code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def _on_report(self, report, connection_id):
self._logger.info('Received report: %s', str(report))
self._trigger_callback('on_report', connection_id, report)
return False | Callback function called when a report has been processed.
Args:
report (IOTileReport): The report object
connection_id (int): The connection id related to this report
Returns:
- True to indicate that IOTileReportParser should also keep a copy of the report
or False to indicate it should delete it. | codesearchnet |
def stateful_ops(self):
self._create_definition_if_needed()
return self._stateful_ops | Returns the list of stateful ops in function definition.
Returns:
A list of (op.name, op.type) pairs. | github-repos |
def apply_middleware(*middlewares):
def inner(create_store_):
def create_wrapper(reducer, enhancer=None):
store = create_store_(reducer, enhancer)
dispatch = store['dispatch']
middleware_api = {
'get_state': store['get_state'],
'dispatch': lambda action: dispatch(action),
}
chain = [mw(middleware_api) for mw in middlewares]
dispatch = compose(*chain)(store['dispatch'])
return extend(store, {'dispatch': dispatch})
return create_wrapper
return inner | creates an enhancer function composed of middleware
Args:
*middlewares: list of middleware functions to apply
Returns:
an enhancer for subsequent calls to create_store() | juraj-google-style |
def save_spectre_plot(self, filename='spectre.pdf', img_format='pdf', sigma=0.05, step=0.01):
(d, plt) = self.get_spectre_plot(sigma, step)
plt.savefig(filename, format=img_format) | Save matplotlib plot of the spectre to a file.
Args:
filename: Filename to write to.
img_format: Image format to use. Defaults to EPS.
sigma: Full width at half maximum in eV for normal functions.
step: bin interval in eV | codesearchnet |
def union_of_bboxes(height, width, bboxes, erosion_rate=0.0, to_int=False):
(x1, y1) = (width, height)
(x2, y2) = (0, 0)
for b in bboxes:
(w, h) = ((b[2] - b[0]), (b[3] - b[1]))
(lim_x1, lim_y1) = ((b[0] + (erosion_rate * w)), (b[1] + (erosion_rate * h)))
(lim_x2, lim_y2) = ((b[2] - (erosion_rate * w)), (b[3] - (erosion_rate * h)))
(x1, y1) = (np.min([x1, lim_x1]), np.min([y1, lim_y1]))
(x2, y2) = (np.max([x2, lim_x2]), np.max([y2, lim_y2]))
return (x1, y1, x2, y2) | Calculate union of bounding boxes.
Args:
height (float): Height of image or space.
width (float): Width of image or space.
bboxes (list): List like bounding boxes. Format is `[x_min, y_min, x_max, y_max]`.
erosion_rate (float): How much each bounding box can be shrinked, useful for erosive cropping.
Set this in range [0, 1]. 0 will not be erosive at all, 1.0 can make any bbox to lose its volume. | codesearchnet |
def ConvertStringToFilename(name):
return re.sub(
r"\W", lambda x: "%%%02X" % ord(x.group(0)), name,
flags=re.UNICODE).rstrip("/") | Converts an unicode string to a filesystem safe filename.
For maximum compatibility we escape all chars which are not alphanumeric (in
the unicode sense).
Args:
name: a unicode string that is part of a subject.
Returns:
A safe filename with escaped special chars. | juraj-google-style |
def add(self, name, value, bitmask=DEFMASK):
_add_enum_member(self._eid, name, value, bitmask) | Add an enum member
Args:
name: Name of the member
value: value of the member
bitmask: bitmask. Only use if enum is a bitfield. | juraj-google-style |
def setMaximum(self, maximum):
if (not isinstance(maximum, int)):
raise TypeError('Argument is not of type int or long')
self._maximum = maximum | setter to _maximum.
Args:
maximum (int or long): new _maximum value | codesearchnet |
def Readdir(self, path, fh=None):
if self.DataRefreshRequired(path):
self._RunAndWaitForVFSFileUpdate(path)
return super(GRRFuse, self).Readdir(path, fh=None) | Updates the directory listing from the client.
Args:
path: The path to the directory to update. Client is inferred from this.
fh: A file handler. Not used.
Returns:
A list of filenames. | juraj-google-style |
def load_weights_from_hdf5_group(f, model):
if 'keras_version' in f.attrs:
original_keras_version = f.attrs['keras_version']
if hasattr(original_keras_version, 'decode'):
original_keras_version = original_keras_version.decode('utf8')
else:
original_keras_version = '1'
if 'backend' in f.attrs:
original_backend = f.attrs['backend']
if hasattr(original_backend, 'decode'):
original_backend = original_backend.decode('utf8')
else:
original_backend = None
filtered_layers = []
for layer in model.layers:
weights = _legacy_weights(layer)
if weights:
filtered_layers.append(layer)
layer_names = load_attributes_from_hdf5_group(f, 'layer_names')
filtered_layer_names = []
for name in layer_names:
g = f[name]
weight_names = load_attributes_from_hdf5_group(g, 'weight_names')
if weight_names:
filtered_layer_names.append(name)
layer_names = filtered_layer_names
if len(layer_names) != len(filtered_layers):
raise ValueError(f'Layer count mismatch when loading weights from file. Model expected {len(filtered_layers)} layers, found {len(layer_names)} saved layers.')
for k, name in enumerate(layer_names):
g = f[name]
layer = filtered_layers[k]
symbolic_weights = _legacy_weights(layer)
weight_values = load_subset_weights_from_hdf5_group(g)
if len(weight_values) != len(symbolic_weights):
raise ValueError(f'Weight count mismatch for layer
_set_weights(layer, symbolic_weights, weight_values, name=f'layer
if 'top_level_model_weights' in f:
symbolic_weights = list((v for v in model._trainable_variables + model._non_trainable_variables if v in model.weights))
weight_values = load_subset_weights_from_hdf5_group(f['top_level_model_weights'])
if len(weight_values) != len(symbolic_weights):
raise ValueError(f'Weight count mismatch for top-level weights when loading weights from file. Model expects {len(symbolic_weights)} top-level weight(s). Received {len(weight_values)} saved top-level weight(s)')
_set_weights(model, symbolic_weights, weight_values, name='top-level model') | Implements topological (order-based) weight loading.
Args:
f: A pointer to a HDF5 group.
model: Model instance.
Raises:
ValueError: in case of mismatch between provided layers
and weights file. | github-repos |
def build_subresource_uri(self, resource_id_or_uri=None, subresource_id_or_uri=None, subresource_path=''):
if subresource_id_or_uri and "/" in subresource_id_or_uri:
return subresource_id_or_uri
else:
if not resource_id_or_uri:
raise exceptions.HPOneViewValueError(RESOURCE_ID_OR_URI_REQUIRED)
resource_uri = self.build_uri(resource_id_or_uri)
uri = "{}/{}/{}".format(resource_uri, subresource_path, str(subresource_id_or_uri or ''))
uri = uri.replace("
if uri.endswith("/"):
uri = uri[:-1]
return uri | Helps to build a URI with resource path and its sub resource path.
Args:
resoure_id_or_uri: ID/URI of the main resource.
subresource_id__or_uri: ID/URI of the sub resource.
subresource_path: Sub resource path to be added with the URI.
Returns:
Returns URI | juraj-google-style |
def GetNTFSFileEntryByPathSpec(self, path_spec):
location = getattr(path_spec, 'location', None)
mft_attribute = getattr(path_spec, 'mft_attribute', None)
mft_entry = getattr(path_spec, 'mft_entry', None)
if mft_attribute is not None and mft_entry is not None:
fsntfs_file_entry = self._fsntfs_volume.get_file_entry(mft_entry)
elif location is not None:
fsntfs_file_entry = self._fsntfs_volume.get_file_entry_by_path(location)
else:
raise errors.PathSpecError(
'Path specification missing location and MFT entry.')
return fsntfs_file_entry | Retrieves the NTFS file entry for a path specification.
Args:
path_spec (PathSpec): a path specification.
Returns:
pyfsntfs.file_entry: NTFS file entry.
Raises:
PathSpecError: if the path specification is missing location and
MFT entry. | juraj-google-style |
def list_documents(self, limit=None):
limit_str = ''
if limit:
try:
limit_str = 'LIMIT {}'.format(int(limit))
except (TypeError, ValueError):
pass
query = ('SELECT identifier FROM identifier_index ' + limit_str)
for row in self.backend.library.database.connection.execute(query).fetchall():
(yield row['identifier']) | Generates vids of all indexed identifiers.
Args:
limit (int, optional): If not empty, the maximum number of results to return
Generates:
str: vid of the document. | codesearchnet |
def _get_oxm_field_int(self):
if (self.oxm_class == OxmClass.OFPXMC_OPENFLOW_BASIC):
return OxmOfbMatchField(self.oxm_field).value
elif ((not isinstance(self.oxm_field, int)) or (self.oxm_field > 127)):
raise ValueError('oxm_field above 127: "{self.oxm_field}".')
return self.oxm_field | Return a valid integer value for oxm_field.
Used while packing.
Returns:
int: valid oxm_field value.
Raises:
ValueError: If :attribute:`oxm_field` is bigger than 7 bits or
should be :class:`OxmOfbMatchField` and the enum has no such
value. | codesearchnet |
def multiprocess_mapping(func, iterable):
if os.name == 'nt':
return list(map(func, iterable))
try:
p = multiprocessing.Pool()
return_data = list(p.imap(func, iterable))
p.close()
p.join()
return return_data
except OSError:
return list(map(func, iterable)) | Multiprocess mapping the given function on the given iterable.
This only works in Linux and Mac systems since Windows has no forking capability. On Windows we fall back on
single processing. Also, if we reach memory limits we fall back on single cpu processing.
Args:
func (func): the function to apply
iterable (iterable): the iterable with the elements we want to apply the function on | juraj-google-style |
def read_scan(self):
def floatList(l):
' return a list of float from a list of string '
return [float(v) for v in l]
scan_patt = re.compile('^\\sSummary of the potential surface scan:')
optscan_patt = re.compile('^\\sSummary of Optimized Potential Surface Scan')
data = {'energies': list(), 'coords': dict()}
with zopen(self.filename, 'r') as f:
line = f.readline()
while (line != ''):
if optscan_patt.match(line):
f.readline()
line = f.readline()
endScan = False
while (not endScan):
data['energies'] += floatList(float_patt.findall(line))
line = f.readline()
while (not re.search('(^\\s+(\\d+)|^\\s-+)', line)):
icname = line.split()[0].strip()
if (icname in data['coords']):
data['coords'][icname] += floatList(float_patt.findall(line))
else:
data['coords'][icname] = floatList(float_patt.findall(line))
line = f.readline()
if re.search('^\\s-+', line):
endScan = True
else:
line = f.readline()
elif scan_patt.match(line):
line = f.readline()
data['coords'] = {icname: list() for icname in line.split()[1:(- 1)]}
f.readline()
line = f.readline()
while (not re.search('^\\s-+', line)):
values = floatList(line.split())
data['energies'].append(values[(- 1)])
for (i, icname) in enumerate(data['coords']):
data['coords'][icname].append(values[(i + 1)])
line = f.readline()
else:
line = f.readline()
return data | Read a potential energy surface from a gaussian scan calculation.
Returns:
A dict: {"energies": [ values ],
"coords": {"d1": [ values ], "A2", [ values ], ... }}
"energies" are the energies of all points of the potential energy
surface. "coords" are the internal coordinates used to compute the
potential energy surface and the internal coordinates optimized,
labelled by their name as defined in the calculation. | codesearchnet |
def _mark_maybe_missing_members(self, values):
values = list(values)
seen = set()
while values:
v = values.pop(0)
if v not in seen:
seen.add(v)
if isinstance(v, abstract.SimpleValue):
v.maybe_missing_members = True
for child in v.instance_type_parameters.values():
values.extend(child.data) | Set maybe_missing_members to True on these values and their type params.
Args:
values: A list of BaseValue objects. On every instance among the values,
recursively set maybe_missing_members to True on the instance and its
type parameters. | github-repos |
def _get_job_metadata(provider, user_id, job_name, script, task_ids, user_project, unique_job_id):
create_time = dsub_util.replace_timezone(datetime.datetime.now(), tzlocal())
user_id = (user_id or dsub_util.get_os_user())
job_metadata = provider.prepare_job_metadata(script.name, job_name, user_id, create_time)
if unique_job_id:
job_metadata['job-id'] = uuid.uuid4().hex
job_metadata['create-time'] = create_time
job_metadata['script'] = script
job_metadata['user-project'] = user_project
if task_ids:
job_metadata['task-ids'] = dsub_util.compact_interval_string(list(task_ids))
return job_metadata | Allow provider to extract job-specific metadata from command-line args.
Args:
provider: job service provider
user_id: user submitting the job
job_name: name for the job
script: the script to run
task_ids: a set of the task-ids for all tasks in the job
user_project: name of the project to be billed for the request
unique_job_id: generate a unique job id
Returns:
A dictionary of job-specific metadata (such as job id, name, etc.) | codesearchnet |
def register_site(self):
if self.oxd_id:
logger.info('Client is already registered. ID: %s', self.oxd_id)
return self.oxd_id
params = {'authorization_redirect_uri': self.authorization_redirect_uri, 'oxd_rp_programming_language': 'python'}
for op in self.opt_params:
if self.config.get('client', op):
params[op] = self.config.get('client', op)
for olp in self.opt_list_params:
if self.config.get('client', olp):
params[olp] = self.config.get('client', olp).split(',')
logger.debug('Sending command `register_site` with params %s', params)
response = self.msgr.request('register_site', **params)
logger.debug('Received response: %s', response)
if (response['status'] == 'error'):
raise OxdServerError(response['data'])
self.oxd_id = response['data']['oxd_id']
self.config.set('oxd', 'id', self.oxd_id)
logger.info('Site registration successful. Oxd ID: %s', self.oxd_id)
return self.oxd_id | Function to register the site and generate a unique ID for the site
Returns:
**string:** The ID of the site (also called client id) if the registration is successful
Raises:
**OxdServerError:** If the site registration fails. | codesearchnet |
def get_morph_files(directory):
lsdir = (os.path.join(directory, m) for m in os.listdir(directory))
return list(filter(_is_morphology_file, lsdir)) | Get a list of all morphology files in a directory
Returns:
list with all files with extensions '.swc' , 'h5' or '.asc' (case insensitive) | codesearchnet |
def log(cls, event=None, actor=None, data=None):
from cloud_inquisitor.log import auditlog
auditlog(event=event, actor=actor, data=data) | Generate and insert a new event
Args:
event (str): Action performed
actor (str): Actor (user or subsystem) triggering the event
data (dict): Any extra data necessary for describing the event
Returns:
`None` | juraj-google-style |
def basis_state(str_state, num):
n = int(str_state, 2)
if (num >= len(str_state)):
state = np.zeros((1 << num), dtype=complex)
state[n] = 1
return state
else:
raise QiskitError('size of bitstring is greater than num.') | Return a basis state ndarray.
Args:
str_state (string): a string representing the state.
num (int): the number of qubits
Returns:
ndarray: state(2**num) a quantum state with basis basis state.
Raises:
QiskitError: if the dimensions is wrong | codesearchnet |
def from_tuples(year_month_day_tuples, validate=True):
years, months, days = ([], [], [])
for t in year_month_day_tuples:
years.append(t[0])
months.append(t[1])
days.append(t[2])
years = tf.constant(years, dtype=tf.int32)
months = tf.constant(months, dtype=tf.int32)
days = tf.constant(days, dtype=tf.int32)
return from_year_month_day(years, months, days, validate) | Creates DateTensor from a sequence of year-month-day Tuples.
Args:
year_month_day_tuples: Sequence of (year, month, day) Tuples. Months are
1-based; constants from Months enum can be used instead of ints. Days are
also 1-based.
validate: Whether to validate the dates.
Returns:
DateTensor object.
#### Example
```python
date_tensor = tff.datetime.dates_from_tuples([(2015, 4, 15), (2017, 12, 30)])
``` | github-repos |
def GetArtifactsForCollection(os_name, artifact_list):
artifact_arranger = ArtifactArranger(os_name, artifact_list)
artifact_names = artifact_arranger.GetArtifactsInProperOrder()
return artifact_names | Wrapper for the ArtifactArranger.
Extend the artifact list by dependencies and sort the artifacts to resolve the
dependencies.
Args:
os_name: String specifying the OS name.
artifact_list: List of requested artifact names.
Returns:
A list of artifacts such that if they are collected in the given order
their dependencies are resolved. | juraj-google-style |
def get_variable(self, feature_column, name):
if name in self._cols_to_vars_map[feature_column]:
return self._cols_to_vars_map[feature_column][name]
raise ValueError('Variable does not exist.') | Returns an existing variable.
Args:
feature_column: A `FeatureColumn` object this variable corresponds to.
name: variable name. | github-repos |
def get_vms(self, vm_names=None):
if not vm_names:
return self._vms.copy()
missing_vms = []
vms = {}
for name in vm_names:
try:
vms[name] = self._vms[name]
except KeyError:
missing_vms.append(name)
if missing_vms:
raise utils.LagoUserException(
'The following vms do not exist: \n{}'.format(
'\n'.join(missing_vms)
)
)
return vms | Returns the vm objects associated with vm_names
if vm_names is None, return all the vms in the prefix
Args:
vm_names (list of str): The names of the requested vms
Returns
dict: Which contains the requested vm objects indexed by name
Raises:
utils.LagoUserException: If a vm name doesn't exist | juraj-google-style |
def pack_tangents(tensors):
return TangentInfo(*pywrap_tfe.TFE_Py_PackJVPs(tensors)) | Packs forward accumulator state into a TangentInfo tuple.
Args:
tensors: A flat list of Tensors to pack forward accumulator state for.
Returns:
A tuple of (indices, tangents):
indices: A sequence of sequences of two-element tuples. Each forward
accumulator is represented as a sequence of tuples with (primal_index,
jvp_index). Both integers index into the concatenated `tensors + jvps`
array.
tangents: A flat list of Tensors. Best interpreted as a sequence to be
appended to `tensors`. | github-repos |
def _SetupDatabase(host=None,
port=None,
user=None,
password=None,
database=None,
client_key_path=None,
client_cert_path=None,
ca_cert_path=None):
with contextlib.closing(
_Connect(
host=host,
port=port,
user=user,
password=password,
database=None,
client_key_path=client_key_path,
client_cert_path=client_cert_path,
ca_cert_path=ca_cert_path)) as conn:
with contextlib.closing(conn.cursor()) as cursor:
try:
cursor.execute(CREATE_DATABASE_QUERY.format(database))
except MySQLdb.MySQLError as e:
if e.args[0] != mysql_error_constants.DB_CREATE_EXISTS:
raise
cursor.execute("USE {}".format(database))
_CheckCollation(cursor)
def _MigrationConnect():
return _Connect(
host=host,
port=port,
user=user,
password=password,
database=database,
client_key_path=client_key_path,
client_cert_path=client_cert_path,
ca_cert_path=ca_cert_path)
mysql_migration.ProcessMigrations(_MigrationConnect,
config.CONFIG["Mysql.migrations_dir"]) | Connect to the given MySQL host and create a utf8mb4_unicode_ci database.
Args:
host: The hostname to connect to.
port: The port to connect to.
user: The username to connect as.
password: The password to connect with.
database: The database name to create.
client_key_path: The path of the client private key file.
client_cert_path: The path of the client public key certificate file.
ca_cert_path: The path of the Certificate Authority (CA) certificate file. | juraj-google-style |
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
return incremental_indices.long() + padding_idx | Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: torch.Tensor x:
Returns: torch.Tensor | github-repos |
def serial_wire_viewer(jlink_serial, device):
buf = StringIO.StringIO()
jlink = pylink.JLink(log=buf.write, detailed_log=buf.write)
jlink.open(serial_no=jlink_serial)
jlink.set_tif(pylink.enums.JLinkInterfaces.SWD)
jlink.connect(device, verbose=True)
jlink.coresight_configure()
jlink.set_reset_strategy(pylink.enums.JLinkResetStrategyCortexM3.RESETPIN)
jlink.reset()
jlink.halt()
sys.stdout.write('Serial Wire Viewer\n')
sys.stdout.write('Press Ctrl-C to Exit\n')
sys.stdout.write('Reading data from port 0:\n\n')
jlink.reset(ms=10, halt=False)
try:
while True:
if jlink.register_read(0x0) != 0x05:
continue
offset = jlink.register_read(0x1)
handle, ptr, num_bytes = jlink.memory_read32(offset, 3)
read = ''.join(map(chr, jlink.memory_read8(ptr, num_bytes)))
if num_bytes == 0:
time.sleep(1)
continue
jlink.register_write(0x0, 0)
jlink.step(thumb=True)
jlink.restart(2, skip_breakpoints=True)
sys.stdout.write(read)
sys.stdout.flush()
except KeyboardInterrupt:
pass
sys.stdout.write('\n')
return 0 | Implements a Serial Wire Viewer (SWV).
A Serial Wire Viewer (SWV) allows us implement real-time logging of output
from a connected device over Serial Wire Output (SWO).
Args:
jlink_serial (str): the J-Link serial number
device (str): the target CPU
Returns:
Always returns ``0``.
Raises:
JLinkException: on error | juraj-google-style |
def depricated_name(newmethod):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
warnings.simplefilter('always', DeprecationWarning)
warnings.warn(
"Function {} is depricated, please use {} instead.".format(func.__name__, newmethod),
category=DeprecationWarning, stacklevel=2
)
warnings.simplefilter('default', DeprecationWarning)
return func(*args, **kwargs)
return wrapper
return decorator | Decorator for warning user of depricated functions before use.
Args:
newmethod (str): Name of method to use instead. | juraj-google-style |
def CheckCommaSpacing(filename, clean_lines, linenum, error):
raw = clean_lines.lines_without_raw_strings
line = clean_lines.elided[linenum]
if (Search(',[^,\\s]', ReplaceAll('\\boperator\\s*,\\s*\\(', 'F(', line)) and Search(',[^,\\s]', raw[linenum])):
error(filename, linenum, 'whitespace/comma', 3, 'Missing space after ,')
if Search(';[^\\s};\\\\)/]', line):
error(filename, linenum, 'whitespace/semicolon', 3, 'Missing space after ;') | Checks for horizontal spacing near commas and semicolons.
Args:
filename: The name of the current file.
clean_lines: A CleansedLines instance containing the file.
linenum: The number of the line to check.
error: The function to call with any errors found. | codesearchnet |
def match_global_phase(a: np.ndarray, b: np.ndarray) -> Tuple[(np.ndarray, np.ndarray)]:
if (a.shape != b.shape):
return (a, b)
k = max(np.ndindex(*a.shape), key=(lambda t: abs(b[t])))
def dephase(v):
r = np.real(v)
i = np.imag(v)
if (i == 0):
return ((- 1) if (r < 0) else 1)
if (r == 0):
return (1j if (i < 0) else (- 1j))
return np.exp(((- 1j) * np.arctan2(i, r)))
return ((a * dephase(a[k])), (b * dephase(b[k]))) | Phases the given matrices so that they agree on the phase of one entry.
To maximize precision, the position with the largest entry from one of the
matrices is used when attempting to compute the phase difference between
the two matrices.
Args:
a: A numpy array.
b: Another numpy array.
Returns:
A tuple (a', b') where a' == b' implies a == b*exp(i t) for some t. | codesearchnet |
def _set_checkpoint_initializer(variable, ckpt_file, tensor_name, slice_spec, name='checkpoint_initializer'):
base_type = variable.dtype.base_dtype
with ops.device(variable.device), ops.device('/cpu:0'):
restore_op = io_ops.restore_v2(ckpt_file, [tensor_name], [slice_spec], [base_type], name=name)[0]
names_to_saveables = saveable_object_util.op_list_to_dict([variable])
saveable_objects = []
for name, op in names_to_saveables.items():
for s in saveable_object_util.saveable_objects_for_op(op, name):
saveable_objects.append(s)
assert len(saveable_objects) == 1
init_op = saveable_objects[0].restore([restore_op], restored_shapes=None)
variable._initializer_op = init_op
restore_op.set_shape(variable.shape)
variable._initial_value = restore_op | Overrides given variable's initialization op.
Sets variable initializer to assign op that initializes variable from tensor's
value in the checkpoint.
Args:
variable: `tf.Variable` object.
ckpt_file: string, full path of the checkpoint.
tensor_name: Name of the tensor to load from the checkpoint.
slice_spec: Slice specification for loading partitioned tensors.
name: Name of the operation. | github-repos |
def save(self, items):
rows = []
indx = self.indx
size = 0
tick = s_common.now()
for item in items:
byts = s_msgpack.en(item)
size += len(byts)
lkey = s_common.int64en(indx)
indx += 1
rows.append((lkey, byts))
self.slab.putmulti(rows, append=True, db=self.db)
took = s_common.now() - tick
origindx = self.indx
self.indx = indx
return {'indx': indx, 'size': size, 'count': len(items), 'time': tick, 'took': took}
return origindx | Save a series of items to a sequence.
Args:
items (tuple): The series of items to save into the sequence.
Returns:
The index of the first item | juraj-google-style |
def healthy_services(self, role=None):
try:
query = self.rr.table(self.table)
if role:
query = query.get_all(role, index='role')
query = query.filter(
lambda svc: r.now().sub(svc["last_heartbeat"]) < svc["ttl"]
).order_by("load")
result = query.run()
return result
except r.ReqlNonExistenceError:
return [] | Look up healthy services in the registry.
A service is considered healthy if its 'last_heartbeat' was less than
'ttl' seconds ago
Args:
role (str, optional): role name
Returns:
If `role` is supplied, returns list of healthy services for the
given role, otherwise returns list of all healthy services. May
return an empty list. | juraj-google-style |
def parse_uniprot_txt_file(infile):
uniprot_metadata_dict = {}
metadata = old_parse_uniprot_txt_file(infile)
metadata_keys = list(metadata.keys())
if metadata_keys:
metadata_key = metadata_keys[0]
else:
return uniprot_metadata_dict
uniprot_metadata_dict['seq_len'] = len(str(metadata[metadata_key]['sequence']))
uniprot_metadata_dict['reviewed'] = metadata[metadata_key]['is_reviewed']
uniprot_metadata_dict['seq_version'] = metadata[metadata_key]['sequence_version']
uniprot_metadata_dict['entry_version'] = metadata[metadata_key]['entry_version']
if 'gene' in metadata[metadata_key]:
uniprot_metadata_dict['gene_name'] = metadata[metadata_key]['gene']
if 'description' in metadata[metadata_key]:
uniprot_metadata_dict['description'] = metadata[metadata_key]['description']
if 'refseq' in metadata[metadata_key]:
uniprot_metadata_dict['refseq'] = metadata[metadata_key]['refseq']
if 'kegg' in metadata[metadata_key]:
uniprot_metadata_dict['kegg'] = metadata[metadata_key]['kegg']
if 'ec' in metadata[metadata_key]:
uniprot_metadata_dict['ec_number'] = metadata[metadata_key]['ec']
if 'pfam' in metadata[metadata_key]:
uniprot_metadata_dict['pfam'] = metadata[metadata_key]['pfam']
if 'pdbs' in metadata[metadata_key]:
uniprot_metadata_dict['pdbs'] = list(set(metadata[metadata_key]['pdbs']))
return uniprot_metadata_dict | Parse a raw UniProt metadata file and return a dictionary.
Args:
infile: Path to metadata file
Returns:
dict: Metadata dictionary | juraj-google-style |
def build_twisted_request(self, method, url, extra_headers={}, body_producer=None, full_url=False):
uri = (url if full_url else self._url(url))
raw_headers = self.get_headers()
if extra_headers:
raw_headers.update(extra_headers)
headers = http_headers.Headers()
for header in raw_headers:
headers.addRawHeader(header, raw_headers[header])
agent = client.Agent(reactor)
request = agent.request(method, uri, headers, body_producer)
return (reactor, request) | Build a request for twisted
Args:
method (str): Request method (GET/POST/PUT/DELETE/etc.) If not specified, it will be POST if post_data is not None
url (str): Destination URL (full, or relative)
Kwargs:
extra_headers (dict): Headers (override default connection headers, if any)
body_producer (:class:`twisted.web.iweb.IBodyProducer`): Object producing request body
full_url (bool): If False, URL is relative
Returns:
tuple. Tuple with two elements: reactor, and request | codesearchnet |
def assert_keys_exist(self, caller, *keys):
assert keys, '*keys parameter must be specified.'
for key in keys:
self.assert_key_exists(key, caller) | Assert that context contains keys.
Args:
keys: validates that these keys exists in context
caller: string. calling function or module name - this used to
construct error messages
Raises:
KeyNotInContextError: When key doesn't exist in context. | codesearchnet |
def read_parquet(path, engine="auto", columns=None, **kwargs):
return DataFrame(
query_compiler=BaseFactory.read_parquet(
path=path, columns=columns, engine=engine, **kwargs
)
) | Load a parquet object from the file path, returning a DataFrame.
Args:
path: The filepath of the parquet file.
We only support local files for now.
engine: This argument doesn't do anything for now.
kwargs: Pass into parquet's read_pandas function. | juraj-google-style |
def get_neighbors_of_site_with_index(struct, n, approach='min_dist', delta=0.1, cutoff=10.0):
if (approach == 'min_dist'):
return MinimumDistanceNN(tol=delta, cutoff=cutoff).get_nn(struct, n)
elif (approach == 'voronoi'):
return VoronoiNN(tol=delta, cutoff=cutoff).get_nn(struct, n)
elif (approach == 'min_OKeeffe'):
return MinimumOKeeffeNN(tol=delta, cutoff=cutoff).get_nn(struct, n)
elif (approach == 'min_VIRE'):
return MinimumVIRENN(tol=delta, cutoff=cutoff).get_nn(struct, n)
else:
raise RuntimeError('unsupported neighbor-finding method ({}).'.format(approach)) | Returns the neighbors of a given site using a specific neighbor-finding
method.
Args:
struct (Structure): input structure.
n (int): index of site in Structure object for which motif type
is to be determined.
approach (str): type of neighbor-finding approach, where
"min_dist" will use the MinimumDistanceNN class,
"voronoi" the VoronoiNN class, "min_OKeeffe" the
MinimumOKeeffe class, and "min_VIRE" the MinimumVIRENN class.
delta (float): tolerance involved in neighbor finding.
cutoff (float): (large) radius to find tentative neighbors.
Returns: neighbor sites. | codesearchnet |
def validate(self, read_tuple_name):
if (reg_lrn.match(read_tuple_name) is None):
self.report_error(read_tuple_name=read_tuple_name, error_name='wrong_read_tuple_name_structure', message="'{}' is not matched".format(reg_lrn))
else:
parts = read_tuple_name.split('__')
if (reg_prefix_part.match(parts[0]) is None):
self.report_error(read_tuple_name=read_tuple_name, error_name='wrong_prefix_part', message="'{}' is not matched".format(reg_prefix_part))
if (reg_id_part.match(parts[1]) is None):
self.report_error(read_tuple_name=read_tuple_name, error_name='wrong_id_part', message="'{}' is not matched".format(reg_id_part))
if (reg_segmental_part.match(parts[2]) is None):
self.report_error(read_tuple_name=read_tuple_name, error_name='wrong_segmental_part', message="'{}' is not matched".format(reg_segmental_part))
if (reg_suffix_part.match(parts[3]) is None):
self.report_error(read_tuple_name=read_tuple_name, error_name='wrong_suffix_part', message="'{}' is not matched".format(reg_suffix_part))
if (not self.rnf_profile.check(read_tuple_name)):
self.report_error(read_tuple_name=read_tuple_name, error_name='wrong_profile', message='Read has a wrong profile (wrong widths). It should be: {} but it is: {}.'.format(self.rnf_profile, rnftools.rnfformat.RnfProfile(read_tuple_name=read_tuple_name)), warning=True) | Check RNF validity of a read tuple.
Args:
read_tuple_name (str): Read tuple name to be checked.s | codesearchnet |
def get_associated_uplink_groups(self):
uri = '{}/associatedUplinkGroups'.format(self.data['uri'])
return self._helper.do_get(uri) | Gets the uplink sets which are using an Ethernet network.
Returns:
list: URIs of the associated uplink sets. | codesearchnet |
def _delocalize_logging_command(self, logging_path, user_project):
logging_prefix = os.path.splitext(logging_path.uri)[0]
if logging_path.file_provider == job_model.P_LOCAL:
mkdir_cmd = 'mkdir -p "%s"\n' % os.path.dirname(logging_prefix)
cp_cmd = 'cp'
elif logging_path.file_provider == job_model.P_GCS:
mkdir_cmd = ''
if user_project:
cp_cmd = 'gsutil -u {} -mq cp'.format(user_project)
else:
cp_cmd = 'gsutil -mq cp'
else:
assert False
copy_logs_cmd = textwrap.dedent().format(
cp_cmd=cp_cmd, prefix=logging_prefix)
body = textwrap.dedent().format(
mkdir_cmd=mkdir_cmd, copy_logs_cmd=copy_logs_cmd)
return body | Returns a command to delocalize logs.
Args:
logging_path: location of log files.
user_project: name of the project to be billed for the request.
Returns:
eg. 'gs://bucket/path/myfile' or 'gs://bucket/script-foobar-12' | juraj-google-style |
def _gen_indicator_method(self, name, custom_class, value_count):
method_name = name.replace(' ', '_').lower()
def method_1(value1, xid, **kwargs):
indicator_obj = custom_class(value1, xid, **kwargs)
return self._indicator(indicator_obj)
def method_2(value1, value2, xid, **kwargs):
indicator_obj = custom_class(value1, value2, xid, **kwargs)
return self._indicator(indicator_obj)
def method_3(value1, value2, value3, xid, **kwargs):
indicator_obj = custom_class(value1, value2, value3, xid, **kwargs)
return self._indicator(indicator_obj)
method = locals()['method_{}'.format(value_count)]
setattr(self, method_name, method) | Dynamically generate custom Indicator methods.
Args:
name (str): The name of the method.
custom_class (object): The class to add.
value_count (int): The number of value parameters to support. | juraj-google-style |
def _determine_trace_and_create_report(self, graph, ops_in_exec_path, graph_summary_tag):
self._check_trace_files()
graph_order = tensor_tracer_report.sort_tensors_and_ops(graph)
tensor_trace_points = graph.get_collection(_TENSOR_TRACER_COLLECTION)
report_handler = tensor_tracer_report.TTReportHandle()
traced_tensors = self._determine_and_instrument_traced_tensors(graph_order, ops_in_exec_path, tensor_trace_points, report_handler)
logging.info('TensorTracer is tracing %d tensors.', len(traced_tensors))
if traced_tensors and tensor_tracer_flags.TT_CHECK_FILTER.value:
raise RuntimeError('Verify ops being traced by tensor tracer.')
tensor_trace_order = tensor_tracer_report.TensorTraceOrder(graph_order, traced_tensors)
num_signatures = self._num_signature_dimensions()
if num_signatures and self._use_tensor_values_cache():
if self._use_temp_cache():
self._create_temp_cache(len(traced_tensors), num_signatures, graph)
else:
self._create_or_get_tensor_values_cache(_TT_SUMMARY_TAG, graph, [len(traced_tensors), num_signatures])
if self._parameters.trace_mode in tensor_tracer_flags.TRACE_MODE_HISTORY:
self._create_or_get_tensor_history_values_cache(_TT_SUMMARY_TAG, graph, [len(traced_tensors), num_signatures])
if self._parameters.trace_mode in (tensor_tracer_flags.TRACE_MODE_SUMMARY, tensor_tracer_flags.TRACE_MODE_FULL_TENSOR_SUMMARY):
self._report_proto = report_handler.create_report_proto(self._tt_config, self._parameters, tensor_trace_order, tensor_trace_points, self._signature_types())
if self._parameters.use_fingerprint_subdir:
self._parameters.trace_dir = os.path.join(self._parameters.trace_dir, self._report_proto.fingerprint)
logging.info('TensorTracer updating trace_dir to %s', self._parameters.trace_dir)
self._report_proto_path = report_handler.report_proto_path(self._parameters.trace_dir, graph_summary_tag)
if self._parameters.report_file_path != _SKIP_REPORT_FILE:
report_handler.write_report_proto(self._report_proto_path, self._report_proto, self._parameters)
elif self._parameters.trace_mode not in tensor_tracer_flags.TRACE_MODE_HISTORY:
report_handler.create_report(self._tt_config, self._parameters, tensor_trace_order, tensor_trace_points)
return tensor_trace_order | Work needs to be done prior to TPU or CPU tracing.
Args:
graph: tf.graph
ops_in_exec_path: Set of operations in the execution path.
graph_summary_tag: the summary tag name for the given graph.
Returns:
An instance of tensor_tracer_report.TensorTraceOrder, containing list of
tensors to be traced with their topological order information.
Raises:
RuntimeError: If opname filtering is incorrectly set. | github-repos |
def slice_inputs(self, indices_dataset, inputs):
flat_inputs = nest.flatten(inputs)
def dynamic_shape_like(t):
shape = list(t.shape)
shape[0] = None
return tuple(shape)
flat_dtypes = [inp.dtype for inp in flat_inputs]
contiguous = True
if self._shuffle and self._shuffle != 'batch':
contiguous = False
def grab_batch(indices):
def py_method(ind):
def slice_array(data):
return training_utils.slice_arrays(data, ind.numpy(), contiguous=contiguous)
return [slice_array(inp) for inp in flat_inputs]
flat_out = script_ops.eager_py_func(py_method, [indices], flat_dtypes)
for v, original_inp in zip(flat_out, flat_inputs):
v.set_shape(dynamic_shape_like(original_inp))
return nest.pack_sequence_as(inputs, flat_out)
dataset = indices_dataset.map(grab_batch, num_parallel_calls=dataset_ops.AUTOTUNE)
return dataset | Slice inputs into a Dataset of batches.
Given a Dataset of batch indices and the unsliced inputs,
this step slices the inputs in a parallelized fashion
and produces a dataset of input batches.
Args:
indices_dataset: A Dataset of batched indices
inputs: A python data structure that contains the inputs, targets,
and possibly sample weights.
Returns:
A Dataset of input batches matching the batch indices. | github-repos |
def convert_variables_to_constants(sess, input_graph_def, output_node_names, variable_names_whitelist=None, variable_names_blacklist=None):
ret = convert_variables_to_constants_from_session_graph(session=sess, graph_def=input_graph_def, output_node_names=output_node_names, variable_names_allowlist=variable_names_whitelist, variable_names_denylist=variable_names_blacklist)
return ret | Replaces all the variables in a graph with constants of the same values.
If you have a trained graph containing Variable ops, it can be convenient to
convert them all to Const ops holding the same values. This makes it possible
to describe the network fully with a single GraphDef file, and allows the
removal of a lot of ops related to loading and saving the variables.
Args:
sess: Active TensorFlow session containing the variables.
input_graph_def: GraphDef object holding the network.
output_node_names: List of name strings for the result nodes of the graph.
variable_names_whitelist: The set of variable names to convert (by default,
all variables are converted).
variable_names_blacklist: The set of variable names to omit converting to
constants.
Returns:
GraphDef containing a simplified version of the original.
Raises:
RuntimeError: if a DT_RESOURCE op is found whose ancestor Variables are both
denylisted AND whitelisted for freezing. | github-repos |
def dfa(self, ttab: TransitionTable, init: int = 0) -> int:
state = init
while True:
disp = ttab[state]
ch = self.peek()
state = disp.get(ch, disp[""])()
if state < 0:
return state
self.offset += 1 | Run a DFA and return the final (negative) state.
Args:
ttab: Transition table (with possible side-effects).
init: Initial state.
Raises:
EndOfInput: If past the end of `self.input`. | juraj-google-style |
def waitForEvent(self, event_name, predicate, timeout=None):
if timeout is None:
timeout = self.default_timeout_sec
deadline = time.perf_counter() + timeout
while time.perf_counter() <= deadline:
single_rpc_timeout = deadline - time.perf_counter()
if single_rpc_timeout < 0:
break
single_rpc_timeout = min(single_rpc_timeout, self.rpc_max_timeout_sec)
try:
event = self.waitAndGet(event_name, single_rpc_timeout)
except errors.CallbackHandlerTimeoutError:
break
if predicate(event):
return event
raise errors.CallbackHandlerTimeoutError(self._device, f'Timed out after {timeout}s waiting for an "{event_name}" event that satisfies the predicate "{predicate.__name__}".') | Waits for an event of the specific name that satisfies the predicate.
This call will block until the expected event has been received or time
out.
The predicate function defines the condition the event is expected to
satisfy. It takes an event and returns True if the condition is
satisfied, False otherwise.
Note all events of the same name that are received but don't satisfy
the predicate will be discarded and not be available for further
consumption.
Args:
event_name: str, the name of the event to wait for.
predicate: function, a function that takes an event (dictionary) and
returns a bool.
timeout: float, the number of seconds to wait before giving up. If None,
it will be set to self.default_timeout_sec.
Returns:
dictionary, the event that satisfies the predicate if received.
Raises:
errors.CallbackHandlerTimeoutError: raised if no event that satisfies the
predicate is received after timeout seconds. | github-repos |
def check(self, dsm, simplicity_factor=2, **kwargs):
economy_of_mechanism = False
message = ''
data = dsm.data
categories = dsm.categories
dsm_size = dsm.size[0]
if not categories:
categories = ['appmodule'] * dsm_size
dependency_number = 0
for i in range(0, dsm_size):
for j in range(0, dsm_size):
if (categories[i] not in ('framework', 'corelib') and
categories[j] not in ('framework', 'corelib') and
data[i][j] > 0):
dependency_number += 1
if dependency_number < dsm_size * simplicity_factor:
economy_of_mechanism = True
else:
message = ' '.join([
'Number of dependencies (%s)' % dependency_number,
'> number of rows (%s)' % dsm_size,
'* simplicity factor (%s) = %s' % (
simplicity_factor, dsm_size * simplicity_factor)])
return economy_of_mechanism, message | Check economy of mechanism.
As first abstraction, number of dependencies between two modules
< 2 * the number of modules
(dependencies to the framework are NOT considered).
Args:
dsm (:class:`DesignStructureMatrix`): the DSM to check.
simplicity_factor (int): simplicity factor.
Returns:
bool: True if economic, else False | juraj-google-style |
def configure_profile(msg_type, profile_name, data, auth):
with jsonconfig.Config('messages', indent=4) as cfg:
write_data(msg_type, profile_name, data, cfg)
write_auth(msg_type, profile_name, auth, cfg)
print((('[+] Configuration entry for <' + profile_name) + '> created.'))
print(('[+] Configuration file location: ' + cfg.filename)) | Create the profile entry.
Args:
:msg_type: (str) message type to create config entry.
:profile_name: (str) name of the profile entry
:data: (dict) dict values for the 'settings'
:auth: (dict) auth parameters | codesearchnet |
def post_process_segmentation(self, outputs: 'MaskFormerForInstanceSegmentationOutput', target_size: Optional[Tuple[int, int]]=None) -> 'torch.Tensor':
warnings.warn('`post_process_segmentation` is deprecated and will be removed in v5 of Transformers, please use `post_process_instance_segmentation`', FutureWarning)
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
if target_size is not None:
masks_queries_logits = torch.nn.functional.interpolate(masks_queries_logits, size=target_size, mode='bilinear', align_corners=False)
masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1]
masks_probs = masks_queries_logits.sigmoid()
segmentation = torch.einsum('bqc, bqhw -> bchw', masks_classes, masks_probs)
return segmentation | Converts the output of [`MaskFormerForInstanceSegmentationOutput`] into image segmentation predictions. Only
supports PyTorch.
Args:
outputs ([`MaskFormerForInstanceSegmentationOutput`]):
The outputs from [`MaskFormerForInstanceSegmentation`].
target_size (`Tuple[int, int]`, *optional*):
If set, the `masks_queries_logits` will be resized to `target_size`.
Returns:
`torch.Tensor`:
A tensor of shape (`batch_size, num_class_labels, height, width`). | github-repos |
def find_in_coord_list(coord_list, coord, atol=1e-08):
if (len(coord_list) == 0):
return []
diff = (np.array(coord_list) - np.array(coord)[(None, :)])
return np.where(np.all((np.abs(diff) < atol), axis=1))[0] | Find the indices of matches of a particular coord in a coord_list.
Args:
coord_list: List of coords to test
coord: Specific coordinates
atol: Absolute tolerance. Defaults to 1e-8. Accepts both scalar and
array.
Returns:
Indices of matches, e.g., [0, 1, 2, 3]. Empty list if not found. | codesearchnet |
def aerosol_optical_depth(self, value=0.999):
if (value is not None):
try:
value = float(value)
except ValueError:
raise ValueError('value {} need to be of type float for field `aerosol_optical_depth`'.format(value))
self._aerosol_optical_depth = value | Corresponds to IDD Field `aerosol_optical_depth`
Args:
value (float): value for IDD Field `aerosol_optical_depth`
Unit: thousandths
Missing value: 0.999
if `value` is None it will not be checked against the
specification and is assumed to be a missing value
Raises:
ValueError: if `value` is not a valid value | codesearchnet |
def GetSectionByIndex(self, section_index):
if (not self._is_parsed):
self._Parse()
self._is_parsed = True
if ((section_index < 0) or (section_index >= len(self._sections))):
return None
return self._sections[section_index] | Retrieves a specific section based on the index.
Args:
section_index (int): index of the section.
Returns:
VolumeExtent: a volume extent or None if not available. | codesearchnet |
def every_other(x, name=None):
with tf.name_scope(name, 'every_other', [x]) as scope:
x = tf.convert_to_tensor(x, name='x')
return tf.reshape(
tf.slice(
tf.reshape(x, [-1, 2]), [0, 0], [-1, 1]),
[-1],
name=scope) | Drops every other value from the tensor and returns a 1D tensor.
This is useful if you are running multiple inputs through a model tower
before splitting them and you want to line it up with some other data.
Args:
x: the target tensor.
name: the name for this op, defaults to every_other
Returns:
A tensorflow op. | juraj-google-style |
def make_seeds(self, count=1):
alg = self.algorithm
if alg in (a.value for a in random_ops_util.Algorithm):
keys = self._make_int64_keys(shape=[count])
zeros = array_ops.zeros_like(keys)
return array_ops_stack.stack([keys, zeros])
else:
raise ValueError(stateless_random_ops.unsupported_alg_error_msg(alg)) | Generates seeds for stateless random ops.
For example:
```python
seeds = get_global_generator().make_seeds(count=10)
for i in range(10):
seed = seeds[:, i]
numbers = stateless_random_normal(shape=[2, 3], seed=seed)
...
```
Args:
count: the number of seed pairs (note that stateless random ops need a
pair of seeds to invoke).
Returns:
A tensor of shape [2, count] and dtype int64. | github-repos |
def parallel(processor_list: Sequence[PartProcessor]) -> PartProcessor:
if not processor_list:
raise ValueError('processor_list is empty')
return _ParallelPartProcessor(processor_list) | Create a sequence of part processors to be run in parallel.
Args:
processor_list: list of part processors.
Returns:
A processor consisting of the parallel run of all the processors in the
list. The execution is sequential from the first processor to the last but
parts are processed concurrently overall. | github-repos |
def get_metrics_namespace(self) -> str:
return 'RunInference' | Returns:
A namespace for metrics collected by the RunInference transform. | github-repos |
def product_category(request, category_id):
PRODUCTS_FORM_PREFIX = 'products'
VOUCHERS_FORM_PREFIX = 'vouchers'
v = _handle_voucher(request, VOUCHERS_FORM_PREFIX)
(voucher_form, voucher_handled) = v
category_id = int(category_id)
category = inventory.Category.objects.get(pk=category_id)
with BatchController.batch(request.user):
products = ProductController.available_products(request.user, category=category)
if (not products):
messages.warning(request, ('There are no products available from category: ' + category.name))
return redirect('dashboard')
p = _handle_products(request, category, products, PRODUCTS_FORM_PREFIX)
(products_form, discounts, products_handled) = p
if (request.POST and (not voucher_handled) and (not products_form.errors)):
if products_form.has_changed():
messages.success(request, 'Your reservations have been updated.')
return redirect(review)
data = {'category': category, 'discounts': discounts, 'form': products_form, 'voucher_form': voucher_form}
return render(request, 'registrasion/product_category.html', data) | Form for selecting products from an individual product category.
Arguments:
category_id (castable to int): The id of the category to display.
Returns:
redirect or render:
If the form has been sucessfully submitted, redirect to
``dashboard``. Otherwise, render
``registrasion/product_category.html`` with data::
{
"category": category, # An inventory.Category for
# category_id
"discounts": discounts, # A list of
# DiscountAndQuantity
"form": products_form, # A form for selecting
# products
"voucher_form": voucher_form, # A form for entering a
# voucher code
} | codesearchnet |
def generate_defect_structure(self, supercell=(1, 1, 1)):
defect_structure = self.bulk_structure.copy()
defect_structure.make_supercell(supercell)
defect_properties = self.site.properties.copy()
if ('velocities' in self.bulk_structure.site_properties) and \
'velocities' not in defect_properties:
if all( vel == self.bulk_structure.site_properties['velocities'][0]
for vel in self.bulk_structure.site_properties['velocities']):
defect_properties['velocities'] = self.bulk_structure.site_properties['velocities'][0]
else:
raise ValueError("No velocity property specified for defect site and "
"bulk_structure velocities are not homogeneous. Please specify this "
"property within the initialized defect_site object.")
site_properties_for_fake_struct = {prop: [val] for prop,val in defect_properties.items()}
struct_for_defect_site = Structure( self.bulk_structure.copy().lattice,
[self.site.specie],
[self.site.frac_coords],
to_unit_cell=True,
site_properties = site_properties_for_fake_struct)
struct_for_defect_site.make_supercell(supercell)
defect_site = struct_for_defect_site[0]
poss_deflist = sorted(
defect_structure.get_sites_in_sphere(defect_site.coords, 2, include_index=True), key=lambda x: x[1])
defindex = poss_deflist[0][2]
subsite = defect_structure.pop(defindex)
defect_structure.append(self.site.specie.symbol, subsite.coords, coords_are_cartesian=True,
properties = defect_site.properties)
defect_structure.set_charge(self.charge)
return defect_structure | Returns Defective Substitution structure, decorated with charge
Args:
supercell (int, [3x1], or [[]] (3x3)): supercell integer, vector, or scaling matrix | juraj-google-style |
def export(self, top=True):
out = []
if top:
out.append(self._internal_name)
out.append(self._to_str(self.holiday_name))
out.append(self._to_str(self.holiday_day))
return ",".join(out) | Exports object to its string representation.
Args:
top (bool): if True appends `internal_name` before values.
All non list objects should be exported with value top=True,
all list objects, that are embedded in as fields inlist objects
should be exported with `top`=False
Returns:
str: The objects string representation | juraj-google-style |
def on_connection_state_change(self, event_type, callback):
listeners = self._connection_state_listeners.get(event_type, [])
listeners.append(callback)
self._connection_state_listeners[event_type] = listeners | Register a callback for a specific connection state change.
Register a callback to be triggered when the connection changes to
the specified state, signified by a ConnectionEvent.
The callback must be a coroutine.
Args:
event_type (ConnectionEvent): the connection event to listen for
callback (coroutine): a coroutine to call on the event occurrence | codesearchnet |
def get_log(self):
log_path = self.meta_data['logs_resource']
conn = Qubole.agent()
r = conn.get_raw(log_path)
return r.text | Fetches log for the command represented by this object
Returns:
The log as a string | codesearchnet |
def reinforce_grid(self):
for grid_district in self.mv_grid_districts():
grid_district.mv_grid.reinforce_grid()
for lv_load_area in grid_district.lv_load_areas():
if not lv_load_area.is_aggregated:
for lv_grid_district in lv_load_area.lv_grid_districts():
lv_grid_district.lv_grid.reinforce_grid() | Performs grid reinforcement measures for all MV and LV grids
Args:
Returns: | juraj-google-style |
def setup_data_stream(self, connection_factory: Callable[([tuple], Connection)], data_stream_factory: Callable[([Connection], DataStream)]=DataStream) -> DataStream:
(yield from self._control_stream.write_command(Command('TYPE', 'I')))
reply = (yield from self._control_stream.read_reply())
self.raise_if_not_match('Binary mode', ReplyCodes.command_okay, reply)
address = (yield from self.passive_mode())
connection = (yield from connection_factory(address))
connection.reset()
(yield from connection.connect())
data_stream = data_stream_factory(connection)
return data_stream | Create and setup a data stream.
This function will set up passive and binary mode and handle
connecting to the data connection.
Args:
connection_factory: A coroutine callback that returns a connection
data_stream_factory: A callback that returns a data stream
Coroutine.
Returns:
DataStream | codesearchnet |
def resize(self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling=PILImageResampling.LANCZOS, data_format: Optional[Union[str, ChannelDimension]]=None, input_data_format: Optional[Union[str, ChannelDimension]]=None, **kwargs) -> np.ndarray:
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image, num_channels=(1, 3, 4))
data_format = input_data_format if data_format is None else data_format
if 'longest_edge' in size:
size = get_resize_output_image_size(image, resolution_max_side=size['longest_edge'], input_data_format=input_data_format)
elif 'height' in size and 'width' in size:
size = (size['height'], size['width'])
else:
raise ValueError("size must be a dictionary with key 'longest_edge' or 'height' and 'width'.")
image_mode = None
if image.ndim == 2 or image.shape[-1] == 1:
image_mode = 'P'
image = to_pil_image(image, image_mode=image_mode, input_data_format=input_data_format)
resized_image = image.resize((size[1], size[0]), resample=resample)
resized_image = np.array(resized_image)
resized_image = np.expand_dims(resized_image, axis=-1) if resized_image.ndim == 2 else resized_image
resized_image = to_channel_dimension_format(resized_image, data_format, input_channel_dim=ChannelDimension.LAST)
return resized_image | Resize an image. The longest edge of the image is resized to size["longest_edge"], with the shortest edge
resized to keep the input aspect ratio. Can also be used with size["height"] and size["width"].
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.LANCZOS`):
Resampling filter to use when resizing the image.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the output image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred. | github-repos |
def double_relaxation_run(cls, vasp_cmd, auto_npar=True, ediffg=(- 0.05), half_kpts_first_relax=False, auto_continue=False):
incar_update = {'ISTART': 1}
if ediffg:
incar_update['EDIFFG'] = ediffg
settings_overide_1 = None
settings_overide_2 = [{'dict': 'INCAR', 'action': {'_set': incar_update}}, {'file': 'CONTCAR', 'action': {'_file_copy': {'dest': 'POSCAR'}}}]
if (half_kpts_first_relax and os.path.exists('KPOINTS') and os.path.exists('POSCAR')):
kpts = Kpoints.from_file('KPOINTS')
orig_kpts_dict = kpts.as_dict()
kpts.kpts = np.round(np.maximum((np.array(kpts.kpts) / 2), 1)).astype(int).tolist()
low_kpts_dict = kpts.as_dict()
settings_overide_1 = [{'dict': 'KPOINTS', 'action': {'_set': low_kpts_dict}}]
settings_overide_2.append({'dict': 'KPOINTS', 'action': {'_set': orig_kpts_dict}})
return [VaspJob(vasp_cmd, final=False, suffix='.relax1', auto_npar=auto_npar, auto_continue=auto_continue, settings_override=settings_overide_1), VaspJob(vasp_cmd, final=True, backup=False, suffix='.relax2', auto_npar=auto_npar, auto_continue=auto_continue, settings_override=settings_overide_2)] | Returns a list of two jobs corresponding to an AFLOW style double
relaxation run.
Args:
vasp_cmd (str): Command to run vasp as a list of args. For example,
if you are using mpirun, it can be something like
["mpirun", "pvasp.5.2.11"]
auto_npar (bool): Whether to automatically tune NPAR to be sqrt(
number of cores) as recommended by VASP for DFT calculations.
Generally, this results in significant speedups. Defaults to
True. Set to False for HF, GW and RPA calculations.
ediffg (float): Force convergence criteria for subsequent runs (
ignored for the initial run.)
half_kpts_first_relax (bool): Whether to halve the kpoint grid
for the first relaxation. Speeds up difficult convergence
considerably. Defaults to False.
Returns:
List of two jobs corresponding to an AFLOW style run. | codesearchnet |
def get_sketch(self, sketch_id):
resource_url = '{0:s}/sketches/{1:d}/'.format(self.api_base_url, sketch_id)
response = self.session.get(resource_url)
response_dict = response.json()
try:
response_dict['objects']
except KeyError:
raise ValueError('Sketch does not exist or you have no access')
return response_dict | Get information on the specified sketch.
Args:
sketch_id (int): ID of sketch
Returns:
dict: Dictionary of sketch information
Raises:
ValueError: Sketch is inaccessible | juraj-google-style |
def _VerifyHandValues(self, tensor_in_sizes, filter_in_sizes, stride, padding, expected, use_gpu):
total_size_1 = 1
total_size_2 = 1
for s in tensor_in_sizes:
total_size_1 *= s
for s in filter_in_sizes:
total_size_2 *= s
x1 = [f * 1.0 for f in range(1, total_size_1 + 1)]
x2 = [f * 1.0 for f in range(1, total_size_2 + 1)]
with self.cached_session(use_gpu=use_gpu) as sess:
t1 = constant_op.constant(x1, shape=tensor_in_sizes)
t1.set_shape(tensor_in_sizes)
t2 = constant_op.constant(x2, shape=filter_in_sizes)
conv = nn_ops.depthwise_conv2d_native(t1, t2, strides=[1, stride, stride, 1], padding=padding)
value = self.evaluate(conv)
tf_logging.info('value = %r', value)
self.assertArrayNear(expected, np.ravel(value), 1e-05)
self.assertShapeEqual(value, conv) | Verifies the output values of the depthwise convolution function.
Args:
tensor_in_sizes: Input tensor dimensions in [batch, input_rows,
input_cols, input_depth].
filter_in_sizes: Filter tensor dimensions in [filter_rows, filter_cols,
input_depth, depth_multiplier].
stride: Stride.
padding: Padding type.
expected: An array containing the expected operation outputs.
use_gpu: Whether to use GPU. | github-repos |
class TrainState(train_state.TrainState):
logits_fn: Callable = struct.field(pytree_node=False)
loss_fn: Callable = struct.field(pytree_node=False) | Train state with an Optax optimizer.
The two functions below differ depending on whether the task is classification
or regression.
Args:
logits_fn: Applied to last layer to obtain the logits.
loss_fn: Function to compute the loss. | github-repos |
def filter_genes_and_strains(self, remove_genes_not_in_reference_model=True, remove_strains_with_no_orthology=True, remove_strains_with_no_differences=False, custom_keep_strains=None, custom_keep_genes=None):
if (len(self.df_orthology_matrix) == 0):
raise RuntimeError('Empty orthology matrix, please calculate first!')
reference_strain_gene_ids = [x.id for x in self.reference_gempro.genes]
initial_num_genes = len(reference_strain_gene_ids)
initial_num_strains = len(self.strain_ids)
to_remove_genes = []
if custom_keep_genes:
to_remove_genes.extend([x for x in reference_strain_gene_ids if (x not in custom_keep_genes)])
if remove_genes_not_in_reference_model:
to_remove_genes.extend([x for x in reference_strain_gene_ids if (x not in self.df_orthology_matrix.index.tolist())])
to_remove_genes = list(set(to_remove_genes))
if self.reference_gempro.model:
cobra.manipulation.delete_model_genes(self.reference_gempro.model, to_remove_genes)
else:
for g_id in to_remove_genes:
self.reference_gempro.genes.get_by_id(g_id).functional = False
new_gene_subset = [x.id for x in self.reference_gempro.functional_genes]
tmp_new_orthology_matrix = self.df_orthology_matrix[self.df_orthology_matrix.index.isin(new_gene_subset)]
if (custom_keep_strains or remove_strains_with_no_orthology or remove_strains_with_no_differences):
for strain_id in self.strain_ids:
if custom_keep_strains:
if (strain_id not in custom_keep_strains):
self.strain_ids.remove(strain_id)
continue
if remove_strains_with_no_orthology:
if (strain_id not in tmp_new_orthology_matrix.columns):
self.strain_ids.remove(strain_id)
log.info('{}: no orthologous genes found for this strain, removed from analysis.'.format(strain_id))
continue
elif tmp_new_orthology_matrix[strain_id].isnull().all():
self.strain_ids.remove(strain_id)
log.info('{}: no orthologous genes found for this strain, removed from analysis.'.format(strain_id))
continue
if remove_strains_with_no_differences:
not_in_strain = tmp_new_orthology_matrix[pd.isnull(tmp_new_orthology_matrix[strain_id])][strain_id].index.tolist()
if (len(not_in_strain) == 0):
self.strain_ids.remove(strain_id)
log.info('{}: strain has no differences from the base, removed from analysis.')
continue
log.info('{} genes to be analyzed, originally {}'.format(len(self.reference_gempro.functional_genes), initial_num_genes))
log.info('{} strains to be analyzed, originally {}'.format(len(self.strain_ids), initial_num_strains)) | Filters the analysis by keeping a subset of strains or genes based on certain criteria.
Args:
remove_genes_not_in_reference_model (bool): Remove genes from reference model not in orthology matrix
remove_strains_with_no_orthology (bool): Remove strains which have no orthologous genes found
remove_strains_with_no_differences (bool): Remove strains which have all the same genes as the base model.
Default is False because since orthology is found using a PID cutoff, all genes may be present but
differences may be on the sequence level.
custom_keep_genes (list): List of gene IDs to keep in analysis
custom_keep_strains (list): List of strain IDs to keep in analysis | codesearchnet |
def replace_batch_norm(model):
for name, module in model.named_children():
if isinstance(module, nn.BatchNorm2d):
new_module = DabDetrFrozenBatchNorm2d(module.num_features)
if not module.weight.device == torch.device('meta'):
new_module.weight.data.copy_(module.weight)
new_module.bias.data.copy_(module.bias)
new_module.running_mean.data.copy_(module.running_mean)
new_module.running_var.data.copy_(module.running_var)
model._modules[name] = new_module
if len(list(module.children())) > 0:
replace_batch_norm(module) | Recursively replace all `torch.nn.BatchNorm2d` with `DabDetrFrozenBatchNorm2d`.
Args:
model (torch.nn.Module):
input model | github-repos |
def get_event(self, event_name, event_history=None):
if (event_history is None):
event_history = (event_name + '_history')
return self._db.rpoplpush(event_name, event_history) | Get an event from the database.
Gets an event from the named event list removing the event and
adding it to the event history.
Args:
event_name (str): Event list key.
event_history (str, optional): Event history list.
Returns:
str: string representation of the event object | codesearchnet |
def download_models(self, uniprot_acc, outdir='', force_rerun=False):
downloaded = []
subset = self.get_models(uniprot_acc)
for entry in subset:
ident = '{}_{}_{}_{}'.format(uniprot_acc, entry['template'], entry['from'], entry['to'])
outfile = op.join(outdir, (ident + '.pdb'))
if ssbio.utils.force_rerun(flag=force_rerun, outfile=outfile):
response = requests.get(entry['url'])
if (response.status_code == 404):
log.error('{}: 404 returned, no model available.'.format(ident))
else:
with open(outfile, 'w') as f:
f.write(response.text)
log.debug('{}: downloaded homology model'.format(ident))
downloaded.append(outfile)
else:
downloaded.append(outfile)
return downloaded | Download all models available for a UniProt accession number.
Args:
uniprot_acc (str): UniProt ACC/ID
outdir (str): Path to output directory, uses working directory if not set
force_rerun (bool): Force a redownload the models if they already exist
Returns:
list: Paths to the downloaded models | codesearchnet |
def set_interface(self, vrf_name, interface, default=False, disable=False):
cmds = [('interface %s' % interface)]
cmds.append(self.command_builder('vrf forwarding', value=vrf_name, default=default, disable=disable))
return self.configure(cmds) | Adds a VRF to an interface
Notes:
Requires interface to be in routed mode. Must apply ip address
after VRF has been applied. This feature can also be accessed
through the interfaces api.
Args:
vrf_name (str): The VRF name to configure
interface (str): The interface to add the VRF too
default (bool): Set interface VRF forwarding to default
disable (bool): Negate interface VRF forwarding
Returns:
True if the operation was successful otherwise False | codesearchnet |
def get_sid_string(principal):
if (principal is None):
principal = 'NULL SID'
try:
return win32security.ConvertSidToStringSid(principal)
except TypeError:
principal = get_sid(principal)
try:
return win32security.ConvertSidToStringSid(principal)
except pywintypes.error:
log.exception('Invalid principal %s', principal)
raise CommandExecutionError('Invalid principal {0}'.format(principal)) | Converts a PySID object to a string SID.
Args:
principal(str):
The principal to lookup the sid. Must be a PySID object.
Returns:
str: A string sid
Usage:
.. code-block:: python
# Get a PySID object
py_sid = salt.utils.win_dacl.get_sid('jsnuffy')
# Get the string version of the SID
salt.utils.win_dacl.get_sid_string(py_sid) | codesearchnet |
def create_s3_event(app_name, env, region, bucket, triggers):
session = boto3.Session(profile_name=env, region_name=region)
s3_client = session.client('s3')
lambda_alias_arn = get_lambda_alias_arn(app_name, env, region)
LOG.debug("Lambda ARN for lambda function %s is %s.", app_name, lambda_alias_arn)
LOG.debug("Creating S3 events for bucket %s", bucket)
principal = 's3.amazonaws.com'
statement_id = "{}_s3_{}".format(app_name, bucket).replace('.', '')
source_arn = "arn:aws:s3:::{}".format(bucket)
add_lambda_permissions(
function=lambda_alias_arn,
env=env,
region=region,
principal=principal,
statement_id=statement_id,
source_arn=source_arn)
template_kwargs = {"lambda_arn": lambda_alias_arn, "triggers": triggers}
config = get_template(template_file='infrastructure/lambda/s3_event.json.j2', **template_kwargs)
s3_client.put_bucket_notification_configuration(Bucket=bucket, NotificationConfiguration=json.loads(config))
LOG.info("Created lambda %s S3 event on bucket %s", app_name, bucket) | Create S3 lambda events from triggers
Args:
app_name (str): name of the lambda function
env (str): Environment/Account for lambda function
region (str): AWS region of the lambda function
triggers (list): List of triggers from the settings | juraj-google-style |
def dump_tree(self, statement=None, indent_level=0):
out = u''
indent = (u' ' * indent_level)
if (statement is None):
for root_statement in self.statements:
out += self.dump_tree(root_statement, indent_level)
else:
out += ((indent + str(statement)) + u'\n')
if (len(statement.children) > 0):
for child in statement.children:
out += self.dump_tree(child, indent_level=(indent_level + 4))
return out | Dump the AST for this parsed file.
Args:
statement (SensorGraphStatement): the statement to print
if this function is called recursively.
indent_level (int): The number of spaces to indent this
statement. Used for recursively printing blocks of
statements.
Returns:
str: The AST for this parsed sg file as a nested
tree with one node per line and blocks indented. | codesearchnet |
def slice(self, start, end):
reverse = False
if start > end:
temp = start
start = end
end = temp
reverse = True
seg = self.copy()
seg.points = seg.points[start:end+1]
if reverse:
seg.points = list(reversed(seg.points))
return seg | Creates a copy of the current segment between indexes. If end > start,
points are reverted
Args:
start (int): Start index
end (int): End index
Returns:
:obj:`Segment` | juraj-google-style |
def create_bagit_stream(dir_name, payload_info_list):
zip_file = zipstream.ZipFile(mode='w', compression=zipstream.ZIP_DEFLATED)
_add_path(dir_name, payload_info_list)
(payload_byte_count, payload_file_count) = _add_payload_files(zip_file, payload_info_list)
tag_info_list = _add_tag_files(zip_file, dir_name, payload_info_list, payload_byte_count, payload_file_count)
_add_manifest_files(zip_file, dir_name, payload_info_list, tag_info_list)
_add_tag_manifest_file(zip_file, dir_name, tag_info_list)
return zip_file | Create a stream containing a BagIt zip archive.
Args:
dir_name : str
The name of the root directory in the zip file, under which all the files
are placed (avoids "zip bombs").
payload_info_list: list
List of payload_info_dict, each dict describing a file.
- keys: pid, filename, iter, checksum, checksum_algorithm
- If the filename is None, the pid is used for the filename. | codesearchnet |
def get_images_by_catid_and_aoi(self, catid, aoi_wkt):
self.logger.debug('Retrieving IDAHO metadata')
url = '%s/search' % self.base_url
body = {"filters": ["catalogID = '%s'" % catid],
"types": ["IDAHOImage"],
"searchAreaWkt": aoi_wkt}
r = self.gbdx_connection.post(url, data=json.dumps(body))
r.raise_for_status()
if r.status_code == 200:
results = r.json()
numresults = len(results['results'])
self.logger.debug('%s IDAHO images found associated with catid %s'
% (numresults, catid))
return results | Retrieves the IDAHO image records associated with a given catid.
Args:
catid (str): The source catalog ID from the platform catalog.
aoi_wkt (str): The well known text of the area of interest.
Returns:
results (json): The full catalog-search response for IDAHO images
within the catID. | juraj-google-style |
def needle_statistics_alignio(infile):
alignments = list(AlignIO.parse(infile, "emboss"))
if len(alignments) > 1:
raise ValueError('Alignment file contains more than one pairwise alignment')
alignment = alignments[0]
with open(infile) as f:
line = f.readline()
for i in range(len(alignments)):
while line.rstrip() != "
line = f.readline()
if not line:
raise StopIteration
while line[0] == "
parts = line[1:].split(":", 1)
key = parts[0].lower().strip()
if key == 'identity':
ident_parse = parts[1].strip().replace('(','').replace(')','').replace('%','').split()
ident_num = int(ident_parse[0].split('/')[0])
ident_percent = float(ident_parse[1])
alignment.annotations['identity'] = ident_num
alignment.annotations['percent_identity'] = ident_percent
if key == 'similarity':
sim_parse = parts[1].strip().replace('(','').replace(')','').replace('%','').split()
sim_num = int(sim_parse[0].split('/')[0])
sim_percent = float(sim_parse[1])
alignment.annotations['similarity'] = sim_num
alignment.annotations['percent_similarity'] = sim_percent
if key == 'gaps':
gap_parse = parts[1].strip().replace('(','').replace(')','').replace('%','').split()
gap_num = int(gap_parse[0].split('/')[0])
gap_percent = float(gap_parse[1])
alignment.annotations['gaps'] = gap_num
alignment.annotations['percent_gaps'] = gap_percent
if key == 'score':
score = float(parts[1].strip())
alignment.annotations['score'] = score
line = f.readline()
return alignment | Reads in a needle alignment file and returns an AlignIO object with annotations
Args:
infile (str): Alignment file name
Returns:
AlignIO: annotated AlignIO object | juraj-google-style |
def success(channel, stats, name, platform, dp):
datapacks = [("Platform", platform, False)]
for stat in stats:
if stat[0] in ("Duel 1v1", "Doubles 2v2", "Solo Standard 3v3", "Standard 3v3"):
stat_name = "__" + stat[0] + "__"
stat_value = "**" + stat[1] + "**"
else:
stat_name = stat[0]
stat_value = stat[1]
if stat[2]:
stat_value += " *(Top " + stat[2] + "%)*"
datapacks.append((stat_name, stat_value, True))
gui = ui_embed.UI(
channel,
"Rocket League Stats: {}".format(name),
"*Stats obtained from [Rocket League Tracker Network](https:
modulename=modulename,
colour=0x0088FF,
thumbnail=dp,
datapacks=datapacks
)
return gui | Creates an embed UI containing the Rocket League stats
Args:
channel (discord.Channel): The Discord channel to bind the embed to
stats (tuple): Tuples of (field, value, percentile)
name (str): The name of the player
platform (str): The playfor to search on, can be 'steam', 'ps', or 'xbox'
dp (str): URL to the player's dp
Returns:
(discord.Embed): The created embed | juraj-google-style |
def _set_device(self, device) -> None:
self._set_device_from_string(compat.as_str(_device_string(device))) | Set the device of this operation.
Args:
device: string or device.. The device to set. | github-repos |
def create_image_uri(region, framework, instance_type, framework_version, py_version=None, account='520713654638', accelerator_type=None, optimized_families=None):
optimized_families = (optimized_families or [])
if (py_version and (py_version not in VALID_PY_VERSIONS)):
raise ValueError('invalid py_version argument: {}'.format(py_version))
account = VALID_ACCOUNTS_BY_REGION.get(region, account)
if instance_type.startswith('local'):
device_type = ('cpu' if (instance_type == 'local') else 'gpu')
elif (not instance_type.startswith('ml.')):
raise ValueError('{} is not a valid SageMaker instance type. See: https:
else:
family = instance_type.split('.')[1]
if (family in optimized_families):
device_type = family
elif (family[0] in ['g', 'p']):
device_type = 'gpu'
else:
device_type = 'cpu'
if py_version:
tag = '{}-{}-{}'.format(framework_version, device_type, py_version)
else:
tag = '{}-{}'.format(framework_version, device_type)
if _accelerator_type_valid_for_framework(framework=framework, accelerator_type=accelerator_type, optimized_families=optimized_families):
framework += '-eia'
return '{}/sagemaker-{}:{}'.format(get_ecr_image_uri_prefix(account, region), framework, tag) | Return the ECR URI of an image.
Args:
region (str): AWS region where the image is uploaded.
framework (str): framework used by the image.
instance_type (str): SageMaker instance type. Used to determine device type (cpu/gpu/family-specific optimized).
framework_version (str): The version of the framework.
py_version (str): Optional. Python version. If specified, should be one of 'py2' or 'py3'.
If not specified, image uri will not include a python component.
account (str): AWS account that contains the image. (default: '520713654638')
accelerator_type (str): SageMaker Elastic Inference accelerator type.
optimized_families (str): Instance families for which there exist specific optimized images.
Returns:
str: The appropriate image URI based on the given parameters. | codesearchnet |
def load_variables(defines, config_file):
if config_file is not None:
with open(config_file, "r") as conf_file:
variables = yaml.load(conf_file)
else:
variables = {}
for define in defines:
name, equ, value = define.partition('=')
if equ != '=':
print("Invalid variable definition")
print("- expected name=value")
print("- found: '%s'" % define)
sys.exit(1)
variables[name] = value
return variables | Load all variables from cmdline args and/or a config file.
Args:
defines (list of str): A list of name=value pairs that
define free variables.
config_file (str): An optional path to a yaml config
file that defines a single dict with name=value
variable definitions. | juraj-google-style |
def insert_before(self, value: Union[(RawValue, Value)], raw: bool=False) -> 'ArrayEntry':
return ArrayEntry(self.index, self.before, self.after.cons(self.value), self._cook_value(value, raw), self.parinst, self.schema_node, datetime.now()) | Insert a new entry before the receiver.
Args:
value: The value of the new entry.
raw: Flag to be set if `value` is raw.
Returns:
An instance node of the new inserted entry. | codesearchnet |
def get_all_dataset_names(configuration=None, **kwargs):
dataset = Dataset(configuration=configuration)
dataset['id'] = 'all dataset names'
return dataset._write_to_hdx('list', kwargs, 'id') | Get all dataset names in HDX
Args:
configuration (Optional[Configuration]): HDX configuration. Defaults to global configuration.
**kwargs: See below
limit (int): Number of rows to return. Defaults to all dataset names.
offset (int): Offset in the complete result for where the set of returned dataset names should begin
Returns:
List[str]: list of all dataset names in HDX | codesearchnet |
def _estimate_data_distribution(c, num_examples_per_class_seen):
num_classes = num_examples_per_class_seen.get_shape()[0]
num_examples_per_class_seen = math_ops.add(num_examples_per_class_seen, math_ops.reduce_sum(array_ops.one_hot(c, num_classes, dtype=dtypes.int64), 0))
init_prob_estimate = math_ops.truediv(num_examples_per_class_seen, math_ops.reduce_sum(num_examples_per_class_seen))
dist = math_ops.cast(init_prob_estimate, dtypes.float32)
return (num_examples_per_class_seen, dist) | Estimate data distribution as labels are seen.
Args:
c: The class labels. Type `int32`, shape `[batch_size]`.
num_examples_per_class_seen: Type `int64`, shape `[num_classes]`, containing
counts.
Returns:
num_examples_per_lass_seen: Updated counts. Type `int64`, shape
`[num_classes]`.
dist: The updated distribution. Type `float32`, shape `[num_classes]`. | github-repos |
def cancel_id(cls, id):
conn = Qubole.agent()
data = {'status': 'kill'}
return conn.put(cls.element_path(id), data) | Cancels command denoted by this id
Args:
`id`: command id | codesearchnet |
def render_registered(url_id, remote_info):
return template(read_index_template(), registered=True, url=remote_info['url'], seeder_data=json.dumps(remote_info), url_id=url_id) | Render template file for the registered user, which has some of the values
prefilled.
Args:
url_id (str): Seeder URL id.
remote_info (dict): Informations read from Seeder.
Returns:
str: Template filled with data. | codesearchnet |
def forward_event_shape_tensor(self, input_shape, name='forward_event_shape_tensor'):
with self._name_scope(name, [input_shape]):
input_shape = ops.convert_to_tensor(input_shape, dtype=dtypes.int32, name='input_shape')
return self._forward_event_shape_tensor(input_shape) | Shape of a single sample from a single batch as an `int32` 1D `Tensor`.
Args:
input_shape: `Tensor`, `int32` vector indicating event-portion shape
passed into `forward` function.
name: name to give to the op
Returns:
forward_event_shape_tensor: `Tensor`, `int32` vector indicating
event-portion shape after applying `forward`. | github-repos |
def suggestions(self, word):
suggestions = set(self._misspelling_dict.get(word, [])).union(set(self._misspelling_dict.get(word.lower(), [])))
return sorted([same_case(source=word, destination=w) for w in suggestions]) | Returns a list of suggestions for a misspelled word.
Args:
word: The word to check.
Returns:
List of zero or more suggested replacements for word. | codesearchnet |
def set_napp(self, user, napp, version=None):
self.user = user
self.napp = napp
self.version = version or 'latest' | Set info about NApp.
Args:
user (str): NApps Server username.
napp (str): NApp name.
version (str): NApp version. | juraj-google-style |
def CheckEmptyBlockBody(filename, clean_lines, linenum, error):
line = clean_lines.elided[linenum]
matched = Match(r'\s*(for|while|if)\s*\(', line)
if matched:
(end_line, end_linenum, end_pos) = CloseExpression(
clean_lines, linenum, line.find('('))
if end_pos >= 0 and Match(r';', end_line[end_pos:]):
if matched.group(1) == 'if':
error(filename, end_linenum, 'whitespace/empty_conditional_body', 5,
'Empty conditional bodies should use {}')
else:
error(filename, end_linenum, 'whitespace/empty_loop_body', 5,
'Empty loop bodies should use {} or continue') | Look for empty loop/conditional body with only a single semicolon.
Args:
filename: The name of the current file.
clean_lines: A CleansedLines instance containing the file.
linenum: The number of the line to check.
error: The function to call with any errors found. | juraj-google-style |
def up(self) -> 'InstanceNode':
ts = max(self.timestamp, self.parinst.timestamp)
return self.parinst._copy(self._zip(), ts) | Return an instance node corresponding to the receiver's parent.
Raises:
NonexistentInstance: If there is no parent. | codesearchnet |
def log_transition(self, transition, from_state, instance, *args, **kwargs):
logger = logging.getLogger('xworkflows.transitions')
try:
instance_repr = u(repr(instance), 'ignore')
except (UnicodeEncodeError, UnicodeDecodeError):
instance_repr = u('<bad repr>')
logger.info(u('%s performed transition %s.%s (%s -> %s)'), instance_repr, self.__class__.__name__, transition.name, from_state.name, transition.target.name) | Log a transition.
Args:
transition (Transition): the name of the performed transition
from_state (State): the source state
instance (object): the modified object
Kwargs:
Any passed when calling the transition | codesearchnet |
def _on_scan(self, info):
device_id = info['uuid']
expiration_time = info.get('validity_period', 60)
infocopy = deepcopy(info)
infocopy['expiration_time'] = (monotonic() + expiration_time)
with self._scan_lock:
self._scanned_devices[device_id] = infocopy | Callback called when a new device is discovered on this CMDStream
Args:
info (dict): Information about the scanned device | codesearchnet |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.