code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def get_new_profile_template(self):
uri = '{}/new-profile-template'.format(self.data['uri'])
return self._helper.do_get(uri)
|
Retrieves the profile template for a given server profile.
Returns:
dict: Server profile template.
|
codesearchnet
|
def dump(self, content, filepath, indent=4):
with open(filepath, 'w') as fp:
json.dump(content, fp, indent=indent)
|
Dump settings content to filepath.
Args:
content (str): Settings content.
filepath (str): Settings file location.
|
juraj-google-style
|
def get_range(self, start=None, stop=None):
return self.from_iterable(self.ranges(start, stop))
|
Return a RangeMap for the range start to stop.
Returns:
A RangeMap
|
codesearchnet
|
def get_module(module_abs_import):
logger.debug('starting')
logger.debug(f'loading module {module_abs_import}')
try:
imported_module = importlib.import_module(module_abs_import)
logger.debug('done')
return imported_module
except ModuleNotFoundError as err:
msg = f"The module doesn't exist. Looking for a file like this: {module_abs_import}"
extended_msg = f
logger.error(msg)
raise PyModuleNotFoundError(extended_msg) from err
|
Use importlib to get the module dynamically.
Get instance of the module specified by the module_abs_import.
This means that module_abs_import must be resolvable from this package.
Args:
module_abs_import: string. Absolute name of module to import.
Raises:
PyModuleNotFoundError: if module not found.
|
codesearchnet
|
def migrate_indexes(aggregate_indexes=None, forensic_indexes=None):
version = 2
if (aggregate_indexes is None):
aggregate_indexes = []
if (forensic_indexes is None):
forensic_indexes = []
for aggregate_index_name in aggregate_indexes:
if (not Index(aggregate_index_name).exists()):
continue
aggregate_index = Index(aggregate_index_name)
doc = 'doc'
fo_field = 'published_policy.fo'
fo = 'fo'
fo_mapping = aggregate_index.get_field_mapping(fields=[fo_field])
fo_mapping = fo_mapping[list(fo_mapping.keys())[0]]['mappings']
if (doc not in fo_mapping):
continue
fo_mapping = fo_mapping[doc][fo_field]['mapping'][fo]
fo_type = fo_mapping['type']
if (fo_type == 'long'):
new_index_name = '{0}-v{1}'.format(aggregate_index_name, version)
body = {'properties': {'published_policy.fo': {'type': 'text', 'fields': {'keyword': {'type': 'keyword', 'ignore_above': 256}}}}}
Index(new_index_name).create()
Index(new_index_name).put_mapping(doc_type=doc, body=body)
reindex(connections.get_connection(), aggregate_index_name, new_index_name)
Index(aggregate_index_name).delete()
for forensic_index in forensic_indexes:
pass
|
Updates index mappings
Args:
aggregate_indexes (list): A list of aggregate index names
forensic_indexes (list): A list of forensic index names
|
codesearchnet
|
def CheckGlobalStatic(filename, clean_lines, linenum, error):
line = clean_lines.elided[linenum]
if (((linenum + 1) < clean_lines.NumLines()) and (not Search('[;({]', line))):
line += clean_lines.elided[(linenum + 1)].strip()
match = Match('((?:|static +)(?:|const +))string +([a-zA-Z0-9_:]+)\\b(.*)', line)
if (match and (not Search('\\bstring\\b(\\s+const)?\\s*\\*\\s*(const\\s+)?\\w', line)) and (not Search('\\boperator\\W', line)) and (not Match('\\s*(<.*>)?(::[a-zA-Z0-9_]+)*\\s*\\(([^"]|$)', match.group(3)))):
error(filename, linenum, 'runtime/string', 4, ('For a static/global string constant, use a C style string instead: "%schar %s[]".' % (match.group(1), match.group(2))))
if Search('\\b([A-Za-z0-9_]*_)\\(\\1\\)', line):
error(filename, linenum, 'runtime/init', 4, 'You seem to be initializing a member variable with itself.')
|
Check for unsafe global or static objects.
Args:
filename: The name of the current file.
clean_lines: A CleansedLines instance containing the file.
linenum: The number of the line to check.
error: The function to call with any errors found.
|
codesearchnet
|
def _grad_variance(self):
grad_var_ops = []
tensor_to_avg = []
for (t, g) in zip(self._vars, self._grad):
if isinstance(g, tf.IndexedSlices):
tensor_to_avg.append(tf.reshape(tf.unsorted_segment_sum(g.values, g.indices, g.dense_shape[0]), shape=t.get_shape()))
else:
tensor_to_avg.append(g)
avg_op = self._moving_averager.apply(tensor_to_avg)
grad_var_ops.append(avg_op)
with tf.control_dependencies([avg_op]):
self._grad_avg = [self._moving_averager.average(val) for val in tensor_to_avg]
self._grad_avg_squared = [tf.square(val) for val in self._grad_avg]
self._grad_var = tf.maximum(tf.constant(1e-06, dtype=self._grad_norm_squared_avg.dtype), (self._grad_norm_squared_avg - tf.add_n([tf.reduce_sum(val) for val in self._grad_avg_squared])))
if self._sparsity_debias:
self._grad_var *= self._sparsity_avg
return grad_var_ops
|
Estimate of gradient Variance.
Returns:
C_t ops.
|
codesearchnet
|
def ReadFileObject(self, definitions_registry, file_object):
last_definition_object = None
error_location = None
error_message = None
try:
yaml_generator = yaml.safe_load_all(file_object)
for yaml_definition in yaml_generator:
definition_object = self._ReadDefinition(
definitions_registry, yaml_definition)
if not definition_object:
error_location = self._GetFormatErrorLocation(
yaml_definition, last_definition_object)
error_message = '{0:s} Missing definition object.'.format(
error_location)
raise errors.FormatError(error_message)
definitions_registry.RegisterDefinition(definition_object)
last_definition_object = definition_object
except errors.DefinitionReaderError as exception:
error_message = 'in: {0:s} {1:s}'.format(
exception.name or '<NAMELESS>', exception.message)
raise errors.FormatError(error_message)
except (yaml.reader.ReaderError, yaml.scanner.ScannerError) as exception:
error_location = self._GetFormatErrorLocation({}, last_definition_object)
error_message = '{0:s} {1!s}'.format(error_location, exception)
raise errors.FormatError(error_message)
|
Reads data type definitions from a file-like object into the registry.
Args:
definitions_registry (DataTypeDefinitionsRegistry): data type definitions
registry.
file_object (file): file-like object to read from.
Raises:
FormatError: if the definitions values are missing or if the format is
incorrect.
|
juraj-google-style
|
def _build_select_and_next_from_expressions(self, builders: Tuple[column_expression_builder.ColumnExpressionBuilder, ...], child_builders: MutableSequence[column_expression_builder.ColumnExpressionBuilder], columns_selected: MutableSequence[str]) -> Tuple[MutableSequence[str], MutableSequence[str]]:
select_expressions, next_from_expressions = ([], [])
for column_name in columns_selected:
select_expressions.append(f'(SELECT {column_name}) AS {column_name}')
for builder in builders:
child_builders.extend(builder.children)
column_alias = _get_column_alias(builder)
if builder.column_name:
columns_selected.append(column_alias)
needs_unnest = builder.needs_unnest or builder.children
select_expression = self._encode(builder=builder, select_scalars_as_array=needs_unnest)
if needs_unnest:
select_expression = f'{select_expression} AS {column_alias}_needs_unnest_'
next_from_expressions.append(self._build_next_from_expression(column_alias))
else:
select_expression = f'{select_expression} AS {column_alias}'
select_expressions.append(select_expression)
return (select_expressions, next_from_expressions)
|
Build select expressions and next from expressions from the builders.
Args:
builders: the immutable current builders to compute select expressions.
child_builders: collects the current given builders' children for the next
round.
columns_selected: accumulatively collects columns which has already been
handled completely.
Returns:
The select expressions and next from expressions computed form the given
builders.
|
github-repos
|
def node_attributes(self, node_name, device_name=None):
if not self._debug_graphs:
raise LookupError('No partition graphs have been loaded.')
device_name = self._infer_device_name(device_name, node_name)
return self._debug_graphs[device_name].node_attributes[node_name]
|
Get the attributes of a node.
Args:
node_name: Name of the node in question.
device_name: (`str`) name of the device. If there is only one device or if
node_name exists on only one device, this argument is optional.
Returns:
Attributes of the node.
Raises:
LookupError: If no partition graphs have been loaded.
|
github-repos
|
def cudnn_bi_gru(units, n_hidden, seq_lengths=None, n_layers=1, trainable_initial_states=False, name='cudnn_bi_gru', reuse=False):
with tf.variable_scope(name, reuse=reuse):
if (seq_lengths is None):
seq_lengths = (tf.ones([tf.shape(units)[0]], dtype=tf.int32) * tf.shape(units)[1])
with tf.variable_scope('Forward'):
(h_fw, h_last_fw) = cudnn_gru_wrapper(units, n_hidden, n_layers=n_layers, trainable_initial_states=trainable_initial_states, seq_lengths=seq_lengths, reuse=reuse)
with tf.variable_scope('Backward'):
reversed_units = tf.reverse_sequence(units, seq_lengths=seq_lengths, seq_dim=1, batch_dim=0)
(h_bw, h_last_bw) = cudnn_gru_wrapper(reversed_units, n_hidden, n_layers=n_layers, trainable_initial_states=trainable_initial_states, seq_lengths=seq_lengths, reuse=reuse)
h_bw = tf.reverse_sequence(h_bw, seq_lengths=seq_lengths, seq_dim=1, batch_dim=0)
return ((h_fw, h_bw), (h_last_fw, h_last_bw))
|
Fast CuDNN Bi-GRU implementation
Args:
units: tf.Tensor with dimensions [B x T x F], where
B - batch size
T - number of tokens
F - features
n_hidden: dimensionality of hidden state
seq_lengths: number of tokens in each sample in the batch
n_layers: number of layers
trainable_initial_states: whether to create a special trainable variable
to initialize the hidden states of the network or use just zeros
name: name of the variable scope to use
reuse:whether to reuse already initialized variable
Returns:
h - all hidden states along T dimension,
tf.Tensor with dimensionality [B x T x F]
h_last - last hidden state, tf.Tensor with dimensionality [B x H * 2]
where H - number of hidden units
|
codesearchnet
|
def print_args(output=sys.stdout):
def decorator(func):
@wraps(func)
def _(*args, **kwargs):
output.write(
"Args: {0}, KwArgs: {1}\n".format(str(args), str(kwargs)))
return func(*args, **kwargs)
return _
return decorator
|
Decorate a function so that print arguments before calling it.
Args:
output: writable to print args. (Default: sys.stdout)
|
juraj-google-style
|
def _AnalyzeEvents(self, storage_writer, analysis_plugins, event_filter=None):
self._status = definitions.STATUS_INDICATOR_RUNNING
self._number_of_consumed_events = 0
self._number_of_consumed_reports = 0
self._number_of_consumed_sources = 0
self._number_of_consumed_warnings = 0
self._number_of_produced_events = 0
self._number_of_produced_reports = 0
self._number_of_produced_sources = 0
self._number_of_produced_warnings = 0
number_of_filtered_events = 0
logger.debug('Processing events.')
filter_limit = getattr(event_filter, 'limit', None)
for event in storage_writer.GetSortedEvents():
event_data_identifier = event.GetEventDataIdentifier()
if event_data_identifier:
event_data = storage_writer.GetEventDataByIdentifier(
event_data_identifier)
if event_data:
for attribute_name, attribute_value in event_data.GetAttributes():
setattr(event, attribute_name, attribute_value)
event_identifier = event.GetIdentifier()
event.tag = self._event_tag_index.GetEventTagByIdentifier(
storage_writer, event_identifier)
if event_filter:
filter_match = event_filter.Match(event)
else:
filter_match = None
if filter_match == False:
number_of_filtered_events += 1
continue
for event_queue in self._event_queues.values():
event_queue.PushItem(event)
self._number_of_consumed_events += 1
if (event_filter and filter_limit and
filter_limit == self._number_of_consumed_events):
break
logger.debug('Finished pushing events to analysis plugins.')
for event_queue in self._event_queues.values():
event_queue.PushItem(plaso_queue.QueueAbort(), block=False)
logger.debug('Processing analysis plugin results.')
plugin_names = [plugin_name for plugin_name in analysis_plugins.keys()]
while plugin_names:
for plugin_name in list(plugin_names):
if self._abort:
break
task = tasks.Task()
task.identifier = plugin_name
merge_ready = storage_writer.CheckTaskReadyForMerge(task)
if merge_ready:
storage_writer.PrepareMergeTaskStorage(task)
self._status = definitions.STATUS_INDICATOR_MERGING
event_queue = self._event_queues[plugin_name]
del self._event_queues[plugin_name]
event_queue.Close()
storage_merge_reader = storage_writer.StartMergeTaskStorage(task)
storage_merge_reader.MergeAttributeContainers(
callback=self._MergeEventTag)
plugin_names.remove(plugin_name)
self._status = definitions.STATUS_INDICATOR_RUNNING
self._number_of_produced_event_tags = (
storage_writer.number_of_event_tags)
self._number_of_produced_reports = (
storage_writer.number_of_analysis_reports)
try:
storage_writer.StopTaskStorage(abort=self._abort)
except (IOError, OSError) as exception:
logger.error('Unable to stop task storage with error: {0!s}'.format(
exception))
if self._abort:
logger.debug('Processing aborted.')
else:
logger.debug('Processing completed.')
events_counter = collections.Counter()
events_counter['Events filtered'] = number_of_filtered_events
events_counter['Events processed'] = self._number_of_consumed_events
return events_counter
|
Analyzes events in a plaso storage.
Args:
storage_writer (StorageWriter): storage writer.
analysis_plugins (dict[str, AnalysisPlugin]): analysis plugins that
should be run and their names.
event_filter (Optional[FilterObject]): event filter.
Returns:
collections.Counter: counter containing information about the events
processed and filtered.
Raises:
RuntimeError: if a non-recoverable situation is encountered.
|
juraj-google-style
|
def submodules(self):
submodules = []
submodules.extend(self.modules)
for p in self.packages:
submodules.extend(p.submodules)
return submodules
|
Property to return all sub-modules of the node, recursively.
Returns:
list of Module: the sub-modules.
|
codesearchnet
|
def MakePmfFromList(t, name=''):
hist = MakeHistFromList(t)
d = hist.GetDict()
pmf = Pmf(d, name)
pmf.Normalize()
return pmf
|
Makes a PMF from an unsorted sequence of values.
Args:
t: sequence of numbers
name: string name for this PMF
Returns:
Pmf object
|
juraj-google-style
|
def send_command(self, command, arg=None):
if arg is not None:
command = '%s:%s' % (command, arg)
self._write(six.StringIO(command), len(command))
|
Sends a command to the device.
Args:
command: The command to send.
arg: Optional argument to the command.
|
juraj-google-style
|
def delete_items_by_index(list_, index_list, copy=False):
if copy:
list_ = list_[:]
index_list_ = [((len(list_) + x) if (x < 0) else x) for x in index_list]
index_list_ = sorted(index_list_, reverse=True)
for index in index_list_:
del list_[index]
return list_
|
Remove items from ``list_`` at positions specified in ``index_list``
The original ``list_`` is preserved if ``copy`` is True
Args:
list_ (list):
index_list (list):
copy (bool): preserves original list if True
Example:
>>> # ENABLE_DOCTEST
>>> from utool.util_list import * # NOQA
>>> list_ = [8, 1, 8, 1, 6, 6, 3, 4, 4, 5, 6]
>>> index_list = [2, -1]
>>> result = delete_items_by_index(list_, index_list)
>>> print(result)
[8, 1, 1, 6, 6, 3, 4, 4, 5]
|
codesearchnet
|
def __optimize_deconvolution_layer(self, learning_rate, epoch):
params_list = []
grads_list = []
for i in range(len(self.__deconvolution_layer_list)):
if self.__deconvolution_layer_list[i].delta_weight_arr.shape[0] > 0:
params_list.append(self.__deconvolution_layer_list[i].graph.weight_arr)
grads_list.append(self.__deconvolution_layer_list[i].delta_weight_arr)
for i in range(len(self.__deconvolution_layer_list)):
if self.__deconvolution_layer_list[i].delta_bias_arr.shape[0] > 0:
params_list.append(self.__deconvolution_layer_list[i].graph.bias_arr)
grads_list.append(self.__deconvolution_layer_list[i].delta_bias_arr)
params_list = self.__opt_params.optimize(
params_list,
grads_list,
learning_rate
)
i = 0
for i in range(len(self.__deconvolution_layer_list)):
if self.__deconvolution_layer_list[i].delta_weight_arr.shape[0] > 0:
self.__deconvolution_layer_list[i].graph.weight_arr = params_list.pop(0)
if ((epoch + 1) % self.__attenuate_epoch == 0):
self.__deconvolution_layer_list[i].graph.weight_arr = self.__opt_params.constrain_weight(
self.__deconvolution_layer_list[i].graph.weight_arr
)
for i in range(len(self.__deconvolution_layer_list)):
if self.__deconvolution_layer_list[i].delta_bias_arr.shape[0] > 0:
self.__deconvolution_layer_list[i].graph.bias_arr = params_list.pop(0)
for i in range(len(self.__deconvolution_layer_list)):
if self.__deconvolution_layer_list[i].delta_weight_arr.shape[0] > 0:
if self.__deconvolution_layer_list[i].delta_bias_arr.shape[0] > 0:
self.__deconvolution_layer_list[i].reset_delta()
|
Back propagation for Deconvolution layer.
Args:
learning_rate: Learning rate.
epoch: Now epoch.
|
juraj-google-style
|
def convert_attribute_name_to_tag(value):
if (not isinstance(value, six.string_types)):
raise ValueError('The attribute name must be a string.')
for entry in attribute_name_tag_table:
if (value == entry[0]):
return entry[1]
raise ValueError("Unrecognized attribute name: '{}'".format(value))
|
A utility function that converts an attribute name string into the
corresponding attribute tag.
For example: 'State' -> enums.Tags.STATE
Args:
value (string): The string name of the attribute.
Returns:
enum: The Tags enumeration value that corresponds to the attribute
name string.
Raises:
ValueError: if the attribute name string is not a string or if it is
an unrecognized attribute name
|
codesearchnet
|
def aggregate_groups(self, ct_agg, nr_groups, skip_key, carray_factor, groupby_cols, agg_ops, dtype_dict, bool_arr=None):
for col in groupby_cols:
result_array = ctable_ext.groupby_value(self[col], carray_factor, nr_groups, skip_key)
if (bool_arr is not None):
result_array = np.delete(result_array, skip_key)
ct_agg.addcol(result_array, name=col)
del result_array
for (input_col_name, output_col_name, agg_op) in agg_ops:
input_col = self[input_col_name]
output_col_dtype = dtype_dict[output_col_name]
input_buffer = np.empty(input_col.chunklen, dtype=input_col.dtype)
output_buffer = np.zeros(nr_groups, dtype=output_col_dtype)
if (agg_op == 'sum'):
ctable_ext.aggregate_sum(input_col, carray_factor, nr_groups, skip_key, input_buffer, output_buffer)
elif (agg_op == 'mean'):
ctable_ext.aggregate_mean(input_col, carray_factor, nr_groups, skip_key, input_buffer, output_buffer)
elif (agg_op == 'std'):
ctable_ext.aggregate_std(input_col, carray_factor, nr_groups, skip_key, input_buffer, output_buffer)
elif (agg_op == 'count'):
ctable_ext.aggregate_count(input_col, carray_factor, nr_groups, skip_key, input_buffer, output_buffer)
elif (agg_op == 'count_distinct'):
ctable_ext.aggregate_count_distinct(input_col, carray_factor, nr_groups, skip_key, input_buffer, output_buffer)
elif (agg_op == 'sorted_count_distinct'):
ctable_ext.aggregate_sorted_count_distinct(input_col, carray_factor, nr_groups, skip_key, input_buffer, output_buffer)
else:
raise KeyError(('Unknown aggregation operation ' + str(agg_op)))
if (bool_arr is not None):
output_buffer = np.delete(output_buffer, skip_key)
ct_agg.addcol(output_buffer, name=output_col_name)
del output_buffer
ct_agg.delcol('tmp_col_bquery__')
|
Perform aggregation and place the result in the given ctable.
Args:
ct_agg (ctable): the table to hold the aggregation
nr_groups (int): the number of groups (number of rows in output table)
skip_key (int): index of the output row to remove from results (used for filtering)
carray_factor: the carray for each row in the table a reference to the the unique group index
groupby_cols: the list of 'dimension' columns that are used to perform the groupby over
output_agg_ops (list): list of tuples of the form: (input_col, agg_op)
input_col (string): name of the column to act on
agg_op (int): aggregation operation to perform
bool_arr: a boolean array containing the filter
|
codesearchnet
|
def Decompress(self, compressed_data):
try:
uncompressed_data = self._zlib_decompressor.decompress(compressed_data)
remaining_compressed_data = getattr(
self._zlib_decompressor, 'unused_data', b'')
except zlib.error as exception:
raise errors.BackEndError((
'Unable to decompress zlib compressed stream with error: '
'{0!s}.').format(exception))
return uncompressed_data, remaining_compressed_data
|
Decompresses the compressed data.
Args:
compressed_data (bytes): compressed data.
Returns:
tuple(bytes, bytes): uncompressed data and remaining compressed data.
Raises:
BackEndError: if the zlib compressed stream cannot be decompressed.
|
juraj-google-style
|
def emulate(self, context=None, start=None, end=None, arch_mode=None, hooks=None, max_instrs=None, print_asm=False):
if (arch_mode is not None):
self._load(arch_mode=arch_mode)
context = (context if context else {})
start_addr = (start if start else self.binary.ea_start)
end_addr = (end if end else self.binary.ea_end)
hooks = (hooks if hooks else {})
for (reg, val) in context.get('registers', {}).items():
self.ir_emulator.registers[reg] = val
for (addr, val) in context.get('memory', {}).items():
self.ir_emulator.memory.write(addr, 4, val)
self.emulator.emulate(start_addr, end_addr, hooks, max_instrs, print_asm)
context_out = {'registers': {}, 'memory': {}}
for (reg, val) in self.ir_emulator.registers.items():
context_out['registers'][reg] = val
return context_out
|
Emulate native code.
Args:
context (dict): Processor context (register and/or memory).
start (int): Start address.
end (int): End address.
arch_mode (int): Architecture mode.
hooks (dict): Hooks by address.
max_instrs (int): Maximum number of instructions to execute.
print_asm (bool): Print asm.
Returns:
dict: Processor context.
|
codesearchnet
|
def learn(self, grad_arr):
encoder_delta_arr, _, encoder_grads_list = self.__encoder_decoder_controller.encoder.hidden_back_propagate(
grad_arr[:, -1]
)
encoder_grads_list.insert(0, None)
encoder_grads_list.insert(0, None)
self.__encoder_decoder_controller.encoder.optimize(
encoder_grads_list,
self.__learning_rate,
1
)
return encoder_delta_arr
|
Update this Discriminator by ascending its stochastic gradient.
Args:
grad_arr: `np.ndarray` of gradients.
Returns:
`np.ndarray` of delta or gradients.
|
juraj-google-style
|
def _txn_is_in_valid_batch(self, txn_id):
batch = self._batches_by_txn_id[txn_id]
return all((self._txn_results[sig].is_valid for sig in set(self._txn_results).intersection((txn.header_signature for txn in batch.transactions))))
|
Returns whether the transaction is in a valid batch.
Args:
txn_id (str): The transaction header signature.
Returns:
(bool): True if the txn's batch is valid, False otherwise.
|
codesearchnet
|
def _get_next_empty_bitmap(self):
for (i, byte) in enumerate(self._bitmap):
if (byte != 255):
for offset in range(8):
if (not (byte & (1 << offset))):
return ((i * 8) + offset)
|
Returns the next empty entry.
Returns:
int: The value of the empty entry
|
codesearchnet
|
def get_wf_from_path(self, path):
with open(path) as fp:
content = fp.read()
return [(os.path.basename(os.path.splitext(path)[0]), content), ]
|
load xml from given path
Args:
path: diagram path
Returns:
|
juraj-google-style
|
def chhome(name, home, **kwargs):
if six.PY2:
name = _to_unicode(name)
home = _to_unicode(home)
kwargs = salt.utils.args.clean_kwargs(**kwargs)
persist = kwargs.pop('persist', False)
if kwargs:
salt.utils.args.invalid_kwargs(kwargs)
if persist:
log.info('Ignoring unsupported \'persist\' argument to user.chhome')
pre_info = info(name)
if not pre_info:
return False
if home == pre_info['home']:
return True
if not update(name=name, home=home):
return False
post_info = info(name)
if post_info['home'] != pre_info['home']:
return post_info['home'] == home
return False
|
Change the home directory of the user, pass True for persist to move files
to the new home directory if the old home directory exist.
Args:
name (str): The name of the user whose home directory you wish to change
home (str): The new location of the home directory
Returns:
bool: True if successful, otherwise False
CLI Example:
.. code-block:: bash
salt '*' user.chhome foo \\\\fileserver\\home\\foo True
|
juraj-google-style
|
def tf_step(
self,
time,
variables,
arguments,
fn_loss,
**kwargs
):
unperturbed_loss = fn_loss(**arguments)
perturbations = [tf.random_normal(shape=util.shape(variable)) * self.learning_rate for variable in variables]
applied = self.apply_step(variables=variables, deltas=perturbations)
with tf.control_dependencies(control_inputs=(applied,)):
perturbed_loss = fn_loss(**arguments)
direction = tf.sign(x=(unperturbed_loss - perturbed_loss))
deltas_sum = [direction * perturbation for perturbation in perturbations]
if self.unroll_loop:
previous_perturbations = perturbations
for sample in xrange(self.num_samples):
with tf.control_dependencies(control_inputs=deltas_sum):
perturbations = [tf.random_normal(shape=util.shape(variable)) * self.learning_rate for variable in variables]
perturbation_deltas = [
pert - prev_pert for pert, prev_pert in zip(perturbations, previous_perturbations)
]
applied = self.apply_step(variables=variables, deltas=perturbation_deltas)
previous_perturbations = perturbations
with tf.control_dependencies(control_inputs=(applied,)):
perturbed_loss = fn_loss(**arguments)
direction = tf.sign(x=(unperturbed_loss - perturbed_loss))
deltas_sum = [delta + direction * perturbation for delta, perturbation in zip(deltas_sum, perturbations)]
else:
def body(iteration, deltas_sum, previous_perturbations):
with tf.control_dependencies(control_inputs=deltas_sum):
perturbations = [tf.random_normal(shape=util.shape(variable)) * self.learning_rate for variable in variables]
perturbation_deltas = [
pert - prev_pert for pert, prev_pert in zip(perturbations, previous_perturbations)
]
applied = self.apply_step(variables=variables, deltas=perturbation_deltas)
with tf.control_dependencies(control_inputs=(applied,)):
perturbed_loss = fn_loss(**arguments)
direction = tf.sign(x=(unperturbed_loss - perturbed_loss))
deltas_sum = [delta + direction * perturbation for delta, perturbation in zip(deltas_sum, perturbations)]
return iteration + 1, deltas_sum, perturbations
def cond(iteration, deltas_sum, previous_perturbation):
return iteration < self.num_samples - 1
_, deltas_sum, perturbations = tf.while_loop(cond=cond, body=body, loop_vars=(0, deltas_sum, perturbations))
with tf.control_dependencies(control_inputs=deltas_sum):
deltas = [delta / self.num_samples for delta in deltas_sum]
perturbation_deltas = [delta - pert for delta, pert in zip(deltas, perturbations)]
applied = self.apply_step(variables=variables, deltas=perturbation_deltas)
with tf.control_dependencies(control_inputs=(applied,)):
return [delta + 0.0 for delta in deltas]
|
Creates the TensorFlow operations for performing an optimization step.
Args:
time: Time tensor.
variables: List of variables to optimize.
arguments: Dict of arguments for callables, like fn_loss.
fn_loss: A callable returning the loss of the current model.
**kwargs: Additional arguments, not used.
Returns:
List of delta tensors corresponding to the updates for each optimized variable.
|
juraj-google-style
|
def get_all(self, attrs: Iterable[FetchAttribute]) -> Sequence[Tuple[(FetchAttribute, MaybeBytes)]]:
ret: List[Tuple[(FetchAttribute, MaybeBytes)]] = []
for attr in attrs:
try:
ret.append((attr.for_response, self.get(attr)))
except NotFetchable:
pass
return ret
|
Return a list of tuples containing the attribute iself and the bytes
representation of that attribute from the message.
Args:
attrs: The fetch attributes.
|
codesearchnet
|
def top_rated(self, **kwargs):
path = self._get_path('top_rated')
response = self._GET(path, kwargs)
self._set_attrs_to_values(response)
return response
|
Get the list of top rated movies. By default, this list will only
include movies that have 10 or more votes. This list refreshes every
day.
Args:
page: (optional) Minimum value of 1. Expected value is an integer.
language: (optional) ISO 639-1 code.
Returns:
A dict representation of the JSON returned from the API.
|
juraj-google-style
|
def get_registry_data(self, name, auth_config=None):
return RegistryData(image_name=name, attrs=self.client.api.inspect_distribution(name, auth_config), client=self.client, collection=self)
|
Gets the registry data for an image.
Args:
name (str): The name of the image.
auth_config (dict): Override the credentials that are found in the
config for this request. ``auth_config`` should contain the
``username`` and ``password`` keys to be valid.
Returns:
(:py:class:`RegistryData`): The data object.
Raises:
:py:class:`docker.errors.APIError`
If the server returns an error.
|
codesearchnet
|
def gru_feedfwd(a_t, h_prev, filters, name=None):
with tf.variable_scope(name, default_name='GRU', values=[a_t, h_prev]):
z_t = tf.sigmoid((tpu_conv1d(a_t, filters, 1, padding='SAME', name='W_z') + tpu_conv1d(h_prev, filters, 1, padding='SAME', name='U_z')))
r_t = tf.sigmoid((tpu_conv1d(a_t, filters, 1, padding='SAME', name='W_r') + tpu_conv1d(h_prev, filters, 1, padding='SAME', name='U_r')))
h_tilde = tf.tanh((tpu_conv1d(a_t, filters, 1, padding='SAME', name='W') + tpu_conv1d((r_t * h_prev), filters, 1, padding='SAME', name='U')))
h_t = (((1.0 - z_t) * h_prev) + (z_t * h_tilde))
return h_t
|
position-wise Feed-fwd GRU gates following the MPNN.
Args:
a_t: Tensor of shape [batch, length, depth] of current input
h_prev: Tensor of shape [batch, length, depth] of prev input
filters: an integer specifying number of dimensions of the filters
name: A string
Returns:
h_t: [batch, length, filters] hidden state
|
codesearchnet
|
def node(self, force_new_node: bool=False) -> EventSetNode:
if self._internal_node is not None and (not force_new_node):
return self._internal_node
self._internal_node = create_node_with_new_reference(schema=self._schema, name=self._name)
return self._internal_node
|
Creates an [`EventSetNode`][temporian.EventSetNode] able to consume
this EventSet.
If called multiple times with `force_new_node=False` (default), the same
node is returned.
Usage example:
```python
>>> my_evset = tp.event_set(
... timestamps=[1, 2, 3, 4],
... features={
... "feature_1": [0.5, 0.6, np.nan, 0.9],
... "feature_2": ["red", "blue", "red", "blue"],
... },
... )
>>> my_node = my_evset.node()
```
Args:
force_new_node: If false (default), return the same node each time
`node` is called. If true, a new node is created each time.
Returns:
An EventSetNode able to consume this EventSet.
|
github-repos
|
def acquire(self, blocking=True, timeout=-1):
result = self.lock.acquire(blocking, timeout)
return result
|
Acquire the :attr:`lock`
Args:
blocking (bool): See :meth:`threading.Lock.acquire`
timeout (float): See :meth:`threading.Lock.acquire`
Returns:
bool: :obj:`True` if the lock was acquired, otherwise :obj:`False`
|
juraj-google-style
|
def module_import(module_path):
try:
module = __import__(module_path)
components = module_path.split('.')
for component in components[1:]:
module = getattr(module, component)
return module
except ImportError:
raise BadModulePathError(('Unable to find module "%s".' % (module_path,)))
|
Imports the module indicated in name
Args:
module_path: string representing a module path such as
'app.config' or 'app.extras.my_module'
Returns:
the module matching name of the last component, ie: for
'app.extras.my_module' it returns a
reference to my_module
Raises:
BadModulePathError if the module is not found
|
codesearchnet
|
def unpause(self, container):
url = self._url('/containers/{0}/unpause', container)
res = self._post(url)
self._raise_for_status(res)
|
Unpause all processes within a container.
Args:
container (str): The container to unpause
|
codesearchnet
|
def _in_gae_environment():
if (SETTINGS.env_name is not None):
return (SETTINGS.env_name in ('GAE_PRODUCTION', 'GAE_LOCAL'))
try:
import google.appengine
except ImportError:
pass
else:
server_software = os.environ.get(_SERVER_SOFTWARE, '')
if server_software.startswith('Google App Engine/'):
SETTINGS.env_name = 'GAE_PRODUCTION'
return True
elif server_software.startswith('Development/'):
SETTINGS.env_name = 'GAE_LOCAL'
return True
return False
|
Detects if the code is running in the App Engine environment.
Returns:
True if running in the GAE environment, False otherwise.
|
codesearchnet
|
async def destroy_tournament(self, t: Tournament):
(await self.connection('DELETE', 'tournaments/{}'.format(t.id)))
if (t in self.tournaments):
self.tournaments.remove(t)
|
completely removes a tournament from Challonge
|methcoro|
Note:
|from_api| Deletes a tournament along with all its associated records. There is no undo, so use with care!
Raises:
APIException
|
codesearchnet
|
def index_last_dim_with_indices(x, indices):
assert (len(x.shape) == (len(indices.shape) + 1))
x_shape = shape_list(x)
vocab_size = x_shape[(- 1)]
flat_x = tf.reshape(x, [list_product(x_shape[:(- 1)]), vocab_size])
flat_indices = tf.reshape(indices, [list_product(x_shape[:(- 1)])])
idx = tf.stack([tf.range(tf.to_int64(shape_list(flat_indices)[0])), tf.to_int64(flat_indices)], axis=1)
flat_x_idx = tf.gather_nd(flat_x, idx)
x_idx = tf.reshape(flat_x_idx, x_shape[:(- 1)])
return x_idx
|
Use indices to index into the last axis of x.
This can be useful for recovering the actual probabilities of a sample from a
probability distribution.
Args:
x: Tensor, n-d.
indices: Tensor, (n-1)-d, where the dimension sizes match the first (n-1)
dimensions of x. The values of indices will be used to index into the last
axis of x.
Returns:
Tensor, (n-1)-d.
|
codesearchnet
|
def derive_field_name(self, field_name):
cls = type(self)
return cls(
self[0],
self[1],
self[2],
field_name,
self[4],
self[5]
)
|
Derives a new event from this one setting the ``field_name`` attribute.
Args:
field_name (Union[amazon.ion.symbols.SymbolToken, unicode]): The field name to set.
Returns:
IonEvent: The newly generated event.
|
juraj-google-style
|
def call(self, input_ids: TFModelInputType=None, attention_mask: tf.Tensor | None=None, decoder_input_ids: tf.Tensor | None=None, decoder_attention_mask: tf.Tensor | None=None, decoder_position_ids: tf.Tensor | None=None, head_mask: tf.Tensor | None=None, decoder_head_mask: tf.Tensor | None=None, cross_attn_head_mask: tf.Tensor | None=None, encoder_outputs: Optional[TFBaseModelOutput]=None, past_key_values: Optional[Tuple[Tuple[tf.Tensor]]]=None, inputs_embeds: tf.Tensor | None=None, decoder_inputs_embeds: tf.Tensor | None=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, labels: tf.Tensor | None=None, training: Optional[bool]=False) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]:
if labels is not None:
labels = tf.where(labels == self.config.pad_token_id, tf.cast(tf.fill(shape_list(labels), -100), labels.dtype), labels)
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(labels, self.config.pad_token_id)
outputs = self.model(input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training)
lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True)
lm_logits = self.bias_layer(lm_logits)
masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits)
if not return_dict:
output = (lm_logits,) + outputs[1:]
return (masked_lm_loss,) + output if masked_lm_loss is not None else output
return TFSeq2SeqLMOutput(loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions)
|
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
|
github-repos
|
def validate_gcs_path(path, require_object):
bucket, key = datalab.storage._bucket.parse_name(path)
if bucket is None:
raise Exception('Invalid GCS path "%s"' % path)
if require_object and key is None:
raise Exception('It appears the GCS path "%s" is a bucket path but not an object path' % path)
|
Check whether a given path is a valid GCS path.
Args:
path: the config to check.
require_object: if True, the path has to be an object path but not bucket path.
Raises:
Exception if the path is invalid
|
juraj-google-style
|
def ensure_app_config_dir(appname, *args):
from ubelt import util_path
dpath = get_app_config_dir(appname, *args)
util_path.ensuredir(dpath)
return dpath
|
Calls `get_app_config_dir` but ensures the directory exists.
Args:
appname (str): the name of the application
*args: any other subdirectories may be specified
SeeAlso:
get_app_config_dir
Example:
>>> import ubelt as ub
>>> dpath = ub.ensure_app_config_dir('ubelt')
>>> assert exists(dpath)
|
juraj-google-style
|
def read_graph_from_string(txt):
if (not txt.startswith('{')):
return read_dot(txt)
def conv(value):
if isinstance(value, basestring):
return (('"' + value) + '"')
else:
return value
doc = literal_eval(txt)
g = digraph()
for (attrs, values) in doc.get('nodes', []):
attrs = [(k, conv(v)) for (k, v) in attrs]
for value in values:
if isinstance(value, basestring):
node_name = value
attrs_ = attrs
else:
(node_name, label) = value
attrs_ = (attrs + [('label', conv(label))])
g.add_node(node_name, attrs=attrs_)
for (attrs, values) in doc.get('edges', []):
attrs_ = [(k, conv(v)) for (k, v) in attrs]
for value in values:
if (len(value) == 3):
edge = value[:2]
label = value[(- 1)]
else:
edge = value
label = ''
g.add_edge(edge, label=label, attrs=attrs_)
return g
|
Read a graph from a string, either in dot format, or our own
compressed format.
Returns:
`pygraph.digraph`: Graph object.
|
codesearchnet
|
def to_json_file(self, json_file_path: Union[str, os.PathLike]):
with open(json_file_path, 'w', encoding='utf-8') as writer:
writer.write(self.to_json_string())
|
Save this instance to a JSON file.
Args:
json_file_path (`str` or `os.PathLike`):
Path to the JSON file in which this processor instance's parameters will be saved.
|
github-repos
|
def run(cls, **kwargs):
err_pointer, tmp_pointer, new_bytes = 0, 0, 0
print_logs_live = kwargs.pop("print_logs_live", None)
cmd = cls.create(**kwargs)
sighandler = SignalHandler()
while not Command.is_done(cmd.status):
if sighandler.received_term_signal:
logging.warning("Received signal {}. Canceling Qubole Command ID: {}".format(sighandler.last_signal, cmd.id))
cls.cancel(cmd)
exit()
time.sleep(Qubole.poll_interval)
cmd = cls.find(cmd.id)
if print_logs_live is True:
log, err_length, tmp_length = cmd.get_log_partial(err_pointer, tmp_pointer)
if err_length != "0":
err_pointer += int(err_length)
new_bytes = int(err_length) + int(tmp_length) - tmp_pointer
tmp_pointer = int(tmp_length)
else:
tmp_pointer += int(tmp_length)
new_bytes = int(tmp_length)
if len(log) > 0 and new_bytes > 0:
print(log[-new_bytes:], file=sys.stderr)
return cmd
|
Create a command object by issuing a POST request to the /command endpoint
Waits until the command is complete. Repeatedly polls to check status
Args:
`**kwargs`: keyword arguments specific to command type
Returns:
Command object
|
juraj-google-style
|
def get_all_if_deleted(self):
with self._lock:
results = {}
for (add, fut) in self._state.items():
if self._contains_and_deleted(add):
results[add] = fut.result()
return results
|
Return all the addresses deleted in the context.
Useful in the squash method.
Returns:
(dict of str to bytes): The addresses and bytes that have
been deleted in the context.
|
codesearchnet
|
def normalize(self, inplace=False):
if inplace:
nrm = self.norm()
self.data /= nrm
return None
nrm = self.norm()
data_copy = np.array(self.data, copy=True)
data_copy /= nrm
return Quaternion(data_copy)
|
Normalizes a Quaternion to unit length
so that it represents a valid rotation.
Args:
inplace (bool): Do an inplace normalization.
Returns:
Quaternion: Normalized quaternion.
|
codesearchnet
|
def get_contacts(self):
for (jid, item) in self.roster.items.items():
try:
self._contacts[jid.bare()].update(item.export_as_json())
except KeyError:
self._contacts[jid.bare()] = item.export_as_json()
return self._contacts
|
Returns list of contacts
Returns:
dict: the roster of contacts
|
codesearchnet
|
def absl_to_standard(level):
if (not isinstance(level, int)):
raise TypeError('Expect an int level, found {}'.format(type(level)))
if (level < ABSL_FATAL):
level = ABSL_FATAL
if (level <= ABSL_DEBUG):
return ABSL_TO_STANDARD[level]
return ((STANDARD_DEBUG - level) + 1)
|
Converts an integer level from the absl value to the standard value.
Args:
level: int, an absl.logging level.
Raises:
TypeError: Raised when level is not an integer.
Returns:
The corresponding integer level for use in standard logging.
|
codesearchnet
|
def create_asset_delivery_policy(access_token, ams_account, key_delivery_url):
path = '/AssetDeliveryPolicies'
endpoint = ''.join([ams_rest_endpoint, path])
body = (('{ \t\t"Name":"AssetDeliveryPolicy", \t\t"AssetDeliveryProtocol":"4", \t\t"AssetDeliveryPolicyType":"3", \t\t"AssetDeliveryConfiguration":"[{ \t\t\t\\"Key\\":\\"2\\", \t\t\t\\"Value\\":\\"' + key_delivery_url) + '\\"}]" \t}')
return do_ams_post(endpoint, path, body, access_token)
|
Create Media Service Asset Delivery Policy.
Args:
access_token (str): A valid Azure authentication token.
ams_account (str): Media Service Account.
Returns:
HTTP response. JSON body.
|
codesearchnet
|
def authenticate(json_path=None):
msg = 'budou.authentication() is deprecated. Please use budou.get_parser() to obtain a parser instead.'
warnings.warn(msg, DeprecationWarning)
parser = get_parser('nlapi', credentials_path=json_path)
return parser
|
Gets a Natural Language API parser by authenticating the API.
**This method is deprecated.** Please use :obj:`budou.get_parser` to obtain a
parser instead.
Args:
json_path (:obj:`str`, optional): The file path to the service account's
credentials.
Returns:
Parser. (:obj:`budou.parser.NLAPIParser`)
|
codesearchnet
|
def get_compiler_ir(self, device_name, platform_name, function_name, flat_args, captured_inputs, stage='hlo'):
return pywrap_tfe.TF_GetCompilerIr(self._context_handle, function_name, stage, device_name, flat_args, captured_inputs, platform_name)
|
Get the compiler IR bytes.
Args:
device_name: The name of the device with the form as
"/job:localhost/replica:0/task:0/device:CPU:0", "/device:TPU:0" etc.
When this is used, actual device is needed for getting the compiler IR.
platform_name: The name of the platform, e.g. "TPU". When this is used,
first we find a device whose name contains the platform, if it is found
we get the compiler IR by device. Otherwise the compiler IR is obtained
as if using that device. The former logic of falling back to device is
necessary, as there are cases of TF variables that need to access
devices, but the upper layer may generally choose platform for getting
compiler IR in a device-agnostic way.
function_name: The name of the function to get the compiler IR.
flat_args: The flat argument inputs.
captured_inputs: The inputs that are captured.
stage: The exported stage for the given function.
Returns:
The compiler IR bytes.
|
github-repos
|
def copy_scoped_meta_graph(from_scope, to_scope, from_graph=None, to_graph=None):
from_graph = from_graph or ops.get_default_graph()
to_graph = to_graph or ops.get_default_graph()
if from_graph == to_graph and from_scope == to_scope:
raise ValueError(f"'from_scope' and 'to_scope' need to be different when performing copy in the same graph. Received: 'from_graph': {from_graph}, 'to_graph': {to_graph}, 'from_scope': {from_scope}, 'to_scope': {to_scope}.")
orig_meta_graph, var_list = export_scoped_meta_graph(export_scope=from_scope, graph=from_graph)
var_list = import_scoped_meta_graph(orig_meta_graph, graph=to_graph, import_scope=to_scope)
return var_list
|
Copies a sub-meta_graph from one scope to another.
Args:
from_scope: `String` name scope containing the subgraph to be copied.
to_scope: `String` name scope under which the copied subgraph will reside.
from_graph: Optional `Graph` from which to copy the subgraph. If `None`, the
default graph is use.
to_graph: Optional `Graph` to which to copy the subgraph. If `None`, the
default graph is used.
Returns:
A dictionary of `Variables` that has been copied into `to_scope`.
Raises:
ValueError: If `from_scope` and `to_scope` are the same while
`from_graph` and `to_graph` are also the same.
|
github-repos
|
def df(self):
import pandas as pd
return pd.concat([w.df(uwi=True) for w in self])
|
Makes a pandas DataFrame containing Curve data for all the wells
in the Project. The DataFrame has a dual index of well UWI and
curve Depths. Requires `pandas`.
Args:
No arguments.
Returns:
`pandas.DataFrame`.
|
juraj-google-style
|
def eval_algorithm(curr, prev):
if curr['close'] > prev['close']:
v = curr['volume']
elif curr['close'] < prev['close']:
v = curr['volume'] * -1
else:
v = 0
return prev['obv'] + v
|
Evaluates OBV
Args:
curr: Dict of current volume and close
prev: Dict of previous OBV and close
Returns:
Float of OBV
|
juraj-google-style
|
def create(self, name, nopassword=None, secret=None, encryption=None):
if (secret is not None):
return self.create_with_secret(name, secret, encryption)
elif (nopassword is True):
return self.create_with_nopassword(name)
else:
raise TypeError('either "nopassword" or "secret" must be specified to create a user')
|
Creates a new user on the local system.
Creating users requires either a secret (password) or the nopassword
keyword to be specified.
Args:
name (str): The name of the user to craete
nopassword (bool): Configures the user to be able to authenticate
without a password challenage
secret (str): The secret (password) to assign to this user
encryption (str): Specifies how the secret is encoded. Valid
values are "cleartext", "md5", "sha512". The default is
"cleartext"
Returns:
True if the operation was successful otherwise False
Raises:
TypeError: if the required arguments are not satisfied
|
codesearchnet
|
def parse_mapping(mapping_file: Optional[str]) -> configparser.ConfigParser:
LOGGER.debug('Parsing mapping file. Command line: %s', mapping_file)
def parse(mapping_file):
config = configparser.ConfigParser()
config.read_file(mapping_file)
return config
if (mapping_file is not None):
LOGGER.debug('Parsing command line mapping file')
return parse(mapping_file)
xdg_config_dir = xdg.BaseDirectory.load_first_config('pass-git-helper')
if (xdg_config_dir is None):
raise RuntimeError('No mapping configured so far at any XDG config location. Please create {config_file}'.format(config_file=DEFAULT_CONFIG_FILE))
mapping_file = os.path.join(xdg_config_dir, CONFIG_FILE_NAME)
LOGGER.debug('Parsing mapping file %s', mapping_file)
with open(mapping_file, 'r') as file_handle:
return parse(file_handle)
|
Parse the file containing the mappings from hosts to pass entries.
Args:
mapping_file:
Name of the file to parse. If ``None``, the default file from the
XDG location is used.
|
codesearchnet
|
def identity(n, dtype=None):
return backend.numpy.identity(n, dtype=dtype)
|
Return the identity tensor.
The identity tensor is a square tensor with ones on the main diagonal and
zeros elsewhere.
Args:
n: Number of rows (and columns) in the `n x n` output tensor.
dtype: Data type of the output tensor.
Returns:
The identity tensor.
|
github-repos
|
def get(self, file_path, ref, **kwargs):
file_path = file_path.replace('/', '%2F')
return GetMixin.get(self, file_path, ref=ref, **kwargs)
|
Retrieve a single file.
Args:
file_path (str): Path of the file to retrieve
ref (str): Name of the branch, tag or commit
**kwargs: Extra options to send to the server (e.g. sudo)
Raises:
GitlabAuthenticationError: If authentication is not correct
GitlabGetError: If the file could not be retrieved
Returns:
object: The generated RESTObject
|
juraj-google-style
|
def _copy_hdxobjects(self, hdxobjects, hdxobjectclass, attribute_to_copy=None):
newhdxobjects = list()
for hdxobject in hdxobjects:
newhdxobjectdata = copy.deepcopy(hdxobject.data)
newhdxobject = hdxobjectclass(newhdxobjectdata, configuration=self.configuration)
if attribute_to_copy:
value = getattr(hdxobject, attribute_to_copy)
setattr(newhdxobject, attribute_to_copy, value)
newhdxobjects.append(newhdxobject)
return newhdxobjects
|
Helper function to make a deep copy of a supplied list of HDX objects
Args:
hdxobjects (List[T <= HDXObject]): list of HDX objects to copy
hdxobjectclass (type): Type of the HDX Objects to be copied
attribute_to_copy (Optional[str]): An attribute to copy over from the HDX object. Defaults to None.
Returns:
List[T <= HDXObject]: Deep copy of list of HDX objects
|
juraj-google-style
|
def _get_ami_dict(json_url):
LOG.info("Getting AMI from %s", json_url)
response = requests.get(json_url)
assert response.ok, "Error getting ami info from {}".format(json_url)
ami_dict = response.json()
LOG.debug('AMI json contents: %s', ami_dict)
return ami_dict
|
Get ami from a web url.
Args:
region (str): AWS Region to find AMI ID.
Returns:
dict: Contents in dictionary format.
|
juraj-google-style
|
def __init__(self, maxsize=0):
self._maxsize = maxsize
self._queue = collections.deque()
self._closed = False
self._mutex = threading.Lock()
self._not_empty = threading.Condition(self._mutex)
self._not_full = threading.Condition(self._mutex)
|
Create a queue object with a given maximum size.
Args:
maxsize: int size of queue. If <= 0, the queue size is infinite.
|
github-repos
|
def _future_command_unlocked(self, cmd):
future = self._loop.create_future()
asyncio_loop = self._loop.get_loop()
def _done_callback(result):
retval = result['return_value']
if not result['result']:
future.set_exception(HardwareError("Error executing synchronous command",
command=cmd, return_value=retval))
else:
future.set_result(retval)
callback = functools.partial(asyncio_loop.call_soon_threadsafe, _done_callback)
self._commands.put((cmd, callback, True, None))
return future
|
Run command as a coroutine and return a future.
Args:
loop (BackgroundEventLoop): The loop that we should attach
the future too.
cmd (list): The command and arguments that we wish to call.
Returns:
asyncio.Future: An awaitable future with the result of the operation.
|
juraj-google-style
|
def _get_tables(self, base_dir):
table_dict = {}
for table in self.metadata['tables']:
if table['use']:
relative_path = os.path.join(base_dir, self.metadata['path'], table['path'])
data_table = pd.read_csv(relative_path)
pii_fields = self._get_pii_fields(table)
data_table = self._anonymize_table(data_table, pii_fields)
table_dict[table['name']] = (data_table, table)
return table_dict
|
Load the contents of meta_file and the corresponding data.
If fields containing Personally Identifiable Information are detected in the metadata
they are anonymized before asign them into `table_dict`.
Args:
base_dir(str): Root folder of the dataset files.
Returns:
dict: Mapping str -> tuple(pandas.DataFrame, dict)
|
codesearchnet
|
def initialize_environments(self, batch_size=1):
assert batch_size >= 1
self._batch_size = batch_size
self._envs = [gym.make(self.base_env_name) for _ in range(batch_size)]
if self._env_wrapper_fn is not None:
self._envs = list(map(self._env_wrapper_fn, self._envs))
if self._observation_space:
assert str(self._observation_space) == str(
self._envs[0].observation_space)
else:
self._observation_space = self._envs[0].observation_space
if self._action_space:
assert str(self._action_space) == str(self._envs[0].action_space)
else:
self._action_space = self._envs[0].action_space
self._verify_same_spaces()
if self.reward_range is None:
self._reward_range = self._envs[0].reward_range
self._trajectories = trajectory.BatchTrajectory(batch_size=batch_size)
|
Initializes the environments and trajectories.
Subclasses can override this if they don't want a default implementation
which initializes `batch_size` environments, but must take care to
initialize self._trajectories (this is checked in __init__ anyways).
Args:
batch_size: (int) Number of `self.base_env_name` envs to initialize.
|
juraj-google-style
|
def files_comments_add(self, *, comment: str, file: str, **kwargs) -> SlackResponse:
kwargs.update({"comment": comment, "file": file})
return self.api_call("files.comments.add", json=kwargs)
|
Add a comment to an existing file.
Args:
comment (str): The body of the comment.
e.g. 'Everyone should take a moment to read this file.'
file (str): The file id. e.g. 'F1234467890'
|
juraj-google-style
|
def rjust_text(text, width=80, indent=0, subsequent=None):
text = re.sub(r"\s+", " ", text).strip()
if subsequent is None:
subsequent = indent
wrapper = TextWrapper(
width=width,
break_long_words=False,
replace_whitespace=True,
initial_indent=" " * (indent + subsequent),
subsequent_indent=" " * subsequent,
)
return wrapper.fill(text)[subsequent:]
|
Wrap text and adjust it to right border.
Same as L{wrap_text} with the difference that the text is aligned against
the right text border.
Args:
text (str): Text to wrap and align.
width (int): Maximum number of characters per line.
indent (int): Indentation of the first line.
subsequent (int or None): Indentation of all other lines, if it is
``None``, then the indentation will be same as for the first line.
|
juraj-google-style
|
def _CheckWindowsRegistryKeyPath(self, filename, artifact_definition, key_path):
result = True
key_path_segments = key_path.lower().split('\\')
if (key_path_segments[0] == '%%current_control_set%%'):
result = False
logging.warning('Artifact definition: {0:s} in file: {1:s} contains Windows Registry key path that starts with %%CURRENT_CONTROL_SET%%. Replace %%CURRENT_CONTROL_SET%% with HKEY_LOCAL_MACHINE\\System\\CurrentControlSet'.format(artifact_definition.name, filename))
for (segment_index, key_path_segment) in enumerate(key_path_segments):
if (key_path_segment.startswith('%%') and key_path_segment.endswith('%%')):
if ((segment_index == 1) and (key_path_segment == '%%users.sid%%') and (key_path_segments[0] == 'hkey_users')):
continue
if key_path_segment.startswith('%%environ_'):
result = False
logging.warning('Artifact definition: {0:s} in file: {1:s} contains Windows Registry key path that contains an environment variable: "{2:s}". Usage of environment variables in key paths is not encouraged at this time.'.format(artifact_definition.name, filename, key_path_segment))
elif key_path_segment.startswith('%%users.'):
result = False
logging.warning('Artifact definition: {0:s} in file: {1:s} contains Windows Registry key path that contains a users variable: "{2:s}". Usage of users variables in key paths, except for "HKEY_USERS\\%%users.sid%%", is not encouraged at this time.'.format(artifact_definition.name, filename, key_path_segment))
return result
|
Checks if a path is a valid Windows Registry key path.
Args:
filename (str): name of the artifacts definition file.
artifact_definition (ArtifactDefinition): artifact definition.
key_path (str): Windows Registry key path to validate.
Returns:
bool: True if the Windows Registry key path is valid.
|
codesearchnet
|
def parse_uri(self, uri=None):
if (not uri):
return rdflib.term.URIRef(self.root)
elif (type(uri) == str):
if ((type(uri) == str) and (not uri.startswith('http'))):
return rdflib.term.URIRef(('%s%s' % (self.root, uri)))
else:
return rdflib.term.URIRef(uri)
elif (type(uri) == rdflib.term.URIRef):
return uri
else:
raise TypeError('invalid URI input')
|
parses and cleans up possible uri inputs, return instance of rdflib.term.URIRef
Args:
uri (rdflib.term.URIRef,str): input URI
Returns:
rdflib.term.URIRef
|
codesearchnet
|
def deep_update(original, new_dict, new_keys_allowed, whitelist):
for (k, value) in new_dict.items():
if (k not in original):
if (not new_keys_allowed):
raise Exception('Unknown config parameter `{}` '.format(k))
if isinstance(original.get(k), dict):
if (k in whitelist):
deep_update(original[k], value, True, [])
else:
deep_update(original[k], value, new_keys_allowed, [])
else:
original[k] = value
return original
|
Updates original dict with values from new_dict recursively.
If new key is introduced in new_dict, then if new_keys_allowed is not
True, an error will be thrown. Further, for sub-dicts, if the key is
in the whitelist, then new subkeys can be introduced.
Args:
original (dict): Dictionary with default values.
new_dict (dict): Dictionary with values to be updated
new_keys_allowed (bool): Whether new keys are allowed.
whitelist (list): List of keys that correspond to dict values
where new subkeys can be introduced. This is only at
the top level.
|
codesearchnet
|
def List(self, request, global_params=None):
config = self.GetMethodConfig('List')
return self._RunMethod(config, request, global_params=global_params)
|
Lists all projects to which you have been granted any project role.
Args:
request: (BigqueryProjectsListRequest) input message
global_params: (StandardQueryParameters, default: None) global arguments
Returns:
(ProjectList) The response message.
|
github-repos
|
def tf_step(self, time, variables, **kwargs):
fn_loss = kwargs['fn_loss']
if (variables is None):
variables = tf.trainable_variables
return tf.gradients(fn_loss, variables)
|
Creates the TensorFlow operations for performing an optimization step on the given variables, including
actually changing the values of the variables.
Args:
time: Time tensor. Not used for this optimizer.
variables: List of variables to optimize.
**kwargs:
fn_loss : loss function tensor to differentiate.
Returns:
List of delta tensors corresponding to the updates for each optimized variable.
|
codesearchnet
|
def compute_average_oxidation_state(site):
try:
avg_oxi = sum([sp.oxi_state * occu
for sp, occu in site.species.items()
if sp is not None])
return avg_oxi
except AttributeError:
pass
try:
return site.charge
except AttributeError:
raise ValueError("Ewald summation can only be performed on structures "
"that are either oxidation state decorated or have "
"site charges.")
|
Calculates the average oxidation state of a site
Args:
site: Site to compute average oxidation state
Returns:
Average oxidation state of site.
|
juraj-google-style
|
def max_zoom(self):
zoom_levels = [map_layer.max_zoom for map_layer in self.layers]
return max(zoom_levels)
|
Get the maximal zoom level of all layers.
Returns:
int: the maximum of all zoom levels of all layers
Raises:
ValueError: if no layers exist
|
codesearchnet
|
def get(self, name):
name = str(name)
if (name not in self._properties):
raise ArgumentError('Unknown property in DeviceModel', name=name)
return self._properties[name]
|
Get a device model property.
Args:
name (str): The name of the property to get
|
codesearchnet
|
def __init__(self, key, committed, attempted):
self.key = key
self.committed = committed
self.attempted = attempted
|
Initializes ``MetricResult``.
Args:
key: A ``MetricKey`` object.
committed: Metric data that has been committed (e.g. logical updates)
attempted: Metric data that has been attempted (e.g. physical updates)
|
github-repos
|
def extract_certs(certs_txt: str) -> List[crypto.X509]:
pattern = r'-----BEGIN CERTIFICATE-----.+?-----END CERTIFICATE-----'
certs_txt = re.findall(pattern, certs_txt, flags=re.DOTALL)
certs = [crypto.load_certificate(crypto.FILETYPE_PEM, cert_txt) for cert_txt in certs_txt]
return certs
|
Extracts pycrypto X509 objects from SSL certificates chain string.
Args:
certs_txt: SSL certificates chain string.
Returns:
result: List of pycrypto X509 objects.
|
juraj-google-style
|
def _pad_batch(self, images: list['torch.Tensor'], return_tensors: Optional[Union[str, TensorType]]) -> tuple:
max_size = get_max_height_width(images)
grouped_images, grouped_images_index = group_images_by_shape(images)
processed_images = {}
processed_masks = {}
for shape, stacked_images in grouped_images.items():
if return_tensors == 'pt' and len(stacked_images) > 0:
device = stacked_images.device
mask_template = torch.zeros(max_size, dtype=torch.int64, device=device)
original_size = stacked_images.shape[-2:]
needs_padding = original_size[0] != max_size[0] or original_size[1] != max_size[1]
if needs_padding:
padding_bottom = max_size[0] - original_size[0]
padding_right = max_size[1] - original_size[1]
padding = [0, 0, padding_right, padding_bottom]
padded_images = F.pad(stacked_images, padding, fill=0)
pixel_mask = mask_template.clone()
pixel_mask[:original_size[0], :original_size[1]].fill_(1)
pixel_masks = pixel_mask.unsqueeze(0).repeat(stacked_images.shape[0], 1, 1)
else:
padded_images = stacked_images
pixel_masks = torch.ones((stacked_images.shape[0], max_size[0], max_size[1]), dtype=torch.int64, device=stacked_images.device)
processed_images[shape] = padded_images
processed_masks[shape] = pixel_masks
padded_images = reorder_images(processed_images, grouped_images_index)
pixel_masks = reorder_images(processed_masks, grouped_images_index)
if return_tensors == 'pt' and padded_images:
padded_images = torch.stack(padded_images)
pixel_masks = torch.stack(pixel_masks)
return (padded_images, pixel_masks)
|
Pad a batch of images to the same size based on the maximum dimensions.
Args:
images (`list[torch.Tensor]`): List of images to pad.
return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return.
Returns:
`tuple`: Tuple containing padded images and pixel masks.
|
github-repos
|
def geotiff(self, **kwargs):
if ('proj' not in kwargs):
kwargs['proj'] = self.proj
return to_geotiff(self, **kwargs)
|
Creates a geotiff on the filesystem
Args:
path (str): optional, path to write the geotiff file to, default is ./output.tif
proj (str): optional, EPSG string of projection to reproject to
spec (str): optional, if set to 'rgb', write out color-balanced 8-bit RGB tif
bands (list): optional, list of bands to export. If spec='rgb' will default to RGB bands,
otherwise will export all bands
Returns:
str: path the geotiff was written to
|
codesearchnet
|
def _GetUsernameFromProfilePath(self, path):
while path and path[-1] == '\\':
path = path[:-1]
if path:
_, _, path = path.rpartition('\\')
return path
|
Retrieves the username from a Windows profile path.
Trailing path path segment are ignored.
Args:
path (str): a Windows path with '\\' as path segment separator.
Returns:
str: basename which is the last path segment.
|
juraj-google-style
|
def on_value_event(self, event):
raise NotImplementedError('on_value_event() is not implemented in the base servicer class')
|
Callback for Event proto received through the gRPC stream.
This Event proto carries a Tensor in its summary.value[0] field.
Args:
event: The Event proto from the stream to be processed.
|
github-repos
|
def multi_rouge_n(sequences, scores_ids, n=2):
ngrams = [_get_word_ngrams(n, sequence) for sequence in sequences]
counts = [len(ngram) for ngram in ngrams]
scores = []
for (hyp_id, ref_id) in scores_ids:
evaluated_ngrams = ngrams[hyp_id]
evaluated_count = counts[hyp_id]
reference_ngrams = ngrams[ref_id]
reference_count = counts[ref_id]
overlapping_ngrams = evaluated_ngrams.intersection(reference_ngrams)
overlapping_count = len(overlapping_ngrams)
scores += [f_r_p_rouge_n(evaluated_count, reference_count, overlapping_count)]
return scores
|
Efficient way to compute highly repetitive scoring
i.e. sequences are involved multiple time
Args:
sequences(list[str]): list of sequences (either hyp or ref)
scores_ids(list[tuple(int)]): list of pairs (hyp_id, ref_id)
ie. scores[i] = rouge_n(scores_ids[i][0],
scores_ids[i][1])
Returns:
scores: list of length `len(scores_ids)` containing rouge `n`
scores as a dict with 'f', 'r', 'p'
Raises:
KeyError: if there's a value of i in scores_ids that is not in
[0, len(sequences)[
|
codesearchnet
|
def decode(self, encoded):
encoded = super().decode(encoded)
return self.tokenizer.decode([self.itos[index] for index in encoded])
|
Decodes a tensor into a sequence.
Args:
encoded (torch.Tensor): Encoded sequence.
Returns:
str: Sequence decoded from ``encoded``.
|
juraj-google-style
|
def phase_uniquizer(all_phases):
measurement_name_maker = UniqueNameMaker(
itertools.chain.from_iterable(
phase.measurements.keys() for phase in all_phases
if phase.measurements))
attachment_names = list(itertools.chain.from_iterable(
phase.attachments.keys() for phase in all_phases))
attachment_names.extend(itertools.chain.from_iterable([
'multidim_' + name for name, meas in phase.measurements.items()
if meas.dimensions is not None
] for phase in all_phases if phase.measurements))
attachment_name_maker = UniqueNameMaker(attachment_names)
for phase in all_phases:
for name, _ in sorted(phase.measurements.items()):
old_name = name
name = measurement_name_maker.make_unique(name)
phase.measurements[old_name].name = name
phase.measurements[name] = phase.measurements.pop(old_name)
for name, _ in sorted(phase.attachments.items()):
old_name = name
name = attachment_name_maker.make_unique(name)
phase.attachments[old_name].name = name
phase.attachments[name] = phase.attachments.pop(old_name)
return all_phases
|
Makes the names of phase measurement and attachments unique.
This function will make the names of measurements and attachments unique.
It modifies the input all_phases.
Args:
all_phases: the phases to make unique
Returns:
the phases now modified.
|
juraj-google-style
|
def _shape_invariant_to_type_spec(self, shape):
raise NotImplementedError(f'{type(self).__name__}._shape_invariant_to_type_spec')
|
Returns a TypeSpec given a shape invariant (used by `tf.while_loop`).
Args:
shape: A `tf.TensorShape` object. The shape invariant for this
`CompositeTensor`, or `None` if a default shape invariant should be used
(based on the value of this `CompositeTensor`).
Returns:
A nested structure whose values are `tf.TensorShape` objects, specifying
the shape invariants for the tensors that comprise this `CompositeTensor`.
|
github-repos
|
def determine_action(self, issue):
resource_type = self.resource_types[issue.resource.resource_type_id]
issue_alert_schedule = self.alert_schedule[resource_type] if \
resource_type in self.alert_schedule \
else self.alert_schedule['*']
action_item = {
'action': None,
'action_description': None,
'last_alert': issue.last_alert,
'issue': issue,
'resource': self.resource_classes[self.resource_types[issue.resource.resource_type_id]](issue.resource),
'owners': [],
'stop_after': issue_alert_schedule['stop'],
'remove_after': issue_alert_schedule['remove'],
'notes': issue.notes,
'missing_tags': issue.missing_tags
}
time_elapsed = time.time() - issue.created
stop_schedule = pytimeparse.parse(issue_alert_schedule['stop'])
remove_schedule = pytimeparse.parse(issue_alert_schedule['remove'])
if self.collect_only:
action_item['action'] = AuditActions.IGNORE
elif remove_schedule and time_elapsed >= remove_schedule:
action_item['action'] = AuditActions.REMOVE
action_item['action_description'] = 'Resource removed'
action_item['last_alert'] = remove_schedule
if issue.update({'last_alert': remove_schedule}):
db.session.add(issue.issue)
elif stop_schedule and time_elapsed >= stop_schedule:
action_item['action'] = AuditActions.STOP
action_item['action_description'] = 'Resource stopped'
action_item['last_alert'] = stop_schedule
if issue.update({'last_alert': stop_schedule}):
db.session.add(issue.issue)
else:
alert_selection = self.determine_alert(
issue_alert_schedule['alert'],
issue.get_property('created').value,
issue.get_property('last_alert').value
)
if alert_selection:
action_item['action'] = AuditActions.ALERT
action_item['action_description'] = '{} alert'.format(alert_selection)
action_item['last_alert'] = alert_selection
if issue.update({'last_alert': alert_selection}):
db.session.add(issue.issue)
else:
action_item['action'] = AuditActions.IGNORE
db.session.commit()
return action_item
|
Determine the action we should take for the issue
Args:
issue: Issue to determine action for
Returns:
`dict`
|
juraj-google-style
|
def navbar(self):
window = BaseWindow(self.selenium, self.selenium.current_window_handle)
with self.selenium.context(self.selenium.CONTEXT_CHROME):
el = self.selenium.find_element(*self._nav_bar_locator)
return NavBar(window, el)
|
Provide access to the Navigation Bar.
Returns:
:py:class:`NavBar`: FoxPuppet NavBar object.
|
codesearchnet
|
def save_image(tensor, filename, nrow=8, padding=2, pad_value=0):
from PIL import Image
grid = make_grid(tensor, nrow=nrow, padding=padding, pad_value=pad_value)
im = Image.fromarray(pre_pillow_float_img_process(grid))
im.save(filename)
|
Save a given Tensor into an image file.
Args:
tensor (Tensor or list): Image to be saved. If given a mini-batch tensor,
saves the tensor as a grid of images by calling ``make_grid``.
**kwargs: Other arguments are documented in ``make_grid``.
|
codesearchnet
|
def from_stat_file(cls, statfile, timestep=1, is_leap_year=False):
stat = STAT(statfile)
def check_missing(opt_data, data_name):
if (opt_data == []):
raise ValueError('Stat file contains no optical data.')
for (i, x) in enumerate(opt_data):
if (x is None):
raise ValueError('Missing optical depth data for {} at month {}'.format(data_name, i))
check_missing(stat.monthly_tau_beam, 'monthly_tau_beam')
check_missing(stat.monthly_tau_diffuse, 'monthly_tau_diffuse')
return cls.from_ashrae_revised_clear_sky(stat.location, stat.monthly_tau_beam, stat.monthly_tau_diffuse, timestep, is_leap_year)
|
Create an ASHRAE Revised Clear Sky wea object from the monthly sky
optical depths in a .stat file.
Args:
statfile: Full path to the .stat file.
timestep: An optional integer to set the number of time steps per
hour. Default is 1 for one value per hour.
is_leap_year: A boolean to indicate if values are representing a leap year.
Default is False.
|
codesearchnet
|
def params(self):
payload = self.payload
d = {}
for (i, p) in enumerate(payload['currentConfiguration']):
type_name = p['typeName']
cp = payload['configurationParameters'][i]['message']
name = cp['parameterName']
if (type_name == 'BTMParameterQuantity'):
try:
v = q(p['message']['expression'])
except:
v = q(p['message']['value'], p['message']['units'])
elif (type_name == 'BTMParameterBoolean'):
v = p['message']['value']
elif (type_name == 'BTMParameterEnum'):
enum = p['message']['value']
enum_map = {d['message']['option']: i for (i, d) in enumerate(cp['options'])}
v = cp['options'][enum_map[enum]]['message']['optionName']
d[name] = v
return d
|
Get the params of response data from the API.
Returns:
- d (dict): Dictionary mapping of all configuration values
|
codesearchnet
|
def conv_json(self, uri_format='sparql_uri', add_ids=False):
def convert_item(ivalue):
' converts an idividual value to a json value\n\n Args:\n ivalue: value of the item to convert\n\n Returns:\n JSON serializable value\n '
nvalue = ivalue
if isinstance(ivalue, BaseRdfDataType):
if (ivalue.type == 'uri'):
if (ivalue.startswith('pyuri') and (uri_format == 'pyuri')):
nvalue = getattr(ivalue, 'sparql')
else:
nvalue = getattr(ivalue, uri_format)
else:
nvalue = ivalue.to_json
elif isinstance(ivalue, RdfClassBase):
if (ivalue.subject.type == 'uri'):
nvalue = ivalue.conv_json(uri_format, add_ids)
elif (ivalue.subject.type == 'bnode'):
nvalue = ivalue.conv_json(uri_format, add_ids)
elif isinstance(ivalue, list):
nvalue = []
for item in ivalue:
temp = convert_item(item)
nvalue.append(temp)
return nvalue
rtn_val = {key: convert_item(value) for (key, value) in self.items()}
if add_ids:
if (self.subject.type == 'uri'):
rtn_val['uri'] = self.subject.sparql_uri
rtn_val['id'] = sha1(rtn_val['uri'].encode()).hexdigest()
return rtn_val
|
converts the class to a json compatable python dictionary
Args:
uri_format('sparql_uri','pyuri'): The format that uri values will
be returned
Returns:
dict: a json compatabile python dictionary
|
codesearchnet
|
def declare(self, name, description=None, **kwargs):
if (not self._is_valid_key(name)):
raise self.InvalidKeyError('Invalid key name, must begin with a lowercase letter', name)
if (name in self._declarations):
raise self.KeyAlreadyDeclaredError('Configuration key already declared', name)
self._declarations[name] = self.Declaration(name, description=description, **kwargs)
|
Declare a configuration key with the given name.
Args:
name: Configuration key to declare, must not have been already declared.
description: If provided, use this as the description for this key.
**kwargs: Other kwargs to pass to the Declaration, only default_value
is currently supported.
|
codesearchnet
|
def __contains__(self, k):
chain = ChainMap(self.scopes, self.globals)
return chain.__contains__(k)
|
Check whether a variable has been assigned to.
This is **not** the same kind of element-of as described in the
class documentation.
Args:
k (str): The name of the variable to check.
Returns:
bool: Whether or not the variable has been assigned to.
|
juraj-google-style
|
def put(value):
worker = global_worker
worker.check_connected()
with profiling.profile("ray.put"):
if worker.mode == LOCAL_MODE:
return value
object_id = ray._raylet.compute_put_id(
worker.current_task_id,
worker.task_context.put_index,
)
worker.put_object(object_id, value)
worker.task_context.put_index += 1
return object_id
|
Store an object in the object store.
Args:
value: The Python object to be stored.
Returns:
The object ID assigned to this value.
|
juraj-google-style
|
def convert_one(self, op: ops.Operation) -> ops.OP_TREE:
if not isinstance(op, ops.GateOperation):
raise TypeError("{!r} is not a gate operation.".format(op))
if is_native_ion_gate(op.gate):
return [op]
if isinstance(op.gate, ops.HPowGate) and op.gate.exponent == 1:
return [ops.Rx(np.pi).on(op.qubits[0]),
ops.Ry(-1 * np.pi/2).on(op.qubits[0])]
if isinstance(op.gate, ops.CNotPowGate) and op.gate.exponent == 1:
return [ops.Ry(np.pi/2).on(op.qubits[0]),
MS(np.pi/4).on(op.qubits[0], op.qubits[1]),
ops.Rx(-1*np.pi/2).on(op.qubits[0]),
ops.Rx(-1*np.pi/2).on(op.qubits[1]),
ops.Ry(-1*np.pi/2).on(op.qubits[0])]
mat = protocols.unitary(op, None) if len(
op.qubits) <= 2 else None
if mat is not None and len(op.qubits) == 1:
gates = optimizers.single_qubit_matrix_to_phased_x_z(mat)
return [g.on(op.qubits[0]) for g in gates]
elif mat is not None and len(op.qubits) == 2:
return two_qubit_matrix_to_ion_operations(
op.qubits[0], op.qubits[1], mat)
else:
if self.ignore_failures:
return [op]
else:
raise TypeError(
"Don't know how to work with {!r}. "
"It isn't a native Ion Trap operation, "
"a 1 or 2 qubit gate with a known unitary, "
"or composite.".format(op.gate))
|
Convert a single (one- or two-qubit) operation
into ion trap native gates
Args:
op: gate operation to be converted
Returns:
the desired operation implemented with ion trap gates
|
juraj-google-style
|
def get_project_id():
if (os.name == 'nt'):
command = _CLOUD_SDK_WINDOWS_COMMAND
else:
command = _CLOUD_SDK_POSIX_COMMAND
try:
output = subprocess.check_output(((command,) + _CLOUD_SDK_CONFIG_COMMAND), stderr=subprocess.STDOUT)
except (subprocess.CalledProcessError, OSError, IOError):
return None
try:
configuration = json.loads(output.decode('utf-8'))
except ValueError:
return None
try:
return configuration['configuration']['properties']['core']['project']
except KeyError:
return None
|
Gets the project ID from the Cloud SDK.
Returns:
Optional[str]: The project ID.
|
codesearchnet
|
def get_metadata_attribute(self, metaname):
metadata_value = self.metadata.get(metaname, None)
if metadata_value is None:
raise NoMetadataException(
"No metadata attribute named %s" % metaname)
if not isinstance(metadata_value, list):
raise TypeError("Metadata is not a list and it should be.")
if len(metadata_value) > 1:
return metadata_value
else:
return metadata_value[0]
|
Get the metadata attribute by the name.
Args:
metaname (:obj:`str`): Name of the attribute
Returns:
:obj:`list` or :obj:`str`: Value(s) of the requested metadata
attribute
Raises:
NoMetadataException: Attribute error
TypeError: Metadata should be a list
|
juraj-google-style
|
def has_basal_dendrite(neuron, min_number=1, treefun=_read_neurite_type):
types = [treefun(n) for n in neuron.neurites]
return CheckResult((types.count(NeuriteType.basal_dendrite) >= min_number))
|
Check if a neuron has basal dendrites
Arguments:
neuron(Neuron): The neuron object to test
min_number: minimum number of basal dendrites required
treefun: Optional function to calculate the tree type of neuron's
neurites
Returns:
CheckResult with result
|
codesearchnet
|
def get_all_profiles(store='local'):
return {'Domain Profile': get_all_settings(profile='domain', store=store), 'Private Profile': get_all_settings(profile='private', store=store), 'Public Profile': get_all_settings(profile='public', store=store)}
|
Gets all properties for all profiles in the specified store
Args:
store (str):
The store to use. This is either the local firewall policy or the
policy defined by local group policy. Valid options are:
- lgpo
- local
Default is ``local``
Returns:
dict: A dictionary containing the specified settings for each profile
|
codesearchnet
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.