code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def starts_when(iterable, condition):
if (not callable(condition)):
cond_value = condition
def condition(x):
return (x == cond_value)
return itertools.dropwhile((lambda x: (not condition(x))), iterable)
|
Start yielding items when a condition arise.
Args:
iterable: the iterable to filter.
condition: if the callable returns True once, start yielding
items. If it's not a callable, it will be converted
to one as `lambda condition: condition == item`.
Example:
>>> list(starts_when(range(10), lambda x: x > 5))
[6, 7, 8, 9]
>>> list(starts_when(range(10), 7))
[7, 8, 9]
|
codesearchnet
|
def _SetRow(self, new_values, row=0):
if (not row):
row = self._row_index
if (row > self.size):
raise TableError(('Entry %s beyond table size %s.' % (row, self.size)))
self._table[row].values = new_values
|
Sets the current row to new list.
Args:
new_values: List|dict of new values to insert into row.
row: int, Row to insert values into.
Raises:
TableError: If number of new values is not equal to row size.
|
codesearchnet
|
def prerequisite_check():
if (sys.version_info < (3, 6)):
version_str = ('%s.%s.%s' % sys.version_info[:3])
search_url = build_search_query((_('install') + ' Python 3.7'))
return _('EH Forwarder Bot requires a minimum of Python 3.6 to run. You are currently using Python {version}. \n\nYou may want to try:\n{url}').format(version=version_str, url=search_url)
modules_err = _('You may want to visit the modules repository to find a list of available modules to install.\nhttps:
try:
next(pkg_resources.iter_entry_points('ehforwarderbot.master'))
except StopIteration:
return ((_('No master channel detected. EH Forwarder Bot requires at least one master channel installed to run.') + '\n\n') + modules_err)
try:
next(pkg_resources.iter_entry_points('ehforwarderbot.slave'))
except StopIteration:
return ((_('No slave channel detected. EH Forwarder Bot requires at least one slave channel installed to run.') + '\n\n') + modules_err)
|
Check prerequisites of the framework, including Python version, installation of
modules, etc.
Returns:
Optional[str]: If the check is not passed, return error message regarding
failed test case. None is returned otherwise.
|
codesearchnet
|
def update(table, columns, values):
rows = len(values)
cells = len(columns) * len(values)
return _Mutator(mutation=Mutation(update=batch._make_write_pb(table, columns, values)), operation=WriteMutation._OPERATION_UPDATE, rows=rows, cells=cells, kwargs={'table': table, 'columns': columns, 'values': values})
|
Update one or more existing table rows.
Args:
table: Name of the table to be modified.
columns: Name of the table columns to be modified.
values: Values to be modified.
|
github-repos
|
def _isbn_cleaner(fn):
@wraps(fn)
def wrapper(isbn):
return fn(_clean_isbn(isbn))
return wrapper
|
Decorator for calling other functions from this module.
Purpose of this decorator is to clean the ISBN string from garbage and
return list of digits.
Args:
fn (function): function in which will be :func:`_clean_isbn(isbn)` call
wrapped.
|
codesearchnet
|
def Close(self, abort=False):
if not self._closed_event or not self._terminate_event:
raise RuntimeError('Missing closed or terminate event.')
if not abort and self._closed_event.is_set():
raise errors.QueueAlreadyClosed()
self._closed_event.set()
if abort:
if not self._closed_event.is_set():
logger.warning(
'{0:s} queue aborting. Contents may be lost.'.format(self.name))
self._linger_seconds = 0
self._terminate_event.set()
else:
logger.debug(
'{0:s} queue closing, will linger for up to {1:d} seconds'.format(
self.name, self._linger_seconds))
|
Closes the queue.
Args:
abort (Optional[bool]): whether the Close is the result of an abort
condition. If True, queue contents may be lost.
Raises:
QueueAlreadyClosed: if the queue is not started, or has already been
closed.
RuntimeError: if closed or terminate event is missing.
|
juraj-google-style
|
def remove(self, iterable, data=None):
return self.root.remove(iterable, data=data)
|
Used to remove from the root node
Args:
iterable(hashable): index or key used to identify
item to remove
data: data to be paired with the key
|
codesearchnet
|
def send(self, cumulative_counters=None, gauges=None, counters=None):
if not gauges and not cumulative_counters and not counters:
return
data = {
'cumulative_counter': cumulative_counters,
'gauge': gauges,
'counter': counters,
}
_logger.debug('Sending datapoints to SignalFx: %s', data)
for metric_type, datapoints in data.items():
if not datapoints:
continue
if not isinstance(datapoints, list):
raise TypeError('Datapoints not of type list %s', datapoints)
for datapoint in datapoints:
self._add_extra_dimensions(datapoint)
self._add_to_queue(metric_type, datapoint)
self._start_thread()
|
Send the given metrics to SignalFx.
Args:
cumulative_counters (list): a list of dictionaries representing the
cumulative counters to report.
gauges (list): a list of dictionaries representing the gauges to
report.
counters (list): a list of dictionaries representing the counters
to report.
|
juraj-google-style
|
def GetFileEntryByPathSpec(self, path_spec):
if not self.FileEntryExistsByPathSpec(path_spec):
return None
location = getattr(path_spec, 'location', None)
if len(location) == 1:
return zip_file_entry.ZipFileEntry(
self._resolver_context, self, path_spec, is_root=True,
is_virtual=True)
kwargs = {}
try:
kwargs['zip_info'] = self._zip_file.getinfo(location[1:])
except KeyError:
kwargs['is_virtual'] = True
return zip_file_entry.ZipFileEntry(
self._resolver_context, self, path_spec, **kwargs)
|
Retrieves a file entry for a path specification.
Args:
path_spec (PathSpec): path specification of the file entry.
Returns:
ZipFileEntry: a file entry or None.
|
juraj-google-style
|
def create(self, model_name):
body = {'name': model_name}
parent = 'projects/' + self._project_id
return self._api.projects().models().create(body=body, parent=parent).execute()
|
Create a model.
Args:
model_name: the short name of the model, such as "iris".
Returns:
If successful, returns informaiton of the model, such as
{u'regions': [u'us-central1'], u'name': u'projects/myproject/models/mymodel'}
Raises:
If the model creation failed.
|
juraj-google-style
|
def render_template(self, template_name, out_path=None):
return render_template(template_name, self.to_dict(), out_path=out_path)
|
Render a template based on this TileBus Block.
The template has access to all of the attributes of this block as a
dictionary (the result of calling self.to_dict()).
You can optionally render to a file by passing out_path.
Args:
template_name (str): The name of the template to load. This must
be a file in config/templates inside this package
out_path (str): An optional path of where to save the output
file, otherwise it is just returned as a string.
Returns:
string: The rendered template data.
|
codesearchnet
|
def auth_proxy(self, method):
def _proxy(*args, **kwargs):
return method(self.session, *args, **kwargs)
return _proxy
|
Authentication proxy for API requests.
This is required because the API objects are naive of ``HelpScout``,
so they would otherwise be unauthenticated.
Args:
method (callable): A method call that should be authenticated. It
should accept a ``requests.Session`` as its first parameter,
which should be used for the actual API call.
Returns:
mixed: The results of the authenticated callable.
|
juraj-google-style
|
def plot_zt_mu(self, temp=600, output='eig', relaxation_time=1e-14,
xlim=None):
import matplotlib.pyplot as plt
plt.figure(figsize=(9, 7))
zt = self._bz.get_zt(relaxation_time=relaxation_time, output=output,
doping_levels=False)[temp]
plt.plot(self._bz.mu_steps, zt, linewidth=3.0)
self._plot_bg_limits()
self._plot_doping(temp)
if output == 'eig':
plt.legend(['ZT$_1$', 'ZT$_2$', 'ZT$_3$'])
if xlim is None:
plt.xlim(-0.5, self._bz.gap + 0.5)
else:
plt.xlim(xlim)
plt.ylabel("ZT", fontsize=30.0)
plt.xlabel("E-E$_f$ (eV)", fontsize=30.0)
plt.xticks(fontsize=25)
plt.yticks(fontsize=25)
plt.tight_layout()
return plt
|
Plot the ZT in function of Fermi level.
Args:
temp: the temperature
xlim: a list of min and max fermi energy by default (0, and band
gap)
tau: A relaxation time in s. By default none and the plot is by
units of relaxation time
Returns:
a matplotlib object
|
juraj-google-style
|
def unwrap_or_else(self, callback: Callable[[], U]) -> Union[T, U]:
return self._val if self._is_some else callback()
|
Returns the contained value or computes it from ``callback``.
Args:
callback: The the default callback.
Returns:
The contained value if the :py:class:`Option` is ``Some``,
otherwise ``callback()``.
Examples:
>>> Some(0).unwrap_or_else(lambda: 111)
0
>>> NONE.unwrap_or_else(lambda: 'ha')
'ha'
|
juraj-google-style
|
def get(self, object_id):
if object_id is None:
return
return self._obj_ids_to_obj.get(object_id)
|
Given a shared object ID, returns a previously instantiated object.
Args:
object_id: shared object ID to use when attempting to find
already-loaded object.
Returns:
The object, if we've seen this ID before. Else, `None`.
|
github-repos
|
def get_file_tracebacks(self, file_path):
if (file_path not in self._source_file_content):
raise ValueError(('Source file of path "%s" has not been received by this instance of SourceManager.' % file_path))
lineno_to_op_names_and_stack_position = dict()
for op_log_entry in self._graph_traceback.log_entries:
for (stack_pos, trace) in enumerate(op_log_entry.code_def.traces):
if (self._graph_traceback.id_to_string[trace.file_id] == file_path):
if (trace.lineno not in lineno_to_op_names_and_stack_position):
lineno_to_op_names_and_stack_position[trace.lineno] = []
lineno_to_op_names_and_stack_position[trace.lineno].append((op_log_entry.name, stack_pos))
return lineno_to_op_names_and_stack_position
|
Get the lists of ops created at lines of a specified source file.
Args:
file_path: Path to the source file.
Returns:
A dict mapping line number to a list of 2-tuples,
`(op_name, stack_position)`
`op_name` is the name of the name of the op whose creation traceback
includes the line.
`stack_position` is the position of the line in the op's creation
traceback, represented as a 0-based integer.
Raises:
ValueError: If `file_path` does not point to a source file that has been
received by this instance of `SourceManager`.
|
codesearchnet
|
def _reshape_tensors(tensors, shape):
reshaped = []
for t in tensors:
with ops.colocate_with(t):
reshaped.append(array_ops.reshape(t, shape))
return reshaped
|
Reshape tensors flattened by _flatten_tensors.
Args:
tensors: list of `tf.Tensor` of identical length 1D tensors.
shape: list of integers describing the desired shape. Product of
the elements must equal the length of each tensor.
Returns:
list of `tf.Tensor` which are the reshaped inputs.
|
github-repos
|
async def get(self, uid: int, cached_msg: CachedMessage = None,
requirement: FetchRequirement = FetchRequirement.METADATA) \
-> Optional[MessageT]:
...
|
Return the message with the given UID.
Args:
uid: The message UID.
cached_msg: The last known cached message.
requirement: The data required from each message.
Raises:
IndexError: The UID is not valid in the mailbox.
|
juraj-google-style
|
def sparse_segment_sqrt_n(data, indices, segment_ids, name=None, num_segments=None, sparse_gradient=False):
if num_segments is not None:
return gen_math_ops.sparse_segment_sqrt_n_with_num_segments(data=data, indices=indices, segment_ids=segment_ids, num_segments=num_segments, name=name, sparse_gradient=sparse_gradient)
else:
return gen_math_ops.sparse_segment_sqrt_n(data=data, indices=indices, segment_ids=segment_ids, name=name, sparse_gradient=sparse_gradient)
|
Computes the sum along sparse segments of a tensor divided by the sqrt(N).
`N` is the size of the segment being reduced.
Args:
data: A `Tensor` with data that will be assembled in the output.
indices: A 1-D `Tensor` with indices into `data`. Has same rank as
`segment_ids`.
segment_ids: A 1-D `Tensor` with indices into the output `Tensor`. Values
should be sorted and can be repeated.
name: A name for the operation (optional).
num_segments: An optional int32 scalar. Indicates the size of the output
`Tensor`.
sparse_gradient: An optional `bool`. Defaults to `False`. If `True`, the
gradient of this function will be sparse (IndexedSlices) instead of dense
(Tensor).
Returns:
A `tensor` of the shape as data, except for dimension 0 which
has size `k`, the number of segments specified via `num_segments` or
inferred for the last element in `segments_ids`.
|
github-repos
|
def encode_dataset(dataset, vocabulary):
def encode(features):
return {k: vocabulary.encode_tf(v) for k, v in features.items()}
return dataset.map(encode, num_parallel_calls=tf.data.experimental.AUTOTUNE)
|
Encode from strings to token ids.
Args:
dataset: a tf.data.Dataset with string values.
vocabulary: a mesh_tensorflow.transformer.Vocabulary
Returns:
a tf.data.Dataset with integer-vector values ending in EOS=1
|
juraj-google-style
|
def get_imap_capabilities(server):
capabilities = list(map(str, list(server.capabilities())))
for i in range(len(capabilities)):
capabilities[i] = str(capabilities[i]).replace("b'", '').replace("'", '')
logger.debug('IMAP server supports: {0}'.format(capabilities))
return capabilities
|
Returns a list of an IMAP server's capabilities
Args:
server (imapclient.IMAPClient): An instance of imapclient.IMAPClient
Returns (list): A list of capabilities
|
codesearchnet
|
def __init__(self, in_features, out_features, mlp_dim=128):
super().__init__()
self.conv1 = nn.Conv2d(in_features, mlp_dim, 1, 1, 0)
self.act = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(mlp_dim, out_features, 1, 1, 0)
|
Projector MLP.
Args:
in_features (`int`):
Number of input channels.
out_features (`int`):
Number of output channels.
mlp_dim (`int`, *optional*, defaults to 128):
Hidden dimension.
|
github-repos
|
def apply_gradients(self, grads_and_vars, global_step=None, name=None):
if not grads_and_vars:
raise ValueError('Must supply at least one variable')
if global_step is None:
raise ValueError('Global step is required to check staleness')
self._global_step = global_step
train_ops = []
aggregated_grad = []
var_list = []
local_anchor = control_flow_ops.no_op()
distribution_strategy = distribute_lib.get_strategy()
with distribution_strategy.extended.colocate_vars_with(local_anchor):
self._local_step = variable_v1.VariableV1(initial_value=0, trainable=False, collections=[ops.GraphKeys.LOCAL_VARIABLES], dtype=global_step.dtype.base_dtype, name='sync_rep_local_step')
self.local_step_init_op = state_ops.assign(self._local_step, global_step)
chief_init_ops = [self.local_step_init_op]
self.ready_for_local_init_op = variables.report_uninitialized_variables(variables.global_variables())
with ops.name_scope(None, self._name):
for grad, var in grads_and_vars:
var_list.append(var)
with ops.device(var.device):
if grad is None:
aggregated_grad.append(None)
continue
elif isinstance(grad, tensor.Tensor):
grad_accum = data_flow_ops.ConditionalAccumulator(grad.dtype, shape=var.get_shape(), shared_name=var.name + '/grad_accum')
train_ops.append(grad_accum.apply_grad(grad, local_step=self._local_step))
aggregated_grad.append(grad_accum.take_grad(self._replicas_to_aggregate))
else:
if not isinstance(grad, indexed_slices.IndexedSlices):
raise ValueError('Unknown grad type!')
grad_accum = data_flow_ops.SparseConditionalAccumulator(grad.dtype, shape=(), shared_name=var.name + '/grad_accum')
train_ops.append(grad_accum.apply_indexed_slices_grad(grad, local_step=self._local_step))
aggregated_grad.append(grad_accum.take_indexed_slices_grad(self._replicas_to_aggregate))
self._accumulator_list.append((grad_accum, var.device))
aggregated_grads_and_vars = zip(aggregated_grad, var_list)
with ops.device(global_step.device), ops.name_scope(''):
update_op = self._opt.apply_gradients(aggregated_grads_and_vars, global_step)
with ops.device(global_step.device), ops.name_scope(''):
sync_token_queue = data_flow_ops.FIFOQueue(-1, global_step.dtype.base_dtype, shapes=(), name='sync_token_q', shared_name='sync_token_q')
self._sync_token_queue = sync_token_queue
with ops.device(global_step.device), ops.name_scope(''):
with ops.control_dependencies(train_ops):
token = sync_token_queue.dequeue()
train_op = state_ops.assign(self._local_step, token)
with ops.control_dependencies([update_op]):
tokens = array_ops.fill([self._tokens_per_step], global_step)
sync_op = sync_token_queue.enqueue_many((tokens,))
if self._variable_averages is not None:
with ops.control_dependencies([sync_op]), ops.name_scope(''):
sync_op = self._variable_averages.apply(self._variables_to_average)
self._chief_queue_runner = queue_runner.QueueRunner(sync_token_queue, [sync_op])
for accum, dev in self._accumulator_list:
with ops.device(dev):
chief_init_ops.append(accum.set_global_step(global_step, name='SetGlobalStep'))
self.chief_init_op = control_flow_ops.group(*chief_init_ops)
self._gradients_applied = True
return train_op
|
Apply gradients to variables.
This contains most of the synchronization implementation and also wraps the
apply_gradients() from the real optimizer.
Args:
grads_and_vars: List of (gradient, variable) pairs as returned by
compute_gradients().
global_step: Optional Variable to increment by one after the
variables have been updated.
name: Optional name for the returned operation. Default to the
name passed to the Optimizer constructor.
Returns:
train_op: The op to dequeue a token so the replicas can exit this batch
and start the next one. This is executed by each replica.
Raises:
ValueError: If the grads_and_vars is empty.
ValueError: If global step is not provided, the staleness cannot be
checked.
|
github-repos
|
def _sort_or_argsort(values, axis, direction, return_argsort):
if direction not in _SORT_IMPL:
valid_directions = ', '.join(sorted(_SORT_IMPL.keys()))
raise ValueError(f'Argument `direction` should be one of {valid_directions}. Received: direction={direction}')
axis = framework_ops.convert_to_tensor(axis, name='axis')
axis_static = tensor_util.constant_value(axis)
if axis.shape.ndims not in (None, 0) or axis_static is None:
raise ValueError(f'Argument `axis` must be a constant scalar. Received: axis={axis}.')
axis_static = int(axis_static)
values = framework_ops.convert_to_tensor(values, name='values')
return _SORT_IMPL[direction](values, axis_static, return_argsort)
|
Internal sort/argsort implementation.
Args:
values: The input values.
axis: The axis along which to sort.
direction: 'ASCENDING' or 'DESCENDING'.
return_argsort: Whether to return the argsort result.
Returns:
Either the sorted values, or the indices of the sorted values in the
original tensor. See the `sort` and `argsort` docstrings.
Raises:
ValueError: If axis is not a constant scalar, or the direction is invalid.
|
github-repos
|
def call(self, x):
with tf.name_scope('embedding'):
embeddings = tf.gather(self.shared_weights, x)
embeddings *= (self.hidden_size ** 0.5)
padding = model_utils.get_padding(x)
embeddings *= tf.expand_dims((1 - padding), (- 1))
return embeddings
|
Get token embeddings of x.
Args:
x: An int64 tensor with shape [batch_size, length]
Returns:
embeddings: float32 tensor with shape [batch_size, length, embedding_size]
padding: float32 tensor with shape [batch_size, length] indicating the
locations of the padding tokens in x.
|
codesearchnet
|
def configTestMesh(device_type_mesh_map: typing.Dict[typing.Text, layout_lib.Mesh]) -> layout_lib.Mesh:
reset_context()
def get_mesh(device_type):
mesh = device_type_mesh_map.get(device_type, None)
if mesh is None:
raise ValueError('Requires a %s mesh to run test on %s.' % (device_type, device_type))
return mesh
mesh = None
if is_tpu_present():
mesh = get_mesh('TPU')
reset_context()
accelerator_util.initialize_accelerator_system('TPU')
elif tf_config.list_physical_devices('GPU'):
mesh = get_mesh('GPU')
reset_logical_devices('GPU', np.prod(mesh.shape()))
accelerator_util.initialize_accelerator_system('GPU')
else:
mesh = get_mesh('CPU')
reset_logical_devices('CPU', np.prod(mesh.shape()))
accelerator_util.initialize_accelerator_system('CPU')
return mesh
|
Configs corresponding mesh given test context.
If runs on a CPU mesh, set virtual device on CPU.
If runs on a GPU mesh, sets virtual device on GPU with proper memory limits.
if runs on a TPU mesh, initializes TPU system.
Args:
device_type_mesh_map: A dictionary containing device_type -> mesh mapping.
Returns:
A properly configured mesh for use in test.
|
github-repos
|
def extractBests(query, choices, processor=default_processor, scorer=default_scorer, score_cutoff=0, limit=5):
best_list = extractWithoutOrder(query, choices, processor, scorer, score_cutoff)
return (heapq.nlargest(limit, best_list, key=(lambda i: i[1])) if (limit is not None) else sorted(best_list, key=(lambda i: i[1]), reverse=True))
|
Get a list of the best matches to a collection of choices.
Convenience function for getting the choices with best scores.
Args:
query: A string to match against
choices: A list or dictionary of choices, suitable for use with
extract().
processor: Optional function for transforming choices before matching.
See extract().
scorer: Scoring function for extract().
score_cutoff: Optional argument for score threshold. No matches with
a score less than this number will be returned. Defaults to 0.
limit: Optional maximum for the number of elements returned. Defaults
to 5.
Returns: A a list of (match, score) tuples.
|
codesearchnet
|
def removeRow(self, triggered):
if triggered:
model = self.tableView.model()
selection = self.tableView.selectedIndexes()
rows = [index.row() for index in selection]
model.removeDataFrameRows(set(rows))
self.sender().setChecked(False)
|
Removes a row to the model.
This method is also a slot.
Args:
triggered (bool): If the corresponding button was
activated, the selected row will be removed
from the model.
|
codesearchnet
|
def export_msdt(self, filename):
fmt = "csv" if filename.lower().endswith(".csv") else "dat"
delimiter = ", " if fmt == "csv" else " "
with open(filename, "wt") as f:
if fmt == "dat":
f.write("
f.write(delimiter.join(["t", "MSD", "MSD_a", "MSD_b", "MSD_c",
"MSCD"]))
f.write("\n")
for dt, msd, msdc, mscd in zip(self.dt, self.msd,
self.msd_components, self.mscd):
f.write(delimiter.join(["%s" % v for v in [dt, msd] + list(
msdc) + [mscd]]))
f.write("\n")
|
Writes MSD data to a csv file that can be easily plotted in other
software.
Args:
filename (str): Filename. Supported formats are csv and dat. If
the extension is csv, a csv file is written. Otherwise,
a dat format is assumed.
|
juraj-google-style
|
def campaign(self, name, owner=None, **kwargs):
return Campaign(self.tcex, name, owner=owner, **kwargs)
|
Create the Campaign TI object.
Args:
owner:
name:
**kwargs:
Return:
|
juraj-google-style
|
def text(name, data, step=None, description=None):
summary_metadata = metadata.create_summary_metadata(display_name=None, description=description)
summary_scope = (getattr(tf.summary.experimental, 'summary_scope', None) or tf.summary.summary_scope)
with summary_scope(name, 'text_summary', values=[data, step]) as (tag, _):
tf.debugging.assert_type(data, tf.string)
return tf.summary.write(tag=tag, tensor=data, step=step, metadata=summary_metadata)
|
Write a text summary.
Arguments:
name: A name for this summary. The summary tag used for TensorBoard will
be this name prefixed by any active name scopes.
data: A UTF-8 string tensor value.
step: Explicit `int64`-castable monotonic step value for this summary. If
omitted, this defaults to `tf.summary.experimental.get_step()`, which must
not be None.
description: Optional long-form description for this summary, as a
constant `str`. Markdown is supported. Defaults to empty.
Returns:
True on success, or false if no summary was emitted because no default
summary writer was available.
Raises:
ValueError: if a default writer exists, but no step was provided and
`tf.summary.experimental.get_step()` is None.
|
codesearchnet
|
def __init__(self, xid=None, flags=None, miss_send_len=None):
super().__init__(xid)
self.flags = flags
self.miss_send_len = miss_send_len
|
Create a SwitchConfig with the optional parameters below.
Args:
xid (int): xid to be used on the message header.
flags (ConfigFlag): OFPC_* flags.
miss_send_len (int): UBInt16 max bytes of new flow that the
datapath should send to the controller.
|
juraj-google-style
|
def Delete(self, request, global_params=None):
config = self.GetMethodConfig('Delete')
return self._RunMethod(config, request, global_params=global_params)
|
Deletes the table specified by tableId from the dataset. If the table contains data, all the data will be deleted.
Args:
request: (BigqueryTablesDeleteRequest) input message
global_params: (StandardQueryParameters, default: None) global arguments
Returns:
(BigqueryTablesDeleteResponse) The response message.
|
github-repos
|
def diff(f, s):
if (isinstance(f, base.Root) or (f._yang_type in ('container', None))):
result = _diff_root(f, s)
elif (f._yang_type in ('list',)):
result = _diff_list(f, s)
else:
result = {}
first = '{}'.format(f)
second = '{}'.format(s)
if (first != second):
result = {'first': first, 'second': second}
return result
|
Given two models, return the difference between them.
Args:
f (Pybindbase): First element.
s (Pybindbase): Second element.
Returns:
dict: A dictionary highlighting the differences.
Examples:
>>> diff = napalm_yang.utils.diff(candidate, running)
>>> pretty_print(diff)
>>> {
>>> "interfaces": {
>>> "interface": {
>>> "both": {
>>> "Port-Channel1": {
>>> "config": {
>>> "mtu": {
>>> "first": "0",
>>> "second": "9000"
>>> }
>>> }
>>> }
>>> },
>>> "first_only": [
>>> "Loopback0"
>>> ],
>>> "second_only": [
>>> "Loopback1"
>>> ]
>>> }
>>> }
>>> }
|
codesearchnet
|
def populate_conversion_metadata(model_object, metadata):
try:
metadata_builder = flatbuffers.Builder(0)
metadata_builder.Finish(metadata.Pack(metadata_builder))
buffer_field = schema_fb.BufferT()
buffer_field.data = metadata_builder.Output()
if not model_object.metadata:
model_object.metadata = []
else:
for meta in model_object.metadata:
if meta.name.decode('utf-8') == CONVERSION_METADATA_FIELD_NAME:
model_object.buffers[meta.buffer] = buffer_field
return model_object
if not model_object.buffers:
model_object.buffers = []
model_object.buffers.append(buffer_field)
metadata_field = schema_fb.MetadataT()
metadata_field.name = CONVERSION_METADATA_FIELD_NAME
metadata_field.buffer = len(model_object.buffers) - 1
model_object.metadata.append(metadata_field)
return model_object
except Exception:
return model_object
|
Add or update conversion metadata to a tflite model.
Args:
model_object: A tflite model in object form.
metadata: The conversion metadata.
Returns:
A tflite model object with embedded conversion metadata.
|
github-repos
|
def _Check(self):
success = True
for path in self._paths:
if not os.path.isfile(path):
logging.error('No such file: %s', path)
success = False
elif not os.access(path, os.R_OK):
logging.error('No read access: %s', path)
success = False
elif not FLAGS.output and (not os.access(path, os.W_OK)):
logging.error('No write access: %s', path)
success = False
return success
|
Verifies the existence and read+write access to all paths.
Returns:
Boolean, True if all paths are OK, otherwise False.
|
github-repos
|
def parameterized_codec(raw, b64):
if isinstance(raw, bytes):
raw = raw.decode('utf-8')
result = _parameterize_string(raw)
return Base64(result.data) if b64 else result
|
Parameterize a string, possibly encoding it as Base64 afterwards
Args:
raw (`str` | `bytes`): String to be processed. Byte strings will be
interpreted as UTF-8.
b64 (`bool`): Whether to wrap the output in a Base64 CloudFormation
call
Returns:
:class:`troposphere.AWSHelperFn`: output to be included in a
CloudFormation template.
|
juraj-google-style
|
async def find(self, seq_set: SequenceSet, selected: SelectedMailbox,
requirement: FetchRequirement = FetchRequirement.METADATA) \
-> AsyncIterable[Tuple[int, MessageT]]:
for seq, cached_msg in selected.messages.get_all(seq_set):
msg = await self.get(cached_msg.uid, cached_msg, requirement)
if msg is not None:
yield (seq, msg)
|
Find the active message UID and message pairs in the mailbox that
are contained in the given sequences set. Message sequence numbers
are resolved by the selected mailbox session.
Args:
seq_set: The sequence set of the desired messages.
selected: The selected mailbox session.
requirement: The data required from each message.
|
juraj-google-style
|
def download(
self,
file: Union[IO[bytes], asyncio.StreamWriter, None]=None,
raw: bool=False, rewind: bool=True,
duration_timeout: Optional[float]=None):
if self._session_state != SessionState.request_sent:
raise RuntimeError('Request not sent')
if rewind and file and hasattr(file, 'seek'):
original_offset = file.tell()
else:
original_offset = None
if not hasattr(file, 'drain'):
self._response.body = file
if not isinstance(file, Body):
self._response.body = Body(file)
read_future = self._stream.read_body(self._request, self._response, file=file, raw=raw)
try:
yield from asyncio.wait_for(read_future, timeout=duration_timeout)
except asyncio.TimeoutError as error:
raise DurationTimeout(
'Did not finish reading after {} seconds.'
.format(duration_timeout)
) from error
self._session_state = SessionState.response_received
if original_offset is not None:
file.seek(original_offset)
self.event_dispatcher.notify(self.Event.end_response, self._response)
self.recycle()
|
Read the response content into file.
Args:
file: A file object or asyncio stream.
raw: Whether chunked transfer encoding should be included.
rewind: Seek the given file back to its original offset after
reading is finished.
duration_timeout: Maximum time in seconds of which the
entire file must be read.
Be sure to call :meth:`start` first.
Coroutine.
|
juraj-google-style
|
def detect_content_type(self, path=None, payload=None, objectInput=None):
if objectInput:
message = "Detection content type with file object is not stable."
log.exception(message)
raise TikaAppError(message)
f = file_path(path, payload, objectInput)
switches = ["-d", f]
result = self._command_template(switches).lower()
return result, path, f
|
Return the content type of passed file or payload.
Args:
path (string): Path of file to analyze
payload (string): Payload base64 to analyze
objectInput (object): file object/standard input to analyze
Returns:
content type of file (string)
|
juraj-google-style
|
def Parse(self, parser_mediator):
file_entry = parser_mediator.GetFileEntry()
if (not file_entry):
raise errors.UnableToParseFile('Invalid file entry')
parser_mediator.AppendToParserChain(self)
try:
self.ParseFileEntry(parser_mediator, file_entry)
finally:
parser_mediator.PopFromParserChain()
|
Parsers the file entry and extracts event objects.
Args:
parser_mediator (ParserMediator): a parser mediator.
Raises:
UnableToParseFile: when the file cannot be parsed.
|
codesearchnet
|
def _deserialization_dependencies(self, children):
del children
return {}
|
Returns a dictionary containing `Trackables` that this object depends on.
Dependencies define the order to serialize and deserialize objects in the
SavedModel. For example:
class A(Trackable):
b = B()
def _deserialization_dependencies(self, children):
return {'b': self.b}
class B(Trackable):
pass
We say that object `a=A()` depends on `a.b`.
Dependencies are guaranteed to be serialized and deserialized before the
object depending on them. The following methods use dependencies:
- `_deserialize_from_proto` [loading]
SavedModel loads with the bottom-up approach, by first creating all objects
in the order defined by the dependencies, then connecting the children.
Unlike `_trackable_children`, this function does not define the
`SavedObjectGraph`. It only changes the order in which things are
saved/loaded. Therefore, if there are dependencies that are not in the
`SavedObjectGraph`, saving will fail.
Args:
children: Dict returned from `_trackable_children`.
Returns:
A dictionary mapping names to `Trackable`.
|
github-repos
|
def _makedirs(name, user=None, group=None, dir_mode=None, win_owner=None, win_perms=None, win_deny_perms=None, win_inheritance=None):
if salt.utils.platform.is_windows():
(drive, path) = os.path.splitdrive(name)
if (not os.path.isdir(drive)):
raise CommandExecutionError(drive)
win_owner = (win_owner if win_owner else user)
return __salt__['file.makedirs'](path=name, owner=win_owner, grant_perms=win_perms, deny_perms=win_deny_perms, inheritance=win_inheritance)
else:
return __salt__['file.makedirs'](path=name, user=user, group=group, mode=dir_mode)
|
Helper function for creating directories when the ``makedirs`` option is set
to ``True``. Handles Unix and Windows based systems
.. versionadded:: 2017.7.8
Args:
name (str): The directory path to create
user (str): The linux user to own the directory
group (str): The linux group to own the directory
dir_mode (str): The linux mode to apply to the directory
win_owner (str): The Windows user to own the directory
win_perms (dict): A dictionary of grant permissions for Windows
win_deny_perms (dict): A dictionary of deny permissions for Windows
win_inheritance (bool): True to inherit permissions on Windows
Returns:
bool: True if successful, otherwise False on Windows
str: Error messages on failure on Linux
None: On successful creation on Linux
Raises:
CommandExecutionError: If the drive is not mounted on Windows
|
codesearchnet
|
def _VerifyValuesWithDilation(self, tensor_in_sizes, filter_in_sizes, stride, dilation, padding, data_type, data_format='NHWC'):
total_size_1 = 1
total_size_2 = 1
for s in tensor_in_sizes:
total_size_1 *= s
for s in filter_in_sizes:
total_size_2 *= s
x1 = np.array([f * 1.0 for f in range(1, total_size_1 + 1)], dtype=data_type).reshape(tensor_in_sizes)
x2 = np.array([f * 1.0 for f in range(1, total_size_2 + 1)], dtype=data_type).reshape(filter_in_sizes)
with self.session() as sess:
if data_type == np.float32:
tolerance = 0.01
else:
self.assertEqual(data_type, np.float64)
tolerance = 1e-08
t1 = array_ops.placeholder(shape=tensor_in_sizes, dtype=data_type)
t2 = array_ops.placeholder(shape=filter_in_sizes, dtype=data_type)
native_t1 = t1
strides = [1, stride, stride, 1]
dilations = [dilation, dilation]
if data_format == 'NCHW':
native_t1 = array_ops.transpose(t1, [0, 3, 1, 2])
strides = [1, 1, stride, stride]
with self.test_scope():
conv_native = nn_impl.depthwise_conv2d(native_t1, t2, strides=strides, rate=dilations, data_format=data_format, padding=padding)
if data_format == 'NCHW':
conv_native = array_ops.transpose(conv_native, [0, 2, 3, 1])
with ops.device('CPU'):
strides = [1, stride, stride, 1]
conv_interface = nn_impl.depthwise_conv2d(t1, t2, strides=strides, rate=dilations, padding=padding)
native_result = sess.run(conv_native, {t1: x1, t2: x2})
interface_result = sess.run(conv_interface, {t1: x1, t2: x2})
print('data_type:', data_type, 'max diff = ', np.amax(np.absolute(native_result - interface_result)))
self.assertAllClose(np.ravel(native_result), np.ravel(interface_result), rtol=tolerance)
|
Verifies the output values of the convolution function.
Args:
tensor_in_sizes: Input tensor dimensions in [batch, input_rows,
input_cols, input_depth].
filter_in_sizes: Filter tensor dimensions in [filter_rows, filter_cols,
input_depth, depth_multiplier].
stride: Stride.
dilation: Dilation.
padding: Padding type.
data_type: The data type to use.
data_format: The data_format of the input. "NHWC" or "NCHW".
|
github-repos
|
def get_graph(self):
st = self.status
if (st in (SolverStatus.solved, SolverStatus.unsolved)):
phase = self._latest_nonfailed_phase()
return phase.get_graph()
else:
return self.get_fail_graph()
|
Returns the most recent solve graph.
This gives a graph showing the latest state of the solve. The specific
graph returned depends on the solve status. When status is:
unsolved: latest unsolved graph is returned;
solved: final solved graph is returned;
failed: most appropriate failure graph is returned (see `failure_reason`);
cyclic: last failure is returned (contains cycle).
Returns:
A pygraph.digraph object.
|
codesearchnet
|
def df_first_row_to_dict(df):
if df is not None:
return [dict(r) for i, r in df.head(1).iterrows()][0]
|
First DataFrame row to list of dict
Args:
df (pandas.DataFrame): A DataFrame with at least one row
Returns:
A list of dict that looks like:
[{'C1': 'x'}, {'C2': 'y'}, {'C3': 'z'}]
from a DataFrame that looks like:
C1 C2 C3
1 x y z
Else if `df` is `None`, returns `None`
|
juraj-google-style
|
def _verify(self):
if (self._num_sides < 2):
raise ValueError('At least two sides required.')
for (prev, curr) in six.moves.zip(self._edges, self._edges[1:]):
self._verify_pair(prev, curr)
prev = self._edges[(- 1)]
curr = self._edges[0]
self._verify_pair(prev, curr)
|
Verify that the edges define a curved polygon.
This may not be entirely comprehensive, e.g. won't check
self-intersection of the defined polygon.
.. note::
This currently checks that edge endpoints match **exactly**
but allowing some roundoff may be desired.
Raises:
ValueError: If there are fewer than two sides.
ValueError: If one of the sides is not in 2D.
ValueError: If consecutive sides don't share an endpoint.
|
codesearchnet
|
def register_intent_parser(self, intent_parser, domain=0):
if domain not in self.domains:
self.register_domain(domain=domain)
self.domains[domain].register_intent_parser(
intent_parser=intent_parser)
|
Register a intent parser with a domain.
Args:
intent_parser(intent): The intent parser you wish to register.
domain(str): a string representing the domain you wish register the intent
parser to.
|
juraj-google-style
|
def _truncate_filename(filename, max_length):
if len(filename) <= max_length:
return filename
if '.' in filename:
filename, extension = filename.rsplit('.', 1)
if len(extension) > max_length - 1:
return filename[:max_length]
return '.'.join([filename[:max_length - len(extension) - 1], extension])
else:
return filename[:max_length]
|
Truncates a filename while trying to preserve the extension.
Args:
filename: string, the filename to potentially truncate.
Returns:
The truncated filename that is less than or equal to the given maximum
length.
|
github-repos
|
def pause(self, device):
resp = self.post('pause', params={'device': device},
return_response=True)
error = resp.text
if not error:
error = None
return {'success': resp.status_code == requests.codes.ok,
'error': error}
|
Pause the given device.
Args:
device (str): Device ID.
Returns:
dict: with keys ``success`` and ``error``.
|
juraj-google-style
|
def _parse_address(self, config):
match = re.search('ip address ([^\\s]+)', config)
value = (match.group(1) if match else None)
return dict(address=value)
|
Parses the config block and returns the ip address value
The provided configuration block is scaned and the configured value
for the IP address is returned as a dict object. If the IP address
value is not configured, then None is returned for the value
Args:
config (str): The interface configuration block to parse
Return:
dict: A dict object intended to be merged into the resource dict
|
codesearchnet
|
def _get_int_removals_helper(self, spec_amts_oxi, oxid_el, oxid_els, numa):
oxid_old = min([spec.oxi_state for spec in spec_amts_oxi if (spec.symbol == oxid_el.symbol)])
oxid_new = math.floor((oxid_old + 1))
if (oxid_new > oxid_el.max_oxidation_state):
return numa
spec_old = Specie(oxid_el.symbol, oxid_old)
spec_new = Specie(oxid_el.symbol, oxid_new)
specamt = spec_amts_oxi[spec_old]
spec_amts_oxi = {sp: amt for (sp, amt) in spec_amts_oxi.items() if (sp != spec_old)}
spec_amts_oxi[spec_new] = specamt
spec_amts_oxi = Composition(spec_amts_oxi)
oxi_noA = sum([(spec.oxi_state * spec_amts_oxi[spec]) for spec in spec_amts_oxi if (spec.symbol not in self.cation.symbol)])
a = max(0, ((- oxi_noA) / self.cation_charge))
numa = numa.union({a})
if (a == 0):
return numa
else:
for oxid_el in oxid_els:
numa = numa.union(self._get_int_removals_helper(spec_amts_oxi.copy(), oxid_el, oxid_els, numa))
return numa
|
This is a helper method for get_removals_int_oxid!
Args:
spec_amts_oxi - a dict of species to their amounts in the structure
oxid_el - the element to oxidize
oxid_els - the full list of elements that might be oxidized
numa - a running set of numbers of A cation at integer oxidation steps
Returns:
a set of numbers A; steps for for oxidizing oxid_el first, then the other oxid_els in this list
|
codesearchnet
|
def _compute_best_partitions(num_part, sizes, nfps):
if (num_part < 2):
raise ValueError('num_part cannot be less than 2')
if (num_part > len(sizes)):
raise ValueError('num_part cannot be greater than the domain size of all set sizes')
if (num_part == 2):
(total_nfps, u) = min((((nfps[(0, u1)] + nfps[((u1 + 1), (len(sizes) - 1))]), u1) for u1 in range(0, (len(sizes) - 1))))
return ([(sizes[0], sizes[u]), (sizes[(u + 1)], sizes[(- 1)])], total_nfps, None)
cost = np.zeros((len(sizes), (num_part - 2)))
p2i = (lambda p: (p - 2))
for p in range(2, num_part):
for u in range((p - 1), len(sizes)):
if (p == 2):
cost[(u, p2i(p))] = min(((nfps[(0, u1)] + nfps[((u1 + 1), u)]) for u1 in range(u)))
else:
cost[(u, p2i(p))] = min(((cost[(u1, p2i((p - 1)))] + nfps[((u1 + 1), u)]) for u1 in range(((p - 1) - 1), u)))
p = num_part
(total_nfps, u) = min((((cost[(u1, p2i((p - 1)))] + nfps[((u1 + 1), (len(sizes) - 1))]), u1) for u1 in range(((p - 1) - 1), (len(sizes) - 1))))
partitions = [(sizes[(u + 1)], sizes[(- 1)])]
p -= 1
while (p > 1):
(_, u1_best) = min((((cost[(u1, p2i(p))] + nfps[((u1 + 1), u)]), u1) for u1 in range(((p - 1) - 1), u)))
partitions.insert(0, (sizes[(u1_best + 1)], sizes[u]))
u = u1_best
p -= 1
partitions.insert(0, (sizes[0], sizes[u]))
return [partitions, total_nfps, cost]
|
Computes the optimal partitions given the size distributions
and computed number of expected false positives for all sub-intervals.
Args:
num_part (int): The number of partitions to create.
sizes (numpy.array): The complete domain of set sizes in sorted order.
nfps (numpy.array): The computed number of expected false positives
for all sub-intervals; axis-0 is for the indexes of lower bounds and
axis-1 is for the indexes of upper bounds.
Returns:
partitions (list): list of lower and upper bounds of set sizes for
all partitions.
total_nfps (float): total number of expected false positives from all
partitions.
cost (numpy.array): a N x p-1 matrix of the computed optimal NFPs for
all sub-problems given upper bound set size and number of partitions.
|
codesearchnet
|
def __bool__(self):
self._disallow_bool_casting()
|
Dummy method to prevent a tensor from being used as a Python `bool`.
This overload raises a `TypeError` when the user inadvertently
treats a `Tensor` as a boolean (most commonly in an `if` or `while`
statement), in code that was not converted by AutoGraph. For example:
```python
if tf.constant(True): # Will raise.
# ...
if tf.constant(5) < tf.constant(7): # Will raise.
# ...
```
Raises:
`TypeError`.
|
github-repos
|
class TFBaseModelOutputWithNoAttention(ModelOutput):
last_hidden_state: Optional[tf.Tensor] = None
hidden_states: Optional[Tuple[tf.Tensor, ...]] = None
|
Base class for model's outputs, with potential hidden states.
Args:
last_hidden_state (`tf.Tensor` shape `(batch_size, num_channels, height, width)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for
the output of each layer) of shape `(batch_size, num_channels, height, width)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
github-repos
|
def _ParseRecord(self, parser_mediator, page_data, record_offset):
record_header_map = self._GetDataTypeMap('binarycookies_record_header')
try:
record_header = self._ReadStructureFromByteStream(
page_data[record_offset:], record_offset, record_header_map)
except (ValueError, errors.ParseError) as exception:
raise errors.ParseError((
'Unable to map record header data at offset: 0x{0:08x} with error: '
'{1!s}').format(record_offset, exception))
event_data = SafariBinaryCookieEventData()
event_data.flags = record_header.flags
if record_header.url_offset:
data_offset = record_offset + record_header.url_offset
event_data.url = self._ParseCString(page_data, data_offset)
if record_header.name_offset:
data_offset = record_offset + record_header.name_offset
event_data.cookie_name = self._ParseCString(page_data, data_offset)
if record_header.path_offset:
data_offset = record_offset + record_header.path_offset
event_data.path = self._ParseCString(page_data, data_offset)
if record_header.value_offset:
data_offset = record_offset + record_header.value_offset
event_data.cookie_value = self._ParseCString(page_data, data_offset)
if record_header.creation_time:
date_time = dfdatetime_cocoa_time.CocoaTime(
timestamp=record_header.creation_time)
event = time_events.DateTimeValuesEvent(
date_time, definitions.TIME_DESCRIPTION_CREATION)
parser_mediator.ProduceEventWithEventData(event, event_data)
if record_header.expiration_time:
date_time = dfdatetime_cocoa_time.CocoaTime(
timestamp=record_header.expiration_time)
else:
date_time = dfdatetime_semantic_time.SemanticTime('Not set')
event = time_events.DateTimeValuesEvent(
date_time, definitions.TIME_DESCRIPTION_EXPIRATION)
parser_mediator.ProduceEventWithEventData(event, event_data)
for plugin in self._cookie_plugins:
if parser_mediator.abort:
break
if event_data.cookie_name != plugin.COOKIE_NAME:
continue
try:
plugin.UpdateChainAndProcess(
parser_mediator, cookie_name=event_data.cookie_name,
cookie_data=event_data.cookie_value, url=event_data.url)
except Exception as exception:
parser_mediator.ProduceExtractionWarning(
'plugin: {0:s} unable to parse cookie with error: {1!s}'.format(
plugin.NAME, exception))
|
Parses a record from the page data.
Args:
parser_mediator (ParserMediator): parser mediator.
page_data (bytes): page data.
record_offset (int): offset of the record relative to the start
of the page.
Raises:
ParseError: when the record cannot be parsed.
|
juraj-google-style
|
def simple_lmm(snps, pheno, K=None, covs=None, test='lrt', NumIntervalsDelta0=100, NumIntervalsDeltaAlt=0, searchDelta=False):
t0 = time.time()
if (K is None):
K = SP.eye(snps.shape[0])
lm = limix.CLMM()
lm.setK(K)
lm.setSNPs(snps)
lm.setPheno(pheno)
if (covs is None):
covs = SP.ones((snps.shape[0], 1))
lm.setCovs(covs)
if (test == 'lrt'):
lm.setTestStatistics(0)
elif (test == 'f'):
lm.setTestStatistics(1)
else:
print(test)
raise NotImplementedError('only f or lrt are implemented')
lm.setNumIntervals0(NumIntervalsDelta0)
if searchDelta:
lm.setNumIntervalsAlt(NumIntervalsDeltaAlt)
else:
lm.setNumIntervalsAlt(0)
lm.process()
t1 = time.time()
print(('finished GWAS testing in %.2f seconds' % (t1 - t0)))
return lm
|
Univariate fixed effects linear mixed model test for all SNPs
Args:
snps: [N x S] SP.array of S SNPs for N individuals
pheno: [N x 1] SP.array of 1 phenotype for N individuals
K: [N x N] SP.array of LMM-covariance/kinship koefficients (optional)
If not provided, then linear regression analysis is performed
covs: [N x D] SP.array of D covariates for N individuals
test: 'lrt' for likelihood ratio test (default) or 'f' for F-test
NumIntervalsDelta0: number of steps for delta optimization on the null model (100)
NumIntervalsDeltaAlt:number of steps for delta optimization on the alt. model (0 - no optimization)
searchDelta: Carry out delta optimization on the alternative model? if yes We use NumIntervalsDeltaAlt steps
Returns:
limix LMM object
|
codesearchnet
|
def errors(self, batch_id, halt_on_error=True):
errors = []
try:
r = self.tcex.session.get('/v2/batch/{}/errors'.format(batch_id))
self.tcex.log.debug('Retrieve Errors for ID {}: status code {}, errors {}'.format(batch_id, r.status_code, r.text))
if r.ok:
errors = json.loads(r.text)
for error in errors:
error_reason = error.get('errorReason')
for error_msg in self._critical_failures:
if re.findall(error_msg, error_reason):
self.tcex.handle_error(10500, [error_reason], halt_on_error)
return errors
except Exception as e:
self.tcex.handle_error(560, [e], halt_on_error)
|
Retrieve Batch errors to ThreatConnect API.
.. code-block:: javascript
[{
"errorReason": "Incident incident-001 has an invalid status.",
"errorSource": "incident-001 is not valid."
}, {
"errorReason": "Incident incident-002 has an invalid status.",
"errorSource":"incident-002 is not valid."
}]
Args:
batch_id (str): The ID returned from the ThreatConnect API for the current batch job.
halt_on_error (bool, default:True): If True any exception will raise an error.
|
codesearchnet
|
def get(self):
logger.info('Loading refresh_token from %s', repr(self._filename))
try:
with open(self._filename) as f:
return f.read()
except IOError as e:
logger.info('Failed to load refresh_token: %s', e)
|
Get cached refresh token.
Returns:
Cached refresh token, or ``None`` on failure.
|
codesearchnet
|
def next_id(self, channel):
if channel not in self.topics:
self.topics[channel] = 0
return 0
self.topics[channel] += 1
return self.topics[channel]
|
Get the next sequence number for a named channel or topic
If channel has not been sent to next_id before, 0 is returned
otherwise next_id returns the last id returned + 1.
Args:
channel (string): The name of the channel to get a sequential
id for.
Returns:
int: The next id for this channel
|
juraj-google-style
|
def unique_fetches(self):
raise NotImplementedError('unique_fetches must be implemented by subclasses')
|
Return the list of unique tensors or ops needed by this fetch mapper.
Returns:
A list of tensors or ops.
|
github-repos
|
def zeros_like(x, dtype=None, name=None):
return array_ops.zeros_like(x, dtype=dtype, name=name)
|
Instantiates an all-zeros variable of the same shape as another tensor.
Args:
x: Keras variable or Keras tensor.
dtype: dtype of returned Keras variable.
`None` uses the dtype of `x`.
name: name for the variable to create.
Returns:
A Keras variable with the shape of `x` filled with zeros.
Example:
```python
from tensorflow.keras import backend as K
kvar = K.variable(np.random.random((2,3)))
kvar_zeros = K.zeros_like(kvar)
K.eval(kvar_zeros)
# array([[ 0., 0., 0.], [ 0., 0., 0.]], dtype=float32)
```
|
github-repos
|
def stops_when(iterable, condition):
if (not callable(condition)):
cond_value = condition
def condition(x):
return (x == cond_value)
return itertools.takewhile((lambda x: (not condition(x))), iterable)
|
Stop yielding items when a condition arise.
Args:
iterable: the iterable to filter.
condition: if the callable returns True once, stop yielding
items. If it's not a callable, it will be converted
to one as `lambda condition: condition == item`.
Example:
>>> list(stops_when(range(10), lambda x: x > 5))
[0, 1, 2, 3, 4, 5]
>>> list(stops_when(range(10), 7))
[0, 1, 2, 3, 4, 5, 6]
|
codesearchnet
|
def _comparison_functions(cls, partial=False):
def prerelease_cmp(a, b):
'Compare prerelease components.\n\n Special rule: a version without prerelease component has higher\n precedence than one with a prerelease component.\n '
if (a and b):
return identifier_list_cmp(a, b)
elif a:
return (- 1)
elif b:
return 1
else:
return 0
def build_cmp(a, b):
'Compare build metadata.\n\n Special rule: there is no ordering on build metadata.\n '
if (a == b):
return 0
else:
return NotImplemented
def make_optional(orig_cmp_fun):
"Convert a cmp-like function to consider 'None == *'."
@functools.wraps(orig_cmp_fun)
def alt_cmp_fun(a, b):
if ((a is None) or (b is None)):
return 0
return orig_cmp_fun(a, b)
return alt_cmp_fun
if partial:
return [base_cmp, make_optional(base_cmp), make_optional(base_cmp), make_optional(prerelease_cmp), make_optional(build_cmp)]
else:
return [base_cmp, base_cmp, base_cmp, prerelease_cmp, build_cmp]
|
Retrieve comparison methods to apply on version components.
This is a private API.
Args:
partial (bool): whether to provide 'partial' or 'strict' matching.
Returns:
5-tuple of cmp-like functions.
|
codesearchnet
|
def classifier_factory(clf):
required_methods = ['fit', 'score', 'predict']
for method in required_methods:
if (not hasattr(clf, method)):
raise TypeError('"{}" is not in clf. Did you pass a classifier instance?'.format(method))
optional_methods = ['predict_proba']
for method in optional_methods:
if (not hasattr(clf, method)):
warnings.warn('{} not in clf. Some plots may not be possible to generate.'.format(method))
additional_methods = {'plot_learning_curve': plot_learning_curve, 'plot_confusion_matrix': plot_confusion_matrix_with_cv, 'plot_roc_curve': plot_roc_curve_with_cv, 'plot_ks_statistic': plot_ks_statistic_with_cv, 'plot_precision_recall_curve': plot_precision_recall_curve_with_cv, 'plot_feature_importances': plot_feature_importances}
for (key, fn) in six.iteritems(additional_methods):
if hasattr(clf, key):
warnings.warn('"{}" method already in clf. Overriding anyway. This may result in unintended behavior.'.format(key))
setattr(clf, key, types.MethodType(fn, clf))
return clf
|
Embeds scikit-plot instance methods in an sklearn classifier.
Args:
clf: Scikit-learn classifier instance
Returns:
The same scikit-learn classifier instance passed in **clf**
with embedded scikit-plot instance methods.
Raises:
ValueError: If **clf** does not contain the instance methods
necessary for scikit-plot instance methods.
|
codesearchnet
|
def get_cached_response(self, key):
cached_value = self.data.get(key, _CACHE_MISS)
is_found = cached_value is not _CACHE_MISS
return CachedResponse(is_found, key, cached_value)
|
Retrieves a CachedResponse for the provided key.
Args:
key (string)
Returns:
A CachedResponse with is_found status and value.
|
juraj-google-style
|
def cancelTickByTickData(self, contract: Contract, tickType: str):
ticker = self.ticker(contract)
reqId = self.wrapper.endTicker(ticker, tickType)
if reqId:
self.client.cancelTickByTickData(reqId)
else:
self._logger.error(f'cancelMktData: No reqId found for contract {contract}')
|
Unsubscribe from tick-by-tick data
Args:
contract: The exact contract object that was used to
subscribe with.
|
codesearchnet
|
def set_status(self, name: str=None):
game = None
if name:
game = {'name': name}
payload = {'op': WebSocketEvent.STATUS_UPDATE.value, 'd': {'game': game, 'status': 'online', 'afk': False, 'since': 0.0}}
data = json.dumps(payload, indent=2)
self.logger.debug(f'Sending status update payload: {data}')
self._ws.send(data)
|
Updates the bot's status
This is used to get the game that the bot is "playing" or to clear it.
If you want to set a game, pass a name; if you want to clear it, either
call this method without the optional ``name`` parameter or explicitly
pass ``None``.
Args:
name: the game's name, or None
|
codesearchnet
|
def search_client_by_id(self, clientID) -> Client:
for c in self.clients:
if c.id == clientID:
return c
return None
|
searches a client by given id
Args:
clientID(str): the client to search for
Returns
the client object or None if it couldn't find a client
|
juraj-google-style
|
def detect_incorrect_erc20_interface(contract):
functions = [f for f in contract.functions if ((f.contract == contract) and IncorrectERC20InterfaceDetection.incorrect_erc20_interface(f.signature))]
return functions
|
Detect incorrect ERC20 interface
Returns:
list(str) : list of incorrect function signatures
|
codesearchnet
|
def info(self, message, domain=None):
if (domain is None):
domain = self.extension_name
info(message, domain)
|
Shortcut function for `utils.loggable.info`
Args:
message: see `utils.loggable.info`
domain: see `utils.loggable.info`
|
codesearchnet
|
def emit_obj_create(self, category: str, name: str, timestamp: int, pid: int, tid: int, object_id: int) -> None:
event = self._create_event('N', category, name, pid, tid, timestamp)
event['id'] = object_id
self._events.append(event)
|
Adds an object creation event to the trace.
Args:
category: The event category as a string.
name: The event name as a string.
timestamp: The timestamp of this event as a long integer.
pid: Identifier of the process generating this event as an integer.
tid: Identifier of the thread generating this event as an integer.
object_id: Identifier of the object as an integer.
|
github-repos
|
def send_notification(*, subsystem, recipients, subject, body_html, body_text):
from cloud_inquisitor import CINQ_PLUGINS
if not body_html and not body_text:
raise ValueError('body_html or body_text must be provided')
recipients = list(set(recipients))
notifiers = map(lambda plugin: plugin.load(), CINQ_PLUGINS['cloud_inquisitor.plugins.notifiers']['plugins'])
for cls in filter(lambda x: x.enabled(), notifiers):
for recipient in recipients:
if isinstance(recipient, NotificationContact):
if recipient.type == cls.notifier_type:
try:
notifier = cls()
notifier.notify(subsystem, recipient.value, subject, body_html, body_text)
except Exception:
log.exception('Failed sending notification for {}/{}'.format(
recipient.type,
recipient.value
))
else:
log.warning('Unexpected recipient {}'.format(recipient))
|
Method to send a notification. A plugin may use only part of the information, but all fields are required.
Args:
subsystem (`str`): Name of the subsystem originating the notification
recipients (`list` of :obj:`NotificationContact`): List of recipients
subject (`str`): Subject / title of the notification
body_html (`str)`: HTML formatted version of the message
body_text (`str`): Text formatted version of the message
Returns:
`None`
|
juraj-google-style
|
def __init__(self, filenames, compression_type=None, buffer_size=None, name=None):
self._filenames = filenames
self._compression_type = convert.optional_param_to_tensor('compression_type', compression_type, argument_default='', argument_dtype=dtypes.string)
self._buffer_size = convert.optional_param_to_tensor('buffer_size', buffer_size, argument_default=_DEFAULT_TF_RECORD_BUFFER_SIZE_BYTES)
self._name = name
variant_tensor = gen_dataset_ops.tf_record_dataset(self._filenames, self._compression_type, self._buffer_size, metadata=self._metadata.SerializeToString())
super(_TFRecordDataset, self).__init__(variant_tensor)
|
Creates a `TFRecordDataset`.
Args:
filenames: A `tf.string` tensor containing one or more filenames.
compression_type: (Optional.) A `tf.string` scalar evaluating to one of
`""` (no compression), `"ZLIB"`, or `"GZIP"`.
buffer_size: (Optional.) A `tf.int64` scalar representing the number of
bytes in the read buffer. 0 means no buffering.
name: (Optional.) A name for the tf.data operation.
|
github-repos
|
def fit_size_models(self, model_names,
model_objs,
input_columns,
output_column="Hail_Size",
output_start=5,
output_step=5,
output_stop=100):
print("Fitting size models")
groups = self.data["train"]["member"][self.group_col].unique()
output_start = int(output_start)
output_step = int(output_step)
output_stop = int(output_stop)
for group in groups:
group_data = self.data["train"]["combo"].loc[self.data["train"]["combo"][self.group_col] == group]
group_data.dropna(inplace=True)
group_data = group_data[group_data[output_column] >= output_start]
output_data = group_data[output_column].values.astype(int)
output_data[output_data > output_stop] = output_stop
discrete_data = ((output_data - output_start)
self.size_models[group] = {}
self.size_models[group]["outputvalues"] = np.arange(output_start, output_stop + output_step, output_step,
dtype=int)
for m, model_name in enumerate(model_names):
print("{0} {1}".format(group, model_name))
self.size_models[group][model_name] = deepcopy(model_objs[m])
self.size_models[group][model_name].fit(group_data[input_columns], discrete_data)
|
Fit size models to produce discrete pdfs of forecast hail sizes.
Args:
model_names: List of model names
model_objs: List of model objects
input_columns: List of input variables
output_column: Output variable name
output_start: Hail size bin start
output_step: hail size bin step
output_stop: hail size bin stop
|
juraj-google-style
|
def load_scheduler_plugins(self):
if (not self.scheduler_plugins):
for entry_point in CINQ_PLUGINS['cloud_inquisitor.plugins.schedulers']['plugins']:
cls = entry_point.load()
self.scheduler_plugins[cls.__name__] = cls
if (cls.__name__ == self.active_scheduler):
self.log.debug('Scheduler loaded: {} in module {}'.format(cls.__name__, cls.__module__))
else:
self.log.debug('Scheduler disabled: {} in module {}'.format(cls.__name__, cls.__module__))
|
Refresh the list of available schedulers
Returns:
`list` of :obj:`BaseScheduler`
|
codesearchnet
|
def _read_mode_rsralt(self, size, kind):
if (size != 4):
raise ProtocolError(f'{self.alias}: [Optno {kind}] invalid format')
_code = self._read_unpack(2)
data = dict(kind=kind, type=self._read_opt_type(kind), length=size, alert=_ROUTER_ALERT.get(_code, 'Reserved'), code=_code)
return data
|
Read Router Alert option.
Positional arguments:
size - int, length of option
kind - int, 148 (RTRALT)
Returns:
* dict -- extracted Router Alert (RTRALT) option
Structure of Router Alert (RTRALT) option [RFC 2113]:
+--------+--------+--------+--------+
|10010100|00000100| 2 octet value |
+--------+--------+--------+--------+
Octets Bits Name Description
0 0 ip.rsralt.kind Kind (148)
0 0 ip.rsralt.type.copy Copied Flag (1)
0 1 ip.rsralt.type.class Option Class (0)
0 3 ip.rsralt.type.number Option Number (20)
1 8 ip.rsralt.length Length (4)
2 16 ip.rsralt.alert Alert
2 16 ip.rsralt.code Alert Code
|
codesearchnet
|
def dependency_of_targets(targets, op):
if isinstance(op, tf.Tensor):
op = op.op
assert isinstance(op, tf.Operation), op
from tensorflow.contrib.graph_editor import get_backward_walk_ops
dependent_ops = get_backward_walk_ops(targets, control_inputs=True)
return op in dependent_ops
|
Check that op is in the subgraph induced by the dependencies of targets.
The result is memoized.
This is useful if some SessionRunHooks should be run only together with certain ops.
Args:
targets: a tuple of ops or tensors. The targets to find dependencies of.
op (tf.Operation or tf.Tensor):
Returns:
bool: True if any one of `targets` depend on `op`.
|
juraj-google-style
|
def format_time(
self,
hour_expression,
minute_expression,
second_expression=''
):
hour = int(hour_expression)
period = ''
if self._options.use_24hour_time_format is False:
period = " PM" if (hour >= 12) else " AM"
if hour > 12:
hour -= 12
minute = str(int(minute_expression))
second = ''
if second_expression is not None and second_expression:
second = "{}{}".format(":", str(int(second_expression)).zfill(2))
return "{0}:{1}{2}{3}".format(str(hour).zfill(2), minute.zfill(2), second, period)
|
Given time parts, will contruct a formatted time description
Args:
hour_expression: Hours part
minute_expression: Minutes part
second_expression: Seconds part
Returns:
Formatted time description
|
juraj-google-style
|
def _google_section_permitted(line_info, state):
if state.section.indentation is None:
return True
return line_info.indentation <= state.section.indentation or line_info.indentation < state.section.line1_indentation
|
Returns whether a new google section is permitted to start here.
Q: Why might a new Google section not be allowed?
A: If we're in the middle of a Google "Args" section, then lines that start
"param:" will usually be a new arg, rather than a new section.
We use whitespace to determine when the Args section has actually ended.
A Google section ends when either:
- A new google section begins at either
- indentation less than indentation of line 1 of the previous section
- or <= indentation of the previous section
- Or the docstring terminates.
Args:
line_info: Information about the current line.
state: The state of the parser.
Returns:
True or False, indicating whether a new Google section is permitted at the
current line.
|
github-repos
|
def auto_batch_size(sequence_length, mesh_shape, layout_rules, tokens_per_split=2048):
num_splits = mtf.tensor_dim_to_mesh_dim_size(layout_rules, mesh_shape, mtf.Dimension('batch', 0))
ret = (max(1, (tokens_per_split
tf.logging.info(('AUTO_BATCH_SIZE tokens_per_split=%s num_splits=%s sequence_length=%s batch_size=%s' % (tokens_per_split, num_splits, sequence_length, ret)))
return ret
|
Automatically compute batch size.
Args:
sequence_length: an integer
mesh_shape: an input to mtf.convert_to_shape()
layout_rules: an input to mtf.convert_to_layout_rules()
tokens_per_split: an integer
Returns:
an integer
|
codesearchnet
|
def breakpoint_set(self, addr, thumb=False, arm=False):
flags = enums.JLinkBreakpoint.ANY
if thumb:
flags = (flags | enums.JLinkBreakpoint.THUMB)
elif arm:
flags = (flags | enums.JLinkBreakpoint.ARM)
handle = self._dll.JLINKARM_SetBPEx(int(addr), flags)
if (handle <= 0):
raise errors.JLinkException('Breakpoint could not be set.')
return handle
|
Sets a breakpoint at the specified address.
If ``thumb`` is ``True``, the breakpoint is set in THUMB-mode, while if
``arm`` is ``True``, the breakpoint is set in ARM-mode, otherwise a
normal breakpoint is set.
Args:
self (JLink): the ``JLink`` instance
addr (int): the address where the breakpoint will be set
thumb (bool): boolean indicating to set the breakpoint in THUMB mode
arm (bool): boolean indicating to set the breakpoint in ARM mode
Returns:
An integer specifying the breakpoint handle. This handle should be
retained for future breakpoint operations.
Raises:
TypeError: if the given address is not an integer.
JLinkException: if the breakpoint could not be set.
|
codesearchnet
|
def get_config(self, name, default=MISSING):
res = self.config.get(name, default)
if res is MISSING:
raise ArgumentError("Could not find config value by name and no default supplied", name=name)
return res
|
Get a config value from this adapter by name
Args:
name (string): The name of the config variable
default (object): The default value to return if config is not found
Returns:
object: the value associated with the name
Raises:
ArgumentError: if the name is not found and no default is supplied
|
juraj-google-style
|
def _get_encoding(dom, default='utf-8'):
encoding = dom.find('meta', {'http-equiv': 'Content-Type'})
if (not encoding):
return default
encoding = encoding[0].params.get('content', None)
if (not encoding):
return default
return encoding.lower().split('=')[(- 1)]
|
Try to look for meta tag in given `dom`.
Args:
dom (obj): pyDHTMLParser dom of HTML elements.
default (default "utr-8"): What to use if encoding is not found in
`dom`.
Returns:
str/default: Given encoding or `default` parameter if not found.
|
codesearchnet
|
def from_variant(variant, structure):
return _VariantDataset(variant, structure)
|
Constructs a dataset from the given variant and (nested) structure.
Args:
variant: A scalar `tf.variant` tensor representing a dataset.
structure: A (nested) structure of `tf.TypeSpec` objects representing the
structure of each element in the dataset.
Returns:
A `tf.data.Dataset` instance.
|
github-repos
|
def get_schema_descendant(self, route: SchemaRoute) -> Optional[SchemaNode]:
node = self
for p in route:
node = node.get_child(*p)
if (node is None):
return None
return node
|
Return descendant schema node or ``None`` if not found.
Args:
route: Schema route to the descendant node
(relative to the receiver).
|
codesearchnet
|
def me(self):
json_data = self._session.get((API_ENDPOINT + '/me'))
return self._object_factory(OBJECT_TYPE, json_data)
|
Get the details of the person accessing the API.
Raises:
ApiError: If the Webex Teams cloud returns an error.
|
codesearchnet
|
def override_parent_subgraph(self, parent_subgraph, invisible_edges=None):
with transaction.atomic():
if invisible_edges is None:
invisible_edges = set()
children = list(parent_subgraph.keys())
all_old_relations = dict(proso.list.group_by(
list(ItemRelation.objects.filter(child_id__in=children)),
by=lambda relation: relation.child_id
))
to_delete = set()
for child_id, parents in parent_subgraph.items():
old_relations = {
relation.parent_id: relation
for relation in all_old_relations.get(child_id, [])
}
for parent_id in parents:
if parent_id not in old_relations:
ItemRelation.objects.create(
parent_id=parent_id,
child_id=child_id,
visible=(child_id, parent_id) not in invisible_edges
)
elif old_relations[parent_id].visible != ((child_id, parent_id) not in invisible_edges):
old_relations[parent_id].visible = (child_id, parent_id) not in invisible_edges
old_relations[parent_id].save()
to_delete |= {old_relations[parent_id].pk for parent_id in set(old_relations.keys()) - set(parents)}
ItemRelation.objects.filter(pk__in=to_delete).delete()
|
Get all items with outcoming edges from the given subgraph, drop all
their parent relations, and then add parents according to the given
subgraph.
Args:
parent_subgraph (dict): item id -> list of parents(item ids)
invisible_edges (list|set): set of (from, to) tuples specifying
invisible edges
|
juraj-google-style
|
def get_http_header(self) -> Response:
with wpull.util.reset_file_offset(self.block_file):
data = self.block_file.read(4096)
match = re.match(b'(.*?\\r?\\n\\r?\\n)', data)
if (not match):
return
(status_line, dummy, field_str) = match.group(1).partition(b'\n')
try:
(version, code, reason) = Response.parse_status_line(status_line)
except ValueError:
return
response = Response(status_code=code, reason=reason, version=version)
try:
response.fields.parse(field_str, strict=False)
except ValueError:
return
return response
|
Return the HTTP header.
It only attempts to read the first 4 KiB of the payload.
Returns:
Response, None: Returns an instance of
:class:`.http.request.Response` or None.
|
codesearchnet
|
def _CalculateStorageCounters(self, storage_reader):
analysis_reports_counter = collections.Counter()
analysis_reports_counter_error = False
event_labels_counter = collections.Counter()
event_labels_counter_error = False
parsers_counter = collections.Counter()
parsers_counter_error = False
for session in storage_reader.GetSessions():
if isinstance(session.analysis_reports_counter, dict):
analysis_reports_counter += collections.Counter(session.analysis_reports_counter)
elif isinstance(session.analysis_reports_counter, collections.Counter):
analysis_reports_counter += session.analysis_reports_counter
else:
analysis_reports_counter_error = True
if isinstance(session.event_labels_counter, dict):
event_labels_counter += collections.Counter(session.event_labels_counter)
elif isinstance(session.event_labels_counter, collections.Counter):
event_labels_counter += session.event_labels_counter
else:
event_labels_counter_error = True
if isinstance(session.parsers_counter, dict):
parsers_counter += collections.Counter(session.parsers_counter)
elif isinstance(session.parsers_counter, collections.Counter):
parsers_counter += session.parsers_counter
else:
parsers_counter_error = True
storage_counters = {}
warnings_by_path_spec = collections.Counter()
warnings_by_parser_chain = collections.Counter()
for warning in list(storage_reader.GetWarnings()):
warnings_by_path_spec[warning.path_spec.comparable] += 1
warnings_by_parser_chain[warning.parser_chain] += 1
storage_counters['warnings_by_path_spec'] = warnings_by_path_spec
storage_counters['warnings_by_parser_chain'] = warnings_by_parser_chain
if (not analysis_reports_counter_error):
storage_counters['analysis_reports'] = analysis_reports_counter
if (not event_labels_counter_error):
storage_counters['event_labels'] = event_labels_counter
if (not parsers_counter_error):
storage_counters['parsers'] = parsers_counter
return storage_counters
|
Calculates the counters of the entire storage.
Args:
storage_reader (StorageReader): storage reader.
Returns:
dict[str,collections.Counter]: storage counters.
|
codesearchnet
|
def get_lats():
lats = {}
fname = pkg_resources.resource_filename(__name__, 'resources/Latitudes-Longitudes.csv')
with open(fname, 'rb') as csvfile:
reader = csv.reader(csvfile, delimiter=',')
for row in reader:
word = row[0].lower()
word = re.sub(' ', '', word)
lats[word] = float(row[1])
return lats
|
Get a dictionary that maps Backpage city names to their respective latitudes.
Returns:
dictionary that maps city names (Strings) to latitudes (Floats)
|
codesearchnet
|
def pad_to_multiple_2d(x, block_shape):
old_shape = x.get_shape().dims
last = old_shape[(- 1)]
if (len(old_shape) == 4):
height_padding = ((- common_layers.shape_list(x)[1]) % block_shape[0])
width_padding = ((- common_layers.shape_list(x)[2]) % block_shape[1])
paddings = [[0, 0], [0, height_padding], [0, width_padding], [0, 0]]
elif (len(old_shape) == 5):
height_padding = ((- common_layers.shape_list(x)[2]) % block_shape[0])
width_padding = ((- common_layers.shape_list(x)[3]) % block_shape[1])
paddings = [[0, 0], [0, 0], [0, height_padding], [0, width_padding], [0, 0]]
padded_x = tf.pad(x, paddings)
padded_shape = padded_x.get_shape().as_list()
padded_shape = (padded_shape[:(- 1)] + [last])
padded_x.set_shape(padded_shape)
return padded_x
|
Making sure x is a multiple of shape.
Args:
x: a [batch, heads, h, w, depth] or [batch, h, w, depth] tensor
block_shape: a 2-d list of integer shapes
Returns:
padded_x: a [batch, heads, h, w, depth] or [batch, h, w, depth] tensor
|
codesearchnet
|
def is_str(string):
if sys.version_info[:2] >= (3, 0):
return isinstance(string, str)
return isinstance(string, basestring)
|
Python 2 and 3 compatible string checker.
Args:
string (str | basestring): the string to check
Returns:
bool: True or False
|
juraj-google-style
|
def download_and_uncompress(self, fileobj, dst_path):
try:
with tarfile.open(mode='r|*', fileobj=fileobj) as tgz:
for tarinfo in tgz:
abs_target_path = _merge_relative_path(dst_path, tarinfo.name)
if tarinfo.isfile():
self._extract_file(tgz, tarinfo, abs_target_path)
elif tarinfo.isdir():
tf_v1.gfile.MakeDirs(abs_target_path)
else:
raise ValueError(('Unexpected object type in tar archive: %s' % tarinfo.type))
total_size_str = tf_utils.bytes_to_readable_str(self._total_bytes_downloaded, True)
self._print_download_progress_msg(('Downloaded %s, Total size: %s' % (self._url, total_size_str)), flush=True)
except tarfile.ReadError:
raise IOError(('%s does not appear to be a valid module.' % self._url))
|
Streams the content for the 'fileobj' and stores the result in dst_path.
Args:
fileobj: File handle pointing to .tar/.tar.gz content.
dst_path: Absolute path where to store uncompressed data from 'fileobj'.
Raises:
ValueError: Unknown object encountered inside the TAR file.
|
codesearchnet
|
def verify_abort(func, *args, **kwargs):
expected_exception = kwargs.pop('expected_exception', runez.system.AbortException)
with CaptureOutput() as logged:
try:
value = func(*args, **kwargs)
assert False, ('%s did not raise, but returned %s' % (func, value))
except expected_exception:
return str(logged)
|
Convenient wrapper around functions that should exit or raise an exception
Example:
assert "Can't create folder" in verify_abort(ensure_folder, "/dev/null/not-there")
Args:
func (callable): Function to execute
*args: Args to pass to 'func'
**kwargs: Named args to pass to 'func'
Returns:
(str): Chatter from call to 'func', if it did indeed raise
|
codesearchnet
|
def conv(self, input_tensor: core.Tensor) -> Mapping[str, core.Tensor]:
q_input = array_ops.fake_quant_with_min_max_args(input_tensor, min=-0.1, max=0.2, num_bits=8, narrow_range=False)
filter_tensor = ops.convert_to_tensor(self.filter_value)
filter_min = array_ops.identity(array_ops.constant([-0.5, -0.5], dtype=dtypes.float32))
filter_max = array_ops.identity(array_ops.constant([0.5, 0.5], dtype=dtypes.float32))
q_filter = array_ops.fake_quant_with_min_max_vars_per_channel(filter_tensor, filter_min, filter_max, num_bits=8, narrow_range=True)
bias = array_ops.constant([0.1, 0.2], dtype=dtypes.float32)
scale, offset = ([1.0] * 2, [0.5] * 2)
mean, variance = (scale, offset)
out = nn_ops.conv2d(q_input, q_filter, strides=[1, 1, 2, 1], dilations=[1, 1, 1, 1], padding='SAME', data_format='NHWC', name='sample/conv2d')
if has_bias:
out = nn_ops.bias_add(out, bias, data_format='NHWC')
if activation_fn is not None:
if has_batch_norm:
out, _, _, _, _, _ = nn_ops.fused_batch_norm_v3(out, scale, offset, mean, variance, is_training=False)
out = activation_fn(out)
out_min = array_ops.constant([-0.18, -0.32], dtype=dtypes.float32)
out_max = array_ops.constant([0.5, 0.5], dtype=dtypes.float32)
q_out = array_ops.fake_quant_with_min_max_vars_per_channel(out, min=out_min, max=out_max, num_bits=8, narrow_range=True)
return {'output': q_out}
|
Performs a 2D convolution operation.
Args:
input_tensor: Input tensor to perform convolution on.
Returns:
A map of: output key -> output result.
|
github-repos
|
def resize(self, image: torch.Tensor, size: SizeDict, patch_size: SizeDict, interpolation: 'F.InterpolationMode'=None, **kwargs) -> torch.Tensor:
interpolation = interpolation if interpolation is not None else F.InterpolationMode.BILINEAR
if size.longest_edge:
size = (size.longest_edge, size.longest_edge)
elif size.height and size.width:
size = (size.height, size.width)
else:
raise ValueError("size must contain either 'longest_edge' or 'height' and 'width'.")
if patch_size.height and patch_size.width:
patch_size = (patch_size.height, patch_size.width)
else:
raise ValueError("patch_size must contain either 'shortest_edge' or 'height' and 'width'.")
output_size = get_resize_output_image_size(image, size=size, patch_size=patch_size)
return F.resize(image, size=output_size, interpolation=interpolation, **kwargs)
|
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
resized to keep the input aspect ratio.
Args:
image (`torch.Tensor`):
Image to resize.
size (`SizeDict`):
Dict containing the longest possible edge of the image.
patch_size (`SizeDict`):
Patch size used to calculate the size of the output image.
interpolation (`InterpolationMode`, *optional*, defaults to `InterpolationMode.BILINEAR`):
Resampling filter to use when resiizing the image.
|
github-repos
|
def Verify(self, completely=False):
res = super(Block, self).Verify()
if (not res):
return False
from neo.Blockchain import GetBlockchain, GetConsensusAddress
if (self.Transactions[0].Type != TransactionType.MinerTransaction):
return False
for tx in self.Transactions[1:]:
if (tx.Type == TransactionType.MinerTransaction):
return False
if completely:
bc = GetBlockchain()
if (self.NextConsensus != GetConsensusAddress(bc.GetValidators(self.Transactions).ToArray())):
return False
for tx in self.Transactions:
if (not tx.Verify()):
pass
logger.error('Blocks cannot be fully validated at this moment. please pass completely=False')
raise NotImplementedError()
return True
|
Verify the integrity of the block.
Args:
completely: (Not functional at this time).
Returns:
bool: True if valid. False otherwise.
|
codesearchnet
|
def approximate_split(x, num_splits, axis=0):
size = shape_list(x)[axis]
size_splits = [tf.div(size + i, num_splits) for i in range(num_splits)]
return tf.split(x, size_splits, axis=axis)
|
Split approximately equally into num_splits parts.
Args:
x: a Tensor
num_splits: an integer
axis: an integer.
Returns:
a list of num_splits Tensors.
|
juraj-google-style
|
def read_from_hdx(identifier, configuration=None):
resourceview = ResourceView(configuration=configuration)
result = resourceview._load_from_hdx('resource view', identifier)
if result:
return resourceview
return None
|
Reads the resource view given by identifier from HDX and returns ResourceView object
Args:
identifier (str): Identifier of resource view
configuration (Optional[Configuration]): HDX configuration. Defaults to global configuration.
Returns:
Optional[ResourceView]: ResourceView object if successful read, None if not
|
juraj-google-style
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.