code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def getNext(self, dataset, requires_initialization=False, shared_name=None):
def ta_wrapper(gn):
def _wrapper():
r = gn()
if isinstance(r, tensor_array_ops.TensorArray):
return r.stack()
else:
return r
return _wrapper
if context.executing_eagerly() or ops.inside_function():
iterator = iter(dataset)
return ta_wrapper(iterator._next_internal)
else:
if requires_initialization:
iterator = dataset_ops.make_initializable_iterator(dataset, shared_name)
self.evaluate(iterator.initializer)
else:
iterator = dataset_ops.make_one_shot_iterator(dataset)
get_next = iterator.get_next()
return ta_wrapper(lambda: get_next)
|
Returns a callable that returns the next element of the dataset.
Example use:
```python
# In both graph and eager modes
dataset = ...
get_next = self.getNext(dataset)
result = self.evaluate(get_next())
```
Args:
dataset: A dataset whose elements will be returned.
requires_initialization: Indicates that when the test is executed in graph
mode, it should use an initializable iterator to iterate through the
dataset (e.g. when it contains stateful nodes). Defaults to False.
shared_name: (Optional.) If non-empty, the returned iterator will be
shared under the given name across multiple sessions that share the same
devices (e.g. when using a remote server).
Returns:
A callable that returns the next element of `dataset`. Any `TensorArray`
objects `dataset` outputs are stacked.
|
github-repos
|
def gray2bgr(img):
img = img[..., None] if img.ndim == 2 else img
out_img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
return out_img
|
Convert a grayscale image to BGR image.
Args:
img (ndarray or str): The input image.
Returns:
ndarray: The converted BGR image.
|
juraj-google-style
|
def monitoring(line, cell=None):
parser = datalab.utils.commands.CommandParser(prog='monitoring', description=(
'Execute various Monitoring-related operations. Use "%monitoring '
'<command> -h" for help on a specific command.'))
list_parser = parser.subcommand(
'list', 'List the metrics or resource types in a monitored project.')
list_metric_parser = list_parser.subcommand(
'metrics',
'List the metrics that are available through the Monitoring API.')
list_metric_parser.add_argument(
'-t', '--type',
help='The type of metric(s) to list; can include wildchars.')
list_metric_parser.add_argument(
'-p', '--project', help='The project on which to execute the request.')
list_metric_parser.set_defaults(func=_list_metric_descriptors)
list_resource_parser = list_parser.subcommand(
'resource_types',
('List the monitored resource types that are available through the '
'Monitoring API.'))
list_resource_parser.add_argument(
'-p', '--project', help='The project on which to execute the request.')
list_resource_parser.add_argument(
'-t', '--type',
help='The resource type(s) to list; can include wildchars.')
list_resource_parser.set_defaults(func=_list_resource_descriptors)
list_group_parser = list_parser.subcommand(
'groups',
('List the Stackdriver groups in this project.'))
list_group_parser.add_argument(
'-p', '--project', help='The project on which to execute the request.')
list_group_parser.add_argument(
'-n', '--name',
help='The name of the group(s) to list; can include wildchars.')
list_group_parser.set_defaults(func=_list_groups)
return datalab.utils.commands.handle_magic_line(line, cell, parser)
|
Implements the monitoring cell magic for ipython notebooks.
Args:
line: the contents of the storage line.
Returns:
The results of executing the cell.
|
juraj-google-style
|
def _build_request_factory(cls, session: AppSession):
def request_factory(*args, **kwargs):
request = session.factory.class_map['Request'](*args, **kwargs)
user_agent = (session.args.user_agent or session.default_user_agent)
request.fields['User-Agent'] = user_agent
if session.args.referer:
request.fields['Referer'] = session.args.referer
for header_string in session.args.header:
request.fields.parse(header_string)
if session.args.http_compression:
request.fields['Accept-Encoding'] = 'gzip, deflate'
if session.args.no_cache:
request.fields['Cache-Control'] = 'no-cache, must-revalidate'
request.fields['Pragma'] = 'no-cache'
return request
return request_factory
|
Create the request factory.
A request factory is any callable object that returns a
:class:`.http.Request`. The callable must accept the same
arguments to Request.
Returns:
A callable object
|
codesearchnet
|
def get(self):
if len(self._queue) == 0:
return float('nan')
with warnings.catch_warnings(record=False):
warnings.simplefilter('ignore')
return np.nanmean(self._queue)
|
Calculates and returns the mean of the current sliding window.
Returns:
float: The mean of the values in the current sliding window.
Returns NaN if the window is empty.
|
github-repos
|
def save_graph(graph_str, dest_file, fmt=None, image_ratio=None):
g = pydot.graph_from_dot_data(graph_str)
if (fmt is None):
fmt = (os.path.splitext(dest_file)[1].lower().strip('.') or 'png')
if hasattr(g, ('write_' + fmt)):
write_fn = getattr(g, ('write_' + fmt))
else:
raise Exception(("Unsupported graph format: '%s'" % fmt))
if image_ratio:
g.set_ratio(str(image_ratio))
write_fn(dest_file)
return fmt
|
Render a graph to an image file.
Args:
graph_str (str): Dot-language graph string.
dest_file (str): Filepath to save the graph to.
fmt (str): Format, eg "png", "jpg".
image_ratio (float): Image ratio.
Returns:
String representing format that was written, such as 'png'.
|
codesearchnet
|
def scale(reader, writer, column, start, stop, multiple):
for i, row in enumerate(reader):
if i >= start and i <= stop:
row[column] = type(multiple)(row[column]) * multiple
writer.appendRecord(row)
|
Multiplies a value over a range of rows.
Args:
reader: A FileRecordStream object with input data.
writer: A FileRecordStream object to write output data to.
column: The column of data to modify.
start: The first row in the range to modify.
end: The last row in the range to modify.
multiple: The value to scale/multiply by.
|
juraj-google-style
|
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
if token_ids_1 is not None:
output += token_ids_1 + [self.sep_token_id]
return output
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A Funnel sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
github-repos
|
def StartProfiling(self, configuration, identifier, process_information):
if not configuration:
return
if configuration.HaveProfileParsers():
identifier = '{0:s}-parsers'.format(identifier)
self._cpu_time_profiler = profilers.CPUTimeProfiler(
identifier, configuration)
self._cpu_time_profiler.Start()
self._memory_profiler = profilers.MemoryProfiler(
identifier, configuration)
self._memory_profiler.Start()
self._process_information = process_information
|
Starts profiling.
Args:
configuration (ProfilingConfiguration): profiling configuration.
identifier (str): identifier of the profiling session used to create
the sample filename.
process_information (ProcessInfo): process information.
|
juraj-google-style
|
def _patch_expand_paths(self, settings, name, value):
return [self._patch_expand_path(settings, name, item)
for item in value]
|
Apply ``SettingsPostProcessor._patch_expand_path`` to each element in
list.
Args:
settings (dict): Current settings.
name (str): Setting name.
value (list): List of paths to patch.
Returns:
list: Patched path list to an absolute path.
|
juraj-google-style
|
def dbmin_mean(self, value=None):
if value is not None:
try:
value = float(value)
except ValueError:
raise ValueError('value {} need to be of type float '
'for field `dbmin_mean`'.format(value))
self._dbmin_mean = value
|
Corresponds to IDD Field `dbmin_mean`
Mean of extreme annual minimum dry-bulb temperature
Args:
value (float): value for IDD Field `dbmin_mean`
Unit: C
if `value` is None it will not be checked against the
specification and is assumed to be a missing value
Raises:
ValueError: if `value` is not a valid value
|
juraj-google-style
|
def __init__(self,
receive_port,
logdir,
always_flush=False):
debugger_directory = os.path.join(
os.path.expanduser(logdir), constants.DEBUGGER_DATA_DIRECTORY_NAME)
if not tf.io.gfile.exists(debugger_directory):
try:
tf.io.gfile.makedirs(debugger_directory)
logger.info("Created directory for debugger data: %s",
debugger_directory)
except tf.errors.OpError as e:
logger.fatal(
"Could not make directory for debugger data: %s. Error: %s",
debugger_directory, e)
self._events_writer_manager = events_writer_manager_lib.EventsWriterManager(
events_directory=debugger_directory,
always_flush=always_flush)
try:
self._events_writer_manager.write_event(
tf.compat.v1.Event(
wall_time=0, step=0, file_version=constants.EVENTS_VERSION))
except IOError as e:
logger.error(
"Writing to %s failed: %s",
self._events_writer_manager.get_current_file_name(), e)
self._registry_backup_file_path = os.path.join(
debugger_directory, constants.ALERT_REGISTRY_BACKUP_FILE_NAME)
initial_data = None
if tf.io.gfile.exists(self._registry_backup_file_path):
with tf.io.gfile.GFile(self._registry_backup_file_path, "r") as backup_file:
try:
initial_data = json.load(backup_file)
except ValueError as err:
logger.error(
"Could not parse contents of %s: %s",
self._registry_backup_file_path, err)
self._numerics_alert_registry = numerics_alert.NumericsAlertRegistry(
initialization_list=initial_data)
self._numerics_alert_lock = threading.Lock()
curried_handler_constructor = functools.partial(
DebuggerDataStreamHandler,
self._events_writer_manager,
self._numerics_alert_callback)
grpc_debug_server.EventListenerBaseServicer.__init__(
self, receive_port, curried_handler_constructor)
|
Receives health pills from a debugger and writes them to disk.
Args:
receive_port: The port at which to receive health pills from the
TensorFlow debugger.
logdir: The directory in which to write events files that TensorBoard will
read.
always_flush: A boolean indicating whether the EventsWriter will be
flushed after every write. Can be used for testing.
|
juraj-google-style
|
def add_graph(self, graph, global_step=None, graph_def=None):
if graph is not None and graph_def is not None:
raise ValueError('Please pass only graph, or graph_def (deprecated), but not both.')
if isinstance(graph, ops.Graph) or isinstance(graph_def, ops.Graph):
if not isinstance(graph, ops.Graph):
logging.warning('When passing a `Graph` object, please use the `graph` named argument instead of `graph_def`.')
graph = graph_def
true_graph_def = graph.as_graph_def(add_shapes=True)
self._write_plugin_assets(graph)
elif isinstance(graph, graph_pb2.GraphDef) or isinstance(graph_def, graph_pb2.GraphDef):
logging.warning('Passing a `GraphDef` to the SummaryWriter is deprecated. Pass a `Graph` object instead, such as `sess.graph`.')
if isinstance(graph, graph_pb2.GraphDef):
true_graph_def = graph
else:
true_graph_def = graph_def
else:
raise TypeError('The passed graph must be an instance of `Graph` or the deprecated `GraphDef`')
self._add_graph_def(true_graph_def, global_step)
|
Adds a `Graph` to the event file.
The graph described by the protocol buffer will be displayed by
TensorBoard. Most users pass a graph in the constructor instead.
Args:
graph: A `Graph` object, such as `sess.graph`.
global_step: Number. Optional global step counter to record with the
graph.
graph_def: DEPRECATED. Use the `graph` parameter instead.
Raises:
ValueError: If both graph and graph_def are passed to the method.
|
github-repos
|
def _AddDependencyEdges(self, rdf_artifact):
artifact_dependencies = artifact_registry.GetArtifactPathDependencies(rdf_artifact)
if artifact_dependencies:
for attribute in artifact_dependencies:
self._AddEdge(attribute, rdf_artifact.name)
else:
self.reachable_nodes.add(rdf_artifact.name)
self.graph[rdf_artifact.name].is_provided = True
|
Add an edge for every dependency of the given artifact.
This method gets the attribute names for a given artifact and for every
attribute it adds a directed edge from the attribute node to the artifact
node. If an artifact does not have any dependencies it is added to the set
of reachable nodes.
Args:
rdf_artifact: The artifact object.
|
codesearchnet
|
def _serialize_linear_biases(linear, nodelist):
linear_bytes = struct.pack(('<' + ('d' * len(linear))), *[linear[i] for i in nodelist])
return base64.b64encode(linear_bytes).decode('utf-8')
|
Serializes the linear biases.
Args:
linear: a interable object where linear[v] is the bias
associated with v.
nodelist (list): an ordered iterable containing the nodes.
Returns:
str: base 64 encoded string of little endian 8 byte floats,
one for each of the biases in linear. Ordered according
to nodelist.
Examples:
>>> _serialize_linear_biases({1: -1, 2: 1, 3: 0}, [1, 2, 3])
'AAAAAAAA8L8AAAAAAADwPwAAAAAAAAAA'
>>> _serialize_linear_biases({1: -1, 2: 1, 3: 0}, [3, 2, 1])
'AAAAAAAAAAAAAAAAAADwPwAAAAAAAPC/'
|
codesearchnet
|
def setMeterPassword(self, new_pwd, pwd='00000000'):
result = False
self.setContext('setMeterPassword')
try:
if ((len(new_pwd) != 8) or (len(pwd) != 8)):
self.writeCmdMsg('Passwords must be exactly eight characters.')
self.setContext('')
return result
if (not self.request(False)):
self.writeCmdMsg('Pre command read failed: check serial line.')
elif (not self.serialCmdPwdAuth(pwd)):
self.writeCmdMsg('Password failure')
else:
req_pwd = binascii.hexlify(new_pwd.zfill(8))
req_str = (('015731023030323028' + req_pwd) + '2903')
req_str += self.calc_crc16(req_str[2:].decode('hex'))
self.m_serial_port.write(req_str.decode('hex'))
if (self.m_serial_port.getResponse(self.getContext()).encode('hex') == '06'):
self.writeCmdMsg('Success(setMeterPassword): 06 returned.')
result = True
self.serialPostEnd()
except:
ekm_log(traceback.format_exc(sys.exc_info()))
self.setContext('')
return result
|
Serial Call to set meter password. USE WITH CAUTION.
Args:
new_pwd (str): 8 digit numeric password to set
pwd (str): Old 8 digit numeric password.
Returns:
bool: True on completion with ACK.
|
codesearchnet
|
def write_filter(script, filter_xml):
if isinstance(script, mlx.FilterScript):
script.filters.append(filter_xml)
elif isinstance(script, str):
script_file = open(script, 'a')
script_file.write(filter_xml)
script_file.close()
else:
print(filter_xml)
return None
|
Write filter to FilterScript object or filename
Args:
script (FilterScript object or filename str): the FilterScript object
or script filename to write the filter to.
filter_xml (str): the xml filter string
|
codesearchnet
|
def escalatee(self, main_type, sub_type, unique_id, escalatee_id, action='GET', params=None):
params = params or {}
url = '/v2/{}/{}/{}/escalatees/{}'.format(main_type, sub_type, unique_id, escalatee_id)
if action == 'GET':
return self.tcex.session.get(url, params=params)
if action == 'DELETE':
return self.tcex.session.delete(url)
if action == 'ADD':
return self.tcex.session.post(url)
return None
|
Args:
main_type:
sub_type:
unique_id:
escalatee_id:
action:
params:
Return:
|
juraj-google-style
|
def CacheFileSystem(self, path_spec, file_system):
identifier = self._GetFileSystemCacheIdentifier(path_spec)
self._file_system_cache.CacheObject(identifier, file_system)
|
Caches a file system object based on a path specification.
Args:
path_spec (PathSpec): path specification.
file_system (FileSystem): file system object.
|
juraj-google-style
|
def concatenate(inputs, axis=-1, **kwargs):
return Concatenate(axis=axis, **kwargs)(inputs)
|
Functional interface to the `Concatenate` layer.
Args:
inputs: A list of input tensors.
axis: Concatenation axis.
**kwargs: Standard layer keyword arguments.
Returns:
A tensor, the concatenation of the inputs alongside axis `axis`.
|
github-repos
|
def _build_watermark_updates(runner_execution_context: execution.FnApiRunnerExecutionContext, stage_inputs: Iterable[str], expected_timers: Iterable[translations.TimerFamilyId], pcolls_with_da: Set[str], transforms_w_splits: Set[str], watermarks_by_transform_and_timer_family: Dict[translations.TimerFamilyId, timestamp.Timestamp]) -> Dict[Union[str, translations.TimerFamilyId], timestamp.Timestamp]:
updates: Dict[Union[str, translations.TimerFamilyId], timestamp.Timestamp] = {}
def get_pcoll_id(transform_id):
buffer_id = runner_execution_context.input_transform_to_buffer_id[transform_id]
if buffer_id == translations.IMPULSE_BUFFER:
pcollection_id = transform_id
else:
_, pcollection_id = translations.split_buffer_id(buffer_id)
return pcollection_id
for pcoll in pcolls_with_da:
updates[pcoll] = timestamp.MIN_TIMESTAMP
for tr in transforms_w_splits:
pcoll_id = get_pcoll_id(tr)
updates[pcoll_id] = timestamp.MIN_TIMESTAMP
for timer_pcoll_id in expected_timers:
updates[timer_pcoll_id] = watermarks_by_transform_and_timer_family.get(timer_pcoll_id, timestamp.MAX_TIMESTAMP)
for transform_id in stage_inputs:
pcoll_id = get_pcoll_id(transform_id)
if pcoll_id not in updates:
updates[pcoll_id] = timestamp.MAX_TIMESTAMP
return updates
|
Builds a dictionary of PCollection (or TimerFamilyId) to timestamp.
Args:
stage_inputs: represent the set of expected input PCollections for a
stage. These do not include timers.
expected_timers: represent the set of TimerFamilyIds that the stage can
expect to receive as inputs.
pcolls_with_da: represent the set of stage input PCollections that had
delayed applications.
transforms_w_splits: represent the set of transforms in the stage that had
input splits.
watermarks_by_transform_and_timer_family: represent the set of watermark
holds to be added for each timer family.
|
github-repos
|
def start_router(router_class, router_name):
handle = router_class.remote(router_name)
ray.experimental.register_actor(router_name, handle)
handle.start.remote()
return handle
|
Wrapper for starting a router and register it.
Args:
router_class: The router class to instantiate.
router_name: The name to give to the router.
Returns:
A handle to newly started router actor.
|
codesearchnet
|
def authenticate_credentials(self, token):
try:
user_info = self.get_user_info(token)
except UserInfoRetrievalFailed:
msg = 'Failed to retrieve user info. Unable to authenticate.'
logger.error(msg)
raise exceptions.AuthenticationFailed(msg)
user, __ = get_user_model().objects.get_or_create(username=user_info['username'], defaults=user_info)
if not user.is_active:
raise exceptions.AuthenticationFailed('User inactive or deleted.')
return user, token
|
Validate the bearer token against the OAuth provider.
Arguments:
token (str): Access token to validate
Returns:
(tuple): tuple containing:
user (User): User associated with the access token
access_token (str): Access token
Raises:
AuthenticationFailed: The user is inactive, or retrieval of user info failed.
|
juraj-google-style
|
def get_angle_degrees(self, indices):
coords = ['x', 'y', 'z']
if isinstance(indices, pd.DataFrame):
i_pos = self.loc[(indices.index, coords)].values
b_pos = self.loc[(indices.loc[(:, 'b')], coords)].values
a_pos = self.loc[(indices.loc[(:, 'a')], coords)].values
else:
indices = np.array(indices)
if (len(indices.shape) == 1):
indices = indices[(None, :)]
i_pos = self.loc[(indices[(:, 0)], coords)].values
b_pos = self.loc[(indices[(:, 1)], coords)].values
a_pos = self.loc[(indices[(:, 2)], coords)].values
(BI, BA) = ((i_pos - b_pos), (a_pos - b_pos))
(bi, ba) = [(v / np.linalg.norm(v, axis=1)[(:, None)]) for v in (BI, BA)]
dot_product = np.sum((bi * ba), axis=1)
dot_product[(dot_product > 1)] = 1
dot_product[(dot_product < (- 1))] = (- 1)
angles = np.degrees(np.arccos(dot_product))
return angles
|
Return the angles between given atoms.
Calculates the angle in degrees between the atoms with
indices ``i, b, a``.
The indices can be given in three ways:
* As simple list ``[i, b, a]``
* As list of lists: ``[[i1, b1, a1], [i2, b2, a2]...]``
* As :class:`pd.DataFrame` where ``i`` is taken from the index and
``b`` and ``a`` from the respective columns ``'b'`` and ``'a'``.
Args:
indices (list):
Returns:
:class:`numpy.ndarray`: Vector of angles in degrees.
|
codesearchnet
|
def forward(self, hidden_states: torch.Tensor, original_hidden_states: Optional[torch.Tensor]=None, layer_idx: Optional[int]=None, attention_mask: Optional[torch.Tensor]=None, causal_mask: Optional[torch.Tensor]=None, past_key_value: Optional[ZambaHybridDynamicCache]=None, output_attentions: Optional[bool]=False, use_cache: Optional[bool]=False, cache_position: Optional[torch.LongTensor]=None, transformer_hidden_states: Optional[torch.Tensor]=None, **kwargs) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = hidden_states + transformer_hidden_states if transformer_hidden_states is not None else hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.mamba(hidden_states=hidden_states, cache_params=past_key_value, attention_mask=attention_mask)
self_attn_weights = None
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (past_key_value,)
return outputs
|
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
past_key_value (`ZambaHybridDynamicCache`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence.
|
github-repos
|
def _in_place_subclassed_model_reset(model):
assert not model._is_graph_network
version_utils.swap_class(model.__class__, training.Model, training_v1.Model, ops.executing_eagerly_outside_functions())
attributes_cache = {}
for name in dir(model):
if name == 'submodules' or name == '_self_tracked_trackables':
continue
try:
value = getattr(model, name)
except (AttributeError, ValueError, TypeError):
continue
if isinstance(value, Layer):
attributes_cache[name] = value
assert value in model.layers
if hasattr(value, 'layers') and value.layers:
raise ValueError('We do not support the use of nested layers in `model_to_estimator` at this time. Found nested layer: %s' % value)
elif isinstance(value, (list, tuple)) and name not in ('layers', '_layers', 'metrics', '_compile_metric_functions', '_output_loss_metrics'):
if value and all((isinstance(val, Layer) for val in value)):
raise ValueError('We do not support the use of list-of-layers attributes in subclassed models used with `model_to_estimator` at this time. Found list model: %s' % name)
layers_to_names = {value: key for key, value in attributes_cache.items()}
original_layers = list(model._flatten_layers(include_self=False, recursive=False))
setattr_tracking = model._setattr_tracking
model._setattr_tracking = False
model._self_tracked_trackables = []
for layer in original_layers:
config = layer.get_config()
if isinstance(layer, training.Model) and (not layer._is_graph_network):
raise ValueError('We do not support the use of nested subclassed models in `model_to_estimator` at this time. Found nested model: %s' % layer)
fresh_layer = layer.__class__.from_config(config)
name = layers_to_names[layer]
setattr(model, name, fresh_layer)
model._self_tracked_trackables.append(fresh_layer)
if not hasattr(model, '_original_attributes_cache') or model._original_attributes_cache is None:
if model.built:
attributes_to_cache = ['inputs', 'outputs', 'total_loss', 'optimizer', 'train_function', 'test_function', 'predict_function', '_training_endpoints', '_collected_trainable_weights', '_feed_inputs', '_feed_input_names', '_feed_input_shapes']
for name in attributes_to_cache:
attributes_cache[name] = getattr(model, name)
model._original_attributes_cache = attributes_cache
_reset_build_compile_trackers(model)
model._setattr_tracking = setattr_tracking
|
Substitute for model cloning that works for subclassed models.
Subclassed models cannot be cloned because their topology is not serializable.
To "instantiate" an identical model in a new TF graph, we reuse the original
model object, but we clear its state.
After calling this function on a model instance, you can use the model
instance as if it were a model clone (in particular you can use it in a new
graph).
This method clears the state of the input model. It is thus destructive.
However the original state can be restored fully by calling
`_in_place_subclassed_model_state_restoration`.
Args:
model: Instance of a Keras model created via subclassing.
Raises:
ValueError: In case the model uses a subclassed model as inner layer.
|
github-repos
|
def position(self, partition):
if not isinstance(partition, TopicPartition):
raise TypeError('partition must be a TopicPartition namedtuple')
assert self._subscription.is_assigned(partition), 'Partition is not assigned'
offset = self._subscription.assignment[partition].position
if offset is None:
self._update_fetch_positions([partition])
offset = self._subscription.assignment[partition].position
return offset
|
Get the offset of the next record that will be fetched
Arguments:
partition (TopicPartition): Partition to check
Returns:
int: Offset
|
juraj-google-style
|
def notify(
self,
method_name: str,
*args: Any,
trim_log_values: Optional[bool] = None,
validate_against_schema: Optional[bool] = None,
**kwargs: Any
) -> Response:
return self.send(
Notification(method_name, *args, **kwargs),
trim_log_values=trim_log_values,
validate_against_schema=validate_against_schema,
)
|
Send a JSON-RPC request, without expecting a response.
Args:
method_name: The remote procedure's method name.
args: Positional arguments passed to the remote procedure.
kwargs: Keyword arguments passed to the remote procedure.
trim_log_values: Abbreviate the log entries of requests and responses.
validate_against_schema: Validate response against the JSON-RPC schema.
|
juraj-google-style
|
def tomography_data(results, name, tomoset):
labels = tomography_circuit_names(tomoset, name)
circuits = tomoset['circuits']
data = []
prep = None
for j, _ in enumerate(labels):
counts = marginal_counts(results.get_counts(labels[j]),
tomoset['qubits'])
shots = sum(counts.values())
meas = circuits[j]['meas']
prep = circuits[j].get('prep', None)
meas_qubits = sorted(meas.keys())
if prep:
prep_qubits = sorted(prep.keys())
circuit = {}
for c in counts.keys():
circuit[c] = {}
circuit[c]['meas'] = [(meas[meas_qubits[k]], int(c[-1 - k]))
for k in range(len(meas_qubits))]
if prep:
circuit[c]['prep'] = [prep[prep_qubits[k]]
for k in range(len(prep_qubits))]
data.append({'counts': counts, 'shots': shots, 'circuit': circuit})
ret = {'data': data, 'meas_basis': tomoset['meas_basis']}
if prep:
ret['prep_basis'] = tomoset['prep_basis']
return ret
|
Return a results dict for a state or process tomography experiment.
Args:
results (Result): Results from execution of a process tomography
circuits on a backend.
name (string): The name of the circuit being reconstructed.
tomoset (tomography_set): the dict of tomography configurations.
Returns:
list: A list of dicts for the outcome of each process tomography
measurement circuit.
|
juraj-google-style
|
def as_matrix(self, depth=0):
if (depth in self._matrix_cache):
return self._matrix_cache[depth]
self._matrix_cache[depth] = matrix = Matrix(self, depth=depth)
return matrix
|
Create a matrix with self as node, cache it, return it.
Args:
depth (int): depth of the matrix.
Returns:
Matrix: an instance of Matrix.
|
codesearchnet
|
def DeregisterDefinition(self, data_type_definition):
name = data_type_definition.name.lower()
if (name not in self._definitions):
raise KeyError('Definition not set for name: {0:s}.'.format(data_type_definition.name))
del self._definitions[name]
|
Deregisters a data type definition.
The data type definitions are identified based on their lower case name.
Args:
data_type_definition (DataTypeDefinition): data type definition.
Raises:
KeyError: if a data type definition is not set for the corresponding
name.
|
codesearchnet
|
def vibrational_free_energy(self, temperature, volume):
y = self.debye_temperature(volume) / temperature
return self.kb * self.natoms * temperature * (
9./8. * y + 3 * np.log(1 - np.exp(-y)) - self.debye_integral(y))
|
Vibrational Helmholtz free energy, A_vib(V, T).
Eq(4) in doi.org/10.1016/j.comphy.2003.12.001
Args:
temperature (float): temperature in K
volume (float)
Returns:
float: vibrational free energy in eV
|
juraj-google-style
|
def _inter_df_op_handler(self, func, other, **kwargs):
axis = kwargs.get('axis', 0)
axis = (pandas.DataFrame()._get_axis_number(axis) if (axis is not None) else 0)
if isinstance(other, type(self)):
return self._inter_manager_operations(other, 'outer', (lambda x, y: func(x, y, **kwargs)))
else:
return self._scalar_operations(axis, other, (lambda df: func(df, other, **kwargs)))
|
Helper method for inter-manager and scalar operations.
Args:
func: The function to use on the Manager/scalar.
other: The other Manager/scalar.
Returns:
New DataManager with new data and index.
|
codesearchnet
|
def __init__(
self,
name: str,
dtype: type,
unique: bool,
validators: t.List[VALIDATOR_FUNCTION],
recoders: t.List[RECODER_FUNCTION],) -> None:
if validators is None:
validators = []
if recoders is None:
recoders = []
self.name = name
self.dtype = dtype
self.unique = unique
self.validators = self._dict_of_funcs(validators)
self.recoders = self._dict_of_funcs(recoders)
|
Construct a new `Column` object.
Args:
name (str): The exact name of the column in a ``pd.DataFrame``.
dtype (type): The type that each member of the recoded column must belong to.
unique (bool): Whether values are allowed to recur in this column.
validators (list): A list of validator functions.
recoders (list): A list of recoder functions.
|
juraj-google-style
|
def select_top_predictions(self, predictions):
scores = predictions.get_field('scores')
keep = torch.nonzero((scores > self.confidence_threshold)).squeeze(1)
predictions = predictions[keep]
scores = predictions.get_field('scores')
(_, idx) = scores.sort(0, descending=True)
return predictions[idx]
|
Select only predictions which have a `score` > self.confidence_threshold,
and returns the predictions in descending order of score
Arguments:
predictions (BoxList): the result of the computation by the model.
It should contain the field `scores`.
Returns:
prediction (BoxList): the detected objects. Additional information
of the detection properties can be found in the fields of
the BoxList via `prediction.fields()`
|
codesearchnet
|
def stop(pid):
if psutil.pid_exists(pid):
try:
p = psutil.Process(pid)
p.kill()
except Exception:
pass
|
Shut down a specific process.
Args:
pid: the pid of the process to shutdown.
|
codesearchnet
|
def add_stream(self, stream, path, compress, flags):
self.data_fileobj.seek(self.last_offset)
if compress == 'bz2':
stream = bz2_compress_stream(stream)
elif compress == 'xz':
stream = xz_compress_stream(stream)
elif compress is None:
pass
else:
raise ValueError('Unsupported compression type: {}'.format(compress))
size = write_to_file(stream, self.data_fileobj)
if os.sep == '\\':
path = path.replace('\\', '/')
e = dict(
name=six.u(path),
offset=self.last_offset,
size=size,
flags=flags,
)
self.entries.append(e)
self.last_offset += e['size']
|
Add the contents of an iterable to the MAR file.
Args:
stream (iterable): yields blocks of data
path (str): name of this file in the MAR file
compress (str): One of 'xz', 'bz2', or None. Defaults to None.
flags (int): permission of this file in the MAR file
|
juraj-google-style
|
def visualize_conv_activations(activation, name):
import math
with tf.name_scope(('visualize_act_' + name)):
(_, h, w, c) = activation.get_shape().as_list()
rows = []
c_per_row = int(math.sqrt(c))
for y in range(0, (c - c_per_row), c_per_row):
row = activation[(:, :, :, y:(y + c_per_row))]
cols = tf.unstack(row, axis=3)
row = tf.concat(cols, 1)
rows.append(row)
viz = tf.concat(rows, 2)
tf.summary.image(('visualize_act_' + name), tf.expand_dims(viz, (- 1)))
|
Visualize activations for convolution layers.
Remarks:
This tries to place all activations into a square.
Args:
activation: tensor with the activation [B,H,W,C]
name: label for tensorboard
Returns:
image of almost all activations
|
codesearchnet
|
def get_data(self, columns, type='ndarray', with_index=False):
res = self.select_columns(columns)
if type == 'ndarray':
if with_index:
return res.reset_index().values
else:
return res.values
elif type == 'list':
if with_index:
return res.reset_index().values.tolist()
else:
return res.values.tolist()
elif type == 'dataframe':
if with_index:
return res.reset_index()
else:
return res
|
获取不同格式的数据
Arguments:
columns {[type]} -- [description]
Keyword Arguments:
type {str} -- [description] (default: {'ndarray'})
with_index {bool} -- [description] (default: {False})
Returns:
[type] -- [description]
|
juraj-google-style
|
def _parse(json_str: str, primitive_cls: Type[Time]) -> Time:
try:
time = datetime.datetime.strptime(json_str, '%H:%M:%S').time()
return _primitive_time_utils.build_time(time, _primitive_time_utils.TimePrecision.MICROSECOND.SECOND, primitive_cls)
except ValueError:
pass
try:
time = datetime.datetime.strptime(json_str, '%H:%M:%S.%f').time()
if _primitive_time_utils.PRECISION_PATTERN_MILLISECOND.search(json_str) is not None:
return _primitive_time_utils.build_time(time, _primitive_time_utils.TimePrecision.MILLISECOND, primitive_cls)
elif _primitive_time_utils.PRECISION_PATTERN_MICROSECOND.search(json_str) is not None:
return _primitive_time_utils.build_time(time, _primitive_time_utils.TimePrecision.MICROSECOND, primitive_cls)
except ValueError:
pass
raise fhir_errors.InvalidFhirError(f'Invalid Time: {json_str!r}.')
|
Parses the json_str into a Time FHIR primitive.
Args:
json_str: The raw JSON string to parse.
primitive_cls: The FHIR primitive to parse into.
Returns:
A FHIR primitive Time instance.
Raises:
fhir_errors.InvalidFhirError: In the event that no FHIR primitive Time
format was able to properly parse the json_str.
|
github-repos
|
def _gauss(mean: int, sigma: int) -> int:
return int(random.gauss(mean, sigma))
|
Creates a variation from a base value
Args:
mean: base value
sigma: gaussian sigma
Returns: random value
|
juraj-google-style
|
def _validate_required(self, settings, name, value):
if not value:
raise SettingsInvalidError(("Required value from setting '{name}' "
"must not be "
"empty.").format(name=name))
return value
|
Validate a required setting (value can not be empty)
Args:
settings (dict): Current settings.
name (str): Setting name.
value (str): Required value to validate.
Raises:
boussole.exceptions.SettingsInvalidError: If value is empty.
Returns:
str: Validated value.
|
juraj-google-style
|
def add_error(self, position, e):
if self.result != TestResultEnums.TEST_RESULT_FAIL:
self.result = TestResultEnums.TEST_RESULT_ERROR
if position in self.extra_errors:
raise Error('An exception is already recorded with position "%s", cannot reuse.' % position)
if isinstance(e, ExceptionRecord):
self.extra_errors[position] = e
else:
self.extra_errors[position] = ExceptionRecord(e, position=position)
|
Add extra error happened during a test.
If the test has passed or skipped, this will mark the test result as
ERROR.
If an error is added the test record, the record's result is equivalent
to the case where an uncaught exception happened.
If the test record has not recorded any error, the newly added error
would be the main error of the test record. Otherwise the newly added
error is added to the record's extra errors.
Args:
position: string, where this error occurred, e.g. 'teardown_test'.
e: An exception or a `signals.ExceptionRecord` object.
|
github-repos
|
def process_function_type_comment(node, op, func, ctx):
if not op.annotation:
return
comment, line = op.annotation
if func.signature.annotations:
ctx.errorlog.redundant_function_type_comment(op.code.filename, line)
return
fake_stack = ctx.vm.simple_stack(op.at_line(line))
m = _FUNCTION_TYPE_COMMENT_RE.match(comment)
if not m:
ctx.errorlog.invalid_function_type_comment(fake_stack, comment)
return
args, return_type = m.groups()
assert args is not None and return_type is not None
if args != '...':
annot = args.strip()
try:
ctx.annotation_utils.eval_multi_arg_annotation(node, func, annot, fake_stack)
except abstract_utils.ConversionError:
ctx.errorlog.invalid_function_type_comment(fake_stack, annot, details='Must be constant.')
ret = ctx.convert.build_string(None, return_type)
func.signature.set_annotation('return', ctx.annotation_utils.extract_annotation(node, ret, 'return', fake_stack))
|
Modifies annotations from a function type comment.
Checks if a type comment is present for the function. If so, the type
comment is used to populate annotations. It is an error to have
a type comment when annotations is not empty.
Args:
node: The current node.
op: An opcode (used to determine filename and line number).
func: An abstract.InterpreterFunction.
ctx: The current context.
|
github-repos
|
def is_collection_aligned(self, data_collection):
if self._collection_type != data_collection._collection_type:
return False
elif len(self.values) != len(data_collection.values):
return False
elif self.datetimes != data_collection.datetimes:
return False
else:
return True
|
Check if this Data Collection is aligned with another.
Aligned Data Collections are of the same Data Collection class, have the
same number of values and have matching datetimes.
Args:
data_collection: The Data Collection which you want to test if this
collection is aligned with.
Return:
True if collections are aligned, False if not aligned
|
juraj-google-style
|
def get_metadata(self, resource, keys):
self.metadata_service.set_auth(self._token_metadata)
return self.metadata_service.get(resource, keys)
|
Gets the values for given keys associated with the given resource.
Args:
resource (intern.resource.boss.BossResource)
keys (list)
Returns:
(dictionary)
Raises:
HTTPErrorList on failure.
|
juraj-google-style
|
def from_dict(cls, data):
try:
fulfillment = _fulfillment_from_details(data['condition']['details'])
except KeyError:
fulfillment = data['condition']['uri']
try:
amount = int(data['amount'])
except ValueError:
raise AmountError('Invalid amount: %s' % data['amount'])
return cls(fulfillment, data['public_keys'], amount)
|
Transforms a Python dictionary to an Output object.
Note:
To pass a serialization cycle multiple times, a
Cryptoconditions Fulfillment needs to be present in the
passed-in dictionary, as Condition URIs are not serializable
anymore.
Args:
data (dict): The dict to be transformed.
Returns:
:class:`~bigchaindb.common.transaction.Output`
|
juraj-google-style
|
def GetFileEntryByPathSpec(self, path_spec):
volume_index = apfs_helper.APFSContainerPathSpecGetVolumeIndex(path_spec)
if volume_index is None:
location = getattr(path_spec, 'location', None)
if location is None or location != self.LOCATION_ROOT:
return None
return apfs_container_file_entry.APFSContainerFileEntry(
self._resolver_context, self, path_spec, is_root=True,
is_virtual=True)
if (volume_index < 0 or
volume_index >= self._fsapfs_container.number_of_volumes):
return None
return apfs_container_file_entry.APFSContainerFileEntry(
self._resolver_context, self, path_spec)
|
Retrieves a file entry for a path specification.
Args:
path_spec (PathSpec): a path specification.
Returns:
APFSContainerFileEntry: a file entry or None if not exists.
|
juraj-google-style
|
def GetName(self, number):
value = self._data_type_definition.values_per_number.get(number, None)
if not value:
return None
return value.name
|
Retrieves the name of an enumeration value by number.
Args:
number (int): number.
Returns:
str: name of the enumeration value or None if no corresponding
enumeration value was found.
|
juraj-google-style
|
def _get_sync(self, url):
response = self.session.get(url)
if (response.status_code == requests.codes.ok):
return response.json()
else:
raise HTTPError
|
Internal method used for GET requests
Args:
url (str): URL to fetch
Returns:
Individual URL request's response
Raises:
HTTPError: If HTTP request failed.
|
codesearchnet
|
def get_modname_from_modpath(module_fpath):
modsubdir_list = get_module_subdir_list(module_fpath)
modname = '.'.join(modsubdir_list)
modname = modname.replace('.__init__', '').strip()
modname = modname.replace('.__main__', '').strip()
return modname
|
returns importable name from file path
get_modname_from_modpath
Args:
module_fpath (str): module filepath
Returns:
str: modname
Example:
>>> # ENABLE_DOCTEST
>>> from utool.util_path import * # NOQA
>>> import utool as ut
>>> module_fpath = ut.util_path.__file__
>>> modname = ut.get_modname_from_modpath(module_fpath)
>>> result = modname
>>> print(result)
utool.util_path
|
codesearchnet
|
def post_request(profile, resource, payload):
url = get_url(profile, resource)
headers = get_headers(profile)
response = requests.post(url, json=payload, headers=headers)
return response.json()
|
Do a POST request to Github's API.
Args:
profile
A profile generated from ``simplygithub.authentication.profile``.
Such profiles tell this module (i) the ``repo`` to connect to,
and (ii) the ``token`` to connect with.
resource
The part of a Github API URL that comes after ``.../:repo/git``.
For instance, for ``.../:repo/git/commits``, it's ``/commits``.
payload
A dict of values to send as the payload of the POST request.
The data will be JSON-encoded.
Returns:
The body of the response, converted from JSON into a Python dict.
|
codesearchnet
|
def create_identity_with_nan_gradients_fn(have_nan_gradients):
@custom_gradient.custom_gradient
def _identity_with_nan_gradients(x):
x = array_ops.identity(x)
def grad(dx):
return cond.cond(have_nan_gradients, lambda: dx * float('NaN'), lambda: dx)
return (x, grad)
def identity_with_nan_gradients(x):
return _identity_with_nan_gradients(x)
return identity_with_nan_gradients
|
Returns a function that optionally has NaN gradients.
This serves as a hook to introduce NaN gradients to a model. This returns an
identity function. The identity's gradient function will check if the boolean
tensor `have_nan_gradients` is True. If so, the gradient will be NaN.
Otherwise, the gradient will also be the identity.
Args:
have_nan_gradients: A scalar boolean tensor. If True, gradients will be NaN.
Otherwise, the gradient function is the identity function.
Returns:
An identity function whose gradient function will return NaNs, if
`have_nan_gradients` is True.
|
github-repos
|
def update_config_pwd(msg, cfg):
msg_type = msg.__class__.__name__.lower()
key_fmt = msg.profile + "_" + msg_type
if isinstance(msg._auth, (MutableSequence, tuple)):
cfg.pwd[key_fmt] = " :: ".join(msg._auth)
else:
cfg.pwd[key_fmt] = msg._auth
|
Updates the profile's auth entry with values set by the user.
This will overwrite existing values.
Args:
:msg: (Message class) an instance of a message class.
:cfg: (jsonconfig.Config) config instance.
|
juraj-google-style
|
def pylint_check(files):
files = fs.wrap_paths(files)
cfg_path = conf.get_path('lint.pylint_cfg', 'ops/tools/pylint.ini')
pylint_cmd = 'pylint --rcfile {} {}'.format(cfg_path, files)
return shell.run(pylint_cmd, exit_on_error=False).return_code
|
Run code checks using pylint.
Args:
files (list[str]):
A list of files to check
Returns:
bool: **True** if all files passed the checks, **False** otherwise.
|
juraj-google-style
|
def read_undone_from_datastore(self, shard_id=None, num_shards=None):
if (shard_id is not None):
shards_list = [((i + shard_id) % num_shards) for i in range(num_shards)]
else:
shards_list = []
shards_list.append(None)
for shard in shards_list:
self._read_undone_shard_from_datastore(shard)
if self._work:
return shard
return None
|
Reads undone work from the datastore.
If shard_id and num_shards are specified then this method will attempt
to read undone work for shard with id shard_id. If no undone work was found
then it will try to read shard (shard_id+1) and so on until either found
shard with undone work or all shards are read.
Args:
shard_id: Id of the start shard
num_shards: total number of shards
Returns:
id of the shard with undone work which was read. None means that work
from all datastore was read.
|
codesearchnet
|
def zopen(filename, *args, **kwargs):
if ((Path is not None) and isinstance(filename, Path)):
filename = str(filename)
(name, ext) = os.path.splitext(filename)
ext = ext.upper()
if (ext == '.BZ2'):
if (PY_VERSION[0] >= 3):
return bz2.open(filename, *args, **kwargs)
else:
args = list(args)
if (len(args) > 0):
args[0] = ''.join([c for c in args[0] if (c != 't')])
if ('mode' in kwargs):
kwargs['mode'] = ''.join([c for c in kwargs['mode'] if (c != 't')])
return bz2.BZ2File(filename, *args, **kwargs)
elif (ext in ('.GZ', '.Z')):
return gzip.open(filename, *args, **kwargs)
else:
return io.open(filename, *args, **kwargs)
|
This function wraps around the bz2, gzip and standard python's open
function to deal intelligently with bzipped, gzipped or standard text
files.
Args:
filename (str/Path): filename or pathlib.Path.
\*args: Standard args for python open(..). E.g., 'r' for read, 'w' for
write.
\*\*kwargs: Standard kwargs for python open(..).
Returns:
File-like object. Supports with context.
|
codesearchnet
|
def update_note(self, note):
if ('key' in note):
noteid = note.pop('key', None)
else:
noteid = uuid.uuid4().hex
if ('version' in note):
version = note.pop('version', None)
url = ('%s/i/%s/v/%s?response=1' % (DATA_URL, noteid, version))
else:
url = ('%s/i/%s?response=1' % (DATA_URL, noteid))
note = self.__remove_simplenote_api_fields(note)
request = Request(url, data=json.dumps(note).encode('utf-8'))
request.add_header(self.header, self.get_token())
request.add_header('Content-Type', 'application/json')
response = ''
try:
response = urllib2.urlopen(request)
except HTTPError as e:
if (e.code == 401):
raise SimplenoteLoginFailed('Login to Simplenote API failed! Check Token.')
else:
return (e, (- 1))
except IOError as e:
return (e, (- 1))
note = json.loads(response.read().decode('utf-8'))
note = self.__add_simplenote_api_fields(note, noteid, int(response.info().get('X-Simperium-Version')))
return (note, 0)
|
Method to update a specific note object, if the note object does not
have a "key" field, a new note is created
Arguments
- note (dict): note object to update
Returns:
A tuple `(note, status)`
- note (dict): note object
- status (int): 0 on success and -1 otherwise
|
codesearchnet
|
def find_all(self, collection):
obj = getattr(self.db, collection)
result = obj.find()
return result
|
Search a collection for all available items.
Args:
collection: The db collection. See main class documentation.
Returns:
List of all items in the collection.
|
juraj-google-style
|
def active_futures(ticker: str, dt) -> str:
t_info = ticker.split()
(prefix, asset) = (' '.join(t_info[:(- 1)]), t_info[(- 1)])
info = const.market_info(f'{prefix[:(- 1)]}1 {asset}')
(f1, f2) = (f'{prefix[:(- 1)]}1 {asset}', f'{prefix[:(- 1)]}2 {asset}')
fut_2 = fut_ticker(gen_ticker=f2, dt=dt, freq=info['freq'])
fut_1 = fut_ticker(gen_ticker=f1, dt=dt, freq=info['freq'])
fut_tk = bdp(tickers=[fut_1, fut_2], flds='Last_Tradeable_Dt', cache=True)
if (pd.Timestamp(dt).month < pd.Timestamp(fut_tk.last_tradeable_dt[0]).month):
return fut_1
d1 = bdib(ticker=f1, dt=dt)
d2 = bdib(ticker=f2, dt=dt)
return (fut_1 if (d1[f1].volume.sum() > d2[f2].volume.sum()) else fut_2)
|
Active futures contract
Args:
ticker: futures ticker, i.e., ESA Index, Z A Index, CLA Comdty, etc.
dt: date
Returns:
str: ticker name
|
codesearchnet
|
def _list(self, request, start_response):
configs = []
generator = directory_list_generator.DirectoryListGenerator(request)
for config in self._config_manager.configs.itervalues():
if (config != self.API_CONFIG):
configs.append(config)
directory = generator.pretty_print_config_to_json(configs)
if (not directory):
_logger.error('Failed to get API directory')
return util.send_wsgi_not_found_response(start_response)
return self._send_success_response(directory, start_response)
|
Sends HTTP response containing the API directory.
This calls start_response and returns the response body.
Args:
request: An ApiRequest, the transformed request sent to the Discovery API.
start_response: A function with semantics defined in PEP-333.
Returns:
A string containing the response body.
|
codesearchnet
|
def wrap_callable(cls, uri, methods, callable_obj):
if isinstance(callable_obj, HandlerMeta):
callable_obj.base_endpoint = uri
callable_obj.is_valid = True
return callable_obj
if isinstance(callable_obj, types.FunctionType):
return cls(uri=uri, methods=methods, callable_obj=callable_obj)
raise RouteError('Invalid handler type.')
|
Wraps function-based callable_obj into a `Route` instance, else
proxies a `bottle_neck.handlers.BaseHandler` subclass instance.
Args:
uri (str): The uri relative path.
methods (tuple): A tuple of valid method strings.
callable_obj (instance): The callable object.
Returns:
A route instance.
Raises:
RouteError for invalid callable object type.
|
codesearchnet
|
def get_data_layout(self, data_shape):
raise NotImplementedError()
|
Retrieve the `TensorLayout` for the input data.
Args:
data_shape: shape for the input data in list or tuple format.
Returns:
The `TensorLayout` for the data, which can be used by
`backend.distribute_value()` to redistribute a input data.
|
github-repos
|
def __init__(self, event_count=0, first_timestamp=-1, last_timestamp=-1):
self.event_count = event_count
self.first_timestamp = first_timestamp
self.last_timestamp = last_timestamp
|
Tracks events for a single category of values.
Args:
event_count: The initial event count to use.
first_timestamp: The timestamp of the first event with this value.
last_timestamp: The timestamp of the last event with this category of
values.
|
juraj-google-style
|
def get_content_metadata(self, enterprise_customer):
content_metadata = OrderedDict()
if enterprise_customer.catalog:
response = self._load_data(
self.ENTERPRISE_CUSTOMER_ENDPOINT,
detail_resource='courses',
resource_id=str(enterprise_customer.uuid),
traverse_pagination=True,
)
for course in response['results']:
for course_run in course['course_runs']:
course_run['content_type'] = 'courserun'
content_metadata[course_run['key']] = course_run
for enterprise_customer_catalog in enterprise_customer.enterprise_customer_catalogs.all():
response = self._load_data(
self.ENTERPRISE_CUSTOMER_CATALOGS_ENDPOINT,
resource_id=str(enterprise_customer_catalog.uuid),
traverse_pagination=True,
querystring={'page_size': 1000},
)
for item in response['results']:
content_id = utils.get_content_metadata_item_id(item)
content_metadata[content_id] = item
return content_metadata.values()
|
Return all content metadata contained in the catalogs associated with the EnterpriseCustomer.
Arguments:
enterprise_customer (EnterpriseCustomer): The EnterpriseCustomer to return content metadata for.
Returns:
list: List of dicts containing content metadata.
|
juraj-google-style
|
def _get_populate_values(self, instance) -> Tuple[str, str]:
return [
(
lang_code,
self._get_populate_from_value(
instance,
self.populate_from,
lang_code
),
)
for lang_code, _ in settings.LANGUAGES
]
|
Gets all values (for each language) from the
specified's instance's `populate_from` field.
Arguments:
instance:
The instance to get the values from.
Returns:
A list of (lang_code, value) tuples.
|
juraj-google-style
|
def filter_sequences(self, seq_type):
return DictList((x for x in self.sequences if isinstance(x, seq_type)))
|
Return a DictList of only specified types in the sequences attribute.
Args:
seq_type (SeqProp): Object type
Returns:
DictList: A filtered DictList of specified object type only
|
codesearchnet
|
def softplus_inverse(x, name=None):
with tf.name_scope(name or "softplus_inverse"):
x = tf.convert_to_tensor(value=x, name="x")
threshold = np.log(np.finfo(dtype_util.as_numpy_dtype(x.dtype)).eps) + 2.
is_too_small = tf.less(x, np.exp(threshold))
is_too_large = tf.greater(x, -threshold)
too_small_value = tf.math.log(x)
too_large_value = x
x = tf.where(tf.logical_or(is_too_small, is_too_large), tf.ones_like(x), x)
y = x + tf.math.log(-tf.math.expm1(-x))
return tf.where(is_too_small, too_small_value,
tf.where(is_too_large, too_large_value, y))
|
Computes the inverse softplus, i.e., x = softplus_inverse(softplus(x)).
Mathematically this op is equivalent to:
```none
softplus_inverse = log(exp(x) - 1.)
```
Args:
x: `Tensor`. Non-negative (not enforced), floating-point.
name: A name for the operation (optional).
Returns:
`Tensor`. Has the same type/shape as input `x`.
|
juraj-google-style
|
def __call__(self, *args, **kwargs):
for loop, m in self.iter_methods():
coro = m(*args, **kwargs)
self.submit_coroutine(coro, loop)
|
Triggers all stored callbacks (coroutines)
Args:
*args: Positional arguments to pass to callbacks
**kwargs: Keyword arguments to pass to callbacks
|
juraj-google-style
|
def map_resources(self):
assert not context.executing_eagerly()
object_map = object_identity.ObjectIdentityDictionary()
tensor_map = object_identity.ObjectIdentityDictionary()
asset_info = _AssetInfo(asset_defs=[], asset_initializers_by_resource=object_identity.ObjectIdentityDictionary(), asset_filename_map={}, asset_index={})
for node_id in _dependency_sorted_node_ids(self):
obj = self.nodes[node_id]
tensors = obj._export_to_saved_model_graph(object_map=object_map, tensor_map=tensor_map, options=self.options)
if isinstance(obj, asset.Asset):
_add_asset_info(obj, asset_info, tensor_map[obj.asset_path])
if tensors:
for tensor in tensors:
self.captured_tensor_node_ids[tensor] = node_id
return (object_map, tensor_map, asset_info)
|
Makes new resource handle ops corresponding to existing resource tensors.
Creates resource handle ops in the current default graph, whereas
`accessible_objects` will be from an eager context. Resource mapping adds
resource handle ops to the main GraphDef of a SavedModel, which allows the
C++ loader API to interact with resources.
Returns:
A tuple of (object_map, tensor_map, asset_info):
object_map: A dictionary mapping from object in `accessible_objects` to
replacement objects created to hold the new resource tensors.
tensor_map: A dictionary mapping from resource tensors extracted from
`accessible_objects` to newly created resource tensors.
asset_info: An _AssetInfo tuple describing external assets referenced
from accessible_objects.
|
github-repos
|
def filter(self, predicates):
tys = []
for col_name, raw_column in self.raw_columns.items():
dtype = str(raw_column.dtype)
if dtype == 'object' or dtype == '|S64':
weld_type = WeldVec(WeldChar())
else:
weld_type = grizzly_impl.numpy_to_weld_type_mapping[dtype]
tys.append(weld_type)
if len(tys) == 1:
weld_type = tys[0]
else:
weld_type = WeldStruct(tys)
if isinstance(predicates, SeriesWeld):
predicates = predicates.expr
return DataFrameWeldExpr(
grizzly_impl.filter(
grizzly_impl.zip_columns(
self.raw_columns.values(),
),
predicates
),
self.raw_columns.keys(),
weld_type
)
|
Summary
Args:
grouping_column_name (TYPE): Description
Returns:
TYPE: Description
|
juraj-google-style
|
def sampler_to_iterator(dataset, sampler):
for sample in sampler:
if isinstance(sample, (list, tuple)):
(yield [dataset[i] for i in sample])
else:
(yield dataset[sample])
|
Given a batch sampler or sampler returns examples instead of indices
Args:
dataset (torch.utils.data.Dataset): Dataset to sample from.
sampler (torch.utils.data.sampler.Sampler): Sampler over the dataset.
Returns:
generator over dataset examples
|
codesearchnet
|
def get_device_name(self, cached=True):
if (cached and (self.name is not None)):
return self.name
device_name = self.get_characteristic_handle_from_uuid(UUID_DEVICE_NAME)
if (device_name is None):
logger.warn('Failed to find handle for device name')
return None
self.name = self.dongle._read_attribute(self.conn_handle, device_name)
return self.name
|
Returns the SK8 device BLE name.
Args:
cached (bool): if True, returns the locally cached copy of the name. If this is
set to False, or the name is not cached, it will read from the device instead.
Returns:
str. The current device name. May be `None` if an error occurs.
|
codesearchnet
|
def save_collection(png_filename_base, numpy_data, start_layers_at=1):
file_ext = png_filename_base.split('.')[-1]
if file_ext in ['png']:
file_base = '.'.join(png_filename_base.split('.')[:-1])
else:
file_base = png_filename_base
file_ext = ".png"
file_base_array = file_base.split('*')
output_files = []
i = start_layers_at
for layer in numpy_data:
layer_filename = (str(i).zfill(6)).join(file_base_array) + file_ext
output_files.append(save(layer_filename, layer))
i += 1
return output_files
|
Export a numpy array to a set of png files, with each Z-index 2D
array as its own 2D file.
Arguments:
png_filename_base: A filename template, such as "my-image-*.png"
which will lead to a collection of files named
"my-image-0.png", "my-image-1.png", etc.
numpy_data: The numpy array data to save to png.
Returns:
Array. A list of expanded filenames that hold png data.
|
juraj-google-style
|
def get_program(self, program_resource_name: str) -> Dict:
return self.service.projects().programs().get(name=program_resource_name).execute()
|
Returns the previously created quantum program.
Params:
program_resource_name: A string of the form
`projects/project_id/programs/program_id`.
Returns:
A dictionary containing the metadata and the program.
|
codesearchnet
|
def auth_middleware(policy):
assert isinstance(policy, AbstractAuthentication)
async def _auth_middleware_factory(app, handler):
async def _middleware_handler(request):
request[POLICY_KEY] = policy
response = (await handler(request))
(await policy.process_response(request, response))
return response
return _middleware_handler
return _auth_middleware_factory
|
Returns a aiohttp_auth middleware factory for use by the aiohttp
application object.
Args:
policy: A authentication policy with a base class of
AbstractAuthentication.
|
codesearchnet
|
def insert_json(table=None, bulk_size=1000, concurrency=25, hosts=None, output_fmt=None):
if (not hosts):
return print_only(table)
queries = (to_insert(table, d) for d in dicts_from_stdin())
bulk_queries = as_bulk_queries(queries, bulk_size)
print('Executing inserts: bulk_size={} concurrency={}'.format(bulk_size, concurrency), file=sys.stderr)
stats = Stats()
with clients.client(hosts, concurrency=concurrency) as client:
f = partial(aio.measure, stats, client.execute_many)
try:
aio.run_many(f, bulk_queries, concurrency)
except clients.SqlException as e:
raise SystemExit(str(e))
try:
print(format_stats(stats.get(), output_fmt))
except KeyError:
if (not stats.sampler.values):
raise SystemExit('No data received via stdin')
raise
|
Insert JSON lines fed into stdin into a Crate cluster.
If no hosts are specified the statements will be printed.
Args:
table: Target table name.
bulk_size: Bulk size of the insert statements.
concurrency: Number of operations to run concurrently.
hosts: hostname:port pairs of the Crate nodes
|
codesearchnet
|
def ensure_app_cache_dir(appname, *args):
from ubelt import util_path
dpath = get_app_cache_dir(appname, *args)
util_path.ensuredir(dpath)
return dpath
|
Calls `get_app_cache_dir` but ensures the directory exists.
Args:
appname (str): the name of the application
*args: any other subdirectories may be specified
SeeAlso:
get_app_cache_dir
Example:
>>> import ubelt as ub
>>> dpath = ub.ensure_app_cache_dir('ubelt')
>>> assert exists(dpath)
|
codesearchnet
|
def downsample_residual(x, output_channels, dim='2d', stride=1, scope='h'):
with tf.variable_scope(scope):
if stride > 1:
avg_pool = CONFIG[dim]['avg_pool']
x = avg_pool(x,
pool_size=(stride, stride),
strides=(stride, stride),
padding='VALID')
input_channels = tf.shape(x)[3]
diff = output_channels - input_channels
x = tf.pad(
x, [[0, 0], [0, 0], [0, 0],
[diff
return x
|
Downsamples 'x' by `stride` using average pooling.
Args:
x: input tensor of size [N, H, W, C]
output_channels: Desired number of output channels.
dim: '2d' if 2-dimensional, '3d' if 3-dimensional.
stride: What stride to use. Usually 1 or 2.
scope: Optional variable scope.
Returns:
A downsampled tensor of size [N, H/2, W/2, output_channels] if stride
is 2, else returns a tensor of size [N, H, W, output_channels] if
stride is 1.
|
juraj-google-style
|
def make_agent() -> EcommerceAgent:
config_path = find_config('tfidf_retrieve')
skill = build_model(config_path)
agent = EcommerceAgent(skills=[skill])
return agent
|
Make an agent
Returns:
agent: created Ecommerce agent
|
codesearchnet
|
def appliance_device_read_community(self):
if (not self.__appliance_device_read_community):
self.__appliance_device_read_community = ApplianceDeviceReadCommunity(self.__connection)
return self.__appliance_device_read_community
|
Gets the ApplianceDeviceReadCommunity API client.
Returns:
ApplianceDeviceReadCommunity:
|
codesearchnet
|
def __random_density_hs(N, rank=None, seed=None):
G = __ginibre_matrix(N, rank, seed)
G = G.dot(G.conj().T)
return (G / np.trace(G))
|
Generate a random density matrix from the Hilbert-Schmidt metric.
Args:
N (int): the length of the density matrix.
rank (int or None): the rank of the density matrix. The default
value is full-rank.
seed (int): Optional. To set a random seed.
Returns:
ndarray: rho (N,N a density matrix.
|
codesearchnet
|
def Write(self, map_data):
self._Begin()
written_keys = set()
write_offset = 0
try:
while 1:
entry = map_data.PopItem()
for index in self._indices:
self._indices[index][str(getattr(entry, index))] = str(write_offset)
write_offset += self._WriteData(self.temp_cache_file, entry)
written_keys.update(self._ExpectedKeysForEntry(entry))
except KeyError:
self.temp_cache_file.flush()
except:
self._Rollback()
raise
return written_keys
|
Write the map to the cache.
Warning -- this destroys map_data as it is written. This is done to save
memory and keep our peak footprint smaller. We consume memory again
on Verify() as we read a new copy of the entries back in.
Args:
map_data: A Map subclass containing the entire map to be written.
Returns:
a set of keys written or None on failure.
|
github-repos
|
def __call__(self, fn):
def debug(app, *args, **kwargs):
data = fn(app, *args, **kwargs)
app.tcex.log.debug(
'function: "{}", args: "{}", kwargs: "{}"'.format(
self.__class__.__name__, vars(args), kwargs
)
)
return data
return debug
|
Implement __call__ function for decorator.
Args:
fn (function): The decorated function.
Returns:
function: The custom decorator function.
|
juraj-google-style
|
def random_strings(self, string_length=1):
str_list = []
for path in self.uniform_generate(string_length):
str_list.append(self._path_to_str(path))
return str_list
|
Generate string_length random strings that belong to the automaton.
Args:
string_length (integer): The size of the random string
Returns:
str: The generated string
|
juraj-google-style
|
def __getitem__(self, index: Any) -> Rotation:
if type(index) is not tuple:
index = (index,)
if self._rot_mats is not None:
rot_mats = self._rot_mats[index + (slice(None), slice(None))]
return Rotation(rot_mats=rot_mats)
elif self._quats is not None:
quats = self._quats[index + (slice(None),)]
return Rotation(quats=quats, normalize_quats=False)
else:
raise ValueError('Both rotations are None')
|
Allows torch-style indexing over the virtual shape of the rotation object. See documentation for the shape
property.
Args:
index:
A torch index. E.g. (1, 3, 2), or (slice(None,))
Returns:
The indexed rotation
|
github-repos
|
def stack_residual_blocks_v1(x, filters, blocks, stride1=2, name=None):
x = residual_block_v1(x, filters, stride=stride1, name=name + '_block1')
for i in range(2, blocks + 1):
x = residual_block_v1(x, filters, conv_shortcut=False, name=name + '_block' + str(i))
return x
|
A set of stacked residual blocks.
Args:
x: Input tensor.
filters: Number of filters in the bottleneck layer in a block.
blocks: Number of blocks in the stacked blocks.
stride1: Stride of the first layer in the first block. Defaults to `2`.
name: Stack label.
Returns:
Output tensor for the stacked blocks.
|
github-repos
|
def _get_ngrams_with_counter(segment, max_order):
ngram_counts = collections.Counter()
for order in xrange(1, max_order + 1):
for i in xrange(0, len(segment) - order + 1):
ngram = tuple(segment[i:i + order])
ngram_counts[ngram] += 1
return ngram_counts
|
Extracts all n-grams up to a given maximum order from an input segment.
Args:
segment: text segment from which n-grams will be extracted.
max_order: maximum length in tokens of the n-grams returned by this
methods.
Returns:
The Counter containing all n-grams upto max_order in segment
with a count of how many times each n-gram occurred.
|
juraj-google-style
|
def schedule(cls, mapreduce_spec):
task_name = mapreduce_spec.mapreduce_id + "-finalize"
finalize_task = taskqueue.Task(
name=task_name,
url=(mapreduce_spec.params["base_path"] + "/finalizejob_callback/" +
mapreduce_spec.mapreduce_id),
params={"mapreduce_id": mapreduce_spec.mapreduce_id},
headers=util._get_task_headers(mapreduce_spec.mapreduce_id))
queue_name = util.get_queue_name(None)
if not _run_task_hook(mapreduce_spec.get_hooks(),
"enqueue_controller_task",
finalize_task,
queue_name):
try:
finalize_task.add(queue_name)
except (taskqueue.TombstonedTaskError,
taskqueue.TaskAlreadyExistsError), e:
logging.warning("Task %r already exists. %s: %s",
task_name, e.__class__, e)
|
Schedule finalize task.
Args:
mapreduce_spec: mapreduce specification as MapreduceSpec.
|
juraj-google-style
|
def write(self, save_path, options=None):
return self._write(save_path, options)
|
Save the checkpointed variables.
Args:
save_path: The file prefix of the checkpoint file.
options: Optional CheckpointOption instance.
Returns:
The full path of the checkpoint file.
|
github-repos
|
def match(self, f, *args):
try:
match = f(self.tokenizer, *args)
except StopIteration:
return
if match is None:
return
if not isinstance(match, grammar.TokenMatch):
raise TypeError("Invalid grammar function %r returned %r."
% (f, match))
self.matched = match
return match
|
Match grammar function 'f' against next token and set 'self.matched'.
Arguments:
f: A grammar function - see efilter.parsers.common.grammar. Must
return TokenMatch or None.
args: Passed to 'f', if any.
Returns:
Instance of efilter.parsers.common.grammar.TokenMatch or None.
Comment:
If a match is returned, it will also be stored in self.matched.
|
juraj-google-style
|
def __init__(self, max_size=10, max_age=600):
super(TimeBasedCache, self).__init__(max_size)
self.max_age = max_age
def HouseKeeper():
if not time:
return
now = time.time()
for cache in TimeBasedCache.active_caches:
with cache.lock:
for node in list(itervalues(cache._hash)):
timestamp, obj = node.data
if timestamp + cache.max_age < now:
cache.KillObject(obj)
cache._age.Unlink(node)
cache._hash.pop(node.key, None)
if not TimeBasedCache.house_keeper_thread:
TimeBasedCache.active_caches = weakref.WeakSet()
TimeBasedCache.house_keeper_thread = InterruptableThread(
name="HouseKeeperThread", target=HouseKeeper)
TimeBasedCache.house_keeper_thread.start()
TimeBasedCache.active_caches.add(self)
|
Constructor.
This cache will refresh the age of the cached object as long as they are
accessed within the allowed age. The age refers to the time since it was
last touched.
Args:
max_size: The maximum number of objects held in cache.
max_age: The maximum length of time an object is considered alive.
|
juraj-google-style
|
def register_entry(self, navbar_kwargs):
path = navbar_kwargs.pop('path')
if ((not hasattr(path, '__iter__')) or isinstance(path, basestring)):
path = [path]
entry_group = self.navbar_entries
for (name, is_last) in iter_islast(path):
kwargs = deepcopy(navbar_kwargs)
kwargs['name'] = name
for existing_entry in entry_group:
if (existing_entry.name == name):
entry = existing_entry
if is_last:
entry.endpoint = kwargs['endpoint']
break
else:
if (not is_last):
kwargs['endpoint'] = None
entry = NavbarEntry(**kwargs)
entry_group.add(entry)
entry_group = entry.children
|
Register a navbar entry with the copilot.
Args:
navbar_kwargs (dict): Arguments passed to the
:class:`NavbarEntry` instance.
|
codesearchnet
|
def _model_source_dir(self):
return (self.source_dir if self.sagemaker_session.local_mode else self.uploaded_code.s3_prefix)
|
Get the appropriate value to pass as source_dir to model constructor on deploying
Returns:
str: Either a local or an S3 path pointing to the source_dir to be used for code by the model to be deployed
|
codesearchnet
|
def __init__(self, array):
self.array = array
|
Specify a NumPy array to wrap.
Args:
array: The NumPy array to save and restore (may be overwritten).
|
github-repos
|
def GetMetadata(
self, metadata_key='', recursive=True, timeout=None, retry=True):
return self._HandleMetadataUpdate(
metadata_key=metadata_key, recursive=recursive, wait=False,
timeout=timeout, retry=retry)
|
Retrieve the contents of metadata server for a metadata key.
Args:
metadata_key: string, the metadata key to watch for changes.
recursive: bool, True if we should recursively watch for metadata changes.
timeout: int, timeout in seconds for returning metadata output.
retry: bool, True if we should retry on failure.
Returns:
json, the deserialized contents of the metadata server or None if error.
|
juraj-google-style
|
def _GenClientLibCallback(args, client_func=_GenClientLib):
client_path = client_func(args.discovery_doc[0], args.language, args.output,
args.build_system)
print 'API client library written to %s' % client_path
|
Generate a client library to file.
Args:
args: An argparse.Namespace object to extract parameters from
client_func: A function that generates client libraries and stores them to
files, accepting a path to a discovery doc, a client library language, an
output directory, and a build system for the client library language.
|
juraj-google-style
|
def exists(self, vars_list: List[str]) -> 'TensorFluent':
return self._aggregation_op(tf.reduce_any, self, vars_list)
|
Returns the TensorFluent for the exists aggregation function.
Args:
vars_list: The list of variables to be aggregated over.
Returns:
A TensorFluent wrapping the exists aggregation function.
|
juraj-google-style
|
def __send_smtp_email(self, recipients, subject, html_body, text_body):
smtp = smtplib.SMTP(dbconfig.get('smtp_server', NS_EMAIL, 'localhost'), dbconfig.get('smtp_port', NS_EMAIL, 25))
source_arn = dbconfig.get('source_arn', NS_EMAIL)
return_arn = dbconfig.get('return_path_arn', NS_EMAIL)
from_arn = dbconfig.get('from_arn', NS_EMAIL)
msg = MIMEMultipart('alternative')
if (source_arn and from_arn and return_arn):
msg['X-SES-SOURCE-ARN'] = source_arn
msg['X-SES-FROM-ARN'] = from_arn
msg['X-SES-RETURN-PATH-ARN'] = return_arn
msg['Subject'] = subject
msg['To'] = ','.join(recipients)
msg['From'] = self.sender
if html_body:
html_part = MIMEText(html_body, 'html')
msg.attach(html_part)
if text_body:
text_part = MIMEText(text_body, 'plain')
msg.attach(text_part)
if dbconfig.get('smtp_tls', NS_EMAIL, False):
smtp.starttls()
username = dbconfig.get('smtp_username', NS_EMAIL)
password = dbconfig.get('smtp_password', NS_EMAIL)
if (username and password):
smtp.login(username, password)
smtp.sendmail(self.sender, recipients, msg.as_string())
smtp.quit()
|
Send an email using SMTP
Args:
recipients (`list` of `str`): List of recipient email addresses
subject (str): Subject of the email
html_body (str): HTML body of the email
text_body (str): Text body of the email
Returns:
`None`
|
codesearchnet
|
def convert_to_qutip(expr, full_space=None, mapping=None):
if (full_space is None):
full_space = expr.space
if (not expr.space.is_tensor_factor_of(full_space)):
raise ValueError(("expr '%s' must be in full_space %s" % (expr, full_space)))
if (full_space == TrivialSpace):
raise AlgebraError('Cannot convert object in TrivialSpace to qutip. You may pass a non-trivial `full_space`')
if (mapping is not None):
if (expr in mapping):
ret = mapping[expr]
if isinstance(ret, qutip.Qobj):
return ret
else:
assert callable(ret)
return ret(expr)
if (expr is IdentityOperator):
local_spaces = full_space.local_factors
if (len(local_spaces) == 0):
raise ValueError(('full_space %s does not have local factors' % full_space))
else:
return qutip.tensor(*[qutip.qeye(s.dimension) for s in local_spaces])
elif (expr is ZeroOperator):
return qutip.tensor(*[qutip.Qobj(csr_matrix((s.dimension, s.dimension))) for s in full_space.local_factors])
elif isinstance(expr, LocalOperator):
return _convert_local_operator_to_qutip(expr, full_space, mapping)
elif (isinstance(expr, Operator) and isinstance(expr, Operation)):
return _convert_operator_operation_to_qutip(expr, full_space, mapping)
elif isinstance(expr, OperatorTrace):
raise NotImplementedError('Cannot convert OperatorTrace to qutip')
elif isinstance(expr, State):
return _convert_ket_to_qutip(expr, full_space, mapping)
elif isinstance(expr, SuperOperator):
return _convert_superoperator_to_qutip(expr, full_space, mapping)
elif isinstance(expr, Operation):
return _convert_state_operation_to_qutip(expr, full_space, mapping)
elif isinstance(expr, SLH):
raise ValueError('SLH objects can only be converted using SLH_to_qutip routine')
else:
raise ValueError(("Cannot convert '%s' of type %s" % (str(expr), type(expr))))
|
Convert a QNET expression to a qutip object
Args:
expr: a QNET expression
full_space (HilbertSpace): The
Hilbert space in which `expr` is defined. If not given,
``expr.space`` is used. The Hilbert space must have a well-defined
basis.
mapping (dict): A mapping of any (sub-)expression to either a
`quip.Qobj` directly, or to a callable that will convert the
expression into a `qutip.Qobj`. Useful for e.g. supplying objects
for symbols
Raises:
ValueError: if `expr` is not in `full_space`, or if `expr` cannot be
converted.
|
codesearchnet
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.