code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def find_priority_list(py_files): dependencies = map_dependencies(py_files) ordered_files = topological_sort(dependencies) return (ordered_files, dependencies)
Given a list of modular files, sorts them by topological order. Modular models that DON'T depend on other modular models will be higher in the topological order. Args: py_files: List of paths to the modular files Returns: A tuple with the ordered files (list) and their dependencies (dict)
github-repos
def _assert_same_base_type(items, expected_type=None): original_expected_type = expected_type mismatch = False for item in items: if item is not None: item_type = item.dtype.base_dtype if not expected_type: expected_type = item_type elif expected_type != item_type: mismatch = True break if mismatch: expected_type = original_expected_type original_item_str = None for item in items: if item is not None: item_type = item.dtype.base_dtype if not expected_type: expected_type = item_type original_item_str = item.name if hasattr(item, 'name') else str(item) elif expected_type != item_type: raise ValueError('%s, type=%s, must be of the same type (%s)%s.' % (item.name if hasattr(item, 'name') else str(item), item_type, expected_type, ' as %s' % original_item_str if original_item_str else '')) return expected_type else: return expected_type
Asserts all items are of the same base type. Args: items: List of graph items (e.g., `Variable`, `Tensor`, `SparseTensor`, `Operation`, or `IndexedSlices`). Can include `None` elements, which will be ignored. expected_type: Expected type. If not specified, assert all items are of the same base type. Returns: Validated type, or none if neither expected_type nor items provided. Raises: ValueError: If any types do not match.
github-repos
def get(self, blocking=True): if self.closed: raise PoolAlreadyClosedError("Connection pool is already closed.") if not self.limiter.acquire(blocking=blocking): return None c = None try: c = self.idle_conns.pop() except IndexError: try: c = self.connect_func() except Exception: self.limiter.release() raise return _ConnectionProxy(self, c)
Gets a connection. Args: blocking: Whether to block when max_size connections are already in use. If false, may return None. Returns: A connection to the database. Raises: PoolAlreadyClosedError: if close() method was already called on this pool.
juraj-google-style
def ts_to_str(jwt_dict): d = ts_to_dt(jwt_dict) for (k, v) in list(d.items()): if isinstance(v, datetime.datetime): d[k] = v.isoformat().replace('T', ' ') return d
Convert timestamps in JWT to human readable dates. Args: jwt_dict: dict JWT with some keys containing timestamps. Returns: dict: Copy of input dict where timestamps have been replaced with human readable dates.
codesearchnet
def _RegisterCredentialsMethod(method, position=None): if (position is None): position = len(_CREDENTIALS_METHODS) else: position = min(position, len(_CREDENTIALS_METHODS)) _CREDENTIALS_METHODS.insert(position, method) return method
Register a new method for fetching credentials. This new method should be a function with signature: client_info, **kwds -> Credentials or None This method can be used as a decorator, unless position needs to be supplied. Note that method must *always* accept arbitrary keyword arguments. Args: method: New credential-fetching method. position: (default: None) Where in the list of methods to add this; if None, we append. In all but rare cases, this should be either 0 or None. Returns: method, for use as a decorator.
codesearchnet
def find_backend(line: str) -> Optional[str]: if _re_test_backend.search(line) is None: return None backends = [b[0] for b in _re_backend.findall(line)] backends.sort() return '_and_'.join(backends)
Find one (or multiple) backend in a code line of the init. Args: line (`str`): A code line in an init file. Returns: Optional[`str`]: If one (or several) backend is found, returns it. In the case of multiple backends (the line contains `if is_xxx_available() and `is_yyy_available()`) returns all backends joined on `_and_` (so `xxx_and_yyy` for instance).
github-repos
def create(self, reference, document_data): write_pbs = _helpers.pbs_for_create(reference._document_path, document_data) self._add_write_pbs(write_pbs)
Add a "change" to this batch to create a document. If the document given by ``reference`` already exists, then this batch will fail when :meth:`commit`-ed. Args: reference (~.firestore_v1beta1.document.DocumentReference): A document reference to be created in this batch. document_data (dict): Property names and values to use for creating a document.
juraj-google-style
def gray2bgr(img): img = (img[(..., None)] if (img.ndim == 2) else img) out_img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) return out_img
Convert a grayscale image to BGR image. Args: img (ndarray or str): The input image. Returns: ndarray: The converted BGR image.
codesearchnet
def associated_stream(self): if (not self.important): raise InternalError('You may only call autocopied_stream on when DataStream.important is True', stream=self) if (self.stream_id >= DataStream.ImportantSystemStorageStart): stream_type = DataStream.BufferedType else: stream_type = DataStream.OutputType return DataStream(stream_type, self.stream_id, True)
Return the corresponding output or storage stream for an important system input. Certain system inputs are designed as important and automatically copied to output streams without requiring any manual interaction. This method returns the corresponding stream for an important system input. It will raise an InternalError unlesss the self.important property is True. Returns: DataStream: The corresponding output or storage stream. Raises: InternalError: If this stream is not marked as an important system input.
codesearchnet
def from_bytes(b): if (len(b) != 64): raise ValueError('from_bytes: Signature length != 64.') r = int.from_bytes(b[0:32], 'big') s = int.from_bytes(b[32:64], 'big') return Signature(r, s)
Extracts the r and s components from a byte string. Args: b (bytes): A 64-byte long string. The first 32 bytes are extracted as the r component and the second 32 bytes are extracted as the s component. Returns: Signature: A Signature object. Raises: ValueError: If signature is incorrect length
codesearchnet
def remote_command(task: Task, command: str) -> Result: client = task.host.get_connection("paramiko", task.nornir.config) connection_state = task.host.get_connection_state("paramiko") chan = client.get_transport().open_session() if connection_state["ssh_forward_agent"]: AgentRequestHandler(chan) chan.exec_command(command) with chan.makefile() as f: stdout = f.read().decode() with chan.makefile_stderr() as f: stderr = f.read().decode() exit_status_code = chan.recv_exit_status() if exit_status_code: raise CommandError(command, exit_status_code, stdout, stderr) result = stderr if stderr else stdout return Result(result=result, host=task.host, stderr=stderr, stdout=stdout)
Executes a command remotely on the host Arguments: command (``str``): command to execute Returns: Result object with the following attributes set: * result (``str``): stderr or stdout * stdout (``str``): stdout * stderr (``str``): stderr Raises: :obj:`nornir.core.exceptions.CommandError`: when there is a command error
juraj-google-style
def pretty_plot_two_axis(x, y1, y2, xlabel=None, y1label=None, y2label=None, width=8, height=None, dpi=300): import palettable.colorbrewer.diverging colors = palettable.colorbrewer.diverging.RdYlBu_4.mpl_colors c1 = colors[0] c2 = colors[(- 1)] golden_ratio = ((math.sqrt(5) - 1) / 2) if (not height): height = int((width * golden_ratio)) import matplotlib.pyplot as plt width = 12 labelsize = int((width * 3)) ticksize = int((width * 2.5)) styles = ['-', '--', '-.', '.'] (fig, ax1) = plt.subplots() fig.set_size_inches((width, height)) if dpi: fig.set_dpi(dpi) if isinstance(y1, dict): for (i, (k, v)) in enumerate(y1.items()): ax1.plot(x, v, c=c1, marker='s', ls=styles[(i % len(styles))], label=k) ax1.legend(fontsize=labelsize) else: ax1.plot(x, y1, c=c1, marker='s', ls='-') if xlabel: ax1.set_xlabel(xlabel, fontsize=labelsize) if y1label: ax1.set_ylabel(y1label, color=c1, fontsize=labelsize) ax1.tick_params('x', labelsize=ticksize) ax1.tick_params('y', colors=c1, labelsize=ticksize) ax2 = ax1.twinx() if isinstance(y2, dict): for (i, (k, v)) in enumerate(y2.items()): ax2.plot(x, v, c=c2, marker='o', ls=styles[(i % len(styles))], label=k) ax2.legend(fontsize=labelsize) else: ax2.plot(x, y2, c=c2, marker='o', ls='-') if y2label: ax2.set_ylabel(y2label, color=c2, fontsize=labelsize) ax2.tick_params('y', colors=c2, labelsize=ticksize) return plt
Variant of pretty_plot that does a dual axis plot. Adapted from matplotlib examples. Makes it easier to create plots with different axes. Args: x (np.ndarray/list): Data for x-axis. y1 (dict/np.ndarray/list): Data for y1 axis (left). If a dict, it will be interpreted as a {label: sequence}. y2 (dict/np.ndarray/list): Data for y2 axis (right). If a dict, it will be interpreted as a {label: sequence}. xlabel (str): If not None, this will be the label for the x-axis. y1label (str): If not None, this will be the label for the y1-axis. y2label (str): If not None, this will be the label for the y2-axis. width (float): Width of plot in inches. Defaults to 8in. height (float): Height of plot in inches. Defaults to width * golden ratio. dpi (int): Sets dot per inch for figure. Defaults to 300. Returns: matplotlib.pyplot
codesearchnet
def FromTXOutputsConfirmed(outputs): uns = UnspentCoinState() uns.Items = ([0] * len(outputs)) for i in range(0, len(outputs)): uns.Items[i] = int(CoinState.Confirmed) return uns
Get unspent outputs from a list of transaction outputs. Args: outputs (list): of neo.Core.TX.Transaction.TransactionOutput items. Returns: UnspentCoinState:
codesearchnet
def helper_add(access_token, ck_id, path, body): full_path = ''.join([path, "('", ck_id, "')"]) full_path_encoded = urllib.parse.quote(full_path, safe='') endpoint = ''.join([ams_rest_endpoint, full_path_encoded]) return do_ams_put(endpoint, full_path_encoded, body, access_token, "json_only", "1.0;NetFx")
Helper Function to add strings to a URL path. Args: access_token (str): A valid Azure authentication token. ck_id (str): A CK ID. path (str): A URL Path. body (str): A Body. Returns: HTTP response. JSON body.
juraj-google-style
def set_status(self, name: str = None): game = None if name: game = { 'name': name } payload = { 'op': WebSocketEvent.STATUS_UPDATE.value, 'd': { 'game': game, 'status': 'online', 'afk': False, 'since': 0.0 } } data = json.dumps(payload, indent=2) self.logger.debug(f'Sending status update payload: {data}') self._ws.send(data)
Updates the bot's status This is used to get the game that the bot is "playing" or to clear it. If you want to set a game, pass a name; if you want to clear it, either call this method without the optional ``name`` parameter or explicitly pass ``None``. Args: name: the game's name, or None
juraj-google-style
def convert_image_to_example_proto(tensor: tf.Tensor) -> tf.train.Example: serialized_non_scalar = tf.io.serialize_tensor(tensor) feature_of_bytes = tf.train.Feature(bytes_list=tf.train.BytesList(value=[serialized_non_scalar.numpy()])) features_for_example = {'image': feature_of_bytes} example_proto = tf.train.Example(features=tf.train.Features(feature=features_for_example)) return example_proto
This method performs the following: 1. Accepts the tensor as input 2. Serializes the tensor into bytes and pass it through tf.train.Feature 3. Pass the serialized tensor feature using tf.train.Example Proto to the RunInference transform. Args: tensor: A TF tensor. Returns: example_proto: A tf.train.Example containing serialized tensor.
github-repos
def lint(self, content, **kwargs): post_data = {'content': content} data = self.http_post('/ci/lint', post_data=post_data, **kwargs) return ((data['status'] == 'valid'), data['errors'])
Validate a gitlab CI configuration. Args: content (txt): The .gitlab-ci.yml content **kwargs: Extra options to send to the server (e.g. sudo) Raises: GitlabAuthenticationError: If authentication is not correct GitlabVerifyError: If the validation could not be done Returns: tuple: (True, []) if the file is valid, (False, errors(list)) otherwise
codesearchnet
def indent(self, space=4): if (not isinstance(space, int)): raise TypeError('space must be an int') if (space < 0): raise ValueError('space must be a non-negative integer') space = (' ' * space) o = [] l = 0 for c in self.newick(): if (c == '('): o.append('(\n') l += 1 o.append((space * l)) elif (c == ')'): o.append('\n') l -= 1 o.append((space * l)) o.append(')') elif (c == ','): o.append(',\n') o.append((space * l)) else: o.append(c) return ''.join(o)
Return an indented Newick string, just like ``nw_indent`` in Newick Utilities Args: ``space`` (``int``): The number of spaces a tab should equal Returns: ``str``: An indented Newick string
codesearchnet
def __init__(self, file_pattern, batch_size=1, buffer_size=1, parallelism=1, shift_ratio=0, seed=0, name=None, batches=None, compression_type=None): self._batch_size = batch_size if batches is not None: self._batch_size *= batches self._batches = batches self._file_pattern = file_pattern self._buffer_size = buffer_size self._parallelism = parallelism self._shift_ratio = shift_ratio self._seed = seed self._name = name self._compression_type = python_io.TFRecordCompressionType.NONE if compression_type is not None: self._compression_type = compression_type
Constructs a RecordInput Op. Args: file_pattern: File path to the dataset, possibly containing wildcards. All matching files will be iterated over each epoch. batch_size: How many records to return at a time. buffer_size: The maximum number of records the buffer will contain. parallelism: How many reader threads to use for reading from files. shift_ratio: What percentage of the total number files to move the start file forward by each epoch. seed: Specify the random number seed used by generator that randomizes records. name: Optional name for the operation. batches: None by default, creating a single batch op. Otherwise specifies how many batches to create, which are returned as a list when `get_yield_op()` is called. An example use case is to split processing between devices on one computer. compression_type: The type of compression for the file. Currently ZLIB and GZIP are supported. Defaults to none. Raises: ValueError: If one of the arguments is invalid.
github-repos
def write_json(self, path, contents, message): log.debug(message.format(path=path)) makedirs(os.path.dirname(path)) with open(path, "w") as fh: json.dump(contents, fh, indent=2, sort_keys=True)
Write json to disk. Args: path (str): the path to write to contents (dict): the contents of the json blob message (str): the message to log
juraj-google-style
def start_app(self, bundle_id): idevicedebug = must_look_exec('idevicedebug') kwargs = {'stdout': subprocess.PIPE, 'stderr': subprocess.PIPE} if sys.platform != 'darwin': kwargs['close_fds'] = True return subprocess.Popen([idevicedebug, "--udid", self.udid, 'run', bundle_id], **kwargs)
Start app by bundle_id Args: - bundle_id(string): ex com.netease.my Returns: idevicedebug subprocess instance
juraj-google-style
def get_student_enrollments(self): resp = self.requester.get(urljoin(self.base_url, self.enrollment_url)) resp.raise_for_status() return Enrollments(resp.json())
Returns an Enrollments object with the user enrollments Returns: Enrollments: object representing the student enrollments
codesearchnet
def read(self, vals): i = 0 if len(vals[i]) == 0: self.typical_or_extreme_period_name = None else: self.typical_or_extreme_period_name = vals[i] i += 1 if len(vals[i]) == 0: self.typical_or_extreme_period_type = None else: self.typical_or_extreme_period_type = vals[i] i += 1 if len(vals[i]) == 0: self.period_start_day = None else: self.period_start_day = vals[i] i += 1 if len(vals[i]) == 0: self.period_end_day = None else: self.period_end_day = vals[i] i += 1
Read values. Args: vals (list): list of strings representing values
juraj-google-style
def play_random(env, steps): try: done = True progress = tqdm(range(steps)) for _ in progress: if done: _ = env.reset() action = env.action_space.sample() _, reward, done, info = env.step(action) progress.set_postfix(reward=reward, info=info) env.render() except KeyboardInterrupt: pass env.close()
Play the environment making uniformly random decisions. Args: env (gym.Env): the initialized gym environment to play steps (int): the number of random steps to take Returns: None
juraj-google-style
def ToTsvExcel(self, columns_order=None, order_by=()): csv_result = self.ToCsv(columns_order, order_by, separator='\t') if (not isinstance(csv_result, six.text_type)): csv_result = csv_result.decode('utf-8') return csv_result.encode('UTF-16LE')
Returns a file in tab-separated-format readable by MS Excel. Returns a file in UTF-16 little endian encoding, with tabs separating the values. Args: columns_order: Delegated to ToCsv. order_by: Delegated to ToCsv. Returns: A tab-separated little endian UTF16 file representing the table.
codesearchnet
def require_debian_packages(packages: List[str]) -> None: present = are_debian_packages_installed(packages) missing_packages = [k for k, v in present.items() if not v] if missing_packages: missing_packages.sort() msg = ( "Debian packages are missing, as follows. Suggest:\n\n" "sudo apt install {}".format(" ".join(missing_packages)) ) log.critical(msg) raise ValueError(msg)
Ensure specific packages are installed under Debian. Args: packages: list of packages Raises: ValueError: if any are missing
juraj-google-style
def dispatch_event(event): try: if event.http_verb == enums.HTTPVerbs.GET: requests.get(event.url, params=event.params, timeout=REQUEST_TIMEOUT).raise_for_status() elif event.http_verb == enums.HTTPVerbs.POST: requests.post( event.url, data=json.dumps(event.params), headers=event.headers, timeout=REQUEST_TIMEOUT ).raise_for_status() except request_exception.RequestException as error: logging.error('Dispatch event failed. Error: %s' % str(error))
Dispatch the event being represented by the Event object. Args: event: Object holding information about the request to be dispatched to the Optimizely backend.
juraj-google-style
def __init__(self, linter_name, path, msg, line_nr=None, col=None): if line_nr: line_nr = int(line_nr) if col: col = int(col) self._linter_name = linter_name self.path = path self.line_nr = line_nr self.msg = msg self.col = col
Optionally set all attributes. Args: path (str): Relative file path. line (int): Line number. msg (str): Explanation of what is wrong. col (int): Column where the problem begins.
juraj-google-style
def get_configuration(head, update, head_source=None): head_source = (head_source or get_head_source(head)) update_source = get_acquisition_source(update) if ((not is_arxiv_and_publisher(head_source, update_source)) and is_manual_merge(head, update)): return ManualMergeOperations if (head_source == 'arxiv'): if (update_source == 'arxiv'): return ArxivOnArxivOperations else: return PublisherOnArxivOperations elif (update_source == 'arxiv'): return ArxivOnPublisherOperations else: return PublisherOnPublisherOperations
This function return the right configuration for the inspire_merge function in according to the given sources. Both parameters can not be None. Params: head(dict): the HEAD record update(dict): the UPDATE record head_source(string): the source of the HEAD record Returns: MergerConfigurationOperations: an object containing the rules needed to merge HEAD and UPDATE
codesearchnet
def _get_segments(self, start, request_size): if (not request_size): return [] end = (start + request_size) futures = [] while (request_size > self._max_request_size): futures.append(self._get_segment(start, self._max_request_size)) request_size -= self._max_request_size start += self._max_request_size if (start < end): futures.append(self._get_segment(start, (end - start))) return [fut.get_result() for fut in futures]
Get segments of the file from Google Storage as a list. A large request is broken into segments to avoid hitting urlfetch response size limit. Each segment is returned from a separate urlfetch. Args: start: start offset to request. Inclusive. Have to be within the range of the file. request_size: number of bytes to request. Returns: A list of file segments in order
codesearchnet
def _serve_plugins_listing(self, request): response = {} for plugin in self._plugins: start = time.time() response[plugin.plugin_name] = plugin.is_active() elapsed = (time.time() - start) logger.info('Plugin listing: is_active() for %s took %0.3f seconds', plugin.plugin_name, elapsed) return http_util.Respond(request, response, 'application/json')
Serves an object mapping plugin name to whether it is enabled. Args: request: The werkzeug.Request object. Returns: A werkzeug.Response object.
codesearchnet
def review_score(self, reviewer, product): return self._g.retrieve_review(reviewer, product).score
Find a review score from a given reviewer to a product. Args: reviewer: Reviewer i.e. an instance of :class:`ria.bipartite.Reviewer`. product: Product i.e. an instance of :class:`ria.bipartite.Product`. Returns: A review object representing the review from the reviewer to the product.
juraj-google-style
def create_attachment(cls, session, attachment): return super(Conversations, cls).create(session, attachment, endpoint_override='/attachments.json', out_type=Attachment)
Create an attachment. An attachment must be sent to the API before it can be used in a thread. Use this method to create the attachment, then use the resulting hash when creating a thread. Note that HelpScout only supports attachments of 10MB or lower. Args: session (requests.sessions.Session): Authenticated session. attachment (helpscout.models.Attachment): The attachment to be created. Returns: helpscout.models.Attachment: The newly created attachment (hash property only). Use this hash when associating the attachment with a new thread.
codesearchnet
def forward(self, hidden_states): hidden_states = hidden_states.transpose(1, 2) hidden_states = self.pointwise_conv1(hidden_states) hidden_states = nn.functional.glu(hidden_states, dim=1) hidden_states = self.depthwise_conv(hidden_states) hidden_states = self.norm(hidden_states) hidden_states = hidden_states * torch.sigmoid(hidden_states) hidden_states = self.pointwise_conv2(hidden_states) return hidden_states.transpose(1, 2)
Compute convolution module. Args: hidden_states (`torch.Tensor` of shape `(batch, time, channels)`): Input tensor. Returns: `torch.Tensor`: Output tensor of shape `(batch, time, channels)`.
github-repos
def are_debian_packages_installed(packages: List[str]) -> Dict[(str, bool)]: assert (len(packages) >= 1) require_executable(DPKG_QUERY) args = ([DPKG_QUERY, '-W', '-f=${Package} ${Status}\n'] + packages) completed_process = subprocess.run(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=False) encoding = sys.getdefaultencoding() stdout = completed_process.stdout.decode(encoding) stderr = completed_process.stderr.decode(encoding) present = OrderedDict() for line in stdout.split('\n'): if line: words = line.split() assert (len(words) >= 2) package = words[0] present[package] = ('installed' in words[1:]) for line in stderr.split('\n'): if line: words = line.split() assert (len(words) >= 2) package = words[(- 1)] present[package] = False log.debug('Debian package presence: {}', present) return present
Check which of a list of Debian packages are installed, via ``dpkg-query``. Args: packages: list of Debian package names Returns: dict: mapping from package name to boolean ("present?")
codesearchnet
class PatchingSpec: o: Any name: str custom_op: Callable orig_op: Optional[Callable] = None op_wrapper: Optional[Callable] = None
Data class that holds patching specifications. Args: o: Module / object where the op to patch is located name: Name of the op to monkey patch custom_op: Custom op that patches the original op orig_op: Original op that is being patched op_wrapper: Wrapper (optional) that wraps both the original and custom ops. It is useful for ops that are class or static methods for instance.
github-repos
def make_noise_surface(dims=DEFAULT_DIMS, blur=10, seed=None): if seed is not None: np.random.seed(seed) return gaussian_filter(np.random.normal(size=dims), blur)
Makes a surface by generating random noise and blurring it. Args: dims (pair): the dimensions of the surface to create blur (float): the amount of Gaussian blur to apply seed (int): a random seed to use (optional) Returns: surface: A surface.
juraj-google-style
def _open_tracing_interface(self, conn_id, callback): try: handle = self._find_handle(conn_id) services = self._connections[handle]['services'] except (ValueError, KeyError): callback(conn_id, self.id, False, 'Connection closed unexpectedly before we could open the streaming interface') return self._command_task.async_command(['_enable_tracing', handle, services], self._on_interface_finished, {'connection_id': conn_id, 'callback': callback})
Enable the debug tracing interface for this IOTile device Args: conn_id (int): the unique identifier for the connection callback (callback): Callback to be called when this command finishes callback(conn_id, adapter_id, success, failure_reason)
codesearchnet
def get_sequence_properties(self, clean_seq=False, representatives_only=True): for g in tqdm(self.genes): g.protein.get_sequence_properties(clean_seq=clean_seq, representative_only=representatives_only)
Run Biopython ProteinAnalysis and EMBOSS pepstats to summarize basic statistics of all protein sequences. Results are stored in the protein's respective SeqProp objects at ``.annotations`` Args: representative_only (bool): If analysis should only be run on the representative sequences
juraj-google-style
def members(self): resp = self._rtm_client.get('v1/current_team.members?all=true') if resp.is_fail(): raise RTMServiceError('Failed to get members of current team', resp) return resp.data['result']
Gets members of current team Returns: list of User Throws: RTMServiceError when request failed
codesearchnet
def _find_docstring_line_for_no_body(self, start): tracked = sorted(list(self._tokenized_triple_quotes.keys())) for i in tracked: if min(start, i) == start: return i return None
Find the docstring associated with a definition with no body in the node. In these cases, the provided start and end line number for that element are the same, so we must get the docstring based on the sequential position of known docstrings. Args: start: the row where the class / function starts. Returns: int: the row number where the docstring is found.
juraj-google-style
def ParseOptions(cls, options, output_module): if not hasattr(output_module, 'SetServerInformation'): raise errors.BadConfigObject('Unable to set server information.') server = cls._ParseStringOption( options, 'server', default_value=cls._DEFAULT_SERVER) port = cls._ParseNumericOption( options, 'port', default_value=cls._DEFAULT_PORT) output_module.SetServerInformation(server, port)
Parses and validates options. Args: options (argparse.Namespace): parser options. output_module (OutputModule): output module to configure. Raises: BadConfigObject: when the output module object does not have the SetServerInformation method.
juraj-google-style
def _split_ir_into_match_steps(pruned_ir_blocks): output = [] current_tuple = None for block in pruned_ir_blocks: if isinstance(block, OutputSource): continue elif isinstance(block, root_block_types): if (current_tuple is not None): output.append(current_tuple) current_tuple = (block,) elif isinstance(block, (CoerceType, Filter, MarkLocation)): current_tuple += (block,) else: raise AssertionError(u'Unexpected block type when converting to MATCH query: {} {}'.format(block, pruned_ir_blocks)) if (current_tuple is None): raise AssertionError(u'current_tuple was unexpectedly None: {}'.format(pruned_ir_blocks)) output.append(current_tuple) return [_per_location_tuple_to_step(x) for x in output]
Split a list of IR blocks into per-location MATCH steps. Args: pruned_ir_blocks: list of IR basic block objects that have gone through a lowering step. Returns: list of MatchStep namedtuples, each of which contains all basic blocks that correspond to a single MATCH step.
codesearchnet
def setup(self, disk_name, project, turbinia_zone): if ((project is None) or (turbinia_zone is None)): self.state.add_error('project or turbinia_zone are not all specified, bailing out', critical=True) return self.disk_name = disk_name self.project = project self.turbinia_zone = turbinia_zone try: turbinia_config.LoadConfig() self.turbinia_region = turbinia_config.TURBINIA_REGION self.instance = turbinia_config.PUBSUB_TOPIC if (turbinia_config.PROJECT != self.project): self.state.add_error('Specified project {0:s} does not match Turbinia configured project {1:s}. Use gcp_turbinia_import recipe to copy the disk into the same project.'.format(self.project, turbinia_config.PROJECT), critical=True) return self._output_path = tempfile.mkdtemp() self.client = turbinia_client.TurbiniaClient() except TurbiniaException as e: self.state.add_error(e, critical=True) return
Sets up the object attributes. Args: disk_name (string): Name of the disk to process project (string): The project containing the disk to process turbinia_zone (string): The zone containing the disk to process
codesearchnet
def PyParseIntCast(string, location, tokens): for index, token in enumerate(tokens): try: tokens[index] = int(token) except ValueError: logger.error('Unable to cast [{0:s}] to an int, setting to 0'.format( token)) tokens[index] = 0 for key in tokens.keys(): try: tokens[key] = int(tokens[key], 10) except ValueError: logger.error( 'Unable to cast [{0:s} = {1:d}] to an int, setting to 0'.format( key, tokens[key])) tokens[key] = 0
Return an integer from a string. This is a pyparsing callback method that converts the matched string into an integer. The method modifies the content of the tokens list and converts them all to an integer value. Args: string (str): original string. location (int): location in the string where the match was made. tokens (list[str]): extracted tokens, where the string to be converted is stored.
juraj-google-style
def encode_chunk(dataframe): csv_buffer = six.StringIO() dataframe.to_csv( csv_buffer, index=False, header=False, encoding="utf-8", float_format="%.15g", date_format="%Y-%m-%d %H:%M:%S.%f", ) body = csv_buffer.getvalue() if isinstance(body, bytes): body = body.decode("utf-8") body = body.encode("utf-8") return six.BytesIO(body)
Return a file-like object of CSV-encoded rows. Args: dataframe (pandas.DataFrame): A chunk of a dataframe to encode
juraj-google-style
def __init__(self, level, message, message_id, timestamp=None, now_reference=None): self.level = level self.message = message self.count = 1 self.id = message_id if timestamp is None: self.created = monotonic() elif now_reference is None: self.created = timestamp else: now = monotonic() adj = now - now_reference self.created = timestamp + adj if self.created > now: self.created = now
Constructor. Args: level (int): The message importance message (string): The message contents message_id (int): A unique id for the message timestamp (float): An optional monotonic value in seconds for when the message was created now_reference (float): If timestamp is not relative to monotonic() as called from this module then this should be now() as seen by whoever created the timestamp.
juraj-google-style
def complete_acquaintance_strategy(qubit_order: Sequence[ops.Qid], acquaintance_size: int=0, ) -> circuits.Circuit: if acquaintance_size < 0: raise ValueError('acquaintance_size must be non-negative.') elif acquaintance_size == 0: return circuits.Circuit(device=UnconstrainedAcquaintanceDevice) if acquaintance_size > len(qubit_order): return circuits.Circuit(device=UnconstrainedAcquaintanceDevice) if acquaintance_size == len(qubit_order): return circuits.Circuit.from_ops( acquaint(*qubit_order), device=UnconstrainedAcquaintanceDevice) strategy = circuits.Circuit.from_ops( (acquaint(q) for q in qubit_order), device=UnconstrainedAcquaintanceDevice) for size_to_acquaint in range(2, acquaintance_size + 1): expose_acquaintance_gates(strategy) replace_acquaintance_with_swap_network( strategy, qubit_order, size_to_acquaint) return strategy
Returns an acquaintance strategy capable of executing a gate corresponding to any set of at most acquaintance_size qubits. Args: qubit_order: The qubits on which the strategy should be defined. acquaintance_size: The maximum number of qubits to be acted on by an operation. Returns: An circuit capable of implementing any set of k-local operation.
juraj-google-style
def softplus(x): return ops.softplus(x)
Softplus activation function. It is defined as: `softplus(x) = log(exp(x) + 1)`. Args: x: Input tensor.
github-repos
def get_dag(nodes, downstream_fn) -> Tuple[Dict, Dict]: dag = {} node_by_ids = {} for node in nodes: downstream_ops = downstream_fn(node) dag[node.id] = set(downstream_ops) node_by_ids[node.id] = node return dag, node_by_ids
Return a dag representation of the nodes passed. This is equally used for pipelines and pipeline runs. Params: nodes: an instance of `Operation` | `OperationRun` the nodes to represent en dag. downstream_fn: a function that returns the downstream nodes of the a node. Returns: tuple: (dag, dict(node_id: node))
juraj-google-style
def GetDisplayName(self, file_entry=None): if file_entry is None: file_entry = self._file_entry if file_entry is None: raise ValueError('Missing file entry') path_spec = getattr(file_entry, 'path_spec', None) relative_path = path_helper.PathHelper.GetRelativePathForPathSpec( path_spec, mount_path=self._mount_path) if not relative_path: return file_entry.name return self.GetDisplayNameForPathSpec(path_spec)
Retrieves the display name for a file entry. Args: file_entry (Optional[dfvfs.FileEntry]): file entry object, where None will return the display name of self._file_entry. Returns: str: human readable string that describes the path to the file entry. Raises: ValueError: if the file entry is missing.
juraj-google-style
def create_frames(until=None): now = Date.now() if until: get_orbit(until, now) else: for body in list_bodies(): get_orbit(body.name, now)
Create frames available in the JPL files Args: until (str): Name of the body you want to create the frame of, and all frames in between. If ``None`` all the frames available in the .bsp files will be created Example: .. code-block:: python # All frames between Earth and Mars are created (Earth, EarthBarycenter, # SolarSystemBarycenter, MarsBarycenter and Mars) create_frames(until='Mars') # All frames between Earth and Phobos are created (Earth, EarthBarycenter, # SolarSystemBarycenter, MarsBarycenter and Phobos) create_frames(until='Phobos') # All frames available in the .bsp files are created create_frames()
codesearchnet
def uniprot_reviewed_checker_batch(uniprot_ids): uniprot_ids = ssbio.utils.force_list(uniprot_ids) invalid_ids = [i for i in uniprot_ids if not is_valid_uniprot_id(i)] uniprot_ids = [i for i in uniprot_ids if is_valid_uniprot_id(i)] if invalid_ids: warnings.warn("Invalid UniProt IDs {} will be ignored".format(invalid_ids)) Nmax = 200 N, rest = divmod(len(uniprot_ids), Nmax) uni_rev_dict = {} if rest > 0: N += 1 for i in range(0, N): i1 = i * Nmax i2 = (i + 1) * Nmax if i2 > len(uniprot_ids): i2 = len(uniprot_ids) query = uniprot_ids[i1:i2] query_string = '' for x in query: query_string += 'id:' + x + '+OR+' query_string = query_string.strip('+OR+') uni_rev_raw = StringIO(bsup.search(query_string, columns='id,reviewed', frmt='tab')) uni_rev_df = pd.read_table(uni_rev_raw, sep='\t', index_col=0) uni_rev_df = uni_rev_df.fillna(False) uni_rev_df = uni_rev_df[pd.notnull(uni_rev_df.Status)] uni_rev_df = uni_rev_df.replace(to_replace="reviewed", value=True) uni_rev_df = uni_rev_df.replace(to_replace="unreviewed", value=False) uni_rev_dict_adder = uni_rev_df.to_dict()['Status'] uni_rev_dict.update(uni_rev_dict_adder) return uni_rev_dict
Batch check if uniprot IDs are reviewed or not Args: uniprot_ids: UniProt ID or list of UniProt IDs Returns: A dictionary of {UniProtID: Boolean}
juraj-google-style
def probability_density(self, X): self.check_fit() return norm.pdf(X, loc=self.mean, scale=self.std)
Compute probability density. Arguments: X: `np.ndarray` of shape (n, 1). Returns: np.ndarray
codesearchnet
def get_reference(root): reference = {} elem = root.find('bibliographyLink') if elem is None: raise MissingElementError('bibliographyLink') ref_doi = elem.get('doi', None) ref_key = elem.get('preferredKey', None) if ref_doi is not None: try: ref = crossref_api.works(ids=ref_doi)['message'] except (HTTPError, habanero.RequestError, ConnectionError): if ref_key is None: raise KeywordError('DOI not found and preferredKey attribute not set') else: warn('Missing doi attribute in bibliographyLink or lookup failed. ' 'Setting "detail" key as a fallback; please update to the appropriate fields.' ) reference['detail'] = ref_key if reference['detail'][-1] != '.': reference['detail'] += '.' else: if ref_key is not None: warn('Using DOI to obtain reference information, rather than preferredKey.') reference['doi'] = elem.attrib['doi'] reference['journal'] = ref.get('container-title')[0] ref_year = ref.get('published-print') or ref.get('published-online') reference['year'] = int(ref_year['date-parts'][0][0]) reference['volume'] = int(ref.get('volume')) reference['pages'] = ref.get('page') reference['authors'] = [] for author in ref['author']: auth = {} auth['name'] = ' '.join([author['given'], author['family']]) orcid = author.get('ORCID') if orcid: auth['ORCID'] = orcid.lstrip('http: reference['authors'].append(auth) elif ref_key is not None: warn('Missing doi attribute in bibliographyLink. ' 'Setting "detail" key as a fallback; please update to the appropriate fields.' ) reference['detail'] = ref_key if reference['detail'][-1] != '.': reference['detail'] += '.' else: raise MissingAttributeError('preferredKey', 'bibliographyLink') return reference
Read reference info from root of ReSpecTh XML file. Args: root (`~xml.etree.ElementTree.Element`): Root of ReSpecTh XML file Returns: properties (`dict`): Dictionary with reference information
juraj-google-style
def __valueKeyWithHeaderIndex(self, values): machingIndexes = {} for (index, name) in enumerate(self.header): if (name in values): machingIndexes[index] = values[name] return machingIndexes
This is hellper function, so that we can mach decision values with row index as represented in header index. Args: values (dict): Normaly this will have dict of header values and values from decision Return: >>> return() { values[headerName] : int(headerName index in header array), ... }
codesearchnet
def set_record(self, name, record_id, record): if name not in self._cache: self._cache[name] = {} self._cache[name][record_id] = record
Save a record into the cache. Args: name (string): The name to save the model under. record_id (int): The record id. record (:class:`cinder_data.model.CinderModel`): The model
juraj-google-style
def cost(self, t_node, branch_length, multiplicity=2.0): merger_time = (t_node + branch_length) return ((self.integral_merger_rate(merger_time) - self.integral_merger_rate(t_node)) - ((np.log(self.total_merger_rate(merger_time)) * (multiplicity - 1.0)) / multiplicity))
returns the cost associated with a branch starting at t_node t_node is time before present, the branch goes back in time Args: - t_node: time of the node - branch_length: branch length, determines when this branch merges with sister - multiplicity: 2 if merger is binary, higher if this is a polytomy
codesearchnet
def has_implicit_access_to_catalog(user, obj): request = get_request_or_stub() decoded_jwt = get_decoded_jwt_from_request(request) return request_user_has_implicit_access_via_jwt(decoded_jwt, ENTERPRISE_CATALOG_ADMIN_ROLE, obj)
Check that if request user has implicit access to `ENTERPRISE_CATALOG_ADMIN_ROLE` feature role. Returns: boolean: whether the request user has access or not
codesearchnet
def dispatch(self, inp): inp = tf.reshape(inp, [self._batch * self._length, -1]) ret = tf.gather(inp, self._flat_indices) return ret
Send the inputs to the experts. Args: inp: a `Tensor` of shape "[batch, length, depth]` Returns: a tensor with shape [batch, num_experts, expert_capacity, depth]
juraj-google-style
def __rmtree(path): logger.info("rmtree: %s" % path) try: shutil.rmtree(path) return True except Exception as e: logger.error("rmtree: %s failed! Error: %s" % (path, e)) return False
Recursively delete a directory tree. Args: path (str): Path to the directory that needs to be deleted. Returns: bool: True if the operation is successful, False otherwise.
juraj-google-style
def pop_events(self, regex_pattern, timeout): if (not self.started): raise IllegalStateError('Dispatcher needs to be started before popping.') deadline = (time.time() + timeout) while True: results = self._match_and_pop(regex_pattern) if ((len(results) != 0) or (time.time() > deadline)): break time.sleep(1) if (len(results) == 0): raise queue.Empty('Timeout after {}s waiting for event: {}'.format(timeout, regex_pattern)) return sorted(results, key=(lambda event: event['time']))
Pop events whose names match a regex pattern. If such event(s) exist, pop one event from each event queue that satisfies the condition. Otherwise, wait for an event that satisfies the condition to occur, with timeout. Results are sorted by timestamp in ascending order. Args: regex_pattern: The regular expression pattern that an event name should match in order to be popped. timeout: Number of seconds to wait for events in case no event matching the condition exits when the function is called. Returns: Events whose names match a regex pattern. Empty if none exist and the wait timed out. Raises: IllegalStateError: Raised if pop is called before the dispatcher starts polling. queue.Empty: Raised if no event was found before time out.
codesearchnet
def __init__(self, cronfile): options = Options() options.day_of_week_start_index_zero = False options.use_24hour_time_format = True with open(cronfile) as f: for line in f.readlines(): parsed_line = self.parse_cron_line(line) if parsed_line: print("{} -> {}".format(parsed_line, ExpressionDescriptor(parsed_line, options)))
Initialize CrontabReader Args: cronfile: Path to cronfile Returns: None
juraj-google-style
def is_variable_initialized(variable): from tensorflow.python.ops import state_ops return state_ops.is_variable_initialized(variable)
Tests if a variable has been initialized. Args: variable: A `Variable`. Returns: Returns a scalar boolean Tensor, `True` if the variable has been initialized, `False` otherwise.
github-repos
def get_region_vcf(self, case_obj, chrom=None, start=None, end=None, gene_obj=None, variant_type='clinical', category='snv', rank_threshold=None): rank_threshold = (rank_threshold or (- 100)) variant_file = None if (variant_type == 'clinical'): if (category == 'snv'): variant_file = case_obj['vcf_files'].get('vcf_snv') elif (category == 'sv'): variant_file = case_obj['vcf_files'].get('vcf_sv') elif (category == 'str'): variant_file = case_obj['vcf_files'].get('vcf_str') elif (variant_type == 'research'): if (category == 'snv'): variant_file = case_obj['vcf_files'].get('vcf_snv_research') elif (category == 'sv'): variant_file = case_obj['vcf_files'].get('vcf_sv_research') if (not variant_file): raise SyntaxError('Vcf file does not seem to exist') vcf_obj = VCF(variant_file) region = '' if gene_obj: chrom = gene_obj['chromosome'] start = gene_obj['start'] end = gene_obj['end'] if chrom: if (start and end): region = '{0}:{1}-{2}'.format(chrom, start, end) else: region = '{0}'.format(chrom) else: rank_threshold = (rank_threshold or 5) with tempfile.NamedTemporaryFile(mode='w', delete=False) as temp: file_name = str(pathlib.Path(temp.name)) for header_line in vcf_obj.raw_header.split('\n'): if (len(header_line) > 3): temp.write((header_line + '\n')) for variant in vcf_obj(region): temp.write(str(variant)) return file_name
Produce a reduced vcf with variants from the specified coordinates This is used for the alignment viewer. Args: case_obj(dict): A case from the scout database variant_type(str): 'clinical' or 'research'. Default: 'clinical' category(str): 'snv' or 'sv'. Default: 'snv' rank_threshold(float): Only load variants above this score. Default: 5 chrom(str): Load variants from a certain chromosome start(int): Specify the start position end(int): Specify the end position gene_obj(dict): A gene object from the database Returns: file_name(str): Path to the temporary file
codesearchnet
def parse_text(text): span_dict = collections.defaultdict(list) for match in _NUMBER_PATTERN.finditer(text): span_text = text[match.start():match.end()] number = _parse_number(span_text) if number is not None: span_dict[match.span()].append(_get_numeric_value_from_float(number)) for begin_index, end_index in get_all_spans(text, max_ngram_length=1): if (begin_index, end_index) in span_dict: continue span_text = text[begin_index:end_index] number = _parse_number(span_text) if number is not None: span_dict[begin_index, end_index].append(_get_numeric_value_from_float(number)) for number, word in enumerate(_NUMBER_WORDS): if span_text == word: span_dict[begin_index, end_index].append(_get_numeric_value_from_float(float(number))) break for number, word in enumerate(_ORDINAL_WORDS): if span_text == word: span_dict[begin_index, end_index].append(_get_numeric_value_from_float(float(number))) break for begin_index, end_index in get_all_spans(text, max_ngram_length=_MAX_DATE_NGRAM_SIZE): span_text = text[begin_index:end_index] date = _parse_date(span_text) if date is not None: span_dict[begin_index, end_index].append(date) spans = sorted(span_dict.items(), key=lambda span_value: _get_span_length_key(span_value[0]), reverse=True) selected_spans = [] for span, value in spans: for selected_span, _ in selected_spans: if selected_span[0] <= span[0] and span[1] <= selected_span[1]: break else: selected_spans.append((span, value)) selected_spans.sort(key=lambda span_value: span_value[0][0]) numeric_value_spans = [] for span, values in selected_spans: numeric_value_spans.append(NumericValueSpan(begin_index=span[0], end_index=span[1], values=values)) return numeric_value_spans
Extracts longest number and date spans. Args: text: text to annotate Returns: List of longest numeric value spans.
github-repos
def cos(duration: int, amp: complex, freq: float = None, phase: float = 0, name: str = None) -> SamplePulse: if freq is None: freq = 1/duration return _sampled_cos_pulse(duration, amp, freq, phase=phase, name=name)
Generates cosine wave `SamplePulse`. Applies `left` sampling strategy to generate discrete pulse from continuous function. Args: duration: Duration of pulse. Must be greater than zero. amp: Pulse amplitude. freq: Pulse frequency, units of 1/dt. If `None` defaults to single cycle. phase: Pulse phase. name: Name of pulse.
juraj-google-style
def parse_key(key): hkey, lkey = struct.unpack('<II',key[0:UBIFS_SK_LEN]) ino_num = hkey & UBIFS_S_KEY_HASH_MASK key_type = lkey >> UBIFS_S_KEY_BLOCK_BITS khash = lkey return {'type':key_type, 'ino_num':ino_num, 'khash': khash}
Parse node key Arguments: Str:key -- Hex string literal of node key. Returns: Int:key_type -- Type of key, data, ino, dent, etc. Int:ino_num -- Inode number. Int:khash -- Key hash.
juraj-google-style
def fetch(self, subscription_id, data={}, **kwargs): return super(Subscription, self).fetch(subscription_id, data, **kwargs)
Fetch Subscription for given Id Args: subscription_id : Id for which subscription object is retrieved Returns: Subscription dict for given subscription Id
juraj-google-style
def validate_file(fpath, file_hash, algorithm='auto', chunk_size=65535): hasher = resolve_hasher(algorithm, file_hash) if str(hash_file(fpath, hasher, chunk_size)) == str(file_hash): return True else: return False
Validates a file against a sha256 or md5 hash. Args: fpath: path to the file being validated file_hash: The expected hash string of the file. The sha256 and md5 hash algorithms are both supported. algorithm: Hash algorithm, one of `"auto"`, `"sha256"`, or `"md5"`. The default `"auto"` detects the hash algorithm in use. chunk_size: Bytes to read at a time, important for large files. Returns: Boolean, whether the file is valid.
github-repos
def group_systems(self, group_name, systems): api_group_id = None headers = {'Content-Type': 'application/json'} group_path = self.api_url + '/v1/groups' group_get_path = group_path + ('?display_name=%s' % quote(group_name)) logger.debug("GET group: %s", group_get_path) net_logger.info("GET %s", group_get_path) get_group = self.session.get(group_get_path) logger.debug("GET group status: %s", get_group.status_code) if get_group.status_code == 200: api_group_id = get_group.json()['id'] if get_group.status_code == 404: logger.debug("POST group") data = json.dumps({'display_name': group_name}) net_logger.info("POST", group_path) post_group = self.session.post(group_path, headers=headers, data=data) logger.debug("POST group status: %s", post_group.status_code) logger.debug("POST Group: %s", post_group.json()) self.handle_fail_rcs(post_group) api_group_id = post_group.json()['id'] logger.debug("PUT group") data = json.dumps(systems) net_logger.info("PUT %s", group_path + ('/%s/systems' % api_group_id)) put_group = self.session.put(group_path + ('/%s/systems' % api_group_id), headers=headers, data=data) logger.debug("PUT group status: %d", put_group.status_code) logger.debug("PUT Group: %s", put_group.json())
Adds an array of systems to specified group Args: group_name: Display name of group systems: Array of {'machine_id': machine_id}
juraj-google-style
def setDataFrame(self, dataFrame, copyDataFrame=False, filePath=None): if (not isinstance(dataFrame, pandas.core.frame.DataFrame)): raise TypeError('not of type pandas.core.frame.DataFrame') self.layoutAboutToBeChanged.emit() if copyDataFrame: self._dataFrame = dataFrame.copy() else: self._dataFrame = dataFrame self._columnDtypeModel = ColumnDtypeModel(dataFrame) self._columnDtypeModel.dtypeChanged.connect(self.propagateDtypeChanges) self._columnDtypeModel.changeFailed.connect((lambda columnName, index, dtype: self.changingDtypeFailed.emit(columnName, index, dtype))) if (filePath is not None): self._filePath = filePath self.layoutChanged.emit() self.dataChanged.emit() self.dataFrameChanged.emit()
Setter function to _dataFrame. Holds all data. Note: It's not implemented with python properties to keep Qt conventions. Raises: TypeError: if dataFrame is not of type pandas.core.frame.DataFrame. Args: dataFrame (pandas.core.frame.DataFrame): assign dataFrame to _dataFrame. Holds all the data displayed. copyDataFrame (bool, optional): create a copy of dataFrame or use it as is. defaults to False. If you use it as is, you can change it from outside otherwise you have to reset the dataFrame after external changes.
codesearchnet
def make_serializable(json): new_dict = dict() for (key, value) in iteritems(json): if is_valid_json(value): new_dict[key] = value return new_dict
This function ensures that the dictionary is JSON serializable. If not, keys with non-serializable values are removed from the return value. Args: json (dict): Dictionary to convert to serializable Returns: new_dict (dict): New dictionary with non JSON serializable values removed
codesearchnet
def predictPhenos(self,use_fixed=None,use_random=None): assert self.noisPos is not None, 'No noise element' assert self.init, 'GP not initialised' assert self.Ntest is not None, 'VarianceDecomposition:: specify Ntest for predictions (method VarianceDecomposition::setTestSampleSize)' use_fixed = list(range(self.n_fixedEffs)) use_random = list(range(self.n_randEffs)) KiY = self.gp.agetKEffInvYCache() if self.fast==False: KiY = KiY.reshape(self.P,self.N).T Ypred = sp.zeros((self.Ntest,self.P)) for term_i in use_random: if term_i!=self.noisPos: Kstar = self.Kstar[term_i] if Kstar is None: warnings.warn('warning: random effect term %d not used for predictions as it has None cross covariance'%term_i) continue term = sp.dot(Kstar.T,KiY) if self.P>1: C = self.getTraitCovar(term_i) term = sp.dot(term,C) else: term *= self.getVarianceComps()[0,term_i] Ypred += term weights = self.getWeights() w_i = 0 for term_i in use_fixed: Fstar = self.Fstar[term_i] if Fstar is None: warnings.warn('warning: fixed effect term %d not used for predictions as it has None test sample design'%term_i) continue if self.P==1: A = sp.eye(1) else: A = self.vd.getDesign(term_i) Fstar = self.Fstar[term_i] W = weights[w_i:w_i+A.shape[0],0:1].T term = sp.dot(Fstar,sp.dot(W,A)) w_i += A.shape[0] Ypred += term return Ypred
predict the conditional mean (BLUP) Args: use_fixed: list of fixed effect indeces to use for predictions use_random: list of random effect indeces to use for predictions Returns: predictions (BLUP)
juraj-google-style
def score_one(self, x: beam.Row) -> Optional[float]: if len(x.__dict__) != 1: raise ValueError('ZScore.score_one expected univariate input, but got %s', str(x)) v = next(iter(x)) if v is None or math.isnan(v): return None sub_stat = self._sub_stat_tracker.get() stdev = self._stdev_tracker.get() if math.isnan(stdev) or math.isnan(sub_stat): return float('NaN') if abs(stdev) < EPSILON: return 0.0 return abs((v - sub_stat) / stdev)
Scores a data point using the Z-Score. Args: x: A `beam.Row` containing a single numerical value. Returns: float | None: The Z-Score.
github-repos
def set_logfile(self, filename, max_bytes=0, backup_count=0): _logger = logging.getLogger("neo-python") if not filename and not self.rotating_filehandler: _logger.removeHandler(self.rotating_filehandler) else: self.rotating_filehandler = RotatingFileHandler(filename, mode='a', maxBytes=max_bytes, backupCount=backup_count, encoding=None) self.rotating_filehandler.setLevel(logging.DEBUG) self.rotating_filehandler.setFormatter(LogFormatter(color=False)) _logger.addHandler(self.rotating_filehandler)
Setup logging to a (rotating) logfile. Args: filename (str): Logfile. If filename is None, disable file logging max_bytes (int): Maximum number of bytes per logfile. If used together with backup_count, logfile will be rotated when it reaches this amount of bytes. backup_count (int): Number of rotated logfiles to keep
juraj-google-style
def enum_to_yaml(cls: Type[T_EnumToYAML], representer: Representer, data: T_EnumToYAML) -> ruamel.yaml.nodes.ScalarNode: return representer.represent_scalar(f'!{cls.__name__}', f'{str(data)}')
Encodes YAML representation. This is a mixin method for writing enum values to YAML. It needs to be added to the enum as a classmethod. See the module docstring for further information on this approach and how to implement it. This method writes whatever is used in the string representation of the YAML value. Usually, this will be the unique name of the enumeration value. If the name is used, the corresponding ``EnumFromYAML`` mixin can be used to recreate the value. If the name isn't used, more care may be necessary, so a ``from_yaml`` method for that particular enumeration may be necessary. Note: This method assumes that the name of the enumeration value should be stored as a scalar node. Args: representer: Representation from YAML. data: Enumeration value to be encoded. Returns: Scalar representation of the name of the enumeration value.
codesearchnet
def children(cls, obj, save_type=base.SaveType.CHECKPOINT, **kwargs): obj._maybe_initialize_trackable() children = {} for name, ref in obj._trackable_children(save_type, **kwargs).items(): ref = converter.convert_to_trackable(ref, parent=obj) children[name] = ref return children
Returns all child trackables attached to obj. Args: obj: A `Trackable` object. save_type: A string, can be 'savedmodel' or 'checkpoint'. **kwargs: kwargs to use when retrieving the object's children. Returns: Dictionary of all children attached to the object with name to trackable.
github-repos
def kill_raylet_monitor(self, check_alive=True): self._kill_process_type( ray_constants.PROCESS_TYPE_RAYLET_MONITOR, check_alive=check_alive)
Kill the raylet monitor. Args: check_alive (bool): Raise an exception if the process was already dead.
juraj-google-style
def get_general_case_info(adapter, institute_id=None, slice_query=None): general = {} name_query = slice_query cases = adapter.cases(owner=institute_id, name_query=name_query) phenotype_cases = 0 causative_cases = 0 pinned_cases = 0 cohort_cases = 0 pedigree = {1: {'title': 'Single', 'count': 0}, 2: {'title': 'Duo', 'count': 0}, 3: {'title': 'Trio', 'count': 0}, 'many': {'title': 'Many', 'count': 0}} case_ids = set() total_cases = 0 for (total_cases, case) in enumerate(cases, 1): if institute_id: case_ids.add(case['_id']) if case.get('phenotype_terms'): phenotype_cases += 1 if case.get('causatives'): causative_cases += 1 if case.get('suspects'): pinned_cases += 1 if case.get('cohorts'): cohort_cases += 1 nr_individuals = len(case.get('individuals', [])) if (nr_individuals == 0): continue if (nr_individuals > 3): pedigree['many']['count'] += 1 else: pedigree[nr_individuals]['count'] += 1 general['total_cases'] = total_cases general['phenotype_cases'] = phenotype_cases general['causative_cases'] = causative_cases general['pinned_cases'] = pinned_cases general['cohort_cases'] = cohort_cases general['pedigree'] = pedigree general['case_ids'] = case_ids return general
Return general information about cases Args: adapter(adapter.MongoAdapter) institute_id(str) slice_query(str): Query to filter cases to obtain statistics for. Returns: general(dict)
codesearchnet
def merge(self, other): if ((self.m != other.m) or (self.p != other.p)): raise ValueError('Cannot merge HyperLogLog with different precisions.') self.reg = np.maximum(self.reg, other.reg)
Merge the other HyperLogLog with this one, making this the union of the two. Args: other (datasketch.HyperLogLog):
codesearchnet
def SelectComponent(ds, idxs): return MapData(ds, lambda dp: [dp[i] for i in idxs])
Select / reorder components from datapoints. Args: ds (DataFlow): input DataFlow. idxs (list[int]): a list of component indices. Example: .. code-block:: none original df produces: [c1, c2, c3] idxs: [2,1] this df: [c3, c2]
juraj-google-style
def __contains__(self, temp_ver): return os.path.exists(self._prefixed(temp_ver.name))
Checks if a given version is in this store Args: temp_ver (TemplateVersion): Version to look for Returns: bool: ``True`` if the version is in this store
juraj-google-style
def append(self, *values): for value in values: list.append(self, value) return self
Append values at the end of the list Allow chaining. Args: values: values to be appened at the end. Example: >>> from ww import l >>> lst = l([]) >>> lst.append(1) [1] >>> lst [1] >>> lst.append(2, 3).append(4,5) [1, 2, 3, 4, 5] >>> lst [1, 2, 3, 4, 5]
juraj-google-style
def propagate(cls, date): date = date.change_scale('TDB') t_tdb = date.julian_century def cos(angle): 'cosine in degrees' return np.cos(np.radians(angle)) def sin(angle): 'sine in degrees' return np.sin(np.radians(angle)) lambda_el = (((((((218.32 + (481267.8813 * t_tdb)) + (6.29 * sin((134.9 + (477198.85 * t_tdb))))) - (1.27 * sin((259.2 - (413335.38 * t_tdb))))) + (0.66 * sin((235.7 + (890534.23 * t_tdb))))) + (0.21 * sin((269.9 + (954397.7 * t_tdb))))) - (0.19 * sin((357.5 + (35999.05 * t_tdb))))) - (0.11 * sin((186.6 + (966404.05 * t_tdb))))) phi_el = ((((5.13 * sin((93.3 + (483202.03 * t_tdb)))) + (0.28 * sin((228.2 + (960400.87 * t_tdb))))) - (0.28 * sin((318.3 + (6003.18 * t_tdb))))) - (0.17 * sin((217.6 - (407332.2 * t_tdb))))) p = ((((0.9508 + (0.0518 * cos((134.9 + (477198.85 * t_tdb))))) + (0.0095 * cos((259.2 - (413335.38 * t_tdb))))) + (0.0078 * cos((235.7 + (890534.23 * t_tdb))))) + (0.0028 * cos((269.9 + (954397.7 * t_tdb))))) e_bar = (((23.439291 - (0.0130042 * t_tdb)) - (1.64e-07 * (t_tdb ** 2))) + (5.04e-07 * (t_tdb ** 3))) r_moon = (Earth.r / sin(p)) state_vector = (r_moon * np.array([(cos(phi_el) * cos(lambda_el)), (((cos(e_bar) * cos(phi_el)) * sin(lambda_el)) - (sin(e_bar) * sin(phi_el))), (((sin(e_bar) * cos(phi_el)) * sin(lambda_el)) + (cos(e_bar) * sin(phi_el))), 0, 0, 0])) return Orbit(date, state_vector, 'cartesian', 'EME2000', cls())
Compute the Moon position at a given date Args: date (~beyond.utils.date.Date) Return: ~beyond.orbits.orbit.Orbit: Position of the Moon in EME2000 frame Example: .. code-block:: python from beyond.utils.date import Date MoonPropagator.propagate(Date(1994, 4, 28)) # Orbit = # date = 1994-04-28T00:00:00 UTC # form = Cartesian # frame = EME2000 # propag = MoonPropagator # coord = # x = -134181157.317 # y = -311598171.54 # z = -126699062.437 # vx = 0.0 # vy = 0.0 # vz = 0.0
codesearchnet
def get_path_str(self, sep=os.path.sep, type_str=None): return sep.join( list( reversed( [ v.label_str for v in self.parent_gen if type_str in (None, v.type_str) ] ) ) )
Get path from root to this node. Args: sep: str One or more characters to insert between each element in the path. Defaults to "/" on Unix and "\" on Windows. type_str: SUBJECT_NODE_TAG, TYPE_NODE_TAG or None. If set, only include information from nodes of that type. Returns: str: String describing the path from the root to this node.
juraj-google-style
def shannon_entropy(pvec, base=2): if base == 2: def logfn(x): return - x * np.log2(x) elif base == np.e: def logfn(x): return - x * np.log(x) else: def logfn(x): return -x * np.log(x) / np.log(base) h = 0. for x in pvec: if 0 < x < 1: h += logfn(x) return h
Compute the Shannon entropy of a probability vector. The shannon entropy of a probability vector pv is defined as $H(pv) = - \\sum_j pv[j] log_b (pv[j])$ where $0 log_b 0 = 0$. Args: pvec (array_like): a probability vector. base (int): the base of the logarith Returns: float: The Shannon entropy H(pvec).
juraj-google-style
def ShowUnspentCoins(wallet, asset_id=None, from_addr=None, watch_only=False, do_count=False): if (wallet is None): print('Please open a wallet.') return watch_only_flag = (64 if watch_only else 0) if asset_id: unspents = wallet.FindUnspentCoinsByAsset(asset_id, from_addr=from_addr, watch_only_val=watch_only_flag) else: unspents = wallet.FindUnspentCoins(from_addr=from_addr, watch_only_val=watch_only) if do_count: print('\n-----------------------------------------------') print(('Total Unspent: %s' % len(unspents))) return unspents for unspent in unspents: print('\n-----------------------------------------------') print(json.dumps(unspent.ToJson(), indent=4)) if (not unspents): print('No unspent assets matching the arguments.') return unspents
Show unspent coin objects in the wallet. Args: wallet (neo.Wallet): wallet to show unspent coins from. asset_id (UInt256): a bytearray (len 32) representing an asset on the blockchain. from_addr (UInt160): a bytearray (len 20) representing an address. watch_only (bool): indicate if this shows coins that are in 'watch only' addresses. do_count (bool): if True only show a count of unspent assets. Returns: list: a list of unspent ``neo.Wallet.Coin`` in the wallet
codesearchnet
def _encode_value(self, value): if isinstance(value, (int, float, str, bool, datetime)): return value elif isinstance(value, list): return [self._encode_value(item) for item in value] elif isinstance(value, dict): result = {} for key, item in value.items(): result[key] = self._encode_value(item) return result else: return self._gridfs.put(Binary(pickle.dumps(value)), workflow_id=self._workflow_id)
Encodes the value such that it can be stored into MongoDB. Any primitive types are stored directly into MongoDB, while non-primitive types are pickled and stored as GridFS objects. The id pointing to a GridFS object replaces the original value. Args: value (object): The object that should be encoded for storing in MongoDB. Returns: object: The encoded value ready to be stored in MongoDB.
juraj-google-style
def update_metadata(self, resource, keys_vals): self.metadata_service.set_auth(self._token_metadata) self.metadata_service.update(resource, keys_vals)
Updates key-value pairs with the given resource. Will attempt to update all key-value pairs even if some fail. Keys must already exist. Args: resource (intern.resource.boss.BossResource) keys_vals (dictionary): Collection of key-value pairs to update on the given resource. Raises: HTTPErrorList on failure.
codesearchnet
def set_device_state(self, device, state, id_override=None, type_override=None): _LOGGER.info('Setting state via online API') object_id = (id_override or device.object_id()) object_type = (type_override or device.object_type()) url_string = '{}/{}s/{}'.format(self.BASE_URL, object_type, object_id) if ((state is None) or (object_type == 'group')): url_string += '/activate' if (state is None): arequest = requests.post(url_string, headers=API_HEADERS) else: arequest = requests.post(url_string, data=json.dumps(state), headers=API_HEADERS) else: arequest = requests.put(url_string, data=json.dumps(state), headers=API_HEADERS) if (arequest.status_code == 401): new_token = refresh_access_token() if new_token: arequest = requests.put(url_string, data=json.dumps(state), headers=API_HEADERS) else: raise WinkAPIException('Failed to refresh access token.') response_json = arequest.json() _LOGGER.debug('%s', response_json) return response_json
Set device state via online API. Args: device (WinkDevice): The device the change is being requested for. state (Dict): The state being requested. id_override (String, optional): A device ID used to override the passed in device's ID. Used to make changes on sub-devices. i.e. Outlet in a Powerstrip. The Parent device's ID. type_override (String, optional): Used to override the device type when a device inherits from a device other than WinkDevice. Returns: response_json (Dict): The API's response in dictionary format
codesearchnet
def is_initialized(self, name=None): if values_util.is_saving_non_distributed(): return self._primary.is_initialized() if self._use_packed_variable(): return self._packed_var.is_initialized() result = self._primary.is_initialized() for v in self._values[1:-1]: result = math_ops.logical_and(result, v.is_initialized()) result = math_ops.logical_and(result, self._values[-1].is_initialized(), name=name) return result
Identifies if all the component variables are initialized. Args: name: Name of the final `logical_and` op. Returns: The op that evaluates to True or False depending on if all the component variables are initialized.
github-repos
def __init__(self, pred=None, pivot=None, branch=None, name='cond_text', context_def=None, import_scope=None): self._name = ops.get_default_graph().unique_name(name) if context_def: self._init_from_proto(context_def, import_scope=import_scope) else: ControlFlowContext.__init__(self) self._pred = pred self._pivot = pivot self._branch = branch self._values.add(pred.name) self._external_values[pred.name] = pred self._values.add(pivot.name) pivot.op._set_control_flow_context(self)
Creates a `CondContext`. Args: pred: The `boolean` tensor for the conditional predicate. pivot: The predicate tensor in this branch. branch: 0 or 1 representing this branch. name: Name of the `CondContext` python object. context_def: Optional `ContextDef` protocol buffer to initialize the `CondContext` object from. import_scope: Optional `string`. Name scope to add. Only used when initialing from protocol buffer.
github-repos
def get_states(self, n): return self.states[len(self.new_states):(len(self.new_states) + n)]
Get the next n recurrent states. Called by layers in "incremental" mode. Args: n: an integer Returns: a list of n Tensors
codesearchnet
def _unflatten_dict(flat_dict, prefixes): original_dict = {} for key, value in flat_dict.items(): prefix_found = False for prefix in prefixes: full_prefix = "__" + prefix + "_" if key.startswith(full_prefix): if prefix not in original_dict: original_dict[prefix] = {} original_dict[prefix][key[len(full_prefix):]] = value prefix_found = True break if not prefix_found: original_dict[key] = value return original_dict
Returns a dict of dicts if any prefixes match keys in the flat dict. The function handles the case where the prefix may not be a dict. Args: flat_dict: A dict without any nesting. prefixes: A list of strings which may have been dicts in the original structure.
juraj-google-style
def __init__(self, filter=None): self._filter = filter self._context = datalab.Context.default() self._api = discovery.build('ml', 'v1', credentials=self._context.credentials) self._page_size = 0
Initializes an instance of a CloudML Job list that is iteratable ("for job in jobs()"). Args: filter: filter string for retrieving jobs, such as "state=FAILED" context: an optional Context object providing project_id and credentials. api: an optional CloudML API client.
juraj-google-style
def _fulfillment_to_details(fulfillment): if (fulfillment.type_name == 'ed25519-sha-256'): return {'type': 'ed25519-sha-256', 'public_key': base58.b58encode(fulfillment.public_key).decode()} if (fulfillment.type_name == 'threshold-sha-256'): subconditions = [_fulfillment_to_details(cond['body']) for cond in fulfillment.subconditions] return {'type': 'threshold-sha-256', 'threshold': fulfillment.threshold, 'subconditions': subconditions} raise UnsupportedTypeError(fulfillment.type_name)
Encode a fulfillment as a details dictionary Args: fulfillment: Crypto-conditions Fulfillment object
codesearchnet
def __init__(self, report_type): self._report_type = report_type self.categories = dict([(x, {}) for x in self.active_days])
Constructor. Args: report_type: rdf_stats.ClientGraphSeries.ReportType for the client stats to track.
juraj-google-style
def __init__(self, port=2223, task_type=None, task_id=None, rpc_layer=None, environment=None): self._task_type = task_type self._task_id = task_id self._rpc_layer = rpc_layer self._environment = environment self._port = str(port)
Creates a new SageMakerClusterResolver. Args: port: (integer, optional) Override default port usage of 2223 task_type: (String, optional) Overrides the task type. task_id: (Integer, optional) Overrides the task index. rpc_layer: (String, optional) Overrides the rpc layer TensorFlow uses. environment: (String, optional) Overrides the environment TensorFlow operates in.
github-repos
def do_batch(args): if (args.subcommand == 'list'): do_batch_list(args) if (args.subcommand == 'show'): do_batch_show(args) if (args.subcommand == 'status'): do_batch_status(args) if (args.subcommand == 'submit'): do_batch_submit(args)
Runs the batch list, batch show or batch status command, printing output to the console Args: args: The parsed arguments sent to the command at runtime
codesearchnet