrPair(element) == 'Single': valueText += element.printMe(element.tag, element.value) elif singleOrPair(element) == 'Pair': valueText += element.printMe(element.key, element.value) text += valueText return text
Parse the single and its value and return the parsed str. Args: selfTag (str): The tag. Normally just ``self.tag`` selfValue (list): a list of value elements(single, subclasses, str, int). Normally just ``self.value`` Returns: str: A parsed text
juraj-google-style
def SetCampaignTargetingCriteria(client, campaign): campaign_criterion_service = client.GetService('CampaignCriterionService') criteria = [ { 'xsi_type': 'Location', 'id': 21137 }, { 'xsi_type': 'Location', 'id': 2484 }, { 'xsi_type': 'Language', 'id': 1000 }, { 'xsi_type': 'Language', 'id': 1003 } ] operations = [{ 'operator': 'ADD', 'operand': { 'campaignId': campaign['id'], 'criterion': criterion } } for criterion in criteria] response = campaign_criterion_service.mutate(operations) if response and 'value' in response: for criterion in response['value']: print ('Campaign criteria of type "%s" and id "%s" was added.' % (criterion['criterion']['type'], criterion['criterion']['id']))
Sets targeting criteria for the given campaign. Args: client: An AdWordsClient instance. campaign: A suds object representing the campaign we wish to attach targeting criteria.
juraj-google-style
def upgrade_name(self, user_): if user_.name_type > self.name_type: self.full_name = user_.full_name self.first_name = user_.first_name self.name_type = user_.name_type logger.debug('Added %s name to User "%s": %s', self.name_type.name.lower(), self.full_name, self)
Upgrade name type of this user. Google Voice participants often first appear with no name at all, and then get upgraded unpredictably to numbers ("+12125551212") or names. Args: user_ (~hangups.user.User): User to upgrade with.
juraj-google-style
def has_node_with_value(self, value): for node in self.node_list: if node.value == value: return True else: return False
Whether any node in ``self.node_list`` has the value ``value``. Args: value (Any): The value to find in ``self.node_list`` Returns: bool Example: >>> from blur.markov.node import Node >>> node_1 = Node('One') >>> graph = Graph([node_1]) >>> graph.has_node_with_value('One') True >>> graph.has_node_with_value('Foo') False
juraj-google-style
def get_distribution_dict(metric_type, submit_timestamp, dist, metric_id): return DistributionMetric(dist, submit_timestamp, metric_id, metric_type).as_dict()
Function creates :class:`DistributionMetric` Args: metric_type(str): type of value from distribution metric which will be saved (ex. max, min, mean, sum) submit_timestamp: timestamp when metric is saved dist(object) distribution object from pipeline result metric_id(uuid): id of the current test run Returns: dictionary prepared for saving according to schema
github-repos
def profile_view(request, user_id=None): if request.user.is_eighthoffice and "full" not in request.GET and user_id is not None: return redirect("eighth_profile", user_id=user_id) if user_id is not None: try: profile_user = User.objects.get(id=user_id) if profile_user is None: raise Http404 except User.DoesNotExist: raise Http404 else: profile_user = request.user num_blocks = 6 eighth_schedule = [] start_block = EighthBlock.objects.get_first_upcoming_block() blocks = [] if start_block: blocks = [start_block] + list(start_block.next_blocks(num_blocks - 1)) for block in blocks: sch = {"block": block} try: sch["signup"] = EighthSignup.objects.get(scheduled_activity__block=block, user=profile_user) except EighthSignup.DoesNotExist: sch["signup"] = None except MultipleObjectsReturned: client.captureException() sch["signup"] = None eighth_schedule.append(sch) if profile_user.is_eighth_sponsor: sponsor = EighthSponsor.objects.get(user=profile_user) start_date = get_start_date(request) eighth_sponsor_schedule = (EighthScheduledActivity.objects.for_sponsor(sponsor).filter(block__date__gte=start_date).order_by( "block__date", "block__block_letter")) eighth_sponsor_schedule = eighth_sponsor_schedule[:10] else: eighth_sponsor_schedule = None admin_or_teacher = (request.user.is_eighth_admin or request.user.is_teacher) can_view_eighth = (profile_user.can_view_eighth or request.user == profile_user) eighth_restricted_msg = (not can_view_eighth and admin_or_teacher) if not can_view_eighth and not request.user.is_eighth_admin and not request.user.is_teacher: eighth_schedule = [] has_been_nominated = profile_user.username in [ u.nominee.username for u in request.user.nomination_votes.filter(position__position_name=settings.NOMINATION_POSITION) ] context = { "profile_user": profile_user, "eighth_schedule": eighth_schedule, "can_view_eighth": can_view_eighth, "eighth_restricted_msg": eighth_restricted_msg, "eighth_sponsor_schedule": eighth_sponsor_schedule, "nominations_active": settings.NOMINATIONS_ACTIVE, "nomination_position": settings.NOMINATION_POSITION, "has_been_nominated": has_been_nominated } return render(request, "users/profile.html", context)
Displays a view of a user's profile. Args: user_id The ID of the user whose profile is being viewed. If not specified, show the user's own profile.
juraj-google-style