code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def publish(msg="checkpoint: publish package"):
test = check()
if test.succeeded:
sdist = local("python setup.py sdist")
if sdist.succeeded:
build = local(
'python setup.py build && python setup.py bdist_egg')
if build.succeeded:
upload = local("twine upload dist/*")
if upload.succeeded:
tag()
|
Deploy the app to PYPI.
Args:
msg (str, optional): Description
|
juraj-google-style
|
def forward(self, hidden_states: torch.Tensor, position_embeddings: Optional[torch.Tensor]=None, reference_points=None, spatial_shapes=None, level_start_index=None, encoder_hidden_states: Optional[torch.Tensor]=None, encoder_attention_mask: Optional[torch.Tensor]=None, output_attentions: Optional[bool]=False):
residual = hidden_states
hidden_states, self_attn_weights = self.self_attn(hidden_states=hidden_states, position_embeddings=position_embeddings, output_attentions=output_attentions)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
second_residual = hidden_states
cross_attn_weights = None
hidden_states, cross_attn_weights = self.encoder_attn(hidden_states=hidden_states, attention_mask=encoder_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, position_embeddings=position_embeddings, reference_points=reference_points, spatial_shapes=spatial_shapes, level_start_index=level_start_index, output_attentions=output_attentions)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = second_residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
|
Args:
hidden_states (`torch.FloatTensor`):
Input to the layer of shape `(batch, seq_len, embed_dim)`.
position_embeddings (`torch.FloatTensor`, *optional*):
Position embeddings that are added to the queries and keys in the self-attention layer.
reference_points (`torch.FloatTensor`, *optional*):
Reference points.
spatial_shapes (`torch.LongTensor`, *optional*):
Spatial shapes.
level_start_index (`torch.LongTensor`, *optional*):
Level start index.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
|
github-repos
|
def get_model_indexes(model):
indexes = []
for index in get_index_names():
for app_model in get_index_models(index):
if (app_model == model):
indexes.append(index)
return indexes
|
Return list of all indexes in which a model is configured.
A model may be configured to appear in multiple indexes. This function
will return the names of the indexes as a list of strings. This is
useful if you want to know which indexes need updating when a model
is saved.
Args:
model: a Django model class.
|
codesearchnet
|
def _add_row_partitions(self, flat_values, validate=False):
if self.row_partitions:
if validate:
flat_values = self._validate_flat_values(flat_values)
return ragged_tensor.RaggedTensor._from_nested_row_partitions(flat_values, self.row_partitions, validate=False)
else:
return flat_values
|
Add row partitions to flat_values, if necessary.
If the shape is truly ragged, then this adds the row_partitions.
The shape is dense, then this just returns flat_values.
Args:
flat_values: the flat_values of a ragged tensor with this shape, or a
dense tensor with this shape.
validate: validate the flat_values have the right first dimension.
Returns:
flat_values reshaped to have row_partitions.
|
github-repos
|
def symbol_top(body_output, targets, model_hparams, vocab_size):
del targets
if model_hparams.shared_embedding_and_softmax_weights:
scope_name = "shared"
reuse = tf.AUTO_REUSE
else:
scope_name = "softmax"
reuse = False
with tf.variable_scope(scope_name, reuse=reuse):
body_output_shape = common_layers.shape_list(body_output)
var = get_weights(model_hparams, vocab_size, body_output_shape[-1])
if (model_hparams.factored_logits and
model_hparams.mode == tf.estimator.ModeKeys.TRAIN):
body_output = tf.expand_dims(body_output, 3)
return common_layers.FactoredTensor(body_output, var)
else:
body_output = tf.reshape(body_output, [-1, body_output_shape[-1]])
logits = tf.matmul(body_output, var, transpose_b=True)
return tf.reshape(logits,
body_output_shape[:-1] + [1, vocab_size])
|
Generate logits.
Args:
body_output: A Tensor with shape
[batch, p0, p1, model_hparams.hidden_size].
targets: Unused.
model_hparams: HParams, model hyperparmeters.
vocab_size: int, vocabulary size.
Returns:
logits: A Tensor with shape [batch, p0, p1, ?, vocab_size].
|
juraj-google-style
|
def _get_event_id(object_type: str) -> str:
key = _keys.event_counter(object_type)
DB.watch(key, pipeline=True)
count = DB.get_value(key)
DB.increment(key)
DB.execute()
if count is None:
count = 0
return '{}_event_{:08d}'.format(object_type, int(count))
|
Return an event key for the event on the object type.
This must be a unique event id for the object.
Args:
object_type (str): Type of object
Returns:
str, event id
|
juraj-google-style
|
def convert(self, point):
(x, y) = point
(x1, y1) = ((x - self.x_offset), (y - self.y_offset))
logger.debug('converted {} {} ==> {} {}'.format(x, y, x1, y1))
return (x1, y1)
|
Convert a point from one coordinate system to another.
Args:
point: tuple(int x, int y)
The point in the original coordinate system.
Returns:
converted_point: tuple(int x, int y)
The point in the new coordinate system.
Example: convert coordinate from original image into a pixel location
within a cutout image.
@rtype: list(float,float)
|
codesearchnet
|
def users_setPresence(self, *, presence: str, **kwargs) -> SlackResponse:
kwargs.update({"presence": presence})
return self.api_call("users.setPresence", json=kwargs)
|
Manually sets user presence.
Args:
presence (str): Either 'auto' or 'away'.
|
juraj-google-style
|
def convert_relu(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting relu ...')
if names == 'short':
tf_name = 'RELU' + random_string(4)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
relu = keras.layers.Activation('relu', name=tf_name)
layers[scope_name] = relu(layers[inputs[0]])
|
Convert relu layer.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
juraj-google-style
|
def aggregate_and_return_name_for_input(self, out_graphdef):
flattened = self.flatten_nodes()
if self.aggregation == OpHint.AGGREGATE_FIRST or self.aggregation == OpHint.AGGREGATE_LAST:
assert len(flattened) == 1
if len(flattened) == 1 and self.aggregation != OpHint.AGGREGATE_STACK:
return _tensor_name_base(flattened[0].name)
else:
new_node = _node_def_pb2.NodeDef()
new_node.op = 'Pack'
new_node.name = 'OpHintStack-%s' % flattened[0].name
new_node.attr['N'].i = len(flattened)
new_node.attr['T'].type = flattened[0].attr['T'].type
for discrete in flattened:
new_node.input.append(_tensor_name_base(discrete.name))
out_graphdef.node.extend([new_node])
return new_node.name
|
This adds the nodes to out_graphdef and returns an aggregated output.
In particular, if you have 4 inputs to a hint stub, this will be the
node that you can use as an output. I.e. you have 4 timesteps from a
static rnn, then a fused UnidirectionalLSTM will expect 1 input with
all 4 time steps. So here we make a pack and return the output name of
that pack.
Args:
out_graphdef: A graphdef that is ready to have this input added.
Returns:
The name of a pack that aggregates this node.
|
github-repos
|
def get(self, name):
return self.prepare_model(self.client.api.inspect_image(name))
|
Gets an image.
Args:
name (str): The name of the image.
Returns:
(:py:class:`Image`): The image.
Raises:
:py:class:`docker.errors.ImageNotFound`
If the image does not exist.
:py:class:`docker.errors.APIError`
If the server returns an error.
|
codesearchnet
|
def _parse_rd(self, config):
match = RD_RE.search(config)
if match:
value = match.group('value')
else:
value = match
return dict(rd=value)
|
_parse_rd scans the provided configuration block and extracts
the vrf rd. The return dict is intended to be merged into the response
dict.
Args:
config (str): The vrf configuration block from the nodes running
configuration
Returns:
dict: resource dict attribute
|
juraj-google-style
|
def _build_mac_signature_key_information(self, value):
if (value is None):
return None
if (not isinstance(value, dict)):
raise TypeError('MAC/signature key information must be a dictionary.')
cryptographic_parameters = value.get('cryptographic_parameters')
if cryptographic_parameters:
cryptographic_parameters = self._build_cryptographic_parameters(cryptographic_parameters)
mac_signature_key_information = cobjects.MACSignatureKeyInformation(unique_identifier=value.get('unique_identifier'), cryptographic_parameters=cryptographic_parameters)
return mac_signature_key_information
|
Build an MACSignatureKeyInformation struct from a dictionary.
Args:
value (dict): A dictionary containing the key/value pairs for a
MACSignatureKeyInformation struct.
Returns:
MACSignatureInformation: a MACSignatureKeyInformation struct
Raises:
TypeError: if the input argument is invalid
|
codesearchnet
|
def prefix(self, imod: YangIdentifier, mid: ModuleId) -> YangIdentifier:
try:
did = (imod, self.implement[imod])
except KeyError:
raise ModuleNotImplemented(imod) from None
try:
pmap = self.modules[mid].prefix_map
except KeyError:
raise ModuleNotRegistered(*mid) from None
for p in pmap:
if (pmap[p] == did):
return p
raise ModuleNotImported(imod, mid)
|
Return the prefix corresponding to an implemented module.
Args:
imod: Name of an implemented module.
mid: Identifier of the context module.
Raises:
ModuleNotImplemented: If `imod` is not implemented.
ModuleNotRegistered: If `mid` is not registered in YANG library.
ModuleNotImported: If `imod` is not imported in `mid`.
|
codesearchnet
|
def delete(self, key):
path = self.object_path(key)
if os.path.exists(path):
os.remove(path)
|
Removes the object named by `key`.
Args:
key: Key naming the object to remove.
|
juraj-google-style
|
def _import_and_bind(self, imp):
with self.block.alloc_temp() as mod, \
self.block.alloc_temp('[]*πg.Object') as mod_slice:
self.writer.write_checked_call2(
mod_slice, 'πg.ImportModule(πF, {})', util.go_str(imp.name))
for binding in imp.bindings:
if binding.bind_type == imputil.Import.MODULE:
self.writer.write('{} = {}[{}]'.format(
mod.name, mod_slice.expr, binding.value))
self.block.bind_var(self.writer, binding.alias, mod.expr)
else:
self.writer.write('{} = {}[{}]'.format(
mod.name, mod_slice.expr, imp.name.count('.')))
with self.block.alloc_temp() as member:
self.writer.write_checked_call2(
member, 'πg.GetAttr(πF, {}, {}, nil)',
mod.expr, self.block.root.intern(binding.value))
self.block.bind_var(self.writer, binding.alias, member.expr)
|
Generates code that imports a module and binds it to a variable.
Args:
imp: Import object representing an import of the form "import x.y.z" or
"from x.y import z". Expects only a single binding.
|
juraj-google-style
|
def from_comm(cls, pub):
filename = None
if pub.b64_data:
filename = cls._save_to_unique_filename(pub)
return cls(
title=pub.title,
author=pub.author,
pub_year=pub.pub_year,
isbn=pub.isbn,
urnnbn=pub.urnnbn,
uuid=pub.uuid,
aleph_id=pub.aleph_id,
producent_id=pub.producent_id,
is_public=pub.is_public,
filename=pub.filename,
is_periodical=pub.is_periodical,
path=pub.path,
file_pointer=filename
)
|
Convert communication namedtuple to this class.
Args:
pub (obj): :class:`.Publication` instance which will be converted.
Returns:
obj: :class:`DBPublication` instance.
|
juraj-google-style
|
async def setup_round_robin_points(self, match_win: float = None, match_tie: float = None, game_win: float = None, game_tie: float = None):
params = {}
if match_win is not None:
params['rr_pts_for_match_win'] = match_win
if match_win is not None:
params['rr_pts_for_match_tie'] = match_tie
if match_win is not None:
params['rr_pts_for_game_win'] = game_win
if match_win is not None:
params['rr_pts_for_game_tie'] = game_tie
assert_or_raise(len(params) > 0, ValueError, 'At least one of the points must be given')
await self.update(**params)
|
|methcoro|
Args:
match_win
match_tie
game_win
game_tie
Raises:
APIException
|
juraj-google-style
|
def value_instance_to_pytd_type(self, node, v, instance, seen, view):
if abstract_utils.is_recursive_annotation(v):
return pytd.LateType(v.unflatten_expr() if self._detailed else v.expr)
elif isinstance(v, abstract.Union):
return pytd.UnionType(tuple((self.value_instance_to_pytd_type(node, t, instance, seen, view) for t in v.options)))
elif isinstance(v, abstract.AnnotationContainer):
return self.value_instance_to_pytd_type(node, v.base_cls, instance, seen, view)
elif isinstance(v, abstract.LiteralClass):
if isinstance(v.value, abstract.Instance) and v.value.cls.is_enum:
typ = pytd_utils.NamedTypeWithModule(v.value.cls.official_name or v.value.cls.name, v.value.cls.module)
value = pytd.Constant(v.value.name, typ)
elif isinstance(v.value.pyval, (str, bytes)):
value = repr(v.value.pyval)
elif isinstance(v.value.pyval, bool):
value = self.ctx.loader.lookup_pytd('builtins', v.value.pyval)
else:
assert isinstance(v.value.pyval, int), v.value.pyval
value = v.value.pyval
return pytd.Literal(value)
elif isinstance(v, typed_dict.TypedDictClass):
return pytd.NamedType(v.name)
elif isinstance(v, fiddle_overlay.BuildableType):
param = self.value_instance_to_pytd_type(node, v.underlying, None, seen, view)
return pytd.GenericType(base_type=pytd.NamedType(f'fiddle.{v.fiddle_type_name}'), parameters=(param,))
elif isinstance(v, abstract.Class):
if not self._detailed and v.official_name is None:
return pytd.AnythingType()
if seen is None:
seen = frozenset()
if instance in seen:
type_params = ()
else:
type_params = tuple((t.name for t in v.template))
if instance is not None:
seen |= {instance}
type_arguments = self._value_to_parameter_types(node, v, instance, type_params, seen, view)
base = pytd_utils.NamedTypeWithModule(v.official_name or v.name, v.module)
if self._is_tuple(v, instance):
homogeneous = False
elif v.full_name == 'typing.Callable':
homogeneous = not isinstance(v, abstract.CallableClass)
else:
homogeneous = len(type_arguments) == 1
return pytd_utils.MakeClassOrContainerType(base, type_arguments, homogeneous)
elif isinstance(v, abstract.TYPE_VARIABLE_TYPES):
return self._type_variable_to_def(node, v, v.name)
elif isinstance(v, typing_overlay.Never):
return pytd.NothingType()
elif isinstance(v, abstract.Concatenate):
params = tuple((self.value_instance_to_pytd_type(node, t, instance, seen, view) for t in v.args + [v.paramspec]))
return pytd.Concatenate(pytd.NamedType('typing.Concatenate'), parameters=params)
else:
log.info('Using Any for instance of %s', v.name)
return pytd.AnythingType()
|
Get the PyTD type an instance of this object would have.
Args:
node: The node.
v: The object.
instance: The instance.
seen: Already seen instances.
view: A Variable -> binding map.
Returns:
A PyTD type.
|
github-repos
|
def bresenham(x1, y1, x2, y2):
points = []
issteep = (abs((y2 - y1)) > abs((x2 - x1)))
if issteep:
(x1, y1) = (y1, x1)
(x2, y2) = (y2, x2)
rev = False
if (x1 > x2):
(x1, x2) = (x2, x1)
(y1, y2) = (y2, y1)
rev = True
deltax = (x2 - x1)
deltay = abs((y2 - y1))
error = int((deltax / 2))
y = y1
ystep = None
if (y1 < y2):
ystep = 1
else:
ystep = (- 1)
for x in range(x1, (x2 + 1)):
if issteep:
points.append((y, x))
else:
points.append((x, y))
error -= deltay
if (error < 0):
y += ystep
error += deltax
if rev:
points.reverse()
return points
|
Return a list of points in a bresenham line.
Implementation hastily copied from RogueBasin.
Returns:
List[Tuple[int, int]]: A list of (x, y) points,
including both the start and end-points.
|
codesearchnet
|
def ping(self, url, endpoint=''):
r = self.get_url(url + "/" + endpoint)
return r.status_code
|
Ping the server to make sure that you can access the base URL.
Arguments:
None
Returns:
`boolean` Successful access of server (or status code)
|
juraj-google-style
|
def _AddDSATargeting(client, ad_group_id, label_name):
ad_group_criterion_service = client.GetService('AdGroupCriterionService',
version='v201809')
operation = {
'operand': {
'xsi_type': 'BiddableAdGroupCriterion',
'adGroupId': ad_group_id,
'criterion': {
'xsi_type': 'Webpage',
'parameter': {
'criterionName': 'Test criterion',
'conditions': [{
'operand': 'CUSTOM_LABEL',
'argument': label_name
}],
}
},
'biddingStrategyConfiguration': {
'bids': [{
'xsi_type': 'CpcBid',
'bid': {
'microAmount': 1500000
}
}]
}
},
'operator': 'ADD'
}
criterion = ad_group_criterion_service.mutate([operation])['value'][0]
print 'Web page criterion with ID "%d" and status "%s" was created.' % (
criterion['criterion']['id'], criterion['userStatus'])
return criterion
|
Set custom targeting for the page feed URLs based on a list of labels.
Args:
client: an AdWordsClient instance.
ad_group_id: a str AdGroup ID.
label_name: a str label name.
Returns:
A suds.sudsobject.Object representing the newly created webpage criterion.
|
juraj-google-style
|
def DeregisterSourceType(cls, source_type_class):
if source_type_class.TYPE_INDICATOR not in cls._source_type_classes:
raise KeyError(
'Source type not set for type: {0:s}.'.format(
source_type_class.TYPE_INDICATOR))
del cls._source_type_classes[source_type_class.TYPE_INDICATOR]
|
Deregisters a source type.
Source types are identified based on their type indicator.
Args:
source_type_class (type): source type.
Raises:
KeyError: if a source type is not set for the corresponding type
indicator.
|
juraj-google-style
|
def GetDataByPath(self, path):
(_, path_data) = self._paths.get(path, (None, None))
return path_data
|
Retrieves the data associated to a path.
Args:
path (str): path of the file entry.
Returns:
bytes: data or None if not available.
|
codesearchnet
|
def on_modified(self, event):
if (not self._event_error):
self.logger.info(u'Change detected from an edit on: %s', event.src_path)
self.compile_dependencies(event.src_path)
|
Called when a file or directory is modified.
Args:
event: Watchdog event, ``watchdog.events.DirModifiedEvent`` or
``watchdog.events.FileModifiedEvent``.
|
codesearchnet
|
def skip(self, count=1):
if self.closed():
raise ValueError('Attempt to call skip() on a closed Queryable.')
count = max(0, count)
if (count == 0):
return self
if hasattr(self._iterable, '__getitem__'):
try:
stop = len(self._iterable)
return self._create(self._generate_optimized_skip_result(count, stop))
except TypeError:
pass
return self._create(self._generate_skip_result(count))
|
Skip the first count contiguous elements of the source sequence.
If the source sequence contains fewer than count elements returns an
empty sequence and does not raise an exception.
Note: This method uses deferred execution.
Args:
count: The number of elements to skip from the beginning of the
sequence. If omitted defaults to one. If count is less than one
the result sequence will be empty.
Returns:
A Queryable over the elements of source excluding the first count
elements.
Raises:
ValueError: If the Queryable is closed().
|
codesearchnet
|
def enum(cls):
assert cls.__bases__ == (object,)
d = dict(cls.__dict__)
new_type = type(cls.__name__, (int,), d)
new_type.__module__ = cls.__module__
map_ = {}
for key, value in iteritems(d):
if key.upper() == key and isinstance(value, integer_types):
value_instance = new_type(value)
setattr(new_type, key, value_instance)
map_[value] = key
def str_(self):
if self in map_:
return "%s.%s" % (type(self).__name__, map_[self])
return "%d" % int(self)
def repr_(self):
if self in map_:
return "<%s.%s: %d>" % (type(self).__name__, map_[self], int(self))
return "%d" % int(self)
setattr(new_type, "__repr__", repr_)
setattr(new_type, "__str__", str_)
return new_type
|
A decorator for creating an int enum class.
Makes the values a subclass of the type and implements repr/str.
The new class will be a subclass of int.
Args:
cls (type): The class to convert to an enum
Returns:
type: A new class
::
@enum
class Foo(object):
FOO = 1
BAR = 2
|
juraj-google-style
|
def _callable_func(self, func, axis, *args, **kwargs):
def callable_apply_builder(df, axis=0):
if not axis:
df.index = index
df.columns = pandas.RangeIndex(len(df.columns))
else:
df.columns = index
df.index = pandas.RangeIndex(len(df.index))
result = df.apply(func, axis=axis, *args, **kwargs)
return result
index = self.index if not axis else self.columns
func_prepared = self._build_mapreduce_func(callable_apply_builder, axis=axis)
result_data = self._map_across_full_axis(axis, func_prepared)
return self._post_process_apply(result_data, axis)
|
Apply callable functions across given axis.
Args:
func: The functions to apply.
axis: Target axis to apply the function along.
Returns:
A new PandasQueryCompiler.
|
juraj-google-style
|
def _read_hopopt_options(self, length):
counter = 0
optkind = list()
options = dict()
while (counter < length):
code = self._read_unpack(1)
if (not code):
break
(abbr, desc) = _HOPOPT_OPT.get(code, ('none', 'Unassigned'))
data = _HOPOPT_PROC(abbr)(self, code, desc=desc)
enum = _OPT_TYPE.get(code)
counter += data['length']
if (enum in optkind):
if isinstance(options[abbr], tuple):
options[abbr] += (Info(data),)
else:
options[abbr] = (Info(options[abbr]), Info(data))
else:
optkind.append(enum)
options[abbr] = data
if (counter != length):
raise ProtocolError(f'{self.alias}: invalid format')
return (tuple(optkind), options)
|
Read HOPOPT options.
Positional arguments:
* length -- int, length of options
Returns:
* dict -- extracted HOPOPT options
|
codesearchnet
|
def bench(image, thread_count):
threads = [threading.Thread(target=(lambda : encoder.encode_png(image))) for _ in xrange(thread_count)]
start_time = datetime.datetime.now()
for thread in threads:
thread.start()
for thread in threads:
thread.join()
end_time = datetime.datetime.now()
delta = (end_time - start_time).total_seconds()
return delta
|
Encode `image` to PNG on `thread_count` threads in parallel.
Returns:
A `float` representing number of seconds that it takes all threads
to finish encoding `image`.
|
codesearchnet
|
def _get_manager(cluster_info, host, executor_id):
for node in cluster_info:
if node['host'] == host and node['executor_id'] == executor_id:
addr = node['addr']
authkey = node['authkey']
TFSparkNode.mgr = TFManager.connect(addr, authkey)
break
if TFSparkNode.mgr is None:
msg = "No TFManager found on this node, please ensure that:\n" + \
"1. Spark num_executors matches TensorFlow cluster_size\n" + \
"2. Spark cores/tasks per executor is 1.\n" + \
"3. Spark dynamic allocation is disabled."
raise Exception(msg)
logging.info("Connected to TFSparkNode.mgr on {0}, executor={1}, state={2}".format(host, executor_id, str(TFSparkNode.mgr.get('state'))))
return TFSparkNode.mgr
|
Returns this executor's "singleton" instance of the multiprocessing.Manager, reconnecting per python-worker if needed.
Args:
:cluster_info: cluster node reservations
:host: host IP address
:executor_id: unique id per executor (created during initial call to run())
Returns:
TFManager instance for this executor/python-worker
|
juraj-google-style
|
def output_mask(self):
output = self.output
if isinstance(output, list):
return [getattr(x, '_keras_mask', None) for x in output]
else:
return getattr(output, '_keras_mask', None)
|
Retrieves the output mask tensor(s) of a layer.
Only applicable if the layer has exactly one inbound node,
i.e. if it is connected to one incoming layer.
Returns:
Output mask tensor (potentially None) or list of output
mask tensors.
Raises:
AttributeError: if the layer is connected to
more than one incoming layers.
|
github-repos
|
def _get_config_instance(group_or_term, session, **kwargs):
path = group_or_term._get_path()
cached = group_or_term._top._cached_configs.get(path)
if cached:
config = cached
created = False
else:
config, created = get_or_create(session, Config, **kwargs)
return config, created
|
Finds appropriate config instance and returns it.
Args:
group_or_term (Group or Term):
session (Sqlalchemy session):
kwargs (dict): kwargs to pass to get_or_create.
Returns:
tuple of (Config, bool):
|
juraj-google-style
|
def __init__(self, conf_path=ZEO_CLIENT_PATH, project_key=PROJECT_KEY):
super(self.__class__, self).__init__(
conf_path=conf_path,
project_key=project_key
)
self.name_db_key = "name_db"
self.name_db = self._get_key_or_create(self.name_db_key)
self.aleph_id_db_key = "aleph_id_db"
self.aleph_id_db = self._get_key_or_create(self.aleph_id_db_key)
self.issn_db_key = "issn_db"
self.issn_db = self._get_key_or_create(self.issn_db_key)
self.path_db_key = "path_db"
self.path_db = self._get_key_or_create(self.path_db_key)
self.parent_db_key = "parent_db"
self.parent_db = self._get_key_or_create(self.parent_db_key)
|
Constructor.
Args:
conf_path (str): Path to the ZEO configuration file. Default
:attr:`~storage.settings.ZEO_CLIENT_PATH`.
project_key (str): Project key, which is used for lookups into ZEO.
Default :attr:`~storage.settings.TREE_PROJECT_KEY`.
|
juraj-google-style
|
def _get_connection(self, conn_or_int_id):
key = conn_or_int_id
if isinstance(key, str):
table = self._int_connections
elif isinstance(key, int):
table = self._connections
else:
return None
try:
data = table[key]
except KeyError:
return None
return data
|
Get the data for a connection by either conn_id or internal_id
Args:
conn_or_int_id (int, string): The external integer connection id or
and internal string connection id
Returns:
dict: The context data associated with that connection or None if it cannot
be found.
Raises:
ArgumentError: When the key is not found in the list of active connections
or is invalid.
|
codesearchnet
|
def WriteTimestamp(timestamp, filename):
if timestamp is None:
return True
timestamp_dir = os.path.dirname(filename)
filedesc, temp_filename = tempfile.mkstemp(prefix='nsscache-update-', dir=timestamp_dir)
time_string = time.strftime('%Y-%m-%dT%H:%M:%SZ', timestamp)
try:
os.write(filedesc, b'%s\n' % time_string.encode())
os.fsync(filedesc)
os.close(filedesc)
except OSError:
os.unlink(temp_filename)
logging.warning('writing timestamp failed!')
return False
os.chmod(temp_filename, stat.S_IRUSR | stat.S_IWUSR | stat.S_IRGRP | stat.S_IROTH)
os.rename(temp_filename, filename)
logging.debug('wrote timestamp %s to file %r', time_string, filename)
return True
|
Write a given timestamp out to a file, converting to the ISO-8601
format.
We convert internal timestamp format (epoch) to ISO-8601 format, i.e.
YYYY-MM-DDThh:mm:ssZ which is basically UTC time, then write it out to a
file.
Args:
timestamp: A struct time.struct_time or time tuple.
filename: A String naming the file to write to.
Returns:
A boolean indicating success of write.
|
github-repos
|
def finish(self, end='\n', dirty=False):
if not dirty:
self.end_time = datetime.now()
self.update(self.max_value, force=True)
StdRedirectMixin.finish(self, end=end)
ResizableMixin.finish(self)
ProgressBarBase.finish(self)
|
Puts the ProgressBar bar in the finished state.
Also flushes and disables output buffering if this was the last
progressbar running.
Args:
end (str): The string to end the progressbar with, defaults to a
newline
dirty (bool): When True the progressbar kept the current state and
won't be set to 100 percent
|
juraj-google-style
|
def _init_from_args(self, queue=None, enqueue_ops=None, close_op=None, cancel_op=None, queue_closed_exception_types=None):
if not queue or not enqueue_ops:
raise ValueError('Must provide queue and enqueue_ops.')
self._queue = queue
self._enqueue_ops = enqueue_ops
self._close_op = close_op
self._cancel_op = cancel_op
if queue_closed_exception_types is not None:
if not isinstance(queue_closed_exception_types, tuple) or not queue_closed_exception_types or (not all((issubclass(t, errors.OpError) for t in queue_closed_exception_types))):
raise TypeError('queue_closed_exception_types, when provided, must be a tuple of tf.error types, but saw: %s' % queue_closed_exception_types)
self._queue_closed_exception_types = queue_closed_exception_types
if self._close_op is None:
self._close_op = self._queue.close()
if self._cancel_op is None:
self._cancel_op = self._queue.close(cancel_pending_enqueues=True)
if not self._queue_closed_exception_types:
self._queue_closed_exception_types = (errors.OutOfRangeError,)
else:
self._queue_closed_exception_types = tuple(self._queue_closed_exception_types)
|
Create a QueueRunner from arguments.
Args:
queue: A `Queue`.
enqueue_ops: List of enqueue ops to run in threads later.
close_op: Op to close the queue. Pending enqueue ops are preserved.
cancel_op: Op to close the queue and cancel pending enqueue ops.
queue_closed_exception_types: Tuple of exception types, which indicate
the queue has been safely closed.
Raises:
ValueError: If `queue` or `enqueue_ops` are not provided when not
restoring from `queue_runner_def`.
TypeError: If `queue_closed_exception_types` is provided, but is not
a non-empty tuple of error types (subclasses of `tf.errors.OpError`).
|
github-repos
|
def _get_python_exe_version(python_exe: list[str]):
try:
python_exe_version = subprocess.check_output(python_exe + ['-V'], stderr=subprocess.STDOUT).decode()
except (subprocess.CalledProcessError, FileNotFoundError):
return None
return _parse_exe_version_string(python_exe_version)
|
Determine the major and minor version of given Python executable.
Arguments:
python_exe: absolute path to the Python executable
Returns:
Version as (major, minor) tuple, or None if it could not be determined.
|
github-repos
|
def add(self, term):
if isinstance(term, Conjunction):
for term_ in term.terms:
self.add(term_)
elif isinstance(term, Term):
self._terms.append(term)
else:
raise TypeError('Not a Term or Conjunction')
|
Add a term to the conjunction.
Args:
term (:class:`Term`, :class:`Conjunction`): term to add;
if a :class:`Conjunction`, all of its terms are added
to the current conjunction.
Raises:
:class:`TypeError`: when *term* is an invalid type
|
juraj-google-style
|
def delete(self, *names: str, pipeline=False):
if pipeline:
self._pipeline.delete(*names)
else:
self._db.delete(*names)
|
Delete one or more keys specified by names.
Args:
names (str): Names of keys to delete
pipeline (bool): True, start a transaction block. Default false.
|
codesearchnet
|
def _extract_cell_info(self, structure, site_idx, sites, targets, voro, compute_adj_neighbors=False):
all_vertices = voro.vertices
center_coords = sites[site_idx].coords
results = {}
for (nn, vind) in voro.ridge_dict.items():
if (site_idx in nn):
other_site = (nn[0] if (nn[1] == site_idx) else nn[1])
if ((- 1) in vind):
if self.allow_pathological:
continue
else:
raise RuntimeError('This structure is pathological, infinite vertex in the voronoi construction')
facets = [all_vertices[i] for i in vind]
angle = solid_angle(center_coords, facets)
volume = 0
for (j, k) in zip(vind[1:], vind[2:]):
volume += vol_tetra(center_coords, all_vertices[vind[0]], all_vertices[j], all_vertices[k])
face_dist = (np.linalg.norm((center_coords - sites[other_site].coords)) / 2)
face_area = ((3 * volume) / face_dist)
normal = np.subtract(sites[other_site].coords, center_coords)
normal /= np.linalg.norm(normal)
results[other_site] = {'site': sites[other_site], 'normal': normal, 'solid_angle': angle, 'volume': volume, 'face_dist': face_dist, 'area': face_area, 'n_verts': len(vind)}
if compute_adj_neighbors:
results[other_site]['verts'] = vind
resultweighted = {}
for (nn_index, nstats) in results.items():
nn = nstats['site']
if nn.is_ordered:
if (nn.specie in targets):
resultweighted[nn_index] = nstats
else:
for disordered_sp in nn.species.keys():
if (disordered_sp in targets):
resultweighted[nn_index] = nstats
if compute_adj_neighbors:
adj_neighbors = dict(((i, []) for i in resultweighted.keys()))
for (a_ind, a_nninfo) in resultweighted.items():
a_verts = set(a_nninfo['verts'])
for (b_ind, b_nninfo) in resultweighted.items():
if (b_ind > a_ind):
continue
if (len(a_verts.intersection(b_nninfo['verts'])) == 2):
adj_neighbors[a_ind].append(b_ind)
adj_neighbors[b_ind].append(a_ind)
for (key, neighbors) in adj_neighbors.items():
resultweighted[key]['adj_neighbors'] = neighbors
return resultweighted
|
Get the information about a certain atom from the results of a tessellation
Args:
structure (Structure) - Structure being assessed
site_idx (int) - Index of the atom in question
sites ([Site]) - List of all sites in the tessellation
targets ([Element]) - Target elements
voro - Output of qvoronoi
compute_adj_neighbors (boolean) - Whether to compute which neighbors are adjacent
Returns:
A dict of sites sharing a common Voronoi facet. Key is facet id
(not useful) and values are dictionaries containing statistics
about the facet:
- site: Pymatgen site
- solid_angle - Solid angle subtended by face
- angle_normalized - Solid angle normalized such that the
faces with the largest
- area - Area of the facet
- face_dist - Distance between site n and the facet
- volume - Volume of Voronoi cell for this face
- n_verts - Number of vertices on the facet
- adj_neighbors - Facet id's for the adjacent neighbors
|
codesearchnet
|
def is_http_running_on(port):
try:
conn = httplib.HTTPConnection(('127.0.0.1:' + str(port)))
conn.connect()
conn.close()
return True
except Exception:
return False
|
Check if an http server runs on a given port.
Args:
The port to check.
Returns:
True if it is used by an http server. False otherwise.
|
codesearchnet
|
def _to_dict(self, include=None, exclude=None):
if (include is not None and
not isinstance(include, (list, tuple, set, frozenset))):
raise TypeError('include should be a list, tuple or set')
if (exclude is not None and
not isinstance(exclude, (list, tuple, set, frozenset))):
raise TypeError('exclude should be a list, tuple or set')
values = {}
for prop in self._properties.itervalues():
name = prop._code_name
if include is not None and name not in include:
continue
if exclude is not None and name in exclude:
continue
try:
values[name] = prop._get_for_dict(self)
except UnprojectedPropertyError:
pass
return values
|
Return a dict containing the entity's property values.
Args:
include: Optional set of property names to include, default all.
exclude: Optional set of property names to skip, default none.
A name contained in both include and exclude is excluded.
|
juraj-google-style
|
def append_transformed_structures(self, tstructs_or_transmuter):
if isinstance(tstructs_or_transmuter, self.__class__):
self.transformed_structures.extend(tstructs_or_transmuter.transformed_structures)
else:
for ts in tstructs_or_transmuter:
assert isinstance(ts, TransformedStructure)
self.transformed_structures.extend(tstructs_or_transmuter)
|
Method is overloaded to accept either a list of transformed structures
or transmuter, it which case it appends the second transmuter"s
structures.
Args:
tstructs_or_transmuter: A list of transformed structures or a
transmuter.
|
codesearchnet
|
async def peers(self):
response = (await self._api.get('/v1/status/peers'))
if (response.status == 200):
return set(response.body)
|
Returns the current Raft peer set
Returns:
Collection: addresses of peers
This endpoint retrieves the Raft peers for the datacenter in which
the agent is running. It returns a collection of addresses, such as::
[
"10.1.10.12:8300",
"10.1.10.11:8300",
"10.1.10.10:8300"
]
This list of peers is strongly consistent and can be useful in
determining when a given server has successfully joined the cluster.
|
codesearchnet
|
def ensemble_center(self, site_list, indices, cartesian=True):
if cartesian:
return np.average([site_list[i].coords for i in indices], axis=0)
else:
return np.average([site_list[i].frac_coords for i in indices], axis=0)
|
Finds the center of an ensemble of sites selected from
a list of sites. Helper method for the find_adsorption_sites
algorithm.
Args:
site_list (list of sites): list of sites
indices (list of ints): list of ints from which to select
sites from site list
cartesian (bool): whether to get average fractional or
cartesian coordinate
|
codesearchnet
|
def scale_vmss(access_token, subscription_id, resource_group, vmss_name, capacity):
endpoint = ''.join([get_rm_endpoint(),
'/subscriptions/', subscription_id,
'/resourceGroups/', resource_group,
'/providers/Microsoft.Compute/virtualMachineScaleSets/', vmss_name,
'?api-version=', COMP_API])
body = '{"sku":{"capacity":"' + str(capacity) + '"}}'
return do_patch(endpoint, body, access_token)
|
Change the instance count of an existing VM Scale Set.
Args:
access_token (str): A valid Azure authentication token.
subscription_id (str): Azure subscription id.
resource_group (str): Azure resource group name.
vmss_name (str): Name of the virtual machine scale set.
capacity (int): New number of VMs.
Returns:
HTTP response.
|
juraj-google-style
|
def _make_output_composite_tensors_match(op_type, branch_graphs):
assert branch_graphs
branch_outputs = [g.structured_outputs for g in branch_graphs]
outputs_per_branch = list((len(outs) for outs in branch_outputs))
assert len(set(outputs_per_branch)) == 1, outputs_per_branch
for output_idx, branch_outs in enumerate(zip(*branch_outputs)):
if len(set((type(out) for out in branch_outs))) == 1:
continue
if not any((isinstance(out, indexed_slices.IndexedSlices) for out in branch_outs)):
continue
for branch_idx, branch_out in enumerate(branch_outs):
if isinstance(branch_out, indexed_slices.IndexedSlices):
continue
elif isinstance(branch_out, tensor_lib.Tensor):
with branch_graphs[branch_idx].as_default():
branch_outputs[branch_idx][output_idx] = math_ops._as_indexed_slices(branch_out)
else:
raise TypeError('Cannot reconcile {op_name} {output_idx}-th outputs:\n outputs from all branches: {outputs}'.format(op_name='tf.cond' if op_type == _COND else 'tf.switch_case', output_idx=output_idx, outputs=branch_outs))
for branch_graph, branch_outs in zip(branch_graphs, branch_outputs):
branch_graph.structured_outputs = branch_outs
branch_graph.outputs = [t for t in func_graph_module.flatten(branch_outs) if t is not None]
|
Modifies each branch_graph's outputs to have the same output signature.
Currently the only transformation implemented is turning a Tensor into an
equivalent IndexedSlices if the other branch returns an IndexedSlices.
Updates branch_graph.{outputs,structured_outputs} for each branch_graph in
branch_graphs.
Args:
op_type: _COND or _CASE
branch_graphs: `list` of `FuncGraph`
Raises:
TypeError: if a set of outputs cannot be rewritten.
|
github-repos
|
def get_arrays(self, type_img):
if (type_img.lower() == 'lola'):
return LolaMap(self.ppdlola, *self.window, path_pdsfile=self.path_pdsfiles).image()
elif (type_img.lower() == 'wac'):
return WacMap(self.ppdwac, *self.window, path_pdsfile=self.path_pdsfiles).image()
else:
raise ValueError('The img type has to be either "Lola" or "Wac"')
|
Return arrays the region of interest
Args:
type_img (str): Either lola or wac.
Returns:
A tupple of three arrays ``(X,Y,Z)`` with ``X`` contains the
longitudes, ``Y`` contains the latitude and ``Z`` the values
extracted for the region of interest.
Note:
The argument has to be either lola or wac. Note case sensitive.
All return arrays have the same size.
All coordinates are in degree.
|
codesearchnet
|
def _validate_symbol_names(self) -> None:
all_symbol_names = set(self._names) | set(self._names_v1)
if self._api_name == TENSORFLOW_API_NAME:
for subpackage in SUBPACKAGE_NAMESPACES:
if any((n.startswith(subpackage) for n in all_symbol_names)):
raise InvalidSymbolNameError('@tf_export is not allowed to export symbols under %s.*' % subpackage)
elif not all((n.startswith(self._api_name) for n in all_symbol_names)):
raise InvalidSymbolNameError('Can only export symbols under package name of component.')
|
Validate you are exporting symbols under an allowed package.
We need to ensure things exported by tf_export, etc.
export symbols under disjoint top-level package names.
For TensorFlow, we check that it does not export anything under subpackage
names used by components (keras, etc.).
For each component, we check that it exports everything under its own
subpackage.
Raises:
InvalidSymbolNameError: If you try to export symbol under disallowed name.
|
github-repos
|
def add_resource(self, resource, *class_args, **class_kwargs):
name = resource.__name__.lower()
meta_resource = parse_docs(resource.__doc__, ["$shared"])
self.meta[name] = meta_resource
shared = self.meta["$shared"].copy()
shared.update(meta_resource.get("$shared", {}))
with MarkKey("%s.$shared" % resource.__name__):
sp = SchemaParser(validators=self.validators, shared=shared)
with MarkKey(resource.__name__):
resource = resource(*class_args, **class_kwargs)
actions = defaultdict(lambda: {})
for action in dir(resource):
find = PATTERN_ACTION.findall(action)
if not find:
continue
httpmethod, action_name = find[0]
action_group = actions[action_name]
fn = getattr(resource, action)
meta_action = parse_docs(
fn.__doc__, ["$input", "$output", "$error"])
meta_resource[action] = meta_action
with MarkKey(fn.__name__):
action_group[httpmethod] = \
self.make_action(fn, sp, meta_action)
for action_name in actions:
if action_name == "":
url = "/" + name
endpoint = name
else:
url = "/{0}/{1}".format(name, action_name)
endpoint = "{0}@{1}".format(name, action_name)
action_group = actions[action_name]
self.app.add_url_rule(
url, endpoint=endpoint,
view_func=self.make_view(action_group),
methods=set(action_group)
)
|
Add resource
Parse resource and it's actions, route actions by naming rule.
Args:
resource: resource class
class_args: class_args
class_kwargs: class_kwargs
|
juraj-google-style
|
def _ParseInternetPasswordRecord(self, parser_mediator, record):
key = record.get('_key_', None)
if ((not key) or (not key.startswith(b'ssgp'))):
raise errors.ParseError('Unsupported Internet password record key value does not start with: "ssgp".')
protocol_string = codecs.decode('{0:08x}'.format(record['ptcl']), 'hex')
protocol_string = codecs.decode(protocol_string, 'utf-8')
event_data = KeychainInternetRecordEventData()
event_data.account_name = self._ParseBinaryDataAsString(parser_mediator, record['acct'])
event_data.comments = self._ParseBinaryDataAsString(parser_mediator, record['crtr'])
event_data.entry_name = self._ParseBinaryDataAsString(parser_mediator, record['PrintName'])
event_data.protocol = self._PROTOCOL_TRANSLATION_DICT.get(protocol_string, protocol_string)
ssgp_hash = codecs.encode(key[4:], 'hex')
event_data.ssgp_hash = codecs.decode(ssgp_hash, 'utf-8')
event_data.text_description = self._ParseBinaryDataAsString(parser_mediator, record['desc'])
event_data.type_protocol = self._ParseBinaryDataAsString(parser_mediator, record['atyp'])
event_data.where = self._ParseBinaryDataAsString(parser_mediator, record['srvr'])
date_time = self._ParseDateTimeValue(parser_mediator, record['cdat'])
if date_time:
event = time_events.DateTimeValuesEvent(date_time, definitions.TIME_DESCRIPTION_CREATION)
parser_mediator.ProduceEventWithEventData(event, event_data)
date_time = self._ParseDateTimeValue(parser_mediator, record['mdat'])
if date_time:
event = time_events.DateTimeValuesEvent(date_time, definitions.TIME_DESCRIPTION_MODIFICATION)
parser_mediator.ProduceEventWithEventData(event, event_data)
|
Extracts the information from an Internet password record.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
record (dict[str, object]): database record.
Raises:
ParseError: if Internet password record cannot be parsed.
|
codesearchnet
|
def normal_mean(data, variance):
if not isinstance(data, np.ndarray):
data = np.array(data)
i_variance_2 = 1 / (variance ** 2)
cmm = [0.0]
cmm.extend(np.cumsum(data))
cmm2 = [0.0]
cmm2.extend(np.cumsum(np.abs(data)))
def cost(start, end):
cmm2_diff = cmm2[end] - cmm2[start]
cmm_diff = pow(cmm[end] - cmm[start], 2)
i_diff = end - start
diff = cmm2_diff - cmm_diff
return (diff/i_diff) * i_variance_2
return cost
|
Creates a segment cost function for a time series with a
Normal distribution with changing mean
Args:
data (:obj:`list` of float): 1D time series data
variance (float): variance
Returns:
function: Function with signature
(int, int) -> float
where the first arg is the starting index, and the second
is the last arg. Returns the cost of that segment
|
juraj-google-style
|
def read_passwd_file(pass_file):
with open(pass_file) as fin:
passwd = fin.read().strip()
return passwd
|
Read password from external file and retrun as string. The file should
contain just single line. Prevents hard-coding password anywhere in this
script. IMPORTANT! Password is stored as plain text! Do NOT use with your
personal account!"
Args:
pass_file (str): /path/to/pass_file
|
codesearchnet
|
def tpu_core_ids_to_locations(self, tpu_core_ids):
return _pywrap_dtensor_device.TPUCoreIDsToLocations(context.context()._handle, self._device_info, tpu_core_ids)
|
Translates TPU core IDs to TPU core locations.
Args:
tpu_core_ids: A list of TPU core IDs. Each one is an unsigned integer.
Returns:
A list of corresponding TPU core locations.
|
github-repos
|
def crossCombine(l):
resultList = []
firstList = l[0]
rest = l[1:]
if (len(rest) == 0):
return firstList
for e in firstList:
for e1 in crossCombine(rest):
resultList.append(combinteDict(e, e1))
return resultList
|
Taken a list of lists, returns a big list of lists contain all the possibilities of elements of sublist combining together.
It is basically a Combinatorics of list. For example:
>>> crossCombine([[a,a1,a2,...], [b,b1,b2,...]])
>>> [[a,b], [a,b1], [a,b2], [a1,b], [a1,b1], [a1, b2], [a2,b], [a2,b1], [a2,b2], ...]
For using in StartCalendarInterval, the syntax of ``l`` is like below:
``l: [[dic of month], [dict of day]]``
such as:
``l: [[{'month': 1}, {'month': 2}], [{'day': 2}, {'day': 3}, {'day': 4}]]``
Args:
l (list[list]): the list of lists you want to crossCombine with.
Returns:
list: crossCombined list
|
codesearchnet
|
def __init__(self,
retry_params,
retriable_exceptions=_RETRIABLE_EXCEPTIONS,
should_retry=lambda r: False):
self.retry_params = retry_params
self.retriable_exceptions = retriable_exceptions
self.should_retry = should_retry
|
Init.
Args:
retry_params: an RetryParams instance.
retriable_exceptions: a list of exception classes that are retriable.
should_retry: a function that takes a result from the tasklet and returns
a boolean. True if the result should be retried.
|
juraj-google-style
|
def get_task(config):
path = os.path.join(config['work_dir'], "task.json")
message = "Can't read task from {}!\n%(exc)s".format(path)
contents = load_json_or_yaml(path, is_path=True, message=message)
return contents
|
Read the task.json from work_dir.
Args:
config (dict): the running config, to find work_dir.
Returns:
dict: the contents of task.json
Raises:
ScriptWorkerTaskException: on error.
|
juraj-google-style
|
def member_command(self, member_id, command):
server_id = self._servers.host_to_server_id(
self.member_id_to_host(member_id))
return self._servers.command(server_id, command)
|
apply command (start/stop/restart) to member instance of replica set
Args:
member_id - member index
command - string command (start/stop/restart)
return True if operation success otherwise False
|
juraj-google-style
|
def make_preprocessing_fn(frequency_threshold):
def preprocessing_fn(inputs):
result = {'clicked': inputs['clicked']}
for name in _INTEGER_COLUMN_NAMES:
feature = inputs[name]
feature = tft.sparse_tensor_to_dense_with_shape(feature, [None, 1], default_value=-1)
feature = tf.squeeze(feature, axis=1)
result[name] = feature
result[name + '_bucketized'] = tft.bucketize(feature, _NUM_BUCKETS)
for name in _CATEGORICAL_COLUMN_NAMES:
feature = inputs[name]
feature = tft.sparse_tensor_to_dense_with_shape(feature, [None, 1], default_value='')
feature = tf.squeeze(feature, axis=1)
result[get_transformed_categorical_column_name(name)] = tft.compute_and_apply_vocabulary(feature, frequency_threshold=frequency_threshold)
return result
return preprocessing_fn
|
Creates a preprocessing function for criteo.
Args:
frequency_threshold: The frequency_threshold used when generating
vocabularies for the categorical features.
Returns:
A preprocessing function.
|
github-repos
|
def __init__(self, format_string):
try:
struct_object = struct.Struct(format_string)
except (TypeError, struct.error) as exception:
raise errors.FormatError((
'Unable to create struct object from data type definition '
'with error: {0!s}').format(exception))
super(StructOperation, self).__init__()
self._struct = struct_object
self._struct_format_string = format_string
|
Initializes a Python struct-base byte stream operation.
Args:
format_string (str): format string as used by Python struct.
Raises:
FormatError: if the struct operation cannot be determined from the data
type definition.
|
juraj-google-style
|
def copy_and_move_messages(from_channel, to_channel):
with BlockSave(Message, query_dict={'channel_id': to_channel.key}):
for message in Message.objects.filter(channel=from_channel, typ=15):
message.key = ''
message.channel = to_channel
message.save()
|
While splitting channel and moving chosen subscribers to new channel,
old channel's messages are copied and moved to new channel.
Args:
from_channel (Channel object): move messages from channel
to_channel (Channel object): move messages to channel
|
codesearchnet
|
def propagate(self, date):
if (type(date) is timedelta):
date = (self.orbit.date + date)
_date = [float(x) for x in '{:%Y %m %d %H %M %S.%f}'.format(date).split()]
(p, v) = self.tle.propagate(*_date)
result = [(x * 1000) for x in (p + v)]
return self.orbit.__class__(date, result, 'cartesian', 'TEME', self.__class__(), **self.orbit.complements)
|
Propagate the initialized orbit
Args:
date (Date or datetime.timedelta)
Return:
Orbit
|
codesearchnet
|
def insert(self, i, species, coords, validate_proximity=False,
properties=None):
new_site = Site(species, coords, properties=properties)
if validate_proximity:
for site in self:
if site.distance(new_site) < self.DISTANCE_TOLERANCE:
raise ValueError("New site is too close to an existing "
"site!")
self._sites.insert(i, new_site)
|
Insert a site to the molecule.
Args:
i (int): Index to insert site
species: species of inserted site
coords (3x1 array): coordinates of inserted site
validate_proximity (bool): Whether to check if inserted site is
too close to an existing site. Defaults to True.
properties (dict): Dict of properties for the Site.
Returns:
New molecule with inserted site.
|
juraj-google-style
|
def with_step(self, step):
self._options['step'] = step
return self
|
Which profile step to use for profiling.
The 'step' here refers to the step defined by `Profiler.add_step()` API.
Args:
step: When multiple steps of profiles are available, select which step's
profile to use. If -1, use average of all available steps.
Returns:
self
|
github-repos
|
def setup_low_rank_optimizer(optimizer_name: str, optimizer_mapping: dict[str, Any], optim_kwargs: dict[str, Any], is_layerwise_supported: bool=True) -> tuple[Any, Any]:
is_layerwise = optimizer_name.lower().endswith('layerwise')
if is_layerwise and args.parallel_mode == ParallelMode.DISTRIBUTED and is_layerwise_supported:
raise NotImplementedError(f'Layer-wise {optimizer_name} does not support DDP at this time')
optimizer_cls = optimizer_mapping[optimizer_name]
if args.optim_target_modules is None:
raise ValueError(f'You need to define `optim_target_modules` to use {optimizer_name} optimizers')
if not isinstance(args.optim_target_modules, (list, str)):
raise ValueError(f"`optim_target_modules` must be a list of strings, a regex string, or 'all-linear'. Got: {args.optim_target_modules}")
if model is None:
raise ValueError(f'You need to pass a model to initialize {optimizer_name} optimizer.')
all_linear = isinstance(args.optim_target_modules, str) and args.optim_target_modules.replace('_', '-') == 'all-linear'
target_params_names = []
for module_name, module in model.named_modules():
target_module_exists, is_regex = check_target_module_exists(args.optim_target_modules, module_name, return_is_regex=True)
if not isinstance(module, nn.Linear):
if target_module_exists and (not is_regex):
logger.warning(f'{module_name} matched but ignored. {optimizer_name} only supports linear layers.')
continue
if not target_module_exists and (not all_linear):
continue
target_params_names.append(module_name + '.weight')
if len(target_params_names) == 0:
raise ValueError(f'No target modules found for {optimizer_name} ({args.optim_target_modules}).')
target_params = [p for n, p in model.named_parameters() if n in target_params_names]
non_target_params = [p for n, p in model.named_parameters() if n not in target_params_names]
optim_kwargs.update(optim_args)
param_groups = [{'params': non_target_params}, {'params': target_params, **optim_kwargs}]
if is_layerwise:
if args.gradient_accumulation_steps != 1:
raise ValueError(f'Layerwise {optimizer_name} does not support gradient accumulation!')
optimizer_dict = {}
for param in non_target_params:
optimizer_dict[param] = optimizer_cls([{'params': [param]}], **optimizer_kwargs)
for param in target_params:
optimizer_dict[param] = optimizer_cls([{'params': [param], **optim_kwargs}], **optimizer_kwargs)
def optimizer_hook(param):
if param.grad is not None:
optimizer_dict[param].step()
optimizer_dict[param].zero_grad()
for param in model.parameters():
if param.requires_grad:
param.register_post_accumulate_grad_hook(optimizer_hook)
optimizer_cls = LayerWiseDummyOptimizer
optimizer_kwargs.update({'optimizer_dict': optimizer_dict})
optimizer_kwargs.update({'params': param_groups})
return (optimizer_cls, optimizer_kwargs)
|
Helper function to set up low-rank optimizers like GaLore and Apollo.
Args:
optimizer_name (str): Name of the optimizer.
optimizer_mapping (dict): Mapping of optimizer names to their classes.
optim_kwargs (dict): Keyword arguments for the optimizer.
is_layerwise_supported (bool): Whether layerwise optimization is supported.
Returns:
Tuple[Any, Any]: Optimizer class and updated optimizer kwargs.
|
github-repos
|
def indent(lines, amount=2, char=' '):
lines = str(lines)
padding = (amount * char)
return (padding + ('\n' + padding).join(lines.split('\n')))
|
r"""Indent a string.
Prepends whitespace to every line in the passed string. (Lines are
separated by newline characters.)
Args:
lines (str): The string to indent.
Keyword Args:
amount (int): The number of columns to indent by.
char (str): The character to to use as the indentation.
Returns:
str: The indented string.
Example:
>>> print(indent('line1\nline2', char='*'))
**line1
**line2
|
codesearchnet
|
def mat2quat(rmat, precise=False):
M = np.array(rmat, dtype=np.float32, copy=False)[:3, :3]
if precise:
q = np.empty((4,))
t = np.trace(M)
if t > M[3, 3]:
q[0] = t
q[3] = M[1, 0] - M[0, 1]
q[2] = M[0, 2] - M[2, 0]
q[1] = M[2, 1] - M[1, 2]
else:
i, j, k = 0, 1, 2
if M[1, 1] > M[0, 0]:
i, j, k = 1, 2, 0
if M[2, 2] > M[i, i]:
i, j, k = 2, 0, 1
t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3]
q[i] = t
q[j] = M[i, j] + M[j, i]
q[k] = M[k, i] + M[i, k]
q[3] = M[k, j] - M[j, k]
q = q[[3, 0, 1, 2]]
q *= 0.5 / math.sqrt(t * M[3, 3])
else:
m00 = M[0, 0]
m01 = M[0, 1]
m02 = M[0, 2]
m10 = M[1, 0]
m11 = M[1, 1]
m12 = M[1, 2]
m20 = M[2, 0]
m21 = M[2, 1]
m22 = M[2, 2]
K = np.array(
[
[m00 - m11 - m22, 0.0, 0.0, 0.0],
[m01 + m10, m11 - m00 - m22, 0.0, 0.0],
[m02 + m20, m12 + m21, m22 - m00 - m11, 0.0],
[m21 - m12, m02 - m20, m10 - m01, m00 + m11 + m22],
]
)
K /= 3.0
w, V = np.linalg.eigh(K)
q = V[[3, 0, 1, 2], np.argmax(w)]
if q[0] < 0.0:
np.negative(q, q)
return q[[1, 2, 3, 0]]
|
Converts given rotation matrix to quaternion.
Args:
rmat: 3x3 rotation matrix
precise: If isprecise is True, the input matrix is assumed to be a precise
rotation matrix and a faster algorithm is used.
Returns:
vec4 float quaternion angles
|
juraj-google-style
|
def replace_iterable_params(args, kwargs, iterable_params):
args = list(args)
for name, index in iterable_params:
if index < len(args):
args[index] = list(args[index])
elif name in kwargs:
kwargs[name] = list(kwargs[name])
return (tuple(args), kwargs)
|
Returns (args, kwargs) with any iterable parameters converted to lists.
Args:
args: Positional rguments to a function
kwargs: Keyword arguments to a function.
iterable_params: A list of (name, index) tuples for iterable parameters.
Returns:
A tuple (args, kwargs), where any positional or keyword parameters in
`iterable_params` have their value converted to a `list`.
|
github-repos
|
def init(config, workdir=None, logfile=None, loglevel=logging.INFO, **kwargs):
setup_sdk_logging(logfile, loglevel)
defaults = lago_config.get_section('init')
if (workdir is None):
workdir = os.path.abspath('.lago')
defaults['workdir'] = workdir
defaults['virt_config'] = config
defaults.update(kwargs)
(workdir, prefix) = cmd.do_init(**defaults)
return SDK(workdir, prefix)
|
Initialize the Lago environment
Args:
config(str): Path to LagoInitFile
workdir(str): Path to initalize the workdir, defaults to "$PWD/.lago"
**kwargs(dict): Pass arguments to :func:`~lago.cmd.do_init`
logfile(str): A path to setup a log file.
loglevel(int): :mod:`logging` log level.
Returns:
:class:`~lago.sdk.SDK`: Initialized Lago enviornment
Raises:
:exc:`~lago.utils.LagoException`: If initialization failed
|
codesearchnet
|
def adjoint(matrix, name=None):
with ops.name_scope(name, 'adjoint', [matrix]):
matrix = ops.convert_to_tensor(matrix, name='matrix')
return array_ops.matrix_transpose(matrix, conjugate=True)
|
Transposes the last two dimensions of and conjugates tensor `matrix`.
For example:
```python
x = tf.constant([[1 + 1j, 2 + 2j, 3 + 3j],
[4 + 4j, 5 + 5j, 6 + 6j]])
tf.linalg.adjoint(x) # [[1 - 1j, 4 - 4j],
# [2 - 2j, 5 - 5j],
# [3 - 3j, 6 - 6j]]
```
Args:
matrix: A `Tensor`. Must be `float16`, `float32`, `float64`, `complex64`,
or `complex128` with shape `[..., M, M]`.
name: A name to give this `Op` (optional).
Returns:
The adjoint (a.k.a. Hermitian transpose a.k.a. conjugate transpose) of
matrix.
|
github-repos
|
def get_structure_by_id(self, cod_id, **kwargs):
r = requests.get(('http:
return Structure.from_str(r.text, fmt='cif', **kwargs)
|
Queries the COD for a structure by id.
Args:
cod_id (int): COD id.
kwargs: All kwargs supported by
:func:`pymatgen.core.structure.Structure.from_str`.
Returns:
A Structure.
|
codesearchnet
|
def fts_count(self, fts, inv):
return len(list(filter((lambda s: self.fts_match(fts, s)), inv)))
|
Return the count of segments in an inventory matching a given
feature mask.
Args:
fts (set): feature mask given as a set of (value, feature) tuples
inv (set): inventory of segments (as Unicode IPA strings)
Returns:
int: number of segments in `inv` that match feature mask `fts`
|
codesearchnet
|
def load_default(self):
path = ctypes_util.find_library(self._sdk)
if (path is None):
if (self._windows or self._cygwin):
path = next(self.find_library_windows(), None)
elif sys.platform.startswith('linux'):
path = next(self.find_library_linux(), None)
elif sys.platform.startswith('darwin'):
path = next(self.find_library_darwin(), None)
if (path is not None):
return self.load(path)
return False
|
Loads the default J-Link SDK DLL.
The default J-Link SDK is determined by first checking if ``ctypes``
can find the DLL, then by searching the platform-specific paths.
Args:
self (Library): the ``Library`` instance
Returns:
``True`` if the DLL was loaded, otherwise ``False``.
|
codesearchnet
|
def classify_format(f):
l0, l1 = _get_two_lines(f)
if loader.glove.check_valid(l0, l1):
return _glove
elif loader.word2vec_text.check_valid(l0, l1):
return _word2vec_text
elif loader.word2vec_bin.check_valid(l0, l1):
return _word2vec_bin
else:
raise OSError(b"Invalid format")
|
Determine the format of word embedding file by their content. This operation
only looks at the first two lines and does not check the sanity of input
file.
Args:
f (Filelike):
Returns:
class
|
juraj-google-style
|
def distinct(l):
seen = set()
seen_add = seen.add
return (_ for _ in l if (not ((_ in seen) or seen_add(_))))
|
Return a list where the duplicates have been removed.
Args:
l (list): the list to filter.
Returns:
list: the same list without duplicates.
|
codesearchnet
|
def Search(self, search_base, search_filter, search_scope, attrs):
self._last_search_params = (search_base, search_filter, search_scope, attrs)
self.log.debug('searching for base=%r, filter=%r, scope=%r, attrs=%r', search_base, search_filter, search_scope, attrs)
if 'dn' in attrs:
self._dn_requested = True
self.message_id = self.conn.search_ext(base=search_base, filterstr=search_filter, scope=search_scope, attrlist=attrs, serverctrls=[self.ldap_controls])
|
Search the data source.
The search is asynchronous; data should be retrieved by iterating over
the source object itself (see __iter__() below).
Args:
search_base: the base of the tree being searched
search_filter: a filter on the objects to be returned
search_scope: the scope of the search from ldap.SCOPE_*
attrs: a list of attributes to be returned
Returns:
nothing.
|
github-repos
|
def initializer(self):
if self._initializer is not None:
return self._initializer
else:
raise ValueError('The iterator does not have an initializer. This means it was likely created using `tf.data.Dataset.make_one_shot_iterator()`. For an initializable iterator, use `tf.data.Dataset.make_initializable_iterator()` instead.')
|
A `tf.Operation` that should be run to initialize this iterator.
Returns:
A `tf.Operation` that should be run to initialize this iterator
Raises:
ValueError: If this iterator initializes itself automatically.
|
github-repos
|
def Serialize(self, writer):
writer.WriteUInt32(self.Version)
writer.WriteUInt64(self.Services)
writer.WriteUInt32(self.Timestamp)
writer.WriteUInt16(self.Port)
writer.WriteUInt32(self.Nonce)
writer.WriteVarString(self.UserAgent)
writer.WriteUInt32(self.StartHeight)
writer.WriteBool(self.Relay)
|
Serialize object.
Args:
writer (neo.IO.BinaryWriter):
|
juraj-google-style
|
def is_artifact_optional(chain, task_id, path):
upstream_artifacts = chain.task['payload'].get('upstreamArtifacts', [])
optional_artifacts_per_task_id = get_optional_artifacts_per_task_id(upstream_artifacts)
return path in optional_artifacts_per_task_id.get(task_id, [])
|
Tells whether an artifact is flagged as optional or not.
Args:
chain (ChainOfTrust): the chain of trust object
task_id (str): the id of the aforementioned task
Returns:
bool: True if artifact is optional
|
juraj-google-style
|
async def import_image(self, data, stream: bool = False):
headers = {"Content-Type": "application/x-tar"}
response = await self.docker._query_chunked_post(
"images/load", "POST", data=data, headers=headers
)
return await json_stream_result(response, stream=stream)
|
Import tarball of image to docker.
Args:
data: tarball data of image to be imported
Returns:
Tarball of the image
|
juraj-google-style
|
def list_datasets(self, get_global_public):
appending = ""
if get_global_public:
appending = "public"
url = self.url() + "/resource/{}dataset/".format(appending)
req = self.remote_utils.get_url(url)
if req.status_code is not 200:
raise RemoteDataNotFoundError('Could not find {}'.format(req.text))
else:
return req.json()
|
Lists datasets in resources. Setting 'get_global_public' to 'True'
will retrieve all public datasets in cloud. 'False' will get user's
public datasets.
Arguments:
get_global_public (bool): True if user wants all public datasets in
cloud. False if user wants only their
public datasets.
Returns:
dict: Returns datasets in JSON format
|
juraj-google-style
|
def _AddShardedRestoreOps(self, filename_tensor, per_device, restore_sequentially, reshape):
sharded_restores = []
for shard, (device, saveables) in enumerate(per_device):
with ops.device(device):
sharded_restores.append(self._AddRestoreOps(filename_tensor, saveables, restore_sequentially, reshape, preferred_shard=shard, name='restore_shard'))
return control_flow_ops.group(*sharded_restores, name='restore_all')
|
Add Ops to restore variables from multiple devices.
Args:
filename_tensor: Tensor for the path of the file to load.
per_device: A list of (device, SaveableObject) pairs, as returned by
_GroupByDevices().
restore_sequentially: True if we want to restore variables sequentially
within a shard.
reshape: True if we want to reshape loaded tensors to the shape of the
corresponding variable.
Returns:
An Operation that restores the variables.
|
github-repos
|
def desc_from_uri(uri):
if (':' in uri):
(_, uri) = uri.split(':', 1)
query_string = parse_qs(urlparse(uri, 'http').query)
if query_string.get('sn'):
account_serial_number = query_string['sn'][0]
try:
account = Account.get_accounts()[account_serial_number]
desc = 'SA_RINCON{}_{}'.format(account.service_type, account.username)
return desc
except KeyError:
pass
if query_string.get('sid'):
service_id = query_string['sid'][0]
for service in MusicService._get_music_services_data().values():
if (service_id == service['ServiceID']):
service_type = service['ServiceType']
account = Account.get_accounts_for_service(service_type)
if (not account):
break
account = account[0]
desc = 'SA_RINCON{}_{}'.format(account.service_type, account.username)
return desc
desc = 'RINCON_AssociatedZPUDN'
return desc
|
Create the content of DIDL desc element from a uri.
Args:
uri (str): A uri, eg:
``'x-sonos-http:track%3a3402413.mp3?sid=2&flags=32&sn=4'``
Returns:
str: The content of a desc element for that uri, eg
``'SA_RINCON519_email@example.com'``
|
codesearchnet
|
def getOption(self, name):
try:
value = lock_and_call((lambda : self._impl.getOption(name).value()), self._lock)
except RuntimeError:
return None
else:
try:
return int(value)
except ValueError:
try:
return float(value)
except ValueError:
return value
|
Get the current value of the specified option. If the option does not
exist, returns None.
Args:
name: Option name.
Returns:
Value of the option.
Raises:
InvalidArgumet: if the option name is not valid.
|
codesearchnet
|
def get_query_columns(engine, query):
con = engine.connect()
result = con.execute(query).fetchone()
values = list(result)
cols_names = result.keys()
cols = OrderedDict()
for i in range(len(cols_names)):
cols[cols_names[i]] = type(values[i]).__name__
return cols
|
Extract columns names and python typos from query
Args:
engine: SQLAlchemy connection engine
query: SQL query
Returns:
dict with columns names and python types
|
juraj-google-style
|
def heightmap_get_minmax(hm: np.ndarray) -> Tuple[(float, float)]:
mi = ffi.new('float *')
ma = ffi.new('float *')
lib.TCOD_heightmap_get_minmax(_heightmap_cdata(hm), mi, ma)
return (mi[0], ma[0])
|
Return the min and max values of this heightmap.
Args:
hm (numpy.ndarray): A numpy.ndarray formatted for heightmap functions.
Returns:
Tuple[float, float]: The (min, max) values.
.. deprecated:: 2.0
Use ``hm.min()`` or ``hm.max()`` instead.
|
codesearchnet
|
def stop_replace(self, accountID, orderID, **kwargs):
return self.replace(
accountID,
orderID,
order=StopOrderRequest(**kwargs)
)
|
Shortcut to replace a pending Stop Order in an Account
Args:
accountID : The ID of the Account
orderID : The ID of the Stop Order to replace
kwargs : The arguments to create a StopOrderRequest
Returns:
v20.response.Response containing the results from submitting
the request
|
juraj-google-style
|
def implement(self, implementation, for_type=None, for_types=None):
unbound_implementation = self.__get_unbound_function(implementation)
for_types = self.__get_types(for_type, for_types)
for t in for_types:
self._write_lock.acquire()
try:
self.implementations.append((t, unbound_implementation))
finally:
self._write_lock.release()
|
Registers an implementing function for for_type.
Arguments:
implementation: Callable implementation for this type.
for_type: The type this implementation applies to.
for_types: Same as for_type, but takes a tuple of types.
for_type and for_types cannot both be passed (for obvious reasons.)
Raises:
ValueError
|
juraj-google-style
|
def _to_map_job_config(cls, mr_spec, queue_name):
mapper_spec = mr_spec.mapper
api_version = mr_spec.params.get('api_version', 0)
old_api = (api_version == 0)
input_reader_cls = mapper_spec.input_reader_class()
input_reader_params = input_readers._get_params(mapper_spec)
if issubclass(input_reader_cls, input_reader.InputReader):
input_reader_params = input_reader_cls.params_from_json(input_reader_params)
output_writer_cls = mapper_spec.output_writer_class()
output_writer_params = output_writers._get_params(mapper_spec)
return cls(_lenient=old_api, job_name=mr_spec.name, job_id=mr_spec.mapreduce_id, mapper=util.for_name(mapper_spec.handler_spec), input_reader_cls=input_reader_cls, input_reader_params=input_reader_params, output_writer_cls=output_writer_cls, output_writer_params=output_writer_params, shard_count=mapper_spec.shard_count, queue_name=queue_name, user_params=mr_spec.params.get('user_params'), shard_max_attempts=mr_spec.params.get('shard_max_attempts'), done_callback_url=mr_spec.params.get('done_callback'), _force_writes=mr_spec.params.get('force_writes'), _base_path=mr_spec.params['base_path'], _task_max_attempts=mr_spec.params.get('task_max_attempts'), _task_max_data_processing_attempts=mr_spec.params.get('task_max_data_processing_attempts'), _hooks_cls=util.for_name(mr_spec.hooks_class_name), _app=mr_spec.params.get('app_id'), _api_version=api_version)
|
Converts model.MapreduceSpec back to JobConfig.
This method allows our internal methods to use JobConfig directly.
This method also allows us to expose JobConfig as an API during execution,
despite that it is not saved into datastore.
Args:
mr_spec: model.MapreduceSpec.
queue_name: queue name.
Returns:
The JobConfig object for this job.
|
codesearchnet
|
def configure_interface(self, name, commands):
commands = make_iterable(commands)
commands.insert(0, ('interface %s' % name))
return self.configure(commands)
|
Configures the specified interface with the commands
Args:
name (str): The interface name to configure
commands: The commands to configure in the interface
Returns:
True if the commands completed successfully
|
codesearchnet
|
def query(self, query):
if (str(query.key) in self._items):
return query(self._items[str(query.key)].values())
else:
return query([])
|
Returns an iterable of objects matching criteria expressed in `query`
Naively applies the query operations on the objects within the namespaced
collection corresponding to ``query.key.path``.
Args:
query: Query object describing the objects to return.
Raturns:
iterable cursor with all objects matching criteria
|
codesearchnet
|
def calculate_part_visibility(self, ports):
source_port_lookup = {}
for (part_name, port_infos) in SourcePortInfo.filter_parts(ports).items():
for port_info in port_infos:
source_port_lookup[port_info.connected_value] = (part_name, port_info.port)
for (part_name, port_infos) in SinkPortInfo.filter_parts(ports).items():
for port_info in port_infos:
if (port_info.value != port_info.disconnected_value):
(conn_part, port) = source_port_lookup.get(port_info.value, (None, None))
if (conn_part and (port == port_info.port)):
if (conn_part not in self.part_visibility):
self.part_visibility[conn_part] = True
if (part_name not in self.part_visibility):
self.part_visibility[part_name] = True
|
Calculate what is connected to what
Args:
ports: {part_name: [PortInfo]} from other ports
|
codesearchnet
|
def passgen(length=12, punctuation=False, digits=True, letters=True, case='both', **kwargs):
p_min = punctuation
p_max = (0 if (punctuation is False) else length)
d_min = digits
d_max = (0 if (digits is False) else length)
a_min = letters
a_max = (0 if (letters is False) else length)
if (((d_min + p_min) + a_min) > length):
raise ValueError('Minimum punctuation and digits number cannot be greater than length')
if ((not digits) and (not letters)):
raise ValueError('digits and letters cannot be False at the same time')
if (length < 1):
raise ValueError('length must be greater than zero')
if letters:
if (case == 'both'):
alpha = (string.ascii_uppercase + string.ascii_lowercase)
elif (case == 'upper'):
alpha = string.ascii_uppercase
elif (case == 'lower'):
alpha = string.ascii_lowercase
else:
raise ValueError("case can only be 'both', 'upper' or 'lower'")
else:
alpha = (string.ascii_uppercase + string.ascii_lowercase)
if punctuation:
limit_punctuation = kwargs.get('limit_punctuation', '')
if (limit_punctuation == ''):
punctuation_set = string.punctuation
else:
punctuation_set = ''.join([p for p in limit_punctuation if (p in string.punctuation)])
else:
punctuation_set = string.punctuation
srandom = random.SystemRandom()
p_generator = Generator(punctuation_set, srandom, p_min, p_max)
d_generator = Generator(string.digits, srandom, d_min, d_max)
a_generator = Generator(alpha, srandom, a_min, a_max)
main_generator = SuperGenerator(srandom, length, length)
main_generator.add(p_generator)
main_generator.add(a_generator)
main_generator.add(d_generator)
chars = []
for i in main_generator:
chars.append(i)
try:
srandom.shuffle(chars, srandom)
except:
random.shuffle(chars)
return ''.join(chars)
|
Generate random password.
Args:
length (int): The length of the password. Must be greater than
zero. Defaults to 12.
punctuation (bool): Whether to use punctuation or not. Defaults
to False.
limit_punctuation (str): Limits the allowed puncturation to defined
characters.
digits (bool): Whether to use digits or not. Defaults to True.
One of *digits* and *letters* must be True.
letters (bool): Whether to use letters or not. Defaults to
True. One of *digits* and *letters* must be True.
case (str): Letter case to use. Accepts 'upper' for upper case,
'lower' for lower case, and 'both' for both. Defaults to
'both'.
Returns:
str. The generated password.
Raises:
ValueError
Below are some basic examples.
>>> passgen()
z7GlutdEEbnk
>>> passgen(case='upper')
Q81J9DOAMBRN
>>> passgen(length=6)
EzJMRX
|
codesearchnet
|
def results(self, use_cache=True, dialect=None, billing_tier=None):
if ((not use_cache) or (self._results is None)):
self.execute(use_cache=use_cache, dialect=dialect, billing_tier=billing_tier)
return self._results.results
|
Retrieves table of results for the query. May block if the query must be executed first.
Args:
use_cache: whether to use cached results or not. Ignored if append is specified.
dialect : {'legacy', 'standard'}, default 'legacy'
'legacy' : Use BigQuery's legacy SQL dialect.
'standard' : Use BigQuery's standard SQL (beta), which is
compliant with the SQL 2011 standard.
billing_tier: Limits the billing tier for this job. Queries that have resource
usage beyond this tier will fail (without incurring a charge). If unspecified, this
will be set to your project default. This can also be used to override your
project-wide default billing tier on a per-query basis.
Returns:
A QueryResultsTable containing the result set.
Raises:
Exception if the query could not be executed or query response was malformed.
|
codesearchnet
|
def get_log_file_name(level=INFO):
if level not in converter.ABSL_LEVELS:
raise ValueError('Invalid absl.logging level {}'.format(level))
stream = get_absl_handler().python_handler.stream
if (stream == sys.stderr or stream == sys.stdout or
not hasattr(stream, 'name')):
return ''
else:
return stream.name
|
Returns the name of the log file.
For Python logging, only one file is used and level is ignored. And it returns
empty string if it logs to stderr/stdout or the log stream has no `name`
attribute.
Args:
level: int, the absl.logging level.
Raises:
ValueError: Raised when `level` has an invalid value.
|
juraj-google-style
|
def rate_to_mcs(rate, bw=20, long_gi=True):
if bw not in [20, 40, 80, 160]:
raise Exception("Unknown bandwidth: %d MHz" % (bw))
idx = int((math.log(bw/10, 2)-1)*2)
if not long_gi:
idx += 1
for mcs, rates in MCS_TABLE.items():
if abs(rates[idx] - rate) < 1e-3:
return mcs
for idx, r in enumerate(DOT11A_RATES):
if abs(r-rate) < 1e-3:
return idx
raise Exception("MCS not found: rate=%f, bw=%d, long_gi=%s" %
(rate, bw, long_gi))
|
Convert bit rate to MCS index.
Args:
rate (float): bit rate in Mbps
bw (int): bandwidth, 20, 40, 80, ...
long_gi (bool): True if long GI is used.
Returns:
mcs (int): MCS index
>>> rate_to_mcs(120, bw=40, long_gi=False)
5
|
juraj-google-style
|
def call(self, inputs, training=None, mask=None):
raise NotImplementedError('When subclassing the `Model` class, you should implement a `call` method.')
|
Calls the model on new inputs.
In this case `call` just reapplies
all ops in the graph to the new inputs
(e.g. build a new computational graph from the provided inputs).
Note: This method should not be called directly. It is only meant to be
overridden when subclassing `tf.keras.Model`.
To call a model on an input, always use the `__call__` method,
i.e. `model(inputs)`, which relies on the underlying `call` method.
Args:
inputs: Input tensor, or dict/list/tuple of input tensors.
training: Boolean or boolean scalar tensor, indicating whether to run
the `Network` in training mode or inference mode.
mask: A mask or list of masks. A mask can be
either a tensor or None (no mask).
Returns:
A tensor if there is a single output, or
a list of tensors if there are more than one outputs.
|
github-repos
|
def _build_cryptographic_parameters(self, value):
if value is None:
return None
elif not isinstance(value, dict):
raise TypeError("Cryptographic parameters must be a dictionary.")
cryptographic_parameters = CryptographicParameters(
block_cipher_mode=value.get('block_cipher_mode'),
padding_method=value.get('padding_method'),
hashing_algorithm=value.get('hashing_algorithm'),
key_role_type=value.get('key_role_type'),
digital_signature_algorithm=value.get(
'digital_signature_algorithm'
),
cryptographic_algorithm=value.get('cryptographic_algorithm'),
random_iv=value.get('random_iv'),
iv_length=value.get('iv_length'),
tag_length=value.get('tag_length'),
fixed_field_length=value.get('fixed_field_length'),
invocation_field_length=value.get('invocation_field_length'),
counter_length=value.get('counter_length'),
initial_counter_value=value.get('initial_counter_value')
)
return cryptographic_parameters
|
Build a CryptographicParameters struct from a dictionary.
Args:
value (dict): A dictionary containing the key/value pairs for a
CryptographicParameters struct.
Returns:
None: if value is None
CryptographicParameters: a CryptographicParameters struct
Raises:
TypeError: if the input argument is invalid
|
juraj-google-style
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.