code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def add_tree(self, tree, parent=None):
if tree.path in self.path_db:
self.remove_tree_by_path(tree.path)
for index in tree.indexes:
if not getattr(tree, index):
continue
self._add_to(
getattr(self, index + "_db"),
getattr(tree, index),
tree,
)
if parent:
self._add_to(self.parent_db, tree.path, parent)
for sub_tree in tree.sub_trees:
assert sub_tree.path.startswith(tree.path)
for sub_tree in tree.sub_trees:
self.add_tree(sub_tree, parent=tree)
|
Add `tree` into database.
Args:
tree (obj): :class:`.Tree` instance.
parent (ref, default None): Reference to parent tree. This is used
for all sub-trees in recursive call.
|
juraj-google-style
|
def _offset(value):
o = int(value)
if (o == 0):
return 0
a = abs(o)
s = ((a * 36) + ((a % 100) * 24))
return ((o
|
Parse timezone to offset in seconds.
Args:
value: A timezone in the '+0000' format. An integer would also work.
Returns:
The timezone offset from GMT in seconds as an integer.
|
codesearchnet
|
def _BuildStations(self, stoplist):
stations = []
dists = self._EuclidianDistances(stoplist)
stations = self._CalculateYLines(dists)
return stations
|
Dispatches the best algorithm for calculating station line position.
Args:
# Class Stop is defined in transitfeed.py
stoplist: [Stop, Stop, ...]
# Class Trip is defined in transitfeed.py
triplist: [Trip, Trip, ...]
Returns:
# One integer y-coordinate for each station normalized between
# 0 and X, where X is the height of the graph in pixels
[0, 33, 140, ... , X]
|
codesearchnet
|
def _FloatingPointEncoder(wire_type, format):
value_size = struct.calcsize(format)
if (value_size == 4):
def EncodeNonFiniteOrRaise(write, value):
if (value == _POS_INF):
write(b'\x00\x00\x80\x7f')
elif (value == _NEG_INF):
write(b'\x00\x00\x80\xff')
elif (value != value):
write(b'\x00\x00\xc0\x7f')
else:
raise
elif (value_size == 8):
def EncodeNonFiniteOrRaise(write, value):
if (value == _POS_INF):
write(b'\x00\x00\x00\x00\x00\x00\xf0\x7f')
elif (value == _NEG_INF):
write(b'\x00\x00\x00\x00\x00\x00\xf0\xff')
elif (value != value):
write(b'\x00\x00\x00\x00\x00\x00\xf8\x7f')
else:
raise
else:
raise ValueError(("Can't encode floating-point values that are %d bytes long (only 4 or 8)" % value_size))
def SpecificEncoder(field_number, is_repeated, is_packed):
local_struct_pack = struct.pack
if is_packed:
tag_bytes = TagBytes(field_number, wire_format.WIRETYPE_LENGTH_DELIMITED)
local_EncodeVarint = _EncodeVarint
def EncodePackedField(write, value):
write(tag_bytes)
local_EncodeVarint(write, (len(value) * value_size))
for element in value:
try:
write(local_struct_pack(format, element))
except SystemError:
EncodeNonFiniteOrRaise(write, element)
return EncodePackedField
elif is_repeated:
tag_bytes = TagBytes(field_number, wire_type)
def EncodeRepeatedField(write, value):
for element in value:
write(tag_bytes)
try:
write(local_struct_pack(format, element))
except SystemError:
EncodeNonFiniteOrRaise(write, element)
return EncodeRepeatedField
else:
tag_bytes = TagBytes(field_number, wire_type)
def EncodeField(write, value):
write(tag_bytes)
try:
write(local_struct_pack(format, value))
except SystemError:
EncodeNonFiniteOrRaise(write, value)
return EncodeField
return SpecificEncoder
|
Return a constructor for an encoder for float fields.
This is like StructPackEncoder, but catches errors that may be due to
passing non-finite floating-point values to struct.pack, and makes a
second attempt to encode those values.
Args:
wire_type: The field's wire type, for encoding tags.
format: The format string to pass to struct.pack().
|
codesearchnet
|
def triggered(self, manual=False):
if (self.walker is None):
raise InternalError('You can only check if a streamer is triggered if you create it with a SensorLog')
if ((not self.automatic) and (not manual)):
return False
return self.has_data()
|
Check if this streamer should generate a report.
Streamers can be triggered automatically whenever they have data
or they can be triggered manually. This method returns True if the
streamer is currented triggered.
A streamer is triggered if it:
- (has data AND is automatic) OR
- (has data AND is manually triggered)
Args:
manual (bool): Indicate that the streamer has been manually triggered.
Returns:
bool: Whether the streamer can generate a report right now.
|
codesearchnet
|
def mme_matches(case_obj, institute_obj, mme_base_url, mme_token):
data = {
'institute' : institute_obj,
'case' : case_obj,
'server_errors' : []
}
matches = {}
if not case_obj.get('mme_submission'):
return None
for patient in case_obj['mme_submission']['patients']:
patient_id = patient['id']
matches[patient_id] = None
url = ''.join([ mme_base_url, '/matches/', patient_id])
server_resp = matchmaker_request(url=url, token=mme_token, method='GET')
if 'status_code' in server_resp:
pat_matches = []
if server_resp.get('matches'):
pat_matches = parse_matches(patient_id, server_resp['matches'])
matches[patient_id] = pat_matches
else:
LOG.warning('Server returned error message: {}'.format(server_resp['message']))
data['server_errors'].append(server_resp['message'])
data['matches'] = matches
return data
|
Show Matchmaker submission data for a sample and eventual matches.
Args:
case_obj(dict): a scout case object
institute_obj(dict): an institute object
mme_base_url(str) base url of the MME server
mme_token(str) auth token of the MME server
Returns:
data(dict): data to display in the html template
|
juraj-google-style
|
def from_bytes_list(cls, function_descriptor_list):
assert isinstance(function_descriptor_list, list)
if (len(function_descriptor_list) == 0):
return FunctionDescriptor.for_driver_task()
elif ((len(function_descriptor_list) == 3) or (len(function_descriptor_list) == 4)):
module_name = ensure_str(function_descriptor_list[0])
class_name = ensure_str(function_descriptor_list[1])
function_name = ensure_str(function_descriptor_list[2])
if (len(function_descriptor_list) == 4):
return cls(module_name, function_name, class_name, function_descriptor_list[3])
else:
return cls(module_name, function_name, class_name)
else:
raise Exception('Invalid input for FunctionDescriptor.from_bytes_list')
|
Create a FunctionDescriptor instance from list of bytes.
This function is used to create the function descriptor from
backend data.
Args:
cls: Current class which is required argument for classmethod.
function_descriptor_list: list of bytes to represent the
function descriptor.
Returns:
The FunctionDescriptor instance created from the bytes list.
|
codesearchnet
|
def _create_extractors(col_params):
result = []
for col_param in col_params:
result.append(_create_extractor(col_param))
return result
|
Creates extractors to extract properties corresponding to 'col_params'.
Args:
col_params: List of ListSessionGroupsRequest.ColParam protobufs.
Returns:
A list of extractor functions. The ith element in the
returned list extracts the column corresponding to the ith element of
_request.col_params
|
codesearchnet
|
def console(discord_token, discord_client_id):
state, response = datatools.get_compare_version()
logger.info("Starting Modis in console")
logger.info(response)
import threading
import asyncio
logger.debug("Loading packages")
from modis.discord_modis import main as discord_modis_console
from modis.reddit_modis import main as reddit_modis_console
from modis.facebook_modis import main as facebook_modis_console
logger.debug("Initiating threads")
loop = asyncio.get_event_loop()
discord_thread = threading.Thread(
target=discord_modis_console.start,
args=[discord_token, discord_client_id, loop])
reddit_thread = threading.Thread(
target=reddit_modis_console.start, args=[])
facebook_thread = threading.Thread(
target=facebook_modis_console.start, args=[])
logger.debug("Starting threads")
discord_thread.start()
reddit_thread.start()
facebook_thread.start()
logger.debug("Root startup completed")
|
Start Modis in console format.
Args:
discord_token (str): The bot token for your Discord application
discord_client_id: The bot's client ID
|
juraj-google-style
|
def any_soco():
cls = config.SOCO_CLASS
try:
device = next((d for d in cls._instances[cls._class_group].values() if d.is_visible))
except (KeyError, StopIteration):
devices = discover()
return (None if (devices is None) else devices.pop())
return device
|
Return any visible soco device, for when it doesn't matter which.
Try to obtain an existing instance, or use `discover` if necessary.
Note that this assumes that the existing instance has not left
the network.
Returns:
SoCo: A `SoCo` instance (or subclass if `config.SOCO_CLASS` is set,
or `None` if no instances are found
|
codesearchnet
|
def detect(self, text):
t = text.encode("utf-8")
reliable, index, top_3_choices = cld2.detect(t, bestEffort=False)
if not reliable:
self.reliable = False
reliable, index, top_3_choices = cld2.detect(t, bestEffort=True)
if not self.quiet:
if not reliable:
raise UnknownLanguage("Try passing a longer snippet of text")
else:
logger.warning("Detector is not able to detect the language reliably.")
self.languages = [Language(x) for x in top_3_choices]
self.language = self.languages[0]
return self.language
|
Decide which language is used to write the text.
The method tries first to detect the language with high reliability. If
that is not possible, the method switches to best effort strategy.
Args:
text (string): A snippet of text, the longer it is the more reliable we
can detect the language used to write the text.
|
juraj-google-style
|
def reach_max_num(self):
if self.signal.get('reach_max_num'):
return True
if ((self.max_num > 0) and (self.fetched_num >= self.max_num)):
return True
else:
return False
|
Check if downloaded images reached max num.
Returns:
bool: if downloaded images reached max num.
|
codesearchnet
|
def file_exists(file_path, credentials=None):
if file_path.startswith('gs:
return _file_exists_in_gcs(file_path, credentials)
else:
return os.path.isfile(file_path)
|
Check whether the file exists, on local disk or GCS.
Args:
file_path: The target file path; should have the 'gs://' prefix if in gcs.
credentials: Optional credential to be used to load the file from gcs.
Returns:
True if the file's there.
|
juraj-google-style
|
def get_file(self, filename, scope='all'):
filename = os.path.abspath(os.path.join(self.root, filename))
layouts = self._get_layouts_in_scope(scope)
for ly in layouts:
if filename in ly.files:
return ly.files[filename]
return None
|
Returns the BIDSFile object with the specified path.
Args:
filename (str): The path of the file to retrieve. Must be either
an absolute path, or relative to the root of this BIDSLayout.
scope (str, list): Scope of the search space. If passed, only
BIDSLayouts that match the specified scope will be
searched. See BIDSLayout docstring for valid values.
Returns: A BIDSFile, or None if no match was found.
|
juraj-google-style
|
def _StartMonitoringProcess(self, process):
if process is None:
raise ValueError('Missing process.')
pid = process.pid
if pid in self._process_information_per_pid:
raise KeyError(
'Already monitoring process (PID: {0:d}).'.format(pid))
if pid in self._rpc_clients_per_pid:
raise KeyError(
'RPC client (PID: {0:d}) already exists'.format(pid))
rpc_client = plaso_xmlrpc.XMLProcessStatusRPCClient()
rpc_port = process.rpc_port.value
time_waited_for_process = 0.0
while not rpc_port:
time.sleep(0.1)
rpc_port = process.rpc_port.value
time_waited_for_process += 0.1
if time_waited_for_process >= self._RPC_SERVER_TIMEOUT:
raise IOError(
'RPC client unable to determine server (PID: {0:d}) port.'.format(
pid))
hostname = 'localhost'
if not rpc_client.Open(hostname, rpc_port):
raise IOError((
'RPC client unable to connect to server (PID: {0:d}) '
'http:
self._rpc_clients_per_pid[pid] = rpc_client
self._process_information_per_pid[pid] = process_info.ProcessInfo(pid)
|
Starts monitoring a process.
Args:
process (MultiProcessBaseProcess): process.
Raises:
IOError: if the RPC client cannot connect to the server.
KeyError: if the process is not registered with the engine or
if the process is already being monitored.
OSError: if the RPC client cannot connect to the server.
ValueError: if the process is missing.
|
juraj-google-style
|
def get_fastq_dxfile_objects(self,barcode=None):
fq_ext_glob = "*{}".format(self.FQEXT)
name = fq_ext_glob
if barcode:
name = "*_{barcode}_*{FQEXT}".format(barcode=barcode, FQEXT=self.FQEXT)
fastqs= dxpy.find_data_objects(project=self.dx_project_id,folder=self.DX_FASTQ_FOLDER,name=name,name_mode="glob")
if not fastqs:
fastqs= dxpy.find_data_objects(project=self.dx_project_id,name=name,name_mode="glob")
if not fastqs:
msg = "No FASTQ files found for run {run} ".format(run=proj_name)
if barcode:
msg += "and barcode {barcode}.".format(barcode=barcode)
raise FastqNotFound(msg)
fastqs = [dxpy.DXFile(project=x["project"],dxid=x["id"]) for x in fastqs]
return fastqs
|
Retrieves all the FASTQ files in project self.dx_project_name as DXFile objects.
Args:
barcode: `str`. If set, then only FASTQ file properties for FASTQ files having the specified barcode are returned.
Returns:
`list` of DXFile objects representing FASTQ files.
Raises:
`dnanexus_utils.FastqNotFound`: No FASTQ files were found.
|
juraj-google-style
|
def sanity_check_tensor_sync(tensor: torch.Tensor, mesh: DeviceMesh, rtol: float=0.0001, atol: float=0.0001, not_sync: bool=False) -> None:
if not dist.is_initialized() or mesh.size() == 1:
return
pg = mesh.get_group()
if hasattr(tensor, 'to_local'):
local_tensor = tensor.to_local()
else:
local_tensor = tensor
world_size = dist.get_world_size(pg)
gathered_tensors = [torch.empty_like(local_tensor) for _ in range(world_size)]
dist.all_gather(gathered_tensors, local_tensor, group=pg)
for i in range(1, world_size):
try:
torch.testing.assert_close(gathered_tensors[0], gathered_tensors[i], rtol=rtol, atol=atol)
except AssertionError as e:
if not_sync:
continue
raise e
|
Verify that a tensor is synchronized (or not synchronized) across all processes in the mesh's process group.
Handles both regular tensors and DTensors.
Args:
tensor (torch.Tensor): The tensor to check for synchronization (can be DTensor)
mesh (DeviceMesh): The device mesh containing the process group
rtol (float): Relative tolerance for comparison
atol (float): Absolute tolerance for comparison
not_sync (bool): If True, asserts that tensors are NOT synchronized. If False, asserts they are synchronized.
|
github-repos
|
def plot(self, data):
import IPython
if (((sys.version_info.major > 2) and isinstance(data, str)) or ((sys.version_info.major <= 2) and isinstance(data, basestring))):
data = bq.Query(data)
if isinstance(data, bq.Query):
df = data.execute().result().to_dataframe()
data = self._get_lantern_format(df)
elif isinstance(data, pd.core.frame.DataFrame):
data = self._get_lantern_format(data)
else:
raise Exception('data needs to be a sql query, or a pandas DataFrame.')
HTML_TEMPLATE = '<link rel="import" href="/nbextensions/gcpdatalab/extern/lantern-browser.html" >\n <lantern-browser id="{html_id}"></lantern-browser>\n <script>\n var browser = document.querySelector(\'
metrics_str = str(map(str, data[0]['metricValues'].keys()))
data_str = str([{str(k): json.dumps(v) for (k, v) in elem.iteritems()} for elem in data])
html_id = ('l' + datalab.utils.commands.Html.next_id())
html = HTML_TEMPLATE.format(html_id=html_id, metrics=metrics_str, data=data_str)
IPython.display.display(IPython.display.HTML(html))
|
Plots a featire slice view on given data.
Args:
data: Can be one of:
A string of sql query.
A sql query module defined by "%%sql --module module_name".
A pandas DataFrame.
Regardless of data type, it must include the following columns:
"feature": identifies a slice of features. For example: "petal_length:4.0-4.2".
"count": number of instances in that slice of features.
All other columns are viewed as metrics for its feature slice. At least one is required.
|
codesearchnet
|
def repay_funding(self, amount, currency):
params = {
'amount': amount,
'currency': currency
}
return self._send_message('post', '/funding/repay',
data=json.dumps(params))
|
Repay funding. Repays the older funding records first.
Args:
amount (int): Amount of currency to repay
currency (str): The currency, example USD
Returns:
Not specified by cbpro.
|
juraj-google-style
|
def get_by_addr(self, address):
addr = address
if isinstance(address, str) and len(address) == 34:
addr = Helper.AddrStrToScriptHash(address)
if not isinstance(addr, UInt160):
raise Exception("Incorrect address format")
addrlist_snapshot = self.db.prefixed_db(NotificationPrefix.PREFIX_ADDR).snapshot()
results = []
for val in addrlist_snapshot.iterator(prefix=bytes(addr.Data), include_key=False):
if len(val) > 4:
try:
event = SmartContractEvent.FromByteArray(val)
results.append(event)
except Exception as e:
logger.error("could not parse event: %s %s" % (e, val))
return results
|
Lookup a set of notifications by address
Args:
address (UInt160 or str): hash of address for notifications
Returns:
list: a list of notifications
|
juraj-google-style
|
def sparse_grid(func, order, dim=None, skew=None):
if not isinstance(order, int):
orders = numpy.array(order).flatten()
dim = orders.size
m_order = int(numpy.min(orders))
skew = [order-m_order for order in orders]
return sparse_grid(func, m_order, dim, skew)
abscissas, weights = [], []
bindex = chaospy.bertran.bindex(order-dim+1, order, dim)
if skew is None:
skew = numpy.zeros(dim, dtype=int)
else:
skew = numpy.array(skew, dtype=int)
assert len(skew) == dim
for idx in range(
chaospy.bertran.terms(order, dim)
- chaospy.bertran.terms(order-dim, dim)):
idb = bindex[idx]
abscissa, weight = func(skew+idb)
weight *= (-1)**(order-sum(idb))*comb(dim-1, order-sum(idb))
abscissas.append(abscissa)
weights.append(weight)
abscissas = numpy.concatenate(abscissas, 1)
weights = numpy.concatenate(weights, 0)
abscissas = numpy.around(abscissas, 15)
order = numpy.lexsort(tuple(abscissas))
abscissas = abscissas.T[order].T
weights = weights[order]
diff = numpy.diff(abscissas.T, axis=0)
unique = numpy.ones(len(abscissas.T), bool)
unique[1:] = (diff != 0).any(axis=1)
length = len(weights)
idx = 1
while idx < length:
while idx < length and unique[idx]:
idx += 1
idy = idx+1
while idy < length and not unique[idy]:
idy += 1
if idy-idx > 1:
weights[idx-1] = numpy.sum(weights[idx-1:idy])
idx = idy+1
abscissas = abscissas[:, unique]
weights = weights[unique]
return abscissas, weights
|
Smolyak sparse grid constructor.
Args:
func (:py:data:typing.Callable):
Function that takes a single argument ``order`` of type
``numpy.ndarray`` and with ``order.shape = (dim,)``
order (int, numpy.ndarray):
The order of the grid. If ``numpy.ndarray``, it overrides both
``dim`` and ``skew``.
dim (int):
Number of dimension.
skew (list):
Order skewness.
|
juraj-google-style
|
def drift(data, n=3, **kwargs):
yi = data[(- n)]
yf = data[(- 1)]
slope = ((yf - yi) / (n - 1))
forecast = (yf + slope)
return forecast
|
The drift forecast for the next point is a linear extrapolation from the previous ``n``
points in the series.
Args:
data (np.array): Observed data, presumed to be ordered in time.
n (int): period over which to calculate linear model for extrapolation
Returns:
float: a single-valued forecast for the next value in the series.
|
codesearchnet
|
def inspect(self, **kwargs):
what = kwargs.pop('what', 'hist')
if (what == 'hist'):
with self.open_hist() as hist:
return (hist.plot(**kwargs) if hist else None)
elif (what == 'scf'):
relaxation = abiinspect.Relaxation.from_file(self.output_file.path)
if ('title' not in kwargs):
kwargs['title'] = str(self)
return (relaxation.plot(**kwargs) if (relaxation is not None) else None)
else:
raise ValueError(('Wrong value for what %s' % what))
|
Plot the evolution of the structural relaxation with matplotlib.
Args:
what: Either "hist" or "scf". The first option (default) extracts data
from the HIST file and plot the evolution of the structural
parameters, forces, pressures and energies.
The second option, extracts data from the main output file and
plot the evolution of the SCF cycles (etotal, residuals, etc).
Returns:
`matplotlib` figure, None if some error occurred.
|
codesearchnet
|
def equal(x, y):
if PY_3:
return test_case().assertEqual(x, y) or True
assert x == y
|
Shortcut function for ``unittest.TestCase.assertEqual()``.
Arguments:
x (mixed)
y (mixed)
Raises:
AssertionError: in case of assertion error.
Returns:
bool
|
juraj-google-style
|
def _SetValues(self, values):
def _ToStr(value):
'Convert individul list entries to string.'
if isinstance(value, (list, tuple)):
result = []
for val in value:
result.append(str(val))
return result
else:
return str(value)
if isinstance(values, Row):
if (self._keys != values.header):
raise TypeError('Attempt to append row with mismatched header.')
self._values = copy.deepcopy(values.values)
elif isinstance(values, dict):
for key in self._keys:
if (key not in values):
raise TypeError('Dictionary key mismatch with row.')
for key in self._keys:
self[key] = _ToStr(values[key])
elif (isinstance(values, list) or isinstance(values, tuple)):
if (len(values) != len(self._values)):
raise TypeError('Supplied list length != row length')
for (index, value) in enumerate(values):
self._values[index] = _ToStr(value)
else:
raise TypeError('Supplied argument must be Row, dict or list, not %s', type(values))
|
Set values from supplied dictionary or list.
Args:
values: A Row, dict indexed by column name, or list.
Raises:
TypeError: Argument is not a list or dict, or list is not equal row
length or dictionary keys don't match.
|
codesearchnet
|
def set_ipv4_routing(self, vrf_name, default=False, disable=False):
cmd = ('ip routing vrf %s' % vrf_name)
if default:
cmd = ('default %s' % cmd)
elif disable:
cmd = ('no %s' % cmd)
cmd = make_iterable(cmd)
return self.configure(cmd)
|
Configures ipv4 routing for the vrf
Args:
vrf_name (str): The VRF name to configure
default (bool): Configures ipv4 routing for the vrf value to
default if this value is true
disable (bool): Negates the ipv4 routing for the vrf if set to true
Returns:
True if the operation was successful otherwise False
|
codesearchnet
|
def get_raw(tree):
if isinstance(tree, Tree):
words = []
for child in tree:
words.append(get_raw(child))
return ' '.join(words)
else:
return tree
|
Get the exact words in lowercase in the tree object.
Args:
tree (Tree): Parsed tree structure
Returns:
Resulting string of tree ``(Ex: "The red car")``
|
juraj-google-style
|
def _GetMountpointBlacklist(xdev):
if xdev == rdf_file_finder.FileFinderArgs.XDev.NEVER:
return _GetMountpoints(only_physical=False)
if xdev == rdf_file_finder.FileFinderArgs.XDev.LOCAL:
physical = _GetMountpoints(only_physical=True)
return _GetMountpoints(only_physical=False) - physical
if xdev == rdf_file_finder.FileFinderArgs.XDev.ALWAYS:
return set()
raise ValueError("Incorrect `xdev` value: %s" % xdev)
|
Builds a list of mountpoints to ignore during recursive searches.
Args:
xdev: A `XDev` value that determines policy for crossing device boundaries.
Returns:
A set of mountpoints to ignore.
Raises:
ValueError: If `xdev` value is invalid.
|
juraj-google-style
|
def compile_state_action_constraints(self,
state: Sequence[tf.Tensor],
action: Sequence[tf.Tensor]) -> List[TensorFluent]:
scope = self.transition_scope(state, action)
constraints = []
with self.graph.as_default():
with tf.name_scope('state_action_constraints'):
for p in self.rddl.domain.constraints:
fluent = self._compile_expression(p, scope)
constraints.append(fluent)
return constraints
|
Compiles the state-action constraints given current `state` and `action` fluents.
Args:
state (Sequence[tf.Tensor]): The current state fluents.
action (Sequence[tf.Tensor]): The action fluents.
Returns:
A list of :obj:`rddl2tf.fluent.TensorFluent`.
|
juraj-google-style
|
def cache_connect(database=None):
if (database is None):
database = cache_file()
if os.path.isfile(database):
conn = sqlite3.connect(database)
else:
conn = sqlite3.connect(database)
conn.executescript(schema)
with conn as cur:
cur.execute('PRAGMA foreign_keys = ON;')
conn.row_factory = sqlite3.Row
return conn
|
Returns a connection object to a sqlite database.
Args:
database (str, optional): The path to the database the user wishes
to connect to. If not specified, a default is chosen using
:func:`.cache_file`. If the special database name ':memory:'
is given, then a temporary database is created in memory.
Returns:
:class:`sqlite3.Connection`
|
codesearchnet
|
def videos(self, **kwargs):
path = self._get_id_path('videos')
response = self._GET(path, kwargs)
self._set_attrs_to_values(response)
return response
|
Get the videos (trailers, teasers, clips, etc...) for a
specific movie id.
Args:
append_to_response: (optional) Comma separated, any movie method.
Returns:
A dict representation of the JSON returned from the API.
|
juraj-google-style
|
def as_objective(obj):
if isinstance(obj, Objective):
return obj
elif callable(obj):
return obj
elif isinstance(obj, str):
(layer, n) = obj.split(':')
(layer, n) = (layer.strip(), int(n))
return channel(layer, n)
|
Convert obj into Objective class.
Strings of the form "layer:n" become the Objective channel(layer, n).
Objectives are returned unchanged.
Args:
obj: string or Objective.
Returns:
Objective
|
codesearchnet
|
def get_max_size(pool, num_option, item_length):
max_items = (POOL_SIZE / item_length)
existing = ((POOL_OPTION_MIN_SIZE * num_option) + sum([max(0, (len(pool.get(i, {})) - 5)) for i in xrange(num_option)]))
return int((max_items - existing))
|
Calculate the max number of item that an option can stored in the pool at give time.
This is to limit the pool size to POOL_SIZE
Args:
option_index (int): the index of the option to calculate the size for
pool (dict): answer pool
num_option (int): total number of options available for the question
item_length (int): the length of the item
Returns:
int: the max number of items that `option_index` can have
|
codesearchnet
|
def similar_movies(self, **kwargs):
path = self._get_id_path('similar_movies')
response = self._GET(path, kwargs)
self._set_attrs_to_values(response)
return response
|
Get the similar movies for a specific movie id.
Args:
page: (optional) Minimum value of 1. Expected value is an integer.
language: (optional) ISO 639-1 code.
append_to_response: (optional) Comma separated, any movie method.
Returns:
A dict representation of the JSON returned from the API.
|
juraj-google-style
|
def _CreateFeedItems(client, feed_details, label_name):
feed_item_service = client.GetService('FeedItemService', version='v201809')
urls = ('http:
'http:
'http:
operations = [{
'operand': {
'feedId': feed_details.feed_id,
'attributeValues': [
{
'feedAttributeId': feed_details.url_attribute_id,
'stringValues': [url]
},
{
'feedAttributeId': feed_details.label_attribute_id,
'stringValues': [label_name]
}
]
},
'operator': 'ADD'
} for url in urls]
feed_item_service.mutate(operations)
|
Creates the page URLs in the DSA page feed.
Args:
client: an AdWordsClient instance.
feed_details: a _DSAFeedDetails instance.
label_name: a str containing the page feed URL label.
|
juraj-google-style
|
def init_properties(env='dev', app='unnecessary', **_):
aws_env = boto3.session.Session(profile_name=env)
s3client = aws_env.resource('s3')
generated = get_details(app=app, env=env)
archaius = generated.archaius()
archaius_file = '{path}/application.properties'.format(path=archaius['path'])
try:
s3client.Object(archaius['bucket'], archaius_file).get()
LOG.info('Found: %(bucket)s/%(file)s', {'bucket': archaius['bucket'], 'file': archaius_file})
return True
except boto3.exceptions.botocore.client.ClientError:
s3client.Object(archaius['bucket'], archaius_file).put()
LOG.info('Created: %(bucket)s/%(file)s', {'bucket': archaius['bucket'], 'file': archaius_file})
return False
|
Make sure _application.properties_ file exists in S3.
For Applications with Archaius support, there needs to be a file where the
cloud environment variable points to.
Args:
env (str): Deployment environment/account, i.e. dev, stage, prod.
app (str): GitLab Project name.
Returns:
True when application.properties was found.
False when application.properties needed to be created.
|
codesearchnet
|
def make_sgf(
move_history,
result_string,
ruleset="Chinese",
komi=7.5,
white_name=PROGRAM_IDENTIFIER,
black_name=PROGRAM_IDENTIFIER,
comments=[]
):
boardsize = go.N
game_moves = ''.join(translate_sgf_move(*z)
for z in itertools.zip_longest(move_history, comments))
result = result_string
return SGF_TEMPLATE.format(**locals())
|
Turn a game into SGF.
Doesn't handle handicap games or positions with incomplete history.
Args:
move_history: iterable of PlayerMoves
result_string: "B+R", "W+0.5", etc.
comments: iterable of string/None. Will be zipped with move_history.
|
juraj-google-style
|
def _encode_reference_type_constraints(self, builder: expressions.Builder, elem: message.Message) -> List[validation_pb2.SqlRequirement]:
field_name = _last_path_token(builder)
constraint_key = f'{field_name}-resource-type-exclusivity'
if constraint_key in self._options.skip_keys:
return []
element_definition = cast(Any, elem)
type_codes = _utils.element_type_codes(element_definition)
if type_codes != ['Reference']:
return []
allowed_reference_types = [target_profile.value for target_profile in element_definition.type[0].target_profile]
if len(allowed_reference_types) <= 1:
return []
num_references_exist: expressions.Builder = _num_fields_exist((builder.getReferenceKey(reference_type) for reference_type in sorted(allowed_reference_types)))
constraint: expressions.Builder = num_references_exist <= 1
if _fhir_path_data_types.is_collection(builder.return_type):
constraint: expressions.Builder = builder.all(constraint)
constraint_sql = self._encode_fhir_path_builder_constraint(constraint, builder.get_parent_builder())
if constraint_sql is None:
return []
reference_type_path = self._abs_path_invocation(builder)
column_name = f'{_path_to_sql_column_name(reference_type_path)}_{_key_to_sql_column_name(constraint_key)}'
parent_path = self._abs_path_invocation(builder.get_parent_builder())
description = f'Reference type {reference_type_path} links to multiple resources or to resources of a type restricted by the profile.'
return [validation_pb2.SqlRequirement(column_name=column_name, sql_expression=constraint_sql.sql, severity=validation_pb2.ValidationSeverity.SEVERITY_ERROR, type=validation_pb2.ValidationType.VALIDATION_TYPE_REFERENCE_TYPE, element_path=parent_path, description=description, fhir_path_key=constraint_key, fhir_path_expression=constraint_sql.builder.fhir_path, fields_referenced_by_expression=[field_name])]
|
Generates constraints for reference types.
Ensures that a reference type only has a value for one of the resourceId
columns across each of the possible resources the reference can link.
Args:
builder: The builder to the reference type for which to encode
constraints.
elem: Element definition of the builder.
Returns:
A constraint enforcing the above requirements for the given reference
type.
|
github-repos
|
def _value_set_from_url(self, url: str) -> Optional[value_set_pb2.ValueSet]:
url, version = url_utils.parse_url_version(url)
value_set = self._package_manager.get_resource(url)
if value_set is None:
logging.info('Unable to find value set for url: %s in given resolver packages.', url)
return None
elif not isinstance(value_set, value_set_pb2.ValueSet):
raise ValueError('URL: %s does not refer to a value set, found: %s' % (url, value_set.DESCRIPTOR.name))
elif version is not None and version != value_set.version.value:
logging.warning('Found incompatible version for value set with url: %s. Requested: %s, found: %s', url, version, value_set.version.value)
return None
else:
return value_set
|
Retrieves the value set for the given URL.
The value set is assumed to be a member of one of the packages contained in
self._package_manager. This function will not attempt to look up resources
over the network in other locations.
Args:
url: The url of the value set to retrieve.
Returns:
The value set for the given URL or None if it can not be found in the
package manager.
Raises:
ValueError: If the URL belongs to a resource that is not a value set.
|
github-repos
|
def translate_sites(self, indices, vector, frac_coords=True,
to_unit_cell=True):
if not isinstance(indices, collections.abc.Iterable):
indices = [indices]
for i in indices:
site = self._sites[i]
if frac_coords:
fcoords = site.frac_coords + vector
else:
fcoords = self._lattice.get_fractional_coords(
site.coords + vector)
if to_unit_cell:
fcoords = np.mod(fcoords, 1)
self._sites[i].frac_coords = fcoords
|
Translate specific sites by some vector, keeping the sites within the
unit cell.
Args:
indices: Integer or List of site indices on which to perform the
translation.
vector: Translation vector for sites.
frac_coords (bool): Whether the vector corresponds to fractional or
cartesian coordinates.
to_unit_cell (bool): Whether new sites are transformed to unit
cell
|
juraj-google-style
|
def stft_magnitude(signal, fft_length, hop_length=None, window_length=None):
frames = frame(signal, window_length, hop_length)
window = periodic_hann(window_length)
windowed_frames = (frames * window)
return np.abs(np.fft.rfft(windowed_frames, int(fft_length)))
|
Calculate the short-time Fourier transform magnitude.
Args:
signal: 1D np.array of the input time-domain signal.
fft_length: Size of the FFT to apply.
hop_length: Advance (in samples) between each frame passed to FFT.
window_length: Length of each block of samples to pass to FFT.
Returns:
2D np.array where each row contains the magnitudes of the fft_length/2+1
unique values of the FFT for the corresponding frame of input samples.
|
codesearchnet
|
def __init__(self, plist_filename):
self.filename = plist_filename
with open(self.filename, 'r') as plist_file:
self.soup = BeautifulSoup(plist_file, 'lxml-xml')
self.properties = self.soup.findChild(name='dict')
if self.properties is None:
raise RuntimeError('Invalid property list file provided')
|
Initialize a property list representation from an existing file.
Args:
plist_filename: A string containing the full path to a
Doxygen-generated property list file.
Raises:
OSError / FileNotFoundError: Input file cannot be read
RuntimeError: The property list file is not of the expected format
|
juraj-google-style
|
def check_cell_type(cell, cell_type):
if ((cell_type == None) or (cell_type == type(None))):
return ((cell == None) or (isinstance(cell, basestring) and (not cell)))
else:
return isinstance(cell, cell_type)
|
Checks the cell type to see if it represents the cell_type passed in.
Args:
cell_type: The type id for a cell match or None for empty match.
|
codesearchnet
|
def profile_settings_args_layout_json(self, required):
profile_args = {}
self.db_create_table(self.input_table, self.install_json_params().keys())
self.db_insert_record(self.input_table, self.install_json_params().keys())
self.gen_permutations()
try:
for pn in self._input_permutations[self.args.permutation_id]:
p = self.install_json_params().get(pn.get('name'))
if p.get('required', False) != required:
continue
if p.get('type').lower() == 'boolean':
profile_args[p.get('name')] = pn.get('value')
elif p.get('type').lower() == 'choice':
profile_args[p.get('name')] = pn.get('value')
elif p.get('name') in ['api_access_id', 'api_secret_key']:
pass
else:
types = '|'.join(p.get('playbookDataType', []))
if types:
profile_args[p.get('name')] = p.get('default', '<{}>'.format(types))
else:
profile_args[p.get('name')] = p.get('default', '')
except IndexError:
self.handle_error('Invalid permutation index provided.')
return profile_args
|
Return args based on layout.json and conditional rendering.
Args:
required (bool): If True only required args will be returned.
Returns:
dict: Dictionary of required or optional App args.
|
juraj-google-style
|
def _bash_comp_command(self, cmd, add_help=True):
out = (['-h', '--help'] if add_help else [])
cmd_dict = (self._opt_cmds[cmd] if cmd else self._opt_bare)
for (opt, sct) in cmd_dict:
out.extend(_names(self._conf[sct], opt))
return out
|
Build a list of all options for a given command.
Args:
cmd (str): command name, set to None or '' for bare command.
add_help (bool): add an help option.
Returns:
list of str: list of CLI options strings.
|
codesearchnet
|
def body(self, body):
if isinstance(body, bytes):
body = body.decode('utf-8')
self._body = body
|
Defines response body data.
Arguments:
body (str|bytes): response body to use.
Returns:
self: ``pook.Response`` current instance.
|
juraj-google-style
|
def _time_delta_from_info(info):
delta_seconds = int(time.time()) - info.start_time
return str(datetime.timedelta(seconds=delta_seconds))
|
Format the elapsed time for the given TensorBoardInfo.
Args:
info: A TensorBoardInfo value.
Returns:
A human-readable string describing the time since the server
described by `info` started: e.g., "2 days, 0:48:58".
|
juraj-google-style
|
def get_unrecognized_field_info(self, key, value_default=None,
variant_default=None):
value, variant = self.__unrecognized_fields.get(key, (value_default,
variant_default))
return value, variant
|
Get the value and variant of an unknown field in this message.
Args:
key: The name or number of the field to retrieve.
value_default: Value to be returned if the key isn't found.
variant_default: Value to be returned as variant if the key isn't
found.
Returns:
(value, variant), where value and variant are whatever was passed
to set_unrecognized_field.
|
juraj-google-style
|
def measure_topology(fbasename=None, log=None, ml_version=ml_version):
ml_script1_file = 'TEMP3D_measure_topology.mlx'
ml_script1 = mlx.FilterScript(file_in=fbasename, ml_version=ml_version)
compute.measure_topology(ml_script1)
ml_script1.save_to_file(ml_script1_file)
ml_script1.run_script(log=log, script_file=ml_script1_file)
topology = ml_script1.topology
return topology
|
Measures mesh topology
Args:
fbasename (str): input filename.
log (str): filename to log output
Returns:
dict: dictionary with the following keys:
vert_num (int): number of vertices
edge_num (int): number of edges
face_num (int): number of faces
unref_vert_num (int): number or unreferenced vertices
boundry_edge_num (int): number of boundary edges
part_num (int): number of parts (components) in the mesh.
manifold (bool): True if mesh is two-manifold, otherwise false.
non_manifold_edge (int): number of non_manifold edges.
non_manifold_vert (int): number of non-manifold verices
genus (int or str): genus of the mesh, either a number or
'undefined' if the mesh is non-manifold.
holes (int or str): number of holes in the mesh, either a number
or 'undefined' if the mesh is non-manifold.
|
codesearchnet
|
def get_table(bq_legacy_client: BigQueryLegacyClient, table_metadata: TableMetadata) -> Table | None:
table: Table | None
try:
table = bq_legacy_client.get_table(table_metadata.full_table_id)
except NotFound:
table = None
return table
|
Get a table if it exists in BigQuery given the ID.
Args:
* bq_legacy_client: BigQuery Legacy API client
* table_metadata: TableMetadata object
Returns:
* Table object if it exists, else None
|
github-repos
|
def __init__(self, encoding='utf-8'):
super(StdoutOutputWriter, self).__init__(sys.stdout, encoding=encoding)
|
Initializes a stdout output writer.
Args:
encoding (Optional[str]): output encoding.
|
juraj-google-style
|
def add_tasks_r(addon_module, package_module, package_name):
module_dict = package_module.__dict__
for attr_name, attr_val in module_dict.items():
if isinstance(attr_val, fabric.tasks.WrappedCallableTask):
addon_module.__dict__[attr_name] = attr_val
elif attr_name != package_name \
and isinstance(attr_val, types.ModuleType) \
and attr_val.__name__.startswith('fabsetup_') \
and attr_name.split('.')[-1] != package_name:
submodule_name = flo('{addon_module.__name__}.{attr_name}')
submodule = get_or_create_module_r(submodule_name)
package_module = attr_val
add_tasks_r(submodule, package_module, package_name)
addon_module.__dict__[attr_name] = submodule
|
Recursively iterate through 'package_module' and add every fabric task
to the 'addon_module' keeping the task hierarchy.
Args:
addon_module(types.ModuleType)
package_module(types.ModuleType)
package_name(str): Required, to avoid redundant addition of tasks
Return: None
|
juraj-google-style
|
def _MergeSameAgency(self, a_agency_id, b_agency_id):
a_agency_id = (a_agency_id or
self.feed_merger.a_schedule.GetDefaultAgency().agency_id)
b_agency_id = (b_agency_id or
self.feed_merger.b_schedule.GetDefaultAgency().agency_id)
a_agency = self.feed_merger.a_schedule.GetAgency(
a_agency_id)._migrated_entity
b_agency = self.feed_merger.b_schedule.GetAgency(
b_agency_id)._migrated_entity
if a_agency != b_agency:
raise MergeError('agency must be the same')
return a_agency.agency_id
|
Merge agency ids to the corresponding agency id in the merged schedule.
Args:
a_agency_id: an agency id from the old schedule
b_agency_id: an agency id from the new schedule
Returns:
The agency id of the corresponding merged agency.
Raises:
MergeError: If a_agency_id and b_agency_id do not correspond to the same
merged agency.
KeyError: Either aaid or baid is not a valid agency id.
|
juraj-google-style
|
def __closely_associated_score(self, normalized_sentences, top_n_words):
scores_list = []
sentence_idx = -1
for sentence in normalized_sentences:
self.tokenize(sentence)
sentence = self.token
sentence_idx += 1
word_idx = []
for w in top_n_words:
try:
word_idx.append(sentence.index(w))
except ValueError:
pass
word_idx.sort()
if len(word_idx) == 0:
continue
clusters = []
cluster = [word_idx[0]]
i = 1
while i < len(word_idx):
if word_idx[i] - word_idx[i - 1] < self.cluster_threshold:
cluster.append(word_idx[i])
else:
clusters.append(cluster[:])
cluster = [word_idx[i]]
i += 1
clusters.append(cluster)
max_cluster_score = 0
for c in clusters:
significant_words_in_cluster = len(c)
total_words_in_cluster = c[-1] - c[0] + 1
score = 1.0 * significant_words_in_cluster \
* significant_words_in_cluster / total_words_in_cluster
if score > max_cluster_score:
max_cluster_score = score
scores_list.append((sentence_idx, score))
return scores_list
|
Scoring the sentence with closely associations.
Args:
normalized_sentences: The list of sentences.
top_n_words: Important sentences.
Returns:
The list of scores.
|
juraj-google-style
|
def _maybe_repeat(self, x):
if isinstance(x, list):
assert (len(x) == self.n)
return x
else:
return ([x] * self.n)
|
Utility function for processing arguments that are singletons or lists.
Args:
x: either a list of self.n elements, or not a list.
Returns:
a list of self.n elements.
|
codesearchnet
|
def _compute_fans(shape):
if (len(shape) < 1):
fan_in = fan_out = 1
elif (len(shape) == 1):
fan_in = fan_out = shape[0]
elif (len(shape) == 2):
fan_in = shape[0]
fan_out = shape[1]
else:
receptive_field_size = 1.0
for dim in shape[:(- 2)]:
receptive_field_size *= dim
fan_in = (shape[(- 2)] * receptive_field_size)
fan_out = (shape[(- 1)] * receptive_field_size)
if isinstance(fan_in, tf.Dimension):
fan_in = fan_in.value
if isinstance(fan_out, tf.Dimension):
fan_out = fan_out.value
return (fan_in, fan_out)
|
Computes the number of input and output units for a weight shape.
Args:
shape: Integer shape tuple or TF tensor shape.
Returns:
A tuple of scalars (fan_in, fan_out).
|
codesearchnet
|
def check_compatibility(self):
usr_keys = list(self.usr_config.keys())
for k in self.usr_config.keys():
if k not in usr_keys:
err_msg = '[Error] Required config not found in user config.'
err_msg += '(required = %s, ' % str(k)
err_msg += 'user configs = %s)' % str(usr_keys)
logging.error(err_msg)
self.error_msg.append(err_msg)
self.failures.append([k, err_msg])
return False
overall_status = True
for config_name, spec in self.usr_config.items():
temp_status = True
in_required = config_name in list(self.required.keys())
in_optional = config_name in list(self.optional.keys())
in_unsupported = config_name in list(self.unsupported.keys())
in_dependency = config_name in list(self.dependency.keys())
if not (in_required or in_optional or in_unsupported or in_dependency):
warn_msg = '[Error] User config not defined in config file.'
warn_msg += '(user config = %s)' % str(config_name)
logging.warning(warn_msg)
self.warning_msg.append(warn_msg)
self.failures.append([config_name, warn_msg])
temp_status = False
else:
if in_unsupported:
if self.in_range(spec, self.unsupported[config_name]):
err_msg = '[Error] User config is unsupported. It is '
err_msg += "defined under 'Unsupported' section in the config file."
err_msg += ' (config = %s, spec = %s)' % (config_name, str(spec))
logging.error(err_msg)
self.error_msg.append(err_msg)
self.failures.append([config_name, err_msg])
temp_status = False
if in_required:
if not self.in_range(spec, self.required[config_name]):
err_msg = '[Error] User config cannot be supported. It is not in '
err_msg += "the supported range as defined in the 'Required' "
err_msg += 'section. (config = %s, ' % config_name
err_msg += 'spec = %s)' % str(spec)
logging.error(err_msg)
self.error_msg.append(err_msg)
self.failures.append([config_name, err_msg])
temp_status = False
if in_optional:
if not self.in_range(spec, self.optional[config_name]):
err_msg = '[Error] User config cannot be supported. It is not in '
err_msg += "the supported range as defined in the 'Optional' "
err_msg += 'section. (config = %s, ' % config_name
err_msg += 'spec = %s)' % str(spec)
logging.error(err_msg)
self.error_msg.append(err_msg)
self.failures.append([config_name, err_msg])
temp_status = False
if in_dependency:
dep_list = self.dependency[config_name]
if dep_list:
for rule in dep_list:
cfg = rule[0]
cfg_req = rule[1]
dep = rule[2]
dep_req = rule[3]
try:
cfg_name = self.usr_config[cfg]
dep_name = self.usr_config[dep]
cfg_status = self.in_range(cfg_name, cfg_req)
dep_status = self.in_range(dep_name, dep_req)
if cfg_status:
if not dep_status:
err_msg = '[Error] User config has a dependency that cannot'
err_msg += ' be supported. '
err_msg += "'%s' has a dependency on " % str(config_name)
err_msg += "'%s'." % str(dep)
logging.error(err_msg)
self.error_msg.append(err_msg)
self.failures.append([config_name, err_msg])
temp_status = False
except KeyError:
err_msg = '[Error] Dependency is missing from `Required`. '
err_msg += '(config = %s, dep = %s)' % (cfg, dep)
logging.error(err_msg)
self.error_msg.append(err_msg)
self.failures.append([config_name, err_msg])
temp_status = False
if temp_status:
self.successes.append([config_name, spec])
else:
overall_status = False
return overall_status
|
Checks version and dependency compatibility for a given configuration.
`check_compatibility` immediately returns with `False` (or failure status)
if any child process or checks fail. For error and warning messages, either
print `self.(error_msg|warning_msg)` or call `_print` function.
Returns:
Boolean that is a status of the compatibility check result.
|
github-repos
|
def destroy(ads):
for ad in ads:
try:
ad.services.stop_all()
except Exception:
ad.log.exception('Failed to clean up properly.')
|
Cleans up AndroidDevice objects.
Args:
ads: A list of AndroidDevice objects.
|
github-repos
|
def from_str(self, in_str):
parts = in_str.split(';')
for part in parts:
(var_name, value) = part.split(':')
if (var_name == 'Obs_Threshold'):
self.obs_threshold = float(value)
elif (var_name == 'Thresholds'):
self.thresholds = np.array(value.split(), dtype=float)
self.contingency_tables = pd.DataFrame(columns=self.contingency_tables.columns, data=np.zeros((self.thresholds.size, self.contingency_tables.columns.size)))
elif (var_name in self.contingency_tables.columns):
self.contingency_tables[var_name] = np.array(value.split(), dtype=int)
|
Read the DistributedROC string and parse the contingency table values from it.
Args:
in_str (str): The string output from the __str__ method
|
codesearchnet
|
def devectorize(vectorized_mat, method='col'):
vectorized_mat = np.array(vectorized_mat)
dimension = int(np.sqrt(vectorized_mat.size))
if (len(vectorized_mat) != (dimension * dimension)):
raise Exception('Input is not a vectorized square matrix')
if (method == 'col'):
return vectorized_mat.reshape(dimension, dimension, order='F')
elif (method == 'row'):
return vectorized_mat.reshape(dimension, dimension, order='C')
elif (method in ['pauli', 'pauli_weights']):
num_qubits = int(np.log2(dimension))
if (dimension != (2 ** num_qubits)):
raise Exception('Input state must be n-qubit state')
if (method == 'pauli_weights'):
pgroup = pauli_group(num_qubits, case='weight')
else:
pgroup = pauli_group(num_qubits, case='tensor')
pbasis = (np.array([p.to_matrix() for p in pgroup]) / (2 ** num_qubits))
return np.tensordot(vectorized_mat, pbasis, axes=1)
return None
|
Devectorize a vectorized square matrix.
Args:
vectorized_mat (ndarray): a vectorized density matrix.
method (str): the method of devectorization. Allowed values are
- 'col' (default): flattens to column-major vector.
- 'row': flattens to row-major vector.
- 'pauli': flattens in the n-qubit Pauli basis.
- 'pauli-weights': flattens in the n-qubit Pauli basis ordered by
weight.
Returns:
ndarray: the resulting matrix.
Raises:
Exception: if input state is not a n-qubit state
|
codesearchnet
|
def clone(self, callable=None, **overrides):
old = {k: v for k, v in self.get_param_values()
if k not in ['callable', 'name']}
params = dict(old, **overrides)
callable = self.callable if callable is None else callable
return self.__class__(callable, **params)
|
Clones the Callable optionally with new settings
Args:
callable: New callable function to wrap
**overrides: Parameter overrides to apply
Returns:
Cloned Callable object
|
juraj-google-style
|
def write_config(params, config_path=None):
if config_path is None:
config_path = tempfile.mktemp(prefix="mongo-")
cfg = params.copy()
if 'setParameter' in cfg:
set_parameters = cfg.pop('setParameter')
try:
for key, value in set_parameters.items():
cfg['setParameter = ' + key] = value
except AttributeError:
reraise(RequestError,
'Not a valid value for setParameter: %r '
'Expected "setParameter": {<param name> : value, ...}'
% set_parameters)
for key, value in cfg.items():
if isinstance(value, bool):
cfg[key] = json.dumps(value)
with open(config_path, 'w') as fd:
data = '\n'.join('%s=%s' % (key, item) for key, item in cfg.items())
fd.write(data)
return config_path
|
write mongo*'s config file
Args:
params - options wich file contains
config_path - path to the config_file, will create if None
Return config_path
where config_path - path to mongo*'s options file
|
juraj-google-style
|
def _assert_sparse_indices_are_ragged_right(indices):
index_prefix = indices[:, :-1]
index_suffix = indices[:, -1]
index_prefix_changed = math_ops.reduce_any(math_ops.not_equal(index_prefix[1:], index_prefix[:-1]), axis=1)
index_ok = array_ops.where(index_prefix_changed, math_ops.equal(index_suffix[1:], 0), math_ops.equal(index_suffix[1:], index_suffix[:-1] + 1))
sparse_indices_are_ragged_right = math_ops.logical_and(math_ops.reduce_all(math_ops.equal(index_suffix[:1], 0)), math_ops.reduce_all(index_ok))
message = ['SparseTensor is not right-ragged', 'SparseTensor.indices =', indices]
return [control_flow_assert.Assert(sparse_indices_are_ragged_right, message)]
|
Checks that the given SparseTensor.indices tensor is ragged-right.
Example: `indices = [[0, 0], [0, 1], [2, 0], [3, 1]]` is not ragged right
because the entry `[3, 1]` skips a cell.
Args:
indices: The SparseTensor indices to check.
Returns:
A list of control dependency op tensors.
|
github-repos
|
def kill_plasma_store(self, check_alive=True):
self._kill_process_type(
ray_constants.PROCESS_TYPE_PLASMA_STORE, check_alive=check_alive)
|
Kill the plasma store.
Args:
check_alive (bool): Raise an exception if the process was already
dead.
|
juraj-google-style
|
def agg_dims(arr, stat):
axis = None
if arr.ndim > 2:
axis = 1
arr = arr.reshape(arr.shape[0], -1)
module = np.ma if hasattr(arr, 'mask') else np
return getattr(module, stat)(arr, axis)
|
Returns a 1D array with higher dimensions aggregated using stat fn.
Arguments:
arr -- ndarray
stat -- numpy or numpy.ma function as str to call
|
juraj-google-style
|
def double(self, count: float=0) -> float:
return 2 * count
|
Returns the input multiplied by 2.
Args:
count: Input number that you want to double.
Returns:
A number that is the double of count.
|
github-repos
|
def inspect_service(self, service, insert_defaults=None):
url = self._url('/services/{0}', service)
params = {}
if (insert_defaults is not None):
if utils.version_lt(self._version, '1.29'):
raise errors.InvalidVersion('insert_defaults is not supported in API version < 1.29')
params['insertDefaults'] = insert_defaults
return self._result(self._get(url, params=params), True)
|
Return information about a service.
Args:
service (str): Service name or ID.
insert_defaults (boolean): If true, default values will be merged
into the service inspect output.
Returns:
(dict): A dictionary of the server-side representation of the
service, including all relevant properties.
Raises:
:py:class:`docker.errors.APIError`
If the server returns an error.
|
codesearchnet
|
def ParseFileEntryMetadata(self, parser_mediator, file_entry):
if self._filestat_parser:
self._ParseFileEntryWithParser(
parser_mediator, self._filestat_parser, file_entry)
|
Parses the file entry metadata e.g. file system data.
Args:
parser_mediator (ParserMediator): parser mediator.
file_entry (dfvfs.FileEntry): file entry.
|
juraj-google-style
|
def IsSimpleGroup(component):
assert isinstance(component, dict)
for unused_key, value in component.items():
if not IsValue(value) and (not isinstance(value, (list, dict))):
return False
return True
|
If a group is simple enough, then we treat it as a value in PrintResult.
Only if a group contains all value types do we consider it simple enough to
print as a value.
Args:
component: The group to check for value-group status.
Returns:
A boolean indicating if the group should be treated as a value for printing
purposes.
|
github-repos
|
def _CreateReadAccessHelper(self):
h = CheckAccessHelper('read')
h.Allow('aff4:/')
h.Allow('aff4:/users')
h.Allow('aff4:/users/*', self._IsHomeDir)
h.Allow('aff4:/foreman', self._UserHasAdminLabel)
h.Allow('aff4:/blobs')
h.Allow('aff4:/blobs/*')
h.Allow('aff4:/FP')
h.Allow('aff4:/FP/*')
h.Allow('aff4:/files')
h.Allow('aff4:/files/*')
h.Allow('aff4:/index')
h.Allow('aff4:/index/*')
h.Allow('aff4:/client_index')
h.Allow('aff4:/client_index/*')
h.Allow('aff4:/ACL')
h.Allow('aff4:/ACL/*')
h.Allow('aff4:/stats')
h.Allow('aff4:/stats/*')
h.Allow('aff4:/config')
h.Allow('aff4:/config/*')
h.Allow('aff4:/flows')
h.Allow('aff4:/flows/*')
h.Allow('aff4:/hunts')
h.Allow('aff4:/hunts/*')
h.Allow('aff4:/cron')
h.Allow('aff4:/cron/*')
h.Allow('aff4:/audit')
h.Allow('aff4:/audit/*')
h.Allow('aff4:/audit/logs')
h.Allow('aff4:/audit/logs/*')
h.Allow(self.CLIENT_URN_PATTERN)
h.Allow((self.CLIENT_URN_PATTERN + '/*'), self._HasAccessToClient)
h.Allow('aff4:/artifact_store')
h.Allow('aff4:/artifact_store/*')
return h
|
Creates a CheckAccessHelper for controlling read access.
This function and _CreateQueryAccessHelper essentially define GRR's ACL
policy. Please refer to these 2 functions to either review or modify
GRR's ACLs.
Read access gives you the ability to open and read aff4 objects for which
you already have the URN.
Returns:
CheckAccessHelper for controlling read access.
|
codesearchnet
|
def _manage_location(attr):
return property((lambda self: getattr(self, ('_%s' % attr))), (lambda self, value: self._set_location(attr, value)))
|
Build managed property interface.
Args:
attr (str): Property's name
Returns:
property: Managed property interface
|
codesearchnet
|
def getslice_slot(self, node: cfg.CFGNode, start_var: cfg.Variable, end_var: cfg.Variable) -> tuple[cfg.CFGNode, cfg.Variable]:
node, ret = self.call_pytd(node, '__getslice__', start_var, end_var)
results = []
unresolved = False
if self.is_concrete:
for start_val, end_val in cfg_utils.variable_product([start_var, end_var]):
try:
start = self._get_index(start_val.data)
end = self._get_index(end_val.data)
except abstract_utils.ConversionError:
unresolved = True
else:
results.append(List(self.pyval[start:end], self.ctx).to_variable(node))
if unresolved or not self.is_concrete:
results.append(ret)
return (node, self.ctx.join_variables(node, results))
|
Implements __getslice__ for List.
Arguments:
node: The current CFG node.
start_var: A Variable containing the i in lst[i:j].
end_var: A Variable containing the j in lst[i:j].
Returns:
Tuple of (node, return_variable). node may be the same as the argument.
return_variable is a Variable with bindings of the possible return values.
|
github-repos
|
def get_inheritance(obj_name, obj_type='file'):
obj_dacl = dacl(obj_name=obj_name, obj_type=obj_type)
inherited = win32security.INHERITED_ACE
for i in range(0, obj_dacl.dacl.GetAceCount()):
ace = obj_dacl.dacl.GetAce(i)
if ((ace[0][1] & inherited) == inherited):
return True
return False
|
Get an object's inheritance.
Args:
obj_name (str):
The name of the object
obj_type (Optional[str]):
The type of object. Only three object types allow inheritance. Valid
objects are:
- file (default): This is a file or directory
- registry
- registry32 (for WOW64)
The following should return False as there is no inheritance:
- service
- printer
- share
Returns:
bool: True if enabled, otherwise False
Usage:
.. code-block:: python
salt.utils.win_dacl.get_inheritance('HKLM\\SOFTWARE\\salt', 'registry')
|
codesearchnet
|
def to_concat_skip_model(self, start_id, end_id):
self.operation_history.append(("to_concat_skip_model", start_id, end_id))
filters_end = self.layer_list[end_id].output.shape[-1]
filters_start = self.layer_list[start_id].output.shape[-1]
start_node_id = self.layer_id_to_output_node_ids[start_id][0]
pre_end_node_id = self.layer_id_to_input_node_ids[end_id][0]
end_node_id = self.layer_id_to_output_node_ids[end_id][0]
skip_output_id = self._insert_pooling_layer_chain(start_node_id, end_node_id)
concat_input_node_id = self._add_node(deepcopy(self.node_list[end_node_id]))
self._redirect_edge(pre_end_node_id, end_node_id, concat_input_node_id)
concat_layer = StubConcatenate()
concat_layer.input = [
self.node_list[concat_input_node_id],
self.node_list[skip_output_id],
]
concat_output_node_id = self._add_node(Node(concat_layer.output_shape))
self._add_edge(concat_layer, concat_input_node_id, concat_output_node_id)
self._add_edge(concat_layer, skip_output_id, concat_output_node_id)
concat_layer.output = self.node_list[concat_output_node_id]
self.node_list[concat_output_node_id].shape = concat_layer.output_shape
new_conv_layer = get_conv_class(self.n_dim)(
filters_start + filters_end, filters_end, 1
)
self._add_edge(new_conv_layer, concat_output_node_id, end_node_id)
new_conv_layer.input = self.node_list[concat_output_node_id]
new_conv_layer.output = self.node_list[end_node_id]
self.node_list[end_node_id].shape = new_conv_layer.output_shape
if self.weighted:
filter_shape = (1,) * self.n_dim
weights = np.zeros((filters_end, filters_end) + filter_shape)
for i in range(filters_end):
filter_weight = np.zeros((filters_end,) + filter_shape)
center_index = (i,) + (0,) * self.n_dim
filter_weight[center_index] = 1
weights[i, ...] = filter_weight
weights = np.concatenate(
(weights, np.zeros((filters_end, filters_start) + filter_shape)), axis=1
)
bias = np.zeros(filters_end)
new_conv_layer.set_weights(
(add_noise(weights, np.array([0, 1])), add_noise(bias, np.array([0, 1])))
)
|
Add a weighted add concatenate connection from after start node to end node.
Args:
start_id: The convolutional layer ID, after which to start the skip-connection.
end_id: The convolutional layer ID, after which to end the skip-connection.
|
juraj-google-style
|
def pack_x_y_sample_weight(x, y=None, sample_weight=None):
if y is None:
if not isinstance(x, (tuple, list)):
return x
else:
return (x,)
elif sample_weight is None:
return (x, y)
else:
return (x, y, sample_weight)
|
Packs user-provided data into a tuple.
This is a convenience utility for packing data into the tuple formats
that `Model.fit()` uses.
Example:
>>> x = ops.ones((10, 1))
>>> data = pack_x_y_sample_weight(x)
>>> isinstance(data, ops.Tensor)
True
>>> y = ops.ones((10, 1))
>>> data = pack_x_y_sample_weight(x, y)
>>> isinstance(data, tuple)
True
>>> x, y = data
Args:
x: Features to pass to `Model`.
y: Ground-truth targets to pass to `Model`.
sample_weight: Sample weight for each element.
Returns:
Tuple in the format used in `Model.fit()`.
|
github-repos
|
def create_effect(self, label: str, name: str, *args, **kwargs) -> Effect:
effect_cls = effects.find_effect_class(name)
effect = effect_cls(*args, **kwargs)
effect._label = label
if label in self._effects:
raise ValueError("An effect with label '{}' already exists".format(label))
self._effects[label] = effect
return effect
|
Create an effect instance adding it to the internal effects dictionary using the label as key.
Args:
label (str): The unique label for the effect instance
name (str): Name or full python path to the effect class we want to instantiate
args: Positional arguments to the effect initializer
kwargs: Keyword arguments to the effect initializer
Returns:
The newly created Effect instance
|
juraj-google-style
|
def get_index(uid, i):
return _SHARED_SEQUENCES[uid][i]
|
Get the value from the PyDataset `uid` at index `i`.
To allow multiple PyDatasets to be used at the same time, we use `uid` to
get a specific one. A single PyDataset would cause the validation to
overwrite the training PyDataset.
This methods is called from worker threads.
Args:
uid: int, PyDataset identifier
i: index
Returns:
The value at index `i`.
|
github-repos
|
def WriteFileEntry(self, path):
string = '{0:s}\n'.format(path)
encoded_string = self._EncodeString(string)
self._file_object.write(encoded_string)
|
Writes the file path to file.
Args:
path (str): path of the file.
|
codesearchnet
|
def _duplicate_example(self, request):
index = int(request.args.get('index'))
if (index >= len(self.examples)):
return http_util.Respond(request, {'error': 'invalid index provided'}, 'application/json', code=400)
new_example = self.example_class()
new_example.CopyFrom(self.examples[index])
self.examples.append(new_example)
self.updated_example_indices.add((len(self.examples) - 1))
self.generate_sprite([ex.SerializeToString() for ex in self.examples])
return http_util.Respond(request, {}, 'application/json')
|
Duplicates the specified example.
Args:
request: A request that should contain 'index'.
Returns:
An empty response.
|
codesearchnet
|
def set_metadata(self, key: str, value: str):
if ((not isinstance(key, str)) or (not isinstance(value, str))):
raise TypeError("'key' and 'value' of metadata MUST be strings")
self.metadata[key] = value
|
Add a new metadata to the message
Args:
key (str): name of the metadata
value (str): value of the metadata
|
codesearchnet
|
def image(array, domain=None, width=None, format='png', **kwargs):
image_data = serialize_array(array, fmt=format, domain=domain)
image = IPython.display.Image(data=image_data, format=format, width=width)
IPython.display.display(image)
|
Display an image.
Args:
array: NumPy array representing the image
fmt: Image format e.g. png, jpeg
domain: Domain of pixel values, inferred from min & max values if None
w: width of output image, scaled using nearest neighbor interpolation.
size unchanged if None
|
codesearchnet
|
def make_multiscale(image, resolutions,
resize_method=tf.image.ResizeMethod.BICUBIC,
num_channels=3):
scaled_images = []
for height in resolutions:
scaled_image = tf.image.resize_images(
image,
size=[height, height],
method=resize_method)
scaled_image = tf.to_int64(scaled_image)
scaled_image.set_shape([height, height, num_channels])
scaled_images.append(scaled_image)
return scaled_images
|
Returns list of scaled images, one for each resolution.
Args:
image: Tensor of shape [height, height, num_channels].
resolutions: List of heights that image's height is resized to.
resize_method: tf.image.ResizeMethod.
num_channels: Number of channels in image.
Returns:
List of Tensors, one for each resolution with shape given by
[resolutions[i], resolutions[i], num_channels].
|
juraj-google-style
|
def call(self, inputs):
del inputs
with tf.compat.v1.name_scope(self._name):
return tfd.MultivariateNormalDiag(self.loc, self.scale_diag)
|
Runs the model to generate multivariate normal distribution.
Args:
inputs: Unused.
Returns:
A MultivariateNormalDiag distribution with event shape
[dimensions], batch shape [], and sample shape [sample_shape,
dimensions].
|
codesearchnet
|
def remove_tree_by_path(self, path):
with transaction.manager:
trees = self.path_db.get(path, None)
if not trees:
return
for tree in trees:
return self._remove_tree(tree)
|
Remove the tree from database by given `path`.
Args:
path (str): Path of the tree.
|
juraj-google-style
|
def _unable_to_call_layer_due_to_serialization_issue(layer, *unused_args, **unused_kwargs):
raise ValueError('Cannot call custom layer {} of type {}, because the call function was not serialized to the SavedModel.Please try one of the following methods to fix this issue:\n\n(1) Implement `get_config` and `from_config` in the layer/model class, and pass the object to the `custom_objects` argument when loading the model. For more details, see: https:
|
Replaces the `layer.call` if the layer was not fully serialized.
Keras Model/Layer serialization is relatively relaxed because SavedModels
are not always loaded back as keras models. Thus, when there is an issue
tracing a non-signature function, a warning is logged instead of raising an
error. This results in a SavedModel where the model's call function is saved,
but the internal layer call functions are not.
When deserialized with `tf.keras.models.load_model`, the internal layers
which do not have serialized call functions should raise an error when called.
Args:
layer: Layer without the serialized call function.
Raises:
ValueError
|
github-repos
|
def add_signature(key, inputs, outputs):
_check_dict_maps_to_tensors_or_sparse_tensors(inputs)
_check_dict_maps_to_tensors_or_sparse_tensors(outputs)
input_info = {input_name: tf_v1.saved_model.utils.build_tensor_info(tensor) for (input_name, tensor) in inputs.items()}
output_info = {output_name: tf_v1.saved_model.utils.build_tensor_info(tensor) for (output_name, tensor) in outputs.items()}
signature = tf_v1.saved_model.signature_def_utils.build_signature_def(input_info, output_info)
tf_v1.add_to_collection(_SIGNATURE_COLLECTION, (key, signature))
|
Adds a signature to current graph.
Args:
key: Signature key as a string.
inputs: Signature inputs as a map from string to Tensor or SparseTensor.
outputs: Signature outputs as a map from string to Tensor or SparseTensor.
(Recall that a Variable is not a Tensor, but Variable.value() is.)
Raises:
TypeError: if the arguments have the wrong types.
|
codesearchnet
|
def get_segment(neuron, section_id, segment_id):
sec = neuron.sections[section_id]
return sec.points[segment_id:(segment_id + 2)][(:, COLS.XYZR)]
|
Get a segment given a section and segment id
Returns:
array of two [x, y, z, r] points defining segment
|
codesearchnet
|
def __init__(self, channel):
self.CreateCluster = channel.unary_unary(
"/google.cloud.dataproc.v1beta2.ClusterController/CreateCluster",
request_serializer=google_dot_cloud_dot_dataproc__v1beta2_dot_proto_dot_clusters__pb2.CreateClusterRequest.SerializeToString,
response_deserializer=google_dot_longrunning_dot_operations__pb2.Operation.FromString,
)
self.UpdateCluster = channel.unary_unary(
"/google.cloud.dataproc.v1beta2.ClusterController/UpdateCluster",
request_serializer=google_dot_cloud_dot_dataproc__v1beta2_dot_proto_dot_clusters__pb2.UpdateClusterRequest.SerializeToString,
response_deserializer=google_dot_longrunning_dot_operations__pb2.Operation.FromString,
)
self.DeleteCluster = channel.unary_unary(
"/google.cloud.dataproc.v1beta2.ClusterController/DeleteCluster",
request_serializer=google_dot_cloud_dot_dataproc__v1beta2_dot_proto_dot_clusters__pb2.DeleteClusterRequest.SerializeToString,
response_deserializer=google_dot_longrunning_dot_operations__pb2.Operation.FromString,
)
self.GetCluster = channel.unary_unary(
"/google.cloud.dataproc.v1beta2.ClusterController/GetCluster",
request_serializer=google_dot_cloud_dot_dataproc__v1beta2_dot_proto_dot_clusters__pb2.GetClusterRequest.SerializeToString,
response_deserializer=google_dot_cloud_dot_dataproc__v1beta2_dot_proto_dot_clusters__pb2.Cluster.FromString,
)
self.ListClusters = channel.unary_unary(
"/google.cloud.dataproc.v1beta2.ClusterController/ListClusters",
request_serializer=google_dot_cloud_dot_dataproc__v1beta2_dot_proto_dot_clusters__pb2.ListClustersRequest.SerializeToString,
response_deserializer=google_dot_cloud_dot_dataproc__v1beta2_dot_proto_dot_clusters__pb2.ListClustersResponse.FromString,
)
self.DiagnoseCluster = channel.unary_unary(
"/google.cloud.dataproc.v1beta2.ClusterController/DiagnoseCluster",
request_serializer=google_dot_cloud_dot_dataproc__v1beta2_dot_proto_dot_clusters__pb2.DiagnoseClusterRequest.SerializeToString,
response_deserializer=google_dot_longrunning_dot_operations__pb2.Operation.FromString,
)
|
Constructor.
Args:
channel: A grpc.Channel.
|
juraj-google-style
|
def query(self, attributes=None, filters=None, only_unique=True, use_attr_names=False, dtypes=None):
root = ElementTree.Element('Query')
root.set('virtualSchemaName', self._virtual_schema)
root.set('formatter', 'TSV')
root.set('header', '1')
root.set('uniqueRows', native_str(int(only_unique)))
root.set('datasetConfigVersion', '0.6')
dataset = ElementTree.SubElement(root, 'Dataset')
dataset.set('name', self.name)
dataset.set('interface', 'default')
if (attributes is None):
attributes = list(self.default_attributes.keys())
for name in attributes:
try:
attr = self.attributes[name]
self._add_attr_node(dataset, attr)
except KeyError:
raise BiomartException('Unknown attribute {}, check dataset attributes for a list of valid attributes.'.format(name))
if (filters is not None):
for (name, value) in filters.items():
try:
filter_ = self.filters[name]
self._add_filter_node(dataset, filter_, value)
except KeyError:
raise BiomartException('Unknown filter {}, check dataset filters for a list of valid filters.'.format(name))
response = self.get(query=ElementTree.tostring(root))
if ('Query ERROR' in response.text):
raise BiomartException(response.text)
try:
result = pd.read_csv(StringIO(response.text), sep='\t', dtype=dtypes)
except TypeError as err:
raise ValueError('Non valid data type is used in dtypes')
if use_attr_names:
column_map = {self.attributes[attr].display_name: attr for attr in attributes}
result.rename(columns=column_map, inplace=True)
return result
|
Queries the dataset to retrieve the contained data.
Args:
attributes (list[str]): Names of attributes to fetch in query.
Attribute names must correspond to valid attributes. See
the attributes property for a list of valid attributes.
filters (dict[str,any]): Dictionary of filters --> values
to filter the dataset by. Filter names and values must
correspond to valid filters and filter values. See the
filters property for a list of valid filters.
only_unique (bool): Whether to return only rows containing
unique values (True) or to include duplicate rows (False).
use_attr_names (bool): Whether to use the attribute names
as column names in the result (True) or the attribute
display names (False).
dtypes (dict[str,any]): Dictionary of attributes --> data types
to describe to pandas how the columns should be handled
Returns:
pandas.DataFrame: DataFrame containing the query results.
|
codesearchnet
|
def apply(
self,
func,
num_splits=None,
other_axis_partition=None,
maintain_partitioning=True,
**kwargs
):
import dask
if num_splits is None:
num_splits = len(self.list_of_blocks)
if other_axis_partition is not None:
return [
DaskFramePartition(dask.delayed(obj))
for obj in deploy_func_between_two_axis_partitions(
self.axis,
func,
num_splits,
len(self.list_of_blocks),
kwargs,
*dask.compute(
*tuple(
self.list_of_blocks + other_axis_partition.list_of_blocks
)
)
)
]
args = [self.axis, func, num_splits, kwargs, maintain_partitioning]
args.extend(dask.compute(*self.list_of_blocks))
return [
DaskFramePartition(dask.delayed(obj)) for obj in deploy_axis_func(*args)
]
|
Applies func to the object.
See notes in Parent class about this method.
Args:
func: The function to apply.
num_splits: The number of times to split the result object.
other_axis_partition: Another `DaskFrameAxisPartition` object to apply to
func with this one.
Returns:
A list of `DaskFramePartition` objects.
|
juraj-google-style
|
def create(self, interface, vrid, **kwargs):
if ('enable' not in kwargs):
kwargs['enable'] = False
return self._vrrp_set(interface, vrid, **kwargs)
|
Creates a vrrp instance from an interface
Note:
This method will attempt to create a vrrp in the node's
operational config. If the vrrp already exists on the
interface, then this method will set the properties of
the existing vrrp to those that have been passed in, if
possible.
Args:
interface (string): The interface to configure.
vrid (integer): The vrid number for the vrrp to be created.
kwargs (dict): A dictionary specifying the properties to
be applied to the new vrrp instance. See library
documentation for available keys and values.
Returns:
True if the vrrp could be created otherwise False (see Node)
|
codesearchnet
|
def addBorrowers(self, *borrowers):
self._borrowers.extend(borrowers)
((debug.logger & debug.flagCompiler) and debug.logger(('current MIB borrower(s): %s' % ', '.join([str(x) for x in self._borrowers]))))
return self
|
Add more transformed MIBs repositories to borrow MIBs from.
Whenever MibCompiler.compile encounters MIB module which neither of
the *searchers* can find or fetched ASN.1 MIB module can not be
parsed (due to syntax errors), these *borrowers* objects will be
invoked in order of their addition asking each if already transformed
MIB can be fetched (borrowed).
Args:
borrowers: borrower object(s)
Returns:
reference to itself (can be used for call chaining)
|
codesearchnet
|
def get_csv_row_count(filename: str) -> int:
row_count = 0
with open(filename, 'r') as f:
for _ in f:
row_count += 1
if row_count != 0:
row_count -= 1
return row_count
|
Quickly count number of rows in the given csv file.
Args:
* filename: Path to CSV file
Returns:
* number of rows, minus header
|
github-repos
|
def save(self, checkpoint_dir=None):
checkpoint_dir = os.path.join(checkpoint_dir or self.logdir,
"checkpoint_{}".format(self._iteration))
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
checkpoint = self._save(checkpoint_dir)
saved_as_dict = False
if isinstance(checkpoint, string_types):
if (not checkpoint.startswith(checkpoint_dir)
or checkpoint == checkpoint_dir):
raise ValueError(
"The returned checkpoint path must be within the "
"given checkpoint dir {}: {}".format(
checkpoint_dir, checkpoint))
if not os.path.exists(checkpoint):
raise ValueError(
"The returned checkpoint path does not exist: {}".format(
checkpoint))
checkpoint_path = checkpoint
elif isinstance(checkpoint, dict):
saved_as_dict = True
checkpoint_path = os.path.join(checkpoint_dir, "checkpoint")
with open(checkpoint_path, "wb") as f:
pickle.dump(checkpoint, f)
else:
raise ValueError(
"`_save` must return a dict or string type: {}".format(
str(type(checkpoint))))
with open(checkpoint_path + ".tune_metadata", "wb") as f:
pickle.dump({
"experiment_id": self._experiment_id,
"iteration": self._iteration,
"timesteps_total": self._timesteps_total,
"time_total": self._time_total,
"episodes_total": self._episodes_total,
"saved_as_dict": saved_as_dict
}, f)
return checkpoint_path
|
Saves the current model state to a checkpoint.
Subclasses should override ``_save()`` instead to save state.
This method dumps additional metadata alongside the saved path.
Args:
checkpoint_dir (str): Optional dir to place the checkpoint.
Returns:
Checkpoint path that may be passed to restore().
|
juraj-google-style
|
def _open_config_files(self, command_line_args):
config_files = [open(f) for files in map(glob.glob, map(os.path.expanduser, self._default_config_files))
for f in files]
user_config_file_arg_actions = [
a for a in self._actions if getattr(a, "is_config_file_arg", False)]
if not user_config_file_arg_actions:
return config_files
for action in user_config_file_arg_actions:
arg_parser = argparse.ArgumentParser(
prefix_chars=self.prefix_chars,
add_help=False)
arg_parser._add_action(action)
def error_method(self, message):
pass
arg_parser.error = types.MethodType(error_method, arg_parser)
parsed_arg = arg_parser.parse_known_args(args=command_line_args)
if not parsed_arg:
continue
namespace, _ = parsed_arg
user_config_file = getattr(namespace, action.dest, None)
if not user_config_file:
continue
user_config_file = os.path.expanduser(user_config_file)
if not os.path.isfile(user_config_file):
self.error('File not found: %s' % user_config_file)
config_files += [open(user_config_file)]
return config_files
|
Tries to parse config file path(s) from within command_line_args.
Returns a list of opened config files, including files specified on the
commandline as well as any default_config_files specified in the
constructor that are present on disk.
Args:
command_line_args: List of all args (already split on spaces)
|
juraj-google-style
|
def get_interpolated_value(self, energy):
f = {}
for spin in self.densities.keys():
f[spin] = get_linear_interpolated_value(self.energies,
self.densities[spin],
energy)
return f
|
Returns interpolated density for a particular energy.
Args:
energy: Energy to return the density for.
|
juraj-google-style
|
def LoadFromStorage(cls, path=None):
if path is None:
path = os.path.join(os.path.expanduser('~'), 'googleads.yaml')
return cls(**googleads.common.LoadFromStorage(
path, cls._YAML_KEY, cls._REQUIRED_INIT_VALUES,
cls._OPTIONAL_INIT_VALUES))
|
Creates an AdWordsClient with information stored in a yaml file.
Args:
[optional]
path: The path string to the file containing cached AdWords data.
Returns:
An AdWordsClient initialized with the values cached in the file.
Raises:
A GoogleAdsValueError if the given yaml file does not contain the
information necessary to instantiate a client object - either a
required key was missing or an OAuth2 key was missing.
|
juraj-google-style
|
def bessel_k1e(x, name=None):
with ops.name_scope(name, 'bessel_k1e', [x]):
return gen_special_math_ops.bessel_k1e(x)
|
Computes the Bessel k1e function of `x` element-wise.
Modified Bessel function of order 1.
>>> tf.math.special.bessel_k1e([0.5, 1., 2., 4.]).numpy()
array([2.73100971, 1.63615349, 1.03347685, 0.68157595], dtype=float32)
Args:
x: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`,
`float32`, `float64`.
name: A name for the operation (optional).
Returns:
A `Tensor` or `SparseTensor`, respectively. Has the same type as `x`.
@compatibility(scipy)
Equivalent to scipy.special.k1e
@end_compatibility
|
github-repos
|
def _GetTextInside(text, start_pattern):
matching_punctuation = {'(': ')', '{': '}', '[': ']'}
closing_punctuation = set(itervalues(matching_punctuation))
match = re.search(start_pattern, text, re.M)
if (not match):
return None
start_position = match.end(0)
assert (start_position > 0), 'start_pattern must ends with an opening punctuation.'
assert (text[(start_position - 1)] in matching_punctuation), 'start_pattern must ends with an opening punctuation.'
punctuation_stack = [matching_punctuation[text[(start_position - 1)]]]
position = start_position
while (punctuation_stack and (position < len(text))):
if (text[position] == punctuation_stack[(- 1)]):
punctuation_stack.pop()
elif (text[position] in closing_punctuation):
return None
elif (text[position] in matching_punctuation):
punctuation_stack.append(matching_punctuation[text[position]])
position += 1
if punctuation_stack:
return None
return text[start_position:(position - 1)]
|
r"""Retrieves all the text between matching open and close parentheses.
Given a string of lines and a regular expression string, retrieve all the text
following the expression and between opening punctuation symbols like
(, [, or {, and the matching close-punctuation symbol. This properly nested
occurrences of the punctuations, so for the text like
printf(a(), b(c()));
a call to _GetTextInside(text, r'printf\(') will return 'a(), b(c())'.
start_pattern must match string having an open punctuation symbol at the end.
Args:
text: The lines to extract text. Its comments and strings must be elided.
It can be single line and can span multiple lines.
start_pattern: The regexp string indicating where to start extracting
the text.
Returns:
The extracted text.
None if either the opening string or ending punctuation could not be found.
|
codesearchnet
|
def establish_ssh_connection(ip, ssh_private_key_file, ssh_user, port, attempts=5, timeout=None):
client = paramiko.SSHClient()
client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
while attempts:
try:
client.connect(ip, port=port, username=ssh_user, key_filename=ssh_private_key_file, timeout=timeout)
except:
attempts -= 1
time.sleep(10)
else:
return client
raise IpaSSHException('Failed to establish SSH connection to instance.')
|
Establish ssh connection and return paramiko client.
Raises:
IpaSSHException: If connection cannot be established
in given number of attempts.
|
codesearchnet
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.