code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def image(request, data):
try:
width = int(request.GET.get('w', PYDENTICON_WIDTH))
except ValueError:
raise SuspiciousOperation('Identicon width must be a positive integer.')
try:
height = int(request.GET.get('h', PYDENTICON_HEIGHT))
except ValueError:
raise SuspiciousOperation('Identicon height must be a positive integer.')
output_format = request.GET.get('f', PYDENTICON_FORMAT)
try:
padding = [int(p) for p in request.GET['p'].split(',')]
except KeyError:
padding = PYDENTICON_PADDING
except ValueError:
raise SuspiciousOperation('Identicon padding must consist out of 4 positive integers separated with commas.')
if ('i' in request.GET):
inverted = request.GET.get('i')
if (inverted.lower() == 'true'):
inverted = True
elif (inverted.lower() == 'false'):
inverted = False
else:
raise SuspiciousOperation('Inversion parameter must be a boolean (true/false).')
else:
inverted = PYDENTICON_INVERT
if ((not isinstance(width, int)) or (width <= 0)):
raise SuspiciousOperation('Identicon width must be a positive integer.')
if ((not isinstance(height, int)) or (height <= 0)):
raise SuspiciousOperation('Identicon height must be a positive integer.')
if ((not all([(isinstance(p, int) and (p >= 0)) for p in padding])) or (len(padding) != 4)):
raise SuspiciousOperation('Padding must be a 4-element tuple consisting out of positive integers.')
if (output_format == 'png'):
content_type = 'image/png'
elif (output_format == 'ascii'):
content_type = 'text/plain'
else:
raise SuspiciousOperation("Unsupported identicon format requested - '%s' % output_format")
generator = Generator(PYDENTICON_ROWS, PYDENTICON_COLUMNS, foreground=PYDENTICON_FOREGROUND, background=PYDENTICON_BACKGROUND, digest=PYDENTICON_DIGEST)
content = generator.generate(data, width, height, padding=padding, output_format=output_format, inverted=inverted)
response = HttpResponse(content, content_type=content_type)
return response
|
Generates identicon image based on passed data.
Arguments:
data - Data which should be used for generating an identicon. This data
will be used in order to create a digest which is used for generating the
identicon. If the data passed is a hex digest already, the digest will be
used as-is.
Returns:
Identicon image in raw format.
|
codesearchnet
|
def _load_schema_for_record(data, schema=None):
if (schema is None):
if ('$schema' not in data):
raise SchemaKeyNotFound(data=data)
schema = data['$schema']
if isinstance(schema, six.string_types):
schema = load_schema(schema_name=schema)
return schema
|
Load the schema from a given record.
Args:
data (dict): record data.
schema (Union[dict, str]): schema to validate against.
Returns:
dict: the loaded schema.
Raises:
SchemaNotFound: if the given schema was not found.
SchemaKeyNotFound: if ``schema`` is ``None`` and no ``$schema`` key was
found in ``data``.
jsonschema.SchemaError: if the schema is invalid.
|
codesearchnet
|
def format_diff_xml(a_xml, b_xml):
return '\n'.join(difflib.ndiff(reformat_to_pretty_xml(a_xml).splitlines(), reformat_to_pretty_xml(b_xml).splitlines()))
|
Create a diff between two XML documents.
Args:
a_xml: str
b_xml: str
Returns:
str : `Differ`-style delta
|
codesearchnet
|
def remove_all_servers(self):
cmd = self.command_builder('ntp', disable=True)
return self.configure(cmd)
|
Remove all NTP server entries from the node config
Returns:
True if the operation succeeds, otherwise False.
|
codesearchnet
|
def get_all_status(self, only_min=False):
if (len(self) == 0):
if only_min:
return self.S_INIT
else:
return [self.S_INIT]
self.check_status()
status_list = [task.status for task in self]
if only_min:
return min(status_list)
else:
return status_list
|
Returns a list with the status of the tasks in self.
Args:
only_min: If True, the minimum of the status is returned.
|
codesearchnet
|
def get_cbm_vbm(self, tol=0.001, abs_tol=False, spin=None):
tdos = self.get_densities(spin)
if not abs_tol:
tol = tol * tdos.sum() / tdos.shape[0]
i_fermi = 0
while self.energies[i_fermi] <= self.efermi:
i_fermi += 1
i_gap_start = i_fermi
while i_gap_start - 1 >= 0 and tdos[i_gap_start - 1] <= tol:
i_gap_start -= 1
i_gap_end = i_gap_start
while i_gap_end < tdos.shape[0] and tdos[i_gap_end] <= tol:
i_gap_end += 1
i_gap_end -= 1
return self.energies[i_gap_end], self.energies[i_gap_start]
|
Expects a DOS object and finds the cbm and vbm.
Args:
tol: tolerance in occupations for determining the gap
abs_tol: An absolute tolerance (True) and a relative one (False)
spin: Possible values are None - finds the gap in the summed
densities, Up - finds the gap in the up spin channel,
Down - finds the gap in the down spin channel.
Returns:
(cbm, vbm): float in eV corresponding to the gap
|
juraj-google-style
|
def patch(self, id_or_uri, operation, path, value, timeout=(- 1)):
return self._client.patch(id_or_uri, operation, path, value, timeout=timeout)
|
Uses the PATCH to update a resource for a given logical switch group.
Only one operation can be performed in each PATCH call.
Args:
id_or_uri: Can be either the resource ID or the resource URI.
operation: Patch operation
path: Path
value: Value
timeout: Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation
in OneView; it just stops waiting for its completion.
Returns:
dict: Updated resource.
|
codesearchnet
|
def match(pattern, name):
try:
re_pat = _PATTERN_CACHE[(pattern, True)]
except KeyError:
res = "(?ms)" + _translate(pattern) + r'\Z'
_PATTERN_CACHE[(pattern, True)] = re_pat = re.compile(res)
return re_pat.match(name) is not None
|
Test whether a name matches a wildcard pattern.
Arguments:
pattern (str): A wildcard pattern, e.g. ``"*.py"``.
name (str): A filename.
Returns:
bool: `True` if the filename matches the pattern.
|
juraj-google-style
|
def trainGP(self,fast=False,scales0=None,fixed0=None,lambd=None):
assert self.n_terms>0, 'CVarianceDecomposition:: No variance component terms'
if not self.init: self.initGP(fast=fast)
if lambd!=None: self.gp.setLambda(lambd)
if scales0!=None:
self.setScales(scales0)
self.vd.initGPparams()
if fixed0!=None:
params = self.gp.getParams()
params['dataTerm'] = fixed0
self.gp.setParams(params)
conv =self.vd.trainGP()
self.cache['Sigma'] = None
self.cache['Hessian'] = None
return conv
|
Train the gp
Args:
fast: if true and the gp has not been initialized, initializes a kronSum gp
scales0: initial variance components params
fixed0: initial fixed effect params
|
juraj-google-style
|
def grad(f, has_aux=False):
def check_loss_shape(np_loss):
if not isinstance(np_loss, tf_np.ndarray):
raise ValueError('The result of the function to take gradient must be an ndarray.')
if not np_loss.shape.is_compatible_with([]):
raise ValueError('The result of the function to take gradient must be a scalar.')
def _f(params, *args):
with backprop.GradientTape() as g:
g.watch(nest.flatten(params))
outputs = f(params, *args)
if has_aux:
np_loss, aux = outputs
else:
np_loss = outputs
check_loss_shape(np_loss)
tf_grads = g.gradient(np_loss, params)
if has_aux:
res = (tf_grads, aux)
else:
res = tf_grads
return _tf_to_np(res)
return _f
|
Returns a function that computes gradient of f.
Gradients can only be computed through numpy and tensorflow operations and not
through python float operations and values.
Args:
f: a function of type (params, *args) -> scalar. 'params' can be a nested
structure (made of lists and tuples) of ndarrays and the gradient is
evaluated against it. `scalar` is a scalar ndarray.
has_aux: bool, indicates whether fun returns a pair where the first element
is considered the output of the mathematical function to be differentiated
and the second element is auxiliary data.
Returns:
A gradient function of type (params, *args) -> gradients, where the result
'gradients' has the same structure and shapes as 'params'.
|
github-repos
|
def execute(self, data_dict, callback, group=None, trace=None):
group = group or self.group
context = _ScopedContext(data_dict, self.undefined_str, group=group)
_Execute(self._program.Statements(), context, callback, trace)
|
Low level method to expand the template piece by piece.
Args:
data_dict: The JSON data dictionary.
callback: A callback which should be called with each expanded token.
group: Dictionary of name -> Template instance (for styles)
Example: You can pass 'f.write' as the callback to write directly to a file
handle.
|
juraj-google-style
|
def allocate(self, size, max_time_to_block_ms):
with self._lock:
if self._free:
return self._free.popleft()
elif (self._poolable_size == 0):
return io.BytesIO()
else:
buf = None
more_memory = threading.Condition(self._lock)
self._waiters.append(more_memory)
while (buf is None):
start_wait = time.time()
more_memory.wait((max_time_to_block_ms / 1000.0))
end_wait = time.time()
if self.wait_time:
self.wait_time.record((end_wait - start_wait))
if self._free:
buf = self._free.popleft()
else:
self._waiters.remove(more_memory)
raise Errors.KafkaTimeoutError('Failed to allocate memory within the configured max blocking time')
removed = self._waiters.popleft()
assert (removed is more_memory), 'Wrong condition'
if (self._free and self._waiters):
self._waiters[0].notify()
return buf
|
Allocate a buffer of the given size. This method blocks if there is not
enough memory and the buffer pool is configured with blocking mode.
Arguments:
size (int): The buffer size to allocate in bytes [ignored]
max_time_to_block_ms (int): The maximum time in milliseconds to
block for buffer memory to be available
Returns:
io.BytesIO
|
codesearchnet
|
def next_state_scope(self, next_state_fluents: Sequence[tf.Tensor]) -> Dict[str, TensorFluent]:
return dict(zip(self.rddl.domain.next_state_fluent_ordering, next_state_fluents))
|
Returns a partial scope with current next state-fluents.
Args:
next_state_fluents (Sequence[tf.Tensor]): The next state fluents.
Returns:
A mapping from next state fluent names to :obj:`rddl2tf.fluent.TensorFluent`.
|
juraj-google-style
|
def listen(self, log, noprint=True):
try:
result = self.decode_event(log.topics, log.data)
except ValueError:
return
if not noprint:
print(result)
return result
|
Return a dictionary representation of the Log instance.
Note:
This function won't work with anonymous events.
Args:
log (processblock.Log): The Log instance that needs to be parsed.
noprint (bool): Flag to turn off priting of the decoded log instance.
|
juraj-google-style
|
def get_pdbs_for_gene(bigg_model, bigg_gene, cache_dir=tempfile.gettempdir(), force_rerun=False):
my_structures = []
gene = ssbio.utils.request_json(link='http:
uniprots = []
if ('database_links' in gene):
if ('UniProt' in gene['database_links']):
uniprots = [x['id'] for x in gene['database_links']['UniProt']]
elif ('NCBI GI' in gene['database_links']):
uniprots = []
gis = [x['id'] for x in gene['database_links']['NCBI GI']]
gi_uniprots = bs_unip.mapping(fr='P_GI', to='ACC', query=gis).values()
uniprots.extend(gi_uniprots)
uniprots = ssbio.utils.flatlist_dropdup(uniprots)
uniprots = [x for x in uniprots if ssbio.databases.uniprot.is_valid_uniprot_id(x)]
if uniprots:
for u in uniprots:
get_best_structure = ssbio.databases.pdb.best_structures(uniprot_id=u, outdir=cache_dir)
if get_best_structure:
for best_structure in get_best_structure:
my_structures.append((best_structure['pdb_id'], best_structure['chain_id']))
return my_structures
|
Attempt to get a rank-ordered list of available PDB structures for a BiGG Model and its gene.
Args:
bigg_model: BiGG Model ID
bigg_gene: BiGG Gene ID
Returns:
list: rank-ordered list of tuples of (pdb_id, chain_id)
|
codesearchnet
|
def get_members(self, name):
grpid = re.search(r'(\d+)', name).group()
command = 'show port-channel %s all-ports' % grpid
config = self.node.enable(command, 'text')
return re.findall(r'\b(?!Peer)Ethernet[\d/]*\b',
config[0]['result']['output'])
|
Returns the member interfaces for the specified Port-Channel
Args:
name(str): The Port-channel interface name to return the member
interfaces for
Returns:
A list of physical interface names that belong to the specified
interface
|
juraj-google-style
|
def _MatchValue(expected, actual):
if isinstance(expected, dict):
if not isinstance(actual, dict):
return False
for k, v in expected.items():
if k not in actual:
logging.log(1, 'Not exist: field=' + k)
return False
if not MessageValue._MatchValue(v, actual[k]):
logging.log(1, 'Different: field=%s, expected=%s, actual=%s', k, v, actual[k])
return False
return True
if isinstance(expected, list):
if not isinstance(actual, list):
return False
for e in expected:
found = False
for a in actual:
if MessageValue._MatchValue(e, a):
found = True
break
if not found:
return False
return True
if isinstance(expected, stl.base.QualifierValue.Resolved):
return expected.ValidateAndSet(actual)
if isinstance(expected, stl.base.FuncSet):
expected.SetValue(actual)
return True
if isinstance(expected, stl.base.LocalVar):
return expected.value == actual
if isinstance(expected, stl.base.Func):
return expected.Run() == actual
if isinstance(expected, MessageValue):
return expected._MatchFromString(actual)
return expected == actual
|
Whether or not |expected| is same value of |actual|.
Args:
expected: Expected value.
actual: Actual value.
Returns:
True if:
1) Type of |expected| and of |actual| must be same.
2) If type of |expected| is dictionary or sub-message, all fields
specified in |expected| must have same value in |actual|.
3) If type of |expected| is array, all entries specified in |expected|
must exist in |actual| in any order.
4) If type of |expected| is either integer or string, |expected| must
be same to |actual|.
|
github-repos
|
def MatchBuildContext(self, target_os, target_arch, target_package, context=None):
for spec in self.Get('ClientBuilder.target_platforms', context=context):
(spec_os, arch, package_name) = spec.split('_')
if ((spec_os == target_os) and (arch == target_arch) and (package_name == target_package)):
return True
return False
|
Return true if target_platforms matches the supplied parameters.
Used by buildanddeploy to determine what clients need to be built.
Args:
target_os: which os we are building for in this run (linux, windows,
darwin)
target_arch: which arch we are building for in this run (i386, amd64)
target_package: which package type we are building (exe, dmg, deb, rpm)
context: config_lib context
Returns:
bool: True if target_platforms spec matches parameters.
|
codesearchnet
|
def validate(bo, error_level: str='WARNING') -> Tuple[(bool, List[Tuple[(str, str)]])]:
if bo.ast:
bo = validate_functions(bo.ast, bo)
if (error_level == 'WARNING'):
bo = validate_arg_values(bo.ast, bo)
else:
bo.validation_messages.append(('ERROR', 'Invalid BEL Statement - cannot parse'))
for msg in bo.validation_messages:
if (msg[0] == 'ERROR'):
bo.parse_valid = False
break
return bo
|
Semantically validate BEL AST
Add errors and warnings to bel_obj.validation_messages
Error Levels are similar to log levels - selecting WARNING includes both
WARNING and ERROR, selecting ERROR just includes ERROR
Args:
bo: main BEL language object
error_level: return ERRORs only or also WARNINGs
Returns:
Tuple[bool, List[Tuple[str, str]]]: (is_valid, messages)
|
codesearchnet
|
def metamodel_from_file(file_name, **kwargs):
with codecs.open(file_name, 'r', 'utf-8') as f:
lang_desc = f.read()
metamodel = metamodel_from_str(lang_desc=lang_desc, file_name=file_name, **kwargs)
return metamodel
|
Creates new metamodel from the given file.
Args:
file_name(str): The name of the file with textX language description.
other params: See metamodel_from_str.
|
codesearchnet
|
def __init__(self, real_env, world_model_dir, hparams, random_starts,
setable_initial_frames=False):
self._setable_initial_frames = setable_initial_frames
if self._setable_initial_frames:
real_obs_shape = real_env.observation_space.shape
shape = (1, hparams.frame_stack_size) + real_obs_shape
self._initial_frames = np.zeros(shape=shape, dtype=np.uint8)
def initial_frame_chooser(batch_size):
assert batch_size == 1
return self._initial_frames
else:
initial_frame_chooser = rl_utils.make_initial_frame_chooser(
real_env, hparams.frame_stack_size,
simulation_random_starts=random_starts,
simulation_flip_first_random_for_beginning=False
)
env_fn = make_simulated_env_fn_from_hparams(
real_env, hparams,
batch_size=1,
initial_frame_chooser=initial_frame_chooser,
model_dir=world_model_dir,
)
env = env_fn(in_graph=False)
self.env = FlatBatchEnv(env)
self.observation_space = self.env.observation_space
self.action_space = self.env.action_space
|
Init.
Args:
real_env: gym environment.
world_model_dir: path to world model checkpoint directory.
hparams: hparams for rlmb pipeline.
random_starts: if restart world model from random frames, or only
from initial ones (from beginning of episodes). Valid only when
`setable_initial_fames` set to False.
setable_initial_frames: if True, initial_frames for world model should be
set by `add_to_initial_stack`.
|
juraj-google-style
|
def mean_absolute_error(y_true, y_pred):
y_pred = ops.convert_to_tensor(y_pred)
y_true = ops.convert_to_tensor(y_true, dtype=y_pred.dtype)
y_true, y_pred = squeeze_or_expand_to_same_rank(y_true, y_pred)
return ops.mean(ops.abs(y_true - y_pred), axis=-1)
|
Computes the mean absolute error between labels and predictions.
```python
loss = mean(abs(y_true - y_pred), axis=-1)
```
Args:
y_true: Ground truth values with shape = `[batch_size, d0, .. dN]`.
y_pred: The predicted values with shape = `[batch_size, d0, .. dN]`.
Returns:
Mean absolute error values with shape = `[batch_size, d0, .. dN-1]`.
Example:
>>> y_true = np.random.randint(0, 2, size=(2, 3))
>>> y_pred = np.random.random(size=(2, 3))
>>> loss = keras.losses.mean_absolute_error(y_true, y_pred)
|
github-repos
|
def alerts(self):
if (not self.__alerts):
self.__alerts = Alerts(self.__connection)
return self.__alerts
|
Gets the Alerts API client.
Returns:
Alerts:
|
codesearchnet
|
def get_job(self, jobid):
import shlex
from pyccc.job import Job
job = Job(engine=self)
job.jobid = job.rundata.containerid = jobid
try:
jobdata = self.client.inspect_container(job.jobid)
except docker.errors.NotFound:
raise exceptions.JobNotFound(('The daemon could not find containter "%s"' % job.jobid))
cmd = jobdata['Config']['Cmd']
entrypoint = jobdata['Config']['Entrypoint']
if ((len(cmd) == 3) and (cmd[0:2] == ['sh', '-c'])):
cmd = cmd[2]
elif (entrypoint is not None):
cmd = (entrypoint + cmd)
if isinstance(cmd, list):
cmd = ' '.join((shlex.quote(x) for x in cmd))
job.command = cmd
job.env = jobdata['Config']['Env']
job.workingdir = jobdata['Config']['WorkingDir']
job.rundata.container = jobdata
return job
|
Return a Job object for the requested job id.
The returned object will be suitable for retrieving output, but depending on the engine,
may not populate all fields used at launch time (such as `job.inputs`, `job.commands`, etc.)
Args:
jobid (str): container id
Returns:
pyccc.job.Job: job object for this container
Raises:
pyccc.exceptions.JobNotFound: if no job could be located for this jobid
|
codesearchnet
|
def sync_ik_robot(self, joint_positions, simulate=False, sync_last=True):
num_joints = len(joint_positions)
if (not sync_last):
num_joints -= 1
for i in range(num_joints):
if simulate:
p.setJointMotorControl2(self.ik_robot, self.actual[i], p.POSITION_CONTROL, targetVelocity=0, targetPosition=joint_positions[i], force=500, positionGain=0.5, velocityGain=1.0)
else:
p.resetJointState(self.ik_robot, self.actual[i], joint_positions[i])
|
Force the internal robot model to match the provided joint angles.
Args:
joint_positions (list): a list or flat numpy array of joint positions.
simulate (bool): If True, actually use physics simulation, else
write to physics state directly.
sync_last (bool): If False, don't sync the last joint angle. This
is useful for directly controlling the roll at the end effector.
|
codesearchnet
|
def _joint_mean(self):
with tf.name_scope('mean_joint'):
with tf.control_dependencies(self.runtime_assertions):
initial_latent_mean = _broadcast_to_shape(self.initial_state_prior.mean()[(..., tf.newaxis)], tf.concat([self.batch_shape_tensor(), [self.latent_size, 1]], axis=0))
initial_observation_mean = _propagate_mean(initial_latent_mean, self.get_observation_matrix_for_timestep(self.initial_step), self.get_observation_noise_for_timestep(self.initial_step))
mean_step = build_kalman_mean_step(self.get_transition_matrix_for_timestep, self.get_transition_noise_for_timestep, self.get_observation_matrix_for_timestep, self.get_observation_noise_for_timestep)
(latent_means, observation_means) = tf.scan(mean_step, elems=tf.range((self.initial_step + 1), self.final_step), initializer=(initial_latent_mean, initial_observation_mean))
latent_means = tf.concat([initial_latent_mean[(tf.newaxis, ...)], latent_means], axis=0)
observation_means = tf.concat([initial_observation_mean[(tf.newaxis, ...)], observation_means], axis=0)
latent_means = tf.squeeze(latent_means, (- 1))
latent_means = distribution_util.move_dimension(latent_means, 0, (- 2))
observation_means = tf.squeeze(observation_means, (- 1))
observation_means = distribution_util.move_dimension(observation_means, 0, (- 2))
return (latent_means, observation_means)
|
Compute prior means for all variables via dynamic programming.
Returns:
latent_means: Prior means of latent states `z_t`, as a `Tensor`
of shape `batch_shape + [num_timesteps, latent_size]`
observation_means: Prior covariance matrices of observations
`x_t`, as a `Tensor` of shape `batch_shape + [num_timesteps,
observation_size]`
|
codesearchnet
|
def _add_case(self, case_obj):
if self.case(case_obj['_id']):
raise IntegrityError("Case %s already exists in database" % case_obj['_id'])
return self.case_collection.insert_one(case_obj)
|
Add a case to the database
If the case already exists exception is raised
Args:
case_obj(Case)
|
juraj-google-style
|
def dump(self, output, close_after_write=True):
self.open(output)
try:
self.make_worksheet(self.table_name)
self.write_table()
finally:
if close_after_write:
self.close()
|
Write a worksheet to the current workbook.
Args:
output (str):
Path to the workbook file to write.
close_after_write (bool, optional):
Close the workbook after write.
Defaults to |True|.
|
codesearchnet
|
def query_with_attributes(type_to_query, client):
session = client.create_session()
query = session.query(Attribute.name,
Attribute.value,
Entity.id) \
.join(Entity) \
.filter(Entity.type == type_to_query)
df = client.df_query(query)
session.close()
df = df.dropna(how='any')
df = df.set_index(['id', 'name']).unstack().reset_index()
df.columns = ['id'] + list(df.columns.get_level_values(1)[1:])
return df
|
Query all entities of a specific type, with their attributes
Args:
type_to_query (str): type of entity to query
client: DB client to perform query with
Returns:
pandas.DataFrame: table of entities, with attributes as columns
|
juraj-google-style
|
def set_column_count(self, count):
current_row_count = self.row_count()
current_column_count = self.column_count()
if count > current_column_count:
cl = TableEditableItem if self._editable else TableItem
for r_key in self.children.keys():
row = self.children[r_key]
for i in range(current_column_count, count):
row.append(cl(), str(i))
if self._editable:
row.children[str(i)].onchange.connect(
self.on_item_changed, int(r_key), int(i))
self._update_first_row()
elif count < current_column_count:
for row in self.children.values():
for i in range(count, current_column_count):
row.remove_child(row.children[str(i)])
self._column_count = count
|
Sets the table column count.
Args:
count (int): column of rows
|
juraj-google-style
|
def getRowByIndex(self, index):
assert isinstance(index, int)
return Row(self._impl.getRowByIndex(index))
|
Get row by numeric index.
Args:
index: Zero-based index of the row to get.
Returns:
The corresponding row.
|
juraj-google-style
|
def add_to_tensor(self, x, name='add_to_tensor'):
with self._name_scope(name):
x = tensor_conversion.convert_to_tensor_v2_with_dispatch(x, name='x')
self._check_input_dtype(x)
return self._add_to_tensor(x)
|
Add matrix represented by this operator to `x`. Equivalent to `A + x`.
Args:
x: `Tensor` with same `dtype` and shape broadcastable to `self.shape`.
name: A name to give this `Op`.
Returns:
A `Tensor` with broadcast shape and same `dtype` as `self`.
|
github-repos
|
def compare_names(first, second):
first = name_to_vector(first)
second = name_to_vector(second)
zipped = zip(first, second)
if not zipped:
return 0
similarity_factor = 0
for fitem, _ in zipped:
if fitem in second:
similarity_factor += 1
return (float(similarity_factor) / len(zipped)) * 100
|
Compare two names in complicated, but more error prone way.
Algorithm is using vector comparison.
Example:
>>> compare_names("Franta Putšálek", "ing. Franta Putšálek")
100.0
>>> compare_names("F. Putšálek", "ing. Franta Putšálek")
50.0
Args:
first (str): Fisst name as string.
second (str): Second name as string.
Returns:
float: Percentage of the similarity.
|
juraj-google-style
|
def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, position_embeddings: Optional[torch.Tensor]=None, reference_points=None, spatial_shapes=None, spatial_shapes_list=None, level_start_index=None, output_attentions: bool=False):
residual = hidden_states
hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, position_embeddings=position_embeddings, reference_points=reference_points, spatial_shapes=spatial_shapes, spatial_shapes_list=spatial_shapes_list, level_start_index=level_start_index, output_attentions=output_attentions)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
if self.training:
if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
return (hidden_states, attn_weights)
|
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Input to the layer.
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Attention mask.
position_embeddings (`torch.FloatTensor`, *optional*):
Position embeddings, to be added to `hidden_states`.
reference_points (`torch.FloatTensor`, *optional*):
Reference points.
spatial_shapes (`torch.LongTensor`, *optional*):
Spatial shapes of the backbone feature maps.
spatial_shapes_list (`List[Tuple[int, int]]`, *optional*):
Spatial shapes of the backbone feature maps (but as list for export compatibility).
level_start_index (`torch.LongTensor`, *optional*):
Level start index.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
|
github-repos
|
def initialize(self):
self.log.info('Initializing the snippet package %s.', self.package)
start_time = time.perf_counter()
self.log.debug('Preparing to start the snippet server of %s.', self.package)
self.before_starting_server()
try:
self.log.debug('Starting the snippet server of %s.', self.package)
self.start_server()
self.log.debug('Making a connection to the snippet server of %s.', self.package)
self._make_connection()
except Exception:
self.log.error('Error occurred trying to start and connect to the snippet server of %s.', self.package)
try:
self.stop()
except Exception:
self.log.exception('Failed to stop the snippet package %s after failure to start and connect.', self.package)
raise
self.log.debug('Snippet package %s initialized after %.1fs.', self.package, time.perf_counter() - start_time)
|
Initializes the snippet client to interact with the remote device.
This function contains following stages:
1. before starting server: preparing to start the snippet server.
2. start server: starting the snippet server on the remote device.
3. make connection: making a connection to the snippet server.
An error occurring at any stage will abort the initialization. Only errors
at the `start_server` and `make_connection` stages will trigger `stop` to
clean up.
Raises:
errors.ProtocolError: something went wrong when exchanging data with the
server.
errors.ServerStartPreCheckError: when prechecks for starting the server
failed.
errors.ServerStartError: when failed to start the snippet server.
|
github-repos
|
def scalar(name, data, step=None, description=None):
summary_metadata = metadata.create_summary_metadata(display_name=None, description=description)
summary_scope = (getattr(tf.summary.experimental, 'summary_scope', None) or tf.summary.summary_scope)
with summary_scope(name, 'scalar_summary', values=[data, step]) as (tag, _):
tf.debugging.assert_scalar(data)
return tf.summary.write(tag=tag, tensor=tf.cast(data, tf.float32), step=step, metadata=summary_metadata)
|
Write a scalar summary.
Arguments:
name: A name for this summary. The summary tag used for TensorBoard will
be this name prefixed by any active name scopes.
data: A real numeric scalar value, convertible to a `float32` Tensor.
step: Explicit `int64`-castable monotonic step value for this summary. If
omitted, this defaults to `tf.summary.experimental.get_step()`, which must
not be None.
description: Optional long-form description for this summary, as a
constant `str`. Markdown is supported. Defaults to empty.
Returns:
True on success, or false if no summary was written because no default
summary writer was available.
Raises:
ValueError: if a default writer exists, but no step was provided and
`tf.summary.experimental.get_step()` is None.
|
codesearchnet
|
def _collect_metrics(repo, path, recursive, typ, xpath, branch):
outs = [out for stage in repo.stages() for out in stage.outs]
if path:
try:
outs = repo.find_outs_by_path(path, outs=outs, recursive=recursive)
except OutputNotFoundError:
logger.debug("stage file not for found for '{}' in branch '{}'".format(path, branch))
return []
res = []
for o in outs:
if (not o.metric):
continue
if ((not typ) and isinstance(o.metric, dict)):
t = o.metric.get(o.PARAM_METRIC_TYPE, typ)
x = o.metric.get(o.PARAM_METRIC_XPATH, xpath)
else:
t = typ
x = xpath
res.append((o, t, x))
return res
|
Gather all the metric outputs.
Args:
path (str): Path to a metric file or a directory.
recursive (bool): If path is a directory, do a recursive search for
metrics on the given path.
typ (str): The type of metric to search for, could be one of the
following (raw|json|tsv|htsv|csv|hcsv).
xpath (str): Path to search for.
branch (str): Branch to look up for metrics.
Returns:
list(tuple): (output, typ, xpath)
- output:
- typ:
- xpath:
|
codesearchnet
|
def matrix(self):
matrix = (c_float * 6)()
rc = self._libinput.libinput_device_config_calibration_get_matrix(self._handle, matrix)
return (rc, tuple(matrix))
|
The current calibration matrix for this device.
Returns:
(bool, (float, float, float, float, float, float)): :obj:`False` if
no calibration is set and
the returned matrix is the identity matrix, :obj:`True`
otherwise. :obj:`tuple` representing the first two rows of
a 3x3 matrix as described in :meth:`set_matrix`.
|
codesearchnet
|
def _order_code(dis_code: pycnite.types.DisassembledCode) -> OrderedCode:
ops = opcodes.build_opcodes(dis_code)
add_pop_block_targets(ops)
blocks = compute_order(ops, dis_code.python_version)
return OrderedCode(dis_code.code, ops, blocks)
|
Split a CodeType object into ordered blocks.
This takes a CodeType object (i.e., a piece of compiled Python code) and
splits it into ordered basic blocks.
Args:
dis_code: A pycnite.types.DisassembledCode object.
Returns:
An OrderedCode instance.
|
github-repos
|
def __validate_args(self, func_name, args, kwargs):
from pyvalid.validators import Validator
for i, (arg_name, accepted_values) in enumerate(self.accepted_args):
if i < len(args):
value = args[i]
else:
if arg_name in kwargs:
value = kwargs[arg_name]
elif i in self.optional_args:
continue
else:
raise InvalidArgumentNumberError(func_name)
is_valid = False
for accepted_val in accepted_values:
is_validator = (
isinstance(accepted_val, Validator) or
(
isinstance(accepted_val, MethodType) and
hasattr(accepted_val, '__func__') and
isinstance(accepted_val.__func__, Validator)
)
)
if is_validator:
is_valid = accepted_val(value)
elif isinstance(accepted_val, type):
is_valid = isinstance(value, accepted_val)
else:
is_valid = value == accepted_val
if is_valid:
break
if not is_valid:
ord_num = self.__ordinal(i + 1)
raise ArgumentValidationError(
ord_num,
func_name,
value,
accepted_values
)
|
Compare value of each required argument with list of
accepted values.
Args:
func_name (str): Function name.
args (list): Collection of the position arguments.
kwargs (dict): Collection of the keyword arguments.
Raises:
InvalidArgumentNumberError: When position or count of the arguments
is incorrect.
ArgumentValidationError: When encountered unexpected argument
value.
|
juraj-google-style
|
def load(self, context):
try:
import tensorflow
except ImportError:
return
from tensorboard.plugins.beholder.beholder_plugin import BeholderPlugin
return BeholderPlugin(context)
|
Returns the plugin, if possible.
Args:
context: The TBContext flags.
Returns:
A BeholderPlugin instance or None if it couldn't be loaded.
|
juraj-google-style
|
def _get_condition_json(self, index):
condition = self.condition_data[index]
condition_log = {
'name': condition[0],
'value': condition[1],
'type': condition[2],
'match': condition[3]
}
return json.dumps(condition_log)
|
Method to generate json for logging audience condition.
Args:
index: Index of the condition.
Returns:
String: Audience condition JSON.
|
juraj-google-style
|
def get_size(self, value=None):
if value is None:
if not self:
return 0
elif issubclass(type(self[0]), GenericType):
return len(self) * self[0].get_size()
return sum(item.get_size() for item in self)
return type(self)(value).get_size()
|
Return the size in bytes.
Args:
value: In structs, the user can assign other value instead of
this class' instance. Here, in such cases, ``self`` is a class
attribute of the struct.
Returns:
int: The size in bytes.
|
juraj-google-style
|
def Map(self, function):
new_table = self.__class__()
new_table._table = [self.header]
for row in self:
filtered_row = function(row)
if filtered_row:
new_table.Append(filtered_row)
return new_table
|
Applies the function to every row in the table.
Args:
function: A function applied to each row.
Returns:
A new TextTable()
Raises:
TableError: When transform is not invalid row entry. The transform
must be compatible with Append().
|
codesearchnet
|
def get_embeddings_index(embedding_type='glove.42B.300d', embedding_dims=None, embedding_path=None, cache=True):
if (embedding_path is not None):
embedding_type = embedding_path
embeddings_index = _EMBEDDINGS_CACHE.get(embedding_type)
if (embeddings_index is not None):
return embeddings_index
if (embedding_path is None):
embedding_type_obj = get_embedding_type(embedding_type)
extract = embedding_type_obj.get('extract', True)
file_path = get_file(embedding_type_obj['file'], origin=embedding_type_obj['url'], extract=extract, cache_subdir='embeddings', file_hash=embedding_type_obj.get('file_hash'))
if ('file_in_zip' in embedding_type_obj):
zip_folder = file_path.split('.zip')[0]
with ZipFile(file_path, 'r') as zf:
zf.extractall(zip_folder)
file_path = os.path.join(zip_folder, embedding_type_obj['file_in_zip'])
elif extract:
if file_path.endswith('.zip'):
file_path = file_path.split('.zip')[0]
else:
file_path = embedding_path
embeddings_index = _build_embeddings_index(file_path, embedding_dims)
if cache:
_EMBEDDINGS_CACHE[embedding_type] = embeddings_index
return embeddings_index
|
Retrieves embeddings index from embedding name or path. Will automatically download and cache as needed.
Args:
embedding_type: The embedding type to load.
embedding_path: Path to a local embedding to use instead of the embedding type. Ignores `embedding_type` if specified.
Returns:
The embeddings indexed by word.
|
codesearchnet
|
def _read_mode_utopt(self, size, kind):
temp = self._read_fileng(size)
data = dict(kind=kind, length=size, granularity=('minutes' if int(temp[0]) else 'seconds'), timeout=bytes(chr(int(temp[0:], base=2)), encoding='utf-8'))
return data
|
Read User Timeout option.
Positional arguments:
* size - int, length of option
* kind - int, 28 (User Timeout Option)
Returns:
* dict -- extracted User Timeout (TIMEOUT) option
Structure of TCP TIMEOUT [RFC 5482]:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Kind = 28 | Length = 4 |G| User Timeout |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Octets Bits Name Description
0 0 tcp.timeout.kind Kind (28)
1 8 tcp.timeout.length Length (4)
2 16 tcp.timeout.granularity Granularity
2 17 tcp.timeout.timeout User Timeout
|
codesearchnet
|
def make_datastore_query(self, cursor=None):
filters = {}
filters['__key__ >= '] = _key_for_namespace(self.namespace_start, self.app)
filters['__key__ <= '] = _key_for_namespace(self.namespace_end, self.app)
return datastore.Query('__namespace__', filters=filters, keys_only=True, cursor=cursor, _app=self.app)
|
Returns a datastore.Query that generates all namespaces in the range.
Args:
cursor: start cursor for the query.
Returns:
A datastore.Query instance that generates db.Keys for each namespace in
the NamespaceRange.
|
codesearchnet
|
def set_metadata(self, key: str, value: Any, cloneable: bool=False) -> 'DNA':
self.metadata.rebind({key: value}, raise_on_no_change=False, skip_notification=True)
if cloneable:
self._cloneable_metadata_keys.add(key)
return self
|
Set metadata associated with a key.
Metadata associated with the DNA will be persisted and carried over across
processes, which is different the `userdata`. (See `set_userdata` for more
details.)
Args:
key: Key for the metadata.
value: Value for the metadata.
cloneable: If True, the key/value will be propagated during clone.
Returns:
Self.
|
github-repos
|
def db_ws004c(self, value=None):
if value is not None:
try:
value = float(value)
except ValueError:
raise ValueError('value {} need to be of type float '
'for field `db_ws004c`'.format(value))
self._db_ws004c = value
|
Corresponds to IDD Field `db_ws004c`
Mean coincident dry-bulb temperature to wind speed corresponding to 0.40% cumulative frequency for coldest month
Args:
value (float): value for IDD Field `db_ws004c`
Unit: C
if `value` is None it will not be checked against the
specification and is assumed to be a missing value
Raises:
ValueError: if `value` is not a valid value
|
juraj-google-style
|
def AddIndex(self, path_segment_index):
if path_segment_index in self._weight_per_index:
raise ValueError('Path segment index already set.')
self._weight_per_index[path_segment_index] = 0
|
Adds a path segment index and sets its weight to 0.
Args:
path_segment_index: an integer containing the path segment index.
Raises:
ValueError: if the path segment weights already contains
the path segment index.
|
juraj-google-style
|
def _ValidateDataTypeDefinition(cls, data_type_definition):
if (not cls._IsIdentifier(data_type_definition.name)):
raise ValueError('Data type definition name: {0!s} not a valid identifier'.format(data_type_definition.name))
if keyword.iskeyword(data_type_definition.name):
raise ValueError('Data type definition name: {0!s} matches keyword'.format(data_type_definition.name))
members = getattr(data_type_definition, 'members', None)
if (not members):
raise ValueError('Data type definition name: {0!s} missing members'.format(data_type_definition.name))
defined_attribute_names = set()
for member_definition in members:
attribute_name = member_definition.name
if (not cls._IsIdentifier(attribute_name)):
raise ValueError('Attribute name: {0!s} not a valid identifier'.format(attribute_name))
if attribute_name.startswith('_'):
raise ValueError('Attribute name: {0!s} starts with underscore'.format(attribute_name))
if keyword.iskeyword(attribute_name):
raise ValueError('Attribute name: {0!s} matches keyword'.format(attribute_name))
if (attribute_name in defined_attribute_names):
raise ValueError('Attribute name: {0!s} already defined'.format(attribute_name))
defined_attribute_names.add(attribute_name)
|
Validates the data type definition.
Args:
data_type_definition (DataTypeDefinition): data type definition.
Raises:
ValueError: if the data type definition is not considered valid.
|
codesearchnet
|
def get_container_list(self) -> list:
containers = []
containers_list = self._client.containers.list()
for c_list in containers_list:
containers.append(c_list.short_id)
return containers
|
Get list of containers.
Returns:
list, all the ids of containers
|
codesearchnet
|
def update(self, forecasts, observations):
for t, threshold in enumerate(self.thresholds[:-1]):
self.frequencies.loc[t, "Positive_Freq"] += np.count_nonzero((threshold <= forecasts) &
(forecasts < self.thresholds[t+1]) &
(observations >= self.obs_threshold))
self.frequencies.loc[t, "Total_Freq"] += np.count_nonzero((threshold <= forecasts) &
(forecasts < self.thresholds[t+1]))
|
Update the statistics with a set of forecasts and observations.
Args:
forecasts (numpy.ndarray): Array of forecast probability values
observations (numpy.ndarray): Array of observation values
|
juraj-google-style
|
def delete(adapter, case_obj, update=False, existing_case=False):
if update:
adapter.add_case(existing_case)
else:
adapter.delete_case(case_obj)
for file_type in ['vcf_path','vcf_sv_path']:
if not case_obj.get(file_type):
continue
variant_file = case_obj[file_type]
vcf_obj = get_vcf(variant_file)
delete_variants(
adapter=adapter,
vcf_obj=vcf_obj,
case_obj=case_obj,
)
|
Delete a case and all of it's variants from the database.
Args:
adapter: Connection to database
case_obj(models.Case)
update(bool): If we are in the middle of an update
existing_case(models.Case): If something failed during an update we need to revert
to the original case
|
juraj-google-style
|
def get(self, name):
config = self.get_block(('interface %s' % name))
if ((name[0:2] in ['Et', 'Po']) and (not SWITCHPORT_RE.search(config, re.M))):
return None
resource = dict(name=name)
resource.update(self._parse_address(config))
resource.update(self._parse_mtu(config))
return resource
|
Returns the specific IP interface properties
The Ipinterface resource returns the following:
* name (str): The name of the interface
* address (str): The IP address of the interface in the form
of A.B.C.D/E
* mtu (int): The configured value for IP MTU.
Args:
name (string): The interface identifier to retrieve the
configuration for
Return:
A Python dictionary object of key/value pairs that represents
the current configuration of the node. If the specified
interface does not exist then None is returned.
|
codesearchnet
|
def model_inference_fn(features, training, params):
mg_batchn = functools.partial(
tf.layers.batch_normalization,
axis=-1,
momentum=.95,
epsilon=1e-5,
center=True,
scale=True,
fused=True,
training=training)
mg_conv2d = functools.partial(
tf.layers.conv2d,
filters=params['conv_width'],
kernel_size=3,
padding="same",
data_format="channels_last",
use_bias=False)
mg_global_avgpool2d = functools.partial(
tf.layers.average_pooling2d,
pool_size=go.N,
strides=1,
padding="valid",
data_format="channels_last")
def mg_activation(inputs):
if FLAGS.use_swish:
return tf.nn.swish(inputs)
return tf.nn.relu(inputs)
def residual_inner(inputs):
conv_layer1 = mg_batchn(mg_conv2d(inputs))
initial_output = mg_activation(conv_layer1)
conv_layer2 = mg_batchn(mg_conv2d(initial_output))
return conv_layer2
def mg_res_layer(inputs):
residual = residual_inner(inputs)
output = mg_activation(inputs + residual)
return output
def mg_squeeze_excitation_layer(inputs):
channels = params['conv_width']
ratio = FLAGS.SE_ratio
assert channels % ratio == 0
residual = residual_inner(inputs)
pool = mg_global_avgpool2d(residual)
fc1 = tf.layers.dense(pool, units=channels
squeeze = mg_activation(fc1)
if FLAGS.use_SE_bias:
fc2 = tf.layers.dense(squeeze, units=2*channels)
gamma, bias = tf.split(fc2, 2, axis=3)
else:
gamma = tf.layers.dense(squeeze, units=channels)
bias = 0
sig = tf.nn.sigmoid(gamma)
scale = tf.reshape(sig, [-1, 1, 1, channels])
excitation = tf.multiply(scale, residual) + bias
return mg_activation(inputs + excitation)
initial_block = mg_activation(mg_batchn(mg_conv2d(features)))
shared_output = initial_block
for _ in range(params['trunk_layers']):
if FLAGS.use_SE or FLAGS.use_SE_bias:
shared_output = mg_squeeze_excitation_layer(shared_output)
else:
shared_output = mg_res_layer(shared_output)
policy_conv = mg_conv2d(
shared_output, filters=params['policy_conv_width'], kernel_size=1)
policy_conv = mg_activation(mg_batchn(policy_conv, center=False, scale=False))
logits = tf.layers.dense(
tf.reshape(
policy_conv, [-1, params['policy_conv_width'] * go.N * go.N]),
go.N * go.N + 1)
policy_output = tf.nn.softmax(logits, name='policy_output')
value_conv = mg_conv2d(
shared_output, filters=params['value_conv_width'], kernel_size=1)
value_conv = mg_activation(mg_batchn(value_conv, center=False, scale=False))
value_fc_hidden = mg_activation(tf.layers.dense(
tf.reshape(value_conv, [-1, params['value_conv_width'] * go.N * go.N]),
params['fc_width']))
value_output = tf.nn.tanh(
tf.reshape(tf.layers.dense(value_fc_hidden, 1), [-1]),
name='value_output')
return policy_output, value_output, logits
|
Builds just the inference part of the model graph.
Args:
features: input features tensor.
training: True if the model is training.
params: A dictionary
Returns:
(policy_output, value_output, logits) tuple of tensors.
|
juraj-google-style
|
async def check_record(self, record, timeout=60):
start_time = time.time()
name, rr_data, r_type, ttl = self._extract_record_data(record)
r_type_code = async_dns.types.get_code(r_type)
resolvable_record = False
retries = 0
sleep_time = 5
while not resolvable_record and \
timeout > retries * sleep_time:
retries += 1
resolver_res = await self._resolver.query(name, r_type_code)
possible_ans = resolver_res.an
resolvable_record = \
await self._check_resolver_ans(possible_ans, name,
rr_data, ttl, r_type_code)
if not resolvable_record:
await asyncio.sleep(sleep_time)
if not resolvable_record:
logging.info(
f'Sending metric record-checker-failed: {record}.')
else:
final_time = float(time.time() - start_time)
success_msg = (f'This record: {record} took {final_time} to '
'register.')
logging.info(success_msg)
|
Measures the time for a DNS record to become available.
Query a provided DNS server multiple times until the reply matches the
information in the record or until timeout is reached.
Args:
record (dict): DNS record as a dict with record properties.
timeout (int): Time threshold to query the DNS server.
|
juraj-google-style
|
def _file_size(self, field):
size = 0
try:
handle = open(self._files[field], 'r')
size = os.fstat(handle.fileno()).st_size
handle.close()
except:
size = 0
self._file_lengths[field] = size
return self._file_lengths[field]
|
Returns the file size for given file field.
Args:
field (str): File field
Returns:
int. File size
|
codesearchnet
|
def list(self, path, timeout=None):
transport = DentFilesyncTransport(self.stream)
transport.write_data('LIST', path, timeout)
return (DeviceFileStat(dent_msg.name, dent_msg.mode, dent_msg.size, dent_msg.time) for dent_msg in transport.read_until_done('DENT', timeout))
|
List directory contents on the device.
Args:
path: List the contents of this directory.
timeout: Timeout to use for this operation.
Returns:
Generator yielding DeviceFileStat tuples representing the contents of
the requested path.
|
codesearchnet
|
def fillup_layer(layer, first_clbit):
for nones in [i for i, x in enumerate(layer) if x is None]:
layer[nones] = EmptyWire('═') if nones >= first_clbit else EmptyWire('─')
return layer
|
Given a layer, replace the Nones in it with EmptyWire elements.
Args:
layer (list): The layer that contains Nones.
first_clbit (int): The first wire that is classic.
Returns:
list: The new layer, with no Nones.
|
juraj-google-style
|
def mark_job_as_failed(self, job_id, exception, traceback):
session = self.sessionmaker()
job, orm_job = self._update_job_state(
job_id, State.FAILED, session=session)
job = copy(job)
job.exception = exception
job.traceback = traceback
orm_job.obj = job
session.add(orm_job)
session.commit()
session.close()
|
Mark the job as failed, and record the traceback and exception.
Args:
job_id: The job_id of the job that failed.
exception: The exception object thrown by the job.
traceback: The traceback, if any. Note (aron): Not implemented yet. We need to find a way
for the conncurrent.futures workers to throw back the error to us.
Returns: None
|
juraj-google-style
|
def sample(reader, writer, n, start=None, stop=None, tsCol=None,
writeSampleOnly=True):
rows = list(reader)
if tsCol is not None:
ts = rows[0][tsCol]
inc = rows[1][tsCol] - ts
if start is None:
start = 0
if stop is None:
stop = len(rows) - 1
initialN = stop - start + 1
numDeletes = initialN - n
for i in xrange(numDeletes):
delIndex = random.randint(start, stop - i)
del rows[delIndex]
if writeSampleOnly:
rows = rows[start:start + n]
if tsCol is not None:
ts = rows[0][tsCol]
for row in rows:
if tsCol is not None:
row[tsCol] = ts
ts += inc
writer.appendRecord(row)
|
Samples n rows.
Args:
reader: A FileRecordStream object with input data.
writer: A FileRecordStream object to write output data to.
n: The number of elements to sample.
start: The first row in the range to sample from.
stop: The last row in the range to sample from.
tsCol: If specified, the timestamp column to update.
writeSampleOnly: If False, the rows before start are written before the
sample and the rows after stop are written after the sample.
|
juraj-google-style
|
def posix_to_dt_str(posix):
dt = datetime.datetime.utcfromtimestamp(posix)
dt_str = dt.strftime(_DT_FORMAT)
return dt_str + '.000Z'
|
Reverse of str_to_datetime.
This is used by GCS stub to generate GET bucket XML response.
Args:
posix: A float of secs from unix epoch.
Returns:
A datetime str.
|
juraj-google-style
|
def select(self, attr, default=None):
return List([_select(item, attr, default) for item in self])
|
Select a given attribute (or chain or attributes) from the objects within the
list.
Args:
attr (str): attributes to be selected (with initial `.` omitted)
default (any): value to return if given element in list doesn't contain
desired attribute
Returns:
nhl.List: list of selected attribute values
|
juraj-google-style
|
def profile_python(self, options):
opts = _build_options(options)
tfprof_node = tfprof_output_pb2.MultiGraphNodeProto()
try:
tfprof_node.ParseFromString(print_mdl.Profile('code'.encode('utf-8'), opts.SerializeToString()))
except message.DecodeError as e:
sys.stderr.write('Cannot parse returned proto: %s.\n' % e)
return tfprof_node
|
Profile the statistics of the Python codes.
By default, it shows the call stack from root. To avoid
redundant output, you may use options to filter as below
options['show_name_regexes'] = ['.*my_code.py.*']
Args:
options: A dict of options. See core/profiler/g3doc/options.md.
Returns:
a MultiGraphNodeProto that records the results.
|
github-repos
|
def __init__(self, stack_name, region, cf_client):
try:
self._stack_name = stack_name
self._region = region
self._cf_client = cf_client
except Exception:
raise SystemError
|
StackTool is a simple tool to print some specific data about a
CloudFormation stack.
Args:
stack_name - name of the stack of interest
region - AWS region where the stack was created
Returns:
not a damn thing
Raises:
SystemError - if everything isn't just right
|
juraj-google-style
|
def sas_logical_jbods(self):
if (not self.__sas_logical_jbods):
self.__sas_logical_jbods = SasLogicalJbods(self.__connection)
return self.__sas_logical_jbods
|
Gets the SAS Logical JBODs API client.
Returns:
SasLogicalJbod:
|
codesearchnet
|
def get_num_bytes(self, batch: Sequence[torch.Tensor]) -> int:
return sum((el.element_size() for tensor in batch for el in tensor))
|
Returns:
The number of bytes of data for a batch of Tensors.
|
github-repos
|
def __init__(self, ca_cert=None, worker_cls=None, private_key=None):
self.ca_cert = ca_cert
if private_key is None:
private_key = config.CONFIG.Get("Client.private_key", default=None)
self.server_certificate = None
self.http_manager = self.http_manager_class()
self.communicator = ClientCommunicator(private_key=private_key)
self.timer = Timer()
self.last_enrollment_time = 0
self.last_foreman_check = 0
if worker_cls:
self.client_worker = worker_cls(client=self)
else:
self.client_worker = GRRClientWorker(client=self)
self.client_worker.start()
|
Constructor.
Args:
ca_cert: String representation of a CA certificate to use for checking
server certificate.
worker_cls: The client worker class to use. Defaults to GRRClientWorker.
private_key: The private key for this client. Defaults to config
Client.private_key.
|
juraj-google-style
|
def save(model, filepath, overwrite, include_optimizer, signatures=None, options=None, save_traces=True):
if not overwrite and os.path.exists(filepath):
proceed = ask_to_proceed_with_overwrite(filepath)
if not proceed:
return
if save_traces:
if save_impl.should_skip_serialization(model):
saving_utils.raise_model_input_error(model)
if not include_optimizer:
orig_optimizer = model.optimizer
model.optimizer = None
model._delete_tracking('optimizer')
with K.deprecated_internal_learning_phase_scope(0):
with utils.keras_option_scope(save_traces):
saved_nodes, node_paths = save_lib.save_and_return_nodes(model, filepath, signatures, options)
metadata = generate_keras_metadata(saved_nodes, node_paths)
with gfile.GFile(os.path.join(filepath, constants.SAVED_METADATA_PATH), 'wb') as w:
w.write(metadata.SerializeToString(deterministic=True))
if not include_optimizer:
model.optimizer = orig_optimizer
|
Saves a model as a SavedModel to the filepath.
Args:
model: Keras model instance to be saved.
filepath: String path to save the model.
overwrite: whether to overwrite the existing filepath.
include_optimizer: If True, save the model's optimizer state.
signatures: Signatures to save with the SavedModel. Applicable to the 'tf'
format only. Please see the `signatures` argument in `tf.saved_model.save`
for details.
options: (only applies to SavedModel format) `tf.saved_model.SaveOptions`
object that specifies options for saving to SavedModel.
save_traces: (only applies to SavedModel format) When enabled, the
SavedModel will store the function traces for each layer. This
can be disabled, so that only the configs of each layer are stored.
Defaults to `True`. Disabling this will decrease serialization time
and reduce file size, but it requires that all custom layers/models
implement a `get_config()` method.
Raises:
ValueError: if the model's inputs have not been defined.
|
github-repos
|
def reserveIdentifier(self, pid, vendorSpecific=None):
response = self.reserveIdentifierResponse(pid, vendorSpecific)
return self._read_dataone_type_response(response, 'Identifier', vendorSpecific)
|
See Also: reserveIdentifierResponse()
Args:
pid:
vendorSpecific:
Returns:
|
juraj-google-style
|
def _BroadcastMul(vec, mat):
vec = array_ops.expand_dims(vec, -1)
return vec * mat
|
Multiply after broadcasting vec to match dimensions of mat.
Args:
vec: A 1-D tensor of dimension [D0]
mat: A 2-D tensor of dimension [D0, D1]
Returns:
A tensor of dimension [D0, D1], the result of vec * mat
|
github-repos
|
def _process_using_meta_feature_generator(self, X, meta_feature_generator):
all_learner_meta_features = []
for (idx, base_learner) in enumerate(self.base_learners):
single_learner_meta_features = getattr(base_learner, self.meta_feature_generators[idx])(X)
if (len(single_learner_meta_features.shape) == 1):
single_learner_meta_features = single_learner_meta_features.reshape((- 1), 1)
all_learner_meta_features.append(single_learner_meta_features)
all_learner_meta_features = np.concatenate(all_learner_meta_features, axis=1)
out = getattr(self.secondary_learner, meta_feature_generator)(all_learner_meta_features)
return out
|
Process using secondary learner meta-feature generator
Since secondary learner meta-feature generator can be anything e.g. predict, predict_proba,
this internal method gives the ability to use any string. Just make sure secondary learner
has the method.
Args:
X (array-like): Features array
meta_feature_generator (str, unicode): Method for use by secondary learner
|
codesearchnet
|
def serialized_tensors_to_saveable_cache(serialized_tensors):
saveables_cache = object_identity.ObjectIdentityWeakKeyDictionary()
for obj, tensor_dict in serialized_tensors.items():
if not tensor_dict:
continue
if isinstance(obj, SaveableCompatibilityConverter):
trackable_obj = obj.obj
saveables_cache[trackable_obj] = {}
for saveable in obj.saveables:
local_name = trackable_utils.extract_local_name(saveable.name)
saveables_cache[trackable_obj][local_name] = [saveable]
continue
specs = []
local_names = []
prefix = saveable_compat.get_saveable_name(obj) or ''
for checkpoint_key, maybe_tensor in tensor_dict.items():
if not isinstance(maybe_tensor, dict):
maybe_tensor = {'': maybe_tensor}
for slice_spec, tensor in maybe_tensor.items():
if isinstance(tensor, saveable_object.SaveSpec):
specs.append(tensor)
else:
specs.append(saveable_object.SaveSpec(tensor, slice_spec, checkpoint_key))
local_names.append(trackable_utils.extract_local_name(checkpoint_key, prefix))
object_name = trackable_utils.extract_object_name(next(iter(tensor_dict.keys())))
saveables_cache[obj] = {trackable_utils.SERIALIZE_TO_TENSORS_NAME: [TrackableSaveable(obj, specs, object_name, local_names=local_names, prefix=prefix)]}
return saveables_cache
|
Converts a tensor dict to a SaveableObject cache.
Args:
serialized_tensors: Map from Trackable to a tensor dict. The tensor dict
maps checkpoint key (-> slice_spec) -> Tensor
Returns:
A dict mapping Trackable objects to a map from local savable name to
SaveableObject.
|
github-repos
|
def __init__(self, *args, exit_code=1, **kwargs):
self.exit_code = exit_code
super(ScriptWorkerTaskException, self).__init__(*args, **kwargs)
|
Initialize ScriptWorkerTaskException.
Args:
*args: These are passed on via super().
exit_code (int, optional): The exit_code we should exit with when
this exception is raised. Defaults to 1 (failure).
**kwargs: These are passed on via super().
|
juraj-google-style
|
def address_to_ip(address):
address_parts = address.split(":")
ip_address = socket.gethostbyname(address_parts[0])
if ip_address == "127.0.0.1":
ip_address = get_node_ip_address()
return ":".join([ip_address] + address_parts[1:])
|
Convert a hostname to a numerical IP addresses in an address.
This should be a no-op if address already contains an actual numerical IP
address.
Args:
address: This can be either a string containing a hostname (or an IP
address) and a port or it can be just an IP address.
Returns:
The same address but with the hostname replaced by a numerical IP
address.
|
juraj-google-style
|
def _DisableNetworkManager(self, interfaces, logger):
for interface in interfaces:
interface_config = os.path.join(self.network_path, ('ifcfg-%s' % interface))
if os.path.exists(interface_config):
self._ModifyInterface(interface_config, 'DEVICE', interface, replace=False)
self._ModifyInterface(interface_config, 'NM_CONTROLLED', 'no', replace=True)
else:
with open(interface_config, 'w') as interface_file:
interface_content = ['
interface_file.write('\n'.join(interface_content))
logger.info('Created config file for interface %s.', interface)
|
Disable network manager management on a list of network interfaces.
Args:
interfaces: list of string, the output device names enable.
logger: logger object, used to write to SysLog and serial port.
|
codesearchnet
|
def get_grouping_from_attentions(attentions, hw_shape):
attn_maps = []
with torch.no_grad():
prev_attn_masks = None
for attn_masks in attentions:
attn_masks = attn_masks.permute(0, 2, 1).contiguous()
if prev_attn_masks is None:
prev_attn_masks = attn_masks
else:
prev_attn_masks = prev_attn_masks @ attn_masks
cur_attn_map = resize_attention_map(prev_attn_masks.permute(0, 2, 1).contiguous(), *hw_shape)
attn_maps.append(cur_attn_map)
final_grouping = attn_maps[-1]
return final_grouping
|
Args:
attentions (`tuple(torch.FloatTensor)`: tuple of attention maps returned by `GroupViTVisionTransformer`
hw_shape (`tuple(int)`): height and width of the output attention map
Returns:
`torch.Tensor`: the attention map of shape [batch_size, groups, height, width]
|
github-repos
|
def setUdpJoinerPort(self, portNumber):
print '%s call setUdpJoinerPort' % self.port
cmd = 'joinerport %d' % portNumber
print cmd
return self.__sendCommand(cmd)[0] == 'Done'
|
set Joiner UDP Port
Args:
portNumber: Joiner UDP Port number
Returns:
True: successful to set Joiner UDP Port
False: fail to set Joiner UDP Port
|
juraj-google-style
|
def read_string(self, key, embedded=True):
data = None
if key is not None:
key_type = self.variable_type(key)
data = self.db.read(key.strip())
if data is not None:
try:
data = json.loads(data)
if embedded:
data = self.read_embedded(data, key_type)
if data is not None:
data = u'{}'.format(data)
except ValueError as e:
err = u'Failed loading JSON data ({}). Error: ({})'.format(data, e)
self.tcex.log.error(err)
else:
self.tcex.log.warning(u'The key field was None.')
return data
|
Read method of CRUD operation for string data.
Args:
key (string): The variable to read from the DB.
embedded (boolean): Resolve embedded variables.
Returns:
(string): Results retrieved from DB.
|
juraj-google-style
|
def cancelMktData(self, contract: Contract):
ticker = self.ticker(contract)
reqId = self.wrapper.endTicker(ticker, 'mktData')
if reqId:
self.client.cancelMktData(reqId)
else:
self._logger.error(
'cancelMktData: ' f'No reqId found for contract {contract}')
|
Unsubscribe from realtime streaming tick data.
Args:
contract: The exact contract object that was used to
subscribe with.
|
juraj-google-style
|
def is_rotation(self, tol=0.001, include_improper=True):
det = np.abs(np.linalg.det(self))
if include_improper:
det = np.abs(det)
return ((np.abs((self.inv - self.trans)) < tol).all() and (np.abs((det - 1.0)) < tol))
|
Test to see if tensor is a valid rotation matrix, performs a
test to check whether the inverse is equal to the transpose
and if the determinant is equal to one within the specified
tolerance
Args:
tol (float): tolerance to both tests of whether the
the determinant is one and the inverse is equal
to the transpose
include_improper (bool): whether to include improper
rotations in the determination of validity
|
codesearchnet
|
def update(self, puts, deletes):
with self._lmdb.begin(write=True, buffers=True) as txn:
cursor = txn.cursor(self._main_db)
for key in deletes:
if (not cursor.set_key(key.encode())):
continue
value = self._deserializer(bytes(cursor.value()))
cursor.delete()
for (index_db, index_key_fn) in self._indexes.values():
index_keys = index_key_fn(value)
index_cursor = txn.cursor(index_db)
for idx_key in index_keys:
if index_cursor.set_key(idx_key):
index_cursor.delete()
for (key, value) in puts:
packed = self._serializer(value)
cursor.put(key.encode(), packed, overwrite=True)
for (index_db, index_key_fn) in self._indexes.values():
index_keys = index_key_fn(value)
index_cursor = txn.cursor(index_db)
for idx_key in index_keys:
index_cursor.put(idx_key, key.encode())
self.sync()
|
Applies the given puts and deletes atomically.
Args:
puts (:iterable:`tuple`): an iterable of key/value pairs to insert
deletes (:iterable:str:) an iterable of keys to delete
|
codesearchnet
|
def Group(params, name=None, type=None):
atts = {}
if name:
atts['name'] = name
if type:
atts['type'] = type
g = objectify.Element('Group', attrib=atts)
for p in params:
g.append(p)
return g
|
Groups together Params for adding under the 'What' section.
Args:
params(list of :func:`Param`): Parameter elements to go in this group.
name(str): Group name. NB ``None`` is valid, since the group may be
best identified by its type.
type(str): Type of group, e.g. 'complex' (for real and imaginary).
|
codesearchnet
|
def _remove_curly_braces(text):
current_pos = 0
depth = 0
ret = ''
for match in re.finditer('[{}]', text):
if (depth == 0):
ret += text[current_pos:match.start()]
depth += (1 if (text[match.start()] == '{') else (- 1))
current_pos = match.end()
if (depth != 0):
pass
else:
ret += text[current_pos:]
return ret
|
Remove everything in curly braces.
Curly braces may be nested, so we keep track of depth.
Args:
text: a string
Returns:
a string
|
codesearchnet
|
def delete(self):
headers = self.headers
endpoint = ('https:
r = requests.delete(endpoint, headers=headers)
check_response(r)
|
Deletes this Folder.
Raises:
AuthError: Raised if Outlook returns a 401, generally caused by an invalid or expired access token.
|
codesearchnet
|
def __add__(self, other):
try:
other = as_dimension(other)
except (TypeError, ValueError):
return NotImplemented
if self._value is None or other.value is None:
return Dimension(None)
else:
return Dimension(self._value + other.value)
|
Returns the sum of `self` and `other`.
Dimensions are summed as follows:
```python
tf.compat.v1.Dimension(m) + tf.compat.v1.Dimension(n) ==
tf.compat.v1.Dimension(m + n)
tf.compat.v1.Dimension(m) + tf.compat.v1.Dimension(None) # equiv. to
tf.compat.v1.Dimension(None)
tf.compat.v1.Dimension(None) + tf.compat.v1.Dimension(n) # equiv. to
tf.compat.v1.Dimension(None)
tf.compat.v1.Dimension(None) + tf.compat.v1.Dimension(None) # equiv. to
tf.compat.v1.Dimension(None)
```
Args:
other: Another Dimension, or a value accepted by `as_dimension`.
Returns:
A Dimension whose value is the sum of `self` and `other`.
|
github-repos
|
def get_container_instance_logs(access_token, subscription_id, resource_group, container_group_name,
container_name=None):
if container_name is None:
container_name = container_group_name
endpoint = ''.join([get_rm_endpoint(),
'/subscriptions/', subscription_id,
'/resourcegroups/', resource_group,
'/providers/Microsoft.ContainerInstance/ContainerGroups/',
container_group_name,
'/containers/', container_name, '/logs?api-version=', CONTAINER_API])
return do_get(endpoint, access_token)
|
Get the container logs for containers in a container group.
Args:
access_token (str): A valid Azure authentication token.
subscription_id (str): Azure subscription id.
resource_group (str): Azure resource group name.
container_group_name (str): Name of container instance group.
container_name (str): Optional name of a container in the group.
Returns:
HTTP response. Container logs.
|
juraj-google-style
|
def apply_grad(self, grad, local_step=0, name=None):
grad = ops.convert_to_tensor(grad, self._dtype)
grad.get_shape().assert_is_compatible_with(self._shape)
local_step = math_ops.cast(ops.convert_to_tensor(local_step), _dtypes.int64)
return gen_data_flow_ops.resource_accumulator_apply_gradient(self._accumulator_ref, local_step=local_step, gradient=grad, name=name)
|
Attempts to apply a gradient to the accumulator.
The attempt is silently dropped if the gradient is stale, i.e., local_step
is less than the accumulator's global time step.
Args:
grad: The gradient tensor to be applied.
local_step: Time step at which the gradient was computed.
name: Optional name for the operation.
Returns:
The operation that (conditionally) applies a gradient to the accumulator.
Raises:
ValueError: If grad is of the wrong shape
|
github-repos
|
def _add_impact_severity(self, variant_obj, gemini_variant):
gemini_impact = gemini_variant['impact_severity']
if gemini_impact == 'MED':
gemini_impact = 'MEDIUM'
variant_obj.impact_severity = gemini_impact
|
Add the impact severity for the most severe consequence
Args:
variant_obj (puzzle.models.Variant)
gemini_variant (GeminiQueryRow)
|
juraj-google-style
|
def extract_response(self, extractors):
if (not extractors):
return {}
logger.log_debug('start to extract from response object.')
extracted_variables_mapping = OrderedDict()
extract_binds_order_dict = utils.ensure_mapping_format(extractors)
for (key, field) in extract_binds_order_dict.items():
extracted_variables_mapping[key] = self.extract_field(field)
return extracted_variables_mapping
|
extract value from requests.Response and store in OrderedDict.
Args:
extractors (list):
[
{"resp_status_code": "status_code"},
{"resp_headers_content_type": "headers.content-type"},
{"resp_content": "content"},
{"resp_content_person_first_name": "content.person.name.first_name"}
]
Returns:
OrderDict: variable binds ordered dict
|
codesearchnet
|
def from_str(text):
segment_list = chat_message_parser.parse(text)
return [ChatMessageSegment(segment.text, **segment.params)
for segment in segment_list]
|
Construct :class:`ChatMessageSegment` list parsed from a string.
Args:
text (str): Text to parse. May contain line breaks, URLs and
formatting markup (simplified Markdown and HTML) to be
converted into equivalent segments.
Returns:
List of :class:`ChatMessageSegment` objects.
|
juraj-google-style
|
def similar(self, **kwargs):
path = self._get_id_path('similar')
response = self._GET(path, kwargs)
self._set_attrs_to_values(response)
return response
|
Get the similar TV series for a specific TV series id.
Args:
page: (optional) Minimum value of 1. Expected value is an integer.
language: (optional) ISO 639-1 code.
append_to_response: (optional) Comma separated, any TV method.
Returns:
A dict respresentation of the JSON returned from the API.
|
juraj-google-style
|
def get_bottleneck_path(image_lists, label_name, index, bottleneck_dir, category, module_name):
module_name = module_name.replace(':
return (((get_image_path(image_lists, label_name, index, bottleneck_dir, category) + '_') + module_name) + '.txt')
|
Returns a path to a bottleneck file for a label at the given index.
Args:
image_lists: OrderedDict of training images for each label.
label_name: Label string we want to get an image for.
index: Integer offset of the image we want. This will be moduloed by the
available number of images for the label, so it can be arbitrarily large.
bottleneck_dir: Folder string holding cached files of bottleneck values.
category: Name string of set to pull images from - training, testing, or
validation.
module_name: The name of the image module being used.
Returns:
File system path string to an image that meets the requested parameters.
|
codesearchnet
|
def touch(path, content="", encoding="utf-8", overwrite=False):
path = os.path.abspath(path)
if not overwrite and os.path.exists(path):
logger.warning('touch: "%s" already exists', path)
return False
try:
logger.info("touch: %s", path)
with io.open(path, "wb") as f:
if not isinstance(content, six.binary_type):
content = content.encode(encoding)
f.write(content)
return True
except Exception as e:
logger.error("touch: %s failed. Error: %s", path, e)
return False
|
Create a file at the given path if it does not already exists.
Args:
path (str): Path to the file.
content (str): Optional content that will be written in the file.
encoding (str): Encoding in which to write the content.
Default: ``utf-8``
overwrite (bool): Overwrite the file if exists.
Returns:
bool: True if the operation is successful, False otherwise.
|
juraj-google-style
|
def get_individual_positions(individuals):
ind_pos = {}
if individuals:
for i, ind in enumerate(individuals):
ind_pos[ind] = i
return ind_pos
|
Return a dictionary with individual positions
Args:
individuals(list): A list with vcf individuals in correct order
Returns:
ind_pos(dict): Map from ind_id -> index position
|
juraj-google-style
|
def alias_tool(self, context_name, tool_name, tool_alias):
data = self._context(context_name)
aliases = data['tool_aliases']
if (tool_name in aliases):
raise SuiteError(('Tool %r in context %r is already aliased to %r' % (tool_name, context_name, aliases[tool_name])))
self._validate_tool(context_name, tool_name)
aliases[tool_name] = tool_alias
self._flush_tools()
|
Register an alias for a specific tool.
Note that a tool alias takes precedence over a context prefix/suffix.
Args:
context_name (str): Context containing the tool.
tool_name (str): Name of tool to alias.
tool_alias (str): Alias to give the tool.
|
codesearchnet
|
def prepend(self, line, font_attr_segs=None):
other = RichTextLines(line)
if font_attr_segs:
other.font_attr_segs[0] = font_attr_segs
self._extend_before(other)
|
Prepend (i.e., add to the front) a single line of text.
Args:
line: (str) The text to be added to the front.
font_attr_segs: (list of tuples) Font attribute segments of the appended
line.
|
github-repos
|
def add_answer_for_student(student_item, vote, rationale):
answers = get_answers_for_student(student_item)
answers.add_answer(vote, rationale)
sub_api.create_submission(student_item, {ANSWER_LIST_KEY: answers.get_answers_as_list()})
|
Add an answer for a student to the backend
Args:
student_item (dict): The location of the problem this submission is
associated with, as defined by a course, student, and item.
vote (int): the option that student voted for
rationale (str): the reason why the student vote for the option
|
codesearchnet
|
def sysctl(command):
out = subprocess.check_output(command)
result = out.split(b" ")[1]
try:
return int(result)
except ValueError:
return result
|
Run a sysctl command and parse the output.
Args:
command: A sysctl command with an argument, for example,
["sysctl", "hw.memsize"].
Returns:
The parsed output.
|
juraj-google-style
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.