code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def add_site(self, site): start_angle = 0 radius = 0 total_occu = 0 for (specie, occu) in site.species.items(): radius += (occu * (specie.ionic_radius if (isinstance(specie, Specie) and specie.ionic_radius) else specie.average_ionic_radius)) total_occu += occu vis_radius = (0.2 + (0.002 * radius)) for (specie, occu) in site.species.items(): if (not specie): color = (1, 1, 1) elif (specie.symbol in self.el_color_mapping): color = [(i / 255) for i in self.el_color_mapping[specie.symbol]] mapper = self.add_partial_sphere(site.coords, vis_radius, color, start_angle, (start_angle + (360 * occu))) self.mapper_map[mapper] = [site] start_angle += (360 * occu) if (total_occu < 1): mapper = self.add_partial_sphere(site.coords, vis_radius, (1, 1, 1), start_angle, (start_angle + (360 * (1 - total_occu)))) self.mapper_map[mapper] = [site]
Add a site to the render window. The site is displayed as a sphere, the color of which is determined based on the element. Partially occupied sites are displayed as a single element color, though the site info still shows the partial occupancy. Args: site: Site to add.
codesearchnet
def __init__(self, physaddr, size): self.mapping = None self._open(physaddr, size)
Instantiate an MMIO object and map the region of physical memory specified by the address base `physaddr` and size `size` in bytes. Args: physaddr (int, long): base physical address of memory region. size (int, long): size of memory region. Returns: MMIO: MMIO object. Raises: MMIOError: if an I/O or OS error occurs. TypeError: if `physaddr` or `size` types are invalid.
juraj-google-style
def fts_match(self, features, segment): features = set(features) if self.seg_known(segment): return (features <= self.fts(segment)) else: return None
Answer question "are `ft_mask`'s features a subset of ft_seg?" This is like `FeatureTable.match` except that it checks whether a segment is valid and returns None if it is not. Args: features (set): pattern defined as set of (value, feature) tuples segment (set): segment defined as a set of (value, feature) tuples Returns: bool: True iff all features in `ft_mask` are also in `ft_seg`; None if segment is not valid
codesearchnet
def report_line(zipfilename: str, contentsfilename: str, line: str, show_inner_file: bool) -> None: if show_inner_file: print('{} [{}]: {}'.format(zipfilename, contentsfilename, line)) else: print('{}: {}'.format(zipfilename, line))
Prints a line from a file, with the ``.zip`` filename and optionally also the inner filename. Args: zipfilename: filename of the ``.zip`` file contentsfilename: filename of the inner file line: the line from the inner file show_inner_file: if ``True``, show both filenames; if ``False``, show just the ``.zip`` filename
codesearchnet
def _authenticate(secrets_file): flow = oauthclient.flow_from_clientsecrets(secrets_file, scope=OAUTH_SCOPE, message=('Failed to initialized OAuth 2.0 flow with secrets file: %s' % secrets_file)) storage = oauthfile.Storage(OAUTH_CREDENTIALS_FILE) credentials = storage.get() if ((credentials is None) or credentials.invalid): credentials = oauthtools.run_flow(flow, storage, oauthtools.argparser.parse_args(args=[])) http = httplib2.Http() return credentials.authorize(http)
Runs the OAuth 2.0 installed application flow. Returns: An authorized httplib2.Http instance.
codesearchnet
def match_rules(tree, rules, fun=None, multi=False): if multi: context = match_rules_context_multi(tree, rules) else: context = match_rules_context(tree, rules) if (not context): return None if fun: args = fun.__code__.co_varnames if multi: res = [] for c in context: action_context = {} for arg in args: if (arg in c): action_context[arg] = c[arg] res.append(fun(**action_context)) return res else: action_context = {} for arg in args: if (arg in context): action_context[arg] = context[arg] return fun(**action_context) else: return context
Matches a Tree structure with the given query rules. Query rules are represented as a dictionary of template to action. Action is either a function, or a dictionary of subtemplate parameter to rules:: rules = { 'template' : { 'key': rules } } | { 'template' : {} } Args: tree (Tree): Parsed tree structure rules (dict): A dictionary of query rules fun (function): Function to call with context (set to None if you want to return context) multi (Bool): If True, returns all matched contexts, else returns first matched context Returns: Contexts from matched rules
codesearchnet
def authenticate_identify(self, api_token, override=True): if (self.context.has_auth_params('Gem-Identify') and (not override)): raise OverrideError('Gem-Identify') if ((not api_token) or (not self.context.authorize('Gem-Identify', api_token=api_token))): raise AuthUsageError(self.context, 'Gem-Identify') return True
Set credentials for Identify authentication. Args: api_token (str): Token issued to your Application through the Gem Developer Console. override (boolean): Replace existing Application credentials.
codesearchnet
class MeanAbsoluteError(reduction_metrics.MeanMetricWrapper): def __init__(self, name='mean_absolute_error', dtype=None): super().__init__(mean_absolute_error, name, dtype=dtype) self._direction = 'down' def get_config(self): return {'name': self.name, 'dtype': self.dtype}
Computes the mean absolute error between the labels and predictions. Formula: ```python loss = mean(abs(y_true - y_pred)) ``` Args: name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result. Examples: >>> m = keras.metrics.MeanAbsoluteError() >>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]]) >>> m.result() 0.25 >>> m.reset_state() >>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]], ... sample_weight=[1, 0]) >>> m.result() 0.5 Usage with `compile()` API: ```python model.compile( optimizer='sgd', loss='mse', metrics=[keras.metrics.MeanAbsoluteError()]) ```
github-repos
def process_alias_create_namespace(namespace): namespace = filter_alias_create_namespace(namespace) _validate_alias_name(namespace.alias_name) _validate_alias_command(namespace.alias_command) _validate_alias_command_level(namespace.alias_name, namespace.alias_command) _validate_pos_args_syntax(namespace.alias_name, namespace.alias_command)
Validate input arguments when the user invokes 'az alias create'. Args: namespace: argparse namespace object.
codesearchnet
def operator_driven(drain_timeout=_DEFAULT_DRAIN, reset_timeout=_DEFAULT_RESET, max_consecutive_attempts=_DEFAULT_ATTEMPTS): return ConsistentRegionConfig(trigger=ConsistentRegionConfig.Trigger.OPERATOR_DRIVEN, drain_timeout=drain_timeout, reset_timeout=reset_timeout, max_consecutive_attempts=max_consecutive_attempts)
Define an operator-driven consistent region configuration. The source operator triggers drain and checkpoint cycles for the region. Args: drain_timeout: The drain timeout, as either a :py:class:`datetime.timedelta` value or the number of seconds as a `float`. If not specified, the default value is 180 seconds. reset_timeout: The reset timeout, as either a :py:class:`datetime.timedelta` value or the number of seconds as a `float`. If not specified, the default value is 180 seconds. max_consecutive_attempts(int): The maximum number of consecutive attempts to reset the region. This must be an integer value between 1 and 2147483647, inclusive. If not specified, the default value is 5. Returns: ConsistentRegionConfig: the configuration.
codesearchnet
def pprint_table(table, out=sys.stdout, rstrip=False): def max_width_col(table, col_idx): return max([len(row[col_idx]) for row in table]) if rstrip: for row_idx, row in enumerate(table): table[row_idx] = [c.rstrip() for c in row] col_paddings = [] ncols = len(table[0]) for i in range(ncols): col_paddings.append(max_width_col(table, i)) for row in table: out.write(row[0].ljust(col_paddings[0] + 1)) for i in range(1, len(row)): col = row[i].rjust(col_paddings[i] + 2) out.write(col) out.write("\n")
Prints out a table of data, padded for alignment Each row must have the same number of columns. Args: table: The table to print. A list of lists. out: Output stream (file-like object) rstrip: if True, trailing withespaces are removed from the entries.
juraj-google-style
def _UnserializableObjectFallback(self, obj): if isinstance(obj, libpython.PyInstanceObjectPtr): in_class = obj.pyop_field('in_class') result_dict = in_class.pyop_field('cl_dict').proxyval(set()) instanceproxy = obj.proxyval(set()) result_dict.update(instanceproxy.attrdict) result_dict['__pyringe_type_name__'] = instanceproxy.cl_name result_dict['__pyringe_address__'] = instanceproxy.address return result_dict if isinstance(obj, libpython.HeapTypeObjectPtr): try: type_ptr = obj.field('ob_type') tp_dict = type_ptr.cast(GdbCache.TYPE)['tp_dict'].cast(GdbCache.DICT) result_dict = libpython.PyDictObjectPtr(tp_dict).proxyval(set()) except gdb.error: result_dict = {} try: result_dict.update(obj.get_attr_dict().proxyval(set())) result_dict['__pyringe_type_name__'] = obj.safe_tp_name() result_dict['__pyringe_address__'] = long(obj._gdbval) return result_dict except TypeError: pass try: proxy = obj.proxyval(set()) if isinstance(proxy, dict): return {str(key): val for key, val in proxy.iteritems()} return proxy except AttributeError: return str(obj)
Handles sanitizing of unserializable objects for Json. For instances of heap types, we take the class dict, augment it with the instance's __dict__, tag it and transmit it over to the RPC client to be reconstructed there. (Works with both old and new style classes) Args: obj: The object to Json-serialize Returns: A Json-serializable version of the parameter
juraj-google-style
def change_window(self, size_window): self.size_window = size_window self.window = self.lambert_window(self.size_window, self.lat0, self.lon0)
Change the region of interest Args: size_window (float): Radius of the region of interest (km) Notes: Change the attributes ``size_window`` and ``window`` to correspond to the new region of interest.
codesearchnet
def account_distance(A1, A2): return (sum([action.alpha for action in A1]) - sum([action.alpha for action in A2]))
Return the distance between two accounts. Here that is just the difference in sum(alpha) Args: A1 (Account): The first account. A2 (Account): The second account Returns: float: The distance between the two accounts.
juraj-google-style
def write_additional(self, productversion, channel): self.fileobj.seek(self.additional_offset) extras = extras_header.build(dict( count=1, sections=[dict( channel=six.u(channel), productversion=six.u(productversion), size=len(channel) + len(productversion) + 2 + 8, padding=b'', )], )) self.fileobj.write(extras) self.last_offset = self.fileobj.tell()
Write the additional information to the MAR header. Args: productversion (str): product and version string channel (str): channel string
juraj-google-style
def _add_arg_python(self, key, value=None, mask=False): self._data[key] = value if (not value): pass elif (value is True): self._args.append('--{}'.format(key)) self._args_quoted.append('--{}'.format(key)) self._args_masked.append('--{}'.format(key)) else: self._args.append('--{}={}'.format(key, value)) if mask: value = ('x' * len(str(value))) else: value = self.quote(value) self._args_quoted.append('--{}={}'.format(key, value)) self._args_masked.append('--{}={}'.format(key, value))
Add CLI Arg formatted specifically for Python. Args: key (string): The CLI Args key (e.g., --name). value (string): The CLI Args value (e.g., bob). mask (boolean, default:False): Indicates whether no mask value.
codesearchnet
def __init__(self, client, search_query: str) -> None: self._client = client self._search_query = search_query
Initializer. Initializes the FhirSearchRunner with user provided FHIR Client, and search query. Args: client: FHIR Client for the FHIR server where queries will be run against. Views will be created from the response. search_query: Query used to fetch the subset of data from the FHIR server.
github-repos
def acknowledge(self, **kwargs): device_id = kwargs['device_id'] config = self.get_config() if 'r_folder_id' in kwargs: r_folder_id = kwargs['r_folder_id'] remote_folder = syncthing_adt.Folder( id=r_folder_id, label=kwargs['label'], path=kwargs['local_path'], deviceID=self.get_device_id(), rescanIntervalS=kwargs['interval'] ) remote_folder.add_device(device_id) remote_folder = remote_folder.obj else: remote_folder = kwargs['folder_obj'] remote_folder['path'] = kwargs['local_path'] if kwargs['interval']: remote_folder['rescanIntervalS'] = kwargs['interval'] r_folder_id = remote_folder['id'] if self.folder_exists({'path' : kwargs['local_path']}, config): raise ValueError('This folder has already been added.') config['folders'].append(remote_folder) config['label'] = kwargs['label'] self.new_device(config=config, device_id=device_id) device = self.find_device(device_id, config) if device: device['name'] = kwargs['hostname'] self.adapter.set_dir_config({ 'device_id' : device_id, 'api_key' : kwargs['api_key'] if 'api_key' in kwargs else '', 'label' : kwargs['label'], 'local_path' : kwargs['local_path'], 'is_shared' : True, 'server' : kwargs['server'] if 'server' in kwargs else False, 'host' : kwargs['host'] if 'host' in kwargs else None, 'remote_path': kwargs['remote_path'] if 'remote_path' in kwargs else '', 'port' : kwargs['port'] if 'port' in kwargs else None }) self.set_config(config) self.restart()
Commit the shared remote folder data into local config.xml file 1. Update the remote_folder path and label 2. Append the remote_folder to config folders list Args: remote_folder(folder): syncthing folder object local_path: existing local path
juraj-google-style
def refresh(self, request): try: self._retrieve_info(request) (self.token, self.expiry) = _metadata.get_service_account_token(request, service_account=self._service_account_email) except exceptions.TransportError as caught_exc: new_exc = exceptions.RefreshError(caught_exc) six.raise_from(new_exc, caught_exc)
Refresh the access token and scopes. Args: request (google.auth.transport.Request): The object used to make HTTP requests. Raises: google.auth.exceptions.RefreshError: If the Compute Engine metadata service can't be reached if if the instance has not credentials.
codesearchnet
def pow(x, y, name=None): with ops.name_scope(name, 'Pow', [x]) as name: return gen_math_ops._pow(x, y, name=name)
Computes the power of one value to another. Given a tensor `x` and a tensor `y`, this operation computes \\(x^y\\) for corresponding elements in `x` and `y`. For example: ```python x = tf.constant([[2, 2], [3, 3]]) y = tf.constant([[8, 16], [2, 3]]) tf.pow(x, y) # [[256, 65536], [9, 27]] ``` Args: x: A `Tensor` of type `float16`, `float32`, `float64`, `int32`, `int64`, `complex64`, or `complex128`. y: A `Tensor` of type `float16`, `float32`, `float64`, `int32`, `int64`, `complex64`, or `complex128`. name: A name for the operation (optional). Returns: A `Tensor`.
github-repos
def read_profile(name): config = configparser.ConfigParser() config.read(CONFIG_FILE) profile = config[name] repo = profile['repo'] token = profile['token'] return {'repo': repo, 'token': token}
Get a named profile from the CONFIG_FILE. Args: name The name of the profile to load. Returns: A dictionary with the profile's ``repo`` and ``token`` values.
codesearchnet
def reset_logformat(logger: logging.Logger, fmt: str, datefmt: str = '%Y-%m-%d %H:%M:%S') -> None: handler = logging.StreamHandler() formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler.setFormatter(formatter) remove_all_logger_handlers(logger) logger.addHandler(handler) logger.propagate = False
Create a new formatter and apply it to the logger. :func:`logging.basicConfig` won't reset the formatter if another module has called it, so always set the formatter like this. Args: logger: logger to modify fmt: passed to the ``fmt=`` argument of :class:`logging.Formatter` datefmt: passed to the ``datefmt=`` argument of :class:`logging.Formatter`
juraj-google-style
def shebang(self, new_shebang): if (not self.shebang): raise ValueError('Cannot modify a shebang if it does not exist.') if (not new_shebang.startswith(' raise ValueError('Invalid shebang.') self.writeline(new_shebang, 0)
Write a new shebang to the file. Raises: ValueError: If the file has no shebang to modify. ValueError: If the new shebang is invalid.
codesearchnet
def fingerprints(data): Hashes = namedtuple('Hashes', "md5 sha1 sha256 sha512") if six.PY2: if not isinstance(data, str): data = data.encode("utf-8") elif six.PY3: if not isinstance(data, bytes): data = data.encode("utf-8") md5 = hashlib.md5() md5.update(data) md5 = md5.hexdigest() sha1 = hashlib.sha1() sha1.update(data) sha1 = sha1.hexdigest() sha256 = hashlib.sha256() sha256.update(data) sha256 = sha256.hexdigest() sha512 = hashlib.sha512() sha512.update(data) sha512 = sha512.hexdigest() return Hashes(md5, sha1, sha256, sha512)
This function return the fingerprints of data. Args: data (string): raw data Returns: namedtuple: fingerprints md5, sha1, sha256, sha512
juraj-google-style
def get_qemu_info(path, backing_chain=False, fail_on_error=True): cmd = ['qemu-img', 'info', '--output=json', path] if backing_chain: cmd.insert(-1, '--backing-chain') result = run_command_with_validation( cmd, fail_on_error, msg='Failed to get info for {}'.format(path) ) return json.loads(result.out)
Get info on a given qemu disk Args: path(str): Path to the required disk backing_chain(boo): if true, include also info about the image predecessors. Return: object: if backing_chain == True then a list of dicts else a dict
juraj-google-style
def consume(self, data): try: self._streamer.consume(data) except YajlError as ye: print(ye.value) raise JSONStreamerException(ye.value)
Takes input that must be parsed Note: Attach all your listeners before calling this method Args: data (str): input json string
juraj-google-style
def print_object_results(obj_result): print_results_header(obj_result.object_id, obj_result.is_valid) if obj_result.warnings: print_warning_results(obj_result, 1) if obj_result.errors: print_schema_results(obj_result, 1)
Print the results of validating an object. Args: obj_result: An ObjectValidationResults instance.
juraj-google-style
def blacken_code(code): if black is None: raise NotImplementedError major, minor, _ = platform.python_version_tuple() pyversion = 'py{major}{minor}'.format(major=major, minor=minor) target_versions = [black.TargetVersion[pyversion.upper()]] line_length = black.DEFAULT_LINE_LENGTH string_normalization = True mode = black.FileMode( target_versions=target_versions, line_length=line_length, string_normalization=string_normalization, ) return black.format_file_contents(code, fast=False, mode=mode)
Format code content using Black Args: code (str): code as string Returns: str
juraj-google-style
def create_package(name, data, package_cls=None): from rez.package_maker__ import PackageMaker maker = PackageMaker(name, data, package_cls=package_cls) return maker.get_package()
Create a package given package data. Args: name (str): Package name. data (dict): Package data. Must conform to `package_maker.package_schema`. Returns: `Package` object.
codesearchnet
def tap_hold(self, x, y, duration=1.0): data = {'x': x, 'y': y, 'duration': duration} return self.http.post('/wda/touchAndHold', data=data)
Tap and hold for a moment Args: - x, y(int): position - duration(float): seconds of hold time [[FBRoute POST:@"/wda/touchAndHold"] respondWithTarget:self action:@selector(handleTouchAndHoldCoordinate:)],
codesearchnet
def __init__(self, window, root): self.root = root self.selenium = window.selenium self.wait = window.wait self.window = window
Create a Region object. Args: window (:py:class:`BaseWindow`): Window object this region appears in. root (:py:class:`~selenium.webdriver.remote.webelement.WebElement`): WebDriver element object that serves as the root for the region.
juraj-google-style
def request_unwatch(self, node_name, output_slot, debug_op): self._debug_ops_state_change_queue.put(_state_change(debug_service_pb2.EventReply.DebugOpStateChange.DISABLED, node_name, output_slot, debug_op))
Request disabling a debug tensor watchpoint or breakpoint. This is the opposite of `request_watch()`. Args: node_name: (`str`) name of the node that the to-be-watched tensor belongs to, e.g., "hidden/Weights". output_slot: (`int`) output slot index of the tensor to watch. debug_op: (`str`) name of the debug op to enable. This should not include any attribute substrings.
github-repos
def read_tabular(filepath): _, fn, ext = splitext2(filepath) if ext == '.h5': return _read_tabular_h5(filepath) elif ext == '.pkl': return _read_tabular_pickle(filepath) else: raise NotImplementedError
Read tabular object in HDF5 or pickle format Args: filepath (path-like): path to read to; must end in '.h5' or '.pkl'
juraj-google-style
def _processing_limit(self, spec): processing_rate = float(spec.mapper.params.get("processing_rate", 0)) slice_processing_limit = -1 if processing_rate > 0: slice_processing_limit = int(math.ceil( parameters.config._SLICE_DURATION_SEC*processing_rate/ int(spec.mapper.shard_count))) return slice_processing_limit
Get the limit on the number of map calls allowed by this slice. Args: spec: a Mapreduce spec. Returns: The limit as a positive int if specified by user. -1 otherwise.
juraj-google-style
def __init__(self, mfr_desc=None, hw_desc=None, sw_desc=None, serial_num=None, dp_desc=None): super().__init__() self.mfr_desc = mfr_desc self.hw_desc = hw_desc self.sw_desc = sw_desc self.serial_num = serial_num self.dp_desc = dp_desc
Create a Desc with the optional parameters below. Args: mfr_desc (str): Manufacturer description hw_desc (str): Hardware description sw_desc (str): Software description serial_num (str): Serial number dp_desc (str): Datapath description
juraj-google-style
def compatible_firmware_version(self): identifier = self.firmware_version.split('compiled')[0] buf_size = self.MAX_BUF_SIZE buf = (ctypes.c_char * buf_size)() res = self._dll.JLINKARM_GetEmbeddedFWString(identifier.encode(), buf, buf_size) if res < 0: raise errors.JLinkException(res) return ctypes.string_at(buf).decode()
Returns the DLL's compatible J-Link firmware version. Args: self (JLink): the ``JLink`` instance Returns: The firmware version of the J-Link that the DLL is compatible with. Raises: JLinkException: on error.
juraj-google-style
def cube(): app = Ice() @app.get('/') def default_home_page(): 'Return a default home page.' return simple_html('It works!', '<h1>It works!</h1>\n<p>This is the default ice web page.</p>') @app.error() def generic_error_page(): 'Return a simple and generic error page.' return simple_html(app.response.status_line, '<h1>{title}</h1>\n<p>{description}</p>\n<hr>\n<address>Ice/{version}</address>'.format(title=app.response.status_line, description=app.response.status_detail, version=__version__)) def simple_html(title, body): 'Return a simple HTML page.' return '<!DOCTYPE html>\n<html>\n<head><title>{title}</title></head>\n<body>\n{body}\n</body>\n</html>\n'.format(title=title, body=body) return app
Return an Ice application with a default home page. Create :class:`Ice` object, add a route to return the default page when a client requests the server root, i.e. /, using HTTP GET method, add an error handler to return HTTP error pages when an error occurs and return this object. The returned object can be used as a WSGI application. Returns: Ice: WSGI application.
codesearchnet
def poisson_ll(data, means): if sparse.issparse(data): return sparse_poisson_ll(data, means) genes, cells = data.shape clusters = means.shape[1] ll = np.zeros((cells, clusters)) for i in range(clusters): means_i = np.tile(means[:,i], (cells, 1)) means_i = means_i.transpose() + eps ll[:,i] = np.sum(xlogy(data, means_i) - means_i, 0) return ll
Calculates the Poisson log-likelihood. Args: data (array): 2d numpy array of genes x cells means (array): 2d numpy array of genes x k Returns: cells x k array of log-likelihood for each cell/cluster pair
juraj-google-style
def __init__(self, assign_defaults=(), method_name=None, overwrite=False): if isinstance(assign_defaults, str): self._assign_defaults = [assign_defaults] else: self._assign_defaults = assign_defaults self._method_name = method_name self._overwrite = overwrite _valid_defaults.update(self._assign_defaults) default_args = sorted(_valid_defaults) default_values = [None] * len(_valid_defaults) if six.PY2: default_func = PrettyTensor.with_defaults.__func__ else: default_func = PrettyTensor.with_defaults _set_ipython_string(default_func, default_args, default_values, _original_set_defaults_doc) _set_ipython_string(defaults_scope, default_args, default_values, _original_defaults_scope_doc)
Assigns arguments to the decorator. Args: assign_defaults: A sequence of strings for the default values that should be provided. method_name: If provided, use this as the method_name instead of the wrapped function's name. overwrite: If False, throw an exception if this method has already been registered. True should be used in interactive environments or with great care.
juraj-google-style
def put_event(self, evt): evt.step = self.global_step evt.wall_time = time.time() self._dispatch(lambda m: m.process_event(evt))
Put an :class:`tf.Event`. `step` and `wall_time` fields of :class:`tf.Event` will be filled automatically. Args: evt (tf.Event):
juraj-google-style
def torch_distributed_zero_first(local_rank: int): if local_rank not in [-1, 0]: dist.barrier() yield if local_rank == 0: dist.barrier()
Decorator to make all processes in distributed training wait for each local_master to do something. Args: local_rank (`int`): The rank of the local process.
github-repos
def transfer_project(self, to_project_id, **kwargs): path = '/groups/%s/projects/%s' % (self.id, to_project_id) self.manager.gitlab.http_post(path, **kwargs)
Transfer a project to this group. Args: to_project_id (int): ID of the project to transfer **kwargs: Extra options to send to the server (e.g. sudo) Raises: GitlabAuthenticationError: If authentication is not correct GitlabTransferProjectError: If the project could not be transfered
juraj-google-style
def _init_journal(self, permissive=True): nowstamp = datetime.now().strftime('%d-%b-%Y %H:%M:%S.%f')[:(- 3)] self._add_entry(templates.INIT.format(time_stamp=nowstamp)) if permissive: self._add_entry(templates.INIT_DEBUG)
Add the initialization lines to the journal. By default adds JrnObj variable and timestamp to the journal contents. Args: permissive (bool): if True most errors in journal will not cause Revit to stop journal execution. Some still do.
codesearchnet
def placeOrder(self, contract: Contract, order: Order) -> Trade: orderId = order.orderId or self.client.getReqId() self.client.placeOrder(orderId, contract, order) now = datetime.datetime.now(datetime.timezone.utc) key = self.wrapper.orderKey( self.wrapper.clientId, orderId, order.permId) trade = self.wrapper.trades.get(key) if trade: assert trade.orderStatus.status not in OrderStatus.DoneStates logEntry = TradeLogEntry(now, trade.orderStatus.status, 'Modify') trade.log.append(logEntry) self._logger.info(f'placeOrder: Modify order {trade}') trade.modifyEvent.emit(trade) self.orderModifyEvent.emit(trade) else: order.clientId = self.wrapper.clientId order.orderId = orderId orderStatus = OrderStatus(status=OrderStatus.PendingSubmit) logEntry = TradeLogEntry(now, orderStatus.status, '') trade = Trade( contract, order, orderStatus, [], [logEntry]) self.wrapper.trades[key] = trade self._logger.info(f'placeOrder: New order {trade}') self.newOrderEvent.emit(trade) return trade
Place a new order or modify an existing order. Returns a Trade that is kept live updated with status changes, fills, etc. Args: contract: Contract to use for order. order: The order to be placed.
juraj-google-style
def save_images(images, filenames, output_dir): for i, filename in enumerate(filenames): with tf.gfile.Open(os.path.join(output_dir, filename), 'w') as f: imsave(f, (images[i, :, :, :] + 1.0) * 0.5, format='png')
Saves images to the output directory. Args: images: array with minibatch of images filenames: list of filenames without path If number of file names in this list less than number of images in the minibatch then only first len(filenames) images will be saved. output_dir: directory where to save images
juraj-google-style
def _global_batch_size(self): return True
`make_dataset_iterator` and `make_numpy_iterator` use global batch size. `make_input_fn_iterator` assumes per-replica batching. Returns: Boolean.
github-repos
def pow(x, a): return math_ops.pow(x, a)
Element-wise exponentiation. Args: x: Tensor or variable. a: Python integer. Returns: A tensor.
github-repos
def decode_fast(self, token_ids: Union[int, List[int]]) -> str: return self.sp_model.decode(token_ids)
Encodes a text or batch of texts to token ids using preprocessing and the raw SP tokenizer. This has reduced functionality but is often much faster. Args: token_ids (`int` or `List[int]`): Encoded token or text as token id(s). Returns: `str`: Decoded text
github-repos
def path_is_empty(p: tcod.path.AStar) -> bool: return bool(lib.TCOD_path_is_empty(p._path_c))
Return True if a path is empty. Args: p (AStar): An AStar instance. Returns: bool: True if a path is empty. Otherwise False.
juraj-google-style
def returns_scalar(return_type: Optional[FhirPathDataType]) -> bool: return not return_type or return_type.cardinality == Cardinality.SCALAR
Indicates if the return type evaluates to a scalar. Args: return_type: The data type to describe. Returns: True if `return_type` represents an element with cardinality less than or equal to one whose parents are all also scalars. False otherwise. For example, the path Patient.name.use does not return a scalar, despite 'use' being a scalar, because it is a child of the collection, 'name.'
github-repos
def get_representations_of_kind(kind, start=None, end=None): q = Property.query(ancestor=Property.key_for_kind(kind)) if ((start is not None) and (start != '')): q = q.filter((Property.key >= Property.key_for_property(kind, start))) if (end is not None): if (end == ''): return {} q = q.filter((Property.key < Property.key_for_property(kind, end))) result = {} for property in q: result[property.property_name] = property.property_representation return result
Return all representations of properties of kind in the specified range. NOTE: This function does not return unindexed properties. Args: kind: name of kind whose properties you want. start: only return properties >= start if start is not None. end: only return properties < end if end is not None. Returns: A dictionary mapping property names to its list of representations.
codesearchnet
def login(self, username, password, state=None, sync=True): auth = APIAuth(self.OAUTH_SCOPES) ret = auth.login(username, password, get_mac()) if ret: self.load(auth, state, sync) return ret
Authenticate to Google with the provided credentials & sync. Args: email (str): The account to use. password (str): The account password. state (dict): Serialized state to load. Raises: LoginException: If there was a problem logging in.
codesearchnet
def setKstar(self,term_i,Ks): assert Ks.shape[0]==self.N self.vd.getTerm(term_i).getKcf().setK0cross(Ks)
Set the kernel for predictions Args: term_i: index of the term we are interested in Ks: (TODO: is this the covariance between train and test or the covariance between test points?)
juraj-google-style
def to_hising(self): if (self.vartype is Vartype.BINARY): return self.to_spin().to_hising() h = {} J = {} offset = 0 for (term, bias) in self.items(): if (len(term) == 0): offset += bias elif (len(term) == 1): (v,) = term h[v] = bias else: J[tuple(term)] = bias return (h, J, offset)
Construct a higher-order Ising problem from a binary polynomial. Returns: tuple: A 3-tuple of the form (`h`, `J`, `offset`) where `h` includes the linear biases, `J` has the higher-order biases and `offset` is the linear offset. Examples: >>> poly = dimod.BinaryPolynomial({'a': -1, 'ab': 1, 'abc': -1}, dimod.SPIN) >>> h, J, off = poly.to_hising() >>> h {'a': -1}
codesearchnet
def _set_current(self, new_current): new_cur_full_path = self.join(new_current) if not os.path.exists(new_cur_full_path): raise PrefixNotFound( 'Prefix "%s" does not exist in workdir %s' % (new_current, self.path) ) if os.path.lexists(self.join('current')): os.unlink(self.join('current')) os.symlink(new_current, self.join('current')) self.current = new_current
Change the current default prefix, for internal usage Args: new_current(str): Name of the new current prefix, it must already exist Returns: None Raises: PrefixNotFound: if the given prefix name does not exist in the workdir
juraj-google-style
def _maybe_set_current_user_vars(method, api_info=None, request=None): if _is_auth_info_available(): return os.environ[_ENV_AUTH_EMAIL] = '' os.environ[_ENV_AUTH_DOMAIN] = '' try: api_info = api_info or method.im_self.api_info except AttributeError: _logger.warning('AttributeError when accessing %s.im_self. An unbound ' 'method was probably passed as an endpoints handler.', method.__name__) scopes = method.method_info.scopes audiences = method.method_info.audiences allowed_client_ids = method.method_info.allowed_client_ids else: scopes = (method.method_info.scopes if method.method_info.scopes is not None else api_info.scopes) audiences = (method.method_info.audiences if method.method_info.audiences is not None else api_info.audiences) allowed_client_ids = (method.method_info.allowed_client_ids if method.method_info.allowed_client_ids is not None else api_info.allowed_client_ids) if not scopes and not audiences and not allowed_client_ids: return token = _get_token(request) if not token: return None if allowed_client_ids and _is_local_dev(): allowed_client_ids = (constants.API_EXPLORER_CLIENT_ID,) + tuple(allowed_client_ids) if ((scopes == [_EMAIL_SCOPE] or scopes == (_EMAIL_SCOPE,)) and allowed_client_ids): _logger.debug('Checking for id_token.') issuers = api_info.issuers if issuers is None: issuers = _DEFAULT_GOOGLE_ISSUER elif 'google_id_token' not in issuers: issuers.update(_DEFAULT_GOOGLE_ISSUER) time_now = long(time.time()) user = _get_id_token_user(token, issuers, audiences, allowed_client_ids, time_now, memcache) if user: os.environ[_ENV_AUTH_EMAIL] = user.email() os.environ[_ENV_AUTH_DOMAIN] = user.auth_domain() return if scopes: _logger.debug('Checking for oauth token.') if _is_local_dev(): _set_bearer_user_vars_local(token, allowed_client_ids, scopes) else: _set_bearer_user_vars(allowed_client_ids, scopes)
Get user information from the id_token or oauth token in the request. Used internally by Endpoints to set up environment variables for user authentication. Args: method: The class method that's handling this request. This method should be annotated with @endpoints.method. api_info: An api_config._ApiInfo instance. Optional. If None, will attempt to parse api_info from the implicit instance of the method. request: The current request, or None.
juraj-google-style
def _TransmitBreakpointUpdates(self, service): reconnect = False retry_list = [] while self._transmission_queue: (breakpoint, retry_count) = self._transmission_queue.popleft() try: service.debuggees().breakpoints().update(debuggeeId=self._debuggee_id, id=breakpoint['id'], body={'breakpoint': breakpoint}).execute() native.LogInfo(('Breakpoint %s update transmitted successfully' % breakpoint['id'])) except apiclient.errors.HttpError as err: status = err.resp.status is_transient = ((status >= 500) or (status == 408)) if (is_transient and (retry_count < (self.max_transmit_attempts - 1))): native.LogInfo(('Failed to send breakpoint %s update: %s' % (breakpoint['id'], traceback.format_exc()))) retry_list.append((breakpoint, (retry_count + 1))) elif is_transient: native.LogWarning(('Breakpoint %s retry count exceeded maximum' % breakpoint['id'])) else: native.LogInfo(('%s, breakpoint: %s' % (err, breakpoint['id']))) except BaseException: native.LogWarning(('Fatal error sending breakpoint %s update: %s' % (breakpoint['id'], traceback.format_exc()))) reconnect = True self._transmission_queue.extend(retry_list) if (not self._transmission_queue): self.update_backoff.Succeeded() return (reconnect, None) else: return (reconnect, self.update_backoff.Failed())
Tries to send pending breakpoint updates to the backend. Sends all the pending breakpoint updates. In case of transient failures, the breakpoint is inserted back to the top of the queue. Application failures are not retried (for example updating breakpoint in a final state). Each pending breakpoint maintains a retry counter. After repeated transient failures the breakpoint is discarded and dropped from the queue. Args: service: client to use for API calls Returns: (reconnect, timeout) tuple. The first element ("reconnect") is set to true on unexpected HTTP responses. The caller should discard the HTTP connection and create a new one. The second element ("timeout") is set to None if all pending breakpoints were sent successfully. Otherwise returns time interval in seconds to stall before retrying.
codesearchnet
def _check_registry_type(folder=None): folder = _registry_folder(folder) default_file = os.path.join(folder, 'registry_type.txt') try: with open(default_file, "r") as infile: data = infile.read() data = data.strip() ComponentRegistry.SetBackingStore(data) except IOError: pass
Check if the user has placed a registry_type.txt file to choose the registry type If a default registry type file is found, the DefaultBackingType and DefaultBackingFile class parameters in ComponentRegistry are updated accordingly. Args: folder (string): The folder that we should check for a default registry type
juraj-google-style
def os_version(self, value): if value == self._defaults['ai.device.osVersion'] and 'ai.device.osVersion' in self._values: del self._values['ai.device.osVersion'] else: self._values['ai.device.osVersion'] = value
The os_version property. Args: value (string). the property value.
juraj-google-style
def ParseRecord(self, parser_mediator, key, structure): if key not in self._SUPPORTED_KEYS: raise errors.ParseError( 'Unable to parse record, unknown structure: {0:s}'.format(key)) date_time = dfdatetime_time_elements.TimeElements() try: iso_date_time = self._GetISO8601String(structure.date_time) date_time.CopyFromStringISO8601(iso_date_time) except ValueError: parser_mediator.ProduceExtractionWarning( 'invalid date time value: {0!s}'.format(structure.date_time)) return event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_RECORDED) event_data = ApacheAccessEventData() event_data.ip_address = structure.ip_address event_data.remote_name = structure.remote_name event_data.user_name = structure.user_name event_data.http_request = structure.http_request event_data.http_response_code = structure.response_code event_data.http_response_bytes = structure.response_bytes if key == 'combined_log_format': event_data.http_request_referer = structure.referer event_data.http_request_user_agent = structure.user_agent parser_mediator.ProduceEventWithEventData(event, event_data)
Parses a matching entry. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. key (str): name of the parsed structure. structure (pyparsing.ParseResults): elements parsed from the file. Raises: ParseError: when the structure type is unknown.
juraj-google-style
def get(self, query: Mapping[str, Any], context: PipelineContext = None) -> T: result = self._source.get(self._source_type, deepcopy(query), context) LOGGER.info("Got result \"{result}\" from query \"{query}\" of source \"{source}\"".format(result=result, query=query, source=self._source)) LOGGER.info("Sending result \"{result}\" to sinks before converting".format(result=result)) for sink in self._before_transform: sink.put(result, context) LOGGER.info("Converting result \"{result}\" to request type".format(result=result)) result = self._transform(data=result, context=context) LOGGER.info("Sending result \"{result}\" to sinks after converting".format(result=result)) for sink in self._after_transform: sink.put(result, context) return result
Gets a query from the data source. 1) Extracts the query from the data source. 2) Inserts the result into any data sinks. 3) Transforms the result into the requested type if it wasn't already. 4) Inserts the transformed result into any data sinks. Args: query: The query being requested. context: The context for the extraction (mutable). Returns: The requested object.
juraj-google-style
def highwater(self, partition): if (not isinstance(partition, TopicPartition)): raise TypeError('partition must be a TopicPartition namedtuple') assert self._subscription.is_assigned(partition), 'Partition is not assigned' return self._subscription.assignment[partition].highwater
Last known highwater offset for a partition. A highwater offset is the offset that will be assigned to the next message that is produced. It may be useful for calculating lag, by comparing with the reported position. Note that both position and highwater refer to the *next* offset -- i.e., highwater offset is one greater than the newest available message. Highwater offsets are returned in FetchResponse messages, so will not be available if no FetchRequests have been sent for this partition yet. Arguments: partition (TopicPartition): Partition to check Returns: int or None: Offset if available
codesearchnet
def AddEventData(self, event_data): self._RaiseIfNotWritable() self._AddAttributeContainer(self._CONTAINER_TYPE_EVENT_DATA, event_data)
Adds event data. Args: event_data (EventData): event data. Raises: IOError: when the storage file is closed or read-only. OSError: when the storage file is closed or read-only.
juraj-google-style
def set_device_name(self, new_name): device_name = self.get_characteristic_handle_from_uuid(UUID_DEVICE_NAME) if device_name is None: logger.warn('Failed to find handle for device name') return False if len(new_name) > MAX_DEVICE_NAME_LEN: logger.error('Device name exceeds maximum length ({} > {})'.format(len(new_name), MAX_DEVICE_NAME_LEN)) return False if self.dongle._write_attribute(self.conn_handle, device_name, new_name.encode('ascii')): self.name = new_name return True return False
Sets a new BLE device name for this SK8. Args: new_name (str): the new device name as an ASCII string, max 20 characters. Returns: True if the name was updated successfully, False otherwise.
juraj-google-style
def youtube(keyword=None): if keyword is None: web.open('https: else: web.open(quote('https:
Open youtube. Args: keyword (optional): Search word.
juraj-google-style
def form_uri(item_id, service, is_track): if is_track: uri = service.sonos_uri_from_id(item_id) else: uri = 'x-rincon-cpcontainer:' + item_id return uri
Form and return a music service item uri Args: item_id (str): The item id service (MusicService): The music service that the item originates from is_track (bool): Whether the item_id is from a track or not Returns: str: The music service item uri
juraj-google-style
def __init__(self, details): if not isinstance(details, list): raise ValueError('details in ' + self.__class__.__name__ + '.' + sys._getframe().f_code.co_name + ' must be a list') self.validation_failures = {} self._optional = True self._nodes = [] for i in range(len(details)): if isinstance(details[i], _BaseNode): self._nodes.append(details[i]) continue elif isinstance(details[i], (dict, list)): self._nodes.append(_child(details[i])) else: raise ValueError('details[' + str(i) + '] in ' + self.__class__.__name__ + '.' + sys._getframe().f_code.co_name + ' must be a dict') if not self._nodes[-1]._optional: self._optional = False
Constructor Initialises the instance Arguments: details {dict} -- Details describing the type of values allowed for the node Raises: ValueError Returns: OptionsNode
juraj-google-style
def __init__(self, pad_mask): self.nonpad_ids = None self.dim_origin = None with tf.name_scope("pad_reduce/get_ids"): pad_mask = tf.reshape(pad_mask, [-1]) self.nonpad_ids = tf.to_int32(tf.where(pad_mask < 1e-9)) self.dim_origin = tf.shape(pad_mask)[:1]
Compute and store the location of the padding. Args: pad_mask (tf.Tensor): Reference padding tensor of shape [batch_size,length] or [dim_origin] (dim_origin=batch_size*length) containing non-zeros positive values to indicate padding location.
juraj-google-style
def call(self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, layer_head_mask: tf.Tensor, training: Optional[bool]=False): residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, self_attn_weights, _ = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask) tf.debugging.assert_equal(shape_list(hidden_states), shape_list(residual), message=f'Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}') hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states return (hidden_states, self_attn_weights)
Args: hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)* attention_mask (`tf.Tensor`): attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size *(encoder_attention_heads,)*
github-repos
def ConvertGlobIntoPathComponents(self, pattern): components = [] for path_component in pattern.split('/'): m = rdf_paths.GlobExpression.RECURSION_REGEX.search(path_component) if m: path_component = path_component.replace(m.group(0), '*') component = rdf_paths.PathSpec(path=fnmatch.translate(path_component), pathtype=self.state.pathtype, path_options=rdf_paths.PathSpec.Options.RECURSIVE) if m.group(1): component.recursion_depth = int(m.group(1)) elif self.GLOB_MAGIC_CHECK.search(path_component): component = rdf_paths.PathSpec(path=fnmatch.translate(path_component), pathtype=self.state.pathtype, path_options=rdf_paths.PathSpec.Options.REGEX) else: pathtype = self.state.pathtype if ((pathtype == rdf_paths.PathSpec.PathType.TSK) and re.match('^.:$', path_component)): path_component = ('%s\\' % path_component) component = rdf_paths.PathSpec(path=path_component, pathtype=pathtype, path_options=rdf_paths.PathSpec.Options.CASE_INSENSITIVE) components.append(component) return components
r"""Converts a glob pattern into a list of pathspec components. Wildcards are also converted to regular expressions. The pathspec components do not span directories, and are marked as a regex or a literal component. We also support recursion into directories using the ** notation. For example, /home/**2/foo.txt will find all files named foo.txt recursed 2 directories deep. If the directory depth is omitted, it defaults to 3. Example: /home/test/* -> ['home', 'test', '.*\\Z(?ms)'] Args: pattern: A glob expression with wildcards. Returns: A list of PathSpec instances for each component. Raises: ValueError: If the glob is invalid.
codesearchnet
def output(self, _filename): txt = '' for contract in self.slither.contracts_derived: txt += '\n{}:\n'.format(contract.name) table = PrettyTable(['Name', 'ID']) for function in contract.functions: if function.visibility in ['public', 'external']: table.add_row([function.full_name, hex(get_function_id(function.full_name))]) for variable in contract.state_variables: if variable.visibility in ['public']: variable_getter_args = "" if type(variable.type) is ArrayType: length = 0 v = variable while type(v.type) is ArrayType: length += 1 v = v.type variable_getter_args = ','.join(["uint256"]*length) elif type(variable.type) is MappingType: variable_getter_args = variable.type.type_from table.add_row([f"{variable.name}({variable_getter_args})", hex(get_function_id(f"{variable.name}({variable_getter_args})"))]) txt += str(table) + '\n' self.info(txt)
_filename is not used Args: _filename(string)
juraj-google-style
def _compute_latents(self, g_values: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: x = torch.repeat_interleave(torch.unsqueeze(g_values, dim=-2), self.watermarking_depth, axis=-2) x = torch.tril(x, diagonal=-1) logits = (self.delta[..., None, :] @ x.type(self.delta.dtype)[..., None]).squeeze() + self.beta p_two_unique_tokens = torch.sigmoid(logits) p_one_unique_token = 1 - p_two_unique_tokens return (p_one_unique_token, p_two_unique_tokens)
Computes the unique token probability distribution given g-values. Args: g_values (`torch.Tensor` of shape `(batch_size, seq_len, watermarking_depth)`): PRF values. Returns: p_one_unique_token and p_two_unique_tokens, both of shape [batch_size, seq_len, watermarking_depth]. p_one_unique_token[i,t,l] gives the probability of there being one unique token in a tournament match on layer l, on timestep t, for batch item i. p_one_unique_token[i,t,l] + p_two_unique_token[i,t,l] = 1.
github-repos
class PipelineDataFormat: SUPPORTED_FORMATS = ['json', 'csv', 'pipe'] def __init__(self, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite: bool=False): self.output_path = output_path self.input_path = input_path self.column = column.split(',') if column is not None else [''] self.is_multi_columns = len(self.column) > 1 if self.is_multi_columns: self.column = [tuple(c.split('=')) if '=' in c else (c, c) for c in self.column] if output_path is not None and (not overwrite): if exists(abspath(self.output_path)): raise OSError(f'{self.output_path} already exists on disk') if input_path is not None: if not exists(abspath(self.input_path)): raise OSError(f"{self.input_path} doesn't exist on disk") @abstractmethod def __iter__(self): raise NotImplementedError() @abstractmethod def save(self, data: Union[dict, List[dict]]): raise NotImplementedError() def save_binary(self, data: Union[dict, List[dict]]) -> str: path, _ = os.path.splitext(self.output_path) binary_path = os.path.extsep.join((path, 'pickle')) with open(binary_path, 'wb+') as f_output: pickle.dump(data, f_output) return binary_path @staticmethod def from_str(format: str, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite=False) -> 'PipelineDataFormat': if format == 'json': return JsonPipelineDataFormat(output_path, input_path, column, overwrite=overwrite) elif format == 'csv': return CsvPipelineDataFormat(output_path, input_path, column, overwrite=overwrite) elif format == 'pipe': return PipedPipelineDataFormat(output_path, input_path, column, overwrite=overwrite) else: raise KeyError(f'Unknown reader {format} (Available reader are json/csv/pipe)')
Base class for all the pipeline supported data format both for reading and writing. Supported data formats currently includes: - JSON - CSV - stdin/stdout (pipe) `PipelineDataFormat` also includes some utilities to work with multi-columns like mapping from datasets columns to pipelines keyword arguments through the `dataset_kwarg_1=dataset_column_1` format. Args: output_path (`str`): Where to save the outgoing data. input_path (`str`): Where to look for the input data. column (`str`): The column to read. overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the `output_path`.
github-repos
def get_remaining_width(sample_string, max_terminal_width=None): if (max_terminal_width is not None): available_width = min(terminal_width(), max_terminal_width) else: available_width = terminal_width() return (available_width - len(sample_string))
Returns the number of characters available if sample string were to be printed in the terminal. Positional arguments: sample_string -- gets the length of this string. Keyword arguments: max_terminal_width -- limit the overall width of everything to these many characters. Returns: Integer.
codesearchnet
def __init__(self, property_type=TableFeaturePropType.OFPTFPT_INSTRUCTIONS, instruction_ids=None): super().__init__(property_type=property_type) self.instruction_ids = instruction_ids if instruction_ids else [] self.update_length()
Create a InstructionsProperty with the optional parameters below. Args: type(|TableFeaturePropType_v0x04|): Property Type value of this instance. next_table_ids(|ListOfInstruction_v0x04|): List of InstructionGotoTable instances.
juraj-google-style
def files_comments_delete(self, *, file: str, id: str, **kwargs) -> SlackResponse: kwargs.update({"file": file, "id": id}) return self.api_call("files.comments.delete", json=kwargs)
Deletes an existing comment on a file. Args: file (str): The file id. e.g. 'F1234467890' id (str): The file comment id. e.g. 'Fc1234567890'
juraj-google-style
def start(backdate=None): if f.s.cum: raise StartError("Already have stamps, can't start again (must reset).") if (f.t.subdvsn_awaiting or f.t.par_subdvsn_awaiting): raise StartError("Already have subdivisions, can't start again (must reset).") if f.t.stopped: raise StoppedError('Timer already stopped (must open new or reset).') t = timer() if (backdate is None): t_start = t else: if (f.t is f.root): raise BackdateError('Cannot backdate start of root timer.') if (not isinstance(backdate, float)): raise TypeError('Backdate must be type float.') if (backdate > t): raise BackdateError('Cannot backdate to future time.') if (backdate < f.tm1.last_t): raise BackdateError('Cannot backdate start to time previous to latest stamp in parent timer.') t_start = backdate f.t.paused = False f.t.tmp_total = 0.0 f.t.start_t = t_start f.t.last_t = t_start return t
Mark the start of timing, overwriting the automatic start data written on import, or the automatic start at the beginning of a subdivision. Notes: Backdating: For subdivisions only. Backdate time must be in the past but more recent than the latest stamp in the parent timer. Args: backdate (float, optional): time to use for start instead of current. Returns: float: The current time. Raises: BackdateError: If given backdate time is out of range or used in root timer. StartError: If the timer is not in a pristine state (if any stamps or subdivisions, must reset instead). StoppedError: If the timer is already stopped (must reset instead). TypeError: If given backdate value is not type float.
codesearchnet
def to_dict(self): dictionary = dict() for (local_name, attribute) in self._attributes.items(): remote_name = attribute.remote_name if hasattr(self, local_name): value = getattr(self, local_name) if isinstance(value, NURESTObject): value = value.to_dict() if (isinstance(value, list) and (len(value) > 0) and isinstance(value[0], NURESTObject)): tmp = list() for obj in value: tmp.append(obj.to_dict()) value = tmp dictionary[remote_name] = value else: pass return dictionary
Converts the current object into a Dictionary using all exposed ReST attributes. Returns: dict: the dictionary containing all the exposed ReST attributes and their values. Example:: >>> print entity.to_dict() {"name": "my entity", "description": "Hello World", "ID": "xxxx-xxx-xxxx-xxx", ...}
codesearchnet
def get_template_name(env, pipeline_type): pipeline_base = 'pipeline/pipeline' template_name_format = '{pipeline_base}' if env.startswith('prod'): template_name_format = template_name_format + '_{env}' else: template_name_format = template_name_format + '_stages' if pipeline_type != 'ec2': template_name_format = template_name_format + '_{pipeline_type}' template_name_format = template_name_format + '.json.j2' template_name = template_name_format.format(pipeline_base=pipeline_base, env=env, pipeline_type=pipeline_type) return template_name
Generates the correct template name based on pipeline type Args: env (str): environment to generate templates for pipeline_type (str): Type of pipeline like ec2 or lambda Returns: str: Name of template
juraj-google-style
def absolute(x): if any_symbolic_tensors((x,)): return Absolute().symbolic_call(x) return backend.numpy.absolute(x)
Compute the absolute value element-wise. `keras.ops.abs` is a shorthand for this function. Args: x: Input tensor. Returns: An array containing the absolute value of each element in `x`. Example: >>> x = keras.ops.convert_to_tensor([-1.2, 1.2]) >>> keras.ops.absolute(x) array([1.2, 1.2], dtype=float32)
github-repos
def export_dae(filename, cutout, level=0): if ".dae" not in filename: filename = filename + ".dae" vs, fs = mcubes.marching_cubes(cutout, level) mcubes.export_mesh(vs, fs, filename, "ndioexport")
Converts a dense annotation to a DAE, using Marching Cubes (PyMCubes). Arguments: filename (str): The filename to write out to cutout (numpy.ndarray): The dense annotation level (int): The level at which to run mcubes Returns: boolean success
juraj-google-style
def from_vision_qformer_text_configs(cls, vision_config: InstructBlipVisionConfig, qformer_config: InstructBlipQFormerConfig, text_config: PretrainedConfig, **kwargs): return cls(vision_config=vision_config.to_dict(), qformer_config=qformer_config.to_dict(), text_config=text_config.to_dict(), **kwargs)
Instantiate a [`InstructBlipConfig`] (or a derived class) from a InstructBLIP vision model, Q-Former and language model configurations. Returns: [`InstructBlipConfig`]: An instance of a configuration object
github-repos
def transpose(x, axes=None): if any_symbolic_tensors((x,)): return Transpose(axes=axes).symbolic_call(x) return backend.numpy.transpose(x, axes=axes)
Returns a tensor with `axes` transposed. Args: x: Input tensor. axes: Sequence of integers. Permutation of the dimensions of `x`. By default, the order of the axes are reversed. Returns: `x` with its axes permuted.
github-repos
async def train(state, tf_records): model_path = os.path.join(fsdb.models_dir(), state.train_model_name) await run( 'python3', 'train.py', *tf_records, '--flagfile={}'.format(os.path.join(FLAGS.flags_dir, 'train.flags')), '--work_dir={}'.format(fsdb.working_dir()), '--export_path={}'.format(model_path), '--training_seed={}'.format(state.seed), '--freeze=true') elapsed = time.time() - state.start_time timestamps_path = os.path.join(fsdb.models_dir(), 'train_times.txt') with gfile.Open(timestamps_path, 'a') as f: print('{:.3f} {}'.format(elapsed, state.train_model_name), file=f)
Run training and write a new model to the fsdb models_dir. Args: state: the RL loop State instance. tf_records: a list of paths to TensorFlow records to train on.
juraj-google-style
def __init__(self, num_steps=None, last_step=None, steps_per_run=1): if num_steps is None and last_step is None: raise ValueError('One of num_steps or last_step must be specified.') if num_steps is not None and last_step is not None: raise ValueError('Only one of num_steps or last_step can be specified.') if steps_per_run is None or steps_per_run < 1: raise ValueError('steps_per_run should be greater than 0') self._num_steps = num_steps self._last_step = last_step self._steps_per_run_initial_value = steps_per_run
Initializes a `MultiStepStopAtStepHook`. This hook requests stop after either a number of steps have been executed or a last step has been reached. Only one of the two options can be specified. if `num_steps` is specified, it indicates the number of steps to execute after `begin()` is called. If instead `last_step` is specified, it indicates the last step we want to execute, as passed to the `after_run()` call. In Estimator, the user provided computation, the model_fn, is wrapped inside a tf.while_loop for peak performance. The steps_per_run variable determines the number of iterations of the loop before returning to the CPU. Args: num_steps: Number of steps to execute. last_step: Step after which to stop. steps_per_run: Number of steps executed per run call. Raises: ValueError: If one of the arguments is invalid.
github-repos
def _audience_condition_deserializer(obj_dict): return [obj_dict.get('name'), obj_dict.get('value'), obj_dict.get('type'), obj_dict.get('match')]
Deserializer defining how dict objects need to be decoded for audience conditions. Args: obj_dict: Dict representing one audience condition. Returns: List consisting of condition key with corresponding value, type and match.
codesearchnet
def has_sample(self, md5): sample = self.get_sample(md5) return True if sample else False
Checks if data store has this sample. Args: md5: The md5 digest of the required sample. Returns: True if sample with this md5 is present, else False.
juraj-google-style
def load_ems(self, modules_paths: List[str]): all_em_lst = [] if modules_paths: for modules_path in modules_paths: em_lst = [] try: for file_name in os.listdir(modules_path): if (file_name.startswith('em_') and file_name.endswith('.py')): sys.path.append(modules_path) this_module = importlib.import_module(file_name[:(- 3)]) for em in self.classes_in_module(this_module): em_lst.append(em(self)) except: self.log(('Error when loading etk modules from ' + modules_path), 'error') raise NotGetETKModuleError('Wrong file path for ETK modules') all_em_lst += em_lst try: all_em_lst = self.topological_sort(all_em_lst) except Exception: self.log('Topological sort for ETK modules fails', 'error') raise NotGetETKModuleError('Topological sort for ETK modules fails') return all_em_lst
Load all extraction modules from the path Args: modules_path: str Returns:
codesearchnet
def add_streamer(self, streamer): if ((self._max_streamers is not None) and (len(self.streamers) >= self._max_streamers)): raise ResourceUsageError('Maximum number of streamers exceeded', max_streamers=self._max_streamers) streamer.link_to_storage(self.sensor_log) streamer.index = len(self.streamers) self.streamers.append(streamer)
Add a streamer to this sensor graph. Args: streamer (DataStreamer): The streamer we want to add
codesearchnet
def _check_pattern_list(patterns, key, default=None): if (not patterns): return default if isinstance(patterns, basestring): return [patterns] if isinstance(patterns, list): if all((isinstance(p, basestring) for p in patterns)): return patterns raise ValueError("Invalid file patterns in key '{}': must be a string or list of strings".format(key))
Validates file search patterns from user configuration. Acceptable input is a string (which will be converted to a singleton list), a list of strings, or anything falsy (such as None or an empty dictionary). Empty or unset input will be converted to a default. Args: patterns: input from user configuration (YAML). key (str): name of the configuration key the input came from, used for error display purposes. Keyword Args: default: value to return in case the input is empty or unset. Returns: list[str]: validated list of patterns Raises: ValueError: if the input is unacceptable.
codesearchnet
def get_project_name(project_id, projects): for project in projects: if (project_id == project.id): return project.name
Retrieves project name for given project id Args: projects: List of projects project_id: project id Returns: Project name or None if there is no match
codesearchnet
def flash(self, partition, timeout_ms=None, info_cb=DEFAULT_MESSAGE_CALLBACK): return self._simple_command('flash', arg=partition, info_cb=info_cb, timeout_ms=timeout_ms)
Flashes the last downloaded file to the given partition. Args: partition: Partition to flash. timeout_ms: Optional timeout in milliseconds to wait for it to finish. info_cb: See Download. Usually no messages. Returns: Response to a download request, normally nothing.
juraj-google-style
def sync_to_numpy_or_python_type(tensors): if isinstance(tensors, coordinator_lib.RemoteValue): return tensors.fetch() def _to_single_numpy_or_python_type(t): if isinstance(t, tensor_lib.Tensor): x = t.numpy() return x.item() if np.ndim(x) == 0 else x return t return nest.map_structure(_to_single_numpy_or_python_type, tensors)
Syncs and converts a structure of `Tensor`s to `NumPy` arrays or Python scalar types. For each tensor, it calls `tensor.numpy()`. If the result is a scalar value, it converts it to a Python type, such as a float or int, by calling `result.item()`. Numpy scalars are converted, as Python types are often more convenient to deal with. This is especially useful for bfloat16 Numpy scalars, which don't support as many operations as other Numpy values. Async strategies (such as `TPUStrategy` and `ParameterServerStrategy`) are forced to sync during this process. Args: tensors: A structure of tensors. Returns: `tensors`, but scalar tensors are converted to Python types and non-scalar tensors are converted to Numpy arrays.
github-repos
def get_file_download(self, resources): api_name = 'virustotal-file-download' api_endpoint = 'file/download' return self._extract_all_responses(resources, api_endpoint, api_name)
Retrieves a file from its a md5, sha1, and/or sha2 hash. Args: resources: list of string hashes. Returns: a file download
juraj-google-style
def execute_command(self, command): self.runner.info_log("Executing command: %s" % command) process = Popen( command, stdout=open(os.devnull, 'w'), stderr=open('runner.log', 'a'), ) return process
Execute a command Args: command (str) Returns: process (object)
juraj-google-style
def get_relative_imports(module_file: Union[str, os.PathLike]) -> list[str]: with open(module_file, encoding='utf-8') as f: content = f.read() relative_imports = re.findall('^\\s*import\\s+\\.(\\S+)\\s*$', content, flags=re.MULTILINE) relative_imports += re.findall('^\\s*from\\s+\\.(\\S+)\\s+import', content, flags=re.MULTILINE) return list(set(relative_imports))
Get the list of modules that are relatively imported in a module file. Args: module_file (`str` or `os.PathLike`): The module file to inspect. Returns: `list[str]`: The list of relative imports in the module.
github-repos
def emit(self, record): try: message = self.format(record) log_record = LogRecord(record.levelno, record.name, os.path.basename(record.pathname), record.lineno, int((record.created * 1000)), message) self._test_record.add_log_record(log_record) self._notify_update() except Exception: self.handleError(record)
Save a logging.LogRecord to our test record. Logs carry useful metadata such as the logger name and level information. We capture this in a structured format in the test record to enable filtering by client applications. Args: record: A logging.LogRecord to record.
codesearchnet
def run(self, copy_to_current_on_exit=False, site_property=None): scratch = tempfile.gettempdir() with ScratchDir(scratch, copy_to_current_on_exit=copy_to_current_on_exit) as scratch_dir: self._write_input(input_dir=scratch_dir) packmol_input = open(os.path.join(scratch_dir, self.input_file), 'r') p = Popen(self.packmol_bin, stdin=packmol_input, stdout=PIPE, stderr=PIPE) (stdout, stderr) = p.communicate() output_file = os.path.join(scratch_dir, self.control_params["output"]) if os.path.isfile(output_file): packed_mol = BabelMolAdaptor.from_file(output_file, self.control_params["filetype"]) packed_mol = packed_mol.pymatgen_mol print("packed molecule written to {}".format( self.control_params["output"])) if site_property: packed_mol = self.restore_site_properties(site_property=site_property, filename=output_file) return packed_mol else: print("Packmol execution failed") print(stdout, stderr) return None
Write the input file to the scratch directory, run packmol and return the packed molecule. Args: copy_to_current_on_exit (bool): Whether or not to copy the packmol input/output files from the scratch directory to the current directory. site_property (str): if set then the specified site property for the the final packed molecule will be restored. Returns: Molecule object
juraj-google-style
def check_with_golden(filename): path_to_file = PATH_TO_DIR + '/data/' + filename if os.path.isfile(path_to_file) and os.path.isfile(CUDA_CC_GOLDEN_DIR): with open(path_to_file, 'r') as f_new: with open(CUDA_CC_GOLDEN_DIR, 'r') as f_golden: diff = difflib.unified_diff(f_new.readlines(), f_golden.readlines(), fromfile=path_to_file, tofile=CUDA_CC_GOLDEN_DIR) diff_list = [] for line in diff: diff_list.append(line) if diff_list: print('WARNING: difference(s) found between new csv and golden csv.') print(diff_list) else: print('No difference found between new csv and golen csv.')
Checks the newly created CUDA compute capability file with the golden. If differences are found, then it prints a list of all mismatches as a `WARNING`. Golden file must reside in `golden/` directory. Args: filename: String that is the name of the newly created file.
github-repos
def ParseActivityLogUncompressedRow(self, parser_mediator, query, row, **unused_kwargs): query_hash = hash(query) event_data = ChromeExtensionActivityEventData() event_data.action_type = self._GetRowValue(query_hash, row, 'action_type') event_data.activity_id = self._GetRowValue(query_hash, row, 'activity_id') event_data.api_name = self._GetRowValue(query_hash, row, 'api_name') event_data.arg_url = self._GetRowValue(query_hash, row, 'arg_url') event_data.args = self._GetRowValue(query_hash, row, 'args') event_data.extension_id = self._GetRowValue(query_hash, row, 'extension_id') event_data.other = self._GetRowValue(query_hash, row, 'other') event_data.page_title = self._GetRowValue(query_hash, row, 'page_title') event_data.page_url = self._GetRowValue(query_hash, row, 'page_url') event_data.query = query timestamp = self._GetRowValue(query_hash, row, 'time') date_time = dfdatetime_webkit_time.WebKitTime(timestamp=timestamp) event = time_events.DateTimeValuesEvent(date_time, definitions.TIME_DESCRIPTION_UNKNOWN) parser_mediator.ProduceEventWithEventData(event, event_data)
Parses an activity log row. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. query (str): query that created the row. row (sqlite3.Row): row.
codesearchnet