code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def AddCredentialOptions(self, argument_group):
argument_group.add_argument(
'--credential', action='append', default=[], type=str,
dest='credentials', metavar='TYPE:DATA', help=(
'Define a credentials that can be used to unlock encrypted '
'volumes e.g. BitLocker. The credential is defined as type:data '
'e.g. "password:BDE-test". Supported credential types are: '
'{0:s}. Binary key data is expected to be passed in BASE-16 '
'encoding (hexadecimal). WARNING credentials passed via command '
'line arguments can end up in logs, so use this option with '
'care.').format(', '.join(self._SUPPORTED_CREDENTIAL_TYPES)))
|
Adds the credential options to the argument group.
The credential options are use to unlock encrypted volumes.
Args:
argument_group (argparse._ArgumentGroup): argparse argument group.
|
juraj-google-style
|
def __init__(self, access_token, user_agent, revoke_uri=None):
super(AccessTokenCredentials, self).__init__(
access_token,
None,
None,
None,
None,
None,
user_agent,
revoke_uri=revoke_uri)
|
Create an instance of OAuth2Credentials
This is one of the few types if Credentials that you should contrust,
Credentials objects are usually instantiated by a Flow.
Args:
access_token: string, access token.
user_agent: string, The HTTP User-Agent to provide for this
application.
revoke_uri: string, URI for revoke endpoint. Defaults to None; a
token can't be revoked if this is None.
|
juraj-google-style
|
def subscribe(object_type: str, subscriber: str,
callback_handler: Callable = None) -> EventQueue:
key = _keys.subscribers(object_type)
DB.remove_from_list(key, subscriber)
DB.append_to_list(key, subscriber)
return EventQueue(object_type, subscriber, callback_handler)
|
Subscribe to the specified object type.
Returns an EventQueue object which can be used to query events
associated with the object type for this subscriber.
Args:
object_type (str): Object type
subscriber (str): Subscriber name
callback_handler (function, optional): Callback handler function.
Returns:
EventQueue, event queue object.
|
juraj-google-style
|
def download_report_hook(count, block_size, total_size):
percent = int((((count * block_size) * 100) / total_size))
print((('\r%d%%' % percent) + ' completed'), end='\r')
|
Report hook for download progress.
Args:
count: current block number
block_size: block size
total_size: total size
|
codesearchnet
|
def _recursive_remove_blank_dirs(self, path):
path = os.path.abspath(path)
if ((path == self.path) or (len(path) <= len(self.path))):
return
if (not os.path.exists(path)):
return self._recursive_remove_blank_dirs(os.path.dirname(path))
if os.listdir(path):
return
shutil.rmtree(path)
return self._recursive_remove_blank_dirs(os.path.dirname(path))
|
Make sure, that blank directories are removed from the storage.
Args:
path (str): Path which you suspect that is blank.
|
codesearchnet
|
def trace_model_call(model, input_signature=None):
if input_signature is None:
if isinstance(model.call, def_function.Function):
input_signature = model.call.input_signature
if input_signature is None:
input_signature = model_input_signature(model)
if input_signature is None:
raise_model_input_error(model)
@def_function.function(input_signature=input_signature, autograph=False)
def _wrapped_model(*args):
inputs = args[0] if len(input_signature) == 1 else list(args)
with keras_deps.get_call_context_function()().enter(model, inputs=inputs, build_graph=False, call_context_args={'training': False}, saving=True):
outputs = model(inputs, training=False)
return outputs
return _wrapped_model
|
Trace the model call to create a tf.function for exporting a Keras model.
Args:
model: A Keras model.
input_signature: optional, a list of tf.TensorSpec objects specifying the
inputs to the model.
Returns:
A tf.function wrapping the model's call function with input signatures set.
Raises:
ValueError: if input signature cannot be inferred from the model.
|
github-repos
|
def count_variables_by_type(variables=None):
if (variables is None):
variables = (tf.global_variables() + tf.local_variables())
unique_types = set((v.dtype.base_dtype for v in variables))
results_dict = {}
for dtype in unique_types:
if (dtype == tf.string):
tf.logging.warning('NB: string Variables present. The memory usage for these Variables will not be accurately computed as it depends on the exact strings stored in a particular session.')
vars_of_type = [v for v in variables if (v.dtype.base_dtype == dtype)]
num_scalars = sum((v.shape.num_elements() for v in vars_of_type))
results_dict[dtype] = {'num_variables': len(vars_of_type), 'num_scalars': num_scalars}
return results_dict
|
Returns a dict mapping dtypes to number of variables and scalars.
Args:
variables: iterable of `tf.Variable`s, or None. If None is passed, then all
global and local variables in the current graph are used.
Returns:
A dict mapping tf.dtype keys to a dict containing the keys 'num_scalars' and
'num_variables'.
|
codesearchnet
|
def restore_walker(self, dumped_state):
selector_string = dumped_state.get(u'selector')
if (selector_string is None):
raise ArgumentError("Invalid stream walker state in restore_walker, missing 'selector' key", state=dumped_state)
selector = DataStreamSelector.FromString(selector_string)
walker = self.create_walker(selector)
walker.restore(dumped_state)
return walker
|
Restore a stream walker that was previously serialized.
Since stream walkers need to be tracked in an internal list for
notification purposes, we need to be careful with how we restore
them to make sure they remain part of the right list.
Args:
dumped_state (dict): The dumped state of a stream walker
from a previous call to StreamWalker.dump()
Returns:
StreamWalker: The correctly restored StreamWalker subclass.
|
codesearchnet
|
def group_id(self, resource_id):
if self._name != 'group':
self._request_uri = '{}/{}'.format(self._api_uri, resource_id)
|
Update the request URI to include the Group ID for specific group retrieval.
Args:
resource_id (string): The group id.
|
juraj-google-style
|
def firmware_outdated(self):
datefmt = ' %b %d %Y %H:%M:%S'
compat_date = self.compatible_firmware_version.split('compiled')[1]
compat_date = datetime.datetime.strptime(compat_date, datefmt)
fw_date = self.firmware_version.split('compiled')[1]
fw_date = datetime.datetime.strptime(fw_date, datefmt)
return (compat_date > fw_date)
|
Returns whether the J-Link's firmware version is older than the one
that the DLL is compatible with.
Note:
This is not the same as calling ``not jlink.firmware_newer()``.
Args:
self (JLink): the ``JLink`` instance
Returns:
``True`` if the J-Link's firmware is older than the one supported by
the DLL, otherwise ``False``.
|
codesearchnet
|
def setDataFrame(self, dataFrame):
if (not isinstance(dataFrame, pandas.core.frame.DataFrame)):
raise TypeError('Argument is not of type pandas.core.frame.DataFrame')
self.layoutAboutToBeChanged.emit()
self._dataFrame = dataFrame
self.layoutChanged.emit()
|
setter function to _dataFrame. Holds all data.
Note:
It's not implemented with python properties to keep Qt conventions.
Raises:
TypeError: if dataFrame is not of type pandas.core.frame.DataFrame.
Args:
dataFrame (pandas.core.frame.DataFrame): assign dataFrame to _dataFrame. Holds all the data displayed.
|
codesearchnet
|
def load_transliteration_table(lang="en", version="2"):
src_dir = "transliteration{}".format(version)
p = locate_resource(src_dir, lang)
file_handler = _open(p)
return pickle.load(file_handler)
|
Return a morfessor model for `lang` and of version `version`
Args:
lang (string): language code.
version (string): version of the parameters to be used.
|
juraj-google-style
|
def sort_resources(cls, request, resources, fail_enum, header_proto=None):
if not request.sorting:
return resources
value_handlers = cls._get_handler_set(request, fail_enum, header_proto)
def sorter(resource_a, resource_b):
for handler in value_handlers:
val_a, val_b = handler.get_sort_values(resource_a, resource_b)
if val_a < val_b:
return handler.xform_result(-1)
if val_a > val_b:
return handler.xform_result(1)
return 0
return sorted(resources, key=cmp_to_key(sorter))
|
Sorts a list of resources based on a list of sort controls
Args:
request (object): The parsed protobuf request object
resources (list of objects): The resources to be sorted
fail_enum (int, enum): The enum status to raise with invalid keys
header_proto(class): Class to decode a resources header
Returns:
list: The sorted list of resources
|
juraj-google-style
|
def get_longs():
longs = {}
fname = pkg_resources.resource_filename(__name__, 'resources/Latitudes-Longitudes.csv')
with open(fname, 'rb') as csvfile:
reader = csv.reader(csvfile, delimiter=',')
for row in reader:
word = row[0].lower()
word = re.sub(' ', '', word)
longs[word] = float(row[2])
return longs
|
Get a dictionary that maps Backpage city names to their respective longitudes.
Returns:
dictionary that maps city names (Strings) to longitudes (Floats)
|
codesearchnet
|
def add(self, watch_key, tensor_value):
if (watch_key not in self._tensor_data):
self._tensor_data[watch_key] = _WatchStore(watch_key, mem_bytes_limit=self._watch_mem_bytes_limit)
self._tensor_data[watch_key].add(tensor_value)
|
Add a tensor value.
Args:
watch_key: A string representing the debugger tensor watch, e.g.,
'Dense_1/BiasAdd:0:DebugIdentity'.
tensor_value: The value of the tensor as a numpy.ndarray.
|
codesearchnet
|
def insert_rows(self, project_id, dataset_id, table_id, rows, insert_ids=None, skip_invalid_rows=False, ignore_unknown_values=False):
insert_ids = [str(self.unique_row_id) if not insert_ids else insert_ids[i] for i, _ in enumerate(rows)]
rows = [fast_json_loads(fast_json_dumps(r, default=default_encoder)) for r in rows]
result, errors = self._insert_all_rows(project_id, dataset_id, table_id, rows, insert_ids, skip_invalid_rows=skip_invalid_rows, ignore_unknown_values=ignore_unknown_values)
return (result, errors)
|
Inserts rows into the specified table.
Args:
project_id: The project id owning the table.
dataset_id: The dataset id owning the table.
table_id: The table id.
rows: A list of plain Python dictionaries. Each dictionary is a row and
each key in it is the name of a field.
skip_invalid_rows: If there are rows with insertion errors, whether they
should be skipped, and all others should be inserted successfully.
ignore_unknown_values: Set this option to true to ignore unknown column
names. If the input rows contain columns that are not
part of the existing table's schema, those columns are ignored, and
the rows are successfully inserted.
Returns:
A tuple (bool, errors). If first element is False then the second element
will be a bigquery.InsertErrorsValueListEntry instance containing
specific errors.
|
github-repos
|
def __init__(self, warm_start_type, parents):
if warm_start_type not in WarmStartTypes:
raise ValueError(
"Invalid type: {}, valid warm start types are: [{}]".format(warm_start_type,
[t for t in WarmStartTypes]))
if not parents:
raise ValueError("Invalid parents: {}, parents should not be None/empty".format(parents))
self.type = warm_start_type
self.parents = set(parents)
|
Initializes the ``WarmStartConfig`` with the provided ``WarmStartTypes`` and parents.
Args:
warm_start_type (sagemaker.tuner.WarmStartTypes): This should be one of the supported warm start types
in WarmStartType
parents (set{str}): Set of parent tuning jobs which will be used to warm start the new tuning job.
|
juraj-google-style
|
def setup(self, steps=None, drop_na=False, **kwargs):
input_nodes = None
selectors = self.model.get('input', {}).copy()
selectors.update(kwargs)
for (i, b) in enumerate(self.steps):
if ((steps is not None) and (i not in steps) and (b.name not in steps)):
continue
b.setup(input_nodes, drop_na=drop_na, **selectors)
input_nodes = b.output_nodes
|
Set up the sequence of steps for analysis.
Args:
steps (list): Optional list of steps to set up. Each element
must be either an int giving the index of the step in the
JSON config block list, or a str giving the (unique) name of
the step, as specified in the JSON config. Steps that do not
match either index or name will be skipped.
drop_na (bool): Boolean indicating whether or not to automatically
drop events that have a n/a amplitude when reading in data
from event files.
|
codesearchnet
|
def add_depth_embedding(x):
x_shape = common_layers.shape_list(x)
depth = x_shape[-1]
num_steps = x_shape[0]
shape = [num_steps, 1, 1, depth]
depth_embedding = (
tf.get_variable(
"depth_embedding",
shape,
initializer=tf.random_normal_initializer(0, depth**-0.5)) * (depth**
0.5))
x += depth_embedding
return x
|
Add n-dimensional embedding as the depth embedding (timing signal).
Adds embeddings to represent the position of the step in the recurrent
tower.
Args:
x: a tensor with shape [max_step, batch, length, depth]
Returns:
a Tensor the same shape as x.
|
juraj-google-style
|
def get_service_state(self, service_id: str) -> str:
service = self._client.services.get(service_id)
for service_task in service.tasks():
service_state = service_task['DesiredState']
return service_state
|
Get the state of the service.
Only the manager nodes can retrieve service state
Args:
service_id (str): Service id
Returns:
str, state of the service
|
juraj-google-style
|
def closest_point(a, b, p):
ap = [p[0]-a[0], p[1]-a[1]]
ab = [b[0]-a[0], b[1]-a[1]]
mag = float(ab[0]**2 + ab[1]**2)
proj = dot(ap, ab)
if mag ==0 :
dist = 0
else:
dist = proj / mag
if dist < 0:
return [a[0], a[1]]
elif dist > 1:
return [b[0], b[1]]
else:
return [a[0] + ab[0] * dist, a[1] + ab[1] * dist]
|
Finds closest point in a line segment
Args:
a ([float, float]): x and y coordinates. Line start
b ([float, float]): x and y coordinates. Line end
p ([float, float]): x and y coordinates. Point to find in the segment
Returns:
(float, float): x and y coordinates of the closest point
|
juraj-google-style
|
def _compute_numeric_jacobian(f, y_size, y_dtype, xs, param, delta):
x_shape = xs[param].shape
x_dtype = xs[param].dtype
x_size = _product(x_shape) * (2 if x_dtype.is_complex else 1)
y_size = y_size * (2 if y_dtype.is_complex else 1)
x_dtype = x_dtype.real_dtype.as_numpy_dtype
y_dtype = y_dtype.real_dtype.as_numpy_dtype
xs_dtypes = [x.dtype for x in xs]
xs_shapes = [x.shape for x in xs]
xs = [numpy_compat.np_asarray(_to_numpy(x)) for x in xs]
x = xs[param]
scale = numpy_compat.np_asarray(2 * delta, dtype=y_dtype)[()]
jacobian = np.zeros((y_size, x_size), dtype=x_dtype)
f = _prepare(f, xs_dtypes, xs_shapes)
for col in range(x_size):
original = x.ravel().view(x_dtype)[col]
x.ravel().view(x_dtype)[col] += delta
y_pos = _to_numpy(f(*xs))
x.ravel().view(x_dtype)[col] = original
x.ravel().view(x_dtype)[col] -= delta
y_neg = _to_numpy(f(*xs))
x.ravel().view(x_dtype)[col] = original
diff = (y_pos - y_neg) / scale
jacobian[:, col] = diff.ravel().view(y_dtype)
logging.vlog(1, 'Numeric Jacobian =\n%s', jacobian)
return jacobian
|
Computes the numeric Jacobian for f regarding xs[param].
One can think of the relation among f, xs and y as y = f(xs).
Args:
f: the function.
y_size: the number of elements of the result.
y_dtype: the dtype of the result.
xs: a list of tensors.
param: the index of the target parameter.
delta: the amount of perturbation we give to the input.
Returns:
A 2-d numpy array representing the Jacobian. It has "y_size" rows
and "x_size" columns where "x_size" is the number of elements in xs[param]
and "y_size" is the number of elements in the result.
|
github-repos
|
def register(self, numerics_alert):
key = (numerics_alert.device_name, numerics_alert.tensor_name)
if (key in self._data):
self._data[key].add(numerics_alert)
elif (len(self._data) < self._capacity):
history = NumericsAlertHistory()
history.add(numerics_alert)
self._data[key] = history
|
Register an alerting numeric event.
Args:
numerics_alert: An instance of `NumericsAlert`.
|
codesearchnet
|
def get_urls_for_profiles(edx_video_id, profiles):
profiles_to_urls = {profile: None for profile in profiles}
try:
video_info = get_video_info(edx_video_id)
except ValVideoNotFoundError:
return profiles_to_urls
for encoded_video in video_info["encoded_videos"]:
if encoded_video["profile"] in profiles:
profiles_to_urls[encoded_video["profile"]] = encoded_video["url"]
return profiles_to_urls
|
Returns a dict mapping profiles to URLs.
If the profiles or video is not found, urls will be blank.
Args:
edx_video_id (str): id of the video
profiles (list): list of profiles we want to search for
Returns:
(dict): A dict containing the profile to url pair
|
juraj-google-style
|
def map(self, entity, ext_id, dcm_id):
if not entity in self._id_map:
self._id_map[entity] = {}
self._id_map[entity][ext_id] = dcm_id
self._id_map[entity][dcm_id] = ext_id
|
Maps a CM id and an ext id for an entity.
Args:
entity: The name of the entity for which the ID relates.
ext_id: Placeholder ext id.
dcm_id: Real CM id of the object.
|
github-repos
|
def sqrt(x):
if any_symbolic_tensors((x,)):
return Sqrt().symbolic_call(x)
x = backend.convert_to_tensor(x)
return backend.numpy.sqrt(x)
|
Return the non-negative square root of a tensor, element-wise.
Args:
x: Input tensor.
Returns:
Output tensor, the non-negative square root of `x`.
|
github-repos
|
def add_string(self, data):
lines = []
while data:
match = self._line_end_re.search(data)
if (match is None):
chunk = data
else:
chunk = data[:match.end()]
data = data[len(chunk):]
if (self._buf and self._buf[(- 1)].endswith(b('\r')) and (not chunk.startswith(b('\n')))):
lines.append(self._finish_line())
self._buf.append(chunk)
if chunk.endswith(b('\n')):
lines.append(self._finish_line())
return lines
|
Process some data splitting it into complete lines and buffering the rest
Args:
data: A `str` in Python 2 or `bytes` in Python 3
Returns:
list of complete lines ending with a carriage return (eg. a progress
bar) or a newline.
|
codesearchnet
|
def add_oxidation_state_by_site_fraction(structure, oxidation_states):
try:
for (i, site) in enumerate(structure):
new_sp = collections.defaultdict(float)
for (j, (el, occu)) in enumerate(get_z_ordered_elmap(site.species)):
specie = Specie(el.symbol, oxidation_states[i][j])
new_sp[specie] += occu
structure[i] = new_sp
return structure
except IndexError:
raise ValueError('Oxidation state of all sites must be specified in the list.')
|
Add oxidation states to a structure by fractional site.
Args:
oxidation_states (list): List of list of oxidation states for each
site fraction for each site.
E.g., [[2, 4], [3], [-2], [-2], [-2]]
|
codesearchnet
|
def patch_f90_compiler(f90_compiler):
from numpy.distutils.fcompiler import gnu
if os.name != "nt":
return
if not isinstance(f90_compiler, gnu.Gnu95FCompiler):
return
f90_compiler.compiler_f77[:] = _remove_fpic(f90_compiler.compiler_f77)
f90_compiler.compiler_f90[:] = _remove_fpic(f90_compiler.compiler_f90)
c_compiler = f90_compiler.c_compiler
if c_compiler.compiler_type != "msvc":
raise NotImplementedError(
"MSVC is the only supported C compiler on Windows."
)
|
Patch up ``f90_compiler.library_dirs``.
Updates flags in ``gfortran`` and ignores other compilers. The only
modification is the removal of ``-fPIC`` since it is not used on Windows
and the build flags turn warnings into errors.
Args:
f90_compiler (numpy.distutils.fcompiler.FCompiler): A Fortran compiler
instance.
|
juraj-google-style
|
def _reduce_helper(input_shape,
output_shape,
input_tensor_layout,
reduction_fn_string="SUM"):
reduce_dims_indices = [
i for i, d in enumerate(input_shape.dims) if d not in output_shape.dims]
reduced_input_shape = Shape([
d for d in input_shape.dims if d in output_shape.dims])
perm = [reduced_input_shape.dims.index(d) for d in output_shape.dims]
def reduce_slice_fn(xslice):
ret = xslice
if reduce_dims_indices:
ret = reduction_fn(reduction_fn_string)(xslice, reduce_dims_indices)
if perm != list(xrange(len(perm))):
ret = tf.transpose(ret, perm)
return ret
reduced_mesh_axes = []
for i in reduce_dims_indices:
mesh_axis = input_tensor_layout[i]
if mesh_axis is not None:
reduced_mesh_axes.append(mesh_axis)
return reduce_slice_fn, reduced_mesh_axes
|
Returns slicewise function and reduced mesh dimensions.
Args:
input_shape: a Shape
output_shape: a Shape
input_tensor_layout: a TensorLayout
reduction_fn_string: "SUM" or "MAX"
Returns:
reduce_slice_fn: a function from tf.Tensor to tf.Tensor
reduced_mesh_axes: a list of integers
|
juraj-google-style
|
def __init__(self, settings, room, queue, files):
Process.__init__(self)
self._room = room
self._queue = queue
self._files = files
self._data = {}
self._connection = Connection.create_from_settings(settings)
self._reactor = None
self._producer = None
self._receiver = None
|
Initialize.
Args:
settings (dict): Settings used to create a :class:`Connection` instance
room (int): Room
queue (:class:`multiprocessing.Queue`): Queue to share data between processes
files (dict): Dictionary, where key is the field name, and value is the path
|
juraj-google-style
|
def ctc(y_true, y_pred):
if len(ops.shape(y_true)) != 2:
raise ValueError(f'Targets `y_true` are expected to be a tensor of shape `(batch_size, max_length)` in integer format. Received: y_true.shape={ops.shape(y_true)}')
if len(ops.shape(y_pred)) != 3:
raise ValueError(f'Logits `y_pred` are expected to be a tensor of shape `(batch_size, max_length, num_classes)`. Received: y_pred.shape={ops.shape(y_pred)}')
mask_index = 0
batch_length = ops.shape(y_pred)[0]
input_length = ops.shape(y_pred)[1]
input_length = input_length * ops.ones((batch_length,), dtype='int32')
label_length = ops.cast(ops.sum(y_true != mask_index, axis=-1), dtype='int32')
return ops.ctc_loss(y_true, y_pred, label_length, input_length, mask_index=mask_index)
|
CTC (Connectionist Temporal Classification) loss.
Args:
y_true: A tensor of shape `(batch_size, max_length)` containing
the true labels in integer format. `0` always represents
the blank/mask index and should not be used for classes.
y_pred: A tensor of shape `(batch_size, max_length, num_classes)`
containing logits (the output of your model).
They should *not* be normalized via softmax.
|
github-repos
|
def get_trivial_search_space():
return pg.floatv(0.0, 1.0)
|
Trivial search space.
Each point in the space is a value in [0, 1].
Returns:
A tunable value.
|
github-repos
|
def remove_child(self, child):
if not isinstance(child, Node):
raise TypeError("child must be a Node")
try:
self.children.remove(child); child.parent = None
except:
raise RuntimeError("Attempting to remove non-existent child")
|
Remove child from ``Node`` object
Args:
``child`` (``Node``): The child to remove
|
juraj-google-style
|
def make_tstore_conn(params, **kwargs):
log.setLevel(params.get('log_level', __LOG_LEVEL__))
log.debug("\n%s", params)
params.update(kwargs)
try:
vendor = RdfwConnections['triplestore'][params.get('vendor')]
except KeyError:
vendor = RdfwConnections['triplestore']['blazegraph']
conn = vendor(**params)
return conn
|
Returns a triplestore connection
args:
attr_name: The name the connection will be assigned in the
config manager
params: The paramaters of the connection
kwargs:
log_level: logging level to use
|
juraj-google-style
|
def _run_between_graph_clients(self, client_fn, cluster_spec, num_gpus, *args, **kwargs):
threads = []
for task_type in ['chief', 'worker']:
for task_id in range(len(cluster_spec.get(task_type, []))):
t = threading.Thread(target=self._run_client, args=(client_fn, task_type, task_id, num_gpus, context.executing_eagerly()) + args, kwargs=kwargs)
t.start()
threads.append(t)
self._coord.join(threads)
|
Runs several clients for between-graph replication.
Args:
client_fn: a function that needs to accept `task_type`, `task_id`,
`num_gpus`.
cluster_spec: a dict specifying jobs in a cluster.
num_gpus: number of GPUs per worker.
*args: will be passed to `client_fn`.
**kwargs: will be passed to `client_fn`.
|
github-repos
|
def squash_sequence(input_layer):
timesteps = len(input_layer.sequence)
if not timesteps:
raise ValueError('Empty tensor sequence.')
elif timesteps == 1:
result = input_layer.sequence[0]
else:
result = tf.concat(input_layer.sequence, 0)
return input_layer.with_tensor(result).with_defaults(unroll=timesteps)
|
Squashes a sequence into a single Tensor with dim 1 being time*batch.
A sequence is an array of Tensors, which is not appropriate for most
operations, this squashes them together into Tensor.
Defaults are assigned such that cleave_sequence requires no args.
Args:
input_layer: The input layer.
Returns:
A PrettyTensor containing a single tensor with the first dim containing
both time and batch.
Raises:
ValueError: If the sequence is empty.
|
juraj-google-style
|
def _calculateEncodingKey(comparator):
encodingName = None
for k, v in list(_encodings.items()):
if v == comparator:
encodingName = k
break
return encodingName
|
Gets the first key of all available encodings where the corresponding
value matches the comparator.
Args:
comparator (string): A view name for an encoding.
Returns:
str: A key for a specific encoding used by python.
|
juraj-google-style
|
async def enqueue(content: AsyncIterable[_T], queue: asyncio.Queue[_T | None]) -> None:
try:
async for part in content:
await queue.put(part)
finally:
await queue.put(None)
|
Enqueues all content into a queue.
When the queue is unbounded, this function will not block. When the queue is
bounded, this function will block until the queue has space.
Args:
content: The content to enqueue.
queue: The queue to enqueue to.
|
github-repos
|
def VerifyStructure(self, parser_mediator, line):
try:
structure = self._HEADER.parseString(line)
except pyparsing.ParseException:
logger.debug('Not a XChat log file')
return False
(_, month, day, hours, minutes, seconds, year) = structure.date_time
month = timelib.MONTH_DICT.get(month.lower(), 0)
time_elements_tuple = (year, month, day, hours, minutes, seconds)
try:
dfdatetime_time_elements.TimeElements(time_elements_tuple=time_elements_tuple)
except ValueError:
logger.debug('Not a XChat log file, invalid date and time: {0!s}'.format(structure.date_time))
return False
return True
|
Verify that this file is a XChat log file.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
line (str): line from a text file.
Returns:
bool: True if the line is in the expected format, False if not.
|
codesearchnet
|
def get_metrics(pred: jax.Array, actual: jax.Array) -> Result:
tp: int = jnp.sum(jnp.logical_and(pred == 1, actual == 1))
tn: int = jnp.sum(jnp.logical_and(pred == 0, actual == 0))
fp: int = jnp.sum(jnp.logical_and(pred == 1, actual == 0))
fn: int = jnp.sum(jnp.logical_and(pred == 0, actual == 1))
accuracy = (tp + tn) / (tp + tn + fp + fn + EPS)
precision = tp / (tp + fp + EPS)
recall = tp / (tp + fn + EPS)
fscore = 2 * precision * recall / (precision + recall + EPS)
return Result(tp=tp, tn=tn, fp=fp, fn=fn, accuracy=accuracy, precision=precision, recall=recall, fscore=fscore)
|
Gets evaluation metrics from the prediction and the actual target.
Args:
pred (jax.Array): A prediction of the target.
actual (jax.Array): The actual target.
Returns:
result (Result): A result.
|
github-repos
|
def save(self, name=None, output='png', dirc=None):
self.render()
if dirc:
if not os.path.isdir(os.getcwd() + "/" + str(dirc)):
os.makedirs(os.getcwd() + "/" + str(dirc))
if name is None:
if dirc:
self.fig.savefig(os.getcwd() + "/" + str(dirc) + '/bloch_' +
str(self.savenum) + '.' + output)
else:
self.fig.savefig(os.getcwd() + '/bloch_' + str(self.savenum) +
'.' + output)
else:
self.fig.savefig(name)
self.savenum += 1
if self.fig:
plt.close(self.fig)
|
Saves Bloch sphere to file of type ``format`` in directory ``dirc``.
Args:
name (str):
Name of saved image. Must include path and format as well.
i.e. '/Users/Paul/Desktop/bloch.png'
This overrides the 'format' and 'dirc' arguments.
output (str):
Format of output image.
dirc (str):
Directory for output images. Defaults to current working directory.
|
juraj-google-style
|
def on_heartbeat(self, message):
logger.info("Got a heartbeat")
logger.info("Heartbeat message: {}".format(message))
self.heartbeat_thread.update_sequence(message['d'])
return
|
Runs on a heartbeat event from websocket connection
Args:
message (dict): Full message from Discord websocket connection"
|
juraj-google-style
|
def log_response(self, response: Response, trim_log_values: bool=False, **kwargs: Any) -> None:
return log_(response.text, response_log, 'info', trim=trim_log_values, **kwargs)
|
Log a response.
Note this is different to log_request, in that it takes a Response object, not a
string.
Args:
response: The Response object to log. Note this is different to log_request
which takes a string.
trim_log_values: Log an abbreviated version of the response.
|
codesearchnet
|
def _inv_hessian_control_inputs(inv_hessian):
is_positive_definite = tf.reduce_all(input_tensor=tf.math.is_finite(tf.linalg.cholesky(inv_hessian)), axis=[(- 1), (- 2)])
is_symmetric = tf.equal(bfgs_utils.norm((inv_hessian - _batch_transpose(inv_hessian)), dims=2), 0)
return [tf.Assert(is_positive_definite, ['Initial inverse Hessian is not positive definite.', inv_hessian]), tf.Assert(is_symmetric, ['Initial inverse Hessian is not symmetric', inv_hessian])]
|
Computes control inputs to validate a provided inverse Hessian.
These ensure that the provided inverse Hessian is positive definite and
symmetric.
Args:
inv_hessian: The starting estimate for the inverse of the Hessian at the
initial point.
Returns:
A list of tf.Assert ops suitable for use with tf.control_dependencies.
|
codesearchnet
|
def recover_cfg(self, start=None, end=None, symbols=None, callback=None, arch_mode=None):
if (arch_mode is None):
arch_mode = self.binary.architecture_mode
self._load(arch_mode=arch_mode)
start = (start if start else self.binary.entry_point)
(cfg, _) = self._recover_cfg(start=start, end=end, symbols=symbols, callback=callback)
return cfg
|
Recover CFG.
Args:
start (int): Start address.
end (int): End address.
symbols (dict): Symbol table.
callback (function): A callback function which is called after each successfully recovered CFG.
arch_mode (int): Architecture mode.
Returns:
ControlFlowGraph: A CFG.
|
codesearchnet
|
def _parse_list(cls, args):
argparser = ArgumentParser(prog='cluster list')
group = argparser.add_mutually_exclusive_group()
group.add_argument('--id', dest='cluster_id', help='show cluster with this id')
group.add_argument('--label', dest='label', help='show cluster with this label')
group.add_argument('--state', dest='state', action='store', choices=['up', 'down', 'pending', 'terminating'], help='list only clusters in the given state')
pagination_group = group.add_argument_group()
pagination_group.add_argument('--page', dest='page', action='store', type=int, help='page number')
pagination_group.add_argument('--per-page', dest='per_page', action='store', type=int, help='number of clusters to be retrieved per page')
arguments = argparser.parse_args(args)
return vars(arguments)
|
Parse command line arguments to construct a dictionary of cluster
parameters that can be used to determine which clusters to list.
Args:
`args`: sequence of arguments
Returns:
Dictionary that can be used to determine which clusters to list
|
codesearchnet
|
def copy_function(func, name=None):
code = func.__code__
newname = (name or func.__name__)
newcode = CodeType(code.co_argcount, code.co_kwonlyargcount, code.co_nlocals, code.co_stacksize, code.co_flags, code.co_code, code.co_consts, code.co_names, code.co_varnames, code.co_filename, newname, code.co_firstlineno, code.co_lnotab, code.co_freevars, code.co_cellvars)
newfunc = FunctionType(newcode, func.__globals__, newname, func.__defaults__, func.__closure__)
newfunc.__dict__.update(func.__dict__)
return newfunc
|
Copy a function object with different name.
Args:
func (function): Function to be copied.
name (string, optional): Name of the new function.
If not spacified, the same name of `func` will be used.
Returns:
newfunc (function): New function with different name.
|
codesearchnet
|
def remove_father(self, father):
self._fathers = [x for x in self._fathers if (x.node_id != father.node_id)]
|
Remove the father node. Do nothing if the node is not a father
Args:
fathers: list of fathers to add
|
codesearchnet
|
def get_url(self, url):
try:
req = requests.get(url, headers={
'Authorization': 'Token {}'.format(self._user_token)
}, verify=False)
if req.status_code is 403:
raise ValueError("Access Denied")
else:
return req
except requests.exceptions.ConnectionError as e:
if str(e) == '403 Client Error: Forbidden':
raise ValueError('Access Denied')
else:
raise e
|
Get a response object for a given url.
Arguments:
url (str): The url make a get to
token (str): The authentication token
Returns:
obj: The response object
|
juraj-google-style
|
def read(path):
if fs.exists(path):
with open(path) as infile:
components = infile.read().split()
pid = int(components[0])
date = datetime.date.fromtimestamp(float(components[1]))
return (pid, date)
else:
return (None, None)
|
Read the contents of a LockFile.
Arguments:
path (str): Path to lockfile.
Returns:
Tuple(int, datetime): The integer PID of the lock owner, and the
date the lock was required. If the lock is not claimed, both
values are None.
|
codesearchnet
|
def call(self, name, *args, **kwargs):
payload = (name, args, kwargs)
self._conn.send((self._CALL, payload))
return self._receive
|
Asynchronously call a method of the external environment.
Args:
name: Name of the method to call.
*args: Positional arguments to forward to the method.
**kwargs: Keyword arguments to forward to the method.
Returns:
Promise object that blocks and provides the return value when called.
|
codesearchnet
|
def _generate_api_config_with_root(self, request):
actual_root = self._get_actual_root(request)
generator = api_config.ApiConfigGenerator()
api = request.body_json['api']
version = request.body_json['version']
lookup_key = (api, version)
service_factories = self._backend.api_name_version_map.get(lookup_key)
if not service_factories:
return None
service_classes = [service_factory.service_class
for service_factory in service_factories]
config_dict = generator.get_config_dict(
service_classes, hostname=actual_root)
for config in config_dict.get('items', []):
lookup_key_with_root = (
config.get('name', ''), config.get('version', ''), actual_root)
self._config_manager.save_config(lookup_key_with_root, config)
return config_dict
|
Generate an API config with a specific root hostname.
This uses the backend object and the ApiConfigGenerator to create an API
config specific to the hostname of the incoming request. This allows for
flexible API configs for non-standard environments, such as localhost.
Args:
request: An ApiRequest, the transformed request sent to the Discovery API.
Returns:
A string representation of the generated API config.
|
juraj-google-style
|
def are_equivalent_pyxb(a_pyxb, b_pyxb, ignore_timestamps=False):
normalize_in_place(a_pyxb, ignore_timestamps)
normalize_in_place(b_pyxb, ignore_timestamps)
a_xml = d1_common.xml.serialize_to_xml_str(a_pyxb)
b_xml = d1_common.xml.serialize_to_xml_str(b_pyxb)
are_equivalent = d1_common.xml.are_equivalent(a_xml, b_xml)
if (not are_equivalent):
logger.debug('XML documents not equivalent:')
logger.debug(d1_common.xml.format_diff_xml(a_xml, b_xml))
return are_equivalent
|
Determine if SystemMetadata PyXB objects are semantically equivalent.
Normalize then compare SystemMetadata PyXB objects for equivalency.
Args:
a_pyxb, b_pyxb : SystemMetadata PyXB objects to compare
reset_timestamps: bool
``True``: Timestamps in the SystemMetadata are set to a standard value so that
objects that are compared after normalization register as equivalent if only
their timestamps differ.
Returns:
bool: **True** if SystemMetadata PyXB objects are semantically equivalent.
Notes:
The SystemMetadata is normalized by removing any redundant information and
ordering all sections where there are no semantics associated with the order. The
normalized SystemMetadata is intended to be semantically equivalent to the
un-normalized one.
|
codesearchnet
|
def make_prediction_pipeline(pipeline, args):
(predicted_values, errors) = (((pipeline | ('Read CSV Files' >> beam.io.ReadFromText(str(args.predict_data), strip_trailing_newlines=True))) | ('Batch Input' >> beam.ParDo(EmitAsBatchDoFn(args.batch_size)))) | ('Run TF Graph on Batches' >> beam.ParDo(RunGraphDoFn(args.trained_model_dir)).with_outputs('errors', main='main')))
((predicted_values, errors) | ('Format and Save' >> FormatAndSave(args)))
|
Builds the prediction pipeline.
Reads the csv files, prepends a ',' if the target column is missing, run
prediction, and then prints the formated results to a file.
Args:
pipeline: the pipeline
args: command line args
|
codesearchnet
|
def initialize_block(self, block_header):
state_view = BlockWrapper.state_view_for_block(self._block_cache.block_store.chain_head, self._state_view_factory)
settings_view = SettingsView(state_view)
self._min_wait_time = settings_view.get_setting('sawtooth.consensus.min_wait_time', self._min_wait_time, int)
self._max_wait_time = settings_view.get_setting('sawtooth.consensus.max_wait_time', self._max_wait_time, int)
self._valid_block_publishers = settings_view.get_setting('sawtooth.consensus.valid_block_publishers', self._valid_block_publishers, list)
block_header.consensus = b'Devmode'
self._start_time = time.time()
self._wait_time = random.uniform(self._min_wait_time, self._max_wait_time)
return True
|
Do initialization necessary for the consensus to claim a block,
this may include initiating voting activates, starting proof of work
hash generation, or create a PoET wait timer.
Args:
block_header (BlockHeader): the BlockHeader to initialize.
Returns:
True
|
codesearchnet
|
def print_error_messages_raylet(task_error_queue, threads_stopped):
while True:
if threads_stopped.is_set():
return
try:
error, t = task_error_queue.get(block=False)
except queue.Empty:
threads_stopped.wait(timeout=0.01)
continue
while t + UNCAUGHT_ERROR_GRACE_PERIOD > time.time():
threads_stopped.wait(timeout=1)
if threads_stopped.is_set():
break
if t < last_task_error_raise_time + UNCAUGHT_ERROR_GRACE_PERIOD:
logger.debug("Suppressing error from worker: {}".format(error))
else:
logger.error(
"Possible unhandled error from worker: {}".format(error))
|
Prints message received in the given output queue.
This checks periodically if any un-raised errors occured in the background.
Args:
task_error_queue (queue.Queue): A queue used to receive errors from the
thread that listens to Redis.
threads_stopped (threading.Event): A threading event used to signal to
the thread that it should exit.
|
juraj-google-style
|
def children(self, as_resources=False):
children = [o for (s, p, o) in self.rdf.graph.triples((None, self.rdf.prefixes.ldp.contains, None))]
if as_resources:
logger.debug('retrieving children as resources')
children = [self.repo.get_resource(child) for child in children]
return children
|
method to return hierarchical children of this resource
Args:
as_resources (bool): if True, opens each as appropriate resource type instead of return URI only
Returns:
(list): list of resources
|
codesearchnet
|
def maybe_propagate_compile_time_consts_in_xla(op):
if control_flow_util.GraphOrParentsInXlaContext(op.graph):
op._set_attr('_xla_propagate_compile_time_consts', attr_value_pb2.AttrValue(b=True))
|
Tells XLA whether to propagate compile-time consts in the loop body.
This is needed to make compile time constants available to ops, for example
`max_num_elements` in `EmptyTensorList`, inside the loop body. Ideally this
would always be turned on, but that doesn't work with legacy functionalized
while_loops.
Args:
op: A `While` Operation.
|
github-repos
|
def list_projects(self, entity=None):
query = gql('\n query Models($entity: String!) {\n models(first: 10, entityName: $entity) {\n edges {\n node {\n id\n name\n description\n }\n }\n }\n }\n ')
return self._flatten_edges(self.gql(query, variable_values={'entity': (entity or self.settings('entity'))})['models'])
|
Lists projects in W&B scoped by entity.
Args:
entity (str, optional): The entity to scope this project to.
Returns:
[{"id","name","description"}]
|
codesearchnet
|
def buckets_get(self, bucket, projection='noAcl'):
args = {'projection': projection}
url = (Api._ENDPOINT + (Api._BUCKET_PATH % bucket))
return google.datalab.utils.Http.request(url, credentials=self._credentials, args=args)
|
Issues a request to retrieve information about a bucket.
Args:
bucket: the name of the bucket.
projection: the projection of the bucket information to retrieve.
Returns:
A parsed bucket information dictionary.
Raises:
Exception if there is an error performing the operation.
|
codesearchnet
|
def parse(self, filename):
path = os.path.abspath(filename)
if filename.endswith('.xml'):
return PawXmlSetup(path)
ppdesc = self.read_ppdesc(path)
if (ppdesc is None):
logger.critical(('Cannot find ppdesc in %s' % path))
return None
psp_type = ppdesc.psp_type
parsers = {'FHI': NcAbinitHeader.fhi_header, 'GTH': NcAbinitHeader.gth_header, 'TM': NcAbinitHeader.tm_header, 'Teter': NcAbinitHeader.tm_header, 'HGH': NcAbinitHeader.hgh_header, 'HGHK': NcAbinitHeader.hgh_header, 'ONCVPSP': NcAbinitHeader.oncvpsp_header, 'PAW_abinit_text': PawAbinitHeader.paw_header}
try:
header = parsers[ppdesc.name](path, ppdesc)
except Exception:
raise self.Error(((path + ':\n') + straceback()))
if (psp_type == 'NC'):
pseudo = NcAbinitPseudo(path, header)
elif (psp_type == 'PAW'):
pseudo = PawAbinitPseudo(path, header)
else:
raise NotImplementedError('psp_type not in [NC, PAW]')
return pseudo
|
Read and parse a pseudopotential file. Main entry point for client code.
Returns:
pseudopotential object or None if filename is not a valid pseudopotential file.
|
codesearchnet
|
class FlaxElectraSequenceSummary(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.summary = identity
if hasattr(self.config, 'summary_use_proj') and self.config.summary_use_proj:
if hasattr(self.config, 'summary_proj_to_labels') and self.config.summary_proj_to_labels and (self.config.num_labels > 0):
num_classes = self.config.num_labels
else:
num_classes = self.config.hidden_size
self.summary = nn.Dense(num_classes, dtype=self.dtype)
activation_string = getattr(self.config, 'summary_activation', None)
self.activation = ACT2FN[activation_string] if activation_string else lambda x: x
self.first_dropout = identity
if hasattr(self.config, 'summary_first_dropout') and self.config.summary_first_dropout > 0:
self.first_dropout = nn.Dropout(self.config.summary_first_dropout)
self.last_dropout = identity
if hasattr(self.config, 'summary_last_dropout') and self.config.summary_last_dropout > 0:
self.last_dropout = nn.Dropout(self.config.summary_last_dropout)
def __call__(self, hidden_states, cls_index=None, deterministic: bool=True):
output = hidden_states[:, 0]
output = self.first_dropout(output, deterministic=deterministic)
output = self.summary(output)
output = self.activation(output)
output = self.last_dropout(output, deterministic=deterministic)
return output
|
Compute a single vector summary of a sequence hidden states.
Args:
config ([`PretrainedConfig`]):
The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
config class of your model for the default values it uses):
- **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
- **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
(otherwise to `config.hidden_size`).
- **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
another string or `None` will add no activation.
- **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
- **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
|
github-repos
|
def check(self, dsm, independence_factor=5, **kwargs):
least_common_mechanism = False
message = ''
data = dsm.data
categories = dsm.categories
dsm_size = dsm.size[0]
if (not categories):
categories = (['appmodule'] * dsm_size)
dependent_module_number = []
for j in range(0, dsm_size):
dependent_module_number.append(0)
for i in range(0, dsm_size):
if ((categories[i] != 'framework') and (categories[j] != 'framework') and (data[i][j] > 0)):
dependent_module_number[j] += 1
for (index, item) in enumerate(dsm.categories):
if ((item == 'broker') or (item == 'applib')):
dependent_module_number[index] = 0
if (max(dependent_module_number) <= (dsm_size / independence_factor)):
least_common_mechanism = True
else:
maximum = max(dependent_module_number)
message = ('Dependencies to %s (%s) > matrix size (%s) / independence factor (%s) = %s' % (dsm.entities[dependent_module_number.index(maximum)], maximum, dsm_size, independence_factor, (dsm_size / independence_factor)))
return (least_common_mechanism, message)
|
Check least common mechanism.
Args:
dsm (:class:`DesignStructureMatrix`): the DSM to check.
independence_factor (int): if the maximum dependencies for one
module is inferior or equal to the DSM size divided by the
independence factor, then this criterion is verified.
Returns:
bool: True if least common mechanism, else False
|
codesearchnet
|
def get_success_enrollment_message(cls, users, enrolled_in):
enrolled_count = len(users)
return (
'success',
ungettext(
'{enrolled_count} learner was enrolled in {enrolled_in}.',
'{enrolled_count} learners were enrolled in {enrolled_in}.',
enrolled_count,
).format(
enrolled_count=enrolled_count,
enrolled_in=enrolled_in,
)
)
|
Create message for the users who were enrolled in a course or program.
Args:
users: An iterable of users who were successfully enrolled
enrolled_in (str): A string identifier for the course or program the users were enrolled in
Returns:
tuple: A 2-tuple containing a message type and message text
|
juraj-google-style
|
def translate_transcode_config(self, transcode_configs):
result = []
REALLY_BIG_INT = 9223372036854775807
try:
for video_format in self.get_video_formats():
for transcode_config in transcode_configs:
min_width = int(transcode_config.get(FieldMap.TRANSCODE_MIN_WIDTH, 0))
min_height = int(transcode_config.get(FieldMap.TRANSCODE_MIN_HEIGHT, 0))
min_bitrate = int(transcode_config.get(FieldMap.TRANSCODE_MIN_BITRATE, 0))
max_width = int(transcode_config.get(FieldMap.TRANSCODE_MAX_WIDTH, REALLY_BIG_INT))
max_height = int(transcode_config.get(FieldMap.TRANSCODE_MAX_HEIGHT, REALLY_BIG_INT))
max_bitrate = int(transcode_config.get(FieldMap.TRANSCODE_MAX_BITRATE, REALLY_BIG_INT))
file_format = transcode_config.get(FieldMap.TRANSCODE_FORMAT, '')
if file_format == 'SOURCE_FILE':
if 15 not in result:
result.append(15)
elif min_width <= video_format['resolution']['width'] and video_format['resolution']['width'] <= max_width and (min_height <= video_format['resolution']['height']) and (video_format['resolution']['height'] <= max_height) and (min_bitrate <= video_format['targetBitRate']) and (video_format['targetBitRate'] <= max_bitrate) and (video_format.get('fileType', '') == file_format):
if video_format['id'] not in result:
result.append(video_format['id'])
except:
raise Exception('Error determining file formats for transcode')
return result
|
Given a transcode config, returns the CM transcodes that match the config.
Args:
transcode_config: The transcode configuration feed item.
Returns:
All trancode objects from Campaign Manager that match the transcode
configuration specified.
|
github-repos
|
def construct(self, **bindings):
context = _assign_values_to_unbound_vars(self._unbound_vars, bindings)
context.update(self._partial_context)
return self._construct(context)
|
Constructs the graph and returns either a tensor or a sequence.
Args:
**bindings: Arguments for every deferred parameter.
Returns:
The value that is placed into this.
|
juraj-google-style
|
def get_dropbox_folder_location():
host_db_path = os.path.join(os.environ['HOME'], '.dropbox/host.db')
try:
with open(host_db_path, 'r') as f_hostdb:
data = f_hostdb.read().split()
except IOError:
error('Unable to find your Dropbox install =(')
dropbox_home = base64.b64decode(data[1]).decode()
return dropbox_home
|
Try to locate the Dropbox folder.
Returns:
(str) Full path to the current Dropbox folder
|
codesearchnet
|
def __init__(self, project_key=None, run_asyncore_thread=True):
self.project_key = project_key
self.default_type = OOBTree
self._root = None
self._connection = None
if run_asyncore_thread:
_init_zeo()
self._open_connection()
self._init_zeo_root()
|
Initialize the object.
Args:
conf_path (str): See :attr:`conf_path`.
project_key (str, default None): See :attr:`project_key`. If not
set, the root of the database is used (this may cause
performace issues).
run_asyncore_thread (bool, default True): Run external asyncore
thread, which handles connections to database? Default True.
|
juraj-google-style
|
def en020(self, value=None):
if value is not None:
try:
value = float(value)
except ValueError:
raise ValueError('value {} need to be of type float '
'for field `en020`'.format(value))
self._en020 = value
|
Corresponds to IDD Field `en020`
mean coincident dry-bulb temperature to
Enthalpy corresponding to 2.0% annual cumulative frequency of occurrence
Args:
value (float): value for IDD Field `en020`
Unit: kJ/kg
if `value` is None it will not be checked against the
specification and is assumed to be a missing value
Raises:
ValueError: if `value` is not a valid value
|
juraj-google-style
|
def postprocess_monograph(marc_xml, mods, uuid, counter, url):
dom = double_linked_dom(mods)
if not isinstance(marc_xml, MARCXMLRecord):
marc_xml = MARCXMLRecord(marc_xml)
add_missing_xml_attributes(dom, counter)
fix_invalid_type_parameter(dom)
if uuid:
add_uuid(dom, uuid)
add_marccountry_tag(dom)
add_genre(dom)
remove_hairs_from_tags(dom)
fix_issuance(dom)
fix_location_tag(dom)
fix_related_item_tag(dom)
fix_missing_electronic_locator_tag(dom, url)
fix_missing_lang_tags(marc_xml, dom)
return dom.prettify()
|
Fix bugs in `mods` produced by XSLT template.
Args:
marc_xml (str): Original Aleph record.
mods (str): XML string generated by XSLT template.
uuid (str): UUID of the package.
counter (int): Number of record, is added to XML headers.
url (str): URL of the publication (public or not).
Returns:
str: Updated XML.
|
juraj-google-style
|
def CreateProductPartition(client, adgroup_id):
ad_group_criterion_service = client.GetService('AdGroupCriterionService', 'v201809')
helper = ProductPartitionHelper(adgroup_id)
root = helper.CreateSubdivision()
new_product_canonical_condition = {'xsi_type': 'ProductCanonicalCondition', 'condition': 'NEW'}
used_product_canonical_condition = {'xsi_type': 'ProductCanonicalCondition', 'condition': 'USED'}
other_product_canonical_condition = {'xsi_type': 'ProductCanonicalCondition'}
helper.CreateUnit(root, new_product_canonical_condition)
helper.CreateUnit(root, used_product_canonical_condition)
helper.CreateUnit(root, other_product_canonical_condition)
result = ad_group_criterion_service.mutate(helper.operations)
return result['value']
|
Creates a ProductPartition tree for the given AdGroup ID.
Args:
client: an AdWordsClient instance.
adgroup_id: a str AdGroup ID.
Returns:
The ProductPartition tree as a sudsobject.
|
codesearchnet
|
def repsep(parser: Union[Parser, Sequence[Input]], separator: Union[Parser, Sequence[Input]]) \
-> RepeatedSeparatedParser:
if isinstance(parser, str):
parser = lit(parser)
if isinstance(separator, str):
separator = lit(separator)
return RepeatedSeparatedParser(parser, separator)
|
Match a parser zero or more times separated by another parser.
This matches repeated sequences of ``parser`` separated by ``separator``. A
list is returned containing the value from each match of ``parser``. The
values from ``separator`` are discarded. If there are no matches, an empty
list is returned.
Args:
parser: Parser or literal
separator: Parser or literal
|
juraj-google-style
|
def coordinate_tensor(shape, axis):
if (axis < 0):
axis = (tf.size(shape) + axis)
r = tf.range(shape[axis])
r_shape = tf.one_hot(axis, tf.size(shape), on_value=(- 1), off_value=1, dtype=tf.int32)
return (tf.zeros(shape, dtype=tf.int32) + tf.reshape(r, r_shape))
|
Return a tensor with given shape containing coordinate along given axis.
Args:
shape: a Tensor representing the shape of the output Tensor
axis: an integer
Returns:
A tensor with shape shape and type tf.int32, where each elements its
coordinate along the given axis.
|
codesearchnet
|
def approximate_jacobian(f, variables, delta=0.1):
def var_jacobian(var):
derivatives = tf.map_fn(lambda x: _five_point_stencil(f, var, x, delta), tf.range(tf.size(var)), fn_output_signature=tf.float32)
f_shape = tf.shape(derivatives)[1:]
transpose_perm = list(range(1, len(f_shape) + 1)) + [0]
transpose_derivatives = tf.transpose(derivatives, transpose_perm)
reshape_shape = tf.concat([f_shape, tf.shape(var)], 0)
return tf.reshape(transpose_derivatives, reshape_shape)
return tf.nest.map_structure(var_jacobian, variables)
|
Approximates the jacobian of f using five point stencil.
Suppose the input function returns a tensor `r` under gradient tape `t`. Then
this function returns an approximation to
`t.jacobian(r, variables, unconnected_gradients=tf.UnconnectedGradients.ZERO)`
Args:
f: Callable taking no arguments and returning a `tf.Tensor`.
variables: Possibly nested structure of `tf.Variable` in which to
differentiate `f`.
delta: Size of the fundamental perturbation in the stencil.
Returns:
The approximate jacobian. Has the same structure as the return from a
corresponding call to `tf.GradientTape().jacobian`.
|
github-repos
|
def parse_hpo_disease(hpo_line):
hpo_line = hpo_line.rstrip().split('\t')
hpo_info = {}
disease = hpo_line[0].split(':')
hpo_info['source'] = disease[0]
hpo_info['disease_nr'] = int(disease[1])
hpo_info['hgnc_symbol'] = None
hpo_info['hpo_term'] = None
if len(hpo_line) >= 3:
hpo_info['hgnc_symbol'] = hpo_line[2]
if len(hpo_line) >= 4:
hpo_info['hpo_term'] = hpo_line[3]
return hpo_info
|
Parse hpo disease line
Args:
hpo_line(str)
|
juraj-google-style
|
def is_subtype_of(self, other: 'TraceType') -> bool:
|
Returns True if `self` is a subtype of `other`.
For example, `tf.function` uses subtyping for dispatch:
if `a.is_subtype_of(b)` is True, then an argument of `TraceType`
`a` can be used as argument to a `ConcreteFunction` traced with an
a `TraceType` `b`.
Args:
other: A TraceType object to be compared against.
Example:
```python
class Dimension(TraceType):
def __init__(self, value: Optional[int]):
self.value = value
def is_subtype_of(self, other):
# Either the value is the same or other has a generalized value that
# can represent any specific ones.
return (self.value == other.value) or (other.value is None)
```
|
github-repos
|
def SetCampaignTargetingCriteria(client, campaign):
campaign_criterion_service = client.GetService('CampaignCriterionService')
criteria = [{'xsi_type': 'Location', 'id': 21137}, {'xsi_type': 'Location', 'id': 2484}, {'xsi_type': 'Language', 'id': 1000}, {'xsi_type': 'Language', 'id': 1003}]
operations = [{'operator': 'ADD', 'operand': {'campaignId': campaign['id'], 'criterion': criterion}} for criterion in criteria]
response = campaign_criterion_service.mutate(operations)
if (response and ('value' in response)):
for criterion in response['value']:
print(('Campaign criteria of type "%s" and id "%s" was added.' % (criterion['criterion']['type'], criterion['criterion']['id'])))
|
Sets targeting criteria for the given campaign.
Args:
client: An AdWordsClient instance.
campaign: A suds object representing the campaign we wish to attach
targeting criteria.
|
codesearchnet
|
def setLCD(self, password="00000000"):
result = False
self.setContext("setLCD")
try:
self.clearCmdMsg()
if len(password) != 8:
self.writeCmdMsg("Invalid password length.")
self.setContext("")
return result
if not self.request():
self.writeCmdMsg("Bad read CRC on setting")
else:
if not self.serialCmdPwdAuth(password):
self.writeCmdMsg("Password failure")
else:
req_table = ""
fill_len = 40 - len(self.m_lcd_items)
for lcdid in self.m_lcd_items:
append_val = binascii.hexlify(str(lcdid).zfill(2))
req_table += append_val
for i in range(0, fill_len):
append_val = binascii.hexlify(str(0).zfill(2))
req_table += append_val
req_str = "015731023030443228" + req_table + "2903"
req_str += self.calc_crc16(req_str[2:].decode("hex"))
self.m_serial_port.write(req_str.decode("hex"))
if self.m_serial_port.getResponse(self.getContext()).encode("hex") == "06":
self.writeCmdMsg("Success: 06 returned.")
result = True
self.serialPostEnd()
except:
ekm_log(traceback.format_exc(sys.exc_info()))
self.setContext("")
return result
|
Serial call to set LCD using meter object bufer.
Used with :func:`~ekmmeters.V4Meter.addLcdItem`.
Args:
password (str): Optional password
Returns:
bool: True on completion and ACK.
|
juraj-google-style
|
def API_Iterator(function, kwargs, results=None, limit=None):
class API_Iterator_Instance:
def __init__(self, function, kwargs, results=None, limit=None):
self.function = function
self.kwargs = kwargs
self.limit = limit
self.results = results
self.position = 0
self.count = 0
self.iterable = None
self.__find_tag__()
def __find_tag__(self):
if self.results:
for tag in iter(self.results.keys()):
if isinstance(self.results[tag], list):
self.iterable = tag
break
if self.iterable is None:
print('WARNING API RETURNED NO KEYS WITH LISTS:', ', '.join(self.results.keys()))
def __iter__(self):
return self
def __next__(self):
return self.next()
def next(self):
if self.results is None:
self.results = API_Retry(self.function(**self.kwargs))
self.__find_tag__()
if self.iterable and self.position >= len(self.results[self.iterable]):
page_token = self.results.get('nextPageToken', None)
if page_token:
if 'body' in self.kwargs:
self.kwargs['body']['pageToken'] = page_token
else:
self.kwargs['pageToken'] = page_token
self.results = API_Retry(self.function(**self.kwargs))
self.position = 0
else:
raise StopIteration
if self.iterable and self.position < len(self.results.get(self.iterable, [])):
value = self.results[self.iterable][self.position]
self.position += 1
if self.limit is not None:
self.count += 1
if self.count > self.limit:
raise StopIteration
return value
else:
raise StopIteration
return iter(API_Iterator_Instance(function, kwargs, results, limit))
|
See below API_Iterator_Instance for documentaion, this is just an iter wrapper.
Returns:
iter(API_Iterator_Instance(function, kwargs, results))
|
github-repos
|
def handle_type_error(fn):
@wraps(fn)
def handle_type_error_wrapper(*args, **kwargs):
def any_match(string_list, obj):
return filter((lambda x: (x in obj)), string_list)
try:
return fn(*args, **kwargs)
except TypeError as e:
message = e.__str__()
str_list = ['takes exactly', 'got an unexpected', 'takes no argument']
if ((fn.__name__ in message) and any_match(str_list, message)):
raise HTTPError(400, message)
raise
return handle_type_error_wrapper
|
Convert ``TypeError`` to ``bottle.HTTPError`` with ``400`` code and message
about wrong parameters.
Raises:
HTTPError: 400 in case too many/too little function parameters were \
given.
|
codesearchnet
|
def vapor_pressure(temp, hum):
if np.isscalar(hum):
hum = np.zeros(temp.shape) + hum
assert(temp.shape == hum.shape)
positives = np.array(temp >= 273.15)
vap_press = np.zeros(temp.shape) * np.nan
vap_press[positives] = 6.112 * np.exp((17.62 * (temp[positives] - 273.15)) / (243.12 + (temp[positives] - 273.15))) * hum[positives] / 100.
vap_press[~positives] = 6.112 * np.exp((22.46 * (temp[~positives] - 273.15)) / (272.62 + (temp[~positives] - 273.15))) * hum[~positives] / 100.
return vap_press
|
Calculates vapor pressure from temperature and humidity after Sonntag (1990).
Args:
temp: temperature values
hum: humidity value(s). Can be scalar (e.g. for calculating saturation vapor pressure).
Returns:
Vapor pressure in hPa.
|
juraj-google-style
|
def readline(self, size=None):
data = EMPTY
if size == 0:
return data
while True:
if size and len(data) >= size:
return data
if not self.buffer:
self._fetch()
if not self.buffer:
return data
newline_pos = self.buffer.find(LF)
if size:
if newline_pos == -1:
remaining = size - len(data)
data += self.buffer[:remaining]
self.buffer = self.buffer[remaining:]
else:
remaining = min(size - len(data), newline_pos)
data += self.buffer[:remaining]
self.buffer = self.buffer[remaining:]
else:
if newline_pos == -1:
data += self.buffer
self.buffer = EMPTY
else:
data += self.buffer[:newline_pos]
self.buffer = self.buffer[newline_pos:]
|
Read a single line from rfile buffer and return it.
Args:
size (int): minimum amount of data to read
Returns:
bytes: One line from rfile.
|
juraj-google-style
|
def operations_happening_at_same_time_as(
self, scheduled_operation: ScheduledOperation
) -> List[ScheduledOperation]:
overlaps = self.query(
time=scheduled_operation.time,
duration=scheduled_operation.duration)
return [e for e in overlaps if e != scheduled_operation]
|
Finds operations happening at the same time as the given operation.
Args:
scheduled_operation: The operation specifying the time to query.
Returns:
Scheduled operations that overlap with the given operation.
|
juraj-google-style
|
def resize(self, images: 'torch.Tensor', size: SizeDict, interpolation: Optional['F.InterpolationMode']=None, size_divisor: Optional[int]=None) -> 'torch.Tensor':
if interpolation is None:
interpolation = self.resample
shorter = size.shortest_edge
longer = int(MAX_LONGER_EDGE / MAX_SHORTER_EDGE * shorter)
heights = images.shape[-2]
widths = images.shape[-1]
if heights < widths:
new_heights = shorter
new_widths = widths * (shorter / heights)
else:
new_heights = heights * (shorter / widths)
new_widths = shorter
if max(new_heights, new_widths) > longer:
scale = longer / max(new_heights, new_widths)
new_heights = new_heights * scale
new_widths = new_widths * scale
new_heights = int(new_heights + 0.5)
new_widths = int(new_widths + 0.5)
if size_divisor is not None:
new_heights = new_heights
new_widths = new_widths
return F.resize(images, [new_heights, new_widths], interpolation=interpolation)
|
Resize an image or batch of images to specified size.
Args:
images (`torch.Tensor`): Image or batch of images to resize.
size (`Dict[str, int]`): Size dictionary with shortest_edge key.
interpolation (`F.InterpolationMode`, *optional*): Interpolation method to use.
size_divisor (`int`, *optional*): Value to ensure height/width are divisible by.
Returns:
`torch.Tensor`: Resized image or batch of images.
|
github-repos
|
def assert_files_same(path1, path2):
difflines = compare_files(path1, path2)
assert len(difflines) == 0, ''.join(['\n'] + difflines)
|
Asserts that two files are the same and returns delta using
-, ?, + format if not
Args:
path1 (str): Path to first file
path2 (str): Path to second file
Returns:
None
|
juraj-google-style
|
def add_done_callback(self, fn):
if self._result_set:
_helpers.safe_invoke_callback(fn, self)
return
self._done_callbacks.append(fn)
if (self._polling_thread is None):
self._polling_thread = _helpers.start_daemon_thread(target=self._blocking_poll)
|
Add a callback to be executed when the operation is complete.
If the operation is not already complete, this will start a helper
thread to poll for the status of the operation in the background.
Args:
fn (Callable[Future]): The callback to execute when the operation
is complete.
|
codesearchnet
|
def check_partition_column(partition_column, cols):
for k, v in cols.items():
if k == partition_column:
if v == "int":
return
else:
raise InvalidPartitionColumn(
"partition_column must be int, and not {0}".format(v)
)
raise InvalidPartitionColumn(
"partition_column {0} not found in the query".format(partition_column)
)
|
Check partition_column existence and type
Args:
partition_column: partition_column name
cols: dict with columns names and python types
Returns:
None
|
juraj-google-style
|
def setRelay(self, seconds, relay, status, password='00000000'):
result = False
self.setContext('setRelay')
try:
self.clearCmdMsg()
if (len(password) != 8):
self.writeCmdMsg('Invalid password length.')
self.setContext('')
return result
if ((seconds < 0) or (seconds > 9999)):
self.writeCmdMsg('Relay duration must be between 0 and 9999.')
self.setContext('')
return result
if (not self.requestA()):
self.writeCmdMsg('Bad read CRC on setting')
elif (not self.serialCmdPwdAuth(password)):
self.writeCmdMsg('Password failure')
else:
req_str = ''
req_str = ((((('01573102303038' + binascii.hexlify(str(relay)).zfill(2)) + '28') + binascii.hexlify(str(status)).zfill(2)) + binascii.hexlify(str(seconds).zfill(4))) + '2903')
req_str += self.calc_crc16(req_str[2:].decode('hex'))
self.m_serial_port.write(req_str.decode('hex'))
if (self.m_serial_port.getResponse(self.getContext()).encode('hex') == '06'):
self.writeCmdMsg('Success: 06 returned.')
result = True
self.serialPostEnd()
except:
ekm_log(traceback.format_exc(sys.exc_info()))
self.setContext('')
return result
|
Serial call to set relay.
Args:
seconds (int): Seconds to hold, ero is hold forever. See :class:`~ekmmeters.RelayInterval`.
relay (int): Selected relay, see :class:`~ekmmeters.Relay`.
status (int): Status to set, see :class:`~ekmmeters.RelayState`
password (str): Optional password
Returns:
bool: True on completion and ACK.
|
codesearchnet
|
def app_uninstall(self, package_name, keep_data=False):
if keep_data:
return self.run_cmd('uninstall', '-k', package_name)
else:
return self.run_cmd('uninstall', package_name)
|
Uninstall package
Args:
- package_name(string): package name ex: com.example.demo
- keep_data(bool): keep the data and cache directories
|
juraj-google-style
|
def _delete_example(self, request):
index = int(request.args.get('index'))
if (index >= len(self.examples)):
return http_util.Respond(request, {'error': 'invalid index provided'}, 'application/json', code=400)
del self.examples[index]
self.updated_example_indices = set([(i if (i < index) else (i - 1)) for i in self.updated_example_indices])
self.generate_sprite([ex.SerializeToString() for ex in self.examples])
return http_util.Respond(request, {}, 'application/json')
|
Deletes the specified example.
Args:
request: A request that should contain 'index'.
Returns:
An empty response.
|
codesearchnet
|
def get_line_count(fname):
i = 0
with open(fname) as f:
for (i, l) in enumerate(f):
pass
return (i + 1)
|
Counts the number of lines in a file.
Args:
fname: string, name of the file.
Returns:
integer, the number of lines in the file.
|
codesearchnet
|
def _init_vocab_from_list(self, vocab_list):
def token_gen():
for token in vocab_list:
if (token not in RESERVED_TOKENS):
(yield token)
self._init_vocab(token_gen())
|
Initialize tokens from a list of tokens.
It is ok if reserved tokens appear in the vocab list. They will be
removed. The set of tokens in vocab_list should be unique.
Args:
vocab_list: A list of tokens.
|
codesearchnet
|
def from_json_file(cls, file_name):
with open(file_name) as json_data:
config = json.load(json_data)
return cls(config)
|
Construct OneViewClient using a json file.
Args:
file_name: json full path.
Returns:
OneViewClient:
|
juraj-google-style
|
def LocaltimeToUTC(cls, timestamp, timezone, is_dst=False):
if (timezone and (timezone != pytz.UTC)):
datetime_object = (datetime.datetime(1970, 1, 1, 0, 0, 0, 0, tzinfo=None) + datetime.timedelta(microseconds=timestamp))
datetime_delta = timezone.utcoffset(datetime_object, is_dst=is_dst)
seconds_delta = int(datetime_delta.total_seconds())
timestamp -= (seconds_delta * definitions.MICROSECONDS_PER_SECOND)
return timestamp
|
Converts the timestamp in localtime of the timezone to UTC.
Args:
timestamp: The timestamp which is an integer containing the number
of micro seconds since January 1, 1970, 00:00:00 UTC.
timezone: The timezone (pytz.timezone) object.
is_dst: A boolean to indicate the timestamp is corrected for daylight
savings time (DST) only used for the DST transition period.
Returns:
The timestamp which is an integer containing the number of micro seconds
since January 1, 1970, 00:00:00 UTC or 0 on error.
|
codesearchnet
|
def determine_drift(self):
try:
response = self._cloud_formation.detect_stack_drift(StackName=self._stack_name)
drift_request_id = response.get('StackDriftDetectionId', None)
if drift_request_id:
logging.info('drift_request_id: %s - polling', drift_request_id)
drift_calc_done = False
while not drift_calc_done:
time.sleep(self.nap_time)
response = self._cloud_formation.describe_stack_drift_detection_status(
StackDriftDetectionId=drift_request_id
)
current_state = response.get('DetectionStatus', None)
logging.info(
'describe_stack_drift_detection_status(): {}'.format(current_state)
)
drift_calc_done = current_state in CALC_DONE_STATES
drift_answer = response.get('StackDriftStatus', 'UNKNOWN')
logging.info('drift of {}: {}'.format(
self._stack_name,
drift_answer
))
if drift_answer == 'DRIFTED':
if self._verbose:
self._print_drift_report()
return False
else:
return True
else:
logging.warning('drift_request_id is None')
return False
except Exception as wtf:
logging.error(wtf, exc_info=True)
return False
|
Determine the drift of the stack.
Args:
None
Returns:
Good or Bad; True or False
|
juraj-google-style
|
def indexSearch(self, indexes):
if (not self._dataFrame.empty):
filter0 = (self._dataFrame.index == (- 9999))
for index in indexes:
filter1 = (self._dataFrame.index == index)
filter0 = np.logical_or(filter0, filter1)
return filter0
else:
return []
|
Filters the data by a list of indexes.
Args:
indexes (list of int): List of index numbers to return.
Returns:
list: A list containing all indexes with filtered data. Matches
will be `True`, the remaining items will be `False`. If the
dataFrame is empty, an empty list will be returned.
|
codesearchnet
|
def get_object(self, object_ids):
for object_id in object_ids:
if (not isinstance(object_id, ObjectID)):
raise TypeError('Attempting to call `get` on the value {}, which is not an ray.ObjectID.'.format(object_id))
plain_object_ids = [plasma.ObjectID(object_id.binary()) for object_id in object_ids]
for i in range(0, len(object_ids), ray._config.worker_fetch_request_size()):
self.raylet_client.fetch_or_reconstruct(object_ids[i:(i + ray._config.worker_fetch_request_size())], True)
final_results = self.retrieve_and_deserialize(plain_object_ids, 0)
unready_ids = {plain_object_ids[i].binary(): i for (i, val) in enumerate(final_results) if (val is plasma.ObjectNotAvailable)}
if (len(unready_ids) > 0):
while (len(unready_ids) > 0):
object_ids_to_fetch = [plasma.ObjectID(unready_id) for unready_id in unready_ids.keys()]
ray_object_ids_to_fetch = [ObjectID(unready_id) for unready_id in unready_ids.keys()]
fetch_request_size = ray._config.worker_fetch_request_size()
for i in range(0, len(object_ids_to_fetch), fetch_request_size):
self.raylet_client.fetch_or_reconstruct(ray_object_ids_to_fetch[i:(i + fetch_request_size)], False, self.current_task_id)
results = self.retrieve_and_deserialize(object_ids_to_fetch, max([ray._config.get_timeout_milliseconds(), int((0.01 * len(unready_ids)))]))
for (i, val) in enumerate(results):
if (val is not plasma.ObjectNotAvailable):
object_id = object_ids_to_fetch[i].binary()
index = unready_ids[object_id]
final_results[index] = val
unready_ids.pop(object_id)
self.raylet_client.notify_unblocked(self.current_task_id)
assert (len(final_results) == len(object_ids))
return final_results
|
Get the value or values in the object store associated with the IDs.
Return the values from the local object store for object_ids. This will
block until all the values for object_ids have been written to the
local object store.
Args:
object_ids (List[object_id.ObjectID]): A list of the object IDs
whose values should be retrieved.
|
codesearchnet
|
def _read(self, entry):
start_time = time.time()
content = self._zip.read(entry.filename)
ctx = context.get()
if ctx:
operation.counters.Increment(COUNTER_IO_READ_BYTES, len(content))(ctx)
operation.counters.Increment(
COUNTER_IO_READ_MSEC, int((time.time() - start_time) * 1000))(ctx)
return content
|
Read entry content.
Args:
entry: zip file entry as zipfile.ZipInfo.
Returns:
Entry content as string.
|
juraj-google-style
|
def forward(self, permuted_tokens, tokens_per_expert):
fc1_output = self.fc1(permuted_tokens, tokens_per_expert)
projection, gate = torch.chunk(fc1_output, 2, dim=-1)
fc1_output = nn.functional.silu(projection) * gate
fc2_output = self.fc2(fc1_output, tokens_per_expert)
return fc2_output
|
Forward pass of the Grouped MLP.
Args:
permuted_tokens (torch.Tensor): Permuted input tokens.
tokens_per_expert (torch.Tensor): Number of tokens assigned to each expert.
Returns:
torch.Tensor: Output tensor after passing through the MLP.
|
github-repos
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.