code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def related_domains(self, domains):
api_name = 'opendns-related_domains'
fmt_url_path = u'links/name/{0}.json'
return self._multi_get(api_name, fmt_url_path, domains)
|
Get list of domain names that have been seen requested around the
same time (up to 60 seconds before or after) to the given domain name.
Args:
domains: an enumerable of strings domain names
Returns:
An enumerable of [domain name, scores]
|
juraj-google-style
|
def _parse_line(self, instrumentation_block, line):
if instrumentation_block.state == _InstrumentationBlockStates.METHOD:
return self._parse_method_block_line(instrumentation_block, line)
elif instrumentation_block.state == _InstrumentationBlockStates.RESULT:
return self._parse_result_block_line(instrumentation_block, line)
else:
return self._parse_unknown_block_line(instrumentation_block, line)
|
Parses an arbitrary line from the instrumentation output based upon
the current parser state.
Args:
instrumentation_block: _InstrumentationBlock, an instrumentation
block with any of the possible parser states.
line: string, the raw instrumentation output line to parse
appropriately.
Returns:
The next instrumenation block to continue parsing with.
|
github-repos
|
def add_get(self, path, controller, template, raw=False):
if raw:
fn = controller
else:
fn = self._prepare_controller(controller, template)
self.app.router.add_get(path, fn)
|
Setup a route of type GET
Args:
path (str): URL to listen to
controller (coroutine): the coroutine to handle the request
template (str): the template to render the response or None if it is a JSON response
raw (bool): indicates if post-processing (jinja, json, etc) is needed or not
|
juraj-google-style
|
def empty_like(x, init=None):
x = ops.convert_to_tensor(x)
return gen_array_ops.empty(array_ops.shape(x), x.dtype, init=init)
|
Returns a non-initialized tensor with the same shape and dtype as x.
Args:
x: A Tensor.
init: Initialize the returned tensor with the default value of
x.dtype(), if True. Otherwise, do not initialize. Defaults to
None.
Returns:
A tensor y, whose dtype and shape are the same as those of x.
y is guaranteed not to be an alias of x. Upon return, y may contain
arbitrary data.
|
github-repos
|
def valid(self, value, level=[]):
self.validation_failures = []
if value is None and self._optional:
return True
if not isinstance(value, dict):
self.validation_failures.append(('.'.join(level), str(value)))
return False
bRet = True
for k in self._nodes:
lLevel = level[:]
lLevel.append(k)
if k not in value:
if not self._nodes[k]._optional:
self.validation_failures.append(('.'.join(lLevel), 'missing'))
bRet = False
continue
if not self._nodes[k].valid(value[k], lLevel):
self.validation_failures.extend(self._nodes[k].validation_failures)
bRet = False
continue
if k in self._requires:
for f in self._requires[k]:
if f not in value or value[f] in ('0000-00-00','',None):
self.validation_failures.append(('.'.join(lLevel), 'requires \'%s\' to also be set' % str(f)))
bRet = False
return bRet
|
Valid
Checks if a value is valid based on the instance's values
Arguments:
value {mixed} -- The value to validate
Returns:
bool
|
juraj-google-style
|
def chmod_r(root: str, permission: int) -> None:
os.chmod(root, permission)
for (dirpath, dirnames, filenames) in os.walk(root):
for d in dirnames:
os.chmod(os.path.join(dirpath, d), permission)
for f in filenames:
os.chmod(os.path.join(dirpath, f), permission)
|
Recursive ``chmod``.
Args:
root: directory to walk down
permission: e.g. ``e.g. stat.S_IWUSR``
|
codesearchnet
|
def pre_run_cell(self, cellno, code):
self.cellid = cellno
import ast
if findloop(ast.parse(code)):
from acorn.logging.decoration import set_streamlining
set_streamlining(True)
from time import time
self.pre = {
"m": "loop",
"a": None,
"s": time(),
"r": None,
"c": code,
}
|
Executes before the user-entered code in `ipython` is run. This
intercepts loops and other problematic code that would produce lots of
database entries and streamlines it to produce only a single entry.
Args:
cellno (int): the cell number that is about to be executed.
code (str): python source code that is about to be executed.
|
juraj-google-style
|
def get_ini(self, incl_unset=False):
configp = configparser.ConfigParser(allow_no_value=True)
configp.read_dict(self._config)
with StringIO() as config_ini:
if self._parser:
self._parser.set_defaults(
**self.get_section(self.root_section)
)
argparse_ini = argparse_to_ini(
parser=self._parser, incl_unset=incl_unset
)
return argparse_ini
else:
configp.write(config_ini)
return config_ini.getvalue()
|
Return the config dictionary in INI format
Args:
incl_unset (bool): include variables with no defaults.
Returns:
str: string of the config file in INI format
|
juraj-google-style
|
def _display(port=None, height=None, print_message=False, display_handle=None):
if (height is None):
height = 800
if (port is None):
infos = manager.get_all()
if (not infos):
raise ValueError("Can't display TensorBoard: no known instances running.")
else:
info = max(manager.get_all(), key=(lambda x: x.start_time))
port = info.port
else:
infos = [i for i in manager.get_all() if (i.port == port)]
info = (max(infos, key=(lambda x: x.start_time)) if infos else None)
if print_message:
if (info is not None):
message = 'Selecting TensorBoard with {data_source} (started {delta} ago; port {port}, pid {pid}).'.format(data_source=manager.data_source_from_info(info), delta=_time_delta_from_info(info), port=info.port, pid=info.pid)
print(message)
else:
pass
fn = {_CONTEXT_COLAB: _display_colab, _CONTEXT_IPYTHON: _display_ipython, _CONTEXT_NONE: _display_cli}[_get_context()]
return fn(port=port, height=height, display_handle=display_handle)
|
Internal version of `display`.
Args:
port: As with `display`.
height: As with `display`.
print_message: True to print which TensorBoard instance was selected
for display (if applicable), or False otherwise.
display_handle: If not None, an IPython display handle into which to
render TensorBoard.
|
codesearchnet
|
def set_flowcontrol(self, name, direction, value=None, default=False, disable=False):
if (value is not None):
if (value not in ['on', 'off']):
raise ValueError('invalid flowcontrol value')
if (direction not in ['send', 'receive']):
raise ValueError('invalid direction specified')
commands = [('interface %s' % name)]
commands.append(self.command_builder(('flowcontrol %s' % direction), value=value, default=default, disable=disable))
return self.configure(commands)
|
Configures the interface flowcontrol value
Args:
name (string): The interface identifier. It must be a full
interface name (ie Ethernet, not Et)
direction (string): one of either 'send' or 'receive'
value (boolean): True if the interface should enable flow control
packet handling, otherwise False
default (boolean): Specifies to default the interface flow control
send or receive value
disable (boolean): Specifies to disable the interface flow control
send or receive value
Returns:
True if the operation succeeds otherwise False is returned
|
codesearchnet
|
def process(self, batch, device=None):
padded = self.pad(batch)
tensor = self.numericalize(padded, device=device)
return tensor
|
Process a list of examples to create a torch.Tensor.
Pad, numericalize, and postprocess a batch and create a tensor.
Args:
batch (list(object)): A list of object from a batch of examples.
Returns:
torch.autograd.Variable: Processed object given the input
and custom postprocessing Pipeline.
|
juraj-google-style
|
def coupling_efficiency(mode_solver, fibre_mfd, fibre_offset_x=0, fibre_offset_y=0, n_eff_fibre=1.441):
etas = []
gaus = _make_gaussian(mode_solver._structure.xc, mode_solver._structure.yc, fibre_mfd, fibre_offset_x, fibre_offset_y)
for (mode, n_eff) in zip(mode_solver.modes, mode_solver.n_effs):
o = abs(_overlap(mode, gaus))
t = abs(transmission(n_eff, n_eff_fibre))
eta = (o * t)
etas.append(eta)
return etas
|
Finds the coupling efficiency between a solved
fundamental mode and a fibre of given MFD.
Args:
mode_solver (_ModeSolver): Mode solver that
has found a fundamental mode.
fibre_mfd (float): The mode-field diameter
(MFD) of the fibre.
fibre_offset_x (float): Offset the fibre
from the centre position of the window
in x. Default is 0 (no offset).
fibre_offset_y (float): Offset the fibre
from the centre position of the window
in y. Default is 0 (no offset).
n_eff_fibre (float): The effective index
of the fibre mode. Default is 1.441.
Returns:
float: The power coupling efficiency.
|
codesearchnet
|
def needle_statistics(infile):
alignments = list(AlignIO.parse(infile, "emboss"))
alignment_properties = defaultdict(dict)
with open(infile) as f:
line = f.readline()
for i in range(len(alignments)):
while line.rstrip() != "
line = f.readline()
if not line:
raise StopIteration
while line[0] == "
parts = line[1:].split(":", 1)
key = parts[0].lower().strip()
if key == '1':
a_id = parts[1].strip()
if key == '2':
b_id = parts[1].strip()
if key == 'identity':
ident_parse = parts[1].strip().replace('(','').replace(')','').replace('%','').split()
ident_num = int(ident_parse[0].split('/')[0])
ident_percent = float(ident_parse[1])
alignment_properties[a_id + '_' + b_id]['identity'] = ident_num
alignment_properties[a_id + '_' + b_id]['percent_identity'] = ident_percent
if key == 'similarity':
sim_parse = parts[1].strip().replace('(','').replace(')','').replace('%','').split()
sim_num = int(sim_parse[0].split('/')[0])
sim_percent = float(sim_parse[1])
alignment_properties[a_id + '_' + b_id]['similarity'] = sim_num
alignment_properties[a_id + '_' + b_id]['percent_similarity'] = sim_percent
if key == 'gaps':
gap_parse = parts[1].strip().replace('(','').replace(')','').replace('%','').split()
gap_num = int(gap_parse[0].split('/')[0])
gap_percent = float(gap_parse[1])
alignment_properties[a_id + '_' + b_id]['gaps'] = gap_num
alignment_properties[a_id + '_' + b_id]['percent_gaps'] = gap_percent
if key == 'score':
score = float(parts[1].strip())
alignment_properties[a_id + '_' + b_id]['score'] = score
line = f.readline()
return alignment_properties
|
Reads in a needle alignment file and spits out statistics of the alignment.
Args:
infile (str): Alignment file name
Returns:
dict: alignment_properties - a dictionary telling you the number of gaps, identity, etc.
|
juraj-google-style
|
def assign_nested_vars(variables, tensors, indices=None):
if isinstance(variables, (tuple, list)):
return tf.group(*[assign_nested_vars(variable, tensor) for (variable, tensor) in zip(variables, tensors)])
if (indices is None):
return variables.assign(tensors)
else:
return tf.scatter_update(variables, indices, tensors)
|
Assign tensors to matching nested tuple of variables.
Args:
variables: Nested tuple or list of variables to update.
tensors: Nested tuple or list of tensors to assign.
indices: Batch indices to assign to; default to all.
Returns:
Operation.
|
codesearchnet
|
def abs_path_from_base(base_path, rel_path):
return os.path.abspath(
os.path.join(
os.path.dirname(sys._getframe(1).f_code.co_filename), base_path, rel_path
)
)
|
Join a base and a relative path and return an absolute path to the resulting
location.
Args:
base_path: str
Relative or absolute path to prepend to ``rel_path``.
rel_path: str
Path relative to the location of the module file from which this function is called.
Returns:
str : Absolute path to the location specified by ``rel_path``.
|
juraj-google-style
|
async def search_participant(self, name, force_update=False):
if force_update or self.participants is None:
await self.get_participants()
if self.participants is not None:
for p in self.participants:
if p.name == name:
return p
return None
|
search a participant by (display) name
|methcoro|
Args:
name: display name of the participant
force_update (dfault=False): True to force an update to the Challonge API
Returns:
Participant: None if not found
Raises:
APIException
|
juraj-google-style
|
def get_credentials(self):
with self.AUTHENTICATION_LOCK:
log.info('Starting authentication for %s', self.target)
store = oauth2client.file.Storage(self.credentials_path)
credentials = store.get()
if ((not credentials) or credentials.invalid):
log.info('No valid login. Starting OAUTH flow.')
flow = oauth2client.client.flow_from_clientsecrets(self.client_secret_path, self.SCOPES)
flow.user_agent = self.APPLICATION_NAME
flags = oauth2client.tools.argparser.parse_args([])
credentials = oauth2client.tools.run_flow(flow, store, flags)
log.info('Storing credentials to %r', self.credentials_path)
return credentials
|
Gets valid user credentials from storage.
If nothing has been stored, or if the stored credentials are invalid,
the OAuth2 flow is completed to obtain the new credentials.
Returns:
Credentials, the obtained credential.
|
codesearchnet
|
def _get_example_from_basic_type(type):
if (type == 'integer'):
return [42, 24]
elif (type == 'number'):
return [5.5, 5.5]
elif (type == 'string'):
return ['string', 'string2']
elif (type == 'datetime'):
return ['2015-08-28T09:02:57.481Z', '2015-08-28T09:02:57.481Z']
elif (type == 'boolean'):
return [False, True]
elif (type == 'null'):
return ['null', 'null']
|
Get example from the given type.
Args:
type: the type you want an example of.
Returns:
An array with two example values of the given type.
|
codesearchnet
|
def drop_if(df, fun):
def _filter_f(col):
try:
return fun(df[col])
except:
return False
cols = list(filter(_filter_f, df.columns))
return df.drop(cols, axis=1)
|
Drops columns where fun(ction) is true
Args:
fun: a function that will be applied to columns
|
juraj-google-style
|
def as_functor(func: Callable, ignore_extra_args: bool=False) -> Functor:
return functor_class(func)(ignore_extra_args=ignore_extra_args)
|
Make a functor object from a regular python function.
NOTE(daiyip): This method is designed to create on-the-go functor object,
usually for lambdas. To create a reusable functor class, please use
`functor_class` method.
Args:
func: A regular python function.
ignore_extra_args: If True, extra argument which is not acceptable by `func`
will be ignored.
Returns:
Functor object from input function.
|
github-repos
|
def push_file(self, local_source, remote_dir):
remote_dest = ((remote_dir + '/') + os.path.basename(local_source))
try:
self.makedirs(remote_dir, exist_ok=True)
except IOError as e:
logger.exception('Pushing {0} to {1} failed'.format(local_source, remote_dir))
if (e.errno == 2):
raise BadScriptPath(e, self.hostname)
elif (e.errno == 13):
raise BadPermsScriptPath(e, self.hostname)
else:
logger.exception('File push failed due to SFTP client failure')
raise FileCopyException(e, self.hostname)
try:
self.sftp_client.put(local_source, remote_dest, confirm=True)
self.sftp_client.chmod(remote_dest, 511)
except Exception as e:
logger.exception('File push from local source {} to remote destination {} failed'.format(local_source, remote_dest))
raise FileCopyException(e, self.hostname)
return remote_dest
|
Transport a local file to a directory on a remote machine
Args:
- local_source (string): Path
- remote_dir (string): Remote path
Returns:
- str: Path to copied file on remote machine
Raises:
- BadScriptPath : if script path on the remote side is bad
- BadPermsScriptPath : You do not have perms to make the channel script dir
- FileCopyException : FileCopy failed.
|
codesearchnet
|
def decorate_set_on_listener(prototype):
def add_annotation(method):
method._event_info = {}
method._event_info['name'] = method.__name__
method._event_info['prototype'] = prototype
return method
return add_annotation
|
Private decorator for use in the editor.
Allows the Editor to create listener methods.
Args:
params (str): The list of parameters for the listener
method (es. "(self, new_value)")
|
juraj-google-style
|
def _ParseRecords(self, parser_mediator, evtx_file):
for record_index in range(evtx_file.number_of_records):
if parser_mediator.abort:
break
try:
evtx_record = evtx_file.get_record(record_index)
self._ParseRecord(parser_mediator, record_index, evtx_record)
except IOError as exception:
parser_mediator.ProduceExtractionWarning(
'unable to parse event record: {0:d} with error: {1!s}'.format(
record_index, exception))
for record_index in range(evtx_file.number_of_recovered_records):
if parser_mediator.abort:
break
try:
evtx_record = evtx_file.get_recovered_record(record_index)
self._ParseRecord(
parser_mediator, record_index, evtx_record, recovered=True)
except IOError as exception:
parser_mediator.ProduceExtractionWarning((
'unable to parse recovered event record: {0:d} with error: '
'{1!s}').format(record_index, exception))
|
Parses Windows XML EventLog (EVTX) records.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
evtx_file (pyevt.file): Windows XML EventLog (EVTX) file.
|
juraj-google-style
|
def linear(self, x):
with tf.name_scope("presoftmax_linear"):
batch_size = tf.shape(x)[0]
length = tf.shape(x)[1]
x = tf.reshape(x, [-1, self.hidden_size])
logits = tf.matmul(x, self.shared_weights, transpose_b=True)
return tf.reshape(logits, [batch_size, length, self.vocab_size])
|
Computes logits by running x through a linear layer.
Args:
x: A float32 tensor with shape [batch_size, length, hidden_size]
Returns:
float32 tensor with shape [batch_size, length, vocab_size].
|
juraj-google-style
|
def get_environ(cls, prefix):
return ((key[(len(prefix) + 1):], value) for (key, value) in os.environ.items() if key.startswith(('%s_' % prefix)))
|
Retrieves environment variables from a namespace.
Args:
prefix (str): The prefix, without a trailing underscore.
Returns:
list: A list of environment variable keys and values.
|
codesearchnet
|
def swipe(self, x1, y1, x2, y2, duration=0.5):
scale = self.scale
x1, y1, x2, y2 = x1/scale, y1/scale, x2/scale, y2/scale
self.session.swipe(x1, y1, x2, y2, duration)
|
Simulate swipe operation
Args:
x1, y1(int): from position
x2, y2(int): to position
duration(float): swipe duration, unit seconds
|
juraj-google-style
|
def compare(expr, value, regex_expr=False):
if (expr == value):
return True
negate = False
if isinstance(expr, str):
negate = expr.startswith(NEGATE)
expr = (strip_negate(expr) if negate else expr)
try:
test(expr, value, regex_expr=regex_expr)
except Exception as err:
if negate:
return True
else:
raise err
return True
|
Compares an string or regular expression againast a given value.
Arguments:
expr (str|regex): string or regular expression value to compare.
value (str): value to compare against to.
regex_expr (bool, optional): enables string based regex matching.
Raises:
AssertionError: in case of assertion error.
Returns:
bool
|
codesearchnet
|
def firmware_version(self):
buf = (ctypes.c_char * self.MAX_BUF_SIZE)()
self._dll.JLINKARM_GetFirmwareString(buf, self.MAX_BUF_SIZE)
return ctypes.string_at(buf).decode()
|
Returns a firmware identification string of the connected J-Link.
It consists of the following:
- Product Name (e.g. J-Link)
- The string: compiled
- Compile data and time.
- Optional additional information.
Args:
self (JLink): the ``JLink`` instance
Returns:
Firmware identification string.
|
juraj-google-style
|
def poll(self, channel_id=None, json=None, **kwargs):
path = '/event-service/v1/channels/{}/poll'.format(channel_id)
r = self._httpclient.request(method='POST', url=self.url, json=json, path=path, **kwargs)
return r
|
Read one or more events from a channel.
Reads events (log records) from the identified channel. Events
are read in chronological order.
Args:
channel_id (str): The channel ID.
json (dict): Payload/request body.
**kwargs: Supported :meth:`~pancloud.httpclient.HTTPClient.request` parameters.
Returns:
requests.Response: Requests Response() object.
Examples:
Refer to ``event_poll.py`` example.
|
codesearchnet
|
def _GetTimeValue(self, name):
timestamp = getattr(self._tsk_file.info.meta, name, None)
if self._file_system_type in self._TSK_HAS_NANO_FS_TYPES:
name_fragment = '{0:s}_nano'.format(name)
fraction_of_second = getattr(
self._tsk_file.info.meta, name_fragment, None)
else:
fraction_of_second = None
return TSKTime(timestamp=timestamp, fraction_of_second=fraction_of_second)
|
Retrieves a date and time value.
Args:
name (str): name of the date and time value, for example "atime" or
"mtime".
Returns:
dfdatetime.DateTimeValues: date and time value or None if not available.
|
juraj-google-style
|
def get_commands_in_namespace(namespace=None, level=1):
from ..command import Command
commands = {}
if namespace is None:
frame = inspect.stack()[level][0]
namespace = frame.f_globals
elif inspect.ismodule(namespace):
namespace = vars(namespace)
for name in namespace:
obj = namespace[name]
if isinstance(obj, Command):
commands[name] = obj
return OrderedDict((name, commands[name]) for name in sorted(commands))
|
Get commands in namespace.
Args:
namespace (dict|module): Typically a module. If not passed, the
globals from the call site will be used.
level (int): If not called from the global scope, set this
appropriately to account for the call stack.
Returns:
OrderedDict: The commands found in the namespace, ordered by
name.
Can be used to create ``__all__`` lists::
__all__ = list(get_commands_in_namespace())
|
juraj-google-style
|
def get_current(self, cycle=None, dataset_number=None, full=True):
dataset_number = self._validate_dataset_number(dataset_number)
if dataset_number is None:
self._report_empty_dataset()
return
cycle_index_header = self.headers_normal.cycle_index_txt
current_header = self.headers_normal.current_txt
test = self.datasets[dataset_number].dfdata
if cycle:
self.logger.debug(f"getting current for cycle {cycle}")
c = test[(test[cycle_index_header] == cycle)]
if not self.is_empty(c):
v = c[current_header]
return v
else:
if not full:
self.logger.debug(
"getting a list of current-curves for all cycles"
)
v = []
no_cycles = np.amax(test[cycle_index_header])
for j in range(1, no_cycles + 1):
txt = "Cycle %i: " % j
self.logger.debug(txt)
c = test[(test[cycle_index_header] == j)]
v.append(c[current_header])
else:
self.logger.debug("getting all current-curves ")
v = test[current_header]
return v
|
Returns current (in mA).
Args:
cycle: cycle number (all cycles if None)
dataset_number: first dataset if None
full: valid only for cycle=None (i.e. all cycles), returns the full
pandas.Series if True, else a list of pandas.Series
Returns:
pandas.Series (or list of pandas.Series if cycle=None og full=False)
|
juraj-google-style
|
def enumeration(*values, **kwargs):
if (not (values and all(((isinstance(value, string_types) and value) for value in values)))):
raise ValueError(('expected a non-empty sequence of strings, got %s' % values))
if (len(values) != len(set(values))):
raise ValueError(('enumeration items must be unique, got %s' % values))
attrs = {value: value for value in values}
attrs.update({'_values': list(values), '_default': values[0], '_case_sensitive': kwargs.get('case_sensitive', True), '_quote': kwargs.get('quote', False)})
return type(str('Enumeration'), (Enumeration,), attrs)()
|
Create an |Enumeration| object from a sequence of values.
Call ``enumeration`` with a sequence of (unique) strings to create an
Enumeration object:
.. code-block:: python
#: Specify the horizontal alignment for rendering text
TextAlign = enumeration("left", "right", "center")
Args:
values (str) : string enumeration values, passed as positional arguments
The order of arguments is the order of the enumeration, and the
first element will be considered the default value when used
to create |Enum| properties.
Keyword Args:
case_sensitive (bool, optional) :
Whether validation should consider case or not (default: True)
quote (bool, optional):
Whther values should be quoted in the string representations
(default: False)
Raises:
ValueError if values empty, if any value is not a string or not unique
Returns:
Enumeration
|
codesearchnet
|
def username(self, value):
self._username = value
self._connectionXML.set('username', value)
|
Set the connection's username property.
Args:
value: New username value. String.
Returns:
Nothing.
|
codesearchnet
|
def build_kalman_mean_step(get_transition_matrix_for_timestep, get_transition_noise_for_timestep, get_observation_matrix_for_timestep, get_observation_noise_for_timestep):
def mean_step(previous_means, t):
'Single step of prior mean recursion.'
(previous_latent_mean, _) = previous_means
latent_mean = _propagate_mean(previous_latent_mean, get_transition_matrix_for_timestep((t - 1)), get_transition_noise_for_timestep((t - 1)))
observation_mean = _propagate_mean(latent_mean, get_observation_matrix_for_timestep(t), get_observation_noise_for_timestep(t))
return (latent_mean, observation_mean)
return mean_step
|
Build a callable that performs one step of Kalman mean recursion.
Args:
get_transition_matrix_for_timestep: callable taking a timestep
as an integer `Tensor` argument, and returning a `LinearOperator`
of shape `[latent_size, latent_size]`.
get_transition_noise_for_timestep: callable taking a timestep as
an integer `Tensor` argument, and returning a
`MultivariateNormalLinearOperator` of event shape
`[latent_size]`.
get_observation_matrix_for_timestep: callable taking a timestep
as an integer `Tensor` argument, and returning a `LinearOperator`
of shape `[observation_size, observation_size]`.
get_observation_noise_for_timestep: callable taking a timestep as
an integer `Tensor` argument, and returning a
`MultivariateNormalLinearOperator` of event shape
`[observation_size]`.
Returns:
kalman_mean_step: a callable that computes latent state and
observation means at time `t`, given latent mean at time `t-1`.
|
codesearchnet
|
def inspect_plugin(self, name):
url = self._url('/plugins/{0}/json', name)
return self._result(self._get(url), True)
|
Retrieve plugin metadata.
Args:
name (string): The name of the plugin. The ``:latest`` tag is
optional, and is the default if omitted.
Returns:
A dict containing plugin info
|
codesearchnet
|
def searchsorted(sorted_sequence, values, side='left'):
if any_symbolic_tensors((sorted_sequence, values)):
return SearchSorted(side=side).symbolic_call(sorted_sequence, values)
sorted_sequence = backend.convert_to_tensor(sorted_sequence)
values = backend.convert_to_tensor(values)
return backend.numpy.searchsorted(sorted_sequence, values, side=side)
|
Perform a binary search, returning indices for insertion of `values`
into `sorted_sequence` that maintain the sorting order.
Args:
sorted_sequence: 1-D input tensor, sorted along the innermost
dimension.
values: N-D tensor of query insertion values.
side: 'left' or 'right', specifying the direction in which to insert
for the equality case (tie-breaker).
Returns:
Tensor of insertion indices of same shape as `values`.
|
github-repos
|
def Benchmark(tf_bench, builder_fn, use_xla_jit, device, separate_compiled_gradients=False):
with ops.Graph().as_default():
name = None
targets = []
with ops.device(device):
fetches = []
jit_scope = jit.experimental_jit_scope
with jit_scope(compile_ops=use_xla_jit, separate_compiled_gradients=separate_compiled_gradients):
name, fetches = builder_fn()
for fetch in fetches:
targets.append(array_ops.identity(fetch).op)
config = config_pb2.ConfigProto(allow_soft_placement=True)
with session.Session(config=config) as sess:
sess.run(variables.global_variables_initializer())
xla = 'xla_' if use_xla_jit else ''
tf_bench.run_op_benchmark(sess, targets, name='%s_%s%s' % (name, xla, device))
|
Build a graph and run benchmarks against it, with or without XLA.
Args:
tf_bench: An instance of tf.test.Benchmark, used to run the benchmark.
builder_fn: A function that builds a graph when invoked, and returns
(name, fetches), where name is the name of the test, and fetches
is a list of tensors to fetch as output.
use_xla_jit: If true compile with the XLA JIT, otherwise use regular TF.
device: The tensorflow device to run on, e.g. "cpu", "gpu".
separate_compiled_gradients: If true put each gradient subgraph into a
separate compilation scope. This gives fine-grained control over which
portions of the graph will be compiled as a single unit. Compiling
gradients separately may yield better performance for some graphs.
The scope is named based on the scope of the forward computation as well
as the name of the gradients. As a result, the gradients will be compiled
in a scope that is separate from both the forward computation, and from
other gradients.
|
github-repos
|
def activate(self, uid=None):
if (uid is not None):
if (not isinstance(uid, six.string_types)):
raise TypeError('uid must be a string')
result = self.proxy.activate(uid)
status = result.result_status.value
if (status == enums.ResultStatus.SUCCESS):
return
else:
reason = result.result_reason.value
message = result.result_message.value
raise exceptions.KmipOperationFailure(status, reason, message)
|
Activate a managed object stored by a KMIP appliance.
Args:
uid (string): The unique ID of the managed object to activate.
Optional, defaults to None.
Returns:
None
Raises:
ClientConnectionNotOpen: if the client connection is unusable
KmipOperationFailure: if the operation result is a failure
TypeError: if the input argument is invalid
|
codesearchnet
|
def _find_classes(self, dir):
if sys.version_info >= (3, 5):
classes = [d.name for d in os.scandir(dir) if d.is_dir()]
else:
classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
classes.sort()
class_to_idx = {classes[i]: i for i in range(len(classes))}
return classes, class_to_idx
|
Finds the class folders in a dataset.
Args:
dir (string): Root directory path.
Returns:
tuple: (classes, class_to_idx) where classes are relative to (dir), and class_to_idx is a dictionary.
Ensures:
No class is a subdirectory of another.
|
juraj-google-style
|
def migrate(belstr: str) -> str:
bo.ast = bel.lang.partialparse.get_ast_obj(belstr, '2.0.0')
return migrate_ast(bo.ast).to_string()
|
Migrate BEL 1 to 2.0.0
Args:
bel: BEL 1
Returns:
bel: BEL 2
|
codesearchnet
|
def register_domain(self, domain=0, tokenizer=None, trie=None):
self.domains[domain] = IntentDeterminationEngine(tokenizer=tokenizer, trie=trie)
|
Register a domain with the intent engine.
Args:
tokenizer(tokenizer): The tokenizer you wish to use.
trie(Trie): the Trie() you wish to use.
domain(str): a string representing the domain you wish to add
|
codesearchnet
|
def _get_func_name():
return tf_inspect.stack()[1][3]
|
Get the name of current function.
Returns:
String that is the name of current function.
|
github-repos
|
def solve(self):
hierarchy = type_match.get_all_subclasses([self.ast, self.builtins])
factory_protocols = type_match.TypeMatch(hierarchy)
factory_partial = type_match.TypeMatch(hierarchy)
solver_protocols = factory_protocols.solver
solver_partial = factory_partial.solver
unknown_classes = set()
partial_classes = set()
complete_classes = set()
for cls in self.ast.classes:
if is_unknown(cls):
solver_protocols.register_variable(cls.name)
solver_partial.register_variable(cls.name)
unknown_classes.add(cls)
elif is_partial(cls):
partial_classes.add(cls)
else:
complete_classes.add(cls)
protocol_classes_and_aliases = set(self.protocols.classes)
for alias in self.protocols.aliases:
if not isinstance(alias.type, pytd.AnythingType) and alias.name != 'protocols.Protocol':
protocol_classes_and_aliases.add(alias.type.cls)
for protocol in protocol_classes_and_aliases:
for unknown in unknown_classes:
self.match_unknown_against_protocol(factory_protocols, solver_protocols, unknown, protocol)
for complete in complete_classes.union(self.builtins.classes):
for partial in partial_classes:
if escape.unpack_partial(partial.name) == complete.name:
self.match_partial_against_complete(factory_partial, solver_partial, partial, complete)
partial_functions = set()
complete_functions = set()
for f in self.ast.functions:
if is_partial(f):
partial_functions.add(f)
else:
complete_functions.add(f)
for partial in partial_functions:
for complete in complete_functions.union(self.builtins.functions):
if escape.unpack_partial(partial.name) == complete.name:
self.match_call_record(factory_partial, solver_partial, partial, complete)
log.info('=========== Equations to solve =============\n%s', solver_protocols)
log.info('=========== Equations to solve (end) =======')
solved_protocols = solver_protocols.solve()
log.info('=========== Call trace equations to solve =============\n%s', solver_partial)
log.info('=========== Call trace equations to solve (end) =======')
solved_partial = solver_partial.solve()
merged_solution = {}
for unknown in itertools.chain(solved_protocols, solved_partial):
if unknown in solved_protocols and unknown in solved_partial:
merged_solution[unknown] = solved_protocols[unknown].union(solved_partial[unknown])
merged_solution[unknown].discard('?')
elif unknown in solved_protocols:
merged_solution[unknown] = solved_protocols[unknown]
else:
merged_solution[unknown] = solved_partial[unknown]
return merged_solution
|
Solve the equations generated from the pytd.
Returns:
A dictionary (str->str), mapping unknown class names to known class names.
Raises:
AssertionError: If we detect an internal error.
|
github-repos
|
def reply_code_tuple(code: int) -> Tuple[(int, int, int)]:
return ((code
|
Return the reply code as a tuple.
Args:
code: The reply code.
Returns:
Each item in the tuple is the digit.
|
codesearchnet
|
def process(self):
client = self._get_client_by_hostname(self.host)
self._await_flow(client, self.flow_id)
collected_flow_data = self._download_files(client, self.flow_id)
if collected_flow_data:
print('{0:s}: Downloaded: {1:s}'.format(self.flow_id, collected_flow_data))
fqdn = client.data.os_info.fqdn.lower()
self.state.output.append((fqdn, collected_flow_data))
|
Collect the results.
Raises:
DFTimewolfError: if no files specified
|
codesearchnet
|
def TerminateFlow(client_id, flow_id, reason=None, flow_state=rdf_flow_objects.Flow.FlowState.ERROR):
to_terminate = [data_store.REL_DB.ReadFlowObject(client_id, flow_id)]
while to_terminate:
next_to_terminate = []
for rdf_flow in to_terminate:
_TerminateFlow(rdf_flow, reason=reason, flow_state=flow_state)
next_to_terminate.extend(data_store.REL_DB.ReadChildFlowObjects(rdf_flow.client_id, rdf_flow.flow_id))
to_terminate = next_to_terminate
|
Terminates a flow and all of its children.
Args:
client_id: Client ID of a flow to terminate.
flow_id: Flow ID of a flow to terminate.
reason: String with a termination reason.
flow_state: Flow state to be assigned to a flow after termination. Defaults
to FlowState.ERROR.
|
codesearchnet
|
def fasta_verifier(entries, ambiguous=False):
if ambiguous:
regex = '^>.+{0}[ACGTURYKMSWBDHVNX]+{0}$'.format(os.linesep)
else:
regex = '^>.+{0}[ACGTU]+{0}$'.format(os.linesep)
delimiter = '{0}'.format(os.linesep)
for entry in entries:
try:
entry_verifier([entry.write()], regex, delimiter)
except FormatError as error:
if (error.part == 0):
msg = 'Unknown Header Error with {0}'.format(entry.id)
raise FormatError(message=msg)
elif ((error.part == 1) and ambiguous):
msg = '{0} contains a base not in [ACGTURYKMSWBDHVNX]'.format(entry.id)
raise FormatError(message=msg)
elif ((error.part == 1) and (not ambiguous)):
msg = '{0} contains a base not in [ACGTU]'.format(entry.id)
raise FormatError(message=msg)
else:
msg = '{0}: Unknown Error: Likely a Bug'.format(entry.id)
raise FormatError(message=msg)
|
Raises error if invalid FASTA format detected
Args:
entries (list): A list of FastaEntry instances
ambiguous (bool): Permit ambiguous bases, i.e. permit non-ACGTU bases
Raises:
FormatError: Error when FASTA format incorrect with descriptive message
Example:
>>> from bio_utils.iterators import fasta_iter
>>> import os
>>> entries = r'>entry1{0}AAGGATTCG{0}' \
... r'>entry{0}AGGTCCCCCG{0}' \
... r'>entry3{0}GCCTAGC{0}'.format(os.linesep)
>>> fasta_entries = fasta_iter(iter(entries.split(os.linesep)))
>>> fasta_verifier(fasta_entries)
|
codesearchnet
|
def __init__(self, column_names=None, title=None):
super(BaseTableView, self).__init__()
self._columns = column_names or []
self._number_of_columns = len(self._columns)
self._rows = []
self._title = title
|
Initializes a table view.
Args:
column_names (Optional[list[str]]): column names.
title (Optional[str]): title.
|
juraj-google-style
|
def _get_tensor_details(self, tensor_index, subgraph_index):
tensor_index = int(tensor_index)
subgraph_index = int(subgraph_index)
tensor_name = self._interpreter.TensorName(tensor_index, subgraph_index)
tensor_size = self._interpreter.TensorSize(tensor_index, subgraph_index)
tensor_size_signature = self._interpreter.TensorSizeSignature(tensor_index, subgraph_index)
tensor_type = self._interpreter.TensorType(tensor_index, subgraph_index)
tensor_quantization = self._interpreter.TensorQuantization(tensor_index, subgraph_index)
tensor_quantization_params = self._interpreter.TensorQuantizationParameters(tensor_index, subgraph_index)
tensor_sparsity_params = self._interpreter.TensorSparsityParameters(tensor_index, subgraph_index)
if not tensor_type:
raise ValueError('Could not get tensor details')
details = {'name': tensor_name, 'index': tensor_index, 'shape': tensor_size, 'shape_signature': tensor_size_signature, 'dtype': tensor_type, 'quantization': tensor_quantization, 'quantization_parameters': {'scales': tensor_quantization_params[0], 'zero_points': tensor_quantization_params[1], 'quantized_dimension': tensor_quantization_params[2]}, 'sparsity_parameters': tensor_sparsity_params}
return details
|
Gets tensor details.
Args:
tensor_index: Tensor index of tensor to query.
subgraph_index: Index of the subgraph.
Returns:
A dictionary containing the following fields of the tensor:
'name': The tensor name.
'index': The tensor index in the subgraph.
'shape': The shape of the tensor.
'quantization': Deprecated, use 'quantization_parameters'. This field
only works for per-tensor quantization, whereas
'quantization_parameters' work in all cases.
'quantization_parameters': The parameters used to quantize the tensor:
'scales': List of scales (one if per-tensor quantization)
'zero_points': List of zero_points (one if per-tensor quantization)
'quantized_dimension': Specifies the dimension of per-axis
quantization, in the case of multiple scales/zero_points.
Raises:
ValueError: If tensor_index is invalid.
|
github-repos
|
def ParseFileObject(self, parser_mediator, file_object):
regf_file = pyregf.file()
try:
regf_file.open_file_object(file_object)
except IOError:
return
root_key = regf_file.get_root_key()
if root_key is None:
regf_file.close()
return
root_file_key = root_key.get_sub_key_by_path(self._AMCACHE_ROOT_FILE_KEY)
if root_file_key is None:
regf_file.close()
return
for volume_key in root_file_key.sub_keys:
for am_entry in volume_key.sub_keys:
self._ProcessAMCacheFileKey(am_entry, parser_mediator)
root_program_key = root_key.get_sub_key_by_path(
self._AMCACHE_ROOT_PROGRAM_KEY)
if root_program_key is None:
regf_file.close()
return
for am_entry in root_program_key.sub_keys:
self._ProcessAMCacheProgramKey(am_entry, parser_mediator)
regf_file.close()
|
Parses an Amcache.hve file for events.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
file_object (dfvfs.FileIO): file-like object.
|
juraj-google-style
|
def calculate_entropy(self, entropy_string):
total = 0
for char in entropy_string:
if char.isalpha():
prob = self.frequency[char.lower()]
total += - math.log(prob) / math.log(2)
logging.debug("Entropy score: {0}".format(total))
return total
|
Calculates the entropy of a string based on known frequency of
English letters.
Args:
entropy_string: A str representing the string to calculate.
Returns:
A negative float with the total entropy of the string (higher
is better).
|
juraj-google-style
|
def list_merge(list_a, list_b):
result = []
for item in list_a:
if (not (item in result)):
result.append(item)
for item in list_b:
if (not (item in result)):
result.append(item)
return result
|
Merge two lists without duplicating items
Args:
list_a: list
list_b: list
Returns:
New list with deduplicated items from list_a and list_b
|
codesearchnet
|
def get(self, key=None, indices=None, name=None):
if key is None:
return self._popitem(indices=indices, name=name)
else:
return self._pop(key, indices=indices, name=name)
|
If the key is provided, the associated (key, value) is returned from the staging area.
If the key is not in the staging area, this method will block until
the associated (key, value) is inserted.
If no key is provided and the staging area is ordered,
the (key, value) with the smallest key will be returned.
Otherwise, a random (key, value) will be returned.
If the staging area is empty when this operation executes,
it will block until there is an element to dequeue.
Args:
key: Key associated with the required data (Optional)
indices: Partial list of tensors to retrieve (optional).
A list of integer or string indices.
String indices are only valid if the Staging Area
has names associated with it.
name: A name for the operation (optional)
Returns:
The created op
|
github-repos
|
def is_adb_available():
ret, out, err = utils.run_command('which adb', shell=True)
clean_out = out.decode('utf-8').strip()
if clean_out:
return True
return False
|
Checks if adb is available as a command line tool.
Returns:
True if adb binary is available in console, False otherwise.
|
github-repos
|
def search(self, scope, search, **kwargs):
data = {'scope': scope, 'search': search}
path = '/projects/%s/search' % self.get_id()
return self.manager.gitlab.http_list(path, query_data=data, **kwargs)
|
Search the project resources matching the provided string.'
Args:
scope (str): Scope of the search
search (str): Search string
**kwargs: Extra options to send to the server (e.g. sudo)
Raises:
GitlabAuthenticationError: If authentication is not correct
GitlabSearchError: If the server failed to perform the request
Returns:
GitlabList: A list of dicts describing the resources found.
|
juraj-google-style
|
def discretize(self, contact_id=0, accuracy=0.004, dt=0.001):
if not self.event_points:
return []
events = []
action_dt = accuracy / self.speed
dt = dt or action_dt
ep0 = self.event_points[0]
for _ in range(int(ep0[0] / dt)):
events.append(['s', dt])
events.append(['d', ep0[1], contact_id])
for i, ep in enumerate(self.event_points[1:]):
prev_ts = self.event_points[i][0]
curr_ts = ep[0]
p0 = self.event_points[i][1]
p1 = ep[1]
if p0 == p1:
for _ in range(int((curr_ts - prev_ts) / dt)):
events.append(['s', dt])
else:
dpoints = track_sampling([p0, p1], accuracy)
for p in dpoints:
events.append(['m', p, contact_id])
for _ in range(int(action_dt / dt)):
events.append(['s', dt])
events.append(['u', contact_id])
return events
|
Sample this motion track into discretized motion events.
Args:
contact_id: contact point id
accuracy: motion minimum difference in space
dt: sample time difference
|
juraj-google-style
|
def pop(self, key, default=None):
return self._dictionary.pop(key.lower(), default)
|
Remove the key and return the associated value or default if not
found
Args:
key (str): The key to remove
default (obj): The value to return if key is not present
|
juraj-google-style
|
def copy_update(pb_message, **kwds):
result = pb_message.__class__()
result.CopyFrom(pb_message)
for k, v in kwds.items():
setattr(result, k, v)
return result
|
Returns a copy of the PB object, with some fields updated.
Args:
pb_message:
**kwds:
Returns:
|
juraj-google-style
|
def call_plugins(self, step):
for plugin in self.plugins:
try:
getattr(plugin, step)()
except AttributeError:
self.logger.debug("{} doesn't exist on plugin {}".format(step, plugin))
except TypeError:
self.logger.debug('{} on plugin {} is not callable'.format(step, plugin))
|
For each plugins, check if a "step" method exist on it, and call it
Args:
step (str): The method to search and call on each plugin
|
codesearchnet
|
def is44(msg):
if allzeros(msg):
return False
d = hex2bin(data(msg))
if wrongstatus(d, 5, 6, 23):
return False
if wrongstatus(d, 35, 36, 46):
return False
if wrongstatus(d, 47, 48, 49):
return False
if wrongstatus(d, 50, 51, 56):
return False
if bin2int(d[0:4]) > 4:
return False
vw = wind44(msg)
if vw is not None and vw[0] > 250:
return False
temp, temp2 = temp44(msg)
if min(temp, temp2) > 60 or max(temp, temp2) < -80:
return False
return True
|
Check if a message is likely to be BDS code 4,4.
Meteorological routine air report
Args:
msg (String): 28 bytes hexadecimal message string
Returns:
bool: True or False
|
juraj-google-style
|
def __init__(
self, name, aliases=None, description=None, false_value=0, urls=None):
super(BooleanDefinition, self).__init__(
name, aliases=aliases, description=description, urls=urls)
self.false_value = false_value
self.true_value = None
|
Initializes a boolean data type definition.
Args:
name (str): name.
aliases (Optional[list[str]]): aliases.
description (Optional[str]): description.
false_value (Optional[int]): value that represents false.
urls (Optional[list[str]]): URLs.
|
juraj-google-style
|
def _free_array(self, handle: int):
with self._lock:
if self._arrays[handle] is not None:
self._arrays[handle] = None
self._count -= 1
|
Frees the memory for the array with the given handle.
Args:
handle: The handle of the array whose memory should be freed. This
handle must come from the _create_array method.
|
juraj-google-style
|
def _make_model(self, data, key=None):
if data['deleted'] and not self.adapter.want_deleted:
raise ObjectDoesNotExist('Deleted object returned')
model = self._model_class(self._current_context,
_pass_perm_checks=self._pass_perm_checks)
model.setattr('key', ub_to_str(key) if key else ub_to_str(data.get('key')))
model = model.set_data(data, from_db=True)
model._initial_data = model.clean_value()
return model
|
Creates a model instance with the given data.
Args:
data: Model data returned from DB.
key: Object key
Returns:
pyoko.Model object.
|
juraj-google-style
|
def delete(self, resource, timeout=(- 1)):
self._client.delete(resource=resource, timeout=timeout)
|
Delete all the labels for a resource.
Args:
resource (dict): Object to delete.
timeout:
Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation
in OneView, just stop waiting for its completion.
|
codesearchnet
|
def write(self, source=None, **kwargs):
if (not source):
source = self.msg
return self._writer.write(source=source, **kwargs)
|
Wrappe r to call the writer's write method if present.
Args:
source(pandasdmx.model.Message, iterable): stuff to be written.
If a :class:`pandasdmx.model.Message` is given, the writer
itself must determine what to write unless specified in the
keyword arguments. If an iterable is given,
the writer should write each item. Keyword arguments may
specify what to do with the output depending on the writer's API. Defaults to self.msg.
Returns:
type: anything the writer returns.
|
codesearchnet
|
def _get_object_from_python_path(python_path):
python_path = python_path.split('.')
module_path = python_path[:-1]
object_class = python_path[-1]
if isinstance(module_path, list):
module_path = '.'.join(module_path)
module = import_module(module_path)
schema = getattr(module, object_class)
if isclass(schema):
schema = schema()
return schema
|
Method that will fetch a Marshmallow schema from a path to it.
Args:
python_path (str): The string path to the Marshmallow schema.
Returns:
marshmallow.Schema: The schema matching the provided path.
Raises:
TypeError: This is raised if the specified object isn't
a Marshmallow schema.
|
juraj-google-style
|
def load_json(json_filespec):
json_fh = open(json_filespec)
config_dict = json.load(json_fh)
json_fh.close()
return config_dict
|
Loads JSON from a config file
Args:
json_filespec: path/to/file.json
Returns:
a dict made from the JSON read, if successful
Raises:
IOError if the file could not be opened
ValueError if the JSON could not be read successfully
RuntimeError if something else went wrong
|
juraj-google-style
|
def _SendItem(self, zmq_socket, item, block=True):
try:
logger.debug('{0:s} sending item'.format(self.name))
if block:
zmq_socket.send_pyobj(item)
else:
zmq_socket.send_pyobj(item, zmq.DONTWAIT)
logger.debug('{0:s} sent item'.format(self.name))
return True
except zmq.error.Again:
logger.debug('{0:s} could not send an item'.format(self.name))
except zmq.error.ZMQError as exception:
if exception.errno == errno.EINTR:
logger.error(
'ZMQ syscall interrupted in {0:s}.'.format(
self.name))
return False
|
Attempts to send an item to a ZeroMQ socket.
Args:
zmq_socket (zmq.Socket): used to the send the item.
item (object): sent on the queue. Will be pickled prior to sending.
block (Optional[bool]): whether the push should be performed in blocking
or non-blocking mode.
Returns:
bool: whether the item was sent successfully.
|
juraj-google-style
|
def set_shutter_level(self, level=0.0):
data = {"channelIndex": 1, "deviceId": self.id, "shutterLevel": level}
return self._restCall("device/control/setShutterLevel", body=json.dumps(data))
|
sets the shutter level
Args:
level(float): the new level of the shutter. 0.0 = open, 1.0 = closed
Returns:
the result of the _restCall
|
juraj-google-style
|
def pkcs12_key_as_pem(private_key_bytes, private_key_password):
private_key_password = _helpers._to_bytes(private_key_password)
pkcs12 = crypto.load_pkcs12(private_key_bytes, private_key_password)
return crypto.dump_privatekey(crypto.FILETYPE_PEM,
pkcs12.get_privatekey())
|
Convert the contents of a PKCS#12 key to PEM using pyOpenSSL.
Args:
private_key_bytes: Bytes. PKCS#12 key in DER format.
private_key_password: String. Password for PKCS#12 key.
Returns:
String. PEM contents of ``private_key_bytes``.
|
juraj-google-style
|
def set_all_pattern_variables(self, patternnumber, \
sp0, ti0, sp1, ti1, sp2, ti2, sp3, ti3, sp4, ti4, sp5, ti5, sp6, ti6, sp7, ti7, \
actual_step, additional_cycles, link_pattern):
_checkPatternNumber(patternnumber)
self.set_pattern_step_setpoint(patternnumber, 0, sp0)
self.set_pattern_step_setpoint(patternnumber, 1, sp1)
self.set_pattern_step_setpoint(patternnumber, 2, sp2)
self.set_pattern_step_setpoint(patternnumber, 3, sp3)
self.set_pattern_step_setpoint(patternnumber, 4, sp4)
self.set_pattern_step_setpoint(patternnumber, 5, sp5)
self.set_pattern_step_setpoint(patternnumber, 6, sp6)
self.set_pattern_step_setpoint(patternnumber, 7, sp7)
self.set_pattern_step_time( patternnumber, 0, ti0)
self.set_pattern_step_time( patternnumber, 1, ti1)
self.set_pattern_step_time( patternnumber, 2, ti2)
self.set_pattern_step_time( patternnumber, 3, ti3)
self.set_pattern_step_time( patternnumber, 4, ti4)
self.set_pattern_step_time( patternnumber, 5, ti5)
self.set_pattern_step_time( patternnumber, 6, ti6)
self.set_pattern_step_time( patternnumber, 7, ti7)
self.set_pattern_additional_cycles(patternnumber, additional_cycles)
self.set_pattern_link_topattern( patternnumber, link_pattern)
self.set_pattern_actual_step( patternnumber, actual_step)
|
Set all variables for a given pattern at one time.
Args:
* patternnumber (integer): 0-7
* sp[*n*] (float): setpoint value for step *n*
* ti[*n*] (integer??): step time for step *n*, 0-900
* actual_step (int): ?
* additional_cycles(int): ?
* link_pattern(int): ?
|
juraj-google-style
|
def get_orbit(name, date):
if name not in [x.name for x in Bsp().top.list]:
raise UnknownBodyError(name)
for a, b in Bsp().top.steps(name):
if b.name not in _propagator_cache:
propagator = type(
"%sBspPropagator" % b.name,
(GenericBspPropagator,),
{'src': a, 'dst': b}
)
center = Pck()[b.full_name.title()]
propagator.propagate(date).as_frame(b.name, center=center)
_propagator_cache[b.name] = propagator
if Bsp().top not in _propagator_cache:
_propagator_cache[Bsp().top.name] = EarthPropagator()
return _propagator_cache[name].propagate(date)
|
Retrieve the orbit of a solar system object
Args:
name (str): The name of the body desired. For exact nomenclature, see
:py:func:`available_planets`
date (Date): Date at which the state vector will be extracted
Return:
Orbit: Orbit of the desired object, in the reference frame in which it is declared in
the .bsp file
|
juraj-google-style
|
def es_indexers(cls, base_class=None, role='rdf_class', **kwargs):
def _prop_filter(prop, value, **kwargs):
try:
use_prop = len(set(value.owl_inverseOf) - parent_props) > 0
except AttributeError:
use_prop = True
if prop in nested_props and use_prop:
return True
return False
if not base_class:
base_class = cls
rtn_list = []
if kwargs.get("depth"):
kwargs['depth'] += 1
initial = False
else:
initial = True
kwargs['depth'] = 1
kwargs['class'] = cls.__name__
kwargs['class_obj'] = cls
if kwargs.get('class_obj'):
parent_props = set(cls.properties)
else:
parent_props = set()
if role == 'rdf_class':
for value in cls.properties.values():
rtn_list += value.es_indexers(base_class, **kwargs)
elif role == 'es_Nested':
if cls == base_class:
nested_props = LABEL_FIELDS
else:
nested_props = cls.es_defs.get('kds_esNestedProps',
list(cls.properties.keys()))
used_props = [value
for prop, value in cls.properties.items() \
if _prop_filter(prop, value, **kwargs)]
for value in cls.properties.values():
rtn_list += value.es_indexers(base_class, **kwargs)
if cls.es_defs.get('kds_esIndex',[None])[0]:
rtn_list += [cls]
return list(set(rtn_list))
|
Returns the es mapping for the class
args:
-----
base_class: The root class being indexed
role: the role states how the class should be mapped depending
upon whether it is used as a subject of an object. options
are es_Nested or rdf_class
|
juraj-google-style
|
def get_image_features(self, pixel_values: torch.FloatTensor):
image_outputs = self.vision_tower(pixel_values)
selected_image_feature = image_outputs.last_hidden_state
image_features = self.multi_modal_projector(selected_image_feature)
image_features = image_features / self.config.text_config.hidden_size ** 0.5
return image_features
|
Obtains image last hidden states from the vision tower and apply multimodal projection.
Args:
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`)
The tensors corresponding to the input images.
Returns:
image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
|
github-repos
|
def compress_summary(summary, epsilon):
if summary.shape[1] * epsilon < 1:
return summary
percents = epsilon + np.arange(0.0, 1.0, epsilon)
cum_weights = summary[1].cumsum()
cum_weight_percents = cum_weights / cum_weights[-1]
new_bins = np.interp(percents, cum_weight_percents, summary[0])
cum_weights = np.interp(percents, cum_weight_percents, cum_weights)
new_weights = cum_weights - np.concatenate((np.array([0]), cum_weights[:-1]))
summary = np.stack((new_bins, new_weights))
return summary.astype('float32')
|
Compress a summary to within `epsilon` accuracy.
The compression step is needed to keep the summary sizes small after
merging, and also used to return the final target boundaries. It finds the
new bins based on interpolating cumulative weight percentages from the large
summary. Taking the difference of the cumulative weights from the previous
bin's cumulative weight will give the new weight for that bin.
Args:
summary: 2D `np.ndarray` summary to be compressed.
epsilon: A `'float32'` that determines the approximate desired
precision.
Returns:
A 2D `np.ndarray` that is a compressed summary. First column is the
interpolated partition values, the second is the weights (counts).
|
github-repos
|
def __move(self, current_pos):
if self.__move_range is not None:
next_pos = np.random.randint(current_pos - self.__move_range, current_pos + self.__move_range)
if next_pos < 0:
next_pos = 0
elif next_pos >= self.var_arr.shape[0] - 1:
next_pos = self.var_arr.shape[0] - 1
return next_pos
else:
next_pos = np.random.randint(self.var_arr.shape[0] - 1)
return next_pos
|
Move in the feature map.
Args:
current_pos: The now position.
Returns:
The next position.
|
juraj-google-style
|
def search(self, query, results=10, suggestion=False):
self._check_query(query, "Query must be specified")
search_params = {
"list": "search",
"srprop": "",
"srlimit": results,
"srsearch": query,
}
if suggestion:
search_params["srinfo"] = "suggestion"
raw_results = self.wiki_request(search_params)
self._check_error_response(raw_results, query)
search_results = [d["title"] for d in raw_results["query"]["search"]]
if suggestion:
sug = None
if raw_results["query"].get("searchinfo"):
sug = raw_results["query"]["searchinfo"]["suggestion"]
return search_results, sug
return search_results
|
Search for similar titles
Args:
query (str): Page title
results (int): Number of pages to return
suggestion (bool): Use suggestion
Returns:
tuple or list: tuple (list results, suggestion) if \
suggestion is **True**; list of results \
otherwise
|
juraj-google-style
|
def from_dict(cls, cls_dict, fallback_xsi_type=None):
if (not cls_dict):
return None
if isinstance(cls_dict, six.string_types):
if (not getattr(cls, '_convert_strings', False)):
return cls_dict
try:
typekey = cls.dictkey(cls_dict)
except TypeError:
typekey = fallback_xsi_type
klass = cls.entity_class(typekey)
return klass.from_dict(cls_dict)
|
Parse the dictionary and return an Entity instance.
This will attempt to extract type information from the input
dictionary and pass it to entity_class to resolve the correct class
for the type.
Args:
cls_dict: A dictionary representation of an Entity object.
fallback_xsi_type: An xsi_type to use for string input, which
doesn't have properties
Returns:
An Entity instance.
|
codesearchnet
|
def find_elements_by_class(self, class_, update=False) -> Elements:
return self.find_elements(by=By.CLASS, value=class_, update=update)
|
Finds multiple elements by class.
Args:
class_: The class of the elements to be found.
update: If the interface has changed, this option should be True.
Returns:
A list with elements if any was found. An empty list if not.
Raises:
NoSuchElementException - If the element wasn't found.
Usage:
elements = driver.find_elements_by_class('foo')
|
codesearchnet
|
def to_element(self, include_namespaces=False):
elt_attrib = {}
if include_namespaces:
elt_attrib.update({
'xmlns': "urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/",
'xmlns:dc': "http:
'xmlns:upnp': "urn:schemas-upnp-org:metadata-1-0/upnp/",
})
elt_attrib.update({
'parentID': self.parent_id,
'restricted': 'true' if self.restricted else 'false',
'id': self.item_id
})
elt = XML.Element(self.tag, elt_attrib)
XML.SubElement(elt, 'dc:title').text = self.title
for resource in self.resources:
elt.append(resource.to_element())
for key, value in self._translation.items():
if hasattr(self, key):
tag = "%s:%s" % value if value[0] else "%s" % value[1]
XML.SubElement(elt, tag).text = ("%s" % getattr(self, key))
XML.SubElement(elt, 'upnp:class').text = self.item_class
desc_attrib = {'id': 'cdudn', 'nameSpace':
'urn:schemas-rinconnetworks-com:metadata-1-0/'}
desc_elt = XML.SubElement(elt, 'desc', desc_attrib)
desc_elt.text = self.desc
return elt
|
Return an ElementTree Element representing this instance.
Args:
include_namespaces (bool, optional): If True, include xml
namespace attributes on the root element
Return:
~xml.etree.ElementTree.Element: an Element.
|
juraj-google-style
|
def run_tpm(tpm, time_scale):
sbs_tpm = convert.state_by_node2state_by_state(tpm)
if sparse(tpm):
tpm = sparse_time(sbs_tpm, time_scale)
else:
tpm = dense_time(sbs_tpm, time_scale)
return convert.state_by_state2state_by_node(tpm)
|
Iterate a TPM by the specified number of time steps.
Args:
tpm (np.ndarray): A state-by-node tpm.
time_scale (int): The number of steps to run the tpm.
Returns:
np.ndarray
|
codesearchnet
|
def _add_arg(self, key, value, mask=False):
if self.lang == 'python':
self._add_arg_python(key, value, mask)
elif self.lang == 'java':
self._add_arg_java(key, value, mask)
|
Add CLI Arg for the correct language.
Args:
key (string): The CLI Args key (e.g., --name).
value (string): The CLI Args value (e.g., bob).
mask (boolean, default:False): Indicates whether no mask value.
|
juraj-google-style
|
def _resize_image(image, height, width):
return tf.image.resize_images(
image, [height, width], method=tf.image.ResizeMethod.BILINEAR,
align_corners=False)
|
Simple wrapper around tf.resize_images.
This is primarily to make sure we use the same `ResizeMethod` and other
details each time.
Args:
image: A 3-D image `Tensor`.
height: The target height for the resized image.
width: The target width for the resized image.
Returns:
resized_image: A 3-D tensor containing the resized image. The first two
dimensions have the shape [height, width].
|
juraj-google-style
|
def onchange(self, new_value):
self.disable_refresh()
self.set_value(new_value)
self.enable_refresh()
return (new_value, )
|
Called when the user changes the TextInput content.
With single_line=True it fires in case of focus lost and Enter key pressed.
With single_line=False it fires at each key released.
Args:
new_value (str): the new string content of the TextInput.
|
juraj-google-style
|
def clear_extra_selections(self, key):
for decoration in self.extra_selections_dict.get(key, []):
self.decorations.remove(decoration)
self.extra_selections_dict[key] = []
|
Remove decorations added through set_extra_selections.
Args:
key (str) name of the extra selections group.
|
juraj-google-style
|
def get(self, key):
path = self.object_path(key)
return self._read_object(path)
|
Return the object named by key or None if it does not exist.
Args:
key: Key naming the object to retrieve
Returns:
object or None
|
codesearchnet
|
def expand(self, url):
url = self.clean_url(url)
expand_url = f'{self.api_url}v1/expand'
payload = {
'domain': getattr(self, 'domain', 'adf.ly'),
'advert_type': getattr(self, 'type', 'int'),
'group_id': getattr(self, 'group_id', None),
'key': self.api_key,
'user_id': self.user_id,
'url': url,
}
response = self._post(expand_url, data=payload)
if not response.ok:
raise BadAPIResponseException(response.content)
try:
data = response.json()
except json.decoder.JSONDecodeError:
raise BadAPIResponseException('API response could not be decoded')
if data.get('errors'):
errors = ','.join(i['msg'] for i in data['errors'])
raise ShorteningErrorException(errors)
if not data.get('data'):
raise BadAPIResponseException(response.content)
return data['data'][0]['url']
|
Expand implementation for Adf.ly
Args:
url: the URL you want to expand
Returns:
A string containing the expanded URL
Raises:
BadAPIResponseException: If the data is malformed or we got a bad
status code on API response
ShorteningErrorException: If the API Returns an error as response
|
juraj-google-style
|
def _log_unnorm_prob(self, x, name=None):
with tf.name_scope((name or 'log_unnorm_prob_lkj')):
x = tf.convert_to_tensor(value=x, name='x')
if self.input_output_cholesky:
logdet = (2.0 * tf.reduce_sum(input_tensor=tf.math.log(tf.linalg.diag_part(x)), axis=[(- 1)]))
else:
(_, logdet) = tf.linalg.slogdet(x)
answer = ((self.concentration - 1.0) * logdet)
return answer
|
Returns the unnormalized log density of an LKJ distribution.
Args:
x: `float` or `double` `Tensor` of correlation matrices. The shape of `x`
must be `B + [D, D]`, where `B` broadcasts with the shape of
`concentration`.
name: Python `str` name prefixed to Ops created by this function.
Returns:
log_p: A Tensor of the unnormalized log density of each matrix element of
`x`, with respect to an LKJ distribution with parameter the
corresponding element of `concentration`.
|
codesearchnet
|
def truncate(string, maxchar):
if maxchar < 4:
raise TruncateError("Maxchar must be > 3")
if len(string) <= maxchar:
return string
else:
return string[:maxchar - 3] + "..."
|
Truncate a string to a maximum number of characters.
If the string is longer than maxchar, then remove excess
characters and append an ellipses.
Arguments:
string (str): String to truncate.
maxchar (int): Maximum length of string in characters. Must be >= 4.
Returns:
str: Of length <= maxchar.
Raises:
TruncateError: In case of an error.
|
juraj-google-style
|
def _ConditionalFormatMessages(self, event_values):
string_pieces = []
for (map_index, attribute_name) in enumerate(self._format_string_pieces_map):
if ((not attribute_name) or (attribute_name in event_values)):
if attribute_name:
attribute = event_values.get(attribute_name, None)
if ((not isinstance(attribute, (bool, float))) and (not isinstance(attribute, py2to3.INTEGER_TYPES)) and (not attribute)):
continue
string_pieces.append(self.FORMAT_STRING_PIECES[map_index])
format_string = self.FORMAT_STRING_SEPARATOR.join(string_pieces)
string_pieces = []
for (map_index, attribute_name) in enumerate(self._format_string_short_pieces_map):
if ((not attribute_name) or event_values.get(attribute_name, None)):
string_pieces.append(self.FORMAT_STRING_SHORT_PIECES[map_index])
short_format_string = self.FORMAT_STRING_SEPARATOR.join(string_pieces)
return self._FormatMessages(format_string, short_format_string, event_values)
|
Determines the conditional formatted message strings.
Args:
event_values (dict[str, object]): event values.
Returns:
tuple(str, str): formatted message string and short message string.
|
codesearchnet
|
def add_group_coordinator(self, group, response):
log.debug('Updating coordinator for %s: %s', group, response)
error_type = Errors.for_code(response.error_code)
if (error_type is not Errors.NoError):
log.error('GroupCoordinatorResponse error: %s', error_type)
self._groups[group] = (- 1)
return False
node_id = response.coordinator_id
coordinator = BrokerMetadata(response.coordinator_id, response.host, response.port, None)
if (node_id not in self._brokers):
self._brokers[node_id] = coordinator
else:
node = self._brokers[node_id]
if ((coordinator.host != node.host) or (coordinator.port != node.port)):
log.error('GroupCoordinator metadata conflicts with existing broker metadata. Coordinator: %s, Broker: %s', coordinator, node)
self._groups[group] = node_id
return False
log.info('Group coordinator for %s is %s', group, coordinator)
self._groups[group] = node_id
return True
|
Update with metadata for a group coordinator
Arguments:
group (str): name of group from GroupCoordinatorRequest
response (GroupCoordinatorResponse): broker response
Returns:
bool: True if metadata is updated, False on error
|
codesearchnet
|
def request(session, url, rule_payload, **kwargs):
if isinstance(rule_payload, dict):
rule_payload = json.dumps(rule_payload)
logger.debug("sending request")
result = session.post(url, data=rule_payload, **kwargs)
return result
|
Executes a request with the given payload and arguments.
Args:
session (requests.Session): the valid session object
url (str): Valid API endpoint
rule_payload (str or dict): rule package for the POST. If you pass a
dictionary, it will be converted into JSON.
|
juraj-google-style
|
def _ParseOrMerge(self, lines, message):
tokenizer = Tokenizer(lines)
while not tokenizer.AtEnd():
self._MergeField(tokenizer, message)
|
Converts a text representation of a protocol message into a message.
Args:
lines: Lines of a message's text representation.
message: A protocol buffer message to merge into.
Raises:
ParseError: On text parsing problems.
|
juraj-google-style
|
def _sample_actions(self, state: Sequence[tf.Tensor]) -> Tuple[(Sequence[tf.Tensor], tf.Tensor, tf.Tensor)]:
default = self.compiler.compile_default_action(self.batch_size)
bound_constraints = self.compiler.compile_action_bound_constraints(state)
action = self._sample_action(bound_constraints, default)
(n, action, checking) = self._check_preconditions(state, action, bound_constraints, default)
return (action, n, checking)
|
Returns sampled action fluents and tensors related to the sampling.
Args:
state (Sequence[tf.Tensor]): A list of state fluents.
Returns:
Tuple[Sequence[tf.Tensor], tf.Tensor, tf.Tensor]: A tuple with
action fluents, an integer tensor for the number of samples, and
a boolean tensor for checking all action preconditions.
|
codesearchnet
|
def retry_loop(retries, delay_in_seconds, conditions, function):
if (not isinstance(retries, Integral)):
raise TypeError(retries)
if (delay_in_seconds < 0):
raise TypeError(delay_in_seconds)
attempts = 0
value = None
err = None
while (attempts <= retries):
try:
value = function()
for condition in conditions:
if condition.on_value(value):
break
else:
return value
except Exception as exc:
err = exc
for condition in conditions:
if condition.on_exception(exc):
break
else:
raise
attempts += 1
sleep(delay_in_seconds)
else:
if err:
raise err
else:
raise ValueError('Max retries ({}) reached and return the value is still {}.'.format(attempts, value))
return value
|
Actually performs the retry loop used by the retry decorator
and handler functions. Failures for retrying are defined by
the RetryConditions passed in. If the maximum number of
retries has been reached then it raises the most recent
error or a ValueError on the most recent result value.
Args:
retries (Integral): Maximum number of times to retry.
delay_in_seconds (Integral): Number of seconds to wait
between retries.
conditions (list): A list of retry conditions the can
trigger a retry on a return value or exception.
function (function): The function to wrap.
Returns:
value: The return value from function
|
codesearchnet
|
def start_naive_bayes(automated_run, session, path):
module = functions.import_string_code_as_module(automated_run.source)
random_state = 8 if not hasattr(module, 'random_state') else module.random_state
assert module.metric_to_optimize in automated_run.base_learner_origin.metric_generators
base_estimator = automated_run.base_learner_origin.return_estimator()
base_estimator.set_params(**module.default_params)
default_params = functions.make_serializable(base_estimator.get_params())
non_searchable_params = dict((key, val) for key, val in iteritems(default_params)
if key not in module.pbounds)
existing_base_learners = []
for base_learner in automated_run.base_learner_origin.base_learners:
if not base_learner.job_status == 'finished':
continue
in_search_space = True
for key, val in iteritems(non_searchable_params):
if base_learner.hyperparameters[key] != val:
in_search_space = False
break
if in_search_space:
existing_base_learners.append(base_learner)
target = []
initialization_dict = dict((key, list()) for key in module.pbounds.keys())
for base_learner in existing_base_learners:
all_numerical = True
for key in module.pbounds.keys():
if not isinstance(base_learner.hyperparameters[key], numbers.Number):
all_numerical = False
break
if not all_numerical:
continue
for key in module.pbounds.keys():
initialization_dict[key].append(base_learner.hyperparameters[key])
target.append(base_learner.individual_score[module.metric_to_optimize])
initialization_dict['target'] = target if not module.invert_metric \
else list(map(lambda x: -x, target))
print('{} existing in initialization dictionary'.
format(len(initialization_dict['target'])))
func_to_optimize = return_func_to_optimize(
path, session, automated_run.base_learner_origin, module.default_params,
module.metric_to_optimize, module.invert_metric, set(module.integers)
)
bo = BayesianOptimization(func_to_optimize, module.pbounds)
bo.initialize(initialization_dict)
np.random.seed(random_state)
bo.maximize(**module.maximize_config)
|
Starts naive bayes automated run
Args:
automated_run (xcessiv.models.AutomatedRun): Automated run object
session: Valid SQLAlchemy session
path (str, unicode): Path to project folder
|
juraj-google-style
|
def setup_logging(args=None):
logging_level = logging.WARNING
if ((args is not None) and args.verbose):
logging_level = logging.INFO
config = {'level': logging_level, 'format': 'jtlocalize:%(message)s'}
if ((args is not None) and (args.log_path != '')):
config['filename'] = args.log_path
logging.basicConfig(**config)
|
Setup logging module.
Args:
args (optional): The arguments returned by the argparse module.
|
codesearchnet
|
def gen_cartesian_product(*args):
if (not args):
return []
elif (len(args) == 1):
return args[0]
product_list = []
for product_item_tuple in itertools.product(*args):
product_item_dict = {}
for item in product_item_tuple:
product_item_dict.update(item)
product_list.append(product_item_dict)
return product_list
|
generate cartesian product for lists
Args:
args (list of list): lists to be generated with cartesian product
Returns:
list: cartesian product in list
Examples:
>>> arg1 = [{"a": 1}, {"a": 2}]
>>> arg2 = [{"x": 111, "y": 112}, {"x": 121, "y": 122}]
>>> args = [arg1, arg2]
>>> gen_cartesian_product(*args)
>>> # same as below
>>> gen_cartesian_product(arg1, arg2)
[
{'a': 1, 'x': 111, 'y': 112},
{'a': 1, 'x': 121, 'y': 122},
{'a': 2, 'x': 111, 'y': 112},
{'a': 2, 'x': 121, 'y': 122}
]
|
codesearchnet
|
def get_generic_type(val: '_base.BaseValue') -> '_classes.ParameterizedClass | None':
is_class = isinstance(val, _abstract.Class)
if is_class:
cls = val
elif isinstance(val.cls, _abstract.Class):
cls = val.cls
else:
return None
for parent_cls in cls.mro:
if isinstance(parent_cls, _abstract.ParameterizedClass):
base_cls = parent_cls.base_cls
else:
base_cls = parent_cls
if isinstance(base_cls, _abstract.Class) and base_cls.template:
ctx = base_cls.ctx
params = {item.name: item for item in base_cls.template}
generic_cls = _abstract.ParameterizedClass(base_cls, params, ctx)
if is_class:
return _abstract.ParameterizedClass(ctx.convert.type_type, {T: generic_cls}, ctx)
else:
return generic_cls
return None
|
Gets the generic type of an abstract value.
Args:
val: The abstract value.
Returns:
The type of the value, with concrete type parameters replaced by TypeVars.
For example, the generic type of `[0]` is `List[T]`.
|
github-repos
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.