code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def _eval_comparison(self, ident: tuple[str, int | slice | None], op: str, value: str | int | tuple[int, ...]) -> bool:
name, key = ident
if name == 'sys.version_info':
if key is None:
key = slice(None, None, None)
if isinstance(key, int) and (not isinstance(value, int)):
raise _ParseError('an element of sys.version_info must be compared to an integer')
if isinstance(key, slice) and (not _is_int_tuple(value)):
raise _ParseError('sys.version_info must be compared to a tuple of integers')
try:
actual = self._options.python_version[key]
except IndexError as e:
raise _ParseError(str(e)) from e
if isinstance(key, slice):
actual = _three_tuple(actual)
value = _three_tuple(value)
elif name == 'sys.platform':
if not isinstance(value, str):
raise _ParseError('sys.platform must be compared to a string')
valid_cmps = (cmp_slots.EQ, cmp_slots.NE)
if op not in valid_cmps:
raise _ParseError('sys.platform must be compared using %s or %s' % valid_cmps)
actual = self._options.platform
else:
raise _ParseError(f'Unsupported condition: {name!r}.')
return cmp_slots.COMPARES[op](actual, value) | Evaluate a comparison and return a bool.
Args:
ident: A tuple of a dotted name string and an optional __getitem__ key.
op: One of the comparison operator strings in cmp_slots.COMPARES.
value: The value to be compared against.
Returns:
The boolean result of the comparison.
Raises:
ParseError: If the comparison cannot be evaluated. | github-repos |
def _get_two_lines(f):
l0 = f.readline()
l1 = f.readline()
return l0, l1 | Get the first and second lines
Args:
f (filelike): File that is opened for ascii.
Returns:
bytes | juraj-google-style |
def concurrent_exec(func, param_list):
with concurrent.futures.ThreadPoolExecutor(max_workers=30) as executor:
future_to_params = {executor.submit(func, *p): p for p in param_list}
return_vals = []
for future in concurrent.futures.as_completed(future_to_params):
params = future_to_params[future]
try:
return_vals.append(future.result())
except Exception as exc:
logging.exception('{} generated an exception: {}'.format(params, traceback.format_exc()))
return_vals.append(exc)
return return_vals | Executes a function with different parameters pseudo-concurrently.
This is basically a map function. Each element (should be an iterable) in
the param_list is unpacked and passed into the function. Due to Python's
GIL, there's no true concurrency. This is suited for IO-bound tasks.
Args:
func: The function that parforms a task.
param_list: A list of iterables, each being a set of params to be
passed into the function.
Returns:
A list of return values from each function execution. If an execution
caused an exception, the exception object will be the corresponding
result. | codesearchnet |
def set_channel_created(self, channel_link, channel_id):
self.channel_link = channel_link
self.channel_id = channel_id
self.__record_progress(Status.PUBLISH_CHANNEL if config.PUBLISH else Status.DONE) | set_channel_created: records progress after creating channel on Kolibri Studio
Args:
channel_link (str): link to uploaded channel
channel_id (str): id of channel that has been uploaded
Returns: None | juraj-google-style |
def validate(cls, mapper_spec):
writer_spec = cls.get_params(mapper_spec, allow_old=False)
if cls.BUCKET_NAME_PARAM not in writer_spec:
raise errors.BadWriterParamsError(
"%s is required for Google Cloud Storage" %
cls.BUCKET_NAME_PARAM)
try:
cloudstorage.validate_bucket_name(
writer_spec[cls.BUCKET_NAME_PARAM])
except ValueError, error:
raise errors.BadWriterParamsError("Bad bucket name, %s" % (error))
cls._generate_filename(writer_spec, "name", "id", 0)
cls._generate_filename(writer_spec, "name", "id", 0, 1, 0) | Validate mapper specification.
Args:
mapper_spec: an instance of model.MapperSpec.
Raises:
BadWriterParamsError: if the specification is invalid for any reason such
as missing the bucket name or providing an invalid bucket name. | juraj-google-style |
def get_cqz(self, callsign, timestamp=timestamp_now):
return self.get_all(callsign, timestamp)[const.CQZ] | Returns CQ Zone of a callsign
Args:
callsign (str): Amateur Radio callsign
timestamp (datetime, optional): datetime in UTC (tzinfo=pytz.UTC)
Returns:
int: containing the callsign's CQ Zone
Raises:
KeyError: no CQ Zone found for callsign | codesearchnet |
def get_best_blockhash(self, id=None, endpoint=None):
return self._call_endpoint(GET_BEST_BLOCK_HASH, id=id, endpoint=endpoint) | Get the hash of the highest block
Args:
id: (int, optional) id to use for response tracking
endpoint: (RPCEndpoint, optional) endpoint to specify to use
Returns:
json object of the result or the error encountered in the RPC call | juraj-google-style |
def targets(self, module):
if (module not in self.module_targets):
raise BuildError('Could not find module in targets()', module=module)
return [self.find(x, module) for x in self.module_targets[module]] | Find the targets for a given module.
Returns:
list: A sequence of all of the targets for the specified module. | codesearchnet |
def debug(text):
frame = inspect.currentframe().f_back
module = frame.f_globals['__name__']
func = frame.f_code.co_name
msg = ('%s.%s: %s' % (module, func, text))
_LOGGER.debug(msg) | Log a message to syslog and stderr
Args:
text (str): The string object to print | codesearchnet |
def reminders_info(self, *, reminder: str, **kwargs) -> SlackResponse:
self._validate_xoxp_token()
kwargs.update({'reminder': reminder})
return self.api_call('reminders.info', http_verb='GET', params=kwargs) | Gets information about a reminder.
Args:
reminder (str): The ID of the reminder. e.g. 'Rm12345678' | codesearchnet |
def ParseContactRow(self, parser_mediator, query, row, **unused_kwargs):
query_hash = hash(query)
event_data = TwitterAndroidContactEventData()
event_data.query = query
event_data.identifier = self._GetRowValue(query_hash, row, '_id')
event_data.user_identifier = self._GetRowValue(query_hash, row, 'user_id')
event_data.username = self._GetRowValue(query_hash, row, 'username')
event_data.name = self._GetRowValue(query_hash, row, 'name')
event_data.description = self._GetRowValue(query_hash, row, 'description')
event_data.web_url = self._GetRowValue(query_hash, row, 'web_url')
event_data.location = self._GetRowValue(query_hash, row, 'location')
event_data.followers = self._GetRowValue(query_hash, row, 'followers')
event_data.friends = self._GetRowValue(query_hash, row, 'friends')
event_data.statuses = self._GetRowValue(query_hash, row, 'statuses')
event_data.image_url = self._GetRowValue(query_hash, row, 'image_url')
timestamp = self._GetRowValue(query_hash, row, 'profile_created')
if timestamp:
date_time = dfdatetime_java_time.JavaTime(timestamp=timestamp)
event = time_events.DateTimeValuesEvent(
date_time, definitions.TIME_DESCRIPTION_CREATION)
parser_mediator.ProduceEventWithEventData(event, event_data)
timestamp = self._GetRowValue(query_hash, row, 'updated')
if timestamp:
date_time = dfdatetime_java_time.JavaTime(timestamp=timestamp)
event = time_events.DateTimeValuesEvent(
date_time, definitions.TIME_DESCRIPTION_UPDATE)
parser_mediator.ProduceEventWithEventData(event, event_data)
timestamp = self._GetRowValue(query_hash, row, 'friendship_time')
if timestamp:
date_time = dfdatetime_java_time.JavaTime(timestamp=timestamp)
event = time_events.DateTimeValuesEvent(
date_time, definitions.TIME_DESCRIPTION_MODIFICATION)
parser_mediator.ProduceEventWithEventData(event, event_data) | Parses a status row from the database.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
query (str): query that created the row.
row (sqlite3.Row): row resulting from query. | juraj-google-style |
def load_text(self, text, tokenizer=None):
if tokenizer:
words = [x.lower() for x in tokenizer(text)]
else:
words = self.tokenize(text)
self._dictionary.update(words)
self._update_dictionary() | Load text from which to generate a word frequency list
Args:
text (str): The text to be loaded
tokenizer (function): The function to use to tokenize a string | codesearchnet |
def configure_vrf(self, vrf_name, commands):
commands = make_iterable(commands)
commands.insert(0, ('vrf definition %s' % vrf_name))
return self.configure(commands) | Configures the specified VRF using commands
Args:
vrf_name (str): The VRF name to configure
commands: The list of commands to configure
Returns:
True if the commands completed successfully | codesearchnet |
def deserialize(proto):
_, type_registrations = _REVIVED_TYPE_REGISTRY.get(proto.identifier, (None, None))
if type_registrations is not None:
for type_registration in type_registrations:
if type_registration.should_load(proto):
return (type_registration.from_proto(proto), type_registration.setter)
return None | Create a trackable object from a SavedUserObject proto.
Args:
proto: A SavedUserObject to deserialize.
Returns:
A tuple of (trackable, assignment_fn) where assignment_fn has the same
signature as setattr and should be used to add dependencies to
`trackable` when they are available. | github-repos |
def do_post(endpoint, body, access_token):
headers = {"content-type": "application/json", "Authorization": 'Bearer ' + access_token}
headers['User-Agent'] = get_user_agent()
return requests.post(endpoint, data=body, headers=headers) | Do an HTTP POST request and return JSON.
Args:
endpoint (str): Azure Resource Manager management endpoint.
body (str): JSON body of information to post.
access_token (str): A valid Azure authentication token.
Returns:
HTTP response. JSON body. | juraj-google-style |
def _find_human_readable_labels(synsets, synset_to_human):
humans = []
for s in synsets:
assert (s in synset_to_human), ('Failed to find: %s' % s)
humans.append(synset_to_human[s])
return humans | Build a list of human-readable labels.
Args:
synsets: list of strings; each string is a unique WordNet ID.
synset_to_human: dict of synset to human labels, e.g.,
'n02119022' --> 'red fox, Vulpes vulpes'
Returns:
List of human-readable strings corresponding to each synset. | codesearchnet |
def finish(self, exitcode):
self._queue.put(self.Finish(exitcode))
self._thread.join() | Cleans up.
Anything pushed after finish will be dropped.
Args:
exitcode: The exitcode of the watched process. | codesearchnet |
def set_current(self, current):
self.current = current
self.input = current.input
self.output = current.output
self.cmd = current.task_data['cmd']
if self.cmd and NEXT_CMD_SPLITTER in self.cmd:
self.cmd, self.next_cmd = self.cmd.split(NEXT_CMD_SPLITTER)
else:
self.next_cmd = None | Creates some aliases for attributes of ``current``.
Args:
current: :attr:`~zengine.engine.WFCurrent` object. | juraj-google-style |
def to_cmd_args(mapping):
sorted_keys = sorted(mapping.keys())
def arg_name(obj):
string = _decode(obj)
if string:
return u'--%s' % string if len(string) > 1 else u'-%s' % string
else:
return u''
arg_names = [arg_name(argument) for argument in sorted_keys]
def arg_value(value):
if hasattr(value, 'items'):
map_items = ['%s=%s' % (k, v) for k, v in sorted(value.items())]
return ','.join(map_items)
return _decode(value)
arg_values = [arg_value(mapping[key]) for key in sorted_keys]
items = zip(arg_names, arg_values)
return [item for item in itertools.chain.from_iterable(items)] | Transform a dictionary in a list of cmd arguments.
Example:
>>>args = mapping.to_cmd_args({'model_dir': '/opt/ml/model', 'batch_size': 25})
>>>
>>>print(args)
['--model_dir', '/opt/ml/model', '--batch_size', 25]
Args:
mapping (dict[str, object]): A Python mapping.
Returns:
(list): List of cmd arguments | juraj-google-style |
class TimmWrapperImageProcessor(BaseImageProcessor):
main_input_name = 'pixel_values'
def __init__(self, pretrained_cfg: Dict[str, Any], architecture: Optional[str]=None, **kwargs):
requires_backends(self, 'timm')
super().__init__(architecture=architecture)
self.data_config = timm.data.resolve_data_config(pretrained_cfg, model=None, verbose=False)
self.val_transforms = timm.data.create_transform(**self.data_config, is_training=False)
self.train_transforms = timm.data.create_transform(**self.data_config, is_training=True)
self._not_supports_tensor_input = any((transform.__class__.__name__ == 'ToTensor' for transform in self.val_transforms.transforms))
def to_dict(self) -> Dict[str, Any]:
output = super().to_dict()
output.pop('train_transforms', None)
output.pop('val_transforms', None)
output.pop('_not_supports_tensor_input', None)
return output
@classmethod
def get_image_processor_dict(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> Tuple[Dict[str, Any], Dict[str, Any]]:
image_processor_filename = kwargs.pop('image_processor_filename', 'config.json')
return super().get_image_processor_dict(pretrained_model_name_or_path, image_processor_filename=image_processor_filename, **kwargs)
def preprocess(self, images: ImageInput, return_tensors: Optional[Union[str, TensorType]]='pt') -> BatchFeature:
if return_tensors != 'pt':
raise ValueError(f"return_tensors for TimmWrapperImageProcessor must be 'pt', but got {return_tensors}")
if self._not_supports_tensor_input and isinstance(images, torch.Tensor):
images = images.cpu().numpy()
if isinstance(images, torch.Tensor):
images = self.val_transforms(images)
images = images.unsqueeze(0) if images.ndim == 3 else images
else:
images = make_list_of_images(images)
images = [to_pil_image(image) for image in images]
images = torch.stack([self.val_transforms(image) for image in images])
return BatchFeature({'pixel_values': images}, tensor_type=return_tensors)
def save_pretrained(self, *args, **kwargs):
logger.warning_once('The `save_pretrained` method is disabled for TimmWrapperImageProcessor. The image processor configuration is saved directly in `config.json` when `save_pretrained` is called for saving the model.') | Wrapper class for timm models to be used within transformers.
Args:
pretrained_cfg (`Dict[str, Any]`):
The configuration of the pretrained model used to resolve evaluation and
training transforms.
architecture (`Optional[str]`, *optional*):
Name of the architecture of the model. | github-repos |
def from_lengths_and_angles(abc: List[float], ang: List[float]):
return Lattice.from_parameters(abc[0], abc[1], abc[2], ang[0], ang[1], ang[2]) | Create a Lattice using unit cell lengths and angles (in degrees).
Args:
abc (3x1 array): Lattice parameters, e.g. (4, 4, 5).
ang (3x1 array): Lattice angles in degrees, e.g., (90,90,120).
Returns:
A Lattice with the specified lattice parameters. | juraj-google-style |
def find_sanitiser_nodes(sanitiser, sanitisers_in_file):
for sanitiser_tuple in sanitisers_in_file:
if (sanitiser == sanitiser_tuple.trigger_word):
(yield sanitiser_tuple.cfg_node) | Find nodes containing a particular sanitiser.
Args:
sanitiser(string): sanitiser to look for.
sanitisers_in_file(list[Node]): list of CFG nodes with the sanitiser.
Returns:
Iterable of sanitiser nodes. | codesearchnet |
def load(self, data):
resp = self.client.api.load_image(data)
images = []
for chunk in resp:
if 'stream' in chunk:
match = re.search(
r'(^Loaded image ID: |^Loaded image: )(.+)$',
chunk['stream']
)
if match:
image_id = match.group(2)
images.append(image_id)
if 'error' in chunk:
raise ImageLoadError(chunk['error'])
return [self.get(i) for i in images] | Load an image that was previously saved using
:py:meth:`~docker.models.images.Image.save` (or ``docker save``).
Similar to ``docker load``.
Args:
data (binary): Image data to be loaded.
Returns:
(list of :py:class:`Image`): The images.
Raises:
:py:class:`docker.errors.APIError`
If the server returns an error. | juraj-google-style |
def _parse(self, stream):
builddata = json.load(stream)
log.debug('This is a JSON build file.')
if 'targets' not in builddata:
log.warn('Warning: No targets defined here.')
return
for tdata in builddata['targets']:
target = address.new(target=tdata.pop('name'),
repo=self.target.repo,
path=self.target.path)
if target in self.node and 'target_obj' in self.node[target]:
raise error.ButcherError(
'Target is defined more than once: %s', target)
rule_obj = targets.new(name=target,
ruletype=tdata.pop('type'),
**tdata)
log.debug('New target: %s', target)
self.add_node(target, {'target_obj': rule_obj})
for dep in rule_obj.composed_deps() or []:
d_target = address.new(dep)
if not d_target.repo:
d_target.repo = self.target.repo
if d_target.repo == self.target.repo and not d_target.path:
d_target.path = self.target.path
if d_target not in self.nodes():
self.add_node(d_target)
log.debug('New dep: %s -> %s', target, d_target)
self.add_edge(target, d_target) | Parse a JSON BUILD file.
Args:
builddata: dictionary of buildfile data
reponame: name of the repo that it came from
path: directory path within the repo | juraj-google-style |
def _preprocess_conv3d_input(x, data_format):
tf_data_format = 'NDHWC'
if data_format == 'channels_first':
if not _has_nchw_support():
x = array_ops.transpose(x, (0, 2, 3, 4, 1))
else:
tf_data_format = 'NCDHW'
return (x, tf_data_format) | Transpose and cast the input before the conv3d.
Args:
x: input tensor.
data_format: string, `"channels_last"` or `"channels_first"`.
Returns:
A tensor. | github-repos |
def get(self):
raise NotImplementedError() | Get the current tracking value.
Returns:
The current tracked value, the type of which depends on the specific
tracker implementation. | github-repos |
def run(self):
qclog = open(self.qclog_file, 'w')
p = subprocess.Popen(self.current_command, stdout=qclog)
return p | Perform the actual QChem run.
Returns:
(subprocess.Popen) Used for monitoring. | codesearchnet |
def num_nodes(self, leaves=True, internal=True):
if not isinstance(leaves, bool):
raise TypeError("leaves must be a bool")
if not isinstance(internal, bool):
raise TypeError("internal must be a bool")
num = 0
for node in self.traverse_preorder():
if (leaves and node.is_leaf()) or (internal and not node.is_leaf()):
num += 1
return num | Compute the total number of selected nodes in this ``Tree``
Args:
``leaves`` (``bool``): ``True`` to include leaves, otherwise ``False``
``internal`` (``bool``): ``True`` to include internal nodes, otherwise ``False``
Returns:
``int``: The total number of selected nodes in this ``Tree`` | juraj-google-style |
def plot_dendrogram(ax, obj, show_diameters=True):
dnd = Dendrogram(obj, show_diameters=show_diameters)
dnd.generate()
_render_dendrogram(dnd, ax, 0.0)
ax.set_title('Morphology Dendrogram')
ax.set_xlabel('micrometers (um)')
ax.set_ylabel('micrometers (um)')
ax.set_aspect('auto')
ax.legend() | Dendrogram of `obj`
Args:
obj: Neuron or tree \
neurom.Neuron, neurom.Tree
show_diameters : boolean \
Determines if node diameters will \
be show or not. | codesearchnet |
def handle_error(self, error, download_request):
if hasattr(error, "errno") and error.errno == errno.EACCES:
self.handle_certificate_problem(str(error))
else:
self.handle_general_download_error(str(error), download_request) | Checks what error occured and looks for an appropriate solution.
Args:
error: Exception
The error that has occured.
download_request:
The request which resulted in the error. | juraj-google-style |
def source(self, value=None):
if value is not None:
try:
value = str(value)
except ValueError:
raise ValueError('value {} need to be of type str '
'for field `source`'.format(value))
if ',' in value:
raise ValueError('value should not contain a comma '
'for field `source`')
self._source = value | Corresponds to IDD Field `source`
Args:
value (str): value for IDD Field `source`
if `value` is None it will not be checked against the
specification and is assumed to be a missing value
Raises:
ValueError: if `value` is not a valid value | juraj-google-style |
def GetPasswdMap(self, since=None):
return PasswdUpdateGetter().GetUpdates(self._GetClient(), self.conf['bucket'], self.conf['passwd_object'], since) | Return the passwd map from this source.
Args:
since: Get data only changed since this timestamp (inclusive) or None
for all data.
Returns:
instance of passwd.PasswdMap | github-repos |
def sample_mgrid(self, mgrid: np.array) -> np.array:
mgrid = np.ascontiguousarray(mgrid, np.float32)
if (mgrid.shape[0] != self.dimensions):
raise ValueError(('mgrid.shape[0] must equal self.dimensions, %r[0] != %r' % (mgrid.shape, self.dimensions)))
out = np.ndarray(mgrid.shape[1:], np.float32)
if (mgrid.shape[1:] != out.shape):
raise ValueError(('mgrid.shape[1:] must equal out.shape, %r[1:] != %r' % (mgrid.shape, out.shape)))
lib.NoiseSampleMeshGrid(self._tdl_noise_c, out.size, ffi.cast('float*', mgrid.ctypes.data), ffi.cast('float*', out.ctypes.data))
return out | Sample a mesh-grid array and return the result.
The :any:`sample_ogrid` method performs better as there is a lot of
overhead when working with large mesh-grids.
Args:
mgrid (numpy.ndarray): A mesh-grid array of points to sample.
A contiguous array of type `numpy.float32` is preferred.
Returns:
numpy.ndarray: An array of sampled points.
This array has the shape: ``mgrid.shape[:-1]``.
The ``dtype`` is `numpy.float32`. | codesearchnet |
def angle_3points(p0, p1, p2):
vec1 = vector(p1, p0)
vec2 = vector(p2, p0)
return math.atan2(np.linalg.norm(np.cross(vec1, vec2)), np.dot(vec1, vec2)) | compute the angle in radians between three 3D points
Calculated as the angle between p1-p0 and p2-p0.
Args:
p0, p1, p2: indexable objects with
indices 0, 1, 2 corresponding to 3D cartesian coordinates.
Returns:
Angle in radians between (p1-p0) and (p2-p0).
0.0 if p0==p1 or p0==p2. | codesearchnet |
def print_tree_deps_of(module, all_edges=None):
if all_edges is None:
all_edges = create_reverse_dependency_tree()
tree = get_tree_starting_at(module, all_edges)
lines = [(tree[0], tree[0])]
for index in range(1, len(tree)):
edges = tree[index]
start_edges = {edge[0] for edge in edges}
for start in start_edges:
end_edges = {edge[1] for edge in edges if edge[0] == start}
pos = 0
while lines[pos][1] != start:
pos += 1
lines = lines[:pos + 1] + [(' ' * (2 * index) + end, end) for end in end_edges] + lines[pos + 1:]
for line in lines:
print(line[0]) | Prints the tree of modules depending on a given module.
Args:
module (`str`): The module that will be the root of the subtree we want.
all_eges (`List[Tuple[str, str]]`, *optional*):
The list of all edges of the tree. Will be set to `create_reverse_dependency_tree()` if not passed. | github-repos |
def trade_day(dt, cal='US'):
from xone import calendar
dt = pd.Timestamp(dt).date()
return calendar.trading_dates(start=dt - pd.Timedelta('10D'), end=dt, calendar=cal)[-1] | Latest trading day w.r.t given dt
Args:
dt: date of reference
cal: trading calendar
Returns:
pd.Timestamp: last trading day
Examples:
>>> trade_day('2018-12-25').strftime('%Y-%m-%d')
'2018-12-24' | juraj-google-style |
def set_source_interface(self, name):
cmd = self.command_builder('ntp source', value=name)
return self.configure(cmd) | Assign the NTP source on the node
Args:
name (string): The interface port that specifies the NTP source.
Returns:
True if the operation succeeds, otherwise False. | codesearchnet |
def _inter_manager_operations(self, other, how_to_join, func):
reindexed_self, reindexed_other_list, joined_index = self.copartition(
0, other, how_to_join, False
)
reindexed_other = reindexed_other_list[0]
new_columns = self._join_index_objects(
0, other.columns, how_to_join, sort=False
)
self_cols = self.columns
other_cols = other.columns
def inter_data_op_builder(left, right, func):
left.columns = self_cols
right.columns = other_cols
left.index = pandas.RangeIndex(len(left.index))
right.index = pandas.RangeIndex(len(right.index))
result = func(left, right)
result.columns = pandas.RangeIndex(len(result.columns))
return result
new_data = reindexed_self.inter_data_operation(
1, lambda l, r: inter_data_op_builder(l, r, func), reindexed_other
)
return self.__constructor__(new_data, joined_index, new_columns) | Inter-data operations (e.g. add, sub).
Args:
other: The other Manager for the operation.
how_to_join: The type of join to join to make (e.g. right, outer).
Returns:
New DataManager with new data and index. | juraj-google-style |
def GetArtifactCollectorArgs(flow_args, knowledge_base):
args = rdf_artifacts.ClientArtifactCollectorArgs()
args.knowledge_base = knowledge_base
args.apply_parsers = flow_args.apply_parsers
args.ignore_interpolation_errors = flow_args.ignore_interpolation_errors
args.max_file_size = flow_args.max_file_size
args.use_tsk = flow_args.use_tsk
if not flow_args.recollect_knowledge_base:
artifact_names = flow_args.artifact_list
else:
artifact_names = GetArtifactsForCollection(knowledge_base.os,
flow_args.artifact_list)
expander = ArtifactExpander(knowledge_base, flow_args.path_type,
flow_args.max_file_size)
for artifact_name in artifact_names:
rdf_artifact = artifact_registry.REGISTRY.GetArtifact(artifact_name)
if not MeetsConditions(knowledge_base, rdf_artifact):
continue
if artifact_name in expander.processed_artifacts:
continue
requested_by_user = artifact_name in flow_args.artifact_list
for expanded_artifact in expander.Expand(rdf_artifact, requested_by_user):
args.artifacts.append(expanded_artifact)
return args | Prepare bundle of artifacts and their dependencies for the client.
Args:
flow_args: An `ArtifactCollectorFlowArgs` instance.
knowledge_base: contains information about the client
Returns:
rdf value object containing a list of extended artifacts and the
knowledge base | juraj-google-style |
def combine_columns(columns):
columns_zipped = itertools.zip_longest(*columns)
return ''.join((x for zipped in columns_zipped for x in zipped if x)) | Combine ``columns`` into a single string.
Example:
>>> combine_columns(['eape', 'xml'])
'example'
Args:
columns (iterable): ordered columns to combine
Returns:
String of combined columns | codesearchnet |
def at(self, instant):
for event in self:
if event.begin <= instant <= event.end:
yield event | Iterates (in chronological order) over all events that are occuring during `instant`.
Args:
instant (Arrow object) | juraj-google-style |
def list_experiments(self, collection_name):
exp = ExperimentResource(
name='', collection_name=collection_name, coord_frame='foo')
return self._list_resource(exp) | List all experiments that belong to a collection.
Args:
collection_name (string): Name of the parent collection.
Returns:
(list)
Raises:
requests.HTTPError on failure. | juraj-google-style |
def var(x, axis=None, keepdims=False):
if x.dtype.base_dtype == dtypes_module.bool:
x = math_ops.cast(x, floatx())
return math_ops.reduce_variance(x, axis=axis, keepdims=keepdims) | Variance of a tensor, alongside the specified axis.
Args:
x: A tensor or variable.
axis: An integer, the axis to compute the variance.
keepdims: A boolean, whether to keep the dimensions or not.
If `keepdims` is `False`, the rank of the tensor is reduced
by 1. If `keepdims` is `True`,
the reduced dimension is retained with length 1.
Returns:
A tensor with the variance of elements of `x`. | github-repos |
def make_lda_variational(activation, num_topics, layer_sizes):
encoder_net = tf.keras.Sequential()
for num_hidden_units in layer_sizes:
encoder_net.add(tf.keras.layers.Dense(num_hidden_units, activation=activation, kernel_initializer=tf.compat.v1.glorot_normal_initializer()))
encoder_net.add(tf.keras.layers.Dense(num_topics, activation=tf.nn.softplus, kernel_initializer=tf.compat.v1.glorot_normal_initializer()))
def lda_variational(bag_of_words):
concentration = _clip_dirichlet_parameters(encoder_net(bag_of_words))
return ed.Dirichlet(concentration=concentration, name='topics_posterior')
return lda_variational | Creates the variational distribution for LDA.
Args:
activation: Activation function to use.
num_topics: The number of topics.
layer_sizes: The number of hidden units per layer in the encoder.
Returns:
lda_variational: A function that takes a bag-of-words Tensor as
input and returns a distribution over topics. | codesearchnet |
def get_nested_dmaps(dmap):
if (not isinstance(dmap, DynamicMap)):
return []
dmaps = [dmap]
for o in dmap.callback.inputs:
dmaps.extend(get_nested_dmaps(o))
return list(set(dmaps)) | Recurses DynamicMap to find DynamicMaps inputs
Args:
dmap: DynamicMap to recurse to look for DynamicMap inputs
Returns:
List of DynamicMap instances that were found | codesearchnet |
def custom_line_color_map(self, values):
if not isinstance(values, list):
raise TypeError("custom_line_color_map must be a list")
self.options["custom_line_color_map"] = values | Set the custom line color map.
Args:
values (list): list of colors.
Raises:
TypeError: Custom line color map must be a list. | juraj-google-style |
def _GetNameFromProduct(self):
product = (self.product or '')
product = product.split(' ')
product_lower_case = [segment.lower() for segment in product]
number_of_segments = len(product)
if ('windows' in product_lower_case):
segment_index = (product_lower_case.index('windows') + 1)
if (product_lower_case[segment_index] in ('(r)', 'server')):
segment_index += 1
suffix_segment_index = (segment_index + 1)
if ((suffix_segment_index < number_of_segments) and (product_lower_case[suffix_segment_index] == 'r2')):
return 'Windows {0:s} R2'.format(product[segment_index])
return 'Windows {0:s}'.format(product[segment_index])
return None | Determines the predefined operating system name from the product.
Returns:
str: operating system name, such as "macOS Mojave" or "Windows XP" or
None if the name cannot be determined. This value is used to
programmatically link a parser preset to an operating system and
therefore must be one of predefined values. | codesearchnet |
def _apply_gradients_and_copy(self, opt, raw_grad_list, ps_var_grads):
with tf.name_scope('apply_gradients'):
var_update_ops = []
for vid, (g, v) in enumerate(ps_var_grads):
apply_gradient_op = opt.apply_gradients([(g, v)])
barrier = self._add_sync_queues_and_barrier(
'param_update_barrier_{}'.format(vid), [apply_gradient_op])
with tf.control_dependencies([barrier]), \
tf.device(self.cpu_device):
updated_value = v.read_value()
for towerid in range(self.nr_gpu):
var_update_ops.append(
raw_grad_list[towerid][vid][1].assign(updated_value))
return var_update_ops | Apply averaged gradients to ps vars, and then copy the updated
variables back to each tower.
Args:
raw_grad_list: Ngpu x Nvar x 2 gradient list from all towers
ps_var_grads: Nvar x 2 (grad, ps_var)
Returns:
list of copy ops | juraj-google-style |
def run(self, fetches, feed_dict=None, options=None, run_metadata=None):
return self._sess.run(fetches, feed_dict=feed_dict, options=options, run_metadata=run_metadata) | Run ops in the monitored session.
This method is completely compatible with the `tf.Session.run()` method.
Args:
fetches: Same as `tf.Session.run()`.
feed_dict: Same as `tf.Session.run()`.
options: Same as `tf.Session.run()`.
run_metadata: Same as `tf.Session.run()`.
Returns:
Same as `tf.Session.run()`. | github-repos |
def get_incomplete_penetrance_genes(hpo_lines):
genes = parse_hpo_genes(hpo_lines)
incomplete_penetrance_genes = set()
for hgnc_symbol in genes:
if genes[hgnc_symbol].get('incomplete_penetrance'):
incomplete_penetrance_genes.add(hgnc_symbol)
return incomplete_penetrance_genes | Get a set with all genes that have incomplete penetrance according to HPO
Args:
hpo_lines(iterable(str))
Returns:
incomplete_penetrance_genes(set): A set with the hgnc symbols of all
genes with incomplete penetrance | juraj-google-style |
def add_menu_item(self, command, title):
m_item = Gtk.MenuItem()
m_item.set_label(title)
m_item.connect('activate', command)
self.menu.append(m_item)
self.menu.show_all() | Add mouse right click menu item.
Args:
command (callable): function that will be called after left mouse click on title
title (str): label that will be shown in menu | juraj-google-style |
def _find_paths_referenced(self) -> Tuple[Optional[str], Collection[str]]: | Finds paths for any elements referenced in this expression.
Recursively builds paths by visiting each node in the tree. Returns a tuple
of (context, paths) where `context` is an identifier which may be part of a
dotted path completed by its parent and `paths` are the dotted paths found
so far.
Implementations must recursively call this method for all child nodes.
Returns:
A tuple of (context, paths) as described above. | github-repos |
def open(self, path, mime_type='application/octet-stream', compression_type=CompressionTypes.AUTO) -> BinaryIO:
return self._path_open(path, 'rb', mime_type, compression_type) | Returns a read channel for the given file path.
Args:
path: string path of the file object to be written to the system
mime_type: MIME type to specify the type of content in the file object
compression_type: Type of compression to be used for this object
Returns: file handle with a close function for the user to use | github-repos |
def process_input_data(filename, imager, grid_data, grid_norm, grid_weights):
ms = oskar.MeasurementSet.open(filename)
block_start = 0
num_rows = ms.num_rows
num_baselines = ((ms.num_stations * (ms.num_stations - 1))
while (block_start < num_rows):
block_size = (num_rows - block_start)
if (block_size > num_baselines):
block_size = num_baselines
uvw = ms.read_column('UVW', block_start, block_size)
vis_weights = ms.read_column('WEIGHT', block_start, block_size)
if (ms.num_pols == 4):
vis_weights = (0.5 * (vis_weights[(:, 0)] + vis_weights[(:, 3)]))
for j in range(ms.num_channels):
coords = ((uvw * (ms.freq_start_hz + (j * ms.freq_inc_hz))) / 299792458.0)
vis_data = None
if (not imager.coords_only):
vis_data = ms.read_vis(block_start, j, 1, block_size)
if (ms.num_pols == 4):
vis_data = (0.5 * (vis_data[(0, :, 0)] + vis_data[(0, :, 3)]))
grid_norm = imager.update_plane(coords[(:, 0)], coords[(:, 1)], coords[(:, 2)], vis_data, vis_weights, grid_data, grid_norm, grid_weights)
block_start += block_size
return grid_norm | Reads visibility data from a Measurement Set.
The visibility grid or weights grid is updated accordingly.
Visibility data are read from disk in blocks of size num_baselines.
Args:
filename (str): Name of Measurement Set to open.
imager (oskar.Imager): Handle to configured imager.
grid_data (numpy.ndarray or None): Visibility grid to populate.
grid_norm (float) Current grid normalisation.
grid_weights (numpy.ndarray): Weights grid to populate or read.
Returns:
grid_norm (float): Updated grid normalisation. | codesearchnet |
def get_image_features(self, pixel_values: torch.FloatTensor, image_sizes: torch.Tensor, vision_feature_layer: Optional[Union[int, List[int]]]=None, **kwargs):
vision_feature_layer = vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
kwargs = {k: v for k, v in kwargs.items() if v is not None}
image_outputs = self.vision_tower(pixel_values, image_sizes=image_sizes, output_hidden_states=True, **kwargs)
if isinstance(vision_feature_layer, int):
selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
else:
hs_pool = [image_outputs.hidden_states[layer_idx] for layer_idx in vision_feature_layer]
selected_image_feature = torch.cat(hs_pool, dim=-1)
image_features = self.multi_modal_projector(selected_image_feature.squeeze(0), image_sizes)
downsample_ratio = self.vision_tower.patch_size * self.config.spatial_merge_size
split_sizes = [height
image_features = torch.split(image_features.squeeze(0), split_sizes)
return image_features | Obtains image last hidden states from the vision tower and apply multimodal projection.
Args:
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`):
The tensors corresponding to the input images.
vision_feature_layer (`Union[int, List[int]]`, *optional*):
The index of the layer to select the vision feature. If multiple indices are provided,
the vision feature of the corresponding indices will be concatenated to form the
vision features.
image_sizes (`torch.Tensor`, *optional*):
Tensor containing the image sizes as returned by the processor.
Returns:
image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`). | github-repos |
def dump_tree(self, statement=None, indent_level=0):
out = u""
indent = u" "*indent_level
if statement is None:
for root_statement in self.statements:
out += self.dump_tree(root_statement, indent_level)
else:
out += indent + str(statement) + u'\n'
if len(statement.children) > 0:
for child in statement.children:
out += self.dump_tree(child, indent_level=indent_level+4)
return out | Dump the AST for this parsed file.
Args:
statement (SensorGraphStatement): the statement to print
if this function is called recursively.
indent_level (int): The number of spaces to indent this
statement. Used for recursively printing blocks of
statements.
Returns:
str: The AST for this parsed sg file as a nested
tree with one node per line and blocks indented. | juraj-google-style |
def screenrecord(self, bit_rate: int = 5000000, time_limit: int = 180, filename: _PATH = '/sdcard/demo.mp4') -> None:
self._execute('-s', self.device_sn, 'shell',
'screenrecord', '--bit-rate', str(bit_rate), '--time-limit', str(time_limit), filename) | Recording the display of devices running Android 4.4 (API level 19) and higher.
Args:
bit_rate:You can increase the bit rate to improve video quality, but doing so results in larger movie files.
time_limit: Sets the maximum recording time, in seconds, and the maximum value is 180 (3 minutes). | juraj-google-style |
def add(reader, writer, column, start, stop, value):
for (i, row) in enumerate(reader):
if ((i >= start) and (i <= stop)):
row[column] = (type(value)(row[column]) + value)
writer.appendRecord(row) | Adds a value over a range of rows.
Args:
reader: A FileRecordStream object with input data.
writer: A FileRecordStream object to write output data to.
column: The column of data to modify.
start: The first row in the range to modify.
end: The last row in the range to modify.
value: The value to add. | codesearchnet |
def _append_commands(dct, module_name, commands):
for command in commands:
entry_point = '{command}{subcommand} = {module}{callable}'.format(command=command.command, subcommand=(':{}'.format(command.subcommand) if command.subcommand else ''), module=module_name, callable=(':{}'.format(command.callable) if command.callable else ''))
dct.setdefault(command.command, set()).add(entry_point) | Append entry point strings representing the given Command objects.
Args:
dct: The dictionary to append with entry point strings. Each key will
be a primary command with a value containing a list of entry point
strings representing a Command.
module_name: The name of the module in which the command object
resides.
commands: A list of Command objects to convert to entry point strings. | codesearchnet |
def get_last(self, num=10):
max_item = self.get_max_item()
urls = [urljoin(self.item_url, f'{i}.json') for i in range(((max_item - num) + 1), (max_item + 1))]
result = self._run_async(urls=urls)
return [Item(r) for r in result if r] | Returns last `num` of HN stories
Downloads all the HN articles and returns them as Item objects
Returns:
`list` object containing ids of HN stories. | codesearchnet |
def read_raster(raster_file):
ds = gdal_Open(raster_file)
band = ds.GetRasterBand(1)
data = band.ReadAsArray()
xsize = band.XSize
ysize = band.YSize
nodata_value = band.GetNoDataValue()
geotrans = ds.GetGeoTransform()
dttype = band.DataType
srs = osr_SpatialReference()
srs.ImportFromWkt(ds.GetProjection())
if (nodata_value is None):
nodata_value = DEFAULT_NODATA
band = None
ds = None
return Raster(ysize, xsize, data, nodata_value, geotrans, srs, dttype) | Read raster by GDAL.
Args:
raster_file: raster file path.
Returns:
Raster object. | codesearchnet |
def list_mapped_classes():
cls_dict = {key: value
for key, value in MODULE.rdfclass.__dict__.items()
if not isinstance(value, RdfConfigManager)
and key not in ['properties']
and hasattr(value, 'es_defs')
and value.es_defs.get('kds_esIndex')}
new_dict = {}
potential_maps = set([cls_.__name__ for cls_ in cls_dict.values()])
for name, cls_ in cls_dict.items():
parents = set(cls_.hierarchy)
if len(parents.intersection(potential_maps)) <= 1:
new_dict[name] = cls_
return new_dict | Returns all the rdfclasses that have and associated elasticsearch
mapping
Args:
None | juraj-google-style |
def parse_topology(ml_log, log=None, ml_version='1.3.4BETA', print_output=False):
topology = {'manifold': True, 'non_manifold_E': 0, 'non_manifold_V': 0}
with open(ml_log) as fread:
for line in fread:
if ('V:' in line):
vert_edge_face = line.replace('V:', ' ').replace('E:', ' ').replace('F:', ' ').split()
topology['vert_num'] = int(vert_edge_face[0])
topology['edge_num'] = int(vert_edge_face[1])
topology['face_num'] = int(vert_edge_face[2])
if ('Unreferenced Vertices' in line):
topology['unref_vert_num'] = int(line.split()[2])
if ('Boundary Edges' in line):
topology['boundry_edge_num'] = int(line.split()[2])
if ('Mesh is composed by' in line):
topology['part_num'] = int(line.split()[4])
if ('non 2-manifold mesh' in line):
topology['manifold'] = False
if ('non two manifold edges' in line):
topology['non_manifold_edge'] = int(line.split()[2])
if ('non two manifold vertexes' in line):
topology['non_manifold_vert'] = int(line.split()[2])
if ('Genus is' in line):
topology['genus'] = line.split()[2]
if (topology['genus'] != 'undefined'):
topology['genus'] = int(topology['genus'])
if ('holes' in line):
topology['hole_num'] = line.split()[2]
if (topology['hole_num'] == 'a'):
topology['hole_num'] = 'undefined'
else:
topology['hole_num'] = int(topology['hole_num'])
for (key, value) in topology.items():
if (log is not None):
log_file = open(log, 'a')
log_file.write('{:16} = {}\n'.format(key, value))
log_file.close()
elif print_output:
print('{:16} = {}'.format(key, value))
return topology | Parse the ml_log file generated by the measure_topology function.
Args:
ml_log (str): MeshLab log file to parse
log (str): filename to log output
Returns:
dict: dictionary with the following keys:
vert_num (int): number of vertices
edge_num (int): number of edges
face_num (int): number of faces
unref_vert_num (int): number or unreferenced vertices
boundry_edge_num (int): number of boundary edges
part_num (int): number of parts (components) in the mesh.
manifold (bool): True if mesh is two-manifold, otherwise false.
non_manifold_edge (int): number of non_manifold edges.
non_manifold_vert (int): number of non-manifold verices
genus (int or str): genus of the mesh, either a number or
'undefined' if the mesh is non-manifold.
holes (int or str): number of holes in the mesh, either a number
or 'undefined' if the mesh is non-manifold. | codesearchnet |
def WriteMap(self, map_data=None, force_write=False):
if map_data is None:
writable_map = self.data
else:
writable_map = map_data
entries_written = self.Write(writable_map)
if entries_written is None:
self.log.warning('cache write failed, exiting')
return 1
if force_write or self.Verify(entries_written):
self._Commit()
self.WriteIndex()
return 0
self.log.warning('verification failed, exiting')
return 1 | Write a map to disk.
Args:
map_data: optional Map object to overwrite our current data with.
force_write: optional flag to indicate verification checks can be
ignored.
Returns:
0 if succesful, 1 if not | github-repos |
def seek(self, offset, whence=os.SEEK_SET):
self._checkClosed()
if whence == os.SEEK_SET:
self._position = offset
elif whence == os.SEEK_CUR:
self._position += offset
elif whence == os.SEEK_END:
self._position = self._downloader.size + offset
else:
raise ValueError('Whence mode %r is invalid.' % whence)
self._position = min(self._position, self._downloader.size)
self._position = max(self._position, 0)
return self._position | Set the stream's current offset.
Note if the new offset is out of bound, it is adjusted to either 0 or EOF.
Args:
offset: seek offset as number.
whence: seek mode. Supported modes are os.SEEK_SET (absolute seek),
os.SEEK_CUR (seek relative to the current position), and os.SEEK_END
(seek relative to the end, offset should be negative).
Raises:
``ValueError``: When this stream is closed or if whence is invalid. | github-repos |
def api_client(connection, client_class=xbahn.api.Client):
return client_class(
link=xbahn.connection.link.Link(
receive=connection,
send=connection
)
) | Establishes an API client for one-way communication
connection with an API Server
Arguments:
- connection (xbahn.connection.Connection)
Keyword Arguments:
- client_class (xbahn.api.Client): if supplied use this class to initantiate
the client object. If omitted will use xbahn.api.Client.
Returns:
- client_class: client instance | juraj-google-style |
def get_max_muO2(self, min_voltage=None, max_voltage=None):
data = []
for pair in self._select_in_voltage_range(min_voltage, max_voltage):
if pair.muO2_discharge is not None:
data.extend([d['chempot'] for d in pair.muO2_discharge])
if pair.muO2_charge is not None:
data.extend([d['chempot'] for d in pair.muO2_discharge])
return max(data) if len(data) > 0 else None | Maximum critical oxygen chemical potential along path.
Args:
min_voltage: The minimum allowable voltage.
max_voltage: The maximum allowable voltage.
Returns:
Maximum critical oxygen chemical of all compounds along the
insertion path (a subset of the path can be chosen by the optional
arguments). | juraj-google-style |
def from_attrs(cls, desired_attrs=None, except_attrs=None,
critical_attrs=None):
if isinstance(desired_attrs, roids.OID):
desired_attrs = set([desired_attrs])
if isinstance(except_attrs, roids.OID):
except_attrs = set([except_attrs])
if isinstance(critical_attrs, roids.OID):
critical_attrs = set([critical_attrs])
if rfc5587 is None:
raise NotImplementedError("Your GSSAPI implementation does not "
"have support for RFC 5587")
mechs = rfc5587.indicate_mechs_by_attrs(desired_attrs,
except_attrs,
critical_attrs)
return (cls(mech) for mech in mechs) | Get a generator of mechanisms supporting the specified attributes. See
RFC 5587's :func:`indicate_mechs_by_attrs` for more information.
Args:
desired_attrs ([OID]): Desired attributes
except_attrs ([OID]): Except attributes
critical_attrs ([OID]): Critical attributes
Returns:
[Mechanism]: A set of mechanisms having the desired features.
Raises:
GSSError
:requires-ext:`rfc5587` | juraj-google-style |
def _VerifyValues(self, pool_func, input_sizes, ksize, strides, padding, expected, use_gpu, v2=False, one_dim=False, use_negative_input=False):
for data_format, use_gpu_2 in GetTestConfigs(include_nchw_vect_c=True, one_dimensional=one_dim):
if use_gpu_2 == use_gpu:
self._VerifyOneTest(pool_func, input_sizes, ksize, strides, padding, data_format, expected, use_gpu, v2, use_negative_input) | Verifies the output values of the pooling function.
Args:
pool_func: Function to be called, co.MaxPool, co.AvgPool,
or the Lua version.
input_sizes: Input tensor dimensions.
ksize: The kernel size dimensions
strides: The stride dimensions
padding: Padding type.
expected: An array containing the expected operation outputs.
use_gpu: Whether we are running on GPU.
v2: Whether to use v2 version.
one_dim: If one dimensional pools should be done instead of two
dimensional pools.
use_negative_input: If the input values should be negative. | github-repos |
def barycentric_coords(coords, simplex):
coords = np.atleast_2d(coords)
t = (np.transpose(simplex[(:(- 1), :)]) - np.transpose(simplex[((- 1), :)])[(:, None)])
all_but_one = np.transpose(np.linalg.solve(t, np.transpose((coords - simplex[(- 1)]))))
last_coord = (1 - np.sum(all_but_one, axis=(- 1))[(:, None)])
return np.append(all_but_one, last_coord, axis=(- 1)) | Converts a list of coordinates to barycentric coordinates, given a
simplex with d+1 points. Only works for d >= 2.
Args:
coords: list of n coords to transform, shape should be (n,d)
simplex: list of coordinates that form the simplex, shape should be
(d+1, d)
Returns:
a LIST of barycentric coordinates (even if the original input was 1d) | codesearchnet |
def compute_verdict(self, results):
if (results['class'] in self.reject_classes):
threshold = self.reject_classes[results['class']]
if (float(results['confidence']) >= threshold):
logger.debug('<{0}> Suggesting to reject the message based on DSPAM results: user={1[user]}, class={1[class]}, confidence={1[confidence]}'.format(self.id, results))
return self.VERDICT_REJECT
if (results['class'] in self.quarantine_classes):
threshold = self.quarantine_classes[results['class']]
if (float(results['confidence']) >= threshold):
logger.debug('<{0}> Suggesting to quarantine the message based on DSPAM results: user={1[user]}, class={1[class]}, confidence={1[confidence]}'.format(self.id, results))
return self.VERDICT_QUARANTINE
if (results['class'] in self.accept_classes):
threshold = self.accept_classes[results['class']]
if (float(results['confidence']) >= threshold):
logger.debug('<{0}> Suggesting to accept the message based on DSPAM results: user={1[user]}, class={1[class]}, confidence={1[confidence]}'.format(self.id, results))
return self.VERDICT_ACCEPT
logger.debug('<{0}> Suggesting to accept the message, no verdict class matched DSPAM results: user={1[user]}, class={1[class]}, confidence={1[confidence]}'.format(self.id, results))
return self.VERDICT_ACCEPT | Match results to the configured reject, quarantine and accept classes,
and return a verdict based on that.
The verdict classes are matched in the order: reject_classes,
quarantine_classes, accept_classes. This means that you can configure
different verdicts for different confidence results, for instance:
reject_classes= Spam:0.99 # Reject obvious spam
quarantine_classes = Spam:0.7 # Quarantine spam with confidence
# between 0.7 and 0.99
accept_classes = Spam # Accept low confidence spam (good
# for FP and retraining)
Args:
results -- A results dictionary from DspamClient. | codesearchnet |
def get_dns_zone_ids(env='dev', facing='internal'):
client = boto3.Session(profile_name=env).client('route53')
zones = client.list_hosted_zones_by_name(DNSName='.'.join([env, DOMAIN]))
zone_ids = []
for zone in zones['HostedZones']:
LOG.debug('Found Hosted Zone: %s', zone)
if facing == 'external' or zone['Config']['PrivateZone']:
LOG.info('Using %(Id)s for "%(Name)s", %(Config)s', zone)
zone_ids.append(zone['Id'])
LOG.debug('Zone IDs: %s', zone_ids)
return zone_ids | Get Route 53 Hosted Zone IDs for _env_.
Args:
env (str): Deployment environment.
facing (str): Type of ELB, external or internal.
Returns:
list: Hosted Zone IDs for _env_. Only *PrivateZone* when _facing_ is
internal. | juraj-google-style |
def aggregate_single_gradient_using_copy(grad_and_vars, use_mean, check_inf_nan):
grads = [g for g, _ in grad_and_vars]
grad = math_ops.add_n(grads)
if use_mean and len(grads) > 1:
grad = array_ops.multiply(grad, 1.0 / len(grads))
v = grad_and_vars[0][1]
if check_inf_nan:
has_nan_or_inf = array_ops.logical_not(array_ops.reduce_all(array_ops.is_finite(grads)))
return ((grad, v), has_nan_or_inf)
else:
return ((grad, v), None) | Calculate the average gradient for a shared variable across all replicas.
Note that this function provides a synchronization point across all replicas.
Args:
grad_and_vars: A list or tuple of (gradient, variable) tuples. Each
(gradient, variable) pair within the outer list represents the gradient
of the variable calculated for a single replica, and the number of pairs
equals the number of replicas.
use_mean: if True, mean is taken, else sum of gradients is taken.
check_inf_nan: check grads for nans and infs.
Returns:
The tuple ([(average_gradient, variable),], has_nan_or_inf) where the
gradient has been averaged across all replicas. The variable is chosen
from the first replica. The has_nan_or_inf indicates the grads has nan or
inf. | github-repos |
def get_asset_tensors(export_dir, meta_graph_def_to_load, import_scope=None):
collection_def = meta_graph_def_to_load.collection_def
asset_tensor_dict = {}
asset_protos = []
if meta_graph_def_to_load.asset_file_def:
asset_protos = meta_graph_def_to_load.asset_file_def
elif constants.ASSETS_KEY in collection_def:
assets_any_proto = collection_def[constants.ASSETS_KEY].any_list.value
for asset_any_proto in assets_any_proto:
asset_proto = meta_graph_pb2.AssetFileDef()
asset_any_proto.Unpack(asset_proto)
asset_protos.append(asset_proto)
assets_directory = file_io.join(compat.as_bytes(export_dir), compat.as_bytes(constants.ASSETS_DIRECTORY))
for asset_proto in asset_protos:
tensor_name = asset_proto.tensor_info.name
if import_scope:
tensor_name = '%s/%s' % (import_scope, tensor_name)
asset_tensor_dict[tensor_name] = file_io.join(compat.as_bytes(assets_directory), compat.as_bytes(asset_proto.filename))
return asset_tensor_dict | Gets the asset tensors, if defined in the meta graph def to load.
Args:
export_dir: Directory where the SavedModel is located.
meta_graph_def_to_load: The meta graph def from the SavedModel to be loaded.
import_scope: Optional `string` -- if specified, prepend this followed by
'/' to all returned asset tensor names.
Returns:
A dictionary of asset tensors, keyed by the name of the asset tensor. The
value in the map corresponds to the absolute path of the asset file. | github-repos |
def get_dataframe(self, force_computation=False):
if self.df is not None and not force_computation: return self.df
self.df = self.fetch(self.context)
self.df = self.preprocess(self.df)
self.transform(self.df)
return self.df | Preprocesses then transforms the return of fetch().
Args:
force_computation (bool, optional) : Defaults to False. If set to True, forces the computation of DataFrame at each call.
Returns:
pandas.DataFrame: Preprocessed and transformed DataFrame. | juraj-google-style |
def _get_block_publisher(self, state_hash):
state_view = self._state_view_factory.create_view(state_hash)
try:
class BatchPublisher:
def send(self, transactions):
raise InvalidGenesisConsensusError(
'Consensus cannot send transactions during genesis.')
consensus = ConsensusFactory.get_configured_consensus_module(
NULL_BLOCK_IDENTIFIER,
state_view)
return consensus.BlockPublisher(
BlockCache(self._block_store),
state_view_factory=self._state_view_factory,
batch_publisher=BatchPublisher(),
data_dir=self._data_dir,
config_dir=self._config_dir,
validator_id=self._identity_signer.get_public_key().as_hex())
except UnknownConsensusModuleError as e:
raise InvalidGenesisStateError(e) | Returns the block publisher based on the consensus module set by the
"sawtooth_settings" transaction family.
Args:
state_hash (str): The current state root hash for reading settings.
Raises:
InvalidGenesisStateError: if any errors occur getting the
BlockPublisher. | juraj-google-style |
def sendfrom(self, user_id, dest_address, amount, minconf=1):
amount = Decimal(amount).quantize(self.quantum, rounding=ROUND_HALF_EVEN)
txhash = self.rpc.call('sendfrom', user_id, dest_address, float(str(amount)), minconf)
self.logger.debug(('Send %s %s from %s to %s' % (str(amount), self.coin, str(user_id), dest_address)))
self.logger.debug(('Transaction hash: %s' % txhash))
return txhash | Send coins from user's account.
Args:
user_id (str): this user's unique identifier
dest_address (str): address which is to receive coins
amount (str or Decimal): amount to send (eight decimal points)
minconf (int): ensure the account has a valid balance using this
many confirmations (default=1)
Returns:
str: transaction ID | codesearchnet |
def merge(self: 'FetchResponse', other: 'FetchResponse') \
-> 'FetchResponse':
if self.seq != other.seq:
raise ValueError(other)
new_data = OrderedDict(self.data)
new_data.update(other.data)
return FetchResponse(self.seq, list(new_data.items())) | Merge the other FETCH response, adding any fetch attributes that do
not already exist in this FETCH response. For example::
* 3 FETCH (UID 119)
* 3 FETCH (FLAGS (\\Seen))
Would merge into::
* 3 FETCH (UID 119 FLAGS (\\Seen))
Args:
other: The other response to merge. | juraj-google-style |
def is_ipython_subprocess() -> bool:
return False | Check if we are in a sub-process launched from within a `ipython` terminal.
Returns:
`True` only if we are in ipython terminal (e.g. `ml_python`) and inside
a sub-process. | github-repos |
def parse_input(self):
if self._text:
lines = iter(self._text.splitlines())
elif self._file:
lines = self._file
else:
lines = ()
sample_lines = []
for line in lines:
if (len(sample_lines) > 100):
break
sample_lines.append(line)
lines = itertools.chain(sample_lines, lines)
self.guess_type(sample_lines)
datetime_format = wpull.protocol.ftp.ls.date.guess_datetime_format(sample_lines)
self.set_datetime_format(datetime_format)
return self.parse(lines) | Parse the listings.
Returns:
iter: A iterable of :class:`.ftp.ls.listing.FileEntry` | codesearchnet |
def ScanForStorageMediaImage(self, source_path_spec):
try:
type_indicators = analyzer.Analyzer.GetStorageMediaImageTypeIndicators(
source_path_spec, resolver_context=self._resolver_context)
except RuntimeError as exception:
raise errors.BackEndError((
'Unable to process source path specification with error: '
'{0!s}').format(exception))
if not type_indicators:
file_system = resolver.Resolver.OpenFileSystem(
source_path_spec, resolver_context=self._resolver_context)
raw_path_spec = path_spec_factory.Factory.NewPathSpec(
definitions.TYPE_INDICATOR_RAW, parent=source_path_spec)
try:
glob_results = raw.RawGlobPathSpec(file_system, raw_path_spec)
except errors.PathSpecError:
glob_results = None
file_system.Close()
if not glob_results:
return None
return raw_path_spec
if len(type_indicators) > 1:
raise errors.BackEndError(
'Unsupported source found more than one storage media image types.')
return path_spec_factory.Factory.NewPathSpec(
type_indicators[0], parent=source_path_spec) | Scans the path specification for a supported storage media image format.
Args:
source_path_spec (PathSpec): source path specification.
Returns:
PathSpec: storage media image path specification or None if no supported
storage media image type was found.
Raises:
BackEndError: if the source cannot be scanned or more than one storage
media image type is found. | juraj-google-style |
def new_netting_channel(
self,
partner: Address,
settle_timeout: int,
given_block_identifier: BlockSpecification,
) -> ChannelID:
checking_block = self.client.get_checking_block()
self._new_channel_preconditions(
partner=partner,
settle_timeout=settle_timeout,
block_identifier=given_block_identifier,
)
log_details = {
'peer1': pex(self.node_address),
'peer2': pex(partner),
}
gas_limit = self.proxy.estimate_gas(
checking_block,
'openChannel',
participant1=self.node_address,
participant2=partner,
settle_timeout=settle_timeout,
)
if not gas_limit:
self.proxy.jsonrpc_client.check_for_insufficient_eth(
transaction_name='openChannel',
transaction_executed=False,
required_gas=GAS_REQUIRED_FOR_OPEN_CHANNEL,
block_identifier=checking_block,
)
self._new_channel_postconditions(
partner=partner,
block=checking_block,
)
log.critical('new_netting_channel call will fail', **log_details)
raise RaidenUnrecoverableError('Creating a new channel will fail')
log.debug('new_netting_channel called', **log_details)
if gas_limit and partner not in self.open_channel_transactions:
new_open_channel_transaction = AsyncResult()
self.open_channel_transactions[partner] = new_open_channel_transaction
gas_limit = safe_gas_limit(gas_limit, GAS_REQUIRED_FOR_OPEN_CHANNEL)
try:
transaction_hash = self.proxy.transact(
'openChannel',
gas_limit,
participant1=self.node_address,
participant2=partner,
settle_timeout=settle_timeout,
)
self.client.poll(transaction_hash)
receipt_or_none = check_transaction_threw(self.client, transaction_hash)
if receipt_or_none:
self._new_channel_postconditions(
partner=partner,
block=receipt_or_none['blockNumber'],
)
log.critical('new_netting_channel failed', **log_details)
raise RaidenUnrecoverableError('creating new channel failed')
except Exception as e:
log.critical('new_netting_channel failed', **log_details)
new_open_channel_transaction.set_exception(e)
raise
else:
new_open_channel_transaction.set(transaction_hash)
finally:
self.open_channel_transactions.pop(partner, None)
else:
self.open_channel_transactions[partner].get()
channel_identifier: ChannelID = self._detail_channel(
participant1=self.node_address,
participant2=partner,
block_identifier='latest',
).channel_identifier
log_details['channel_identifier'] = str(channel_identifier)
log.info('new_netting_channel successful', **log_details)
return channel_identifier | Creates a new channel in the TokenNetwork contract.
Args:
partner: The peer to open the channel with.
settle_timeout: The settle timeout to use for this channel.
given_block_identifier: The block identifier of the state change that
prompted this proxy action
Returns:
The ChannelID of the new netting channel. | juraj-google-style |
def get_results_as_numpy_array(self, parameter_space, result_parsing_function, runs):
return np.array(self.get_space(self.db.get_complete_results(), {}, parameter_space, runs, result_parsing_function)) | Return the results relative to the desired parameter space in the form
of a numpy array.
Args:
parameter_space (dict): dictionary containing
parameter/list-of-values pairs.
result_parsing_function (function): user-defined function, taking a
result dictionary as argument, that can be used to parse the
result files and return a list of values.
runs (int): number of runs to gather for each parameter
combination. | codesearchnet |
def default_batch_size(self) -> int:
return OnnxConfig.default_fixed_batch | The default batch size to use if no other indication
Returns:
Integer > 0 | github-repos |
def append(self, annotation):
self._annotations[annotation.id] = annotation
self._dirty = True
return annotation | Add an annotation.
Args:
annotation (gkeepapi.node.Annotation): An Annotation object.
Returns:
gkeepapi.node.Annotation: The Annotation. | juraj-google-style |
def pack_small_tensors(tower_grads, max_bytes=0):
assert max_bytes >= 0
orig_grads = [g for g, _ in tower_grads[0]]
assert all(g.dtype == tf.float32 for g in orig_grads)
sizes = [4 * g.shape.num_elements() for g in orig_grads]
print_stats(sizes)
small_ranges = []
large_indices = []
new_sizes = []
def end_interval(indices, small_ranges, large_indices):
if len(indices) > 1:
small_ranges.insert(0, [indices[0], indices[-1]])
else:
large_indices.insert(0, indices[0])
cur_range = []
cur_size = 0
for i, s in reversed(list(enumerate(sizes))):
if cur_size > max_bytes:
end_interval(cur_range, small_ranges, large_indices)
new_sizes.insert(0, cur_size)
cur_range = []
cur_size = 0
cur_range.insert(0, i)
cur_size += s
end_interval(cur_range, small_ranges, large_indices)
new_sizes.insert(0, cur_size)
print_stats(new_sizes)
num_gv = len(orig_grads)
packing = {}
if len(small_ranges):
new_tower_grads = []
for dev_idx, gv_list in enumerate(tower_grads):
assert len(gv_list) == num_gv, (
"Possible cause: "
"Networks constructed on different workers "
"don't have the same number of variables. "
"If you use tf.GraphKeys or tf.global_variables() "
"with multiple graphs per worker during network "
"construction, you need to use "
"appropriate scopes, see "
"https:
new_gv_list = []
for r in small_ranges:
key = "%d:%d" % (dev_idx, len(new_gv_list))
new_gv_list.append((pack_range(key, packing, gv_list, r),
"packing_var_placeholder"))
for i in large_indices:
new_gv_list.append(gv_list[i])
new_tower_grads.append(new_gv_list)
return new_tower_grads, packing
else:
return tower_grads, None | Concatenate gradients together more intelligently.
Does binpacking
Args:
tower_grads: List of lists of (gradient, variable) tuples.
max_bytes: Int giving max number of bytes in a tensor that
may be considered small. | juraj-google-style |
def init_algebra(*, default_hs_cls='LocalSpace'):
from qnet.algebra.core.hilbert_space_algebra import LocalSpace
from qnet.algebra.core.abstract_quantum_algebra import QuantumExpression
default_hs_cls = getattr(importlib.import_module('qnet'), default_hs_cls)
if issubclass(default_hs_cls, LocalSpace):
QuantumExpression._default_hs_cls = default_hs_cls
else:
raise TypeError('default_hs_cls must be a subclass of LocalSpace') | Initialize the algebra system
Args:
default_hs_cls (str): The name of the :class:`.LocalSpace` subclass
that should be used when implicitly creating Hilbert spaces, e.g.
in :class:`.OperatorSymbol` | codesearchnet |
def add_documents(self, docs):
for sent in docs:
sent = map(self.process_token, sent)
self._token_count.update(sent) | Update dictionary from a collection of documents. Each document is a list
of tokens.
Args:
docs (list): documents to add. | codesearchnet |
def parse_data_types_from_doc_ref(api, doc, namespace_context, ignore_missing_entries=False):
output = []
(data_types, routes_by_ns) = parse_data_types_and_routes_from_doc_ref(api, doc, namespace_context, ignore_missing_entries=ignore_missing_entries)
for d in data_types:
output.append(d)
for (ns_name, routes) in routes_by_ns.items():
try:
ns = api.namespaces[ns_name]
for r in routes:
for d in ns.get_route_io_data_types_for_route(r):
output.append(d)
except KeyError:
if (not ignore_missing_entries):
raise
return output | Given a documentation string, parse it and return all references to other
data types. If there are references to routes, include also the data types of
those routes.
Args:
- api: The API containing this doc ref.
- doc: The documentation string to parse.
- namespace_context: The namespace name relative to this documentation.
- ignore_missing_entries: If set, this will skip references to nonexistent data types instead
of raising an exception.
Returns:
- a list of referenced data types | codesearchnet |
def _find_max_beta_token_len():
max_beta_len = (- 1)
for (beta, uni) in _map.BETACODE_MAP.items():
if (len(beta) > max_beta_len):
max_beta_len = len(beta)
return max_beta_len | Finds the maximum length of a single betacode token.
Returns:
The length of the longest key in the betacode map, which corresponds to the
longest single betacode token. | codesearchnet |
def _validate_alias_name(alias_name):
if (not alias_name):
raise CLIError(EMPTY_ALIAS_ERROR)
if (not re.match('^[a-zA-Z]', alias_name)):
raise CLIError(INVALID_STARTING_CHAR_ERROR.format(alias_name[0])) | Check if the alias name is valid.
Args:
alias_name: The name of the alias to validate. | codesearchnet |
def get_objects_from_form(variant_ids, form_fields, object_type):
submission_fields = []
if (object_type == 'variant'):
submission_fields = CLINVAR_HEADER
else:
submission_fields = CASEDATA_HEADER
submission_objects = []
for variant_id in variant_ids:
subm_obj = {}
if ((object_type == 'casedata') and (('casedata_' + variant_id) not in form_fields)):
continue
subm_obj['csv_type'] = object_type
subm_obj['case_id'] = form_fields.get('case_id')
subm_obj['category'] = form_fields.get(('category@' + variant_id))
for (key, values) in submission_fields.items():
field_value = form_fields.get(((key + '@') + variant_id))
if (field_value and (not (field_value == '-'))):
if (key == 'ref_seq'):
refseq_raw = field_value.split('|')
subm_obj['ref_seq'] = refseq_raw[0]
subm_obj['hgvs'] = refseq_raw[1]
else:
subm_obj[key] = field_value
if (object_type == 'casedata'):
subm_obj['_id'] = ((((str(subm_obj['case_id']) + '_') + variant_id) + '_') + str(subm_obj['individual_id']))
else:
subm_obj['_id'] = ((str(subm_obj['case_id']) + '_') + variant_id)
submission_objects.append(subm_obj)
return submission_objects | Extract the objects to be saved in the clinvar database collection.
object_type param specifies if these objects are variant or casedata objects
Args:
variant_ids(list): list of database variant ids
form_fields(dict): it's the submission form dictionary. Keys have the same names as CLINVAR_HEADER and CASEDATA_HEADER
object_type(str): either 'variant' or 'case_data'
Returns:
submission_objects(list): list of submission objects of either type 'variant' or 'casedata' | codesearchnet |
def piece_to_id(input, model_file=None, model_proto=None, name=None):
return _gen_sentencepiece_processor_op.sentencepiece_piece_to_id(
input, model_file=model_file, model_proto=model_proto, name=name) | Converts piece into vocabulary id.
Args:
input: An arbitrary tensor of string.
model_file: The sentencepiece model file path.
model_proto: The sentencepiece model serialized proto.
Either `model_file` or `model_proto` must be set.
name: The name argument that is passed to the op function.
Returns:
A tensor of int32 with the same shape as input. | juraj-google-style |
def __init__(self, *schedules: List[Union[ScheduleComponent, Tuple[int, ScheduleComponent]]],
name: str = None):
self._name = name
try:
timeslots = []
children = []
for sched_pair in schedules:
if not isinstance(sched_pair, (list, tuple)):
sched_pair = (0, sched_pair)
sched_pair = tuple(sched_pair)
insert_time, sched = sched_pair
sched_timeslots = sched.timeslots
if insert_time:
sched_timeslots = sched_timeslots.shift(insert_time)
timeslots.append(sched_timeslots.timeslots)
children.append(sched_pair)
self._timeslots = TimeslotCollection(*itertools.chain(*timeslots))
self._children = tuple(children)
except PulseError as ts_err:
raise PulseError('Child schedules {0} overlap.'.format(schedules)) from ts_err | Create empty schedule.
Args:
*schedules: Child Schedules of this parent Schedule. May either be passed as
the list of schedules, or a list of (start_time, schedule) pairs
name: Name of this schedule
Raises:
PulseError: If timeslots intercept. | juraj-google-style |
def make_client(servers: Sequence[str], *args, **kwargs) -> GMatrixClient:
if (len(servers) > 1):
sorted_servers = [server_url for (server_url, _) in sort_servers_closest(servers)]
log.info('Automatically selecting matrix homeserver based on RTT', sorted_servers=sorted_servers)
elif (len(servers) == 1):
sorted_servers = servers
else:
raise TransportError('No valid servers list given')
last_ex = None
for server_url in sorted_servers:
server_url: str = server_url
client = GMatrixClient(server_url, *args, **kwargs)
try:
client.api._send('GET', '/versions', api_path='/_matrix/client')
except MatrixError as ex:
log.warning('Selected server not usable', server_url=server_url, _exception=ex)
last_ex = ex
else:
break
else:
raise TransportError('Unable to find a reachable Matrix server. Please check your network connectivity.') from last_ex
return client | Given a list of possible servers, chooses the closest available and create a GMatrixClient
Params:
servers: list of servers urls, with scheme (http or https)
Rest of args and kwargs are forwarded to GMatrixClient constructor
Returns:
GMatrixClient instance for one of the available servers | codesearchnet |
def migrate_config(self, current_config, config_to_migrate, always_update, update_defaults):
value = self._search_config_for_possible_names(current_config)
self._update_config(config_to_migrate, value, always_update, update_defaults) | Migrate config value in current_config, updating config_to_migrate.
Given the current_config object, it will attempt to find a value
based on all the names given. If no name could be found, then it
will simply set the value to the default.
If a value is found and is in the list of previous_defaults, it will
either update or keep the old value based on if update_defaults is
set.
If a non-default value is set it will either keep this value or update
it based on if ``always_update`` is true.
Args:
current_config (dict): Current configuration.
config_to_migrate (dict): Config to update.
always_update (bool): Always update value.
update_defaults (bool): Update values found in previous_defaults | codesearchnet |
def sort_imports_in_all_inits(check_only=True):
failures = []
for root, _, files in os.walk(PATH_TO_TRANSFORMERS):
if '__init__.py' in files:
result = sort_imports(os.path.join(root, '__init__.py'), check_only=check_only)
if result:
failures = [os.path.join(root, '__init__.py')]
if len(failures) > 0:
raise ValueError(f'Would overwrite {len(failures)} files, run `make style`.') | Sort the imports defined in the `_import_structure` of all inits in the repo.
Args:
check_only (`bool`, *optional*, defaults to `True`): Whether or not to just check (and not auto-fix) the init. | github-repos |
def __getitem__(self, key):
if self._dims is not None:
if isinstance(key, slice):
return TensorShape(self._dims[key])
elif self._v2_behavior:
return self._dims[key]
else:
return self.dims[key]
elif isinstance(key, slice):
start = key.start if key.start is not None else 0
stop = key.stop
if key.step is not None:
raise ValueError('Steps are not yet handled')
if stop is None:
return unknown_shape()
elif start < 0 or stop < 0:
return unknown_shape()
else:
return unknown_shape(rank=stop - start)
elif self._v2_behavior:
return None
else:
return Dimension(None) | Returns the value of a dimension or a shape, depending on the key.
Args:
key: If `key` is an integer, returns the dimension at that index;
otherwise if `key` is a slice, returns a TensorShape whose dimensions
are those selected by the slice from `self`.
Returns:
An integer if `key` is an integer, or a `TensorShape` if `key` is a
slice.
Raises:
ValueError: If `key` is a slice and `self` is completely unknown and
the step is set. | github-repos |
def translations(self, **kwargs):
path = self._get_id_path('translations')
response = self._GET(path, kwargs)
self._set_attrs_to_values(response)
return response | Get the translations for a specific movie id.
Args:
append_to_response: (optional) Comma separated, any movie method.
Returns:
A dict representation of the JSON returned from the API. | codesearchnet |
def _is_composite_function(self, func: function_pb2.FunctionDef) -> bool:
return func.signature.name.startswith('composite_') | Determine whether a FunctionDef is composite function.
Args:
func: A FunctionDef object.
Returns:
True iff `func` is composte function. | github-repos |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.