code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def dict_isect(*args):
if (not args):
return {}
else:
dictclass = (OrderedDict if isinstance(args[0], OrderedDict) else dict)
common_keys = set.intersection(*map(set, args))
first_dict = args[0]
return dictclass(((k, first_dict[k]) for k in common_keys)) | Constructs a dictionary that contains keys common between all inputs.
The returned values will only belong to the first dictionary.
Args:
*args : a sequence of dictionaries (or sets of keys)
Returns:
Dict | OrderedDict :
OrderedDict if the first argument is an OrderedDict, otherwise dict
Notes:
This function can be used as an alternative to `dict_subset` where any
key not in the dictionary is ignored. See the following example:
>>> dict_isect({'a': 1, 'b': 2, 'c': 3}, ['a', 'c', 'd'])
{'a': 1, 'c': 3}
Example:
>>> dict_isect({'a': 1, 'b': 1}, {'b': 2, 'c': 2})
{'b': 1}
>>> dict_isect(odict([('a', 1), ('b', 2)]), odict([('c', 3)]))
OrderedDict()
>>> dict_isect()
{} | codesearchnet |
def safe_call(request: Request, methods: Methods, *, debug: bool) -> Response:
with handle_exceptions(request, debug) as handler:
result = call(methods.items[request.method], *request.args, **request.kwargs)
handler.response = SuccessResponse(result=result, id=request.id)
return handler.response | Call a Request, catching exceptions to ensure we always return a Response.
Args:
request: The Request object.
methods: The list of methods that can be called.
debug: Include more information in error responses.
Returns:
A Response object. | juraj-google-style |
def GetTermIdentifier(self):
return self._term | Returns the TERM environment variable for the console.
Returns:
str: A str that describes the console's text capabilities | github-repos |
def reshape(self, shape: tf.TensorShape) -> 'TensorFluent':
t = tf.reshape(self.tensor, shape)
scope = self.scope.as_list()
batch = self.batch
return TensorFluent(t, scope, batch=batch) | Returns a TensorFluent for the reshape operation with given `shape`.
Args:
shape: The output's shape.
Returns:
A TensorFluent wrapping the reshape operation. | codesearchnet |
def resolve_aliases(data_type):
if not is_alias(data_type):
return data_type
resolved = resolve_aliases(data_type.data_type)
data_type.data_type = resolved
return resolved | Resolve all chained / nested aliases. This will recursively point
nested aliases to their resolved data type (first non-alias in the chain).
Note: This differs from unwrap_alias which simply identifies/returns
the resolved data type.
Args:
data_type (DataType): The target DataType/Alias to resolve.
Return:
DataType: The resolved type. | juraj-google-style |
def run(self, data_loaders, workflow, max_epochs, **kwargs):
assert isinstance(data_loaders, list)
assert mmcv.is_list_of(workflow, tuple)
assert len(data_loaders) == len(workflow)
self._max_epochs = max_epochs
work_dir = self.work_dir if self.work_dir is not None else 'NONE'
self.logger.info('Start running, host: %s, work_dir: %s',
get_host_info(), work_dir)
self.logger.info('workflow: %s, max: %d epochs', workflow, max_epochs)
self.call_hook('before_run')
while self.epoch < max_epochs:
for i, flow in enumerate(workflow):
mode, epochs = flow
if isinstance(mode, str):
if not hasattr(self, mode):
raise ValueError(
'runner has no method named "{}" to run an epoch'.
format(mode))
epoch_runner = getattr(self, mode)
elif callable(mode):
epoch_runner = mode
else:
raise TypeError('mode in workflow must be a str or '
'callable function, not {}'.format(
type(mode)))
for _ in range(epochs):
if mode == 'train' and self.epoch >= max_epochs:
return
epoch_runner(data_loaders[i], **kwargs)
time.sleep(1)
self.call_hook('after_run') | Start running.
Args:
data_loaders (list[:obj:`DataLoader`]): Dataloaders for training
and validation.
workflow (list[tuple]): A list of (phase, epochs) to specify the
running order and epochs. E.g, [('train', 2), ('val', 1)] means
running 2 epochs for training and 1 epoch for validation,
iteratively.
max_epochs (int): Total training epochs. | juraj-google-style |
def get(self, value):
config = self.get_block('vrf definition %s' % value)
if not config:
return None
response = dict(vrf_name=value)
response.update(self._parse_rd(config))
response.update(self._parse_description(config))
config = self.get_block('no ip routing vrf %s' % value)
if config:
response['ipv4_routing'] = False
else:
response['ipv4_routing'] = True
config = self.get_block('no ipv6 unicast-routing vrf %s' % value)
if config:
response['ipv6_routing'] = False
else:
response['ipv6_routing'] = True
return response | Returns the VRF configuration as a resource dict.
Args:
value (string): The vrf name to retrieve from the
running configuration.
Returns:
A Python dict object containing the VRF attributes as
key/value pairs. | juraj-google-style |
def with_bloomberg(func):
@wraps(func)
def wrapper(*args, **kwargs):
scope = utils.func_scope(func=func)
param = inspect.signature(func).parameters
port = kwargs.pop('port', _PORT_)
timeout = kwargs.pop('timeout', _TIMEOUT_)
restart = kwargs.pop('restart', False)
all_kw = {
k: args[n] if n < len(args) else v.default
for n, (k, v) in enumerate(param.items()) if k != 'kwargs'
}
all_kw.update(kwargs)
log_level = kwargs.get('log', logs.LOG_LEVEL)
for to_list in ['tickers', 'flds']:
conv = all_kw.get(to_list, None)
if hasattr(conv, 'tolist'):
all_kw[to_list] = getattr(conv, 'tolist')()
if isinstance(conv, str):
all_kw[to_list] = [conv]
cached_data = []
if scope in ['xbbg.blp.bdp', 'xbbg.blp.bds']:
to_qry = cached.bdp_bds_cache(func=func.__name__, **all_kw)
cached_data += to_qry.cached_data
if not (to_qry.tickers and to_qry.flds):
if not cached_data: return pd.DataFrame()
res = pd.concat(cached_data, sort=False).reset_index(drop=True)
if not all_kw.get('raw', False):
res = assist.format_output(
data=res, source=func.__name__,
col_maps=all_kw.get('col_maps', dict())
)
return res
all_kw['tickers'] = to_qry.tickers
all_kw['flds'] = to_qry.flds
if scope in ['xbbg.blp.bdib']:
data_file = storage.hist_file(
ticker=all_kw['ticker'], dt=all_kw['dt'], typ=all_kw['typ'],
)
if files.exists(data_file):
logger = logs.get_logger(func, level=log_level)
if all_kw.get('batch', False): return
logger.debug(f'reading from {data_file} ...')
return assist.format_intraday(data=pd.read_parquet(data_file), **all_kw)
_, new = create_connection(port=port, timeout=timeout, restart=restart)
res = func(**{
k: v for k, v in all_kw.items() if k not in ['raw', 'col_maps']
})
if new: delete_connection()
if scope.startswith('xbbg.blp.') and isinstance(res, list):
final = cached_data + res
if not final: return pd.DataFrame()
res = pd.DataFrame(pd.concat(final, sort=False))
if (scope in ['xbbg.blp.bdp', 'xbbg.blp.bds']) \
and (not all_kw.get('raw', False)):
res = assist.format_output(
data=res.reset_index(drop=True), source=func.__name__,
col_maps=all_kw.get('col_maps', dict()),
)
return res
return wrapper | Wrapper function for Bloomberg connection
Args:
func: function to wrap | juraj-google-style |
def matchmaker_request(url, token, method, content_type=None, accept=None, data=None):
headers = Headers()
headers = { 'X-Auth-Token': token}
if content_type:
headers['Content-Type'] = content_type
if accept:
headers['Accept'] = accept
req_data = data or {'timestamp' : datetime.datetime.now().timestamp()}
json_response = None
try:
LOG.info('Sending {} request to MME url {}. Data sent: {}'.format(
method, url, req_data))
resp = requests.request(
method = method,
url = url,
headers = headers,
data = json.dumps(req_data)
)
json_response = resp.json()
LOG.info('MME server response was:{}'.format(json_response))
if isinstance(json_response, str):
json_response = {
'message' : json_response,
}
elif isinstance(json_response, list):
return json_response
json_response['status_code'] = resp.status_code
except Exception as err:
LOG.info('An error occurred while sending HTTP request to server ({})'.format(err))
json_response = {
'message' : str(err)
}
return json_response | Send a request to MatchMaker and return its response
Args:
url(str): url to send request to
token(str): MME server authorization token
method(str): 'GET', 'POST' or 'DELETE'
content_type(str): MME request Content-Type
accept(str): accepted response
data(dict): eventual data to send in request
Returns:
json_response(dict): server response | juraj-google-style |
def _get_class_repr(cls, type_, bound, keyfunc, keyfunc_name):
if keyfunc is not cls._default:
return "{}.{}[{}, {}, {}]".format(
cls.__module__,
cls.__name__,
cls._get_fullname(type_),
cls._get_bound_repr(bound),
keyfunc_name,
)
return "{}.{}[{}, {}]".format(
cls.__module__,
cls.__name__,
cls._get_fullname(type_),
cls._get_bound_repr(bound),
) | Return a class representation using the slice parameters.
Args:
type_: The type the class was sliced with.
bound: The boundaries specified for the values of type_.
keyfunc: The comparison function used to check the value
boundaries.
keyfunc_name: The name of keyfunc.
Returns:
A string representing the class. | juraj-google-style |
def _get_truncated_table_rows(self, query_tokens: List[str], tokenized_table: TokenizedTable, num_rows: int, num_columns: int, max_length: int, truncation_strategy: Union[str, TapasTruncationStrategy]) -> Tuple[int, int]:
if not isinstance(truncation_strategy, TapasTruncationStrategy):
truncation_strategy = TapasTruncationStrategy(truncation_strategy)
if max_length is None:
max_length = self.model_max_length
if truncation_strategy == TapasTruncationStrategy.DROP_ROWS_TO_FIT:
while True:
num_tokens = self._get_max_num_tokens(query_tokens, tokenized_table, num_rows=num_rows, num_columns=num_columns, max_length=max_length)
if num_tokens is not None:
break
num_rows -= 1
if num_rows < 1:
break
elif truncation_strategy != TapasTruncationStrategy.DO_NOT_TRUNCATE:
raise ValueError(f'Unknown truncation strategy {truncation_strategy}.')
return (num_rows, num_tokens or 1) | Truncates a sequence pair in-place following the strategy.
Args:
query_tokens (`List[str]`):
List of strings corresponding to the tokenized query.
tokenized_table (`TokenizedTable`):
Tokenized table
num_rows (`int`):
Total number of table rows
num_columns (`int`):
Total number of table columns
max_length (`int`):
Total maximum length.
truncation_strategy (`str` or [`TapasTruncationStrategy]`):
Truncation strategy to use. Seeing as this method should only be called when truncating, the only
available strategy is the `"drop_rows_to_fit"` strategy.
Returns:
`Tuple(int, int)`: tuple containing the number of rows after truncation, and the number of tokens available
for each table element. | github-repos |
def banner(text, border='=', width=80):
text_padding = ('{0:^%d}' % width)
LOG.info((border * width))
LOG.info(text_padding.format(text))
LOG.info((border * width)) | Center _text_ in a banner _width_ wide with _border_ characters.
Args:
text (str): What to write in the banner
border (str): Border character
width (int): How long the border should be | codesearchnet |
def create_application_configuration(self, name, properties, description=None):
if (not hasattr(self, 'applicationConfigurations')):
raise NotImplementedError()
cv = ApplicationConfiguration._props(name, properties, description)
res = self.rest_client.session.post(self.applicationConfigurations, headers={'Accept': 'application/json'}, json=cv)
_handle_http_errors(res)
return ApplicationConfiguration(res.json(), self.rest_client) | Create an application configuration.
Args:
name (str, optional): Only return application configurations containing property **name** that matches `name`. `name` can be a
.. versionadded 1.12 | codesearchnet |
def make_conv_bias_activation_tests(activation_op):
def create_test(options):
test_parameters = [{'input_shape': [[1, 3, 4, 3]], 'filter_shape': [[2, 3], [3, 3]], 'filter_2_shape': [[2, 1, 1, 3]], 'strides': [[1, 1, 1, 1]], 'dilations': [[1, 1, 1, 1]], 'data_format': ['NCHW'], 'channel_multiplier': [1, 2], 'fully_quantize': [False], 'dynamic_range_quantize': [False]}]
def get_tensor_shapes(parameters):
input_shape = parameters['input_shape']
filter_size = parameters['filter_shape']
filter_shape = filter_size + [input_shape[3], parameters['channel_multiplier']]
return [input_shape, filter_shape]
@tf.function(jit_compile=True)
def add_conv(input_tensor, filter_input, parameters):
out = tf.nn.conv2d(input=input_tensor, filters=filter_input, strides=parameters['strides'], dilations=parameters['dilations'], padding='VALID', data_format=parameters['data_format'])
return out
def add_bias_add(data_input, filter_shape):
bias_input = create_tensor_data(np.float32, (filter_shape[-1],))
out = tf.nn.bias_add(data_input, bias_input, data_format='NHWC')
return out
def build_graph(parameters):
input_shape, filter_shape = get_tensor_shapes(parameters)
input_tensor = tf.compat.v1.placeholder(dtype=tf.float32, name='input', shape=input_shape)
filter_input = create_tensor_data(np.float32, filter_shape, min_value=-10, max_value=10)
input_tensors = [input_tensor]
if parameters['data_format'] == 'NCHW':
out = add_conv(input_tensor, filter_input, parameters)
else:
out = tf.nn.conv2d(input=input_tensor, filters=filter_input, strides=parameters['strides'], dilations=parameters['dilations'], padding='VALID', data_format=parameters['data_format'])
out = add_bias_add(out, filter_shape)
out = activation_op(out)
filter_input_2 = create_tensor_data(np.float32, parameters['filter_2_shape'], min_value=-10, max_value=10)
if parameters['data_format'] == 'NCHW':
out = add_conv(out, filter_input_2, parameters)
else:
out = tf.nn.conv2d(input=out, filters=filter_input_2, strides=parameters['strides'], dilations=parameters['dilations'], padding='VALID', data_format=parameters['data_format'])
out = add_bias_add(out, filter_shape)
out = activation_op(out)
return (input_tensors, [out])
def build_inputs(parameters, sess, inputs, outputs):
input_shape, _ = get_tensor_shapes(parameters)
values = [create_tensor_data(np.float32, input_shape, min_value=-1, max_value=1)]
return (values, sess.run(outputs, feed_dict=dict(zip(inputs, values))))
make_zip_of_tests(options, test_parameters, build_graph, build_inputs, expected_tf_failures=2)
return create_test | Make a set of tests to do convolution with activation and bias.
This test will create multiple consecutive convolutions with NCHW layout to
make sure that the tranformations to NHWC works as expected. Note this
doesn't check any performance so manual checking of the generated model is
advised.
Args:
activation_op: The activation op to be used in the test.
Returns:
The function that creates the test. | github-repos |
def __init__(self, dataset_merger, problem_type=transitfeed.TYPE_WARNING,
**kwargs):
kwargs['type'] = problem_type
kwargs['entity_type_name'] = dataset_merger.ENTITY_TYPE_NAME
transitfeed.ExceptionWithContext.__init__(self, None, None, **kwargs)
self.dataset_merger = dataset_merger | Initialise the exception object.
Args:
dataset_merger: The DataSetMerger instance that generated this problem.
problem_type: The problem severity. This should be set to one of the
corresponding constants in transitfeed.
kwargs: Keyword arguments to be saved as instance attributes. | juraj-google-style |
def load(self, validate=True):
self._load()
try:
self.config = self._load_config(self.system_config_file)
user = self._load_config(self.global_config_file)
config = self._load_config(self.config_file)
local = self._load_config(self.config_local_file)
for conf in [user, config, local]:
self.config = self._merge(self.config, conf)
if validate:
self.config = Schema(self.SCHEMA).validate(self.config)
self.config = configobj.ConfigObj(
self.config, write_empty_values=True
)
self.config.filename = self.config_file
self._resolve_paths(self.config, self.config_file)
except Exception as ex:
raise ConfigError(ex) | Loads config from all the config files.
Args:
validate (bool): optional flag to tell dvc if it should validate
the config or just load it as is. 'True' by default.
Raises:
dvc.config.ConfigError: thrown if config has invalid format. | juraj-google-style |
def _create_w_objective(m, X, Z=None):
genes, clusters = m.shape
cells = X.shape[1]
nonzeros = (X!=0)
def objective(w):
w = w.reshape((m.shape[1], X.shape[1]))
d = m.dot(w)+eps
temp = X/d
m_sum = m.T.dot(nonzeros)
m2 = m.T.dot(temp)
deriv = m_sum - m2
return np.sum(nonzeros*(d - X*np.log(d)))/genes, deriv.flatten()/genes
return objective | Creates an objective function and its derivative for W, given M and X (data)
Args:
m (array): genes x clusters
X (array): genes x cells
Z (array): zero-inflation parameters - genes x 1 | juraj-google-style |
def binary_arguments_to_tensors(x1, x2):
if ((not isinstance(x1, Tensor)) and (not isinstance(x2, Tensor))):
raise ValueError('at least one of x1 and x2 must be an mtf Tensor')
elif (isinstance(x1, Tensor) and isinstance(x2, Tensor)):
return (x1, x2)
elif isinstance(x1, Tensor):
return (x1, import_tf_tensor(x1.mesh, tf.convert_to_tensor(x2, dtype=x1.dtype), Shape([])))
else:
return (import_tf_tensor(x2.mesh, tf.convert_to_tensor(x1, dtype=x2.dtype), Shape([])), x2) | Convert argument of a binary operation to Tensors.
Args:
x1: a Tensor or something convertible to a tf Scalar
x2: a Tensor or something convertible to a tf Scalar
Returns:
new_x1: a Tensor
new_x2: a Tensor
Raises:
ValueError: on failure | codesearchnet |
def AddProcessingOptions(self, argument_group):
argument_helper_names = ['temporary_directory', 'zeromq']
if self._CanEnforceProcessMemoryLimit():
argument_helper_names.append('process_resources')
helpers_manager.ArgumentHelperManager.AddCommandLineArguments(argument_group, names=argument_helper_names)
argument_group.add_argument('--worker-memory-limit', '--worker_memory_limit', dest='worker_memory_limit', action='store', type=int, metavar='SIZE', help='Maximum amount of memory (data segment and shared memory) a worker process is allowed to consume in bytes, where 0 represents no limit. The default limit is 2147483648 (2 GiB). If a worker process exceeds this limit is is killed by the main (foreman) process.') | Adds processing options to the argument group
Args:
argument_group (argparse._ArgumentGroup): argparse argument group. | codesearchnet |
def IsErrorSuppressedByNolint(category, linenum):
return ((linenum in _error_suppressions.get(category, set())) or (linenum in _error_suppressions.get(None, set()))) | Returns true if the specified error category is suppressed on this line.
Consults the global error_suppressions map populated by
ParseNolintSuppressions/ResetNolintSuppressions.
Args:
category: str, the category of the error.
linenum: int, the current line number.
Returns:
bool, True iff the error should be suppressed due to a NOLINT comment. | codesearchnet |
def _group(self, group_data):
if isinstance(group_data, dict):
xid = group_data.get('xid')
else:
xid = group_data.xid
if self.groups.get(xid) is not None:
group_data = self.groups.get(xid)
elif self.groups_shelf.get(xid) is not None:
group_data = self.groups_shelf.get(xid)
else:
self.groups[xid] = group_data
return group_data | Return previously stored group or new group.
Args:
group_data (dict|obj): An Group dict or instance of Group object.
Returns:
dict|obj: The new Group dict/object or the previously stored dict/object. | juraj-google-style |
def publish(self, event_type: str, event_data: dict=None):
import inspect
import os.path
_stack = inspect.stack()
_origin = (((os.path.basename(_stack[3][1]) + '::') + _stack[3][3]) + '::L{}'.format(_stack[3][2]))
publish(event_type=event_type, event_data=event_data, object_type=self._type, object_id=self._id, object_key=self._key, origin=_origin) | Publish an event associated with the scheduling object.
Note:
Ideally publish should not be used directly but by other methods
which perform actions on the object.
Args:
event_type (str): Type of event.
event_data (dict, optional): Event data. | codesearchnet |
def SerializeUnsigned(self, writer):
writer.WriteUInt32(self.Version)
writer.WriteUInt256(self.PrevHash)
writer.WriteUInt256(self.MerkleRoot)
writer.WriteUInt32(self.Timestamp)
writer.WriteUInt32(self.Index)
writer.WriteUInt64(self.ConsensusData)
writer.WriteUInt160(self.NextConsensus) | Serialize unsigned data only.
Args:
writer (neo.IO.BinaryWriter): | juraj-google-style |
def __init__(self, url=None):
self._url = None
self.users_url = None
self.groups_url = None
self.url = url | Construct a SLUGSConnector.
Args:
url (string): The base URL for the remote SLUGS instance. Optional,
defaults to None. Required for authentication. | juraj-google-style |
def Detect(self, baseline, host_data):
result = CheckResult()
for detector in self.detectors:
finding = detector(baseline, host_data)
if finding:
result.ExtendAnomalies([finding])
if result:
return result | Run host_data through detectors and return them if a detector triggers.
Args:
baseline: The base set of rdf values used to evaluate whether an issue
exists.
host_data: The rdf values passed back by the filters.
Returns:
A CheckResult message containing anomalies if any detectors identified an
issue, None otherwise. | juraj-google-style |
def read_full(fileobj, size):
if (size < 0):
raise ValueError('size must not be negative')
data = fileobj.read(size)
if (len(data) != size):
raise IOError
return data | Like fileobj.read but raises IOError if not all requested data is
returned.
If you want to distinguish IOError and the EOS case, better handle
the error yourself instead of using this.
Args:
fileobj (fileobj)
size (int): amount of bytes to read
Raises:
IOError: In case read fails or not enough data is read | codesearchnet |
def get_variant_slice(self, package_name, range_):
variant_list = self.variant_lists.get(package_name)
if (variant_list is None):
variant_list = _PackageVariantList(package_name, self.solver)
self.variant_lists[package_name] = variant_list
entries = variant_list.get_intersection(range_)
if (not entries):
return None
slice_ = _PackageVariantSlice(package_name, entries=entries, solver=self.solver)
return slice_ | Get a list of variants from the cache.
Args:
package_name (str): Name of package.
range_ (`VersionRange`): Package version range.
Returns:
`_PackageVariantSlice` object. | codesearchnet |
def dispatch_command(self, prefix, argv, screen_info=None):
if not prefix:
raise ValueError('Prefix is empty')
resolved_prefix = self._resolve_prefix(prefix)
if not resolved_prefix:
raise ValueError('No handler is registered for command prefix "%s"' % prefix)
handler = self._handlers[resolved_prefix]
try:
output = handler(argv, screen_info=screen_info)
except CommandLineExit as e:
raise e
except SystemExit as e:
lines = ['Syntax error for command: %s' % prefix, 'For help, do "help %s"' % prefix]
output = RichTextLines(lines)
except BaseException as e:
lines = ['Error occurred during handling of command: %s %s:' % (resolved_prefix, ' '.join(argv)), '%s: %s' % (type(e), str(e))]
lines.append('')
lines.extend(traceback.format_exc().split('\n'))
output = RichTextLines(lines)
if not isinstance(output, RichTextLines) and output is not None:
raise ValueError('Return value from command handler %s is not None or a RichTextLines instance' % str(handler))
return output | Handles a command by dispatching it to a registered command handler.
Args:
prefix: Command prefix, as a str, e.g., "print".
argv: Command argument vector, excluding the command prefix, represented
as a list of str, e.g.,
["tensor_1"]
screen_info: A dictionary containing screen info, e.g., {"cols": 100}.
Returns:
An instance of RichTextLines or None. If any exception is caught during
the invocation of the command handler, the RichTextLines will wrap the
error type and message.
Raises:
ValueError: If
1) prefix is empty, or
2) no command handler is registered for the command prefix, or
3) the handler is found for the prefix, but it fails to return a
RichTextLines or raise any exception.
CommandLineExit:
If the command handler raises this type of exception, this method will
simply pass it along. | github-repos |
def convert_to_tensor_or_ragged_tensor(value, dtype=None, preferred_dtype=None, name=None):
if isinstance(value, RaggedTensor):
if dtype and (not dtype.is_compatible_with(value.dtype)):
raise ValueError(f'Tensor conversion requested dtype {dtype.name} for RaggedTensor with dtype {value.dtype.name}: {value}.')
return value
elif isinstance(value, ragged_tensor_value.RaggedTensorValue):
with ops.name_scope(name, 'ConvertToTensorOrRaggedTensor', []):
flat_values = ops.convert_to_tensor(value=value.flat_values, dtype=dtype, dtype_hint=preferred_dtype, name='flat_values')
return RaggedTensor.from_nested_row_splits(flat_values, value.nested_row_splits, validate=False)
else:
return tensor_conversion.convert_to_tensor_v2_with_dispatch(value=value, dtype=dtype, dtype_hint=preferred_dtype, name=name) | Converts value to a `RaggedTensor` or `Tensor`.
* If `value` is a `RaggedTensor`, then return it as-is.
* If `value` is a `RaggedTensorValue`, return a corresponding constant
`RaggedTensor`.
* Otherwise, use `convert_to_tensor` to convert `value` to a `Tensor`.
Args:
value: A `RaggedTensor`, a `RaggedTensorValue`, or an object whose type has
a registered `Tensor` conversion function.
dtype: Optional element type for the returned tensor. If missing the type
is inferred from the type of `value`.
preferred_dtype: Optional element type for the returned tensor, used when
dtype is None. This argument has no effect if `value` is already a
tensor, or when conversion is not possible.
name: Optional name to use if a new `Tensor` is created.
Returns:
A `Tensor` or `RaggedTensor`. | github-repos |
def _slice_params_to_dict(dist, params_event_ndims, slices):
override_dict = {}
for param_name, param_event_ndims in six.iteritems(params_event_ndims):
if param_name not in dist.parameters:
raise ValueError('Distribution {} is missing advertised '
'parameter {}'.format(dist, param_name))
param = dist.parameters[param_name]
if param is None:
continue
dtype = None
if hasattr(dist, param_name):
attr = getattr(dist, param_name)
dtype = getattr(attr, 'dtype', None)
if dtype is None:
dtype = dist.dtype
warnings.warn('Unable to find property getter for parameter Tensor {} '
'on {}, falling back to Distribution.dtype {}'.format(
param_name, dist, dtype))
param = tf.convert_to_tensor(value=param, dtype=dtype)
override_dict[param_name] = _slice_single_param(param, param_event_ndims,
slices,
dist.batch_shape_tensor())
return override_dict | Computes the override dictionary of sliced parameters.
Args:
dist: The tfd.Distribution being batch-sliced.
params_event_ndims: Per-event parameter ranks, a `str->int` `dict`.
slices: Slices as received by __getitem__.
Returns:
overrides: `str->Tensor` `dict` of batch-sliced parameter overrides. | juraj-google-style |
def _contains_internal_dynamic_call(contract):
for func in contract.all_functions_called:
for node in func.nodes:
for ir in node.irs:
if isinstance(ir, InternalDynamicCall):
return True
return False | Checks if a contract contains a dynamic call either in a direct definition, or through inheritance.
Returns:
(boolean): True if this contract contains a dynamic call (including through inheritance). | codesearchnet |
def __init__(self, **sections):
self._sections = []
for sct_name, sct_meta in sections.items():
if _is_valid(sct_name):
setattr(self, sct_name, Section(**sct_meta.def_))
self._sections.append(sct_name)
else:
raise error.SectionError(sct_name)
self._parser = None
self._nosub_valid = False
self._subcmds = {}
self._config_files = () | Initialization of instances.
Args:
sections (:class:`~loam.manager.Section`): section metadata. The
name of each *section* is the name of the keyword argument
passed on to this function. Section names should be valid
identifiers, otherwise a :class:`~loam.error.SectionError` is
raised. | juraj-google-style |
def build_avatar_url(jid):
digest = md5(str(jid).encode('utf-8')).hexdigest()
return 'http: | Static method to build a gravatar url with the agent's JID
Args:
jid (aioxmpp.JID): an XMPP identifier
Returns:
str: an URL for the gravatar | codesearchnet |
def _insert(self, new_item, feed_item):
filename = feed_item.get(FieldMap.CREATIVE_ASSET_FILE_NAME, None)
file_buffer = object_get(self.config, self.auth, '%s:%s' % (feed_item.get(FieldMap.CREATIVE_ASSET_BUCKET_NAME, None), filename))
file_mime = mimetypes.guess_type(filename, strict=False)[0]
media = MediaIoBaseUpload(BytesIO(file_buffer), mimetype=file_mime, chunksize=CHUNKSIZE, resumable=True)
result = self._api().insert(profileId=self.profile_id, advertiserId=str(feed_item.get(FieldMap.ADVERTISER_ID, None)), media_body=media, body=new_item).execute()
return result | Handles the upload of creative assets to DCM and the creation of the associated entity.
This method makes a call to the DCM API to create a new entity.
Args:
new_item: The item to insert into DCM.
feed_item: The feed item representing the creative asset from the
Bulkdozer feed.
Returns:
The newly created item in DCM. | github-repos |
def get_query_parameters(args, cell_body, date_time=datetime.datetime.now()):
env = google.datalab.utils.commands.notebook_environment()
config = google.datalab.utils.commands.parse_config(cell_body, env=env, as_dict=False)
sql = args['query']
if (sql is None):
raise Exception('Cannot extract query parameters in non-query cell')
if config:
jsonschema.validate(config, BigQuerySchema.QUERY_PARAMS_SCHEMA)
config = (config or {})
config_parameters = config.get('parameters', [])
return bigquery.Query.get_query_parameters(config_parameters, date_time=date_time) | Extract query parameters from cell body if provided
Also validates the cell body schema using jsonschema to catch errors before sending the http
request. This validation isn't complete, however; it does not validate recursive schemas,
but it acts as a good filter against most simple schemas
Args:
args: arguments passed to the magic cell
cell_body: body of the magic cell
date_time: The timestamp at which the date-time related parameters need to be resolved.
Returns:
Validated object containing query parameters | codesearchnet |
def get_ogr_driver(filepath):
filename, file_extension = os.path.splitext(filepath)
EXTENSION = file_extension[1:]
ogr_driver_count = ogr.GetDriverCount()
for idx in range(ogr_driver_count):
driver = ogr.GetDriver(idx)
driver_extension = driver.GetMetadataItem(str('DMD_EXTENSION')) or ''
driver_extensions = driver.GetMetadataItem(str('DMD_EXTENSIONS')) or ''
if EXTENSION == driver_extension or EXTENSION in driver_extensions:
return driver
else:
msg = 'No driver found for the following file extension: {}'.format(
EXTENSION)
raise ValueError(msg) | Get the OGR driver from the provided file extension.
Args:
file_extension (str): file extension
Returns:
osgeo.ogr.Driver
Raises:
ValueError: no driver is found | juraj-google-style |
class TimeSeriesFeatureEmbedder(nn.Module):
def __init__(self, cardinalities: List[int], embedding_dims: List[int]) -> None:
super().__init__()
self.num_features = len(cardinalities)
self.embedders = nn.ModuleList([nn.Embedding(c, d) for c, d in zip(cardinalities, embedding_dims)])
def forward(self, features: torch.Tensor) -> torch.Tensor:
if self.num_features > 1:
cat_feature_slices = torch.chunk(features, self.num_features, dim=-1)
else:
cat_feature_slices = [features]
return torch.cat([embed(cat_feature_slice.squeeze(-1)) for embed, cat_feature_slice in zip(self.embedders, cat_feature_slices)], dim=-1) | Embed a sequence of categorical features.
Args:
cardinalities (`list[int]`):
List of cardinalities of the categorical features.
embedding_dims (`list[int]`):
List of embedding dimensions of the categorical features. | github-repos |
def put(self, key, value):
path = self.object_path(key)
self._write_object(path, value) | Stores the object `value` named by `key`.
Args:
key: Key naming `value`
value: the object to store. | juraj-google-style |
def setdefault(pb_or_dict, key, value):
if (not get(pb_or_dict, key, default=None)):
set(pb_or_dict, key, value) | Set the key on the object to the value if the current value is falsy.
Because protobuf Messages do not distinguish between unset values and
falsy ones particularly well, this method treats any falsy value
(e.g. 0, empty list) as a target to be overwritten, on both Messages
and dictionaries.
Args:
pb_or_dict (Union[~google.protobuf.message.Message, Mapping]): the
object.
key (str): The key on the object in question.
value (Any): The value to set.
Raises:
TypeError: If pb_or_dict is not a Message or Mapping. | codesearchnet |
def _expansion_request_url_for_value_set_url(value_set_url: str) -> Tuple[str, str]:
value_set_domain = urllib.parse.urlparse(value_set_url).netloc
root_url = TERMINOLOGY_BASE_URL_PER_DOMAIN.get(value_set_domain)
if root_url is None:
raise ValueError('Unknown domain %s. Can not find appropriate terminology server.' % value_set_domain)
return (root_url, urllib.parse.urljoin(root_url, 'ValueSet/$expand')) | Builds a URL for querying a terminology service to expand `value_set_url`.
Args:
value_set_url: The URL being expanded.
Raises:
ValueError: If a terminology service can not be found for `value_set_url`.
Returns:
A tuple of (root_url, expansion_url) where root_url is the root URL of the
terminology service and expansion_url is the URL to use when performing
value set expansion against that terminology service. | github-repos |
def translate_index(index_name):
uuid = SEARCH_INDEX_UUIDS.get(index_name.strip().lower())
if not uuid:
try:
index_info = globus_sdk.SearchClient().get_index(index_name).data
if not isinstance(index_info, dict):
raise ValueError("Multiple UUIDs possible")
uuid = index_info.get("id", index_name)
except Exception:
uuid = index_name
return uuid | Translate a known Globus Search index into the index UUID.
The UUID is the proper way to access indices, and will eventually be the only way.
This method will return names it cannot disambiguate.
Arguments:
index_name (str): The name of the index.
Returns:
str: The UUID of the index. If the index is not known and is not unambiguous,
this will be the ``index_name`` unchanged instead. | juraj-google-style |
def timestampFormat(self, timestampFormat):
if (not isinstance(timestampFormat, str)):
raise TypeError('not of type unicode')
self._timestampFormat = timestampFormat | Setter to _timestampFormat. Formatting string for conversion of timestamps to QtCore.QDateTime
Raises:
AssertionError: if timestampFormat is not of type unicode.
Args:
timestampFormat (unicode): assign timestampFormat to _timestampFormat.
Formatting string for conversion of timestamps to QtCore.QDateTime. Used in data method. | codesearchnet |
def send_state_event(self, room_id, event_type, content, state_key="",
timestamp=None):
path = "/rooms/%s/state/%s" % (
quote(room_id), quote(event_type),
)
if state_key:
path += "/%s" % (quote(state_key))
params = {}
if timestamp:
params["ts"] = timestamp
return self._send("PUT", path, content, query_params=params) | Perform PUT /rooms/$room_id/state/$event_type
Args:
room_id(str): The room ID to send the state event in.
event_type(str): The state event type to send.
content(dict): The JSON content to send.
state_key(str): Optional. The state key for the event.
timestamp (int): Set origin_server_ts (For application services only) | juraj-google-style |
def subprogram_signature(vo, fullname=None):
if fullname is None:
fullname = vo.name
if isinstance(vo, VhdlFunction):
plist = ','.join(p.data_type for p in vo.parameters)
sig = '{}[{} return {}]'.format(fullname, plist, vo.return_type)
else:
plist = ','.join(p.data_type for p in vo.parameters)
sig = '{}[{}]'.format(fullname, plist)
return sig | Generate a signature string
Args:
vo (VhdlFunction, VhdlProcedure): Subprogram object
Returns:
Signature string. | juraj-google-style |
def pprint(sequence, keys=None):
if (len(sequence) > 0):
columns = calculate_columns(sequence)
row_format = calculate_row_format(columns, keys)
header = (row_format % dict([(key, key.title()) for key in columns]))
separator = (row_format % dict([(key, ('-' * columns[key])) for key in columns]))
print(separator)
print(header)
print(separator)
for row in sequence:
print((row_format % row))
print(separator) | Print sequence as ascii table to stdout.
Args:
sequence (list or tuple): a sequence with a dictionary each entry.
keys (list): optional list of keys to order columns as well as to filter for them. | codesearchnet |
def combine_graph_defs(to_proto, from_proto):
if (from_proto.version != to_proto.version):
raise ValueError('Cannot combine GraphDefs of different versions.')
try:
_safe_copy_proto_list_values(to_proto.node, from_proto.node, (lambda n: n.name))
except _ProtoListDuplicateKeyError as exc:
raise ValueError(('A GraphDef contains non-unique node names: %s' % exc))
except _SameKeyDiffContentError as exc:
raise ValueError(('Cannot combine GraphDefs because nodes share a name but contents are different: %s' % exc))
try:
_safe_copy_proto_list_values(to_proto.library.function, from_proto.library.function, (lambda n: n.signature.name))
except _ProtoListDuplicateKeyError as exc:
raise ValueError(('A GraphDef contains non-unique function names: %s' % exc))
except _SameKeyDiffContentError as exc:
raise ValueError(('Cannot combine GraphDefs because functions share a name but are different: %s' % exc))
try:
_safe_copy_proto_list_values(to_proto.library.gradient, from_proto.library.gradient, (lambda g: g.gradient_func))
except _ProtoListDuplicateKeyError as exc:
raise ValueError(('A GraphDef contains non-unique gradient function names: %s' % exc))
except _SameKeyDiffContentError as exc:
raise ValueError(('Cannot combine GraphDefs because gradients share a gradient_func name but map to different functions: %s' % exc))
return to_proto | Combines two GraphDefs by adding nodes from from_proto into to_proto.
All GraphDefs are expected to be of TensorBoard's.
It assumes node names are unique across GraphDefs if contents differ. The
names can be the same if the NodeDef content are exactly the same.
Args:
to_proto: A destination TensorBoard GraphDef.
from_proto: A TensorBoard GraphDef to copy contents from.
Returns:
to_proto
Raises:
ValueError in case any assumption about GraphDef is violated: A
GraphDef should have unique node, function, and gradient function
names. Also, when merging GraphDefs, they should have not have nodes,
functions, or gradient function mappings that share the name but details
do not match. | codesearchnet |
def get_sequence_dense_tensor(self, transformation_cache, state_manager):
sp_tensor = transformation_cache.get(self, state_manager)
dense_tensor = sparse_ops.sparse_tensor_to_dense(sp_tensor, default_value=self.default_value)
dense_shape = array_ops.concat([array_ops.shape(dense_tensor)[:1], [-1], self.variable_shape], axis=0)
dense_tensor = array_ops.reshape(dense_tensor, shape=dense_shape)
if sp_tensor.shape.ndims == 2:
num_elements = self.variable_shape.num_elements()
else:
num_elements = 1
seq_length = fc_utils.sequence_length_from_sparse_tensor(sp_tensor, num_elements=num_elements)
return fc.SequenceDenseColumn.TensorSequenceLengthPair(dense_tensor=dense_tensor, sequence_length=seq_length) | Returns a `TensorSequenceLengthPair`.
Args:
transformation_cache: A `FeatureTransformationCache` object to access
features.
state_manager: A `StateManager` to create / access resources such as
lookup tables. | github-repos |
def is_debug_node(node_name):
return node_name.startswith('__dbg_') | Determine whether a node name is that of a debug node.
Such nodes are inserted by TensorFlow core upon request in
RunOptions.debug_options.debug_tensor_watch_opts.
Args:
node_name: Name of the node.
Returns:
A bool indicating whether the input argument is the name of a debug node. | github-repos |
def put(self, json=None):
return self._call('put', url=self.endpoint, json=json) | Send a PUT request and return the JSON decoded result.
Args:
json (dict, optional): Object to encode and send in request.
Returns:
mixed: JSON decoded response data. | codesearchnet |
def setAvatar(self, image):
self.conn("PUT", "{0}/users/{1}/profile/avatar".format(SkypeConnection.API_USER, self.userId),
auth=SkypeConnection.Auth.SkypeToken, data=image.read()) | Update the profile picture for the current user.
Args:
image (file): a file-like object to read the image from | juraj-google-style |
def __init__(self, **kwargs):
self.address = self.name = address.new(kwargs['name'])
self.subgraph = None
self.params = {}
log.debug('New target: %s', self.address)
try:
for param_name, param_type in self.required_params:
self.params[param_name] = kwargs.pop(param_name)
assert isinstance(self.params[param_name], param_type)
except AssertionError as err:
if isinstance(param_type, tuple) and len(param_type) > 1:
msg = 'one of: %s' % ', '.join(param_type.__name__)
else:
msg = str(param_type.__name__)
raise error.InvalidRule(
'While loading %s: Invalid type for %s. '
'Expected: %s. Actual: %s.' % (
self.address, param_name, msg,
repr(self.params[param_name])))
except KeyError as err:
log.error(err)
raise error.InvalidRule(
'While loading %s: Required parameter %s not given.' % repr(
self.address, param_name))
for (param_name, param_type, param_default) in self.optional_params:
if param_name not in kwargs:
self.params[param_name] = param_default
else:
self.params[param_name] = kwargs.pop(param_name)
if not isinstance(self.params[param_name], param_type):
msg = str(param_type.__name__)
if isinstance(param_type, tuple) and len(param_type) > 1:
msg = 'one of: %s' % ', '.join(param_type.__name__)
raise error.InvalidRule(
'While loading %s: Invalid type for %s. '
'Expected: %s. Actual: %s.' % (
self.address, param_name, msg,
repr(self.params[param_name])))
if kwargs:
raise error.InvalidRule(
'[%s]: Unknown argument(s): %s' % (
self.address, ', '.join(kwargs.keys())))
if self.graphcontext is not None:
self.graphcontext.add_node(self.address, target_obj=self)
try:
self.validate_args()
except AssertionError as err:
raise error.InvalidRule('Error in %s: %s' % (self.address, err)) | Initialize the build rule.
Args:
**kwargs: Assorted parameters; see subclass implementations for
details. | juraj-google-style |
def serialize_array(array, domain=(0, 1), fmt='png', quality=70):
normalized = _normalize_array(array, domain=domain)
return _serialize_normalized_array(normalized, fmt=fmt, quality=quality) | Given an arbitrary rank-3 NumPy array,
returns the byte representation of the encoded image.
Args:
array: NumPy array of dtype uint8 and range 0 to 255
domain: expected range of values in array, see `_normalize_array()`
fmt: string describing desired file format, defaults to 'png'
quality: specifies compression quality from 0 to 100 for lossy formats
Returns:
image data as BytesIO buffer | juraj-google-style |
def list_alias():
alias_table = get_alias_table()
output = []
for alias in alias_table.sections():
if alias_table.has_option(alias, 'command'):
output.append({'alias': alias, 'command': ' '.join(alias_table.get(alias, 'command').split())})
return output | List all registered aliases.
Returns:
An array of dictionary containing the alias and the command that it points to. | codesearchnet |
def init(self, address, hard_reset=False):
self.address = address
if hard_reset:
pass
for i in range(Dongle.PORT_RETRIES):
try:
logger.debug('Setting up BGAPI, attempt {}/{}'.format((i + 1), Dongle.PORT_RETRIES))
self.api = BlueGigaAPI(port=self.address, callbacks=self, baud=Dongle.BAUDRATE, timeout=DEF_TIMEOUT)
self.api.start_daemon()
break
except serial.serialutil.SerialException as e:
logger.debug('Failed to init BlueGigaAPI: {}, attempt {}/{}'.format(e, (i + 1), Dongle.PORT_RETRIES))
time.sleep(0.1)
if (self.api is None):
return False
time.sleep(0.5)
self.get_supported_connections()
logger.info('Dongle supports {} connections'.format(self.supported_connections))
if (self.supported_connections == (- 1)):
logger.error('Failed to retrieve number of supported connections from the dongle! (try reinserting it)')
return False
self.conn_state = {x: self._STATE_IDLE for x in range(self.supported_connections)}
self.reset()
self._cbthread = threading.Thread(target=self._cbthreadfunc)
self._cbthread.setDaemon(True)
self._cbthread_q = Queue()
self._cbthread.start()
return True | Open the serial connection to a dongle at the supplied address.
Args:
address (str): the serial port address of the BLED112 dongle, e.g. 'COM5'
hard_reset (bool): not currently used
Returns:
True if a connection with the dongle was established, False otherwise. | codesearchnet |
def serialize(metric):
return serialization_lib.serialize_keras_object(metric) | Serializes metric function or `Metric` instance.
Args:
metric: A Keras `Metric` instance or a metric function.
Returns:
Metric configuration dictionary. | github-repos |
def max_range(ranges, combined=True):
try:
with warnings.catch_warnings():
warnings.filterwarnings('ignore', 'All-NaN (slice|axis) encountered')
values = [tuple(((np.NaN if (v is None) else v) for v in r)) for r in ranges]
if (pd and any(((isinstance(v, datetime_types) and (not isinstance(v, cftime_types))) for r in values for v in r))):
converted = []
for (l, h) in values:
if (isinstance(l, datetime_types) and isinstance(h, datetime_types)):
(l, h) = (pd.Timestamp(l).to_datetime64(), pd.Timestamp(h).to_datetime64())
converted.append((l, h))
values = converted
arr = np.array(values)
if (not len(arr)):
return (np.NaN, np.NaN)
elif (arr.dtype.kind in 'OSU'):
arr = list(python2sort([v for r in values for v in r if ((not is_nan(v)) and (v is not None))]))
return (arr[0], arr[(- 1)])
elif (arr.dtype.kind in 'M'):
return ((arr.min(), arr.max()) if combined else (arr[(:, 0)].min(), arr[(:, 1)].min()))
if combined:
return (np.nanmin(arr), np.nanmax(arr))
else:
return (np.nanmin(arr[(:, 0)]), np.nanmax(arr[(:, 1)]))
except:
return (np.NaN, np.NaN) | Computes the maximal lower and upper bounds from a list bounds.
Args:
ranges (list of tuples): A list of range tuples
combined (boolean, optional): Whether to combine bounds
Whether range should be computed on lower and upper bound
independently or both at once
Returns:
The maximum range as a single tuple | codesearchnet |
def angle_to_distance(angle, units='metric'):
distance = (math.radians(angle) * BODY_RADIUS)
if (units in ('km', 'metric')):
return distance
elif (units in ('sm', 'imperial', 'US customary')):
return (distance / STATUTE_MILE)
elif (units in ('nm', 'nautical')):
return (distance / NAUTICAL_MILE)
else:
raise ValueError(('Unknown units type %r' % units)) | Convert angle in to distance along a great circle.
Args:
angle (float): Angle in degrees to convert to distance
units (str): Unit type to be used for distances
Returns:
float: Distance in ``units``
Raises:
ValueError: Unknown value for ``units`` | codesearchnet |
def convert_data_to_dtype(data, data_type, mot_float_type='float'):
scalar_dtype = ctype_to_dtype(data_type, mot_float_type)
if isinstance(data, numbers.Number):
data = scalar_dtype(data)
if is_vector_ctype(data_type):
shape = data.shape
dtype = ctype_to_dtype(data_type, mot_float_type)
ve = np.zeros(shape[:(- 1)], dtype=dtype)
if (len(shape) == 1):
for vector_ind in range(shape[0]):
ve[0][vector_ind] = data[vector_ind]
elif (len(shape) == 2):
for i in range(data.shape[0]):
for vector_ind in range(data.shape[1]):
ve[i][vector_ind] = data[(i, vector_ind)]
elif (len(shape) == 3):
for i in range(data.shape[0]):
for j in range(data.shape[1]):
for vector_ind in range(data.shape[2]):
ve[(i, j)][vector_ind] = data[(i, j, vector_ind)]
return np.require(ve, requirements=['C', 'A', 'O'])
return np.require(data, scalar_dtype, ['C', 'A', 'O']) | Convert the given input data to the correct numpy type.
Args:
data (ndarray): The value to convert to the correct numpy type
data_type (str): the data type we need to convert the data to
mot_float_type (str): the data type of the current ``mot_float_type``
Returns:
ndarray: the input data but then converted to the desired numpy data type | codesearchnet |
def to_dict(self):
output = asdict(self)
output['structure_module'] = self.structure_module.to_dict()
return output | Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, | github-repos |
def spawn_agent(self, agent_definition, location):
self._should_write_to_command_buffer = True
self._add_agents(agent_definition)
command_to_send = SpawnAgentCommand(location, agent_definition.name, agent_definition.type)
self._commands.add_command(command_to_send) | Queues a spawn agent command. It will be applied when `tick` or `step` is called next.
The agent won't be able to be used until the next frame.
Args:
agent_definition (:obj:`AgentDefinition`): The definition of the agent to spawn.
location (np.ndarray or list): The position to spawn the agent in the world, in XYZ coordinates (in meters). | codesearchnet |
def fetch_layout(tensor: tensor_lib.Tensor) -> layout_lib.Layout:
return _dtensor_device().fetch_layout(tensor) | Fetches the layout of a DTensor.
Args:
tensor: The DTensor whose layout is to be fetched.
Returns:
The `Layout` of this DTensor.
Raises:
RuntimeError: When not called eagerly. | github-repos |
def get_func_and_args_from_str(call_str):
open_paren_index = call_str.find('(')
close_paren_index = call_str.rfind(')')
function_name = call_str[:call_str.find('(')]
args = call_str[open_paren_index + 1:close_paren_index].split(',')
args = [arg.split('=')[0].strip() for arg in args]
args = [arg for arg in args if arg]
return (function_name, args) | Parse call string to get function and argument names.
Args:
call_str: Call string must be in the form:
`tf.foo(arg1=val1, arg2=val2, ...)`.
Returns:
(function_name, list of arg names) tuple. | github-repos |
def __init__(
self,
bar_gram,
midi_df_list,
batch_size=20,
seq_len=10,
time_fraction=0.1,
conditional_flag=True
):
if isinstance(bar_gram, BarGram) is False:
raise TypeError()
self.__bar_gram = bar_gram
program_list = []
self.__midi_df_list = midi_df_list
for i in range(len(self.__midi_df_list)):
program_list.extend(
self.__midi_df_list[i]["program"].drop_duplicates().values.tolist()
)
program_list = list(set(program_list))
self.__batch_size = batch_size
self.__seq_len = seq_len
self.__channel = len(program_list)
self.__program_list = program_list
self.__time_fraction = time_fraction
self.__dim = self.__bar_gram.dim
self.__conditional_flag = conditional_flag | Init.
Args:
bar_gram: is-a `BarGram`.
midi_df_list: `list` of paths to MIDI data extracted by `MidiController`.
batch_size: Batch size.
seq_len: The length of sequneces.
The length corresponds to the number of `time` splited by `time_fraction`.
time_fraction: Time fraction which means the length of bars. | juraj-google-style |
def add_transition(self, source: str, dest: str):
self._transitions[source].append(dest) | Adds a transition from one state to another.
Args:
source (str): the name of the state from where the transition starts
dest (str): the name of the state where the transition ends | codesearchnet |
def make_encoder(activation, num_topics, layer_sizes):
encoder_net = tf.keras.Sequential()
for num_hidden_units in layer_sizes:
encoder_net.add(tf.keras.layers.Dense(num_hidden_units, activation=activation, kernel_initializer=tf.compat.v1.glorot_normal_initializer()))
encoder_net.add(tf.keras.layers.Dense(num_topics, activation=tf.nn.softplus, kernel_initializer=tf.compat.v1.glorot_normal_initializer()))
def encoder(bag_of_words):
net = _clip_dirichlet_parameters(encoder_net(bag_of_words))
return tfd.Dirichlet(concentration=net, name='topics_posterior')
return encoder | Create the encoder function.
Args:
activation: Activation function to use.
num_topics: The number of topics.
layer_sizes: The number of hidden units per layer in the encoder.
Returns:
encoder: A `callable` mapping a bag-of-words `Tensor` to a
`tfd.Distribution` instance over topics. | codesearchnet |
def __init__(self, element=None):
super(TreeMapNode, self).__init__()
self._element = element
self._nodes = dict()
self._parent = None
self._depth = -1 | Constructor.
Args:
element: Object to add into the node. | juraj-google-style |
def remove_overlap(self, also_remove_contiguous: bool = False) -> None:
overlap = True
while overlap:
overlap = self._remove_overlap_sub(also_remove_contiguous)
self._sort() | Merges any overlapping intervals.
Args:
also_remove_contiguous: treat contiguous (as well as overlapping)
intervals as worthy of merging? | juraj-google-style |
def convert_dict_to_params(src_dict):
return "&".join([
"{}={}".format(key, value)
for key, value in src_dict.items()
]) | convert dict to params string
Args:
src_dict (dict): source mapping data structure
Returns:
str: string params data
Examples:
>>> src_dict = {
"a": 1,
"b": 2
}
>>> convert_dict_to_params(src_dict)
>>> "a=1&b=2" | juraj-google-style |
class Permute(Layer):
def __init__(self, dims, **kwargs):
super().__init__(**kwargs)
self.dims = tuple(dims)
if sorted(dims) != list(range(1, len(dims) + 1)):
raise ValueError(f'Invalid permutation argument `dims` for Permute Layer. The set of indices in `dims` must be consecutive and start from 1. Received dims={dims}')
self.input_spec = InputSpec(ndim=len(self.dims) + 1)
def compute_output_shape(self, input_shape):
output_shape = [input_shape[0]]
for dim in self.dims:
output_shape.append(input_shape[dim])
return tuple(output_shape)
def compute_output_spec(self, inputs):
output_shape = self.compute_output_shape(inputs.shape)
return KerasTensor(shape=output_shape, dtype=inputs.dtype, sparse=inputs.sparse)
def call(self, inputs):
return ops.transpose(inputs, axes=(0,) + self.dims)
def get_config(self):
config = {'dims': self.dims}
base_config = super().get_config()
return {**base_config, **config} | Permutes the dimensions of the input according to a given pattern.
Useful e.g. connecting RNNs and convnets.
Args:
dims: Tuple of integers. Permutation pattern does not include the
batch dimension. Indexing starts at 1.
For instance, `(1, 3, 2)` permutes the second and third dimensions
of the input.
Input shape:
Arbitrary.
Output shape:
Same as the input shape, but with the dimensions re-ordered according
to the specified pattern.
Example:
>>> x = keras.Input(shape=(10, 64))
>>> y = keras.layers.Permute((2, 1))(x)
>>> y.shape
(None, 64, 10) | github-repos |
def _assertOpOutputMatchesExpected(self, params, solution, high_level=True, rtol=0.001, atol=1e-05):
input = params['input']
with self.session() as session:
for dtype in self.numeric_types - {np.int8, np.uint8}:
expected = solution.astype(dtype)
with self.test_scope():
params['input'] = array_ops.placeholder(dtype, input.shape, name='input')
if high_level:
output = array_ops.matrix_diag_part(**params)
else:
output = gen_array_ops.matrix_diag_part(**params)
output = array_ops.matrix_diag_part(**params)
result = session.run(output, {params['input']: input.astype(dtype)})
self.assertEqual(output.dtype, expected.dtype)
self.assertAllCloseAccordingToType(expected, result, rtol=rtol, atol=atol, bfloat16_rtol=0.03) | Verifies that matrix_diag_part produces `solution` when fed `params`.
Args:
params: dictionary containing input parameters to matrix_diag_part.
solution: numpy array representing the expected output.
high_level: call high_level matrix_set_diag
rtol: relative tolerance for equality test.
atol: absolute tolerance for equality test. | github-repos |
def quantile(self, value, name='quantile'):
return self._call_quantile(value, name) | Quantile function. Aka "inverse cdf" or "percent point function".
Given random variable `X` and `p in [0, 1]`, the `quantile` is:
```none
quantile(p) := x such that P[X <= x] == p
```
Args:
value: `float` or `double` `Tensor`.
name: Python `str` prepended to names of ops created by this function.
Returns:
quantile: a `Tensor` of shape `sample_shape(x) + self.batch_shape` with
values of type `self.dtype`. | github-repos |
def item_coords(self, table_item):
for row_key in self.children.keys():
for item_key in self.children[row_key].children.keys():
if self.children[row_key].children[item_key] == table_item:
return (int(row_key), int(item_key))
return None | Returns table_item's (row, column) cordinates.
Returns None in case of item not found.
Args:
table_item (TableItem): an item instance | juraj-google-style |
def __init__(self, subdomain, username, password, ssl=False, currentUser=None):
self.base_url = "http%s:
self._settings = {
"subdomain": subdomain,
"username": username,
"password": password,
"ssl": ssl
}
self._user = currentUser
self._users = {}
self._rooms = {}
if not self._user:
_connection = Connection(url="%s/users/me" % self.base_url, user=username, password=password)
user = _connection.get(key="user")
self._connection = Connection(
base_url=self.base_url,
user=self._user.token if self._user else user["api_auth_token"],
password="x"
)
if self._user:
self._user.set_connection(self._connection)
else:
self._user = User(self, user["id"], current=True)
self._user.token = user["api_auth_token"] | Initialize.
Args:
subdomain (str): Campfire subdomain
username (str): User
password (str): pasword
Kwargs:
ssl (bool): enabled status of SSL
currentUser (:class:`User`): If specified, don't auto load current user, use this one instead | juraj-google-style |
def write_registers(self, registeraddress, values):
if (not isinstance(values, list)):
raise TypeError('The "values parameter" must be a list. Given: {0!r}'.format(values))
_checkInt(len(values), minvalue=1, description='length of input list')
self._genericCommand(16, registeraddress, values, numberOfRegisters=len(values), payloadformat='registers') | Write integers to 16-bit registers in the slave.
The slave register can hold integer values in the range 0 to 65535 ("Unsigned INT16").
Uses Modbus function code 16.
The number of registers that will be written is defined by the length of the ``values`` list.
Args:
* registeraddress (int): The slave register start address (use decimal numbers, not hex).
* values (list of int): The values to store in the slave registers.
Any scaling of the register data, or converting it to negative number (two's complement)
must be done manually.
Returns:
None
Raises:
ValueError, TypeError, IOError | codesearchnet |
def universal_transformer_layer(x,
hparams,
ffn_unit,
attention_unit,
pad_remover=None):
def add_vanilla_transformer_layer(x, num_layers, name):
if hparams.add_position_timing_signal:
x = common_attention.add_timing_signal_1d(x)
for layer in range(num_layers):
with tf.variable_scope(name + "layer_%d" % layer):
x = ffn_unit(attention_unit(x))
return x
with tf.variable_scope("universal_transformer_%s" % hparams.recurrence_type):
if (hparams.mix_with_transformer and
"before_ut" in hparams.mix_with_transformer):
x = add_vanilla_transformer_layer(x, hparams.num_mixedin_layers,
"before_ut_")
if hparams.recurrence_type == "act":
output, extra_output = universal_transformer_act(
x, hparams, ffn_unit, attention_unit)
else:
ut_function, initializer = get_ut_layer(x, hparams, ffn_unit,
attention_unit, pad_remover)
output, _, extra_output = tf.foldl(
ut_function, tf.range(hparams.num_rec_steps),
initializer=initializer)
if (hparams.recurrence_type == "lstm" and
hparams.get("use_memory_as_final_state", False)):
output = extra_output
if (hparams.mix_with_transformer and
"after_ut" in hparams.mix_with_transformer):
output = add_vanilla_transformer_layer(output, hparams.num_mixedin_layers,
"after_ut_")
return output, extra_output | Core function applying the universal transformer layer.
Args:
x: input
hparams: model hyper-parameters
ffn_unit: feed-forward unit
attention_unit: multi-head attention unit
pad_remover: to mask out padding in convolutional layers (efficiency).
Returns:
the output tensor, extra output (can be memory, ponder time, etc.)
Raises:
ValueError: Unknown recurrence type | juraj-google-style |
def write_csv(data, file_name, encoding='utf-8'):
name_extension = len(data) > 1
root, ext = os.path.splitext(file_name)
for i, sheet in enumerate(data):
fname = file_name if not name_extension else root+"_"+str(i)+ext
with open(fname, 'wb') as date_file:
csv_file = csv.writer(date_file, encoding=encoding)
for line in sheet:
csv_file.writerow(line) | Writes out to csv format.
Args:
data: 2D list of tables/worksheets.
file_name: Name of the output file. | juraj-google-style |
def GetLoggingLocation():
frame = inspect.currentframe()
this_file = frame.f_code.co_filename
frame = frame.f_back
while frame:
if (this_file == frame.f_code.co_filename):
if ('cdbg_logging_location' in frame.f_locals):
ret = frame.f_locals['cdbg_logging_location']
if (len(ret) != 3):
return (None, None, None)
return ret
frame = frame.f_back
return (None, None, None) | Search for and return the file and line number from the log collector.
Returns:
(pathname, lineno, func_name) The full path, line number, and function name
for the logpoint location. | codesearchnet |
def parse_helpfull_output(help_output, regex=FLAG_HELP_RE_PY):
valid_flags = set()
for _, no_prefix, flag_name in regex.findall(help_output):
valid_flags.add('--' + flag_name)
if no_prefix:
valid_flags.add('--no' + flag_name)
return valid_flags | Parses the output of --helpfull.
Args:
help_output: str, the full output of --helpfull.
Returns:
A set of flags that are valid flags. | juraj-google-style |
def get(url, params={}):
request_url = url
if len(params):
request_url = "{}?{}".format(url, urlencode(params))
try:
req = Request(request_url, headers={'User-Agent': 'Mozilla/5.0'})
response = json.loads(urlopen(req).read().decode("utf-8"))
return response
except HTTPError as err:
raise MtgException(err.read()) | Invoke an HTTP GET request on a url
Args:
url (string): URL endpoint to request
params (dict): Dictionary of url parameters
Returns:
dict: JSON response as a dictionary | juraj-google-style |
def publish_values(self, labeled_values):
metric_dicts = [Metric(time.time(), uuid.uuid4().hex, value, label=label).as_dict() for label, value in labeled_values]
for publisher in self.publishers:
publisher.publish(metric_dicts) | The method to publish simple labeled values.
Args:
labeled_values (List[Tuple(str, int)]): list of (label, value) | github-repos |
def wbmax(self, value=None):
if (value is not None):
try:
value = float(value)
except ValueError:
raise ValueError('value {} need to be of type float for field `wbmax`'.format(value))
self._wbmax = value | Corresponds to IDD Field `wbmax`
Extreme maximum wet-bulb temperature
Args:
value (float): value for IDD Field `wbmax`
Unit: C
if `value` is None it will not be checked against the
specification and is assumed to be a missing value
Raises:
ValueError: if `value` is not a valid value | codesearchnet |
def _build_endpoint(self, endpoint_name):
endpoint_relative = settings.get('asmaster_endpoints', endpoint_name)
return ('%s%s' % (self.host, endpoint_relative)) | Generate an enpoint url from a setting name.
Args:
endpoint_name(str): setting name for the enpoint to build
Returns:
(str) url enpoint | codesearchnet |
def update_media_assetfile(access_token, parent_asset_id, asset_id, content_length, name):
path = '/Files'
full_path = ''.join([path, "('", asset_id, "')"])
full_path_encoded = urllib.parse.quote(full_path, safe='')
endpoint = ''.join([ams_rest_endpoint, full_path_encoded])
body = '{ \
"ContentFileSize": "' + str(content_length) + '", \
"Id": "' + asset_id + '", \
"MimeType": "video/mp4", \
"Name": "' + name + '", \
"ParentAssetId": "' + parent_asset_id + '" \
}'
return do_ams_patch(endpoint, full_path_encoded, body, access_token) | Update Media Service Asset File.
Args:
access_token (str): A valid Azure authentication token.
parent_asset_id (str): A Media Service Asset Parent Asset ID.
asset_id (str): A Media Service Asset Asset ID.
content_length (str): A Media Service Asset Content Length.
name (str): A Media Service Asset name.
Returns:
HTTP response. JSON body. | juraj-google-style |
def derive_depth(self, depth):
cls = type(self)
return cls(
self[0],
self[1],
self[2],
self[3],
self[4],
depth
) | Derives a new event from this one setting the ``depth`` attribute.
Args:
depth: (int):
The annotations associated with the derived event.
Returns:
IonEvent: The newly generated event. | juraj-google-style |
def register_intent_parser(self, intent_parser, domain=0):
if (domain not in self.domains):
self.register_domain(domain=domain)
self.domains[domain].register_intent_parser(intent_parser=intent_parser) | Register a intent parser with a domain.
Args:
intent_parser(intent): The intent parser you wish to register.
domain(str): a string representing the domain you wish register the intent
parser to. | codesearchnet |
def escape_for_cmd_exe(arg):
meta_chars = '()%!^"<>&|'
meta_re = re.compile((('(' + '|'.join((re.escape(char) for char in list(meta_chars)))) + ')'))
meta_map = {char: '^{0}'.format(char) for char in meta_chars}
def escape_meta_chars(m):
char = m.group(1)
return meta_map[char]
return meta_re.sub(escape_meta_chars, arg) | Escape an argument string to be suitable to be passed to
cmd.exe on Windows
This method takes an argument that is expected to already be properly
escaped for the receiving program to be properly parsed. This argument
will be further escaped to pass the interpolation performed by cmd.exe
unchanged.
Any meta-characters will be escaped, removing the ability to e.g. use
redirects or variables.
Args:
arg (str): a single command line argument to escape for cmd.exe
Returns:
str: an escaped string suitable to be passed as a program argument to cmd.exe | codesearchnet |
def __init__(self, *args, **kwargs):
if isinstance(kwargs.get('record'), dict):
prefix, _ = kwargs['event_type'].split('.', 1)
model = self.EVENT_PREFIX_TO_MODEL[prefix]
kwargs['record'] = model.from_api(**kwargs['record'])
super(WebHookEvent, self).__init__(*args, **kwargs) | Parse raw record data if required.
Args:
record (dict or BaseModel): The record data that was received for
the request. If it is a ``dict``, the data will be parsed
using the proper model's ``from_api`` method. | juraj-google-style |
def _verify_iat_and_exp(payload):
now = _helpers.datetime_to_secs(_helpers.utcnow())
for key in ('iat', 'exp'):
if key not in payload:
raise ValueError(
'Token does not contain required claim {}'.format(key))
iat = payload['iat']
earliest = iat - _helpers.CLOCK_SKEW_SECS
if now < earliest:
raise ValueError('Token used too early, {} < {}'.format(now, iat))
exp = payload['exp']
latest = exp + _helpers.CLOCK_SKEW_SECS
if latest < now:
raise ValueError('Token expired, {} < {}'.format(latest, now)) | Verifies the ``iat`` (Issued At) and ``exp`` (Expires) claims in a token
payload.
Args:
payload (Mapping[str, str]): The JWT payload.
Raises:
ValueError: if any checks failed. | juraj-google-style |
def emit_completion(self, completion_percent):
completion_mode = XBlockCompletionMode.get_mode(self)
if ((not self.has_custom_completion) or (completion_mode != XBlockCompletionMode.COMPLETABLE)):
raise AttributeError("Using `emit_completion` requires `has_custom_completion == True` (was {}) and `completion_mode == 'completable'` (was {})".format(self.has_custom_completion, completion_mode))
if ((completion_percent is None) or (not (0.0 <= completion_percent <= 1.0))):
raise ValueError('Completion percent must be in [0.0; 1.0] interval, {} given'.format(completion_percent))
self.runtime.publish(self, 'completion', {'completion': completion_percent}) | Emits completion event through Completion API.
Unlike grading API, calling this method allows completion to go down - i.e. emitting a value of 0.0 on
a previously completed block indicates that it is no longer considered complete.
Arguments:
completion_percent (float): Completion in range [0.0; 1.0] (inclusive), where 0.0 means the block
is not completed, 1.0 means the block is fully completed.
Returns:
None | codesearchnet |
def Log(self, format_str, *args):
log_entry = rdf_flow_objects.FlowLogEntry(client_id=self.rdf_flow.client_id, flow_id=self.rdf_flow.flow_id, hunt_id=self.rdf_flow.parent_hunt_id, message=(format_str % args))
data_store.REL_DB.WriteFlowLogEntries([log_entry])
if self.rdf_flow.parent_hunt_id:
db_compat.ProcessHuntFlowLog(self.rdf_flow, (format_str % args)) | Logs the message using the flow's standard logging.
Args:
format_str: Format string
*args: arguments to the format string | codesearchnet |
def __init__(self, fixer_names, options=None, explicit=None):
self.fixers = fixer_names
self.explicit = explicit or []
self.options = self._default_options.copy()
if options is not None:
self.options.update(options)
if self.options["print_function"]:
self.grammar = pygram.python_grammar_no_print_statement
else:
self.grammar = pygram.python_grammar
self.write_unchanged_files = self.options.get("write_unchanged_files")
self.errors = []
self.logger = logging.getLogger("RefactoringTool")
self.fixer_log = []
self.wrote = False
self.driver = driver.Driver(self.grammar,
convert=pytree.convert,
logger=self.logger)
self.pre_order, self.post_order = self.get_fixers()
self.files = []
self.BM = bm.BottomMatcher()
self.bmi_pre_order = []
self.bmi_post_order = []
for fixer in chain(self.post_order, self.pre_order):
if fixer.BM_compatible:
self.BM.add_fixer(fixer)
elif fixer in self.pre_order:
self.bmi_pre_order.append(fixer)
elif fixer in self.post_order:
self.bmi_post_order.append(fixer)
self.bmi_pre_order_heads = _get_headnode_dict(self.bmi_pre_order)
self.bmi_post_order_heads = _get_headnode_dict(self.bmi_post_order) | Initializer.
Args:
fixer_names: a list of fixers to import
options: an dict with configuration.
explicit: a list of fixers to run even if they are explicit. | juraj-google-style |
def format_level_0_memory(memory):
formatted_memory = _list_to_complex_array(memory)
if (not (2 <= len(formatted_memory.shape) <= 3)):
raise QiskitError('Level zero memory is not of correct shape.')
return formatted_memory | Format an experiment result memory object for measurement level 0.
Args:
memory (list): Memory from experiment with `meas_level==1`. `avg` or
`single` will be inferred from shape of result memory.
Returns:
np.ndarray: Measurement level 0 complex numpy array
Raises:
QiskitError: If the returned numpy array does not have 2 (avg) or 3 (single)
indicies. | codesearchnet |
def _on_connection_error(self, connection, error_message):
self._channel = None
if isinstance(error_message, pika_errs.AMQPConnectionError):
error_message = repr(error_message.args[0])
_log.error(error_message)
self.call_later(1, self.reconnect) | Callback invoked when the connection failed to be established.
Args:
connection (pika.connection.SelectConnection): The connection that
failed to open.
error_message (str): The reason the connection couldn't be opened. | codesearchnet |
def min_validator(min_value):
def validator(value):
if (value < min_value):
raise ValidationError('{} is not >= {}'.format(value, min_value))
return validator | Return validator function that ensures lower bound of a number.
Result validation function will validate the internal value of resource
instance field with the ``value >= min_value`` check
Args:
min_value: minimal value for new validator | codesearchnet |
def ReadIndex(self, index_file=None):
self.index_file = index_file or self.index_file
fullpath = os.path.join(self.template_dir, self.index_file)
if self.index_file and fullpath not in self.INDEX:
self.index = IndexTable(self._PreParse, self._PreCompile, fullpath)
self.INDEX[fullpath] = self.index
else:
self.index = self.INDEX[fullpath]
if "Template" not in self.index.index.header:
raise CliTableError("Index file does not have 'Template' column.") | Reads the IndexTable index file of commands and templates.
Args:
index_file: String, file where template/command mappings reside.
Raises:
CliTableError: A template column was not found in the table. | juraj-google-style |
def _initialize_operation_name_to_id(self):
operation_name_to_id = {}
for (i, operation) in enumerate(self._operations):
operation_name_to_id[operation.name] = i
return operation_name_to_id | Initializer for _operation_name_to_id.
Returns:
a {string: int}, mapping operation names to their index in _operations. | codesearchnet |
def stop_capture_handler(self, name):
empty_capturers_indeces = []
for k, sc in self._stream_capturers.iteritems():
stream_capturer = sc[0]
stream_capturer.remove_handler(name)
if stream_capturer.handler_count == 0:
self._pool.killone(sc[1])
empty_capturers_indeces.append(k)
for i in empty_capturers_indeces:
del self._stream_capturers[i] | Remove all handlers with a given name
Args:
name:
The name of the handler(s) to remove. | juraj-google-style |
def remove_delegate(self, callback):
if callback not in self._delegate_methods:
return
self._delegate_methods.remove(callback) | Unregisters a registered delegate function or a method.
Args:
callback(function): method to trigger when push center receives events | juraj-google-style |
def reset(self, *args):
self.resource = self.resource.reset(list(args))
return self | Resets any of the tokens for this Application.
Note that you may have to reauthenticate afterwards.
Usage:
application.reset('api_token')
application.reset('api_token', 'totp_secret')
Args:
*args (list of str): one or more of
['api_token', 'subscription_token', 'totp_secret']
Returns:
The Application. | juraj-google-style |
def scalar(name, tensor, family=None, step=None):
def function(tag, scope):
return gen_summary_ops.write_scalar_summary(_summary_state.writer._resource, _choose_step(step), tag, array_ops.identity(tensor), name=scope)
return summary_writer_function(name, tensor, function, family=family) | Writes a scalar summary if possible.
Unlike `tf.contrib.summary.generic` this op may change the dtype
depending on the writer, for both practical and efficiency concerns.
Args:
name: An arbitrary name for this summary.
tensor: A `tf.Tensor` Must be one of the following types:
`float32`, `float64`, `int32`, `int64`, `uint8`, `int16`,
`int8`, `uint16`, `half`, `uint32`, `uint64`.
family: Optional, the summary's family.
step: The `int64` monotonic step variable, which defaults
to `tf.compat.v1.train.get_global_step`.
Returns:
The created `tf.Operation` or a `tf.no_op` if summary writing has
not been enabled for this context. | github-repos |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.