code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def __init__(self, issues = None): self._issues = [] self._config = {} self._project = None self.issues = issues
Class constructor. Args: issues (list): List of `Issue` instances
juraj-google-style
def compute_delta(deps: List[str], imports: List[str], rule_dir: str, source_to_rules: SourceToRule, rule_name: str) -> Optional[DepsDelta]: issues = [] adds = set() subs = set() expanded_deps = set([expand_dep(dep, rule_dir) for dep in deps]) used_deps = set() for imp in imports: imp_items = tuple(imp.split('.')) if imp_items[0] in BUILT_IN_MODULES or imp in BUILT_IN_MODULES: continue possible_srcs = list_possible_source_of_import(imp_items) matching_possible_src = None for possible_src in possible_srcs: if possible_src in source_to_rules: matching_possible_src = possible_src break if matching_possible_src is None: issues.append(f'Cannot infer dependency for "{imp}". Possible source files: {possible_srcs}.') continue possible_deps = source_to_rules[matching_possible_src] if len(possible_deps) > 1: issues.append(f'Multiple possible rules for "{imp}"') if possible_deps[0] == expand_dep(':' + rule_name, rule_dir): continue if possible_deps[0] not in expanded_deps: adds.add(possible_deps[0]) else: used_deps.add(possible_deps[0]) for dep in expanded_deps: if dep in used_deps: continue subs.add(dep) if adds or subs or issues: return DepsDelta(adds=list(adds), subs=list(subs), issues=issues) else: return None
Computes the operation on the deps to support all the imports. Args: deps: Dependencies of the rule. imports: Imports of the rule. rule_dir: Path of the rule relative to the repo root. source_to_rules: Mapping from all available source files to rules.
github-repos
def add(name, **kwargs): if not info(name): comp_obj = _get_computer_object() try: new_group = comp_obj.Create('group', name) new_group.SetInfo() log.info('Successfully created group %s', name) except pywintypes.com_error as exc: msg = 'Failed to create group {0}. {1}'.format( name, win32api.FormatMessage(exc.excepinfo[5])) log.error(msg) return False else: log.warning('The group %s already exists.', name) return False return True
Add the specified group Args: name (str): The name of the group to add Returns: bool: ``True`` if successful, otherwise ``False`` CLI Example: .. code-block:: bash salt '*' group.add foo
juraj-google-style
def get_class_attributes(cls): for (name, value) in cls.__dict__.items(): if GenericStruct._is_pyof_attribute(value): (yield (name, value))
Return a generator for class attributes' names and value. This method strict relies on the PEP 520 (Preserving Class Attribute Definition Order), implemented on Python 3.6. So, if this behaviour changes this whole lib can loose its functionality (since the attributes order are a strong requirement.) For the same reason, this lib will not work on python versions earlier than 3.6. .. code-block:: python3 for name, value in self.get_class_attributes(): print("attribute name: {}".format(name)) print("attribute type: {}".format(value)) Returns: generator: tuples with attribute name and value.
codesearchnet
def inference(self, observed_arr): if observed_arr.ndim < 4: observed_arr = np.expand_dims(observed_arr, axis=1) self.__add_channel_flag = True else: self.__add_channel_flag = False return super().inference(observed_arr)
Draws samples from the `true` distribution. Args: observed_arr: `np.ndarray` of observed data points. Returns: `np.ndarray` of inferenced.
juraj-google-style
def stop_dag(self, name=None): return self._client.send(Request(action='stop_dag', payload={'name': (name if (name is not None) else self._dag_name)})).success
Send a stop signal to the specified dag or the dag that hosts this task. Args: name str: The name of the dag that should be stopped. If no name is given the dag that hosts this task is stopped. Upon receiving the stop signal, the dag will not queue any new tasks and wait for running tasks to terminate. Returns: bool: True if the signal was sent successfully.
codesearchnet
def PrintResponse(batch_job_helper, response_xml): response = batch_job_helper.ParseResponse(response_xml) if 'rval' in response['mutateResponse']: for data in response['mutateResponse']['rval']: if 'errorList' in data: print 'Operation %s - FAILURE:' % data['index'] print '\terrorType=%s' % data['errorList']['errors']['ApiError.Type'] print '\ttrigger=%s' % data['errorList']['errors']['trigger'] print '\terrorString=%s' % data['errorList']['errors']['errorString'] print '\tfieldPath=%s' % data['errorList']['errors']['fieldPath'] print '\treason=%s' % data['errorList']['errors']['reason'] if 'result' in data: print 'Operation %s - SUCCESS.' % data['index']
Prints the BatchJobService response. Args: batch_job_helper: a BatchJobHelper instance. response_xml: a string containing a response from the BatchJobService.
juraj-google-style
def compute_match(mapping, weight_dict): if veryVerbose: print("Computing match for mapping", file=DEBUG_LOG) print(mapping, file=DEBUG_LOG) if tuple(mapping) in match_triple_dict: if veryVerbose: print("saved value", match_triple_dict[tuple(mapping)], file=DEBUG_LOG) return match_triple_dict[tuple(mapping)] match_num = 0 for i, m in enumerate(mapping): if m == -1: continue current_node_pair = (i, m) if current_node_pair not in weight_dict: continue if veryVerbose: print("node_pair", current_node_pair, file=DEBUG_LOG) for key in weight_dict[current_node_pair]: if key == -1: match_num += weight_dict[current_node_pair][key] if veryVerbose: print("instance/attribute match", weight_dict[current_node_pair][key], file=DEBUG_LOG) elif key[0] < i: continue elif mapping[key[0]] == key[1]: match_num += weight_dict[current_node_pair][key] if veryVerbose: print("relation match with", key, weight_dict[current_node_pair][key], file=DEBUG_LOG) if veryVerbose: print("match computing complete, result:", match_num, file=DEBUG_LOG) match_triple_dict[tuple(mapping)] = match_num return match_num
Given a node mapping, compute match number based on weight_dict. Args: mappings: a list of node index in AMR 2. The ith element (value j) means node i in AMR 1 maps to node j in AMR 2. Returns: matching triple number Complexity: O(m*n) , m is the node number of AMR 1, n is the node number of AMR 2
juraj-google-style
def get_attributes(self, uid=None, attribute_names=None): if (uid is not None): if (not isinstance(uid, six.string_types)): raise TypeError('uid must be a string') if (attribute_names is not None): if (not isinstance(attribute_names, list)): raise TypeError('attribute_names must be a list of strings') else: for attribute_name in attribute_names: if (not isinstance(attribute_name, six.string_types)): raise TypeError('attribute_names must be a list of strings') result = self.proxy.get_attributes(uid, attribute_names) status = result.result_status.value if (status == enums.ResultStatus.SUCCESS): return (result.uuid, result.attributes) else: reason = result.result_reason.value message = result.result_message.value raise exceptions.KmipOperationFailure(status, reason, message)
Get the attributes associated with a managed object. If the uid is not specified, the appliance will use the ID placeholder by default. If the attribute_names list is not specified, the appliance will return all viable attributes for the managed object. Args: uid (string): The unique ID of the managed object with which the retrieved attributes should be associated. Optional, defaults to None. attribute_names (list): A list of string attribute names indicating which attributes should be retrieved. Optional, defaults to None.
codesearchnet
def _truncate(self, processed_features: Union[dict[str, np.ndarray], BatchFeature], max_length: Optional[int]=None, pad_to_multiple_of: Optional[int]=None, truncation: Optional[bool]=None): if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.') required_input = processed_features[self.model_input_names[0]] if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = (max_length needs_to_be_truncated = len(required_input) > max_length if needs_to_be_truncated: processed_features[self.model_input_names[0]] = processed_features[self.model_input_names[0]][:max_length] if 'attention_mask' in processed_features: processed_features['attention_mask'] = processed_features['attention_mask'][:max_length] return processed_features
Truncate inputs to predefined length or max length in the batch Args: processed_features(`Union[Dict[str, np.ndarray], BatchFeature]`): Dictionary of input values (`np.ndarray[float]`) / input vectors (`List[np.ndarray[float]]`) or batch of inputs values (`List[np.ndarray[int]]`) / input vectors (`List[np.ndarray[int]]`) max_length (`int`, *optional*): maximum length of the returned list and optionally padding length (see below) pad_to_multiple_of (`int`, *optional*) : Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. truncation (`bool`, *optional*): Activates truncation to cut input sequences longer than `max_length` to `max_length`.
github-repos
def decode_base64(data): data = bytes(data, encoding="ascii") missing_padding = len(data) % 4 if missing_padding != 0: data += b'=' * (4 - missing_padding) return base64.b64decode(data)
Decodes a base64 string, with padding being optional Args: data: A base64 encoded string Returns: bytes: The decoded bytes
juraj-google-style
def formatted(self, func): other = EscapedString.__new__(EscapedString) other.strings = [] for is_literal, value in self.strings: if not is_literal: value = func(value) other.strings.append((is_literal, value)) return other
Return the string with non-literal parts formatted. Args: func (callable): Callable that translates a string into a formatted string. Returns: `EscapedString` object.
juraj-google-style
def get_idx_types(rng_def, ranges): idx_types = rng_def.get('kds_esIndexType', []).copy() if not idx_types: nested = False for rng in ranges: if range_is_obj(rng, __MODULE__.rdfclass): nested = True if nested: idx_types.append('es_Nested') return idx_types
Returns the elasticsearch index types for the obj args: rng_def: the range defintion dictionay ranges: rdfproperty ranges
juraj-google-style
def __generate_reference__(self, triple_map, **kwargs): raw_value = self.source.get(str(triple_map.reference)) if raw_value is None or len(raw_value) < 1: return if hasattr(triple_map, "datatype"): if triple_map.datatype == NS_MGR.xsd.anyURI.rdflib: output = rdflib.URIRef(raw_value) else: output = rdflib.Literal( raw_value, datatype=triple_map.datatype) else: output = rdflib.Literal(raw_value) return output
Generates a RDF entity based on triple map Args: triple_map(SimpleNamespace): Triple Map
juraj-google-style
def check_tx(self, raw_transaction): self.abort_if_abci_chain_is_not_synced() logger.debug('check_tx: %s', raw_transaction) transaction = decode_transaction(raw_transaction) if self.bigchaindb.is_valid_transaction(transaction): logger.debug('check_tx: VALID') return ResponseCheckTx(code=CodeTypeOk) else: logger.debug('check_tx: INVALID') return ResponseCheckTx(code=CodeTypeError)
Validate the transaction before entry into the mempool. Args: raw_tx: a raw string (in bytes) transaction.
codesearchnet
def spliceext(filepath, s): root, ext = os.path.splitext(safepath(filepath)) return root + s + ext
Add s into filepath before the extension Args: filepath (str, path): file path s (str): string to splice Returns: str
juraj-google-style
def create_unit(self, name, unit): self._single_request('Units.Set', unitName=name, body={'desiredState': unit.desiredState, 'options': unit.options}) return self.get_unit(name)
Create a new Unit in the cluster Create and modify Unit entities to communicate to fleet the desired state of the cluster. This simply declares what should be happening; the backend system still has to react to the changes in this desired state. The actual state of the system is communicated with UnitState entities. Args: name (str): The name of the unit to create unit (Unit): The unit to submit to fleet Returns: Unit: The unit that was created Raises: fleet.v1.errors.APIError: Fleet returned a response code >= 400
codesearchnet
def remove(self, future): if self._loop.get_debug(): logger.debug('Removing %s from the linked list.', future) if (future.prev is None): assert (future is self.head) self.head = future.next if (self.head is None): self.tail = None if (not self.cancelled()): self.set_result(None) else: self.head.prev = None elif (future.next is None): assert (future is self.tail) self.tail = future.prev if (self.tail is None): self.head = None if (not self.cancelled()): self.set_result(None) else: self.tail.prev = None
Remove an object from the linked list. Args: future (PlasmaObjectFuture): A PlasmaObjectFuture instance.
codesearchnet
def UnlockScanNode(self, path_spec): if (not self.HasScanNode(path_spec)): raise KeyError('Scan node does not exist.') if (path_spec not in self._locked_scan_nodes): raise KeyError('Scan node is not locked.') del self._locked_scan_nodes[path_spec] self._scan_nodes[path_spec].scanned = False
Marks a scan node as unlocked. Args: path_spec (PathSpec): path specification. Raises: KeyError: if the scan node does not exists or is not locked.
codesearchnet
def user_avatar_url(username, size=64, default="retro"): openid = "http: return libravatar_url(openid=openid, size=size, default=default)
Get the avatar URL of the provided Fedora username. The URL is returned from the Libravatar service. Args: username (str): The username to get the avatar of. size (int): Size of the avatar in pixels (it's a square). default (str): Default avatar to return if not found. Returns: str: The URL to the avatar image.
juraj-google-style
def __lt__(self, other): other = as_dimension(other) if self._value is None or other.value is None: return None else: return self._value < other.value
Returns True if `self` is known to be less than `other`. Dimensions are compared as follows: ```python (tf.compat.v1.Dimension(m) < tf.compat.v1.Dimension(n)) == (m < n) (tf.compat.v1.Dimension(m) < tf.compat.v1.Dimension(None)) == None (tf.compat.v1.Dimension(None) < tf.compat.v1.Dimension(n)) == None (tf.compat.v1.Dimension(None) < tf.compat.v1.Dimension(None)) == None ``` Args: other: Another Dimension. Returns: The value of `self.value < other.value` if both are known, otherwise None.
github-repos
class LabelSmoother: epsilon: float = 0.1 ignore_index: int = -100 def __call__(self, model_output, labels, shift_labels=False): logits = model_output['logits'] if isinstance(model_output, dict) else model_output[0] if shift_labels: logits = logits[..., :-1, :].contiguous() labels = labels[..., 1:].contiguous() log_probs = -nn.functional.log_softmax(logits, dim=-1) if labels.dim() == log_probs.dim() - 1: labels = labels.unsqueeze(-1) padding_mask = labels.eq(self.ignore_index) labels = torch.clamp(labels, min=0) nll_loss = log_probs.gather(dim=-1, index=labels) smoothed_loss = log_probs.sum(dim=-1, keepdim=True, dtype=torch.float32) nll_loss.masked_fill_(padding_mask, 0.0) smoothed_loss.masked_fill_(padding_mask, 0.0) num_active_elements = padding_mask.numel() - padding_mask.long().sum() nll_loss = nll_loss.sum() / num_active_elements smoothed_loss = smoothed_loss.sum() / (num_active_elements * log_probs.shape[-1]) return (1 - self.epsilon) * nll_loss + self.epsilon * smoothed_loss
Adds label-smoothing on a pre-computed output from a Transformers model. Args: epsilon (`float`, *optional*, defaults to 0.1): The label smoothing factor. ignore_index (`int`, *optional*, defaults to -100): The index in the labels to ignore when computing the loss.
github-repos
def url(self, suffix=""): return super(neuroRemote, self).url('{}/'.format(self._ext) + suffix)
Return a constructed URL, appending an optional suffix (uri path). Arguments: suffix (str : ""): The suffix to append to the end of the URL Returns: str: The complete URL
juraj-google-style
def shape(self): return self._shape
The statically known shape of the RaggedTensor. Examples: >>> rt = tf.ragged.constant([[0], [1, 2]]) >>> tf.type_spec_from_value(rt).shape TensorShape([2, None]) >>> rt = tf.ragged.constant([[[0, 1]], [[1, 2], [3, 4]]], ragged_rank=1) >>> tf.type_spec_from_value(rt).shape TensorShape([2, None, 2]) Returns: A `tf.TensorShape` containing the statically known shape of the RaggedTensor. Ragged dimensions have a size of `None`.
github-repos
def disconnect_container_from_network(self, container, net_id, force=False): data = {"Container": container} if force: if version_lt(self._version, '1.22'): raise InvalidVersion( 'Forced disconnect was introduced in API 1.22' ) data['Force'] = force url = self._url("/networks/{0}/disconnect", net_id) res = self._post_json(url, data=data) self._raise_for_status(res)
Disconnect a container from a network. Args: container (str): container ID or name to be disconnected from the network net_id (str): network ID force (bool): Force the container to disconnect from a network. Default: ``False``
juraj-google-style
def py_hash(key, num_buckets): b, j = -1, 0 if num_buckets < 1: raise ValueError('num_buckets must be a positive number') while j < num_buckets: b = int(j) key = ((key * long(2862933555777941757)) + 1) & 0xffffffffffffffff j = float(b + 1) * (float(1 << 31) / float((key >> 33) + 1)) return int(b)
Generate a number in the range [0, num_buckets). Args: key (int): The key to hash. num_buckets (int): Number of buckets to use. Returns: The bucket number `key` computes to. Raises: ValueError: If `num_buckets` is not a positive number.
juraj-google-style
def ParseLeakFilesTable( self, parser_mediator, database=None, table=None, **unused_kwargs): if database is None: raise ValueError('Missing database value.') if table is None: raise ValueError('Missing table value.') for esedb_record in table.records: if parser_mediator.abort: break record_values = self._GetRecordValues( parser_mediator, table.name, esedb_record) event_data = MsieWebCacheLeakFilesEventData() event_data.cached_filename = record_values.get('Filename', None) event_data.leak_identifier = record_values.get('LeakId', None) timestamp = record_values.get('CreationTime', None) if timestamp: date_time = dfdatetime_filetime.Filetime(timestamp=timestamp) event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_CREATION) parser_mediator.ProduceEventWithEventData(event, event_data)
Parses the LeakFiles table. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. database (Optional[pyesedb.file]): ESE database. table (Optional[pyesedb.table]): table. Raises: ValueError: if the database or table value is missing.
juraj-google-style
def print_headers(head, outfile=None, silent=False): for header_line in head.print_header(): if outfile: outfile.write(header_line+'\n') else: if not silent: print(header_line) return
Print the vcf headers. If a result file is provided headers will be printed here, otherwise they are printed to stdout. Args: head (HeaderParser): A vcf header object outfile (FileHandle): A file handle silent (Bool): If nothing should be printed.
juraj-google-style
def entityLabel(rdfGraph, anEntity, language=DEFAULT_LANGUAGE, getall=True): if getall: temp = [] for o in rdfGraph.objects(anEntity, RDFS.label): temp += [o] return temp else: for o in rdfGraph.objects(anEntity, RDFS.label): if getattr(o, 'language') and getattr(o, 'language') == language: return o return ""
Returns the rdfs.label value of an entity (class or property), if existing. Defaults to DEFAULT_LANGUAGE. Returns the RDF.Literal resource Args: language: 'en', 'it' etc.. getall: returns a list of all labels rather than a string
juraj-google-style
def update(self, node_spec): return self.client.api.update_node(self.id, self.version, node_spec)
Update the node's configuration. Args: node_spec (dict): Configuration settings to update. Any values not provided will be removed. Default: ``None`` Returns: `True` if the request went through. Raises: :py:class:`docker.errors.APIError` If the server returns an error. Example: >>> node_spec = {'Availability': 'active', 'Name': 'node-name', 'Role': 'manager', 'Labels': {'foo': 'bar'} } >>> node.update(node_spec)
codesearchnet
def get_tz(tz) -> str: from xbbg.const import exch_info if tz is None: return DEFAULT_TZ to_tz = tz if isinstance(tz, str): if hasattr(TimeZone, tz): to_tz = getattr(TimeZone, tz) else: exch = exch_info(ticker=tz) if 'tz' in exch.index: to_tz = exch.tz return to_tz
Convert tz from ticker / shorthands to timezone Args: tz: ticker or timezone shorthands Returns: str: Python timzone Examples: >>> get_tz('NY') 'America/New_York' >>> get_tz(TimeZone.NY) 'America/New_York' >>> get_tz('BHP AU Equity') 'Australia/Sydney'
juraj-google-style
def normalize_list_like_lines(generation): lines = generation.split('\n') output_lines = [] for line_no, line in enumerate(lines): match = re.search('. ([-*]) ', line) if not match or line[0] not in ('-', '*'): output_lines.append(line) continue delim = match.group(1) + ' ' splits = line.split(delim)[1:] replacement = '' delim1 = line[0] + ' ' for i, item in enumerate(splits): level = 0 potential_numeral, _, rest = item.strip().partition(' ') if not rest: continue if re.match('^[\\dixv]+((?:\\.[\\dixv])?)+$', potential_numeral, flags=re.I | re.M): level = potential_numeral.count('.') replacement += ('\n' if i > 0 else '') + '\t' * level + (delim if i > 0 or line_no == 0 else delim1) + item.strip() if line_no == len(lines) - 1: replacement += '\n' output_lines.append(replacement) return '\n'.join(output_lines)
Normalize lines in the given text that resemble list items. The function looks for lines that start optionally with '-' or '*', possibly followed by Roman numerals or digits indicating nesting levels. The function reformats such lines to make them more structured. Args: generation (str): The input text containing lines that need to be normalized. Returns: str: The input text with the list-like lines normalized. Note: The function uses regular expressions to identify and reformat the list-like lines. The patterns capture optional bullet points, nesting levels indicated by numerals, and the actual list item content. The normalization adjusts the bullet point style and nesting levels based on the captured patterns.
github-repos
def find_bind_module(name, verbose=False): bindnames = get_bind_modules(verbose=verbose) bindfile = bindnames.get(name) if bindfile: return bindfile if not verbose: return None fuzzy_matches = get_close_pkgs(name, bindnames.keys()) if fuzzy_matches: rows = [(x[0], bindnames[x[0]]) for x in fuzzy_matches] print "'%s' not found. Close matches:" % name print '\n'.join(columnise(rows)) else: print "No matches." return None
Find the bind module matching the given name. Args: name (str): Name of package to find bind module for. verbose (bool): If True, print extra output. Returns: str: Filepath to bind module .py file, or None if not found.
juraj-google-style
def forward(self, hidden: torch.Tensor): if self.mode == 'mix_channel': hidden = self.channel_feature_mixer(hidden) hidden = self.patch_mixer(hidden) hidden = self.feature_mixer(hidden) return hidden
Args: hidden (`torch.Tensor` of shape `(batch_size, num_patches, d_model)`): Input tensor to the layer. Returns: `torch.Tensor`: Transformed tensor.
github-repos
def connected_emulators(self, host=enums.JLinkHost.USB): res = self._dll.JLINKARM_EMU_GetList(host, 0, 0) if (res < 0): raise errors.JLinkException(res) num_devices = res info = (structs.JLinkConnectInfo * num_devices)() num_found = self._dll.JLINKARM_EMU_GetList(host, info, num_devices) if (num_found < 0): raise errors.JLinkException(num_found) return list(info)[:num_found]
Returns a list of all the connected emulators. Args: self (JLink): the ``JLink`` instance host (int): host type to search (default: ``JLinkHost.USB``) Returns: List of ``JLinkConnectInfo`` specifying the connected emulators. Raises: JLinkException: if fails to enumerate devices.
codesearchnet
def get_config_parameter_boolean(config: ConfigParser, section: str, param: str, default: bool) -> bool: try: value = config.getboolean(section, param) except (TypeError, ValueError, NoOptionError): log.warning('Configuration variable {} not found or improper in section [{}]; using default of {!r}', param, section, default) value = default return value
Get Boolean parameter from ``configparser`` ``.INI`` file. Args: config: :class:`ConfigParser` object section: section name within config file param: name of parameter within section default: default value Returns: parameter value, or default
codesearchnet
def create_transformation(self, rotation=None, translation=None): mat = None if (rotation is not None): mat = Matrix44.from_eulers(Vector3(rotation)) if (translation is not None): trans = matrix44.create_from_translation(Vector3(translation)) if (mat is None): mat = trans else: mat = matrix44.multiply(mat, trans) return mat
Creates a transformation matrix woth rotations and translation. Args: rotation: 3 component vector as a list, tuple, or :py:class:`pyrr.Vector3` translation: 3 component vector as a list, tuple, or :py:class:`pyrr.Vector3` Returns: A 4x4 matrix as a :py:class:`numpy.array`
codesearchnet
def get_name(cls): global _registry_loaded if (not _registry_loaded): load_message_classes() try: return _class_to_schema_name[cls] except KeyError: raise TypeError('The class {} is not in the message registry, which indicates it is not in the current list of entry points for "fedora_messaging". Please check that the class has been added to your package\'s entry points.'.format(repr(cls)))
Retrieve the schema name associated with a message class. Returns: str: The schema name. Raises: TypeError: If the message class isn't registered. Check your entry point for correctness.
codesearchnet
def GetNotificationsForAllShards(self, queue): notifications_by_session_id = {} for queue_shard in self.GetAllNotificationShards(queue): self._GetUnsortedNotifications( queue_shard, notifications_by_session_id=notifications_by_session_id) return notifications_by_session_id.values()
Returns notifications for all shards of a queue at once. Used by worker_test_lib.MockWorker to cover all shards with a single worker. Args: queue: usually rdfvalue.RDFURN("aff4:/W") Returns: List of rdf_flows.GrrNotification objects
juraj-google-style
def get_image_features(self, pixel_values: torch.FloatTensor, vision_feature_layers: Optional[Union[int, List[int]]]=None): vision_feature_layers = vision_feature_layers if vision_feature_layers is not None else self.config.vision_feature_layers image_outputs = self.vision_tower(pixel_values, output_hidden_states=True) if isinstance(vision_feature_layers, int): image_features = image_outputs.hidden_states[vision_feature_layers][:, 1:] else: image_features = [image_outputs.hidden_states[index][:, 1:] for index in vision_feature_layers] image_features = torch.cat(image_features, dim=-1) image_features = self.multi_modal_projector(image_features) return image_features
Obtains image last hidden states from the vision tower and apply multimodal projection. Args: pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`) The tensors corresponding to the input images. vision_feature_layers (`Union[int, List[int]]`): The vision feature layer, or the list of indexes of the layers to select the vision feature. Returns: image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
github-repos
def get_reverse_dns(ip_address, cache=None, nameservers=None, timeout=2.0): hostname = None try: address = dns.reversename.from_address(ip_address) hostname = query_dns(address, 'PTR', cache=cache, nameservers=nameservers, timeout=timeout)[0] except dns.exception.DNSException: pass return hostname
Resolves an IP address to a hostname using a reverse DNS query Args: ip_address (str): The IP address to resolve cache (ExpiringDict): Cache storage nameservers (list): A list of one or more nameservers to use (Cloudflare's public DNS resolvers by default) timeout (float): Sets the DNS query timeout in seconds Returns: str: The reverse DNS hostname (if any)
codesearchnet
def _aggregation_op(cls, op: Callable[([tf.Tensor, Optional[Sequence[int]]], tf.Tensor)], x: 'TensorFluent', vars_list: List[str]) -> 'TensorFluent': axis = cls._varslist2axis(x, vars_list) t = op(x.tensor, axis) scope = [] for var in x.scope.as_list(): if (var not in vars_list): scope.append(var) batch = x.batch return TensorFluent(t, scope, batch=batch)
Returns a TensorFluent for the aggregation `op` applied to fluent `x`. Args: op: The aggregation operation. x: The input fluent. vars_list: The list of variables to be aggregated over. Returns: A TensorFluent wrapping the aggregation operator's output.
codesearchnet
def longest_existing_path(_path): existing_path = _path while True: _path_new = os.path.dirname(existing_path) if exists(_path_new): existing_path = _path_new break if (_path_new == existing_path): print('!!! [utool] This is a very illformated path indeed.') existing_path = '' break existing_path = _path_new return existing_path
r""" Returns the longest root of _path that exists Args: _path (str): path string Returns: str: _path - path string CommandLine: python -m utool.util_path --exec-longest_existing_path Example: >>> # ENABLE_DOCTEST >>> from utool.util_path import * # NOQA >>> import utool as ut >>> target = dirname(ut.__file__) >>> _path = join(target, 'nonexist/foobar') >>> existing_path = longest_existing_path(_path) >>> result = ('existing_path = %s' % (str(existing_path),)) >>> print(result) >>> assert existing_path == target
codesearchnet
def from_bulk_and_miller(cls, structure, miller_index, min_slab_size=8.0, min_vacuum_size=10.0, max_normal_search=None, center_slab=True, selective_dynamics=False, undercoord_threshold=0.09): vnn_bulk = VoronoiNN(tol=0.05) bulk_coords = [len(vnn_bulk.get_nn(structure, n)) for n in range(len(structure))] struct = structure.copy(site_properties={'bulk_coordinations': bulk_coords}) slabs = generate_all_slabs(struct, max_index=max(miller_index), min_slab_size=min_slab_size, min_vacuum_size=min_vacuum_size, max_normal_search=max_normal_search, center_slab=center_slab) slab_dict = {slab.miller_index: slab for slab in slabs} if (miller_index not in slab_dict): raise ValueError('Miller index not in slab dict') this_slab = slab_dict[miller_index] vnn_surface = VoronoiNN(tol=0.05, allow_pathological=True) (surf_props, undercoords) = ([], []) this_mi_vec = get_mi_vec(this_slab) mi_mags = [np.dot(this_mi_vec, site.coords) for site in this_slab] average_mi_mag = np.average(mi_mags) for (n, site) in enumerate(this_slab): bulk_coord = this_slab.site_properties['bulk_coordinations'][n] slab_coord = len(vnn_surface.get_nn(this_slab, n)) mi_mag = np.dot(this_mi_vec, site.coords) undercoord = ((bulk_coord - slab_coord) / bulk_coord) undercoords += [undercoord] if ((undercoord > undercoord_threshold) and (mi_mag > average_mi_mag)): surf_props += ['surface'] else: surf_props += ['subsurface'] new_site_properties = {'surface_properties': surf_props, 'undercoords': undercoords} new_slab = this_slab.copy(site_properties=new_site_properties) return cls(new_slab, selective_dynamics)
This method constructs the adsorbate site finder from a bulk structure and a miller index, which allows the surface sites to be determined from the difference in bulk and slab coordination, as opposed to the height threshold. Args: structure (Structure): structure from which slab input to the ASF is constructed miller_index (3-tuple or list): miller index to be used min_slab_size (float): min slab size for slab generation min_vacuum_size (float): min vacuum size for slab generation max_normal_search (int): max normal search for slab generation center_slab (bool): whether to center slab in slab generation selective dynamics (bool): whether to assign surface sites to selective dynamics undercoord_threshold (float): threshold of "undercoordation" to use for the assignment of surface sites. Default is 0.1, for which surface sites will be designated if they are 10% less coordinated than their bulk counterpart
codesearchnet
def byte_swap_tensor_content(tensor, from_endiness, to_endiness): if tensor.dtype in byte_swappable: tshape = tensor.tensor_shape.dim tensor_bytes = tensor.tensor_content if tensor_bytes: tensor_size = 1 for sz in tshape: if sz.size != 0: tensor_size *= sz.size chunksize = len(tensor_bytes) to_swap = [tensor_bytes[i:i + chunksize] for i in range(0, len(tensor_bytes), chunksize)] tensor.tensor_content = b''.join([int.from_bytes(byteswap, from_endiness).to_bytes(chunksize, to_endiness) for byteswap in to_swap])
Byte swaps. Args: tensor: Target tensor to change endiness. from_endiness: The original endianness format. "big" or "little" to_endiness: The target endianness format. "big" or "little"
github-repos
def slice(filename, number_tiles=None, col=None, row=None, save=True): im = Image.open(filename) im_w, im_h = im.size columns = 0 rows = 0 if not number_tiles is None: validate_image(im, number_tiles) columns, rows = calc_columns_rows(number_tiles) extras = (columns * rows) - number_tiles else: validate_image_col_row(im, col, row) columns = col rows = row extras = (columns * rows) - number_tiles tile_w, tile_h = int(floor(im_w / columns)), int(floor(im_h / rows)) tiles = [] number = 1 for pos_y in range(0, im_h - rows, tile_h): for pos_x in range(0, im_w - columns, tile_w): area = (pos_x, pos_y, pos_x + tile_w, pos_y + tile_h) image = im.crop(area) position = (int(floor(pos_x / tile_w)) + 1, int(floor(pos_y / tile_h)) + 1) coords = (pos_x, pos_y) tile = Tile(image, number, position, coords) tiles.append(tile) number += 1 if save: save_tiles(tiles, prefix=get_basename(filename), directory=os.path.dirname(filename)) return tuple(tiles)
Split an image into a specified number of tiles. Args: filename (str): The filename of the image to split. number_tiles (int): The number of tiles required. Kwargs: save (bool): Whether or not to save tiles to disk. Returns: Tuple of :class:`Tile` instances.
juraj-google-style
def inflate_plugins(self, plugins_definition, inflate_method): if isinstance(plugins_definition, list): return self.inflate_plugin_list(plugins_definition, inflate_method) elif isinstance(plugins_definition, dict): return self.inflate_plugin_dict(plugins_definition, inflate_method) else: raise ValueError('%s type is not supported for a plugin list, ' 'use list or dict' % type(plugins_definition))
Inflate multiple plugins based on a list/dict definition. Args: plugins_definition (list/dict): the plugins definitions. inflate_method (method): the method to indlate each plugin. Returns: list: a list of plugin instances. Raises: ValueError: when the definition type is not list or dict.
juraj-google-style
def read(cls, data): if isinstance(data, pd.DataFrame): output = OrderedDict({}) output['version'] = '2.0' output['class'] = 'dimension' [label] = [x for x in list(data.columns.values) if x not in ['id', 'index']] output['label'] = label output['category'] = OrderedDict({}) output['category']['index'] = data.id.tolist() output['category']['label'] = OrderedDict( zip(data.id.values, data[label].values)) return cls(output) elif isinstance(data, OrderedDict): return cls(data) elif isinstance(data, basestring) and data.startswith(("http: "https: "ftp: "ftps: return cls(request(data)) elif isinstance(data,basestring): try: json_dict = json.loads(data, object_pairs_hook=OrderedDict) return cls(json_dict) except ValueError: raise else: try: json_dict = json.load(data, object_pairs_hook=OrderedDict) return cls(json_dict) except ValueError: raise
Reads data from URL, Dataframe, JSON string, JSON file or OrderedDict. Args: data: can be a Pandas Dataframe, a JSON string, a JSON file, an OrderedDict or a URL pointing to a JSONstat file. Returns: An object of class Dimension populated with data.
juraj-google-style
def _get_new_finished_state(self, state, new_seq, new_log_probs): i = state[_StateKeys.CUR_INDEX] finished_seq = state[_StateKeys.FINISHED_SEQ] finished_scores = state[_StateKeys.FINISHED_SCORES] finished_flags = state[_StateKeys.FINISHED_FLAGS] finished_seq = tf.concat([finished_seq, tf.zeros([self.batch_size, self.beam_size, 1], tf.int32)], axis=2) length_norm = _length_normalization(self.alpha, (i + 1)) new_scores = (new_log_probs / length_norm) new_finished_flags = tf.equal(new_seq[(:, :, (- 1))], self.eos_id) new_scores += ((1.0 - tf.to_float(new_finished_flags)) * (- INF)) finished_seq = tf.concat([finished_seq, new_seq], axis=1) finished_scores = tf.concat([finished_scores, new_scores], axis=1) finished_flags = tf.concat([finished_flags, new_finished_flags], axis=1) (top_finished_seq, top_finished_scores, top_finished_flags) = _gather_topk_beams([finished_seq, finished_scores, finished_flags], finished_scores, self.batch_size, self.beam_size) return {_StateKeys.FINISHED_SEQ: top_finished_seq, _StateKeys.FINISHED_SCORES: top_finished_scores, _StateKeys.FINISHED_FLAGS: top_finished_flags}
Combine new and old finished sequences, and gather the top k sequences. Args: state: A dictionary with the current loop state. new_seq: New sequences generated by growing the current alive sequences int32 tensor with shape [batch_size, beam_size, i + 1] new_log_probs: Log probabilities of new sequences float32 tensor with shape [batch_size, beam_size] Returns: Dictionary with finished keys from _StateKeys: {Top beam_size finished sequences based on score, Scores of finished sequences, Finished flags of finished sequences}
codesearchnet
def load_and_use(path): example_cond, example_a, example_b = _get_example_tensors() restored = tf.saved_model.load(path) return restored.use_multiplex(example_cond, example_a, example_b)
Load and used a model that was previously created by `save()`. Args: path: Directory to load model from, typically the same directory that was used by save(). Returns: A tensor that is the result of using the multiplex op that is tf.constant([1, 20, 3, 40, 5], dtype=tf.int64).
github-repos
def rename_document(self, did, name): payload = {'name': name} return self._api.request('post', ('/api/documents/' + did), body=payload)
Renames the specified document. Args: - did (str): Document ID - name (str): New document name Returns: - requests.Response: Onshape response data
codesearchnet
def is_link(path): if sys.getwindowsversion().major < 6: raise SaltInvocationError('Symlinks are only supported on Windows Vista or later.') try: return salt.utils.path.islink(path) except Exception as exc: raise CommandExecutionError(exc)
Check if the path is a symlink This is only supported on Windows Vista or later. Inline with Unix behavior, this function will raise an error if the path is not a symlink, however, the error raised will be a SaltInvocationError, not an OSError. Args: path (str): The path to a file or directory Returns: bool: True if path is a symlink, otherwise False CLI Example: .. code-block:: bash salt '*' file.is_link /path/to/link
juraj-google-style
def _identify_eds_ing(first, second): A = set([first.L, first.R]) A.update(first.D) B = set([second.L, second.R]) B.update(second.D) depend_set = A & B left, right = sorted(list(A ^ B)) return left, right, depend_set
Find nodes connecting adjacent edges. Args: first(Edge): Edge object representing the first edge. second(Edge): Edge object representing the second edge. Returns: tuple[int, int, set[int]]: The first two values represent left and right node indicies of the new edge. The third value is the new dependence set.
juraj-google-style
def wait_for_js(function): @functools.wraps(function) def wrapper(*args, **kwargs): if (len(args) < 1): return function(*args, **kwargs) else: self = args[0] if hasattr(self, 'wait_for_js'): self.wait_for_js() return function(*args, **kwargs) return wrapper
Method decorator that waits for JavaScript dependencies before executing `function`. If the function is not a method, the decorator has no effect. Args: function (callable): Method to decorate. Returns: Decorated method
codesearchnet
def _calc_block_mean_variance(image, mask, blocksize): I = image.copy() I_f = (I.astype(np.float32) / 255.0) result = np.zeros(((image.shape[0] / blocksize), (image.shape[1] / blocksize)), dtype=np.float32) for i in xrange(0, (image.shape[0] - blocksize), blocksize): for j in xrange(0, (image.shape[1] - blocksize), blocksize): patch = I_f[(i:((i + blocksize) + 1), j:((j + blocksize) + 1))] mask_patch = mask[(i:((i + blocksize) + 1), j:((j + blocksize) + 1))] tmp1 = np.zeros((blocksize, blocksize)) tmp2 = np.zeros((blocksize, blocksize)) (mean, std_dev) = cv2.meanStdDev(patch, tmp1, tmp2, mask_patch) value = 0 if (std_dev[0][0] > MEAN_VARIANCE_THRESHOLD): value = mean[0][0] result[((i / blocksize), (j / blocksize))] = value small_image = cv2.resize(I, ((image.shape[1] / blocksize), (image.shape[0] / blocksize))) (res, inpaintmask) = cv2.threshold(result, 0.02, 1, cv2.THRESH_BINARY) inpainted = cv2.inpaint(small_image, inpaintmask.astype(np.uint8), 5, cv2.INPAINT_TELEA) res = cv2.resize(inpainted, (image.shape[1], image.shape[0])) return res
Adaptively determines image background. Args: image: image converted 1-channel image. mask: 1-channel mask, same size as image. blocksize: adaptive algorithm parameter. Returns: image of same size as input with foreground inpainted with background.
codesearchnet
def train(self, debug=True, force=False, single_thread=False, timeout=20): if ((not self.must_train) and (not force)): return self.padaos.compile() self.train_thread = Thread(target=self._train, kwargs=dict(debug=debug, single_thread=single_thread, timeout=timeout), daemon=True) self.train_thread.start() self.train_thread.join(timeout) self.must_train = False return (not self.train_thread.is_alive())
Trains all the loaded intents that need to be updated If a cache file exists with the same hash as the intent file, the intent will not be trained and just loaded from file Args: debug (bool): Whether to print a message to stdout each time a new intent is trained force (bool): Whether to force training if already finished single_thread (bool): Whether to force running in a single thread timeout (float): Seconds before cancelling training Returns: bool: True if training succeeded without timeout
codesearchnet
def model_fn(features, labels, mode, params, config): del labels, config if params["analytic_kl"] and params["mixture_components"] != 1: raise NotImplementedError( "Using `analytic_kl` is only supported when `mixture_components = 1` " "since there's no closed form otherwise.") encoder = make_encoder(params["activation"], params["latent_size"], params["base_depth"]) decoder = make_decoder(params["activation"], params["latent_size"], IMAGE_SHAPE, params["base_depth"]) latent_prior = make_mixture_prior(params["latent_size"], params["mixture_components"]) image_tile_summary( "input", tf.cast(features, dtype=tf.float32), rows=1, cols=16) approx_posterior = encoder(features) approx_posterior_sample = approx_posterior.sample(params["n_samples"]) decoder_likelihood = decoder(approx_posterior_sample) image_tile_summary( "recon/sample", tf.cast(decoder_likelihood.sample()[:3, :16], dtype=tf.float32), rows=3, cols=16) image_tile_summary( "recon/mean", decoder_likelihood.mean()[:3, :16], rows=3, cols=16) distortion = -decoder_likelihood.log_prob(features) avg_distortion = tf.reduce_mean(input_tensor=distortion) tf.compat.v1.summary.scalar("distortion", avg_distortion) if params["analytic_kl"]: rate = tfd.kl_divergence(approx_posterior, latent_prior) else: rate = (approx_posterior.log_prob(approx_posterior_sample) - latent_prior.log_prob(approx_posterior_sample)) avg_rate = tf.reduce_mean(input_tensor=rate) tf.compat.v1.summary.scalar("rate", avg_rate) elbo_local = -(rate + distortion) elbo = tf.reduce_mean(input_tensor=elbo_local) loss = -elbo tf.compat.v1.summary.scalar("elbo", elbo) importance_weighted_elbo = tf.reduce_mean( input_tensor=tf.reduce_logsumexp(input_tensor=elbo_local, axis=0) - tf.math.log(tf.cast(params["n_samples"], dtype=tf.float32))) tf.compat.v1.summary.scalar("elbo/importance_weighted", importance_weighted_elbo) random_image = decoder(latent_prior.sample(16)) image_tile_summary( "random/sample", tf.cast(random_image.sample(), dtype=tf.float32), rows=4, cols=4) image_tile_summary("random/mean", random_image.mean(), rows=4, cols=4) global_step = tf.compat.v1.train.get_or_create_global_step() learning_rate = tf.compat.v1.train.cosine_decay( params["learning_rate"], global_step, params["max_steps"]) tf.compat.v1.summary.scalar("learning_rate", learning_rate) optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate) train_op = optimizer.minimize(loss, global_step=global_step) return tf.estimator.EstimatorSpec( mode=mode, loss=loss, train_op=train_op, eval_metric_ops={ "elbo": tf.compat.v1.metrics.mean(elbo), "elbo/importance_weighted": tf.compat.v1.metrics.mean(importance_weighted_elbo), "rate": tf.compat.v1.metrics.mean(avg_rate), "distortion": tf.compat.v1.metrics.mean(avg_distortion), }, )
Builds the model function for use in an estimator. Arguments: features: The input features for the estimator. labels: The labels, unused here. mode: Signifies whether it is train or test or predict. params: Some hyperparameters as a dictionary. config: The RunConfig, unused here. Returns: EstimatorSpec: A tf.estimator.EstimatorSpec instance.
juraj-google-style
def num_connected_components(self, unitary_only=False): reg_offset = 0 reg_map = {} if unitary_only: regs = self.qregs else: regs = self.qregs+self.cregs for reg in regs: reg_map[reg.name] = reg_offset reg_offset += reg.size sub_graphs = [[bit] for bit in range(reg_offset)] num_sub_graphs = len(sub_graphs) for instr, qargs, cargs in self.data: if unitary_only: args = qargs num_qargs = len(args) else: args = qargs+cargs num_qargs = len(args) + (1 if instr.control else 0) if num_qargs >= 2 and instr.name not in ['barrier', 'snapshot']: graphs_touched = [] num_touched = 0 if instr.control and not unitary_only: creg = instr.control[0] creg_int = reg_map[creg.name] for coff in range(creg.size): temp_int = creg_int+coff for k in range(num_sub_graphs): if temp_int in sub_graphs[k]: graphs_touched.append(k) num_touched += 1 break for item in args: reg_int = reg_map[item[0].name]+item[1] for k in range(num_sub_graphs): if reg_int in sub_graphs[k]: if k not in graphs_touched: graphs_touched.append(k) num_touched += 1 break if num_touched > 1: connections = [] for idx in graphs_touched: connections.extend(sub_graphs[idx]) _sub_graphs = [] for idx in range(num_sub_graphs): if idx not in graphs_touched: _sub_graphs.append(sub_graphs[idx]) _sub_graphs.append(connections) sub_graphs = _sub_graphs num_sub_graphs -= (num_touched-1) if num_sub_graphs == 1: break return num_sub_graphs
How many non-entangled subcircuits can the circuit be factored to. Args: unitary_only (bool): Compute only unitary part of graph. Returns: int: Number of connected components in circuit.
juraj-google-style
def __init__(self, event_type: str): if not isinstance(event_type, str) or event_type == "": raise TypeError("Invalid event type: {}".format(event_type)) self._event_type: str = event_type self._target: EventDispatcherBase = None
Constructor. Args: event_type (str): The type - string identifier - of the event. Must not be `None` or empty string.
juraj-google-style
def init_c_overturn(step): (rbot, rtop) = misc.get_rbounds(step) xieut = step.sdat.par['tracersin']['fe_eut'] k_fe = step.sdat.par['tracersin']['k_fe'] xi0l = step.sdat.par['tracersin']['fe_cont'] xi0s = (k_fe * xi0l) xired = (xi0l / xieut) rsup = (((rtop ** 3) - ((xired ** (1 / (1 - k_fe))) * ((rtop ** 3) - (rbot ** 3)))) ** (1 / 3)) def initprof(rpos): 'Theoretical initial profile.' if (rpos < rsup): return (xi0s * ((((rtop ** 3) - (rbot ** 3)) / ((rtop ** 3) - (rpos ** 3))) ** (1 - k_fe))) return xieut rad = np.linspace(rbot, rtop, 500) initprof = np.vectorize(initprof) return (initprof(rad), rad)
Initial concentration. This compute the resulting composition profile if fractional crystallization of a SMO is assumed. Args: step (:class:`~stagpy.stagyydata._Step`): a step of a StagyyData instance. Returns: tuple of :class:`numpy.array`: the composition and the radial position at which it is evaluated.
codesearchnet
def get_first_content(el_list, alt=None, strip=True): if not el_list: return alt content = el_list[0].getContent() if strip: content = content.strip() if not content: return alt return content
Return content of the first element in `el_list` or `alt`. Also return `alt` if the content string of first element is blank. Args: el_list (list): List of HTMLElement objects. alt (default None): Value returner when list or content is blank. strip (bool, default True): Call .strip() to content. Returns: str or alt: String representation of the content of the first element \ or `alt` if not found.
juraj-google-style
def forward(self, hidden_states): hidden_states = hidden_states.transpose(-1, 1) hidden_states = self.conv1(hidden_states) hidden_states = torch.relu(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) hidden_states = hidden_states.transpose(-1, 1) return hidden_states
Calculate forward propagation. Args: hidden_states (torch.Tensor): Batch of input tensors (batch_size, time, input_channels). Returns: torch.Tensor: Batch of output tensors (batch_size, time, hidden_channels).
github-repos
def parse_data_types_and_routes_from_doc_ref(api, doc, namespace_context, ignore_missing_entries=False): assert (doc is not None) data_types = set() routes = defaultdict(set) for match in doc_ref_re.finditer(doc): try: tag = match.group('tag') val = match.group('val') supplied_namespace = api.namespaces[namespace_context] if (tag == 'field'): if ('.' in val): (type_name, __) = val.split('.', 1) doc_type = supplied_namespace.data_type_by_name[type_name] data_types.add(doc_type) else: pass elif (tag == 'route'): if ('.' in val): (namespace_name, val) = val.split('.', 1) namespace = api.namespaces[namespace_name] else: namespace = supplied_namespace try: (route_name, version) = parse_route_name_and_version(val) except ValueError as ex: raise KeyError(str(ex)) route = namespace.routes_by_name[route_name].at_version[version] routes[namespace.name].add(route) elif (tag == 'type'): if ('.' in val): (namespace_name, val) = val.split('.', 1) doc_type = api.namespaces[namespace_name].data_type_by_name[val] data_types.add(doc_type) else: doc_type = supplied_namespace.data_type_by_name[val] data_types.add(doc_type) except KeyError: if (not ignore_missing_entries): raise return (data_types, routes)
Given a documentation string, parse it and return all references to other data types and routes. Args: - api: The API containing this doc ref. - doc: The documentation string to parse. - namespace_context: The namespace name relative to this documentation. - ignore_missing_entries: If set, this will skip references to nonexistent data types instead of raising an exception. Returns: - a tuple of referenced data types and routes
codesearchnet
def get_or_create(self, defaults=None, **kwargs): try: return (self.get(**kwargs), False) except ObjectDoesNotExist: pass data = (defaults or {}) data.update(kwargs) return (self._model_class(**data).blocking_save(), True)
Looks up an object with the given kwargs, creating a new one if necessary. Args: defaults (dict): Used when we create a new object. Must map to fields of the model. \*\*kwargs: Used both for filtering and new object creation. Returns: A tuple of (object, created), where created is a boolean variable specifies whether the object was newly created or not. Example: In the following example, *code* and *name* fields are used to query the DB. .. code-block:: python obj, is_new = Permission.objects.get_or_create({'description': desc}, code=code, name=name) {description: desc} dict is just for new creations. If we can't find any records by filtering on *code* and *name*, then we create a new object by using all of the inputs.
codesearchnet
def __init__(self, retriever): self._page_token = None self._first_page = True self._retriever = retriever self._count = 0
Initializes an instance of an Iterator. Args: retriever: a function that can retrieve the next page of items.
juraj-google-style
def impad_to_multiple(img, divisor, pad_val=0): pad_h = int(np.ceil(img.shape[0] / divisor)) * divisor pad_w = int(np.ceil(img.shape[1] / divisor)) * divisor return impad(img, (pad_h, pad_w), pad_val)
Pad an image to ensure each edge to be multiple to some number. Args: img (ndarray): Image to be padded. divisor (int): Padded image edges will be multiple to divisor. pad_val (number or sequence): Same as :func:`impad`. Returns: ndarray: The padded image.
juraj-google-style
def getShareInfo(item): key = f'_syn_sharinfo_{item.__class__.__module__}_{item.__class__.__qualname__}' info = getattr(item, key, None) if (info is not None): return info meths = {} info = {'meths': meths} for name in dir(item): if name.startswith('_'): continue attr = getattr(item, name, None) if (not callable(attr)): continue wrapped = getattr(attr, '__syn_wrapped__', None) if (wrapped in unwraps): real = inspect.unwrap(attr) if inspect.isasyncgenfunction(real): meths[name] = {'genr': True} continue if inspect.isasyncgenfunction(attr): meths[name] = {'genr': True} try: setattr(item, key, info) except Exception as e: logger.exception(f'Failed to set magic on {item}') try: setattr(item.__class__, key, info) except Exception as e: logger.exception(f'Failed to set magic on {item.__class__}') return info
Get a dictionary of special annotations for a Telepath Proxy. Args: item: Item to inspect. Notes: This will set the ``_syn_telemeth`` attribute on the item and the items class, so this data is only computed once. Returns: dict: A dictionary of methods requiring special handling by the proxy.
codesearchnet
class XGBoostModelHandlerDatatable(XGBoostModelHandler[datatable.Frame, PredictionResult, Union[xgboost.Booster, xgboost.XGBModel]]): def run_inference(self, batch: Sequence[datatable.Frame], model: Union[xgboost.Booster, xgboost.XGBModel], inference_args: Optional[dict[str, Any]]=None) -> Iterable[PredictionResult]: return self._inference_fn(batch, model, inference_args) def get_num_bytes(self, batch: Sequence[datatable.Frame]) -> int: return sum((sys.getsizeof(element) for element in batch))
Implementation of the ModelHandler interface for XGBoost using datatable dataframes as input. Example Usage:: pcoll | RunInference( XGBoostModelHandlerDatatable( model_class="XGBoost Model Class", model_state="my_model_state.json"))) Args: model_class: class of the XGBoost model that defines the model structure. model_state: path to a json file that contains the model's configuration. inference_fn: the inference function to use during RunInference. default=default_xgboost_inference_fn
github-repos
def update(self, friendly_name=None, description=None, query=None): self._table._load_info() if (query is not None): if isinstance(query, _query.Query): query = query.sql self._table._info['view'] = {'query': query} self._table.update(friendly_name=friendly_name, description=description)
Selectively updates View information. Any parameters that are None (the default) are not applied in the update. Args: friendly_name: if not None, the new friendly name. description: if not None, the new description. query: if not None, a new query string for the View.
codesearchnet
def default_peek(python_type, exposes): with_args = False make = python_type try: make() except (SystemExit, KeyboardInterrupt): raise except: make = lambda: python_type.__new__(python_type) try: make() except (SystemExit, KeyboardInterrupt): raise except: make = lambda args: python_type.__new__(python_type, *args) with_args = True def missing(attr): return AttributeError("can't set attribute '{}' ({})".format(attr, python_type)) if with_args: def peek(store, container, _stack=None): state = [] for attr in exposes: if attr in container: state.append(store.peek(attr, container, _stack=_stack)) else: state.append(None) return make(state) elif '__dict__' in exposes: def peek(store, container, _stack=None): obj = make() for attr in container: val = store.peek(attr, container, _stack=_stack) try: setattr(obj, attr, val) except AttributeError: raise missing(attr) return obj else: def peek(store, container, _stack=None): obj = make() for attr in exposes: if attr in container: val = store.peek(attr, container, _stack=_stack) else: val = None try: setattr(obj, attr, val) except AttributeError: raise missing(attr) return obj return peek
Autoserializer factory. Works best in Python 3. Arguments: python_type (type): type constructor. exposes (iterable): sequence of attributes. Returns: callable: deserializer (`peek` routine).
juraj-google-style
def _unify_call_signature(i, dist_fn): if distribution_util.is_distribution_instance(dist_fn): return ((lambda *_: dist_fn), None) if (not callable(dist_fn)): raise TypeError('{} must be either `tfd.Distribution`-like or `callable`.'.format(dist_fn)) args = _get_required_args(dist_fn) if (not args): return ((lambda *_: dist_fn()), ()) @functools.wraps(dist_fn) def dist_fn_wrapped(*xs): 'Calls `dist_fn` with reversed and truncated args.' if (i != len(xs)): raise ValueError('Internal Error: Unexpected number of inputs provided to {}-th distribution maker (dist_fn: {}, expected: {}, saw: {}).'.format(i, dist_fn, i, len(xs))) if (len(xs) < len(args)): raise ValueError('Internal Error: Too few inputs provided to {}-th distribution maker (dist_fn: {}, expected: {}, saw: {}).'.format(i, dist_fn, len(args), len(xs))) return dist_fn(*reversed(xs[(- len(args)):])) return (dist_fn_wrapped, args)
Creates `dist_fn_wrapped` which calls `dist_fn` with all prev nodes. Args: i: Python `int` corresponding to position in topologically sorted DAG. dist_fn: Python `callable` which takes a subset of previously constructed distributions (in reverse order) and produces a new distribution instance. Returns: dist_fn_wrapped: Python `callable` which takes all previous distributions (in non reverse order) and produces a new distribution instance. args: `tuple` of `str` representing the arg names of `dist_fn` (and in non wrapped, "natural" order). `None` is returned only if the input is not a `callable`.
codesearchnet
class Permute(Layer): def __init__(self, dims, **kwargs): super(Permute, self).__init__(**kwargs) self.dims = tuple(dims) if sorted(dims) != list(range(1, len(dims) + 1)): raise ValueError('Invalid permutation `dims` for Permute Layer: %s. The set of indices in `dims` must be consecutive and start from 1.' % (dims,)) self.input_spec = InputSpec(ndim=len(self.dims) + 1) def compute_output_shape(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape).as_list() output_shape = copy.copy(input_shape) for i, dim in enumerate(self.dims): target_dim = input_shape[dim] output_shape[i + 1] = target_dim return tensor_shape.TensorShape(output_shape) def call(self, inputs): return array_ops.transpose(inputs, perm=(0,) + self.dims) def get_config(self): config = {'dims': self.dims} base_config = super(Permute, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Permutes the dimensions of the input according to a given pattern. Useful e.g. connecting RNNs and convnets. Example: ```python model = Sequential() model.add(Permute((2, 1), input_shape=(10, 64))) # now: model.output_shape == (None, 64, 10) # note: `None` is the batch dimension ``` Args: dims: Tuple of integers. Permutation pattern does not include the samples dimension. Indexing starts at 1. For instance, `(2, 1)` permutes the first and second dimensions of the input. Input shape: Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. Output shape: Same as the input shape, but with the dimensions re-ordered according to the specified pattern.
github-repos
def to_representation(self, value): if not value: return None image = get_thumbnail(value, self.geometry_string, **self.options) try: request = self.context.get('request', None) return request.build_absolute_uri(image.url) except: try: return super(HyperlinkedSorlImageField, self).to_representation(image) except AttributeError: return super(HyperlinkedSorlImageField, self).to_native(image.url)
Perform the actual serialization. Args: value: the image to transform Returns: a url pointing at a scaled and cached image
juraj-google-style
def highlight(text: str, color_code: int, bold: bool=False) -> str: return '{}\x1b[{}m{}\x1b[0m'.format(('\x1b[1m' if bold else ''), color_code, text)
Wraps the given string with terminal color codes. Args: text: The content to highlight. color_code: The color to highlight with, e.g. 'shelltools.RED'. bold: Whether to bold the content in addition to coloring. Returns: The highlighted string.
codesearchnet
def List(self, request, global_params=None): config = self.GetMethodConfig('List') return self._RunMethod(config, request, global_params=global_params)
List all GitHubEnterpriseConfigs for a given project. Args: request: (CloudbuildProjectsGithubEnterpriseConfigsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListGithubEnterpriseConfigsResponse) The response message.
github-repos
def _EnforceProcessMemoryLimit(self, memory_limit): if resource: if (memory_limit is None): memory_limit = (((4 * 1024) * 1024) * 1024) elif (memory_limit == 0): memory_limit = resource.RLIM_INFINITY resource.setrlimit(resource.RLIMIT_DATA, (memory_limit, memory_limit))
Enforces a process memory limit. Args: memory_limit (int): maximum number of bytes the process is allowed to allocate, where 0 represents no limit and None a default of 4 GiB.
codesearchnet
def run(self, dag): self.layout = self.layout or self.property_set['layout'] if self.layout is None: raise TranspilerError("EnlargeWithAncilla requires property_set[\"layout\"] or" " \"layout\" parameter to run") layout_virtual_qubits = self.layout.get_virtual_bits().keys() new_qregs = set(virtual_qubit[0] for virtual_qubit in layout_virtual_qubits if virtual_qubit not in dag.wires) for qreg in new_qregs: dag.add_qreg(qreg) return dag
Extends dag with virtual qubits that are in layout but not in the circuit yet. Args: dag (DAGCircuit): DAG to extend. Returns: DAGCircuit: An extended DAG. Raises: TranspilerError: If there is not layout in the property set or not set at init time.
juraj-google-style
def disable_control_flow_v2(unused_msg: str) -> Callable[[_F], _F]: def wrapper(func: _F) -> _F: func._disable_control_flow_v2 = True return func return wrapper
Decorator for a function in a with_control_flow_v2 enabled test class. Blocks the function from being run with v2 control flow ops. Args: unused_msg: Reason for disabling. Returns: The wrapped function with _disable_control_flow_v2 attr set to True.
github-repos
def xml(self): self.pendingvalidation() E = ElementMaker(namespace='http: attribs = {} attribs['{http: attribs['version'] = FOLIAVERSION attribs['generator'] = ('pynlpl.formats.folia-v' + LIBVERSION) metadataattribs = {} metadataattribs[(('{' + NSFOLIA) + '}type')] = self.metadatatype if isinstance(self.metadata, ExternalMetaData): metadataattribs[(('{' + NSFOLIA) + '}src')] = self.metadata.url e = E.FoLiA(E.metadata(E.annotations(*self.xmldeclarations()), *self.xmlmetadata(), **metadataattribs), **attribs) for text in self.data: e.append(text.xml()) return e
Serialise the document to XML. Returns: lxml.etree.Element See also: :meth:`Document.xmlstring`
codesearchnet
def traverse_nodes(self, node_set, depth=0): tab = ' ' result = list() for n in node_set: repr = (n if (self.nodes[n]['type'] == 'variable') else f"{n}{inspect.signature(self.nodes[n]['lambda_fn'])}") result.append(f'{(tab * depth)}{repr}') result.extend(self.traverse_nodes(self.successors(n), depth=(depth + 1))) return result
BFS traversal of nodes that returns name traversal as large string. Args: node_set: Set of input nodes to begin traversal. depth: Current traversal depth for child node viewing. Returns: type: String containing tabbed traversal view.
codesearchnet
def CheckTaskToMerge(self, task): with self._lock: is_abandoned = task.identifier in self._tasks_abandoned is_processing = task.identifier in self._tasks_processing is_queued = task.identifier in self._tasks_queued if not is_queued and not is_processing and not is_abandoned: raise KeyError('Status of task {0:s} is unknown.'.format( task.identifier)) return is_queued or is_processing or is_abandoned and not task.has_retry
Checks if the task should be merged. Args: task (Task): task. Returns: bool: True if the task should be merged. Raises: KeyError: if the task was not queued, processing or abandoned.
juraj-google-style
def put_many(self, type: Type[T], items: Iterable[T]) -> None: LOGGER.info("Getting SinkHandlers for \"{type}\"".format(type=type.__name__)) try: handlers = self._put_types[type] except KeyError: try: LOGGER.info("Building new SinkHandlers for \"{type}\"".format(type=type.__name__)) handlers = self._put_handlers(type) except NoConversionError: handlers = None self._get_types[type] = handlers LOGGER.info("Creating new PipelineContext") context = self._new_context() LOGGER.info("Sending items \"{items}\" to SourceHandlers".format(items=items)) if handlers is not None: items = list(items) for handler in handlers: handler.put_many(items, context)
Puts multiple objects of the same type into the data sink. The objects may be transformed into a new type for insertion if necessary. Args: items: An iterable (e.g. list) of objects to be inserted into the data pipeline.
juraj-google-style
def CreateAdsWithCustomizations(client, adgroup_ids, feed_name): adgroup_ad_service = client.GetService('AdGroupAdService', 'v201809') expanded_text_ad = {'xsi_type': 'ExpandedTextAd', 'headlinePart1': ('Luxury Cruise to {=%s.Name}' % feed_name), 'headlinePart2': ('Only {=%s.Price}' % feed_name), 'description': ('Offer ends in {=countdown(%s.Date)}!' % feed_name), 'finalUrls': ['http: operations = [{'operator': 'ADD', 'operand': {'adGroupId': adgroup, 'ad': expanded_text_ad}} for adgroup in adgroup_ids] response = adgroup_ad_service.mutate(operations) if (response and ('value' in response)): for ad in response['value']: print(('Created an ad with ID "%s", type "%s", and status "%s".' % (ad['ad']['id'], ad['ad']['Ad.Type'], ad['status']))) else: raise errors.GoogleAdsError('No ads were added.')
Creates ExpandedTextAds that use ad customizations for specified AdGroups. Args: client: an AdWordsClient instance. adgroup_ids: a list containing the AdGroup ids to add ExpandedTextAds to. feed_name: the name of the feed used to apply customizations. Raises: GoogleAdsError: if no ExpandedTextAds were added.
codesearchnet
def structure_np_to_list(data): if isinstance(data, np.ndarray): return data.tolist() if isinstance(data, dict): return {key: structure_np_to_list(value) for key, value in data.items()} if isinstance(data, list): return [structure_np_to_list(item) for item in data] if isinstance(data, (int, float, str, bytes)): return data raise ValueError(f'Non supported type {type(data)}')
Apply a function to a recursive structure of dict and list. Args: data: The data to apply the function to. Returns: The data with the function applied.
github-repos
def _AddHeader(self, fp): text = textwrap.wrap(textwrap.dedent(self.config_header), break_on_hyphens=False) fp.write('\n'.join([(' fp.write('\n\n')
Create a file header in the config. Args: fp: int, a file pointer for writing the header.
codesearchnet
def rot90(array, k=1, axes=(0, 1)): array = convert_to_tensor(array) if array.ndim < 2: raise ValueError(f'Input array must have at least 2 dimensions. Received: array.ndim={array.ndim}') if len(axes) != 2 or axes[0] == axes[1]: raise ValueError(f'Invalid axes: {axes}. Axes must be a tuple of two different dimensions.') axes = tuple((axis if axis >= 0 else array.ndim + axis for axis in axes)) if not builtins.all((0 <= axis < array.ndim for axis in axes)): raise ValueError(f'Invalid axes {axes} for tensor with {array.ndim} dimensions') rotated = torch.rot90(array, k=k, dims=axes) if isinstance(array, np.ndarray): rotated = rotated.cpu().numpy() return rotated
Rotate an array by 90 degrees in the specified plane using PyTorch. Args: array: Input tensor k: Number of 90-degree rotations (default=1) axes: Tuple of two axes that define the plane of rotation (defaults to `(0, 1)`). Returns: Rotated tensor
github-repos
def heightmap_clamp(hm: np.ndarray, mi: float, ma: float) -> None: hm.clip(mi, ma)
Clamp all values on this heightmap between ``mi`` and ``ma`` Args: hm (numpy.ndarray): A numpy.ndarray formatted for heightmap functions. mi (float): The lower bound to clamp to. ma (float): The upper bound to clamp to. .. deprecated:: 2.0 Do ``hm.clip(mi, ma)`` instead.
codesearchnet
def dprintx(passeditem, special=False): if DEBUGALL: if special: from pprint import pprint pprint(passeditem) else: print(('%s%s%s' % (C_TI, passeditem, C_NORM)))
Print Text if DEBUGALL set, optionally with PrettyPrint. Args: passeditem (str): item to print special (bool): determines if item prints with PrettyPrint or regular print.
codesearchnet
def get_parameters(params=None, path='', grad_only=True): global current_scope if (params is None): params = OrderedDict() for (k, v) in iteritems(current_scope): if isinstance(v, dict): with parameter_scope(k): params = get_parameters(params, ('/'.join([path, k]) if path else k), grad_only=grad_only) else: assert isinstance(v, nn.Variable) if ((not grad_only) or v.need_grad): params[('/'.join([path, k]) if path else k)] = v return params
Get parameter Variables under the current parameter scope. Args: params (dict): Internal use. User doesn't set it manually. path (str): Internal use. User doesn't set it manually. grad_only (bool): Retrieve all parameters under the current scope if False, while only parameters with need_grad=True are retrieved if True. Returns: dict: {:obj:`str` : :obj:`~nnabla.Variable`}
codesearchnet
def depth_april_average_ground_temperature(self, value=None): if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `depth_april_average_ground_temperature`'.format(value)) self._depth_april_average_ground_temperature = value
Corresponds to IDD Field `depth_april_average_ground_temperature` Args: value (float): value for IDD Field `depth_april_average_ground_temperature` Unit: C if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
juraj-google-style
def __init__(self, component=None, action=None, target=None, args=None, filename=None, lineno=None, error=None, capacity=None): self.component = component self._action = action self._target = target self.args = args self._filename = filename self._lineno = lineno self._error = error self._separator = False self._capacity = capacity
Instantiates a FireTraceElement. Args: component: The result of this element of the trace. action: The type of action (e.g. instantiating a class) taking place. target: (string) The name of the component being acted upon. args: The args consumed by the represented action. filename: The file in which the action is defined, or None if N/A. lineno: The line number on which the action is defined, or None if N/A. error: The error represented by the action, or None if N/A. capacity: (bool) Whether the action could have accepted additional args.
github-repos
def input_fn(is_training, data_dir, batch_size, num_epochs=1, num_gpus=None, dtype=tf.float32): mlperf_log.resnet_print(key=mlperf_log.INPUT_ORDER) filenames = get_filenames(is_training, data_dir) dataset = tf.data.Dataset.from_tensor_slices(filenames) if is_training: dataset = dataset.shuffle(buffer_size=_NUM_TRAIN_FILES) dataset = dataset.flat_map(tf.data.TFRecordDataset) return resnet_run_loop.process_record_dataset(dataset=dataset, is_training=is_training, batch_size=batch_size, shuffle_buffer=_SHUFFLE_BUFFER, parse_record_fn=parse_record, num_epochs=num_epochs, num_gpus=num_gpus, examples_per_epoch=(_NUM_IMAGES['train'] if is_training else None), dtype=dtype)
Input function which provides batches for train or eval. Args: is_training: A boolean denoting whether the input is for training. data_dir: The directory containing the input data. batch_size: The number of samples per batch. num_epochs: The number of epochs to repeat the dataset. num_gpus: The number of gpus used for training. dtype: Data type to use for images/features Returns: A dataset that can be used for iteration.
codesearchnet
def is_chief(cluster_spec=None, task_type=None, task_id=None): if has_worker_context(): return dc_context.get_current_worker_context().is_chief _validate_cluster_spec(cluster_spec, task_type, task_id) cluster_spec = normalize_cluster_spec(cluster_spec).as_dict() if task_type == 'chief' or task_type == 'evaluator': return True if 'chief' not in cluster_spec and task_type == 'worker' and (task_id == 0): return True return False
Returns whether the given task is chief in the cluster. Since there is at most one evaluator and the evaluator itself should be independent of the training cluster, the evaluator job is also a chief job on its own. If this is currently running under a `_WorkerContext` of distribute coordinator, the arguments can be omitted as the result is already available. Args: cluster_spec: a dict, `ClusterDef` or `ClusterSpec` object specifying the cluster configurations. task_type: the task type in the cluster. task_id: the task id in the cluster. Returns: a boolean indicating whether the given task is chief. Raises: ValueError: if `task_type` is not in the `cluster_spec` or `task_id` exceeds the maximum id of the `task_type`.
github-repos
def ToScriptHash(self, address): if len(address) == 34: if address[0] == 'A': data = b58decode(address) if data[0] != self.AddressVersion: raise ValueError('Not correct Coin Version') checksum = Crypto.Default().Hash256(data[:21])[:4] if checksum != data[21:]: raise Exception('Address format error') return UInt160(data=data[1:21]) else: raise Exception('Address format error') else: raise ValueError('Not correct Address, wrong length.')
Retrieve the script_hash based from an address. Args: address (str): a base58 encoded address. Raises: ValuesError: if an invalid address is supplied or the coin version is incorrect Exception: if the address string does not start with 'A' or the checksum fails Returns: UInt160: script hash.
juraj-google-style
def set_metadata(self, entity_type, entity_id, metadata): if (not is_valid_uuid(entity_id)): raise StorageArgumentException('Invalid UUID for entity_id: {0}'.format(entity_id)) if (not isinstance(metadata, dict)): raise StorageArgumentException('The metadata was not provided as a dictionary') return self._authenticated_request.to_endpoint('{}/{}/metadata/'.format(entity_type, entity_id)).with_json_body(metadata).return_body().post()
Set metadata for an entity. Args: entity_type (str): Type of the entity. Admitted values: ['project', 'folder', 'file']. entity_id (str): The UUID of the entity to be modified. metadata (dict): A dictionary of key/value pairs to be written as metadata. Warning: It will replace all existing metadata with the provided dictionary. Returns: A dictionary of the updated metadata:: { u'bar': u'200', u'foo': u'100' } Raises: StorageArgumentException: Invalid arguments StorageForbiddenException: Server response code 403 StorageNotFoundException: Server response code 404 StorageException: other 400-600 error codes
codesearchnet
def get_file_list(self): if os.path.isdir(self.root_path): return [os.path.join(self.root_path, f) for f in os.listdir(self.root_path) if os.path.isfile(os.path.join(self.root_path, f))] else: return [self.root_path]
Retrieve the list of absolute paths to all the files in this data source. Returns: List[str] List of absolute paths.
codesearchnet
def allzeros(msg): d = hex2bin(data(msg)) if bin2int(d) > 0: return False else: return True
check if the data bits are all zeros Args: msg (String): 28 bytes hexadecimal message string Returns: bool: True or False
juraj-google-style
def run_census(flags_obj, ctx): train_file = os.path.join(flags_obj.data_dir, census_dataset.TRAINING_FILE) test_file = os.path.join(flags_obj.data_dir, census_dataset.EVAL_FILE) def train_input_fn(): return census_dataset.input_fn( train_file, flags_obj.epochs_between_evals, True, flags_obj.batch_size) def eval_input_fn(): return census_dataset.input_fn(test_file, 1, False, flags_obj.batch_size) tensors_to_log = { 'average_loss': '{loss_prefix}head/truediv', 'loss': '{loss_prefix}head/weighted_loss/Sum' } model_helpers.apply_clean(flags.FLAGS) model = build_estimator( model_dir=flags_obj.model_dir, model_type=flags_obj.model_type, model_column_fn=census_dataset.build_model_columns, inter_op=flags_obj.inter_op_parallelism_threads, intra_op=flags_obj.intra_op_parallelism_threads, ctx=ctx) loss_prefix = LOSS_PREFIX.get(flags_obj.model_type, '') tensors_to_log = {k: v.format(loss_prefix=loss_prefix) for k, v in tensors_to_log.items()} train_hooks = hooks_helper.get_train_hooks( flags_obj.hooks, model_dir=flags_obj.model_dir, batch_size=flags_obj.batch_size, tensors_to_log=tensors_to_log) train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn, hooks=train_hooks) eval_spec = tf.estimator.EvalSpec(input_fn=eval_input_fn) tf.estimator.train_and_evaluate(model, train_spec, eval_spec)
Construct all necessary functions and call run_loop. Args: flags_obj: Object containing user specified flags.
juraj-google-style
def check_file(self, fs, info): if ((self.exclude is not None) and fs.match(self.exclude, info.name)): return False return fs.match(self.filter, info.name)
Check if a filename should be included. Override to exclude files from the walk. Arguments: fs (FS): A filesystem instance. info (Info): A resource info object. Returns: bool: `True` if the file should be included.
codesearchnet
def expo(base=2, factor=1, max_value=None): n = 0 while True: a = (factor * (base ** n)) if ((max_value is None) or (a < max_value)): (yield a) n += 1 else: (yield max_value)
Generator for exponential decay. Args: base: The mathematical base of the exponentiation operation factor: Factor to multiply the exponentation by. max_value: The maximum value to yield. Once the value in the true exponential sequence exceeds this, the value of max_value will forever after be yielded.
codesearchnet